
97 programmers.indd 1 15.02.2012 13:56:36

97 Things Every
Programmer Should Know

Collective Wisdom from the Experts

Pete Goodliffe, Robert Martin,
Diomidis Spinellis, Kevlin Henney and others

Edited by Kevlin Henney

97 этюдов
для программистов

Опыт ведущих экспертов

Санкт-Петербург – Москва
2012

Пит Гудлиф, Роберт Мартин,
Диомидис Спинеллис, Кевлин Хенни и др.

под редакцией Кевлина Хенни

Серия «Профессионально»

Пит Гудлиф, Роберт Мартин,
Диомидис Спинеллис, Кевлин  Хенни и др.

97 этюдов для программистов
Опыт ведущих экспертов

Перевод  С. Маккавеева
Главный редактор	 А. Галунов
Зав. редакцией	 Н. Макарова
Науч. редактор	 А. Долгушин
Редактор	 М. Зислис
Корректор	 О. Макарова
Верстка	 Д. Орлова

Гудлиф П., Мартин Р., Спинеллис Д., Хенни К. и др.

97 этюдов для программистов. Опыт ведущих экспертов. – Пер. с англ. – СПб.:
Символ-Плюс, 2012. – 256 с., ил.

ISBN 978-5-93286-198-1

Приобщитесь к мудрости экспертов и запомните то, что должен знать каждый
программист, с каким бы языком и на какой платформе он ни работал. 97 кратких
и очень полезных советов повысят ваш профессионализм посредством новых под
ходов к старым проблемам, лучших практик и разумных подсказок, предназна
ченных для оттачивания мастерства.

Авторы этой книги, очень опытные и признанные в отрасли специалисты, переда
дут вам практические знания и принципы, полезные для проектов любого типа.
Статьи касаются разных тем: от рекомендаций по написанию кода до культуры,
от выбора алгоритмов до гибкого программирования, от приемов реализации до
профессионализма, от стиля до сущности. Новички смогут познакомиться с фун
даментальными положениями, а для профессионалов сборник сможет стать от
правной точкой для обсуждений.

ISBN 978-5-93286-198-1
ISBN 978-0-596-80948-5 (англ)

© Издательство Символ-Плюс, 2012
Authorized Russian translation of the English edition of 97 Things Every Programmer
Should Know ISBN 978-0-596-80948-5 © 2010 O’Reilly Media Inc. This translation is pub
lished and sold by permission of O’Reilly Media Inc., the owner of all rights to publish and
sell the same.

Все права на данное издание защищены Законодательством РФ, включая право на полное или час
тичное воспроизведение в любой форме. Все товарные знаки или зарегистрированные товарные знаки,
упоминаемые в настоящем издании, являются собственностью соответствующих фирм.

Издательство «Символ-Плюс». 199034, Санкт-Петербург, 16 линия, 7,
тел. (812) 380-5007, www.symbol.ru. Лицензия ЛП N 000054 от 25.12.98.

Подписано в печать 29.02.2012. Формат 70×90 1/16.
Печать офсетная. Объем 16 печ. л.

Отсутствующим друзьям посвящается

Оглавление Оглавление

Статьи по категориям ��� 13

Предисловие��� 19

Будьте благоразумны ��� 22

Себ Роуз

Применяйте принципы функционального программирования����������������������������������� 24

Эдвард Гарсон

Выясните, как поступит пользователь (и вы – не пользователь)��������������������������������� 26

Жиль Колборн

Автоматизируйте свой стандарт форматирования кода ��� 28

Филип ван Лаенен

Красота – следствие простоты��� 30

Йорн Ольмхейм

Прежде чем приступать к рефакторингу��� 32

Раджит Аттапатту

Осторожно: общий код ��� 34

Уди Дахан

Правило бойскаута��� 36

Роберт Мартин, известный также как «Дядюшка Боб»

Прежде чем пенять на других, проверь собственный код��� 38

Аллан Келли

Тщательно выбирайте инструменты��� 40

Джованни Аспрони

Оглавление	 7

Пишите код
на языке предметной области ��� 42

Дэн Норт

Код – это проектирование��� 44

Райан Браш

Важность форматирования кода��� 46

Стив Фримен

Рецензирование кода��� 48

Маттиас Карлссон

Пиши код с умом ��� 50

Йехиль Кимхи

Комментарий о комментариях��� 52

Кэл Эванс

Комментируйте только то, о чем не скажет код ��� 54

Кевлин Хенни

Непрерывное обучение ��� 56

Клинт Шэнк

Удобство – не атрибут качества��� 58

Грегор Хоп

Развертывание приложения: раннее и регулярное ��� 60

Стив Берчук

Отличайте исключения в бизнес-логике от технических ��� 62

Дэн Берг Джонссон

Больше осознанной практики��� 64

Джон Джаггер

Предметно-ориентированные языки ��� 66

Микаэль Хунгер

Не бойтесь что-нибудь сломать ��� 68

Майк Льюис

Не прикалывайтесь с тестовыми данными��� 70

Род Бегби

Не проходите мимо ошибки!��� 72

Пит Гудлиф

8	 Оглавление

Не просто учите язык, поймите его культуру��� 74

Андерс Норас

Не прибивайте программу гвоздями к стене��� 76

Верити Стоб

Не полагайтесь на «автоматические чудеса»��� 78

Алан Гриффитс

Не повторяй свой код��� 80

Стив Смит

Этот код не трогать!��� 82

Кэл Эванс

Инкапсулируйте поведение, а не только состояние��� 84

Эйнар Ландре

Числа с плавающей запятой недействительны��� 86

Чак Эллисон

Удовлетворяйте свое честолюбие через Open Source ��� 88

Ричард Монсон-Хейфел

Золотое правило проектирования API��� 90

Майкл Фезерс

Миф о гуру ��� 92

Райан Браш

Тяжелый труд не оправдывает себя ��� 94

Олве Маудал

Как пользоваться системой отслеживания ошибок��� 96

Мэтт Доар

Улучшайте код, удаляя его ��� 98

Пит Гудлиф

Установи меня!��� 100

Маркус Бэйкер

Межпроцессная коммуникация влияет на время отклика приложения����������������� 102

Рэнди Стэффорд

Сборка должна быть чистой��� 104

Йоханнес Бродуолл

Оглавление	 9

Умей пользоваться утилитами командной строки��� 106

Кэрролл Робинсон

Как следует изучи более двух языков программирования��� 108

Рассел Уиндер

Знай свою IDE��� 110

Хейнц Кабуц

Знай свои возможности��� 112

Грег Колвин

Знай, что сохранишь в репозиторий��� 114

Дэн Берг Джонссон

Место для больших наборов взаимосвязанных данных – в базе данных����������������� 116

Диомидис Спинеллис

Учите иностранные языки��� 118

Клаус Маркардт

Учитесь делать оценки ��� 120

Джованни Аспрони

Научитесь говорить «Hello, World»��� 122

Томас Гест

Пусть ваш проект говорит сам за себя ��� 124

Дэниэл Линднер

Компоновщик не таит в себе никаких чудес��� 126

Уолтер Брайт

Долговечность временных решений��� 128

Клаус Маркардт

Интерфейсы должно быть легко использовать правильно
и трудно – неправильно ��� 130

Скотт Мейерс

Пусть невидимое станет более видимым ��� 132

Джон Джаггер

Передача сообщений улучшает масштабируемость параллельных систем ������������� 134

Рассел Уиндер

Послание потомкам��� 136

Линда Райзинг

10	 Оглавление

Упущенные возможности применения полиморфизма��� 138

Кирк Пеппердин

Невероятно, но факт: тестировщики – ваши друзья ��� 140

Берк Хафнагель

Один бинарный файл��� 142

Стив Фримен

Правду скажет только код ��� 144

Петер Зоммерлад

Возьмите сборку (и ее рефакторинг) на себя ��� 146

Стив Берчук

Программируйте парами и входите в поток ��� 148

Гудни Хаукнес, Кари Россланд и Анн Кэтрин Гэгнат

Предпочитайте примитивам предметно-ориентированные типы данных��������������� 150

Эйнар Ландре

Предотвращайте появление ошибок��� 152

Жиль Колборн

Профессиональный программист��� 154

Роберт Мартин (Дядюшка Боб)

Держите все
в системе управления версиями ��� 156

Диомидис Спинеллис

Брось мышь и медленно отойди от клавиатуры��� 158

Берк Хафнагель

Читайте код ��� 160

Карианне Берг

Читайте гуманитарные книги��� 162

Кейт Брэйтуэйт

Почаще изобретайте колесо��� 164

Джейсон П. Сэйдж

Не поддавайтесь очарованию шаблона Singleton��� 166

Сэм Сааристе

Путь к повышению эффективности программ заминирован грязным кодом��������� 168

Кирк Пеппердин

Оглавление	 11

Простота достигается сокращением��� 170

Пол У. Гомер

Принцип единственной ответственности��172

Роберт Мартин (Дядюшка Боб)

Сначала скажите «да»��174

Алекс Миллер

Шаг назад. Теперь автоматизируй, автоматизируй, автоматизируй…����������������������176

Кэй Хорстман

Пользуйтесь инструментами для анализа кода ��� 178

Сара Маунт

Тестируйте требуемое, а не случайное поведение��� 180

Кевлин Хенни

Тестируйте точно и конкретно��� 182

Кевлин Хенни

Тестируйте во сне (и по выходным)��� 184

Раджит Аттапатту

Тестирование – это инженерная строгость в разработке
программного обеспечения�� 186

Нил Форд

Думайте состояниями��� 188

Никлас Нильссон

Одна голова хорошо, но две – часто лучше��� 190

Эдриан Уайбл

Две ошибки могут гасить
одна другую (и тогда
их трудно исправлять)��� 192

Аллан Келли

Написание кода в духе Убунту для друзей ��� 194

Аслам Хан

Утилиты UNIX – ваши друзья��� 196

Диомидис Спинеллис

Правильно выбирайте алгоритмы и структуры данных��� 198

Ян Кристиаан ван Винкель

12	 Оглавление

Многословный журнал лишит вас сна��� 200

Йоханнес Бродуолл

WET размазывает узкие места производительности ��� 202

Кирк Пеппердин

Когда программисты и тестировщики сотрудничают��� 204

Джанет Грегори

Пишите код так, как будто вам предстоит сопровождать его
всю оставшуюся жизнь��� 206

Юрий Зубарев

Пишите маленькие функции на основе примеров ��� 208

Кейт Брэйтуэйт

Тесты пишутся для людей ��� 210

Джерард Мезарос

Нужно заботиться о коде ��� 212

Пит Гудлиф

Ваши заказчики имеют в виду не то, что говорят ��� 214

Нэйт Джексон

Авторы��� 216

Алфавитный указатель��� 244

Статьи по категориям

Ошибки и исправления

Прежде чем пенять на других, проверь собственный код ��������������������������������������� 38

Этот код не трогать! ��� 82

Как пользоваться системой отслеживания ошибок��� 96

Две ошибки могут гасить одна другую (и тогда их трудно исправлять) ������������� 192

Сборка и развертывание

Развертывание приложения: раннее и регулярное��� 60

Этот код не трогать! ��� 82

Установи меня! ��� 100

Сборка должна быть чистой ��� 104

Пусть ваш проект говорит сам за себя�� 124

Один бинарный файл��� 142

Возьмите сборку (и ее рефакторинг) на себя ��� 146

Правила написания и форматирования кода

Автоматизируйте свой стандарт форматирования кода ��� 28

Важность форматирования кода��� 46

Рецензирование кода��� 48

Комментарий о комментариях��� 52

Комментируйте только то, о чем не скажет код ��� 54

Пользуйтесь инструментами для анализа кода ��� 178

Принципы проектирования и техника написания кода

Применяйте принципы функционального программирования����������������������������� 24

Выясните, как поступит пользователь (и вы – не пользователь) ��������������������������� 26

Красота – следствие простоты ��� 30

14	 Статьи по категориям

Тщательно выбирайте инструменты��� 40

Пишите код на языке предметной области ��� 42

Код – это проектирование��� 44

Пиши код с умом ��� 50

Удобство – не атрибут качества ��� 58

Отличайте исключения в бизнес-логике от технических��� 62

Не повторяй свой код��� 80

Инкапсулируйте поведение, а не только состояние ��� 84

Золотое правило проектирования API��� 90

Межпроцессная коммуникация влияет на время отклика приложения����������� 102

Интерфейсы должно быть легко использовать правильно
и трудно – неправильно��� 130

Передача сообщений улучшает масштабируемость
параллельных систем ��� 134

Упущенные возможности применения полиморфизма ��� 138

Правду скажет только код ��� 144

Предпочитайте примитивам предметно-ориентированные типы данных��������� 150

Предотвращайте появление ошибок��� 152

Не поддавайтесь очарованию шаблона Singleton ��� 166

Принцип единственной ответственности��172

Думайте состояниями��� 188

WET размазывает узкие места производительности ��� 202

Предметно-ориентированное мышление

Пишите код на языке предметной области ��� 42

Предметно-ориентированные языки��� 66

Учите иностранные языки ��� 118

Предпочитайте примитивам предметно-ориентированные типы данных��������� 150

Читайте гуманитарные книги��� 162

Думайте состояниями��� 188

Пишите маленькие функции на основе примеров ��� 208

Ошибки, их обработка и исключения

Отличайте исключения в бизнес-логике от технических��� 62

Не проходите мимо ошибки!��� 72

Не прибивайте программу гвоздями к стене��� 76

Предотвращайте появление ошибок��� 152

Многословный журнал лишит вас сна ��� 200

Статьи по категориям	 15

Обучение, мастерство и опыт

Непрерывное обучение ��� 56

Больше осознанной практики ��� 64

Не просто учите язык, поймите его культуру ��� 74

Удовлетворяйте свое честолюбие через Open Source��� 88

Миф о гуру��� 92

Тяжелый труд не оправдывает себя ��� 94

Читайте код��� 160

Читайте гуманитарные книги��� 162

Почаще изобретайте колесо ��� 164

Ночное и волшебное

Не полагайтесь на «автоматические чудеса»��� 78

Этот код не трогать! ��� 82

Миф о гуру��� 92

Умей пользоваться утилитами командной строки��� 106

Компоновщик не таит в себе никаких чудес ��� 126

Тестируйте во сне (и по выходным)��� 184

Многословный журнал лишит вас сна ��� 200

Пишите код так, как будто вам предстоит сопровождать его
всю оставшуюся жизнь��� 206

Производительность, оптимизация и представление

Применяйте принципы функционального программирования����������������������������� 24

Числа с плавающей запятой недействительны��� 86

Улучшайте код, удаляя его��� 98

Межпроцессная коммуникация влияет на время отклика приложения����������� 102

Знай свои возможности��� 112

Место для больших наборов взаимосвязанных данных – в базе данных ����������� 116

Передача сообщений улучшает масштабируемость
параллельных систем ��� 134

Путь к повышению эффективности программ заминирован
грязным кодом ��� 168

Правильно выбирайте алгоритмы и структуры данных��������������������������������������� 198

WET размазывает узкие места производительности ��� 202

Профессионализм, мировоззрение и позиция

Непрерывное обучение ��� 56

Больше осознанной практики ��� 64

Тяжелый труд не оправдывает себя ��� 94

16	 Статьи по категориям

Долговечность временных решений ��� 128

Профессиональный программист ��� 154

Брось мышь и медленно отойди от клавиатуры ��� 158

Тестирование – это инженерная строгость в разработке
программного обеспечения��� 186

Пишите код так, как будто вам предстоит сопровождать его
всю оставшуюся жизнь��� 206

Нужно заботиться о коде��� 212

Языки и парадигмы программирования

Применяйте принципы функционального программирования����������������������������� 24

Предметно-ориентированные языки��� 66

Не просто учите язык, поймите его культуру ��� 74

Как следует изучи более двух языков программирования����������������������������������� 108

Учите иностранные языки ��� 118

Рефакторинг и забота о коде

Будьте благоразумны��� 22

Прежде чем приступать к рефакторингу��� 32

Правило бойскаута��� 36

Комментируйте только то, о чем не скажет код ��� 54

Не бойтесь что-нибудь сломать��� 68

Улучшайте код, удаляя его��� 98

Сборка должна быть чистой ��� 104

Знай, что сохранишь в репозиторий��� 114

Долговечность временных решений ��� 128

Послание потомкам��� 136

Правду скажет только код ��� 144

Возьмите сборку (и ее рефакторинг) на себя ��� 146

Профессиональный программист ��� 154

Путь к повышению эффективности программ заминирован
грязным кодом ��� 168

Простота достигается сокращением ��� 170

Написание кода в духе Убунту для друзей��� 194

Нужно заботиться о коде��� 212

Повторное использование и повторение кода

Осторожно: общий код��� 34

Удобство – не атрибут качества ��� 58

Больше осознанной практики ��� 64

Статьи по категориям	 17

Не повторяй свой код��� 80

Почаще изобретайте колесо ��� 164

Правильно выбирайте алгоритмы и структуры данных��������������������������������������� 198

WET размазывает узкие места производительности ��� 202

Графики, сроки и оценки

Будьте благоразумны��� 22

Код – это проектирование��� 44

Знай, что сохранишь в репозиторий��� 114

Учитесь делать оценки��� 120

Пусть невидимое станет более видимым ��� 132

Простота

Красота – следствие простоты ��� 30

Научитесь говорить «Hello, World»��� 122

Послание потомкам��� 136

Простота достигается сокращением ��� 170

Командная работа и сотрудничество

Рецензирование кода��� 48

Учите иностранные языки ��� 118

Программируйте парами и входите в поток��� 148

Сначала скажите «да»��174

Одна голова хорошо, но две – часто лучше��� 190

Написание кода в духе Убунту для друзей��� 194

Когда программисты и тестировщики сотрудничают ��� 204

Тесты, тестирование и тестировщики

Применяйте принципы функционального программирования����������������������������� 24

Код – это проектирование��� 44

Не прикалывайтесь с тестовыми данными ��� 70

Золотое правило проектирования API��� 90

Интерфейсы должно быть легко использовать правильно
и трудно – неправильно��� 130

Пусть невидимое станет более видимым ��� 132

Невероятно, но факт: тестировщики – ваши друзья ��� 140

Тестируйте требуемое, а не случайное поведение��� 180

Тестируйте точно и конкретно��� 182

Тестируйте во сне (и по выходным)��� 184

18	 Статьи по категориям

Тестирование – это инженерная строгость в разработке
программного обеспечения��� 186

Когда программисты и тестировщики сотрудничают ��� 204

Пишите маленькие функции на основе примеров ��� 208

Тесты пишутся для людей ��� 210

Инструменты, автоматизация, среды разработки

Автоматизируйте свой стандарт форматирования кода ��� 28

Прежде чем пенять на других, проверь собственный код ��������������������������������������� 38

Тщательно выбирайте инструменты��� 40

Не повторяй свой код��� 80

Как пользоваться системой отслеживания ошибок��� 96

Умей пользоваться утилитами командной строки��� 106

Знай свою IDE��� 110

Место для больших наборов взаимосвязанных данных – в базе данных ����������� 116

Научитесь говорить «Hello, World»��� 122

Пусть ваш проект говорит сам за себя�� 124

Компоновщик не таит в себе никаких чудес ��� 126

Держите все в системе управления версиями ��� 156

Шаг назад. Теперь автоматизируй, автоматизируй, автоматизируй…����������������176

Пользуйтесь инструментами для анализа кода ��� 178

Тестируйте во сне (и по выходным)��� 184

Утилиты UNIX – ваши друзья��� 196

Пользователи и заказчики

Выясните, как поступит пользователь (и вы – не пользователь) ��������������������������� 26

Предметно-ориентированные языки��� 66

Интерфейсы должно быть легко использовать правильно
и трудно – неправильно��� 130

Невероятно, но факт: тестировщики – ваши друзья ��� 140

Предотвращайте появление ошибок��� 152

Читайте гуманитарные книги��� 162

Ваши заказчики имеют в виду не то, что говорят��� 214

Предисловие

Новейший компьютер способен лишь с большей скоростью усложнить 	
древнейшую проблему отношений между людьми, и в конечном итоге 	

участнику общения по-прежнему придется решать, что и как говорить.

Эдвард Р. Мэроу (Edward R. Murrow)

Про­грам­ми­стам есть, над чем ду­мать. Языки программирования, приемы про
граммирования, среды разработки, стили написания кода, инструменты, про
цессы разработки, планы работ, совещания, архитектуры программ, шаблоны
проектирования, динамика командного взаимодействия, код, технические тре
бования, дефекты, качество кода. И другое. Много чего еще.

Здесь мы находим искусство, ремесло и науку, которые простираются далеко за
рамки программы. Деятельность программиста объединяет дискретный мир
компьютеров и текучий мир человеческих занятий. Программисты служат свя
зующим звеном между бизнесом с его расплывчатыми договорными истинами
и выверенной, бескомпромиссной областью, где царят биты, байты и построен
ные на их основе пользовательские типы.

Учитывая объемы знаний, работы и разнообразие способов ее выполнения, ни
какой человек или источник не может претендовать на знание «истинного пути».
Поэтому, опираясь на народную мудрость и накопленный опыт, книга «97 этю
дов для программистов» предлагает не столько упорядоченную общую картину,
сколько пеструю мозаику мнений о том, что должно быть известно каждому про
граммисту. Она касается разных тем: от рекомендаций по написанию кода до
культуры, от выбора алгоритмов до гибкого программирования, от приемов реа
лизации до профессионализма, от стиля до сущности.

Отдельные статьи не стыкуются между собой, да и цель ставилась скорее противо
положная. Ценность отдельной статьи здесь как раз в том, что она не похожа на
другие. А ценность сборника в целом состоит в том, что статьи дополняют, под
тверждают одна другую и даже противоречат друг другу. Они не связаны общим
сюжетом: читатель сам может оценить материал, поразмышлять над ним и увя
зать прочитанное, сравнив новое с собственными контекстом, знаниями и опытом.

20	 Предисловие

Лицензионные права
Все статьи публикуются по свободной лицензии. Они свободно доступны в Ин
тернете под лицензией Creative Commons Attribution 3.0 License, что означает
возможность использования отдельных статей в собственной работе при условии
ссылки на их авторов:

http://creativecommons.org/licenses/by/3.0/us/

Контакты
На веб-странице книги перечислены найденные ошибки и приводятся дополни
тельные сведения:

http://www.oreilly.com/catalog/9780596809485/

Сопроводительный сайт, где опубликованы все статьи, биографии авторов и дру
гие данные, находится по адресу:

http://programmer.97things.oreilly.com

Вы также можете следить за новостями и исправлениями книги в Twitter:

http://twitter.com/97TEPSK

Комментарии и технические вопросы, касающиеся этой книги, можно отпра
вить электронной почтой:

bookquestions@oreilly.com

Дополнительная информация о наших книгах, Центрах ресурсов и сети O’Reilly
Network приведена на нашем веб-сайте:

http://www.oreilly.com/

Safari® Books Online
Safari Books Online – цифровая библиотека, которая дает воз
можность быстро находить ответы на ваши вопросы в 7 500 тех
нических книг, справочников и видеозаписей.

Подписка Safari дает право читать любую страницу и смотреть любое видео в ре
жиме онлайн. Читайте книги на сотовых телефонах и мобильных устройствах.
Получайте доступ к новым изданиям до выхода их из печати. Получайте экс
клюзивный доступ к рукописям в процессе работы и отправляйте замечания ав
торам. Копируйте текст примеров кода, загружайте главы, создавайте закладки
и заметки, печатайте страницы – вот лишь некоторые из множества функций,
экономящих ваше время.

O’Reilly Media опубликовала эту книгу в Safari Books Online. Чтобы получить
полный цифровой доступ к этой книге и книгам схожей тематики, выпущенным

Предисловие	 21

O’Reilly и другими издательствами, оформите бесплатную подписку на http://
my.safaribooksonline.com.

Благодарности
Проекту «97 этюдов для программистов» прямо или косвенно отдали свое время
и знания многие люди. Все они заслуживают благодарности.

Ричард Монсон-Хейфел (Richard Monson-Haefel) – редактор серии «97 Things»
и редактор первой книги из этой серии, «97 Things Every Software Architect Sho
uld Know»1, в написании которой я принимал участие. Спасибо Ричарду за идею
серии и за ее открытость для потенциальных участников, а также за то, что он
так энергично поддерживал мои предложения по данной книге.

Хочу поблагодарить всех тех, кто отдал свое время и силы, участвуя в создании
текстов для этого проекта: как тех, чьи статьи опубликованы в этой книге, так
и тех, чьи тексты не попали в нее, но опубликованы на веб-сайте. Большое коли
чество и высокое качество материала весьма затруднили процесс окончательно
го отбора – жестко фиксированное в названии книги число не оставило места
для дополнительных статей.

Я также благодарен за дополнительные отзывы, комментарии и предложения,
авторами которых были Джованни Аспрони (Giovanni Asproni), Пол Колин Гло
стер (Paul Colin Gloster) и Микаэль Хунгер (Michael Hunger).

Спасибо O’Reilly за предоставленную этому проекту поддержку – от вики-хос
тинга, сделавшего книгу реальностью, до обеспечения всех стадий процесса пуб
ликации в бумажном виде. Сотрудники O’Reilly, которых я хотел бы особо по
благодарить: Майк Лукидес (Mike Loukides), Лорел Акерман (Laurel Ackerman),
Эди Фридман (Edie Freedman), Эд Стивенсон (Ed Stephenson) и Рейчел Монахан
(Rachel Monaghan).

Дело не только в том, что текст книги рождался в среде Веб: через Веб проект
также приобрел известность и популярность. Спасибо всем, кто распространял
сведения о нем через социальные сети, блоги и прочими путями.

Хочу также поблагодарить свою жену Кэролин за то, что привносит порядок
в мой хаос, и двух моих сыновей, Стефана и Янника, за то, что часть этого поряд
ка они вновь превращают в хаос.

Надеюсь, что эта книга станет для вас источником информации, открытий и вдох
новения.

Приятного чтения!

Кевлин Хенни (Kevlin Henney)

1	 Нил Форд, Майкл Найгард, Билл де Ора и др. «97 этюдов для архитекторов программ
ных систем». – Пер. с англ. – СПб.: Символ-Плюс, 2010.

Себ Роуз

В любом деле будь благоразумен и думай о последствиях.

Неизвестный

Как бы ус­по­каи­ваю­ще ни вы­гля­дел гра­фик ра­бо­ты в начале итерации, в какой-
то момент неизбежно возникает нехватка времени. Если приходится разрывать
ся между «сделать правильно» и «сделать быстро», часто возникает соблазн «сде
лать быстро» с оговоркой, что вы исправите решение позже, когда появится вре
мя. Вы совершенно искренне даете обещание именно так и поступить – даете са
мому себе, команде или заказчику. Но очень часто на следующей итерации
возникают уже другие проблемы, которым и приходится посвящать свое внима
ние. Такую отложенную работу называют техническим долгом, и хорошего от
него не жди. В своей классификации технических долгов Мартин Фаулер назы
вает такой вид долга умышленным техническим долгом, и его не следует путать
с непреднамеренным техническим долгом.1

Технический долг подобен кредиту: в краткосрочной перспективе он выгоден, но
по нему приходится выплачивать проценты до полного погашения займа. Сре
зая углы при написании кода, вы затрудняете как разработку новой функцио
нальности, так и рефакторинг. Это создает благоприятную почву для появления
ошибок и нестабильных тестовых сценариев (test cases). Чем дольше долг суще
ствует, тем тяжелее последствия. К тому времени, как дойдут руки внести за
планированные исправления, может оказаться, что на основе изначального со
мнительного кода уже выстроена целая гора не вполне верных с точки зрения
проектирования решений, а это значительно осложнит рефакторинг и исправле
ние этого кода. На самом деле, к решению изначальной проблемы часто возвра
щаются лишь тогда, когда уже нет выбора, кроме как вернуться и все испра
вить. И зачастую к этому моменту исправление оказывается уже настолько

1	 http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Будьте благоразумны

Будьте благоразумны	 23

сложным, что вы просто не можете себе позволить потерять так много времени
или пойти на подобный риск.

Бывают ситуации, когда приходится идти на создание технического долга, если
необходимо уложиться в срок или частично реализовать некую функциональ
ность. Старайтесь не оказываться в таких ситуациях, однако если положение со
вершенно безвыходное, действуйте. Но (и это увесистое но) вы должны вести
учет своего технического долга и гасить его как можно скорее, иначе проблемы
растут, как снежный ком. И если уж вы пошли на такой компромисс, составьте
карточку с заданием (task card) или создайте запись в системе учета дефектов,
чтобы не забыть о проблеме.

Если вы планируете погасить свой долг на следующей итерации, потери будут
минимальными. На непогашенный долг капают проценты, за которыми нужно
постоянно следить, чтобы видеть реальную конечную цену. Это подчеркивает
влияние технического долга проекта на его бизнес-стоимость и позволяет разум
но расставлять акценты в вопросах погашения такого долга. Способ начисления
и отслеживания процентов зависит от конкретного проекта, но отслеживать их
должны вы.

Гасите технические долги как можно скорее. Поступать иначе – неблагоразумно.

Эдвард Гарсон

Функ­цио­наль­ное про­грам­ми­ро­ва­ние недавно снова обратило на себя внимание
большинства в сообществе программистов. Отчасти благодаря тому, что эмерд
жентные свойства функциональной парадигмы созвучны решению задач, воз
никающих в нашей отрасли в связи с ростом значимости многоядерных архи
тектур. И хотя данное применение, несомненно, важно, однако не оно является
главным основанием для моего наставления познать функциональное програм
мирование.

Овладев парадигмой функционального программирования, программист может
значительно повысить качество кода, создаваемого в других контекстах. Глубо
кое понимание парадигмы функционального программирования и ее примене
ние на практике помогут вам проектировать системы, обладающие гораздо боль
шей степенью ссылочной прозрачности (referential transparency).

Ссылочная прозрачность является качеством очень желательным: она предпо
лагает, что функции неизменно дают одинаковые результаты на одинаковых
входных данных независимо от места и времени обращения к этим функциям.
Вычисление функции, таким образом, слабо зависит от побочных эффектов из
меняющегося (mutable) состояния – в идеале не зависит от них вообще.

Один из главных источников дефектов в коде на императивном языке програм
мирования – изменяемые (mutable) переменные. Каждому читателю наверняка
приходилось разбираться, почему в каком-либо конкретном случае некоторое
значение не соответствовало ожидаемому. Семантика областей видимости мо
жет препятствовать появлению таких коварных ошибок или, по крайней мере,
значительно сужать возможную область их появления. Но истинной причиной
их возникновения может быть сама концепция проектирования такого кода, ко
торый беспорядочно полагается на изменяемость (mutability).

И в этом отношении нам определенно не стоит ждать особой помощи от собствен
ной отрасли. Вводные тексты по объектно-ориентированному программирова
нию скрыто пропагандируют подобные конструкции. В них часто приводятся

Применяйте принципы
функционального
программирования

Применяйте принципы функционального программирования	 25

примеры групп объектов, которые обладают относительно долгим сроком жизни
и обмениваются вызовами методов, изменяющих состояние (mutator methods),
что небезопасно. Однако грамотное проектирование на основе тестов (test-driven
design), особенно если обеспечена «имитация ролей, а не объектов (mock roles,
not objects)»,1 позволяет избавиться от излишеств изменчивости в архитектуре.

В итоге, как правило, получается архитектура с более удачным распределением
обязанностей и множеством мелких функций, которые работают с полученны
ми аргументами, а не обращаются напрямую к изменяемым переменным-чле
нам. Дефектов становится меньше, а также упрощается их отладка, ведь легче
найти, откуда взялось неверное значение в такой конструкции, чем пытаться
выяснить, в каком конкретном контексте появляется ошибочное присваивание.
Это значительно повышает ссылочную прозрачность, и решительно ничто не
может так способствовать глубокому усвоению этих идей, как изучение функ
ционального языка программирования, где такая модель вычислений является
нормой.

Конечно, такой подход оптимален не всегда. Например, зачастую в объектно-ори
ентированных системах лучшие результаты этот стиль дает при разработке мо
дели предметной области (то есть когда сотрудничество объектов служит сниже
нию сложности бизнес-правил), чем при разработке интерфейса пользователя.

Овладейте парадигмой функционального программирования, чтобы разумно
применять полученные знания в других областях. Взять хотя бы ваши иерархии
объектов – они станут просто светиться качеством ссылочной прозрачности и ока
жутся значительно ближе к своим функциональным аналогам, чем можно было
бы предположить. На самом деле, некоторые даже высказывают мнение, что
в своем высшем проявлении функциональное программирование и объектно-
ориентированный подход оказываются лишь отражениями друг друга, своего
рода вычислительными инь и ян.

1	 http://www.jmock.org/oopsla2004.pdf

Жиль Колборн

Мы все склон­ны по­ла­гать, что дру­гие лю­ди рас­су­ж­да­ют так же, как мы. Но это
не так. В психологии это называется эффектом ложного согласия. Если люди
думают или поступают иначе, чем мы, мы часто (подсознательно) считаем их
в чем-то неполноценными.

Этот эффект объясняет, почему программисту так трудно поставить себя на ме
сто пользователя. Пользователи рассуждают иначе, чем программисты. Прежде
всего, они значительно меньше времени проводят за компьютером. Они не знают
и не хотят знать, как работает компьютер. Это означает, что пользователи не мо
гут прибегать к арсеналу приемов решения проблем, которым в совершенстве
овладели программисты. Им не знакомы шаблоны и визуальные приметы, кото
рыми пользуются программисты при работе с интерфейсами, для навигации по
ним и для освоения интерфейсов.

Чтобы понять образ мыслей пользователя, лучше всего понаблюдать за ним.
Предложите ему выполнить задание с помощью программы, аналогичной той,
которую вы разрабатываете. Задача должна быть реальной. «Сложить числа в ко
лонке» – неплохо, но еще лучше: «подсчитать собственные расходы за последний
месяц». Не следует брать слишком конкретные задачи, например «Вы не могли
бы выделить эти ячейки в таблице и ввести ниже формулу суммирования?» –
в этом вопросе содержится слишком явная подсказка. Предложите пользовате
лю рассказывать о своих действиях по ходу работы. Не перебивайте его. Не пы
тайтесь помочь. Спрашивайте себя: «Почему он делает так?» и «Почему она не
делает этого?».

Прежде всего, вы обнаружите, что есть ряд действий, которые все пользователи
выполняют схожим образом. Они пытаются выполнять задачи в одном и том же
порядке и делают одинаковые ошибки в одних и тех же местах. Такое базовое
поведение нужно класть в основу проектирования. Сравните данный подход
с тем, что обычно происходит на встречах по проектированию системы, когда со
бравшиеся прислушиваются к вопросам вроде такого: «А вдруг пользователь за
хочет…». Так в приложении появляются многочисленные функции и возникает

Выясните,
как поступит пользователь
(и вы – не пользователь)

Выясните, как поступит пользователь (и вы – не пользователь)	 27

путаница в отношении того, что нужно пользователям. Если наблюдать за поль
зователями, такой путаницы не будет.

Вы можете столкнуться с тем, что пользователь где-то застрял. Когда вы сами
застреваете, то осматриваетесь по сторонам. Когда застревает пользователь, его
область внимания, напротив, сужается. Ему становится сложнее увидеть реше
ние в другой области экрана. Вот одна из причин, почему вспомогательный
текст – плохое решение для плохого пользовательского интерфейса. Если необхо
димо дать инструкции или сопроводительный текст, размещать их нужно в непо
средственной близости от проблемной области. Именно сужение поля внимания
пользователя служит причиной тому, что всплывающие подсказки более полез
ны, чем встроенная справка.

Обычно пользователи находят способ с грехом пополам довести дело до конца.
Если они находят какой-то путь к цели, то будут идти по нему и впредь, каким
бы запутанным он ни был. Лучше дать им один действительно очевидный способ
решения задачи вместо двух или трех неочевидных (но более быстрых).

Вы также обнаружите большое расхождение между тем, чего пользователь, по
его словам, хочет, и тем, что он делает в действительности. Это тревожный факт,
ведь обычно требования пользователей собираются путем их опроса. Вот почему
лучший способ собирать требования – наблюдать за пользователями. Час на
блюдений за пользователями даст вам больше информации, чем день гаданий
о том, что им нужно.

Филип ван Лаенен

Ве­ро­ят­но, вы то­же че­рез это про­хо­ди­ли. В начале проекта у всех полно благих
замыслов – назовем их «новопроектными обещаниями»1. Довольно часто мно
гие из этих обещаний фиксируются документально. Обещания, связанные с ко
дом, попадают в стандарт оформления кода данного проекта. На первом собра
нии проекта ведущий разработчик оглашает этот документ, и в идеале все согла
шаются старательно соблюдать предложенные требования. Однако по ходу рабо
ты над проектом все эти благие намерения одно за другим забываются. Когда
проект наконец завершен, код выглядит весьма запутанно, и, похоже, никто не
понимает, как так получилось.

Когда же все пошло наперекосяк? Вполне вероятно, что как раз на том первом
собрании. Некоторые его участники были невнимательны. Другие не поняли,
в чем смысл стандарта. Хуже того, кое-кто был против предложенного и прямо
на собрании затевал против стандарта восстание. И даже те, кто понял и согла
сился, в какой-то момент работы на проекте были вынуждены под давлением
обстоятельств упростить себе жизнь. Ведь хорошо отформатированный код не
будет оценен клиентом, которому нужны новые функции в приложении. Кроме
того, соблюдение стандарта оформления кода может оказаться весьма утоми
тельным делом, если его не автоматизировать. Попробуйте расставить отступы
в плохо написанном классе, и вы убедитесь в этом сами.

Но если это так трудно, зачем нам вообще создавать стандарт оформления кода?
Одна из целей единообразного форматирования кода – не позволить никому «при
ватизировать» код путем форматирования его своим особым способом. Также не
следует допускать применения разработчиками определенных антипаттернов,
чтобы избежать ряда известных ошибок. В целом стандарт оформления должен
облегчать работу над проектом и поддерживать постоянную скорость разработ
ки от начала до конца. Отсюда следует, что поддержка стандарта должна быть

1	 По аналогии с новогодними обещаниями, которые люди дают себе: заниматься спор-
том, бросить курить и т. п. – Прим. ред.

Автоматизируйте свой стандарт
форматирования кода

Автоматизируйте свой стандарт форматирования кода	 29

единогласной: плохо, если один разработчик делает отступы размером в три про
бела, а другой – в четыре.

Существует множество инструментов, с помощью которых можно создавать от
четы о качестве кода, а также документировать и поддерживать стандарт форма
тирования кода, но это только часть решения. Стандарт следует автоматизиро
вать и внедрять принудительно там, где это возможно. Вот некоторые примеры:

•	 Сделайте форматирование кода частью процедуры сборки, чтобы оно проис
ходило автоматически при каждой компиляции кода.

•	 Применяйте средства статического анализа кода для поиска нежелательных
антипаттернов. Прерывайте сборку при их обнаружении.

•	 Научитесь настраивать эти инструменты, что поможет находить антипаттер
ны, специфические для вашего проекта.

•	 Не просто замеряйте процент покрытия тестами, но и делайте автоматиче
скую оценку результатов. Прерывайте сборку, если процент покрытия теста
ми недопустимо низкий.

Постарайтесь внедрить эти принципы в отношении всех требований к коду, ко
торые вы считаете важными. Полностью автоматизировать все, что вас беспоко
ит, вы не сможете. Те аспекты, которые невозможно обнаружить или исправить
автоматически, следует включить в дополнительный набор правил – как прило
жение к автоматизированной части стандарта. Однако вам придется принять
тот факт, что у вас и ваших коллег есть возможность соблюдать правила из этого
приложения менее строго.

