
Функциональное программирование

Крис Окасаки

Чисто
функциональные

Крис Окасаки

Чисто функциональные
структуры данных

Москва, 2016

Purely Functional Data Structures

Chris Okasaki
Columbia University

i p C a m b r i d g e
% ;J P U N I V E R S I T Y P R E S S

Чисто функциональные
структуры данных

Крис Окасаки
Колумбийский университет

Перевод с английского Г. К. Бронникова
под редакцией В. Н. Брагилевского

» Ф.-.1» Д-У-Т» -дМи1 Ш :Ж*||
Москва, 2016

У Д К 004 .432 .42
Б Б К 32.9 7 3 .2 -0 1 8

0 4 9

049 К рис Окасаки
Ч исто функциональные структуры данных / Пер. с англ. Г. К. Бронников,
- М.: Д М К Пресс, 2016. — 252 с.: ил.
IS B N 978 -5 -9 70 6 0 -23 3 -1

Большинство книг по структурам данных предполагают использование им­
перативного языка программирования, например, C/C++ или Java. Однако ре­
ализации структур данных на таких языках далеко не всегда хорошо перено­
сятся на функциональные языки программирования, такие как Стандартный
ML, Haskell или Scheme. В этой книге структуры данных описываются с точ­
ки зрения функциональных языков, в ней содержатся примеры и предлагаются
подходы к проектированию, которые могут использоваться разработчиками при
создании их собственных структур данных. Книга включает в себя как клас­
сические структуры данных, к примеру, красно-чёрные деревья и биномиаль­
ные очереди, так и некоторые новые структуры данных, созданные специально
для функциональных языков. Весь исходный код приводится на Стандартном
ML и Haskell, причём большинство программ нетрудно адаптировать для других
функциональных языков программирования.

Это издание представляет собой справочное руководство для профессио­
нальных программистов, работающих с функциональными языками, и может
также использоваться в качестве учебника для самостоятельного изучения.

УДК 004.432.42
Б Б К 32.973.2-018

Все права защищены. Л ю бая часть этой книги не м ож ет бы ть воспроизведена в ка­
кой бы то ни было ф орм е и какими бы то ни бы ло средствами без письменного разрешения
владельцев авторских прав.

М атериал, изложенный в данной книге, м ногократно проверен. Но, поскольку вероят­
ность технических ош ибок всё равно сущ ествует, издательство не может гарантировать аб­
солю тную точность и правильность приводимых сведений. В связи с этим издательство не
несёт ответственности за возмож ны е ошибки, связанные с использованием книги.

ISBN 978-0-5216635-0-2 (англ.)

ISBN 978-5-97060-233-1 (рус.)

© Cambridge University Press, 1998
(с) Г. К. Бронников, перевод, 2015
© Оформление, Д М К Пресс, 2016

Оглавление

От редактора перевода

Предисловие

1. Введение
1.1. Функциональные и императивные структуры данных
1.2. Энергичное и ленивое в ы ч и сл е н и е ...
1.3. Т ер м и н ол оги я ...
1.4. Наш подход ..
1.5. Обзор к н и г и ...

2. Устойчивость
2.1. С п и с к и ...
2.2. Двоичные деревья п о и с к а ..
2.3. П р и м еч а н и я ...

3. Знакомые структуры данных в функциональном окружении
3.1. Левоориентированные к у ч и ..
3.2. Биномиальные к у ч и ...
3.3. Красно-чёрные д ер ев ь я ..
3.4. П р и м еч а н и я ...

4. Ленивое вычисление
4.1. $ -запи сь...
4.2. П о т о к и ...
4.3. П р и м еч а н и я ...

5. Основы амортизации
5.1. Методы амортизированного а н а л и за ..
5.2. О череди ...
5.3. Биномиальные к у ч и ...
5.4. Расширяющиеся к у ч и ..
5.5. Парные к у ч и ...
5.6. Плохие новости ..
5.7. П р и м еч а н и я ...

8

9

11
11
12
13
14
15

17
17
21
26

27
27
31
35
40

41
41
44
46

49
49
52
55
57
64
66
67

G Оглавление

6. Амортизация и устойчивость при ленивом вычислении 69
6.1. Трассировка вычисления и логическое в р е м я 69
6.2. Сочетание амортизации и у сто й ч и в о сти 71

6.2.1. Роль ленивого вычисления... 71
6.2.2. Общая методика анализа ленивых структур данных . 72

6.3. Метод бан ки ра .. 74
6.3.1. Обоснование метода б а н к и р а .. 75
6.3.2. Пример: очереди... 77
6.3.3. Наследование д о л г а ... 81

6.4. Метод ф и з и к а .. 82
6.4.1. Пример: биномиальные кучи .. 84
6.4.2. Пример: очереди ... 86
6.4.3. Сортировка слиянием снизу вверх с совместным ис­

пользованием 88
6.5. Ленивые парные к у ч и .. 94
6.6. П р и м еч а н и я ... 95

7. Избавление от амортизации 98
7.1. Расписания... 99
7.2. Очереди реального в р е м е н и ... 101
7.3. Биномиальные к у ч и .. 105
7.4. Сортировка снизу вверх с расписанием 110
7.5. П р и м еч а н и я ... 114

8. Ленивая перестройка 116
8.1. Порционная перестройка .. 116
8.2. Глобальная п е р е ст р о й к а .. 118

8.2.1. Пример: очереди реального времени по Худу-Мелвиллу119
8.3. Ленивая п ер естр ой к а .. 122
8.4. Двусторонние очереди ... 124

8.4.1. Деки с ограниченным в ы х о д о м 125
8.4.2. Деки по методу б а н к и р а .. 126
8.4.3. Деки реального в р е м е н и .. 129

8.5. П р и м еч а н и я ... 130

9. Числовые представления 133
9.1. Позиционные системы сч и сл ен и я ... 134
9.2. Двоичные ч и с л а .. 134

9.2.1. Двоичные списки с произвольным доступом 138
9.2.2. Безнулевые представления... 142

Оглавление 7

9.2.3. Ленивые представления .. 144
9.2.4. Сегментированные представления 147

9.3. Скошенные двоичные ч и с л а .. 150
9.3.1. Скошенные двоичные списки с произвольным доступом152
9.3.2. Скошенные биномиальные к у ч и .. 155

9.4. Троичные и четверичные ч и с л а .. 159
9.5. П р и м еч а н и я ... 161

10. Развёртка структур данных 162
10.1. Структурная д ек ом п ози ц и я .. 163

10.1.1. Гетерогенная рекурсия и Стандартный M L 164
10.1.2. Снова двоичные списки с произвольным доступом . . 165
10.1.3. Развёрнутые о ч е р е д и .. 169

10.2. Структурная абстракц ия... 173
10.2.1. Списки с эффективной конкатенацией........................... 175
10.2.2. Кучи с эффективным слиянием.. 181

10.3. Развёртка до составных т и п о в ... 186
10.3.1. Префиксные д е р е в ь я .. 186
10.3.2. Обобщённые префиксные деревья 190

10.4. П р и м еч а н и я ... 193

11. Неявное рекурсивное замедление 195
11.1. Очереди и деки .. 195
11.2. Двусторонние очереди с кон катенац ией 200
11.3. П р и м еч а н и я ... J09

А. Код на языке Haskell 210
А.1. О череди ... 210
А .2. Двусторонние очереди ... 215
А.З. Списки с конкатенацией ... 216
А .4. Двусторонние очереди с кон катенац ией 217
А .5. Списки с произвольным доступом ... 221
А .6. К у ч и ... 225
А .7. Сортируемые к ол л ек ц и и ... 232
А .8. М н ож еств а .. 232
А .9. Конечные отображ ения... 234

Литература 236

Предметный указатель 247

От редактора перевода

Книга Криса Окасаки «Чисто функциональные структуры данных»
даже спустя почти 20 лет после публикации остаётся единственным доста­
точно полным источником информации по разработке и анализу произво­
дительности различных структур данных в функциональном окружении.
Разумеется, за прошедшее время было получено множество новых резуль­
татов*, однако работы, которая бы их обобщала, к сожалению, пока не
появилось. Книга сочетает техническую точность в изложении основных
результатов и академическую строгость их обоснования.

Русский перевод этой книги можно считать чрезвычайно удачным
дополнением к выпущенной издательством ДМ К Пресс в 2013 году кни­
ги Ричарда Бёрда «Ж емчужины проектирования алгоритмов: функцио­
нальный подход», вместе они обеспечивают читателя богатым арсеналом
средств для разработки эффективных алгоритмов и структур данных при
работе с функциональными языками программирования. Надеемся, что
это издание будет способствовать распространению интереса к функцио­
нальному программированию в русскоязычном сообществе.

Перевод книги был выполнен Георгием Бронниковым. Благодарим
также Романа Кашицына, Всеволода Опарина, Кирилла Заборского, Алек­
сандра Карпича и Дмитрия Косарева за участие в работе по подготовке
настоящего издания.

Виталий Брагилевский,
Институт математики, механики и компьютерных наук

Ю ж ного федерального университета, Ростов-на-Дону

* Подробный их перечень мож но найти в ответе на вопрос Евгения Кнрпичёва по адресу
h t t p : / / c s t h e o r y . s ta c k e x ch a n g e . c o m /q /1 5 3 9 /.

http://cstheory.stackexchange.com/q/1539/

Предисловие

Я впервые познакомился с языком Стандартный ML в 1989 году.
Мне всегда нравилось программировать эффективные реализации струк­
тур данных, и я немедленно занялся переводом некоторых своих любимых
программ на Стандартный ML. Для некоторых структур перевод оказался
достаточно простым и, к моему большому удовольствию, получался код
значительно более краткий и ясный, чем предыдущие версии, написан­
ные мной на С, Pascal или Ada. Однако не всегда результат оказывался
столь приятным. Раз за разом мне приходилось использовать разруша­
ющее присваивание, которое в Стандартном ML не приветствуется, а во
многих других функциональных языках вообще запрещено. Я пытался об­
ращаться к литературе, но нашёл лишь несколько разрозненных статей.
Понемногу я стал понимать, что столкнулся с неисследованной областью,
и начал искать новые способы решения задач.

Сейчас, восемь лет спустя, мой поиск продолжается. Всё ещё есть мно­
го примеров структур данных, которые я просто не знаю как эффективно
реализовать на функциональном языке. Однако за это время я получил
множество уроков о том, что в функциональных языках работает. Эта
книга является попыткой записать выученные уроки, и я надеюсь, что она
послужит справочником для функциональных программистов, а также как
текст для тех, кто хочет больше узнать о структурах данных в функцио­
нальном окружении.

Стандартный M L . Несмотря на то, что структуры данных из этой
книги можно реализовать практически на любом функциональном языке,
я во всех примерах буду использовать Стандартный ML. У этого языка
имеются следующие преимущества для моих целей: (1) энергичный поря­
док вычислений, что значительно упрощает рассуждения о том, сколько
времени потребует тот или иной алгоритм, и (2) замечательная система мо­
дулей, идеально подходящая для выражения абстрактных типов данных.
Однако пользователи других языков, например, Haskell или Lisp, смогут
без труда адаптировать мои примеры к своим вычислительным окружени­
ям. (В приложении я привожу переводы большинства примеров на Haskell.)
Даже программисты на С или Java должны быть способны реализовать
эти структуры данных, хотя в случае С отсутствие автоматической сборки
мусора иногда будет доставлять неприятности.

10 Предисловие

Читателям, незнакомым со Стандартным ML, я рекомендую в каче­
стве введения книги ML для программиста-практика Полсона [Раи96] или
Элементы программирования на ML Ульмана [U1194].

Прочие предварительные требования. Эта книга не рассчитана
служить первоначальным общим введением в структуры данных. Я пред­
полагаю, что читателю достаточно знакомы основные абстрактные струк­
туры данных — стеки, очереди, кучи (приоритетные очереди) и конечные
отображения (словари). Кроме того, я предполагаю знакомство с основа­
ми анализа алгоритмов, особенно с нотацией «большого О» (например,
0 (п log 77,)). Обычно эти вопросы рассматриваются во втором курсе для
студентов, изучающих информатику.

Благодарности. Моё понимание функциональных структур данных
чрезвычайно обогатилось в результате дискуссий со многими специалиста­
ми на протяжении многих лет. Мне бы особенно хотелось поблагодарить
Питера Ли, Генри Бейкера, Герта Бродала, Боба Харпера, Хаима Каплана,
Грэма Мосса, Саймона Пейтона Джонса и Боба Тарьяна.

1. Введение

Когда программисту на С для решения определённой задачи требу­
ется эффективная структура данных, он или она обычно могут просто
найти подходящее решение в одном из многих учебников или справочни­
ков. К сожалению, для программистов па функциональных языках вроде
Стандартного ML или Haskell такая роскошь недоступна. Хотя большин­
ство справочников стараются быть независимы от языка, независимость
эта получается только в смысле Генри Форда: программисты свободны
выбрать любой язык, если язык этот императивный1. Чтобы несколько
исправить этот дисбаланс, в этой книге я рассматриваю структуры дан­
ных с функциональной точки зрения. В примерах программ я использую
Стандартный ML, однако эти программы нетрудно перевести на другие
функциональные языки, например, Haskell или Lisp. Версии наших про­
грамм на Haskell можно найти в Приложении А.

1.1. Функциональные и императивные структуры
данных

Методологические преимущества функциональных языков хорошо из­
вестны [Вас78, Hug89, НЛ94), но тем не менее большинство программ по-
прежнему пишутся на императивных языках вроде С. Кажущееся про­
тиворечие легко объяснить тем, что исторически функциональные язы­
ки проигрывали в скорости своим более традиционным аналогам, однако
этот разрыв сейчас сужается. По широкому фронту задач был достигнут
впечатляющий прогресс, начиная от базовой техники построения компи­
ляторов и заканчивая глубоким анализом и оптимизацией программ. Од­
нако одну особенность функционального программирования не исправить
никакими ухищрениями со стороны авторов компиляторов — использова­
ние слабых или несоответствующих задаче структур данных. К сожале­
нию, имеющаяся литература содержит относительно мало рецептов помо­
щи в этой области.

Почему оказывается, что функциональные структуры данных труд­
нее спроектировать и реализовать, чем императивные? Здесь две основные

1 Генри Ф орд однаж ды сказал о цветах автомобилей М одели Т : «[Покупатели] могут
выбрать любой цвет, при условии, что он чёрный».

12 1. Введение

проблемы. Во-первых, с точки зрения проектирования и реализации эф­
фективных структур данных, запрет функционального программирования
на деструк тивное обновление (то есть присваивание) является существен­
ным препятствием, подобно запрету для повара использовать ножи. Как и
ножи, деструктивные обновления при неправильном употреблении опасны,
но, будучи пущены в дело должным образом, чрезвычайно эффективны.
Императивные структуры данных часто существенным образом полагают­
ся на присваивание, так что в функциональных программах приходится
искать другие подходы.

Второе затруднение состоит в том, что от функциональных структур
ожидается большая гибкость, чем от их императивных аналогов. В част­
ности, когда мы производим обновление императивной структуры данных,
мы, как правило, принимаем как данность, что старая версия данных более
недоступна, в то время как при обновлении функциональной структуры мы
ожидаем, что как старая, так и новая версия доступны для дальнейшей
обработки. Структура данных, поддерживающая несколько версий, назы­
вается устойчивой (persistent), в то время как структура данных, позволя­
ющая иметь лишь одну версию в каждый момент времени, называется эфе­
мерной (ephemeral) [DSST89]. Функциональные языки программирования
обладают тем интересным свойством, что все структуры данных в них ав­
томатически устойчивы. Императивные структуры данных, как правило,
эфемерны. В тех случаях, когда требуется устойчивая структура, импера­
тивные программисты не удивляются, что она получается более сложной и,
возможно, даже асимптотически менее эффективной, чем эквивалентная
эфемерная структура.

Более того, теоретики установили нижние границы, которые показы­
вают, что в некоторых ситуациях функциональные языки но своей природе
менее эффективны, чем императивные [BAG92, Pip9G]. В свете перечис­
ленного, функциональные структуры данных иногда кажутся похожими
на танцующего медведя, о котором говорится: «поразительна не красота
его танца, а то, что он вообще танцует!» Однако на практике ситуация со­
всем не так безнадёжна. Как мы увидим, часто оказывается возможным
построить функциональные структуры данных, асимптотически столь же
эффективные, как лучшие императивные решения.

1.2. Энергичное и ленивое вычисление

Большинство (последовательных) функциональных языков програм­
мирования можно отнести либо к энергичным (strict), либо к ленивым
(lazy), в зависимости от порядка вычислений. Какой из этих порядков

1.3. Терминология 13

предпочтительнее — тема, обсуждаемая функциональными программиста­
ми подчас с религиозным жаром. Различие между двумя порядками вы­
числения наиболее ярко проявляется в подходах к вычислению аргумен­
тов функции. В энергичных языках аргументы вычисляются прежде тела
функции. В ленивых языках вычисление аргументов управляется потреб­
ностью; изначально они передаются в функцию в невычисленном виде,
и вычисляются только тогда, когда (и если!) их значение нужно для про­
должения работы. Кроме того, после однократного вычисления значение
аргумента кэшируется, так что если оно потребуется снова, его можно по­
лучить из памяти, а не перевычислягь заново. Такое кэширование назы­
вается мемоизация (memoization) [Mic68].

Каждый из этих порядков имеет свои достоинства и недостатки, но
энергичное вычисление явно удобнее по крайней мере в одном отноше­
нии: с ним проще рассуждать об асимптотической сложности вычислений.
В энергичных языках то, какие именно подвыражения будут вычислены
и когда, ясно по большей части уже из синтаксиса. Таким образом, рас­
суждения о времени выполнения каждой данной программы относительно
просты. В то же время в ленивых языках даже эксперты часто испыты­
вают сложности при ответе на вопрос, когда будет вычислено данное под­
выражение и будет ли вычислено вообще. Программисты на таких языках
часто вынуждены притворяться, что язык на самом деле энергичен, чтобы
получить хотя бы грубые оценки времени работы.

Оба порядка вычисления влияют на проектирование и анализ струк­
тур данных. Как мы увидим, энергичные языки могут описать структуры
с жёсткой оценкой времени выполнения в худшем случае, но не с аморти­
зированной оценкой, а в ленивых языках описываются амортизированные
структуры данных, но не рассчитанные на худший случай. Чтобы описы­
вать обе разновидности структур, требуется язык, поддерживающий оба
порядка вычислений. Мы получаем такой язык, расширяя Стандартный
ML примитивами для ленивого вычисления, как описано в главе 4.

1.3. Терминология

Любой разговор о структурах данных содержит опасность возникно­
вения путаницы, поскольку у термина структура данных (data structure)
есть по крайней мере четыре различных связанных между собой значения.

• Абстрактный тип данных (то есть тип и набор функций над этим
типом). Для этого значения мы будем пользоваться словом абстрак­
ция (abstraction).

14 1. Введение

• Конкретная реализация абстрактного типа данных. Для этого зна­
чения мы используем слово реализация (implementation). Однако от
реализации мы не требуем воплощения в коде — достаточно деталь­
ного проекта.

• Экземпляр типа данных, например, конкретный список или дерево.
Для такого экземпляра мы будем использовать слово объект (object)
или версия (version). Впрочем, для конкретных типов часто бывает
свой термин. Например, стеки и очереди мы будем называть просто
стеками и очередями.

• Сущность, сохраняющая свою идентичность при изменениях. На­
пример, в интерпретаторе, построенном на основе стека, мы часто
говорим о «стеке», как если бы это был один объект, а не различные
версии в различные моменты времени. Для этого значения мы будем
использовать выражение устойчивая сущность (persistent identity).
Нужда в этом возникает прежде всего при разговоре об устойчивых
структурах данных; когда мы говорим о различных версиях одной
и той же структуры, мы имеем в виду, что они все имеют одну и ту
же устойчивую сущность.

Грубо говоря, абстракциям в Стандартном ML соответствуют сигнатуры,
реализациям - структуры или функторы, а объектам или версиям — зна­
чения. Хорошего аналога понятию устойчивой сущности в Стандартном
ML нет2.

Термин операция (operation) перегружен подобным же образом; он
обозначает и функции, предоставляемые абстрактным типом данных, и
конкретные применения этих функций. Мы пользуемся словом операция
только во втором значении, а для первого употребляем слова функция
(function) или оператор (operator).

1.4. Наш подход

Вместо того, чтобы каталогизировать структуры данных, подходящие
для каждой возможной задачи (безнадёжное предприятие!), мы сосредото­
чим внимание на нескольких общих методиках проектирования эффектив­
ных функциональных структур данных, и каждую такую методику будем
иллюстрировать одной или несколькими реализациями базовых абстрак­

2 Устойчивая сущ ность эфемерной структуры данных мож ет бы ть реализована как ссы ­
лочная ячейка, но для моделирования устойчивой сущ ности устойчивой структуры
данных такого подхода недостаточно.

1.5. Обзор книги 15

ций, таких, как последовательность, куча (очередь с приоритетами) или
структуры для поиска. Когда читатель овладел этими методиками, он мо­
жет с лёгкостью их приспособить к собственным нуждам, или даже спро­
ектировать новые структуры с нуля.

1.5. Обзор книги

Книга состоит из трёх частей. Первая (главы 2 и 3) служит введением
в функциональные структуры данных.

• В главе 2 обсуждается, как функциональные структуры данных до­
биваются устойчивости.

• Глава 3 описывает три хорошо известных структуры данных — ле­
воориентированные кучи, биномиальные кучи и красно-чёрные де­
ревья, — и показывает, как их можно реализовать на Стандартном
ML.

Вторая часть (главы 4-7) посвящена соотношению между ленивым вычис­
лением и амортизацией.

• В главе 4 кратко рассматриваются основные понятия ленивого вычис­
ления и вводится синтаксис, которым мы пользуемся для описания
ленивых вычислений в Стандартном ML.

• Глава 5 служит введением в основные методы амортизации. В ней
объясняется, почему эти методы не работают при анализе устойчивых
структур данных.

• Глава 6 описывает связующую роль, которую ленивое вычисление иг­
рает при сочетании амортизации и устойчивости, и даёт два метода
анализа амортизированной стоимости структур данных, реализован­
ных через ленивое вычисление.

• В главе 7 демонстрируется, какую выразительную мощь даёт соче­
тание энергичного и ленивого вычисления в одном языке. Мы по­
казываем, как во многих случаях можно получить структуру дан­
ных с жёсткими характеристиками производительности из структу­
ры с амортизированными характеристиками, если систематически за­
пускать преждевременное вычисление ленивых компонент структу­
ры.

В третьей части книги (главы 8 11) исследуется несколько общих методик
построения функциональных структур данных.

16 1. Введение

• В главе 8 описывается ленивая перестройка (lazy rebuilding), вариант
идеи глобальной перестройки (global rebuilding) |Ove83|. Ленивая пе­
рестройка значительно проще глобальной, но в результате получают­
ся структуры с амортизированными, а не с жёсткими характеристи­
ками. Сочетание ленивой перестройки с методиками планирования
из главы 7 часто позволяет восстановить жёсткие характеристики.

• В главе 9 исследуются числовые представления (numerical represen­
tations) — представления данных, построенные по аналогии с пред­
ставлениями чисел (как правило, двоичных чисел). В этой модели
нахождение эффективных процедур вставки и изъятия соответствует
выбору таких вариантов двоичных чисел, где добавление или вычи­
тание единицы занимает константное время.

• Глава 10 рассматривает развёртку структур данных (data-structural
bootstrapping) |Buc93). Эта методика существует в трёх вариантах:
структурная декомпозиция (structural decomposition), когда реше­
ния без ограничений строятся на основе ограниченных решений,
структурная абстракция (structural abstraction), когда эффектив­
ные решения строятся на основе неэффективных, и развёртка до со­
ставных типов (bootstrapping to aggregate types), когда реализации
с атомарными элементами развёртываются до реализаций с состав­
ными элементами.

• В главе 11 описывается неявное рекурсивное замедление (implicit
recursive slowdown), ленивый вариант метода рекурсивного замедле­
ния (recursive slowdown) Каплана и Тарьяна [КТ95]. Подобно лени­
вой перестройке, неявное рекурсивное замедление значительно про­
ще обычного рекурсивного замедления, но вместо жёстких характе­
ристик даёт лишь амортизированные. Как и в случае ленивой пе­
рестройки, жёсткие характеристики зачастую можно восстановить
с помощью расписаний.

Наконец, Приложение А включает в себя перевод большинства про­
граммных реализаций этой книги на Haskell.

2. Устойчивость

Отличительной особенностью функциональных структур данных яв­
ляется то, что они всегда устойчивы (persistent) — обновление функцио­
нальной структуры не уничтожает старую версию, а создаёт новую, кото­
рая с ней сосуществует. Устойчивость достигается путём копирования за­
тронутых узлов структуры данных, и все изменения проводятся на копии,
а не на оригинале. Поскольку узлы никогда напрямую не модифицируют­
ся, все незатронутые узлы могут совместно использоваться (be shared)
между старой и новой версией структуры данных без опасения, что изме­
нения одной версии непроизвольно окажутся видны другой.

В этой главе мы исследуем подробности копирования и совместного
использования для двух простых структур данных: списков и двоичных
деревьев.

2.1. Списки

Мы начинаем с простых связанных списков, часто встречающихся в
императивном программировании и вездесущих в функциональном. Ос­
новные функции, поддерживаемые списками, в сущности те же, что и для
абстракции стека, описанной в виде сигнатуры на Стандартном ML на
рис. 2.1. Списки и стеки можно тривиально реализовать либо с помощью
встроенного типа «список» (рис. 2.2), либо как отдельный тип (рис. 2.3).

Замечание. Сигнатура на рис. 2.1 использует терминологию списков
(cons, head, ta il) , а не стеков (push, top, pop), потому что мы рассмат­
риваем списки как частный случай общего класса последовательностей.
Другими примерами этого класса являются очереди, двусторонние очере­
ди и списки с конкатенацией. Для функций во всех этих абстракциях мы
используем одинаковые соглашения по именованию, чтобы можно было
заменять одну реализацию другой с минимальными трудностями.

К этой сигнатуре мы могли бы добавить ещё одну часто встречающу­
юся операцию на списках: -Н-, которая конкатенирует (то есть соединяет)
два списка. В императивной среде эту функцию нетрудно реализовать за
время 0 (1) , если сохранять указатели и на первый, и на последний эле­
мент списка. Тогда -Н- просто изменяет последнюю ячейку первого списка

18 2. Устойчивость

signature Stack =
sig

type a Stack
val empty : a Stack
val isEmpty : a Stack —>bool
val cons : a x a Stack —> a Stack
val head : a Stack —> a Stack

(* возбуждает E m pty для пустого стека *)
val tail : a Stack —> a Stack

(* возбуждает E m pty для пустого стека *)
end

Рис. 2.1: сигнатура стеков.

structure List: Stack =
struct

type a Stack = a list
val empty = []
fun isEmpty s = null s
fun cons (x, s) = x :: s
fun head s = hd s
fun tail s = tl s

end

Рис. 2.2: реализация стека с помощью встроенного типа списков.

structure CustomStack: Stack =
struct

datatype a Stack = N il | C ons of a x a Stack
val empty = N il

fun isEmpty N il = true | isEmpty — false
fun cons (x,s) = Cons (x , s)
fun head N il = raise E m pty

| head (Cons (x , s)) = x
fun tail N il = raise E m pty

| tail (C ons (x , s)) = s
end

Рис. 2.3: реализация стека в виде отдельного типа.

Z. 1. Списки 19

xs ys

(до)

zs

(после)

Рис. 2.4: выполнение zs = xs-H-ys в императивном окружении (эта опера­
ция уничтожает списки-аргументы xs и ys).

так, чтобы она указывала на первую ячейку второго списка. Результат этой
операции графически показан на рис. 2.4. Обратите внимание, что эта опе­
рация уничтожает оба своих аргумента — после выполнения xs-H-ys ни
xs, ни ys использовать больше нельзя.

В функциональном окружении мы не можем деструктивно модифици­
ровать последнюю ячейку первого списка. Вместо этого мы копируем эту
ячейку и модифицируем хвостовой указатель в ячейке-копии. Затем мы ко­
пируем предпоследнюю ячейку и модифицируем её хвостовой указатель,
указывая на копию последней ячейки. Такое копирование продолжается,
пока не окажется скопирован весь список. Процесс в общем виде можно
реализовать как

fun xs-H-ys = if isEmpty xs then ys else cons (head xs, tail xs-H-ys)

Если у нас есть доступ к реализации нашей структуры (например, в виде
встроенных списков Стандартного ML), мы можем переписать эту функ­
цию через сопоставление с образцом:

fun [] -н- ys = ys
| (х :: xs) 41-ys = х :: (xs-H-ys)

На рис. 2.5 изображён результат конкатенации двух списков. Обратите
внимание, что после выполнения операции мы можем продолжать исполь­
зовать два исходных списка, xs и ys. Таким образом, мы добиваемся устой­
чивости, но за счёт копирования ценой О (п)1.

*В главах 10 и 11 мы увидим, как мож но реализовать -Н- за время 0 (1) без потери
устойчивости.

20 2. Устойчивость

XS

zs

XS

- И Э Ч Ю - Ч 1 y s . 3 4 5

(до)

- И Э - И Э - Е

Ч ° 1 -К Т Г № y s .
1

(после)

Рис. 2.5: выполнение zs = xs4(-ys в функциональном окружении (заметим,
что списки-аргументы xs и ys не затронуты операцией).

Хотя объём копирования довольно большой, тем не менее второй спи­
сок, ys, нам копировать не пришлось. Эти узлы теперь общие между ys
и zs. Ещё одна функция, иллюстрирующая парные понятия копирования
и общности подструктур — update, изменяющая значение узла списка по
данному индексу. Эту функцию можно реализовать как

fun update([], * > у) = raise Subscript
| update (x :: xs, 0, у) = у :: xs
| update (x :: xs, i, y) = x :: update(xs, i —1, y)

Здесь мы не копируем весь список-аргумент. Копировать приходится толь­
ко сам узел, подлежащий модификации (узел г) и узлы, содержащие пря­
мые или косвенные указатели на г. Другими словами, чтобы изменить один
узел, мы копируем все узлы на пути от корня к изменяемому. Все узлы,
не находящиеся на этом пути, используются как исходной, так и обнов­
лённой версиями. На рис. 2.G показан результат изменения третьего узла
в пятиэлементном списке: первые три узла копируются, а последние два
используются совместно.

Замечание. Такой стиль программирования очень сильно упрощается
при наличии автоматической сборки мусора. Очень важно освободить на­
мять от тех копий, которые больше не нужны, однако многочисленные сов­
местно используемые узлы делают ручную сборку мусора нетривиальной
задачей.

Упражнение 2.1. Реализуйте функцию suffixes : a list —> a list list,
которая принимает как аргумент список xs и возвращает список всех его
суффиксов в порядке убывания длины. Например,

suffixes [1,2,3,4] = [[1 ,2 ,3 ,4],[2 ,3 ,4] ,[3 ,4],[4], []]

2.2. Двоичные деревья поиска 21

**ЧЮЧ1]ЗЧ11ЭЧ1ПМЮ
(Д°)

(после)

Рис. 2.6: выполнение ys = update(xs, 2, 7) (обратите внимание на совмест­
ное использование структуры списками xs и ys).

Покажите, что список суффиксов можно породить за время 0 (п), исполь­
зуя при этом 0 (п) памяти.

2.2. Двоичные деревья поиска

Если узел структуры содержит более одного указателя, оказывают­
ся возможны более сложные сценарии совместного использования памяти.
Хорошим примером совместного использования такого вида служат дво­
ичные деревья поиска.

Двоичные деревья поиска — это двоичные деревья, в которых элемен­
ты хранятся во внутренних узлах в симметричном (symmetric) порядке,
то есть элемент в каждом узле больше любого элемента в левом поддереве
этого узла и меньше любого элемента в правом поддереве. В Стандартном
ML мы представляем двоичные деревья поиска при помощи следующего
типа:

datatype Tree = Е | Т of Tree х Elem х Tree

где Elem какой-либо фиксированный полностью упорядоченный тип эле­
ментов.

Замечание. Двоичные деревья поиска не являются полиморфными от­
носительно типа элементов, поскольку в качестве элементов не может вы­
ступать любой тип — подходят только типы, снабжённые отношением пол­
ного порядка. Однако это не значит, что для каждого типа элементов мы
должны заново реализовывать деревья двоичного поиска. Вместо этого мы
делаем тип элементов и прилагающиеся к нему функции сравнения пара-

22 2. Устойчивость

signature Set =
sig

type Elem
type Set
val empty Set
val insert Elem x Set —► Set
val member Elem x Set —> bool

end

Рис. 2.7: сигнатура множеств.

метрами функтора (functor), реализующего двоичные деревья поиска (см.
рис. 2.9).

Мы используем это представление для реализации множеств. Одна­
ко оно легко адаптируется и для других абстракций (например, конечных
отображений) или поддержки более оригинальных функций (скажем, най­
ти г-н по порядку элемент), если добавить в конструктор Т дополнительные
поля.

На рис. 2.7 показана минимальная сигнатура для множеств. Она со­
держит значение «пустое множество», а также функции добавления нового
элемента и проверки на членство. В более практической реализации, ве­
роятно, будут присутствовать и многие другие функции, например, для
удаления элемента или перечисления всех элементов.

Функция member ищет в дереве, сравнивая запрошенный элемент с на­
ходящимся в корне дерева. Если запрошенный элемент меньше корневого,
мы рекурсивно ищем в левом поддереве. Если он больше, рекурсивно ищем
в нравом поддереве. Наконец, в оставшемся случае запрошенный элемент
равен корневому, и мы возвращаем значение «истина». Если мы когда-либо
натыкаемся на пустое дерево, значит, запрашиваемый элемент не являет­
ся членом множества, и мы возвращаем значение «ложь». Эта стратегия
реализуется так:

fun member (х, Е) = false
| member (х, Т (а, у, Ь)) =

if х < у then member (х, а)
else if х >У then member (х, b)
else true

Замечание. Простоты ради, мы предполагаем, что функции сравнения
называются < и > . Однако если эти функции передаются в качестве пара­

2.2. Двоичные деревья поиска 23

метров функтора, как на рис. 2.9, часто оказывается удобнее называть их
именами вроде It или leq, а символы < и > оставить для сравнения целых
и других элементарных типов.

Функция insert проводит поиск в дереве по той же стратегии, что и
member, но только по пути она копирует каждый элемент. Когда оказы­
вается достигнут пустой узел, он заменяется на узел, содержащий новый
элемент.

fun insert (х, Е) = Т (Е, х, Е)
| insert (х, s as Т (а, у, Ь)) =

if х < у then Т (insert (х, а),у , Ь)
else if х > у then Т (а, у, insert (х, Ь))
else s

На рис. 2.8 показана типичная вставка. Каждый скопированный узел ис­
пользует одно из поддеревьев совместно с исходным деревом, а именно
то, которое не оказалось на пути поиска. Для большинства деревьев путь
поиска содерж ит лишь небольшую долю узлов в дереве. Громадное боль­
шинство узлов находятся в совместно используемых поддеревьях.

На рис. 2.9 показано, как двоичные деревья поиска можно реализовать
в виде функтора на Стандартном ML. Функтор принимает тип элементов
и связанные с ним функции сравнения как параметры. Поскольку часто
те же самые параметры будут использоваться и другими функторами (см.,
например, упражнение 2.6), мы упаковываем их в структуру с сигнатурой
O r d e r e d .

Упраж нение 2.2 . (Андерсон [And95]) В худшем случае member произ­
водит 2d сравнений, где d — глубина дерева. Перепишите её так, чтобы она
делала не более d + 1 сравнений, сохраняя элемент, который мож ет ока­
заться равным запрашиваемому (например, последний элемент, для кото­
рого операция < вернула значение «истина» или ^ — «лож ь»), и производя
проверку на равенство только по достижении дна дерева.

Упраж нение 2.3. Вставка уже существующего элемента в двоичное дере­
во поиска копирует весь путь поиска, хотя скопированные узлы неотличи­
мы от исходных. Перепишите insert так, чтобы она избегала копирования
с помощью исключений. Установите только один обработчик исключении
для всей операции поиска, а не по обработчику на итерацию.

Упраж нение 2.4. Совместите улучшения из предыдущих двух упражне­
ний, и получите версию insert, которая не делает ненужного копирования
и использует не более d + 1 сравнений.

24 2. Устойчивость

xs ys

(после)

Рис. 2.8: выполнение ys = insert ("е", xs) (как и прежде, обратите внима­
ние на совместное использование структуры деревьями xs и ys).

signature O rdered =
(* полностью упорядоченный тип и его функции сравнения *J

sig
type Т
val eq : T x T —>bool
val It : T x T —>bool
val leq : T x T —>-bool

end

functor UnbalancedSet (Element: O rdered): Set =
struct

type Elem = Element.T
datatype Tree = E | T of Tree x Elem x Tree
type Set = Tree
val empty = E
fun member (x, E) = false

| member (x, T (a, у , b)) =
if Element.lt (x, y) then member (x, a)
else Element.lt (y, x) then member (x, b)
else true

fun insert (x, E) = T (E, x, E)
| insert (x, s as T (a, y, b)) =

if Element.lt (x, y) then T (insert (x, a), У, b)
else Element.lt (y, x) then T (a, y, insert (x, b))
else s

end

Рис. 2.9: реализация двоичных деревьев поиска в виде функтора.

2.2. Двоичные деревья поиска 25

signature F initeM ap =
sig

type Key
type a Map
val empty : a Map
val bind : Key x a x a Map —> a Map
val lookup : Key x a Map —> a (* N o t Fou nd , если ключ не найден *)

end

Рис. 2.10: сигнатура для конечных отображений.

Упражнение 2.5. Совместное использование может быть полезно и внут­
ри одного объекта, не обязательно между двумя различными. Например,
если два поддерева одного дерева идентичны, их можно представить одним
и тем же деревом.

(а) Воспользуйтесь этой идеей, написав такую функцию complete типа
Elem х Int —> Tree, что complete (x,d) создаёт полное двоичное дерево
глубины d, где в каждом узле содержится х. (Разумеется, такая функ­
ция бессмысленна для абстракции множества, но она может оказать­
ся полезной для какой-либо другой абстракции, например, мульти­
множества.) Функция должна работать за время O(d).

(б) Расширьте свою функцию, чтобы она строила сбалансированные де­
ревья произвольного размера. Эти деревья не всегда будут полны, но
они должны быть как можно более сбалансированными: для любо­
го узла размеры поддеревьев должны различаться не более чем на
единицу. Функция должна работать за время O (logn). (Подсказка:
воспользуйтесь вспомогательной функцией create2, которая, получая
размер т, создаёт пару деревьев — одно размера т, а другое размера
т + 1.)

Упражнение 2.6. Измените функтор UnbalancedSet так, чтобы он слу­
жил реализацией не множеств, а конечных отображений (finite maps). На
рис. 2.10 приведена минимальная сигнатура для конечных отображений.
(Заметим, что исключение N o t Found не является встроенным в Стан­
дартный ML — вам придётся определить его самостоятельно. Это исключе­
ние можно было бы сделать частью сигнатуры F initeM a p , чтобы каждая
реализация определяла собственное исключение N o t F o und , н о удобнее,
если все конечные отображения будут использовать одно и то же исклю­
чение.)

26 2. Устойчивость

2.3. Примечания

Майерс [Муе82, Муе84] использовал копирование и совместное исполь­
зование при реализации двоичных деревьев поиска (в его случае это были
AVL-деревья). Для общего метода реализации устойчивых структур дан­
ных путём копирования затронутых узлов Сарнак и Тарьян [ST86a] выбра­
ли термин копирование путей (path copying). Существуют также другие
методы реализации устойчивых структур данных, предложенные Дрискол­
лом, Сарнаком, Слейтором и Тарьяном [DSST89] и Дитцем [Die89], но эти
методы не являются чисто функциональными.

3. Знакомые структуры данных
в функциональном окружении

Хотя реализовать в функциональной среде многие императивные
структуры данных трудно или невозможно, есть и такие, которые реали­
зуются без особых усилий. В этой главе мы рассматриваем три структуры
данных, которым обычно учат в императивном контексте. Первая из них,
левоориентированные кучи, просто устроена и в том, и в другом окруже­
нии. Однако две других, биномиальные очереди и красно-чёрные деревья,
часто считаются сложными для понимания, поскольку их императивные
реализации быстро превращаются в мешанину манипуляций с указателя­
ми. Напротив, функциональные реализации этих структур данных абстра­
гируются от действий с указателями и прямо отражают высокоуровневые
представления. Дополнительное преимущество функциональной реализа­
ции этих структур состоит в том, что мы бесплатно получаем устойчивость.

3.1. Левоориентированные кучи

Как правило, множества и конечные отображения поддерживают эф ­
фективный доступ к произвольным элементам. Однако иногда требуется
эффективный доступ только к минимальному элементу. Структура дан­
ных, поддерживающая такой режим доступа, называется очередь с при­
оритетами (priority queue) или куча (heap). Чтобы избежать путаницы
с очередями FIFO, мы будем использовать второй из этих терминов. На
рис. 3.1 приведена простая сигнатура для кучи.

Замечание. Сравнивая сигнатуры кучи и множества (рис. 2.7), мы ви­
дим, что для кучи отношение порядка на элементах включено в сигнатуру,
а для множества нет. Это различие вытекает из того, что отношение по­
рядка играет важную роль в семантике кучи, а в семантике множества не
играет. С другой стороны, можно утверждать, что в семантике множества
большую роль играет отношение равенства, и оно должно быть включено
в сигнатуру.

Обычно кучи реализуются посредством деревьев с порядком кучи
(heap-ordered), то есть в которых элемент при каждой вершине не больше

28 3. Знакомые структуры данных в функциональном окружении

signature Heap =
sig

structure Elem: O rdered

type Heap

val empty : Heap
val isEmpty : Heap —> bool
val insert : Elem.T x Heap —>■ Heap
val merge : Heap x Heap —» Heap

val findMin : Heap —> Elem.T (* возбуждает Empty для пустой кучи *)
val deleteMin : Heap —>■ Heap (* возбуждает Em pty для пустой кучи *)

end

Рис. 3.1: сигнатура для кучи (очереди с приоритетами).

элементов в поддеревьях. При таком упорядочении минимальный элемент
дерева всегда находится в корне.

Левоориентированные кучи |Cra72, Knu73a] представляют собой дво­
ичные деревья с порядком кучи, обладающие свойством левоориентиро-
ванпости (leftist property): ранг любого левого поддерева не меньше ранга
его сестринской правой вершины. Ранг узла определяется как длина его
правой периферии (right spine) (то есть самого правого пути от данного
узла до пустого). Простым следствием свойства левоориентированности
является то, что правая периферия любого узла — кратчайший путь от
него к пустому узлу.

Упражнение 3.1. Докажите, что правая периферия левоориентирован­
ной кучи размера п всегда содержит не более [log(n+ l)J элементов. (В этой
книге все логарифмы, если не указано обратного, берутся по основанию 2.)

Если у нас есть некоторая структура упорядоченных элементов Elem,
мы можем представить левоориентированные кучи как двоичные деревья,
снабжённые информацией о ранге.

datatype Heap = Е | Т o f int х Elem.T х Heap х Heap

Заметим, что элементы правой периферии левоориентированной кучи (да
и любого дерева с порядком кучи) расположены в порядке возрастания.
Главная идея левоориентированной кучи заключается в том, что для сли­
яния двух куч достаточно слить их правые периферии как упорядоченные
списки, а затем вдоль полученного пути обменивать местами поддеревья

3.1. Левоориентированные кучи 29

при вершинах, чтобы восстановить свойство левоориентированности. Э го
можно реализовать следующим образом:

fun merge (h, Е) = h
| merge (E, h) = h
| merge (hi as T (_ , x, ai, bi), h2 as T (_ , y, a2, b2)) =

if Elem.leq (x, y) then makeT (x, ai, merge (bi, h2))
else makeT (y, a2, merge (hi, b2))

где makeT — вспомогательная функция, вычисляющая ранг вершины Т и,
если необходимо, меняющая местами её поддеревья.

fun rank Е = О
| rank (Т (г, _ , _ , _)) = г

fun makeT (х, a, b) = if rank а > rank b then T (rank b +1, x, a, b)
else T (rank a +1, x, b, a)

Поскольку длина правой периферии любой вершины в худшем случае ло­
гарифмическая, merge выполняется за время О (log и).

Теперь, когда у нас есть эффективная функция merge, оставшие­
ся функции не представляют труда: insert создаёт одноэлементную ку­
чу и сливает её с существующей, findMin возвращает корневой элемент,
a deleteMin отбрасывает корневой элемент п сливает его поддеревья.

fun insert (х, h) = merge (Т (1, х, Е, Е), h)
fun findMin (Т (_ , х, а, b)) = х
fun deleteMin (Т (_ , х, a, b)) = merge (а, Ь)

Поскольку merge выполняется за время O (logn), столько же занимают и
insert с deleteMin. Очевидно, что findMin выполняется за 0 (1). Полная реа­
лизация левоориентированных куч приведена на рис. 3.2 в виде функтора,
принимающего в качестве параметра структуру упорядоченных элементов.

Замечание. Чтобы не перегружать примеры мелкими деталями, мы
обычно в фрагментах кода пропускаем варианты, ведущие к ошибкам. На­
пример, приведённые выше фрагменты не показывают поведение findMin и
deleteMin на пустых кучах. Когда дело доходит до полной реализации, как
на рис. 3.2, мы всегда включаем в неё разбор ошибок.

Упражнение 3.2. Определите insert напрямую, не обращаясь к merge.

Упражнение 3.3. Реализуйте функцию fromList типа Elem.T list —>• Heap,
порождающую левоориентированную кучу из неупорядоченного списка
элементов путём преобразования каждого элемента в одноэлементную ку­
чу, а затем слияния получившихся куч, пока не останется одна. Вместо

30 3. Знакомые структуры данных в функциональном окружении

functor LeftistHeap (Element: O rdered): Heap =
struct

structure Elem = Element
datatype Heap = E | T o f int x Elem.T x Heap x Heap

fun rank E = 0
| rank (T (r, _)) = r

fun makeT (x, a, b) = if rank a ^ rank b then T (rank b+1, x, a, b)
else T (rank a +1, x, b, a)

val empty = E
fun isEmpty E = true

| isEmpty _ = false

fun merge (h, E) = h
| merge (E, h) = h
| merge (hi as T (_ , x, ai, bi), h2 as T y, a2, b2)) =

if Elem.leq (x, y) then makeT (x, ai, merge (bi, h2)
else makeT (y, a2, merge (hi, b2))

fun insert (x,h) = merge (T (1, x, E, E), h)

fun findMin E = raise Em pty
| findMin (T (_ , x, a, b)) = x

fun deleteMin E = raise E m pty

| deleteMin (T (_ , x, a, b)) = merge (a, b)
end

Рис. 3.2: левоориентированные кучи.

того, чтобы сливать кучи проходом слева направо или справа налево при
помощи foldr или foldl, слейте кучи за [log п] проходов, где на каждом про­
ходе сливаются пары соседних куч. Покажите, что fromList требует всего
0(тг) времени.

Упражнение 3.4. (Ч о и Сахни [CS96]) Левоориентированные кучи со
сдвинутым весом — альтернатива левоориентированным кучам, где вме­
сто свойства левоориентированное™ используется свойство левоориенти-
рованности, сдвинутой по весу (weight-biased leftist property): размер лю­
бого левого поддерева всегда не меньше размера соответствующего правого
поддерева.

(а) Докажите, что правая периферия левоориентированной кучи со сдви­
нутым весом содержит не более [log(n + 1)J элементов.

3.2. Биномиальные кучи 31

(б) Измените реализацию на рис. 3.2, чтобы получились левоориентиро­
ванные кучи со сдвинутым весом.

(в) Функция merge сейчас выполняется в два прохода: сверху вниз, с вы­
зовами merge, и снизу вверх, с вызовами вспомогательной функции
makeT. Измените merge для левоориентированных куч со сдвинутым
весом так, чтобы она работала за один проход сверху вниз.

(г) Каковы преимущества однопроходной версии merge в условиях лени­
вого вычисления? В условиях параллельного вычисления?

3.2. Биномиальные кучи

Биномиальные очереди [Vui78, Bro78j, которые мы, чтобы избежать
путаницы с очередями FIFO, будем называть биномиальными кучами
(binomial heaps) — ещё одна распространённая реализация куч. Биноми­
альные кучи устроены сложнее, чем левоориентированные, и, на первый
взгляд, не возмещают эту сложность никакими преимуществами. Однако
в последующих главах мы увидим, как в различных вариантах биномиаль­
ных куч можно заставить insert и merge выполняться за время 0 (1).

Биномиальные кучи строятся из более простых объектов, называемых
биномиальными деревьями. Биномиальные деревья индуктивно определя­
ются так:

• Биномиальное дерево ранга 1 представляет собой одиночный узел.

• Биномиальное дерево ранга г + 1 получается путём связывания
(linking) двух биномиальных деревьев ранга г, так что одно из них
становится самым левым потомком другого.

Из этого определения видно, что биномиальное дерево ранга г содержит
ровно 2Г элементов. Существует второе, эквивалентное первому, определе­
ние биномиальных деревьев, которым иногда удобнее пользоваться: бино­
миальное дерево ранга г представляет собой узел с г потомками t\ . . . tr ,
где каждое tj является биномиальным деревом ранга г — г. На рис. 3.3
показаны биномиальные деревья рангов от 0 до 3.

Мы представляем вершину биномиального дерева в виде элемента и
списка его потомков. Для удобства мы также помечаем каждый узел его
рангом.

datatype Tree = Node of int x Elem.T x Tree list

32 3. Знакомые структуры данных в функциональном окружении

Ранг 0 Ранг 1 Ранг 2 Ранг 3

Рис. 3.3: биномиальные деревья рангов 0-3.

Каждый список потомков хранится в убывающем порядке рангов, а эле­
менты хранятся с порядком кучи. Чтобы сохранять этот порядок, мы все­
гда привязываем дерево с большим корнем к дереву с меньшим корнем.

fun link (ti as Node (r, xi, ci), t2 as Node (_ , x2, c2)) =
if Elem.leq (xi, x2) then Node (r+1, xi, t2 :: Ci)
else Node (r+1, x2, ti :: c2)

Связываем мы всегда деревья одного ранга.
Теперь определяем биномиальную кучу как коллекцию биномиальных

деревьев, каждое из которых имеет порядок кучи, и никакие два дерева
не совпадают но рангу. Мы представляем эту коллекцию в виде списка
деревьев в возрастающем порядке ранга.

type Heap = Tree list

Поскольку каждое биномиальное дерево содержит 2Г элементов, и никакие
два дерева по рангу не совпадают, деревья размера п в точности соответ­
ствуют единицам в двоичном представлении п. Например, число 21 в дво­
ичном виде выглядит как 10101, и поэтому биномиальная куча размера 21
содержит одно дерево ранга 0, одно ранга 2, и одно ранга 4 (размерами,
соответственно, 1, 4 и 16). Заметим, что так же, как двоичное представле­
ние п содержит не более [log(n + 1)J единиц, биномиальная куча размера
п содержит не более [log(n-\- 1)J деревьев.

Теперь мы готовы описать функции, действующие на биномиальных
деревьях. Начинаем мы с insert и merge, которые определяются примерно
аналогично сложению двоичных чисел. (Мы укрепим эту аналогию в гла­
ве 9.) Чтобы внести элемент в кучу, мы сначала создаём одноэлементное
дерево (то есть биномиальное дерево ранга 0), затем поднимаемся по спис­
ку существующих деревьев в порядке возрастания рангов, связывая при
этом одноранговые деревья. Каждое связывание соответствует переносу
в двоичной арифметике.

3.2. Биномиальные кучи 33

fun rank (Node (г, x, с)) = г
fun insTree (t , [)) = [tj

| insTree (t, ts as t' :: ts') =
if rank t «Crank t' then t :: ts else insTVee (link (t, t'), ts')

fun insert (x, ts) = insTree (Node (0, x, []) , ts)

В худшем случае, при вставке в кучу размера п = 2k — 1, требуется к
связываний и О(к) = О (log п) времени.

При слиянии двух куч мы проходим через оба списка деревьев в по­
рядке возрастания ранга и связываем по пути деревья равного ранга. Как
и прежде, каждое связывание соответствует переносу в двоичной арифме­
тике.

fun merge (tsi, []) = tsi
| merge ([], ts2) = ts2
| merge (tsi as ti :: tsi, ts2 as t2 :: ts2) =

if rank ti < rank t2 then ti :: merge (ts'lt ts2)
else if rank t2 < rank ti then t2 :: merge (tsi, ts2)
else insTree (link (t i, t2), merge (ts'i, ts2))

Функции findMin и deleteMin вызывают вспомогательную функцию
removeMinTree, которая находит дерево с минимальным корнем, исключа­
ет его из списка и возвращает как это дерево, так и список оставшихся
деревьев.

fun removeMinTree [t] = (t, [])
| removeMinTree (t :: ts) =

let val (t ', ts') = removeMinTree ts
in if Elem.leq (root t, root t') then (t, ts) else (t ', t :: ts') end

Функция findMin просто возвращает корень найденного дерева

fun findMin ts = let val (t, _) = removeMinTree ts in root t end

Функция deleteMin устроена немного хитрее. Отбросив корень найденного
дерева, мы ещё долж ны вернуть его потомков в список остальных дере­
вьев. Заметим, что список потомков почти уже соответствует определению
биномиальной кучи. Это коллекция биномиальных деревьев с неповторя­
ющимися рангами, но только отсортирована она не по возрастанию, а по
убыванию ранга. Таким образом, обратив список потомков, мы преобразу­
ем его в биномиальную кучу, а затем сливаем с оставшимися деревьями.

fun deleteMin ts = let val (Node (_ , x, tsi), ts2) = removeMinTree ts
in merge (rev tsi, ts2) end

Полная реализация биномиальных куч приведена на рис. 3.4. Все четыре
основные операции в худшем случае требуют 0 (lo g п) времени.

34 3. Знакомые структуры данных в функциональном окружении

functor Binomial Heap (Element: O rdered): Heap =
struct

structure Elem = Element
datatype Tree = Node o f int x Elem.T x Tree list
type Heap = Tree list

val empty = []
val isEmpty ts = null ts

fun rank (Node (r, x, c)) = r
fun root (Node (r, x, c)) = x

fun link (ti as Node (n , xi, ci), t2 as Node (r2, x2, c2)) =
if Elem.leq (xi, x2) then Node(r+l, xi, t2 :: Ci)
else Node(r+l, x2, ti :: c2)

fun insTree (t , []) = [t]
| insTree (t , ts as t' :: ts') =

if rank t < rank t' then t :: ts else insTree (link(t, t'), ts')
fun insert (x, ts) = insTree (Node(0, x, []), ts)

fun merge (tsi, []) = tsi
| merge ([], ts2) = ts2
| merge (tsi as ti :: tsi, ts2 as t2 :: ts2) =

if rank ti < rank t2 then ti :: merge (tsi, ts2)
else if rank t2 < rank ti then t2 :: merge (tsi, ts2)
else insTree (link (11 , t2), merge (tsi, ts2))

fun removeMinTree []= raise E m pty
| removeMinTree [t] = (t, [])
| removeMinTree (t :: ts) =

let val (t', ts') = removeMinTree ts
in if Elem.leq (root t, root t') then (t, ts) else (t', t :: ts;) end

fun findMin ts = let val (t , _) = removeMinTree ts in root t end

fun deleteMin ts =
let val (Node(_, x, tsi), ts2) = removeMinTree ts
in merge (rev tsi, ts2) end

end

Рис. 3.4: биномиальные кучи.

3.3. Красно-чёрные деревья 35

Упраж нение 3 .5 . Определите findMin, не обращаясь к removeMinTree.

Упраж нение 3.6 . Большая часть аннотаций ранга в нашем представле­
нии биномиальных куч излишня, потому что мы и так знаем, что дети узла
ранга г имеют ранги г — 1 , . . . ,0 . Таким образом, можно исключить соот­
ветствующее поле из узлов, а вместо этого помечать ранг корня каждого
дерева, то есть

d atatyp e Tree = Node o f Elem.T x Tree list
typ e Heap = (int x Tree) list

Реализуйте биномиальные кучи в таком представлении.

Упраж нение 3.7 . Одно из основных преимуществ левоориентированных
куч над биномиальными заключается в том, что findMin занимает в них
0 (1) времени, а не 0 (lo g п). Следующая заготовка функтора улучшает вре­
мя findMin до 0 (1) , сохраняя минимальный элемент отдельно от остальной
кучи.

functor ExplicitMin (Н: H eap): H eap =
struct

structu re Elem = H.Elem
d atatyp e Heap = E | NE o f Elem.T x H.Heap

end

Заметим, что этот функтор не ограничен биномиальными кучами, он при­
нимает любую реализацию куч в качестве параметра. Закончите этот
функтор так, чтобы findMin требовала время 0 (1) , а функции insert, merge
и deleteMin каждая по O (logn). Предполагается, что нижележащая реали­
зация Н для всех операций выполняется за O (logn) или быстрее.

3.3. Красно-чёрные деревья

В разделе 2.2 мы описали двоичные деревья поиска. Такие деревья
хорошо ведут себя на случайных или неупорядоченных данных, однако на
упорядоченных данных их производительность резко падает, и каждая опе­
рация может занимать до 0 (п) времени. Решение этой проблемы состоит
в том, чтобы каждое дерево поддерживать в приблизительно сбалансиро­
ванном состоянии. Тогда каждая операция выполняется не хуже, чем за
время O (logn). Одним из наиболее популярных семейств сбалансирован­
ных двоичных деревьев поиска являются красно-чёрные [GS78].

36 3. Знакомые структуры данных в функциональном окружении

Красно-чёрное дерево представляет собой двоичное дерево поиска,
в котором каждый узел окрашен либо красным, либо чёрным. Мы добав­
ляем поле цвета в тип двоичных деревьев поиска из раздела 2.2.

datatype Color = R | В
datatype Tree = Е | Т o f Color х Tree х Elem.T х Tree

Все пустые узлы считаются чёрными, поэтому пустой конструктор Е в поле
цвета не нуждается.

Мы требуем, чтобы всякое красно-чёрное дерево соблюдало два инва­
рианта:

• Инвариант 1. У красного узла не может быть красного ребёнка.

• Инвариант 2. Каждый путь от корня дерева до пустого узла содер­
жит одинаковое количество чёрных узлов.

Вместе эти два инварианта гарантируют, что самый длинный возможный
путь по красно-чёрному дереву, где красные и чёрные узлы чередуются, не
более чем вдвое длиннее самого короткого, состоящего только из чёрных
узлов.

Упражнение 3.8. Докажите, что максимальная глубина узла в красно­
чёрном дереве размера п не превышает 2[log(n + 1)J.

Функция member для красно-чёрных деревьев не обращает внимания
на цвета. За исключением заглушки в варианте для конструктора Т, она
не отличается от функции member для несбалансированных деревьев.

fun member (х, Е) = false
| member (х, Т (_ , а, у, Ь)) =

if х у then member (х, а)
else if х > у then member (х, b)
else true

Функция insert более интересна, поскольку она должна поддерживать два
инварианта баланса.

fun insert (х, s) =
let fun ins E = T (R, E, x, E)

| ins (s as T (color, a, y, b)) =
if x у then balance (color, ins a, y, b)
else if x > y then balance (color, a, y, ins b)
else s

val T (_ , a, y, b) = ins s (* гарантированно непустое *)
in T (B, a, y, b)

3.3. Красно-чёрные деревья 37

Эта функция содержит три существенных изменения по сравнению с insert
для несбалансированных деревьев поиска. Во-первых, когда мы создаём
новый узел в ветке ins Б, мы сначала окрашиваем его в красный цвет.
Во-вторых, независимо от цвета, возвращаемого ins, в окончательном ре­
зультате мы корень окрашиваем чёрным. Наконец, в ветках х < у и х > у
мы вызовы конструктора Т заменяем на обращения к функции balance.
Функция balance действует подобно конструктору Т, но только она пере­
упорядочивает свои аргументы, чтобы обеспечить выполнение инвариан­
тов баланса.

Если новый узел окрашен красным, мы сохраняем Инвариант 2, но
в случае, если отец нового узла тоже красный, нарушается Инвариант 1.
Мы временно позволяем существовать одному такому нарушению, и пере­
носим его снизу вверх по мере перебалансировапия. Функция balance об­
наруживает и исправляет красно-красные нарушения, когда обрабатывает
чёрного родителя красного узла с красным ребёнком. Такая чёрно-красно­
красная цепочка может возникнуть в четырёх различных конфигурациях,
в зависимости от того, левым или правым ребёнком является каждая из
красных вершин. Однако в каждом из этих случаев решение одно и то
же: нужно преобразовать чёрно-красно-красный путь в красную вершину
с двумя чёрными детьми, как показано на рис. 3.5. Это преобразование
можно записать так:

fun balance (В,Т (R,T (R,a,x,b),y,c),z,d)
| balance (B,T (R,a,x,T (R,b,y,c)),z,d)
| balance (B,a,x,T (R,T (R,b,y,c),z,d))
| balance (B,a,x,T (R,b,y,T (R,c,z,d)))
| balance body = T body

Нетрудно проверить, что в получающемся поддереве будут соблюдены оба
инварианта красно-чёрного баланса.