Наконец, стандарт кодирования должен эволюционировать, а не быть высечен
ным в камне. С течением времени потребности проекта меняются, и то, что каза
лось разумным в начале, совсем не обязательно останется таковым через не
сколько месяцев.

Йорн Ольмхейм

У Пла­то­на есть од­но вы­ска­зы­ва­ние, которое, как мне кажется, особенно полез
но было бы знать и принимать близко к сердцу всем разработчикам программно
го обеспечения:

Красота стиля, гармония, изящество и хороший ритм основываются на про
стоте.

Одно это предложение объединяет ценности, которыми нам, разработчикам, над
лежит восхищаться.

Есть ряд вещей, которых мы стремимся достичь в нашем коде:

•	 Читаемость

•	 Простота сопровождения

•	 Скорость разработки

•	 Неуловимая красота

Платон говорит нам, что все эти качества возможны только благодаря простоте.

Что такое красивый код? Вероятно, это очень субъективный вопрос. Восприятие
красоты сильно зависит от личного опыта, как зависит от него наше восприятие
чего бы то ни было. Изучавшие искусство иначе воспринимают красоту (по край
ней мере, иначе к ней подходят), чем получившие техническое образование. Лю
ди с гуманитарным образованием обычно рассматривают красоту программы,
сравнивая ее с произведением искусства, тогда как люди с техническим образо
ванием чаще рассуждают о симметриях и золотом сечении, пытаясь все свести
к формулам. По моему опыту, именно на простоте строятся в большинстве своем
доводы обеих сторон.

Поразмышляйте об исходном коде всех программ, которые вам доводилось
встречать. Если вы никогда не занимались изучением кода, написанного други
ми людьми, прямо сейчас отложите чтение, найдите какой-нибудь открытый

Красота – следствие простоты

Красота – следствие простоты	 31

исходный код и изучите его. Я серьезно! Поищите в Интернете код на вашем лю
бимом языке, написанный известным и признанным специалистом.

Вы вернулись? Хорошо. На чем мы остановились? Ах, да… Я обнаружил, что
примеры кода, которые находят отклик в моей душе и кажутся мне красивыми,
имеют некоторые общие свойства. Прежде всего, это простота кода. Я считаю,
что каким бы сложным ни было приложение или система в целом, отдельные его
части должны быть простыми: простые объекты, выполняющие единственную
задачу, и в них настолько же простые специализированные методы с хорошо по
нятными именами. Некоторые считают, что требовать, чтобы методы содержали
не более 5–10 строк кода, – это крайность, и в некоторых языках этого очень
трудно достичь. Однако мне все же кажется, что такая лаконичность очень же
лательна.

Вывод таков: красивый код – значит простой код. Все составные части просты,
решают простые задачи и связаны простыми отношениями с другими частями
системы. Благодаря этому мы можем облегчить сопровождение кода своих сис
тем, а понятный, простой, легко тестируемый код обеспечит высокую скорость
разработки на протяжении всего времени существования системы.

Простота – источник и непременный атрибут красоты.

Раджит Аттапатту

Ра­но или позд­но ка­ж­до­му про­грам­ми­сту при­хо­дит­ся вы­пол­нять ре­фак­то­ринг
существующего кода. Но прежде чем броситься в бой, поразмыслите о несколь
ких вещах, которые могут сберечь вам и коллегам уйму времени (и уберечь от
головной боли):

•	 Лучше всего начинать рефакторинг с оценки состояния существующего
в проекте кода и написанных для него тестов. Так вы сможете выяснить до
стоинства и недостатки кода в его текущем состоянии, чтобы сохранить его
сильные стороны и избежать уже сделанных ошибок. Каждому кажется, что
его система будет лучше, чем нынешняя… до тех пор, пока не выяснится, что
новый код не лучше, а может, даже хуже, чем предыдущая версия, – и все
потому, что мы не стали учиться на ошибках, допущенных в старой системе.

•	 Сопротивляйтесь желанию переписать все заново. Лучше всего повторно ис
пользовать как можно больше кода. Каким бы уродливым он ни казался, этот
код уже протестировали, прорецензировали и все прочее. Выкинуть старый
код, а особенно если он использовался в рабочей системе, – значит выкинуть
месяцы (или годы) работы над протестированным и проверенным в боях ко
дом, который может содержать неведомые вам обходные решения или ис
правления дефектов. Если не учесть этого, в новом коде могут проявиться те
же загадочные ошибки, которые уже были исправлены в старом коде. В ре
зультате вы потеряете массу времени и сил, а также знания, копившиеся го
дами.

•	 Множество мелких изменений лучше, чем одно масштабное. Внося неболь
шие изменения, легче оценить их воздействие на систему при помощи стан
дартных каналов обратной связи, таких, например, как тестирование. Груст
но видеть, как после внесенного изменения «падает» добрая сотня модульных
тестов. Вызванные подобными результатами раздражение и нервозность мо
гут спровоцировать вас на принятие сомнительных решений. Значительно
легче справляться, если в каждый момент времени «падают» лишь один-два
теста.

Прежде чем приступать
к рефакторингу

Прежде чем приступать к рефакторингу	 33

•	 После каждой итерации разработки важно убедиться, что все имеющиеся
тесты успешно отрабатывают. Если имеющиеся тесты не покрывают вне
сенные вами изменения, создайте новые тесты. Не выбрасывайте тесты из
старого кода бездумно. Внешне может казаться, что некоторые из них не при
менимы к новой архитектуре системы, но будет совершенно не лишним по
тратить время и разобраться, с какой целью был создан конкретный тест.

•	 Личные предпочтения и самолюбие оставьте в стороне. Зачем чинить то,
что и так работает? Если стиль или организация кода противоречат вашим
вкусам, это не является достаточной причиной для рефакторинга. Равно как
и ваша уверенность, что вы сможете написать код лучше, чем предыдущий
программист.

•	 Появление новой технологии – недостаточно веская причина для проведения
рефакторинга. Очень плохо, когда за рефакторинг берутся только потому, что
имеющийся код на годы отстал от крутых новейших технологий, и нам ка
жется, что новый язык или платформа позволят решить задачу намного эле
гантнее. Код вашей системы лучше всего оставить в покое, за исключением
случаев, когда анализ затрат и результатов показывает, что новый язык или
платформа могут дать существенный выигрыш в функциональности, просто
те сопровождения или производительности.

•	 Помните, что люди ошибаются. Новая структура кода не всегда гарантиру
ет, что новый код будет лучше предыдущего или хотя бы того же качества.
Мне приходилось быть свидетелем и участником нескольких провалившихся
попыток реорганизации. Приятного было мало, но ведь людям свойственно
ошибаться.

Уди Дахан

Мой пер­вый про­ект в ком­па­нии. Я только что защитил диплом, мне не терпится
проявить себя, так что я допоздна засиживаюсь на работе и тщательно изучаю
существующий код. Работая над своей первой задачей, я применяю все, чему ме
ня учили: комментарии, журналы событий, выделение общего кода в библиоте
ки (где это возможно), все дела. Мне кажется, что я полностью готов к рецензи
рованию кода, но коллеги словно окатывают меня холодным душем: я получаю
за повторное использование кода!

Как так? Во время моей учебы в колледже повторное использование кода превоз
носилось в числе лучших практик разработки программ. Все прочитанные мною
статьи и учебники, наставлявшие меня опытные профессиональные программи
сты – неужели все они ошибались?

Оказывается, я упустил из виду нечто очень важное.

Контекст.

Тот факт, что две напрямую не связанные части системы пользуются одной и той
же логикой, означает меньше, чем мне казалось. До того как я поместил общий
код в одну библиотеку, эти части работали независимо одна от другой. Они могли
независимо развиваться. Логика каждой из них могла измениться в соответст
вии с меняющимися требованиями бизнес-среды. Те четыре строчки похожего
кода возникли случайно – временная аномалия, совпадение. Ну, то есть это бы
ло совпадением, пока за дело не взялся я.

Созданные мною библиотеки общего кода связали шнурки ботинок в один клу
бок. Любое движение в первой предметной области требовало синхронизации со
второй предметной областью. Пока функции были независимы, стоимость их со
провождения была пренебрежимо мала, но как только появилась общая библио
тека, объемы необходимого тестирования выросли на порядок.

Осторожно: общий код

Осторожно: общий код 	 35

Сократив абсолютное число строк кода системы, я вместе с тем увеличил коли
чество зависимостей. Контекст этих зависимостей крайне важен: находись они
в одном месте, общий код можно было бы оправдать и извлечь из него пользу. Но
если не держать эти зависимости под контролем, они запустят свои щупальца
в более важные вопросы функционирования системы, даже если сам по себе код
с виду безупречен.

Коварство таких ошибок – в правильности основополагающих идей. Подобные
приемы применять в должном контексте полезно, а вот в неверном контексте от
них больше убытков, чем пользы. Теперь, если я работаю с кодом существующе
го проекта и не знаю, где могут использоваться различные его части, я гораздо
осторожнее подхожу к совместному использованию кода.

Осторожнее с общим кодом. Изучите контекст. И лишь затем действуйте.

Роберт Мартин, известный также как «Дядюшка Боб»

У бой­скау­тов есть пра­ви­ло: «Оставь после себя лагерь чище, чем он был, когда
ты пришел». Если на земле валяется мусор, ты убираешь его, даже если намусо
рили другие. Ты намеренно улучшаешь условия существования для следующей
группы, которая придет в лагерь. (А исходно это правило, установленное основа
телем скаутского движения Робертом Стивенсоном Смитом Бейден-Пауэллом,
звучало так: «Постарайся, чтобы этот мир стал лучше, чем до того, как ты в него
пришел».)

Представьте, что мы следуем похожему правилу для нашего кода: «Всегда со
храняй модуль в репозиторий в лучшем состоянии, чем он был, когда ты его от
туда загрузил». Кто бы ни написал этот модуль изначально, что если потратить
хоть немного сил, чтобы улучшить его? К чему это может привести?

Думаю, следуй мы все этому простому правилу, нам больше не пришлось бы ви
деть неумолимую деградацию наших программных систем. Напротив, они ста
новились бы все лучше по мере своего развития. На смену отдельным людям,
беспокоящимся лишь о собственных фрагментах работы, пришли бы целые ко
манды, заботящиеся о системах в целом.

Мне кажется, такое правило не слишком сложно в исполнении. Необязательно
доводить до совершенства каждый модуль, который вы возвращаете в репозито
рий. Просто сделайте его чуть лучше, чем он был, когда попал к вам в руки. Есте
ственно, это означает, что, расширяя модули собственным кодом, вы создаете чис
тый код. Кроме того, нужно навести порядок хотя бы еще в одном месте, прежде
чем сохранять модуль. Достаточно лишь дать какой-то переменной более удачное
имя или разбить длинную функцию на две более коротких. Можно устранить
циклическую зависимость или добавить интерфейс, устраняющий зависимость
между политикой и реализацией.

Правило бойскаута

Правило бойскаута	 37

Честно говоря, мне кажется, что это обычные правила приличия – как мыть ру
ки после туалета или выбрасывать мусор в мусорное ведро, а не на пол. Скажем
прямо, оставлять беспорядок в коде должно быть столь же социально неприем
лемо, как сорить на улице. Такого попросту не следует делать.

Здесь скрыто больше, чем кажется. Одно дело – следить за порядком в собствен
ном коде, и совсем другое – следить за порядком в коде всей команды. Команды
помогают одна другой и подчищают код одна за другой. Каждая следует прави
лу бойскаута, потому что оно приносит пользу всем, а не только одной конкрет
ной команде.

Аллан Келли

Раз­ра­бот­чи­ку – лю­бо­му из нас! – часто бывает трудно признать, что его код не
работает. Это кажется настолько неправдоподобным, что мы скорее готовы до
пустить наличие ошибки в компиляторе.

В действительности, очень и очень редко код оказывается неработоспособным
из-за ошибки в компиляторе, интерпретаторе, операционной системе, сервере
приложений, базе данных, менеджере памяти или любом другом элементе сис
темного программного обеспечения. Да, там встречаются ошибки, но гораздо ре
же, чем нам хотелось бы думать.

Однажды я действительно столкнулся с ошибкой в компиляторе (удаление пере
менной цикла при оптимизации), но во всех остальных случаях мои претензии
к компилятору или операционной системе оказывались беспочвенными. Я тра
тил массу своего времени, времени службы поддержки и времени начальства,
а в результате оказывался в неловком положении, когда обнаруживалось, что
ошибка – моя собственная.

Когда применяемые в проекте средства разработки проверены временем, широ
ко используются и входят в многочисленные технологические цепочки, нет осо
бых оснований сомневаться в их качестве. Конечно, если это одна из ранних вер
сий инструмента, или им пользуются лишь несколько человек в мире, или это
редко загружаемый проект с открытым исходным кодом и номером версии 0.1,
вполне можно заподозрить этот инструмент. (Точно так же можно с подозрением
отнестись к альфа-версии коммерческого инструмента.)

Учитывая, насколько редки ошибки в компиляторах, гораздо выгоднее тратить
время и силы на поиск ошибок в собственном коде, а не пытаться доказать, что
компилятор ошибается. Тут действуют все обычные соображения по отладке:
изолировать проблему, поставить заглушки вместо вызовов, окружить проблем
ный участок проверками; проверить выполнение соглашений по вызовам, общие
библиотеки и номера версий; описать проблему коллеге; выяснить, не поврежден
ли стек, и установить соответствие типов переменных; попробовать выполнить

Прежде чем пенять на других,
проверь собственный код

Прежде чем пенять на других, проверь собственный код	 39

код на разных компьютерах и в разных конфигурациях сборки, например отла
дочной и окончательной (release).

Подвергайте сомнению собственные допущения и допущения других людей. До
пущения в основе работы инструментов разных производителей могут не совпа
дать; то же верно и для разных инструментов одного и того же производителя.

Если коллега сообщает об ошибке, которую вы не можете воспроизвести, подой
дите и посмотрите, как она у него возникает. Его действия или последователь
ность их выполнения, возможно, никогда не приходили вам в голову.

Моя личная система такова: если я не могу обнаружить ошибку и начинаю гре
шить на компилятор, пришло время проверить целостность стека. Это особенно
полезно, когда при добавлении кода трассировки локализация проблемы ме
няется.

Многопоточность – еще один источник ошибок, из-за которых программисты
начинают орать на компьютер и раньше срока седеют. Все советы писать простой
код многократно увеличиваются в цене для многопоточных систем. При поиске
таких ошибок трудно системно полагаться на отладку и модульное тестирова
ние, поэтому простота конструкции приобретает первостепенное значение.

Итак, прежде чем забрасывать обвинениями компилятор, вспомните совет Шер
лока Холмса – «Если исключить все невозможное, то, что останется, и будет ис
тиной, какой бы неправдоподобной она ни казалась» – и следуйте ему, а не сове
ту Дирка Джентли1: «Если исключить все неправдоподобное, то, что останется,
и будет истиной, какой бы невозможной она ни казалась».

1	 Дирк Джентли – персонаж Дугласа Адамса, который, как и Шерлок Холмс, занимал-
ся детективными расследованиями и держал собственное детективное агентство. –
Прим. ред.

Джованни Аспрони

Со­вре­мен­ные при­ло­же­ния край­не ред­ко соз­да­ют «с чис­то­го лис­та». Их собира
ют из уже существующих кубиков – компонентов, библиотек и фреймворков,
и тому есть ряд веских причин:

•	 Объемы, сложность и изощренность приложений растут, а времени на их соз
дание отводится все меньше. Выгоднее тратить время и интеллект разработ
чиков на код бизнес-логики, чем на код инфраструктуры приложения.

•	 В широко используемых компонентах и фреймворках меньше шансов столк
нуться с ошибками, чем в разработанных самостоятельно.

•	 Высококачественный инструментарий доступен бесплатно в сети Интернет,
благодаря чему снижаются затраты на разработку и упрощается поиск заин
тересованных разработчиков с нужным опытом.

•	 Создание и сопровождение программного обеспечения требует большого объ
ема человеческого труда, поэтому бывает дешевле купить готовые продукты,
чем создавать их.

Однако правильный выбор ингредиентов для нового приложения может оказать
ся сложной задачей, требующей взвешенного подхода. Делая свой выбор, нужно
учитывать несколько факторов:

•	 Каждый инструмент рассчитан на применение в определенном контексте,
в который входят инфраструктура, модель управления, модель данных, ком
муникационные протоколы и тому подобное, вследствие чего может возни
кать несоответствие инструментов архитектуре приложения. Такое несо
ответствие приводит к необходимости применять «грязные» методы и обход
ные маршруты при решении задач, что неоправданно усложняет код.

•	 У каждого инструмента собственный график выхода новых версий, и обнов
ление какого-либо из них может стать чрезвычайно сложной и затратной по
времени задачей, поскольку новая функциональность, архитектурные изме
нения и даже исправления, связанные с ошибками, иногда приводят к несо

Тщательно выбирайте
инструменты

Тщательно выбирайте инструменты	 41

вместимости с другими инструментами. Чем больше в проекте инструментов,
тем острее может становиться эта проблема.

•	 Есть инструменты, требующие серьезной настройки, часто в виде одного или
нескольких конфигурационных файлов XML, количество и размер которых
может быстро выйти из-под контроля. В итоге приложение выглядит так,
будто оно написано на XML, и лишь вдобавок к этому имеется кучка строк
кода на одном из языков программирования. Сложность конфигурирования
затрудняет сопровождение и дальнейшее развитие приложения.

•	 Может возникнуть жесткая привязка к определенному производителю (ven
dor lock-in), когда код, интенсивно использующий его продукты, вдруг оказы
вается ограничен такими параметрами, как простота сопровождения, произ
водительность, возможность развития, цена и другими.

•	 Если планируется использовать бесплатное программное обеспечение, может
выясниться, что на практике оно не такое уж и бесплатное. Возможно, при
дется оплачивать коммерческую поддержку этого программного продукта,
а она может оказаться недешевой.

•	 Нужно учитывать условия лицензионных соглашений, даже если это бесплат
ное программное обеспечение. Например, в некоторых компаниях не допуска
ется использование программного обеспечения с лицензией GNU по причине
его вирусной природы, в том смысле, что такая лицензия позволяет распро
странять новый продукт только совместно с его исходным кодом.

Моя личная стратегия смягчения этих проблем состоит в том, чтобы начинать
с малого – лишь с тех инструментов, которые абсолютно необходимы. Как прави
ло, на старте самое главное – устранить необходимость программирования ин
фраструктуры низкого уровня (и сопутствующих проблем). Скажем, в случае ра
боты над распределенным приложением это достигается посредством использо
вания связующего программного обеспечения (middleware) вместо работы с соке
тами напрямую. Затем при необходимости можно добавить другие инструменты.
Кроме того, я стараюсь отделить внешние инструменты от объектов моей пред
метной области с помощью интерфейсов и слоев. Это позволяет с минимальными
потерями заменить какой-либо инструмент, если понадобится. Положительный
побочный эффект такого подхода – как правило, на выходе я получаю приложе
ние меньшего размера и с меньшим количеством внешних инструментов, чем из
начально предполагалось.

Дэн Норт

Пред­ставь­те се­бе текст двух про­грамм. В одной вы встречаете такое:

if (portfolioIdsByTraderId.get(trader.getId())
 containsKey(portfolio.getId())) {...}

Вы чешете затылок, пытаясь осмыслить, что делает этот код. Похоже, он полу
чает идентификатор объекта трейдера, и по этому идентификатору находится
ассоциативный массив в, э-э-э… очевидно, ассоциативном массиве ассоциатив
ных массивов; затем проверяется, есть ли в этом внутреннем массиве еще один
идентификатор – из объекта портфеля. Вы снова чешете затылок. Ищете объяв
ление переменной portfolioIdsByTraderId и обнаруживаете следующее:

Map<int, Map<int, int>> portfolioIdsByTraderId;

Понемногу вы начинаете понимать, что это как-то связано с наличием у трейде
ра доступа к определенному портфелю. Конечно, вы найдете такой же фрагмент
поиска – а скорее похожий, но немного отличающийся код, – когда в другом мес
те понадобится узнать, есть ли у трейдера доступ к некоторому портфелю.

В тексте другой программы вы видите:

if (trader.canView(portfolio)) {...}

Никаких головоломок. Вам не нужно знать, как объект трейдера определяет
доступность портфеля. Где-то в недрах программы, наверное, все же зарыт ассо
циативный массив ассоциативных массивов. Но это заботы объекта trader, а не
ваши.

Внимание, вопрос. Над кодом какой из программ вы предпочли бы работать?

Давным-давно у нас были только самые элементарные структуры данных: биты,
байты и символы (на самом деле, те же байты, но мы делали вид, что это буквы
и специальные символы). С десятичными числами выходило посложнее, ведь
счисление по основанию 10 плохо вписывается в двоичную систему, так что у нас
было несколько размеров для чисел с плавающей запятой. Затем появились

Пишите код
на языке предметной области

Пишите код на языке предметной области 	 43

массивы и строки (по сути, разновидность массивов). Потом в нашем распоряже
нии оказались стеки и очереди, хеши, связные списки, списки с пропусками
и масса других замечательных структур данных, которых нет в реальном мире.
Термин «компьютерная наука» тогда означал в основном трудоемкое отображе
ние реального мира на наши ограниченные структуры данных. Настоящие гуру
могут даже вспомнить, как именно удавалось решать задачу.

Затем появились пользовательские типы! Ладно, это ни для кого не новость, но
они несколько меняют правила игры. Если в вашей предметной области есть та
кие понятия, как «трейдер» и «портфель», вы можете моделировать их с помо
щью типов, назначив типам такие имена, как Trader и Portfolio. Но, что еще важ
нее, и отношения между типами можно моделировать через термины из той же
предметной области.

Если вы не используете в коде термины предметной области, значит вы форми
руете подразумеваемое (читай: секретное) правило, что вот эта переменная ти-
па int в этом месте обозначает трейдера, а вон то int в том месте обозначает порт
фель. (И лучше их не путать!) А если вы реализуете некоторое бизнес-правило
(«некоторым трейдерам нельзя просматривать некоторые портфели – это неза
конно») с помощью нетривиального алгоритма в коде, – например поиска суще
ствования значения в ассоциативном массиве, – вы вряд ли облегчаете жизнь
ребятам, которые будут проводить аудит и проверку на соответствие законода
тельству.

Следующему программисту, который будет работать с этим кодом, ваше тайное
знание может быть недоступно, так почему не описать все явно? Применение од
ного ключа для поиска другого, используемого в проверке существования, не
слишком очевидная штука. Можно ли рассчитывать, что кто-нибудь догадает
ся, что таким образом реализуются бизнес-правила, препятствующие конфлик
ту интересов?

Явное применение понятий предметной области в коде дает возможность другим
программистам понять его назначение со значительно меньшими усилиями, чем
при попытках сопоставить алгоритм с тем, что им известно о предметной облас
ти. Кроме того, при совершенствовании модели предметной области, которое
происходит по мере расширения ваших знаний о ней, вам будет легче дорабаты
вать код. Если правильно организовать инкапсуляцию, велики шансы, что пра
вило будет располагаться в одном-единственном месте, и вы сможете менять его
так, что никакой вызывающий код этого не заметит.

Программист, который спустя несколько месяцев продолжит работу над вашим
кодом, будет вам благодарен. И этим программистом можете оказаться вы сами.

Райан Браш

Пред­ставь­те се­бе, вы ут­ром про­сы­пае­тесь и узнаете, что в строительной про
мышленности произошел эпохальный прорыв. Теперь миллионы дешевых и не
вероятно быстрых роботов умеют создавать различные материалы буквально из
воздуха, почти не расходуя энергии, и сами себя чинят. Но это еще не все: если
есть четкие чертежи, роботы построят по ним здание без всякого вмешательства
человека, и стоимость этой работы будет пренебрежимо мала.

Можно представить себе, как это преобразит строительную промышленность,
но какие изменения произойдут на более высоком уровне? Как поведут себя ар
хитекторы и проектировщики, когда стоимость строительства станет пренебре
жимо мала? Сегодня дорогостоящему строительству обязательно предшествует
создание и тщательное тестирование физических и компьютерных моделей. Ста
нем ли мы так утруждать себя, если строительство будет фактически бесплат
ным? Что за проблема, если здание развалится? Найдем, в чем ошибка, и наши
чудо-роботы построят нам новое.

Возможны и другие последствия. С уходом в прошлое моделей не доведенные до
конца проекты зданий будут развиваться по мере того, как здание раз за разом
строится заново, и проектировщики вносят в него улучшения, имея в виду же
лаемую конечную цель. Стороннему наблюдателю трудно будет отличить неза
конченный проект здания от сданного в эксплуатацию объекта.

Наша способность предсказывать сроки работ уйдет в небытие. Стоимость строи
тельства легче рассчитать, чем стоимость проектирования: мы примерно знаем,
сколько стоит установка балки и сколько балок нам нужно. Поскольку доля
предсказуемых задач стремится к нулю, преобладающее значение станет иметь
трудно предсказуемое время проектирования. Результаты получаются быстрее,
но планирование работ становится ненадежным.

Конечно, конкуренция останется действующим фактором. Когда стоимость строи
тельства ничтожна, преимущество на рынке получает компания, способная быст
ро выполнять проектирование. Основным интересом инженерных контор, таким

Код – это проектирование

Код – это проектирование	 45

образом, станет ускоренное проектирование. Неизбежно произойдет так, что
кто-то, не обладая глубоким пониманием проекта, увидит непроверенный вари
ант, осознает преимущества выхода на рынок с опережением конкурентов и ска
жет: «Ладно, и так сойдет».

Некоторые проекты, связанные с жизнью и здоровьем людей, будут прорабаты
ваться тщательнее, но во многих случаях покупатели привыкают терпеть не
приятности, которые им несет незавершенное проектирование. Ведь компании
всегда могут послать своих чудо-роботов и «залатать» проданные ими бракован
ные здания или автомобили. Все это приводит нас к неожиданному заключе
нию: нашей единственной отправной точкой было резкое снижение стоимости
строительства, а в результате мы получили снижение качества.

Не стоит удивляться, что рассказанная история стала реальностью в программ
ной индустрии. Если мы согласимся, что основу кода составляет проектирова
ние – творческий, а не механический процесс, – это объясняет кризис программ
ной отрасли. У нас кризис проектирования: потребность в качественных, прове
ренных архитектурных решениях для приложений превышает наши способно
сти их создавать. Обстоятельства вынуждают работать на основе незавершенных
проектов.

К счастью, эта же модель содержит подсказки, как улучшить положение. Физи
ческое моделирование равносильно автоматизированному тестированию: архи
тектура приложения не может считаться завершенной, пока она не подверглась
суровой проверке набором тестов. Чтобы сделать такие тесты более эффективны
ми, мы находим способы справляться с гигантским числом состояний крупных
систем. Совершенствование языков и практик проектирования дает нам надеж
ду. Наконец, есть неоспоримый факт: выдающиеся проекты зданий создаются
выдающимися проектировщиками, посвятившими себя овладению своим мас
терством. С написанием кода все точно так же.

Стив Фримен

В не­за­па­мят­ные вре­ме­на я работал над проектом на языке COBOL, в котором
всем участникам запрещалось изменять размер отступа, если не было необходи
мости изменить код. Все потому, что однажды кто-то что-то сломал – строка ко
да переползла на следующую и попала в специальные колонки в начале строки.
Запрет действовал, даже если форматирование кода вводило в заблуждение, –
а такое случалось, – так что приходилось очень внимательно читать код, ведь
доверять ему было нельзя. Уверен, убытки от этой политики были гигантскими,
потому что она тормозила работу программистов.

Исследователи показали, что у программиста отнимает больше времени переме
щение по коду и его чтение (чтобы найти то место, которое нужно изменить),
чем собственно набор кода, поэтому желательно оптимизировать эти операции.
Вот три способа это сделать.

Возможность быстрого просмотра

Зрение человека прекрасно приспособлено для поиска в потоке нужного не
значимого (пережиток тех времен, когда нам приходилось бдительно следить,
не появился ли в саванне лев). Стало быть, я могу облегчить себе жизнь тем,
что стандартизирую и уберу на задний план все не связанное с предметной
областью – всю «случайную сложность», вносимую большинством коммерче
ских языков. Если код с одинаковым поведением и выглядит одинаково, моя
система восприятия поможет мне быстро находить отличия. Поэтому я также
соблюдаю соглашения о размещении членов класса внутри компилируемого
файла: константы, поля, открытые методы, закрытые методы.

Выразительная верстка

Все мы научились не жалеть времени на выбор подходящих имен – согласи
тесь, это приближает наш код к выразительному описанию выполняемых дей
ствий и отличает его от простого перечисления шагов. Верстка кода – другая
составляющая такой выразительности. Прежде всего необходимо, чтобы вся
команда разработки согласилась использовать программу автоматического

Важность форматирования кода

Важность форматирования кода	 47

форматирования для основных конструкций. Собственные поправки в форма
тирование кода я могу вносить вручную во время кодирования. Если не возни
кает острых разногласий, команда быстро приходит к общему стилю, «дове
денному вручную». Средство автоматического форматирования не в состоя
нии понять мои намерения (мне ли не знать, я когда-то сам написал такую
программу), а мне более важно, чтобы переносы строк и группировка строк
отражали смысл кода, а не синтаксис языка. (Кевин Макгвайр1 вылечил мою
рабскую зависимость от средств автоматического форматирования кода.)

Компактный формат

Чем больше кода умещается на экране, тем больше кода я вижу без разрыва
контекста, возникающего при прокрутке текста на экране и при переключе
нии между файлами. Тем меньше информации о контексте мне нужно дер
жать в голове. Длинные комментарии к процедурам и обилие пробелов имели
смысл во времена восьмибуквенных имен файлов и построчных принтеров,
но сегодня я работаю в интегрированной среде разработки с поддержкой цвет
ной подсветки синтаксиса и перекрестных ссылок. Теперь меня ограничивает
разрешение экрана, и каждый его пиксел должен работать таким образом,
чтобы облегчить мне понимание кода. Я хочу, чтобы форматирование помога
ло мне понимать код, и не более того.

Мой друг (непрограммист) однажды заметил, что код похож на стихи. У меня
возникает такое же ощущение при виде действительно хорошего кода: каждый
фрагмент текста имеет свое значение и помогает мне понять замысел автора.
К сожалению, написание кода не слывет таким же романтичным занятием, как
сочинение стихотворений.

1	 Кевин Макгвайр Kevin McGuire) – в свое время один из ведущих разработчиков Ec
lipse, интегрированной среды разработки для Java. – Прим. перев.

Маттиас Карлссон

Про­во­дить ре­цен­зи­ро­ва­ние ко­да (code review) не­об­хо­ди­мо. Почему? Оно повы
шает качество кода и снижает относительную долю дефектов. Но вы, воз
можно, неверно представляете себе, почему так происходит.

Многие программисты неприязненно относятся к рецензированию, что бывает
связано с их неудачным личным опытом. Мне встречались организации, где
весь код проходил формальное рецензирование, прежде чем он мог попасть в сис
тему для коммерческого использования. Часто рецензирование проводит архи
тектор или ведущий разработчик – практика, которую можно назвать «архи
тектор проверяет все». Это записано в руководстве по процессу разработки про
граммного обеспечения компании, и программисты обязаны подчиняться.

Возможно, в некоторых организациях действительно необходим такой строгий
и формальный процесс, но таких меньшинство. В большинстве же организаций
подобный подход контрпродуктивен. Авторы рецензируемого кода словно пред
стают перед комиссией по досрочному освобождению. Рецензирующим требует
ся успевать и читать код, и отслеживать все особенности эволюционирующей
системы: они могут быстро стать узким местом всего процесса, так что процесс
вскоре деградирует.

Рецензирование кода должно быть не просто методом исправления ошибок в ко
де, а средством распространения знаний и установления общих основ написа
ния кода. Дав другим программистам познакомиться со своим кодом, вы тем са
мым делаете каждого совладельцем кода. Пусть любой из участников команды
пройдется по коду вместе с остальными. Не нужно искать ошибки; при рецензи
ровании кода нужно стараться изучить его и понять, как он работает.

Во время рецензировании кода будьте доброжелательны. Комментарии должны
быть конструктивными, а не колкими. Назначьте роли для проведения рецен
зирования, чтобы не получилось, что на оценку кода влияют отношения стар
шинства в команде. Например, один рецензент может сосредоточиться на доку
ментации, другой – на исключениях, а третий – рассмотреть функциональность.

Рецензирование кода

Рецензирование кода	 49

При таком подходе нагрузка по рецензированию более равномерно распределит
ся между членами команды.

Договоритесь, что определенный день недели будет регулярным днем рецензиро
вания кода. Выделите для этого мероприятия пару часов. Каждый раз меняйте
автора рецензируемого кода по кругу. Кроме того, не забывайте на каждом соб
рании по рецензированию менять роли участников рецензирования. Вовлекай
те в рецензирование новичков. Несмотря на малый опыт, они могут дать вам но
вую точку зрения благодаря своим свежим университетским знаниям. Привле
кайте экспертов – они обладают опытом и знаниями. Они быстрее и точнее ука
жут на код, чреватый ошибками. Рецензирование кода будет проходить легче,
если соглашения команды по написанию кода проверяются автоматизирован
ным инструментом. В этом случае на собрании по рецензированию никогда не
придется обсуждать форматирование кода.

Пожалуй, в главной мере успех рецензирования определяется тем, будет ли оно
интересно людям. Рецензирование ориентировано на участвующих в нем лю
дей. Если собрание по рецензированию проходит в неприятной или скучной ат
мосфере, трудно будет кого-либо мотивировать. Проводите рецензирование кода
в неформальной обстановке, и пусть главной задачей мероприятия станет рас
пространение знаний среди членов команды. Оставьте в стороне сарказм, а вме
сто него принесите тортик или бутерброды.

Йехиль Кимхи

По­пыт­ки до­ка­зать кор­рект­ность про­грамм­но­го обес­пе­че­ния вруч­ную приво
дят к формальному доказательству, которое длиннее самого кода и содержит
ошибки с большей вероятностью, чем сам код. Желательно применять автома
тизированные средства, но это не всегда возможно. Ниже описывается средин
ный путь: полуформальное доказательство корректности.

Метод основан на разделении исследуемого кода на короткие фрагменты разме
ром от одной строки, которая может содержать вызов функции, до блоков дли
ной не более 10 строк и обсуждении их корректности. Доказательство должно
оказаться достаточно убедительным для вашего коллеги, играющего роль «ад
воката дьявола».

Фрагменты следует выбирать таким образом, чтобы в конечной точке блока
состояние программы (а именно счетчик адреса команд и значения всех «живых»
объектов) удовлетворяло простому в описании свойству, а функциональность
этого фрагмента (преобразование состояния) легко описывалась в виде одной не
зависимой задачи. Соблюдение предложенных правил упрощает ведение дока
зательства. Такие свойства конечной точки фрагмента обобщают понятия пред
условий и постусловий для функций, а также инвариантов для циклов и клас
сов (в отношении экземпляров классов). Необходимо стремиться, чтобы фраг
менты как можно меньше зависели друг от друга, что облегчает доказательство
и очень пригодится, если предполагается изменять эти фрагменты.

Многие хорошо известные (хотя и, видимо, реже применяемые) и имеющие ста
тус «качественных» практики написания кода также облегчают проведение до
казательств. Таким образом, одно лишь намерение провести в будущем доказа
тельство корректности своего кода способствует улучшению его стиля и струк
туры. Не стоит удивляться, что большинство подобных практик проверяется
статическими анализаторами кода:

•	 Избегайте операторов goto, потому что они создают сильную зависимость меж
ду фрагментами, разнесенными в коде.

Пиши код с умом

Пиши код с умом	 51

•	 Избегайте изменяемых глобальных переменных, потому что они делают за
висимыми между собой все фрагменты, в которых используются.

•	 Область видимости каждой переменной должна быть наименьшей из возмож
ных. Например, локальный объект можно объявить непосредственно перед
первым использованием.

•	 Делайте объекты неизменяемыми (immutable), где это возможно.

•	 Улучшайте читаемость кода посредством пробелов – как горизонтальных, так
и вертикальных. Например, выравнивайте отступы для родственных струк
тур и разделяйте фрагменты кода пустыми строками.

•	 Пишите самодокументируемый код, выбирая содержательные (но достаточно
короткие) имена для объектов, функций, типов и т. д.

•	 Если фрагмент оказывается вложенным, превратите его в функцию.

•	 Каждая функция должна решать единственную задачу и быть короткой. Огра
ничение длины функции 24 строками, введенное много лет назад, по-прежне
му действует. Размер и разрешение экрана по сравнению с 60-ми годами про
шлого века увеличились, но человеческие возможности восприятия остались
прежними.

•	 У функции не должно быть много аргументов (хорошая практика – не более
четырех). Это не ограничивает объем передаваемых функции данных: объеди
нение родственных аргументов в одном объекте локализует инварианты объ
екта, что упрощает доказательство в плане проверки согласованности и со
стояний объектов.

•	 В общем случае каждая единица кода, начиная с фрагмента и заканчивая це
лой библиотекой, должна иметь ограниченный интерфейс. Сокращение пото
ка информации упрощает доказательство. Это означает, что следует избегать
методов, возвращающих внутреннее состояние (getters). Нужно не запраши
вать у объекта информацию для обработки, а требовать, чтобы он выполнил
работу с той информацией, которая у него уже есть. Иными словами, инкап
суляция – это ограниченные интерфейсы, и только они.

•	 Чтобы сохранить инварианты класса, следует избегать методов, присваиваю
щих значения (setters). Они часто влекут нарушение инвариантов, опреде
ляющих состояния объекта.

Доказательство корректности кода, как и его обсуждение, позволит вам лучше
в нем разобраться. Сообщайте о своих открытиях – это пойдет всем на пользу.

Кэл Эванс

На мо­ем пер­вом за­ня­тии по про­грам­ми­ро­ва­нию в кол­лед­же преподаватель вы
дал нам по два бланка для составления текста программы на BASIC. На доске он
написал задание: «Составить программу для ввода и вычисления среднего из
10 результатов в боулинге». Затем преподаватель вышел из комнаты. Трудна ли
эта задача? Не помню своего решения, но, кажется, там был цикл FOR/NEXT и не
более 15 строк кода.

В каждом бланке для кода программы – молодым людям, читающим этот текст,
поясняю, что мы тогда писали код от руки, прежде чем ввести его в компьютер –
было около 70 строк. Мне было совершенно непонятно, почему преподаватель
выдал нам по два бланка. Так как почерк у меня всегда был отвратительный,
я воспользовался вторым бланком, чтобы аккуратно переписать свой код, наде
ясь заработать пару очков за стиль.

К большому моему удивлению, получив свою работу обратно на следующем за
нятии, я обнаружил, что оценка за нее была выставлена чуть выше проходной.
(Это стало предзнаменованием всего моего последующего обучения в колледже.)
Поверх моего тщательно переписанного кода было выведено: «А комментарии?»

И преподаватель, и я понимали, что делает эта программа, но этого было недо
статочно. Часть задачи состояла в том, чтобы научить меня следующему: мой
код должен быть понятен другому программисту, который придет после меня.
Этот урок я помню до сих пор.

Комментарии – это не порок. Они столь же необходимы в программировании,
как основные конструкции ветвлений и циклов. В большинстве современных
языков есть средства типа javadoc, которые анализируют написанные в опреде
ленном формате комментарии и автоматически составляют справочник по API
(интерфейсу прикладного программирования). Иметь такой справочник непло
хо, но этого совершенно недостаточно. Код должен содержать пояснения о своем
предполагаемом назначении. Когда вы пишете код по древнему принципу «если
это было трудно написать, то и читать должно быть не легче», то оказываете мед

Комментарий о комментариях

Комментарий о комментариях	 53

вежью услугу своему клиенту, своему работодателю, своим коллегам, а в буду
щем и себе.

С другой стороны, не нужно слишком увлекаться комментированием. Следите,
чтобы ваши комментарии проясняли код, а не осложняли его чтение. Вставьте
в код уместные комментарии, из которых будет ясно, что этот код должен делать.
Комментарии в заголовке должны дать любому программисту достаточно инфор
мации, чтобы использовать ваш код, не читая его, а комментарии в коде должны
помочь тому разработчику, который будет исправлять или расширять код.

На одной моей работе у меня возникло несогласие с проектным решением, при
нятым «наверху». С язвительной иронией, свойственной молодым программи
стам, я поместил текст почтового сообщения, содержавшего указания «сверху»,
в блок комментариев в заголовке файла. Однако оказалось, что менеджеры этой
компании лично просматривали код, попадавший в репозиторий. Так я впервые
познакомился с термином шаг, стоивший дальнейшей карьеры.

Кевлин Хенни

Рас­хо­ж­де­ние меж­ду тео­ри­ей и прак­ти­кой на практике больше, чем в теории. Это
наблюдение определенно применимо к комментариям. В теории общая идея ком
ментирования кода выглядит достойно: дать читателю детальное объяснение
происходящего. Что может быть полезнее, чем давать полезное? А вот на практи
ке комментарии часто вредят. Как и любой вид писательского творчества, напи
сание комментариев требует мастерства. Это мастерство в значительной мере
включает в себя понимание того, когда комментарии писать не нужно.

Если код написан с нарушениями синтаксиса, то компиляторы, интерпретаторы
и другие средства разработки обязательно воспротивятся. Если код некорректен
с функциональной точки зрения, большая часть ошибок выявится в результате
рецензирования, статического анализа, тестирования и боевого применения на
коммерческом предприятии. А что с комментариями? В книге «The Elements of
Programming Style»1 (Computing McGraw-Hill) Керниган и Плоджер замечают,
что «неверный комментарий имеет нулевое или отрицательное значение». И все
же такие негодные комментарии успешно приживаются в коде на зависть ошиб
кам всех видов. Они постоянно отвлекают внимание и дезинформируют. Они
служат незаметным, но постоянно действующим тормозом мышления програм
миста.

Что можно сказать о комментариях, которые формально не являются ошибоч
ными, но не повышают ценности кода? Такие комментарии – просто шум. Ино
гда комментарии лишь повторяют уже сказанное в коде на естественном языке,
то есть попугайничают, не сообщая читателю ничего нового; такое повторение не
придает коду ни веса, ни правильности. Закомментированный код не выполня
ется, поэтому он бесполезен как при чтении кода, так и при его выполнении.
Кроме того, он очень быстро устаревает. Комментарии относительно номеров вер
сий и блоки закомментированного кода – это попытки решить вопросы контроля

1	 Керниган Б. и Плоджер Ф. «Элементы стиля программирования». – Пер. с англ. – Ра-
дио и связь, 1984.

Комментируйте только то,
о чем не скажет код

Комментируйте только то, о чем не скажет код	 55

версий и истории кода. Такие вопросы решаются (и гораздо эффективнее) с по
мощью систем управления версиями.

Засилье в коде бессодержательных и неправильных комментариев провоцирует
программистов попросту игнорировать все комментарии, пропуская их при чте
нии либо выключая их отображение. Программисты – люди изобретательные,
и найдут способы обойти все, что покажется им вредоносным: свернут коммен
тарии, изменят цветовую схему так, чтобы комментарии были одного цвета с фо
ном, или удалят комментарии специально написанным сценарием. Чтобы спа
сти код от такого неуместного приложения творческих способностей програм
мистов и чтобы снизить риск того, что кто-то пропустит действительно ценные
комментарии, следует считать комментарии частью кода. Каждый комментарий
должен иметь какую-то ценность для читателя, иначе это просто мусор, кото
рый нужно убрать или переработать.

Какой же комментарий можно считать ценным? Только такой комментарий, ко
торый сообщает то, чего не говорит и не может сказать код. Если комментарий
лишь разъясняет то, что должен самостоятельно сказать фрагмент кода, это ука
зывает на необходимость изменить структуру кода или принятые соглашения по
написанию кода, чтобы код говорил за себя сам. Чем комментировать недоста
точно точные имена методов и классов, лучше их переименовать. Чем комменти
ровать блоки в длинных функциях, выделите их в маленькие самостоятельные
функции, названия которых будут отражать назначения этих блоков. Старай
тесь сообщать максимум информации посредством кода. Если вы не можете опи
сать все, что хотелось бы, с помощью одного лишь кода, возможно, тут будет уме
стен комментарий. Комментируйте то, что не способен сказать код, а не просто
то, чего код не говорит.

Клинт Шэнк

Мы жи­вем в ин­те­рес­ные вре­ме­на. Разработка распределена по всему миру, и,
как выясняется, очень многие способны выполнять вашу работу. Чтобы сохра
нить конкурентоспособность на рынке рабочей силы, нужно непрерывно учить
ся. Иначе вы превратитесь в динозавра, застрявшего на своем рабочем месте, по
ка в один прекрасный день не окажется, что вы стали не нужны, или что вашу
работу отдали туда, где ее готовы делать дешевле.

Как же решать эту задачу? Одни работодатели не скупятся и организуют обуче
ние, развивающее уже нанятых программистов. Другие вообще не могут позво
лить себе выделить на это время или средства. Самое надежное – самому позабо
титься о своем образовании.

Вот перечень способов продолжать учиться. Многое из перечисленного можно
бесплатно получить в Интернете:

•	 Читайте книги, журналы, блоги, ленты Twitter и веб-сайты. Если вы хотите
глубже освоить какой-то предмет, можно зарегистрироваться в списке рас
сылки или группе новостей.

•	 Если вы хотите по-настоящему изучить новую технологию, необходима прак
тика: напишите немного кода.

•	 Старайтесь работать с наставником, ведь если вы самый продвинутый спе
циалист компании, это может помешать вашему образованию. Конечно, че
му-то научиться можно у любого человека, но гораздо большему вы научи
тесь у более толкового или более опытного коллеги. Если не можете найти
наставника, подумайте о переходе на другое место работы.

•	 Используйте виртуальных наставников. Ищите в Интернете авторов или раз
работчиков, которые действительно вам интересны, и читайте все, что они
пишут. Подпишитесь на их блоги.

•	 Изучите программную среду и библиотеки, которыми пользуетесь. Поняв, как
работает определенный инструмент, вы сможете более эффективно его приме
нять. Если это инструменты с открытым исходным кодом, вам крупно повезло.

Непрерывное обучение

Непрерывное обучение	 57

Пройдитесь по коду в отладчике, чтобы узнать, как он устроен. Вы сможете
увидеть код, который написали и прошерстили действительно толковые люди.

•	 Сделав ошибку, разобравшись с дефектом или столкнувшись с проблемой, по
старайтесь до конца разобраться в происшедшем. Вполне возможно, что кто-то
уже сталкивался с такой проблемой и описал ее в Сети. Google вам в помощь.

•	 Хороший способ изучить какой-либо предмет – это учить ему других или рас
сказывать о нем. Если вам предстоит выступать перед другими людьми и от
вечать на их вопросы, это даст вам серьезную мотивацию изучить предмет.
Попробуйте организовать небольшой семинар для коллег за обедом либо вы
ступить перед специализированной группой пользователей (user group) или
на местной конференции.

•	 Запишитесь в группу изучения какой-либо технологии (типа сообщества для
обсуждения вопросов применения паттернов проектирования – patterns com
munity) или сами организуйте такую группу. Это может быть группа изуче
ния языка, технологии или предмета, который вас интересует.

•	 Участвуйте в конференциях. Если нет возможности поехать на конференцию,
в Интернете можно найти бесплатные видеозаписи выступлений, которые
публикуют организаторы многих конференций.

•	 Долго ехать на работу? Слушайте подкасты.

•	 Вы пользуетесь средствами статистического анализа кода? Читаете преду
преждения, выдаваемые вашей IDE? Разберитесь в сообщениях этих про
грамм и причинах их появления.

•	 Следуйте советам книги «The Pragmatic Programmer: From Journeyman to
Master»1 и каждый год изучайте какой-нибудь новый язык. Или хотя бы но
вую технологию, или инструмент. Такое горизонтальное расширение знаний
даст новые идеи для той связки технологий, которую вы используете сейчас.

•	 Новые знания не обязательно должны ограничиваться технологиями. Глуб
же изучите свою предметную область; это позволит лучше понимать техниче
ские требования и поможет решать бизнес-задачи. Еще один полезный ва
риант – изучить способы повышения личной продуктивности.

•	 Снова поступите в университет.

Было бы замечательно, если бы мы могли, как Нео в «Матрице», просто записать
необходимую информацию в свой мозг. Но это невозможно, а потому получение
знаний требует времени. Необязательно посвящать учению каждую свободную
минуту. Отвести для него немного времени, скажем раз в неделю, – уже лучше,
чем ничего. Существует жизнь (как минимум должна существовать) и вне работы.

Технологии меняются быстро. Не отставайте.

1	 Э. Хант, Д. Томас «Программист-прагматик. Путь от подмастерья к мастеру». – Пер.
с англ. – Лори, 2009.

Грегор Хоп

О важ­но­сти и слож­но­сти про­ек­ти­ро­ва­ния хо­ро­ших API (интерфейсов приклад
ного программирования) сказано много. Трудно все сделать правильно с первого
раза и еще труднее изменить что-либо в пути; это похоже на воспитание детей.
Опытные программисты уже поняли, что хороший API предлагает одинаковый
уровень абстракции для всех методов, обладает единообразием и симметрией,
а также образует словарь для выразительного языка. Увы, знать принципы – это
одно, а следовать им на практике – другое. Вы же знаете, что есть сладкое вредно.

Но перейдем от слов к делу и разберем конкретную «стратегию» проектирова
ния API, которая встречается мне постоянно: проектировать API так, чтобы он
был удобным. Как правило, все начинается с одного из следующих «озарений»:

•	 Почему клиентские классы должны выполнять два вызова, чтобы выполнить
одно действие?

•	 Зачем создавать еще один метод, если он делает почти то же самое, что уже
существующий? Добавлю простой switch.

•	 Слушайте, это элементарно: если строка второго параметра оканчивается на
«.txt», метод автоматически понимает, что первый параметр является именем
файла, так что не нужно создавать два метода.

Намерения благие, но приведенные решения чреваты снижением читаемости
кода, использующего ваш API. Следующий вызов метода

parser.processNodes(text, false);

несет смысловую нагрузку только для того, кто знает, как метод реализован, ли
бо прочел документацию. Этот метод создавался скорее для удобства автора, а не
пользователя: «Я не хочу заставлять программиста делать два вызова» на прак
тике означало «Мне не хотелось писать два метода». В принципе нет ничего пло
хого, если удобство используется как средство против монотонности, громоздко
сти и неуклюжести. Но если вдуматься, противоядием для этих симптомов слу
жат эффективность, элегантность, последовательность – и не обязательно удобст

Удобство – не атрибут качества

Удобство – не атрибут качества	 59

во. API предполагают сокрытие внутренней сложности системы, поэтому вполне
резонно ожидать, что проектирование хорошего API требует некоторых усилий.
Вполне возможно, что удобнее написать один большой метод, а не тщательно
продуманный набор операций, но каким из вариантов проще пользоваться?

В таких ситуациях более удачные архитектурные решения могут основываться
на метафоре API как естественного языка. API должен предлагать выразитель
ный язык, обеспечивающий вышележащему уровню словарь, которого доста
точно, чтобы задавать полезные вопросы и получать на них ответы. Это не зна
чит, что каждому возможному вопросу будет сопоставлен лишь один метод или
глагол. Обширный словарь позволяет передавать оттенки смысла. Например,
мы предпочитаем говорить run (бежать), а не walk(true) (идти), хотя можно рас
сматривать эти действия как одну и ту же операцию, выполняемую с разной ско
ростью. Последовательный и хорошо продуманный словарь API способствует
выразительности и прозрачности кода более высокого уровня. А что еще важ
нее – словарь, допускающий сочетания слов, дает возможность другим програм
мистам использовать API способами, которые вы не предвидели, – и это действи
тельно большое удобство для его пользователей! Когда у вас в очередной раз воз
никнет соблазн сложить в один метод API сразу несколько операций, вспомните,
что слова ПрибериКомнатуНеШумиИСделайДомашнееЗадание нет в словарях, хотя оно при
шлось бы весьма кстати для такой популярной операции.

Стив Берчук

От­лад­ку про­це­ду­ры раз­вер­ты­ва­ния (deployment) и ус­та­нов­ки часто откладыва
ют до этапа завершения проекта. В некоторых проектах создание средств уста
новки возлагается на выпускающего продукт инженера, который воспринимает
эту задачу как «неизбежное зло». Промежуточные демонстрации приложения
проводятся в специально подготовленной среде, чтобы все работало, как надо.
В результате команда не получает опыта работы с процессом и средой разверты
вания до того момента, когда времени для внесения изменений уже может не
остаться.

Процедура развертывания или установки – первое, что видит заказчик, и если
она проста, это первый шаг к надежной (или хотя бы простой в отладке) произ
водственной среде. Развертываемое программное обеспечение – это то, чем будет
пользоваться клиент. Если вы не обеспечите правильное развертывание прило
жения, у ваших клиентов появятся вопросы еще до того, как они приступят
к плотной работе с вашими программами.

Начиная проект с процедуры установки, вы получаете время на ее совершенст
вование по ходу цикла разработки продукта и возможность вносить изменения
в код приложения с целью облегчить его установку. Периодический запуск и тес
тирование процедуры установки в чистой среде позволит также проверить, не
осталось ли в коде зависимостей от среды разработки или тестирования.

Задвигая развертывание на последнее место, вы можете тем самым усложнить
процесс развертывания, ведь вам придется искать обходные маршруты для до
пущений, сделанных в коде. То, что казалось удачной идеей в IDE, где имеется
полный контроль над средой, может значительно усложнить процедуру развер
тывания. Обо всех компромиссах лучше узнать заранее.

Может казаться, что «способность развернуть приложение» на ранних стадиях
не имеет большой ценности для бизнеса по сравнению с возможностью увидеть,
как приложение работает на компьютере разработчика. Однако нужно учесть тот
простой факт, что реальную ценность для бизнеса представляет лишь конечный

Развертывание приложения:
раннее и регулярное

Развертывание приложения: раннее и регулярное	 61

продукт, способный работать в среде клиента. А это в любом случае невозможно
на начальном этапе и еще потребует значительной работы. Если вы откладываете
создание процедуры развертывания, считая ее тривиальной, следует тем более
решить этот вопрос сразу, раз решение настолько дешево. Если же процедура
слишком сложная или в ней слишком много неясного, нужно работать с ней так
же, как с кодом приложения: экспериментировать, оценивать и переделывать по
мере необходимости.

Процедура установки или развертывания критически важна для успешной ра
боты ваших клиентов или вашей сервисной команды, поэтому необходимо по
стоянно тестировать и совершенствовать ее. Тестирование и совершенствование
исходного кода происходят на всем протяжении проекта. Развертывание прило
жения заслуживает такого же отношения.

Дэн Берг Джонссон

Есть, в об­щем-то, две глав­ные при­чи­ны возникновения ошибок времени выпол
нения (runtime errors): технические проблемы, препятствующие работе прило
жения, и бизнес-логика, препятствующая использованию приложения невер
ным способом. Большинство современных языков, таких как LISP, Java, Small
talk и C#, сигнализируют о возникновении ситуаций обоих типов при помощи
исключений. Но эти две ситуации настолько различны, что их следует тщатель
но разделять. Представлять их посредством единой иерархии исключений – не
говоря уже об одинаковых классах исключений – значит создавать возможность
путаницы в будущем.

Ошибка программирования может породить неразрешимую техническую про
блему. Например, если пытаться получить 83-й элемент массива размером 17 эле
ментов, программа сойдет с рельс и сгенерирует исключение. Более тонкий вари
ант – вызов кода библиотеки с недопустимыми аргументами, приводящий к то
му же результату, но внутри библиотеки.

Было бы ошибкой пытаться на месте разрешать все подобные ситуации, возник
шие по нашей вине. Вместо этого мы даем возможность исключениям всплыть на
самый верхний уровень архитектуры, где некий общий механизм обработки ис
ключений сделает все возможное, чтобы привести систему в безопасное состоя
ние, например откатит транзакцию, отразит событие в файле журнала и извес
тит администратора, а также вежливо сообщит о произошедшем пользователю.

Вариант этой ситуации встречается при обращении к вашей библиотеке, когда
вызывающий нарушил контракт метода, например, передав совершенно непри
емлемый аргумент или не настроив должным образом связанный объект. Это си
туация того же типа, что с обращением к 83-му элементу из 17: вызывающий
должен был проверить, и это ошибка программиста на стороне клиентского ко
да. Правильная реакция – генерировать техническое исключение.

Иная, но тоже техническая ситуация возникает, когда программа не может про
должить работу из-за проблем с окружением, например из-за недоступности базы

Отличайте исключения
в бизнес-логике от технических

Отличайте исключения в бизнес-логике от технических	 63

данных. В такой ситуации следует предположить, что инфраструктура сделала
все возможное, чтобы решить проблему – попыталась восстановить соединение
должное число раз, – и не справилась. Даже если истинная причина в другом,
положение для вызывающего кода аналогичное: он мало чем может исправить
ситуацию. Поэтому мы сообщаем о ситуации посредством исключения, которое
дойдет до универсального механизма обработки исключений.

С другой стороны, случаются ситуации, когда вызов не может быть завершен по
логике предметной области. Это исключительная ситуация, иначе говоря, не
обычная и нежелательная, но в ней нет странности или ошибки программирова
ния (примером может служить попытка снять со счета больше средств, чем на
нем находится). Иными словами, такая ситуация является частью контракта,
а генерация исключения – это альтернативный маршрут возврата, часть мо
дели, о которой клиентский код должен знать и которую должен быть готов об
работать. Для таких случаев рекомендуется создать отдельное исключение или
отдельную иерархию исключений, чтобы клиентский код мог обработать ситуа
цию особым образом.

Объединение технических исключений и исключений бизнес-логики в одну ие
рархию размывает различия между ними и может запутать вызывающего отно
сительно контракта метода, предусловий вызова и ситуаций, которые должны
обрабатываться. Разделение этих случаев придает ясности и повышает вероят
ность того, что технические исключения будут обрабатываться стандартными
механизмами каркаса приложения, а исключения предметной области будут
рассмотрены и обработаны клиентским кодом.

Джон Джаггер

Осоз­нан­ная прак­ти­ка – это не про­сто вы­пол­не­ние за­да­ния. Если на вопрос «За
чем я выполняю задание?» вы отвечаете: «Чтобы выполнить это задание», это не
осознанная практика.

Осознанная практика нужна для того, чтобы улучшить ваши способности к вы
полнению задачи. Цель – повышение мастерства и техники. Осознанная прак
тика – это повторение. Осознанная практика – это решение задачи с целью по
вышения мастерства в одном или нескольких аспектах задачи. Осознанная
практика – это повторы повторений. Вы продвигаетесь медленно, выполняя за
дачу снова и снова, пока не достигнете желаемого уровня мастерства. Осознан
ная практика выполняется, чтобы овладеть способами решения задания, а не
для того, чтобы его выполнить.

Главная цель коммерческой разработки – конечный продукт, а главная цель осоз
нанной практики – повышение эффективности труда. Это разные вещи. При
киньте, сколько времени вы тратите на работу над чужим проектом? А сколько
времени на работу над собой?

Сколько осознанной тренировки необходимо для приобретения мастерства?

•	 Питер Норвиг (Peter Norvig) пишет1, что «возможно, 10 000 часов… – это и есть
то самое магическое число».

•	 В книге «Leading Lean Software Development: Results Are not the Point» (Ad
dison-Wesley Professional, 2009) Мэри Поппендик (Mary Poppendieck) пишет,
что «разработчикам, достигшим высшего уровня производительности, требу
ется не менее 10 000 часов целенаправленной тренировки, чтобы стать экспер
тами».

Мастерство растет постепенно, а не возникает скачком после 10-тысячного часа!
Однако 10 000 часов – это серьезно: примерно 20 часов в неделю в течение 10 лет.
Требуется такое упорство, что вы можете усомниться, получится ли из вас эксперт.

1	 http://norvig.com/21-days.html

Больше осознанной практики

Больше осознанной практики	 65

Получится. Величие есть по преимуществу вопрос сознательного выбора. Ваше
го выбора. Исследования последних двадцати лет показывают, что главным фак
тором приобретения компетенции является время, потраченное на целенаправ
ленную тренировку. Врожденные способности – не главный фактор. Вот что пи
шет Мэри Поппендик:

Многие исследователи высших профессиональных достижений сходятся в том,
что врожденный талант является всего лишь фиксированной отправной точ
кой: нужны какие-то минимальные природные способности, чтобы начать за
ниматься спортом или определенной профессиональной деятельностью. Начи
ная с этого порогового значения, преуспевают те, кто трудится упорнее всего.

Нет смысла осознанно практиковаться в том, что вы и так умеете делать мастер
ски. Осознанной тренировкой мы развиваем то, что умеем недостаточно хорошо.
Питер Норвиг пишет:

Ключ [к достижению мастерства] – осознанная практика: не просто много
кратное повторение одного и того же, но смелость взяться за задачу, которая
несколько превышает ваши нынешние способности, попытаться ее решить,
анализировать эффективность своих действий во время и после работы над ре
шением, а также исправить допущенные ошибки.

А Мэри Поппендик пишет:

Осознанная практика – это не повторение того, что вы уже умеете; это выбор
сложной задачи, попытка заняться тем, в чем вы не вполне компетентны. Нель
зя рассчитывать, что это будет приятное времяпрепровождение.

Осознанная практика – это учеба, которая изменяет вас, изменяет ваше поведе
ние. Удачи.

Микаэль Хунгер

Ес­ли при­слу­шать­ся к раз­го­во­ру экс­пер­тов в какой-либо области, будь то игроки
в шахматы, воспитатели детского сада или страховые агенты, можно заметить,
что их лексика существенно отличается от повседневной. Отчасти такова причина
появления предметно-ориентированных языков (domain specific language, DSL):
у каждой предметной области есть собственный специализированный словарь
для описания явлений, присущих этой области.

Если говорить о программировании, DSL представляют собой выполняемые вы
ражения на языке, присущем предметной области. Выражения языка строятся
на ограниченном словаре и грамматике, так что специалисты в данной предмет
ной области способны читать и понимать выражения на этом языке, а в идеале
еще и писать собственные. Языки DSL, ориентированные на разработчиков и уче
ных, существуют уже довольно давно. Достаточно древними примерами могут
послужить «малые языки» настроечных файлов UNIX, а также языки на базе
мощных макросов LISP.

Обычно DSL делятся на встроенные и независимые:

Встроенные DSL

Создаются на универсальных языках программирования, синтаксис которых
подогнан под структуры естественного языка. Проще всего делать это с язы
ками, предоставляющими широкие возможности для синтаксического укра
шательства и гибкого форматирования (например, Ruby и Scala), тогда как
с другими все сложнее (например, Java). Большинство встроенных DSL – суть
обертки существующих API, библиотек и бизнес-логики. Они снижают вход
ной порог применения уже существующей функциональности. Приложения
на встроенных DSL можно запускать как обычные приложения. В зависимо
сти от реализации и предметной области они могут использоваться для напол
нения структур данных, описания зависимостей, запуска процессов или задач,
сообщения с другими системами или проверки корректности вводимых поль
зователями данных. Синтаксис встроенного DSL ограничен возможностями

Предметно-ориентированные
языки

Предметно-ориентированные языки	 67

базового языка. Существует множество шаблонов – например построитель вы
ражений, цепочка методов, аннотация – для подгонки базового языка к нуж
ному DSL. Если базовый язык не требует перекомпиляции, встроенный DSL
при тесном взаимодействии с экспертом в предметной области можно создать
достаточно быстро.

Независимые DSL

Представляют собой текстовое или графическое описание языка, причем тек
стовые DSL встречаются чаще графических. Текстовые выражения могут
проходить обработку в цепочке, включающей в себя лексический анализатор,
анализатор синтаксиса, преобразователь модели, генераторы и любые другие
средства постобработки. Как правило, выражения не независимых DSL пре
образуются во внутренние модели, служащие основой для дальнейшей обра
ботки. Полезно определить грамматику (например, в виде РФБН1). Грамма
тика служит отправным пунктом для создания элементов инструментальной
цепочки (например, редактора, визуализатора, генератора анализаторов син
таксиса). Для простых DSL может оказаться достаточно анализатора синтак
сиса, созданного вручную – например, на основе регулярных выражений. Ес
ли требования к анализатору синтаксиса достаточно сложны, созданный
вручную анализатор синтаксиса может стать слишком громоздким, и следует
обратить взор на такие инструменты для работы с грамматиками и DSL, как
openArchitectureWare, ANTLR, SableCC, AndroMDA. Довольно часто незави
симые DSL определяют в виде диалектов XML, но с чтением в этом случае мо-
гут быть сложности, особенно у неспециалистов.

Всегда следует принимать во внимание целевую аудиторию вашего DSL. Из кого
она состоит – из разработчиков, менеджеров, клиентов или конечных пользова
телей? В зависимости от целевой аудитории нужно выбирать технический уро
вень языка, доступные пользователю функции, инструмент для подсказки по
синтаксису (например, IntelliSense), средства ранней валидации, визуализации
и представления. Скрывая технические детали, DSL отдает власть пользовате
лям, предоставляя им возможность адаптировать системы к собственным по
требностям, не прибегая к помощи разработчиков. DSL позволяет еще и увели
чить скорость разработки благодаря распределению задач после того, как создан
начальный каркас языка. Язык может развиваться постепенно. Существуют
также различные способы перевести существующие языки и грамматики на но
вый DSL.

1	 Расширенная форма Бэкуса-Наура (Extended Backus-Naur Form, EBNF).– Прим. ред.

Майк Льюис

Ка­ж­дый по­ра­бо­тав­ший в на­шей от­рас­ли наверняка встречался с проектом, код
которого внушал опасения. Части такой системы сильно взаимосвязаны, и из
менение кода одной функции почему-то приводит к нарушению работы совсем
другой. При добавлении нового модуля приходится ограничиваться минималь
ными изменениями и, затаив дыхание, ждать последствий. Это все равно что иг
рать в дженгу перекрытиями небоскреба – однозначно ведет к катастрофе.

Внесение изменений так изматывает нервы только потому, что система больна.
Она нуждается в лечении, иначе ее состояние будет лишь ухудшаться. Вы знаете,
в чем пороки системы, но боитесь принять решительные меры. Опытный хирург
знает, что необходимо сделать разрезы, чтобы провести операцию, но он знает
также, что разрезы временные и потом заживут. Результат операции оправдыва
ет перенесенные страдания, и состояние пациента должно стать лучше, чем до
хирургического вмешательства.

Не бойтесь своего кода. Кому какое дело, что код не работает в процессе работы
над ним? Именно боязнь перемен и привела ваш проект к нынешнему жалкому
состоянию. Потраченное на рефакторинг время многократно окупится в течение
жизненного цикла вашего проекта. Да к тому же переработка нездоровой систе
мы сделает всех участников команды специалистами в ее устройстве. Такой опыт
нужно ценить, а не жаловаться на него. А вот работа над системой, постоянно
вызывающей тошноту, не лучший выбор в жизни.

Переопределите внутренние интерфейсы. Реструктурируйте модули. Реоргани
зуйте код, полученный путем копирования-вставки. Упростите архитектуру, со
кратив число зависимостей. Сложность кода можно существенно снизить, устра
нив из него патологические случаи, а они часто возникают из-за неправильно
организованной взаимосвязи между частями системы. Медленно переходите от
старой структуры к новой, не забывая в процессе о тестировании. Попытка осу
ществить рефакторинг «в один заход» может вызвать столько проблем, что воз
никнет сомнение в целесообразности переработки вообще.

Не бойтесь что-нибудь сломать

Не бойтесь что-нибудь сломать	 69

Станьте хирургом, смело удаляющим пораженные ткани во имя исцеления. Та
кой подход заразителен и вдохновит ваших коллег к проведению давно отклады
вавшейся зачистки в других проектах. Ведите список «гигиенических» работ,
которые, по мнению команды, принесли бы пользу проекту. Убедите руководст
во в том, что, несмотря на отсутствие видимых результатов, такие работы сокра
щают издержки и ускоряют выпуск новых версий. Постоянно проявляйте забо
ту о «здоровье» кода в целом.

Род Бегби

Был поздний вечер. Я подбирал фиктивные данные, чтобы протестировать
верстку страницы, находившейся в работе. Имена пользователей я придумал
в честь участников группы «The Clash». Названия компаний? Сгодятся на
звания песен «Sex Pistols». Теперь нужны какие-нибудь биржевые символы –
четырехбуквенные слова, состоящие из заглавных букв.

Я выбрал те самые четырехбуквенные слова1.

Вроде вполне безобидно. Просто небольшое развлечение для меня или тех раз
работчиков, которые увидят это завтра, пока я не подключу реальный ис
точник данных.

А на следующее утро руководитель проекта сделал несколько снимков экра
на для презентации.

Ис­то­рия про­грам­ми­ро­ва­ния пестрит множеством подобных воспоминаний. Ша
лости разработчиков и дизайнеров, которые «никто никогда не увидит», вдруг
представали всеобщему обозрению.

Важен не вид утечки, а то, что результаты бывают смертельными для отдельных
лиц, команд или компаний. Вот некоторые примеры:

•	 Во время показа текущей версии клиент щелкает по кнопке, функциональ
ность которой еще не реализована, и получает сообщение: «Придурок, не тро
гай эту кнопку».

•	 Программист, сопровождавший старую систему, получил задание добавить
диалоговое сообщение об ошибке и решил вывести то, что записывается во
внутренний журнал. И вот у пользователей при ошибках появляются сооб
щения типа «Твою мать, Бэтмен, сбой транзакции БД!».

1	 Следовало бы перевести «трехбуквенные» слова, но биржевые символы содержат 4 бук
вы, и автор имеет в виду соответствующие четырехбуквенные слова на английском. –
Прим. ред.

Не прикалывайтесь
с тестовыми данными

Не прикалывайтесь с тестовыми данными	 71

•	 Человек перепутал интерфейс для ввода тестовых данных и интерфейс адми
нистрирования рабочей системы. Он вводит «прикольные» данные, и вот по
купатели видят на витрине вашего интернет-магазина «Фаллоимитатор в ви
де Билла Гейтса» ценой 1 000 000 $.

Если старую поговорку «пока правда обувается, ложь уже обойдет полсвета» пе
ревести на современный язык, то можно сказать, что в наше время такие ляпы
прославятся в Twitter, LiveJournal или Facebook до того, как в часовом поясе
разработчиков проснется кто-то, способный их исправить.

Вполне возможно, что и ваш исходный код не избежит пристального интереса.
Когда в 2004 архивы с исходным кодом Windows 2000 появились в файлообмен
ных сетях, некоторые весельчаки профильтровали их в поисках сквернословия,
ругательств и прочих забавных вещей.1 (Признаюсь, с той поры я иногда прибе
гаю к комментарию: // TERRIBLE HORRIBLE NO GOOD VERY BAD HACK (УЖАСНО ОТ
ВРАТИТЕЛЬНО БЕСПОЛЕЗНО ДРЯННОЙ ТРЮК!)

Короче, когда вы пишете в коде любой текст, будь то комментарии, вывод в жур
нал, диалоговое окно или тестовые данные, думайте о том, как это будет выгля
деть, если текст попадет в открытый доступ. И тогда никому не придется крас
неть.

1	 http://www.kuro5hin.org/story/2004/2/15/71552/7795

Пит Гудлиф

Как-то вечером я шел по улице на встречу с друзьями в баре. Мы давненько не
пили вместе пиво, я спешил и думал только о встрече с ними. Поэтому я пло
хо смотрел себе под ноги. Споткнувшись о край тротуара, я упал плашмя, но
решил не обращать на это внимания.

Нога болела, но я же спешил на встречу с друзьями! Я собрался с силами и дви
нулся дальше. По ходу дела боль усиливалась. Поначалу я думал, что просто
проходит болевой шок, но вскоре понял, что дело серьезнее.

И все же я направился в сторону бара. Когда я добрался туда, мне было уже
невыносимо больно. Вечер не особенно удался – боль не давала о себе забыть.
Утром я пошел к доктору, и выяснилось, что у меня сломана голень. Остано
вись я, когда стало больно, мне удалось бы избежать многих осложнений, вы
званных тем, что я продолжал идти дальше. Предположу, то было мое худ
шее в жизни утреннее похмелье.

Слиш­ком мно­гие про­грам­ми­сты пишут код в духе моего поведения в тот вечер.

Ошибка? Какая еще ошибка? Это просто ерунда. Честно. Можно не обращать
на нее внимания. Для создания надежного кода такая стратегия не годится.
Скажу больше, это попросту лень. (Вредная ее разновидность.) Что бы вы там се
бе ни воображали по поводу отсутствия ошибок в собственном коде, их всегда
нужно проверять и всегда обрабатывать. Обязательно. Поступая иначе, вы не
экономите время, но запасаетесь потенциальными проблемами на будущее.

Сообщить об ошибке в коде можно разными способами, например:

•	 Вернуть в результате работы функции код ошиб­ки, который означает, что
функция отработала неверно. Код ошибки очень легко игнорировать. В коде
ничто не укажет на проблему. Вообще теперь стало принято игнорировать
значения, возвращаемые некоторыми стандартными функциями C. Часто ли
вы проверяете значение, возвращаемое функцией printf?

•	 errno – любопытный маразм языка C, специальная глобальная переменная, ко
торая должна сигнализировать об ошибке. Ее легко игнорировать, ее неудобно
применять и она служит источником всяческих неприятностей: что, напри

Не проходите мимо ошибки!

Не проходите мимо ошибки!	 73

мер, делать, если в программе несколько потоков, вызывающих одну и ту же
функцию? Одни платформы помогают избежать проблем в таких ситуациях,
другие – нет.

•	 Ис­клю­че­ния – это более организованный способ уведомлять об ошибках и об
рабатывать их, причем способ, встроенный в язык. Игнорировать исключе
ния невозможно. Или все же можно? Мне часто встречался код типа

try {
 // ...что-то выполнить...
}
catch (...) {} // игнорировать ошибки

Единственное достоинство этой ужасной конструкции – подчеркнуть, что в ко
де происходит нечто сомнительное с точки зрения морали.

Игнорируя ошибку, закрывая глаза и делая вид, что ничего не произошло, вы
подвергаетесь большому риску. Как моя нога сильнее пострадала потому, что
я не остановился немедленно, так и движение напролом через красные флажки
может привести к очень серьезным проблемам. Проблемы нужно решать при
первой же возможности. Не затягивайте выплату долгов.

Если не обрабатывать ошибки, вот что вы получите:

•	 Не­ста­биль­ный код. Код со множеством восхитительных и трудных для обна
ружения ошибок.

•	 Не­без­опас­ный код. Взломщики часто пользуются недостатками обработки
ошибок для взлома программных систем.

•	 Пло­хая струк­ту­ра. Если в вашем коде постоянно проявляются ошибки, кото
рые трудно обрабатывать, то, вероятно, у вас неудачный интерфейс. Форму
лируйте его таким образом, чтобы ошибки становились менее назойливыми,
а их обработка не была столь обременительна.

Следует не только проверять все возможные ошибки в коде, но и обнажать все
потенциально ошибочные состояния в интерфейсах. Не скрывайте их – нет
смысла притворяться, что ваши службы всегда будут работоспособны.

Почему мы не выполняем проверку на ошибки? Вот некоторые стандартные
оправдания:

•	 Обработка ошибок загромождает код, затрудняя его чтение и отслеживание
«нормального» потока выполнения.

•	 Это лишняя работа, а на меня давят сроки сдачи.

•	 Я уверен, что эта функция никогда не вернет ошибку (printf всегда работает,
malloc всегда выделяет память, а если нет, наши проблемы гораздо серьезнее…)

•	 Это прототип, нет смысла делать его пригодным для коммерческого примене
ния.

С какими из них вы согласны? Что вы могли бы на них возразить?

Андерс Норас

В сред­ней шко­ле мне при­шлось изу­чать ино­стран­ный язык. В то время мне каза
лось, что достаточно хорошего знания английского языка, и потому я благополуч
но проспал три года уроков французского. Спустя несколько лет я поехал отды
хать в Тунис. Официальный язык этой страны – арабский, но так как это бывшая
французская колония, в Тунисе широко распространен французский. По-анг
лийски говорят только в местах пребывания туристов. Из-за своего невежества
в языках мне пришлось проводить время главным образом близ бассейна за чте
нием книги «Finnegans Wake» (Поминки по Финнегану), в которой Джеймс
Джойс продемонстрировал свое владение как формой, так и языком. Джойс иг
раючи соединил вместе более 40 языков, и чтение книги стало для меня удиви
тельным, хотя и непростым опытом. Это переживание новых средств выраже
ния, сотканных автором из иностранных слов и фраз, осталось со мной на протя
жении всей моей карьеры программиста.

В своей новаторской книге «The Pragmatic Programmer: From Journeyman to Mas
ter»1 (Addison-Wesley Professional) Энди Хант и Дэйв Томас рекомендуют каж
дый год изучать какой-нибудь новый язык программирования. Я попробовал по
следовать их совету и за годы работы приобрел опыт программирования на мно
гих языках. Самый важный вывод из моих приключений полиглота: для изуче
ния языка недостаточно освоить его синтаксис, нужно понять его культуру.

Можно на любом языке писать, как на Фортране, но, чтобы по-настоящему изу
чить язык, нужно принять его полностью.

Не ищите себе оправданий, если ваш код C# состоит из длинного метода Main
и преимущественно статических вспомогательных методов. Лучше разберитесь,
почему имеет смысл применять классы. Не избегайте малопонятных лямбда-вы
ражений в функциональных языках, заставьте себя пользоваться ими.

1	 Э. Хант, Д. Томас «Программист-прагматик. Путь от подмастерья к мастеру». – Пер.
с англ. – Лори, 2009.

Не просто учите язык,
поймите его культуру

Не просто учите язык, поймите его культуру	 75

Овладев приемами нового языка, вы с удивлением обнаружите, что по-новому
пользуетесь теми языками, которые знали раньше.

Я научился эффективно использовать делегирование в C# после того, как осво
ил Ruby; раскрытие всех возможностей обобщений .NET (generics) навело меня
на мысли о том, как с большей пользой применять обобщения в Java; после LINQ
мне было легко изучать Scala.

Переход с одного языка на другой помогает также лучше понять шаблоны проек
тирования. Программисты на C обнаруживают, что в C# и Java одинаково широ
ко употребляется шаблон итератора. В Ruby и других динамических языках
можно все еще пользоваться шаблоном посетителя (visitor), но ваша реализация
не будет похожа на пример из книги Банды Четырех (The Gang of Four).

Одни утверждают, что «Поминки по Финнегану» невозможно читать, другие
восторгаются стилистической красотой книги. Чтобы облегчить чтение книги,
были сделаны ее моноязычные переводы. Забавно, что первый перевод был фран
цузским.