Замечание. Заметим, что в первых четырёх строках balance правые ча­
сти одинаковы. В некоторых реализациях Стандартного ML, в частно­
сти, в Нью-Джерсийском Стандартном ML (Standard ML of New Jersey),
поддерживается расширение, называемое или-образцы (or-patterns), поз­
воляющее слить несколько вариантов с одинаковыми правыми сторонами
в один [ЕВ97|. С его использованием функцию balance можно переписать:

fun balance ((В,Т (R,T (R,a,x,b),y,c),z,d)
| (B,T (R,a,x,T (R,b,y,c)),z,d)
| (B,a,x,T (R,T (R,b,y,c),z,d))
I (B,a,x,T (R,b,y,T (R,c,z,d)))) = T (R, T (B,a,x,b),T (B,c,z,d))

] balance body = T body

= T (R, T (B,a,x,b),T (B,c,z,d))
= T (R, T (B,a,x,b),T (B,c,z,d))
= T (R, T (B,a,x,b),T (B,c,z,d))
= T (R, T (B,a,x,b),T (B,c,z,d))

38 3. Знакомые структуры данных в функциональном окружении

- чёрный

- красный

b с

Рис. 3.5: избавление от красных узлов с красными родителями.

После балансировки некоторого поддерева красный корень этого под­
дерева может оказаться ребёнком ещё одного красного узла. Таким обра­
зом, балансировка продолжается до самого корня дерева. На самом верху
дерева мы можем получить красную вершину с красным ребёнком, но без
чёрного родителя. С этим вариантом мы справляемся, всегда перекраши­
вая корень в чёрное.

Реализация красно-чёрных деревьев полностью приведена на рис. 3.6.

3.3. Красно-чёрные деревья 39

functor RedBlackSet (Element: O r d e r e d) : S e t =
struct

structure Elem = Element
datatype Color = R | D
datatype Tree = E | T of Color x Tree x Elem.T x Tree
type Set = Tree

val empty = E
fun member (x, E) = false

| member (x, T (_ , a, y, b)) =
if Elem.lt (x,y) then member (x, a)
else if Elem.lt (y,x) then member (x, b)
else true

fun balance (B,T (R,T (R,a,x,b),y,c),z,d)
| balance (B,T (R,a,x,T (R ,b,y,c)),z,d)
j balance (B,a,x,T (R,T (R,b,y,c),z,d))
| balance (B,a,x,T (R,b,y,T (R,c,z,d)))
| balance body = T body

fun insert (x, s) =
let fun ins E = T (R, E, x, E)

| ins (s as T (color, a, y, b)) =
if Elem.lt (x,y) then balance (color, ins a, y, b)
else if Elem.lt (y,x) then balance (color, a, y, ins b)
else s

val T (_ , a, y, b) = ins s (* гарантированно непустое *)
in T (B, a, y, b)

end

Рис. 3.G: красно-чёрные деревья.

Указание разработчикам. Даже без дополнительных оптимизаций на­
ша реализация сбалансированных двоичных деревьев поиска — одна из
самых быстрых среди имеющихся. С оптимизациями вроде описанных в
Упражнениях 2.2 и 3.10 она просто летает!

Замечание. Одна из причин, почему наша реализация выглядит настоль­
ко проще, чем типичное описание красно-чёрных деревьев (например, гла­
ва 14 в книге [CLR90]), состоит в том, что мы используем несколько другие
преобразования перебалансировки. В императивных реализациях обычно
наши четыре проблематичных случая разбиваются на восемь, в зависи­

= Т (R, Т (B,a,x,b),T (B,c,z,d))
= Т (R, Т (B,a,x,b),T (B,c,z,d))
= Т (R, Т (B,a,x,b),T (B,c,z,d))
= Т (R, Т (B,a,x,b),T (B,c,z,d))

40 3. Знакомые структуры данных в функциональном окружении

мости от цвета узла, соседствующего с красной вершиной с красным ре­
бёнком. Знание цвета этого узла в некоторых случаях позволяет совер­
шить меньше присваиваний, а в некоторых других завершить балансиров­
ку раньше. Однако в функциональной среде мы в любом случае копируем
все эти вершины, и таким образом, не можем ни сократить число присва­
иваний, ни прекратить копирование раньше времени, так что для исполь­
зования более сложных преобразований нет причины.

У п р а ж н ен и е 3.9. Напишите функцию fromOrdList: Elem.T list —> Tree, ко­
торая преобразует отсортированный список без повторений в красно-
чёрное дерево. Функция должна выполняться за время 0{п) .

У п р а ж н ен и е 3 .10. Приведённая нами реализация функции balance про­
изводит несколько ненужных проверок. Например, когда функция ins ре­
курсивно вызывается для левого ребёнка, не требуется проверять красно­
красные нарушения на правом ребёнке.

(а) Разбейте balance на две функции lbalance и rbalance, которые проверя­
ют, соответственно, нарушения инварианта в левом и правом ребён­
ке. Замените обращения к balance внутри ins на вызовы lbalance либо
rbalance.

(б) Ту же самую логику можно распространить ещё на шаг и убрать одну
из проверок для внуков. Перепишите ins так, чтобы она никогда не
проверяла цвет узлов, не находящихся на пути поиска.

3.4. Примечания

Нуньес, Палао и Пенья [NPP95] и Кинг [Kin94] описывают подобные
нашим реализации, соответственно, левоориентированных куч и биноми­
альных куч на Haskell. Красно-чёрные деревья до сих пор не были опи­
саны в литературе по функциональному программированию, в отличие
от некоторых других вариантов сбалансированных деревьев поиска, та­
ких как AVL-деревья [Муе82, Муе84, BW88, NPP95], 2-3-деревья [Rea92]
и деревья, сбалансированные по весу [Ada93].

Левоориентированные кучи были изобретены Кнутом [Knu73a] как
упрощение структуры данных, введённой Крейном [Сга72]. Виллемин
[Vui78] изобрёл биномиальные кучи; Браун [Вго78] исследовал многие свой­
ства этой изящной структуры данных. Гибас и Седжвик [GS78] предложи­
ли красно-чёрные деревья в качестве обобщающего описания для многих
других разновидностей сбалансированных деревьев.

4. Ленивое вычисление

Ленивое вычисление является основной стратегий вычисления во мно­
гих функциональных языках программирования (но не в Стандартном
ML). У этой стратегии есть два существенных свойства. Во-первых, вычис­
ление всякого выражения задерживается, или подвешивается (suspend),
пока не потребуется его результат. Во-вторых, когда задержанное выраже­
ние вычисляется в первый раз, результат вычисления запоминается (мемо-
изируется), так что, если он потребуется снова, можно его просто извлечь
из памяти, а не вычислять заново. Оба этих свойства ленивого вычисления
оказываются алгоритмически полезными.

В этой главе мы вводим удобные обозначения для ленивых вычисле­
ний и, в качестве иллюстрации, строим при помощи этой нотации простую
библиотеку потоков. В последующих главах мы будем активно пользовать­
ся как ленивыми вычислениями вообще, так и потоками в частности.

4.1. $-запись

К сожалению, определение Стандартного ML |МТНМ97] не включа­
ет поддержки ленивого вычисления, так что каждая реализация может
предоставлять свой собственный набор элементарных операций. Мы пред­
ставляем здесь один такой набор, называемый $-записыо. Перевод про­
грамм, использующих $-запись, в другие варианты примитивов ленивого
вычисления не должен представлять трудности.

В $-записи мы вводим новый тип a susp, представляющий задержки
(задержанные вычисления). У этого типа имеется один одноместный кон­
структор $. В первом приближении a susp и $ ведут себя так, как будто
они введены при помощи обыкновенного объявления типа

datatype a susp = $ o f а

Новая задержка типа г susp создаётся при помощи конструкции $е, где е —
выражение типа т. Подобным же образом содержимое задержки можно
извлечь через сопоставление с образцом $р. Если образец р сопоставляется
со значениями типа т, то $р сопоставляется с задержками типа т susp.

Основное различие между $ и обыкновенными конструкторами со­
стоит в том, что $ не вычисляет свой аргумент немедленно. Вместо это­
го он запоминает информацию, необходимую для того, чтобы вычислить

42 4. Ленивое вычисление

выражение-аргумент позже. (Как правило, эта информация состоит из
указателя на код, а также значений свободных переменных выражения.)
Выражение-аргумент не вычисляется до тех пор, когда (и если) оно не со­
поставится с образцом вида $р. В этот момент выражение вычисляется, а
его результат запоминается. Затем результат сопоставляется с образцом р.
Если задержанное выражение потом сопоставляется с другим образцом ви­
да $ //, запомненное значение извлекается и сопоставляется с образцом р'.

Кроме того, конструктор $ отличается от прочих конструкторов син­
таксически. Во-первых, его область действия распространяется направо
как можно дальше. Таким образом, например, выражение $f х равно­
значно $(f х), а не ($f) х; образец SCons (х, xs) обозначает то же, что
$(CONS (х, xs)), а не (SCons) (х, xs). Во-вторых, $ не является правиль­
но построенным выражением сам но себе — он всегда должен сочетаться
с аргументом.

В качестве примера $ записи рассмотрим следующий фрагмент про­
граммы:

val s = Sprimes 1000000 (* быстро *)

val $х = s (* медленно *)

val $у = s (* быстро *)

Программа вычисляет миллионное простое число. Первая строка, которая
просто создаёт новую задержку, выполняется очень быстро. Вторая строка
выполняет задержанное вычисление и находит простое число. В зависимо­
сти от алгоритма поиска простых чисел, она может потребовать значитель­
ного времени. Третья строка обращается к мемоизированному значению и
также выполняется очень быстро.

В качестве второго примера рассмотрим фрагмент

let val s = Sprimes 1000000
in 15 end

В этой программе содержимое задержки никогда не требуется, и, значит,
выражение primes 1000000 не вычисляется.

Хотя все примеры ленивого вычисления в этой книге можно было
бы выразить только через выражения и образцы со знаком $, удобным
оказывается ввести два элемента синтаксического сахара. Первый из них -
оператор force («вынудить»), определяемый как

fun force ($х) = х

4-1. $-запись 43

Он полезен, чтобы извлечь содержимое задержки посреди выражения, где
было бы неудобно вставлять конструкцию сопоставления с образцом.

Второй элемент синтаксического сахара полезен при написании неко­
торых разновидностей ленивых функций. Рассмотрим, например, следую­
щую функцию для сложения задержанных целых:

fun plus ($m, $n) = $m+n

Несмотря на то, что определение функции выглядит совершенно разумно,
скорее всего, это не та функция, которую мы хотели написать. Проблема
состоит в том, что оба её задержанных аргумента вычисляются слишком
рано. Они вынуждаются в момент применения функции plus, а не тогда,
когда требуется выполнить задержку, создаваемую ей. Один из способов
получить нужное поведение — явным образом задержать сопоставление с
образцом

fun plus (х, у) = Scase (х, у) of ($m, $n) => m+n

Подобные конструкции встречаются достаточно часто, поэтому мы введём
для них синтаксический сахар

fun lazy f р = е

что равносильно

fun f х = Scasc х o f p => force e

При помощи дополнительного force мы добиваемся того, что ключевое сло­
во lazy никак не влияет на тип функции (если предположить, что он уже
был a susp), так что эту аннотацию можно добавлять и убирать, никак
не меняя остальной текст. Теперь требуемую нам функцию для сложения
задержанных целых можно написать просто как

fun lazy plus ($m, $n) = $m+n

Раскрытие синтаксического сахара даёт

fun plus (x, у) = $case (x, y) of ($m, $n) =>■ force ($m+n)

что совпадает с ранее вручную написанной версией с точностью до допол­
нительных force и $ вокруг m+n. Хороший компилятор уберёт эти force
и $ при оптимизации, поскольку для любого е выражения е и force ($е)
эквивалентны.

В функции plus аннотация lazy используется для задержки сопостав­
ления с образцом, чтобы $-образцы не были сопоставлены раньше време­
ни. Однако аннотация lazy полезна также, когда правая сторона опреде­
ления функции возвращает задержку в результате вычисления, которое

44 4- Ленивое вычисление

может оказаться долгим и сложным. В такой ситуации использование lazy
сдвигает выполнение дорогого вычисления с того момента, когда функция
применяется к аргументу, на тот, когда вынуждается возвращаемая ею
задержка. В следующем разделе мы увидим несколько примеров такого
использования lazy.

Синтаксис и семантика $-записи формально определены в [ОкаЭба].

4 . 2 . П о т о к и

В качестве расширенного примера ленивых вычислений и $-записи
в Стандартном ML мы представляем простой пакет для работы с пото­
ками. Потоки будут использоваться в нескольких структурах данных из
последующих глав. Потоки (известные также как ленивые списки) подоб­
ны обыкновенным спискам, за исключением того, что вычисление каждой
их ячейки задерживается. Тип потоков выглядит так:

datatype a StreamCell = N il | Cons o f а х a Stream
withtype a Stream = a StreamCell susp

Простой поток, содержащий элементы 1, 2 и 3, можно записать как

SCons (1, SCons (2, SCons (3, SNil)))

Полезно сравнить потоки с задержанными списками типа a list susp.
Вычисления, представленные последними, по существу монолитны — еди­
ножды начав вычислять задержанный список, мы вычисляем его до конца.
Напротив, вычисления, представленные потоками, часто пошаговы — при
обращении к потоку проводится только та часть вычисления, которая по­
рождает его первый элемент, а остальное задерживается. Такое поведение
часто встречается в типах, которые, подобно потокам, содержат вложен­
ные задержки.

Чтобы яснее прочувствовать эту разницу в поведении, рассмотрим
функцию конкатенации, записываемую s-H-t. Для задержанных списков
её можно записать как

fun s -Н-1 = $(force s @ force t)

что равносильно

fun lazy (Sxs) -H- ($ys) = S(xs @ ys)

Задержка, порождаемая этой функцией, вынуждает оба аргумента, а затем
конкатенирует полученные списки и возвращает результат целиком. Таким
образом, задержка монолитна. Можно также сказать, что монолитна вся
функция. Для потоков функция записывается как

4-2. Потоки 45

fun lazy ($N il) -H-1 = t
| (SCONS (x, s)) -fj- t = SCONS (x, S “H" t)

Эта функция немедленно иозиращает задержку, которая, будучи запуще­
на, требует первую ячейку первого потока, сопоставляя её с $-образцом.
Если эта ячейка представляет собой C on s , мы строим результат из х и
s-H-t. Вследствие аннотации lazy рекурсивный вызов просто порождает
ещё одну задержку, не производя никакой дополнительной работы. Сле­
довательно, эта функция описывает пошаговое вычисление: порождается
первая ячейка результата, а остальное задерживается. Мы также говорим,
что пошаговой является сама функция.

Ещё одна пошаговая функция — take, извлекающая первые п элемен­
тов потока.

fun lazy take (0, s) = $Nil
| take (n, $N il) = $N il

| take (n, SCons (x, s)) = SCons (x, take (n—1, s))

Как и в случае с -н-, рекурсивный вызов take немедленно возвращает за­
держку, а не выполняет оставшуюся часть кода функции.

Рассмотрим, однако, функцию, уничтожающую первые п элементов
потока, которую можно записать как

fun lazy drop (0, s) = s
| drop (n, $N il) = $N il

I drop (n, SC ons (x, s)) = drop (n—1, s)

или, более эффективно, как

fun lazy drop (n, s) = let fun drop' (0, s) = s
| drop' (n, $N il) = $N il

| drop' (n, $C ons (x, s)) = drop' (n—1, s)
in drop' (n, s) end

Эта функция монолитна, поскольку рекурсивные вызовы drop' никогда не
задерживаются — вычисление первой же ячейки результата требует выпол­
нения всей функции целиком. Здесь аннотация lazy используется, чтобы
задержать исходный вызов drop', а не сопоставление с образцом.

Упраж нение 4 .1 . Покажите, используя эквивалентность force ($е) и е,
что два определения drop эквивалентны.

Ехцё одна часто используемая монолитная функция над потоками —
reverse.

fun lazy reverse s =

4G Ленивое вычисление

let fun reverse' ($N il, r) = r
| reverse' (SCons (x, s), r) = reverse' (s, SCons (x, r))

in reverse' (s, $N il) end

Здесь рекурсивные вызовы reverse' никогда не задерживаются. Обрати­
те внимание, однако, что каждый такой вызов создаёт задержку вида
SC on s (х , г) . Может показаться, что reverse на самом деле не производит
всю работу за один раз. Однако задержки такого вида, где тело содержит
лишь несколько конструкторов и переменных, называются тривиальны­
ми (trivial). Тривиальные задержки создаются не из каких-то алгорит­
мических соображений, а для того, чтобы удовлетворить систему типов.
Можно считать, что тело тривиальной задержки выполняется в момент
её создания. На самом деле, при минимальной оптимизации компилято­
ром подобные задержки создаются уже в мемоизированном виде. В любом
случае, вынуждение тривиальной задержки никогда не занимает больше,
чем 0 (1) времени.

Несмотря на распространённость монолитных функций над потоками
вроде drop и reverse, смыслом существования потоков являются пошаговые
функции ироде -н- и take. Каждая задержка несёт с собой небольшие, но
существенные расходы, поэтому для максимальной эффективности лени-
вость следует использовать только тогда, когда для этого есть серьёзные
основания. Если все операции над ленивыми списками в каком-то прило­
жении монолитны, то в этом приложении лучше пользоваться обыкновен­
ными ленивыми списками, а не потоками.

На рис. 4.1 потоковые функции собраны в единый модуль на Стан­
дартном ML. Заметим, что в модуле не экспортируются, как можно было
бы ожидать, функции вроде isEmpty и cons. Вместо этого мы намеренно
выставляем обозрение внутреннее представление, чтобы сохранить для по­
токов возможность сопоставления с образцом.

Упражнение 4.2. Реализуйте сортировку вставками для потоков. Пока­
жите, что извлечение первых к элементов sort xs требует лишь () (п ■ к)
времени, где п — длина xs, а не 0 (п 2), как можно было бы ожидать от
сортировки вставками.

4.3. Примечания

Ленивое вычисление. Ленивое вычисление было изобретено Уодсвор­
том [Wad71] как оптимизация нормального порядка редукции в лямбда-
исчислении. Позже Виллемин |Vui74| показал, что при некоторым образом

4.3. Примечания 47

signature S tr e a m =
sig

datatype a StreamCell = N il | Conk of a x a Stream
withtype a Stream = a StreamCell susp

val -H- : a Stream x a Stream —> a Stream (* конкатенация потоков *)
val take : int x a Stream —► a Stream
val drop : int x a Stream —> a Stream
val reverse : a Stream -* a Stream

end

structure Stream: S tr e a m =
struct

datatype a StreamCell = N il | Cons of a x a Stream
withtype a Stream = a StreamCell susp

fun lazy ($Nil) -H-t = t
| ($C ons(x,s)) -H-1 = SCons (x,s -H-1)

fun lazy take (0,s) = $Nil
| take (n, $Nil) = $Nil
j take (n, $Cons(x,s)) = SCons (x, take (n—1, s))

fun lazy drop (n, s) =
let fun drop' (0, s) = s

| drop' (n, $Nil) = $Nil
| drop' (n, SCons (x, s)) = drop' (n—1, s)

in drop' (n, s) end
fun lazy reverse s =

let fun reverse' ($N il, r) = r
| reverse' ($Cons (x, s), r) = reverse' (s, SCons (x , r))

in reverse' (s, $Nil) end
end

Рис. 4.1: небольшой пакет потоков.

ограниченных условиях ленивое вычисление является оптимальной стра­
тегией вычисления. Формальная семантика ленивого вычисления подробно
исследовалась в (Jos89, Lau93, OLT94, A FM + 95|.
Потоки. Потоки изобрёл Ландин [Lan65], но без мемоизации. Фридман и
Уайз [FW7G| и Хендерсон и Моррис |ПМ7С| расширили потоки Ландина
мемоизацией.
М емоизация. Термин «мемоизация» придумал Мичи |MicG8], чтобы на­

48 4 . Ленивое вычисление

зывать так кэширование пар аргумент-результат у функции. Поле аргу­
мента можно отбросить при мемоизации задержек, если рассматривать за­
держки как нульместные функции, то есть функции с нулём аргументов.
Позднее Хьюз |Hug85] применил мемоизацию в исходном смысле Мичи к
функциональным программам.
Алгоритмика. Обе компоненты ленивых вычислений — задержка вычис­
ления и мемоизация результатов, — имеют долгую историю в науке по­
строения алгоритмов, хотя и не всегда в сочетании друг с другом. Идея
задержки вычислений, которые могут оказаться дорогими (часто это уни­
чтожение элементов) с пользой используется в хэш-таблицах [WV86], оче­
редях с приоритетами [ST86b, FT87] и деревьях поиска [DSST89]. В свою
очередь, мемоизация является основой таких методик, как динамическое
программирование [Ве157] и сжатие путей |HU73, TVL84],

5. Основы амортизации

За последние пятнадцать лет амортизация стала мощным инструмен­
том в построении и анализе структур данных. Реализации с амортизиро­
ванными характеристиками производительности часто оказываются проще
и быстрее, чем реализации со сравнимыми жёсткими характеристиками.
В этой главе мы даём обзор основных методов амортизации и иллюстри­
руем эти идеи через простую реализацию очередей FIFO и несколько реа­
лизаций кучи.

К сожалению, простой подход к амортизации, рассматриваемый в этой
главе, конфликтует с идеей устойчивости — эти структуры, будучи ис­
пользуемы как устойчивые, могут быть весьма неэффективны. Однако на
практике многие приложения устойчивости не требуют, и часто для таких
приложений реализации, представленные в этой главе, могут быть замеча­
тельным выбором. В следующей главе мы увидим, как можно совместить
понятия амортизации и устойчивости при помощи ленивого вычисления.

5.1. Методы амортизированного анализа

Понятие амортизации возникает из следующего наблюдения. Имея по­
следовательность операций, мы можем интересоваться временем, которое
отнимает вся эта последовательность, однако при этом нам может бы ть без­
различно время каждой отдельной операции. Например, имея п операций,
мы можем желать, чтобы время всей последовательности было ограничено
показателем О(п) , не настаивая, чтобы каждая из этих операций происхо­
дила за время 0 (1) . Нас может устраивать, чтобы некоторые из операций
занимали O (logn) или даже О (п), при условии, что общая стоимость всей
последовательности будет О (п). Такая дополнительная степень свободы
открывает широкое пространство возможностей при проектировании и ча­
сто позволяет найти более простые и быстрые решения, чем варианты с
аналогичными жёсткими ограничениями.

Ч тобы доказать, что соблюдается амортизированное ограничение,
нужно определить амортизированную стоимость каждой операции и до­
казать, что для любой последовательности операций общая амортизиро­
ванная стоимость является верхней границей общей реальной стоимости,

50 5. Основы амортизации

то есть rn m

t = 1 i = l

где а* амортизированная стоимость операции г, ti — её реальная стои­
мость, a m — общее число операций. Обычно доказывается несколько бо­
лее сильный результат: что на любой промежуточной стадии в последова­
тельности операций общая текущая амортизированная стоимость является
верхней границей для общей текущей реальной стоимости, то есть

j j
^ ' (ti ^ ' у ' t i
i = 1 i = l

для любого j . Разница между общей текущей амортизированной стоимо­
стью и общей текущей реальной стоимостью называется текущие накоп­
ления (accumulated savings). Таким образом, общая текущая амортизиро­
ванная стоимость является верхней границей для общей текущей реальной
стоимости тогда и только тогда, когда текущие накопления неотрицатель­
ны.

Амортизация позволяет некоторым операциям быть дороже, чем
их амортизированная стоимость. Такие операции называются дорогими
(expensive). Операции, для которых амортизированная стоимость превы­
шает реальную, называются дешёвыми (cheap). Дорогие операции умень­
шают текущие накопления, а дешёвые их увеличивают. Главное при дока­
зательстве амортизированных характеристик стоимости — показать, что
дорогие операции случаются только тогда, когда текущих накоплений хва­
тает, чтобы покрыть их дополнительную стоимость.

Тарьян [Таг85| описывает два метода анализа амортизированных
структур данных: метод банкира и метод физика. В методе банкира те­
кущие накопления представляются как кредит, привязанный к определён­
ным ячейкам структуры данных. Этот кредит используется, чтобы распла­
титься за будущие операции доступа к этим ячейкам. Амортизированная
стоимость операции определяется как её реальная стоимость плюс размер
кредита, выделяемого этой операцией, минус размер кредита, который она
расходует, то есть

(Li = t i “Ь Cj Ci

где Ci — размер кредита, выделяемого операцией а с, — размер кредита,
расходуемого операцией г. Каждая единица кредита должна быть выделе­
на, прежде чем израсходована, и нельзя расходовать кредит дважды. Та­
ким образом, J2ci ^ а следовательно, как и требуется, ^ а, ^

5.1. Методы амортизированного анализа 51

Как правило, доказательства с использованием метода банкира опреде­
ляют инвариант кредита (credit invariant), регулирующий распределение
кредита так, чтобы при всякой дорогой операции достаточное его количе­
ство было выделено в нужных ячейках структуры для покрытия стоимости
операции.

В методе физика определяется функция Ф, отображающая всякий
объект d на действительное число, называемое его потенциалом. Потенци­
ал обычно выбирается так, чтобы изначально равняться нулю и оставаться
неотрицательным. В таком случае потенциал представляет нижнюю гра­
ницу текущих накоплений.

Пусть объект dt будет результатом операции i и аргументом опера­
ции г + 1. Тогда амортизированная стоимость операции г определяется как
сумма реальной стоимости и изменения потенциалов между d j_i и di, то
есть

ai = U + Ф(di) - $ (d i - i)

Текущая реальная стоимость последовательности операций равна

E i= i* i = £ i= o (a* + $ № - i) - Ф №))

= E i= i a« + E * = i ($ № - i) - ф Ш)

= E i= l ni + фШ ~ ф (4>)

Суммы вида E i = i + ф №))> гДе чередующиеся отрицательные и по­
ложительные члены взаимно уничтожаются, называются телескопически­
ми последовательностями (telescoping series). Если Ф выбран таким обра­
зом, что Ф(с*0) равен нулю, а Ф(d j) неотрицателен, мы имеем Ф (^) ^ Ф(с/о),
так что, как и требуется, текущая общая амортизированная стоимость яв­
ляется верхней границей для текущей общей реальной стоимости.

З ам ечан и е. Такое описание метода физика несколько упрощает картину.
Часто при анализе оказывается трудно втиснуть реальное положение дел
в указанные рамки. Например, что делать с функциями, которые порож­
дают или возвращают более одного объекта? Однако даже упрощённого
описания достаточно для демонстрации основных идей.

Ясно, что два метода анализа весьма похожи. Можно преобразовать
метод банкира в метод физика, если игнорировать распределение по ячей­
кам, и считать, что потенциал равен общему количеству единиц кредита
в объекте, как указано в инварианте кредита. Подобным образом, мож­
но преобразовать метод физика в метод банкира, если расположить весь

52 5. Основы амортизации

signature Q ueue =
sig

type a Queue
val empty : a Queue
val isEmpty : a Queue —> bool
val snoc : a Queue x a —> a Queue
val head : a Queue —» a

(* возбуж дает. Empty, если очередь пуста
val tail : a Queue -> a Queue

(* возбуж дает Empty, если очередь пуста *)
end

Рис. 5.1: сигнатура очередей (этимологическое замечание: snoc представля­
ет собой перевёрнутое слово cons и означает «добавить справа»).

кредит в корне объекта. Возможно, несколько удивляет то, что знание о
расположении ячеек не даёт никакой дополнительной мощности в доказа­
тельстве, тем не менее, методы на самом деле эквивалентны [Tar85, Sch92].
Чаще всего метод физика оказывается проще, но иногда бывает удобно
принять во внимание распределение по ячейкам.

Заметим, что кредит и потенциал являются лишь средствами анализа;
ни то, ни другое не присутствует в тексте программы (разве что, возможно,
в комментариях).

5.2. Очереди

Мы демонстрируем методы банкира и физика через анализ простой
функциональной реализации FIFO-очередей, чья сигнатура приведена на
рис. 5.1.

Самая распространённая чисто функциональная реализация очередей
представляет собой пару списков, f и г, где f содержит головные элемен­
ты очереди в правильном порядке, а г состоит из хвостовых элементов
в обратном порядке. Например, очередь, содержащая целые числа 1 ...6 ,
может быть представлена списками f =[1,2,3] и г =[6,5,4]. Это представление
можно описать следующим типом:

type a Queue = a list х a list

В этом представлении голова очереди — первый элемент f, так что функ­
ции head и tail возвращают п отбрасывают этот элемент, соответственно.

5.2. Очереди 53

fun head (x :: f, r) = x
fun tail (x :: f, r) = f

Подобным образом, хвостом очереди является первый элемент г, так что
snoc добавляет к г новый элемент.

fun snoc ((f , г), х) = (f, X :: г)

Элементы добавляются к г и убираются из f, так что они должны как-то
переезжать из одного списка в другой. Этот переезд осуществляется пу­
тём обращения г и установки его на место f всякий раз, когда в противном
случае f оказался бы пустым. Одновременно г устанавливается в [). Наша
цель — поддерживать инвариант, что список f может быть пустым толь­
ко в том случае, когда список г также пуст (то есть пуста вся очередь).
Заметим, что если бы f был пустым при непустом г, то первый элемент
очереди находился бы в конце г, и доступ к нему занимал бы О(п) вре­
мени. Поддерживая инвариант, мы гарантируем, что функция head всегда
может найти голову очереди за 0 (1) времени.

Теперь snoc и tail должны распознавать ситуацию, которая может
привести к нарушению инварианта, и соответствующим образом менять
своё поведение.

fun snoc (([] , _) , х) = ([х], (])
| snoc ((f , г), х) = (f, х :: г)

fun tail ([х], г) = (rev г, [])
| tail (х :: f, г) = (f, г)

Заметим, что в первой ветке snoc используется образец-заглушка. В этом
случае поле г проверять не нужно, поскольку из инварианта мы знаем, что
если список f равен [], то г также пуст.

Чуть более изящный способ записать эти функции — вынести те ча­
сти snoc и tail, которые поддерживают инвариант, в отдельную функцию
checkf. Она заменяет f на rev г, если f пуст, а в противном случае ничего
не делает.

fun checkf ([] , г) = (rev г, [])
| checkf q = q

fun snoc ((f ,r) , x) = checkf (f , x :: r)
fun tail (x :: f, r) = checkf (f , r)

Полный код реализации показан на рис. 5.2. Функции snoc и head всегда
завершаются за время 0 (1) , но tail в худшем случае отнимает 0 (п) време­
ни. Однако, используя либо метод банкира, либо метод физика, мы можем
показать, что и snoc, и tail выполняются за амортизированное время 0 (1).

54 5. Основы амортизации

structure BatchedQueue: Q ueue =
struct

type a Queue = a list x a list

val empty = ([], [])
fun isEmpty (f, r) = null f
fun checkf ([] , r) = (rev r, [])

| checkf q = q
fun snoc ((f , r), x) = checkf (f , x :: r)
fun head ([] , _) = raise E m pty

| head (x :: f, r) = x
fun tail ([] , _) = raise E m pty

| tail (x :: f , r) = checkf (f , r)
end

Рис. 5.2: распространённая реализация чисто функциональной очереди.

В методе банкира мы поддерживаем инвариант, что каждый элемент в
хвостовом списке связан с одной единицей кредита. Каждый вызов snoc для
непустой очереди занимает один реальный шаг и выделяет одну единицу
кредита для элемента хвостового списка; таким образом, общая аморти­
зированная стоимость равна двум. Вызов tail, не обращающий хвостовой
список, занимает один шаг, не выделяет и не тратит никакого кредита, и,
таким образом, имеет амортизированную стоимость 1. Наконец, вызов tail,
обращающий хвостовой список, занимает ш + 1 реальный шаг, где т. — дли­
на хвостового списка, и тратит т единиц кредита, содержащиеся в этом
списке, так что амортизированная стоимость получается т + 1 — т = 1.

В методе физика мы определяем функцию потенциала Ф как длину
хвостового списка. Тогда всякий snoc к непустой очереди занимает один
реальный шаг и увеличивает потенциал на единицу, так что амортизиро­
ванная стоимость равна двум. Вызов tail без обращения хвостовой очереди
занимает один реальный шаг и не изменяет потенциал, так что аморти­
зированная стоимость равна единице. Наконец, вызов tail с обращением
очереди занимает т + 1 реальный шаг, но при этом устанавливает хвосто­
вой список равным [], уменьшая таким образом потенциал на т , так что
амортизированная стоимость равна т + 1 — т = 1.

В этом простом примере доказательства почти одинаковы. Но даже
при этом метод физика оказывается чуть проще по следующей причине.
Используя метод банкира, мы должны сначала выбрать инвариант кре­
дита, а затем для каждой функции решить, когда она должна выделять

5.3. Биномиальные кучи 55

или расходовать кредит. Инвариант кредита подсказывает нам, как это сде­
лать, но решение все же не принимается автоматически. Например, должен
ли snoc выделить одну единицу кредита и израсходовать ноль, или выде­
лить две и одну израсходовать? Общий результат оказывается один и тот
же, так что дополнительная свобода оказывается лишь дополнительным
возможным источником путаницы. С другой стороны, в методе физика от
нас требуется принять только одно решение — выбрать функцию потенциа­
ла. После этого анализ сводится к простым вычислениям; никакой свободы
выбора не остаётся.

Указание разработчикам. Эта реализация очередей идеальна в прило­
жениях, где не требуется устойчивости и где приемлемы амортизирован­
ные показатели производительности.

Упраж нение 5.1 . Х огерворд [Ноо92]. Идея этих очередей легко мо­
жет быть расширена на абстракцию двусторонней очереди (double-ended
queue), или дека (deque), где чтение и запись разрешены с обоих концов
очереди (см. рис. 5.3). Инвариант делается симметричным относительно f
и г: если очередь содерж ит более одного элемента, оба списка должны быть
непустыми. Когда один из списков становится пустым, мы делим другой
пополам и одну из половин обращаем.

(а) Реализуйте эту версию деков.

(б) Докаж ите, что каждая операция занимает 0 (1) амортизированного
времени, используя функцию потенциала Ф (/ ,г) = abs(|/| — |г|), где
abs — функция модуля.

5.3. Биномиальные кучи

В разделе 3.2 мы показали, что вставка в биномиальную кучу прохо­
дит в худшем случае за время 0 (log ? i). Здесь мы доказываем, что на самом
деле амортизированное ограничение на время вставки составляет 0 (1).

Воспользуемся методом физика. Определим потенциал биномиальной
кучи как число деревьев в ней. Заметим, что это число равно количеству
единиц в двоичном представлении п, числа элементов в куче. Вызов insert
занимает к+\ шаг, где к — число обращений к link. Если изначально в куче
было t деревьев, то после вставки окажется t — к + 1 дерево. Таким образом,
изменение потенциала составляет (t — k + l) — t = 1 — к, а амортизированная
стоимость вставки (к -I-1) — (1 — к) = 2.

5G 5. Основы амортизации

signature D eque =
sig

type a Queue

val empty : a Queue
val isEmpty : a Queue —> bool

(* вставка, просмотр и уничтожение головного элемента *)
val cons : а х a Queue -» a Queue
val head : a Queue — (* возбуждает E m p t y , если очередь пуста *)
val tail : a Queue —> a Queue (* возбуждает E m p t y , если очередь пуста*)

(* вставка, просмотр и уничтожение хвостового элемента *)
val snoc : a Queue х а —»• a Queue
val last : a Queue —> а (* возбуждает E m p t y , если очередь пуста *)
val init : a Queue —>а Queue (* возбуждает E m p t y , если очередь пуста*)

end

Рис. 5.3: сигнатура двусторонней очереди.

Упражнение 5.2. Повторите доказательство с использованием метода
банкира.

Для полноты картины нам нужно показать, что амортизированная
стоимость операций merge и deleteMin по-прежнему составляет О (log п).
Функция deleteMin не доставляет здесь никаких трудностей, но в случае
merge требуется небольшое расширение метода физика. Д о сих нор мы
определяли амортизированную стоимость операции как

а = t + Ф {deUx) — Ф {d ex)

где dex структура иа входе операции, a d eux — структура на выходе.
Однако если операция принимает либо возвращает более одного объекта,
это определение требуется обобщить до

a = t + Е а д
deBbix deB x

где Вх — множество входов, а Вых — множество выходов. В этом правиле
мы рассматриваем только входы и выходы анализируемого типа.

5.4- Расширяющиеся кучи 57

У п р а ж н е н и е 5.3. Докажите, что амортизированная стоимость операций
merge и deleteMin по-прежнему составляет O (logn).

5.4. Расширяющиеся кучи

Расширяющиеся деревья (splay trees) [ST85] — возможно, самая из­
вестная и успешно применяемая амортизированная структура данных.
Расширяющиеся деревья являются ближайшими родственниками двоич­
ных сбалансированных деревьев поиска, но они не хранят никакую ин­
формацию о балансе явно. Вместо этого каждая операция перестраивает
дерево при помощи некоторых простых преобразований, которые имеют
тенденцию увеличивать сбалансированность. Несмотря на то, что каждая
конкретная операция может занимать до О(п) времени, амортизированная
стоимость её, как мы покажем, не превышает О (log п).

Важное различие между расширяющимися деревьями и сбалансиро­
ванными двоичными деревьями поиска вроде красно-чёрных деревьев из
раздела 3.3 состоит в том, что расширяющиеся деревья перестраиваются
даже во время запросов (таких, как member), а не только во время обнов­
лений (таких, как insert). Это свойство мешает использованию расширяю­
щихся деревьев для реализации абстракций вроде множеств или конечных
отображений в чисто функциональном окружении, поскольку приходилось
бы возвращать в запросе новое дерево наряду с ответом на запрос1. Од­
нако в некоторых абстракциях операции-запросы достаточно ограничены,
чтобы эту проблему можно было обойти. Хорошим примером служит аб­
стракция кучи, поскольку здесь единственным интересным запросом явля­
ется findMin. Как мы увидим, расширяющиеся деревья дают нам отличную
реализацию кучи.

Представление расширяющихся деревьев идентично представлению
несбалансированных двоичных деревьев поиска.

datatype Tree = Е | Т o f Tree х Elem.T х Tree

Однако в отличие от несбалансированных двоичных деревьев поиска из
раздела 2.2, мы позволяем дереву содержать повторяющиеся элементы.
Эта разница не является фундаментальным различием расширяющихся
деревьев и несбалансированных двоичных деревьев поиска; она просто от­
ражает отличие абстракции множества от абстракции кучи.

1R Стандартном ML мож но было бы хранить корень расширяющегося дерева в ссы-
лочной ячейке и обновлять значение но ссылке при каж дом запросе, но такое реше­
ние не является чисто функциональным.

58 5. Основы амортизации

Рассмотрим следующую стратегию реализации для insert: разобьём
существующее дерево на два поддерева, чтобы одно содержало все элемен­
ты, меньшие или равные новому, а второе все элементы, большие нового.
Затем породим новый узел из нового элемента и двух этих поддеревьев.
В отличие от вставки в обыкновенное двоичное дерево поиска, эта проце­
дура добавляет элемент как корень дерева, а не как новый лист. Код для
insert выглядит просто как

fun insert (х, t) = Т (smaller (х, t), х, bigger (х, t))

где smaller выделяет дерево из элементов, меньших или равных х, a bigger -
дерево из элементов, больших х. По аналогии с фазой разделения быстрой
сортировки, назовём новый элемент границей (pivot).

Можно наивно реализовать bigger как

fun bigger (pivot, Е) = Е
| bigger (pivot, Т (а, х, Ь)) =

if х < pivot then bigger (pivot, b)
else T (bigger (pivot, a), x, b)

однако при таком решении не делается никакой попытки перестроить де­
рево, добиваясь лучшего баланса. Вместо этого мы применяем простую
эвристику для перестройки: каждый раз, пройдя по двум левым ветвям
подряд, мы проворачиваем два пройденных узла.

fun bigger (pivot, Е) = Е
| bigger (pivot, Т (а, х, Ь)) =

if х < pivot then bigger (pivot, b)
else case a of

E => T (E, x, b)
I T (ab y, a2) =>

if у ^ pivot then T (bigger (pivot, аг), x, b)
else T (bigger (pivot, ai), у, T (a2, x, b))

На рис. 5.4 показано, как bigger действует на сильно несбалансированное
дерево. Несмотря па то, что результат по-прежнему не является сбаланси­
рованным в обычном смысле, новое дерево намного сбалансированнее ис­
ходного; глубина каждого узла уменьшилась примерно наполовину, от d до
[d/2J или [r//2j + 1. Разумеется, мы не всегда можем уполовинить глубину
каждого узла в дереве, но мы можем уполовинить глубину каждого узла,
лежащего на пути поиска. В сущности, в этом и состоит принцип расши­
ряющихся деревьев: нужно перестраивать путь поиска так, чтобы глубина
каждого лежащего на пути узла уменьшалась примерно вполовину.

w
5.J,. Расширяющиеся кучи 59

7 6
/ / \

6 4 7
/ / \

5 =Ф- 2 5
/ / \

4 1 3
/

3
/

2
/

1

Рис. 5.4: вызов функции bigger с граничным элементом 0.

У п раж н ен и е 5.4. Реализуйте операцию smaller. Не забудьте, что smaller
должна сохранять элементы, равные границе (однако устраивать отдель­
ную проверку на равенство не следует!).

Заметим, что smaller и bigger всегда проходят по одному и тому же пу­
ти поиска. Вместо того, чтобы повторять это прохождение дважды, можно
соединить smaller и bigger в единую функцию с названием partition, которая
вернёт оба результата в виде пары. Написание этот! функции не представ­
ляет труда, но несколько утомительно.

fun partition (pivot, Е) = (Е, Е)
| partition (pivot, t as Т (a, x, b)) =

if x ^ pivot then
case b of

E => (t, E)
| T (bi, y, b2) =>

if у < pivot then
let val (small, big) = partition (pivot, b2)
in (T (T (a, x, bi), y, small), big) end

else
let val (small, big) = partition (pivot, bi)
in (T (a, x, small), T (big, y, b2)) end

else
case a of

E => (E, t)

60 5. Основы амортизации

I Т (ai, у, а2) =>■
if у ^ pivot then

let val (small, big) = partition (pivot, a2)
in (T (ai, y, small), T (big, x, b)) end

else
let val (small, big) = partition (pivot, ai)
in (small, T (big, у, T (a2, x, b))) end

Замечание. Эта функция не является точным эквивалентом smaller и
bigger из-за расхождения фаз: partition всегда обрабатывает узлы парами,
a smaller и bigger иногда проходят по одному узлу. Поэтому иногда smaller и
bigger оборачивают не те же самые узлы, что partition. Однако ни к каким
важным последствиям это расхождение не приводит.

Рассмотрим теперь findMin и deleteMin. Минимальный элемент расши­
ряющегося дерева хранится в самой левой его вершине типа Т. Найти эту
вершину несложно.

fun findMin (Т (Е, х, Ь)) = х
| findMin (Т (а, х, b)) = findMin а

Функция deleteMin должна уничтожить самый левый узел и одновременно
перестроить дерево таким же образом, как это делает bigger. Поскольку
мы всегда рассматриваем только левую ветвь, сравнения не нужны.

fun deleteMin (Т (Е, х, b)) = b
| deleteMin (Т (Т (Е, х, Ь), у, с)) = Т (Ь, у, с)
| deleteMin (Т (Т (а, х, Ь), у, с)) = Т (deleteMin а, х, Т (Ь, у, с))

На рис. 5.5 реализация расширяющихся деревьев приведена целиком. Для
полноты мы включили в неё функцию слияния merge, хотя она довольно
неэффективна и для многих входов занимает 0 (п) времени.

Теперь мы хотим показать, что insert выполняется за время O (logn).
Пусть обозначает размер дерева t плюс один. Заметим, что если t =
Т(а, х, Ь), то фЬ = # а + #Ь. Пусть потенциал вершины 0(4) равен log (# i),
а потенциал всего дерева равен сумме потенциалов его вершин. Нам тре­
буется следующее элементарное утверждение, касающееся логарифмов:

Лемма 5.1. Для всех положительных х, у , z, таких, что у + z ^ ж,

1 + log у 4- log z < 2 log ж

Доказательство. Без потери общности предположим, что у ^ z. Тогда
у ^ ж/2 и z ^ х, так что 1 + log у ^ log ж и log 2 < log ж.

5-4- Расширяющиеся кучи G1

functor SplayHeap (Element: O rdered): H eap =
struct

structure Elem = Element
datatype Heap = E | T o f Heap x Elem.T x Heap

val empty = E
fun isEmpty E = true | isEmpty _ = false
fun partition (pivot, E) = (E, E)

| partition (pivot, t as T (a, x, b)) =
if Elem.leq (x, pivot) then

case b of
E =>■ (t, E)

| T (bb y, b2) =*
if Elem.leq (y, pivot) then

let val (small, big) = partition (pivot, b2)
in (T (T (a, x, bi), y, small), big) end

else
let val (small, big) = partition (pivot, bi)
in (T (a, x, small), T (big, y, b2)) end

else
case a o f

E => (E, t)
I T (ai, y, a2) =►

if Elem.leq (y, pivot) then
let val (small, big) = partition (pivot, a2)
in (T (ai, y, small), T (big, x, b)) end

else
let val (small, big) = partition (pivot, ai)
in (small, T (big, у, T (a2, x, b))) end

fun insert (x, t) = let val (a, b) = partition (x, t) in T (a, x, b) end
fun merge (E, t) = t

| merge (T (a, x, b), t) =
let val (ta, tb) = partition (x , t)
in T (merge (ta, a), x, merge (tb, b)) end

fun findMin E = raise E m p ty
| findMin (T (E, x, b)) = x
j findMin (T (a, x, b)) = findMin a

fun deleteMin E = raise E m p ty
| deleteMin (T (E, x, b)) = b
j deleteMin (T (T (E, x, b), у , с)) = T (b, y, c)
j deleteMin (T (T (a, x, b), у, с)) = T (deleteMin a, x, T (b, y , c))

end

Рис. 5.5: реализация кучи через расширяющиеся деревья.

62 5. Основы амортизации

Пусть T {t) обозначает реальную стоимость вызова partition для де­
рева t, что определяется как число рекурсивных вызовов partition. Пусть
A(t,) — амортизированная стоимость такого вызова, определяемая как

A {t) = T (t) + Ф(а) + Ф(Ь) - Ф(t)

где а и b — возвращаемые функцией partition поддеревья.

Теорема 5.2. A (t) < 1 + 2<j>(t) = 1 + 2 log(#i).
Доказательство. Требуется рассмотреть два нетривиальных случая, назы­
ваемые зиг-зиг и зиг-заг, в зависимости от того, проходит ли вызов partition
но двум левым ветвям (или, симметрично, по двум правым), либо по левой
ветке, а затем правой (или, симметрично, по правой, а затем по левой).

Для случая зиг-зиг предположим, что исходное и результирующее де­
рево имеют формы

s = х у = s 1

, Лt = У d => а \\ Ь х = t '

/\ /\
и С С d

где а и b являются результатами вызова partition (pivot, и). Тогда

A (s)
= { п о определению А }

T {s) + Ф(а) + Ф(в') - Ф(в)
{ Т (з) = 1 + Т {и) }

1 + Т [и) + Ф(а) + Ф(в') - Ф(«)
= { Т {и) — А {и) — Ф(о) - Ф(Ь) + Ф(м) }

1 + А {и) - Ф(о) - Ф(Ь) + Ф(и) + Ф(а) + Ф(в') - Ф(я)
= { раскрываем Ф(й) и Ф(в'), упрощаем }

1 + А {и) + 0(s') + <p(tr) — ф(в) — 4>{t)
{ п о предположению индукции, А {и) ^ 1 + 2 ф(и) }

2 + 2 ф{и) + ф(в') + ф{Ь') — ф{з) — 0(£)
< {Ф{и) < ф{€), а ф{в') ^ 0 (e)}

2 + ф(и) + ф{1')
< { фи 4- ф-t' < фв, а также лемма 5.1 }

1 + 2ф{в)

Доказательство случая зиг-заг мы оставляем читателю как упражнение.

5.4■ Расширяющиеся кучи G3

У п р а ж н е н и е 5.5 . Докажите случай зиг-заг.

Дополнительная стоимость операции insert по сравнению с partition
составляет один реальный шаг плюс разница потенциалов между двумя
поддеревьями-результатами partition и деревом-окончательным результа­
том insert. Э то изменение потенциала равно просто ф от нового корня.
Поскольку амортизированная стоимость partition ограничена l + 21og(#i),
амортизированная стоимость insert ограничена 2 + 2 log(#£) + log(#< + 1) и
2 + 31og(#*).

Упражнение 5.6. Докажите, что стоимость deleteMin составляет O (logn).

Какова ситуация с findMin? Если дерево сильно разбалансировано,
findMin мож ет занять до 0 (п) времени. Причём поскольку findMin не прово­
дит никакой перестройки и, следовательно, никак не изменяет потенциал,
амортизировать эту стоимость негде! Однако раз время findMin пропор­
ционально времени deleteMin, мы можем увеличить стоимость, взимаемую
за deleteMin, вдвое, и один раз на каждый её вызов бесплатно вызывать
findMin. Э того достаточно для тех приложений, которые всегда вызывают
findMin и deleteMin вместе. Однако в некоторых приложениях findMin может
вызываться по несколько раз на каждый вызов deleteMin. Для таких прило­
жений мы не будем напрямую использовать функтор SplayHeap, применяя
его в комбинации с функтором ExplicitMin из Упражнения 3.7. Напомним,
что задачей функтора ExplicitMin было обеспечить выполнение findMin за
время 0 (1) . Функции insert и deleteMin по-прежиему будут выполняться за
время 0 (lo g 7 1).

Указание разработчикам. Расширяющиеся деревья, дополняемые при
необходимости функтором ExplicitMin, — самая быстрая из известных реа­
лизаций кучи для большинства приложений, не требующих устойчивости
данных и не вызывающих функцию merge.

Особенно приятным свойством расширяющихся деревьев является то,
что они естественным образом подстраиваются под любой порядок, при­
сутствующий во входных данных. Например, при использовании расши­
ряющихся деревьев для сортировки уже сортированного заранее списка
тратится всего 0 (п) времени, а не 0 (n log п) [МЕР96|. Тем же свойством
обладают левоориентированные кучи, но только для уменьшающихся по­
следовательностей. Расширяющиеся кучи отлично себя ведут как на рас­
тущих, так и на уменьшающихся последовательностях, а также на после­
довательностях, отсортированных лишь частично.

64 5. Основы амортизации

Упражнение 5.7. Напишите функцию сортировки, которая складывает
элементы в расширяющееся дерево, а затем обходит его по порядку, выводя
элементы в список. Покажите, что на уже отсортированном списке она
работает за время 0 (п).

5.5. Парные кучи

Парные кучи (pairing heaps) |FSST86] — одна из тех структур данных,
которые сводят специалистов с ума. С одной стороны, их легко реализо­
вать и они весьма хорошо показали себя на практике. С другой стороны,
провести их полный анализ не удаётся уже более 10 лет!

Парные кучн представляют собой упорядоченные по принципу кучи
деревья с переменной степенью ветвления; их можно определить следую­
щим типом данных:

datatype Heap = Е | Т of Elem.T х Heap list

Мы считаем правильными только такие деревья, где Е никогда не встре­
чается в качестве ребёнка вершины Т.

Поскольку деревья упорядочены по принципу кучи, функция findMin
реализуется тривиально:

fun findMin (Т (х, hs)) = х

Функции merge и insert ненамного сложнее: merge добавляет то дерево, чей
корень больше, в качестве первого ребёнка того дерева, чей корень меньше;
insert сначала создаёт новое дерево с одним элементом, а затем вызывает
merge.

fun merge (h, E) = h
| merge (E, h) = h
| merge (hi as T (x, hsi), h2 as T (y, hs2)) =

if Elem.leq (x, y) then T (x, h2 :: hsi) else T (y, hi :: hs2)
fun insert (x, h) = merge (T(x, []), h)

Парные деревья называются именно так благодаря операции deleteMin. Эта
операция отбрасывает корень, а затем сливает деревья в два прохода. Пер­
вый проход сливает деревья парами слева направо (то есть первое дерево
сливается со вторым, третье с четвёртым и т. д.). При втором проходе
получившиеся деревья сливаются справа налево. Эти два прохода можно
кратко выразить так:

fun mergePairs [] = Е
| mergePairs [h] = h
| mergePairs (hi :: h2 :: hs) = merge (merge (hi, h2), mergePairs hs)

5.5. Парные кучи 65

functor PairingHeap (Element: O rdered): Heap =
struct

structure Elem = Element
datatype Heap = E | T of Elem.T x Heap list

val empty = E
fun isEmpty E = true | isEmpty _ = false
fun merge (h, E) = h

| merge (E, h) = h
| merge (hi as T (x, hsi), h2 as T (y, hs2)) =

if Elem.leq (x, y) then T (x, h2 :: hsx) else T (y, hi :: hs2)
fun insert (x, h) = merge (T(x, []), h)
fun mergePairs [] = E

| mergePairs [h] = h
| mergePairs (hi :: h2 :: hs) = merge (merge (hi, h2), mergePairs hs)

fun findMin E = raise E m pty
| findMin (T (x, hs)) = x

fun deleteMin E = raise E m pty

| deleteMin (T (x, hs)) = mergePairs hs
end

Рис. 5.6: парные кучи.

После этого deleteMin выглядит совсем просто:

fun deleteMin (Т (х, hs)) = mergePairs hs

Полная реализация приведена на рис. 5.6
Легко видеть, что findMin, insert и merge выполняются каждая за 0 (1)

времени. Однако в худшем случае deleteMin может отнять до 0 (п). По
аналогии с расширяющимися деревьями (см. упражнение 5.8) мы можем
показать, что insert, merge и deleteMin каждая отнимает по О (log п) амор­
тизированного времени. Существует предположение, что insert и merge на
самом деле работают за амортизированное время 0 (1) |FSST86], но его до
сих пор никому не удалось ни доказать, ни опровергнуть.

Указание разработчикам. В приложениях, где не требуется функция
merge, парные кучи работают почти так же быстро, как расширяющиеся
кучи, а если merge требуется, то они значительно быстрее. Подобно рас­
ширяющимся кучам, их следует применять только в тех приложениях, где
устойчивость не требуется.

66 5. Основы амортизации

Упражнение 5.8. Часто проще оказывается работать с двоичными де­
ревьями, чем с деревьями с произвольным ветвлением. К счастью, любое
дерево с произвольным ветвлением легко представить в виде двоичного.
Достаточно преобразовать каждый узел со списком детей в двоичный узел,
где левый ребёнок представляет самого левого ребёнка исходного узла, а
правый потомок представляет его сестринский узел непосредственно спра­
ва. Если отсутствуют либо левый ребёнок, либо правый сосед, то соот­
ветствующий узел двоичного дерева оказывается пустым. (Заметим, что
таким образом в двоичном представлении правый потомок корневого узла
всегда оказывается пуст.) Применив такое преобразование к парной куче,
мы получаем полу упорядоченные двоичные деревья, где элемент в каждом
узле не больше любого элемента в своём левом дочернем поддереве.

(а) Напишите функцию toBinary, преобразующую парные кучи из исход­
ного представления в тип

datatype BinTree = Е' | Т ; of Elem.T х BinTree х BinTree

(б) Заново реализуйте парные кучи, используя это новое представление.

(в) Модифицируйте анализ расширяющихся деревьев и докажите, что
deleteMin и merge работают за амортизированное время О (log п) в этом
новом представлении (а следовательно, и в старом тоже). Следует
использовать ту же самую функцию потенциала, что и в расширяю­
щихся деревьях.

5.6. Плохие новости

Как мы могли убедиться, амортизированные структуры могут быть
чрезвычайно эффективны на практике. К сожалению, все рассуждения в
этой главе неявно предполагают, что анализируемые структуры данных
используются эфемерным образом (то есть только одной нитью последо­
вательных операций). Что произойдёт, если мы попытаемся с теми же са­
мыми структурами обращаться как с устойчивыми?

Рассмотрим очереди из раздела 5.2. Пусть q будет очередь, получае­
мая вставкой п элементов в изначально пустую очередь, так что головной
список q содержит один элемент, а хвостовой п — 1 элемент. Теперь пред­
положим, что мы считаем очередь устойчивой и п раз удаляем первый
элемент. Каждый из этих вызовов отнимет п реальных шагов. Общая ре­
альная стоимость этой последовательности операций, включая изначаль­
ное построение q, равна п2 + п. Если бы операции на самом деле отнимали

5.7. Примечания G7

только по 0 (1) амортизированного времени, общая реальная стоимость
была бы всего О(п). Таким образом, ясно, что использование наших оче­
редей как устойчивой структуры нарушает установленные в разделе 5.2
амортизированные ограничения стоимости 0 (1). Где же ошибка в доказа­
тельствах?

В обоих случаях одно из основных предположений доказательства
оказывается нарушенным при рассмотрении структуры как устойчивой.
В методе банкира требуется, чтобы каждая единица кредита тратилась не
более одного раза, а метод физика требует, чтобы результат одной опера­
ции служил аргументом следующей (или, в более общей формулировке,
чтобы всякий результат операции использовался как аргумент другой не
более одного раза). Рассмотрим второе обращение к tail q в вышеописан­
ном примере. Первое обращение тратит весь кредит, накопленный в хвосто­
вом списке q, и оказывается нечем оплатить второй и последующие вызо­
вы, так что метод банкира терпит неудачу. Кроме того, второе обращение к
tail q повторно использует q, а не результат первого вызова, так что метод
физика тоже не работает.

Обе неудачных попытки доказательства отражают слабость всякой
системы подсчёта, основанной на накоплениях — то, что эти накопления
можно потратить лишь один раз. Традиционные методы амортизации ра­
ботают путём накопления единиц работы (либо кредита, либо потенциала)
для дальнейшего использования. Это отлично работает при эфемерном ис­
пользовании, когда у каждой операции лишь одно логическое будущее. Но
у операции над устойчивой структурой может быть сколько угодно логи­
ческих будущих, и в каждом из них структура может пытаться потратить
одни и те же накопления.

В следующей главе мы разъясним, что имеется в виду под «логиче­
ским будущим» операции, и как можно совместить амортизацию и устой­
чивость посредством ленивого вычисления.

У праж н ен ие 5.9. Приведите примеры последовательности операций, где
биномиальные кучи, расширяющиеся кучи и парные кучи отнимают на­
много больше времени, чем указывают амортизированные границы их сто­
имости.

5.7. Примечания

Методы амортизации, обсуждаемые в этой главе, были разработаны
Слейтором и Тарьяном [ST85, ST86b|. Они стали популярны благодаря Та-
рьяну [Таг85]. Схунмакерс [Scli92| показывает, как систематическим обра­

68 5. Основы амортизации

зом получать амортизированные оценки стоимости при функциональном
программировании без использования устойчивости.

Кучи из раздела 5.2 были предложены Грисом [Gri81, с. 250—251],
а также Худом и Мелвиллом [НМ81]. Бёртон [Bur82] предложил похожую
реализацию, однако без ограничения, чтобы у непустой кучи головной спи­
сок всегда был непуст. У Бёртона head и tail объединены в одну функцию,
и, таким образом, нет требования, чтобы head по отдельности была эффек­
тивна.

В нескольких экспериментальных исследованиях было показано, что
расширяющиеся кучи [J0 I1 8 6] и парные кучи [MS91, Lia92| — одни из са­
мых быстрых реализаций для этой абстракции. Стаско и Виттер [SV87]
подтвердили для варианта парных куч предполагаемое амортизированное
ограничение 0 (1) на вставку.

6. Амортизация и устойчивость при ленивом
вычислении

В предыдущей главе мы представили понятие амортизации и привели
несколько примеров структур данных с хорошими амортизированными по­
казателями производительности. Однако все эти показатели для всех этих
структур перестают быть применимы, если их использовать как устойчи­
вые. В этой главе мы покажем, как ленивое вычисление может разрешить
конфликт между амортизацией и устойчивостью, и модифицируем методы
банкира и физика, чтобы они учитывали особенности ленивого вычисле­
ния. Затем мы продемонстрируем применение наших методов к нескольким
амортизированным структурам данных, использующим ленивое вычисле­
ние в своей реализации.

6.1. Трассировка вычисления и логическое время

В предыдущей главе мы заметили, что традиционные методы аморти­
зации ломаются при наличии устойчивости, поскольку они предполагают
наличие у структуры единственного будущего, где накопленные сбереже­
ния будут потрачены только один раз. Однако в устойчивой структуре
несколько будущих логических историй могут одновременно пытаться ис­
пользовать одни и те же сбережения. Что же мы имеем в виду, говоря о
«логическом будущем» операции?

Мы моделируем логическое время при помощи трассировок вычисле­
ния (execution traces), которые представляют абстракцию истории выпол­
нения программы. Трассировка вычисления представляет собой направ­
ленный граф, вершины которого соответствуют операциям, которые нас
интересуют; как правило, это только операции модификации над рассмат­
риваемым типом данных. Дуга от вершины v к вершине v ' означает, что
операция v' использует результат операции v. Логической историей опе­
рации v (обозначается г>) называется множество всех операций, от которых
зависит её результат (включая и саму операцию v). Другими словами, v —
множество вершин w, таких, что существует путь (возможно, длины 0)
от w до V. Логическим будущим вершины v называется любой путь от v
До конечной вершины (то есть вершины с числом исходящих дуг 0). Если
таких путей больше одного, значит, вершина v имеет несколько логиче­

70 6. Амортизация и устойчивость при ленивом вычислении

ских будущих. Иногда мы говорим о логической истории или логическом
будущем объекта, имея при этом в виду логическую историю или будущее
операции, создавшей этот объект.