С кодом ситуация во многом аналогична. Если писать код в стиле «Поминок»,
чтобы в нем было чуть-чуть Python, немного Java и примесь Erlang, проект пре
вращается в месиво. Но если вы изучаете новые языки, чтобы расширить свой
кругозор и встретить новые идеи для решения задач разными способами, вы об
наружите, что код, который вы пишете на старом проверенном языке, становит
ся более красивым с каждым новым изученным языком.

Верити Стоб

Од­на­ж­ды я на­пи­са­ла оп­рос-ро­зы­грыш по C++, в котором в шутку предложила
такую стратегию обработки исключений:

Путем размещения в коде многочисленных конструкций try...catch иногда
удается избежать аварийного завершения программы. О полученном в резуль
тате состоянии можно сказать, что «тело прибито в вертикальном положении».

Несмотря на легкомыслие, я всего лишь излагала урок, извлеченный из Его Ве
личества Горького Опыта.

То был базовый класс приложения в нашей самописной библиотеке C++. В коде
класса многие годы ковырялись шаловливыми ручонками то один программист,
то другой. Класс содержал код обработки исключений, ускользнувших от всех
других обработчиков. Взяв пример с Йоссариана из «Уловки-22», мы решили
или, скорее, нам показалось (слово «решили» предполагает больше мыслитель
ных усилий, чем ушло на создание этого монстра), что экземпляр этого класса
должен жить вечно или умереть в попытках это сделать.

С этой целью мы сплели воедино множество обработчиков исключений. Мы сме
шали обработку структурированных исключений Windows с собственными ис
ключениями (помните __try...__except в C++? Я тоже не помню). Когда неожи
данно возникало исключение, мы вызывали методы снова, запихивая в них те
же параметры. Когда я вспоминаю это, мне нравится думать, что, создавая вло
женный обработчик try...catch внутри предложения catch другого обработчика,
я испытывала смутное подозрение, что как-то случайно съехала с надежного
шоссе хорошей практики на ароматную, но нездоровую дорогу к безумию. Впро
чем, это я понимаю, скорее, задним умом.

Стоит ли говорить, что, когда возникали проблемы в приложениях, основанных
на этом классе, приложения исчезали бесследно, словно жертвы мафии, сброшен
ные с причала. Не оставалось даже пузырей на воде в качестве подсказки о пе
чальном происшествии, несмотря на наличие подпрограмм аварийной регистра
ции, отвечавших за протоколирование события. В конце концов – по прошествии

Не прибивайте программу
гвоздями к стене

Не прибивайте программу гвоздями к стене	 77

немалого времени – мы критически переоценили свое творение и устыдились.
Все это месиво мы заменили маленьким и надежным механизмом генерации от
чета. Но тому предшествовал не один десяток критических сбоев приложения.

Я не стала бы отнимать у вас время этой историей, ибо трудно представить, что
кто-то еще мог бы соперничать с нашей глупостью, но недавно в сети у меня слу
чилась дискуссия с типом, академический чин которого предполагает большее
понимание подобных вопросов. Обсуждался код на Java в удаленных транзакци
ях. Тип утверждал, что если в коде случился сбой, исключение должно быть пе
рехвачено и блокировано на месте. («И что же с ним тогда делать? – спросила я. –
Приготовить его на ужин?»)

Он процитировал правило проектировщиков пользовательских интерфейсов:
ПОЛЬЗОВАТЕЛЬ НИКОГДА НЕ ДОЛЖЕН ВИДЕТЬ СООБЩЕНИЕ ОБ ИСКЛЮ
ЧИТЕЛЬНОЙ СИТУАЦИИ, как будто это правило решает проблему, напиши
его прописными буквами или как-то еще. Интересно, может, это он автор кода
для банкоматов, прославившихся своими синими экранами смерти в некоторых
чахлых блогах, и не получил ли он душевную травму на всю жизнь.

Во всяком случае, если вам доведется встретиться с ним, кивайте, улыбайтесь
и не слушайте, пока будете бочком пробираться к двери.

Алан Гриффитс

Ес­ли взгля­нуть на лю­бую дея­тель­ность, процесс или дисциплину с достаточно
большого расстояния, все вроде бы просто. Менеджеры, у которых нет опыта
разработки программ, считают, что работа программиста проста, а программи
сты, у которых нет опыта руководства, точно так же относятся к работе менед
жера.

Программирование – некоторое занятие, на которое тратят некоторую часть сво
его времени некоторые люди. А самая трудная часть работы – мыслительный
процесс – менее всего заметна и менее всего ценится непосвященными. Десяти
летиями предпринимаются попытки избавиться от потребности в квалифициро
ванных мыслящих кадрах. Одна из наиболее ранних и памятных попыток – уси
лия Грэйс Хоппер (Grace Hopper) сделать языки программирования не такими
таинственными. Благодаря этому, как предсказывали некоторые, потребность
в программистах узкой специализации может исчезнуть. Результат (COBOL) спо
собствовал материальному благополучию многих программистов узкой специа
лизации в последующие десятилетия.

Навязчивая идея, будто разработку программного обеспечения можно упро
стить, если исключить из нее программирование, представляется совершенно на
ивной программисту, который понимает, о чем речь. Но ход мыслей, приводящий
к этой ошибке, заложен в человеческой природе, и программисты подвержены
этой ошибке так же, как и все остальные.

В любом проекте найдется множество вещей, с которыми отдельный програм
мист может не соприкасаться тесно: получение технических требований от поль
зователей, утверждение бюджета, настройка сервера сборки, развертывание при
ложения в тестовой или производственной среде, перевод бизнеса на новые про
цессы или программы и тому подобное.

Если вы не заняты активно в каком-то виде деятельности, возникает подсозна
тельное стремление считать, что он прост и происходит «по какому-то волшебству
сам по себе». Пока длится это волшебство, все хорошо. Но когда (обычно уместно

Не полагайтесь
на «автоматические чудеса»

Не полагайтесь на «автоматические чудеса»	 79

именно слово «когда», а не «если») волшебство прекращается, проект сталкива
ется с неприятностями.

Мне встречались проекты, в которых разработчики бесплодно тратили недели
своего времени, поскольку никто не осознавал, что их работа зависит от того,
«правильная» ли версия DLL загружена. Когда начинались периодические сбои,
проверялись все возможные причины, пока кто-то не обращал внимание, что за
гружалась «неверная» версия DLL.

В другом подразделении все шло гладко: проекты завершались вовремя, без от
ладок до глубокой ночи и исправлений в последний момент. Настолько гладко,
что высшее руководство решило, что все работает «само собой» и можно обойтись
без руководителя проекта. Через полгода проекты в этом подразделении стали
идти, как везде: с задержками, ошибками и непрерывными заплатками.

Не нужно разбираться во всех «волшебствах», благодаря которым работает ваш
проект, но понимать их хотя бы частично не повредит, как и ценить тех, кто раз
бирается в некоторых вещах лучше вас.

Самое главное, если волшебство вдруг перестанет работать, нужно знать, как его
возобновить.

Стив Смит

«Don’t Repeat Yourself (DRY)» («не повторяйся») является, вероятно, одним из
главнейших принципов программирования. Этот принцип сформулировали Эн
ди Хант и Дэйв Томас в книге «Программист-прагматик», и он лежит в основе
многих других широко известных правильных подходов и шаблонов проектиро
вания в разработке программного обеспечения. Разработчик, научившийся рас
познавать дублирование и умеющий устранять его с помощью надлежащих прие
мов и подходящей абстракции, способен писать гораздо более понятный код, чем
тот, кто постоянно загрязняет приложение ненужными повторениями.

Дублирование кода – это балласт

Каждая строка кода приложения требует сопровождения, и она служит источ
ником возможных ошибок в будущем. Дублирование приводит к ненужному
увеличению объема кода, что повышает вероятность появления ошибок и дела
ет систему излишне сложной. Увеличение объема системы из-за дублирования,
во-первых, мешает разработчикам полностью разобраться в системе, а во-вто
рых, не позволяет гарантировать, что изменения, внесенные в одном месте, не
потребуется повторить в других местах, где дублируется эта логика. Принцип
DRY требует, чтобы «каждый элемент информации имел в системе единствен
ное, однозначное и надежное представление».

Повторение в процессах
указывает на необходимость автоматизации

Многие процессы в разработке программного обеспечения многократно повторя
ются и легко автоматизируются. Принцип DRY применим как к исходному коду
приложения, так и в подобных контекстах. Ручное тестирование проходит мед
ленно, подвержено ошибкам и повторять его трудно, поэтому по возможности
следует применять автоматизированные наборы тестов (test suites). Интегра
ция приложения вручную занимает много времени и подвержена ошибкам, по
этому процесс сборки нужно выполнять как можно чаще – желательно после

Не повторяй свой код

Не повторяй свой код	 81

каждой записи кода в репозиторий. Там, где есть трудоемкие ручные процессы,
которые можно автоматизировать, их нужно автоматизировать и стандартизи
ровать. Цель – обеспечить наличие единственного способа решения задачи и сде
лать его как можно менее трудоемким.

Повторение в логике указывает на необходимость абстракции

Повторения в логике бывают разных видов. Очень легко обнаруживаются и ис
правляются случаи копирования и вставки конструкций if-then и switch-case.
Многие шаблоны проектирования явным образом направлены на сокращение
или удаление дублирования логики в приложении. Если объект требует выпол
нения некоторых действий, прежде чем его можно использовать, полезно приме
нить шаблон Abstract Factory или Factory Method. Если у объекта много разных
вариантов поведения, полезно организовать их с помощью шаблона Strategy,
а не больших структур if-then. Фактически само создание шаблонов проектиро
вания является попыткой сократить расходование сил, затрачиваемых на реше
ние стандартных проблем и их обсуждение. Кроме того, применение принципа
DRY к структурам, таким как схемы баз данных, приводит к нормализации.

Дело принципа

Другие принципы программного обеспечения также связаны с DRY. Принцип
«один и только один раз» (Once and Only Once), который применим только к функ
циональному поведению кода, можно рассматривать как подмножество DRY.
Принцип «открыт/закрыт» (Open/Closed), гласящий, что «элементы программ
ного обеспечения должны быть открыты для расширения, но закрыты для моди
фикации» на практике действует только тогда, когда выполняется принцип
DRY. Аналогично на DRY основан известный «принцип единственной ответст
венности» (Single Responsibility Principle), который требует, чтобы у класса была
только одна причина изменения.

Если принцип DRY применять в отношении структуры, логики, процесса или
функции, он служит базовым руководством для разработчиков программного
обеспечения и способствует созданию более простых, легких в сопровождении
и более качественных программ. Но хотя и существуют ситуации, в которых по
вторение оказывается необходимым для достижения нужной производительно
сти или выполнения других требований (например, денормализация данных
в базе данных), применять повторение следует только для решения реальных,
а не воображаемых проблем.

Кэл Эванс

С ка­ж­дым из нас та­кое ко­гда-ни­будь да слу­ча­лось. Ваш код загружен на проме
жуточный (staging) сервер для системного тестирования, и руководитель отдела
тестирования сообщает вам, что есть проблема. Вы сразу готовы ответить: «Дай
те-ка я быстро все исправлю: я знаю, в чем дело».

Однако в более широком смысле проблема в том, что вы как разработчик считае
те, что вам должен быть предоставлен доступ к серверу, где осуществляется тес
тирование.

В большинстве случаев, если речь идет о веб-разработке, архитектуру можно
разбить на следующие части:

•	 Локальная разработка и модульное тестирование на машине разработчика

•	 Сервер разработки, где проводится автоматическое или ручное интеграцион
ное тестирование

•	 Промежуточный (staging) сервер, где команда контроля качества и пользова
тели осуществляют приемочное тестирование

•	 Боевой (production) сервер

Да, существуют и другие серверы и сервисы, например для управления исход
ным кодом или дефектами ПО, но идея понятна. В такой модели разработчик –
даже ведущий – ни при каких условиях не должен иметь доступа дальше серве
ра разработки. Основная разработка происходит на локальной машине програм
миста с использованием его любимых IDE, виртуальных машин и некоторой
полезной для успеха дела черной магии.

После сохранения кода в репозиторий, будь то вручную или автоматически, код
должен быть развернут на сервере разработки, где его можно протестировать
и при необходимости подправить, чтобы убедиться, что он корректно работает
в этой среде. И начиная с этого момента разработчику остается только наблю
дать за процессом.

Этот код не трогать!

Этот код не трогать!	 83

Администратору промежуточного сервера следует упаковать и перенести код на
промежуточный сервер, где с ним будет работать группа контроля качества. По
добно тому как разработчики не должны иметь доступ за пределы сервера разра
ботки, группа контроля качества и пользователи не должны выходить за преде
лы среды тестирования. Если версия готова к приемочному тестированию, соби
райте версию и выкатывайте ее: не предлагайте пользователям «по-быстрому
глянуть вот на это» на сервере разработки. Помните, за исключением ситуаций
«один воин в поле», на сервере есть код и других авторов, которые могут быть не
готовы к показу его пользователям. Ответственный за выпуск версий – единст
венный человек, у которого должен быть доступ к обоим серверам.

Ни в коем случае – ни при каких обстоятельствах – разработчик не должен быть
допущен к боевому серверу. Если возникнут проблемы, команда поддержки
должна либо справиться с ними сама, либо предложить вам внести исправле
ния. Когда вы сохраните исправление в репозиторий, команда поддержки возь
мет «заплатку» оттуда. Кое-какие ужаснейшие осложнения на проектах с моим
участием возникали из-за того, что кое-кто (догадайтесь, кто) нарушил это пра
вило. Если приложение сломалось, боевой сервер – не место для внесения ис
правлений.

Эйнар Ландре

В тео­рии сис­тем су­ще­ст­ву­ет кон­цеп­ция изо­ля­ции, которая входит в число наи
более полезных, если речь идет о крупных и сложных системных структурах.
В индустрии разработки ПО все хорошо понимают ценность изоляции одной
сущности внутри другой, иначе говоря, инкапсуляции. В языках программиро
вания для обеспечения изоляции применяются подпрограммы и функции, мо
дули и пакеты, классы и т. д.

Модули и пакеты решают задачи инкапсуляции крупного масштаба, в то время
как классы, подпрограммы и функции призваны решать те же задачи на более
низком уровне. За годы работы я обнаружил, что из всех видов инкапсуляции
тяжелее всего программистам дается инкапсуляция в классах. Нередко встреча
ется класс, единственный метод main которого имеет 3000 строк, или же класс,
в котором есть только методы set и get для его элементарных атрибутов. Такие
примеры показывают, что разработчики этих классов не вполне освоили объект
но-ориентированное мышление и не умеют воспользоваться мощью объектов как
моделирующих конструкций. Для тех, кто знаком с терминами POJO (Plain Old
Java Object – простой Java-объект в старом стиле) и POCO (Plain Old C# Object или
Plain Old CLR Object), замечу: изначально они выражали возврат к основам ООП
как парадигмы моделирования – понятным и простым, но не тупым объектам.

Объект инкапсулирует как состояние, так и поведение, причем поведение опреде
ляется фактическим состоянием. Возьмем объект «дверь». У него четыре состоя
ния: открыта, закрыта, открывается, закрывается. Он предоставляет две опера
ции: «открыть», «закрыть». В зависимости от состояния операции «открыть»
и «закрыть» ведут себя по-разному. Это неотъемлемое свойство объекта делает
процесс проектирования концептуально простым. Все сводится к двум простым
задачам: назначению и делегированию обязанностей различных объектов, вклю
чая и протоколы межобъектного взаимодействия.

Лучше всего показать, как это работает, на примере. Допустим, у нас есть три
класса: Customer (Покупатель), Order (Корзина) и Item (Товар). Объект Customer –
естественный источник правил проверки платежеспособности и определения

Инкапсулируйте поведение,
а не только состояние

Инкапсулируйте поведение, а не только состояние	 85

максимальной суммы, доступной для списания. Объект Order знает, какой Cus-
tomer с ним связан, так что операция addItem (добавитьТовар) делегирует факти
ческую проверку платежеспособности методу customer.validateCredit(item.price())
(покупатель.проверитьПлатежеспособность(товар.цена())). Если постусловие ме
тода не выполнено, можно сгенерировать исключение и отменить покупку.

Менее опытные в ООП разработчики иногда решают обернуть все бизнес-прави
ла в один объект, который часто называют OrderManager (МенеджерЗаказов) или
OrderService (СлужбаЗаказов). В такой архитектуре объекты Order, Customer и Item,
по сути, служат табличными типами. Вся логика выводится из классов и увязы
вается в одном большом процедурном методе, содержащем множество конструк
ций if-then-else. В методы такого рода легко вкрадываются ошибки, и сопровож
дать их почти невозможно. Почему? Потому что инкапсуляция нарушена.

Заключение напоследок: не нарушайте инкапсуляцию и используйте мощь сво
его языка программирования, чтобы ее поддерживать.

Чак Эллисон

Чис­ла с пла­ваю­щей за­пя­той не яв­ля­ют­ся «дей­ст­ви­тель­ны­ми чис­ла­ми» в мате
матическом смысле, хотя в некоторых языках программирования, например
в Pascal и Fortran, носят название таковых (real). Действительные числа имеют
бесконечную точность, и потому они непрерывны и не подвержены искажениям.
Числа с плавающей запятой имеют ограниченную точность, а потому конечны
и похожи на «непослушные» целые, так как неравномерно распределены по все
му своему диапазону.

Чтобы проиллюстрировать это, попробуйте присвоить 2 147 483 647 (самое большое
32-разрядное целое со знаком) 32-разрядной переменной типа float (скажем, x),
а потом напечатайте его. Вы увидите 2 147 483 648. Теперь напечатайте x – 64. Ре
зультат – снова 2 147 483 648. Теперь выведите x – 65, и вы получите 2 147 483 520!
Почему? Потому что промежуток между соседними float составляет в этом диа
пазоне 128, и операции с такими числами округляются до ближайшего числа
с плавающей запятой.

В стандарте IEEE числа с плавающей запятой имеют фиксированную точность
и записываются как числа по основанию 2 в научной нотации: 1.d

1
d

2
…d

p
 
1
 × 2e, где

p – это точность (24 для типа float, 53 для типа double). Интервал между двумя
последовательными числами – величина 21–p+e, которая хорошо аппроксимиру
ется величиной ε|x|, где ε – машинный эпсилон (21–p).

Зная интервал между соседними числами в окрестности некоторого числа с пла
вающей запятой, можно избежать классических ошибок в вычислениях. На
пример, при проведении итеративных вычислений, таких как поиск корня урав
нения, нет смысла требовать большей точности, чем способна дать числовая сис
тема в окрестности решения. Следите, чтобы затребованная точность не оказа
лась меньше интервала между числами в окрестности решения, иначе вы
войдете в бесконечный цикл.

Поскольку числа с плавающей запятой – лишь приближения действительных
чисел, неизбежно наличие небольшой ошибки. Эта ошибка, называемая ошибкой

Числа с плавающей запятой
недействительны

Числа с плавающей запятой недействительны	 87

округления, бывает причиной неожиданных результатов. Например, при вычи
тании очень близких чисел наиболее значимые цифры погашают друг друга,
и тогда в результате положение наиболее значимых занимают те цифры, которые
были наименее значимыми (и содержали в себе ошибку округления). В сущно
сти, это непоправимо искажает все последующие вычисления. Такое явление на
зывается размыванием (smearing). Нужно внимательно следить за своими алго
ритмами, чтобы предотвратить это катастрофическое явление. Для иллюстра
ции возьмем решение уравнения x2 – 100000x + 1 = 0 по формуле корней квад
ратного уравнения. Поскольку операнды выражения –b + sqrt(b2 – 4) почти
равны по величине, можно вместо этого вычислить корень r

1
 = –b – sqrt(b2 – 4),

а затем получить r
2
 = 1/r

1
, так как в квадратном уравнении ax2 + bx + c = 0 корни

удовлетворяют соотношению r
1
r

2
 = c/a.

Размывание может происходить и более скрытым образом. Допустим, что биб
лиотека в коде наивно вычисляет ex по формуле 1 + x + x2/2 + x3/3! + …. Этот спо
соб отлично работает для положительных x, но посмотрите, что произойдет, ес
ли x будет большим отрицательным числом. Члены с четными степенями ока
жутся большими положительными числами, а вычитание значений нечетных
степеней почти не скажется на результате. Проблема в данном случае в том, что
округление в больших положительных членах происходит в гораздо более зна
чимых позициях, чем у правильного решения. Результат отклоняется к плюс
бесконечности! Проблема решается просто: для отрицательных x используйте
формулу ex = 1/e|x|.

Нечего и говорить, что числа с плавающей запятой нельзя использовать в фи
нансовых приложениях – для них в таких языках, как Python и C#, есть классы
десятичных чисел. Числа с плавающей запятой предназначены для эффектив
ных научных расчетов. Но эффективность бесполезна, если теряется точность,
поэтому помните, откуда идут ошибки округления, и пишите соответствующий
код!

Ричард Монсон-Хейфел

Как пра­ви­ло, про­грам­мы, ко­то­рые вы пи­ше­те на ра­бо­те, не удовлетворяют ва
ши самые честолюбивые мечты программиста. Может статься, вы разрабатыва
ете ПО для огромной страховой компании, а хотели бы работать в Google, Apple,
Microsoft или начать собственный стартап, который совершит следующую рево
люцию. Вы никогда не придете к своей цели, разрабатывая программы для сис
тем, которые вам не интересны.

К счастью, для вашей проблемы есть решение: open source, то есть проекты с от
крытым исходным кодом. В мире тысячи проектов с открытым исходным кодом,
причем многие весьма активные, в которых программист может получить лю
бой опыт, какой душа пожелает. Если вас влечет идея разработки операционной
системы, выберите для себя какой-нибудь из десятка имеющихся проектов опе
рационных систем. Если вы хотите работать над музыкальными программами,
приложениями для анимации, криптографии, робототехники, играми для ПК,
массовыми онлайн-играми, программами для мобильных телефонов или зани
маться чем-то еще, вы почти наверняка найдете по крайней мере один действую
щий проект с открытым исходным кодом в соответствующей области.

Разумеется, за все нужно платить. Вам придется пожертвовать своим личным
временем, ведь едва ли ваш работодатель позволит вам заниматься разработкой
видеоигры с открытым исходным кодом в рабочее время. Кроме того, участие
в открытых проектах очень редко приносит доход: некоторые зарабатывают на
этом, но большинство – нет. Вы должны быть готовы отказаться от части развле
чений (это не смертельно, если вы станете меньше играть в видеоигры или смот
реть телевизор). Чем больше труда вы будете вкладывать в проект с открытым
исходным кодом, тем быстрее осознаете, где лежат ваши истинные амбиции как
программиста. Необходимо также учитывать условия вашего контракта с рабо
тодателем – иногда условия контракта ограничивают участие в посторонних
проектах даже в личное время. Кроме того, нужно следить за тем, чтобы не нару
шать законы об интеллектуальной собственности в отношении авторских прав,
патентов, торговых знаков и коммерческой тайны.

Удовлетворяйте свое честолюбие
через Open Source

Удовлетворяйте свое честолюбие через Open Source	 89

Открытые проекты дают невероятные возможности для мотивированного про
граммиста. Во-первых, вы можете увидеть, каким способом кто-то другой реа
лизует интересные вам вещи: очень многому можно научиться, читая код, напи
санный другими людьми. Во-вторых, вы можете привнести в проект свой код
и свои идеи; не все ваши блестящие идеи будут приняты, но некоторые пройдут.
Да и просто решение задач проекта и создание кода позволят вам узнать что-то
новое. В-третьих, вы познакомитесь с замечательными людьми, которые на
столько же увлечены выбранным вами проектом, насколько и вы. Эта дружба
через open source может продлиться до конца жизни. В-четвертых, если вы ком
петентны в своем деле, то сможете внести свой практический опыт в техноло
гию, которая вам нравится.

Начать работать в открытых проектах довольно просто. Существует огромный
объем документации по инструментам, которые вам понадобятся (системам
управления исходным кодом, редакторам, языкам программирования, системам
сборки и т. д.). Выберите проект, с которого хотите начать, и изучите инструмен
ты, которые в нем используются. Документация о собственно проектах обычно
бывает скудной, но это едва ли имеет большое значение, потому что лучше всего
учиться, самостоятельно исследуя код. Для начала можно предложить свою по
мощь в составлении документации. Либо вызваться написать код для тестирова
ния. Это может выглядеть не столь заманчиво, но написание тестового кода для
чужих программ позволяет учиться гораздо быстрее, чем практически все про
чие виды программистской деятельности. Пишите тестовый код, действительно
хороший тестовый код. Ищите дефекты, предлагайте исправления, заводите дру
зей, работайте над проектом, который вам нравится, и удовлетворяйте свои чес
толюбивые программистские желания.

Майкл Фезерс

Про­ек­ти­ро­вать ин­тер­фей­сы при­клад­но­го про­грам­ми­ро­ва­ния (API) слож­но,
особенно в общем случае. Разрабатывая API, у которого будут сотни или тысячи
пользователей, нужно думать о том, что со временем его, скорее всего, придется
изменять, и эти изменения способны нарушить работу клиентского кода. Кроме
того, нужно учесть возможное воздействие на ваш API со стороны его пользова
телей. Если класс API вызывает собственный метод, следует помнить, что поль
зователь способен создать подкласс вашего класса и переопределить этот метод,
а это может привести к катастрофе. И вы не сможете изменить этот метод, пото
му что некоторые ваши пользователи придали ему другой смысл. Вы попадаете
в зависимость от своих пользователей в том, что касается выбора внутренней
реализации.

Разработчики API решают эту проблему разными способами, хотя проще всего
заблокировать свой API. Скажем, в Java весьма соблазнительной может стать
идея навешивать на большинство классов и методов модификатор final. В C#,
в свою очередь, классы и методы можно объявить как sealed. В любом языке мож
но попробовать представить API с помощью синглтона или воспользоваться фаб
рикой статических методов для защиты от тех, кто попытается переопределить
поведение и использовать ваш код способами, которые ограничат ваши возмож
ности в будущем. Все это кажется разумным, но так ли это в действительности?

За последние 10 лет мы постепенно пришли к пониманию того, что модульное тес
тирование – крайне важный элемент практики, но этот урок еще не везде усвоен
в нашей отрасли. Свидетельств тому предостаточно, и они вокруг нас. Возьмите
произвольный непротестированный класс, использующий API стороннего раз
работчика, и попробуйте написать для него модульные тесты. Скорее всего, у вас
возникнут проблемы. Выяснится, что код, использующий API, приклеен к нему
намертво. Невозможно эмулировать классы API так, чтобы можно было понять,
как взаимодействует с ними ваш код, или обеспечить возврат значений для тес
тирования.

Золотое правило
проектирования API

Золотое правило проектирования API	 91

Положение со временем улучшится, но только если при проектировании API мы
станем рассматривать тестирование как реальный сценарий использования.
К сожалению, это несколько сложнее, чем просто тестировать наш код. Здесь
уместно вспомнить зо­ло­тое пра­ви­ло про­ек­ти­ро­ва­ния API: недостаточно напи
сать тесты для разрабатываемого API; вы должны написать модульные тес
ты для кода, использующего ваш API. Следуя этому правилу, вы на собственном
опыте узнаете, какие трудности ожидают ваших пользователей, когда они по
пытаются протестировать свой код самостоятельно.

Нет какого-то единого решения, облегчающего разработчикам тестирование ко
да на основе вашего API. Ключевые слова static, final и sealed по сути своей не
являются плохими конструкциями. Иногда они бывают полезны. Но важно пом
нить о проблеме тестирования, а для этого вы должны испытать ее на себе. Как
только это сделано, ее можно решать так же, как любую другую проблему про
ектирования.

Райан Браш

Ка­ж­до­му, кто дос­та­точ­но дав­но ра­бо­та­ет в ком­пь­ю­тер­ной от­рас­ли, приходи
лось слышать вопросы типа:

У меня генерируется исключение XYZ. Не знаете ли, в чем проблема?

Задающие подобные вопросы редко утруждаются тем, чтобы показать трассиров
ку стека, журнал приложения или дать какой-либо контекст, способствующий
пониманию проблемы. По-видимому, они считают, что вы мыслите в какой-то
другой плоскости, где решения открываются вам без всякого анализа фактов.
Они считают вас гуру.

Мы ожидаем подобных вопросов от людей, не знакомых с программным обеспе
чением, от тех, кому работа системы кажется практически волшебством. Меня
беспокоит, что с этим мы сталкиваемся и в сообществе программистов. Анало
гичные вопросы возникают при проектировании программ, например: «Я пишу
приложение для управления складом. Следует ли мне использовать оптимисти
ческую блокировку?». Ирония состоит в том, что, как правило, спрашивающий
лучше подготовлен к тому, чтобы ответить на вопрос, чем тот, кому он задан. Во
прошающий, вероятнее всего, знает контекст, знает требования и способен про
честь материалы о преимуществах и недостатках тех или иных стратегий. И при
этом от вас ждут разумного ответа безо всякого контекста. Они ждут чуда.

Пора отрасли разработки попрощаться с мифом о гуру. «Гуру» – обычные люди.
Они применяют логику и систематически анализируют проблемы так же, как
все мы. Они обращаются к приемам быстрого принятия решений и интуиции.
Возьмите лучшего программиста, которого вы когда-либо встречали: было вре
мя, когда этот человек меньше знал о программировании, чем вы сейчас. Если
какой-то человек кажется вам гуру, то лишь благодаря тому, что он годы посвя
тил учебе и совершенствованию своего мыслительного процесса. «Гуру» – это
просто умный человек с неутолимым любопытством.

Конечно, природные способности людей сильно различаются. Уровень сообрази
тельности, знаний и продуктивности многих живущих на свете хакеров для меня

Миф о гуру

Миф о гуру	 93

недостижим. Несмотря на это, разрушение мифа о гуру принесет пользу. Напри
мер, если я работаю с тем, кто умнее меня, я должен буду проделать рутинную
работу и снабдить этого человека достаточным объемом контекста, зная кото
рый, он сможет эффективно применить свое мастерство. Избавление от мифа гу
ру также означает разрушение иллюзорного барьера на пути к совершенствова
нию. Вместо этого волшебного барьера я буду видеть непрерывный маршрут сво
его развития.

Наконец, одной из главных помех в развитии программного проекта являются
толковые люди, умышленно распространяющие миф о гуру. Они могут делать
это из честолюбия или в расчете повысить собственную значимость в глазах кли
ентов или работодателей. Ирония в том, что такое поведение может делать тол
ковых людей менее ценными, поскольку они не способствуют профессионально
му росту своих коллег. Нам не нужны гуру. Нам нужны специалисты, готовые
развивать других специалистов в своей отрасли. Места хватит всем.

Олве Маудал

Ка­ж­до­му про­грам­ми­сту пред­сто­ит убе­дить­ся, что напряженная работа зачас
тую не оправдывается. Можно вводить себя или своих коллег в заблуждение,
будто, задерживаясь в офисе после работы, вы делаете значительный вклад в про
ект. Но на самом деле, работая меньше, можно достичь большего – иногда ощути
мо большего. Если вы стараетесь сосредоточенно и «продуктивно» работать бо
лее 30 часов в неделю, вы, скорее всего, перерабатываете. Стоит подумать о том,
чтобы уменьшить свою рабочую нагрузку, благодаря чему вы сможете работать
эффективнее и сделаете больше.

Может показаться, что мое утверждение противоречит здравому смыслу и вооб
ще спорно. Однако оно является прямым следствием того факта, что программи
рование и вообще разработка программного обеспечения требуют непрерывного
расширения знаний. По ходу работы над проектом вы станете лучше понимать
предметную область и, можно надеяться, найдете более эффективные способы
достижения цели. Чтобы не заниматься напрасной работой, необходимо выде
лять время на изучение результатов того, что делаете, размышлять над увиден
ным и соответствующим образом корректировать свое поведение.

Профессиональное программирование обычно мало напоминает бег на дистан
цию в несколько километров, где в конце асфальтированной дороги видна цель.
Большинство программных проектов можно скорее сравнить со спортивным ори
ентированием. На марафонскую дистанцию. В темноте. И вместо карты местно
сти лишь набросок от руки. Если вы сорветесь с места и побежите изо всех сил
в одном направлении, это может произвести на кого-то впечатление, но таким
способом вы едва ли добьетесь успеха. Вы должны двигаться в ровном темпе
и корректировать свой курс по мере того, как становится понятнее, где находи
тесь и куда направляетесь.

Кроме того, нужно постоянно расширять свои знания о разработке программного
обеспечения в целом и приемах программирования в частности. Полезно читать
книги, участвовать в конференциях, общаться с другими профессионалами,
экспериментировать с новыми технологиями и осваивать мощные инструменты,

Тяжелый труд
не оправдывает себя

Тяжелый труд не оправдывает себя	 95

упрощающие работу. Профессиональный программист должен постоянно сле
дить за прогрессом в своей отрасли – так же как нейрохирург или летчик долж
ны это делать в своей. Вы должны посвящать свободное время (вечера, выходные
и праздники) самообразованию, поэтому нельзя тратить свободные вечера, вы
ходные и праздники на сверхурочную работу над текущим проектом. Вы же не
ждете, что нейрохирурги будут оперировать по 60 часов в неделю, а летчики по
60 часов в неделю пилотировать? Конечно, нет. Подготовка и образование – важ
нейшая часть их профессии.

Сосредоточьтесь на своем проекте, постарайтесь отыскать для него как можно
больше интересных решений, совершенствуйте мастерство, обдумывайте свои
действия и корректируйте поведение. Не позорьте себя и нашу профессию, дейст
вуя как белка в колесе. Профессиональный программист должен знать, что пы
таться сосредоточенно и «продуктивно» работать по 60 часов в неделю – дело не
разумное. Действуйте профессионально: готовьтесь, осуществляйте, наблюдай
те, обдумывайте и корректируйте.

Мэтт Доар

Как бы вы их ни на­зы­ва­ли – баги, дефекты или даже побочные эффекты проек
тирования, – избавиться от них полностью невозможно. Чтобы проект успешно
двигался вперед, очень важно уметь правильно составить отчет об ошибке, а так
же знать, на что обращать в нем внимание.

В хорошем отчете об ошибке должны быть описаны три вещи:

•	 Как воспроизвести ошибку – максимально точно – и как часто при этом про
являет себя ошибка.

•	 Что должно было произойти – как вам это видится.

•	 Что фактически происходит – хотя бы те данные, которые вы смогли зафик
сировать.

Объем и качество предоставленной информации в такой же мере характеризует
составителя отчета, как и саму ошибку. Короткий злой отчет («Эта функция –
отстой!») мало что сообщает разработчикам помимо того, что у вас было плохое
настроение. Отчет, содержащий подробные сведения о контексте происшедшего,
облегчает воспроизведение ошибки и вызывает уважение у всей команды, даже
если ошибка задерживает выпуск версии.

Отчет об ошибке похож на беседу, и всю ее, с самого начала, может видеть каж
дый. Не перекладывайте вину на других и не отрицайте само существование
ошибки. Лучше попросите дать дополнительную информацию или подумайте,
что вы могли упустить.

Изменение состояния ошибки, например с открыта на закрыта, является пуб
личным заявлением вашего мнения об ошибке. Не жалейте времени, чтобы сра
зу объяснить, почему посчитали возможным закрыть данную ошибку. Так вы
избавите себя в будущем от долгих и утомительных объяснений с недовольными
менеджерами и клиентами. Изменение приоритета ошибки также является пуб
личным заявлением, и если ошибка кажется тривиальной лично вам, для кого-
то другого она может оказаться поводом прекратить пользоваться продуктом.

Как пользоваться системой
отслеживания ошибок

Как пользоваться системой отслеживания ошибок	 97

Не перегружайте поля отчета информацией, необходимой лично вам. Пометка
«ВАЖНО:» в заголовке отчета, возможно, облегчит вам сортировку результатов
определенного отчета об ошибках, но в конце концов и другие начнут копиро
вать эту пометку, причем обязательно с опечатками. А может быть, ее потребует
ся удалить и применить для другого отчета. Лучше использовать новое значение
или новое поле и описать, как оно используется, чтобы другим не пришлось по
вторяться.

Сделайте так, чтобы каждый знал, над какими именно ошибками должна рабо
тать команда. Обычно для этих целей применяется общедоступный запрос с оче
видным наименованием. Убедитесь, что этот запрос одинаков для всех, а если
необходимо изменить его, обязательно известите команду о том, что план рабо
ты меняется.

Наконец, помните, что обнаруженная ошибка не является стандартной едини
цей измерения труда, точно так же как число строк кода – точной оценкой по
траченных усилий.

Пит Гудлиф

Мень­ше – зна­чит боль­ше. Это избитая короткая максима, но иногда она дейст
вительно верна.

За последние несколько недель в числе проведенных мною улучшений нашего
кода было удаление некоторых его фрагментов.

Мы создавали проект, следуя принципам экстремального программирования,
в том числе YAGNI (You Aren’t Gonna Need It – Вам это не понадобится). Но чело
веческая природа несовершенна, и в некоторых местах мы допустили промахи.

Я заметил, что нашему продукту требовалось неоправданно много времени, что
бы выполнять некоторые задачи – простые задачи, которые должны были бы
выполняться почти мгновенно. Все потому, что мы излишне усложнили их реа
лизацию – разного рода фенечками и бантиками, которые фактически не требо
вались, но в какой-то момент казались полезными.

Итак, я упростил код, повысил производительность продукта и уменьшил уро
вень глобальной энтропии кода, и все благодаря удалению из кода проекта лиш
них функций. К счастью, мои модульные тесты помогли мне убедиться, что в ре
зультате своих действий я ничего не сломал.

Вот такой простой и весьма приятный опыт.

Но откуда же возник этот ненужный код? Почему один из программистов вдруг
решил написать лишнего и почему это не вскрылось во время рецензирования
(code review) или парного программирования? Почти наверняка дело обстояло
так:

•	 Эти дополнительные функции были интересны программисту, и он с удоволь
ствием их написал. (Совет: Пишите полезный код, а не прикольный код.)

•	 Кто-то решил, что это может понадобиться в будущем, так почему не напи
сать код сразу. (Совет: Это противоречит YAGNI. Не пишите прямо сейчас
то, что прямо сейчас не нужно.)

Улучшайте код, удаляя его

Улучшайте код, удаляя его	 99

•	 «Излишество» не выглядело столь уж большим, и проще было сходу реализо
вать эту функцию, чем обращаться к клиенту и выяснять, нужна ли она ему.
(Совет: Писать и сопровождать лишний код всегда дольше. Да и клиент –
славный малый. Маленький кусочек лишнего кода со временем разрастает
ся, как снежный ком, в огромный кусок работы по сопровождению.)

•	 Чтобы оправдать дополнительную функцию, программист придумал новые
требования, которых не было ни в документации, ни на обсуждениях. Факти
чески это поддельные технические требования. (Совет: Требования к систе
ме устанавливаются не программистами, а заказчиком.)

Так над чем вы сейчас работаете? Это действительно нужно?

Маркус Бэйкер

Мне нис­коль­ко не ин­те­рес­на ва­ша про­грам­ма.

У меня полно своих проблем и длиннющий список задач. На ваш сайт я зашел
лишь благодаря непроверенным слухам, будто ваша программа решит все мои
проблемы. Уж простите мне мое недоверие.

Если исследования движения взгляда верны, я уже прочел заголовок и шарю по
странице в поисках синей подчеркнутой ссылки Загрузить сейчас. Кстати, если
я зашел на эту страницу из браузера, работающего под Linux, и мой IP принад
лежит Великобритании, то можно предположить, что мне нужна версия для Li
nux с зеркала в Европе, так что об этом, пожалуйста, не спрашивайте. Я так по
нимаю, что диалоговое окно загрузки файла откроется сразу, так что я отправ
лю эту штуку в свою папку для загруженных файлов и продолжу чтение.

Выполняя любое действие, человек анализирует соотношение затрат и выгоды.
Если ваша программа хоть на секунду упадет ниже приемлемого для меня каче
ства, я тут же ее выброшу и найду что-то другое. Немедленное вознаграждение –
вот в чем сила.

Первый барьер – установка. Думаете, невелика беда? Так загляните в свою пап
ку загруженных файлов. Полно файлов .tar и .zip, верно? Какую часть из них вы
распаковали? Сколько установили? У меня, например, лишь третья часть из них
служит чем-то, кроме балласта для жесткого диска.

Даже если я хочу получить обслуживание на дому, я не желаю, чтобы вы входи
ли в мой дом без приглашения. Прежде чем набрать команду install, я бы хотел
точно знать, где вы собираетесь размещать свои данные. Это мой компьютер,
и я хочу по возможности соблюдать на нем порядок. Я хочу также иметь возмож
ность удалить вашу программу в ту же секунду, как я разочаруюсь в ней. Запо
дозрив, что это невозможно, я просто не буду ее устанавливать. Моя машина ра
ботает стабильно, и я хочу, чтобы так было и впредь.

Если у вашей программы графический интерфейс, я хотел бы выполнить какую-
нибудь простую задачу и увидеть результат. «Мастера» тут не помогут, потому

Установи меня!

Установи меня!	 101

что они делают какие-то вещи, которых я не понимаю. Весьма вероятно, что
я захочу прочесть или записать файл. Я не хочу создавать проект, импортиро
вать каталоги или сообщать вам свой электронный адрес. Если все работает, пе
реходим к учебнику (tutorial).

Если ваше программное обеспечение – библиотека, я продолжаю читать вашу
веб-страницу в поисках краткого руководства для начинающих. Мне нужно что-
то вроде «Hello, World» в пяти незамысловатых строках кода, и чтобы результат
был точно таким, как описывает ваш веб-сайт. Никаких огромных файлов XML
или шаблонов, которые нужно заполнить, – лишь один файл с исходным кодом.
Не забывайте, я загрузил еще и продукт вашего конкурента. Ага, того самого,
который на всех форумах твердит, насколько его продукт лучше вашего. Если
все работает, переходим к учебнику.

У вас ведь есть учебник, да? На понятном мне языке?

И если в учебнике говорится о моей проблеме, я приободряюсь. Теперь, когда
я читаю о том, что я смогу делать, мне становится интересно и даже увлекатель
но. Я откидываюсь в кресле и прихлебываю чай – я ведь уже говорил, что живу
в Великобритании? Теперь я поиграю с вашими примерами и попробую научить
ся пользоваться вашим творением. Если оно решит мои проблемы, я пошлю вам
благодарственное письмо. Я буду также посылать сообщения об ошибках, когда
приложение падает, и предложения по новым функциям. Я даже расскажу сво
им друзьям, что ваша программа лучше других, даже если не пробовал про
граммы ваших конкурентов. И все потому, что вы с таким вниманием отнеслись
к моим первым робким шагам.

И как только я мог усомниться в вас?

Рэнди Стэффорд

Вре­мя от­кли­ка име­ет кри­ти­че­ское зна­че­ние для эр­го­но­ми­ки про­грамм. Мало
что так раздражает, как ожидание ответа программной системы, особенно если
взаимодействие с ней состоит из повторяющихся циклов воздействия и откли
ка1. Возникает ощущение, будто программа крадет у вас время и снижает про
дуктивность. Однако причины замедленного отклика программисты осознают
не всегда, особенно в современных приложениях. В литературе, посвященной
контролю производительности, по-прежнему много внимания уделяется струк
турам данных и алгоритмам, то есть вопросам, способным оказывать влияние
на производительность в некоторых случаях, но едва ли в современных много
уровневых приложениях корпоративного уровня.

Мой опыт показывает, что когда в таких приложениях возникает проблема про
изводительности, поиски ее решения следует начинать не с изучения структур
данных и алгоритмов. Время отклика больше всего зависит от количества взаи
модействий между удаленными процессами (interprocess communications, IPC),
осуществляемых в ответ на воздействие. Да, встречаются и другие локальные
узкие места, но число взаимодействий между удаленными процессами обычно
имеет решающее значение. Каждое взаимодействие между удаленными процес
сами добавляет некоторую ненулевую задержку в общее время отклика, и эти
отдельные добавки суммируются, особенно если возникают последовательно.

Каноническим примером служит пульсирующая нагрузка в приложениях, ис
пользующих объектно-реляционное отображение (ORM). Пульсирующая на
грузка описывает последовательное выполнение множественных обращений
к базе данных для чтения данных, необходимых для построения графа объектов

1	 Автор использует в статье биологические термины «раздражитель» (stimulus) и «ре-
акция» (response) в применении к программному обеспечению. В данной статье под
термином «воздействие» понимается взаимодействие пользователя с системой («раз-
дражитель»), которое запускает определенные ответные действия в системе («от-
клик»). – Прим. науч. ред.

Межпроцессная коммуникация
влияет на время отклика
приложения

Межпроцессная коммуникация влияет на время отклика приложения	 103

(см. шаблон Lazy Load1 в книге Мартина Фаулера «Patterns of Enterprise Appli
cation Architecture»2, Addison-Wesley Professional). Когда клиентом базы дан
ных является сервер приложений промежуточного уровня (middle-tier), кото
рый компонует веб-страницу, обращения к базе данных обычно происходят по
следовательно в едином потоке. Их периоды ожидания суммируются, образуя
суммарное время отклика. Даже если каждое обращение к базе данных длится
всего 10 мс, страница, требующая 1000 обращений (что не редкость), появится
с задержкой не менее чем в 10 секунд. Другими примерами могут служить обра
щение к веб-службам, HTTP-запросы веб-браузера, вызов распределенных объ
ектов, шаблон связи «запрос-ответ» и взаимодействие с таблицей данных по спе
циальным сетевым протоколам. Чем больше удаленных IPC требуется для отве
та на воздействие, тем большим будет время отклика.

Существует ряд относительно очевидных и широко известных стратегий сокра
щения количества взаимодействий между удаленными процессами в расчете на
одно воздействие. Одна из таких стратегий заключается в применении принци
па бережливости – мы можем оптимизировать интерфейс между процессами,
чтобы передавались только те данные, которые нужны непосредственно, а объем
взаимодействия был минимален. Другая стратегия – как можно более широкое
распараллеливание связей между процессами, чтобы общее время отклика оп
ределялось в основном IPC с наибольшей задержкой. Третья стратегия – кэши
ровать результаты предшествующих IPC, чтобы в будущем вместо IPC использо
вать обращение к локальному кэшу.

Проектируя приложение, следите за количеством взаимодействий между про
цессами, происходящих в ответ на каждое воздействие. Анализируя приложе
ния с низкой производительностью, я часто сталкивался с тем, что отношение
количества IPC к воздействию составляет 1000:1 и больше. Сокращение этого
отношения путем кэширования, распараллеливания или других приемов даст
значительно больший эффект, чем изменение структуры данных или модифика
ция алгоритма сортировки.

1	 http://martinfowler.com/eaaCatalog/lazyLoad.html.
2	 Мартин Фаулер др. «Шаблоны корпоративных приложений». – Пер. с англ. – Виль

ямс, 2010.

Йоханнес Бродуолл

При­хо­ди­лось ли вам ви­деть спи­сок пре­ду­пре­ж­де­ний ком­пи­ля­то­ра (warnings)
размером с очерк на тему, как не стоит писать код, и думать при этом: «Конечно,
с этим надо что-то делать… только сейчас у меня нет на это времени»? И наобо
рот, случалось ли вам увидеть единственное предупреждение, появившееся во
время компиляции, и тут же исправить его?

Когда я начинаю новый проект с нуля, нет никаких предупреждений, нет беспо
рядка, нет проблем. Но объем кода растет, и, если не принять меры, не исключено,
что беспорядок, хлам, предупреждения и проблемы начнут постепенно накап
ливаться. В большом потоке «шума» значительно тяжелее отыскать действи
тельно важное предупреждение среди сотен других, которые мне не интересны.

Чтобы предупреждения снова стали полезными, я стараюсь придерживаться по
литики полной недопустимости предупреждений во время сборки. Даже если
предупреждение несущественно, я его устраняю. Если оно не критично, но все
же относится к делу, я исправляю код. Если компилятор сообщает об опасности
исключения с нулевым указателем, я исправляю источник этой опасности, даже
если «знаю», что в реальной обстановке эта проблема никогда не возникнет. Ес
ли встроенная в код документация (Javadoc или ее аналог) ссылается на пара
метры, которые удалены или переименованы, я исправляю документацию.

Если мне не интересно предупреждение и оно совсем несущественное, я совету
юсь с командой, не изменить ли нам политику выдачи предупреждений. Напри
мер, я считаю, что документирование параметров и возвращаемого значения ме
тода во многих случаях не приносит никакой пользы, и нет нужды выводить
предупреждение об их отсутствии. Или вот еще: при переходе на новую версию
языка программирования могут появиться предупреждения в коде – там, где их
раньше не было. Например, когда в Java 5 появились обобщения (generics), ста
рый код, не обозначавший типы параметров обобщений, запестрил предупреж
дениями. Мне не нужны такие назойливые предупреждения (пока, во всяком
случае). Предупреждения, не согласованные с реальностью, бесполезны.

Сборка должна быть чистой

Сборка должна быть чистой	 105

Обеспечив неизменно чистую сборку, я уже не должен при рассмотрении каждо
го предупреждения решать, существенно оно или нет. Проигнорировать что-ли
бо – это тоже работа мысли, а я стараюсь избавляться от всей лишней мысли
тельной работы. Благодаря чистой сборке мне легче передать свою работу друго
му человеку. Если я оставлю все эти предупреждения, кому-то другому придется
разбираться с ними и решать, какие из них важны, а какие нет. А еще вероятнее,
что этот новый человек просто проигнорирует все предупреждения, включая су
щественные.

Предупреждения во время сборки полезны. Нужно лишь избавиться от бесполез
ного шума, чтобы начать извлекать пользу. Не откладывайте это до «генераль
ной уборки» кода. Если что-то начинает мозолить глаза, разберитесь с этим сразу
же. Нужно либо исправить источник предупреждения, либо подавить его вывод,
либо изменить политику вывода предупреждений вашей среды разработки. Чис
тая сборка нужна не только для проверки ошибок компиляции и «упавших» тес
тов. Предупреждения – важная и неизбежная часть поддержания гигиены кода.

Кэрролл Робинсон

Се­го­дня мно­гие сред­ст­ва раз­ра­бот­ки про­грамм­но­го обес­пе­че­ния поставляются
в виде интегрированных сред разработки (IDE). Помимо двух популярных при
меров – Visual Studio от Microsoft и Eclipse от сообщества открытых проектов –
существует и множество других. В пользу IDE можно сказать многое. Ими легко
пользоваться и они избавляют программиста от необходимости вникать во мно
жество мелких деталей, включая процесс сборки.

Однако легкость использования имеет свой недостаток. Обычно инструментом
легко пользоваться, когда он принимает решения за программиста и автомати
чески проделывает большой объем работы за кулисами. Поэтому если в качестве
среды программирования вы используете только IDE, вполне возможно, вы ни
когда до конца не поймете, что фактически делают ваши инструменты. Жмете
на кнопку, творится волшебство, и в папке вашего проекта появляется исполня
емый файл.

Работая с инструментами в командной строке, вы гораздо больше узнаете о том,
что делают ваши инструменты во время сборки проекта. Составление собствен
ных make-файлов поможет осмыслить все этапы сборки исполняемого файла
(компиляция, ассемблирование, компоновка и т. д.). Эксперименты с многочис
ленными ключами командных строк этих инструментов – ценная и познава
тельная практика. Начать работу с инструментами командной строки для сбор
ки можно со средств командной строки с открытым исходным кодом, таких как
GCC, или тех, что поставляются в составе вашей коммерческой IDE. В конце
концов, правильно спроектированная IDE – это всего лишь графический интер
фейс к набору инструментов командной строки.

Так вы обретете лучшее понимание процедуры сборки. Кроме того, определен
ные задачи в командной строке выполняются проще и эффективнее, чем в IDE.
Например, возможности поиска и замены таких утилит, как grep и sed, зачастую
превышают аналогичные функции IDE. Инструменты командной строки ориен
тированы на сценарное выполнение задач, что позволяет автоматизировать, на
пример, выполнение ежедневной сборки в заданное время, создание нескольких

Умей пользоваться утилитами
командной строки

Умей пользоваться утилитами командной строки	 107

версий проекта и прогон наборов тестов. В IDE автоматизация такого рода мо
жет быть затруднена (или вообще невозможна), потому что параметры сборки
обычно указываются через диалоговые окна GUI, а процедура сборки запускает
ся щелчком мыши. Если вы никогда не выходили за рамки IDE, то, возможно,
не догадываетесь о возможности автоматизации таких задач.

Минуточку. Разве IDE существуют не для того, чтобы облегчить разработку и по
высить продуктивность программиста? Что ж, все так. Я вовсе не предлагаю пре
кратить пользоваться IDE. Просто вам следует заглянуть «под капот» и понять,
какие задачи IDE выполняет за вас. И наилучший способ это сделать – научить
ся применять инструменты командной строки. После этого, вернувшись к своей
IDE, вы гораздо лучше будете понимать, что она за вас делает и как можно управ
лять процессом сборки. С другой стороны, освоив работу с инструментами ко
мандной строки и познав их мощь и гибкость, вы, возможно, предпочтете поль
зоваться командной строкой вместо IDE.

Рассел Уиндер

Пси­хо­ло­гия про­грам­ми­ро­ва­ния: давно уже известно, что профессионализм про
граммиста непосредственно зависит от количества различных парадигм про
граммирования, которыми он владеет – не просто что-то слышал и знает о них,
но умеет реально использовать их в работе.

Каждый программист начинает с какого-то одного языка. Этот язык оказывает
преобладающее влияние на то, как программист видит программное обеспече
ние. Но каким бы долгим ни был опыт работы программиста с этим языком, ес
ли он работает только с ним одним, то и будет знать только этот язык. Мышле
ние программиста, знающего лишь один язык, ограничено возможностями это
го языка.

Программист, изучающий второй язык, встретится с трудностями, особенно ес
ли вычислительная модель второго языка отличается от первого. C, Pascal, Fort
ran – все они основаны на одной вычислительной модели. Переход с Fortran на C
вызывает некоторые трудности, но их не так много. Переход с C или Fortran на
C++ или Ada сопровождается фундаментальными трудностями с пониманием
поведения программ. Переход с C++ на Haskell означает существенные измене
ния, а потому существенные трудности. Переход с языка C на Prolog станет весь
ма существенным испытанием.

Можно перечислить некоторые парадигмы вычислений: процедурная, объектно-
ориентированная, функциональная, логическая, парадигма потоков данных
и т. д. Переход между этими парадигмами создает наибольшие трудности.

Чем полезны такие трудности? Здесь играют роль наши представления о реали
зациях алгоритмов, а также идиомах и шаблонах этих реализаций. В частно
сти, взаимное обогащение идеями лежит в основе достижения мастерства. Идио
мы решения задач, применимые в одном языке, могут оказаться недоступны
в другом. Пытаясь перенести идиомы из одного языка в другой, мы начинаем
лучше понимать оба эти языка и задачу, которую решаем.

Как следует изучи более
двух языков программирования

Как следует изучи более двух языков программирования	 109

Взаимное обогащение при использовании разных языков программирования
дает мощнейшие эффекты. Пожалуй, наиболее очевидным из них является все
растущее применение декларативных режимов описания в системах, реализо
ванных посредством императивных языков. Любой знаток функционального
программирования может легко применить декларативный подход, даже при
работе с таким языком, как C. Применение декларативных методов обычно при
водит к созданию более коротких и понятных программ. Скажем, C++ опреде
ленно выступает за такой подход, обеспечивая всестороннюю поддержку обоб
щенного (generic) программирования, в котором декларативный режим описа
ния является почти обязательным.

Как следствие всего сказанного выше каждому программисту надлежит уметь
хорошо программировать хотя бы в двух разных парадигмах, а в идеале хотя бы
в перечисленных пяти. Программист всегда должен стремиться к освоению но
вых языков, предпочтительно с незнакомыми ему парадигмами. Даже если
в своей повседневной работе он неизменно использует один и тот же язык про
граммирования, нельзя недооценивать то более искусное применение этого язы
ка, которое станет возможным благодаря идеям из других парадигм. Работода
телям следует это учесть и закладывать в бюджет обучение сотрудников язы
кам, которые в данное время на проектах не используются, как средство научить
работников более искусно применять те языки, которые реально используются.

Неделя начального курса – это хорошо, но не достаточно для изучения нового
языка. Чтобы приобрести рабочие навыки применения языка, обычно нужно
потратить несколько месяцев хотя бы факультативно. Важно практическое ос
воение идиом, а не просто изучение синтаксиса и вычислительной модели.

Хейнц Кабуц

В вось­ми­де­ся­тые го­ды сре­да про­грам­ми­ро­ва­ния, как правило, не сильно отли
чалась от текстового редактора с наворотами – в лучшем случае. Это сегодня мы
воспринимаем подсветку синтаксиса как нечто само собой разумеющееся, а в то
время она была роскошью, доступной далеко не каждому. Средства форматиро
вания кода существовали в виде внешних инструментов, применение которых
корректировало расстановку пробелов. Отладчики тоже «жили» отдельно как
программы для пошагового выполнения кода, и для работы с ними требовалось
знать массу загадочных сочетаний клавиш.

В девяностые годы компании начали осознавать потенциал прибыли от более
удобных и полезных инструментов разработки. Интегрированная среда разра
ботки (Integrated Development Environment, IDE) объединила уже предлагав
шиеся ранее функции редактирования с компилятором, отладчиком, средствами
форматирования и другими инструментами. Как раз в это время стали популяр
ны меню и мышь, а значит, отпала надобность заучивать разработчикам слож
ные комбинации клавиш для работы со своим редактором. Достаточно было вы
брать команду из меню.

В двадцать первом веке IDE настолько распространились, что некоторые компа
нии, нацеленные на доли рынка в других областях, раздают их бесплатно. Со
временная IDE предлагает множество восхитительных функций. Мне особенно
нравится автоматический рефакторинг, в частности функция Extract Method,
позволяющая выделить фрагмент кода и сделать из него метод. Средства рефак
торинга найдут все параметры, которые нужно передать методу, благодаря чему
становится чрезвычайно просто модифицировать код. Моя IDE даже найдет дру
гие фрагменты кода, которые можно заменить вызовом этого метода, и спросит
у меня, следует ли это сделать.

Другая замечательная возможность современных IDE – способность принуждать
к соблюдению стиля, принятого в компании. Например, в Java некоторые про
граммисты стали объявлять все параметры final (на мой взгляд, это пустая тра
та времени). Тем не менее раз такое правило установлено, мне достаточно задать

Знай свою IDE

Знай свою IDE	 111

его в настройках IDE, и я стану получать предупреждения для всех параметров,
которые не объявлены как final. С помощью правил стиля можно также искать
возможные ошибки, такие как проверка равенства автоматически упакованных
(autoboxed) объектов посредством ссылочной семантики, как в случае использо
вания оператора == для примитивов, упакованных в соответствующие объекты.

К сожалению, современные IDE не требуют, чтобы мы прилагали усилия к осво
ению этих самых IDE. Когда я начал программировать на C под UNIX, мне при
шлось потратить немало времени, чтобы научиться работать в редакторе vi, что
обусловлено его кривой обучения. Но потраченное на старте время сторицей оку
пилось с годами. Даже черновик этой статьи набран в vi. У современных IDE
кривая обучения такая, что мы никогда не выходим за пределы базовых прие
мов работы с ними.

Первое, что я делаю при изучении IDE, – запоминаю управляющие сочета
ния клавиш. Когда я набираю код, пальцы лежат на клавиатуре, и нажатие
Ctrl+Shift+I позволяет встроить переменную (операция рефакторинга Inline Va
riable), не нарушая рабочего потока, тогда как навигация по меню указателем
мыши отвлекла бы меня. Такие отвлечения создают ненужные переключения
контекста и значительно снижают мою продуктивность, если я пытаюсь делать
все «ленивым» образом. То же справедливо в отношении владения клавиатурой:
освойте печать вслепую, и вы не пожалеете о потраченном времени.

Наконец, у программистов есть проверенные временем конвейерные UNIX-ути
литы, позволяющие манипулировать кодом различными способами. Например,
если при рецензировании кода я замечаю, что программисты назвали многие
классы одинаково, я легко могу обнаружить эти повторения с помощью утилит
find, sed, sort, uniq и grep, например:

find . -name "*.java" | sed 's/.*\///' | sort | uniq -c | grep -v "^ *1 " | sort -r

Мы ожидаем, что посетивший нас сантехник умеет пользоваться паяльной лам
пой. Давайте же потратим немного времени и поучимся более эффективно рабо
тать со своими IDE.

Грег Колвин

Нужно знать предел своих возможностей.

«Грязный Гарри»

Ва­ши ре­сур­сы ог­ра­ни­че­ны. Отведенные на выполнение работы время и деньги
определены конкретно, в том числе время и деньги, необходимые для поддержа
ния ваших знаний, навыков и инструментов на современном уровне. Существу
ет предел интенсивности, скорости, изобретательности и длительности для ва
шей работы. Возможности ваших инструментов ограничены. Мощность машин,
для которых вы пишете программы, ограничена. Поэтому вы должны учиты
вать пределы своих ресурсов.

Как учесть эти границы? Нужно знать себя, своих сотрудников, свой бюджет
и свою технику. Инженеру-программисту нужно знать пространственно-вре
менную сложность своих структур данных и алгоритмов, архитектуру и пока
затели производительности своих систем. Ваша задача – создать оптимальное
сочетание программного обеспечения и систем.

Пространственная и временная сложность задаются в виде функции O(f(n)), где
n равно размеру входных данных. Эта функция определяет асимптотическое по
ведение памяти или времени для n, стремящегося
к бесконечности. Важные классы сложности для
f(n) – это ln(n), n, n ln(n), ne и en. Как ясно видно из
графиков этих функций, когда n растет, O(ln(n))
становится гораздо меньше O(n) и O(n ln(n)), а те,
в свою очередь, становятся гораздо меньше O(ne)
и O(en). В формулировке Шона Пэрента (Sean Parent):
для практически достижимых n все классы слож
ности близки к функциям констант, линейным
либо бесконечным.

Анализ сложности осуществляется в терминах не
кой абстрактной машины, но программы работают

Знай свои возможности

1

2

3

4

5

6

7

8

9

10

1�1 2 3 4 5 6 7

x

y

en ne
n ln(n)

ln(n)

n

8 9 10 110

Знай свои возможности	 113

на реальных компьютерах. Современные
компьютерные системы образуют целые ие
рархии физических и виртуальных машин,
включающие библиотеки времени выпол
нения для языков программирования, опе
рационные системы, процессоры, кэш-па
мять, оперативную память, жесткие диски
и сети. В приведенной таблице показаны
пределы времени произвольного доступа
к данным и пределы емкости памяти для
типичного сервера, подключенного к сети.

Заметим, что вариативность памяти и скорости составляет несколько порядков.
Для компенсации различий на всех уровнях системы интенсивно применяется
кэширование и упреждающий просмотр, но они действенны только тогда, когда
доступ предсказуем. Если часто происходят кэш-промахи, система будет тормо
зить. Например, случайное чтение каждого байта на жестком диске может за
нять 32 года. Даже случайное чтение каждого байта оперативной памяти может
занять 11 минут. Случайный доступ непредсказуем. А что предсказуемо? Зави
сит от системы, но обычно выигрыш приносят повторный доступ к недавно счи
танным данным и последовательный доступ к элементам данных.

Алгоритмы и структуры данных различаются эффективностью использования
кэша. Например:

•	 Линейный поиск эффективно использует упреждающий просмотр, но требу
ет O(n) сравнений.

•	 Двоичный поиск в отсортированном массиве требует всего O(log(n)) сравнений.

•	 Поиск по дереву ван Эмде Боаса (van Emde Boas) имеет сложность O(log(n))
и нечувствителен к кэшу.

Что выбрать? Для окончательного анализа нужны измерения. В таблице ниже
показано время поиска в массивах 64-разрядных целых чисел с помощью этих
трех методов. На моем компьютере:

•	 Линейный поиск составляет конкурен
цию другим методам на малых масси
вах, но проигрывает экспоненциально
на больших.

•	 Поиск ван Эмде Боаса побеждает без ва
риантов благодаря схеме предсказуемо
го доступа.

Каждый сам решает, что для него лучше.

— Punch

Время доступа Емкость

Регистр <1 нс 64 бит

Уровень кэша 64 байт

 Кэш L1 1 нс 64 килобайт

 Кэш L2 4 нс 8 мегабайт

ОЗУ 20 нс 32 гигабайт

Диск 10 мс 10 терабайт

Локальная сеть 20 мс >1 петабайт

Интернет 100 мс >1 зеттабайт

Время поиска (нс)

8 50 90 40
64 180 150 70
512 1200 230 100
4096 17000 320 160

Линейный Двоичный ван Эмде Боас

Дэн Берг Джонссон

Я по­хло­пал трех про­грам­ми­стов по пле­чу и поинтересовался, чем они заняты.
«Я провожу рефакторинг этих методов», – был ответ первого. «Я добавляю кое-
какие параметры в эту веб-операцию», – отвечал второй. Третий сказал: «Я ра
ботаю над этим сценарием использования».

Может показаться, что первые двое были поглощены деталями своей работы,
и только третий видел картину шире, и его подход лучше. Я поинтересовался,
когда и что они собираются поместить в репозиторий, и тут картина резко изме
нилась. Первые два вполне ясно представляли, какие это будут файлы, и собира
лись закончить работу примерно в течение часа. Третий сказал: «Предполагаю,
что закончу через несколько дней. Наверное, я добавлю некоторые классы и как-
то модифицирую службы».

Дело не в том, что два программиста не обладали цельной картиной происходя
щего. Они просто выбрали задачи, которые, по их мнению, вели в нужном на
правлении и могли быть выполнены за пару часов. Покончив с этими задачами,
они выберут новую функцию или рефакторинг для работы. Таким образом, они
писали свой код, исходя из четко обозначенных задач и имея небольшую, но реа
листичную цель.

Третий программист оказался неспособен провести декомпозицию задачи и ра
ботал сразу по всем направлениям. Он не имел представления о том, во что это
выльется, и в принципе занимался рискованной работой в надежде, что в какой-
то момент у него появится код для записи в репозиторий. Вероятнее всего, напи
санный на старте этого долгого предприятия код оказался малопригодным для
того решения, которое получилось в итоге.

Как поступили бы первые два программиста, потребуй их задачи более двух ча
сов работы каждая? Поняв, что не рассчитали свои силы, они, скорее всего, отка
зались бы от внесенных изменений, выбрали задачи помельче и начали все сна
чала. Продолжай они работу, произошла бы расфокусировка, а в репозиторий

Знай, что сохранишь
в репозиторий

Знай, что сохранишь в репозиторий	 115

попал бы сомнительный код. Лучше отбросить сделанные изменения, но сохра
нить понимание сути.

Третий программист, возможно, продолжил бы свои гадания и в отчаянии ста
рался бы сшить из своих заплаток код, который можно сохранить в репозито
рий. В конце концов, как же можно выбрасывать внесенные изменения – ведь
это будет означать, что вы напрасно трудились! К сожалению, если не выбрасы
вать такой код, в репозиторий попадает слегка странноватый код, не решающий
определенную задачу.

Бывают моменты, когда даже программисты, которые ориентированы на частое
сохранение кода в репозиторий, не могут найти ничего полезного, с чем бы они
могли справиться за пару часов. Тогда они переходят в режим написания нена
дежного кода и балуются с кодом, но, конечно, выкидывают свои изменения, ко
гда некое озарение возвращает их на путь истинный. Даже такие бессмыслен
ные, на первый взгляд, периоды работы имеют цель: лучше изучить код, чтобы
суметь выявить задачу, решение которой принесет немедленную пользу.

Определите, что сдадите в репозиторий на сей раз. Если не удается завершить
задачу, удалите свои изменения и определите новую задачу на основе приобре
тенного понимания. Займитесь рискованными экспериментами, если это необ
ходимо, но следите за тем, чтобы случайно и незаметно не соскользнуть в режим
написания сомнительного кода. Не помещайте в репозиторий плоды рискован
ных экспериментов.

Диомидис Спинеллис

Ес­ли ва­ше при­ло­же­ние должно обрабатывать большой долговечный набор взаи
мосвязанных элементов данных, можете, не раздумывая, поместить его в реля
ционную базу данных. В прошлом РСУБД было мало, они были сложными, до
рогими в содержании и неуклюжими животными. Эти времена миновали. Сего
дня найти РСУБД нетрудно: вполне возможно, что на вашей машине уже уста
новлена РСУБД или даже две. Некоторые весьма продвинутые РСУБД, такие
как MySQL и PostgreSQL, доступны в исходном коде, поэтому вопрос о затратах
на их покупку больше не стоит. Более того, так называемые «встраиваемые сис
темы баз данных» можно подключать к вашему приложению в виде библиотек,
почти не требующих настройки и администрирования; к таким относятся две
интересные открытые СУБД, SQLite и HSQLDB. Подобные системы крайне эф
фективны.

Если данные вашего приложения не помещаются в ОЗУ системы, индексирован
ная таблица РСУБД будет работать на несколько порядков быстрее, чем ассоциа
тивные массивы библиотеки языка, где узким местом станет загрузка страниц
виртуальной памяти. Возможности современных баз данных легко наращива
ются по мере роста ваших потребностей. При надлежащем подходе вы сможете
масштабировать встроенную базу данных до более крупной базы данных, если
это понадобится. Затем вы сможете перейти с бесплатной базы с открытым ко
дом на коммерческую систему, предлагающую более развитую поддержку или
возможности.

Изучив SQL достаточно хорошо, вы будете с удовольствием создавать приложе
ния, построенные вокруг баз данных. После того как нормализованные данные
сохранены в базе, можно легко получать фактическую информацию об этих дан
ных с помощью прозрачно сформулированных запросов SQL; не нужно писать
для этого сложный код. Аналогичным образом в такие наборы данных можно
вносить сложные изменения при помощи единственной команды SQL. Для разо
вых модификаций, например при необходимости изменить способ организации
хранимых данных, не нужно даже писать код – достаточно запустить приложе

Место для больших наборов
взаимосвязанных данных –
в базе данных

Место для больших наборов взаимосвязанных данных – в базе данных	 117

ние прямого SQL-доступа к базе данных. Этот интерфейс позволит также экспе
риментировать с запросами в обход цикла редактирования-компиляции обыч
ных языков программирования.

Другое преимущество кода, ориентированного на использование РСУБД, – это
поддержка связей между элементами данных. Можно описать ограничения (con
straints), обеспечивающие целостность данных, что позволит избежать риска
появления висячих ссылок, если вы забудете обновить свои данные в случае с по
граничными условиями. Например, ограничение можно сформулировать так,
что при удалении пользователя будут удалены и все сообщения, отправленные
этим пользователем.

Можно также в любой момент создавать быстрые связи между хранящимися
в базе записями путем простой генерации индекса. Не требуется проводить до
рогостоящий и обширный рефакторинг полей класса. Кроме того, когда код по
строен на основе базы данных, к этим данным могут безопасно обращаться дру
гие приложения. Благодаря этому легко добавить в ваше приложение парал
лельную обработку и написать отдельные его части с использованием наиболее
подходящих языков или платформ. Например, можно написать XML-сервер
веб-приложения на Java, некоторые сценарии для аудита – на Ruby, а интерфейс
визуализации – с помощью Processing1.

Наконец, следует помнить, что РСУБД приложит максимум усилий, чтобы оп
тимизировать ваши SQL-запросы, благодаря чему вы сможете сконцентриро
ваться на функциональности своего приложения, а не на тонкой настройке алго
ритмов. Более развитые базы данных способны даже использовать преимущест
ва многоядерных процессоров, причем совершенно без вашего участия. По мере
совершенствования технологий будет расти и производительность вашего при
ложения.

1	 http://www.processing.org/

Клаус Маркардт

Про­грам­ми­стам нуж­но об­щать­ся. И общаться много.

В жизни программиста бывают периоды, когда общение в основном происходит
с компьютером – точнее, с выполняемыми на нем программами. Это общение
основано на выражении идей в понятном машине виде. Возможность превра
щать идеи в реальность посредством программ и практически без использова
ния физического вещества по-прежнему вызывает восторг.

Программист должен бегло владеть языком машины – реальной или виртуаль
ной – и абстракциями, которые можно связать с этим языком с помощью ин
струментов разработчика. Важно знать много разных абстракций, иначе некото
рые идеи очень трудно выразить. Хороший программист должен уметь выходить
за пределы повседневной рутины и осознавать, что существуют и другие языки,
более выразительные для других задач. В какой-то момент эти знания обяза
тельно окупятся.

Программистам нужно общаться не только с машинами, но и со своими коллега
ми. Современный крупный проект – это больше социальное предприятие, чем
просто приложение искусства программирования. В нем требуется понять и вы
разить больше, чем позволяют доступные машинам абстракции. Лучшие из из
вестных мне программистов обычно очень хорошо владеют родным языком,
а часто также и другими языками. И это важно не только для общения: умение
хорошо говорить на каком-либо языке означает способность ясно мыслить, без
чего невозможно абстрагировать задачу. А это тоже часть программирования.

Общаться приходится не только с машиной, самим собой и коллегами, но и с мно
гими другими связанными с проектом лицами, которые могут не иметь техниче
ской подготовки. Они заняты тестированием и контролем качества, развертыва
нием приложений или маркетингом и продажей. Иногда это конечные пользова
тели в каком-то офисе (или в магазине, или у себя дома). Необходимо их понимать
и знать, с какими проблемами они сталкиваются, а это почти невозможно, если
вы не умеете говорить с ними на одном языке – языке их мира, их предметной

Учите иностранные языки

Учите иностранные языки	 119

области. Когда вам кажется, что разговор с ними прошел удачно, они, возможно,
так не считают.

Если вы общаетесь с бухгалтерами, нужно примерно представлять, что такое
«учет затрат по местам их возникновения», «вложенный капитал», «чистые ак
тивы» и т. п. Если вы беседуете со специалистами по маркетингу или юристами,
их жаргон и язык (а значит, миропонимание) должны быть в какой-то мере из
вестны и вам. Всеми этими языками, специфическими для предметной области
проекта, должен владеть кто-то из проекта – в идеале программисты. В конеч
ном счете программисты отвечают за практическую реализацию идей посредст
вом компьютеров.

И конечно, жизнь состоит не только из программных проектов. Как заметил
Карл Великий, знать второй язык – значит иметь вторую душу. Вы оцените
пользу знания иностранных языков, когда придется общаться со знакомыми за
рамками отрасли программной разработки. Поймете, когда лучше слушать, чем
говорить. Узнаете, что большая часть общения происходит без слов.

О чем нельзя говорить, о том следует молчать.

Людвиг Витгенштейн

Джованни Аспрони

Бу­ду­чи про­грам­ми­стом, вы должны уметь предоставлять своим менеджерам,
коллегам и пользователям оценки предстоящей вам работы, чтобы у них было
достаточно точное представление о времени, стоимости, технологиях и других
ресурсах, необходимых им для достижения своих целей.

Для проведения надежной оценки необходимо владеть некоторыми приемами.
Однако сначала следует разобраться, что собой представляют оценки и для чего
они могут быть использованы – как ни странно, многие разработчики и менед
жеры плохо в этом разбираются.

Вот типичный диалог между менеджером проекта и программистом:

Менеджер: Можешь оценить, сколько тебе нужно времени, чтобы разрабо
тать функцию X?

Программист: Месяц.

Менеджер: Это слишком долго! У нас есть всего неделя.

Программист: Мне нужно хотя бы три.

Менеджер: Больше двух я тебе дать не могу.

Программист: По рукам!

В итоге программист предлагает «оценку», приемлемую для менеджера. Но по
скольку она как бы сделана программистом, менеджер будет считать, что про
граммист несет за нее ответственность. Для понимания того, что неправильно
в этом диалоге, нам нужны три определения: оценки, цели и обязательства:

•	 Оценка – это приблизительный подсчет или суждение относительно значе
ния, числа, количества или протяженности чего-либо. Это определение пред
полагает, что оценка является фактической мерой, основанной на надежных
данных и прежнем опыте; мечты и пожелания должны быть исключены при
ее расчете. Это определение предполагает также, что оценка приблизительна
и не может быть дана точно, например, оценка продолжительности разработ
ки не может составить 234,14 дня.

Учитесь делать оценки

Учитесь делать оценки	 121

•	 Цель – это описание бизнес-задачи, которую требуется решить, например
«система должна поддерживать одновременную работу не менее 400 пользо
вателей».

•	 Обязательство – это обещание обеспечить указанную функциональность с оп
ределенным уровнем качества к определенному сроку или событию. Напри
мер, «функция поиска будет доступна в следующей версии продукта».

Оценки, цели и обязательства не зависят друг от друга, но цели и обязательства
должны основываться на надежных оценках. Как отмечает Стив Макконнелл1,
«главная задача оценок в программировании – не предсказание результата про
екта, а определение реалистичности целей проекта и возможности их достиже
ния при правильном управлении». Таким образом, полученные оценки должны
обеспечить возможность надлежащего планирования и управления проектом,
что позволит заинтересованным участникам проекта брать обязательства исхо
дя из реалистичных целей.

В приведенном выше диалоге менеджер в действительности требовал от про
граммиста не оценки, а принятия обязательства в отношении невысказанной це
ли, которая была в голове этого менеджера. Когда вам в следующий раз предло
жат сделать оценку, убедитесь, что все стороны хорошо представляют, о чем идет
речь, и тогда шансы на успех ваших проектов вырастут. А вот теперь пора осво
ить несколько приемов…

1	 Стив Макконнелл «Профессиональная разработка программного обеспечения». – Пер.
с англ. – СПб.: Символ-Плюс, 2006.

Томас Гест

Пол Ли, под ни­ком leep, более известный под прозвищем Хоппи, слыл местным
экспертом по вопросам программирования. Мне потребовалась помощь. Я подо
шел к его рабочему столу и спросил, не посмотрит ли он вместе со мной кое-ка
кой код.

«Конечно, – сказал Хоппи, – бери стул». Я осторожно придвинулся, стараясь не
опрокинуть пирамиду пустых банок из-под колы, громоздившуюся рядом с ним.

«Что за код?»

«В функции в файле», – сказал я.

«Ладно, посмотрим на эту функцию». Хоппи отодвинул в сторону экземпляр
«K&R»1 и придвинул ко мне клавиатуру.

«А где IDE?» Выяснилось, что у Хоппи не было IDE, лишь некий редактор, в ко
тором я не умел работать. Он забрал клавиатуру обратно. Несколько нажатий на
клавиши, и перед нами предстал файл – довольно большой файл, а затем и функ
ция – довольно большая функция. Он листал ее, пока не добрался до условно
выполняемого блока, о котором я хотел спросить.

«Что здесь произойдет при отрицательном x? – спросил я. – Здесь явно ошибка».