У п р а ж н ен и е 6 .1 . Нарисуйте трассировку вычисления для следующей
последовательности операций. Пометьте каждую вершину в графе коли­
чеством её логических будущих.

val а = snoc (empty, 0)
val b = snoc (a, 1)
val с = tail b
val d = snoc (b, 2)
val e = с -H- d
val f = tail с
val g = snoc (d, 3)

Понятие трассировки вычисления обобщает г]мфы версий (version
graphs) [DSST89], часто используемые для моделирования историй устой­
чивых структур данных. В графе версий вершины представляют различ­
ные версии единой устойчивой структуры, а дуги соответствуют зависимо­
стям между этими версиями. Таким образом, графы версий моделируют
результаты операций, а трассировки вычисления — операции сами по се­
бе. Трассировки вычисления часто оказываются удобнее, если надо совме­
стить истории нескольких устойчивых объектов (возможно, даже разных
типов), а также для рассуждений об операциях, не изменяющих версию
объекта (например, о запросах) либо возвращающих несколько результа­
тов (скажем, разбивающих список на два подсписка).

Для эфемерных структур данных, как правило, число исходящих дуг
в графе версий или в трассировке вычисления должно быть не более еди­
ницы; это отражает ограничение, что каждая структура может модифици­
роваться не более одного раза. Для моделирования различных вариантов
устойчивости графы версий могут позволять числу исходящих дуг верши­
ны быть каким угодно, но вводить другие ограничения. Например, часто
требуют, чтобы графы версий были деревьями (или лесами), говоря, что
число входящих дуг для каждой вершины не может превышать 1. Или
же разрешается больше одной входящей дуги у вершины, но запрещают­
ся циклы, и таким образом, граф оказывается направленным ацикличе­
ским графом. Мы никаких таких ограничений для трассировок выпол­
нения устойчивых структур данных не накладываем. Вершины с числом
входящих дуг более одной соответствуют операциям, принимающим бо­
лее одного аргумента, например, конкатенации списков или объединению

6.2. Сочетание амортизации и устойчивости 71

множеств. Циклы возникают для рекурсивно определённых объектов, ко­
торые поддерживаются во многих ленивых языках. Разрешено даже иметь
несколько дуг между одними и теми же вершинами, например, когда спи­
сок конкатенируется сам с собой.

Трассировки вычисления будут использоваться в разделе С.3.1, где мы
расширяем метод банкира для работы с устойчивыми структурами.

6.2. Сочетание амортизации и устойчивости

В этом разделе мы покажем, как можно исправить методы банкира
и физика, заменив понятие текущих накоплений понятием текущего дол­
га, который представляет стоимость невыполненных ленивых вычислений.
Интуиция здесь состоит в том, что если накопления можно потратить толь­
ко один раз, то в многократном выплачивании долга никакого вреда нет.

6.2.1. Роль ленивого вычисления

Напомним, что дорогой (expensive) называется операция, чья реаль­
ная стоимость превышает её (желательную) амортизированную стоимость.
Предположим, к примеру, что некоторый вызов функции f х является до­
рогим. При наличии устойчивости вредоносный противник может вызы­
вать f х сколь угодно часто. (Заметим, что каждый такой вызов образует
новое логическое будущее х.) Если каждая такая операция занимает одно
и то же время, амортизированные ограничения на время вычисления де­
градируют до наихудших. Следовательно, нам надо добиться того, чтобы
даже если первое вычисление f х окажется дорогим, последующие вызовы
таковыми не были.

При программировании без побочных эффектов такая цель недости­
жима ни при вызове по значению (то есть при энергичном порядке вы­
числений), ни при вызове по имени (то есть при ленивом вычислении без
мемоизации), поскольку всякое применение функции f к аргументу х за­
нимает одно и то же время. Следовательно, амортизацию невозможно вы­
годно совместить с устойчивостью в языках, поддерживающих только эти
два порядка вычисления.

Однако рассмотрим теперь вызов по необходимости (то есть ленивое
вычисление с мемоизацией). Если х содержит задержанный компонент,
необходимый для вычисления f, первое применение f к х вынудит (воз­
можно, дорогое) вычисление этого компонента и запомнит результат. По­
следующие операции смогут обращаться к результату напрямую. Ровно
это нам и требовалось!

72 6. Амортизация и устойчивость при ленивом вычислении

Замечание. Будучи однажды обнаруженной, связь ленивого вычисления
и амор тизации кажется естественной. Ленивое вычисление можно рассмат­
ривать как разновидность самомодификации, а самомодификация часто
используется при амортизации [ST85, ST86b|. Однако ленивое вычисление
является особым образом ограниченной разновидностью самомодифика­
ции - не все виды самомодификации, используемые в амортизированных
эфемерных структурах данных, могут быть выражены при помощи ле­
нивого вычисления. В частности, расширяющиеся деревья, по-видимому,
этому методу неподвластны.

6.2.2. Общая методика анализа ленивых структур данных

Как мы только что показали, ленивое вычисление необходимо для чи­
сто функциональной реализации амортизированных структур данных. Но
программы с ленивым вычислением знамениты тем, что анализ времени их
работы чрезвычайно сложен. Наиболее традиционный способ анализа ле­
нивых программ состоит в том, чтобы притвориться, что они на самом деле
используют энергичный порядок. Однако для анализа амортизированных
структур данных этот способ совершенно непригоден. Ниже мы описыва­
ем базовую методику, позволяющую проводить такой анализ. В оставшейся
части главы мы с помощью этой методики модифицируем методы банкира
и физика. В результате мы получаем первые в истории методы анализа
устойчивых амортизированных структур данных и первые практически
применимые методы анализа нетривиальных ленивых программ.

Стоимость каждой операции мы разбиваем на несколько категорий.
Во-первых, нераздельная (unshared) стоимость операции - это время, тре­
буемое операции в предположении, что все задержки в системе уже вы­
нуждены и мемоизированы ко времени её начала (то есть в предположе­
нии, что force всегда занимает время 0 (1) , за исключением тех задержек,
которые создаются и вынуждаются в процессе выполнения самой опера­
ции). Разделяемая (shared) стоимость операции — это время, требуемое для
выполнения всех задержек, создаваемых, по не вынуждаемых операцией
(при тех же предположениях, что и раньше). Наконец, полная (complete)
стоимость операции есть сумма её нераздельной и разделяемой стоимо­
стей. Заметим, что полная стоимость операции равна её стоимости, если
бы ленивое вычисление было заменено на энергичное.

Кроме того, мы разбиваем разделяемую стоимость последователь­
ности операций на реализованную и нереализованную. Реализованная
(realized) стоимость есть стоимость задержек, которые вынуждаются в про­
цессе полного вычисления. Нереализованная (unrealized) стоимость — сто­

6.2. Сочетание амортизации и устойчивости 73

имость задержек, которые так и остаются невыполненными. Общая ре­
альная (total actual) стоимость последовательности операций равняется
сумме общей нераздельной стоимости и реализованной разделяемой стои­
мости —- нереализованные вычисления не влияют на общую стоимость. За­
метим, что доля каждой операции в общей реальной стоимости не меньше
её нераздельной стоимости и не больше её полной стоимости, в зависимости
от того, какая доля разделяемой стоимости реализуется.

Мы будем учитывать разделяемую стоимость с помощью понятия те­
кущего долга (accumulated debt). В начале вычисления долг равен нулю, но
каждый раз, когда создаётся задержка, он увеличивается на разделяемую
стоимость этой задержки (а также вложенных в неё задержек). Впослед­
ствии каждая операция выплачивает часть текущего долга. Амортизиро­
ванная стоимость (amortized cost) операции равна сумме её нераздельной
стоимости и количества выплаченного этой операцией долга. Нам запре­
щается вынуждать задержку, прежде чем полностью выплачен связанный
с ней долг.

Замечание. Амортизационный анализ па основе понятия текущего долга
во многом работает как отложенная покупка (layaway plan). В случае от­
ложенной покупки вы находите в магазине некоторый товар — например,
кольцо с бриллиантом, который вы не можете позволить себе немедлен­
но. Вы договариваетесь с магазином о цене и просите персонал отложить
для вас кольцо. Затем вы производите регулярные платежи, и получаете
кольцо только тогда, когда его цена полностью выплачена.

При анализе ленивой структуры данных вы имеете вычисление, кото­
рое пока что не можете позволить себе немедленно. Вы создаёте для этого
вычисления задержку и присваиваете ей размер долга, пропорциональный
её разделяемой стоимости. Затем вы выплачиваете долг небольшими пор­
циями. Наконец, когда долг полностью выплачен, вам позволено произве­
сти вычисление задержки.

В жизненном цикле задержки есть три важных момента: когда она
создаётся, когда её стоимость полностью оплачена, и когда она выполня­
ется. Мы обязаны доказать, что второй из этих моментов предшествует
третьему. Если каждая задержка до своего вынуждения полностью опла­
чена, то общее количество выплаченного долга является верхней границей
для реализованной разделяемой стоимости, а следовательно, общая амор­
тизированная стоимость (то есть общая нераздельная стоимость плюс об­
щее количество выплаченного долга) является верхней границей для общей
реальной стоимости (то есть общей нераздельной стоимости плюс реали­
зованная разделяемая стоимость). Мы сделаем это рассуждение формаль­

74 6. Амортизация и устойчивость при ленивом вычислении

ным в разделе 6.3.1.
Одна из наиболее трудных проблем при анализе времени выполне­

ния ленивых программ — взаимодействие множественных логических бу.
дущих. Мы избегаем этой проблемы, рассуждая о каждом из этих будущих
как если бы оно было единственным. С точки зрения операции, создающей
задержку, каждое логическое будущее, эту задержку вынуждающее, обяза­
но само её оплатить. Если два логических будущих желают вынудить одну
и ту же задержку, каждое из них платит за неё по отдельности. Сговорить­
ся и выплатить долг по частям не разрешается. Альтернативный взгляд
на это ограничение состоит в том, что задержку разрешается вынуждать
только тогда, когда её стоимость оплачена в рамках логической истории
текущей операции. При использовании этого метода иногда мы будем вы­
плачивать долг более одного раза, и следовательно, переоценивать общее
время, необходимое для некоторых вычислений. Однако такая переоцен­
ка безвредна, и её цена невелика по сравнению с простотой получаемого
анализа.

6.3. Метод банкира

Чтобы приспособить метод банкира к использованию понятия текуще­
го долга вместо текущих накоплений, мы заменяем кредит дебетом. Каж­
дая единица долга представляет определённое количество отложенной ра­
боты. Когда мы вначале задерживаем какое-то вычисление, мы создаём
дебет, равный разделяемой стоимости этого вычисления, и распределяем
долг по узлам созданного объекта. Выбор места, с которым связывается
каждая единица долга, зависит от природы вычисления. Если оно моно­
литно (monolithic) (то есть, будучи однажды запущено, сработает до за­
вершения), обычно весь долг присваивается корневому узлу результата.
С другой стороны, если мы имеем дело с пошаговым (incremental) вычис­
лением (то есть оно разбивается на фрагменты, которые можно выполнить
независимо друг от друга), то долг может распределяться по корневым уз­
лам частичных результатов.

Амортизированная стоимость операции равна её нераздельной стои­
мости плюс количество единиц долга, освобождаемых этой операцией. Об­
ратите внимание, что единицы долга, создаваемые операцией, в её амор­
тизированную стоимость не включаются. Порядок, в котором высвобож­
даются единицы долга, зависит от того, как предполагается в будущем
обращаться к узлам объекта; долг на тех узлах, к которым мы обратимся
раньше, следует выплачивать в первую очередь. Чтобы доказать ограни­
чение амортизированной стоимости операции, нам нужно показать, что

6.3. Метод банкира 75

всякий раз, как мы обращаемся к некоторой ячейке (возможно, при этом
вынуждая некоторую задержку), все единицы долга, привязанные к этой
ячейке, уже высвобождены (а следовательно, задержанная операция пол­
ностью оплачена). Таким образом, мы гараитируем, что общее количество
долга, высвобожденное последовательностью операций, является верхней
границей реализованной разделяемой стоимости этих операций. Следова­
тельно, общая амортизированная стоимость является верхней границей об­
щей реальной стоимости. Долг, сохраняющийся в конце вычислений, соот­
ветствует нереализованной разделяемой стоимости, и не влияет па общую
реальную стоимость.

Пошаговые функции играют важную роль в методе банкира, посколь­
ку они позволяют распределить долг по различным ячейкам структуры
данных, каждая из которых соответствует вложенной задержке. Впослед­
ствии доступ к каждой ячейке может быть открыт но мере высвобожде­
ния долга, не ожидая выплаты долга по другим ячейкам. На практике
это означает, что можно очень быстро оплатить начальные частичные ре­
зультаты пошагового вычисления, а последующие частичные результаты
оплачиваются по мере необходимости. Однако монолитные функции дают
намного меньшую гибкость. Программист вынужден предсказывать, когда
понадобится результат дорогого монолитного вычисления, и обустроить
высвобождение долга достаточно рано, чтобы ко времени, когда результат
понадобится, он был полностью выплачен.

6.3.1. Обоснование метода банкира

В этом разделе мы доказываем утверждение, что общая амортизи­
рованная стоимость является верхней границей общей реальной стоимо­
сти. Общая амортизированная стоимость равна сумме общей нераздель­
ной стоимости и общего количества высвобожденного долга (включая по­
вторные высвобождения); общая реальная стоимость равна общей нераз­
дельной стоимости плюс реализованная разделяемая стоимость. Следова­
тельно, нам надо показать, что общее количество высвобожденного долга
является верхней границей для реализованной разделяемой стоимости.

Можно абстрактно рассматривать метод банкира как задачу разметки
графа трассировки вычисления из раздела С.1. Задача состоит в том, чтобы
каждую вершину графа пометить тремя (мульти)множествами s(v), a(v)
и r(v), так что

(I) v ф v' => s(v) П s(v') = 0
(II) a(v) С s(w)
(III) r (v) С Uu)6C a(w)

Множество s(v) является обычным множеством, тогда как a(v) и r(v) могут

7G 6. Амортизация и устойчивость при ленивом вычислении

быть мультимножествами (то есть могут содержать повторения). Условия
II и III не учитывают эти повторения.

Множество s(v) — это множество дебетов, выделяемых операцией v.
Условие I утверждает, что никакая единица долга не выделяется более
одного раза. Множество a(v) — множество дебетов, высвобождаемых опе­
рацией v. Условие II требует, чтобы всякая высвобождаемая единица дол­
га была заранее выделена; точнее, операция может высвобождать только
единицы долга, которые были выделены в её логической истории. Нако­
нец, r(v) — это единицы долга, реализуемые (realized) операцией V, то есть
мультимножество единиц долга, соответствующее задержкам, которые вы­
нуждаются операцией v. Условие III требует, чтобы всякая единица долга
была высвобождена, прежде чем она реализована, или, точнее, что нельзя
реализовать единицу долга, если она не высвобождена в логической исто­
рии текущей операции.

Почему a(v) и г (и) являются не просто множествами, а мультимно­
жествами? Потому что одна и та же операция может высвободить одни и
те же единицы долга более одного раза или реализовать их более одного
раза (многократно вынудив одни и те же задержки). Несмотря на то, что
мы никогда не имеем намерения высвободить одни и те же единицы долга
многократно, при сочетании объекта с самим собой это может произойти.
Предположим, например, что в анализе функции конкатенации списков
мы высвобождаем какое-то количество единиц долга из первого аргумен­
та и какое-то из второго. Если мы будем строить конкатенацию списка с
самим собой, одни и те же единицы долга могут высвободиться дважды.

При таком абстрактном взгляде на метод банкира мы легко можем
измерить различные показатели стоимости вычисления. Пусть V будет
множество всех вершин в трассировке вычисления. В таком случае общая
разделяемая стоимость равна Y lvev ls (u)l> а общее количество высвобож­
денного долга равно Y lv tv la (u)l- Поскольку имеется мемоизация, реализо­
ванная разделяемая стоимость равна не YlveV lr (u)l> а lr (v)l> гДе опе"
рация 1J отбрасывает повторения. Таким образом, многократно вынужден­
ная задержка участвует в реальной стоимости только один раз. Согласно
условию III, мы знаем, что U u ev r (w) — Следовательно,

vev vev vev

Итак, реализованная разделяемая стоимость ограничена сверху общим ко­
личеством высвобожденного долга, а общая реальная стоимость ограниче­
на общей амортизированной стоимостью, что и требовалось доказать.

6.3. Метод банкира 77

З ам ечани е. В этом рассуждении очередной раз подчёркивается важность
мемоизации. Без мемоизации (то есть при вызове по имени вместо вы­
зова по необходимости) общая реализованная стоимость была бы равна
^2veV 1г (г')1> а значит> не было бы никаких причин считать, что она мень­
ше, чем Yjv&v W w)I-

6.3.2. Пример: очереди

В этом подразделе мы разрабатываем эффективную устойчивую реа­
лизацию очередей и доказываем методом банкира, что все операции зани­
мают амортизированное время 0 (1).

Как видно из обсуждения в предыдущем разделе, мы должны каким-
то образом внести в устройство нашей структуры данных ленивое вычис­
ление, так что мы заменяем пару списков из простых очередей (раздел 5.2)
на пару потоков1. Для упрощения дальнейшей работы мы также явно от­
слеживаем длину обоих этих потоков.

type a Queue = int х a Stream х int х a Stream

Первое целое число здесь — длина г о л о в н о г о потока, а второе — длина хво­
стового потока. Заметим, что, в качестве приятного побочного эффекта,
благодаря явному хранению информации о длине мы тривиальным обра­
зом можем реализовать функцию size (размер) с константным временем
выполнения.

Если мы будем, прежде чем обратить хвостовой сннсок, ждать, пока
головной опустеет, у нас не окажется достаточно времени, чтобы заплатить
за обращение. Вместо этого мы периодически проворачиваем (rotate) оче­
редь, заменяя f на f -Н- reverse г, и делая хвостовой поток пустым. Заметим,
что это преобразование не меняет относительный порядок элементов.

В какой момент следует проворачивать очередь? Напомним, что функ­
ция reverse монолитна. Следовательно, её вычисление должно быть спла­
нировано достаточно сильно заранее, чтобы ко времени, когда оно пона­
добится, весь её долг был высвобожден. Вычисление reverse занимает |г|
шагов, так что, чтобы учесть её цену, мы выделяем |г| единиц долга (пока
что игнорируя цену операции -Н-). Задержка reverse может быть вынуж­
дена самое раннее после |/| применений tail, так что, если мы провернём
очередь в момент, когда |?‘| « |/| и высвободим по одной единице дол­
га на каждое применение tail, ко времени исполнения reverse долг будет
выплачен. Так что мы проворачиваем очередь, когда г становится на еди-

1Было бы достаточно заменить потоком только список-голову, однако для простоты
мы заменяем оба списка.

78 6. Амортизация и устойчивость при ленивом вычислении

structure BankersQueue: Q ueue =
struct

type q Queue = int x a Stream x int x a Stream
val empty = (0, $Nil, 0, SNil)
fun isEmpty (lenf, _) = (lenf = 0)
fun check (q as (lenf, f, lenr, r)) =

if lenr < lenf then q else (lenf+lenr, f -H- reverse r, 0, SNil)
fun snoc ((lenf, f, lenr, r), x) = check (lenf, f, lenr+1, SCons (x, r))
fun head (lenf, $Nil, lenr, r) = raise E m pty

| head (lenf, SCons (x , f'), lenr, r) = x
fun tail (lenf, $N il, lenr, r) = raise Em pty

] tail (lenf, SCons (x, f'), lenr, r) = check (lenf—1, f', lenr, r)
end

Рис. 6.1: амортизированные очереди с использованием метода банкира.

ницу длиннее / , и поддерживаем инвариант |/| ^ |г|. Между прочим, это
гарантирует нам, что / может быть пустым только при пустом г, как и
в простых очередях из раздела 5.2. Основные функции работы с очередя­
ми теперь записываются так:

fun snoc ((lenf, f, lenr, r), x) = check (lenf, f , lenr + 1, SCons (x, r))
fun head (lenf, SCons (x , f'), lenr, r) = x
fun tail (lenf, SCons (x , f'), lenr, r) = check (lenf—1, lenr, r)

где вспомогательная функция check обеспечивает |/| ^ |г|.

fun check (q as (lenf, f, lenr, r)) =
if lenr si lenf then q else (lenf+lenr, f -+ reverse r, 0, SNil)

Полный программный код этой реализации приведён на рис. 6.1.
Чтобы лучше объяснить, как эта реализация эффективно справляет­

ся с устойчивостью, рассмотрим следующий сценарий. Пусть имеется оче­
редь (jo, чьи головной и хвостовой потоки каждый имеют длину т, и пусть
Qi = tail g ,- i для 0 < i < т + 1. Очередь проворачивается при первом
вызове tail, а задержка reverse, созданная при провороте, вынуждается
при последнем вызове tail. Обращение занимает т шагов, и его стоимость
амортизируется по цепочке q\ . . . qm. (Пока что мы заботимся только о сто­
имости reverse и игнорируем стоимость -Н- .)

Выберем теперь какую-нибудь точку ветвления к и повторим вычис­
ление от qk до qm+ 1 - (Заметим, что q используется как устойчивая струк­
тура.) Сделаем это d раз. Как часто выполняется reverse? Зависит от того,

6.3. Метод банкира 79

находится ли точка ветвления к до или после проворачивания очереди.
Допустим, к расположена после проворота. Допустим даже, что к = т,
так что каждая из повторяющихся ветвей представляет собой простое взя­
тие хвоста очереди. Каж дая из ветвей выполнения вынуждает задержку
reverse, но все они вынуж дают одну и ту ж е задержку, так что функция
reverse выполняется только один раз. Здесь ключевую роль играет мемо­
изация — без неё вычисление reverse повторялось бы каждый раз, и общая
стоимость составила бы m (d + 1) шагов, при том, что для её амортизации
у нас есть всего лишь т + I + d операций. При большом d получилась
бы амортизированная стоимость операции 0 (1) , но мемоизация даёт нам
амортизированную стоимость операции всего лишь 0 (1).

Возможна, однако, и ситуация, когда вычисление reverse будет повто­
ряться. Надо только взять к — 0, то есть расположить точку ветвления
прямо перед проворотом очереди. В этом случае первый вызов tail на
каждой ветке выполнения повторяет проворот и создаёт новую задерж­
ку reverse. Э та новая задержка вынуждается при последнем вызове tail
на каждой ветке, и функция reverse вычисляется заново. Поскольку все за­
держки различны, мемоизация здесь не приносит никакой пользы. Полная
стоимость всех обращений равна ш • d, но теперь у нас для амортизации
этой стоимости есть (ш + 1)(d + 1) операций, и опять амортизированная
стоимость каждой операции получается 0 (1) . Главное, что здесь следу­
ет заметить — это что мы повторяем работу только в том случае, если
повторяем и последовательность операций, по которым мы распределяем
амортизированную стоимость этой работы.

Это неформальное рассуждение показывает, что наши очереди тре­
буют амортизированное время 0 (1) на каждую операцию, даже если они
используются как устойчивая структура. Мы переводим это рассуждение
в формальное доказательство с помощью метода банкира.

При простом просмотре кода легко убедиться, что нераздельная сто­
имость каждой операции над очередью равна 0 (1) . Следовательно, чтобы
показать, что амортизированная стоимость каждой операции равна 0 (1),
нужно доказать, что высвобождения 0 (1) единиц долга на каждой опера­
ции достаточно, чтобы выплатить стоимость каждой задержки ко време­
ни её вынуждения. Высвобождение долга происходит только на операциях
tail и snoc.

Пусть размер долга на г-ом узле г о л о в н о г о списка будет d(i), и пусть
D {i) = Y ^j-o d (j) ~ кумулятивный размер долга на узлах от начала очере­
ди до г включительно. Мы будем соблюдать следующий инвариант долга:

D (i) s? min(2t,|/| - |r|)

80 6. Амортизация и устойчивость при ленивом вычислении

Подвыражение 2г гарантирует нам, что весь долг на нервом узле головно­
го потока уже высвобожден (поскольку d(0) = D (0) ^ 2 - 0 = 0), так что
этот узел можно спокойно вынуждать (операциями head или tail). Подвы­
ражение |/| — |г| гарантирует, что весь долг во всей очереди высвобожден
к моменту, когда потоки имеют одинаковую длину, что бывает перед сле­
дующим проворотом очереди.

Теорема 6.1. Операции snoc и tail сохраняют инвариант долга, высво­
бождая, соответственно, одну и две единицы.
Доказательство. Каждая операция snoc, не вызывающая проворот, про­
сто добавляет один элемент к хвостовому потоку, и таким образом, уве­
личивает на единицу величину |г| и уменьшает на единицу |/| — |г|. При
этом инвариант оказывается нарушен в узлах, где до сих пор мы име­
ли D (i) = |/| — |г|. Мы можем восстановить этот инвариант, высвободив
первую единицу долга в очереди; при этом кумулятивный долг на всех по­
следующих узлах уменьшится на единицу. Подобным образом, если опера­
ция tail не вызывает проворота очереди, она просто отбрасывает элемент
из головного потока. При этом |/| уменьшается на единицу (а следователь­
но, и |/| — |г|), однако, что более важно, индекс г всех остающихся узлов
уменьшается на один, а следовательно, 2i уменьшается на два. Высвобож­
дение первых двух единиц долга в очереди восстанавливает инвариант.
Наконец, рассмотрим операцию snoc или tail, которая вызывает прово­
рот очереди. Перед самым проворотом мы знаем, что весь долг в очереди
высвобожден, так что после него единственные невысвобожденные едини­
цы долга порождены самим этим проворотом. Если на момент проворота
|/| = тп и |r| = то + 1, то мы создаём т единиц долга для конкатенации
и то + 1 для операции reverse. Конкатенация — пошаговая операция, так
что мы распределяем её долг по единице на каждый из первых то узлов.
С другой стороны, функция reverse монолитна, так что все её то + 1 единиц
долга мы помещаем в узел т, первый узел обращённого потока. Таким
образом, долг теперь распределён так, что

Это распределение нарушает инвариант в узлах 0 и т . Однако после вы­
свобождения единицы долга в узле 0 инвариант в обоих этих узлах оказы­
вается восстановлен.

если i < т
если г = то и
если i > т

если г < т
если i ^ то

Приведённое рассуждение имеет стандартную структуру. Единицы
долга распределяются по нескольким узлам для пошаговых функций и

6.3. Метод банкира 81

к о н ц е н т р и р у ю т с я в одном узле для монолитных. Инварианты долга изме­
ряют не только количество его единиц в каждой конкретной вершине, но
и размер долга на пути от корневого узла к этой вершине. Это отражает
н а б л ю д е н и е , что для доступа к любому узлу мы должны сначала пройти
через всех его предков. Следовательно, к этому времени долг на всех этих
узлах тоже должен быть равен нулю.

Эта структура данных демонстрирует также тонкую деталь, касаю­
щуюся вложенных задержек: долг для вложенной задержки может быть
выделен и даже высвобожден прежде, чем задержка физически создаётся.
Рассмотрим, например, как работает операция -Н-. Задержка для второго
узла потока физически создаётся только при вынуждении первого. Одна­
ко из-за мемоизации задержка для второго узла будет разделяться между
ветвями вычисления всегда, когда разделяется задержка для первого. Сле­
довательно, мы считаем, что неявно вложенная задержка создаётся тогда,
когда создаётся задержка, в которую она вложена. Более того, когда мы
рассуждаем о долге или вообще о структуре объекта, нас не интересует,
создан ли узел физически или нет. Мы рассуждаем так, будто бы все узлы
были созданы в своём окончательном виде, то есть как будто все задержки
в объекте уже были вынуждены.

Упражнение 6.2. Допустим, мы изменим инвариант очереди с формулы
1/1 > И на 2|/| ^ |г|.

(а) Докажите, что амортизированные ограничения 0 (1) по-прежнему
выполняются.

(б) Сравните производительность двух реализаций при последователь­
ной вставке ста элементов через snoc, а затем их последовательном
удалении через tail.

6.3.3. Наследование долга

Часто мы создаём задержки, чьи тела вынуждают другие, существую­
щие задержки. В таких случаях мы говорим, что новая задержка зависит
(depends) от старой. В примере с очередью задержка, создаваемая опера­
цией reverse г, зависит от г, а задержка, создаваемая f -н- reverse г, зависит
от f. Каждый раз, когда мы вынуждаем задержку, следует быть уверенны­
ми, что высвобожден не только долг, относящийся к ней самой, но и долг
всех задержек, от которых она зависит. В примере с очередью инвариант
Долга гарантирует, что мы создаём задержки через -Н- и reverse только
в случаях, когда ранее существующие задержки уже полностью оплачены.
Однако так будет не всегда.

82 6. Амортизация и устойчивость при ленивом вычислении

Когда мы создаём задержку, зависящую от существующей задержки
с невысвобожденным долгом, мы переносим этот долг на новую задерж­
ку и говорим, что новая задержка наследует (inherits) долги старой. Мы
не имеем права вынуждать новую задержку, пока мы не высвободили как
её собственные долги, так и унаследованные от старой задержки. В ме­
тоде банкира не делается никакого различия между этими двумя разно­
видностями долга; считается, что весь долг принадлежит новой задержке.
Наследование долга будет применяться при анализе структур данных из
глав 9, 10 и 11.

З ам ечан и е. Наследование долга предполагает, что не существует способа
доступа к более старой задержке внутри текущего объекта в обход новой.
К примеру, наследование долга нельзя использовать при анализе следую­
щей функции, применяемой к паре потоков:

fun reverseSnd (xs, ys) = (reverse ys, ys)

Здесь ys может быть вынуждена как через первый компонент пары, так
и через второй. В таких случаях мы либо удваиваем долг, связанный с
ys, и новая задержка наследует копию долга, либо сохраняем одну копию
каждой единицы долга и отслеживаем зависимости явно.

6.4. Метод физика

Подобно методу банкира, метод физика тоже можно адаптировать для
работы с понятием текущего долга вместо текущих накоплений. В тради­
ционном методе физика описывается функция потенциала Ф, представля­
ющая нижнюю границу текущих накоплений. Чтобы работать с долгом
вместо накоплений, мы заменяем Ф на функцию Ф, которая сопоставляет
объектам потенциалы, представляющие верхнюю границу текущего долга
(или, по крайней мере, долю общего долга, относящуюся к рассматрива­
емому объекту). Грубо говоря, после этого амортизированная стоимость
операции определяется как её полная стоимость (то есть разделённая сто­
имость плюс нераздельная) минус изменение потенциала. Напомним, что
простейший способ рассчитать полную стоимость операции притворить­
ся, что всё вычисление работает энергично.

Всякое изменение текущего долга отражается в изменении потенциа­
ла. Если операция не выплачивает никакую долю разделённой стоимости,
то изменение потенциала равно её разделённой стоимости, и, следователь­
но, амортизированная стоимость операции равна её нераздельной стоимо­
сти. С другой стороны, если операция выплачивает часть своей разделяе­
мой стоимости, или разделяемой стоимости предыдущих операций, тогда

6.4- Метод физика 83

изменение потенциала будет меньше, чем её разделяемая стоимость (то
есть текущий долг увеличивается меньше, чем на её разделяемую стои­
мость), и амортизированная стоимость операции окажется больше, чем
нераздельная. Однако амортизированная стоимость операции не может
быть меньше, чем её нераздельная стоимость, так что мы не позволяем
потенциалу изменяться больше, чем на разделяемую стоимость операции.

Обосновать метод физика можно путём сведения его к методу банки­
ра. Напомним, что в методе банкира амортизированная стоимость опе­
рации равна её нераздельной стоимости плюс размер высвобождаемого
долга. В методе физика амортизированная стоимость равна полной сто­
имости минус изменение потенциала или, другими словами, нераздельной
стоимости плюс разница между разделяемой стоимостью и изменением по­
тенциала. Если единицу потенциала мы считаем равной единице долга, то
разделяемая стоимость равна количеству единиц, па которое мог бы уве­
личиться текущий долг, а изменение потенциала равно количеству единиц,
на которое текущий долг увеличился на самом деле. Разница должна была
быть покрыта путём высвобождения части долга. Следовательно, аморти­
зированная стоимость в методе физика также может рассматриваться как
нераздельная стоимость плюс количество высвобождаемых единиц долга.

Мы иногда хотим вынудить задержку в объекте, чей потенциал не
равен нулю. В таком случае мы добавляем потенциал этого объекта к
амортизированной стоимости операции. Как правило, такое случается
в операциях-запросах, поскольку там стоимость вынуждения задержки
нельзя отразить как изменение потенциала: такая операция не возвращает
нового объекта.

Главное различие между методами банкира и физика состоит в том,
что при использовании метода банкира мы можем вынудить задержку, как
только её собственный долг выплачен, не ожидая выплаты долга по другим
задержкам, в то время как в методе физика разделяемая задержка может
быть вынуждена только после того, как весь текущий долг объекта, изме­
ряемый его потенциалом, обращён в ноль. Поскольку потенциал измеряет
только накопившийся долг всего объекта и не делает различия между его
ячейками, нам приходится делать пессимистическое предположение, что
весь текущий долг привязан к той конкретной задержке, которую мы сей­
час хотим вынудить. Из-за этого метод физика кажется менее мощным,
чем метод банкира. Однако когда он применим, как правило, метод физи­
ка значительно упрощает рассуждения.

Поскольку метод физика не может воспользоваться частичным вы­
полнением вложенных задержек, нет никаких причин предпочитать по­
шаговые функции монолитным. В сущности, если все или большинство

84 6. Амортизация и устойчивость при ленивом вычислении

задержек монолитны, это может служить подсказкой о применимости
тода физика.

6 .4 .1 . П р и м ер : би н ом и ал ьн ы е к у ч и

В главе 5 мы показали, что биномиальные кучи из раздела 3.2 под­
держивают операцию insert за амортизированное время 0 (1). Однако если
кучи используются как устойчивая структура, этот показатель для худше­
го случая деградирует до O (logn). С помощью ленивого вычисления мы
можем восстановить амортизированное ограничение по времени 0 (1) вне
зависимости от того, используются ли кучи как устойчивая структура.

Основная идея состоит в том, чтобы заменить в представлении кучи
список деревьев на задержанный список деревьев.

type Heap = Tree list susp

При этом мы можем переписать insert в виде

fun lazy insert (х, $ts) = SinsTree (N ode (0, x, []), ts)

или, эквивалентным образом, в виде

fun insert (х, h) = SinsTree (N ode (0, x, (]) , force h)

Остальные функции столь же просты в написании; они показаны на
рис. 6.2.

Проанализируем амортизированное время работы insert. Поскольку
это монолитная операция, мы можем использовать метод физика. Снача­
ла определяем функцию потенциала как Ф(h) = Z(|/?.|), где Z (n) — число
нулей в двоичном представлении п (минимальной длины). Затем мы пока­
жем, что амортизированная стоимость вставки элемента в биномиальную
кучу размера п равна двум. Допустим, что к младших разрядов в двоичном
представлении п равны единице. Тогда полная стоимость операции insert
пропорциональна fc + 1, поскольку включает к вызовов операции link. Рас­
смотрим теперь изменение потенциала. Младшие к разрядов изменяются
с единиц на нули, а одна следующая цифра изменяется с нуля на единицу,
так что изменение потенциала равно к — 1. Амортизированная стоимость
получается (к + 1) — (к — 1) = 2.

З ам ечан и е. Заметим, что наше доказательство двойственно по отноше­
нию к доказательству из раздела 5.3. Тогда потенциал равнялся количе­
ству единиц в двоичном представлении п, теперь это количество нулей.
Такая зеркальность отражает двойственность между понятиями текущих
накоплений и текущего долга.

6.4- Метод физика 85

functor LazyBinomialHeap (Element: O rdered): Heap =
struct

structure Elem = Element

datatype Tree = N ode o f int x Elem.T x Tree list
type Heap = Tree list susp

val empty = $[]
fun isEmpty (Sts) = null ts

fun rank (N ode (r, x, c)) = r
fun root (N ode (r, x, c)) = x
fun link (ti as Node (r, xi, ci), t2 as N ode (_ , x2, c2)) =

if Elem.leq (xi, x—2) then N ode (r+1, x i, t2 :: cj)
else Node (r+ 1 , x2, ti :: c2)

fun insTree (t , []) = [t]
| insTree (t , ts as t' :: ts')

if rank t <rank t' then t :: ts else insTree (link (t, t'), ts')

fun mrg (tsb []) = tsi
I mr8 ([]. ts2) = ts2
| mrg (tsi as ti :: tsi, ts2 as t2 :: ts2) =

if rank tj <rank t2 then ti :: mrg (tsi, ts2)
else if rank t2 <rank ti then t2 :: mrg (tsi, ts2)
else insTree (link (t j, t2), mrg (ts'j, ts2))

fun lazy insert (x, Sts) = SinsTree (N ode (0, x, []), ts)

fun lazy merge ($tsi, $ts2) = $mrg (tsi, ts2)

fun removeMinTree []= raise E m p ty
| removeMinTree ft] = (t, |])
| removeMinTree (t :: ts) =

let val (t ', ts') = removeMinTree ts
in if Elem.leq (root t, root t') then (t, ts) else (t', t :: ts') end

fun findMin (Sts) = let val (t, _) = removeMinTree ts in root t end
fun lazy deleteMin (Sts) =

let val (N ode (_ , x, tsi), ts2) = removeMinTree ts
in Smrg (rev tsi, ts2) end

end

Рис. 6.2: ленивые биномиальные кучи.

8G 6. Амортизация и устойчивость при ленивом вычислении

У п р а ж н ен и е 6 .3. Докажите, что findMin, deleteMin и merge также выпол­
няются за амортизированное время О (log п).

У п р а ж н ен и е 6.4. Допустим, мы уберём ключевое слово lazy из определе­
ний функций merge и deleteMin, так что эти функции будут вычислять свои
аргументы немедленно. Покажите, что обе они по-прежнему выполняются
за время O (logn).

У п р а ж н ен и е 6 .5 . Задержка списка деревьев имеет неприятное послед­
ствие: время работы isEmpty деградирует от 0 (1) в худшем случае до амор­
тизированного O (logn). Восстановите время работы 0 (1) для isEmpty пу­
тём явного хранения размера каждой кучи. Вместо того, чтобы явно моди­
фицировать нашу теперешнюю реализацию, напишите функтор SizedHeap,
подобный ExplicitMin из упражнения 3.7. Он должен преобразовывать про­
извольную реализацию кучи в реализацию, которая явно хранит размер.

6 .4 .2 . П р и м ер : оч ер ед и

В этом разделе мы приспосабливаем под метод физика нашу реализа­
цию очередей. Как и раньше, мы показываем, что все операции занимают
амортизированное время 0 (1).

Поскольку теперь нет никакого смысла предпочитать пошаговые за­
держки монолитным, вместо потоков мы используем задержанные списки.
В сущности, хвостовой список даже задерживать не надо, поэтому его мы
представляем как обыкновенный список. Как и раньше, мы явно храним
длины списков и гарантируем, что головной список имеет длину не меньше
хвостового.

Поскольку головной список задержан, мы не можем получить доступ
к его первому элементу, не выполнив всю задержку целиком. Поэтому для
ответов на запросы head мы держим рабочую копию некоторого префикса
головного списка. Ради эффективности доступа эта рабочая копия хранит­
ся в виде обычного списка. Если головной список непуст, эта копия также
не пуста. Итоговый тип выглядит так:

type a Queue = a list х int х a list susp х int х а list

Теперь мы можем записать основные функции над очередями:

fun snoc ((w, lenf, f, lenr, r), x) = check (w, lenf, f, lenr+1, x :: r)
fun head (x :: w, lenf, f, lenr, r) = x
fun tail (x :: w, lenf, f, lenr, r) = check (w, lenf—1, Stl (force f) , lenr, r)

Вспомогательная функция check обеспечивает два инварианта: что г не мо­
жет быть длиннее, чем f, и что при непустом f пе может быть пуст w.

г
6-4- Метод физика 87

structure PhysicistsQueue: Q u eu e =
struct

type a Queue = a list x int x a list susp x int x a list

val empty = ([], 0, $[], 0, [])
fun isEmpty (_ , lenf, _) = (lenf = 0)

fun checkw ([], lenf, f, lenr, r) = (force f, lenf, f, lenr, r)
| checkw q = q

fun check (q as (w, lenf, f, lenr, r)) =
if lenr < lenf then checkw q
else let val f' = force f

in checkw (f , lenf+lenr, $(f' @ rev r), 0, [)) end

fun snoc ((w, lenf, f, lenr, r), x) = check (w, lenf, f, lenr+1, x :: r)

fun head([], lenf, f, lenr, r) = raise E m p ty
| head (x :: w, lenf, f, lenr, r) = x

fun tail ([] , lenf, f, lenr, r) = raise E m p ty
| tail (x :: w, lenf, f, lenr, r) =

check (w, lenf—1, $tl (force f), lenr, r)
end

Рис. 6.3: амортизированные кучи с использованием метода физика.

fun checkw ([], lenf, f, lenr, r) = (force f, lenf, f, lenr, r)
| checkw q = q

fun check (q as (w, lenf, f, lenr, r)) =
if lenr < lenf then checkw q
else let val f' = force f

in checkw (f , lenf+lenr, $(^ @ rev r), 0, []) end

Полная реализация очередей приведена на рис. 6.3.
Для анализа очередей методом физика мы выбираем функцию по­

тенциала Ф так, чтобы при вынуждении задержанного списка потенциал
всегда был равен нулю. Такое может произойти в двух ситуациях: когда w
оказывается пустым, и когда г оказывается длиннее f. Поэтому мы выби­
раем такое Ф:

Ф(ч) =min(2|w|,|f| - |г|)

Т еорем а 6.2. Амортизированная стоимость операций snoc и tail равна,
соответственно, двум и четырём.

88 6. Амортизация и устойчивость при ленивом вычислении

Доказательство. Вызов snoc, не вызывающий проворота, просто до­
бавляет новый элемент к хвостовому списку. При этом |г| увеличивается на
единицу, а |f | — |г| уменьшается на единицу. Полная стоимость snoc равна
одному, а уменьшение потенциала не больше одного, так что амортизиро­
ванная стоимость равна максимум 1 — (—1) = 2. Вызов tail, не приводящий
к провороту очереди, убирает элемент из рабочего списка и лениво убира­
ет тот же самый элемент из головного списка. При этом |w| уменьшает­
ся на единицу, и на столько же уменьшается |f| — |г|, так что потенциал
уменьшается максимум на два. Полная стоимость tail равна двум один
как нераздельная стоимость (включая отбрасывание первого элемента w)
и один как разделяемая стоимость ленивого отбрасывания головы f. Амор­
тизированная стоимость получается 2 — (—2) = 4.

Наконец, рассмотрим вызов snoc или tail, приводящий к провороту
очереди. В начале операции |f| = |г|, так что Ф = 0. Перед самым проворо­
том |f| = т, a |r| = т + 1. Разделяемая стоимость проворота равна 2тп+1, а
потенциал получающейся очереди 2т. Таким образом, амортизированная
стоимость snoc равна 1 + (2т 4-1) — 2т = 2. Амортизированная стоимость
tail равна 2 + (2т + 1) — 2т = 3. (Разница получается потому, что в случае
tail нам нужно ещё учесть стоимость удаления первого элемента f.)

У п р а ж н ен и е 6 .6 . Покажите, почему каждая из следующих «оптими­
заций» уничтожает амортизированное ограничение времени 0 (1). Эти
примеры показывают типичные ошибки при проектировании устойчивых
амортизированных структур данных.

(а) Заметим, что check при провороте вынуждает f, а затем записывает
результат в w. Разве не было бы более ленивым, а следовательно,
более выгодным не вынуждать f, пока w не окажется пустым?

(б) Заметим, что во время операции tail мы заменяем f на $tl (force f).
Создание и вынуждение задержек приводит к заметным расходам,
которые, хотя и сохраняют стоимость константной, могут сделать
константу слишком большой. Разве не было бы ленивее, а следова­
тельно, лучше, не изменять f, а просто уменьшать lenf, показывая
таким образом, что элемент удалён?

6 .4 .3 . С о р ти р о в к а сл и ян и ем сн и зу ввер х с сов м естн ы м
и сп ол ьзова н и ем

Большинство примеров в оставшихся главах использует метод банки­
ра, а не физика. Поэтому здесь мы приводим ещё один пример на метод
физика.

6.4• Метод физика 89

Signature Sortable =
sig

structure Elem: O rdered

type Sortable

val empty : Sortable
val add : Elem.T x Sortable —> Sortable
val sort : Sortable —> Elem.T list

end

Рис. G.4: сигнатура сортируемых коллекций.

Допустим, что вы хотите отсортировать несколько похожих списков,
например, х и х :: xs, или xs @ zs и ys @ zs. Из соображений эффективности
вам хотелось бы использовать то, что хвосты списков совпадают, чтобы не
повторять работу по сортировке хвостов. Назовём абстрактный тип дан­
ных для решения этой задачи сортируемая коллекция (sortable collection).
Сигнатура сортируемых коллекций приведена на рис. 6.4.

Теперь если мы из списка xs сделаем сортируемую коллекцию xs', до­
бавив к пустой коллекции все элементы xs по очереди, то сможем отсорти­
ровать xs и х :: xs, вызвав, соответственно, sort xs' и sort (add (х, xs')).

Сортируемые коллекции можно реализовать как сбалансированные
двоичные деревья поиска. Тогда add и sort будут иметь, соответственно,
ограничения по времени в худшем случае O (logn) и 0 (п). Здесь мы дости­
гаем тех же самых ограничений, но только амортизированных, используя
сортировку слиянием снизу вверх (bottom-up mergesort).

Сортировка слиянием снизу вверх сначала разбивает список на п упо­
рядоченных сегментов (на первом этапе каждый сегмент содержит по одно­
му элементу). Затем она попарно сливает сегменты одинакового размера,
пока для каждого размера не останется только один. Наконец, сливаются
сегменты неодинакового размера.

Возьмём состояние данных непосредственно перед последним шагом.
Размеры сегментов в этот момент равны степеням двойки, соответству­
ющим единичным битам в п. Именно это представление мы будем ис­
пользовать для наших сортируемых коллекций. Похожие коллекции будут
совместно использовать работу сортировки снизу вверх с точностью до
последней фазы, когда сливаются сегменты разного размера. Полностью
Данные будут представлены в виде задержанного списка сегментов, каж­

90 б. Амортизация и устойчивость при ленивом вычислении

дый из которых является списком элементов, плюс целое число — размер
коллекции,

type Sortable = int х Elem.T list list susp
Отдельные сегменты хранятся в порядке возрастания размера, а элемен­
ты каждого сегмента хранятся в порядке возрастания согласно функциям
сравнения структуры Elem.

Основная операция с сегментами — слияние упорядоченных списков:
fun mrg ([], ys) = ys

I mrg (xs, []) = xs
| mrg (xs as x :: xs', ys as у :: ys') =

if Elem.leq (x, y) then x :: mrg (xs', ys) else у :: mrg (xs, ys')

При добавлении нового элемента мы создаём одноэлементный сегмент.
Если наименьший из существующих сегментов тоже одноэлементен, мы
эти два сегмента сливаем, и продолжаем слияние до тех пор, пока новый
сегмент не окажется меньше наименьшего существующего. Это слияние
управляется битами в поле размера. Если младший бит size равен нулю,
то мы просто прицепляем новый сегмент к списку сегментов. Если бит ра­
вен единице, мы сливаем два сегмента и повторяем операцию. Разумеется,
все это происходит в ленивом режиме.

fun add (х, (size, segs)) =
let fun addSeg (seg, segs, size) =

if size mod 2 = 0 then seg :: segs
else addSeg (mrg (seg, hd segs), tl segs, size div 2)

in (size+1, $addSeg([xj, force segs, size)) end

Наконец, чтобы отсортировать коллекцию, мы сливаем сегменты от мень­
шего к большему.

fun sort (size, segs) =
let fun mrgAll (xs, 11) = xs

| mrgAll (xs, seg :: segs) = mrgAll (mrg (xs, seg), segs)
in mrgAll ([], force segs) end

З ам ечан и е. Можно рассматривать mrgAll как вычисление

[] XI S i tx) . . . txl s m

где Si — i-й сегмент, a tx — инфиксное лево-ассоциативное обозначение для
операции mrg. Это частный случай весьма распространённого программ­
ного шаблона, который можно записать как

С 0 Х \ 0 . 0 Хул

r 6.4. Метод физика 91

functor BottomUpMergeSort (Element: O rdered): Sortable =
struct

structure Elem = Element
type Sortable = int x Elem.T list list susp
fun mrg ([), ys) = ys

I mrg (xs, []) = xs
I mrg (xs as x :: xs', ys as у :: ys') =

if Elem.leq (x, y) then x :: mrg (xs', ys) else у :: mrg (xs, ys')
val empty = (0, $[])
fun add (x, (size, segs)) =

let fun addSeg (seg, segs, size) =
if size mod 2 = 0 then seg :: segs
else addSeg (mrg (seg, hd segs), tl segs, size div 2)

in (size + 1, $(addSeg ([x], force segs, size))) end
fun sort (size, segs) =

let fun mrgAll (xs, []) = xs
I mrgAll (xs, seg :: segs) = mrgAll (mrg (xs, seg), segs)

in mrgAll ([], force segs) end
end

Рис. 6.5: сортируемые коллекции на основе сортировки слиянием снизу
вверх.

для любого с н лево-ассоциативной ф. В качестве других примеров этого
шаблона можно привести суммирование списка целых (с = 0 и ф = +) или
нахождение максимума в списке натуральных чисел (с = 0 и ф = max).
Одна из самых сильных черт функциональных языков — способность опре­
делять шаблоны подобного рода в виде функций высших порядков (higher-
order functions) (то есть функций, которые принимают другие функции
в качестве аргументов или возвращают функции как результат). Напри­
мер, вышеприведённый шаблон можно записать как

fun foldl (f , с, []) = с
| foldl (f , с, х :: xs) = foldl (f , f (c, x), xs)

Тогда sort выглядит как

fun sort (size, segs) = foldl (mrg, [j, force segs)

Полный программный код к нашей реализации сортируемых коллек­
ций приведён на рис. 6.5.

Покажем теперь, используя метод физика, что операция add занима­
ет амортизированное время O (logn), а операция sort — амортизированное

время 0 (п). Вначале зададим функцию потенциала Ф, которая полностью
определяется размером коллекции.

92 6. Амортизация и -устойчивость при ленивом вычислении 1
Ф(тг) = 2п - 2 ^ bi(n mod 2' + 1)

<=о

где bi — i-il бит л. Заметим, что Ф(п) ограничен сверху величиной 2п, и
что Ф(п) = 0 в точности тогда, когда п = 2к — 1 для некоторого к.

З ам ечан и е. Наша функция потенциала может показаться сложной. Она
возникает из желания считать, что каждый сегмент имеет потенциал, про­
порциональный его собственному размеру минус размер всех более мел­
ких сегментов. Интуиция здесь заключается в том, что у всякого сегмента
потенциал сначала велик, но он уменьшается но мере добавления новых
элементов в коллекцию, и обращается в ноль непосредственно перед тем,
как наш сегмент сливается с другим сегментом. Однако для того, чтобы
проводить вычисления с функцией, необязательно знать, какими сообра­
жениями мотивировано её определение.

Сначала вычислим полную стоимость операции add. Её нераздельная
стоимость равна единице, а разделяемая равна стоимости слияний, прово­
димых внутри addSeg. Допустим, что младшие к бит числа п равны единице
(то есть bi = 1 для г < к и Ь = 0) . В этом случае addSeg проводит к слия­
ний. Первое из них сливает два списка длиной 1, второе два списка длиной
2, и так далее. Поскольку слияние двух списков размера т, занимает 2т
шагов, addSeg занимает

к- 1
(1 + 1) + (2 + 2) + • • • + (2fc_1 + 2к~ х) = 2 (^ 2*) = 2(2к - 1)

i= 0

шагов. Следовательно, полная стоимость add равна 2(2fc — 1) + 1 = 2fc+1 — 1.
Вычислим теперь изменение потенциала. Пусть п' = п + 1, a b[— i-й

бит числа п'. Тогда

Ф(га') - Ф(п)
= 2п' - 2 Ь[(п mod 2’ + 1) - (2п - 2 0(n mod 2' + 1))
= 2 + 2 J^™0(bi(n mod 2 ‘ + 1) — Ь[(п! mod 2 ‘ + 1))
= 2 + 2 Е Г = 0 а д

где 6(г) = bi(n mod 2* + 1) — b[(n mod 2l + 1). Рассмотрим три случая:
i < k , i = k u i > k .

6.4- Метод физика 93

• (г < к): поскольку Ьг = 1, а Ь[= 0, 6(i) = п mod 2* + 1. Но п mod 2* =
2* — 1, так что S(i) — 2г.

. (г = к): поскольку Ък — 0, a b'k = 1, 5(к) = ~ (п ' mod 2к + 1). Но п'
mod 2к = 0, так что 5(к) — — 1 = — Ь'к.

• (г > к): поскольку b[= bi, 5(г) = Ь[(п mod 2г - п' mod 2‘). Но п'
mod 2! = (п + 1) mod Т = n mod 2* + 1, так что <5(г) = 6 '(-1) = -Ь '.

Следовательно,

ф (п') - Ф («) = 2 + 2 Е г=0 а д
= 2 + 2 1 ^ 2 * + 2 E S fc(-b i)
= 2 + 2(2fc- l) - 2 £ ~ fcb'
= 2fc+1 - 2В '

где В' — число единичных битов в п '. Тогда амортизированная стоимость
операции add равна

(2fc+1 - 1) - (2fc+1 - 2В') = 2В' - 1

Поскольку В ' пропорционален O (logn), такую же оценку имеет и аморти­
зированная стоимость add.

Наконец, вычисляем амортизированную стоимость операции sort.
Первое её действие вынудить задержанный список сегментов. Посколь­
ку потенциал не обязательно равен нулю, это добавляет Ф(п) к амортизи­
рованной стоимости операции. Затем sort сливает сегменты, двигаясь от
меньших к большим. В худшем случае п = 2к — 1, так что есть по сегмен­
ту каждого размера от 1 до 2fc_1. Слияние сегментов занимает в общей
сложности

(1 + 2) + (1 + 2 + 4) + (1 + 2 + 4 + 8) + • • • + (1 + 2 + • • • + 2к~1)

= E t i E j= o 2J' = E ? - i (2 i+1 - 1) = (2fc+1 - 4) - (к - 1) = 2n - к - 1

шагов, а значит, амортизированная стоимость равна О(п) + Ф(п) = 0 (п).

Упражнение 6.7. Замените в нашей реализации задержанный список
списков на список потоков.

(а) докажите ограничения стоимости для add и sort с помощью метода
банкира.

(б) Напишите функцию для извлечения наименьших к элементов из сор­
тируемой коллекции. Докажите, что ваша функция работает за амор­
тизированное время не хуже 0 (к log п).

94 6. Амортизация и устойчивость при ленивом вычислении

6.5. Ленивые парные кучи

В завершение этой главы мы модифицируем парные кучи из разде­
ла 5.5 для работы в условиях устойчивости. К сожалению, анализ получа­
ющейся структуры данных оказывается столь же сложен, как и для исход­
ной. Однако мы предполагаем, что асимптотически наша новая реализация
столь же эффективна в условиях устойчивости, как исходная реализация
эффективна в эфемерных условиях.

Напомним, что в предыдущей реализации парных куч дети каждого
узла представлялись как список структур Heap. При уничтожении мини­
мального элемента корень отбрасывался, а затем дети сливались иопарпо
при помощи функции

fun mergePairs [] = Е
| mergePairs [h] = h
| mergePairs (hi :: I12 :: hs) = merge (merge (hi, I1 2), mergePairs hs)

Если уничтожить корневой элемент одной и той же кучи дважды, функ­
ция mergePairs будет также вызвана дважды. При этом работа будет по­
вторяться, а всякая надежда на эффективное амортизированное исполь­
зование будет потеряна. Чтобы справиться с задачей устойчивости, нужно
предотвратить повторение этой работы. Очередной раз мы используем для
этого ленивое вычисление. Вместо списка куч Heap list, мы представляем
детей узла как задержанную кучу Heap susp. Значение этой задержки рав­
но SmergePairs cs. Поскольку mergePairs работает с парами элементов списка
детей, мы будем расширять нашу задержку двумя элементами сразу. Сле­
довательно, нам понадобится дополнительное поле типа Heap в каждом
узле для хранения непарных потомков. Если непарных потомков нет (то
есть число детей чётно), это дополнительное поле будет пустым. Поскольку
это поле используется только тогда, когда число детей нечётно, мы будем
называть его нечётным полем (odd field). Таким образом, наш новый тип
данных имеет вид

datatype Heap = Е | Т of Elem.T х Heap х Heap susp

Операции insert и findMin почти не требуют изменений.
fun insert (х, а) = merge (Т (х, Е, $Е), а)
fun findMin (Т (х, а, т)) = х

Раньше у нас операция merge была простой, а операция deleteMin — слож­
ной. Теперь ситуация обратная — вся сложность функции mergePairs оказа­
лась перенесена в merge, которая устанавливает все необходимые задержки.
Функция deleteMin просто вынуждает задержку кучи и сливает её с нечёт­
ным полем.

6.6. Примечания 95

fun deleteMin (T (x, a, $b)) = merge (a, b)

функцию merge мы определяем в два шага. Первый шаг проверяет, что ар­
гументы непусты, и если это так, выясняет, у которого из двух аргументов
меньше корневой элемент.

fun merge (а, Е) = а
| merge (Е, а) = а
| merge (a as Т (х, _) , b as Т (у, _)) =

if Elem.leq (х, у) then link (a, b) else link (b, а)

Второй шаг, реализуемый функцией link, добавляет к куче новый элемент.
Если нечётное поле пусто, новый ребёнок добавляется туда.

fun link (Т (х, Е, m), а) = Т (х, а, т)

В противном случае новый ребёнок соединяется с ребёнком из нечётного
поля, и оба они добавляются к задержке. Другими словами, мы превраща­
ем задержку m = SmergePairs cs в SmergePairs (а :: b :: cs). Заметим, что

SmergePairs (а :: b :: cs)
= Smerge (merge (a, b), mergePairs cs)
= Smerge (merge (a, b), force (SmergePairs cs))
= Smerge (merge (a, b), force m)

поэтому вторую ветвь функции link можно записать как

fun link (Т (х, b, m), а) = Т (х, Е, Smerge (merge (a, b), force m))

Полный код этой реализации приведён на рис. 6.6.

Указание разработчикам. Несмотря на то, что эта реализация парных
куч хорош о работает в условиях устойчивости, на практике она оказыва­
ется довольно медленной из-за высокой стоимости ленивого вычисления.
Однако в условиях активного использования устойчивости эта реализация
ведёт себя прекрасно - - мы получаем максимальную пользу от мемоиза-
ции. Кроме того, эта реализация конкурентоспособна в ленивых языках,
где дополнительную стоимость ленивого вычисления платят все структуры
данных, независимо от того, есть им от этого выгода или нет.

6.6. Примечания

Долг. Некоторые разновидности анализа с использованием традиционного
метода банкира, например, анализ сжатия путей Тарьяном [Таг83], работа­
ют и с понятием кредита, и с понятием дебета. Когда операции требуется

96 6. Амортизация и устойчивость при ленивом вычислении

functor LazyPairingHeap (Element: O rd e r e d) : Heap =
struct

structure Elem = Element

datatype Heap = E | T of Elem.T x Heap x Heap susp

val empty = E
fun isEmpty E = true | isEmpty _ = false

fun merge (a, E) = a
| merge (E, b) = b
j merge (a as T (x, _ , _) , b as T (y, _)) =

if Elem.leq (x, y) then link (a, b) else link (b, a)
and link (T (x, E, m), a) = T (x, a, m)

| link (T (x, b, m), a) = T (x, E, $(merge (merge (a, b), force m)))

fun insert (x, a) = merge (T (x, E, $E), a)

fun findMin E = raise Em pty
| findMin (T (x, a, m)) = x

fun deleteMin E = raise Em pty
| deleteMin (T (x, a, $b)) = merge (a, b)

end

Рис. 6.6: устойчивые парные кучи, реализованные с использованием лени­
вого вычисления.

кредит больше, чем имеется в данный момент, она создаёт пару кредит-
дебет и немедленно тратит кредит. Дебет остаётся как обязательство, под­
лежащее исполнению. Позже избыток кредита можно использовать для
выплаты долга2. Дебет, остающийся в конце вычисления, добавляется к
общей реальной стоимости. Несмотря на некоторое сходство между двумя
понятиями долга, есть и явные различия. Например, долг, как он введён
в этой главе, оставшийся в конце вычисления, тихо уничтожается.

Интересно заметить, что дебет введён Тарьяном при анализе сжатия
путей; ведь сжатие путей, в сущности, является применением мемоизации

23десь напрашивается явная аналогия со спонтанным порождением и аннигиляцией
пар частица-античастица в физике. В сущ ности, для этого дебета более подходящим
названием бы ло бы «антикредит».