Все то утро я пытался заставить x принять отрицательное значение, но большая
функция в большом файле была частью большого проекта, и меня совершенно
измотала необходимость повторно компилировать и повторно запускать свои
эксперименты. Может быть, такой эксперт, как Хоппи, просто сообщит мне вер
ный ответ?

Хоппи признался, что он не вполне уверен в результатах. К моему удивлению,
он не потянулся за «K&R». Вместо этого он скопировал блок кода в новый буфер
редактора, заново расставил отступы и обернул его в функцию. После этого он

1	 Имеется в виду классическая книга Кернигана и Ричи «Язык программирования C». –
Прим. ред.

Научитесь говорить «Hello, World»

Научитесь говорить «Hello, World»	 123

написал функцию main, выполнявшую бесконечный цикл, в котором она пред
лагала пользователю ввести значение, передавала его функции и выводила ре
зультат. Он сохранил буфер в виде нового файла tryit.c.

Все это я мог бы сделать и сам, разве что не так быстро. Но следующий его шаг
был очень прост, и в то время такой способ работы был мне совершенно незнаком:

$ cc tryit.c && ./a.out

Надо же! Его программа, придуманная всего за несколько минут до того, работа
ла полным ходом. Мы опробовали несколько значений, и мои подозрения под
твердились (хоть в чем-то я оказался прав!), и лишь затем он дополнительно све
рился с соответствующим разделом «K&R». Я поблагодарил Хоппи и ушел, сно
ва стараясь не обрушить его пирамиду банок из-под колы.

Вернувшись на рабочее место, я закрыл свою IDE. Я так привык работать над
большими проектами в рамках больших продуктов, что стал думать, будто имен
но так и должен работать. А ведь компьютер, предназначенный для решения са
мых глобальных проблем, может решать и мелкие задачи. Я открыл текстовый
редактор и набрал:

#include <stdio.h>
int main()
{
 printf("Hello, World\n");
 return 0;
}

Дэниэл Линднер

Ско­рее все­го, в ва­шем про­ек­те име­ет­ся сис­те­ма управ­ле­ния вер­сия­ми. Весьма
вероятно также, что она подключена к серверу непрерывной интеграции, кото
рый проверяет корректность проекта с помощью автоматизированных тестов.
Это замечательно.

Можно подключить средства статического анализа кода к серверу непрерывной
интеграции и получать метрики кода. Эти метрики сообщают специфические
характеристики вашего кода и их изменения во времени. Когда введены метрики
кода, всегда имеется красная черта, которую нельзя пересекать. Допустим, что
вначале у вас покрыто тестами 20% кода, и вы не хотите, чтобы эта величина
опускалась ниже 15%. Непрерывная интеграция позволяет следить за всеми эти
ми числами, но все равно вам придется регулярно проверять их значения. Было
бы хорошо, если бы проект самостоятельно выполнял эту работу и извещал вас
в случае ухудшения ситуации.

Вам нужно дать своему проекту возможность заговорить. Например, с помощью
электронной почты или мгновенного обмена сообщениями. Так вы сможете ин
формировать разработчиков о последних ухудшениях или улучшениях показа
телей. Но еще более эффективно – материализовать проект в офисе посредством
оконечного устройства обратной связи (extreme feedback device, XFD).

Идея XFD состоит в управлении физическим устройством – например лампой,
миниатюрным фонтаном, роботом или даже подключенной к USB пусковой ра
кетной установкой – на основе результатов автоматического анализа. Когда на
рушаются допустимые границы, устройство сообщает об этом, изменяя свое со
стояние. Если это лампа, она загорится, яркая и беспристрастная. Невозможно
пропустить это сообщение, даже если вы уже идете к двери, направляясь домой.

В зависимости от типа устройства обратной связи вы услышите звук «ломающей
ся» сборки, увидите красные сигналы некачественного кода или даже почувст
вуете дурной запах кода. Устройства могут быть установлены в разных офисах,
если разработка ведется распределенно. Можно поставить уличный светофор

Пусть ваш проект
говорит сам за себя

Пусть ваш проект говорит сам за себя	 125

в офисе менеджера проекта и сигнализировать с его помощью, в каком состоя
нии находится работа. Менеджер проекта это оценит.

Выбор подходящего вам устройства определяется вашими творческими способ
ностями. Если культура проекта «гиковская», можете попробовать снабдить та
лисман своей команды радиоуправляемыми игрушками. Если вам нравится бо
лее профессиональный подход, попробуйте воспользоваться элегантными дизай
нерскими лампами. Поищите вдохновения в Интернете. Все, что подключается
к сети или имеет пульт управления, может быть использовано как устройство
обратной связи.

Оконечное устройство обратной связи как бы дает голос вашему проекту. Теперь
проект физически живет вместе с разработчиками. Он жалуется на них или хва
лит их в соответствии с установленными командой правилами. Такое очелове
чивание можно развить далее при помощи программы синтеза речи и пары ди
намиков. Теперь ваш проект действительно говорит сам за себя.

Уолтер Брайт

Уд­ру­чаю­ще час­то (со мной это снова случилось как раз перед написанием этого
текста) встречается следующий взгляд программистов на процесс превращения
исходного кода на компилируемом языке в статически скомпонованный выпол
няемый модуль:

1.	 Отредактировать исходный код.

2.	 Скомпилировать исходный код в объектные файлы.

3.	 Происходит волшебство.

4.	 Запустить исполняемый файл.

Шаг 3 – это, конечно, компоновка (linking). Почему же я говорю такие возмути
тельные вещи? Я занимаюсь технической поддержкой уже не первый десяток
лет, и ко мне регулярно приходят с одними и теми же проблемами:

1.	 Компоновщик сообщает, что def определен более одного раза.

2.	 Компоновщик сообщает, что символ abc не найден (unresolved).

3.	 Почему мой исполняемый файл такой большой?

Затем следует вопрос «Что мне теперь делать?» с вкраплениями слов «вроде бы»
и «как-то там», и все это в атмосфере полнейшей озадаченности. Эти «вроде бы»
и «как-то там» свидетельствуют о том, что процесс компоновки воспринимается
как некое волшебство, понятное только колдунам и чародеям. Процесс компи
ляции не приводит к формулировкам такого рода, то есть программисты в целом
понимают, как работают компиляторы или хотя бы в чем их назначение.

Компоновщик – это тупая, приземленная и прямолинейная программа. Ее за
дача – склеить область кода и область данных объектных файлов, соединить
ссылки на символы с их определениями, выбросить неразрешенные символы
из библиотеки и записать исполняемый файл. Все! Никаких чудес и магии! То,
что написание компоновщика является утомительным трудом, обычно связано

Компоновщик не таит
в себе никаких чудес

Компоновщик не таит в себе никаких чудес	 127

с декодированием и генерацией файлов, формат которых бывает безобразно
сложным, но суть компоновщика от этого не меняется.

Итак, допустим, что компоновщик сообщает вам, что def определен более одного
раза. Во многих языках программирования, включая C, C++ и D, существуют
объявления и определения. Объявления обычно помещаются в файлы заголов
ков, например:

extern int iii;

что генерирует внешнюю ссылку на символ iii. Напротив, определение факти
чески отводит память для хранения символа, обычно находится в файле реали
зации и выглядит примерно так:

int iii = 3;

Сколько определений может существовать для каждого символа? Как в фильме
«Горец», «в живых останется только один». Что произойдет, если определение
iii обнаружится более чем в одном файле реализации?

// Файл a.c
int iii = 3;
// Файл b.c
double iii(int x) { return 3.7; }

Компоновщик сообщит о неоднократном определении iii.

Определение может быть только одно, более того, оно должно быть обязательно.
Если iii появляется только в объявлении, но для него нет определения, компо
новщик сообщит о том, что символ iii не найден.

Чтобы выяснить, почему у исполняемого модуля такой размер, взгляните на
файл карты (map), который компоновщик может вывести по запросу. Этот файл
содержит перечень всех символов в исполняемом модуле с их адресами. Из него
вы узнаете, какие модули были взяты из библиотек и их размеры. Теперь станет
ясно, почему так раздулась ваша программа. Часто обнаруживаются библиотеч
ные модули, о подключении которых вы и не догадывались. Чтобы разобраться,
временно удалите подозрительный модуль из библиотеки и повторите компонов
ку заново. Ошибка «неопределенный символ» поможет узнать, кто обращается
к этому модулю.

Хотя не всегда очевидно, почему компоновщик выводит то или иное сообщение,
в компоновщиках нет ничего волшебного. Механика проста, а вот в конкретных
деталях приходится разбираться каждый раз.

Клаус Маркардт

По­че­му мы соз­да­ем вре­мен­ные ре­ше­ния?

Обычно виной тому срочная задача. Бывает, что это внутренняя задача разра
ботчиков – создать недостающий инструмент для цепи разработки. Бывает, что
задача внешняя, ориентированная на пользователей, например обходной путь
для восполнения отсутствующей функциональности.

В большинстве систем и команд можно найти модуль, который каким-то обра
зом выделяется в системе. Считается, что это черновой вариант, и его нужно бу
дет впоследствии переделать, потому что он не соответствует стандартам и пра
вилам, по которым живет остальной код. Вам обязательно придется услышать
жалобы разработчиков по этому поводу. Причины появления такого кода быва
ют разными, но основная причина появления на свет промежуточных решений –
это их полезность.

Однако промежуточные решения обладают инертностью (или моментом инер
ции, если вам так больше нравится). Временное решение уже есть – крайне по
лезное и всеми принятое, – так что нет острой необходимости создавать что-то
взамен. Решая, какие действия более других повысят ценность продукта, заин
тересованный участник проекта найдет множество задач, приоритет которых
будет выше, чем доведение до ума временного решения. Почему? Потому что вре
менное решение уже есть, оно работает, и оно принято. Единственный его види
мый недостаток – оно не соответствует выбранным стандартам и правилам, но,
за исключением некоторых нишевых продуктов, это слабый аргумент в пользу
изменений.

Вот так и остается временное решение. Навсегда.

А если временное решение станет источником проблем, маловероятно, что при
починке будет также поставлена задача привести его в соответствие с приняты
ми стандартами качества. Что же делать? Быстрое промежуточное изменение
временного решения часто устраняет проблему и всех устраивает. У него те же
достоинства, что и у первоначального временного решения, просто оно… новее.

Долговечность
временных решений

Долговечность временных решений	 129

Представляет ли это проблему?

Все зависит от проекта и вашего личного интереса в поддержании стандарта ка
чества готового кода. Если в системе слишком много временных решений, ее эн
тропия или внутренняя сложность возрастает, а удобство сопровождения сни
жается. Однако в первую очередь, возможно, следует задавать иной вопрос. Не
забывайте, что мы обсуждаем решение. Возможно, вы и сами не рады такому ре
шению – как вряд ли рад ему кто-то другой, – но стимул перерабатывать реше
ние слаб.

Так что же можно сделать, если это для нас проблема?

1.	 Прежде всего, избегать временных решений.

2.	 Изменить факторы, влияющие на решение руководителя проекта.

3.	 Оставить все, как есть.

Рассмотрим эти варианты более подробно:

1.	 Во многих случаях отказ от временного решения неприемлем. Есть реальная
задача, которую необходимо решить, и оказывается, что стандарты слишком
жесткие для этого. Можно попробовать изменить стандарты – достойное, хо
тя и трудоемкое свершение, – но на это уйдет время, а проблему нужно ре
шать прямо сейчас.

2.	 Эти факторы коренятся в культуре проекта, а она противится насильствен
ным изменениям. Успеха можно достичь лишь в очень маленьких проектах –
особенно когда работаешь один – и если удастся навести порядок, не спраши
вая разрешения. Успех возможен и тогда, когда в коде проекта такой беспоря
док, что это заметно тормозит работу, и все согласны, что нужно потратить
некоторое время на наведение порядка.

3.	 Если предыдущий вариант не действует, положение дел сохраняется автома
тически.

Среди множества созданных вами решений некоторые будут временными и
в большинстве своем полезными. Лучший способ избавиться от временных ре
шений – это сделать их избыточными, предложив более элегантные и полезные
решения. И да пребудет с вами душевный покой, чтобы принять то, что вы не
можете изменить, и силы изменить то, что можете, и мудрость, чтобы отличить
одно от другого.

Скотт Мейерс

Од­на из наи­бо­лее рас­про­стра­нен­ных за­дач в разработке программного обеспече
ния – это спецификация интерфейса. Интерфейсы существуют на высшем уров
не абстракции (интерфейсы пользователя), на низшем (интерфейсы функций)
и на промежуточных уровнях (интерфейсы классов, библиотек и т. д.). Незави
симо от того, чем вы заняты – согласовываете с конечными пользователями их
будущее взаимодействие с системой, сотрудничаете с разработчиками, разраба
тывая спецификацию API, или объявляете закрытые функции класса, – проек
тирование интерфейса составляет важную часть вашей работы. Если вы справи
тесь с ней хорошо, пользоваться вашими интерфейсами будет сплошное удоволь
ствие, а производительность пользователей возрастет. Если вы справитесь с за
дачей плохо, ваши интерфейсы станут источником разочарований и ошибок.

Хорошие интерфейсы обладают следующими свойствами:

Их легко использовать правильно

Пользователи хорошо спроектированного интерфейса почти всегда использу
ют его правильно, потому что таков для этого интерфейса путь наименьшего
сопротивления. Если это графический интерфейс пользователя, они почти
всегда щелкают по нужному значку, кнопке или пункту меню, потому что это
действие оказывается наиболее очевидным и простым. Если это интерфейс
прикладного программирования, они почти всегда передают вызовам пра
вильные параметры с правильными значениями, делая то, что кажется наи
более естественным. Если интерфейс таков, что им легко пользоваться пра
вильно, все работает само.

Их трудно использовать неправильно

Хорошие интерфейсы учитывают, какие ошибки бывают у пользователей,
и мешают их делать, а в идеале вообще этого не позволяют. Например, графи
ческий интерфейс пользователя может сделать неактивными или скрыть ко
манды, не имеющие смысла в текущем контексте, а интерфейс прикладного

Интерфейсы должно быть
легко использовать правильно
и трудно – неправильно

Интерфейсы должно быть легко использовать правильно и трудно – неправильно	 131

программирования может решить проблему порядка аргументов, разрешив
передавать параметры в любой последовательности.

Хороший подход к проектированию интерфейсов, которыми легко пользоваться
правильно, – практиковаться в работе с ними до их создания. Создайте макет
графического интерфейса пользователя (например, на доске с маркерами или на
основе разложенных на столе листков для заметок) и поиграйте с макетом, пре
жде чем писать код. Напишите обращения к API, прежде чем объявлять функ
ции. Разберите стандартные сценарии применения и определите, какого поведе
ния ожидаете от интерфейса. По каким элементам в конечном итоге хотелось бы
щелкнуть? Какие параметры в итоге хотелось бы передавать? Простые в работе
интерфейсы естественны, потому что позволяют делать именно то, что вам нуж
но. Такие интерфейсы чаще удаются, если разрабатывать их с точки зрения
пользователя. (Это одна из сильных сторон разработки через тестирование, TDD.)

Чтобы затруднить некорректное использование интерфейса, нужны две вещи. Во-
первых, следует предугадывать, какие ошибки могут делать пользователи, и на
ходить способы их предотвращать. Во-вторых, следует понаблюдать за ошибка
ми, которые допускают первые пользователи предварительной версии интерфей
са, и модифицировать интерфейс – да-да, модифицировать интерфейс! – с целью
воспрепятствовать таким ошибкам. Лучший способ предотвратить некорректное
использование – это сделать его невозможным. Если пользователи упорно стара
ются отменить неотменяемое действие, сделайте это действие отменяемым. Если
они постоянно передают интерфейсу прикладного программирования неверное
значение, постарайтесь модифицировать этот API, чтобы принимать те значе
ния, которые хотят передать пользователи.

А самое главное, помните, что интерфейсы существуют для удобства их пользо
вателей, а не их создателей.

Джон Джаггер

Во мно­гих от­но­ше­ни­ях не­ви­ди­мость справедливо поощряется как принцип раз
работки качественного программного обеспечения. В нашем профессиональном
языке немало метафор невидимости, таких как прозрачность механизма и ин
капсуляция. Программное обеспечение и процесс его разработки могут, если пе
рефразировать Дугласа Адамса (Douglas Adams), оказаться в основном невиди
мыми1:

•	 Исходный код не обладает врожденным присутствием или врожденным пове
дением и не подчиняется физическим законам. Его можно увидеть, когда он
загружен в редактор, но закройте редактор – и он исчезнет. Если долго над
этим думать, то начинаешь сомневаться, существует ли он вообще – как дере
во, которое упало, но некому было это услышать.

•	 Работающее приложение обнаруживает свое присутствие и поведение, но ни
чего не сообщает об исходном коде, на основе которого создано. Домашняя
страница Google приятно лаконична, но за кулисами, несомненно, скрыто не
мало серьезного.

•	 Если вы сделали 90% работы и безнадежно увязли в отладке остальных 10%,
то, видимо, нельзя считать, что сделано 90%? Исправление ошибок – это не
движение вперед. Вам не платят за отладку. Отладка – пустая трата времени.
Хорошо, если пустая трата времени будет более заметна, чтобы можно было
видеть ее реальную цену и, прежде всего, постараться не допускать этого.

•	 Если кажется, что ваш проект идет по графику, а через неделю обнаружива
ется, что он опаздывает на полгода, то у вас есть проблемы, главная из кото
рых, возможно, не в том, что он опаздывает на полгода, а в существовании

1	 Отсылка к книге «Mostly Harmless» («В основном безвредна», АСТ, 2003) – пятой, за
ключительной части серии книг «The Hitchhiker’s Guide to the Galaxy» («Автостопом
по галактике. Путеводитель»). Словосочетание «в основном безвредна» в книгах се
рии является полной энциклопедической статьей о планете Земля. – Прим. ред.

Пусть невидимое станет
более видимым

Пусть невидимое станет более видимым	 133

невидимых силовых полей, способных скрыть полугодовую задержку! Отсут
ствие видимого прогресса – то же самое, что отсутствие прогресса вообще.

Невидимость таит в себе опасность. Рассуждение становится яснее, когда есть
конкретный предмет для обдумывания. Легче управлять вещами, которые мож
но видеть, и видеть в непрерывном изменении:

•	 При написании модульных тестов вы узнаете, насколько легко проводить мо
дульное тестирование для конкретного модуля кода. Модульное тестирование
выявляет присутствие (или отсутствие) качеств, которые желательны для ко
да, такие как слабая связанность (coupling) и сильная связность (cohesion).

•	 Прогон модульных тестов демонстрирует, как ведет себя код. Он позволяет
обнаружить присутствие (или отсутствие) характеристик времени выполне
ния, желательных для приложения, например устойчивости и корректности.

•	 С помощью доски и карточек можно сделать прогресс наглядным и конкрет
ным. Можно увидеть, что задачи находятся в состоянии Не начата, В про
цессе и Завершена, и при этом не придется заходить в неочевидную систему
управления проектом и не придется упрашивать программистов составлять
фиктивные отчеты о состоянии проекта.

•	 Итеративная разработка повышает наглядность прогресса (или его отсутст
вия), поскольку чаще фиксируются факты того, что разработка ведется. Соз
дание программного обеспечения, готового к выпуску, отражает реальное по
ложение вещей, в отличие от оценок.

Лучше всего разрабатывать программы, имея многочисленные наглядные пока
затели. Наглядность дает уверенность в том, что прогресс является реальным,
а не вымышленным; спланированным, а не непреднамеренным; воспроизводи
мым, а не случайным.

Рассел Уиндер

Уже на пер­вых лек­ци­ях по ин­фор­ма­ти­ке про­грам­ми­стов учат, что конкурент
ные вычисления – и в особенности параллельные как особый подвид конкурент
ных – вещь трудная, и что лишь лучшим дается надежда справиться с этой за
дачей, и что даже лучшие не справляются. При этом неизменно уделяется боль
шое внимание потокам, семафорам, мониторам и трудностям организации пото
ковой безопасности при одновременном доступе к переменным.

Сложных проблем здесь действительно много, и решать их бывает очень трудно.
Но в чем корень проблем? Общая память. Практически все проблемы конкурент
ных вычислений, о которых постоянно приходится слышать, касаются общей
памяти с изменяемыми данными: состояние гонки (race conditions), взаимная
блокировка (deadlock), активная блокировка (livelock) и т. п. Кажется, ответ оче
виден: забудьте о конкурентности либо держитесь подальше от общей памяти!

Отказ от конкурентности почти наверняка не вариант. Количество ядер в ком
пьютерах возрастает чуть ли не каждый квартал, поэтому достижение настоя
щего параллелизма становится все важнее. Мы не можем больше полагаться на
непрерывный рост тактовой частоты процессоров как основу производительно
сти приложений. Производительность может вырасти только за счет паралле
лизма. Конечно, можно не заботиться о производительности приложений, но ед
ва ли это понравится пользователям.

Так можно ли отказаться от общей памяти? Определенно, да.

Вместо потоков и общей памяти можно воспользоваться процессами и передачей
сообщений. Под процессом здесь понимается защищенное независимое состояние
исполняющегося кода, а не обязательно процесс операционной системы. Такие
языки, как Erlang (а до него occam), показали, что процессы – весьма удачный
механизм программирования конкурентных и параллельных систем. В таких
системах меньше проблем синхронизации, чем в многопоточных системах с об
щей памятью. Кроме того, существует формальная модель взаимодействующих

Передача сообщений
улучшает масштабируемость
параллельных систем

Передача сообщений улучшает масштабируемость параллельных систем	 135

последовательных процессов (Communicating Sequential Processes, CSP), кото
рую можно применять при разработке таких систем.

Можно пойти дальше и организовать вычисления в виде системы, управляемой
потоком данных (dataflow system). В такой системе нет явно запрограммирован
ного потока управления. Вместо этого создается направленный граф операто
ров, соединенных путями передачи данных, а затем в систему подаются данные.
Контроль вычислений осуществляется по готовности данных внутри системы.
И никаких проблем синхронизации.

При этом для системной разработки применяются главным образом такие язы
ки, как C, C++, Java, Python и Groovy, о которых программистам говорят, что
они служат для разработки многопоточных систем с общей памятью. Как же
быть? Решение в том, чтобы использовать – или создавать, если их не существу
ет, – библиотеки и среды, которые предлагают схемы процессов и пересылки со
общений, полностью исключающие применение общей изменяемой памяти.

В итоге отказ от общей памяти в пользу передачи сообщений станет, скорее все
го, наиболее удачным методом реализации систем, эффективно использующих
параллелизм, получивший сегодня повсеместную прописку в компьютерном же
лезе. Занимательно выходит – процессы как единица конкурентного исполне
ния появились раньше потоков, но в будущем, по-видимому, потоки станут ис
пользоваться для реализации процессов.

Линда Райзинг

Воз­мож­но, де­ло в том, что в боль­шин­ст­ве сво­ем про­грам­ми­сты – ум­ные лю­ди,
но за многие годы моего преподавания и тесной совместной работы с ними у ме
ня сложилось впечатление, будто сложность задач, над которыми они бьются,
оправдывает для них создание решений столь же сложных (возможно, и для них
самих спустя несколько месяцев после написания кода) для понимания и сопро
вождения.

Помню один случай с Джо, слушателем моего курса по структурам данных, ко
торый пришел показать мне результат своего труда.

– Держу пари, вы не догадаетесь, что делает этот код! – радостно воскликнул он.

– Ты прав, – согласилась я, не слишком вглядываясь в его текст и думая, как до
нести до него важную мысль. – Уверена, ты хорошо потрудился над этим приме
ром. Боюсь, правда, ты упустил нечто важное. Скажи, Джо, у тебя есть млад
ший брат?

– Да, конечно! Его зовут Фил, и он слушает ваш вводный курс. Он тоже учится
программировать! – гордо объявил Джо.

– Это замечательно, – отвечала я. – Интересно, сможет ли он понять этот код?

– Ни за что, – сказал Джо, – это сложная штука!

– Давай предположим, – продолжила я, – что это реальный рабочий код и что
через несколько лет Филу предложат работу по внесению изменений в этот код.
Что ты сделал для Фила?

Джо моргал, глядя на меня.

– Мы знаем, что Фил – толковый парень, верно?

Джо кивнул.

– И не хочу хвастаться, но я тоже довольно толковая!

Джо ухмыльнулся.

Послание потомкам

Послание потомкам	 137

– Итак, мне нелегко понять, что ты тут сделал, и твоему очень способному млад
шему брату тоже. Скорее всего, придется поломать над этим голову. В таком слу
чае, что можно сказать о написанном тобой коде?

Как мне показалось, Джо увидел свой код в новом свете.

– Представим себе дело так, – сказала я, стараясь как можно лучше играть роль
доброго наставника. – Каждая строка твоего кода – это послание человеку буду
щего, которым может оказаться твой младший брат. Попробуй объяснить этому
умному человеку, как решить эту трудную задачу. Так ли ты видишь это буду
щее? Что этот умный программист увидит твой код и воскликнет: «Ничего себе!
Как здорово! Мне совершенно понятно, что здесь происходит, и я поражен эле
гантностью – нет, красотой – этого кода. Надо немедленно показать его колле
гам по команде. Это же шедевр!»

– Джо, можешь ли ты написать код, который решает эту задачу, но притом пре
красен, как песня? Да, как запавшая в память мелодия. Я думаю, что тот, кто
сумел найти такое сложное решение, как предложенное тобой сегодня, может
также написать что-нибудь красивое. Гм-м… Не начать ли мне выставлять оцен
ки за красоту? Как ты считаешь, Джо?

Джо забрал свою работу и посмотрел на меня. Легкая улыбка пробежала по его
лицу.

– Я все понял, профессор. Пойду улучшать мир для Фила. Спасибо.

Кирк Пеппердин

По­ли­мор­физм – од­на из гран­ди­оз­ных идей, лежащих в фундаменте ООП. Это
слово, заимствованное из греческого языка, означает множество (poly) форм
(morph). В контексте программирования полиморфизм означает многообразие
форм некоторого метода или класса объектов. Но полиморфизм – это не просто
альтернативные реализации. Уместное применение полиморфизма создает ми
ниатюрные локализованные контексты исполнения и позволяет обойтись без гро
моздких блоков if-then-else. Находясь в контексте, мы можем напрямую выпол
нять нужные действия, тогда как, находясь вне этого контекста, мы вынуждены
сначала воссоздать его и лишь затем выполнять нужные действия. Аккуратное
использование альтернативных реализаций позволяет выделить контекст, а зна
чит, решить ту же задачу через меньший объем более удобочитаемого кода. Луч
ше всего продемонстрировать это на примере. Возьмем следующий код для (не
реально) простой корзины покупок:

public class ShoppingCart {
 private ArrayList<Item> cart = new ArrayList<Item>();
 public void add(Item item) { cart.add(item); }
 public Item takeNext() { return cart.remove(0); }
 public boolean isEmpty() { return cart.isEmpty(); }
}

Допустим, некоторые товары в нашем интернет-магазине можно скачать из сети
Интернет, а другие требуют доставки. Создадим другой класс, который поддер
живает эти операции:

public class Shipping {
 public boolean ship(Item item, SurfaceAddress address) { ... }
 public boolean ship(Item item, EMailAddress address) { ... }
}

Упущенные возможности
применения полиморфизма

Упущенные возможности применения полиморфизма	 139

Когда клиент рассчитался, нужно доставить покупки:

while (!cart.isEmpty()) {
 shipping.ship(cart.takeNext(), ???);
}

Параметр ??? – это не какой-то очередной оператор Элвиса1; это неразрешенный
вопрос о том, как нужно доставить товар – электронной или обычной почтой.
Контекста для ответа на этот вопрос уже нет. Можно было сохранить метод до
ставки в виде boolean или enum, а затем использовать if-then-else, чтобы заполнить
значение недостающего параметра. А другое решение – создать два класса, рас
ширяющих Item. Назовем их DownloadableItem и SurfaceItem. Теперь напишем не
много кода. Я сделаю из Item интерфейс, который поддерживает единственный
метод ship (доставить). Чтобы доставить содержимое корзины, вызываем item.
ship(shipper). Оба класса, DownloadableItem и SurfaceItem, реализуют ship:

public class DownloadableItem implements Item {
 public boolean ship(Shipping shipper, Customer customer) {
 shipper.ship(this, customer.getEmailAddress());
 }
}
public class SurfaceItem implements Item {
 public boolean ship(Shipping shipper, Customer customer) {
 shipper.ship(this, customer.getSurfaceAddress());
 }
}

В этом примере мы делегировали ответственность за Shipping (доставку) каждому
Item (товару). Поскольку каждый товар знает, как его следует доставлять, такая
организация позволяет справиться с доставкой, не прибегая к if-then-else. Этот
код также демонстрирует применение двух шаблонов проектирования, которые
часто хорошо сочетаются между собой: Command и Double Dispatch. Эффектив
ное применение этих шаблонов основано на правильном использовании поли
морфизма. При выполнении этих условий число блоков if-then-else сокращается.

В некоторых ситуациях гораздо практичнее использовать не полиморфизм, а if-
then-else, однако при написании кода в стиле полиморфизма он имеет меньший
объем, более удобочитаем и менее хрупок. Количество упущенных возможно
стей несложно подсчитать – оно совпадает с числом операторов if-then-else в коде.

1	 Оператор Элвиса – это оператор ?: в Groovy. Он появился в версии 1.5 языка и полу
чил название благодаря сходству с фирменной прической Элвиса. – Прим. ред.

Берк Хафнагель

Са­ми се­бя они мо­гут на­зы­вать контролем качества или обеспечением качест
ва, но многие программисты зовут их просто напастью. Мой опыт показывает,
что у программистов часто враждебные отношения с теми, кто тестирует их про
граммы. «Они слишком придирчивы» или «Они хотят, чтобы все было идеаль
но» – вот обычные жалобы. Знакомо, да?

Не знаю, по какой причине, но у меня всегда был другой взгляд на работу тести
ровщиков. Может быть потому, что «тестировщиком» на моей первой работе бы
ла секретарь фирмы. Весьма приятная дама Маргарет занималась делопроизвод
ством и пыталась научить пару молодых программистов профессиональному
поведению в присутствии клиентов. Она также обладала даром в считанные се
кунды обнаруживать любой дефект программы, даже самый малозаметный.

В то время я работал над программой, которую написал бухгалтер, считавший
себя программистом. Естественно, с ней были большие проблемы. Когда мне ка
залось, что я исправил какой-то кусок, Маргарет пыталась поработать с ним,
и чаще всего после нескольких нажатий на клавиши оказывалось, что програм
ма неправильно работает, но уже каким-то новым образом. Временами это при
водило в отчаяние и вызывало неловкость, но Маргарет была настолько прият
ным человеком, что мне никогда не приходило в голову обвинить ее в моем жал
ком положении. Наконец, настал день, когда Маргарет смогла без проблем за
пустить программу, создать счет-фактуру, распечатать ее и выйти из программы.
Я испытал восторг. Более того, когда мы установили программу на машине кли
ента, все заработало правильно. Клиент не столкнулся с проблемами, потому что
сначала Маргарет помогла мне обнаружить и исправить эти проблемы.

Вот почему я говорю, что тестировщики – ваши друзья. Может казаться, будто
тестировщики портят вашу репутацию, сообщая о малозначительных пробле
мах. Но когда клиент в восторге от программы, потому что ему не портят жизнь
все эти «досадные мелочи», которые группа контроля качества заставила вас ис
править, вы на высоте. Мысль понятна?

Невероятно, но факт:
тестировщики – ваши друзья

Невероятно, но факт: тестировщики – ваши друзья	 141

Представьте себе такую ситуацию: вы тестируете программу, использующую
«сногсшибательные алгоритмы искусственного интеллекта» для нахождения
и исправления проблем с конкурентным доступом. Вы запускаете программу
и обнаруживаете, что на заставке слово «интеллект» написано с ошибкой. Не
сколько дурное предзнаменование, но ведь это лишь опечатка, верно? Затем вы
ясняется, что экран настройки предлагает флажки (checkboxes) вместо переклю
чателей (radiobuttons), а некоторые сочетания клавиш не работают. Все это мело
чи, но по мере их накопления вы начинаете задумываться, что за люди создава
ли программу. Если они неспособны справиться с простыми вещами, каковы
шансы, что их искусственный интеллект действительно сумеет найти и испра
вить такие замысловатые вещи, как проблемы конкурентного доступа?

Возможно, эти гении настолько погрузились в задачи разработки искусственно
го интеллекта, что не обратили внимания на мелочевку, а «придирчивых тести
ровщиков» у них не было, так что вам приходится сталкиваться с этой самой ме
лочевкой. Однако в результате вы начинаете сомневаться в компетентности этих
программистов.

Следовательно, как ни странно, тестировщики, полные решимости найти все
мелкие недостатки вашего кода, в действительности – ваши друзья.

Стив Фримен

Мне при­хо­ди­лось встре­чать про­ек­ты, где при сборке переписывалась часть ко
да, чтобы для каждой среды исполнения генерировался собственный бинарный
файл. Такой подход всегда излишне усложняет вещи и создает риск появления
несовместимых версий при каждой установке. Как минимум при этом собирает
ся несколько почти идентичных экземпляров программы, каждый из которых
предназначен для установки в соответствующей ему среде. Возникает слишком
много подвижных частей, а значит, больше возможностей для ошибки.

Однажды я работал в команде, где после каждого изменения свойства нужно бы
ло сохранять код и проводить полный цикл сборки, поэтому тестировщики про
стаивали всякий раз, как находилась малейшая неточность (я уже говорил, что
к тому же проект собирался невероятно долго?). Работал я и в такой команде, где
системные администраторы требовали полной пересборки программы при вводе
ее в эксплуатацию (с помощью наших же сценариев сборки), так что невозможно
было гарантировать, что в эксплуатацию попадала та версия, которая прошла
тестирование. И так далее.

Правило простое: создавать единственный бинарный файл, который можно
точно идентифицировать и провести через все этапы конвейера выпуска про
дукта. Все специфические особенности среды исполнения должны оставаться
частью среды. Например, их можно хранить в контейнере с компонентами (com
ponent container), в заранее согласованном файле или в определенных папках.

Если во время сборки вашего проекта производятся манипуляции с кодом или
настройки целевой среды хранятся в самом коде, значит, приложение было
спроектировано недостаточно хорошо: ключевые функции приложения не отде
лены от функций, определяемых платформой. Или еще хуже: команда знает,
как нужно поступить, но не считает внесение нужных изменений достаточно
приоритетной задачей.

Бывают, конечно, исключения: иногда приходится делать сборку для несколь
ких вариантов целевой среды, в которых ограничения по ресурсам существенно

Один бинарный файл

Один бинарный файл	 143

разнятся. Однако это не относится к тем из нас (и таких большинство), кто соз
дает приложения типа «отправить данные из базы данных на экран и обратно».
Другой вариант – работа с плохо написанным унаследованным (legacy) кодом,
в котором навести порядок сразу слишком тяжело. В таких случаях следует дви
гаться постепенно, но начинайте это движение как можно раньше.

И еще одно: храните информацию о среде выполнения в системе управления вер
сиями, как и код. Нет ничего хуже, чем испортить конфигурацию среды и не
иметь возможности узнать, какие в нее были внесены изменения. Настройки
среды должны храниться в отдельном репозитории, так как они меняются с дру
гой скоростью и по другим причинам, чем код. Некоторые команды используют
для этого распределенные системы управления версиями (например, bazaar
и git), поскольку в них проще сохранять в репозиторий изменения, сделанные
в производственной (production) среде – а они неизбежно случаются.

Петер Зоммерлад

В ко­неч­ном сче­те се­ман­ти­ка про­грам­мы определяется работающим кодом. Если
он есть у вас только в виде бинарного файла, его будет непросто прочесть! Однако
исходный код, как правило, доступен, если это ваша собственная программа,
типичная коммерческая разработка, проект с открытым исходным кодом или
программа на динамически интерпретируемом языке. При чтении исходного ко
да смысл программы должен быть очевиден. Можно с уверенностью узнать, что
делает программа, только глядя в исходный код. Даже самое точное описание
технических требований не скажет всей правды: в нем содержится не детальное
описание того, что фактически делает программа, а общие пожелания состави
теля требований. Документ с архитектурой может содержать описание плани
руемой архитектуры, но в нем не будут описаны нужные детали реализации.
Эти документы могут устареть в сравнении с текущей реализацией… или просто
потеряться. Быть может, их даже и не писали. Возможно, единственное, что ос
талось, – это исходный код.

Учтя все сказанное, задайте себе вопрос, насколько понятно ваш код может рас
сказать вам или другому программисту, что он делает.

Вы можете сказать: «О, так в моих комментариях есть все, что нужно знать». Но
учтите, что комментарии – это не работающий код. Они могут вводить в заблуж
дение так же, как любая другая документация. Традиционно считалось, что
комментарии – безусловно хорошая практика, поэтому некоторые программи
сты без всяких раздумий пишут обширные комментарии, даже повторяя и разъ
ясняя в них факты, и без того очевидные из собственно кода. Это плохой способ
сделать код понятным.

Если ваш код нуждается в комментариях, попробуйте провести рефакторинг
так, чтобы они стали не нужны. Пространные комментарии загромождают эк
ран, а ваша IDE может автоматически их скрывать. Если нужно пояснить изме
нение, сделайте это не в коде, а с помощью сообщения при сохранении кода в сис
тему управления версиями.

Правду скажет только код

Правду скажет только код	 145

Что можно сделать, чтобы ваш код действительно говорил правду и как можно
яснее? Старайтесь выбирать хорошие имена. Структурируйте код с учетом силь
носвязанной (cohesive) функциональности, что также облегчает выбор имен.
Уменьшите (decouple) связанность кода, чтобы достичь ортогональности. Напи
шите автоматизированные тесты, раскрывающие запланированное поведение,
и проверьте интерфейсы. Безжалостно переделывайте код, если найдете способ
написать проще и лучше. Старайтесь, чтобы ваш код был как можно проще для
чтения и понимания.

Относитесь к своему коду как к любому другому творческому тексту – стихотво
рению, эссе, записи в открытом блоге или важному электронному письму. Тща
тельно формулируйте то, что хотите выразить, чтобы код делал то, для чего
предназначен, и как можно проще сообщал, что он делает, – так, чтобы ваши на
мерения были ясны, когда их нельзя уже будет узнать у вас самого.

Помните, что полезным кодом пользуются гораздо дольше, чем предполагают его
авторы. Те, кто будут сопровождать ваш код, останутся вам благодарны. А если
вы сами занимаетесь сопровождением, и код, с которым вы работаете, не спешит
раскрыть свои тайны, как можно раньше начните применять вышеупомянутые
принципы. Придайте здравый смысл коду, чтобы сохранить собственный здра
вый рассудок.

Стив Берчук

Не столь уж ред­ки слу­чаи, когда команды, в целом дисциплинированно соблю
дающие хорошие практики написания кода, пренебрежительно относятся к сце
нариям сборки. Их считают либо малозначительными, либо настолько сложны
ми, что обслуживать их может только секта специалистов по выпуску продукта
(release engineers). Если сценарии сборки сложны в сопровождении, содержат
дублирование и ошибки, это приводит к проблемам того же масштаба, что и пло
хо спроектированный код.