6.6. Примечания 97

к функции поиска.
Амортизация и устойчивость. Д о публикации этой работы считалось,
что амортизация несовместима с устойчивостью. Несколько исследовате­
лей [DST94, Ram92| замечали, что амортизированные структуры невоз­
можно сделать эффективно устойчивыми с помощью существующих ме­
тодик добавления устойчивости к эфемерным структурам данных, подоб­
ных описанным в [DSST89, Die89], по причинам вроде указанных нами в
разделе 5.6. Интересно, что эти методики порождают структуры с аморти­
зированными показателями производительности, при том, что показатели
нижележащей структуры должны быть жёсткими. (У этих методик есть и
другие ограничения. Прежде всего, они не работают для структур данных,
имеющих функции, применимые более, чем к одной версии. Примерами
таких запретных операций являются конкатенация списков и объединение
множеств.)

Идея, что ленивое вычисление может помирить амортизацию и устой­
чивость, впервые, в рудиментарной форме, появилась в [Ока95с]. Теория и
практика этого подхода были развиты в |Ока95а, Ока96Ь].
Амортизация и функциональные структуры данных. Схунмакерс
[Sch93] в своей диссертации исследует амортизированные структуры дан­
ных в энергичном функциональном языке, в основном исследуя формаль­
ный вывод амортизированных ограничений с помощью метода физика. Он
избегает проблем устойчивости, настаивая, чтобы все структуры данных
использовались только в однопоточном режиме.
Очереди и биномиальные кучи. Очереди из раздела 6.3.2 и ленивые
биномиальные кучи из раздела G.4.1 впервые появились в [Oka96b|. Анализ
ленивых биномиальных куч применим также к реализации Кинга |Kin94].
Анализ времени выполнения ленивых программ. Известно несколь­
ко теоретических формализмов для анализа временного поведения лени­
вых программ [ВН89, San90, San95, Wad88]. Однако эти формализмы недо­
статочно пока разработаны, чтобы быть применимыми на практике. Одна
из сложностей состоит в том, что они, в некотором смысле, чрезмерно
общие. В каждой из этих систем стоимость программы вычисляется по от­
ношению к некоторому контексту, который представляет собой описание,
как результат программы будет использоваться. Однако этот подход часто
неприменим в методологии разработки программ, где структуры данных
проектируются как абстрактные типы, чьё поведение, включая сложность
операций, описывается в изоляции. В противоположность этим подходам
наш способ анализа даёт независимые от контекста результаты (то есть
они верны безотносительно того, как структуры данных будут использо­
ваться).

7. Избавление от амортизации

Чаще всего нас не интересует, являются ли ограничения, соблюдаемые
структурой, жёсткими или амортизированными; основные критерии для
выбора одной структуры данных вместо другой - общая эффективность
и простота реализации (возможно, ещё наличие исходного кода). Однако в
некоторых прикладных областях оказывается важно ограничить время вы­
полнения отдельных операций, а не их последовательностей. В этих случа­
ях структура с жёсткими ограничениями часто предпочтительнее структу­
ры с амортизированными характеристиками, даже если амортизированная
структура в целом проще и быстрее. Раман [Ram92] перечисляет несколько
таких прикладных областей, в том числе

• Системы реального времени. В системах реального времени пред­
сказуемость важнее голой скорости |Sta88|. Если из-за дорогой опе­
рации система пропустит жёсткий предельный срок, неважно будет,
сколько дешёвых операций завершилось раньше назначенного време­
ни.

• Параллельные системы. Если один процессор в синхронной си­
стеме выполняет дорогую операцию в то время, как остальные вы­
полняют дешёвые, то остальным процессорам придётся ждать, пока
закончит работу самый медленный.

• Диалоговые системы. Диалоговые системы подобны системам ре­
ального времени — для пользователей предсказуемость часто важнее,
чем чистая скорость [But83j. Например, пользователи могут предпо­
честь 100 ответов с задержкой 1 секунда варианту с 99 ответами при
задержке 0.25 секунд и одним ответом с задержкой 25 секунд, даже
при том, что второй из этих сценариев вдвое быстрее.

Замечание. Раман упоминает ещё одну область приложений — устойчи­
вые структуры данных. Как указано в предыдущей главе, долгое время
считалось, что амортизация несовместима с устойчивостью. Однако, разу­
меется, теперь мы знаем, что это не так.

Означает ли это, что для программистов в этих областях амортизи­
рованные структуры данных не представляют интереса? Вовсе нет. По­
скольку часто амортизированные структуры данных устроены проще, чем

7.1. Расписания 99

сТр у к т у р ы с жёсткими ограничениями, иногда оказывается легче снача­
ла разработать амортизированную структуру, а затем преобразовать её
в ж е с т к у ю , чем разработать структуру с жёсткими ограничениями с нуля.

В этой главе мы описываем расписания (scheduling) — метод для пре­
о б р а з о в а н и я амортизированных структур данных в структуры с жёсткими
о г р а н и ч е н и я м и путём систематического вынуждения задержек, так что ни
одна из них не выполняется слишком долго. При использовании этого ме­
тода к каждому объекту добавляется дополнительная компонента — рас­
п и са н и е (schedule), управляющая порядком вынуждения задержек внутри
этого объекта.

7.1. Расписания

Амортизированные структуры данных и структуры данных с жёст­
кими ограничениями различаются в основном временем, когда происходит
вычисление, входящее в стоимость какой-либо операции. В структуре с
жёсткими ограничениями для наихудшего случая все вычисления, состав­
ляющие стоимость операции, происходят во время самой этой операции.
В амортизированной структуре данных некоторые вычисления, входящие
в стоимость операции, могут на самом деле производиться во время бо­
лее поздних операций. Отсюда мы видим, что почти все структуры дан­
ных, считающиеся жёсткими, будучи реализованы на чисто ленивом языке,
превращаются в амортизированные, поскольку многие вычисления оказы­
ваются задержаны без особой нужды. Следовательно, для описания струк­
тур с жёсткими ограничениями нам нужен энергичный язык. Если же нам
нужно описывать как амортизированные, так и жёсткие структуры дан­
ных, требуется язык, поддерживающий как ленивый порядок вычисления,
так и энергичный. Имея такой язык, мы можем рассмотреть любопытный
гибридный подход: структуры с жёсткими характеристиками, использу­
ющие внутри своей реализации ленивое вычисление. Мы получаем такие
структуры данных, беря за основу ленивые амортизированные структуры
и модифицируя их так, чтобы каждая операция укладывалась в отведён­
ное ей время.

В ленивой амортизированной структуре данных каждая конкретная
операция может выполняться дольше, чем её заявленное ограничение. Од­
нако такое происходит только в том случае, если эта операция вынуждает
задержку, которая уже была оплачена, но требует большого времени для
выполнения. Чтобы уложиться в жёсткие ограничения, мы должны га­
рантировать, что всякая задержка выполняется не дольше отведённого ей
времени.

100 7. Избавление от алюртизации

Определим собственную стоимость (intrinsic cost) задержки как вре,
мя, которое уходит на вынуждение задержки в предположении, что все
другие задержки, от которых она зависит, уже были вынуждены и ме.
моизированы, и, следовательно, занимают по 0 (1) времени каждая. (Эго
определение похоже на определение нераздельной стоимости операции.)
Первым шагом в преобразовании амортизированной структуры в жёсткую
будет уменьшение собственной стоимости каждой задержки до размеров
меньше желаемого ограничения. Обычно при этом требуется переписать
дорогие монолитные функции п сделать нх пошаговыми — либо путём
небольших изменений в алгоритмах, либо путём перехода от представле­
ния, поддерживающего только монолитные функции, скажем, задержан­
ных списков, к такому, которое также поддерживает пошаговые функции,
скажем, к потокам.

Даже если каждая задержка имеет маленькую собственную стои­
мость, некоторые задержки по-прежнему могут занимать долгое время.
Это происходит, когда одна задержка зависит от другой, эта вторая от
третьей, и так далее. Если ни одна из этих задержек заранее не была вы- I
полнена, то вынуждение первой задержки приводит к каскаду других вы­
нуждений. Рассмотрим, например, следующее вычисление:

(■ • • ((»! 4+ s2) -Н- s3) -Н- • • •) -Н- Sfc

Вынуждение задержки, возвращаемой самым внешним -Н-, вызывает цеп­
ную реакцию, в ходе которой каждая из -Н- производит по шагу. Несмотря
на то, что собственная стоимость внешней задержки составляет 0 (1) , об­
щее время на её вынуждение равно О(к) (или даже больше, если первая
ячейка Si является дорогой по каким-либо ещё причинам).

Замечание. Случалось ли вам ставить костяшки домино в ряд, чтобы
каждая из них сбивала следующую? Несмотря на то, что собственная сто­
имость опрокидывания каждой костяшки равна 0 (1) , реальная стоимость
опрокидывания первой костяшки может быть намного, намного больше.

Второй шаг при преобразовании амортизированной структуры дан­
ных в жёсткую — избежать каскадирования вынуждений, устроив так,
чтобы всякий раз при вынуждении задержки все другие задержки, от ко­
торых она зависит, были уже вынуждены и мемоизированы. Тогда ни одна
задержка не занимает при выполнении больше, чем её собственная стои­
мость. Мы этого добиваемся, строя систематическое расписание (schedule)
выполнений каждой задержки, чтобы все они были готовы к тому време­
ни, как нам понадобятся. Трюк здесь состоит в том, чтобы рассматривать

r 7.2. Очереди реального времени 101

в ы п л а т у долга буквально, и вынуждать каждую задержку в момент, когда
она оплачивается.

Зам ечан и е. Работа с расписанием подобна опрокидыванию ряда костя­
шек начиная с хвоста, так чтобы всякий раз, когда одна костяшка падает
н а другую, эта другая была уже заранее сбита. Тогда реальная стоимость
опрокидывания каждой костяшки будет мала.

Мы добавляем к каждому объекту новую компоненту, называемую
расписание (schedule). Она содержит, по крайней мере, концептуально,
ссылки на все невычисленные задержки внутри объекта. Некоторые из
этих задержек, возможно, уже были вычислены в рамках другого логиче­
ского будущего, но вынуждение их по второму разу безвредно, поскольку
алгоритм от этого становится только ещё быстрее, чем ожидалось, а не
медленнее. Всякая операция, в дополнение к любым другим действиям,
которые она производит с объектом, вынуждает несколько первых задер­
жек в расписании. Точное количество вынуждаемых задержек управляется
амортизационным анализом; как правило, каждая задержка для выполне­
ния требует время 0 (1) , так что мы вынуждаем задержки пропорциональ­
но амортизированной стоимости операции. В зависимости от конкретной
структуры данных, ведение расписания может быть нетривиальной зада­
чей. Чтобы наша методика была применима, добавление новой задержки
к расписанию, а также нахождение следующей задержки, подлежащей вы­
нуждению, не должно требовать больше времени, чем желаемые жёсткие
ограничения.

7.2. Очереди реального времени

Как пример нашей методики мы преобразуем амортизированные оче­
реди по методу банкира из раздела 6.3.2 в очереди с жёсткими ограни­
чениями. Очереди вроде этих, поддерживающие все операции за время
0 (1) в худшем случае, называются очередями реального времени (real time
queues) (НМ81).

В исходной структуре данных очереди проворачиваются с помощью
4f и reverse. Поскольку операция reverse монолитна, первая наша задача
состоит в том, чтобы научиться делать проворот пошагово. Этого можно
добиться, если проводить по шагу reverse на каждый шаг -Н- • Определим
функцию rotate, такую, что

rotate (xs, ys, а) = xs -Н- reverse ys -H- a

102 7. Избавление от амортизации
'

Тогда
rotate (f , г, SNil) = f -Н- reverse г

Дополнительный аргумент а называется аккумулирующим параметром
(accumulating parameter) и служит для хранения частичных результатов
обращения г. Изначально он пуст.

Проворот происходит, когда |r| = |f| + l, так что в начале |xs| = |ys| + l.
Это соотношение сохраняется на протяжении всего проворота, так что ко­
гда xs становится пустым, ys содержит единственный элемент. Следова­
тельно, основание рекурсии выглядит как

rotate (SN il, SCons (у, SNil), а)
= (SN il) -Н- reverse (SCons (у, SNil)) -H- a
= SCons (y, a)

Ш аг рекурсии таков:

rotate (SCons (x , x s) , SCons (y, ys), a)
= (SCons (x , x s)) -H- reverse (SCons (y, ys)) -H- a
= SCons (x , x s -H- reverse (SCons (y, ys) -H- a)
= SCons (x , x s -H- reverse ys -H- SCons (y, a))
= SCons (x , rotate (xs, ys, SCons (y, a)))

Объединяя два уравнения, получаем

fun rotate (SN il, SCons (y, _) , a) = SCons (y, a)
| rotate (SCons (x , xs), SCons (y, ys), a) =

SCons (x , rotate (xs, ys, SCons (y, a)))

Заметим, что собственная стоимость каждой задержки, создаваемой функ­
цией rotate, равна 0 (1).

Упражнение 7.1. Покажите, что замена f-H-reverse г па rotate (f , г, SNil)
в очередях по методу банкира из раздела G.3.2 уменьшает худшее возмож­
ное время операций snoc, head и tail с О (п) до O (logn). (Подсказка: дока­
жите, что самая длинная цепочка зависимостей между задержками имеет
длину O (logn).) Если это упростит ваш анализ, можете задержать сопо­
ставление с образцом в функции rotate, написав fun lazy вместо fun.

Теперь мы добавим к нашему типу данных расписание. Исходный тип
имел вид

type a Queue = int х a Stream х int х a Stream

7.2. Очереди реального времени 103

у[ъ\ его расширяем новым полем s типа a Stream, которое представляет рас­
п и с а н и е вынуждения узлов f. Можно думать об s двумя способами: либо
рассматривать его как суффикс f, либо как указатель на первую невы­
деленную задержку внутри f. Чтобы вычислить следующую задержку
в расписании, мы просто вынуждаем s.

Помимо добавления s, мы производим в пашем типе данных ещё два
изменения. Во-первых, чтобы подчеркнуть, что к элементам г расписание
не относится, мы превращаем г из потока в список. Это влечёт небольшие
изменения в rotate. Во-вторых, мы больше не храним явно длины спис­
ков. Как мы скоро увидим, они нам теперь не нужны, чтобы определить,
когда г становится длиннее f — мы можем получить эту информацию из
расписания. Таким образом, новый тип данных имеет вид

type a Queue = a Stream х a list х a Stream

Замечание. Выигрыш в памяти при замене четырёхчленных кортежей
трёхчленными может оказаться достаточным, чтобы оправдать переход с
одного представления на другое, даже если жёсткие ограничения по вре­
мени нас не волнуют.

С новым представлением основные операции над очередями выглядят
весьма просто:

fun snoc ((f, г, s), х) = exec (f, x :: r, s)
fun head (SCons (x , f), r, s) = x
fun t a i l (SCons (x , f) , r , s) = exec (f , r , s)

Вспомогательная функция exec выполняет следующую задержку и поддер­
живает инвариант |s| = [f| — |г| (что, между прочим, гарантирует |f| ^ |г|,
поскольку |s| не может быть отрицательной). Функция snoc увеличивает |г|
на единицу, a tail уменьшает |f| на единицу, так что к моменту вызова ехес
имеем |s| = |f| — |r| + 1. Если s непуст, для восстановления инварианта мы
просто берём хвост s. Если же s пуст, то г на единицу длиннее, чем f, так
что мы проворачиваем очередь. В любом из этих случаев сопоставление
s с образцом, когда мы выясняем, пуст ли он, само по себе вынуждает и
мемоизирует следующую задержку в расписании.

fun exec (f , г, SCons (x , s)) = (f, г, s)
| exec (f , r, SNil) = let val f1 = rotate (f, r, SNil) in (f , [], f') end

Полный код этой реализации очередей приведён на рис. 7.1.
Путём просмотра кода можно убедиться, что каждая операция над

очередью занимает всего лишь 0 (1) помимо вынуждения задержек, и что

104 7. Избавление от амортизации

structure RealTimeQueue: Q ueue =
struct

type a Queue = a Stream x a list x a Stream

val empty = (SNil, [|, SNil)
fun isEmpty (SNil, _ , _) = true

| isEmpty _ = false

fun rotate (SN il , у :: a) = SCons (y, a)
| rotate (SCons (x , xs), у :: ys, a) =

SCons (x , rotate (xs, ys, SCons (y, a)))

fun exec (f , r, SCons (x, s)) = (f, r, s)
| exec (f , r, SN il) = let val f' = rotate (f, r, SNil) in (f', [], f') end

fun snoc ((f , r, s), x) = exec (f, x :: r, s)

fun head (SNil, r, s) = raise Empty
| head (SCons (x , f), r, s) = x

fun tail (SN il, r, s) = raise Em pty

| tail (SCons (x , f), r, s) = exec (f, r, s)
end

Рис. 7.1: очереди реального времени на основе расписания.

ни одна операция не вынуждает более трёх задержек. Следовательно, что­
бы показать, что все операции в худшем случае занимают время 0 (1), оста­
ётся доказать, что ни одна задержка при вычислении не занимает время
больше 0 (1).

Операции над очередями создают только три различных вида задер­
жек:

• SNil создаётся функциями empty и ехес (при первом вызове rotate).
Эта задержка тривиальна и всегда выполняется за время 0 (1) , неза­
висимо от того, была ли она вынуждена и мемоизирована раньше.

• SCons (у, а) создаётся в обоих вариантах определения rotate. Эта за­
держка также тривиальна.

• SCons (х , rotate (xs, ys, SCons (у, а))) создаётся во втором варианте
определения функции rotate. Эта задержка выделяет ячейку Cons,

7.3. Биномиальные кучи 105

создаст новую задержку, и рекурсивно вызывает rotate, которая про­
изводит сопоставление образца с первой ячейкой xs и немедленно со­
здаёт ещё одну задержку. Из всех этих действий только вынуждение,
связанное с сопоставлением с образцом, в принципе могло бы зани­
мать больше, чем время 0 (1). Заметим, однако, что xs — суффикс
головного потока, который существовал перед предыдущим проворо­
том очереди. Наш режим работы с расписанием s гарантирует, что
все ячейки этого потока были вынуждены и мемоизированы, преж­
де чем запустился проворот, так что новое вынуждение этой ячейки
занимает только 0 (1) времени.

Поскольку все задержки выполняются за время 0 (1) , наихудшее время
выполнения любой из операций над очередью также 0 (1).

Указание разработчикам. Эти очереди намного проще всех других ре­
ализаций реального времени. Кроме того, это одна из самых быстрых ре­
ализаций - с жёсткими ограничениями или амортизированными, — для
приложений, где активно используется устойчивость.

У п раж н ен и е 7.2. Вычислите размер очереди на основе размеров s и г.
Насколько быстрее будет работать такая функция по сравнению с вычис­
лением на основе размеров f и г?

7.3. Биномиальные кучи

Мы возвращаемся к биномиальным кучам из раздела 6.4.1 и с помо­
щью расписания обеспечиваем вставку за время 0 (1) в худшем случае.
Напомним, что в предыдущей реализации представление кучи выглядело
как Tree list susp, и поэтому функция insert по необходимости была моно­
литной. Первая наша цель — сделать её пошаговой.

Сначала заменим задержанные списки в типе данных кучи на пото­
ки. Операция insert вызывает вспомогательную функцию insTree, которую
теперь можно записать как

fun lazy insTree (t , SNil) = SCons (t, SN il)
| insTree (t , ts as SCons (t', ts')) =

if rank t <rank t' then SCons (t, ts)
else insTree (link (t , t ') , ts')

Эта функция по-прежнему монолитна, поскольку она не может вернуть
первое дерево, пока не выполнены все связывания. Чтобы сделать функ­
цию пошаговой, нужно как-то заставить insTVee возвращать после каждой

106 7. Избавление от амортизации

итерации частичный результат. Можно этого добиться, если сделать сиязь
между биномиальными кучами и двоичными числами более явной. Дере­
вья в куче соответствуют единицам в двоичном представлении размера
кучи. Мы расширяем это соответствие, вводя явное представление для ну­
лей.

datatype Tree = N ode o f Elem.T x Tree list
datatype Digit = Z ero | O ne o f Tree
type Heap = Digit Stream

Заметим, что мы исключили поле ранга из конструктора N ode, поскольку
ранг каждого дерева полностью определяется его позицией: дерево, хра­
нящееся в г-й цифре, имеет ранг г, а дети ячейки ранга г имеют ранги
г — 1 , . . . ,0. Кроме того, мы требуем, чтобы всякий непустой поток закан­
чивался едииицей-ONE.

Теперь можно написать insTree:

fun lazy insTree (t, SNil) = SCons (O ne t, SNil)
| insTree (t , $C on s(Z ero, ds)) = SCons (One t, ds)
j insTree (t , SCons (One t', ds)) =

SCons (Z ero , insTree (link (t, t'), ds))

Эта функция пошаговая, поскольку каждый её промежуточный шаг воз­
вращает ячейку C ons, содержащую ноль-Z ero и задержку для остального
вычисления. Последний шаг возвращает единицу.

На следующем шаге мы добавляем к нашему типу данных расписа­
ние. Расписание выглядит как список заданий, а каждое задание — по­
ток Digit Stream, представляющий не выполненный пока полностью вызов
insTree.

type Schedule = Digit Stream list
type Heap = Digit Stream x Schedule

Когда нам нужно выполнить шаг в расписании, мы вынуждаем голову
первого задания. Если в результате получается O ne, значит, это задание
выполнено, и мы его из расписания изымаем. Если же получается Zero,
мы кладём остаток задания обратно в расписание.

fun exec [[= []
| exec ((SC ons (O ne t, _)) :: sched) = sched
| exec ((SC ons (Z ero , job) :: sched) = job :: sched

Наконец, мы меняем код функции insert, чтобы она поддерживала распи­
сание. Поскольку амортизированная стоимость insert равнялась двум, мы
предполагаем, что выполнение двух шагов при каждом insert будет доста­

7.3. Биномиальные кучи 107

точно, чтобы ко времени, когда каждая задержка потребуется, она была
уже вынуждена.

fun insert (х, (ds, sched)) =
let val ds' = insTree (N ode (x , ||), ds)
in (ds', exec (exec (ds' :: sched))) end

Чтобы показать, что insert занимает время 0 (1) в худшем случае, надо
сначала показать, что ехес занимает 0 (1) в худшем случае. А именно, надо
показать, что всякий раз, как ехес вынуждает некоторую задержку (сопо­
ставляя её с образцом), все другие задержки, от которых зависит данная,
уже вычислены и мемоизированы.

Если мы развернём конструкцию fun lazy в определении insTree и
немного упростим результат, мы увидим, что insTree порождает задерж­
ку, эквивалентную такому коду:

Scase ds of
SNil =>■ C ons (O ne t, SNil)

| SCons (Z ero, ds') => C ons (O ne t, ds')
j SCons (O ne t', ds') => C ons (Z ero, insTree (link (t, t'), ds'))

Задержка для каждой порождаемой insTree цифры зависит от задержки
для предыдущей цифры того же индекса. Мы доказываем, что никогда
не бывает более одной ожидающей задержки на индекс потока цифр, и,
следовательно, что никакая невыполненная задержка не зависит от другой
невыполненной задержки.

Пусть область (range) задания в расписании будет набор цифр, по­
рождённых соответствующим вызовом insTree. Каждая такая область со­
держит последовательность нулей (возможно, пустую) с единицей в конце.
Мы говорим, что две области перекрываются (overlap), если какие-то их
цифры имеют один и тот же индекс в потоке цифр. Каждая невычислен-
ная цифра находится в области некоторого задания в расписании, так что
нам надо доказать, что никакие две области не перекрываются.

Мы доказываем даже несколько более сильное утверждение. Назовём
завершённым нулём (completed zero) ноль, чья ячейка в потоке уже вы­
числена и мемоизирована.

Т еорем а 7.1. В каждой правильно построенной куче есть по крайней мере
два завершённых нуля перед первой областью в расписании, и по крайней
мере по одному завершённому нулю между любыми двумя соседними об­
ластями в расписании.

Доказательство. Пусть г\ и г? первые две области в расписании.
Пусть Z\ и Z2 — два завершённых нуля перед п , а 2 3 — завершённый

108 7. Избавление от амортизации

ноль между г\ и гг- Функция insert добавляет новую область г0 в начало
расписания, а затем немедленно дважды вызывает ехес. Заметим, что г о
заканчивается единицей-ONE, замещающей z\. Пусть т будет количество
нулей в го- Возможны три случая.

Случай 1. т = 0. Единственная цифра в г о —- единица, так что г о уни­
чтожается первым же ехес. Второй ехес вынуждает первую цифру г\.
Если это ноль, то он оказывается вторым завершённым нулём (по­
мимо Z2) перед первой областью. Если же цифра — единица, то Г]
уничтожается, и новой первой областью становится г%. Перед Г2 име­
ется два завершённых ноля гг и Z3 .

Случай 2. m = 1. В го содержится две цифры, ноль и единица. Эти две
цифры немедленно вынуждаются двумя вызовами ехес, и го уничто­
жается. Ведущий ноль заменяет Z\ как один из двух завершённых
нолей перед г\.

Случай 3. т ^ 2. Первые две цифры г о — ноли. После двух вызовов ехес
они оказываются двумя завершёнными нолями перед той областью,
которая теперь первая (остаток го); 2 2 оказывается (единственным)
завершённым нулём между го и Г\.

У п р а ж н ен и е 7.3. Покажите, что аннотацию lazy в определении insTree
можно удалить без всякого вреда для времени работы insert.

Адаптация остальных функций к новым типам данных не представ­
ляет особого труда. Полная реализация приведена на рис. 7.2. По поводу
этого кода имеет смысл сделать ещё четыре небольших замечания. Во-
первых, вместо того, чтобы пытаться производить какие-либо ухищрения
с расписанием, функции merge и deleteMin выполняют все задержки в си­
стеме (путём вызова функции normalize), а расписание устанавливают в [].
Во-вторых, как следует из теоремы 7.1, в куче всегда содержится не более
O (logn) невычисленных задержек, так что их вынуждение при нормализа­
ции или поиске минимального корневого элемента не влияет на асимптоти­
ческое время выполнения merge, findMin или deleteMin, поскольку каждая из
них и так работает в худшем случае за O (logn). В-третьих, вспомогатель­
ная функция removeMinTree иногда даёт в результате потоки цифр, завер­
шающиеся нолями, однако эти потоки либо отбрасываются в findMin, либо
сливаются со списком единиц внутри deleteMin. Наконец, deleteMin долж­
на теперь производить больше работы, чем в предыдущих реализациях,
преобразуя список детей в правильно построенную кучу. В дополнение к
обращению списка, deleteMin должна добавить по единице к каждому из

7.3. Биномиальные кучи 109

functor ScheduledBinomialHeap (Element: O rd ered): Heap =
struct

structure Elem = Element
datatype Tree = N ode o f Elem.T x Tree list
datatype Digit = Z ero | O ne o f Tree
type Schedule = Digit Stream list
type Heap = Digit Stream x Schedule
val empty = (SNil, [])
fun isEmpty (SNil, _) = true | isEmpty _ = false
fun link (ti as N ode (xi, ci), t2 as N ode (хг, сг)) =

if Elem.leq (xi, хг) then N ode (xi, t2 :: ci) else N ode (хг, ti :: C2)
fun insTree (t, SNil) = SCons (One t, SNil)

| insTree (t, SCons (Zero, ds)) = SCons (O ne t, ds)
| insTree (t, SCons (One t', ds)) = SCons (Z ero , insTree (link (t, t'), ds))

fun mrg (dsi, SNil) = dsi | mrg (SNil, ds2) = ds2

| mrg (SCons (Z ero, dsi), SCons (d, dso)) = SCons (d, mrg (dsi, ds2))
| mrg (SCons (d, dsi), SCons (Z ero, ds2)) = SCons (d, mrg (dsi, ds2))
| mrg (SCons (One ti, dsi), SCons (One t2 , ds2)) =

SCons (Zero, insTree (link (ti, t2), mrg (dsi, ds2)))
fun normalize (ds as SNil) = ds

| normalize (ds as SCons (_ , ds')) = (normalize ds'; ds)
fun exec [] = []

| exec ((SCons (Z ero , job)) :: sched) = job :: sched
I exec (_ sched) = sched

fun insert (x, (ds, sched)) = let val ds' = insTree (N ode (x, []), ds)
in (ds', exec (exec (ds' :: sched))) end

fun merge ((dsi, _) , (ds2 , _)) =
let val ds = normalize (mrg (dsi, ds2)) in (ds, []) end

fun removeMinTree (SNil) = raise Empty
| removeMinTree (SCons (One t, SNil)) = (t, SNil)
| removeMinTree (SCons (Z ero , ds)) =

let val (t ', ds') = removeMinTree ds in (t', SCons (Z ero, ds')) end
| removeMinTree (SCons (One (t as N ode (x, _)) , ds)) =

case removeMinTree ds o f
(t' as Node (x ' , _) , ds') =>

if Elem.leq (x, x') then (t, SCons (Z ero , ds))
else (t', SCons (One t, ds'))

fun findMin (ds, _) = let val (N ode (x, _) , _) = removeMinTree ds in x end
fun deleteMin (ds, _) = let val (N ode (x, c), ds') = removeMinTree ds
val ds'' = mrg (listToStream (map One (rev c)), ds') in (normalize ds", []) end

end

Рис. 7.2: биномиальные кучи с расписанием.

110 7. Избавление от амортизации

деревьев, а затем преобразовать список в поток. Если с — список детей,
весь процесс можно записать как

listToStream (map O ne (rev с))

где

fun listToStream [] = SNil

| listToStream (x :: xs) = SCons (x, listToStream xs)

fun map f |] = []
| map f (x :: xs) = (f x) :: (map f xs)

Здесь map — стандартная функция, применяющая другую функцию (в на­
шем случае, конструктор O ne) ко всем элементам списка.

Упражнение 7.4. Напишите эффективную специализированную версию
mrg, называемую mrgWithList, чтобы deleteMin мог вызывать

mrgWithList (rev с, ds')

вместо

mrg (listToStream (map O ne (rev c)), ds')

7.4. Сортировка снизу вверх с расписанием

В качестве третьего примера расписаний мы изменяем сортируемые
коллекции из раздела G.4.3, чтобы add работала в худшем случае за время
O (logn), a sort в худшем случае за 0(п) .

Единственное место, где в амортизированной реализации использует­
ся ленивое вычисление —задержанный вызов addSeg в функции add. За­
держка монолитна, так что нашей первой задачей будет пошаговое вы­
полнение этого вычисления. В сущности, достаточно сделать пошаговой
только функцию mrg: поскольку addSeg требует всего лишь О (log п) ша­
гов, мы можем себе позволить вычисля ть её энергично. Следовательно, мы
представляем сегменты в виде потоков, а не списков, и отказываемся от
задержки при коллекции сегментов. Новый тип для коллекции сегментов
будет Elem.T Stream list, а не Elem.T list list susp.

Модификация функций mrg, add н sort под это новое представление не
составляет труда; разве что sort должна окончательный отсортированный
результат перевести обратно в список. Для этого используется функция
преобразования streamToList.

7.4• Сортировка снизу вверх с расписанием 111

fun streamToList (SNil) = |]
| streamToList (SCons (x , xs)) = x :: streamToList xs

Новая версия mrg, приведённая на рис. 7.3, производит слияние по
шагу за раз, и собственная стоимость такого шага 0 (1) . Вторая наша цель
состоит в том, чтобы проводить достаточное количество шагов слияния при
каждом add и гарантировать, что любая сор тируемая коллекция содержит
не более О(п) невычисленных задержек. Тогда sort будет проводить не
более 0 (п) вынуждений в дополнение к своей собственной работе ценой
также 0 (п). Вынуждение невычисленных задержек отнимает максимум
0(п) времени, так что общая стоимость sort оказывается не более О(п).

При амортизационном анализе амортизированная стоимость add со­
ставляла приблизительно 2 В 1, где В' число единичных битов в п' = п + 1.
Это наводит на мысль, что add должна выполнять две задержки па каж­
дый бит, или, ч то то же самое, две задержки на сегмент. Мы храним от­
дельное расписание для каждого сегмента. Каждое расписание является
списком потоков, которые представляют невыполненные пока полностью
вызовы mrg. Таким образом, полный тип выглядит так:

type Schedule = Elem.T Stream list
type Sortable = int x (Elem.T Stream x Schedule) list

Чтобы выполнить один шаг расписания, мы вызываем функцию execl.

fun execl [] = []
| execl ((SN il):: sched) = execl sched
| execl ((SCons (x , xs) :: sched)) = xs :: sched

Во второй строке этой функции мы достигаем конца одного потока и вы­
полняем первый шаг в следующем потоке. Здесь не может образоваться
цикл, поскольку только первый поток в списке может быть пуст. Функция
ехес2 берет сегмент и дважды применяет execl к его расписанию.

fun ехес2 (xs, sched) = (xs, execl (execl sched))

Функция add вызывает exec2 для каждого сегмента, но кроме этого она
отвечает за построение расписания для нового сегмента. Если младшие к
битов размера п равны единице, то добавление нового элемента приведёт
к к слияниям вида

((«о >3 s i) сс S2) 1x3 • • • txi Sfc

где so — новый одноэлементный сегмент, a s\ . . . — первые к сегмен­
тов существующей коллекции. Частичными результатами этого вычисле­
ния будут s 'j . . . s'k, где .s', = ,s0 ос s 1 , a .s' = .s'_ j 1x 1 Sj. Поскольку задержки
в .s' зависят от задержек в .s '_j, нам нужно спланировать выполнение .s'_j

112 7. Избавление от амортизации

прежде выполнения s '. Кроме этого, задержки в зависят от задержек
в Si, но тут мы гарантируем, что ко времени вызова add значения s i . . . sk
будут уже полностью вычислены.

Окончательная версия функции add, создающая новое расписание и
выполняющая по две задержки на сегмент, выглядит так:

fun add (х, (size, segs)) =
let fun addSeg (xs, segs, size, rsched) =

if size mod 2 = 0 then (xs, rev rsched) :: segs
else let val ((xs', []) :: segs') = segs

val xs” = mrg (xs, xs')
in addSeg (xs", segs', size div 2, x s" :: rsched) end

val segs' = addSeg (SCons (x, SNil), segs, size, [])
in (size+1, map exec2 segs') end

Аккумулирующий параметр rsched собирает свежеслитые потоки в обрат­
ном порядке. Поэтому мы обращаем их список в конце и получаем пра­
вильный порядок. Сопоставление с образцом в четвёртой строке требует,
чтобы старое расписание для текущего сегмента было пустым, то есть что­
бы оно уже было полностью выполнено. Мы вскоре увидим, почему это
так.

Полный код нашей реализации приведён на рис. 7.3. Функция add име­
ет нераздельную стоимость O (logn), a sort нераздельную стоимость 0 (п),
так что, чтобы доказать ограничения для худшего случая, мы должны до­
казать, что O (logn) задержек, вынуждаемых add, занимают время 0 (1)
каждая, и что О (п) невычисленных задержек, вынуждаемых sort, вместе
требуют О(п).

Каждый шаг слияния, вынуждаемый изнутри add (через ехес2 и execl)
зависит от двух других потоков. Если текущий шаг является частью пото­
ка s ', то он зависит от потоков s '_ x и Si. Поток находился в расписании
раньше s ', так что ко времени начала вычисления s[он уже был полно­
стью вычислен. Кроме того, s* был уже полностью вычислен ко времени
вызова add, который создал s '. Поскольку собственная стоимость каждого
шага слияния равна 0 (1) , а задержки, вынуждаемые каждым шагом, уже
были вынуждены и мемоизированы, каждый шаг слияния, вынуждаемый
add, отнимает время только 0 (1) для наихудшего случая.

Следующая лемма доказывает, что каждый сегмент, вовлечённый
в слияние через addSeg, уже полностью вычислен, и что коллекция в целом
содержит не более 0 (п) невычисленных задержек.

Л ем м а 7.2. Во всякой сортируемой коллекции размера п расписание для
сегмента размера т = 2к содержит не более 2т — 2(п mod т + 1) элемен­
тов.

7.4- Сортировка снизу вверх с расписанием 113

f u n c t o r ScheduledBottomUpMergeSort (Element: O r d e r e d): S o r ta b le =
s t r u c t

s t r u c t u r e Elem = Element
t y p e Schedule = Elem.T Stream list
t y p e Sortable = int x (Elem.T Stream x Schedule) list

fun lazy mrg (SNil, ys) = ys
| mrg (xs, SNil) = xs
| mrg (xs as SCons (x, xs'), ys as SCons (y, ys')) =

if Elem.leq (x, y) then SCons (x, mrg (xs', ys))
else SCons (y, mrg (xs, ys'))

fun execl [] = []
| execl ((SN il) :: sched) = execl sched
| execl ((SC ons (x, xs)) :: sched) = xs :: sched

fun exec2 (xs, sched) = (xs, execl (execl sched))

val empty = (0, [])

fun add (x, (size, segs)) =
let fun addSeg (xs, segs, size, rsched) =

if size mod 2 = 0 then (xs, rev rsched) :: segs
else let val ((xs', []) :: segs') = segs

val xs" = mrg (xs, xs')
in addSeg (xs", segs', size div 2, xs" :: rsched) end

val segs' = addSeg (SCons (x, SNil), segs, size, [J)
in (size + 1, map exec2 segs') end

fun sort (size, segs) =
let fun mrgAll (xs, |]) = xs

| mrgAll (xs, (xs', _) :: segs) = mrgAll (mrg (xs, xs'), segs)
in streamToList (mrgAll (SNil, segs)) end

end

Рис. 7.3: сортировка слиянием снизу вверх с расписанием.

Доказательство. Рассмотрим сортируемую коллекцию размера п, где
к младших битов п равны единице (то есть п можно записать как с2к+1 +
{2к — 1) для некоторого целого с) . Тогда add порождает новый сегмент
размера т = 2к, и его расписание содержит потоки размеров 2 ,4 ,8 , . . . , 2к.
Общий размер этого расписания 2fc+1 — 2 = 2т —2. После выполнения двух
Шагов размер расписания оказывается 2т — 4. Размер новой коллекции

114 7. Избавление от амортизации

равен п' = п + 1 = c2fc+1 + 2к. Поскольку 2т — 4 < 2тп — 2(п' mod m + 1)
2гп — 2, для этого сегмента лемма выполняется.

В каждом сегменте размера тп' , большего тп, при операции add вы.
полняются только два шага расписания, и больше ничего не происходит
Размер нового расписания ограничен

2т' — 2(п mod тп + 1) — 2 = 2m' — 2(п' mod т' + 1),

так что и для этих сегментов лемма также выполняется.

Теперь всякий раз, когда младшие к битов п равны единице (то есть
когда следующий add собирается слить первые к сегментов), мы из лем­
мы 7.2 знаем, что для каждого сегмента размера т = 2 ', где i < к, число
элементов в расписании этого сегмента не больше

2тп — 2(п mod m + 1) = 2тп — 2 ((тп — 1) + 1) = О

Другими словами, этот сегмент уже полностью вычислен.
Наконец, общий размер расписаний для всех сегментов не может быть

больше
ОО ОО

2 bi(21 — (n mod 21 + 1)) = 2п — 2 6*(n mod 2* + 1)
г=о <=о

элементов, где Ь, г-й бит числа п. Заметим, что это очень похоже на функ­
цию потенциала из анализа методом физика в разделе G.4.3. Поскольку
этот общий размер ограничен числом 2п, вся коллекция содержит только
0 (ti) невыполненных задержек, а следовательно, sort выполняется в худ­
шем случае за время 0 (п).

7.5. Примечания

Избавление от амортизации. Дитц и Раман [DR91, DR93, Ram92] раз­
работали методику избавления от амортизации на основе игр с камнями
(pebble games), где порождаемые алгоритмы с жёсткими ограничениями
соответствуют выигрышным стратегиям в некоторой игре. Другие иссле­
дователи использовали частные методы, похожие на расписание, для из­
бавления от амортизации в конкретных структурах данных, например,
в неявных биномиальных кучах (implicit binomial queues) [СМР88| и рас­
слабленных кучах (relaxed heaps) [DGST88|. Расписания, подобные описан­
ным в этой главе, впервые были применены к очередям в |Ока95с|, а затем

7.5. Примечания 115

обобщены в [ОкаЭбЬ].
Очереди. Реализация кучи, описанная в разделе 7.2, впервые появилась
в |Ока95с]. Худ и Мелвилл |НМ81] представили первую чисто функцио­
н а л ь н у ю реализацию очередей реального времени, на основе метода, из­
в е с т н о г о как глобальная перестройка (global rebuilding) [Ove83], который
будет обсуждаться в следующей главе. Их реализация сложнее нашей и не
и с п о л ь з у е т ленивое вычисление.

8. Ленивая перестройка

D оставшихся четырех главах мы описываем общие методы проекти­
рования функциональных структур данных. Первый из них, рассматрива­
емый в этой главе — ленивая перестройка (lazy rebuilding), разновидность
глобальной перестройки (global rebuilding) [Ove83].

8.1. Порционная перестройка

Во многих структурах данных соблюдаются инварианты баланса, бла­
годаря которым гарантируется эффективный доступ. Каноническим при­
мером могут служить сбалансированные деревья поиска, улучшающие вре­
мя работы в худшем случае для многих операций с 0 (п) у несбаланси­
рованных деревьев до O (logn). Один из подходов к соблюдению инвари­
анта баланса — перебалансировка структуры после каждой её модифи­
кации. Для большинства сбалансированных структур существует понятие
идеального баланса (perfect balance), то есть конфигурация, минимизиру­
ющая стоимость последующих действий. Однако, поскольку, как правило,
восстанавливать идеальный баланс после каждого изменения оказывается
слишком дорого, в большинстве реализации считается достаточным под­
держивать некоторое приближение к нему, ухудшающее показатели не бо­
лее чем на константный множитель. Примерами такого подхода являются
AVL-деревья [AVL62] и краспо-чёрные деревья [GS78].

Однако если каждое отдельное обновление не слишком сильно влия­
ет на баланс, привлекательным альтернативным подходом будет отложить
перестройку, пока не пройдёт некоторая серия операций, а затем переба-
лансировать всю структуру и восстановить идеальный баланс. Назовём
этот подход порционной перестройкой (batched rebuilding). Порционная
перестройка даёт хорошие амортизированные ограничения, если выполня­
ются два условия: (1) глобальная структура перестраивается не слитком
часто, и (2) отдельные модифицирующие действия ухудшают показате­
ли последующих операций не слишком сильно. Выражаясь более точно,
условие (1) говорит, что, если мы надеемся достичь амортизированного
показателя 0 (f (n)) на операцию, а преобразование перебалансировки за­
нимает время 0 (д (п)), запускать это преобразование нельзя чаще, чем раз
в c-g(n)/f(n) операций, для некоторой константы с. Рассмотрим, например,

11. Порционная перестройка 117

д в о и ч н ы е деревья поиска. Перестройка дерева с полной балансировкой за­
н и м а е т время 0 (п) , так что, если мы хотим, чтобы наши операции зани­
мали амортизированное время не больше 0 (п) , структуру данных нельзя
п е р е с т р а и в а т ь чаще, чем раз в с-п/ logn операций, для некоторой констан­
ты с-

Допустим, что структура данных будет перестраиваться один раз
в с • g(n)/f{n) операций, и что отдельная операция над перестроенной
структурой отнимает время 0 (/ (п)) (ограничение может быть жёстким
или амортизированным). В этом случае условие (2) утверждает, что, сде­
лав не более с • g(n)/f(n) обновлений непосредственно после перестройки,
мы по-прежнему будем тратить время не более 0 (f (n)) . Другими слова­
ми, стоимость каждой отдельной операции должна ухудшиться максимум
на константный множитель. Функции обновления, удовлетворяющие усло­
вию (2), называются операциями слабого обновления (weak updates).

Рассмотрим, например, следующий подход к реализации функции
delete на двоичных деревьях поиска. Вместо того, чтобы физически уничто­
жать указанный узел дерева, оставляем его в дереве с пометкой «стёрто».
Затем, когда стёртыми оказываются половина узлов, делаем глобальный
проход, уничтожая стёртые узлы и восстанавливая идеальный баланс. Удо­
влетворяет ли этот подход нашим двум условиям, если мы хотим, чтобы
уничтожение элемента занимало амортизированное время O (logn)?

Допустим, дерево содержит п узлов, из которых не более половины
помечено как стёртые. Уничтожение стёртых узлов и восстановление иде­
ального баланса в дереве занимает время О (п). Мы выполняем это преоб­
разование раз в операций уничтожения, так что условие (1) выполнено.
На самом деле, условие (1) позволяет нам перестраивать структуру даже
чаще, раз в с - n /lo g n операций. Наивный алгоритм уничтожения ищет
нужный узел и помечает его как стёртый. Это отнимает время O (logn),
даже если половина узлов уже помечена как стёртые, так что условие (2)
выполнено. Заметим, что даже если половина узлов в дереве помечена,
средняя глубина активного узла больше всего на единицу по сравнению
со случаем, когда они физически уничтожены. Дополнительная глубина
ухудшает стоимость операции всего лишь на аддитивную константу, в то
время как условие (2) позволяет времени каждой операции ухудшаться на
константный множитель. Следовательно, условие (2) позволяет нам пере­
страивать нашу структуру данных даже ещё реже.

В этом рассуждении мы говорили только об уничтожении узлов. Разу­
меется, как правило, в двоичных деревьях поддерживается также операция
вставки элемента. К сожалению, вставка не является слабым обновлени­
ем, поскольку вставками можно очень быстро создать длинную цепочку

118 S. Ленивая перестройка

вершин. Возможен, однако, гибридный подход, когда при каждой вставке
мы проводим локальную перебалансировку, как в AVL пли красно-чёрных
деревьях, а уничтожение элемента обрабатывается методом порционной
перестройки.

Упражнение 8.1. Добавьте к красно-чёрным деревьям из раздела 3.3
функцию delete на основе описанного здесь подхода. Добавьте к конструк­
тору Т булевское поле и поддерживайте счётчики-оценки числа активных
и неактивных элементов в дереве. Для этих счётчиков предполагайте, что
каждая вставка создаёт новый элемент, а каждая операция уничтожения
делает какой-то активный элемент неактивным. Обновляйте значение этих
счётчиков при перестройке. Для перестройки воспользуйтесь решением
упражнения 3.9.

В качестве второго примера порционной перестройки рассмотрим пор­
ционные очереди из раздела 5.2. Преобразование перестройки переносит
обращённый хвостовой список в головной, и очередь переходит в идеально
сбалансированное состояние, когда все элементы содержатся в головном
списке. Как мы уже видели, порционные очереди имеют хорошие показа­
тели эффективности, но только при эфемерном использовании. Если их ис­
пользовать как устойчивую структуру, амортизированные характеристики
деградируют до стоимости операции перестройки, поскольку эта операция
может срабатывать сколь угодно часто. Это наблюдение верно для всех
структур с порционной перестройкой.

8.2. Глобальная перестройка

Овермарс [0ve83] описывает метод избавления от амортизации, осно­
ванный на порционной перестройке. Он называет этот метод глобальная
перестройка (global rebuilding). Основная идея состоит в том, чтобы про­
водить трансформацию перестройки постепенно, по несколько шагов при
каждой нормальной операции. Полезно рассматривать это как выполне­
ние преобразования в сопрограмме. Сложность в том, чтобы запустить
сопрограмму достаточно рано, чтобы она завершилась ко времени, когда
понадобится перестроенная структура.

Более конкретно, при глобальной перестройке поддерживаются две
копии каждого объекта. Первичная, или рабочая копия (working сору) —
это исходная структура. Вторичная копия — та, которая постепенно пе­
рестраивается. Все запросы и операции обновления обращаются к рабо­
чей копии. Когда построение вторичной копии завершено, она становится
новой рабочей копией, а старая уничтожается. При этом либо сразу же

8.2. Глобальная перестройка 119

запускается новая вторичная копия, либо некоторое время объект может
работать без вторичной структуры, прежде чем начнётся новая фаза пе­
рестройки.

Отдельную сложность представляет обработка обновлений, происхо­
дящих, пока ведётся перестройка вторичной копии. Рабочая копия обнов­
ляется обычным образом, но должна быть обновлена и вторичная копия,
иначе, когда она станет рабочей, эффект обновления будет потерян. Одна­
ко в общем случае вторичная копия представлена не в такой форме, кото­
рую можно эффективно обновить. Таким образом, обновления вторичной
копии буферизуются и выполняются, по несколько за раз, после того, как
вторичная копия перестроена, но до того, как она становится рабочей.

Глобальную перестройку можно реализовать в чисто функциональ­
ном стиле, и несколько таких реализаций существуют. Например, очереди
реального времени Худа и Мелвилла [НМ81] основаны именно на этом ме­
тоде. В отличие от порционной перестройки, при глобальной перестройке
не возникает проблем с устойчивостью. Поскольку ни одна из операций
не является особенно дорогой, произвольное повторение операций не вли­
яет на временные характеристики. К сожалению, часто глобальная пере­
стройка даёт очень сложные структуры. В частности, представление вто­
ричной копии, которое сводится к хранению промежуточного состояния
сопрограммы, может быть довольно неприятным.

8.2.1. Пример: очереди реального времени по Х уду-М ел ви л л у

Реализация очередей реального времени Худа и Мелвилла |НМ81] во
многом похожа на очереди реального времени из раздела 7.2. В обеих реа­
лизациях поддерживается два списка, представляющие головную и хвосто­
вую части очереди соответственно, и ведётся пошаговый процесс переноса
элементов из хвостового списка в головной, начиная с того момента, когда
хвостовой список становится на единицу длиннее, чем головной. Разница
состоит в деталях этого пошагового проворота.

Рассмотрим сначала, как можно провести пошаговое обращение спис­
ка путём хранения двух списков и постепенного переноса элементов из
одного в другой.

datatype a ReverseState = W orking o f л list х a list | D one o f a list

fun startReverse xs = W orking (xs, [])

fun exec (W ork in g (x :: xs, xs')) = W ork in g (x s , x :: xs')
| e x e c (W ork in g ([], x s ')) = D one x s '

120 8. Ленивая перестройка

Чтобы обратить список xs, мы создаём новое состояние W ork in g (x s , []),
а затем многократно вызываем ехес, пока не получим состояние Done с
обращённым списком. Всего требуется п + 1 вызовов ехес, где п — длина
исходного списка xs.

Можно провести пошаговую конкатенацию двух списков, применив
этот приём дважды. Сначала мы обращаем xs, получая xs', а затем обра­
щаем xs', добавляя его к ys.

datatype о AppendStatc =
R eversing o f a list x list x a list x a list

| Appending o f a list x a list
| D one o f a list

fun startAppend (xs, ys) = R eversing (xs, [], ys)

fun exec (R eversing (x :: xs, xs', ys)) = R eversing (x s , x :: xs', ys)
| exec (R eversing ([], xs', ys)) = A ppending (xs', ys)
| exec (Appending (x :: xs', ys)) = Appending (x s ' , x :: ys)
| exec (A ppending ([j, ys)) = D one ys

Всего требуется 2то+2 вызова ехес, если длина исходного списка xs равна т.
Наконец, чтобы добавить f к обращённому г, мы проводим три обра­

щения. Сначала мы в параллель обращаем f и г, получая {' и г', а затем
приписываем обращённый f ' к г'. Нижеследующий код предполагает, что
длина г на единицу больше длины f.

datatype a RotationState =
R eversing o f a list x a list x a list x a list

| Appending o f « list x a list
| D one o f a list

fun startRotation (f , r) = R eversing (f, [], r, [j)

fun exec (R eversing (x :: f, f', у :: r, r')) = R eversing (f, x :: f', г, у :: r')
| exec (R eversing ([], f', [y], r')) = A ppending (f', у :: r')
| exec (A ppending (x :: f', r')) = A ppending (f , x :: r')
| exec (A ppending ([], r') = D one r'

Как и раньше, процедура завершается после 2т + 2 вызовов ехес, где тп
исходная длина списка f.

К сожалению, у этого способа проворота есть большой недостаток.
Если мы просто вызываем ехес по несколько раз при каждом вызове snoc
или tail, то ко времени, когда проворот закончится, ответ может быть уже
не тог, который нам нужен! В частности, если за время проворота было к

8.2. Глобальная перестройка 121

вызовов tail, то к первых элементов получившегося списка уже не актуаль­
ны- Эту проблему можно решить двумя основными способами. Во-первых,
можно хранить счётчик устаревших элементов, и добавить к процедуре
проворота третье состояние D eleting , которое уничтожает элементы по
несколько за раз, пока устаревшие элементы не кончатся. Этот подход точ­
нее всего соответствует определению глобальной перестройки. Однако ещё
лучше просто не включать устаревшие элементы в окончательный список.
Мы отслеживаем, сколько живых элементов осталось в f', и перестаём ко­
пировать элементы из f' в г', когда счётчик достигает нуля. Каждый вызов
tail во время проворота уменьшает число живых элементов.

datatype a RotationState =
Reversing o f int x a list x a list x a list x a list

| Appending o f int x a list x a list
| D one o f a list

fun startRotation (f , r) = R eversing (0, f, [], r, [])

fun exec (R eversing (ok, x :: f, f', у :: r, r')) =
R eversing (ok+1, f, x :: f , г, у :: r')

| exec (R eversing (ok, [], f , [y], r')) = A ppending (ok, f , у :: r')
| exec (A ppending (0, f , r')) = D one r'
| exec (A ppending (ok, x :: f , r')) = A ppending (ok—1, f , x :: r')

fun invalidate (R eversing (ok, f, C, r, r')) = R eversing (ok—1, f, f , r, r')
| invalidate (A ppending (0, f , x :: r')) = Done r'
| invalidate (Appending (ok, f , r')) = Appending (o k -1 , f , r')

Этот процесс завершается после 2т + 2 обращений к ехес или invalidate,
где т — исходная длина f.

Требуется рассмотреть ещё три нетривиальных мелких вопроса. Во-
первых, во время проворота несколько начальных элементов очереди ока­
зываются в конце поля f' структуры-состояния проворота. Как нам при
этом отвечать на запрос head? Решение этой дилеммы состоит в том, ч тобы
хранить рабочую копию старого головного списка. Нужно только добиться
того, чтобы новая копия головного списка оказалась готова к тому време­
ни, как исчерпается старая. Во время проворота поле lenf измеряет длину
создаваемого списка, а не рабочей копии f. Однако между проворотами
поле lenf содержит длину f.

Во-вторых, надо решить, сколько именно обращений к ехес надо де­
лать при каждом вызове snoc и tail, чтобы гарантировать, что проворот
закончится к тому времени, когда либо нужно будет начать следующий
проворот, либо будет израсходована рабочая копия головного списка. Д о­

122 8. Ленивая перестройка

пустим, что в начале проворота длина списка f равна т , а длина списка
г равна т + 1. Тогда следующий проворот начнётся после 2 т + 2 вставок
или извлечений (в любом соотношении), однако рабочая копия головного
списка окажется израсходованной уже через т извлечений. Всего прово­
рот заканчивается через 2т + 2 шагов. Если при каждой операции мы
вызываем ехес два раза, включая операцию, которая запускает проворот,
то проворот завершится самое большее через т операций после своего на­
чала.

В-третьих, поскольку каждый проворот заканчивается задолго до то­
го, как начинается следующий, требуется добавить к типу RotationState
состояние Idle (неактивное), так что ехес Idle = Idle . После этого мы мо­
жем спокойно вызывать ехес, не заботясь о том, находимся мы в процессе
про ворота или нет.

Оставшиеся детали должны уже быть знакомы читателю. Полная ре­
ализация приведена на рис. 8.1.

Упражнение 8.2. Докажите, что если звать ехес дважды при начале каж­
дого проворога и один раз при каждой вставке или извлечении элемента,
этого будет достаточно, чтобы проворот завершался вовремя. Соответству­
ющим образом измените код.

Упражнение 8.3. Замените поля lenf и lenr одним полем difF, которое
хранит разницу между длинами списков f и г. Поле difF не обязательно
должно хранить точное значение в процессе проворота, но к концу прово­
рота должно быть точным.

8.3. Ленивая перестройка

Реализация очередей по методу физика из раздела 6.4.2 очень похожа
на версию с глобальной перестройкой, по имеется и существенное различие.
Как и при глобальной перестройке, в этой реализации поддерживаются две
копии головного списка, рабочая копия w и вторичная копия f, причём все
запросы обращаются к рабочей копии. Операции обновления f (то есть опе­
рации tail) буферизуются и выполняются по окончании проворота через
выражение

$tl (force f)

Кроме того, эта реализация заботится о том, чтобы начать (или, по край­
ней мере, спланировать) проворот задолго до того, как понадобится его
результат. Однако, в отличие от глобальной перестройки, эта реализация

Ленивая перестройка 123

s t r u c t u r e IIoodMelvilleQueue: Q ueue =
s t r u c t

datatype a RotationState =
Idle

| R eversing o f int x a list x a list x a list x a list
| Appending o f int x a list x a list
| D one o f a list

type a Queue = int x a list x a RotationState x int x a list

fun exec (R eversing (ok, x :: f , f', у :: r, r')) =
R eversing (ok+1, f, x :: f', г, у :: r')

| exec (R eversing (ok, [], f', [y], r')) = A ppending (ok, f', у :: r')
| exec (A ppending (0, f', r')) = D one r'
j exec (A ppending (ok, x :: f', r')) = A ppending (o k -1 , f , x :: r')
| exec state = state

fun invalidate (R eversing (ok, f, f', r, r')) = R eversing (ok -1, f, f', r, r')
| invalidate (A ppending (0, f', x :: r ')) = D one r'
| invalidate (A ppending (ok, f', r')) = A ppending (o k -1 , f , r')
| invalidate state = state

fun exec2 (lenf, f, state, lenr, r) =
case exec (exec state) o f

D one newf =s* (lenf, newf, Idle, lenr, r)
| newstate =>(lenf, f, newstate, lenr, r)

fun check (q as (lenf, f, state, lenr, r)) =
if lenr С lenf then exec2 q
else let val newstate = R eversing (0, f, [], r, [])

in exec2 (lenf+lenr, f, newstate, 0, []) end

val empty = (0, [], Idle, 0, [])
fun isEmpty (lenf, f, state, lenr, r) = (lenf = 0)

fun snoc ((lenf, f, state, lenr, r), x) = check (lenf, f, state, lenr + 1, x::r)
fun head (lenf, [], state, lenr, r) = raise Em pty

| head (lenf, x :: f, state, lenr, r) = x
fun tail (lenf, [], state, lenr, r) = raise Em pty

| tail (lenf, x :: f, state, lenr, r) =
check (lenf—1, f, invalidate state, lenr, r)

end

Рис. 8.1: очереди реального времени на основе глобальной перестройки.

124 8. Ленивая перестройка

не занимается выполнением преобразования перестройки (то есть проворо­
та) в параллель с нормальными операциями; вместо этого она оплачивает
преобразование перестройки одновременно с нормальными операциями, но
затем, когда вся стоимость преобразования выплачена, оно выполняется
целиком. В сущности, мы заменили сложности явного или неявного пе­
реноса перестройки в сопрограмму более простым механизмом ленивого
вычисления. Этот вариант глобальной перестройки мы называем ленивой
перестройкой (lazy rebuilding).

Реализация очередей по методу банкира из раздела 6.3.2 показывает
ещё одно упрощение, доступное нам при использовании ленивой перестрой­
ки. Внося вложенные задержки в исходную структуру данных — например,
используя потоки вместо списков, — мы часто можем уничтожить различие
между рабочей и вторичной копиями, и использовать единую структуру,
обладающую свойствами их обеих. «Рабочая» часть этой структуры — это
та часть, которая уже оплачена, а «вторичная» — та, за которую выплата
ещё не произведена.

У глобальной перестройки есть два преимущества перед порционной:
она годится для реализации устойчивых структур данных, а также соблю­
дает жёсткие ограничения вместо амортизированных. Ленивая перестрой­
ка также обладает первым из этих преимуществ, однако, по крайней мере,
в простейшей своей форме даёт амортизированные ограничения. Но если
это требуется, часто можно восстановить жёсткие ограничения, используя
расписания по методам из главы 7. Например, очереди реального времени
из раздела 7.2 сочетают ленивую перестройку с расписанием и получают
в итоге реализацию с жёсткими характеристиками. В сущности, сочетание
ленивой перестройки с расписаниями можно рассматривать как разновид­
ность глобальной перестройки, где сопрограммы реифицированы особенно
простым образом через ленивое вычисление.

8.4. Двусторонние очереди

В качестве дальнейших примеров глобальной перестройки мы при­
ведём несколько реализаций двусторонних очередей, или деков (deques).
Деки отличаются от очередей FIFO тем, что элементы могут как добав­
ляться, так и изыматься с любого конца очереди. Сигнатура для деков
приведена на рис. 8.2. Эта сигнатура расширяет сигнатуру очередей тремя
новыми функциями: cons (добавить элемент к началу очереди), last (вер­
нуть последний элемент) и init (изъять последний элемент).

Замечание. Заметим, что сигнатура очередей является строгим подмно-

S.Jf. Двусторонние очереди 125

signature D eque =
sig

type a Queue

val empty : a Queue
val isEmpty : a Queue —► bool

(* вставка, проверка и удаление элемента из начала *)
val cons : а х a Queue —> a Queue
val head : a Queue —>а (* возбуждает E m pty для пустой очереди *)
val tail : a Queue — Queue (* возбуждает Em pty для пустой очереди *)

(* вставка, проверка и удаление элемента из конца *)
val snoc : a Queue х а —> a Queue
val last : a Queue —► а (* возбуждает E m pty для пустой очереди *)
val init : a Queue —> а Queue (* возбуждает E m pty для пустой очереди *)

end

Рис. 8.2: сигнатура для двусторонних очередей.