Почему ответственные и грамотные разработчики считают сборку проекта некой
второстепенной работой? Одно из объяснений – сценарии сборки часто пишут на
ином языке, чем исходный код. Второе – сценарии сборки не являются «кодом».
Такие объяснения противоречивы, ведь большинство разработчиков с удоволь
ствием изучает новые языки, а именно в результате сборки появляются испол
няемые модули, которые разработчики и конечные пользователи будут тестиро
вать и запускать. Код бесполезен, если из него не собирается исполняемый мо
дуль, а ведь именно сборка определяет компонентную архитектуру приложения.
Сборка – важная часть процесса разработки, и решения в области сборки способ
ны упрощать и сам код, и процесс его написания.

Если в сценариях сборки используются неверные идиомы, такие сценарии тяже
ло сопровождать и, что хуже, тяжело улучшать. Стоит потратить некоторое вре
мя, чтобы разобраться, как правильно вносить изменения. Если приложение со
бирается с неверными версиями зависимых библиотек или во время сборки за
даны неверные параметры конфигурации, это может вызвать ошибки в самом
приложении.

Традиционно тестирование всегда возлагалось на группу контроля качества. Сей
час мы понимаем, что тестирование в процессе написания кода – необходимое ус
ловие для получения предсказуемого результата. Аналогично и владельцем про
цесса сборки должна быть команда разработчиков.

Возьмите сборку
(и ее рефакторинг) на себя

Возьмите сборку (и ее рефакторинг) на себя 	 147

Понимание процесса сборки может упростить весь жизненный цикл разработки
и сократить издержки. Если процесс сборки легко осмыслить и применить, это
дает возможность новому разработчику быстро и легко включиться в работу. Ес
ли конфигурацию приложения автоматизировать в рамках процесса сборки, это
поможет гарантировать получение одинаковых результатов, когда над проектом
работает несколько человек, и избежать реплик в духе «А у меня все работает».
Многие инструменты сборки генерируют отчеты о качестве кода, заблаговремен
но вскрывающие потенциальные проблемы. Потратив время и научившись са
мостоятельно управлять процессом сборки, вы облегчите жизнь себе и всем ос
тальным участникам вашей команды. Вы сможете сосредоточиться на разработ
ке новой функциональности, что принесет пользу клиентам и сделает вашу ра
боту более приятной.

Изучите процесс сборки достаточно хорошо, чтобы знать, когда и как изменять
его. Сценарии сборки – это тоже код. Они слишком важны, чтобы доверить их
кому-то другому, хотя бы по той причине, что приложение не закончено, пока
оно не собрано. Задача программирования не завершена, пока мы не поставили
работающее приложение пользователю.

Гудни Хаукнес, Кари Россланд и Анн Кэтрин Гэгнат

Пред­ставь­те се­бе, что вы со­вер­шен­но по­гло­ще­ны своей работой: сосредоточены,
увлечены и заняты. Вы потеряли счет времени. Вы счастливы. Вы в состоянии
потока. В масштабах всей команды разработчиков трудно достичь и поддержи
вать состояние потока из-за многочисленных помех, отвлечений и прочих пре
пятствий, которые легко могут его нарушить.

Если вы уже участвовали в парном программировании, то, вероятно, знаете, как
оно способствует достижению состояния потока. Если нет, то мы хотим поде
литься своим опытом, чтобы побудить вас заняться парным программировани
ем немедленно! Чтобы парное программирование было успешным, требуются
некоторые усилия со стороны отдельных участников команды и всей команды
в целом.

Будучи частью команды, проявляйте терпение по отношению к менее опытным
разработчикам. Преодолейте свой страх перед более опытными разработчика
ми. Осознайте, что все люди разные, и научитесь это ценить. Помните о сильных
и слабых качествах – как своих, так и других членов команды. Вас может уди
вить, сколь многому способны научить коллеги.

Применяйте парное программирование для распространения навыков и знаний
среди всех участников проекта. Задачи нужно решать парами и часто произво
дить ротацию участников пар и выполняемых каждой парой задач. Сообща уста
новите правило для такой ротации. Если нужно, откажитесь от этого правила
или подправьте его. Наш опыт показывает, что не обязательно доводить задачу
до конца, прежде чем передать ее следующей паре. Может показаться, будто это
неразумно, однако на практике мы обнаружили, что это эффективно.

Существует множество ситуаций, когда состояние потока может быть наруше
но, но парное программирование позволяет его сохранить:

•	 Снижается роль «фактора грузовика». Вот слегка пугающий мысленный экс
перимент: сколько членов вашей команды должно попасть под грузовик, чтобы
стал невозможным выпуск конечного продукта? Иными словами, насколько

Программируйте парами
и входите в поток

Программируйте парами и входите в поток	 149

выпуск вашего конечного продукта зависит от определенных участников ко
манды? Являются ли знания привилегией или находятся в общем доступе?
Если вы осуществляете ротацию задач между парами, всегда найдется кто-то
еще, обладающий знаниями, необходимыми для завершения работы. На со
стояние потока вашей команды «фактор грузовика» не повлияет.

•	 Эффективно решаются проблемы. Если вы программируете в паре и сталки
ваетесь со сложной проблемой, вам всегда есть с кем ее обсудить. В таком диа
логе варианты решения найдутся скорее, чем если вы будете биться над про
блемой в одиночестве. В результате ротации задач внутри команды ваше ре
шение будет повторно рассмотрено и критически оценено следующей парой,
поэтому не столь важно, если ваше первоначальное решение окажется неоп
тимальным.

•	 Плавно проходит интеграция. Если ваша текущая задача требует обраще
ния к другому фрагменту кода, можно надеяться, что названия методов, до
кументы и тесты достаточно содержательны, чтобы получить представление
о том, что этот код делает. Если это не так, то, работая в паре с автором этого
фрагмента кода, вы сможете лучше понять и быстрее интегрировать его в свой
код. Кроме того, в процессе обсуждения вы получите возможность улучшить
именование, документацию и способы тестирования.

•	 Можно безболезненно прерываться. Если кто-то подошел к вам с вопросом,
или звонит телефон, или нужно срочно ответить на письмо, или нужно при
нять участие в совещании, ваш партнер по парному программированию мо
жет продолжить работу над кодом. Когда вы вернетесь, ваш напарник все
еще будет в состоянии потока, и вы сможете быстро наверстать упущенное
и присоединиться к нему.

•	 Новые участники команды быстро вливаются в проект. Если в команде
применяется парное программирование и правильно организована ротация
пар и задач, новички быстро знакомятся как с кодом, так и с другими члена
ми команды.

Поток дает невероятную продуктивность. Но это состояние легко утратить. Ста
райтесь всеми силами войти в рабочий поток, а затем, когда это получилось,
удерживайтесь в нем!

Эйнар Ландре

23 сен­тяб­ря 1999 го­­да космический аппарат Mars Climate Orbiter стоимостью
327,6 миллионов долларов потерялся при выходе на орбиту Марса из-за про
граммной ошибки на Земле. Ошибку впоследствии окрестили смешением еди
ниц измерений (metric mix-up). Программное обеспечение наземной станции про
изводило расчеты в фунтах силы, а космический аппарат ожидал указаний
в ньютонах1, в результате чего наземная станция недооценила мощность ускори
телей аппарата в 4,45 раза.

Это один из многих примеров отказов программного обеспечения, которых мож
но было избежать благодаря более строгой и предметно-ориентированной типи
зации. Это также наглядная демонстрация назначения многих возможностей
языка Ada, спроектированного преимущественно для создания встраиваемого
отказоустойчивого программного обеспечения. В Ada применяется строгая ти
пизация со статической проверкой как примитивных, так и определенных поль
зователем типов:

type Velocity_In_Knots is new Float range 0.0 .. 500.00;
type Distance_In_Nautical_Miles is new Float range 0.0 .. 3000.00;
Velocity: Velocity_In_Knots;
Distance: Distance_In_Nautical_Miles;
Some_Number: Float;
Some_Number:= Distance + Velocity; -- Компилятор отловит здесь
 ошибочное использование типов.

Разработчики приложений, сбои в которых менее критичны, также могут выиг
рать от более широкого применения предметно-ориентированной типизации.
Предметно-ориентированные типы можно использовать вместо имеющихся в язы
ках программирования и библиотеках базовых типов данных, таких как строки
и числа с плавающей запятой. В Java, C++, Python и других современных язы
ках абстрактный тип данных известен как class. Применение таких классов,

1	 1 ньютон равен 0,224808943 фунта силы. – Прим. ред.

Предпочитайте примитивам
предметно-ориентированные
типы данных

Предпочитайте примитивам предметно-ориентированные типы данных	 151

как Velocity_In_Knots (скорость в узлах) и Distance_In_Nautical_Miles (расстояние
в морских милях) значительно повышает качество кода:

•	 Такой код легче читать, поскольку он выражает понятия предметной облас
ти, а не просто описывает строки (String) или действительные числа (Float).

•	 Такой код легче тестировать, потому что он инкапсулирует поведение, кото
рое легко проверить.

•	 Такой код облегчает повторное использование в разных приложениях или
системах.

Этот подход в равной мере пригоден для использования в языках как со статиче
ской, так и с динамической типизацией. Единственное отличие в том, что в язы
ках со статической типизацией разработчик получает некоторую помощь от ком
пилятора, тогда как при динамической типизации больше приходится пола
гаться на модульное тестирование. Могут различаться стили проверки, но под
ход и стиль выражения одинаковы.

Мораль: начинайте пробовать предметно-ориентированные типы с целью повы
шения качества разрабатываемых программ.

Жиль Колборн

Со­об­ще­ния об ошиб­ках – наиболее ответственный вид взаимодействия между
пользователем и системой. Они возникают, когда общение пользователя с систе
мой находится на грани разрыва.

Проще всего считать, будто ошибки возникают по вине пользователей в резуль
тате ввода неверных данных. Но ошибки, которые люди совершают, предсказуе
мы и происходят системно. Поэтому можно «отлаживать» взаимодействие меж
ду пользователем и системой так же, как вы отлаживаете взаимодействие между
другими компонентами системы.

Допустим, пользователь должен ввести дату в определенном диапазоне. Чем по
зволять ему ввести любую дату, не лучше ли предоставить средство вроде списка
или календаря, которое покажет только допустимые даты? Это исключит вся
кую возможность ввода даты за пределами разрешенного диапазона.

Другая распространенная проблема – ошибки форматирования. Например, если
пользователь видит текстовое поле для даты и вводит однозначно трактуемую да
ту «29 июля 2012», неправильно будет забраковать ее только потому, что данные
имеют не тот формат, который предпочитаете вы (например, «ММ/ДД/ГГГГ»).
Еще хуже отклонить дату «29 / 07 / 2012» только из-за лишних пробелов; такие
проблемы пользователям сложнее всего осознать, ведь им кажется, что дата име
ет верный формат.

Ошибка возникает потому, что нам проще отклонить данные, чем разбирать три
или четыре формата даты, получивших широкое распространение. Подобные
мелкие ошибки раздражают пользователя, так что ему сложно сосредоточиться,
и он делает все новые ошибки. Чтобы избежать этого, с пониманием отнеситесь
к желанию пользователя вводить именно информацию, а не данные.

Другой способ избежать ошибки форматирования – предложить пользователю
подсказку, например, с помощью метки в поле ввода, которая показывает нуж
ный формат («ДД/ММ/ГГГГ»). Другой способ подсказать – разделить поле на
три части по два, два и четыре символа.

Предотвращайте
появление ошибок

Предотвращайте появление ошибок	 153

Подсказки – это не то же самое, что инструкции: подсказки ненавязчивы и ла
коничны, а инструкции многословны. Подсказки появляются в момент взаимо
действия, а инструкции – до этого момента. Подсказки подчеркивают контекст,
а инструкции диктуют поведение.

Обычно инструкции малоэффективны в предотвращении ошибок. Пользовате
ли склонны считать, что интерфейсы должны действовать согласно их прежне
му опыту («Любому должно быть понятно, что означает 29 июля 2012!»). Поэтому
инструкции никто не читает. Подсказки уводят пользователей от совершения
ошибок.

Еще один способ избежать ошибок – предлагать значения по умолчанию. Напри
мер, пользователи, как правило, вводят значения, которые соответствуют датам
сегодня, завтра, мой день рождения, срок сдачи моего проекта или дате, указан
ной в этой же форме в прошлый раз. В зависимости от контекста одна из этих дат
вполне может оказаться хорошим вариантом для значения по умолчанию.

Какова бы ни была причина ошибки, совершенной пользователем, система долж
на ошибки прощать. Этому можно содействовать, обеспечив возможность много
уровневой отмены (undo) всех выполненных операций – в особенности тех, кото
рые могут удалить или изменить данные пользователя.

Запись каждой операции отмены в файл журнала и его последующий анализ мо
гут пролить свет на то, какие особенности интерфейса заставляют пользователей
бессознательно совершать ошибки, например постоянно нажимать «не на ту»
кнопку. Часто оказывается, что такие ошибки вызваны неудачными подсказка
ми, которые вводят пользователя в заблуждение, или непродуманным порядком
выполнения действий, который можно перепроектировать, чтобы предотвратить
появление ошибок.

Какой бы подход вы ни избрали, большинство ошибок являются системными
и возникают из взаимного недопонимания между пользователем и приложени
ем. Если вы поймете, как пользователи думают, как они воспринимают инфор
мацию, как принимают решения и вводят данные, тогда вы сможете отладить
взаимодействие между вашими программами и вашими пользователями.

Роберт Мартин (Дядюшка Боб)

Ко­го мож­но счи­тать про­фес­сио­наль­ным про­грам­ми­стом?

Самая главная черта профессионального программиста – личная ответствен
ность. Профессиональные программисты отвечают за свою карьеру, свои оцен
ки, свои обязательства по срокам, свои ошибки и свое мастерство. Профессио
нальный программист не перекладывает эту ответственность на других.

•	 Профессионал сам отвечает за свою карьеру. Чтение и обучение – ваша от
ветственность. Быть в курсе последних достижений отрасли и технологий –
ваша ответственность. Слишком часто программисты считают, что обучать
их – задача работодателя. Извините, это совершенно неверно. Как вы думае
те, врачи тоже так считают? А юристы? Нет, они учатся в свое свободное вре
мя и на собственные средства. Они проводят значительную часть свободного
времени, изучая журналы и решения суда. Они поддерживают свой профес
сиональный уровень. Так должны поступать и мы. Отношения между вами
и работодателем хорошо описаны в вашем контракте. Если коротко, работо
датель обещает вам платить, а вы обещаете хорошо работать.

•	 Профессионал отвечает за написанный код. Он не выпускает код, если не
уверен в его работе. Задумайтесь на минуту. Как вы можете считать себя про
фессионалом, если готовы выпустить код, в котором у вас нет уверенности?
Профессиональные программисты ожидают, что отдел контроля качества ни
чего не найдет в их коде, потому что они выпускают его не раньше, чем тща
тельно протестируют. Конечно, группа контроля качества что-нибудь да
обнаружит, ведь идеальных людей нет. Но как профессионалы мы должны
стремиться к тому, чтобы контролю качества ничего не досталось.

•	 Профессионал – это командный игрок. Он отвечает за результат всей коман
ды, а не только за свою работу. Профессионалы помогают друг другу, учат
друг друга, учатся друг у друга и даже прикрывают друг друга при необходи
мости. Когда один участник команды спотыкается, другие вступаются за не
го, зная, что когда-нибудь им самим понадобится прикрытие.

Профессиональный программист

Профессиональный программист	 155

•	 Профессионал не приемлет длинных списков дефектов. Огромный список де
фектов – это признак неряшливой работы. Системы, в которых система управ
ления дефектами содержит тысячи записей, – это трагедия беспечности. Бо
лее того, в большинстве проектов сама потребность в автоматизированной сис
теме управления дефектами есть симптом беспечности. Только очень крупные
системы могут иметь такое большое количество ошибок, что для управления
ими требуется автоматизация.

•	 Профессионал поддерживает порядок. Он гордится своим мастерством. Его
код понятен, хорошо структурирован и легко читается. Профессионалы сле
дуют оговоренным стандартам и лучшим практикам. Они никогда, ни при
каких обстоятельствах не работают впопыхах. Представьте себе, что вы мо
жете покинуть собственное тело и наблюдать, как врач делает вам операцию
на открытом сердце. У этого врача есть крайний (в буквальном смысле) срок
завершения работы. Он должен закончить операцию до того, как аппарат ис
кусственного сердца повредит слишком много кровяных клеток в вашем ор
ганизме. Как, по-вашему, он должен себя вести? Вы бы хотели, чтобы он вел
себя как типичный программист, пишущий код в спешке и беспорядке? Хо
тите ли вы услышать от него: «Как-нибудь потом все это исправлю»? Или все
же он должен тщательно придерживаться правил своей науки, рассчитывать
время и быть уверенным, что избранный им подход – лучший из доступных
ему? Чего хотите вы – беспорядка или профессионализма?

Профессионалы обладают чувством ответственности. Они отвечают за собствен
ную карьеру. Они отвечают за правильную работу своего кода. Они отвечают за
уровень своего мастерства. Они не отказываются от своих принципов, когда на
них давят сроки. На самом деле, когда давление растет, профессионалы еще креп
че держатся за тот порядок, который считают правильным.

Диомидис Спинеллис

Хра­ни­те все, что ка­са­ет­ся лю­бых ва­ших про­ек­тов, в системе управления вер
сиями. Необходимые для этого ресурсы уже имеются: бесплатные инструменты
типа Subversion, Git, Mercurial и CVS, вдоволь дискового пространства, дешевые
и мощные серверы, повсеместный доступ в Интернет и даже службы хостинга
проектов. После того как вы установили систему управления версиями, сохра
нить ваши труды в репозиторий очень просто: достаточно лишь выполнить соот
ветствующую команду в чистом каталоге с кодом. А освоить нужно всего две но
вые основные операции: запись (commit) в репозиторий изменений, сделанных
вами в коде, и обновление (update) вашей рабочей версии проекта до той, которая
находится в репозитории.

После того как проект помещен в систему управления версиями, можно без тру
да просмотреть его историю, узнать, кто написал каждый фрагмент кода, и об
ратиться к конкретной версии файла или проекта с помощью уникального иден
тификатора. А что еще важнее – теперь вы можете делать рискованные измене
ния в коде, и больше не нужно оставлять закомментированный код на случай,
если он потребуется в будущем. Ведь старая версия надежно хранится в репози
тории. Можно (и нужно) помечать (tag) стабильные версии понятными вам име
нами, чтобы потом быстро получить именно ту версию, которая работает у ваше
го клиента. Можно создавать отдельные ветви (branches) и разрабатывать их
параллельно: в большинстве проектов есть активно разрабатываемая ветвь и од
на или несколько ветвей более ранних версий, для которых осуществляется ак
тивная поддержка.

Система управления версиями минимизирует трения между разработчиками.
Когда программисты работают над независимыми частями программного обес
печения, их интеграция проходит «на ура». Когда они одновременно изменяют
одни и те же файлы, система сообщит об этом и позволит разрешить конфликты.
Можно настроить систему так, чтобы она оповещала всех разработчиков о каж
дом внесенном изменении, что даст каждому общее представление о ходе разви
тия проекта.

Держите все
в системе управления версиями

Держите все в системе управления версиями 	 157

Организуя работу над проектом, не жадничайте: поместите в систему управле
ния версиями все, что относится к проекту. Помимо исходного кода занесите
в репозиторий документацию, инструменты, сценарии для сборки, описания тес
товых сценариев, графический материал и даже библиотеки. Когда весь проект
надежно помещен в репозиторий (для которого регулярно делается резервная ко
пия), возможный ущерб от потери диска или данных становится минимальным.
Чтобы начать разработку на новой машине, достаточно получить копию (check
out) проекта из репозитория. Это упрощает распространение, сборку и тестирова
ние кода на разных платформах: на любой машине единственная команда обнов
ления гарантирует вам загрузку последней версии программного обеспечения.

После того как вы оцените прелести работы с системой управления версиями,
присмотритесь к следующим правилам, которые сделают вашу работу и работу
вашей команды еще более эффективной:

•	 Сохраняйте каждое логическое изменение в виде отдельной операции. Если
вы объедините большую кучу изменений в одну запись (commit), вам будет
трудно разделить их впоследствии. Это особенно важно, когда проводится ре
факторинг или изменение стиля в рамках всего проекта, что может легко
скрыть другие модификации.

•	 Сопровождайте каждое изменение поясняющим сообщением. Как минимум
кратко опишите, что вы изменили. И если вам требуется сохранить на буду
щее причины сделанных изменений, лучшего места не найти.

•	 Наконец, не стоит сохранять в репозиторий такой код, который ломает сбор
ку проекта, иначе вы быстро навлечете на себя недовольство других участни
ков проекта.

Жизнь с системой управления версиями слишком приятна, чтобы портить ее
ошибками, которых легко избежать.

Берк Хафнагель

Вы уже не­сколь­ко ча­сов ра­бо­тае­те над какой-то неподдающейся задачей, а ре
шения все не видно. Вы встаете, чтобы размять ноги, или направляетесь к авто
мату по продаже напитков, а на обратном пути ответ вдруг становится очевиден.

Случалось ли с вами такое? Приходилось ли вам задумываться, почему так про
исходит? Все дело в том, что, когда вы пишете код, активна логическая часть
вашего мозга, а творческая отключена. Она никак не сможет себя проявить, по
ка логическая сторона не сделает перерыв в работе.

Вот вам пример из жизни. Я причесывал кое-какой старый код и наткнулся на
«занятный» метод. Он предназначался для проверки правильности формата вре
мени в строке вида hh:mm:ss xx, где hh – это часы, mm – минуты, ss – секунды,
а xx принимает значение AM или PM.

Метод содержал следующий код для преобразования двух символов (представ
ляющих час) в число и проверки, что час находится в заданном диапазоне:

try {
 Integer.parseInt(time.substring(0, 2));
} catch (Exception x) {
 return false;
}
if (Integer.parseInt(time.substring(0, 2)) > 12) {
 return false;
}

Тот же самый код появлялся еще дважды с соответствующими изменениями
в смещении символов и в значении верхней границы, чтобы проверить правиль
ность минут и секунд. Заканчивался метод следующими строками, проверяю
щими AM и PM:

Брось мышь и медленно
отойди от клавиатуры

Брось мышь и медленно отойди от клавиатуры	 159

if (!time.substring(9, 11).equals("AM") &
 !time.substring(9, 11).equals("PM")) {
 return false;
}

Если ни одно из этого ряда условий не оказывалось ложным (при этом возвраща
ется false), метод возвращал true.

Если приведенный код кажется слишком многословным и трудным для понима
ния, не волнуйтесь. Мне тоже так показалось, и я решил, что нашел код, кото
рый стоит подчистить. Я переработал его и написал несколько модульных тес
тов, чтобы проверить, по-прежнему ли правильно работает новый код.

Закончив работу, я остался доволен результатами. Новый вариант легко читался,
был вдвое меньшего размера и точнее, поскольку прежний код проверял только
верхнюю границу часов, минут и секунд.

Когда я собирался на работу на следующий день, меня посетила идея: а почему
бы не проверить правильность строки с помощью регулярного выражения? Че
рез несколько минут у меня была рабочая реализация, состоящая всего из одной
строки кода:

public static boolean validateTime(String time) {
 return time.matches("(0[1-9]|1[0-2]):[0-5][0-9]:[0-5][0-9] ([AP]M)");
}

Смысл не в том, что в итоге мне удалось заменить 30 с лишним строк кода одной,
а в том, что пока я не отошел от компьютера, мне казалось, что мой первый вари
ант был лучшим решением задачи.

Поэтому, когда вы в следующий раз столкнетесь с неподатливой задачей, сделай
те себе одолжение. По-настоящему разобравшись в сути проблемы, займитесь
чем-то, что включит творческую часть вашего мозга: нарисуйте схему проблемы
на бумаге, послушайте музыку или просто выйдите из дома. Иногда лучшее, что
вы можете сделать, чтобы решить задачу, – это бросить мышь и отойти от кла
виатуры.

Карианне Берг

Мы, про­грам­ми­сты, стран­ные соз­да­ния. Мы любим писать код. Но что касает
ся чтения кода, мы обычно сторонимся этого дела. В конце концов, писать код
гораздо увлекательней, а читать код трудно – иногда почти невозможно. Особен
но тяжело читать код, написанный другими. Не всегда из-за того, что он плохо
написан, но потому, что другой человек думает и решает задачи иначе, чем вы.
А вам не приходило в голову, что чтение чужого кода может помочь улучшить
ваш собственный код?

Когда вы в следующий раз будете читать какой-нибудь код, остановитесь и заду
майтесь. Трудно его читать или легко? Если трудно, то почему? Он плохо отфор
матирован? Система именования непоследовательна или нелогична? Несколько
задач смешались в одном фрагменте кода? Возможно, выбранный язык затруд
няет чтение кода. Старайтесь учиться на чужих ошибках, чтобы не повторять их
в своем коде. Вас могут ожидать сюрпризы. Например, приемы разрыва зависи
мостей могут быть полезны для введения слабого связывания, но они могут так
же затруднить чтение кода. А код, который одни считают элегантным, другие
могут назвать нечитаемым.

Если код читается легко, обратите на него внимание и посмотрите, нельзя ли че
му-то научиться у этого кода. Возможно, в нем применяется шаблон проектиро
вания, который вам не знаком или который вы пытались реализовать ранее.
Или он содержит методы более короткие и более точно именованные, чем ваши.
В некоторых проектах с открытым исходным кодом можно встретить массу при
меров великолепного, понятного кода, тогда как в других вы столкнетесь с пря
мо противоположным! Скачайте немного кода из репозиториев таких проектов
и поизучайте его.

Чтение собственного старого кода из проекта, над которым вы больше не работае
те, тоже может оказаться поучительным опытом. Начните с какого-нибудь само
го старого кода и постепенно продвигайтесь к коду, который пишете сегодня. Воз
можно, вы обнаружите, что читать старый код совсем не так легко, как было в то
время, когда вы его писали. Ваш ранний код может вызвать у вас определенное

Читайте код

Читайте код	 161

смущение, типа того, которое испытываешь, когда тебе рассказывают о том, что
ты говорил накануне вечером, выпивая в пабе. Посмотрите, как с годами росло
ваше мастерство; это может стать весьма ободряющим открытием. Выясните, ка
кие части кода тяжело читать, и подумайте, продолжаете ли вы писать код в том
же стиле сегодня.

Итак, когда вы в следующий раз почувствуете необходимость улучшить свое
мастерство программирования, не беритесь за книги. Читайте код.

Кейт Брэйтуэйт

Во всех про­ек­тах, кро­ме са­мых ма­лень­ких, люди работают с другими людьми.
Во всех исследовательских областях, кроме самых абстрактных, люди пишут
программы для людей, чтобы помочь им достичь определенную цель. Люди пи
шут программы вместе с людьми и для людей. Этот бизнес строится вокруг лю
дей. К сожалению, программистов обучают тому, что мало помогает им в обще
нии с людьми, для которых и с которыми они работают. К счастью, существует
целая область знаний, которая может в этом помочь.

К примеру, Людвиг Витгенштейн (Ludwig Wittgenstein) в своей книге «Philoso
phical Investigations»1 (Wiley-Blackwell) и других работах весьма убедительно
утверждает, что ни один человеческий язык не является – и не может являть
ся – форматом сериализации для передачи идей или образов из головы одного
человека в голову другого. Нам следует помнить об этом уже тогда, когда мы «со
бираем требования». Витгенштейн также показывает, что наша способность по
нимать друг друга связана не с общими определениями, а с единым опытом и об
разом жизни. Возможно, по этой причине у программистов, глубоко вникающих
в предметную область, все получается лучше, чем у тех, кто держится от нее
в стороне.

Лакофф (Lakoff) и Джонсон (Johnson) в своей книге «Metaphors We Live By»2

(University of Chicago Press) утверждают, что язык в значительной степени ме
тафоричен и что метафоры языка позволяют нам заглянуть в собственное вос
приятие мира. Даже такой на первый взгляд конкретный термин, как денежный
поток (cash flow), употребляемый нами в разговоре о финансах, может быть по
нят метафорично: «деньги – это жидкость». А как эта метафора влияет на наши
представления о системах, оперирующих деньгами? Или другой пример: мы го
ворим об уровнях в стеке протоколов, где есть протоколы высокоуровневые,

1	 Людвиг Витгенштейн «Философские исследования», АСТ, 2011.
2	 Лакофф Дж. и Джонсон М. «Метафоры, которыми мы живем», ЛКИ, 2008.

Читайте гуманитарные книги

Читайте гуманитарные книги	 163

а есть низкоуровневые. Это сильная метафора: пользователь – «вверху», а техно
логии «внизу». Метафора вскрывает наше представление о структуре системы,
которую мы строим. Она также может означать привычку мыслить шаблонно,
которую мы время от времени можем с пользой для себя ломать.

Мартин Хайдеггер (Martin Heidegger) внимательно изучал пути познания чело
веком инструментов через опыт их применения. Программисты создают и ис
пользуют инструменты, мы думаем об инструментах, создаем инструменты, мо
дифицируем и переделываем их. Инструменты – это объекты нашего интереса.
Но для их пользователей, как показывает Хайдеггер в своей книге «Being and
Time»1 (Harper Perennial), инструмент – невидимая сущность, постижение кото
рой происходит только во время ее применения. Для пользователей инструмен
ты становятся объектами интереса только тогда, когда они не работают. Об этой
разнице стоит помнить, когда разговор идет об удобстве работы.

Элеонора Рош (Eleanor Rosch) опровергла модель категоризации Аристотеля, упо
рядочивающую наше понимание мира. Когда мы, программисты, спрашиваем
пользователей, чего они хотят от системы, мы обычно стараемся получить опре
деления, основывающиеся на предикатах. Нам это очень удобно. Термы в преди
катах легко превращаются в атрибуты класса или колонки таблицы. Подобные
категории являются точными, непересекающимися и логически верными. Но,
к сожалению, как показывает Рош в «Natural Categories»2 (Естественные кате
гории) и более поздних своих работах, люди представляют себе мир иными спо
собами. Представление людьми мира основано на примерах. Некоторые из та
ких примеров, так называемые прототипы, лучше других, и поэтому основан
ные на них категории размыты, пересекаются одна с другой, могут обладать на
сыщенной внутренней структурой. Пока мы не перестанем настаивать на отве
тах в духе системы категорий Аристотеля, мы не сможем задать пользователям
правильные вопросы об их мире, и нам будет трудно добиться необходимого об
щего понимания.

1	 Мартин Хайдеггер «Время и бытие», Наука, 2007.
2	 «Cognitive Psychology» (Когнитивная психология) 4: 328-50 (1973).

Джейсон П. Сэйдж

Пользуйтесь готовыми решениями – глупо снова изобретать колесо…

При­хо­ди­лось вам слы­шать по­доб­ный со­вет? Ну, еще бы! Каждый разработчик
или студент часто слышит такие высказывания. Но почему? Почему на повтор
ное изобретение колеса так косо смотрят? Потому что существующий код, как
правило, работает. Он уже в какой-то форме прошел контроль качества и строгое
тестирование и теперь успешно применяется. Кроме того, время и силы, потра
ченные на изобретение нового решения, едва ли окупятся в той же мере, как ис
пользование готового продукта или кода. Стоит ли браться за изобретение коле
са? Зачем? В каких случаях?

Вероятно, вы знакомы с публикациями о шаблонах в разработке или с книгами,
посвященными проектированию программного обеспечения. Какой бы замеча
тельной ни была предлагаемая в них информация, они часто вгоняют в сон.
В какой мере просмотр фильма о парусном спорте отличается от самостоятель
ного хождения под парусом, в такой же мере использование готового кода отли
чается от процесса, когда вы разрабатываете собственное приложение с нуля,
тестируете его, ломаете, чините и постепенно улучшаете его.

Изобретение колеса – это не просто упражнение в правильном размещении кон
струкций кода: оно требует глубокого понимания внутреннего устройства раз
личных готовых компонентов. Вы знаете, как работают менеджеры памяти?
Виртуальные страницы? Можете сами их реализовать? А как насчет двунаправ
ленных связных списков? Классов динамических массивов? Клиентов ODBC?
Можете написать графический интерфейс пользователя, который работает так
же, как тот, что вы сейчас используете, и который вам нравится? Можете сами
создать виджет для браузера? Знаете, когда нужно писать систему с мультиплек
сированием, а когда – многопоточную? Как решить, какая база данных лучше –
в файле или в памяти?

Почаще изобретайте колесо

Почаще изобретайте колесо	 165

Большинству разработчиков никогда не приходилось создавать такие базовые
программные компоненты, а потому они лишь поверхностно разбираются в ра
боте этих «колес». В результате все подобные модули и библиотеки считаются та
инственным черным ящиком, который каким-то образом работает. Если вы ви
дите только поверхность воды, этого недостаточно для понимания опасностей,
таящихся в ее глубине. Если вы ничего не знаете о создании более низкоуровне
вого программного обеспечения, это ограничивает вашу способность создавать
действительно выдающиеся продукты.

Попытаться изобрести колесо и потерпеть неудачу полезнее успеха с первой же
попытки. Уроки, полученные методом проб и ошибок, имеют эмоциональную
составляющую, которую простое чтение технической книги не способно создать!

Запоминать факты и читать умные книги важно, но в становлении выдающего
ся программиста приобретение опыта имеет такое же значение, как накопление
фактов. Изобретение колеса так же важно для образования и мастерства про
граммиста, как поднятие тяжестей для культуриста.

Сэм Сааристе

Шаб­лон Singleton ре­ша­ет мно­гие ва­ши про­бле­мы. Вы знаете, что вам нужен
единственный экземпляр. Вы получаете гарантию, что этот экземпляр будет
инициализирован перед использованием. Архитектура остается простой благо
даря наличию глобальной точки доступа. Все прекрасно. Ну что может не понра
виться в этом классическом шаблоне проектирования?

Если подумать, то весьма многое. Как ни соблазнительно применение синглтонов,
они, как показывает опыт, приносят больше вреда, чем пользы. Они затрудняют
тестирование и усложняют сопровождение. К сожалению, это понимание не
столь распространено, как хотелось бы, и синглтоны сохраняют свое обаяние для
множества программистов. Хотя есть основания задуматься, так ли они хороши:

•	 Ограничение на число экземпляров класса часто иллюзорно. Во многих слу
чаях утверждение, что в будущем не понадобятся дополнительные экземпля
ры, ничем не подкреплено. Домыслы в основе архитектуры приложения обя
зательно приведут к неприятностям в будущем. Технические требования ме
няются. Хорошая архитектура это учитывает. Синглтоны – нет.

•	 Синглтоны создают неявные зависимости между концептуально независи
мыми модулями кода. Беда в том, что, во-первых, эти зависимости незамет
ны, а во-вторых, создают ненужные связи между модулями. Этот запашок
в коде становится острее, когда вы пытаетесь писать модульные тесты, осно
ванные на слабом связывании и возможности выборочно применять реализа
ции-макеты вместо настоящих. Синглтоны не дают осуществлять такое про
стое моделирование.

•	 Синглтоны неявно хранят состояние, что опять-таки препятствует мо
дульному тестированию. Модульное тестирование предполагает, что тесты
независимы друг от друга, благодаря чему их можно выполнять в любом по
рядке, а программу можно возвращать в известное состояние перед выпол
нением каждого модульного теста. Как только появляются синглтоны с из
меняемым (mutable) состоянием, обеспечить такие условия может оказаться

Не поддавайтесь очарованию
шаблона Singleton

Не поддавайтесь очарованию шаблона Singleton	 167

затруднительно. Кроме того, такое глобально доступное долгоживущее со
стояние затрудняет интерпретацию кода человеком, особенно в многопоточ
ной среде.

•	 Многопоточность создает дополнительные капканы в использовании шаб
лона синглтона. Поскольку простая блокировка доступа не очень эффектив
на, получила распространение так называемая блокировка с двойной провер
кой (DCLP). К несчастью, иногда это просто другая разновидность рокового
влечения. Оказалось, что во многих языках DCLP не является потоково-без
опасной, и даже в тех, где она является потоково-безопасной, сохраняются
возможности для ее неправильной работы.

Избавление от синглтонов может стать в окончательном итоге сложной задачей:

•	 Явное уничтожение объектов синглтонов не поддерживается. В отдельных
контекстах это может оказаться проблемой, например в архитектуре с под
ключаемыми модулями, где модуль можно безопасно выгрузить, только если
все его объекты удалены из памяти.

•	 При завершении программы порядок неявной зачистки синглтонов не опре
делен. Это может вызвать проблемы в приложениях, содержащих синглтоны
с взаимными зависимостями. При завершении таких приложений одни сингл
тоны могут продолжать обращаться к другим, которые к тому моменту уже
уничтожены.

Некоторые из перечисленных недостатков можно преодолеть с помощью специ
альных механизмов. Однако за это приходится расплачиваться усложнением
кода, чего удалось бы избежать, если бы в проекте использовались иные подхо
ды к архитектуре.

Поэтому ограничьте использование шаблона Singleton теми классами, для кото
рых действительно не должно никогда создаваться более одного экземпляра. Не
стоит пользоваться глобальной точкой входа в синглтон в произвольных участ
ках кода. Прямое обращение к синглтону должно происходить лишь в несколь
ких четко определенных местах и быть доступным коду в целом только через
узкий интерфейс. Весь остальной код не знает, как реализован интерфейс – че
рез синглтон или какой-то другой класс, – а потому не зависит от реализации.
В результате всего этого разрушаются связи, мешающие модульному тестирова
нию, и облегчается сопровождение. Так что надеюсь, что, когда вы в следующий
раз решите реализовать синглтон или к нему обратиться, вы дважды подумаете,
стоит ли это делать.

Кирк Пеппердин

Как пра­ви­ло, на­строй­ка про­из­во­ди­тель­но­сти сис­те­мы требует изменения ис
ходного кода. Когда необходимо изменить код, каждый его фрагмент, слишком
сложный или сильно связанный с другими, оказывается «бомбой грязного ко
да», способной свести на нет все ваши усилия. Первой жертвой грязного кода
становится график работ. Если движение вперед происходит равномерно, легко
предсказать, когда закончится работа. Но неожиданные столкновения с гряз
ным кодом делают весьма затруднительным разумное планирование.

Допустим, вы обнаружили место, где теряется производительность. В этом слу
чае обычно пытаются снизить сложность алгоритма, создающего недопустимую
нагрузку. Вы сообщаете своему менеджеру, что исправление займет у вас, ска
жем, три-четыре часа. Работая над исправлениями, вы обнаруживаете, что пере
стал работать зависимый участок кода. Родственные фрагменты кода часто свя
заны друг с другом, что вызвано объективной необходимостью, и такое наруше
ние работы, скорее всего, предполагалось и учитывалось в оценке времени. Но
что если исправление этой зависимости приведет к нарушению работы и других
зависимых частей? Более того, чем дальше эти зависимости находятся от исход
ной точки, тем менее вероятно, что вы их обнаружите и учтете в своей оценке.
Внезапно начальная оценка раздувается от трех-четырех часов до трех-четырех
недель. Часто одна подобная неожиданность увеличивает сроки сразу на 1–2 дня.
Не столь уж редко «небольшой» рефакторинг затягивается на несколько меся
цев. В таких ситуациях ущерб, нанесенный доверию к действующей команде
и ее «политическому капиталу», может быть тяжелым и даже смертельным. Вот
если бы у нас был инструмент, позволяющий обнаружить и оценить такой риск…

На самом деле, существует много способов измерить и проконтролировать сте
пень и глубину связанности и сложности нашего кода. С помощью программных
метрик можно посчитать встречаемость в коде определенных характеристик.
Эти количественные показатели коррелируют с качеством кода. Отметим две
метрики из тех, которые оценивают связанность кода: число входов (fan-in) и чис
ло выходов (fan-out). Например, для классов fan-out определяется как количест

Путь к повышению
эффективности программ
заминирован грязным кодом

Путь к повышению эффективности программ заминирован грязным кодом	 169

во классов, к которым прямо или косвенно обращается оцениваемый класс. Это
можно представить себе как количество всех классов, которые нужно скомпили
ровать, прежде чем можно начать компилировать ваш класс. С другой стороны,
fan-in – это количество классов, которые зависят от данного класса. Зная fan-out
и fan-in, можно по формуле I = fo / (fi + fo) рассчитать коэффициент нестабильно
сти. Чем ближе I к нулю для конкретного класса или модуля, тем он стабильнее.
Когда значение I близко к 1, модуль становится нестабильным. Изменение кода
стабильных модулей сопряжено с меньшим риском, тогда как в нестабильных
модулях более вероятно наличие бомб грязного кода. Задача рефакторинга –
приблизить I к нулю.