жеством сигнатуры для деков — для типа и аналогичных функций были
выбраны совпадающие имена. Поскольку деки являются строгим расши­
рением очередей, Стандартный ML позволит нам использовать дек везде,
где ожидается модуль, реализующий очередь.

8 .4 .1 . Д еки с ограниченным выходом

Сначала заметим, что реализации очередей из глав 6 и 7 можно три­
виально расширить, добавив в дополнение к операции snoc операцию cons.
Очередь, поддерживающая добавление элементов с обоих концов, но уда­
ление только с одного, называется дек с ограниченным выходом (output-
restricted deque).

Например, мож но реализовать cons в очередях по методу банкира из
раздела 6.3.2 следующим образом:

fun cons (х, (lrn f, f , lenr, г)) = (len f+l, SCons (x, f), lenr, r)

Заметим, что нет никакой необходимости вызывать вспомогательную
функцию check, поскольку добавление элемента к f никак не может сде­
лать f короче, чем г.

Подобным же образом легко реализовать функцию cons для очередей
реального времени из раздела 7.2.

126 Ленивая перестройка

fun cons (х, (f , r ,s)) = (SCons (x , f), r, SCons (x , s))

Мы добавляем x к s только для того, чтобы поддержать инвариант U —
И - м .

У п р а ж н ен и е 8 .4 . К сожалению, очереди реального времени по Худу-
Мелвиллу не так легко расширяются функцией cons, поскольку нет просто­
го способа вставить элемент в структуру-состояние проворота. Напишите
вместо этого функтор, который расширяет любую реализацию очередей
функцией cons, работающей за константное время, с использованием типа

type a Queue = a list х a Q.Queue

где Q — параметр функтора. Функция cons должна вставлять элементы
I! новый список, a head и tail должны удалять элементы из нового списка,
когда он непуст.

8.4.2. Деки по методу банкира

Деки можно представлять так же, как очереди, в виде двух потоков
(или списков), f и г, плюс некоторая дополнительная информация, помо­
гающая поддерживать баланс. Для очередей идеально сбалансированная
ситуация — когда все элементы находятся в головном потоке. Для деков
идеально сбалансированное состояние — когда элементы поделены поров­
ну между головным и хвостовым потоками. Поскольку мы не можем себе
позволить восстанавливать идеальный баланс после каждой операции, мы
удовольствуемся гарантией, что ни один из потоков не может быть длиннее
другого более чем в с раз, для некоторой константы с > 1. А именно, мы
поддерживаем следующий инвариант баланса:

|f|s£c|r| + l A |r|<c|f| + l

Подвыражение «+ 1 » в каждом из термов позволяет единственному эле­
менту одноэлементного дека находиться в любом из двух потоков. Заме­
тим, что если дек состоит по крайней мере из двух элементов, оба потока
должны быть непусты. Каждый раз, когда инвариант грозит оказаться
нарушенным, мы возвращаем дек в идеально сбалансированное состояние,
перенося элементы из более длинного потока в более короткий, пока их
длины не уравниваются.

На основе этих идей мы можем адаптировать либо очереди по методу
банкира из раздела 6.3.2, либо очереди по методу физика из раздела 6.4.2, и
получить дек, поддерживающий каждую операцию за амортизированное
время 0 (1). Поскольку банковские очереди немного проще, мы решили

8.4■ Двусторонние очереди 127

работать именно с ними.
Тип банковских деков в точности такой же, как у банковских очере­

дей.

type a Queue = int х a Stream х int х a Stream

функции, работающие с первым элементом, определены так:

fun cons (х, (lenf, f , lenr, г)) = check (lenf+1, SCons (x, f), lenr, r)
fun head (lenf, SN il , lenr, SCons (x , _)) = x

| head (lenf, SCons (x, f'), lenr, r) = x
fun tail (lenf, SN il, lenr, SCons (x, _)) = empty

| tail (lenf, C ons (x, ?) , lenr, r) = check (lenf—1, f', lenr, r)

Первые варианты в определениях head и tail обрабатывают одноэлемент­
ные деки, чей единственный элемент хранится в хвостовом потоке. Функ­
ции, работающие с последним элементом — snoc, last и init, — определя­
ются симметричным образом.

Все интересное в этой реализации деков происходит во вспомогатель­
ной функции check, которая восстанавливает в деке идеальный баланс, ко­
гда один из потоков оказывается чрезмерно длинным, сначала обрезая бо­
лее длинный поток так, чтобы его длина равнялась половине суммарной
длины двух списков, а затем перенося оставшиеся элементы более длинно­
го потока в конец более короткого. Например, если |f| > e|r| + 1, то check
заменяет f на take (i , f), а г на г -Н- reverse (drop (i, f)), где i = |_(|f|-(-1г|)/2 J .
Полное определение check выглядит так:

fun check (q as (lenf, f , lenr, r)) =
if lenf > c*lenr + 1 then

let val i = (lenf + lenr) div 2
val f' = take (i, f)

in (i , f ', j , r') end
else if lenr >c*lenf + 1 then

let val j = (lenf + len r) div 2
val r' = take (j, r)

in (i , f ', j , r') end
else q

Полностью эта реализация приведена на рис. 8.3.

З а м е ч а н и е . Поскольку наша реализация симметрична, мы можем обра­
тить дек за время 0 (1) , попросту поменяв f и г ролями.

fun reverse (lenf, f , lenr, r) = (lenr, r, lenf, f)

Это свойство разделяют многие другие реализации деков [Ноо92, CG93).

val j = lenf + lenr — i
val r' = r -H- reverse (drop (i, f))

val i = lenf + lenr — j
val f' = f -H- reverse (drop (j, r))

128 8. Ленивая перестройка

functor BankersDeque (val с: int): D e q u e = (* с > 1 *)
struct

type a Queue = int x a Stream x int x a Stream

val empty = (0, SNil, 0, SNil)
fun isEmpty (lenf, f, lenr, r) = (lenf+lenr = 0)

fun check (q as (lenf, f, lenr, r)) =
if lenf >c*lenr+l then

let val i = (lenf+lenr) div 2
val f' = take (i, f)

in (i , f', j , r') end
else if lenr >c*lenf +1 then

let val j = (lenf+lenr) div 2
val r' = take (j, r)

in (i , f', j , r') end
else q

val j = lenf + lenr — i
val r' = r 4 f reverse (drop (i, f))

val i = lenf + lenr — j
val f' = f -H- reverse (drop (j , r))

fun cons (x , (lenf, f, lenr, r)) = check (lenf+1, $ (C o n s (x, f)), lenr, r)
fun head (lenf, SNil, lenr, SNil) = raise E m p t y

| head (lenf, SNil, lenr, $ (C ons (x, _))) = x
| head (lenf, $(CoNS (x, f')), lenr, r) = x

fun tail (lenf, SNil, lenr, SNil) = raise E m p t y
| tail (lenf, SNil, lenr, $ (C o n s (x, _))) = empty
j tail (lenf, $ (C o n s (x, f')), lenr, r) = check (lenf—1, f', lenr, r)

.. . snoc, last и init определяются симметричным образом.. .
end

Рис. 8.3: реализация деков, основанная на ленивой перестройке и методе
банкира.

Вместо того, чтобы повторять весь код для функций над первым и по­
следним элементами, можно определить функции для последнего элемен­
та через reverse и функции для первого элемента. Например, init можно
реализовать как

fun init q = reverse (tail (reverse q))

Разумеется, будучи реализована напрямую, init немного быстрее.

Для анализа наших деков мы снова обращаемся к методу банкира-
Как для головного, так и для хвостового потока, пусть d(i) будет число еди-

8.J,. Двусторонние очереди 129

я и ц Д о л г а , п р и п и с а н н ы х к г - м у э л е м е н т у п о т о к а , и п у с т ь О (г) = ^ 2 j = 0 d (j) .

Б у д е м п о д д е р ж и в а т ь и н в а р и а н т , ч т о к а к д л я г о л о в н о г о , т а к и д л я х в о с т о ­
в о г о п о т о к а

D(i) < m i n (c i + i, cs + 1 — t)

где s = min(|f|, |r|), a t = max(|f|, |r|). Поскольку d(0) = 0, головные эле­
менты обоих потоков не имеют долга, и к ним всегда можно обращаться
функциями head и last.

Т еорем а 8.1. Вызовы cons и tail (и, симметрично к ним, snoc и init) под­
держивают инвариант долга как на головном, так и на хвостовом потоке,
высвобождая, соответственно, не более 1 и с -f 1 единиц долга на поток.

Доказательство. Подобно доказательству теоремы 6.1 на стр. 80.

Как теперь легко убедиться, у каждой операции нераздельная стои­
мость равна 0 (1) , и, по теореме 8.1, каждая операция высвобождает не
более 0 (1) единиц долга. Следовательно, все операции работают за амор­
тизированное время 0 (1).

Упражнение 8.5. Докажите теорему 8.1.

Упражнение 8.6. Рассмотрите достоинства и недостатки при выборе раз­
личных значений константы с. Постройте последовательность операций,
которая при с = 4 будет работать значительно быстрее, чем при с = 2. За­
тем постройте последовательность операций, которая будет значительно
быстрее при с = 2, чем при с = 4.

8.4.3. Деки реального времени

Дек реального времени (real-time deque) все операции выполняет за
0 (1) в худшем случае. Мы получаем деки реального времени на основе
деков из предыдущего раздела, снабжая головной и хвостовой потоки рас­
писаниями.

Как всегда, первый шаг в применении метода расписаний состо­
ит в том, чтобы преобразовать все монолитные функции в пошаговые.
В предыдущей нашей реализации трансформация перестройки заменяла
f и г на f -Н- reverse (drop (j, г)) и take (j , г) (или наоборот). Функции take
и -Н- уже являются пошаговыми, но reverse и drop монолитны. Поэтому
мы переписываем f -Н- reverse (drop (j, г)) как rotateDrop (f, j , г). Функция
rotateDrop проводит с шагов операции drop на каждый шаг -Ц-, а в конце
вызывает rotateRev, которая, в свою очередь, выполняет с шагов reverse на
каждый остающийся шаг -Н-. Функцию rotateDrop можно реализовать как

130 8. Ленивая перестройка

fun rotateDrop (f, j , г) —
if j < c then rotatcRev (f, drop (j , r), SNil)
else let val (SCons (x, f^)) = f

in SCons (x , rotateDrop (f , j — c, drop (c, r))) end

Вначале |r| = c|f| + 1 + k, где 1 ^ k ^ с. При каждом вызове rotateDrop.
кроме последнего, мы отбрасываем с элементов г и обрабатываем один
элемент f. При последнем вызове мы отбрасываем j mod с элементов г, а
f оставляем неизменным. Следовательно, при первом вызове rotateRev мы
имеем |г| = с|f | + 1 + k — (j mod с). Удобно будет, если |r| ^ c|f|, так что
мы требуем, чтобы 1 + к — (j mod с) ̂0. Это гарантировано только при
с < 4. Поскольку с должно быть больше единицы, в качестве разрешённых
значений с остаются только 2 и 3. Теперь мы можем реализовать rotateRev
как

fun rotateRev (SNil, г, а) = reverse г -Н- а
| rotateRev (SCons (х, f), г, а) =

SCons (х , rotateRev (f, drop (с, г), reverse (take (с, г)) -Н- а))

Заметим, что rotateDrop и rotateRev часто вызывают drop и reverse — те са­
мые функции, которых мы хотели избежать. Однако теперь drop и reverse
всегда вызываются с аргументами ограниченного размера, а следователь­
но, выполняются за 0 (1) шагов.

После того, как монолитные функции преобразованы в пошаговые,
следующим шагом мы устанавливаем расписания для задержек внутри f
и г. Для каждого из этих потоков мы поддерживаем отдельное расписание,
и на каждом шаге выполняем по несколько задержек из каждого расписа­
ния. Как и в очередях реального времени из раздела 7.2, наша цель состоит
в том, чтобы оба расписания были полностью выполнены ко времени сле­
дующего проворота, чтобы задержки, вынуждаемые внутри rotateDrop и
rotateRev, были уже с гарантией мемоизированы.

Упражнение 8.7. Покажите, что если выполнять по одной задержке на
каждую вставку и по две задержки на каждое изъятие элемента, то мы
можем гарантировать, что оба расписания будут полностью выполнены ко
времени следующего проворота.

Реализация полностью приведена на рис. 8.4.

8.5. Примечания

Глобальная перестройка. Глобальная перестройка была впервые пред­
ложена Овермарсом |Ove83]. С тех пор она использовалась во многих си-

8.5. Примечания 131

functor RealTimcDoque (val с: int): D eque = (* с = 2 или с = 3 *)
struct

type a Queue = int x a Stream x a Stream x int x a Stream x a Stream

val empty = (0, SN il, SN il, 0, SN il, SN il)
fun isEmpty (lenf, f, sf, lenr, r, sr) = (lenf+lenr = 0)

fun execl (SCons (x , s)) = s
| execl s = s

fun exec2 s = execl (execl s)

fun rotateRev (SNil, r, a) = reverse r -H-a
| rotateRev (SCons (x , f), r, a) =

SCons (x , rotateRev (f, drop (c , r), reverse (take (c , r)) -H-a))
fun rotateDrop (f, j , r) =

if j < c then rotateRev (f, drop (j , r), SNil)
else let val (SCons (x , f ')) = f

in SCons (x , rotateDrop (f , j —c, drop (c ,r))) end
fun check (q as (lenf, f, sf, lenr, r, sr)) =

if lenf > c*len r+ l then
let val i = (lenf+lenr) div 2 val j = lenf+lenr—i

val f' = take (i, f) val r = rotateDrop (r, i, f)
in (i , f', f', j , r', r') end

else if lenr >c*len f+ l then
let val j = (lenf+lenr) div 2 val i = lenf+lenr—j

val r' = take (j, r) val f' = rotateDrop (f, j , r)
in (i , f', f', j , r', r') end

else q

fun cons (x, (lenf, f, sf, lenr, r, sr)) =
check (lenf+1, $(Cons (x, f)), execl sf, lenr, r, execl sr)

fun head (lenf, SNil, sf, lenr, SNil, sr) = raise Empty
| head (lenf, SNil, sf, lenr, $(Cons (x , _)) , sr) = x
| head (lenf, $(Cons (x , f')), sf, lenr, r, sr) = x

fun tail (lenf, SNil, sf, lenr, SNil, sr) = raise Empty
| tail (lenf, SNil, sf, lenr, $(Cons (x , _)) , sr) = empty
| tail (lenf, $(Cons (x, f')), sf, lenr, r, sr) =

check (lenf —1, f', exec2 sf, lenr, r, exec2 sr)

.. . snoc, last и init определяются симметричным образом...
end

Рис. 8.4: деки реального времени с ленивой перестройкой и расписаниями.

132 8. Ленивая перестройка

туациях, включая очереди реального времени [НМ81], деки реального вре­
мени |Ноо82, GT86, Sar86, CG93], деки с конкатенацией [ВТ95] и в задаче
поддержания порядка [DS87].
Д еки. Первым, кто адаптировал очереди реального времени из [НМ81] и
получил деки реального времени, был Худ [Ноо82|. Эта работа была повто­
рена ещё несколькими исследователями [GT86, Sar86, CG93]. Все эти реа­
лизации похожи на методы, используемые для эмуляции машин Тьюринга
с несколькими головками [Sto70, FMR72, LS81]. Хогерворд [Ноо92] предло­
жил амортизированные деки на основе порционной перестройки, однако,
как и всегда при порционной перестройке, его реализация неэффективна,
будучи использованной в качестве устойчивой структуры. Деки реального
времени с рис. 8.4 впервые появились в [Ока95с].
Сопрограммы и ленивое вычисление. Потоки (и другие ленивые
структуры данных) часто использовались для реализации сопрограмм
между источником данных в потоке и потребителем этих данных. Ландин
[Lan65] был первым, кто указал на связь между потоками и сопрограмма­
ми. Некоторые убедительные примеры использования этой конструкции
можно найти у Хьюза [Hug89].

9. Числовые представления

Рассмотрим обыкновенные представления списков и натуральных чи­
сел, а также несколько типичных функций над этими типами данных.

Помимо того, что списки содержат элементы, а натуральные числа нет,
эти две реализации практически совпадают. Подобным же образом соот­
носятся биномиальные кучи и двоичные числа. Эти примеры наводят на
сильную аналогию между представлениями числа п и представлениями
объектов-контейнеров размером п. Функции, работающие с контейнерами,
полностью аналогичны арифметическим функциям, работающим с числа­
ми. Например, добавление нового элемента похоже на увеличение числа
на единицу, удаление элемента похоже на уменьшение числа па единицу,
а слияние двух контейнеров похоже на сложение двух чисел. Можно ис­
пользовать эту аналогию для проектирования новых представлений аб­
стракций контейнеров — достаточно выбрать представление натуральных
чисел, обладающее заданными свойствами, и соответствующим образом
определить функции над объектами-контейнерами. Назовём реализацию,
спроектированную при помощи этого приёма, ч и сл овы м п редст а вл ен и ем
(numerical representation).

В этой главе мы исследуем несколько числовых представлений для
Двух различных абстракций: куч (heaps) и сп и ск ов со свободн ы м д о ст у ­
пом (random-access lists) (известных также как гибкие м а сси в ы (flexible
arrays)). Эти две абстракции подчёркивают различные наборы арифмети­
ческих операций. Для куч требуются эффективные функции увеличения
на единицу и сложения, а для списков со свободным доступом требуются
эффективные функции увеличения и уменьшения на единицу.

datatype a List =
N il

| Cons o f a x a List

datatype Nat =
Z ero

I Succ o f Nat

fun tail (Cons (x , x s)) = xs fun pred (Succ n) = n

fun append (N il, ys) = ys
| append (Cons (x , x s) , ys) =

Cons (x , append (xs, ys))

fun plus (Z ero , n) = n
| plus (Succ m, n) =

Succ (plus (m, n))

134 9. Числовые представления

1
9.1. Позиционные системы счисления

Позиционная система счисления [Knu73b] — способ записи числа и ви­
де последовательности цифр Ьо . . . bm_ i . Цифра Ьо называется младшим
разрядом, а цифра &m_ i старшим разрядом. Кроме обычных десятичных
чисел, мы всегда будем записывать последовательности цифр в порядке от
младшего разряда к старшему.

Каждый разряд Ьг имеет вес Wi, так что значение последовательности
I)q . . . bm_ 1 равно E 'lo ' biv,t- Для каждой конкретной позиционной систе­
мы счисления последовательность весов фиксирована, и фиксирован набор
цифр Di, из которых выбирается каждая Ь,. Для единичных чисел w, = 1 и
D, = {1 } для всех г, а для двоичных чисел Wj = 2г, a D , = {0 ,1 } . (Мы при­
нимаем соглашение, по которому все цифры, кроме обычных десятичных,
изображаются машинописным шрифтом.) Говорится, что число записано
по основанию В, если Wi = В 1, a. Di = { 0 , . . . ,В — 1}. Чаще всего, но не
всегда, веса разрядов представляют собой увеличивающуюся степенную
последовательность, а множество Di во всех разрядах одинаково.

Система счисления называется избыточной (redundant), если некото­
рые числа могут быть представлены более, чем одним способом. Например,
можно получить избыточную систему двоичного счисления, взяв w* = 2г и
Dj = {0 ,1 ,2 } . Тогда десятичное число 13 можно будет записать как 1011,
1201 или 122. Мы запрещаем нули в конце числа, поскольку иначе почти
все системы счисления будут тривиально избыточны.

Компьютерные представления позиционных систем счисления могут
быть плотными (dense) или разрежёнными (sparse). Плотное представле­
ние — это просто список (или какая-то другая последовательность) цифр,
включая нули. Напротив, при разрежённом представлении нули пропус­
каются. В таком случае требуется хранить информацию либо о ранге (то
есть индексе), либо о весе каждой ненулевой цифры. На рис. 9.1 показаны
два разных представления двоичных чисел, одно из которых плотное, вто­
рое разрежённое, а также функции увеличения на единицу, уменьшения
на единицу и сложения для каждого из них. Среди уже виденных нами
числовых представлений биномиальные кучи с расписаниями (раздел 7.3)
используют плотное представление, а биномиальные кучи (раздел 3.2) и
ленивые биномиальные кучи (раздел 6.4.1) — разрежённое.

9.2. Двоичные числа

Имея позиционную систему счисления, мы можем реализовать число­
вое представление на её основе в виде последовательности деревьев. Коли-

9.2. Двоичные числа 135

structure Dense = struct
datatype Digit = Z ero | O ne

type Nat = Digit list (* возрастающий порядок no старшинству *)
fun inc [] = [On e]

| inc (Z ero :: ds) = O ne :: ds
| inc (O ne :: ds) = Z ero :: inc ds (* перенос *)

fun dec [O n e] = []
| dec (O ne :: ds) = Zero :: ds
| dec (Z ero :: ds) = One :: dec ds (* занятие *)

fun add (ds, []) = ds
| add ([], ds) = ds
| add (d :: dsi, Z ero :: ds2) = d :: add (dsi, ds2)
| add (Z ero :: dsi, d :: ds2) = d :: add (dsi, ds2)
| add (One :: dsi, One :: ds2) = Z ero :: inc (add (dsi, ds2)) (* перенос *)

end

structure SparseByWeight = struct
type Nat = int list (* возрастающий порядок весов — степеней двойки *)
fun carry (w, []) = [w]

| carry (w, ws as w' :: ws') =
if w <w' then w :: ws else carry (2*w, ws')

fun borrow (w, ws as w' :: ws') =
if w = w' then ws' else w :: borrow (2*w, ws)

fun inc ws = carry (1, ws)
fun dec ws = borrow (1, ws)
fun add (ws, []) = ws | add ([], ws) = ws

| add (m as wi :: wsi, n as W2 :: WS2) =
if Wi <W2 then wi :: add (wsi, n)
else if W2 <wi then W2 :: add (m, WS2)
else carry (2*wj, add (wsi, WS2))

end

Рис. 9.1: два представления двоичных чисел.

чество и размеры деревьев, представляющих коллекцию размера п, опре­
деляются положением п в позиционной системе счисления. Для каждого
веса Wi имеются Ь; деревьев соответствующего размера. Например, дво­
ичное представление числа 73 выглядит как 1001001, так что коллекция
размера 73 в двоичном числовом представлении будет содержать три де­
рева размеров 1, 8 и 64.

Как правило, деревья в числовых представлениях обладают весьма

136 9. Числовые представления

регулярной структурой. Например, в двоичных числовых представлениях
все деревья имеют размер — степень двойки. Три часто встречающихся
типа деревьев с такой структурой — полные двоичные листовые деревья
(complete binary leaf trees) |KD96], биномиальные деревья (binomial trees)
[Vui78| и подвешенные деревья (pennants) [SS90].

Определение 9.1. (Полные двоичные листовые деревья) Полное
двоичное листовое дерево ранга 0 - это лист; полное двоичное листовое
дерево ранга г > 0 представляет собой узел с двумя поддеревьями, каж­
дое из которых является полным двоичным листовым деревом ранга г — 1.
Листовое дерево — это дерево, храпящее элементы только в листовых уз­
лах, в отличие от обычных деревьев, где элементы содержатся в каждом
узле. Полное двоичное дерево ранга г содержит 2r+1 — 1 узлов, но толь­
ко 2Г листьев. Следовательно, полное двоичное листовое дерево ранга г
содержит 2Г элементов.

Определение 9.2. (Биномиальные деревья) Биномиальное дерево
ранга г представляет собой узел с г дочерними деревьями с \ . . . с г , где
каждое с* является биномиальным деревом ранга г —г. Можно также опре­
делить биномиальное дерево ранга г > 0 как биномиальное дерево ранга
г — 1, к которому в качестве самого левого поддерева добавлено другое би­
номиальное дерево ранга г — 1. Из второго определения легко видеть, что
биномиальное дерево ранга г содержит 2Г узлов.

Определение 9.3. (Подвешенные деревья) Подвеишнное дерево ран­
га 0 представляет собой один узел, а подвешенное дерево ранга г > 0 пред­
ставляет собой узел с единственным поддеревом - - полным двоичным де­
ревом ранга г — 1. Полное двоичное дерево содержит 2Г — 1 элементов, так
что подвешенное дерево содержит 2Г элементов.

Три этих разновидности деревьев показаны на рис. 9.2. Выбор разно­
видности для каждой структуры данных зависит от свойств, которыми эта
структура должна обладать, например, от порядка, в котором требуется
хранить элементы в деревьях. Важным вопросом при оценке соответствия
разновидности деревьев для конкретной структуры данных будет то, на­
сколько хорошо данная разновидность поддерживает функции, аналогич­
ные переносу и занятию в двоичной арифметике. При имитации переноса
мы связываем (link) два дерева ранга г и получаем дерево ранга г + 1.
Аналогично, при имитации занятия мы развязываем (unlink) дерево ранга
г > 0 и получаем два дерева ранга г — 1. На рис. 9.3 показана операция свя­
зывания (обозначенная ®) для каждой из трёх разновидностей деревьев.

9.2. Двоичные числа 137

(G) (в)

Рис. 9.2: три дерева ранга 3: (а) полное двоичное листовое дерево, (б) би­
номиальное дерево и (в) подвешенное дерево.

(а) (б)

(в)

Рис. 9.3: связывание двух деревьев ранга г в дерево ранга г + 1 для (а)
полных двоичных листовых деревьев, (б) биномиальных деревьев
н (в) подвешенных деревьев.

Если мы предполагаем, что элементы не переупорядочиваются, любая из
разновидностей может быть связана или развязана за время 0 (1).

В предыдущих главах мы уже видели несколько реализаций куч, ос­
нованных на двоичной арифметике и биномиальных деревьях. Теперь мы
сначала рассмотрим простое числовое представление для списков с про­
извольным доступом. Затем мы исследуем несколько вариаций двоичной
арифметики, позволяющих улучшить асимптотические показатели.

138 9. Числовые представления

signature R an d o m A ccessL ist =
sig

type a RList

val empty
val isEmpty

val cons
val head
val tail

a RList
a RList • bool

a x q RList —» a RList
a RList —> a
a RList —» a RList

(* head и tail возбуждают E m pty для пустого списка *)

val lookup : int x a RList —> a
val update : int x a x a RList —> a RList
(* lookup и update возбуждают Subscript для некорректного индекса *)

end

Рис. 9.4: сигнатура списков с произвольным доступом.

9.2.1 . Двоичные списки с произвольным доступом

Список с произвольным доступом (random access list), называемый
также односторонним гибким массивом — это структура данных, поддер­
живающая, подобно массиву, функции доступа и модификации любого эле­
мента, а также обыкновенные функции для списков: cons, head и tail. Сиг­
натура списков с произвольным доступом приведена на рис. 9.4.

Мы реализуем списки с произвольным доступом, используя двоичное
числовое представление. Двоичный список с произвольным доступом раз­
мера п содержит по дереву на каждую единицу в двоичном представлении
п. Ранг каждого дерева соответствует рангу соответствующей цифры; ес­
ли г-й бит п равен единице, то список с произвольным доступом содержит
дерево размера 2*. Мы можем использовать любую из трёх разновидно­
стей деревьев и либо плотное, либо разрежённое представление. Для этого
примера мы используем простейшее сочетание: полные двоичные листовые
деревья и плотное представление. Таким образом, тип RList выглядит так:

datatype a Tree = L eaf o f а \ N ode o f int x a Tree x a Tree
datatype a Digit = Z ero | O ne o f a Tree
datatype a RList = a Digit list

Целое число в каждой вершине — это размер дерева. Это число избыточ­
но, поскольку размер каждого дерева полностью определяется размером

9.2. Двоичные числа 139

... А . АЛ.
О 1 2 3 4 5 6

рис. 9.5: двоичный список с произвольным доступом, содержащий элемен­
ты 0 .. . 6.

его родителя или позицией в списке цифр, но мы всё равно его храним ра­
ди удобства. Деревья хранятся в порядке возрастания размера, а порядок
элементов — слева направо, как внутри, так и между деревьями. Таким
образом, головой списка с произвольным доступом является самый левый
лист наименьшего дерева. На рис. 9.5 показан двоичный список с произ­
вольным доступом размера 7. Заметим, что максимальное число деревьев
в списке размера п равно [lo g (n + l)J , а максимальная глубина дерева равна
[lognj.

Вставка элемента в двоичный список с произвольным доступом (при
помощи cons) аналогична увеличению двоичного числа на единицу. Напом­
ним функцию увеличения для двоичных чисел:

fun inc (] = [One]
| inc (Z ero :: ds) = O ne :: ds
| inc (O ne :: ds) = Z ero :: inc ds

Чтобы добавить новый элемент к началу списка, мы сначала преобразуем
его в лист, а затем вставляем его в список деревьев с помощью вспомога­
тельной функции consTree, которая следует образцу inc.

fun cons (х, ts) = consTree (L ea f x , ts)

fun consTree (t, []) = (One t]
| consTree (t, Zero :: ts) = O ne t :: ts
| consTree (ti, One t2 :: ts) = Z ero :: consTree (link (ti, t2), ts)

Вспомогательная функция link порождает новое дерево из двух поддере­
вьев одинакового размера и автоматически вычисляет его размер.

Уничтожение элемента в двоичном списке с произвольным доступом
(при помощи tail) аналогично уменьшению двоичного числа на единицу.
Напомним функцию уменьшения для плотных двоичных чисел:

fun dec [One] = []
| dec (O ne :: ds) = Z ero :: ds
| dec (Z ero :: ds) = O ne :: dec ds

140 9. Числовые представления

Соответствующая функция для списков деревьев называется unconsTree.
Будучи применённой к списку, чья первая цифра имеет ранг г, unconsTree
возвращает пару, состоящую из дерева ранга г и нового списка без этого
дерева.

fun unconsTree [One t] = (t, [])
| unconsTree (O ne t :: ts) = (t, Z ero :: ts)
| unconsTree (Z ero :: ts) = let val (N ode (_ , ti, t2), ts') = unconsTree ts

in (ti, One t2 :: ts') end

Функции head и tail удаляют самый левый элемент при помощи unconsTree,
а затем, соответственно, либо возвращают этот элемент, либо отбрасывают.

fun head ts = let val (L ea f x , _) = unconsTree ts in x end
fun tail ts = let val (_ , ts') = unconsTrce ts in ts' end

Функции lookup и update не соответствуют никаким арифметическим
операциям. Они просто пользуются организацией двоичных списков про­
извольного доступа в виде списков логарифмической длины, состоящих
из деревьев логарифмической глубины. Поиск элемента состоит из двух
этапов. Сначала в списке мы ищем нужное дерево, а затем в этом дереве
ищем требуемый элемент. Вспомогательная функция lookupTree использует
поле размера в каждом узле, чтобы определить, находится ли г-й элемент
в левом или правом поддереве.

fun lookup (i, Z ero :: ts) = lookup (i, ts)
| lookup (i, O ne t :: ts) =

if i < size t then lookupTree (i, t) else lookup (i — size t , ts)
fun lookupTree (0, L ea f x) = x

| lookupTree (i, N ode (w , ti, t2)) =
if i <w div 2 then lookupTree (i, ti)
else lookupTree (i — w div 2, t2)

Функция update действует аналогично, но вдобавок копирует путь от корня
до обновляемого листа.

fun update (i, у, ZERO::ts) = Z ero :: update (i, y, ts)
| update (i, y, O ne t :: ts) =

if i < size t then One (updateTree (i, y, t)) :: ts
else One t :: update (i — size t, y, ts)

fun updateTree (0, y, L ea f x) = L ea f у
| updateTree (i, y, N ode (w, ti, t2)) =

if i < w div 2 then N ode (w, updateTree (i, y, ti), t2)
else N ode (w, ti, updateTree (i — w div 2, y, t2))

Полный код этой реализации приведён на рис. 9.6.

9.2. Двоичные числа 141

structure BinaryRandomAccessList: R an d o m A ccessL ist =
struct

datatype a Tree = Leaf o f a | N ode o f int x a Tree x a Tree
datatype a Digit = Z ero | O ne o f a Tree
type a RList = a Digit list
val empty = []
fun isEmpty ts = null ts
fun size (L e a f x) = 1

| size (N ode (w , t i , t2)) = w
fun link (11 , t2) = N ode (size ti+size t2, ti, t2)
fun consTree (t, []) = [One t]

| consTree (t, Z ero :: ts) = O ne t :: ts
| consTree (ti, O ne t2 :: ts) = Z ero :: consTree (link (t j, t2), ts)

fun unconsTree [] = raise Em pty
| unconsTree [O ne t] = (t, [])
| unconsTree (O ne t :: ts) = (t, Z ero :: ts)
| unconsTree (Z ero :: ts) =

let val (N ode (_ , tj, t2), ts') = unconsTree ts
in (t i , One t2 :: ts') end

fun cons (x , ts) = consTree (L ea f x , ts)
fun head ts = let val (L ea f x , _) = unconsTree ts in x end
fun tail ts = let val (_ , ts') = unconsTree ts in ts' end
fun lookupTree (0, L ea f x) = x

lookupTree (i, L ea f x) = raise Subscript
lookupTree (i, Node (w, ti, t2)) =

if i <w div 2 then lookupTree (i, ti)
else lookupTree (i — w div 2, t2)

fun updateTree (0, y, L ea f x) = L e a f у
updateTree (i, y, L ea f x) = raise Subscript
updateTree (i, y, N ode (w , ti, t2)) =

if i <w div 2 then N ode (w , updateTree (i, y, ti), t2)
else N ode (w , ti, updateTree (i — w div 2, y, t2))

fun lookup (i, []) = raise Subscript
lookup (i, Z ero :: ts) = lookup (i, ts)
lookup (i, O ne t :: ts) =

if i < size t then lookupTree (i, t) else lookup (i — size t, ts)
fun update (i, y, []) = raise Subscript

update (i, y, Z ero :: ts) = Z ero :: update (i, y, ts)
update (i, y, O ne t :: ts) =

if i < size t then O ne (updateTree (i, y, t)) :: ts
else O ne t :: update (i — size t, y, ts)

end

Рис. 9.6: двоичные списки с произвольным доступом.

142 9. Числовые представления

Функции cons, head и tail производят не более 0 (1) работы на цифру
так что общее время их работы O (logn) в худшем случае. Функции lookup и
update требуют не более 0 (log п) времени на поиск нужного дерева, а затем
не более O (logn) времени на поиск нужного элемента в этом дереве, так
что общее время их работы также О (log п) в худшем случае.

Упражнение 9.1 . Напишите функцию drop типа int х a RList -* a RList,
уничтожающую первые к элементов двоичного списка с произвольным до­
ступом. Функция должна работать за время О (log п).

Упражнение 9.2 . Напишите функцию create типа int х а —► a RList, ко­
торая создаёт двоичный список с произвольным доступом, содержащий п
копий некоторого значения х. Функция также должна работать за время
О (log п). (Может оказаться полезным вспомнить упражнение 2.5.)

Упражнение 9.3 . Реализуйте BiriaryRandomAccessList заново, используя
разрежённое представление

datatype a Tree = L ea f o f а | N ode o f int x a Tree x a Tree
type a RList = a Tree list

9.2.2 . Безнулевые представления

В двоичных списках с произвольным доступом разочаровывает то, что
списковые функции cons, head и tail требуют O (logn) времени вместо 0(1).
В следующих трёх подразделах мы исследуем варианты двоичных чисел,
улучшающие время работы всех трёх функций до 0 (1). В этом подразделе
мы начинаем с функции head.

Замечание. Очевидное решение, позволяющее head выполняться за вре­
мя 0 (1) - хранить первый элемент отдельно от остального списка, подобно
функтору ExplicitMin из упражнения 3.7. Другое решение — использовать
разрежённое представление и либо биномиальные деревья, либо подвешен­
ные деревья, так что головой списка будет корень первого дерева. Реше­
ние, которое мы исследуем в этом подразделе, хорошо тем, что оно также
немного улучшает время работы lookup и update.

Сейчас head у нас реализована через вызов unconsTree, которая выде­
ляет первый элемент, а также перестраивает список без этого элемента.
При таком подходе мы получаем компактный код, поскольку unconsTree
поддерживает как head, так и tail, но теряется время па построение спис­
ков, не используемых функцией head. Ради большей эффективности имеет

9.2. Двоичные числа 143

смысл реализовать head напрямую. В качество особого случая легко заста­
вить head работать за время 0 (1) , когда первая цифра не ноль,

fun head (O n e (L e a f x) :: _) = x

Вдохновлённые этим правилом, мы хотели бы устроить так, чтобы первая
цифра никогда не была нулём. Есть множество простых трюков, дости­
гающих именно этого, но более красивым решением будет использовать
безнулевое (zeroless) представление, где ни одна цифра не равна нулю.

Безнулевые двоичные числа строятся из единиц и двоек, а не из еди­
ниц и нулей. Вес г-й цифры по-прежнему равен 2‘ . Так, например, десятич­
ное число 1C можно записать как 2111 вместо 00001. Функция добавления
единицы на безнулевых двоичных числах реализуется так:

datatype Digit = O ne | T w o
type Nat = Digit list

fun inc [] = [O ne]
] inc (O ne :: ds) = T w o :: ds
| inc (T w o :: ds) = O ne :: inc ds

Упражнение 9.4. Напишите функции уменьшения на единицу и сло­
жения для безнулевых двоичных чисел. Заметим, что переноситься при
сложении может как единица, так и двойка.

Теперь если мы заменим тип цифр в двоичных списках с произволь­
ным доступом на

datatype a Digit = One of a Tree | Tw o of a Tree x a Tree

то можем реализовать head как
fun head (O n e (L e a f x) :: _) = x

| head (T w o (L eaf x , L eaf y) :: _) = x

Ясно, что эта функция работает за время 0 (1) .

Упражнение 9.5 . Реализуйте оставшиеся функции для этого типа.

Упражнение 9.6. Покажите, что теперь функции lookup и update, при­
менённые к элементу г, работают за время О (log г).

Упражнение 9.7. При некоторых дополнительных условиях красно­
чёрные деревья (раздел 3.3) можно рассматривать как числовое представ­
ление. Сопоставьте безнулевые двоичные списки с произвольным доступом
и красно-чёрные деревья, в которых вставка разрешена только в самую ле­
вую позицию. Обратите особое внимание на функции cons и insert, а также
на инварианты формы структур, порождаемых этими функциями.

144 9. Числовые представления

9.2.3 . Ленивые представления

Допустим, мы представляем двоичные числа как потоки цифр, а це
списки. Тогда функция увеличения на единицу получает вид

fun lazy inc (SN il) = SCons (O ne , SNil)
| inc (SCons (Z ero , ds)) = SCons (O ne , ds)
| inc (SCons (O ne , ds)) = SCons (Z ero , inc ds)

Заметим, что функция эта пошаговая.
В разделе 6.4.1 мы видели, как с помощью ленивого вычисления мож­

но заставить вставку в биномиальные кучи работать за амортизированное
время 0 (1) , так что нас не должно удивлять, что наша новая версия inc
также работает за амортизированное время 0 (1) . Мы доказываем эго по
методу банкира.

Доказательство. Пусть каждая цифра ноль несёт одну единицу дол­
га, а цифра единица — ноль единиц долга. Допустим, ds начинается с к
единиц (O ne), а затем имеет ноль (Z ero). Тогда inc ds заменяет все эти O ne
на Z ero , a Z ero на O ne . Выделим по одной единице долга на каждый из
этих шагов. Теперь у каждого элемента Zero есть одна единица долга, а у
O ne две: одна, унаследованная от исходной задержки в этом месте, и одна,
созданная только что. Высвобождение этих двух единиц долга восстанав­
ливает инвариант. Поскольку амортизированная стоимость функции равна
её нераздельной стоимости (здесь это 0 (1)) плюс число высвобождаемых
единиц долга (здесь две), inc работает за амортизированное время 0 (1).

Рассмотрим теперь функцию уменьшения.

fun lazy dec (SCons (O ne , SN il)) = SN il

| dec (SCons (O ne , ds)) = SCons (Z ero , ds)
| dec (SCons (Z ero , ds)) = SCons (O ne , dec ds)

Поскольку эта функция подобна inc, но со сменой ролей цифр, можно ожи­
дать, что при помощи подобного доказательства мы получим такое же
ограничение. Так оно и есть, если мы не используем обе функции. Од­
нако если используются как inc, так и dec, по крайней мере одной из них
приходится приписывать амортизированное время O (logn). Чтобы понять,
почему, представим последовательность увеличений и уменьшений, цикли­
чески переходящих от 2fe — 1 к 2fc и обратно. Каждая операция при этом
затрагивает каждую цифру, и общее время получается O (logn).

Но разве мы не доказали, что амортизированное время каждой из
функций 0 (1)? Что здесь неверно? Проблема в том, что эти два доказа­
тельства требуют конфликтующих инвариантов долга. Чтобы доказать,
что inc работает за амортизированное время 0 (1) , мы требовали, чтобы

9.2. Двоичные числа 145

каЖДомУ Zero приписывалась одна единица долга, а каждому One ноль
единиц- При доказательстве, что dec работает за амортизированное время
0 (1), мы приписывали одну единицу долга каждому One и ноль единиц
каждому Zero .

Главное свойство, которое как inc, так и dec по отдельности имеют,
состоит в том, что по крайней мере половина операций, достигших какой-
то позиции, на этой позиции останавливаются. А именно, каждый вызов
;пс или dec обрабатывает первую цифру, но только один вызов из двух
затрагивает вторую. Третью цифру обрабатывает один вызов из четырёх,
и так далее. На интуитивном уровне амортизированная стоимость каждой
операции получается

0 (1 + 1/2 + 1/4 + 1 /8 + . . .) = 0 (1)

Разделим возможные цифры-заполнители каждой позиции на безопасные
(safe) и опасные (dangerous): функция, достигшая безопасной цифры, все­
гда на ней и завершается, а функция, добравшаяся до опасной цифры,
может проследовать к следующей позиции. Чтобы доказать, что из двух
последовательных операций никогда обе не добираются до следующей по­
зиции, нам нужно показать, что каждый раз, когда операция обрабатывает
опасную цифру, она заменяет её на безопасную. Тогда следующая опера­
ция, которая доберётся до данной позиции, на ней и остановится. Формаль­
но мы доказываем, что каждая операция работает за амортизированное
время 0 (1) , устанавливая инвариант долга, где каждой безопасной цифре
приписывается одна единица долга, а опасной ноль.

Функция увеличения требует считать опасной самую большую цифру,
а функция уменьшения считает опасной самую маленькую цифру. Чтобы
поддержать их обе, нам нужна третья безопасная цифра. Таким образом,
мы переключаемся на избыточные (redundant) двоичные числа, где каж­
дая цифра может быть нулём, единицей или двойкой. Тогда inc и dec реа­
лизуются следующим образом:

datatype Digit = Z ero | O ne | Tw o
type Nat = Digit Stream

fun lazy inc (SN il) = SCons (O ne , SN il)
| inc (SCons (Z ero , ds)) = SCons (One, ds)
j inc (SCons (One, ds)) = SCons (Tw o, ds)
j inc (SCons (Tw o, ds)) = SCons (One, inc ds)

fun lazy dec (SCons (O ne , SNil)) = SNil

| dec (SCons (O ne , ds)) = SCons (Z ero , ds)

146 9. Числовые представления

\ dec (SCons (T w o , ds)) = SCons (O ne , ds)
| dec (SCons (Z ero, ds)) = SCons (O ne , dec ds)

Обратите внимание, что рекурсивные вызовы в inc и dec — для Tw o (двой­
ки) и Z ero (ноля), соответственно — оба порождают O ne (единицу). При
этом O ne безопасная цифра, a Z ero и Tw o — опасные. Чтобы увидеть,
как нам здесь помогает избыточность, рассмотрим, как работает увеличе­
ние на единицу двоичного числа 222222, дающее 1111111. Для этой опе­
рации требуется семь шагов. Однако уменьшение этого значения не даёт
снова 222222, Вместо этого мы всего за один шаг получаем 0111111. Та­
ким образом, чередование увеличений и уменьшений больше не является
проблемой.

Ленивые двоичные числа могут служить моделью для построения
многих других структур данных. В главе 11 мы обобщим эту модель и
получим метод проектирования под названием неявное рекурсивное замед­
ление (implicit recursive slowdown).

Упражнение 9.8. Докажите, что как inc, так и dec работают за амор­
тизированное время 0 (1) с помощью инварианта долга, присваивающего
одну единицу долга цифре O ne и ноль цифрам Z ero и T w o .

Упражнение 9.9. Реализуйте cons, head и tail для списков с произволь­
ным доступом на основе безнулевых избыточных двоичных чисел, исполь­
зуя тип

datatype a Digit =
O ne of a Tree

| T w o of a Tree x a Tree
| T hree of a Tree x a Tree x a Tree

type a RList = Digit Stream

Покажите, что все три функции работают за амортизированное вре­
мя 0 (1).

Упражнение 9.10. Как показано в разделе 7.3 па биномиальных кучах
с расписаниями, можно снабдить ленивые двоичные числа расписаниями
и получить ограничение 0 (1) в худшем случае. Заново реализуйте cons,
head и tail из предыдущего упражнения так, чтобы они работали за время
0 (1) в худшем случае. Может оказаться полезным иметь два различных
конструктора для цифры «два» (скажем, Tw o и T w o '), чтобы различать
рекурсивные и нерекурсивные варианты вызова cons и tail.

9.2. Двоичные числа 147

9.2 .4 . С егм ен ти р ова н н ы е п ред ставл ен и я

Ещё одна разновидность двоичных чисел, дающая показатели 0 (1) в
худшем случае — сегментированные (segmented) двоичные числа. Пробле­
ма с обычными двоичными числами состоит в том, что переносы и занятия
могут происходить каскадом. Например, увеличение 2к — 1 приводит в дво­
ичной арифметике к к переносам. Аналогично, уменьшение 2к ведёт к к
занятиям. Сегментированные двоичные числа решают эту проблему, поз­
воляя нескольким переносам или занятиям выполняться за один шаг.

Заметим, что увеличение двоичного числа требует к шагов, когда чис­
ло начинается с последовательности в к единиц. Подобным образом, умень­
шение двоичного числа требует к шагов, когда число начинается с к нулей.
Сегментированные двоичные числа объединяют непрерывные последова­
тельности одинаковых цифр в блоки, так что мы можем применить перенос
или занятие к целому блоку за один шаг. Мы представляем сегментирован­
ные двоичные числа как список чередующихся блоков из единиц и нулей
согласно следующему объявлению типа:

datatype DigitBlock = Z eros o f int | O nes o f int
type Nat = DigitBlock list

Целое число в каждом DigitBlock представляет длину блока.
Мы добавляем новые блоки к началу списка блоков с помощью вспо­

могательных функций zeros (нули) и ones (единицы). Эти функции слива­
ют идущие подряд блоки одинаковых цифр и отбрасывают пустые блоки.
Кроме того, zeros отбрасывает нули в конце записи числа.

fun zeros (i , []) = []
| zeros (0, blks) = blks
| zeros (i , Z eros j :: blks) = Z eros (i+j) :: blks
| zeros (i , blks) = Z eros i :: blks

fun ones (0, blks) = blks
| ones (i , O nes j :: blks) = O nes (i+ j) :: blks
| ones (i , blks) = O nes i :: blks

Теперь при увеличении сегментированного двоичного числа мы смотрим
на первый блок цифр (при условии, конечно, что он вообще есть). Если
первый блок содержит нули, то мы заменяем первый из этих нулей на
единицу, создавая новый единичный блок единиц, а длину блока нулей
Уменьшая на один. Если же первый блок содержит г единиц, то мы за
один шаг проделываем i переносов, заменяя единицы на нули и увеличивая
следующую цифру.

148 9. Числовые представления

fun inc [] = [Ones 1]
| inc (Z eros i :: blks) = ones (1, zeros (i—1, blks))
| inc (O nes i :: blks) = Z eros i :: inc blks

В третьей строке функции мы знаем, что рекурсивный вызов inc не зацик­
лится, поскольку если следующий блок присутствует, он будет содержать
нули. Во второй строке вспомогательная функция позаботится об особом
случае, когда первый блок содержит единственный ноль.

Уменьшение сегментированного двоичного числа выглядит почти точ­
но так же, только роли единиц и нулей меняются.

fun dec (O nes i :: blks) = zeros (1, ones (i— 1, blks))
| dec (Z eros i :: blks) = O nes i :: dec blks

Здесь мы тоже знаем, что рекурсивный вызов не зациклится, потому что
в следующем блоке должны быть единицы.

К сожалению, несмотря на то, что сегментированные двоичные числа
поддерживают операции inc и dec за время 0 (1) в худшем случае, числовые
представления, основанные на них, оказываются слишком сложными, что­
бы иметь какое-либо практическое значение. Проблема заключается в том,
что понятие перевода целого блока единиц в нули и наоборот плохо перево­
дится на язык операций с деревьями. Более практичные решения, однако,
можно получить, если сочетать сегментацию с избыточными двоичными
числами. При этом мы можем снова обрабатывать цифры (а следователь­
но, и деревья) по одной. Сегментация позволяет нам обрабатывать цифры
в середине последовательности, а не только в начале.

Рассмотрим, например, избыточное представление, в котором блоки
единиц рассматриваются как единый сегмент.

datatype Digits = Zero | O nes o f int | Tw o
type Nat = Digits list

Определяем вспомогательную функцию ones, обрабатывающую блоки, иду­
щие друг за другом, и уничтожающую пустые блоки.

fun ones (0, ds) = ds
| ones (i , O nes j :: ds) = O nes (i+j) :: ds
| ones (i , ds) = O nes i :: ds

Полезно рассматривать цифру Tw o (два) как незаконченный перенос. Что­
бы не было каскадов переносов, нам надо гарантировать, что две двойки
никогда не идут подряд. Будем поддерживать инвариант, что последняя
не равная единице цифра перед каждой двойкой равна нулю. Этот инва­
риант можно записать как регулярное выражение (0|1|01*2)* либо, если
ещё учесть отсутствие нулей в конце, (0*1|0+ 1*2)*. Заметим, что двойка

9.2. Двоичные числа 149

дикогда не является первой цифрой. Таким образом, мы можем увели­
чить число на единицу за время 0 (1) в худшем случае, просто увеличивая
первую цифру.

fun simplelnc [] = [O nes 1]
| simplelnc (Z ero :: ds) = ones (1, ds)
| simplelnc (O nes i :: ds) = Tw o :: ones (i—1, ds)

В третьей строке инвариант нарушается очевидным образом, поскольку
Two оказывается в начале. Кроме этого, инвариант может быть нарушен
во второй строке, если первая не равная единице цифра равна двойке. Мы
восстанавливаем инвариант при помощи вспомогательной функции fixup,
проверяющей, не является ли первая не равная единице цифра двойкой.
Если это так, fixup заменяет двойку на ноль и увеличивает следующую
цифру, которая, в свою очередь, двойкой быть не может.

fun fixup (T w o :: ds) = Z ero :: simplelnc ds
| fixup (O nes i :: T w o :: ds) = O nes i :: Z ero :: simplelnc ds
| fixup ds = ds

Во второй строке fixup мы пользуемся тем, что представление сегментиро­
вано, проскакивая блок единиц, за которыми следует двойка. Наконец, inc
вызывает сначала simplelnc, затем fixup.

fun inc ds = fixup (simplelnc ds)

Эта реализация может служить образцом для многих других структур
данных. Такая структура представляет собой последовательность уровней,
каждый из которых имеет признак зелёный, жёлтый или красный. Каж­
дый уровень соответствует цифре в вышеописанной реализации. Зелёный
соответствует нулю-ZERO, жёлтый единице-ONE, а красный двойке-Tw o.
Операция над любым объектом может перекрасить первый уровень из зе­
лёного в жёлтый или из жёлтого в красный, по никогда из зелёного в крас­
ный. Инвариант состоит в том, что первый не-жёлтый уровень перед крас­
ным всегда зелёный. Процедура восстановления инварианта проверяет, не
является ли первый не-жёлтый уровень красным и, если да, переводит этот
уровень из красного в зелёный и, возможно, ухудшает цвет следующего
уровня из зелёного в жёлтый или из жёлтого в красный. Последователь­
ные жёлтые уровни собираются в блок, чтобы облегчить доступ к первому
не-жёлтому. Каплан и Тарьян |КТ95] называют эту общую методику ре­
курсивное замедление (recursive slowdown).

У п р аж н ен и е 9.11. Добавьте сегментацию к биномиальным кучам, чтобы
операция insert работала за время 0 (1) в худшем случае. Используйте тип

150 9. Числовые представления

datatype Tree = N ode o f Elem.T x Tree list
datatype Digit = Z ero | O nes o f Tree list | Tw o o f Tree x Tree
type Heap = Digit list

Восстанавливайте инвариант после слияния куч, уничтожая все Two.

У п р а ж н ен и е 9 .12 . Пример реализации двоичных чисел на основе рекур.
сивного замедления поддерживает операцию inc за время 0 (1) в худшем
случае, но для dec может потребоваться O (logn). Реализуйте сегментиро­
ванные избыточные двоичные числа, поддерживающие как inc, так и dec
за время 0 (1) в худшем случае, с цифрами 0, 1, 2, 3 и 4, причём 0 и 4
красные, 1 и 3 жёлтые, а 2 зелёная.

У п р а ж н ен и е 9 .13. Реализуйте cons, head, tail и lookup для числового
представления списков с произвольным доступом на основе системы счис­
ления из предыдущего упражнения. Ваше представление должно поддер­
живать cons, head и tail за время 0 (1) в худшем случае, a lookup за время
O (logn) в худшем случае.

9.3. Скошенные двоичные числа

При помощи ленивых двоичных чисел и сегментированных двоич­
ных чисел мы получили два метода улучшения асимптотического поведе­
ния функций увеличения на единицу и уменьшения на единицу с O (logn)
до 0 (1). В этом разделе мы рассмотрим третий метод; на практике он
обычно приводит к более простым и быстрым программам, однако этот
метод связан с более радикальным отходом от обыкновенных двоичных
чисел.

В скошенных двоичных числах (skew binary numbers) [Муе83, Oka95b|
вес i-й цифры uti равен не 2‘ , как в обыкновенных двоичных числах, а 2* —1.
Используются цифры ноль, один и два (то есть Di = { 0 , 1, 2 }). Например,
десятичное число 92 можно записать как 002101 (начиная с наименее зна­
чимой цифры).

Эта система счисления избыточна, однако мы можем вернуть уникаль­
ность представления, если введём дополнительное требование, что лишь
самая младшая ненулевая цифра может быть двойкой. Будем говорить,
что такое число записано в каноническом виде (canonical form). Начиная
с этого момента, будем предполагать, что все скошенные двоичные числа
записаны в каноническом виде.

Т еор ем а 9.1. (Майерс [Муе83]) Каждое натуральное число можно един­
ственным образом записать в скошенном двоичном каноническом виде.

9.3. Скошенные двоичные числа 151

Напомним, что вес г-й цифры равен 2г — 1, и заметим, что 1 + 2(2,+ 1 —
1) = 2г+2 — 1. Отсюда следует, что мы можем добавить единицу к скошенно­
му двоичному числу, чья младшая ненулевая цифра равна двойке, заменив
эту двойку на ноль и увеличив следующую цифру с нуля до единицы или
с единицы до двух. (Следующая цифра не может уже равняться двойке.)
Увеличение на единицу скошенного двоичного числа, которое не содержит
двойки, ещё проще — надо только увеличить младшую цифру с нуля до
единицы или с единицы до двойки. В обоих случаях результат снова ока­
зывается в каноническом виде. Если предположить, что мы можем найти
младшую ненулевую цифру за время 0 (1) , в обоих случаях мы тратим не
более 0 (1) времени!

Мы не можем использовать для скошенных двоичных чисел плотное
представление, потому что тогда поиск первой ненулевой цифры займёт
больше времени, чем 0 (1). Поэтому мы выбираем разрежённое представ­
ление, благодаря чему всегда имеем непосредственный доступ к младшей
ненулевой цифре.

type Nat = int list

Целые числа представляют либо ранг, либо вес ненулевых цифр. Мы пока
что используем веса. Веса хранятся в порядке возрастания, но два наи­
меньших веса могут быть одинаковы, показывая, что младшая ненулевая
цифра равна двум. При таком представлении мы реализуем inc следующим
образом:

fun inc (ws as wi :: W2 :: rest) =
if wi = W2 then (1 +wi +W2) :: rest else 1 :: ws

I inc ws = 1 :: ws

Первый вариант проверяет два первых веса на равенство, и либо сливает их
в следующий больший вес (увеличивая таким образом следующую цифру),
либо добавляет новый вес 1 (увеличивая самую младшую цифру). Второй
вариант обрабатывает случай, когда список ws пуст или содержит только
один вес. Ясно, что эта процедура работает за время 0 (1) в худшем случае.

Уменьшение скошенного двоичного числа на единицу столь же просто,
как увеличение. Если младшая цифра не равна нулю, мы просто умень­
шаем эту цифру с двух до единицы или с единицы до нуля. В противном
случае мы уменьшаем самую младшую ненулевую цифру, а предыдущий
ноль заменяем двойкой. Это реализуется так:

fun dec (1 :: ws) = ws
I dec (w :: ws) = (w div 2) :: (w div 2) :: ws

9. Числовые представления

Во второй строке нужно учитывать, что если w = 2fc+1 — 1, то \w/2\ =
Ясно, что dec также работает за время 0 (1) в худшем случае.

9 .3 .1 . С к ош ен н ы е д в о и ч н ы е сп и ск и с п р ои зв ол ьн ы м доступ ом

Теперь мы разработаем числовое представление для списков с про.
извольным доступом на основе скошенных двоичных чисел. Основа пред­
ставления данных — список деревьев, одно дерево для каждой единицы и
два дерева для каждой двойки. Деревья хранятся в порядке возрастания
размера, но если младшая ненулевая цифра двойка, то два первых дерева
будут одинакового размера.

Размеры деревьев соответствуют весам цифр в скошенных двоичных
числах, так что дерево, представляющее г-ю цифру, имеет размер 2t+1 — 1.
Д о сих пор мы в основном рассматривали деревья размером степень двой­
ки, но встречались и деревья нужного нам сейчас размера: полные двоич­
ные деревья. Таким образом, мы представляем скошенные двоичные спис­
ки с произвольным доступом в виде списков полных двоичных деревьев.

Чтобы эффективно реализовать операцию head, мы должны сделать
первый элемент списка с произвольным доступом вершиной первого дере­
ва, так что элементы внутри каждого дерева мы будем хранить в предпо-
рядке слева направо; элементы каждого дерева предшествуют элементам
следующего дерева.

В предыдущих примерах мы хранили в каждой вершине её размер или
ранг, даже когда эта информация была избыточна. В этом примере мы
используем более реалистичный подход и храним размер только вместе
с вершиной каждого дерева, а не для всех поддеревьев. Следовательно,
тип данных для скошенных двоичных списков с произвольным доступом
получается

datatype a Tree = L eaf o f а | N ode o f а х a Tree х a Tree
type a RList = (int х a Tree) list

Теперь можно определить cons по аналогии с inc.

fun cons (х, ts as (wi, ti) :: (w2 , t2) :: rest) =
if wi = W2 then (1+WJ+W2, N ode (x , ti, t2) :: rest)
else (1, L ea f x) :: ts

| cons (x , ts) = (1, L ea f x) :: ts

Функции head и tail работают с корнем первого дерева. Функция tail воз­
вращает дочерние узлы этого дерева (если они есть) обратно в начало спис­
ка, где они будут представлять новую цифру-двойку.

9.3. Скошенные двоичные числа 153

fun head ((1, L ea f х) : : ts) = х
| head ((w, N ode (x , ti, t2)) :: ts) = x

fun tail ((1, L ea f x) :: ts) = ts
| tail ((w, N ode (x , t i , t2)) :: ts) = (w div 2, ti) :: (w div 2, t2) :: ts

Чтобы найти элемент, мы сначала ищем нужное дерево, а затем нужный
элемент в этом дереве. При поиске внутри дерева мы отслеживаем размер
текущего дерева.

fun lookup (i, (w, t) :: ts) =
if i < w then lookupTree (w, i ,t)
else lookup (i—w, ts)

fun lookupTree (1 ,0 , L ea f x) = x

| lookupTree (w, 0, N ode (x , ti, t2)) = x
| lookupTree (w, i, N ode (x , ti, t2)) =

if i < w div 2 then lookupTree (w div 2, i—1, ti)
else lookupTree (w div 2, i — 1 — w div 2, t2)

Заметим, что в предпоследней строке мы отнимаем единицу от i, поскольку
перескакиваем через х. В последней строке мы отнимаем 1 + [w /‘2j от i,
поскольку перескакиваем через х и через все элементы ti. Функции update и
updateTree определяются подобным же образом. Они приведены на рис. 9.7
наряду со всеми остальными деталями реализации.

Нетрудно убедиться, что cons, head и tail работают за время 0 (1) в худ­
шем случае. Подобно двоичным спискам с произвольным доступом, ско­
шенные двоичные списки с произвольным доступом представляют собой
списки логарифмической длины, состоящие из деревьев логарифмической
глубины, так что lookup и update работают за время O(logrt) в худшем слу­
чае. На самом деле каждый неудачный шаг lookup или update отбрасывает
по крайней мере один элемент, так что можно немного улучшить оценку
до 0(m in (i, logn)).

Указание разработчикам. Скошенные двоичные списки с произволь­
ным доступом являются хорошим выбором для приложений, активно ис­
пользующих как спископодобные, так и массивоподобные функции в спис­
ках с произвольным доступом. Существуют более производительные реа­
лизации списков и более производительные реализации (устойчивых) мас­
сивов, но ни одна реализация не превосходит нашу в обеих классах функ­
ций [Ока95Ь].

Упражнение 9.14. Перепишите структуру HoodMelvilleQueue из разде­
ла 8.2.1, чтобы она вместо обычных списков использовала скошенные дво­
ичные списки с произвольным доступом. Реализуйте на получившейся
структуре операции lookup и update.

154 9. Числовые представления

structure SkewBinaryRandomAccessList: R an d o m A ccessL ist =
struct

datatype a Tree = L eaf o f a | N ode o f a x a Tree x a Tree
type a RList = (int x a Tree) list (* целое задаёт вес дерева *)

val empty = []
fun isEmpty ts = null ts

fun cons (x, ts as (wi, ti) :: (w2, t2) :: ts') =
if wi = W2 then (I+W 1 +W2 , N ode (x , ti, t2)) :: ts'
else (1, L ea f x) :: ts

I cons (x, ts) = (1, L ea f x) :: ts
fun head [] = raise Empty

I head ((1, L ea f x) :: ts) = x
I head ((w, N ode (x, ti, t2)) :: ts) = x

fun tail [] = raise E m pty

I tail ((1, L eaf x) :: ts) = ts
j tail ((w, N ode (x , t i , t2)) :: ts) = (w div 2, ti) :: (w div 2, t2) :: ts

fun lookupTree (1 , 0 , L eaf x) = x

I lookupTree (1, i , L eaf x) = raise S ubscript
I lookupTree (w, 0, N ode (x , ti, t2)) = x
I lookupTree (w, i, N ode (x , ti, t2)) =

if i < w div 2 then lookupTree (w div 2, i—1, ti)
else lookupTree (w div 2, i — 1 — w div 2, t2)

fun updateTree (1 , 0, y , L ea f x) = L ea f у

| updateTree (1, i, y, L ea f x) = raise Subscript
I updateTree (w, 0, y, N ode (x , ti, t2)) = N ode (y, ti, t2)
I updateTree (w, i, y, N ode (x , ti, t2)) =

if i < w div 2 then N ode (x , updateTree (w div 2, i—1 , y, ti), t2)
else N ode (x , ti, updateTree (w div 2, i — 1 — w div 2, y , t2))

fun lookup (i, []) = raise Subscript

I lookup (i, (w, t) :: ts) =
if i < w then lookupTree (w, i, t)
else lookup (i—w, ts)

fun update (i, y, []) = raise Subscript
I update (i, y, (w, t) :: ts) =

if i < w then (w, updateTree (w, i, y, t)) :: ts
else (w, t) :: update (i—w, y, ts)

end

Рис. 9.7: скошенные двоичные списки с произвольным доступом.

9.3. Скошенные двоичные числа 155

9.3 .2 . С к ош ен н ы е би н ом и ал ьн ы е к у ч и

Наконец, рассмотрим гибридное числовое представление для куч, ос­
нованное как на скошенных двоичных числах, так и на обыкновенных дво­
ичных числах. Реализация скошенного двоичного числа проста и быстра,
и отлично подходит как образец для функции insert. К сожалению, сложе­
ние двух скошенных двоичных чисел весьма неудобно. Поэтому функцию
merge мы порождаем на основе сложения обыкновенных двоичных чисел,
а не сложения скошенных чисел.

Скошенное биномиальное дерево (skew binomial tree) представляет со­
бой биномиальное дерево, в котором к каждому узлу приписан список дли­
ной до г элементов, где г — ранг рассматриваемого узла.

datatype Tree = N ode o f int x Elem.T x Elem.T list x Tree list

В отличие от обыкновенных биномиальных деревьев, размер скошенного
биномиального дерева не полностью определяется его рангом; ранг опре­
деляет диапазон возможных размеров.

Л ем м а 9.2. Если t — скошенное биномиальное дерево ранга г, то

2Г ^ |*| ^ 2r+1 - 1.

Упражнение 9.15. Докажите лемму 9.2

Над скошенными биномиальными деревьями можно производить опе­
рацию связывания (linking) и скошенного связывания (skew linking). Функ­
ция связывания link сочетает два дерева ранга г и получает одно дерево
ранга г 4- 1, делая дерево с большим корнем ребёнком дерева с меньшим
корнем.

fun link (tj as N ode (r, xi, xsi, ci), t2 as N ode (_ , x2, xs2, c2) =
if Elem.leq (xi, x2) then N ode (r+1, xi, xsi, t2 :: Ci)
else N ode (r+1, x2, xs2, ti :: c2)

Функция скошенного связывания skewLink сочетает два дерева ранга г и до­
полнительный элемент, получая дерево ранга г + 1. Сначала она связывает
два дерева, а затем сравнивает корень получившегося дерева с дополни­
тельным элементом. Меньший из этих двух элементов становится корнем,
а больший добавляется к дополнительному списку элементов.

fun skewLink (х, ti, t2) =
let val N ode (r, y, ys, c) = link (ti, t2)
in

if Elem.leq (x, y) then N ode (г, x, у :: ys, c)

9. Числовые представления

else N ode (г , у, х :: ys, с)
end

Скошенная биномиальная куча представляет собой список скошенных
биномиальных деревьев, упорядоченных в порядке кучн, отсортированных
по возрастанию ранга, и только два первых дерева могут иметь одинако­
вый ранг. Поскольку скошенные биномиальные деревья одного ранга могут
иметь различный размер, здесь уже нет прямого соответствия между де­
ревьями в куче и цифрами скошенного двоичного числа, представляющего
размер кучи. Например, хотя скошенное двоичное представление числа 4
равно 11, скошенная биномиальная куча размера 4 может содержать либо
одно дерево ранга 2 размера 4, либо два дерева ранга 1 размером 2, либо
дерево ранга 1 размером 3 п дерево ранга 0, либо дерево ранга 1 разме­
ром 2 и два дерева ранга 0. Однако максимальное число деревьев в куче
по-прежнему равно O (logn).

Большое преимущество скошенных биномиальных куч состоит в том,
что новый элемент вставляется за время 0 (1) . Сначала мы сравниваем
ранги двух наименьших деревьев. Если они совпадают, мы производим
скошенное связывание нового элемента с этими деревьями. В противном
случае мы создаём новое одноэлементное дерево и добавляем его к началу
списка.

fun insert (х, ts as ti :: t2 :: rest) =
if rank ti = rank t2 then skewLink (x, ti, t2) :: rest
else N ode (0, x, [], []) :: ts

| insert (x, ts) = N ode (0, x, |], (]) :: ts

Оставшиеся функции почти такие же, как соответствующие функ­
ции обыкновенных биномиальных куч. Мы изменяем имя старой функции
merge на merge Trees. Она по-прежнему проходит оба списка деревьев, про­
водя связывание (не скошенное связывание!) каждый раз, когда видит два
дерева одного ранга. Поскольку и mergcTrces, и её вспомогательная функ­
ция insTree ожидают списки деревьев строго возрастающего ранга, функ­
ция merge нормализует оба своих аргумента, убирая дубликаты из начала
списков, прежде чем вызвать mergcTrces.

fun normalize [] = |]
| normalize (t :: ts) = insTree (t, ts)

fun merge (tsi, ts2) = mergeTrees (normalize tsi, normalize ts2)

На функции findMin и removeMinTree переключение на скошенные биноми­
альные кучи никак не влияет, поскольку обе эти функции не заботятся
о рангах, рассматривая только корень каждого дерева. Функция deleteMin

9.3. Скошенные двоичные числа 157

изменяется лишь ненамного. Как и раньше, изымается дерево с минималь­
ным корнем, список его детей обращается, и обращённый список детей сли­
вается с оставшимися деревьями. Однако затем заново вставляются эле­
менты дополнительного списка, прикреплённого к уничтоженному корню.

fun deleteMin ts =
let val (N ode (_ , x, xs, tsi), ts2) = removeMinTree ts

fun insert All ([] , ts) = ts
| insertAll (x :: xs, ts) = insertAll (xs, insert (x, ts))

in insertAll (xs, merge (rev tsi, ts2)) end

На рис. 9.8 приведена полная реализация скошенных биномиальных куч.
Функция insert работает за время 0 (1) в худшем случае, a merge,

findMin и deleteMin работают за то же время, что и соответствующие функ­
ции для обыкновенных биномиальных куч, то есть за O (logn) в худшем
случае. Заметим, что каждая из различных фаз функции deleteMin — по­
иск дерева с минимальным корнем, обращение его детей, слияние детей с
оставшимися деревьями и вставка дополнительных элементов, — занимает
по O(logn).

Если необходимо, мы можем улучшить время работы findMin до 0 (1)
при помощи функтора ExplicitMin из упражнения 3.7. В разделе 10.2.2 мы
увидим, как улучшить также и время операции merge до 0 (1).

Упражнение 9.16. Допустим, нам требуется функция delete, тип кото­
рой Elem.T х Heap —> Heap. Напишите функтор, берущий реализацию куч II
и порождающий реализацию куч, поддерживающую наряду с обычными
операциями над кучей функцию delete. Используйте тип

type Heap = Н.Неар х Н.Неар

где одна из элементарных куч представляет положительные вхождения
элементов, а вторая — отрицательные вхождения. Отрицательное вхожде­
ние элемента в кучу означает, что этот элемент был уже уничтожен, но
физически ещё не удалён из кучи. Положительные и отрицательные вхож­
дения одного и того же элемента взаимоуничтожаются и физически уда­
ляются из кучи, когда оба оказываются минимальными элементами своих
куч. Поддерживайте инвариант, что минимальный элемент положитель­
ной кучи строго меньше, чем минимальный элемент отрицательной кучи.
(У этой реализации есть забавное свойство: элемент можно уничтожить
прежде, чем он вставлен в кучу; для многих приложений это свойство без­
вредно.)

158 9. Числовые представления

functor SkewBinomialHeap (Element: O rdered): Heap = struct
structure Elem = Element
datatype Tree = N ode o f int x Elem.T x Elem.T list x Tree list
type Heap = Tree list
val empty = []
fun isEmpty ts = null ts
fun rank (N ode (r, x, xs, c)) = r
fun root (N ode (r, x, xs, c)) = x
fun link (ti as N ode (r, xi, xsi, c i), t2 as N ode (_ , x 2 , x s 2, c 2)) =

if Elem.leq (xi, X2) then N ode (r+ i, xi, xsi, t2 :: ci)
else N ode (г + i , X2 , XS2 , ti :: c2)

fun skewLink (x, ti, t2) =
let val Node (r, y, ys, c) = link (ti, t2)
in if Elem.leq (x, y) then N ode (г, x, у :: ys, c)

else N ode (r, y, x :: ys, c)
end

fun insTree (t , []) = [t]
I insTree (ti, t2 :: ts) = if rank ti Crank t2 then ti :: t2 :: ts

else insTree (link (ti, t2), ts)
fun mergeTrees (tsi, []) = tsi | mergeTrees ([], tS2) = tS2

I mergeTrees (tsi as ti :: t s / , ts2 as t2 :: tS2 *) =
if rank ti <rank t2 then ti :: mergeTrees (ts /, tS2)
else if rank t2 <rank tj then t2 :: mergeTrees (tsi, tsj')
else insTree (link (ti, t2), mergeTrees (tsi', tS2 *))

fun normalize [] = [] | normalize (t :: ts) = insTree (t, ts)
fun insert (x, ts as ti :: t2 :: rest) =

if rank ti = rank t2 then skewLink (x, ti, t2) :: rest
else N ode (0, x, [], []) :: ts

I insert (x, ts) = N ode (0, x, [], [)) :: ts
fun merge (tsi, tS2) = mergeTrees (normalize tsi, normalize ts2)
fun removeMinTree [)= raise E m pty

I removeMinTree jt) = (t, 11)
I removeMinTree (t :: ts) =

let val (t', ts') — removeMinTree ts
in if Elem.leq (root t, root /) then (t, ts) else (/ , t :: ts/) end

fun findMin ts = let val (t, _) = removeMinTree ts in root t end
fun deleteMin ts =

let val (N ode (_ , x, xs, tsi), tS2) = removeMinTree ts
fun insert All ([] , ts) = ts

I insertAll (x :: xs, ts) = insertAll (xs, insert (x, ts))
in insertAll (xs, merge (rev ts 1 , tS2)) end

end

Рис. 9.8: скошенные биномиальные кучи.

9-4- Троичные и четверичные числа 159

9.4. Троичные и четверичные числа

В информатике мы настолько привыкли работать с двоичными чис­
лами, что иногда забываем о существовании других оснований. В этом
разделе мы рассмотрим использование арифметики по основанию 3 и 4
в числовых представлениях.

Вес каждой цифры при основании к равен кг , так что нам нужны
семейства деревьев, имеющих такие размеры. Можно построить обобщения
для каждого из семейств деревьев, используемых в двоичных числовых
представлениях:

Определение 9.4. (Полные к-ичные листовые деревья) Полное к-
ичное дерево (complete к-ary tree) ранга 0 представляет собой лист, а полное
fc-ичное дерево ранга г > 0 представляет собой узел с к поддеревьями,
каждое из которых является полным к-ичным деревом ранга г — 1. Полное
fc-ичное дерево ранга г содержит (kr+1 — 1)/{к — 1) узлов и кТ листьев.
Полное /с-ичное листовое дерево — это полное к-ичное дерево, где элементы
содержатся только в листьях.

Определение 9.5. (fc-номиальные деревья) к-номиалъное дерево (к-
nomial tree) ранга г представляет собой узел, у которого есть для каждого
ранга q от г — 1 до 0 по к — 1 поддерева, имеющих ранг q. Иначе выражаясь,
fc-номиальное дерево ранга г > 0 представляет собой fc-номиальное дерево
ранга г — 1, к которому в качестве левых поддеревьев присоединены ещё
к — 1 fc-номиальных дерева ранга г — 1. Из второго определения легко
увидеть, что fc-номиальное дерево ранга г содержит кг узлов.

Определение 9.6. (fc-ичные подвешенные деревья) к-ичпое подве­
шенное дерево (fc-ary pennant) ранга 0 представляет собой единственную
вершину, а fc-ичное подвешенное дерево ранга г > 0 представляет со­
бой вершину с к — 1 поддеревьями, каждое из которых является пол­
ным fc-ичным деревом ранга г — 1. Каждое из этих поддеревьев содержит
(kr — l) /(fc — 1) узлов, так что всё дерево целиком содержит кг узлов.

Преимущество при использовании оснований больше двойки заключа­
ется в том, что для представления каждого числа требуется меньше цифр.
В то время как число по основанию 2 содержит примерно log2 п цифр,
число по основанию к содержит приблизительно logк п = log2n /lo g 2 fc
цифр. Например, при основании 4 нужно примерно вдвое меньше цифр,
чем при основании 2. С другой стороны, теперь для каждой цифры име­
ется больше возможных значений, так что обработка каждой цифры мо­
жет отнимать больше времени. В числовых представлениях обработка од­
ной цифры по основанию к часто требует примерно к + 1 шагов, так

1(30 9. Числовые представления

что операция, затрагивающая каждую цифру, должна отнимать примерно
(fc+1) logfc п = logn шагов. В следующей таблице приведены значения
(к + l) / l o g 2 к для к = 2 , . . . ,8.

к 2 3 4 5 6 7 8
(к + 1) / log2 к 3.00 2.52 2.50 2.58 2.71 2.85 3.0

По этой таблице можно заключить, что числовые представления, осно­
ванные на троичных или четверичных числах, могут выигрывать до 16%
у числовых представлений на основе двоичных чисел. Другие факторы,
например, размер кода, часто делают большие основания менее эффек­
тивными при увеличении к, так что настолько большие ускорения редко
встречаются на практике. Более того, троичные и четверичные представ­
ления на маленьких объёмах данных часто работают хуже, чем двоичные
представления. Однако для больших объёмов данных троичные и четве­
ричные представления часто приносят ускорение от 5 до 10%.

Упражнение 9.17. Реализуйте триномиальные кучи, используя тип

datatype Tree = N ode of Elem.T x (Tree x Tree) list
datatype Digit = Z ero | One of Tree | T w o of Tree x Tree
type Heap = Digit list

Упражнение 9.18. Реализуйте безнулевыс четверичные списки с произ­
вольным доступом на основе типа

datatype a Tree = L ea f of а | N ode of a Tree vector,
datatype a RList = a Tree vector list

где каждый вектор в N ode содержит по четыре дерева, а каж ды й вектор
в списке содержит от одного до четырёх деревьев.

Упражнение 9.19. Можно также приспособить к произвольному осно­
ванию понятие скошенного двоичного числа. В скошенных к-ичных чис­
лах г-я цифра имеет вес (fc8+1 — 1)/(к — 1). Цифры выбираются из набора
{ 0 , . . . , А; — 1}, плюс младшая ненулевая цифра может равняться к. Реа­
лизуйте скошенные троичные списки с произвольным доступом на основе
типа

datatype a Tree = L ea f of а \ N ode of а х a Tree х a Tree х a Tree
type a RList = (int х a Tree) list

9.5. Примечания 161

9.5. Примечания

Структуры данных, которые можно описать как числовые пред­
ставления, встречаются па удивление часто, но явным образом связь
с каким-либо вариантом системы счисления упоминают лишь изредка
[GMPR77, Муе83, СМР88, КТ96Ь]. Скошенные списки с произвольным до­
ступом впервые появились в |Oka9Gb]. Скошенные биномиальные кучи опи­
саны в [BQ9G].

10. Развёртка структур данных

Английское слово bootstrapping* означает «процесс приподнимания
самого себя за шнурки ботинок». Этот, казалось бы, бессмысленный об­
раз описывает распространённую в информатике ситуацию, когда, чтобы
решить задачу, нам нужно иметь готовое решение той же самой задачи
(в какой-то её более простой разновидности).

Рассмотрим, например, процесс загрузки операционной системы в
компьютер с диска или магнитной ленты. Без операционной системы ком­
пьютер не может даже обратиться к диску или ленте! Решением будет
начальный загрузчик (bootstrap loader) — крошечная, неполная операци­
онная система, чьей единственной целью является чтение несколько более
крупной и мощной операционной системы и передача ей управления. Та,
в свою очередь, считывает настоящую операционную систему и передаёт
управление уже ей. Можно рассматривать эту картину как пример раз­
вёртки полного решения па основе неполного.

Другим примером может служить развёртка компилятора. Обычно
компилятор с языка пишется на самом этом языке. Но как тогда ском­
пилировать этот компилятор? Одно из возможных решений — написать
простой, неэффективный интерпретатор нового языка на каком-либо ста­
ром существующем языке. С помощью этого интерпретатора компилятор
применяется к своему собственному коду, и получается эффективный ком­
пилятор в виде скомпилированного кода. Можно рассматривать это как
пример развёртки эффективного решения на основе неэффективного.

Адам Бухсбаум в своей диссертации [ВисЭЗ] описывает две методи­
ки разработки алгоритмов, которые он вместе называет развёртка струк­
тур данных (data-structural bootstrapping). Первая методика, структур­
ная декомпозиция (structural decomposition), предназначена для развёрт­
ки неполных структур данных, чтобы получить полные. Вторая методика,
структурная абстракция (structural abstraction), используется для раз­
вёртки неэффективных структур данных в эффективные. В этой главе мы
заново рассматриваем обе этих методики и добавляем к ним третью, поз­
воляющую развёртывать структуры данных с простейшими элементами и
получать структуры с составными элементами.

*Я перевожу это слово как «развёртка». Каламбур при этом, к сожалению, теряется.
— п р и м . п ер ев .

10.1. Структурная декомпозиция 1G3

10.1. Структурная декомпозиция

Структурная декомпозиция (structural decomposition) — это метод
для получения полных структур данных на основе неполных. Как правило,
берётся реализация, способная рабо тать только с объектами ограниченного
размера (может быть, даже только нулевого размера), и расширяется так,
чтобы работать с объектами неограниченного размера.

Рассмотрим типичные рекурсивные типы данных, например, списки
и двоичные листовые деревья.

datatype a List = N il | Cons o f а х a List
datatype a Tree = L ea f o f a | N ode o f a Tree x a Tree

При желании их можно рассматривать как примеры структурной декомпо­
зиции. И то, и другое определение состоит из простой реализации для объ­
ектов ограниченного размера (ноль для списков и один для деревьев) плюс
правило для рекурсивной декомпозиции более крупных объектов в более
мелкие, пока, в конце концов, все объекты не окажутся достаточно малень­
кими, чтобы с ними справилось базовое правило.

Однако оба этих определения просты ещё и в том, что рекурсивная
компонента каждого определения совпадает с определяемым типом. На­
пример, рекурсивная компонента определения a List также является a List.
Такой тип называется гомогенно рекурсивным (uniformly recursive).

Как правило, мы используем термин структурная декомпозиция
для описания структур данных, которые являются гетерогенными (non-
uniform). Рассмотрим, например, такое определение последовательностей:

datatype a Seq = N il' | C ons' o f а х (а х a) Seq

Здесь последовательность может быть либо пустой, либо состоять из
элемента и последовательности пар элементов. Рекурсивная компонента
(а х a) Seq отличается от a Seq, так что этот тип гетерогеиен.

Почему мы можем предпочитать гетерогенное определение гомогенно­
му? Часто гетерогенные типы за счёт своей более изощрённой структуры
поддерживают более эффективные алгоритмы, чем их гомогенные ана­
логи. Сравним, например, следующие функции определения размера для
списков и последовательностей:

fun sizeL N il = О
| sizeL (Cons (x , xs)) = 1+sizeL xs

fun sizeS N il' = 0
| sizeS (C ons' (x , ps)) = 1+2 * sizeS ps

Функция для списков требует время О (п), в то время как функция для
последовательностей требует O(log n).

164 10. Развёртка структур данных

10.1.1. Гетерогенная рекурсия и Стандартный M L

К сожалению, как правило, мы не можем выразить структурную де.
композицию напрямую на Стандартном ML. Несмотря на то, что Стад,
дартный ML позволяет определять гетерогенные рекурсивные типы дан­
ных, система типов запрещает большинство интересных функций па осно­
ве этих типов. Рассмотрим, например, функцию sizeS для последователь­
ностей. Эта функция будет отвергнута компилятором Стандартного ML,
поскольку система типов требует, чтобы все рекурсивные вызовы в теле
рекурсивной функции имели тот же тип, что и объемлющая функция (то
есть рекурсивные определения функций должны быть гомогенны). Функ­
ция sizeS нарушает это ограничение, поскольку внешнее вхождение sizeS
имеет тип a Seq —> int, а внутреннее — тип (а х а) Seq —> int.

Всегда можно преобразовать гетерогенный тип в гомогенный, введя
новый тип данных, который сливает различные употребления в один тип.
Например, сливая элементы и пары элементов, можно переписать тип Seq
в виде

datatype а ЕР = Elem o f а | Pair o f а ЕР х а ЕР
datatype a Seq = N il' | C ons' o f а ЕР х a Seq

В гаком случае sizeS оказывается совершенно законной в том виде, как она
исходно была записана; как внешний вызов sizeS, так и внутренний имеют
тип a Seq —> int.

Поскольку гетерогенный тип всегда можно преобразовать в гомоген­
ный, термин «структурная декомпозиция» относится скорее к способу на­
шего рассуждения о типе данных, чем к его реализации. Рассмотрим, на­
пример, модифицированное определение типа Seq, приведённое выше. Тип
a Seq изоморфен двоичным листовым деревьям, так что модифицирован­
ная версия a Seq эквивалентна a Tree list. Однако, как правило, мы думаем
о списке деревьев иначе, чем о последовательности пар некоторые ал­
горитмы кажутся проще или естественнее в одном представлении, другие
в другом. В следующем разделе мы увидим несколько примеров.

Есть также несколько практических соображений, заставляющих нас
предпочитать гетерогенное определение a Seq гомогенному. Во-первых, оно
короче; имеется один тип, а не два, и незачем всюду вручную расставлять
конструкторы E lem и Pa ir . Во-вторых, в некоторых реализациях языка
гетерогенное определение может быть эффективнее: нет необходимости
проводить сопоставление с конструкторами E lem и Pa ir , и незачем во
время выполнения строить в памяти представления этих конструкторов-
В-третьпх, и это самое важное соображение, гетерогенное определение поз­
воляет системе типов отлавливать намного больше программистских оши­

10.1. Структурная декомпозиция 165

бок. Тип в гетерогенном определении обеспечивает инвариант, что внеш­
ний конструктор C ons ' содерж ит один элемент, второй пару элементов,
третий пару пар, и так далее. Тип гомогенного определения не гарантиру­
ет ни баланса в парах, ни увеличения глубины пар по одному на уровень.
Эти ограничения долж ны обеспечиваться программистом как инварианты
системы. Но если программист ненамеренно нарушит эти инварианты
например, использовав элемент там, где ожидается пара, - система типов
не поможет ему поймать эту ошибку.

Исходя из этих соображений, мы часто представляем код так, как ес­
ли бы Стандартный ML поддерживал гетерогенные рекурсивные опреде­
ления функций, известные также как полиморфная рекурсия (polymorphic
recursion) [Мус84]. Наш код будет невозможно напрямую выполнить, но он
будет более читаемым. Его всегда можно преобразовать обратно в закон­
ный Стандартный ML, используя приёмы, описанные пару абзацев назад.

10 .1 .2 . С нова двоичны е списки с произвольным доступом

При всех своих достоинствах, обсуждаемый нами тин a Seq бесполе­
зен для представления последовательностей. Проблема в том, что он может
представлять только последовательности длиной 2fc —1. Если использовать
терминологию числовых представлершй, конструктор C ons ' позволяет нам
записывать биты-единицы, но не биты-нули. Это легко исправить, добавив
в тип ещё один конструктор. Кроме того, мы переименовываем конструк­
тор C ons ' , чтобы подчеркнуть аналогию с двоичными числами.

datatype a Seq = N il | Z ero of (а х а) Seq | O ne of а х (а х а) Seq

Теперь последовательность 0 . . . 10 можно представить как

O ne (0, O n e ((1,2), Z e ro (O ne ((((3,4),(5,6)),((7,8),(9,10))), Nil))))

Размер этой последовательности 11, что в двоичном виде записывается как
1101 .

Пары в этом типе всегда сбалансированы. В сущности, можно думать
о парах элементов или о парах пар элементов и т. д. как о полных двоич­
ных листовых деревьях. Таким образом, наш тип, по существу, эквивален­
тен типу двоичных списков с произвольным доступом из раздела 9.2.1, но
только с явно представленными инвариантами.

Давайте заново реализуем функции двоичных списков с произволь­
ным доступом , на этот раз рассуждая в терминах элементов и последо­
вательностей пар, а не в терминах списков полных двоичных листовых
Деревьев. Функции rio-прежнему будут работать за время O (logn), однако,

1G6 10. Развёртка структур данных

как мы сейчас увидим, новый способ мышления, как правило, даёт нам
более короткие и понятные алгоритмы.

Начнём с функции cons. Первые два варианта не представляют труд,
иости:

fun cons (х, N il) = O ne (х , N il)
| cons (x, Z ero ps) = O ne (x , ps)

Чтобы добавить элемент к последовательности, имеющей вид O ne (у, ps),
мы строим пару из нового и существующего элементов, и добавляем её
в последовательность пар.

fun cons (х, O ne (у, ps)) = Z ero (cons ((x, у), ps))

Здесь требуется полиморфная рекурсия: внешний cons имеет тип

а х a Seq —>• a Seq

а внутренний cons имеет тип

(а х а) х (а х a) Seq —» (а х a) Seq

Мы реализуем функции head и tail через вспомогательную функцию
uncons, разбивающую последовательность на первый элемент и последова­
тельность остальных элементов.

fun head xs = let val (x, _) = uncons xs in x end
fun tail xs = let val (_ , xs') = uncons xs' in xs' end

Функция uncons получается путём прочтения всех строчек cons справа на­
лево.

fun uncons (One (x , N il)) = (х, N il)
| uncons (One (x , ps)) = (x, Z ero ps)
| uncons (Z ero ps) = let val ((x, y), ps') = uncons ps

in (x, O ne (y, ps')) end

Рассмотрим теперь функцию lookup. Получив последовательность
One (х , ps), мы либо возвращаем х, либо переадресуем запрос к Zero ps.

fun lookup (0, One (x , ps)) = x
| lookup (i , O ne (x , p s)) = lookup (i — 1, Z ero ps)

Чтобы найти элемент по индексу г в списке пар, мы находим пару по ин­
дексу [г /2J, а затем извлекаем нужный элемент из этой пары.

fun lookup (i, Z ero ps) = let val (x, y) = lookup (i div 2, ps)
in if i mod 2 = 0 then x else у end

Г 10.1. Структурная декомпозиция 167

Наконец, рассмотрим функцию update. Варианты для конструктора
O n e в ы г л я д я т просто:

fun update (0, е, O ne (х , ps)) = O ne (е, ps)
| update (i , e, O ne (x , ps)) = cons (x , update (i — 1, e, Z ero ps))

Однако пытаясь обновить элемент в последовательности пар, мы сталкива­
емся с небольшой проблемой. Нам нужно обновить пару по индексу
но, чтобы создать новую пару, требуется второй элемент старой пары. По­
этому прежде, чем рекурсивно вызвать update, нам приходится вызывать
lookup.

fun update (i, e, Z ero ps) =
let val (x, y) = lookup (i div 2, ps)

val p = if i mod 2 = 0 then (e, y) else (x, e)
in Zero (update (i—1, p, ps)) end

У праж нен ие 10.1. Докажите, что эта версия update работает за время
О (log2 п).

Чтобы восстановить ограничение О (log п) для функции update, надо
избавиться от вызова lookup. Но как тогда мы получим второй элемент, ко­
торый нам нужен для построения новой пары? Если мы не можем привести
Магомета к горе, придётся вести гору к Магомету. А именно, вместо того,
чтобы получать старую пару и локально конструировать новую, мы стро­
им функцию для построения новой пары из старой, когда эта старая пара
будет найдена. Используем вспомогательную функцию fupdate, принимаю­
щую в качестве аргумента функцию, которую требуется применить к г-му
элементу последовательности. В этом случае update выглядит просто как

fun update (i, у, xs) = fupdate (fn x => y, i, xs)

Ключевым шагом в fupdate будет преобразование функции f на элементах
в функцию f ', принимающую пару элементов, и, в зависимости от чётно­
сти i, применяющую f либо к первому, либо ко второму элементу пары.

fun ? (х, у) = if i mod 2 = 0 then (f x, y) else (x, f y)

Имея это определение, уже нетрудно написать оставшуюся часть fupdate.

fun fupdate (f , 0, O ne (x, ps)) = O ne (f x, ps)
| fupdate (f , i, O ne (x, ps)) = cons (x, fupdate (f, i—1, Z ero ps))
| fupdate (f , i , Z ero ps) =

let fun f* (x, y) = if i mod 2 = 0 then (f x, y) else (x, f y)
in Zero (fupdate (f , i div 2, ps)) end

1

s t r u c t u r e AltBinaryRandomAccessList: R andom AccessList =
(* предполагается полиморфная рекурсия! *)

struct
datatype a RList =

N il I Z ero o f (a x a) RList | O ne o f a x (a x a) RList

val empty = N il

fun isEmpty N il = true | isEmpty _ = false
fun cons (x , N il) = O ne (x , N il)

| cons (x , Z ero ps) = O ne (x , ps)
| cons (x, O ne (y, ps)) = Z ero (cons ((x, y), ps))

fun uncons N il = raise Em pty

| uncons (O ne (x, N il)) = (x, N il)
| uncons (One (x , ps)) = (x, Zero ps)
| uncons (Z ero ps) = let val ((x, y), ps') = uncons ps

in (x, One (y, ps')) end
fun head xs = let val (x, _) = uncons xs in x end
fun tail xs = let val (_ , xs') = uncons xs in xs' end
fun lookup (i, N il) = raise Subscript

| lookup (0, One (x , ps)) = x
| lookup (i, One (x , ps)) = lookup (i—1, Z ero ps)
| lookup (i, Z ero ps) = let val (x, y) = lookup (i div 2, ps)

in if i mod 2 = 0 then x else у end
fun fupdate (f , i, N il) = raise Subscript

| fupdate (f , 0, One (x , ps)) = One (f x, ps)
| fupdate (f, i, One (x , ps)) = cons (x, fupdate (f , i—1, Z ero ps))
| fupdate (f, i, Z ero ps) =

let fun f' (x, y) = if i mod 2 = 0 then (f x, y) else (x, f y)
in Z ero (fupdate (f ' , i div 2, ps)) end

fun update (i, y, xs) = fupdate (fn x =>y, i, xs)
end

Рис. 10.1: альтернативная реализация двоичных списков с произвольным
доступом.

При сравнении полной реализации на рис. 10.1 и рис. 9.С мы видим,
что новая реализация намного короче и что все функции заметно проще;
может быть, за исключением update. (А если мы не боимся функций выс­
ших порядком, то даже update выглядит проще.) Все эти преимущества
получены потому, что мы представили структуру данных в виде гетеро­
генного типа, прямо отражающего искомые инварианты.

10. Развёртка структур данных

10.1. Структурная декомпозиция 1G9

У п раж н ен и е 10.2. Измените AltBinaryRandomAccessList, чтобы cons, head
и tail работали за амортизированное время 0 (1) , используя тип

datatype a RList =
N il

| One o f a x (a x a) RList susp
| Tw o o f a x a x (a x a) RList susp
| T hree o f a x a x a x (a x a) RList susp

10.1.3. Развёрнутые очереди

Рассмотрим использование -Н- в очередях по методу банкира из разде­
ла 6.3.2. Во время проворота очереди головной поток f заменяется потоком
f -tf reverse г. После последовательности проворотов головной поток имеет
вид

((f -Н- reverse ri) -Н- reverse гг) -Н- • • ■ -Н- reverse гь

Хорошо известно, что append в таких левоассоциативных контекстах неэф­
фективен, поскольку он многократно обрабатывает элементы потоков, рас­
положенных слева. Например, в этом случае элементы f будут обработаны
к раз (по разу на каждое вхождение 4 f), а элементы г, будут обработаны
к — г + 1 раз (один раз при выполнении reverse, а затем по разу на каждое
-Н- справа). В общем случае левоассоциативная конкатенация легко ведёт
к квадратичному поведению. К счастью, в нашем случае общая стоимость
всех конкатенаций по-прежнему линейна, поскольку каждый г, по меныней
мере вдвое длиннее предыдущего. Однако повторная обработка иногда на
практике делает эти очереди слишком медленными. Сейчас мы исправим
этот недостаток с помощью структурной декомпозиции.

Считая, что передний поток имеет вышеописанную структуру, мы раз­
биваем его на две части: f и коллекцию т = {reverse п , . . . , reverse г/,}. Мы
можем теперь представлять f в виде списка, а каждый из reverse г, как за­
держанный список. Хвостовой поток г мы также заменяем на список. Эти
преобразования уничтожают подавляющее большинство задержек, и нам
Удаётся избежать почти всех расходов, связанных с ленивым вычислением.
Как же представить коллекцию ?тг? Мы увидим, что доступ к этой коллек­
ции происходит по правилу FIFO, поэтому, используя структурную деком­
позицию, мы можем её представить как очередь задержанных списков. Как
обычно в рекурсивных типах нам нужно основание рекурсии, поэтому пу­
стые очереди мы представляем через особый конструктор1. Следовательно,
наше новое представление будет

1 Немного более эффективным вариантом было бы представлять очереди, меньшие
определённого фиксированного размера, как обыкновенные списки.

170 10. Развёртка структур данных

datatype a Queue =
Е | Q o f int х a list х a list susp Queue х int х a list

Первое целое число, lenfm, представляет собой совокупную длину f и всех
задержанных списков в m (то есть это величина, которая в старом пред.
ставлении называлась просто lenf). Второе целое число, lenr — это, как
обычно, просто длина г. Обычный наш инвариант баланса принимает вид
lenr ^ lenfm. Кроме того, мы требуем, чтобы список f был непустой. (В
старом представлении f мог быть пуст, если пуста была вся очередь, н0
теперь мы этот случай представляем отдельно.)

Как обычно, функции, работающие с очередью, написать нетрудно.

fun snoc (Е, х) = Q (1, [х], Е, 0, [))
| snoc (Q (lenfm, f, m, lenr, r), x) = checkQ (lenfm, f, m, lenr+l, x::r)

fun head (Q (lenfm, x :: f', m, lenr, r)) = x
fun tail (Q (lenfm, x :: f', m, lenr, r)) = checkQ (lenfm—1, f', m, lenr, r)

Всё самое интересное содержится во вспомогательной функции checkQ. Ес­
ли список г слишком длинный, то checkQ создаёт задержку, которая долж­
на развернуть г наоборот, а также оставляет задержку в т . После провер­
ки длины г функция checkQ вызывает вторую вспомогательную функцию
checkF, которая гарантирует, что список f непуст. Если пусты и f, и т , то
вся очередь пуста. В противном случае, если пуст список f, мы изымаем
первую задержку из т , вынуждаем её и запоминаем получившийся список
как новую f.

fun checkF (lenfm, [], E, lenr, r) = E
| checkF (lenfm, [], m, lenr, r) =

Q (lenfm, force (head m), tail m, lenr, r)
| checkF q = Q q

fun checkQ (q as (lenfm, f, m, lenr, r)) =
if lenr Sj lenfm then checkF q
else checkF (lenfm-I-lenr, f, snoc (m, $rev r),0, [])

Обратите внимание, что checkQ и checkF вызывают snoc и tail, которые,
в свою очередь, зовут checkQ. Следовательно, эти функции нужно опреде­
лять через взаимную рекурсию. Полная реализация приведена на рис. 10.2.

Эти очереди создают задержку, выполняющую обращение хвостового
списка, в тот же самый момент, что и очереди по методу банкира, а вынуж­
дают её на одну операцию раньше, чем очереди по методу банкира. Значит,
поскольку операция обращения добавляет только 0 (1) а м о р т и з и р о в а н н о ­

го времени к каждой операции в очередях по методу банкира, в наших
развёрнутых очередях она тоже добавляет только 0 (1) амортизирован­
ного времени. Однако время выполнения snoc и tail больше н е является

г 10.1. Структурная декомпозиция 171

structure BootstrappedQueue: Q ueue =
(* предполагается полиморфная рекурсия! *)

struct
datatype a Queue = Е | Q o f int х a list х a list susp Queue х int х a list

val empty = E
fun isEmpty E = true | isEmpty _ = false

fun checkQ (q as (lenfm, f, m, lenr, r)) =
if lenr < lenfm then checkF q
else checkF (lenfm+lenr, f, snoc (m, $(rev r)), 0, [])

and checkF (lenfm, [], E, lenr, r) = E
| checkF (lenfm, [], m, lenr, r) =

Q (lenfm, force (head m), tail m, lenr, r)
| checkF q = Q q

and snoc (E, x) = Q (1, [x], E, 0, [])
| snoc (Q (lenfm, f, m, lenr, r), x) = checkQ (lenfm, f, m, lenr+l, x :: r)

and head E = raise Em pty

| head (Q (lenfm, x :: f', m, lenr, r)) = x
and tail E = raise E m pty

| tail (Q (lenfm, x :: f', m, lenr, r)) = checkQ (lenfm—1, I*, m, lenr, r)
end

Рис. 10.2: развёрнутые очереди иа основе структурной декомпозиции.

константой! Обратите внимание, что snoc вызывает checkQ, а эта функ­
ция, в свою очередь, может вызвать snoc для т . Таким образом, может
возникнуть каскад вызовов snoc, по одному на каждом уровне очереди.
Но последовательные списки в m по крайней мере удваиваются в разме­
ре, так что длина m равна O (logn). Поскольку длина срединной очереди
уменьшается по крайней мере на логарифмический множитель на каждом
уровне, глубина всей очереди не больше 0 (log *n). Функция snoc на каж­
дом уровне производит 0 (1) амортизированной работы, так что всего snoc
требует 0 (log* п) амортизированного времени.

Подобным образом, вызов tail может привести к вызовам как snoc (из
checkQ), так и tail (из checkF). Заметим, что когда такое бывает, tail при­
меняется к результату snoc. Итак, snoc может рекурсивно себя вызвать, а
tail может рекурсивно вызвать и snoc, и tail. Однако из упражнения 10.3
мы знаем, что никогда snoc и tail не вызывают snoc рекурсивно подряд.

172 10. Развёртка структур данных

Следовательно, и snoc, и tail вызываются максимум по разу на уровень
Поскольку на каждом уровне и snoc, и tail выполняют 0 (1) амортизиро­
ванной работы, общая амортизированная стоимость tail равна О (log* п).

Замечание. На практике 0 (log* п) является константой. Чтобы глубина
достигла хотя бы пяти, очередь должна содержать не менее 2r>" ’ u> эле­
ментов. Более того, если представлять очереди до размера четыре просто
в виде списков, то очереди с числом элементов примерно до четырёх мил­
лиардов будут содержать не более трёх уровней.

Указание разработчикам. На практике варианты этих очередей опере­
жают все другие известные реализации в приложениях, где устойчивость
используется умеренно, но требуется хорошее поведение даже в патологи­
ческих случаях.

Упражнение 10.3. Рассмотрим выражение tail (snoc (q, х)). Покажите,
что никогда не будет так, чтобы оба вызова, snoc и tail, рекурсивно обра­
тились к snoc.

Упражнение 10.4. Реализуйте эти очереди без использования поли­
морфной рекурсии при помощи типов

datatype a EL = Elem o f а \ L i s t o f a EL list susp
datatype a Queue = E | Q o f int x a EL list x a Queue x int x a EL list

Упражнение 10.5. Ещё один способ избежать полиморфной рекурсии —
представлять середину при помощи какой-либо другой реализации очере­
дей. Тогда тип развёрнутых очередей будет

datatype a Queue =
Е | Q o f int х q list x a list susp PrimQ.Queue x int x a list

где PrimQ другая реализация очередей.

(а) Реализуйте этот вариант развёрнутых очередей как функтор вида

functor BootstrappedQueue (PrimQ: Q ueue): Q ueue = . . .

(б) Докажите, что если в качестве параметра PrimQ выступает какая-
либо реализация очередей реального времени, то все операции на раз­
вёрнутых очередях выполняются за амортизированное время 0 (1).

10.2. Структурная абстракция 173

10.2. Структурная абстракция

Второй разновидностью развёртки структур данных является струк­
турная абстракция (structural abstraction). Как правило, она использует­
ся, чтобы расширить реализацию каких-либо коллекций, скажем, списков
или куч, эффективной функцией слияния для сочетания двух коллекций.
Во многих реализациях нетрудно построить эффективную функцию insert,
которая добавляет в коллекцию один новый элемент, но намного слож­
нее построить эффективную функцию слияния. Структурная абстракция
создаёт коллекции, содержащие другие коллекции в качестве элементов.
В таком случае, две коллекции можно слить, просто вставив одну в дру­
гую.

Идею структурной абстракции можно почти полностью описать на
уровне типов. Допустим, имеется тип коллекций а С с элементами типа а,
и этот тип поддерживает эффективную функцию insert с сигнатурой

val insert : а х a C - t a C

Назовём а С элементарным типом (primitive type). На основе этого типа
мы хотим создать новый тип данных а В, называемый развёрнутым ти­
пом (bootstrapped type), чтобы а В эффективно поддерживал и операцию
insert, и операцию join, с сигнатурами

val insertв : а х а В 4 а В
val joinB : a B x a B - t a B

(С помощью нижнего индекса мы отличаем функции развёрнутого типа
от функций элементарного типа.) Кроме того, развёрнутый тип должен
поддерживать эффективную функцию unit для создания новой одноэле­
ментной коллекции.

val units : а ^ а В

Тогда можно реализовать insert в просто как

fun inserts (х, b) = joins (units х, Ь)

Основная идея структурной абстракции состоит в том, чтобы представлять
развёрнутые коллекции как элементарные коллекции других развёрнутых
коллекций. Тогда можно реализовать joins через insert (а не inserts!) при­
близительно как

fun joins (bi, Ьг) = insert (bi, b2)

Этот код вставляет bj в Ь2 как элемент. Можно также вставить Ьг как
элемент в Ь|; фокус в том, что мы свели join к простой вставке.

174 10. Развёртка структур данных

Разумеется, всё не так просто. На основе приведённого описания
могли бы попытаться определить а В как

datatype а В = В o f (а В) С

Можно считать, что эго определение задаёт изоморфизм

а В = (а В) С

Раскрыв этот изоморфизм несколько раз, мы легко увидим ошибку в опре­
делении.

q В = (а В) С = ((а В) С) С = ••• = ((••• С) С) С

Тип а исчез, так что в нашей коллекции невозможно хранить никакие
элементы! Можно справиться с этой проблемой, если сделать каждую раз­
вёрнутую коллекцию парой, состоящей из одного элемента и элементарной
коллекции.

datatype а В = В o f а х (а В) С

Тогда, например, units можно определить как

fun unite х = В (х, empty)

где empty — пустая элементарная коллекция.
Однако теперь возникает ещё одна проблема. Если каждая развёрну­

тая коллекция содержи т по крайней мере один элемент, как мы предста­
вим пустую развёрнутую коллекцию? Следовательно, мы снова исправля­
ем тип.

datatype а В = Е | В o f а х (а В) С

Замечание. На самом деле, мы всегда устраиваем так, чтобы элементар­
ная коллекция С содержала только непустые развёрнутые коллекции. Эту
ситуацию можно более точно описать с помощью типов

datatype а В+ = В+ o f а х (а В+) С
datatype а В = Е | NE o f В+

К сожалению, определения такого вида ведут к более многословным про­
граммам, так что мы продолжаем использовать менее точное, но более
короткое определение.

Теперь можно уточнить шаблоны функций insert в и join в:

fun insert в (х, Е) = В (х, empty)
| inserts (х, В (у, с)) = В (х, insert (unite у, с))

10.2. Структурная абстракция 175

fun joins (b, E) = b
| joins (E, b) = b
j joins (B (x, c), b) = В (x, insert (b, c))

В этих шаблонах можно легко изменять различные детали. Например, во
второй строке insert в можно поменять местами х и у. Точно так же, в тре­
тьей строке joins мы можем поменять ролями первый и второй аргументы.

Для каждого конкретного типа коллекций, как правило, существует
некоторый выделенный элемент, к которому легче всего обратиться или
который легче всего уничтожить, например, первый элемент или наимень­
ший. Шаблоны inserts и joins нужно конкретизировать таким образом,
чтобы выделенным элементом в коллекции В (х, с) был сам х. Творческой
частью проектирования развёрнутой структуры данных методом струк­
турной абстракции является реализация операции deletes, стирающей вы­
деленный элемент х. После уничтожения х у нас остаётся элементарная
коллекция типа (а В) С, которую надо преобразовать в развёрнутую кол­
лекцию типа а В. Подробности решения этой задачи различаются в зави­
симости от конкретной структуры.

Теперь мы собираемся конкретизировать шаблоны двумя способами.
Сначала мы развёртываем очереди так, чтобы они эффективно поддер­
живали конкатенацию (то есть операцию append). Затем мы развёртываем
кучи, чтобы в них была эффективной операция слияния.

10.2.1. Списки с эффективной конкатенацией

Первая структура данных, которую мы реализуем методом структур­
ной абстракции списки с конкатенацией, сигнатура которых представ­
лена на рис. 10.3. Списки с конкатенацией расширяют обычную сигнату­
ру списков эффективной функцией добавления одного списка к другому
(-Н-). В качестве дополнительного удобства списки с конкатенацией так­
же поддерживают операцию snoc, хотя мы могли бы легко имитировать
snoc (xs, х) при помощи xs -Н- cons (х, empty). Из-за этой способности спис­
ков с конкатенацией добавлять элементы к концу было бы правильно на­
зывать эту структуру данных деками с ограничением на вывод и конкате­
нацией.

Мы получим эффективную реализацию списков с конкатенацией, под­
держивающую все операции за амортизированное время 0 (1) , применив
развёртку к эффективной реализации очередей FIFO. Конкретный выбор
реализации для элементарных очередей не имеет особого значения; годятся
любые реализации устойчивых очередей с константным доступом, реаль-

176 10. Развёртка структур данных

signature C atenableList =
sig

type a Cat

val empty : a Cat
val isEmpty : a Cat —»bool

val cons : a x a Cat —> a Cat
val snoc : a Cat x a —> a Cat
val -Ц- : a Cat x a Cat —у a Cat

val head : a Cat —> a (* возбуждает E m pty для пустого списка *)
val tail : a Cat -> a Cat (* возбуждает E m pty для пустого списка *)

end

Рис. 10.3: сигнатура списков с конкатенацией.

пого времени или амортизированные.
Если имеется реализация элементарных очередей Q, соответствующая

сигнатуре Q ueue , по шаблону структурной абстракции списки с конкате­
нацией можно представить как

datatype a Cat = Е | С o f а х a Cat Q.Queue

Этот тип можно интерпретировать как дерево, где каждый узел содержит
элемент, а непосредственные потомки каждого узла образуют очередь сле­
ва направо. Поскольку мы хотим иметь лёгкий доступ к первому элементу
списка, мы его храним в корне дерева. На рис. 10.4 изображён пример
списка, хранящего элементы а . . . t.

Функция head проста:

fun head (С (х, _)) = х

Чтобы сконкатенировать два непустых списка, мы связываем два дерева,
делая второе из них последним ребёнком первого.

fun xs -ff Е = xs
| E -H- ys = ys
| xs -H- ys = link xs ys

Вспомогательная функция link добавляет второй аргумент к очереди детей
первого аргумента.

10.2. Структурная абстракция 177

е / д h п о р г s t

Рис. 10.4: дерево, представляющее список а .. Л.

Функции cons и snoc просто вызывают -Н- .

fun cons (х, xs) = С (х, Q.empty) -Н- xs
fun snoc (xs, x) = xs -H- С (x, Q.empty)

Наконец, имея непустое дерево, функция tail должна отбросить корень и
каким-то образом превратить очередь детей в единое дерево. Если очередь
пуста, tail должна вернуть Е. В противном случае мы связываем всех детей
вместе.

fun tail (С (х, q)) = if Q.isEmpty q then E else linkAll q

Поскольку конкатенация ассоциативна, мы имеем право связывать детей
в каком угодно порядке. Однако после небольшого размышления можно
заключить, что связывание детей справа налево, как показано на рис. 10.5,
приведёт к наименьшему повторению работы в последующих вызовах tail.
Следовательно, мы реализуем linkAll как

fun linkAll q = let val t = Q.head q
val q' = Q.tail q

in if Q.isEmpty q' then t else link (t, linkAll q') end

Зам ечание. Функция linkAll является примером схемы foldrl.

В этой реализации tail может отнимать до 0 (п) времени. Мы надеемся
уменьшить этот показатель до амортизированного 0 (1) , но чтобы добить­
ся этого в условиях устойчивости, нужно как-то ввести в нашу структуру

178 10. Развёртка структур данных

а

t a i l

и

Рис. 10.5: операция tail.

ленивое вычисление. Поскольку linkAll — единственная процедура, требу­
ющая более, чем 0 (1) времени, она является естественным кандидатом.
Мы переписываем linkAll, чтобы каждый рекурсивный вызов задерживал­
ся. Задержка вынуждается, когда дерево извлекается из очереди.

fun linkAll q = let val $t = Q.head q
val q' = Q.tail q

in if Q.isEmpty q' then t else link (t, SlinkAll q') end

Чтобы это определение имело смысл, нужно, чтобы в очередях содержа­
лись не просто деревья, а задержанные деревья, так что мы переопределя­
ем тип как

datatype a Cat = Е | С o f а х a Cat susp Q.Queue

Чтобы соответствовать этому новому типу, операция 41- должна задержи­
вать свой второй аргумент.

fun xs -Н- Е = xs
| Е -Ц- xs = xs
| xs -Н- ys = link (xs, $ys)

Полная реализация приведена на рис. 10.6.
Очевидно, что head работает за время 0 (1) в худшем случае, a cons и

snoc имеют те же временные характеристики, что и -Н- • Мы доказываем,
что -Н- и tail работают за амортизированное время 0 (1) методом банкира.
Нераздельная стоимость этих операций 0 (1) , так что нам нужно только
показать, что каждая из них высвобождает не более 0 (1) единиц долга.

Пусть dt(i) будет количество единиц долга, приписанных к г-му узлу
дерева t, a D t(i) = Yl]=o d t{j) — общая сумма долга на узлах t вплоть

10.2. Структурная абстракция 179

functor CatenableList (Q: Q ueue): C atenableL ist =
struct

datatype a Cat = E | С o f a x a Cat susp Q.Queue

val empty = E
fun isEmpty E = true | isEmpty _ = false

fun link (C (x, q), s) = С (x, Q.snoc (q, s))
fun linkAll q = let val $t = Q.head q

val q' = Q.tail q
in if Q.isEmpty q' then t else link (t, SlinkAll q') end

fun xs -tf E = xs
I E -H-xs = xs
I xs 4f ys = link (xs, $ys)

fun cons (x, xs) = С (x, Q.empty) -H-xs
fun snoc (xs, x) = xs -H-C (x, Q.empty)

fun head E = raise Em pty
| head (C (x, _)) = x

fun tail E = raise Em pty

| tail (C (x, q)) = if Q.isEmpty q then E else linkAll q
end

Рис. 10.6: списки с конкатенацией.

до г включительно. Пусть, наконец, D t будет общая сумма долга на всех
узлах t, то есть D t = D t{\t\ — 1). Мы будем соблюдать два инварианта
долга.

Во-первых, будем требовать, чтобы число единиц долга на каждом
узле было ограничено сверху степенью этого узла, то есть dt(i) ^ degreet(i).
Поскольку сумма степеней всех узлов непустого дерева на единицу меньше
размера этого дерева, это означает, что общая сумма долга, приписанная
к дереву, ограничена его размером, то есть D t < |£|. Этот инвариант мы
будем поддерживать, увеличивая долг на узле дерева только одновременно
с увеличением его степени.

Во-вторых, мы требуем, чтобы величина D t{i) была ограничена неко­
торой линейной функцией от г. Конкретная выбранная нами функция та­
кова:

D t(i) ^ * + deptht(i)

180 10. Развёртка структур данных 1

где deptht(i) есть длина пути от корня дерева t до узла г. Этот инвариант
называется лево-линейный инвариант долга, (left-linear debit invariant). За­
метим, что лево-линейный инвариант долга гарантирует нам, что d((0) —
■Dt(O) ^ 0 + 0 = 0, так что ко времени, когда узел оказывается корнем
весь долг на нём уже выплачен. (На самом деле, корень даже не является
задержкой!) Единственное место, где мы вынуждаем задержки — когда
задержанная вершина становится новым корнем.

Т еор ем а 10.1. Операции-Н- и tail сохраняют оба инварианта долга, вы­
свобождая, соответственно, одну и три единицы.

Доказательство. (-Н-) Единственная единица долга, создаваемая -ц-
иредназначеиа для тривиальной задержки её второго аргумента. Посколь­
ку степень этого узла не увеличивается, мы немедленно высвобождаем эту
единицу. Предположим теперь, что t\ и f2 непусты, и что t = ti -Н- £2 - Пусть
п = \t] |. Заметим, что индекс, глубина и общее количество единиц долга
на всех вершинах t\ не затрагиваются конкатенацией, так что для г < п,

Dt(i) = Dtl(i)
^ i + depthtl (г)
= i + deptht(i)

Индекс каждой вершины в увеличивается на п, глубина увеличивается
на единицу, а количество единиц долга увеличивается на общий долг t\,
так что

D t(n + i) = D tl + D t2{i)
< n + Dt2(i)
^ n + i + depthh (г)
= n + i + deptht (n + г) — 1
< (n + i) + deptht (n + i)

Таким образом, чтобы сохранить лево-линейный инвариант, больше ника­
кие единицы долга высвобождать не требуется.

(tail) Пусть t' = taili. Отбросив корень t, мы связываем его детей
to . . . tm- i справа налево. Пусть £'• будет частичный результат связывания
tj . . . tm_ 1 . Тогда t' = tq. Поскольку все операции связывания, кроме по­
следней, задерживаются, мы присваиваем по одной единице долга корню
каждого tj, 0 < j < т — 1. Заметим, что степень каждого из этих узлов
увеличивается на единицу. Кроме того, одну единицу долга мы присваи­
ваем корню из-за того, что задерживается последний вызов linkAll,
хотя он и не вызывает link. Поскольку степень этого узла не меняется, мы
немедленно высвобождаем эту последнюю единицу долга.

Предположим теперь, что г-й узел дерева t оказывается в дереве tj-

10.2. Структурная абстракция 181

Исходя из лево-линейного инварианта долга, мы знаем, что D t(i) < г +
deptht(i), однако рассмотрим теперь, как каждая из величин изменяется
при применении операции tail. Значение i уменьшается на единицу, по­
скольку отбрасывается первый элемент. Глубина каждого узла в tj увели­
чивается на j — 1 (см. рис. 10.5), а общее число единиц долга на каждом
узле tj увеличивается на j . Таким образом,

D t'(i — 1) = D t(i) + j
< г + deptht(i) + j
= г 4- (depthv (i - 1) - (j - 1)) + j
= [i — 1) + deptht,(i — 1) + 2

Высвобождение первых двух единиц долга восстанавливает инвариант, так
что всего получается высвобождено три единицы.

Указание р а зр а ботч и к а м . Если имеется хорошая реализация очередей,
то наши списки с конкатенацией — лучшая из известных устойчивых реа­
лизаций этой структуры, особенно для приложений, существенно опираю­
щихся на устойчивость.

У праж нен ие 10.6. Напишите функцию flatten с типом a Cat list —> a Cat,
конкатенирующую все элементы списка списков с конкатенацией. Покажи­
те, что ваша функция работает за амортизированное время 0 (1 + е), где
е — число пустых списков с конкатенацией в исходном списке.

10.2.2 . К у ч и с эф ф е к ти в н ы м сл и ян и ем

В этом разделе мы используем структурную абстракцию для куч и
получаем эффективную операцию слияния.

Допустим, у нас есть реализация куч, поддерживающая insert за вре­
мя 0 (1) в худшем случае, a merge, findMin и deleteMin за время O (logn)
в худшем случае. Одна такая реализация — скошенные биномиальные ку­
чи из раздела 9.3.2; ещё одна биномиальные кучи с расписанием из раз­
дела 7.3. При помощи структурной абстракции мы собираемся улучшить
время работы операций merge и findMin до 0 (1) в худшем случае.

Предположим пока, что тип куч полиморфен относительно типа эле­
ментов, и что для любого типа элементов мы магическим образом знаем,
какую функцию сравнения использовать. Позже мы учтём, что как тип
элементов, так и функция сравнения на этих элементах задаются в мо­
мент применения функтора.

С учётом перечисленных предположений тип развёрнутых куч можно
задать как

182 10. Развёртка структур данных

datatype a Heap = Е | Н o f а х (a Heap) PrimH.Heap

где PrimH — реализация элементарных куч. Элемент, хранимый в каждом
узле Н, будет минимальным элементом поддерева с корнем в этом узле.
Элементами элементарных куч будут служить развёрнутые кучи. Внутри
элементарных куч развёрнутые кучи упорядочены по своим минимальным
элементам (то есть корням). Можно думать об этом типе как о типе дере­
вьев с переменной степенью ветвления, причём дети каждого узла сами по
себе хранятся в элементарных кучах.

Поскольку минимальный элемент хранится в корне, функция findMin
проста:

fun findMin (Н (х, _)) = х

Чтобы слить две развёрнутые кучи, мы помещаем кучу с большим корнем
в кучу с меньшим корнем как элемент.

fun merge (Е, h) = h
| merge (h, E) = h
| merge (hi as H (x, pi), 1I2 as II (y, p2)) =

if x < y then H (x, PrimH.insert (h2, pi))
else II (у, H.insert (hi, p2))

(В выражении x < у мы предполагаем, что функция < — правильная
функция сравнения для этих элементов.) Функция insert определяется че­
рез merge.

fun insert (х, h) = merge (H (x, PrimH.empty), h)

Наконец, рассмотрим deleteMin, определённую как

fun deleteMin (H (x, p)) =
if PrimH.isEmpty p then E
else let val (H (y, pi)) = PrimH.findMin p

val p2 = PrimH.deleteMin p
in H (y, PrimH.merge (pi, p2)) end

Отбросив корень, сначала мы смотрим, пуста ли элементарная куча р. Если
да, то новая куча также пуста. В противном случае мы находим и извлека­
ем минимальный элемент р, являющийся развёрнутой кучей с минималь­
ным из всех элементом; этот элемент становится новым корнем. Наконец,
мы сливаем pi и р2 и получаем новую элементарную кучу.

Анализ этих куч не представляет сложности. Очевидно, что findMin
работает за время 0 (1) в худшем случае независимо от нижележащей ре­
ализации элементарных куч. Функции insert и merge зависят только от
PrimH.insert. Поскольку мы предполагаем, что время работы PrimH.insert

10.2. Структурная абстракция 183

равно 0 (1) в худшем случае, таково же и время работы insert и merge.
Наконец, deleteMin вызывает PrimH.findMin, PrimH.deleteMin и PrimH.merge.
Поскольку все они работают за O (logn) в худшем случае, такова же и
характеристика deleteMin.

Замечание. Можно также разворачивать кучи с амортизированными
ограничениями производительности. Например, развёртка ленивых бино­
миальных куч из раздела 6.4.1 даёт нам реализацию, поддерживающую
findMin за время 0 (1) в худшем случае, операции insert и merge за аморти­
зированное время 0 (1) , a deleteMin за амортизированное время O (logn).

До сиз пор мы предполагали, что тип куч полиморфен, но на самом
деле сигнатура Heap указывает, что кучи мономорфны - как тип элемен­
тов, так и функция сравнения этих элементов фиксируются в момент при­
менения функтора. Реализация кучи — это функтор, параметризованный
типом элементов и функцией сравнения. Функтор, который мы используем
для развёртки куч, отображает функторы куч в функторы куч, а не струк­
туры куч в структуры куч. Мы можем выразить это с помощью функторов
высших порядков [МТ94|:

functor Bootstrap (functor Makell (Element: O r d e r e d) : H e a p

where type Elem.T = Element.T)
(Element: O r d e r e d) : H e a p = . . .

Функтор Bootstrap принимает функтор Makell в качестве параметра. Функ­
тор MakeH принимает структуру Element с сигнатурой O r d e r e d , определя­
ющей тип элементов и функцию сравнения, и возвращает структуру H e a p .
При заданном MakeH, Bootstrap возвращает функтор, который принимает
структуру Element с сигнатурой O r d e r e d и возвращает структуру H e a p .

З ам ечание. Ограничение where type в сигнатуре функтора MakeH необ­
ходимо, чтобы гарантировать, что функтор возвращает структуру кучи
с необходимым типом элементов. Ограничения такого рода чрезвычайно
часто встречаются в функторах высших порядков.

Теперь, чтобы создать структуру элементарных куч с развёрнутыми
кучами в качестве элементов, мы применяем функтор MakeH к структуре
BootstrappedElem с сигнатурой O r d e r e d , определяющей тип развёрнутых
куч и функцию сравнения, упорядочивающую две развёрнутые кучи по
их минимальным элементам. (Отношение порядка не определено на двух
пустых кучах.) Это можно выразить при помощи следующих двух взаимно
рекурсивных объявлений.

184 10. Развёртка структур данных

s t r u c t u r e r e c BootstrappcdElcin =

s t r u c t

datatype Т = Е | II o f Elem.T х PrimH.Heap
fun leq (H (x, _) , II (Y, _)) = Elem.leq (x, y)
.. . Подобные ж е определения для eq и It . . .

end
and PrimH = MakeH (BootstrappedElem)

где Elem — структура с сигнатурой O r d e r e d , определяющая подлинные
элементы развёрнутой кучи. Полная реализация функтора Bootstrapped
приведена на рис. 10.7.

З ам ечан и е. В Стандартном ML запрещены рекурсивные определения
структур, и этот запрет оправдан: это объявление не имеет смысла для
функторов MakeH, имеющих эффекты. Однако функторы MakeH, к кото­
рым мы можем пожелать применить Bootstrap, например, SkewBinomialHeap
из раздела 9.3.2, в этом отношении вполне безопасны, и рекурсивный шаб­
лон, воплощаемый функтором Bootstrap, для них имеет смысл. Ж аль, что
Стандартный ML не даёт нам выразить развёртку таким образом.

Развёрнутые кучи всё же могут быть реализованы в Стандарт­
ном ML, если явно подставить конкретную реализацию MakeH, скажем,
SkewBinomialHeap или LazyBinomialHeap, избавившись затем от отдельных
структур BootstrappedElem и PrimH. Тогда рекурсия на структурах сводится
к рекурсии на типах данных, которая Стандартным ML поддерживается.

У п р а ж н ен и е 10.7. Подстановка функтора LazyBinomialHeap из разде­
ла 6.4.1, как указано выше, приводит к типам

datatype Tree = Node o f int x Heap x Tree list
datatype Heap = E | NE o f Elem.T x Tree list susp

Завершите эту реализацию развёрнутых куч.

У п р а ж н ен и е 10.8. Часто в элементах кучи содержится информация по­
мимо приоритета. Для таких типов элементов бывает удобно использовать
кучи, хранящие приоритет отдельно от остального содержимого элемента.
На рис. 10.8 приведена альтернативная сигнатура для такого типа куч.

(а) Приспособьте либо LazyBinomialHeap, либо SkewBinomialHeap к этой
сигнатуре.

(б) Перепишите функтор Bootstrap как
functor B o o t s t r a p (P r im H : H e a p W i t h I n f o) : H e a p W i t h I n f o = . . .

Вам не потребуются ни функторы высших порядков, ни рекурсивные
структуры.

ш 10.2. Структурная абстракция 185

functor Bootstrap (f u n c t o r MakeH (Element: O r d e r e d): H e a p

w h e r e t y p e Elem.T = Element.T)
(Element: O r d e r e d) : H e a p =

struct
structure Elem = Element

f* рекурсивные структуры не поддерживаются в Стандартном ML! *)
structure rec BootstrappedElem =

struct
d a t a t y p e T = E | H o f Elem.T x PrimH.Heap
f u n leq (H (x, _) , H (y, _))= Elem.leq (x, y)
. . . Подобные же определения для eq и It .. .

end
and PrimH = MakeH (BootstrappedElem)

open BootstrappedElem (* экспортируются конструкторы E и H *)

type Heap = BootstrappedElem.T

val empty = E
fu n isEmpty E = true | isEmpty _ = false

fu n merge (E , h) = h
| merge (h, E) = h
| merge (hi a s H (x, pL), h2 a s H (y, p2)) =

i f Elem.leq (x, y) t h e n H (x, PrimH.insert (h2, pi))
e l s e H (y, PrimH.insert (hi, p2))

f u n insert (x, h) = merge (H (x, PrimH.empty), h)

f u n findMin E = r a i s e E m p t y
| findMin (H (x, _)) = x

f u n deleteMin E = r a i s e E m p t y
| deleteMin (II (x, p)) =

i f PrimH.isEmpty p t h e n E
e l s e l e t v a l (H (y, pi)) = PrimH.findMin p

v a l p2 = PrimH.deleteMin p
in H (y, PrimH.merge (pi, p2)) e n d

e n d

Рис. 10.7: развёрнутые кучи.

186 10. Развёртка структур данных

signature H e a p W i t h I n f o —
sig

structure P r io r i t y : O r d e r e d

type a Heap

val empty a Heap
val isEmpty a Heap —► bool

val insert Priority.T x a x a Heap —>q Heap
val merge q Heap x a Heap —> a Heap

val findMin a Heap —» Priority.T x a
val deleteMin a Heap —» a Heap

(* findAfin и deleteMin возбуждают E m p t y для пустой кучи *)
end

Рис. 10.8: альтернативная сигнатура для куч.

10.3. Развёртка до составных типов

Мы видели несколько примеров, где коллекции составных данных
(например, кучи куч) оказывались полезными для реализации коллекций
простых данных (например, куч элементов). Однако коллекции составных
данных часто бывают полезны сами по себе. Простой пример: строки (то
есть последовательности символов) часто служат типом элементов мно­
жеств или ключами в конечных отображениях. В этом разделе мы иллю­
стрируем развёртку конечных отображений, определённых для какого-то
простого типа, до конечных отображений, определённых на списках или
даже на деревьях, составленных из элементов этого типа.

10.3.1 . П р еф и к сн ы е д ер евья

Двоичные деревья поиска хорошо работают, когда операция сравнения
для типа ключа или элемента дёшева. Это условие выполняется для про­
стых типов вроде целых чисел и символов, но для составных типов вроде
строк оно может оказаться неверным. Рассмотрим, например, представ­
ление телефонной книги с помощью двоичного дерева поиска. Обработка
запроса «Кузнецов, Владислав» может потребовать множество сравнений
с записями «Кузнецов, Владимир», и каждое из этих сравнений будет про-

10.3. Развёртка до составных типов 187

signature F i n i t e M a p =

sig
type Key
type a Map

val empty : a Map
val b in d : Key x a x a Map —> a Map
val lookup : Key x a Map —> a

(* Если ключ не найден, возбуждает N o t Found *)
end

Рис. 10.9: сигнатура для конечных отображений.

в е р я т ь десяток символов в каждой строке, прежде чем вернуть результат.
Для составных типов лучшим решением будет выбрать представление,

к о т о р о е использует структуру конкретного типа. Одним из таких представ­
лений является префиксное дерево (trie), известное также как цифровое де­
рево поиска (digital search tree). В этой главе мы с помощью префиксного
д е р е в а реализуем абстракцию F i n i t e M a p (конечное отображение), пока­
занную на рис. 10.9.

В последующем обсуждении мы будем предполагать, что ключи яв­
ляются строками, и что представлены они как списки символов. Мы часто
б у д е м называть символы базовым типом (base type). Основные идеи лег­
к о распространить на другие типы последовательностей и другие базовые
т и п ы .

Префиксное дерево — это дерево с переменной степенью ветвления,
каждая дуга в нём помечена символом. Дуги, исходящие из корня дерева,
представляют первый символ строки; дуги, исходящие из прямых потомков
корня, представляют второй символ, и так далее. Чтобы найти узел, соот­
ветствующий данной строке, нужно начать с корня и двигаться по дугам,
помеченным символами строки по порядку. Например, префиксное дерево,
представляющее строки "cat", "dog", "саг" и "cart", можно изобразить как

188 10. Развёртка структур данных

З а м е т и м , что при вставке строки в префиксное дерево в него также по­
падают все префиксы этой строки. Только некоторые из этих префиксов
будут соответствовать реальным записям. 13 нашем примере префиксами
строки " c a r t " являются "с", "са" и "саг", но из них реальная запись соот­
ветствует только строке "саг". Поэтому каждый узел требуется помечать
как пустой или полный. В случае конечных отображений мы для этого
используем встроенный тип данных o p t io n .

datatype a o p t io n = N o n e | S o m e o f о

Если узел пуст, мы помечаем его значением N o n e . Если же узел полон
и соответствующая строка отображается в значение х, мы помечаем узел
значением S o m e х .

Остаётся важный вопрос, как нам представлять дуги, исходящие из
вершины. Обычно мы бы представляли непосредственных потомков вер­
шины с переменной степенью ветвления в виде списка, однако здесь нам
также требуется хранить метки дуг. В зависимости от выбора базового
типа и ожидаемой плотности префиксного дерева, дуги, исходящие из уз­
ла, можно представлять в виде вектора, ассоциативного списка, двоичного
дерева поиска или даже, если базовый тип сам по себе является списком
или строкой, в виде ещё одного префиксного дерева! Однако все эти типы
представляют из себя всего лишь конечные отображения из меток дуг в
префиксные деревья. Мы абстрагируемся от конкретного представления
отображений на дугах, предполагая, что нам дана некоторая структура М,
реализующая конечные отображения для базового типа. В таком случае,
представлением для префиксного дерева оказывается

datatype а Мар = T r i e o f a o p t io n х а Мар М .Мар

Пустое дерево представлено как одиночная пустая вершина без потомков.
val e m p ty = T r i e (N o n e , M .e m p t y)

Чтобы найти строку, мы ищем каждый её символ в соответствующем отоб­
ражении дуг. Дойдя до последнего узла, мы проверяем, пуст он или полон.

fun lo o k u p ([] , T r ie (N o n e , m)) = raise N o t F o u n d
| lo o k u p ([] , T r i e (S o m e x , m)) = x

| lo o k u p (k :: k s , T r ie (v , m)) = l o o k u p (k s , M .lo o k u p (k , m))

Заметим, что когда строка отсутствует в префиксном дереве, мы не все­
гда даже дойдём до последнего узла. Например, если в вышеприведённом
примере мы будем искать слово " d a r k " , мы найдём букву d, но не найдём
а. При этом функция М .lo o k u p возбудит исключение N o t F o u n d . Посколь­
ку это исключение также является правильным ответом на lo o k u p , мы его
просто распространяем дальше.

10.3. Развёртка до составных типов 189

functor Trie (М: F initeM a p): F initeM ap =
struct

type Key = M.Key list

datatype a Map = T rie o f a option x a Map M.Map

val empty = T rie (N on e , M.empty)

fun lookup ([] , T r ie (None, m)) = raise N otFound
| lookup ([], T r ie (Some x , m)) = x
| lookup (k :: ks, T rie (v, m)) = lookup (ks, M.lookup (k, m))

fun bind ([] , x, T rie (_ , m)) = T r ie (Some x , m)
| bind (k :: ks, x, T rie (v, m)) =

let val t = M.lookup (k, m) handle N o t Found =>empty
val t' = bind (ks, x, t)

in T rie (v, M.bind (k, t', m)) end
end

Рис. 10.10: простая реализация префиксных деревьев.

Зам ечание. Из-за такого поведения при неудачном поиске префиксные
деревья могут оказаться даже быстрее, чем хэш-таблицы. Неудачный
поиск по префиксному дереву может завершиться, просмотрев только
несколько первых символов, в то время как неудачный поиск но хэш-
таблице требует просмотра всей строки только для того, чтобы вычислить
хэш-функцию!

Функция записи в дерево bind очень похожа на lookup, только здесь
мы не позволяем М.lookup окончиться неудачно. Мы подставляем пустой
узел каждый раз, когда она возбуждает исключение NotFound.

fun bind ([], х, T rie (_ , m)) = T rie (Some x , m)
| bind (k :: ks, x, T rie (v , m)) =

let val t = M.lookup (k, m) handle N o t F ound =>■ empty
val t' = bind (ks, x, t)

in T rie (v , M.bind (k, t', m)) end

Полная реализация приведена на рис. 10.10.

У п р а ж н ен и е 10.9. Очень часто множество ключей, которые нужно хра­
нить в префиксном дереве, обладает свойством, что ни один ключ не может
быть префиксом другого. Например, все ключи могут иметь одну и ту же

190 10. Развёртка структур данных

длину, либо все ключи могут заканчиваться на один и тот же символ, ко­
торый ни в одной другой позиции не встречается. Реализуйте префиксные
деревья заново, предполагая, что это условие выполняется, и используя
тип

datatype а Мар = E n try o f а \ T r ie o f а Мар М.Мар

Упражнение 10.10. В префиксных деревьях часто встречаются длинные
цепочки узлов, каждый из которых имеет только по одному потомку. Су­
ществует оптимизация, когда все эти узлы сливаются в один. Этого можно
добиться, храня в каждом узле подстроку — наибольший общий префикс
всех ключей, путь к которым пролегает через этот узел. В таком случае
тип префиксных деревьев будет

datatype а Мар = T rie o f М.key list х a option х а Мар М.Мар

Реализуйте префиксные деревья, используя этот тип. Следует соблюдать
инвариант, что узел не может одновременно быть пустым и являться един­
ственным потомком. Можно предполагать, что структура М содержит
функцию isEmpty.

Упражнение 10.11. (Ш венке [Sch97]) Есть ещё одна структура, ис­
пользующая многослойные конечные отображения — хэш-таблица (hash
table). Завершите следующую реализацию абстрактных хэш-таблиц.

functor HashTablc (structure Approx: F initeM ap
structure Exact: F initeM ap

val hash: Exact.Key —> Approx.Key): F initeM ap =
struct

type Key = Exact.Key
type a Map = a Exact.Map Approx.Map

fun lookup (k, m) = Exact.lookup (k, Approx.lookup (hash k, m))

end

Преимущество этого представления состоит в том, что в Approx мы можем
использовать эффективный тип ключа (скажем, целые числа), а в Exact
можно использовать тривиальное представление (например, ассоциатив­
ные списки).

10.3.2. Обобщённые префиксные деревья

Идею префиксных деревьев можно обобщить со списков на другие со­
ставные типы, например, деревья [СМ95|. Рассмотрим сначала, как отобра-

10.3. Развёртка до составных типов 191

деения дуг в предыдущем разделе отражают тип конструктора cons. Отоб­
ражения дуг представлены типом а Мар М.Мар. Внешнее отображение ин­
д е к с и р у е т первое поле конструктора cons, а внутреннее отображение — вто­
рое поле конструктора cons. Поиск головы cons-ячейки во внешнем отобра­
жении даёт нам внутреннее отображение, и в нём мы ищем хвост ячейки
cons.

Мы можем обобщить эту схему на двоичные деревья, имеющие три по­
ля, добавив третий слой отображений. Например, если у нас есть двоичные
деревья тина

datatype a Tree = Е | Т o f а х a Tree х a Tree

то мы можем представлять отображения дуг в префиксных деревьях по
этим деревьям как а Мар Мар М.Мар. Внешнее отображение индексирует
первое поле конструктора Т, среднее отображение — второе поле, а внут­
реннее отображение индексирует третье поле. Поиск элемента в каком-
либо узле во внешнем отображении даёт нам среднее отображение, где мы
можем искать левое поддерево. Этот поиск, в свою очередь, даст нам внут­
реннее отображение, и там мы можем искать правое поддерево.

Более формально, мы представляем префиксные деревья над двоич­
ными деревьями типом

datatype а Мар = T rie o f a option х а Мар Мар М.Мар

Заметим, что здесь мы имеем гетерогенный рекурсивный тип, так что в
функциях, работающих с этим типом, нам потребуется полиморфная ре­
курсия.

Функция lookup проводит три поиска на каждый конструктор Т, соот­
ветствующих трём полям конструктора. Когда она достигает последнего
узла, проводится проверка, полон ли этот узел.

fun lookup (Е, T rie (None, m)) = raise N otF oun d
| lookup (E, T rie (Some x , m)) = x
| lookup (Т (k, a, b), T rie (v , m)) =

lookup (b, lookup (a, M.lookup (k, m)))

Функция bind работает подобным же образом. Она показана на рис. 10.11,
где приведена полная реализация префиксных деревьев поверх двоичных
деревьев.

У п р а ж н ен и е 10.12. Реализуйте функтор TrieOfTrees без использования
полиморфной рекурсии, на основе типов

datatype а Мар = T rie o f а ЕМ option х а Мар М.Мар
datatype а ЕМ = Elem o f а \ Map o f а Мар

192 10. Развёртка структур данных I
datatype a Tree = Б | Т o f а х a Tree х a Tree
functor TrieOfTrees (М: FiniteM ap): F initeM ap =

(* предполагается полиморфная рекурсия! *)
struct

type Key = M.Key Tree
datatype a Map = T rie o f a option x a Map Map M.Map

val empty = T rie (N on e , M.empty)

fun lookup (E, T rie (N one, m)) = raise N otF ou n d
| lookup (E, T rie (Some x , m)) = x
j lookup (T (k, a, b), T rie (v , m)) =

lookup (b, lookup (a, M.lookup (k, m)))

fun bind (E, x, T r ie (_ , m)) = T r ie (Some x , m)
| bind (T (k, a, b), x, T r ie (v , m)) =

let val tt = M.lookup (k, m) handle N otF ou nd =>empty
val t = lookup (a, tt) handle N otF ou n d =>empty
val t ' = bind (b, x, t)
val tt' = bind (a, t', tt)

in T r ie (v , M.bind (k, tt', m)) end
end

Рис. 10.11: обобщённые префиксные деревья.

Упражнение 10.13. Реализуйте префиксные деревья, ключами в кото­
рых служат деревья с переменной степенью типа

datatype a Tree = Т o f а х a Tree list

Имея эти примеры, мы можем обобщить понятие префиксного дере­
ва до любого рекурсивного типа, включающего произведения и суммы.
Требуется только несколько простых правил о том, как сконструировать
конечное отображение для структурного типа, имея в качестве основы ко­
нечные отображения для его компонент. Пусть а Март будет тип конечных
отображений над типом т.

В случае произведений мы уже знаем, что делать; чтобы найти пару
в префиксном дереве, нужно сначала найти первый элемент этой пары и
получить отображение, где следует искать второй элемент. Таким образом,

т — Т\ х 72 => а Март = а МарТ2 МарГ1

10.4- Примечания 193

Цю же делать с суммами? Вспомним тип деревьев и префиксных деревьев
над ними:

datatype a Tree = Е | Т o f а х a Tree х a Tree
datatype а Мар = T rie o f a option х а Мар Мар М.Мар

Ясно, что тип а Мар Мар М.Мар соответствует конструктору Т, но что со­
ответствует конструктору Е? Тип a option представляет собой не что иное,
как очень эффективную реализацию конечных отображений над типом
unit, который, в свою очередь, эквивалентен отсутствующему телу кон­
структора Е. Отсюда мы выводим общее правило для сумм:

т = Т\ Т2 => а Март = а МарТ1 х а МарТ2

Упражнение 10.14. Завершите следующие функторы, которые реализу­
ют вышеописанные правила для произведений и сумм:

functor ProductMap (M i: F initeM a p) (М2 : F initeM a p): F initeM ap =
struct

type Key = Mi.Key x М2 .Key

end
datatype (a, /3) Sum = Left o f a | Right o f /3
functor SumMap (M j: F initeM a p) (Mo: F initeM ap): F initeM ap =
struct

type Key = (Mi.Key, М2 .Key) Sum

end

У п раж н ен и е 10.15. Пусть имеется структура М, реализующая конеч­
ные отображения над типом идентификаторов Id. Реализуйте префиксные
деревья над типом лямбда-выражений Ехр, где

datatype Exp = Var o f Id | Lam o f Id x Exp | A pp o f Exp x Exp

В процессе решения полезно будет расширить тип префиксных деревьев
отдельным конструктором для пустого отображения.

10.4. Примечания

Развёртка структур данных. Развёртка структур данных была распо­
знана как общая методика проектирования структур данных в работах
Бухсбаума и его коллег [Buc93, ВТ95, BST95|. Структурная декомпози­

194 10. Развёртка структур данных

ция н структурная абстракция использовались и раньше, соответствен!!
в [Die82] и |DST94].
С п и ск и с кон катен ац и ей . Несмотря на то, что построить альтернатив­
ное представление устойчивых списков, поддерживающих эффективную
операцию конкатенации, относительно легко (см., например, [Hug86|). та­
кие альтернативные представления, казалось, почти неизбежно приносили
в жертву эффективность функций head или tail. Майерс [Муе82] описывает
основанное на AVL-деревьях представление, поддерживающее все основ­
ные операции за время О (log и). Тарьян с коллегами [DST94, ВТ95, КТ95]
исследовали множество сублогарифмических представлений. Кульминаци­
ей их работы стало представление, поддерживающее конкатенацию и все
остальные обычные функции над списками за время 0 (1) в худшем случае.
Реализация списков с конкатенацией из раздела 10.2.1 впервые появилась
в [Ока95а]. Она намного проще, чем у Каплана и Тарьяна, по даёт лишь
амортизированные ограничения, а не жёсткие.
К у ч и со сл и ян и ем . Многие императивные реализации поддержива­
ют операции insert, merge и findMin за амортизированное время 0 (1), а
операцию deleteMin за амортизированное время O(log7t), включая бино­
миальные кучи [KL93], фибоначчиевы кучи |FT87), расслабленные ку­
чи [DGST88], V -кучи |Pct87|, скошенные снизу вверх кучи [ST86b], парные
кучи [FSST8G]. Однако из всех этих структур, кажется, только парные
кучи сохраняют свою амортизированную эффективность в сочетании с ле­
нивым порядком вычисления и устойчивостью (см. раздел 6.5), и, к сожа­
лению, даже для парных куч скоростные характеристики являются толь­
ко недоказанным предположением. Бродал [Вго95, Вго96) достигает ана­
логичных ограничений в худшем случае. Его исходная структура данных
[Вго95] может быть реализована чисто функциональным образом (и, таким
образом, сделана устойчивой), если сочетать её с методикой рекурсивного
замедления Каплана и Тарьяна [КТ95], а также с чисто функциональной
реализацией деков реального времени, вроде приведённой в разделе 8.4.3.
Однако такая реализация будет очень сложной и медленной. Бродал и
Окасаки упрощают эту реализацию в (В096], используя скошенные бино­
миальные кучи (раздел 9.3.2) и структурную абстракцию (раздел 10.2.2).
П ол и м ор ф н а я р ек у р си я . Существует несколько попыток расширить
Стандартный ML полиморфной рекурсией, например, [Муе84, Неп93,
KTU93|. Одна из сложностей состоит в том, что при наличии поли­
морфной рекурсии вывод типов становится формально неразрешимым
[Hen93, KTU93], хотя на практике он и работает. Язык Haskell обходит эту
проблему, позволяя полиморфную рекурсию в случае, если программист
явно указывает сигнатуру типа.

11. Неявное рекурсивное замедление

В разделе 9.2.3 мы видели, что избыточное ленивое представление дво­
ичных чисел может поддерживать как функцию увеличения, так и умень­
шения за амортизированное время 0 (1). В разделе 10.1.2 мы видели, что
гетерогенные типы и полиморфная рекурсия позволяют строить чрезвы­
чайно простые реализации числовых представлений, например, двоичных
списков с произвольным доступом. В этой главе мы сочетаем и расширяем
эти идеи, получая в результате методику, называемую неявное рекурсивное
замедление (implicit recursive slowdown).

Каплан и Тарьян [КТ95, КТ96Ь, КТ96а] исследовали родственную ме­
тодику под названием рекурсивное замедление (recursive slowdown), осно­
ванную, в отличие от нашей, не на ленивых двоичных числах, а на сегмен­
тированных двоичных числах (раздел 9.2.4). Сходства и различия реали­
заций, основанных на рекурсивном замедлении и на неявном рекурсивном
замедлении, в сущности, аналогичны сходствам и различиям между этими
двумя системами счисления.

11.1. Очереди и деки

Напомним устройство двоичных списков с произвольным доступом из
раздела 10.1.2, имеющих тип

datatype a RList =
N il I Z ero o f (a x a) RList | O ne o f a x (a x a) RList

Чтобы упростить дальнейшее обсуждение, давайте заменим этот тип на

datatype a Digit = Zero | One o f а
datatype a RList = S h a llo w o f a Digit | Deep o f a Digit x (a x a) RList

Мелкий (Sh allow) список содержит от нуля до одного элемента. Глубо­
кий (D eep) список содержит ноль или один элемент, а также список пар.
С этим типом мы можем играть во многие из игр, освоенных нами при
рассмотрении двоичных списков с произвольным доступом в главе 9. На­
пример, можно реализовать функцию head за время 0 (1) , переключившись
на безнулевое представление вроде

datatype a Digit = Zero | O ne o f а | Tw o o f а х а
datatype a RList = Shallow o f a Digit | D eep o f a Digit x (a x a) RList

19C 11. Неявное рекурсивное замедление

В этом представлении все цифры в глубоком (D e e p) узле должны быть еди­
ницами или двойками. Конструктор иоль- Z ero используется только в пу­
стом списке S h a l l o w Z e r o .

Подобным образом, задержав список пар в каждом глубоком узле, мы
можем заставить либо cons, либо tail работать за амортизированное время
0 (1) , а вторую из этих операций за амортизированное время O (logn).

datatype a RList =
S h a l l o w o f a Digit

| Deep o f a Digit x (a x a) RList susp

Позволив выбирать из трёх ненулевых цифр в каждом глубоком узле, мы
можем заставить все три функции cons, head и tail работать за время 0(1).

datatype a Digit =
Z ero | O ne o f а | T w o o f а х а | T h ree o f а х а х а

Как и прежде, конструктор Z ero используется только в пустом списке.
Чтобы расширить эту схему для поддержки очередей и деков, доста­

точно добавить вторую цифру в каждый глубокий узел.

datatype a Queue =
S h a l l o w o f a Digit

| D eep o f a Digit x (a x a) Queue susp x a Digit

Первая цифра представляет первые несколько элементов очереди, а вто­
рая — последние несколько элементов. Оставшиеся элементы хранятся
в задержанной очереди пар, которую мы называем срединной очередью
(middle queue).

Выбор типа цифры зависит от того, какие функции мы хотим поддер­
живать на каждом конце очереди. В следующей таблице приведены разре­
шённые значения для головной цифры очереди, поддерживающей каждое
данное сочетание функций.

Те же правила выбора относятся и к хвостовой цифре.
В качестве конкретного примера давайте разработаем реализацию

очередей, поддерживающую snoc на хвостовом конце и head и tail на голов­
ном (то есть обыкновенных очередей-FIFO). Обратившись к таблице, мы

поддерживаемые функции разрешённые цифры
cons

cons/head
head/tail

cons/head/tail

Z e r o , O ne
O n e , T w o
O n e , T w o

O n e , T w o , T h ree

11.1. Очереди и деки 197

решаем, что головная цифра глубокого узла может быть единица-ONE или
д в о й к а -Tw o, а хвостовая цифра может быть ноль-Z e ro или единица-ONE.
цифра в мелком узле может быть Z ero или One.

Чтобы добавить к глубокой очереди новый элемент у через snoc, мы
смотрим на хвостовую цифру. Если это ноль (Z ero), мы заменяем хво­
стовую цифру на единицу-ONE у. Если это One х , то мы заменяем её на
Zero и добавляем пару (х, у) к срединной очереди. Кроме того, требуется
выписать несколько особых случаев для добавления элементов к мелкой
очереди.

fun snoc (Shallow Z e r o , у) = Shallow (O ne у)
| snoc (S h a llo w (One x), y) = Deep (T w o (x , y), Sempty, Zero)
| snoc (D eep (f , m, Z ero), y) = D eep (f, m, O ne y)
| snoc (Deep (f , m, One x) , y) =

D eep (f , $snoc (force m, (x, y)), Z ero)

Ч тобы удалить элемент из глубокой очереди через tail, мы смотрим на
головную цифру. Если это T w o (х, у), мы отбрасываем х и устанавливаем
головную цифру в O ne у. Если это O ne х, мы «занимаем» в срединной
очереди пару (у, z) и устанавливаем головную цифру в T w o (у, z). Опять
же, нужно учесть ещё несколько особых случаев для работы с мелкими
очередями.

fun tail (S h a llo w (O ne x)) = empty
| tail (D eep (T w o (x , y), m, r)) = D eep (O n e y, m, r)
j tail (D eep (O n e x , $q, r)) =

if isEmpty q then S h a llo w r
else let val (y, z) = head q

in D eep (T w o (y, z), Stail q, r) end

Заметим, что в последнем варианте tail мы вынуждаем срединную оче­
редь. Полный код приведён на рис. 11.1.

Теперь мы хотим показать, что snoc и tail работают за амортизирован­
ное время 0 (1) . Заметим, что snoc никак не обращается к головной цифре,
a tail к хвостовой цифре. Если мы рассматриваем каждую из функций
по отдельности, то snoc оказывается аналогичен функции inc для ленивых
Двоичных чисел, a tail оказывается аналогичен функции dec для безнуле-
вых ленивых двоичных чисел. Модифицируя доказательства для inc и dec,
мы легко можем показать, что snoc и tail работают за амортизированное
время 0 (1) , если каждая из них используется отдельно от другой.

Основная идея неявного рекурсивного замедления состоит в том, что
когда функции вроде snoc и tail почти независимы друг от друга, мы
можем сочетать их доказательства, просто сложив долги, используемые

198 11. Неявное рекурсивное замедление Л
s t r u c t u r e Im p lic itQ u eu e : Q u e u e =

(* предполагается полиморфная рекурсия! *)
s t r u c t

datatype a Digit = Z ero | One o f a | T w o o f a x a
datatype a Queue =

S h a llo w o f a Digit
| Deep o f a Digit x (a x a) Queue susp x a Digit

val empty = S h a llo w Z ero
fun isEmpty (Shallow Z ero) = true | isEmpty _ = false
fun snoc (S hallow Ze r o , y) = Shallow (O ne y)

| snoc (S h a llo w (O ne x) , y) = Deep (T w o (x , y), Sempty, Zero)
| snoc (D eep (f , m, Z ero), y) = D eep (f , m, O ne y)
| snoc (Deep (f , m, One x) , y) =

Deep (f , $(snoc (force m, (x, y))) , Zero)
fun head (S h a llo w Zero) = raise Empty

| head (S h a llo w (O ne x)) = x
| head (Deep (O ne x , m, r)) = x
| head (Deep (T w o (x , y), m, r)) = x

fun tail (S h a llo w Zero) = raise Em pty
| tail (S h a llo w (O ne x)) = empty
| tail (Deep (T w o (x , y), m, r)) = Deep (One y, m, r)
| tail (Deep (O ne x , $q, r)) =

if isEmpty q then S h a llo w r
else let val (y,z) = head q

in D eep (T w o (y ,z), $(tail q), r) end
end

Рис. 11.1: очереди на основе неявного рекурсивного замедления.

в каждом из доказательств. Доказательство для snoc использует одну еди­
ницу долга, если хвостовая цифра равна Z ero , и н о л ь единиц, если хвосто­
вая цифра равна One. Доказательство для tail использует одну единицу
долга, если головная цифра равна T w o и ноль единиц, если головная циф­
ра равна One. Нижеследующее доказательство сочетает эти два понятия
долга.

Т еор ем а 11.1. Функции snoc и tail работают за амортизированное вре­
мя 0 (1).
Доказательство. Мы анализируем реализацию очередей, используя метод
банкира. Долг присваивается каждой задержке; задержки у нас всегда
находятся в среднем поле какой-либо глубокой очереди. Мы принимаем

11.1. Очереди и деки 199

инвариант долга, позволяющий каждой задержке иметь размер долга, за­
в и с я щ и й от цифр в головном и хвостовом поле. Среднее поле глубокой
очереди может иметь до |/| — |г| единиц долга, где |/| равно одному или
двум, а |г| равно нулю или одному.

Нераздельная стоимость каждой из функций равна 0 (1) , так что нам
остаётся показать, что ни одна из функций не высвобождает больше, чем
0(1) единиц долга. Мы приводим только доказательство для tail. Доказа­
тельство для snoc немного проще.

Мы проводим рассуждения методом передачи долга, который близ­
кородственен методу наследования долга. Каждый раз, когда вложенная
задержка получает больше долга, чем ей разрешено иметь, мы передаём
этот долг объемлющей задержке, которая служит средним полем предыду­
щего узла D eep . Передача долга является безопасной операцией, поскольку
объемлющая задержка всегда вынуждается раньше вложенной. Передача
ответственности за высвобождение долга от вложенной задержки к объем­
лющей гарантирует, что этот долг будет высвобожден прежде, чем будет
вынуждена объемлющая задержка, а следовательно, и раньше, чем может
быть вынуждена внутренняя.

Мы показываем, что каждый вызов tail передаёт одну единицу долга
в объемлющую задержку, кроме самого внешнего вызова, у которого объ­
емлющей задержки нет. Этот вызов просто высвобождает лишний долг.

Каждый каскад вызовов tail заканчивается на вызове, заменяющем
Two на O ne . (Д ля простоты описания, мы сейчас не учитываем возмож­
ность добраться до мелкой очереди.) Это уменьшает разрешённый размер
долга для m па один, так что мы передаём эту лишнюю единицу в объем­
лющую задержку.

Всякий промежуточный вызов tail заменяет f с единицы-ONE на
двойку-T w o п вызывает tail рекурсивно. Есть два подслучая:

• (г равно Z ero) Очередь m имеет одну единицу долга, и эту единицу
требуется высвободить, прежде чем мы можем вынудить т . Мы пе­
редаём эту единицу в объемлющую задержку. Кроме того, создаём
единицу долга, чтобы покрыть нераздельную стоимость рекурсивно­
го вызова. Наконец, нашей задержке передаётся одна единицы долга
из рекурсивного вызова. Поскольку нашей задержке разрешено иметь
до двух единиц долга, баланс оказывается в порядке.

• (г равно O ne) Очередь m не имеет долга, так что мы бесплатно можем
её вынудить. Создаём одну единицу долга, чтобы покрыть нераздель­
ную стоимость рекурсивного вызова. Кроме того, из рекурсивного
вызова нам передаётся ещё одна единица долга. Поскольку разре-

200 11. Неявное рекурсивное замедление

шённый размер долга для текущей задержки равен одному, мы одну
единицу долга оставляем у себя, а другую передаём в объемлющую
задержку.

У п р а ж н ен и е 11.1. Реализуйте для этих очередей функции lookup и
update. Эти функции должны работать за амортизированное время О (log г).
Может быть полезно снабдить каждую очередь полем, содержащим её раз­
мер.

У п р а ж н ен и е 11.2. С помощью методик, описанных в этом разделе, реа­
лизуйте двусторонние очереди.

11.2. Двусторонние очереди с конкатенацией

Наконец, мы реализуем с помощью неявного рекурсивного замедле­
ния двусторонние очереди с конкатенацией, чья сигнатура приведена на
рис. 11.2. Сначала мы описываем относительно простую реализацию, под­
держивающую -Н- за амортизированное время О (log п), а остальные опе­
рации за амортизированное время 0 (1) . Затем мы строим намного более
сложную реализацию, которая улучшает время работы -В- до 0 (1).

Рассмотрим следующую реализацию двусторонних очередей с конка­
тенацией, или с-деков. С-дек является либо мелким (shallow), либо глу­
боким (deep). Мелкий с-дек — это просто обыкновенный дек, например,
дек по методу банкира из раздела 8.4.2. Глубокий с-дек состоит из трёх
частей: голова (front), середина (middle) и хвост (rear). Голова и хвост яв­
ляются обыкновенными деками, содержащими не меньше двух элементов
каждый. Середина является с-деком с обыкновенными деками в качестве
элементов, каждый из которых не короче двух. Мы предполагаем, что есть
реализация D, реализующая сигнатуру D eque , и все её функции работают
за время 0 (1) (амортизированное или жёсткое).

datatype a Cat =
Shallow o f а D .Queue

| D eep o f a D .Queue x a D.Deque Cat susp x a D.Queue

Заметим, что это определение предполагает полиморфную рекурсию.
Чтобы добавить элемент к какому-либо концу, мы просто добавляем

его в головной или хвостовой дек. Например, cons реализован как

fun cons (х, Shallow d) = Shallow (D.cons (x, d))
| cons (x, D eep (f , m, r)) = D eep (D.cons (x, f), m, r)

11.2. Двусторонние очереди с конкатенацией 201

signature C atenableD eque =
sig

type a Cat

val empty a
val isEmpty a

val cons a
val head a
val tail a

val snoc a
val last ot
val init a

val -H- a
end

Cat —>bool

x a Cat —>a Cat
a (* возбуждает E m p t y , если дек пуст *)
a Cat (* возбуждает E m p t y , если дек пуст *)

а —>а Cat
>а (* возбуждает Em p t y , если дек пуст *)
> a Cat (* возбуждает E m p t y , если дек пуст *)

a Cat х a Cat —> a Cat

Рис. 11.2: сигнатура для двусторонних очередей с конкатенацией.

Чтобы уничтожить элемент на каком-либо конце, мы уничтожаем элемент
из головного либо хвостового дека. Если при этом длина этого дека падает
ниже двух, мы извлекаем следующий дек из середины и делаем его новой
головой либо хвостом. С добавлением остающегося элемента из старого
дека новый дек содержит по крайней мере три элемента. Например, код
tail выглядит как

fun tail (S hallow d) = Shallow (D.tail d)
| tail (D eep (f , m, r) =

let f' = D.tail f
in

if not (tooSmall f) then D eep (f , m, r)
else if isEmpty (force m) then Shallow (dappendL (f , r))
else D eep (dappendL (f , head (force m)), $tail (force m), r)

end

где функция tooSmall возвращает истину, если длина дека меньше двух,
a dappendL добавляет дек длины один или два к деку произвольной длины.

Заметим, что вызовы tail распространяются на следующий уровень
с-дека только в том случае, когда длина головного дека равна двум. В тер­
минах из раздела 9.2.3 мы можем сказать, что дек длиной три или более
безопасен (safe), а дек длиной два опасен (dangerous). Каждый раз, когда

202 11- Неявное рекурсивное замедление

tail рекурсивно себя вызывает на следующем уровне, он переводит голов­
ной дек из опасного состояния в безопасное, так что ни на каком уровне
с-дека два последовательных вызова tail не могут распространиться на
следующий уровень. Мы легко можем доказать, что tail работает за амор­
тизированное; время 0 (1) , позволив безопасному деку иметь одну единицу
долга, а опасному ноль.

"У п р а ж н е н и е 1 1 .3 . Докажите, что tail и init вместе работают за амор­
тизированное время 0 (1) , сочетая их правила накопления долга согласно
методике неявного рекурсивного замедления.

Как реализовать конкатенацию? Чтобы сконкатенировать два глубо­
ких с-дека ci и с2, мы сохраняем голову ci как новую голову, хвост с2 как
новый хвост, а из оставшихся элементов собираем новую середину: хвост
ci вставляем в середину ci, голову сг в середину с2. а затем конкатенируем
результаты.

fun (D eep (f i , m i, ri)) -H- (D eep (f2, m2, r2)) =
D eep (f i , $(snoc (force m i, ri) -H- cons (f2, force m2)), r2)

(Разумеется, есть ещё варианты, когда ci или с2 являются мелкими.) За­
метим, что глубина рекурсии -Н- равна глубине более мелкого с-дека.
Кроме того, -Н- создаёт 0 (1) долга на каждом уровне, и весь этот долг
нужно немедленно высвободить, чтобы восстановить инвариант долга для
tail и init. Следовательно, амортизированное время работы -Н- равно
0 (in in (logn i, lo g тг2)), где щ - длина а .

Полный код этой реализации с-деков приведён на рис. 11.3.
Чтобы улучшить время работы -Н- до 0 (1) , мы изменяем представ­

ление с-деков так, чтобы операция -Н- не вызывала сама себя рекурсивно.
Основная идея состоит в том, чтобы -Н- каждого уровня обращалась на
следующем уровне только к cons и snoc. Вместо трёх сегментов мы теперь
заставляем глубокие с-деки содержать пять сегментов: (/ , а,т,Ь, г), где / ,
т и г представляют собой обыкновенные деки, / и г содержат при этом
не менее трёх элементов каждый, а т не менее двух элементов; а и 6 пред­
ставляют собой с-деки составных элементов (compound elements). Вырож­
денный составной элемент является обыкновенным деком, содержащим не
менее двух элементов. Полный составной элемент содержит три сегмента:
(/ , с, г), где / и г — обыкновенные деки, содержащие не меньше, чем но
два элемента каждый, а т — с-дек составных элементов. Этот тип данных
может быть записан на Стандартном ML (с полиморфной рекурсией) так:

datatype a Cat =
S h a llo w o f a D.Queue

г 11.2. Двусторонние очереди с конкатенацией 203

functor SimpleCatenableDeque (D: D eque): C atenableD eque =
(* предполагается полиморфная рекурсия! *)

struct
datatype a Cat =

S h a llo w o f a D.Queue
| Deep o f a D.Queue x a D .Queue Cat susp x a D.Queue

fun tooSmall d = D.isEmpty d orelse D.isEmpty (D.tail d)
fun dappendL (di, d2) =

if D.isEmpty di then d2 else D.cons (D.head di, d2)
fun dappendR (di, d2) =

if D.isEmpty d2 then di else D.snoc (di, D.head d2)
val empty = SHALLOW D.empty
fun isEmpty (Shallow d) = D.isEmpty d

| isEmpty _ = false
fun cons (x, Shallow d) = Shallow (D.cons (x, d))

| cons (x, D eep (f , m, r)) = D eep (D.cons (x, f) , m, r)
fun head (Shallow d) = D.head d

| head (D eep (f , m, r)) = D.head f
fun tail (Shallow d) = Shallow (D.tail d)

| tail (Deep (f , m, r)) =
let val {' = D.tail f
in

if not (tooSmall f) then D eep (f', m, r)
else if isEmpty (force m) then Shallow (dappendL (f , r))
else D eep (dappendL (f , head (force m)), Stail (force m), r)

end

. . . snoc, last и init определяются симметричнылг образом...

fun (S h a llo w d i)-H -(S h allow d2) =
if tooSmall di then S h a llo w (dappendL (di, d2))
else if tooSmall d2 then S h a llo w (dappendR (di, d2))
else Deep (di, Sempty, d2)

| (Shallow d) -H- (D eep (f, m, r)) =
if tooSmall d then D eep (dappendL (d, f), m, r)
else D eep (d, Scons (f, force m), r)

| (D eep (f , m, r))-H -(Shallow d) =
if tooSmall d then D eep (f, m, dappendR (r, d))
else D eep (f , Ssnoc (force m, r), d)

| (D eep (f b mx, n))-H-(DEEP (f2, m2, r2)) =
Deep (f i , $(snoc (force m i, ri) -H-cons (f2 , force m2)), гг)

end

Рис. 11.3: простые деки с конкатенацией.

204

| D e e p o f a D .Q u e u e

11. Неявное рекурсивное замедление

(* ^ 3 *)
x a CmpdElem Cat susp
x a D.Queue
x a CmpdElem Cat susp
x a D.Queue

(* 2 *)

(* ^ 3 *)
and q CmpdElem =

Simple o f a D.Queue
| Cmpd o f a D.Queue

x a CmpdElem Cat
x q D.Queue

susp
(* ^ 2 *)

Предположим, что нам даны глубокие с-деки ci = Deep (fi, ai, mi, bi, n)
и C2 = Deep (f2, a2, m2, b2, r2). Их конкатенация вычисляется следующим
образом: прежде всего, fi сохраняется как голова результата, а г2 как хвост
результата. Затем мы строим новый срединный дек из последнего элемента
ri и первого элемента f2. Затем мы порождаем составной элемент из пц,
bi и остатка ri, и прицепляем его к концу ai через snoc. Это будет сегмент
а результата. Наконец, мы порождаем составной элемент из остатка f2, а2
и т 2, и присоединяем его к началу Ь2. Это будет сегмент b результата. Вся
реализация выглядит как

fun (Deep (f i, ai, mi, bi, ri)) 4f (Deep (f2, a2, m2, b2, r2)) =
let val (ri, m, f2) = share (n , f2)

val ai = Ssnoc (force ai, Cmpd (mi, bi, ri))
val b2 = Scons (Cmpd (f^, a2, m2), force b2)

in Deep (f i , ai, m, b2, r2) end

где

fun share (f, r) =
let val m = D.cons (D.last f, D.cons (D.head r, D.empty))
in (D.init f, m, D.tail r)

fun cons (x, Deep (f , a, m, b, r)) = Deep (D.cons (x, f), a, m, b, r)
fun snoc (Deep (f , a, m, b, r), x) = Deep (f, a, m, b, D.snoc (r, x))

(Ради простоты описания мы опускаем варианты с участием мелких с-
деков.)

К сожалению, tail и init в этой реализации устроены весьма путано.
Поскольку эти две функции симметричны, мы описываем только tail. Если
у нас есть с-дек D eep (f, a, m, b, г), возможны шесть вариантов:

• |f| > 3

• |f| = 3

— а непуст.

11.2. Двусторонние очереди с конкатенацией 205

Первый составной элемент а вырожден.
* Первый составной элемент а невырожден.

— а пуст, b непуст.
* Первый составной элемент b вырожден.
* Первый составной элемент b невырожден.

— а и b оба пусты.

Мы описываем поведение tail с в первых трёх случаях. Код для оставших­
ся случаев можно найти в полной реализации, приведённой на рис. 11.4 и
Ц.5. Если |f| > 3 , мы просто заменяем f на D.tail f. Если |f| = 3 , то уни­
чтожение первого элемента f сделает его размер меньше разрешённого.
Следовательно, нам нужно вынуть новый головной дек из а и состыковать
его с остающимися в f двумя элементами. Новый f содержит не меньше
четырёх элементов, так что следующий вызов tail пойдёт по ветке |f| > 3.

Когда мы извлекаем первый составной элемент из а, чтобы постро­
ить новый головной дек, этот составной элемент может быть вырожден­
ным или невырожденным. Если он вырожденный (то есть обыкновенный
дек), новым значением а будет Stail (force а). Если же мы получаем пол­
ный составной элемент C mpd (f , с', г'), то f' оказывается новым значением
f (вместе с остающимися элементами старого f), а новое значение а будет

$(force с' -н- cons (S imple г', tail (force а)))

Заметим, однако, что в результате комбинации cons и tail мы просто заме­
няем первый элемент а. Можно сделать это напрямую, избежав тем самым
ненужного вызова tail, с помощью функции replaceHead.

fun replaceHead (х, S h a llo w d) = S h a llo w (D.cons (x, D.tail d))
| replaceHead (x, D eep (f , a, m, b, r) =

D eep (D.cons (x, D.tail f) , a, m, b, r)

Оставшиеся варианты tail устроены похожим образом; каждый из них про­
изводит 0 (1) работы, а затем делает максимум один вызов tail.

Замечание. Этот код можно записать намного короче и намного понят­
нее с использованием языковой конструкции, называемой представления
(views) [Wad87, ВС93, PPN96], позволяющей устраивать сопоставление с
образцом на абстрактных типах данных. Детали можно найти в [Ока97|.
В Стандартном ML представления не поддерживаются.

В функциях cons, snoc, head и last ленивое вычисление не используется,
и легко видеть, что все они работают за время 0 (1) . Остальные функции
мы анализируем методом банкира с использованием передачи долга.

Г

206 11. Неявное рекурсивное замедление

functor ImplicitCatcnablcDequc(D: D eque): C atenableD eque =
(* предполагается, что D поддерживает функцию size *)

struct
datatype a Cat =

Shallow o f a D .Queue
| Deep o f a D .Queue x a CmpdElem Cat susp x a D .Queue

x a CmpdElem Cat susp x a D .Queue
and a CmpdElem =

S imple o f a D.Queue
| C mpd o f q D.Queue x a CmpdElem Cat susp x a D.Queue

val empty = Shallow D.empty
fun isEmpty (Shallow d) = D.isEmpty d | isEmpty _ = false
fun cons (x, Shallow d) = Shallow (D.cons (x, d))

| cons (x, Deep (f , a, m, b, r)) = Deep (D.cons (x, f) , a, m, b, r)
fun head (S h a llo w d) = D.head d

| head (Deep (f , a, m, b, r)) = D.head f
. . . snoc и last определяются симметричным образом. . .

fun share (f , r) = let val m = D.cons (D.last f, D.cons (D.head r, D.empty))
in (D.init f, m, D.tail r) end

fun dappendL (di, d2) = if D.isEmpty di then d2
else dappendL (D.init d i, D.cons (D.last di, d2))

fun dappendR (di, d2) = if D.isEmpty d2 then di
else dappendR (D.snoc (di, D.head d2), D.tail d2)

fun (Shallow di) -H- (Shallow d2) =
if D.size di < 4 then Shallow (dappendL (di, d2))
else if D.size d2 < 4 then Shallow (dappendR (di, d2))
else let val (f , m, r) = share (di, d2)

in Deep (f , Sempty, in, Sempty, r) end
| (S hallow d) -ft-(Deep (f , a, m, b, r)) =

if D.size d < 4 then Deep (dappendL (d, f), a, m, b, r)
else Deep (d, Scons (Simple f, force a), m, b, r)

| (D eep (f , a, m, b, г)) 4Ь (Shallow d) =
if D.size d < 4 then Deep (f, a, m, b, dappendR (r, d))
else Deep (f , a, m, Ssnoc (force b, Simple r), d)

| (Deep (f b ai, mb bi, n)) -H-(Deep (f2, a2, m2, b2, r2)) =
let val (r'j, m, f2') = share (n , f2)

val ai = Ssnoc (force ai, Cmpd (m i, bi, r'x))
val b2 = Scons (Cmpd (f^, a2, m2), force b2)

in Deep (f i , a'b m, b2, r2) end

Рис. 11.4: декн с конкатенацией, использующие неявное рекурсивное за­
медление (часть I).

11.2. Двусторонние очереди с конкатенацией 207

fun replaceHead (х, Shallow d) = Shallow (D.cons (x, D.tail d))
| replaceHead (x, D eep (f , a, m, b, r)) =

D eep (D.cons (x, D.tail f), a, m, b, r)
fun tail (S hallow d) = Shallow (D.tail d)

| tail (D eep (f , a, m, b, r)) =
if D .size f >3 then D eep (D.tail f, a, m, b, r)
else if not (isEmpty (force a)) then

case head (force a) of
Simple d =>

let val f' = dappendL (D.tail f, d)
in D eep (f ', Stail (force a), m, b, r) end

| C mpd (f , c', r') =>•
let val f" = dappendL (D.tail f, f)

val a" = S(force c' -H- replaceHead (Simple r', force a))
in D eep (f “ , a” , m, b, r) end

else if not (isEmpty (force b)) then
case head (force b) of

Simple d =s>
let val f' = dappendL (D.tail f, m)
in D eep (f ', Sempty, d, Stail (force b), r) end

| C mpd ({', c', r') =>
let val f" = dappendL (D.tail f, m)

val a” = Scons (S imple f\ force c')
in D eep (f " , a", r', Stail (force b), r) end

else Shallow (dappendL (D.tail f, m)) -ft- Shallow r
. . . replaceLast и init определяются симметричным образом .. .

end

Рис. 11.5: деки с конкатенацией, использующие неявное рекурсивное за­
медление (часть И).

Как всегда, мы присваиваем долг каждой задержке. Задержки содер­
жатся в сегментах а и Ь глубокого с-дека, а также в средних сегментах (с)
составных элементов. Каждому полю с мы разрешаем иметь до четырёх
единиц долга, а полям а и b мы позволяем иметь от нуля до пяти единиц,
в зависимости от длины полей f и г. Базовый лимит нолей а и b равен нулю.
Если в ноле f содержится более трёх элементов, то лимит поля а увели­
чивается на четыре, а лимит поля b на одну единицу. Подобным образом,
если поле г содержит более трёх элементов, то лимит поля b увеличивается
на четыре, а лимит поля а на одну единицу.

208 11. Неявное рекурсивное замедление

Теорема 11.2. Функции -Н-, tail и init работают за амортизированное
время 0 (1).
Доказательство. (-Н-) Интересный случай — конкатенация двух с-деков
Deep (f i , ai, m i , bi, ri) и Deep (f 2 , a2, m2, b2, r2). В этом случае -tf произво­
дит 0 (1) нераздельной работы и высвобождает не более четырёх единиц
долга. Во-первых, мы создаём две единицы долга для задержанных вы­
зовов snoc и cons для а и b соответственно. Эти две единицы мы всегда
высвобождаем. Кроме того, если на b i или а2 висит пять единиц долга,
нам нужно высвободить одну единицу, когда этот сегмент становится се­
рединой составного элемента. Наконец, если в fi содержится только три
элемента, а в f 2 более трёх элементов, нам нужно высвободить единицу
долга из Ь2, поскольку он становится новым Ь; и то же самое справедливо
для ri и г2. Заметим, что если на bi висит пять единиц долга, то fi со­
держит более трёх элементов, а если на а2 висит пять единиц долга, то г2
содержит более трёх элементов. Поэтому нам нужно высвободить не боль­
ше четырёх единиц долга или передать этот долг объемлющей задержке.

(tail и init) Поскольку функции tail и init симметричны, мы приво­
дим рассуждение только для tail. Простым просмотром можно убедиться,
что tail совершает 0 (1) нераздельной работы, так что нам остаётся пока­
зать, что она высвобождает не более 0 (1) долга. Мы покажем, что размер
высвобождаемого долга не превышает пять единиц.

Поскольку ta il может вызывать сама себя рекурсивно, нам нужно учи­
тывать возможность каскада вызовов t a i l . Мы используем в рассуждениях
передачу долга. Пусть у нас есть глубокий с-дек D e e p (f , a , m , b , г) . Нужно
рассмотреть каждый вариант поведения t a i l .

Если | f| > 3 , мы находимся в конце каскада. Нового долга не создаётся,
но извлечение элемента из f может уменьшить разрешённый размер долга
для а на четыре единицы, а b на одну единицу, так что мы передаём этот
долг объемлющей задержке.

Если |f| > 3, то предположим, что а непуст. (Случаи с пустым а не
содержат принципиальных отличий.) Если |г| > 3, то а может иметь одну
единицу долга, которую мы передаём в объемлющую задержку. В против­
ном случае а не должен иметь долга. Если голова а является вырожденным
составным элементом (то есть простым деком элементов), то он становит­
ся новым значением f вместе с оставшимися элементами старого f . Н о в о е

значение а представляет собой задержку от результата применения tail к
старому а. Эта задержка получает до пяти единиц долга из рекурсивного
вызова tail. Поскольку новый разрешённый размер долга для а не мень­
ше четырёх, мы передаём не более одной единицы долга в объемлюшу10
задержку, и всего передаваемых единиц долга получается не больше двух-

11.3. Примечания 209

(На самом деле, размер передаваемого долга не больше одного, поскольку
здесь мы передаём одну единицу в точности в тех случаях, когда нам не
нужно было передавать одну единицу долга из исходного а.)

Если же голова а является невырожденным составным элементом
C mpd (f\ с', г'), то f' становится новым значением f вместе с остающи­
мися элементами старого f. Вычисление нового а требует вызовов -Н- и
replaceHead. Полное число получаемых при этом единиц долга равно де­
вяти: четыре от с', четыре от -Н- и одна свежесозданная единица долга
от replaceHead. Разрешённый размер долга для нового а равен либо четы­
рём, либо пяти, так что либо четыре, либо пять единиц долга мы передаём
объемлющей задержке. Поскольку четыре единицы требуется передавать
ровно в тех случаях, когда одну единицу нужно было передать из старого
значения а, всего требуется передать не более пяти единиц долга.

Упражнение 11.4. Пусть имеется реализация D деков без конкатенации.
Реализуйте списки с конкатенацией, используя тип

datatype a Cat =
S h a llo w o f a D.Queue

| Deep o f a D .Queue x a CmpdElem Cat susp x a D .Queue
and a CmpdElem = Cmpd o f a D .Queue x a CmpdElem Cat susp

причём как головной дек глубокого (D eep) узла, так и дек в узле C mpd
должны содержать не менее двух элементов. Докажите, что все функции
в вашей реализации работают за амортизированное время 0 (1) при усло­
вии, что все функции в D работают за время 0 (1) (ограничение может
быть жёстким или амортизированным).

11.3. Примечания

Р ек урси вн ое зам едл ен и е. Понятие рекурсивного замедления было вве­
дено Капланом и Тарьяном в [КТ95) и использовано ими же в [КТЭСЬ], оно
близкородствен по ограничениям регулярности у Гибаса и др. |GMPR77|.
Вродал [Вго95] пользовался похожим методом при реализации куч.
Д еки с кон катен ац и ей . Бухсбаум и Тарьян [ВТ95] представляют чисто
Функциональную реализацию деков с конкатенацией, которая поддержи­
вает tail и init за время О (log* п) в худшем случае, а все остальные опера­
ции за 0 (1) в худшем случае. Наша реализация улучшает этот показатель
До 0 (1) для всех операций, но ограничения получаются амортизирован­
ными, а не жёсткими. Независимо от пас, Каплан и Тарьян разработали
похожую реализацию с жёсткими показателями 0 (1) . Однако детали их
Реализации весьма сложны.

А. Код на языке Haskell

А.1. Очереди

module Queue (Queue(..)) where

import Prelude hiding (head, tail)

class Queue q where
empty :: q a
isEmpty :: q a —> Bool

snoc :: q a - » a - t q a
head :: q a - t a
tail :: q a - + q a

module BatchedQueue (BatchedQueue) where

import Prelude hiding (head, tail)
import Queue

data BatchedQueue a = BQ [a] [a]

check [] r = BQ (reverse r) []
check f r = BQ f r

instance Queue BatchedQueue where
empty = BQ [][]
isEmpty (BQ f r) = null f

snoc (BQ f r) x = check f (x:r)

head (BQ [] _) = error "empty queue"
head (BQ (x:f) r) = x

tail (BQ [] _) = error "empty queue"
tail (BQ (x:f) r) = check f r

А.1. Очереди 211

juodule BankersQueue (BankersQueue) where

import Prelude hiding (head, tail)
import Queue

data BankersQueue a = BQ Int [a] Int [aj

check lenf f lenr r =
if lenr < lenf
then BQ lenf f lenr r
else BQ (lenf + lenr) (f -H- reverse r) 0 []

instance Queue BankersQueue where
empty = BQ 0 []0 []
isEmpty (BQ lenf f lenr r) = (lenf = = 0)

snoc (BQ lenf f lenr r) x = check lenf f (lenr +1) (x:r)

head (BQ lenf [] lenr r) = error "empty queue"
head (BQ lenf (x :f) lenr r) = x

tail (BQ lenf [] lenr r) = error "empty queue"
tail (BQ lenf (x:f') lenr r) = check (lenf — 1) f' lenr r

module PhysicistsQueue (PhysicistsQueue) where

import Prelude as P
import Queue

data PhysicistsQueue a = PQ [a] Int [a] Int [a]

check w lenf f lenr r =
if lenr < lenf
then checkw w lenf f lenr r
else checkw f (lenf + lenr) (f -H -reverse r) 0 []

checkw [] lenf f lenr r = PQ f lenf f lenr r
checkw w lenf f lenr r = PQ w lenf f lenr r

instance Queue PhysicistsQueue where
empty = PQ []0 [] 0 []
isEmpty (PQ w lenf f lenr r) = (lenf = = 0)

212 А. Код на языке Haskell

snoc (PQ w lenf f lenr r) x = check w lenf f (lenr+l) (x:r)

head (PQ [] lenf f lenr r) = error "empty queue"
head (PQ (x:w) lenf f lenr r) = x

tail (PQ [] lenf f lenr r) = error " empty queue"
tail (PQ (x:w) lenf f lenr r) = check w (lenf—1) (P.tail f) lenr r

module HoodMelvilleQueue (HoodMelvilleQueue) where

import Prelude hiding (head, tail)
import Queue

data RotationState a
= Idle
| Reversing Int [a] [a] [a] [a]
| Appending Int [a] [a]
| Done [a]

data HoodMelvilleQueue a = HM Int [a] (RotationState a) Int [a]

exec (Reversing ok (x :f) f' (y:r) r') = Reversing (ok+1) f (x :f) r (y:r')
exec (Reversing ok [] f' [y] r') = Appending ok f (y:r')
exec (Appending Of' r') = Done r'
exec (Appending ok (x :f) r') = Appending (ok—1) f' (x:r')
exec state = state

invalidate (Reversing ok f f' r r') = Reversing (ok—1) f f' r r'
invalidate (Appending О Г (x:r')) = Done x'
invalidate (Appending ok f' r') = Appending (ok—1) f' r'
invalidate state = state

exec2 lenf f state lenr r =
case exec (exec state) of

Done newf —> HM lenf newf Idle lenr r
newstate —> HM lenf f newstate lenr r

check lenf f state lenr r =
if lenr < lenf
then exec2 lenf f state lenr r
else let newstate = Reversing 0 f [] r [)

in exec2 (lenf+lenr) f newstate 0 []

А.1. Очереди 213

instance Queue IIoodMelvilleQueue where
empty = HM 0 [Jldle 0 [j
isEmpty (HM lenf f state lenr r) = (lenf = = 0)

snoc (HM lenf f state lenr r) x = check lenf f state (lenr+1) (x:r)

head (HM _ [] ______) = error "empty queue"
head (HM _ (x : f) ______) = x

tail (HM lenf [] state lenr r) = error "empty queue"
tail (HM lenf (_ : f) state lenr r) =

check (lenf—1) f (invalidate state) lenr r

module BootstrappedQueue (BootstrappedQueue) where

import Prelude hiding (head, tail)
import Queue

data BootstrappedQueue a
= E
| Q Int [a] (BootstrappedQueue [a]) Int [a]

checkQ, checkF :: Int —>
[a] ->
BootstrappedQueue [a] —>
Int —>
[a] ->
BootstrappedQueue a

checkQ lenfm f m lenr r =
if lenr < lenfm
then checkF lenfm f m lenr r
else checkF (lenfm+lenr) f (snoc m (reverse r)) 0 []

checkF lenfm [] E lenr r = E
checkF lenfm [j m lenr r = Q lenfm (head m) (tail m) lenr r
checkF lenfm f m lenr r = Q lenfm f m lenr r

instance Queue BootstrappedQueue where
empty = Q 0 []E 0 11
isEmpty E = True
isEmpty _ = False

214 А. Код на языке Haskell

snoc E x — Q 1 Iх] E 0 []
snoc (Q lenfm f m lenr r) x = checkQ lenfm f m (lenr+l) (x

head E = error "empty queue"
head (Q lenfm (x :f) m lenr r) = x

tail E = error "empty queue"
tail (Q lenfm (x:f') m lenr r) = checkQ (lenfm—1) Г m lenr

module ImplicitQueue (ImplicitQueue) where

import Prelude hiding (head, tail)
import Queue

data Digit a = Zero | One a | Two a a

data ImplicitQueue a
= Shallow (Digit a)
| Deep (Digit a) (ImplicitQueue (a, a)) (Digit a)

instance Queue ImplicitQueue where
empty = Shallow Zero
isEmpty (Shallow Zero) = True
isEmpty _ = False

snoc (Shallow Zero) у = Shallow (One y)
snoc (Shallow (One x)) у = Deep (Two x y) empty Zero
snoc (Deep f m Zero) у = Deep f m (One y)
snoc (Deep f m (One x)) у = Deep f (snoc m (x, y)) Zero

head (Shallow Zero) = error "empty queue"
head (Shallow (One x)) = x
head (Deep (One x) m r) = x
head (Deep (Two x y) m r) = x

tail (Shallow Zero) = error "empty queue"
tail (Shallow (One x)) = empty
tail (Deep (Two x y) m r) = Deep (One y) m r
tail (Deep (One x) m r) =

if isEmpty m then Shallow r
else Deep (Two у z) (tail m) r
where (y, z) = head m

A.2. Двусторонние очереди 215

А .2. Двусторонние очереди

module Deque (Deque(..)) where

import Prelude hiding (head, tail, last, init)

class Deque q where
empty :: q a
isEmpty : : q a - > Bool

cons :: a 4 q a - » q a
head :: q a —> a
tail :: q a - t q a

snoc :: q a - t a - t q a
last :: q a —> a
init :: q a - » q a

module BankersDeque (BankersDeque) where

import Prelude hiding (head, tail, last, init)
import Deque

data BankersDeque a = BD Int [aj Int [a]

с = 3

check lenf f lenr r =
if lenf >c*lenr +1 then

let i = (lenf + lenr) ‘div‘ 2
j = lenf + lenr — i
I' — take i f
r' = r -H- reverse (drop i f)

in BD i f' j r'
else if lenr >c*lenf +1 then

let j = (lenf+lenr) ‘div1 2
i = lenf + lenr — i
r' = take j r
f' = f -H- reverse (drop j r)

in BD i f' j r'
else BD lenf f lenr r

21C А. Код на языке Haskell

in s ta n ce Deque BankersDeque w h e r e
empty = BD 0 [|0 []
isEmpty (BD lenf f lenr r) = (lenf+lenr = = 0)

cons x (BD lenf f lenr r) = check (lenf+1) (x:f) lenr r

head (BD lenf (] lenr r) = error "empty deque"
head (BD lenf (x:f') lenr r) = x

tail (BD lenf [] lenr r) = error "empty deque"
tail (BD lenf (x :f') lenr r) = check (lenf—1) f lenr r

snoc (BD lenf f lenr r) x = check lenf f (lenr+l) (x:r)

last (BD lenf f lenr [j) = error "empty deque"
last (BD lenf f lenr (x :r ')) = x

init (BD lenf f lenr []) = error "empty deque"
init (BD lenf f lenr (x :r ')) = check lenf f (lenr —1) r'

A.3. Списки с конкатенацией

module CatenableList (CatenableList(..)) where

import Prelude hiding (head, tail, (4 f))

class CatenableList с where
empty :: с a
isEmpty :: с a —> Bool

cons : : a —> с a —► с a
snoc :: с a —> a -» с a
(4 f) :: с a —► с a —> с a

head :: с a —» a
tail :: с a —> с a

module CatList (CatList) where

import Prelude hiding (head, tail,
import CatenableList

A.4- Двусторонние очереди с конкатенацией 217

import Queue (Queue)
import qualified Queue

data CatList q a
= E
I С a (q (CatList q a))

link (C x q) s = С x (Queue.snoc q s)

instance Queue q =>CatenableList (CatList q) where
empty = E
isEmpty E = True
isEmpty _ = False

xs -H- E = xs
E -H- xs = xs
xs -ft- ys = link xs ys

cons x xs = С x Queue.empty -tt-xs
snoc xs x = xs -tt- С x Queue.empty
head E = error "empty list"

head (C x q) = x
tail E = error "empty list"
tail (C x q) = if Queue.isEmpty q then E else linkAll q

where linkAll q = if Queue.isEmpty q' then t
else link t (linkAll q')

where t = Queue.head q
q' = Queue.tail q

A .4. Двусторонние очереди с конкатенацией

module CatenableDeque (
CatenableDeque (..),
Deque(..)
) where

import Prelude hiding (head, tail, last, init, (-tt-))
import Deque

class Deque d =S>CatenableDeque d where
(-H-): : d a —> d a —> d a

218 А. Код на языке Haskell

module SimpleCatenableDeque (SimpleCatDeque) where
import Prelude hiding (head, tail, last, init, (-H-))
import CatenableDeque

data SimpleCatDeque d a
= Shallow (d a)
| Deep (d a) (SimpleCatDeque d (d a)) (d a)

tooSmall d = isEmpty d || isEmpty (tail d)

dappendL di d2 = if isEmpty di then d2 else cons (head di) d2

dappendR di d2 = if isEmpty d2 then di else snoc di (head d2)

instance Deque d =>Deque (SimpleCatDeque d) where
empty = Shallow empty
isEmpty (Shallow d) = isEmpty d
isEmpty _ = False

cons x (Shallow d) = Shallow (cons x d)
cons x (Deep f m r) = Deep (cons x f) m r

head (Shallow d) = head d
head (Deep f m r) = head f

tail (Shallow d) = Shallow (tail d)
tail (Deep f m r)

| not (tooSmall f) = Deep f m r
| isEmpty m = Shallow (dappendL f r)
| otherwise = Deep (dappendL f (head m)) (tail 111) r
where f = tail f

 snoc, last, и init определяются симметричным образом...
instance Deque d =>CatenablcDeque (SimpleCatDeque d) where

(Shallow di) -ff- (Shallow d2)
| tooSmall di = Shallow (dappendL di d2)
| tooSmall d2 = Shallow (dappendR di d2)
| otherwise = Deep di empty d2

(Shallow d) -H- (Deep f m r)
| tooSmall d = Deep (dappendL d f) m r
| otherwise = Deep d (cons f m) r

(Deep f m r) -ft- (Shallow d)
| tooSmall d = Deep f m (dappendR r d)
| otherwise = Deep f (snoc m r) d

(Deep fi mi ri) -H- (Deep f2 m2 Г2) =
Deep fi (snoc mi ri -ft-cons f2 m2) Г2

A.4. Двусторонние очереди с конкатенацией 219

module ImplicitCatenableDeque (
Sized
ImplicitCatDeque
) where

import Prelude hiding (head, tail, last, init, (-H-))
import CatenableDeque

class Sized d where
size :: d a —» Int

data ImplicitCatDeque d a
= Shallow (d a)
I Deep (d a) (ImplicitCatDeque d (CmpdElem d a)) (d a)

(ImplicitCatDeque d (CmpdElem d a)) (d a)

data CmpdElem d a
= Simple (d a)
I Cmpd (d a) (ImplicitCatDeque d (CmpdElem d a)) (d a)

share f r = (init f, m, tail r)
where m = cons (last f) (cons (head r) empty)

dappendL di d2 =
if isEmpty di then d2
else dappendL (init di) (cons (last di) d2)

dappendR di d2 =
if isEmpty d2 then di
else dappendR (snoc di (head d2)) (tail d2)

replaceHead x (Shallow d) = Shallow (cons x (tail d))
replaceHead x (Deep f a m b r) = Deep (cons x (tail f)) a m b r

instance (Deque d, Sized d) =>Deque (ImplicitCatDeque d) where
empty = Shallow empty
isEmpty (Shallow d) = isEmpty d
isEmpty _ = False

cons x (Shallow d) = Shallow (cons x d)
cons x (Deep f a m b r) = Deep (cons x f) a m b r

head (Shallow d) = head d
head (Deep f a m b r) = head f

220 А. Код на языке Haskell

tail (Shallow d) = Shallow (tail d)
tail (Deep f a m b r)

| size f > 3 = Deep (tail f) a m b r
| not (isEmpty a) =

case head a of
Simple d —> Deep f' (tail a) m b r

where f = dappendL (tail f) d
Cmpd Г с' r' —» Deep f" a" m b r

where f" = dappendL (tail f) f'
a" = c' -H- replaceHead (Simple r') a

| not (isEmpty b) =
case head b of

Simple d -» Deep f empty d (tail b) r
where f' = dappendL (tail f) m

Cmpd f' c' r' —> Deep i" a” r/ (tail b) r
where f" = dappendL (tail f) m

a" = cons (Simple f) c*
| otherwise = Shallow (dappendL (tail f) m) -H- Shallow r

 snoc, last, и init определяются симметричным образом...

instance (Deque d, Sized d) =>CatenableDeque (ImplicitCatDeque d) where
(Shallow di) -H- (Shallow d2)

| size di <4 = Shallow (dappendL di d2)
| size d2 <4 = Shallow (dappendR di d2)
| otherwise = let (f, m, r) = share di d2 in Deep f empty m empty r

(Shallow d) -H- (Deep f a m b r)
| size d < 4 = Deep (dappendL d f) a m b r
| otherwise = Deep d (cons(Simple f) a) m b r

(Deep f a m b r) -H- (Shallow d)
| size d < 4 = Deep f a m b (dappendR r d)
| otherwise = Deep f a m (snoc b (Simple r)) d

(Deep fi ai mi bi ri) 4 f (Deep f2 a2 m2 b2 r2) = Deep fi ai m b2 r2
where (ri, m, f)̂ = share ri f2

ai = snoc ai (Cmpd mi bi ri)
b2 = cons (Cmpd a2 m2) b2

A .5. Списки с произвольным доступом 221

А .5. Списки с произвольным доступом

module RandomAccessList (RandomAccessList(..)) where

import Prelude hiding (head, tail, lookup)

class RandomAccessList r where
empty : r a
isEmpty :: r a —► Bool

cons : a —> r a —> r a
head r a —> a
tail r a —̂ r a

lookup : Int —> r a —> a
update : Int —> a —> r a —» r a

module BinaryRandomAccessList (BinaryList) where

import Prelude hiding (head, tail, lookup)
import RandomAccessList

data Tree a = Leaf a | Node Int (Tree a) (Tree a)
data Digit a = Zero | One (Tree a)
newtype BinaryList a = BL [Digit a]

size (Leaf x) = 1
size (Node w ti t2) = w

link ti t2 = Node (size ti +size t2) ti t2

consTree t [] = [One t[
consTree t (Zero : ts) = One t : ts
consTree ti (One t2 : ts) = Zero : consTree (link ti t2) ts

unconsTree [] = error "empty list"
unconsTree [One t] = (t, [])
unconsTree (One t:ts) = (t, Zero : ts)
unconsTree (Zero:ts) = (ti, One t2 : ts')

where (Node _ ti t2, ts') = unconsTree ts

instance RandomAccessList BinaryList where

222 А. Код на языке Haskell

empty = BL []
isEmpty (BL ts) = null ts

cons x (BL ts) = BL (consTree (Leaf x) ts)
head (BL ts) = let (Leaf x, _) = unconsTree ts in x
tail (BL ts) = let (_ , ts') = unconsTree ts in BL ts'

lookup i (BL ts) = look i ts
where

look i [] = error "bad subscript"
look i (Zero : ts) = look i ts
look i (One t : ts) =

if i < size t then lookTree i t
else look (i — size t) ts

lookTree 0 (Leaf x) = x
lookTree i (Leaf x) = error "bad subscript"
lookTree i (Node w ti t2) =

if i < w ‘div‘ 2 then lookTree i ti
else lookTree (i — w ‘div‘ 2) t2

update i у (BL ts) = BL (upd i ts)
where

upd i [] = error "bad subscript"
upd i (Zero : ts) = Zero : upd i ts
upd i (One t : ts) =

if i < size t then One (updTree i t) : ts
else One t : upd (i — size t) ts

updTree 0 (Leaf x) = Leaf у
updTree i (Leaf x) = error "bad subscript"
updTree i (Node w ti t2) =

if i <w ‘div‘ 2 then Node w (updTree i ti) t2
else Node w ti (updTree (i — w ‘div‘ 2) t2)

module SkewBinaryRandomAccessList (SkewList) where

import Prelude hiding (head, tail, lookup)
import RandomAccessList

data Tree a = Leaf a | Node a (Tree a) (Tree a)
newtype SkewList a = SL [(Int, Tree a)]

г А .5. Списки с произвольным доступом 223

instance RandomAccessList SkewList where
empty = SL [j
isEmpty (SL ts) = null ts

cons x (SL ((wi, ti):(w 2 , t2):ts))
| wi = = W2 ' SL ((I+W 1 +W2 , Node x tj t2):ts)

cons x (SL ts) = SL ((1, Leaf x) : ts)

head (SL []) = error "empty list"
head (SL ((1, Leaf x):ts)) = x
head (SL ((w, Node x ti t2):ts)) = x

tail (SL []) = error "empty list"
tail (SL ((1, Leaf x):ts)) = SL ts
tail (SL ((w, Node x ti t2):ts)) = SL ((w ‘div‘ 2, ti):(w ‘div‘ 2, t2):ts)

lookup i (SL ts) = look i ts
where

look i [] = error "bad subscript"
look i ((w, t): ts) =

if i <w then lookTree w i t else look (i—w) ts

lookTree 1 0 (Leaf x) = x
lookTree 1 i (Leaf x) = error "bad subscript"
lookTree w 0 (Node x ti t2) = x
lookTree w i (Node x ti t2) =

if i ^ w' then lookTree w' (i— 1) ti
else lookTree w' (i—1—w') t2
where w' = w div' 2

update i у (SL ts) = SL (upd i ts)
where

upd i |j = error "bad subscript"
upd i ((w, t) :ts) =

if i <w then (w, updTree w i t): ts
else (w, t) : upd (i—w) ts

updTree 1 0 (Leaf x) = Leaf у
updTree 1 i (Leaf x) = error "bad subscript"
updTree w 0 (Node x ti t2) = Node у ti t2

updTree w i (Node x tj t2) =
if i < w' then Node x (updTree w7 (i— 1) ti) t2
else Node x ti (updTree w' (i—1—w') t2)
where w' = w ‘div ‘ 2

224 А. Код на языке Haskell

module AltBinaryRandomAccessList (BinaryList) where

import Prelude hiding (head, tail, lookup)
import RandomAccessList

data BinaryList a
= Nil
| Zero (BinaryList (a, a))
[One a (BinaryList (a, a))

uncons:: BinaryList a —>• (a, BinaryList a)
uncons Nil = error "empty list"
uncons (One x Nil) = (x, Nil)
uncons (One x ps) = (x, Zero ps)
uncons (Zero ps) = let ((x, y), ps') = uncons ps in (x, One у

fupdate :: (a —У a) —> Int —У BinaryList a —У BinaryList a
fupdate f i Nil = error "bad subscript"
fupdate f 0 (One x ps) = One (f x) ps
fupdate f i (One x ps) = cons x (fupdate f (i —1) (Zero ps))
fupdate f i (Zero ps) = Zero (fupdate f' (i ‘ div‘ 2) ps)

where f' (x,y) = if i ‘ mod1 2 = = 0 then (f x, y) else (x, f y)

instance RandomAccessList BinaryList where
empty = Nil
isEmpty Nil = True
isEmpty _ = False

cons x Nil = One x Nil
cons x (Zero ps) = One x ps
cons x (One у ps) = Zero (cons (x, y) ps)

head xs = fst (uncons xs)
tail xs = snd (uncons xs)

lookup i Nil = error "bad subscript"
lookup 0 (One x ps) = x
lookup i (One x ps) = lookup (i—1) (Zero ps)
lookup i (Zero ps) = if i ‘mod* 2 = = 0 then x else у

where (x, y) = lookup (i ‘div‘ 2) ps

update i у xs = fupdate (Ax —>y) i xs

A . 6. Кучи 225

A .6. Кучи

module Heap (Heap(..)) where

class Heap h where
empty :: Ord a =>h a
isEmpty :: Ord a =>>h a —» Bool

insert :: Ord a =>a —> h a —> h a
merge :: Ord a =>h a -» li a -> h a

findMin :: Ord a =>h a —> a
deleteMin :: Ord a =>h a —» h a

module LeftistHeap (LeftistHeap) where

import Heap

data LeftistHeap a = E | T Int a (LeftistHeap a) (LeftistHeap a)

rank E = 0
rank (T r) = r

makeT x a b = if rank a ^ rank b
then T (rank b +1) x a b
else T (rank a +1) x b a

instance Heap LeftistHeap where
empty = E
isEmpty E = True
isEmpty _ = False

insert x h = merge (T 1 x E E) h

merge h E = h
merge E h = h
merge hi@(T _ x ai bi) h2@(T _ у a2 b2) =

if x sj у
then makeT x ai (merge bi h2)
else makeT у a2 (merge hi b2)

findMin E = error "empty heap"

226 А. Код на языке Haskell

findMin (Т _ х a b) = х

deleteMin Б = error "empty heap"
deleteMin (T _ x a b) = merge a b

module BinomialHeap (BinomialHeap) where

import Heap

data Tree a = Node Int a [Tree a]
newtype BinomialHeap a = BH [Tree a]

rank (Node r x c) = r
root (Node r x c) = x

link ti@(Node r xi Ci) t2@(Node _ хг C2) =
if xi < X2

then Node (r+1) xi (t2 : Ci)
else Node (r+1) X2 (ti : C2)

insTree t [] = [t]
insTree t ts@(t' : ts') =

if rank t Crank t' then t:ts else insTree (link t t') ts'

mrg tsi [[= tsi
mrg [] tS2 = tS2

mrg tsi@(ti:tsi) tS2@(t2 :tS2)
I rank ti <rank t2 = ti : mrg ts'i ts2
I rank t2 <rank ti = t2 : mrg tsi ts^
I otherwise = insTree (link ti t2) (mrg ts'j ts^)

removeMinTree []= error "empty heap"
removeMinTree [t] = (t, [])
removeMinTree (t:ts) =

if root t <root t' then (t, ts) else (t', t :ts ')
where (t', ts') = removeMinTree ts

instance Heap BinomialHeap where
empty = BH []
isEmpty (BH ts) = null ts

insert x (BH ts) = BH (insTree (Node 0 x []) ts)
merge (BH tsi) (BH ts2) = BH (mrg tsi ts2)

A .6. Кучи 227

findMin (BH ts) = root t
where (t, _) = removeMinTree ts

deleteMin (BH ts) = BH (mrg (reverse tsi) ts2)
where (Node _ x tsi, ts2) = removeMinTree ts

module SplayHeap (SplayHeap) where

import Heap

data SplayHeap a = E | T (SplayHeap a) a (SplayHeap a)

partition pivot E = (E, E)
partition pivot t@(T a x b) =

if x pivot then
case b of

E (t, E)
T bi у b2 —>

if у ^ pivot then
let (small, big) = partition pivot b2
in (T (T a x b) у small, big)

else
let (small, big) = partition pivot bi
in (T a x small, T big у b2)

else
case a of

E -> (E, t)
T ai у a2 —>

if у ^ pivot then
let (small, big) = partition pivot a2
in (T ai у small, T big x b)

else
let (small, big) = partition pivot ai
in (small, T big у (T a2 x b))

instance Heap SplayHeap where
empty = E
isEmpty E = True
isEmpty _ = False

insert x t = T a x b
where (a, b) = partition x t

228 А. Код на языке Haskell

merge Е t = t
merge (T a x b) t = T (merge ta a) x (merge tb b)

where (ta, tb) = partition x t

findMin E = error "empty heap"
findMin (T E x b) = x
findMin (T a x b) = findMin a

deleteMin E = error "empty heap"
deleteMin (T E x b) = b
deleteMin (T (T E x b) у с) = T b у с
deleteMin (Т (Т а х b) у с) = Т (deleteMin а) х (Т b у с)

module PairingHeap (PairingHeap) where

import Heap

data PairingHeap a = E | T a [PairingHeap a]

mergePairs [] = E
mergePairs [h] = h
mergePairs (hi:li2 :hs) = merge (merge hi h2) (mergePairs hs)

instance Heap PairingHeap where
empty = E
isEmpty E = True
isEmpty _ = False

insert x h = merge (T x []) h
merge h E = h
merge E h = h
merge hi@ (T x hsi) li2®(T у I1S2) =

if x < y
then T x (I12 : hsi)
else T у (hi : I1S2)

findMin E = error "empty heap"
findMin (T x hs) = x

deleteMin E = error "empty heap"
deleteMin (T x hs) = mergePairs hs

A.6. Кучи 229

module LazyPairingHeap (PairingHeap) where

import Heap

data PairingHeap a = E | T a (PairingHeap a) (PairingHeap a)

link (T x E m) a = T x a m
link (T x b m) a = T x E (merge (merge a b) m)

instance Heap PairingHeap where
empty = E
isEmpty E = True
isEmpty _ = False

insert x a = merge (T x E E) a
merge a E = a
merge E b = b
merge a@(T x) b@(T у) = if x <y

then link a b
else link b a

findMin E = error "empty heap"
findMin (T x a m) = x

deleteMin E = error "empty heap"
deleteMin (T x a m) = merge a m

module SkewBinomialHeap (SkewBinomialHeap) where

import Heap

data Tree a = Node Int a [a] [Tree a|
newtype SkewBinomialHeap a = SBII [Tree a]

rank (Node r x xs c) = r
root (Node r x xs c) = x

link ti@(Node r xi xsi ci) t2@(Node _ x2 xs2 c2) =
if xi ^ x2
then Node (r+1) xi xsi (t2 : ci)
else Node (r+1) x2 xs2 (ti : c2)

skewLink x ti t2 =

230 А. Код на языке Haskell

let Node г у ys с = link ti t2
in if x ^ у

then Node r x (y : ys) с
else Node г у (x : ys) с

insTree t |] = [t]
insTree t ts@(t':ts') =

if rank t <rank t' then t:ts else insTree (link t t') ts'

mrg tsi [] = tsi
mrg [] ts2 = ts2
mrg tsi@(ti:tsi) ts2@ (t2 :ts2)

| rank ti <rank t2 = ti : mrg ts'x tS2

| rank t2 <rank t2 = t2 : mrg tsi ts2

| otherwise = insTree (link ti t2) (mrg ts'i ts^)

normalize [] = []
normalize (t :ts) = insTree t ts

removeMinTree []= error "empty heap"
removeMinTree [t] = (t, [])
removeMinTree (t: ts) = if root t <root t' then (t, ts) else (t', t :ts ')

where (t', ts') = removeMinTree ts

instance Heap SkewBinomialHeap where
empty = SBH []
isEmpty (SBH ts) = null ts

insert x (SBH (ti:t2:ts))
| rank ti = = rank t2 = SBH (skewLink x ti t2 :ts)

insert x (SBH ts) = SBH (Node 0 x [][]: ts)

merge (SBH tsj) (SBH tS2) = SBH (mrg (normalize tsi) (normalize tS2))

findMin (SBH ts) = root t
where (t, _) = removeMinTree ts

deleteMin (SBH ts) = foldr insert (SBH ts') xs
where (Node _ x x s tsi, ts2) = removeMinTree ts

ts' = mrg (reverse tsi) (normalize tS2)

A .6. Кучи 231

module BootstrapHeap (BootstrapHeap) where

import Heap

data BootstrapHeap h a = E | II a (h (BootstrapHeap h a))

instance Eq a =>Eq (BootstrapHeap h a) where
(H x _) = = (H у _) = (x = = y)

instance Ord a =>Ord (BootstrapHeap h a) where
(H x _) < (H y _) = (x < y)

instance Heap h =>Heap (BootstrapHeap h) where
empty = E
isEmpty E = True
isEmpty _ = False

insert x h = merge (H x empty) h

merge E h = h
merge h E = h
merge hi@(H x pi) Ьг@(Н у рг) =

if x sj у
then H x (insert I12 pi)
else H у (insert hi P2)

findMin E = error "empty heap"
findMin (H x p) = x

deleteMin E = error "empty heap"
deleteMin (H x p) =

if isEmpty p then E
else let H у pi = findMin p

P2 = deleteMin p
in H у (merge pi рг)

232 А. Код на языке Haskell

А .7. Сортируемые коллекции

module Sortable (Sortable(..)) where

class Sortable s where
empty :: Ord a =>s a
add :: Ord a =>a —> s a —> s a
sort :: Ord a =>s a [a]

module BottomUpMergeSort (MergeSort) where

import Sortable

data MergeSort a = MS Int [[a]]

mrg [] ys = ys
mrg xs [] = xs
mrg xs@(x:xs') ys@(y:ys') =

if x ^ у
then x : mrg xs' ys
else у : mrg xs ys'

instance Sortable MergeSort where
empty = MS 0 []

add x (MS size segs) = MS (size+1) (addSeg [x] segs size)
where addSeg seg segs size =

if size ‘ mod1 2 = = 0 then seg : segs
else addSeg (mrg seg (head segs)) (tail segs) (size ‘ div‘ 2)

sort (MS size segs) = foldl mrg [] segs

A .8. Множества

{ —# LANGUAGE MultiParamTypeClasses # —}
module Set (Set(..)) where

class Set s a where
empty :: s a
insert :: a —> s a —> s a
member :: a —> s a —> Bool

A .8. Множества 233

{ —# LANGUAGE MultiParamTypeClasses, Flexiblelnstances # —}
module UnbalancedSet (UnbalancedSet) where

import Set

data UnbalancedSet a = E | T (UnbalancedSet a) a (UnbalancedSet a)

instance Ord a =>Set UnbalancedSet a where
empty = E

member x E = False
member x (T a у b) = if x <y then member x a

else if x > y then member x b
else True

insert x E = T E x E
insert x s@(T a у b) = if x < y then T (insert x a) у b

else if x > y then T a у (insert x b)
else s

{ —# LANGUAGE MultiParamTypeClasses, Flexiblelnstances # —}
module RedBlackSet (RedBlackSet) where

import Set

data Color = R | В
data RedBlackSet a = E | T Color (RedBlackSet a) a (RedBlackSet a)

balance В (T R (T R a x b) у c) z d = T R (T В a x b) у (T В с z d)
balance В (T R a x (T R b у c)) z d = T R (T В a x b) у (T В с z d)
balance В a x (T R (T R b у c) z d) = T R (T В a x b) у (T В с z d)
balance В a x (T R b у (T R с z d)) = T R (T В a x b) у (T В с z d)
balance color a x b = T color a x b

instance Ord a =>Set RedBlackSet a where
empty = E

member x E = False
member x (T _ a у b) = if x <y then member x a

else if x > y then member x b
else True

234 А. Код на языке Haskell

insert х s = T В а у b
where ins E = T R E x E

ins s@(T color a у b) =
if x у then balance color (ins a) у b
else if x > y then balance color a у (ins b)

else s
T _ a у b = ins s гарантированно не пусто

A .9. Конечные отображения

{ —# LANGUAGE MultiParamTypeClasses # —}
module FiniteMap (FinitcMap(..)) where

class FiniteMap m к where
empty :: m к a
bind :: k 4 a 4 m k a - » m k a
lookup :: к —> m к a —> Maybe a

{—# LANGUAGE MultiParamTypeClasses, Flexiblelnstances # —}
module Trie (Trie) where

import Prelude hiding (lookup)
import FiniteMap

data Trie mk ks a = Trie (Maybe a) (mk (Trie mk ks a))

instance FiniteMap m к =4-FiniteMap (Trie (m k)) [k] where
empty = Trie Nothing empty

lookup [](Trie b m) = b
lookup (k:ks) (Trie b m) = lookup к m »= A in ' —> lookup ks m'

bind [] x (Trie b m) = Trie (Just x) m
bind (k:ks) x (Trie b m) =

let t = case lookup к m of
Just t —> t
Nothing —» empty

t' = bind ks x t
in Trie b (bind к t ' m)

A. 9. Конечные отображения 235

{ —# LANGUAGE MultiParamTypeClasses, Flexiblelnstances # —}
module TrieOfTrees (Tree(..), Trie) where

import Prelude hiding (lookup)
import FiniteMap

data Tree a = E | T a (Tree a) (Tree a)
data Trie mk ks a = Trie (Maybe a) (mk (Trie mk ks (Trie mk ks a)))

instance FiniteMap m к =>FiniteMap (Trie (m k)) (Tree k) where
empty = Trie Nothing empty

lookup E (Trie v m) = v
lookup (T к a b) (Trie v m) =

lookup к m 55*=Am' —>
lookup a m' 5S*=Am'' —>•
lookup b m'

bind E x (Trie v m) = Trie (Just x) m
bind (T к a b) x (Trie v m) =

let tt = case lookup к m of
Just tt —> tt
Nothing —» empty

t = case lookup a tt of
Just t —> t
Nothing —sempty

t' = bind b x t
tt' = bind a t' tt

in Trie v (bind к tt 'm)

Литература

[AFM+95]

[And95]

[AVL62]

[Bac78]

[BAG92]

[BC93]

[Bel57]

[BH89]

[Ada93]

[B096]

Stephen Adams. Efficient sets — a balancing act. Journal of
Functional Programming, 3(4):553-561, October 1993.

Zena M. Ariola, Matthias Felleisen, John Maraist, Martin
Odersky, and Philip Wadler. A call-by-need lambda calculus.
In ACM Symposium on Principles o f Programming Languages,
pages 233-246, January 1995.

Arne Andersson. A note on searching in a binary search tree.
Software—Practice and Experience, 21(10):1125-1128, October
1991.

Г. М. Адельсон-Вельский и E. М. Ландис. Один алгоритм
организации информации. Доклады Академии Наук СССР,
146:263-266, 1962.

John Backus. Can programming be liberated from the von
Neumann style? A functional style and its algebra of programs.
Communications o f the ACM, 21(8):613-641, August 1978.

Amir Ben-Amram and Zvi Galil. On pointers versus addresses.
Journal o f the ACM, 39(3):617-648, July 1992.

F. Warren Burton and Robert D. Cameron. Pattern matching
with abstract data types. Journal o f Functional Programming,
3(2): 171-190, April 1993.

Richard Bellman. Dynamic Programming. Princeton University
Press, 1957.

Bjor Bjerner and Soren Holmstrom. A compositional approach
to time analysis of first order lazy functional programs.
In Conference on Functional Programming Languages and
Computer Architecture, pages 157-165, September 1989.

Gerth St0 lting Brodal and Chris Okasaki. Optimal purely
functional priority queues. Journal o f Functional Programming,
6(6):839-857, November 1996.

Литература 237

[Bro78|

[Bro95|

[Bro9C]

|BST95]

[BT95j

[Buc93|

[Bur82]

[But83j

[BW 8 8]

[CG93|

[CLR90]

Mark R. Brown. Implementation and analysis of binomial queue
algorithms. SIAM Journal o f Computing, 7(3):298-319, August
1978.

Gerth St0 lting Brodal. Fast meldable priority queues. In
Workshop on Algorithms and Data Structures, volume 995 of
LNCS, pages 282-290. Springer-Verlag, August 1995.

Gerth St0 lting Brodal. Worst-case priority queues. In ACM-
SIAM Symposium on Discrete Algorithms, pages 52 -58, January
1996.

Adam L. Buchsbaum, Rajamani Sundar, and Robert E. Tarjan.
Data-structural bootstrapping, linear path compression, and
catenable heap-ordered double-ended queues. SIAM Journal on
Computing, 24(6): 1190 1206, December 1995.

Adam L. Buchsbaum and Robert E. Tarjan. Confluently
persistent deques via data structural bootstrapping. Journal o f
Algorithms, 18(3):513-547, May 1995.

Adam L. Buchsbaum. Data-structural bootstrapping and
catenable deques. PhD thesis, Department o f Computer Science,
Princeton University, June 1993.

F. Warren Burton. An efficient functional implementation of
FIFO queues. Information Processing Letters, 14(5):205-206,
July 1982.

T. W . Butler. Computer response time and user performance.
In Conference on Human Factors in Computing Systems, pages
58—62, December 1983.

Richard S. Bird and Philip Wadler. Introduction to Functional
Programming. Prentice Hall International, 1988.

Tung-Ruey Chuang and Benjamin Goldberg. Real-time deques,
multihead Turing machines, and purely functional programming.
In Conference on Functional Programming Languages and
Computer Architecture, pages 289-298, June 1993.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIT Press, 1990. Русский перевод:
Т. Кормен, Ч. Лейзерсон, Р. Ривест. Алгоритмы: построение
и анализ. Москва, МЦНМО, 2001.

238 Литература

[СМ95]

[СМР8 8]

[Cra72]

[CS96]

[DGST8 8]

[Die82]

[Die89]

[DR91]

[DR93]

[DS87]

Richard H. Connelly and F. Lockwood Morris. A generalization
of the trie data structure. Mathematical Structures in Computer
Science, 5(3):381-418, September 1995.

Svante Carlsson, Ian Munro, and Patricio V. Poblete. An implicit
binomial queue with constant insertion time. In Scandinavian
Workshop on Algorithm Theory, volume 318 of LNCS, pages 1

13. Springer-Verlag, July 1988.

Clark Allan Crane. Linear lists and priority queues as balanced
binary trees. PhD thesis, Computer Science Department,
Stanford University, February 1972. Available as STAN-CS-72-
259.

Seonghun Clio and Sartaj Sahni. Weight biased leftist trees
and modified skip lists. In International Computing and
Combinatorics Conference, pages 361-370, June 1996.

James R. Driscoll, Harold N. Gabow, Ruth Shrairman,
and Robert E. Tarjan. Relaxed heaps: An alternative to
Fibonacci heaps with applications to parallel computation.
Communications o f the ACM, 31(11):1343-1354, November 1988.

Paul F. Dietz. Maintaining order in a linked list. In ACM
Symposium on Theory of Computing, pages 122-127, May 1982.

Paul F. Dietz. Fully persistent arrays. In Workshop on
Algorithms and Data Structures, volume 382 o f LNCS, pages
67-74. Springer-Verlag, August 1989.

Paul F. Dietz and Rajeev Raman. Persistence, amortization
and randomization. In ACM -SIAM Symposium on Discrete
Algorithms, pages 78-88, January 1991.

Paul F. Dietz and Rajeev Raman. Persistence, randomization
and parallelization: On some combinatorial games and their
applications, in Workshop on Algorithms and Data Structures,
volume 709 of LNCS, pages 289-301. Springer-Verlag, August
1993.

Paul F. Dietz and Danial D. Sleator. Two algorithms for
maintaining order in a list. In A CM Symposium on Theory of
Computing, pages 365-372, May 1987.

Литература 239

|DSST89]

[DST94J

[FB97]

[FMR72]

[FSST8 6]

|FT87]

[FW76]

[GMPR77]

[Gri81]

[GS78]

[GT86]

James R. Driscoll, Neil Sarnak, Daniel D. K. Sleator, and
Robert E. Tarjan. Making data structures persistent. Journal o f
Computing and System Sciences, 38(1) :86—124, February 1989.

James R. Driscoll, Daniel D. K. Sleator, and Robert E. Tarjan.
Fully persistent lists with catenation. Journal o f the ACM,
41(5):943-959, September 1994.

Manuel Fahndrich and John Boyland. Statically checkable
pattern abstractions. In ACM SIGPLAN International
Conference on Functional Programming, pages 75-84, June
1997.

Patrick C. Fischer, Albert R. Meyer and Arnold L. Rosenberg.
Real-time simulation of multihead tape units. Journal of the
ACM, 19(4):590-607, October 1972.

Michael L. Fredman, Robert Sedgewick, Daniel D. K. Sleator,
and Robert E. Tarjan. The pairing heap: A new form of self-
adjusting heap. Algorithmica, 1 (1): 1 1 1 -129, 1986.

Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and
their uses in improved network optimization algorithms. Journal
o f the ACM, 34(3):596-615, July 1987.

Daniel P. Friedman and David S. Wise. CONS should
not evaluate its arguments. In Automata, Languages and
Programming, pages 257-281, July 1976.

Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and
Janet R. Roberts. A new representation for linear lists. In ACM
Symposium on Theory o f Computing, pages 49-60, May 1977.

David Gries. The Science o f Programming. Texts and
Monographs in Computer Science. Springer-Verlag, New York,
1981.

Leo J. Guibas and Robert Sedgewick. A dichromatic framework
for balanced trees. In IEEE Symposium on Foundations o f
Computer Science, pages 8-21, October 1978.

Hania Gajewska and Robert E. Tarjan. Deques with heap order.
Information Processing Letters, 22(4):197-200, April 1986.

240 Литература

|Hen93]

[HJ94J

[НМ76]

|НМ81]

|Ноо82]

[Ноо92]

[HU73]

[Hug85]

[Hug8 6]

[Hug89]

[J0 I1 8 G]

[Jos89]

Fritz Henglein. Type inference with polymorphic recursion.
A C M Transactions on Programming Languages and Systems
15(2):253-289, April 1993.

Paul Hudak and Mark P. Jones. Haskell vs. Ada vs. C + + vs.
.. .A 11 experiment in software prototyping productivity, 1994.

Peter Henderson and James H. Morris, Jr. A lazy evaluator.
I11 ACM Symposium on Principles o f Programming Languages,
pages 95-103, January 1976.

Robert Hood and Robert Melville. Real-time queue operations
in pure Lisp. Information Processing Letters, 13(2): 50-53,
November 1981.

Robert Hood. The Efficient Implementation o f Very-High-Level
Programming Language Constructs. PhD thesis, Department of
Computer Science, Cornell University, August 1982. (Cornell TR
82-503).

Rob R. Hoogerwoord. A symmetric set of efficient list operations.
Journal o f Functional Programming, 2(4):505-513, October
1992.

John E. Hopcroft and Jeffrey D. Ullinan. Set merging algorithms.
SIAM Journal on Computing, 2(4):294 303, December 1973.

John Hughes. Lazy memo functions. In Conference on Functional
Programming Languages and Computer Architecture, volume 201
o f LNCS, pages 129-146. Springer-Verlag, September 1985.

John Hughes. A novel representation of lists and its application
to the function “reverse”. Information Processing Letters,
22(3):141 144, March 1986.

John Hughes. W hy functional programming matters. The
Computer Journal, 32(2):98-107, April 1989.

Douglas W . Jones. An empirical comparison of priority-queue
and event-set implementations. Communications o f the ACM,
29(4):300-311, April 1986.

Mark B. Josephs. The semantics of lazy functional languages.
Theoretical Computer Science, 6 8 (1): 105—111. October 1989.

Литература 241

[KD96]

[Kin94]

[KL93]

[Knu73a]

[Knu73b]

[KT95]

[KT96a]

[I<T96b]

[KTU93]

[Lan65]

Anne Kaldewaij and Victor J. Dielissen. Leaf trees. Science of
Computer Programming, 26(1 3):149-165, May 1996.

David J. King. Functional binomial queues. In Glasgow
Workshop on Functional Programming, pages 141-150,
September 1994.

Chan Meng Khoong and Hon Wai Leong. Double-ended
binomial queues. In International Symposium on Algorithms and
Computation, volume 762 of LNCS, pages 128-137. Springer-
Verlag, December 1993.

Donald E. Knuth. Searching and Sorting, volume 3 of The Art
o f Computer Programming. Addison-Wesley, 1973. Русский пе­
ревод: Дональд Э. Кнут. Искусство программирования. Том
3: Сортировка и поиск. Вильямс, 2012.

Donald Е. Knuth. Seminumerical Algorithms, volume 2 of The
Art o f Computer Programming. Addison-Wesley, 1973. Русский
перевод: Дональд Э. Кнут. Искусство программирования.
Том 2: Получисленные алгоритмы. Вильямс, 2011.

Haim Kaplan and Robert E. Tarjan. Persistent lists with
catenation via recursive slow-down. In A C M Symposium on
Theory of Computing, pages 93-102, May 1995.

Haim Kaplan and Robert E. Tarjan. Purely functional lists with
catenation via recursive slow-down. Draft revision of (KT95],
August 1996.

Haim Kaplan and Robert E. Tarjan. Purely functional
representation of catenable sorted lists. In ACM Symposium on
Theory o f Computing, pages 202-211, May 1996.

Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. Type
reconstruction in the presence of polymorphic recursion.
ACM Transactions on Programming Languages and Systems,
15(2):290-311, April 1993.

P. J. Landin. A correspondence between ALGOL 60 and
Church’s lambda-notation: Part I. Communications o f the ACM,
8(2):89-101, February 1965.

242 Литература

[Lau93|

[Lia92]

[LS81]

[MEP96]

[Mic6 8]

[MS91]

[MT94]

[MTHM97]

[Myc84]

[Mye82]

[Mye83]

[Mye84]

John Launchbury. A natural semantics for lazy evaluation. In
ACM Symposium on Principles o f Programming Languages,
pages 144-154, January 1993.

Andrew M. Liao. Three priority queue applications revisited.
Algorithmica, 7(4):415-427, 1992.

Benton L. Leong and Joel I. Seiferas. New real-time simulations
of multihead tape units. Journal o f the ACM, 28(1):166-180,
January 1981.

Alistair Moffat, Gary Eddy, and Ola Petersson. Splaysort:
Fast, versatile, practical. Software—Practice and Experience,
26(7):781- 797, July 1996.

Donald Michie. “Memo” functions and machine learning. Nature,
218:19-22, April 1968.

Bernard М. E. Moret and Henry D. Shapiro. An empirical
analysis o f algorithms for constructing a minimum spanning tree.
In Workshop on Algorithms and Data Structures, volume 519 of
LNCS, pages 400-411. Springer-Verlag, August 1991.

David B. MacQueen and Mads Tofte. A semantics for higher-
order functors. In European Symposium on Programming, pages
409-423, April 1994.

Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen. The Definition o f Standard ML (Revised). The MIT
Press, Cambridge, Massachusetts, 1997.

Alan Mycroft. Polymorphic type schemes and recursive
definitions. In International Symposium on Programming,
volume 167 of LNCS, pages 217-228. Springer-Verlag, April
1984.

Eugene W . Myers. AVL dags. Technical Report TR82-9,
Department of Computer Science, University o f Arizona, 1982.

Eugene W . Myers. An applicative random-access stack.
Information Processing Letters, 17(5):241-248, December 1983.

Eugene W . Myers. Efficient applicative data types. In ACM
Symposium on Principles o f Programming Languages, pages 6 6 -
75, January 1984.

Литература 243

[NPP95]

[Ока95а]

[Oka95b]

[Ока95с]

|0ka9Ga]

[ОкаЭбЬ]

[Ока97]

|OLT94|

|Ove83]

|Pau9C|

[Pet87]

Manuel Nunez, Pedro Palao, and Ricardo Pena. A second year
course 0 1 1 data structures based on functional programming. In
Functional Programming Languages in Education, volume 1022
of LNCS, pages 65 84. Springer-Verlag, December 1995.

Chris Okasaki. Amortization, lazy evaluation, and persistence:
Lists with catenation via lazy linking. In IEEE Symposium on
Foundations o f Computer Science, pages 646-654, October 1995.

Chris Okasaki. Purely functional random-access lists. In
Conference on Functional Programming Languages and
Computer Architecture, pages 86-95, June 1995.

Chris Okasaki. Simple and efficient purely functional queues
and deques. Journal o f Functional Programming, 5(4):583-592,
October 1995.

Chris Okasaki. Purely Functional Data Structures. PhD thesis,
School of Computer Science, Carnegie Mellon University,
September 1996.

Chris Okasaki. The role of lazy evaluation in amortized data
structures. In ACM SIGPLAN International Conference on
Functional Programming, pages 62 72, May 1996.

Chris Okasaki. Catenable double-ended queues. In
ACM SIGPLAN International Conference on Functional
Programming, pages 64 74, June 1997.

Chris Okasaki, Peter Lee, and David Tarditi. Call-by-need
and continuation-passing style. Lisp and Symbolic Computation,
7(1):57—81, January 1994.

Mark H. Overmars. The Design o f Dynamic Data Structures,
volume 156 of LNCS. Springer-Verlag, 1983.

Laurence C. Paulson. ML for the Working Programmer.
Cambridge University Press, 2nd edition, 1996.

Gery L. Peterson. A balanced tree scheme for meldable
heaps with updates. Technical Report GIT-ICS-87-23, School
of Information and Computer Science, Georgia Institute of
Technology, 1987.

244 Литература

|Pip96)

(PPN96)

|Ram92]

[Rea92]

[San90]

[San95]

|Sar8 6]

[Sch92]

[Scli93]

[Sch97]

[SS90]

[ST85]

Nicholas Pipi)inger. Pure versus inipure Lisp. In ACM
Symposium on Principles o f Programming Languages, pages
104-109, January 1996.

Pedro Palao Gostanza, Ricardo Pena, and Manuel Nunez.
A new look at pattern matching in abstract data types.
In ACM SIGPLAN International Conference on Functional
Programming, pages 110 121, May 1996.

Rajeev Raman. Eliminating Amortization: On Data Structures
with Guaranteed Response Times. PhD thesis, Department of
Computer Sciences, University of Rochester, October 1992.

Chris M. P. Reade. Balanced trees with removals: an exercise
in rewriting and proof. Science o f Computer Programming,
18(2):181-204, April 1992.

David Sands. Complexity analysis for a lazy higher-order
language. In European Symposium on Programming, volume 432
of LNCS, pages 361 376. Springer-Verlag, May 1990.

David Sands. A nai've time analysis and its theory of cost
equivalence. Journal of Logic and Computation, 5(4):495-541,
August 1995.

Neil Sarnak. Persistent Data Structures. PhD thesis,
Department of Computer Sciences, New York university,
1986.

Berry Schoenmakers. Data Structures and Amortized Complexity
in a Functional Setting. PhD thesis, Eindhoven University of
Technology, September 1992.

Berry Schoenmakers. A systematic analysis of splaying.
Information Processing Letters, 45(1):41 -50, January 1993.

Martin Schwenke. High-level refinement of random access data
structures. In Formal Methods Pacific, pages 317-318, July 1997.

Jorg-Riidiger Sack and Thomas Strothotte. A characterization
of heaps and its applications. Information and Computation,
86(1):69 8 6 , May 1990.

Daniel D. K. Sleator and Robert E. Tarjan. Self-adjusting binary
search trees. Journal o f the ACM, 32(3):652-686, July 1985.

Литература 245

[ST8 6 a]

[ST8 6 b]

[Sta8 8]

[Sto70]

[SV87]

[Tar83]

[Tar85]

[TvL84]

[U1194]

[Vui74]

[Vui78]

[Wad71]

Neil Sarnak and Robert E. Tarjan. Planar point location using
persistent search trees. Communications o f the ACM, 29(7):669-
679, July 1986.

Daniel D. K. Sleator and Robert E. Tarjan. Self-adjusting heaps.
SIAM Journal on Computing, 15(l):52-69, February 1986.

John A. Stankovic. Misconceptions about real-time computing:
A serious problem for next-generation systems. Computer,
21(10):10 19, October 1988.

Hans-Jorg Stofi. К -band simulation von k-Kopf-Turingmachinen.
Computing, 6(3):309-317, 1970.

John T. Stasko and Jeffrey S. Vitter. Pairing heaps: experiments
and analysis. Communications o f the ACM, 30(3):234 249,
March 1987.

Robert E. Tarjan. Data Structures and Network Algorithms,
volume 44 of CDMS Regional Conference Series in Applied
Mathematics. Society for Industrial and Applied Mathematics,
Philadelphia, 1983.

Robert E. Tarjan. Amortized computational complexity. SIAM
Journal on Algebraic and Discrete Methods, 6(2):306-318, April
1985.

Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of
set union algorithms. Journal o f the ACM, 31(2):245 281, April
1984.

Jeffrey D. Ullman. Elements of ML Programming. Prentice Hall,
Englewood Cliffs, New Jersey, 1994.

Jean Vuillemin. Correct and optimal implementations of
recursion in a simple programming language. Journal o f
Computer and System Sciences, 9(3):332-354, December 1974.

Jean Vuillemin. A data structure for manipulating priority
queues. Communications of the ACM, 21(4):309-315, April 1978.

Christopher P. Wadsworth. Semantics and Pragmatics o f the
Lambda Calculus. PhD thesis, University of Oxford, September
1971.

246 Литература

|Wad87|

[Wad88]

[WV86]

Philip Wadlcr. Views: A way for pattern-matching to cohabit
with data abstraction. In ACM Symposium on Principles o f
Programming Languages, pages 307-313, January 1987.

Philip Wadler. Strictness analysis aids time analysis. In ACM
Symposium on Principles of Programming Languages, pages
119-132, January 1988.

Christopher van Wyk and Jeffrey Scott Vitter. The complexity
of hashing with lazy deletion. Algorithmica, 1(1):17 29, 1986.

Предметный указатель

$-запись, 41-44
AltBinary RandomAccessList

(структура), 168
BankersDeque (функтор), 128
BankersQueue (структура), 78
BatchedQueue (структура), 54
BinaryRandomAccessList

(структура), 141
BinomialHeap (функтор), 34
Bootstrap (функтор), 185
BootstrappedQueue (структура), 171
BottomUpMergeSort (структура), 91
CATENABLEDEOUE (сигнатура),

201
CATENABLELIST (сигнатура), 176
CatenableList (функтор), 179
DEQUE (сигнатура), 56, 125
ExplicitMin (функтор), 35
FINITEMAP (сигнатура), 25, 187
foldrl

схема, 177
HEAP (сигнатура), 28
HEAPWITHINFO (сигнатура), 186
HoodMelvilleQueue (структура), 123
ImplicitCatenableDeque (функтор),

206, 207
ImplicitQueue (структура), 198
k-номиальные деревья, 159
LazyBinomialHeap (функтор), 85
Lazy PairingHeap (функтор), 96
LeftistHeap (функтор), 30
ORDERED (сигнатура), 24
PairingHeap (функтор), 65
PhysicistsQueue (структура), 87
QUEUE (сигнатура), 52
RANDOMACCESSLIST

(сигнатура), 138

RealTimeDeque (функтор), 131
RealTimeQueue (структура), 104
RedBlackSet (функтор), 39
ScheduledBinomialHeap (функтор),

109
ScheduledBottomUpMergeSort

(функтор), 113
SET (сигнатура), 22, 232
SimpleCatenableDeque (функтор),

203
SkewBinary RandomAccessList

(структура), 154
SkewBinomialHeap (функтор), 158
snoc

этимология, 52
SORTABLE (сигнатура), 89
SplayHeap (функтор), 61
STACK (сигнатура), 18
STREAM (сигнатура), 47
Stream (структура), 47
Trie (функтор), 189
TrieOfTrees (функтор), 192
UnbalancedSet (функтор), 24
абстрактный тип данных, 13, 205
абстракция, 13
аккумулирующий параметр, 102,

112
амортизация

проблемы с устойчивостью,
66-67

традиционная, 49-52
амортизированная стоимость, 73
аннигиляция пар

частица-античастица, 96
антикредит, 96
безнулевые представления,142-143
биномиальные деревья, 31, 136

248 Предметный указатель

биномиальные кучи, 31-35, 55-57,
84, 105-110

версия, 14
графы, 70

вложенные задержки, 73, 81, 124
вызов по имени, 71, 76
высвобожденный долг, 76
гетерогенная рекурсия, 163-165
глобальная перестройка, 115,

118-119, 130
гомогенная рекурсия, 163
графы версий, 70
двоичные деревья поиска, 117

красно-чёрные, 35-40, 233
несбалансированные, 21-25,

233
удаление, 117

деки, 55, 124, 132
по методу банкира, 126-129,

215
реального времени, 129-130,

194
с конкатенацией, 202-209, 217

неявные, 219
простые, 200-202
сигнатура, 201

сигнатура, 56, 125, 215
деревья с порядком кучи, 28
деструктивное обновление, 12
дешёвые операции, 50
диалоговые системы, 98
домино, 100
дорогие операции, 50, 75
жизненный цикл задержек, 73
задержки, 41

вложенные, 73, 81, 124
жизненный цикл, 73
как нульместные функции, 48
тривиальные, 46

или-образцы, 37
императивные структуры данных,

12
история

логическая, 69, 76

конечные отображения
для произведений, 192
для сумм, 193
сигнатура, 187, 234

копирование, 17
копирование путей, 26
красно-чёрные деревья, 35-40, 143,

233
удаление, 118

кредит, 50, 51
кучи, 194

биномиальные, 31-35, 55-57,
226

ленивые, 84, 184
с расписанием, 105-110

левоориентированные, 27-31,
63, 225

сдвинутые по весу, 30
парные, 64-66, 68, 228

ленивые, 94-95, 229
развёрнутые, 181-184, 231
расширяющиеся, 57-64, 68, 227
сигнатура, 28, 186, 225
скошенные биномиальные,

155-157, 184, 194, 229
удаление, 157

кэширование, 13
левоассоциативная конкатенация,

169
левоориентированные кучи, 27-31
ленивая перестройка,122-124
ленивое вычисление, 12, 41, 46, 72

анализ времени, 73, 97
ленивые числовые представления,

144-146
листовые деревья, 136
логическая история, 69, 76
логическое будущее, 69, 71, 74, 101
мемоизация, 13, 48, 76
метод банкира

обоснование, 75-77
при ленивом вычислении,

74-77, 83
традиционный, 50, 51

Предметный указатель 249

метод физика
ограничения, 83
при ленивом вычислении,

82-84
традиционный, 51

множества
сигнатура, 22, 232

монолитные вычисления, 44, 74, 81,
83

наследование долга, 81-82
нераздельная стоимость, 72
нереализованная стоимость, 73
неявное рекурсивное замедление,

195
нормальный порядок редукции, 46
объект, 14
операция,14
отложенная покупка, 73
очереди, 115

неявные, 195-200, 214
по Худу-Мелвиллу, 119-122,

126, 212
по методу банкира, 77-81, 101,

210
по методу физика, 86-88, 211
порционные, 118, 210
простая реализация, 52-53
развёрнутые, 169-172, 213
реального времени, 101-105,

124, 125
сигнатура, 52, 210

параллельные системы, 98
парные кучи, 64-66, 68, 94-95
передача долга, 199, 205
плотные представления, 134
подвешенные деревья, 136, 159
позиционные системы счисления,

134
полиморфная рекурсия, 165, 194
полная стоимость, 72
полные k-ичные листовые деревья,

159
полные двоичные деревья, 136
полные двоичные листовые

деревья, 136
порционная перестройка, 116-118
потенциал, 51
потоки, 44-46

сигнатура, 47
пошаговые вычисления, 44, 80, 81,

83
представления, 205
префиксные деревья, 186-193, 234
присваивание, 12
развёртка структур данных, 193
разделяемая стоимость, 72
разрежённые представления, 134
расписания, 99-101, 124
расширяющиеся деревья, 57-64, 68,

72
реализация,14
реализованная стоимость, 72
реальная стоимость, 73
рекурсивное замедление, 149, 194,

195
самомодификация, 72
сборка мусора, 20
сегментированные представления,

147-150
сжатие путей, 95
сигнатуры, 14
системы реального времени, 98
скошенные k-ичные числа, 160
скошенные биномиальные деревья,

155
скошениые двоичные числа,

150-152
канонический вид, 150

слабые обновления, 117
собственная стоимость, 100
совместное использование, 17
сопоставление с образцом, 46
сопрограммы, 118, 119, 124, 132
сортировка слиянием снизу вверх,

88-94, 110-114, 232
сортируемые коллекции, 89

сигнатура, 89, 232
списки с конкатенацией, 175-181,

250 Предметный указатель

194, 216
сигнатура, 176, 216

списки с произвольным доступом
двоичные, 138-142, 165-169,

221, 224
сигнатура, 138, 221
скошенные двоичные, 222

ссылочная ячейка, 14
структурная абстракция, 162,

173-175, 194
структурная декомпозиция, 162
текущие накопления, 50, 71
текущий долг, 71, 73
телескопические

последовательности, 51
трассировки вычисления, 69, 75
тривиальные задержки, 46
троичные числа, 159
указание разработчикам, 39, 55, 63,

65, 105, 153, 172, 181
устойчивая сущность, 14
устойчивые структуры данных, 14,

17, 72, 98
функторы, 14
функции высших порядков, 91
функциональное программирование

теоретическая эффективность,
12

хэш-таблицы, 189
четверичные числа, 159
числовые представления, 133

плотные, 134
разрежённые, 134

энергичное вычисление, 71
эфемерные структуры данных, 12,

72

Книги издательства «ДМК Пресс» можно заказать в торгово-издательском
холдинге «АЛЬЯНС БУКС» наложенным платежом, выслав открытку или пись­
мо по почтовому адресу: 123242, Москва, а/я 20 или по электронному адресу:
ordersQalians-kniga.ru.

При оформлении заказа следует указать адрес (полностью), по которому
должны быть высланы книги; фамилию, имя и отчество получателя. Желатель­
но также указать свой телефон и электронный адрес.

Эти книги вы можете заказах!, и в интернет-магазине: www.alians-kniga.ru .
Оптовые закупки: тел. (499) 782-38-89, электронный адрес: books@alians-

kniga.ru.

Крис Окасаки

Чисто функциональные структуры данных

Главный редактор Мовчан Д. А.
dmkpress@gmail. com

Перевод с английского Бронников Г. К.
Редактор Брагилевский D. Н.

Вёрстка Брагилевский Б. Н.
Корректор Синяева Г. И.

Дизайн обложки Мовчан А. Г.

Формат 60 х 90 ! / 1 6 .
Вёрстка выполнена средствами TpXLive 2015.

Гарнитура «Computer M odem ». Печать офсетная.
Уел. печ. л. 15,75. Тираж 100 экз.

Издательство ДМ К Пресс
Электронный адрес издательства: www. dmkpress. com

http://www.alians-kniga.ru
mailto:dmkpress@gmail.com

Функциональное программирование

Чисто функциональные
структуры данных

Большинство книг по структурам данных предполагают
использование императивного языка программирования, напри­
мер, C/C++ или Java. Однако реализации структур данных на таких
языках далеко не всегда хорошо переносятся на функциональные
языки программирования, такие как Стандартный ML, Haskell или
Scheme. В этой книге структуры данных описываются с точки зрения
функциональных языков, в ней содержатся примеры и предлагаются
подходы к проектированию, которые могут использоваться
разработчиками при создании их собственных структур данных.
Книга включает в себя как классические структуры данных, к примеру,
красно-черные деревья и биномиальные очереди, так и некоторые
новые структуры данных, созданные специально для функциональ­
ных языков. Весь исходный код приводится на Стандартном ML и
Haskell, причем большинство программ нетрудно адаптировать для
других функциональных языков программирования.
Это издание представляет собой справочное руководство для
профессиональных программистов, работающих с функциональ­
ными языками, и может также использоваться в качестве учебника
для самостоятельного изучения.

На сайте издательства vwvw.dmkpress.com выложен
архив с исходными текстами реализаций всех структур
данных на языках Стандартный ML и Haskell. Их можно
использовать в качестве основы при выполнении
многочисленных упражнений.

SCAN IT!
Интернет-магазин:
W W W -Д М К .р ф

Книга - почтой:
e-mail: orders@alians-knii
Оптовая продажа:
«Альянс-книга»
Тел./факс: (499) 7 8 2 -3 8 8 9
e-mail: books@alians-kniga.ru

1071156402
в приложении OZON.I

' .

W W W - Д М К . р ф

mailto:books@alians-kniga.ru