При использовании метрик нужно помнить, что это всего лишь эмпирические
правила. Исходя из чистой математики мы увидим, что увеличивая fi, не изме
няя при этом fo, мы приближаем I к нулю. Однако слишком большая величина
fan-in имеет и обратную сторону: такие классы труднее изменить, не нарушая
работу классов, зависимых от них. Кроме того, не решая проблемы fan-out, вы
на самом деле не снижаете свои риски, поэтому нужно соблюдать некоторое рав
новесие.

Недостатком программных метрик является то, что огромное количество цифр,
выдаваемых инструментами для снятия метрик, может произвести устрашаю
щее впечатление на непосвященных. Тем не менее программные метрики спо
собны стать мощным средством в борьбе за чистый код. Они помогают обнару
жить и ликвидировать бомбы грязного кода, составляющие серьезный риск для
операций по повышению производительности.

Пол У. Гомер

«Де­лай за­но­во…», – сказал мне начальник, твердо удерживая пальцем клавишу
Delete. С привычной тоской я смотрел на экран, где безвозвратно исчезал мой
код – строка за строкой.

Мой начальник Стефан не отличался особой красноречивостью, но определял
плохой код с первого взгляда. И он хорошо знал, что с ним нужно делать.

Я поступил на ту работу в качестве человека, изучающего программирование, –
с запасами энергии и энтузиазма, но без малейшего понятия, как писать код.
Я пребывал в ужасном заблуждении, будто любые проблемы решаются путем
добавления еще одной переменной в подобающем месте либо путем добавления
еще одной строки кода. В плохие дни мой код деградировал – его логика не совер
шенствовалась, более того, он становился все пространнее, сложнее и неустой
чивее.

Желание решить вопрос посредством минимальных изменений в блоке кода –
даже если они ужасны – вполне естественно, особенно при недостатке времени.
Большинство программистов сохраняет плохой код, опасаясь, что, если начать
все заново, потребуется гораздо больше усилий, чем если просто вернуться к на
чалу. Это бывает верно для почти рабочего кода, но встречается и такой код, ко
торому уже ничто не поможет.

Слишком много времени впустую тратится на попытки спасти плохую работу.
Если что-то начинает высасывать ресурсы, от этого следует избавиться. И по-
быстрее.

Не хочу сказать, что так уж легко расстаться с набранным текстом, выбранными
именами, форматированием. Реакция моего начальника была излишне жесткой,
однако она заставляла меня переосмысливать свой код во время второй (а иногда
и третьей) попытки. Тем не менее лучший способ исправить плохой код – приго
товиться безжалостно его перерабатывать, переносить туда-сюда или удалять.

Код должен быть простым. Количество переменных, функций, объявлений
и прочих синтаксических элементов языка должно быть минимальным. Лишние

Простота достигается
сокращением

Простота достигается сокращением	 171

строки, лишние переменные… все лишнее должно немедленно уничтожаться.
А того, что осталось, должно быть минимально достаточно, чтобы выполнить за
дание, реализовать алгоритм или осуществить вычисления. Все прочее – беспо
лезный, ненужный шум, появившийся по ошибке. Он запутывает алгоритм ра
боты и скрывает действительно важные вещи в коде.

Конечно, если этого окажется недостаточно, удалите вообще все и начните сна
чала. Такое «рисование по памяти» часто позволяет избавиться от ненужного
хлама.

Роберт Мартин (Дядюшка Боб)

Вот один из наи­бо­лее фун­да­мен­таль­ных прин­ци­пов ка­че­ст­вен­но­го про­ек­ти­ро
ва­ния:

Собрать вместе те вещи, которые изменяются по одной и той же причине, и раз
делить те, которые изменяются по разным причинам.

Этот принцип иначе известен как принцип единственной ответственности,
или SRP (single responsibility principle). Если коротко, он гласит, что причина
изменения любой подсистемы, класса и даже функции должна быть ровно одна.
Классический пример – класс с методами для работы с бизнес-правилами, отче
тами и базами данных:

public class Employee {
public Money calculatePay() ...
public String reportHours() ...
public void save() ...
}

Кое-кто из программистов считает, что сочетание этих трех функций в одном
классе вполне уместно. В конце концов, классы и должны собирать вместе функ
ции, работающие с одними и теми же переменными. Однако проблема в том, что
все три функции изменяются по совершенно разным причинам. Функция calcu-
latePay (рассчитать зарплату) изменяется вместе с бизнес-правилами расчета за
платы. Функция reportHours (отчитаться о часах) изменяется, когда требуется
другой формат отчета. Функция save (сохранить) изменяется, когда администра
тор базы данных меняет схему базы данных. В совокупности эти три причины
делают Employee очень неустойчивым классом. Он будет меняться по каждой из
этих причин. И что еще важнее, эти изменения затронут любые классы, которые
зависят от Employee.

В хорошей архитектуре система разделена на компоненты, которые можно раз
вернуть независимо. Независимость развертывания означает, что изменение од
ного компонента не требует повторного развертывания других. Но если Employee

Принцип единственной
ответственности

Принцип единственной ответственности	 173

интенсивно используется многими классами в других компонентах, каждое из
менение Employee может требовать повторного развертывания других компонен
тов, что сводит на нет основное преимущество компонентного подхода к проек
тированию (или SOA, если вам нравится это более модное название). Следующее
простое разделение решает проблему:

public class Employee {
 public Money calculatePay() ...
}
public class EmployeeReporter {
 public String reportHours(Employee e) ...
}
public class EmployeeRepository {
 public void save(Employee e) ...
}

Каждый класс можно поместить в отдельный компонент. Или, выражаясь точ
нее, все классы, создающие отчеты, поместить в компонент отчетов. Все классы,
связанные с базами данных, можно поместить в компонент хранилища. А все
бизнес-правила поместить в компонент бизнес-правил.

Внимательный читатель заметит, что в приведенном решении остаются зависи
мости. Другие классы по-прежнему зависят от Employee. Поэтому если Employee
изменится, вполне возможно, что эти классы придется заново скомпилировать
и развернуть. Таким образом, Employee невозможно модифицировать, а потом
развернуть независимо. Однако другие классы можно модифицировать и неза
висимо развернуть. Никакая их модификация не требует перекомпиляции и по
вторного развертывания остальных классов. Даже Employee можно независимо
развернуть, если тщательно применить принцип инверсии зависимости (DIP,
dependency inversion principle), но это уже тема для другой книги.1

Продуманное применение принципа единственной ответственности, то есть раз
деление тех сущностей, которые изменяются по разным причинам, является од
ной из основ создания архитектур со структурой независимо развертываемых
компонентов.

1	 http://www.amazon.com/dp/0135974445/

Алекс Миллер

Не­дав­но я был в про­дук­то­вом ма­га­зи­не и обыскался там эдамаме, зеленых со
евых бобов (я лишь приблизительно догадывался, что это какие-то овощи). Я не
знал, где мне искать этот продукт: в овощном отделе, в отделе замороженных
продуктов или на полках с консервами? Наконец я сдался и обратился за помо
щью к сотруднице магазина. Она тоже не знала!

Сотрудница магазина могла отреагировать на мою просьбу по-разному. Она мог
ла дать мне понять, что только дурак не знает, где это искать, или отделаться
туманными намеками, или даже просто сказать, что у них нет такого товара. Но
она посчитала возможным найти решение и помочь покупателю. Позвав других
сотрудников, она уже через пару минут отвела меня к нужному товару. Эдамаме
оказались в отделе замороженных продуктов.

В данной ситуации сотрудница выслушала просьбу и стала исходить из того, что
проблема решится, и просьба будет удовлетворена. Она начала с того, что сказа
ла да вместо нет.

Когда мне впервые пришлось занять должность технического руководителя, мне
казалось, что главное в моей работе – защищать мои прекрасные программы от
потока нелепых требований, исходившего от менеджеров по продукту и бизнес-
аналитиков. В большинстве разговоров я рассматривал любую просьбу как ата
ку, требующую защитной реакции, а не положительного ответа.

В какой-то момент на меня снизошло прозрение, и я увидел, что возможен дру
гой подход к работе, который отличается от моего всего лишь начальным да вме
сто начального нет. Я пришел к убеждению, что начинать разговор с положи
тельного ответа – важнейшая часть работы технического руководителя.

Эта простая перемена радикально изменила мой подход к работе. Оказалось, су
ществует много способов говорить. Когда слышишь: «Послушай, это приложе
ние станет в сто раз круче, если мы сделаем все окна круглыми и прозрачными!»,
можно отвергнуть это предложение как нелепое. Но обычно лучше сначала спро
сить: «А почему?». Часто существует реальный и убедительный довод, почему

Сначала скажите «да»

Сначала скажите «да»	 175

этот человек требует круглые прозрачные окна. Например, ведутся переговоры
с новым крупным клиентом, у которого комиссия по стандартизации требует
эти самые круглые прозрачные окна.

Обычно, ознакомившись с контекстом просьбы, обнаруживаешь, что открыва
ются новые возможности. Зачастую просьба может быть выполнена в рамках су
ществующего продукта каким-то другим способом, что позволяет ответить да,
нисколько не напрягаясь: «Собственно говоря, вы можете загрузить в пользова
тельских настройках «шкурку» (skin) с круглыми прозрачными окнами и акти
визировать ее».

Иногда у людей появляются идеи, которые кажутся несовместимыми с вашим
видением продукта. Я обнаружил, что в этом случае обычно полезно обратиться
с вопросом «почему» к самому себе. Порой сама попытка объяснить себе причи
ну помогает понять ошибочность первой реакции. Если это не так, то можно об
легчить ситуацию, включив в обсуждение других ответственных лиц. Помните,
что цель всего этого – сказать да другому человеку и попытаться сделать так,
чтобы все получилось, и не только ради него, но ради себя и всей своей команды.

Если вы сможете убедительно объяснить, почему предложенная функция не со
вместима с существующим продуктом, это даст возможность конструктивно об
судить, нужный ли продукт вы создаете. Независимо от результатов обсужде
ния каждый участник более четко осознает, чем продукт является, а чем не яв
ляется.

Начинать с да – значит работать вместе со своими коллегами, а не против них.

Кэй Хорстман

Я ра­бо­тал с про­грам­ми­ста­ми, которые в ответ на просьбу посчитать количество
строк кода в модуле открывали файлы в текстовом процессоре и пользовались
функцией «счетчик строк». То же самое они повторяли через неделю. И еще че
рез неделю. Это было ужасно.

Я участвовал в проекте с неуклюжей процедурой развертывания: требовалось
подписать код, скопировать подписанный код на сервер, выполнить множество
щелчков мышью. Кто-то автоматизировал процедуру, и этот сценарий запускал
ся сотни раз во время финального тестирования – гораздо чаще, чем ожидалось.
Это было замечательно.

Так почему же люди делают одну и ту же работу многократно, вместо того чтобы
остановиться и потратить время на ее автоматизацию?

Распространенное заблуждение №1: автоматизация нужна только для тес
тирования

Да, автоматизация тестирования – это классно, но зачем останавливаться на
этом? Любой проект изобилует повторяющимися задачами: управление вер
сиями, компиляция, сборка JAR-файлов, генерация документации, развер
тывание системы и составление отчетов. Для многих из перечисленных задач
эффективнее использовать сценарий, а не указатель мыши. Выполнение ру
тинных задач ускоряется и становится надежным.

Распространенное заблуждение №2: у меня есть IDE, поэтому мне не нужна
автоматизация

Приходилось ли вам участвовать в спорах с коллегами на тему «А на моей ма
шине все компилируется (все загружается из репозитория, все тесты прохо
дят)»? Современные IDE предлагают тысячи настроек, и фактически невоз
можно гарантировать, что у всех участников команды настройки будут одина
ковыми. Системы автоматизации сборки, такие как Ant или Autotools, обес
печивают контроль и повторяемость.

Шаг назад. Теперь автоматизируй,
автоматизируй, автоматизируй…

Шаг назад. Теперь автоматизируй, автоматизируй, автоматизируй…	 177

Распространенное заблуждение №3: для автоматизации придется изучать
экзотические инструменты

Можно успешно построить систему автоматизации на базе хорошего языка
командной оболочки (например, bash или PowerShell). Если требуется взаимо
действовать с веб-сайтами, воспользуйтесь такими инструментами, как iMac
ros или Selenium.

Распространенное заблуждение №4: я не могу автоматизировать эту задачу,
потому что не смогу работать с файлами этого формата

Если ваш процесс требует работы с документами Word, электронными табли
цами или графикой, автоматизация действительно может стать сложной про
блемой. Но так ли вам необходимы эти форматы? А нельзя ли использовать
обычный текст? Значения, разделяемые запятой? XML? Средства генерации
графики из текстовых файлов? Часто достаточно немного изменить процесс,
чтобы получить хорошие результаты и резко сократить рутинные операции.

Распространенное заблуждение №5: у меня нет времени со всем этим разби
раться

Чтобы начать, вам не обязательно досконально изучать bash или Ant. Учи
тесь на ходу. Когда вы видите задачу, которую можно и нужно автоматизиро
вать, изучите свои инструменты лишь настолько, насколько требуется в дан
ный момент. И занимайтесь этим в самом начале проекта, когда обычно легче
найти время. После первого удачного опыта вы (и ваш начальник) убедитесь,
что автоматизация окупает потраченные усилия.

Сара Маунт

Важ­ность тес­ти­ро­ва­ния вколачивают в головы разработчиков программного
обеспечения, когда они делают свои первые шаги на этом поприще. Широко рас
пространившиеся в последние годы модульное тестирование, разработка на ос
нове тестирования и методы гибкого программирования свидетельствуют о рос
те интереса к максимально эффективному использованию тестирования на всех
стадиях цикла разработки. Однако тестирование – лишь один из многочислен
ных инструментов, с помощью которых можно повысить качество кода.

В те далекие времена, когда язык C еще был молод, процессорное время и память
всех видов обходились очень дорого. В первых компиляторах C это учитывалось,
поэтому количество проходов по коду сокращалось за счет отказа от некоторых
видов семантического анализа. В результате компилятор проверял лишь неболь
шую часть тех ошибок, которые можно было обнаружить на этапе компиляции.

Чтобы компенсировать этот недостаток, Стивен Джонсон написал инструмент
под названием lint – для прочесывания кода на предмет блох, – и реализовал
в нем некоторые методы статического анализа, исключенные из компилятора C.
Однако средства статического анализа прославились тем, что давали большое
количество ложных срабатываний и часто предупреждали о нарушении стили
стических правил, следовать которым необязательно.

Сегодняшний пейзаж языков, компиляторов и средств статического анализа
весьма отличается от прежнего. Память и процессорное время стали относитель
но дешевыми, поэтому компиляторы могут позволить себе проверку большего
числа ошибок. Почти для каждого языка существует хотя бы один инструмент,
выявляющий нарушения стилистических правил, стандартные ошибки и иногда
трудные для обнаружения ошибки типа возможного разыменования нулевого
указателя. Более сложные инструменты, такие как Splint для C или Pylint для
Python, допускают настройку, то есть возможность выбрать ошибки и предупре
ждения, о которых будет сообщать инструмент, с помощью файла конфигурации,
параметров командной строки или настроек IDE. Splint даже позволяет анноти
ровать код комментариями, поясняющими работу программы.

Пользуйтесь инструментами
для анализа кода

Пользуйтесь инструментами для анализа кода	 179

Если эти средства не помогают, и вам приходится искать простые ошибки или
нарушения стандартов, которые не обнаруживают ваш компилятор, IDE или ин
струмент типа lint, можно написать собственный статический анализатор. Это
не так трудно, как может показаться. Большинство языков, особенно динамиче
ских, в составе стандартной библиотеки предлагают абстрактное синтаксиче
ское дерево и инструменты компилирования. Вам не помешает заглянуть в даль
ние уголки стандартных библиотек, используемых разработчиками языка, с ко
торым вы работаете, так как там встречаются сокровища, полезные для статиче
ского анализа и динамического тестирования. Так, в стандартной библиотеке
Python есть дизассемблер, который сообщит вам, какой байт-код использовался
для генерации некоторого скомпилированного кода или объекта. Многим пока
жется, будто это какой-то загадочный инструмент для команды разработчиков
python-dev, разрабатывающей компилятор Python, но для повседневной работы
он удивительно полезен. Например, с помощью этой библиотеки можно дизас
семблировать последнюю трассировку стека и точно выяснить, какая команда
байт-кода сгенерировала последнее необработанное исключение.

Так что не ограничивайте свой контроль качества одним тестированием – ис
пользуйте инструменты для анализа и не бойтесь создавать свои собственные.

Кевлин Хенни

Ти­пич­ное за­блу­ж­де­ние при тес­ти­ро­ва­нии – воображать, что тестировать необ
ходимо именно то, что делает реализация. На первый взгляд в этом не видно ни
чего дурного. Однако если сформулировать эту проблему иначе, она становится
понятнее: частой ошибкой при тестировании является привязка тестов к особен
ностям реализации, тогда как эти особенности являются случайными и не име
ют отношения к требуемой функциональности.

Когда тесты жестко связаны с особенностями реализации, изменения в реализа
ции, которые в действительности совместимы с требуемым поведением, могут
привести к отказу тестов. Из-за этого будут возникать ложные сообщения об
ошибках. Обычно программисты реагируют на это исправлением теста или ис
правлением кода. Принятие ложного срабатывания за истинное часто есть след
ствие страха, неуверенности и сомнений. Это равносильно принятию случайно
го поведения за требуемое. При исправлении теста программист либо изменяет
тест так, чтобы он проверял требуемое поведение (что хорошо), либо привязыва
ет тест к новой реализации (что плохо). Тесты должны быть достаточно точны
ми, но они должны быть и правильными.

Например, требования к тройственному сравнению, такому как String.compareTo
в Java или strcmp в C, таковы: результат должен быть отрицательным, если левая
часть меньше правой, положительным, если левая часть больше правой, и ну
лем, если они равны. Такого рода сравнение используется во многих API, вклю
чая функцию сравнения для qsort в C и compareTo в интерфейсе Java Comparable.
Обычно в реализациях для обозначения меньше и больше используются кон
кретные значения –1 и +1, в связи с чем программисты иногда ошибочно предпо
лагают, что именно эти значения и выражают действительное требование, и пи
шут тесты, основанные на этом предположении.

Похожая проблема возникает, когда тесты жестко привязаны к количеству про
белов, наличию определенных слов и другим аспектам форматирования и пред
ставления текста, которые являются особенностью реализации. Наличие пробе
лов не должно влиять на результат, если только вы не пишете, скажем, XML-ге

Тестируйте требуемое,
а не случайное поведение

Тестируйте требуемое, а не случайное поведение	 181

нератор с настройкой форматирования. Аналогичным образом жестко фиксиро-
ванное расположение кнопок и меток на элементах управления пользователь-
ского интерфейса уменьшает возможность в будущем менять эти несуществен-
ные детали. Мелкие изменения в реализации и несущественные изменения
в форматировании внезапно приводят к тому, что проект не собирается.

Слишком конкретные тесты часто создают проблему при модульном тестирова
нии по принципу белого ящика. Тесты белого ящика используют структуру ко
да, чтобы определить, какие тесты нужны. Типичная ошибка при таком тести
ровании – создание тестов, которые в конечном итоге проверяют, что код делает
то, что он делает. Простое подтверждение того, что и так очевидно из кода, не
имеет никакой ценности и приводит к возникновению ложного чувства прогрес
са и надежности.

Чтобы быть эффективными, тесты должны проверять обязательства по контрак
ту, а не бессмысленно повторять реализацию. Они должны рассматривать тести
руемые модули как черные ящики, описывая контракты интерфейса в испол
няемой форме. Поэтому следите, чтобы проверяемое поведение совпадало с тре
буемым поведением.

Кевлин Хенни

При тес­ти­ро­ва­нии мо­ду­ля ко­да важ­но про­ве­рять его требуемое и существенное
поведение, а не случайное поведение конкретной реализации. Но из этого не сле
дует, что тесты могут быть неопределенными. Тесты должны быть точными
и конкретными.

В качестве иллюстрации можно взять тестирование проверенных и надежных
классических процедур сортировки. Программисты не так часто пишут код ал
горитмов сортировки, и все же каждый считает, будто знает, каким должен быть
результат. Ведь сортировка так хорошо всем знакома. Однако это поверхностное
знакомство может помешать обнаружить определенные неверные допущения.

Если спросить у программиста, что он собирается тестировать, в подавляющем
большинстве случаев он ответит что-то вроде: «Нужно проверить, что результат
будет отсортированной последовательностью элементов». Это правда, но не вся
правда. Если программисту предложить уточнить проверяемое условие, то мно
гие добавят, что результирующая последовательность должна быть той же дли
ны, что и исходная. Верно, но и этого мало. Возьмем, например, последователь
ность:

3 1 4 1 5 9

Последовательность, приведенная ниже, удовлетворяет постусловию сортиров
ки в неубывающем порядке и условию равенства длин исходной и результирую
щей последовательностей:

3 3 3 3 3 3

Хотя результат соответствует спецификации, едва ли это то, что мы хотели по
лучить! Пример взят из реального производственного кода (к счастью, ошибка
была обнаружена до его выпуска). В этом случае опечатка или секундная потеря
концентрации привела к тому, что сложный алгоритм всего лишь заполнял ре
зультат первым элементом исходного массива.

Тестируйте точно и конкретно

Тестируйте точно и конкретно	 183

Полное постусловие состоит в том, что результат отсортирован и содержит пере
становку исходных значений. Оно накладывает правильные ограничения на тре
буемое поведение. То, что результат имеет одинаковую длину с входными данны
ми, очевидно и не требует повторения.

Даже такая формулировка постусловия не гарантирует, что это хороший тест.
Хороший тест должен легко читаться. Он должен быть достаточно понятным
и простым, чтобы сразу можно было увидеть, корректен он или нет. Если у вас
нет готового кода для проверки того, что последовательность отсортирована и что
одна последовательность содержит перестановку значений другой, не исключено,
что тестирующий код окажется сложнее, чем тестируемый. Как заметил Тони
Хоар (Tony Hoare):

Есть два способа конструировать программное обеспечение: можно сделать его
таким простым, чтобы отсутствие дефектов было очевидно, а можно сделать
таким сложным, что в нем не будет очевидных дефектов.

Использование конкретных примеров устраняет такую случайно внесенную
сложность и возможность случайности вообще. Пусть, например, дана последо
вательность:

3 1 4 1 5 9

Результат сортировки таков:

1 1 3 4 5 9

Никакой другой результат не подойдет. Другого ответа быть не может.

Конкретные примеры помогают проиллюстрировать общее поведение доступным
и однозначным способом. Результатом добавления элемента в пустую коллек
цию будет не только то, что она станет непустой: в коллекции должен появиться
один элемент, причем он будет равен добавленному. Два или более элементов то
же означают, что коллекция не пуста, но это ошибка. Один элемент в коллек
ции, но с другим значением – тоже ошибка. Результатом добавления строки
в таблицу является не просто то, что в ней становится на одну строку больше;
следует проверить и то, что по ключу этой строки можно найти ее в таблице.
И так далее.

Описывая поведение, тесты должны быть не только правильными – они должны
быть точными.

Раджит Аттапатту

Ус­по­кой­тесь. Я имею в виду не оффшорные центры разработки программного
обеспечения, не сверхурочную работу по выходным и не ночные смены. Я просто
хочу обратить ваше внимание на то, какая огромная вычислительная мощь на
ходится в нашем распоряжении. Точнее, как мало мы ее используем, чтобы хоть
немного облегчить жизнь программиста. Вы постоянно сталкиваетесь с нехват
кой вычислительной мощности в течение рабочего дня? Если так, то чем заняты
ваши серверы тестирования в нерабочее время? Очень часто тестовые серверы
простаивают ночью и по выходным. Вы можете использовать этот резерв.

•	 Был ли за вами грешок сохранить изменения в репозиторий, не прогнав все
тесты? Одна из главных причин, по которой программисты не прогоняют
наборы тестов перед сохранением изменений в репозиторий, – тестирование
выполняется слишком долго. Когда горят сроки и растет давление, програм
мист вполне естественно начинает срезать углы. Одно из решений этой про
блемы – разбить набор тестов хотя бы на два профиля. Создайте меньший
обязательный профиль тестов, который быстро отрабатывает и который мож
но будет запускать перед каждым сохранением. Все остальные профили
(и обязательный на всякий случай тоже) можно автоматизировать и запус
кать по ночам, чтобы иметь к утру готовый результат.

•	 У вас была возможность проверить стабильность работы вашего продукта?
Для выявления утечек памяти и других проблем со стабильностью критиче
ски важно проводить тесты, которые выполняются часами и сутками. Их ред
ко запускают в дневное время, потому что они отнимают время и ресурсы. За
то можно автоматически выполнять нагрузочное тестирование в ночное вре
мя и по выходным. С 6 вечера пятницы до 6 утра понедельника у вас есть
60 часов, которые можно занять тестированием.

•	 Удается ли вам получить доступ к среде для тестирования производитель
ности в удобное для вас время? Мне приходилось видеть, как команды руга
ются одна с другой, выбивая себе доступ к среде для тестирования производи
тельности. Мало кому удается получить в достаточном количестве удобное

Тестируйте во сне (и по выходным)

Тестируйте во сне (и по выходным)	 185

время для тестирования в рабочие часы, хотя по окончании рабочего дня сер
веры практически простаивают. В то же время серверы и сеть не так сильно
загружены ночью и по выходным. Это идеальное время для выполнения тес
тов на производительность и получения надежных результатов.

•	 Не слишком ли много у вас разных конфигураций, чтобы тестировать их
вручную? Часто продукт рассчитан на работу на нескольких платформах. На
пример, 32-разрядные и 64-разрядные версии для Linux, Solaris и Windows
или просто для нескольких версий одной операционной системы. Дело ослож
няется еще и тем, что современные приложения допускают применение мно
жества транспортных механизмов и протоколов (HTTP, AMQP, SOAP, CORBA
и т. д.). Проверка всех возможных сочетаний требует очень много времени
и чаще всего выполняется ближе к выпуску продукта в силу ограниченности
ресурсов. Увы, некоторые ужасные ошибки обнаруживаются лишь на этой
стадии, когда уже слишком поздно.

Запуск автоматизированных тестов по ночам или на выходных позволит чаще
проверять все эти сочетания. Стоит чуть пораскинуть мозгами и приложить не
которые познания в написании сценариев, и вы сможете создать с помощью пла
нировщика cron несколько заданий, которые будут запускать тесты по ночам
и на выходных. Существует также множество полезных инструментов для тес
тирования. В некоторых организациях созданы даже серверные сетки, распре
деляющие серверы между разными отделами и командами с целью более эффек
тивного использования ресурсов. Если в вашей организации есть такие средст
ва, вы можете отдать тесты на выполнение в ночное время или на выходных.

Нил Форд

Раз­ра­бот­чи­ки про­грамм­но­го обес­пе­че­ния обо­жа­ют использовать вымученные
метафоры, пытаясь рассказать о своей работе родственникам, супругам и про
чим далеким от техники людям. Часто мы ссылаемся на такие области, как
строительство мостов, или другие «строгие» инженерные дисциплины. Но все
эти метафоры быстро разваливаются на части, стоит их шатнуть чуть сильнее.
Оказывается, что разработка программного обеспечения во многих ключевых
аспектах отличается от «строгих» инженерных дисциплин.

В сравнении с «реальной» инженерией разработка программ находится пример
но на том уровне, где были строители мостов в далеком прошлом. В те дни стан
дартный подход был такой: сначала построить мост, а потом пустить по нему тя
желую повозку. Если выдержит, значит, мост хороший. Если нет – что ж, воз
вращаемся к чертежной доске. За последние несколько тысяч лет инженеры раз
вили математику и физику до такой степени, что отпала необходимость строить
объект, чтобы понять, как он работает, – для поиска надежных решений строи
тельство уже не требуется. Ничего подобного в программировании нет и, вероят
но, не будет, потому что программное обеспечение имеет очень существенные от
личия. Классическое исследование разницы между программной и обычной ин
женерией провел Джек Ривс (Jack Reeves) в статье «What is Software Design?»1,
опубликованной в «C++ Journal» в 1992 году. Статья, написанная почти два де
сятилетия назад, и сегодня на удивление верна. Ривс в своем сравнении нарисо
вал мрачную картину, но в 1992 году еще не было одной вещи: серьезного и по
всеместного подхода к тестированию программного обеспечения.

Тестировать «реальные» объекты тяжело, потому что, прежде чем тестировать,
их нужно построить, а это отбивает охоту возводить рискованную постройку толь
ко для того, чтобы посмотреть, что из этого получится. Но в отрасли программ
ного обеспечения «строительство» обходится смехотворно дешево. Мы создали
целую экосистему инструментов, с помощью которых его легко осуществить:

1	 http://www.developerdotstar.com/mag/articles/reeves_design.html

Тестирование – это инженерная
строгость в разработке
программного обеспечения

Тестирование – это инженерная строгость в разработке программного обеспечения	 187

модульное тестирование, объекты-макеты, средства тестирования и многое дру
гое. Другие инженеры были бы безумно рады возможности что-то построить
и протестировать в реальных условиях. Мы, разработчики программного обес
печения, должны принять тестирование в качестве главного (но не единственно
го) механизма верификации для программ. Не нужно ждать появления своего
рода «высшей математики» для программирования, потому что в нашем распо
ряжении уже есть инструменты, гарантирующие хорошую инженерную прак
тику. В этом смысле у нас есть оружие против менеджеров, которые говорят нам,
что «нет времени для тестирования». Строитель моста никогда не услышит от
своего начальника: «Не трать время на расчет прочности этого здания – мы не
укладываемся в график». Если признать, что тестирование – это реальный спо
соб добиться воспроизводимости и качества в отрасли ПО, это позволит нам, раз
работчикам, отвергать доводы против тестирования как безответственные с про
фессиональной точки зрения.

Тестирование точно так же требует времени, как его требует и расчет прочности
моста. Оба процесса служат гарантии качества конечного продукта. Разработчи
кам программного обеспечения пора взять на себя ответственность за то, что они
производят. Одного тестирования недостаточно, но оно необходимо. Тестирова
ние и есть инженерная строгость в разработке программного обеспечения.

Никлас Нильссон

У тех, кто жи­вет в ре­аль­ном ми­ре, странные представления о том, что такое со
стояние. Сегодня утром я заехал в местный магазин, чтобы подготовиться к оче
редному дню переработки кофеина в код. Я предпочитаю это делать за чашечкой
латте, а поскольку я не нашел в продаже молока, то обратился к сотруднице ма
газина.

«У нас абсолютно, ну совершенно абсолютно закончились запасы молока».

Программисту странно слышать такое высказывание. Либо у вас закончилось
молоко, либо нет. Не существует каких-то промежуточных степеней отсутствия
молока. Возможно, мне пытались сообщить, что молока не будет целую неделю,
но результат тот же: придется весь день пить эспрессо.

В большинстве практических ситуаций такое легкомысленное отношение лю
дей к состояниям не вызывает никаких проблем. К несчастью, многие програм
мисты тоже имеют весьма смутное представление о состояниях, а это уже про
блема.

Рассмотрим простой интернет-магазин, который принимает к оплате только кре
дитные карты и не выписывает клиентам счета. При этом класс Order (заказ) со
держит такой метод:

public boolean isComplete() {
 return isPaid() && hasShipped();
}

Разумно, так? Так вот, хоть это выражение и выделено в аккуратный метод, а не
разбросано по всему коду путем копирования и вставки, его вообще не должно
существовать. А то, что оно существует, указывает на проблему. Какую? Нельзя
доставить заказ, прежде чем он оплачен. Поэтому hasShipped не может вернуть
true, пока isPaid не вернет true, а в этом случае часть выражения избыточна.
Возможно, вам все же нужен метод isComplete для ясности кода, но тогда он дол
жен выглядеть как-то так:

Думайте состояниями

Думайте состояниями	 189

public boolean isComplete() {
 return hasShipped();
}

В своей работе я постоянно сталкиваюсь и с недостающими, и с избыточными
проверками. Я привел крошечный пример, но если добавить сюда отмену заказа
и возврат денег, дело усложняется, и потребность в правильной обработке со
стояний возрастает. В данном случае заказ может находиться только в одном из
трех разных состояний:

•	 В про­цес­се: можно добавлять и удалять товары. Нельзя осуществлять до
ставку.

•	 Оп­ла­чен: нельзя добавлять и удалять товары. Можно доставлять.

•	 Дос­тав­лен: конец. Больше никаких изменений.

Наличие этих состояний важно, и перед выполнением операций следует прове
рять, что вы в нужном состоянии, а также проверять, что из текущего состояния
вы перейдете в допустимое. Короче, нужно защищать объекты тщательно и в пра
вильных местах.

Но как начать думать состояниями? Выделить выражения в осмысленные мето
ды – очень хорошее начало, но это лишь начало. Главное – понимать конечные
автоматы. Знаю, у вас сохранились неприятные воспоминания о них из курса
информатики, но оставьте это в прошлом. Конечные автоматы – это не особенно
сложно. Рисуйте их, тогда их легче понять и обсуждать. Запускайте свой код
в тестовом режиме, чтобы разделить допустимые и недопустимые состояния,
а также переходы между ними, и поддерживать их корректность. Изучите шаб
лон State. Освоившись с ним, почитайте о контрактном программировании (de
sign by contract). Оно помогает обеспечить допустимость состояния путем про
верки данных и самого объекта на входе и выходе из каждого открытого метода.

Если состояние некорректно, значит, в коде ошибка, и вы рискуете потерять дан
ные, если не прервете выполнение. Если вам кажется, что проверки состояний
замусоривают код, научитесь скрывать их с помощью специальных инструмен
тов, генерации кода, вплетений (weaving) или аспектов. Независимо от того, ка
кой метод вы выберете, подход на основе состояний сделает ваш код более про
стым и надежным.

Эдриан Уайбл

Про­грам­ми­ро­ва­ние тре­бу­ет вдум­чи­во­сти, а вдумчивость может существовать
только в уединении. Такой стереотип присущ многим программистам.

Но стиль «одинокого волка» в программировании уже давно отступает перед ко
мандным подходом, который, смею утверждать, улучшает качество работы, по
вышает производительность и позволяет разработчикам получать большее удо
вольствие от работы. Новый подход заставляет разработчиков работать друг
с другом теснее, а также работать с теми, кто не участвует в разработке, – систем
ными и бизнес-аналитиками, специалистами в области контроля качества и поль
зователями.

Что это означает для разработчиков? Уже недостаточно быть экспертом в облас
ти технологии программирования. Вы должны научиться эффективно работать
с другими людьми.

Сотрудничество на работе – это не игра в вопросы и ответы и не долгие совеща
ния. Сотрудничество – это засучить рукава вдвоем с коллегой и приступить
к трудной задаче.

Я большой поклонник парного программирования. Можно назвать это «экстре
мальным сотрудничеством». Когда я работаю в паре, мое мастерство программи
ста растет. Если я слабее своего партнера в предметной области или в какой-либо
технологии, то просто учусь на его опыте. Когда я сильнее в каком-то аспекте, то
начинаю лучше понимать, что я знаю и чего не знаю, поскольку мне приходится
давать объяснения. В любом случае мы оба вносим свой вклад и учимся друг
у друга.

Работая в паре, мы привносим свой коллективный опыт – как опыт в предмет
ной области, так и технический – для решения стоящей перед нами задачи. Вме
сте мы способны предложить свое уникальное видение и опыт, что позволяет
нам решать задачи эффективно и рационально. Даже при наличии значитель
ной разницы в уровне знаний предметной области или в технологических вопро
сах, более опытный партнер все равно чему-то учится у второго – ну, скажем,

Одна голова хорошо,
но две – часто лучше

Одна голова хорошо, но две – часто лучше	 191

узнаёт о новых «горячих клавишах» либо встречается с новым инструментом
или библиотекой. Для менее опытного партнера такая работа – замечательный
способ «набрать скорость».

Парное программирование популярно у сторонников гибкой разработки, хотя
и не только у них. Иногда противники парной работы интересуются: «А почему
я должен платить двум программистам за выполнение работы одного?» Конечно,
не должны. Но дело в том, что работа в паре повышает качество, улучшает пони
мание предметной области, технологий и приемов работы (скажем, неочевидных
приемов работы с интегрированной средой разработки, IDE), а также уменьшает
отрицательное влияние лотерейного риска (когда один из ваших специалистов-
разработчиков выигрывает в лотерею и увольняется на следующий же день).

Какова долгосрочная выгода от того, что вы узнаете о новой «горячей клавише»?
Какой мерой мы измерим улучшение качества продукта, достигнутое работой
в паре? Какой мерой измерить пользу от того, что ваш партнер не дал вам зайти
в тупик в решении сложной проблемы? Одно исследование свидетельствует о при
росте эффективности и скорости на 40%.1 А как оценить уменьшение «лотерейно
го риска»? Большинство плюсов работы в паре трудно измерить.

Кто должен работать в паре и с кем? Если вы новичок в команде, то важно, чтобы
вашим напарником оказался опытный специалист. Столь же важно, чтобы он
обладал хорошими навыками общения и наставничества. Если у вас недостаточ
но знаний в предметной области, работайте в паре с тем, кто ее хорошо знает.

Если нет уверенности, экспериментируйте: сотрудничайте с коллегами. Созда
вайте пары для решения интересных сложных проблем. Посмотрите, что у вас
получится. Попробуйте несколько раз.

1	 J. T. Nosek «The Case for Collaborative Programming», Communications of the ACM,
March 1998.

Аллан Келли

Код ни­ко­гда не лжет, но мо­жет быть внут­рен­не про­ти­во­ре­чи­вым. Иногда про
тиворечия вызывают недоумение: как это вообще может работать?

В своем интервью1 Аллан Клампп (Allan Klumpp), ведущий разработчик про
граммного обеспечения для лунного модуля Apollo, раскрыл тот факт, что ПО
управления двигателями содержало дефект, из-за которого спускаемый модуль
должен был вести себя неустойчиво. Однако в программе была еще одна ошибка,
компенсировавшая первую, и при посадке Apollo 11 и 12 на Луну это ПО успеш
но использовалось, прежде чем ошибки были обнаружены и исправлены.

Рассмотрим функцию, которая возвращает код завершения. Допустим, она воз
вращает false, когда должна была бы вернуть true. Теперь представим, что в вы
зывающей функции не реализована проверка возвращаемого значения. Все ра
ботает прекрасно, пока однажды кто-то не обнаружит отсутствие проверки и не
вставит ее.

Или рассмотрим приложение, которое хранит состояние в виде документа XML.
Допустим, что один из узлов некорректно записывается как TimeToLive (время
жизни) вместо TimeToDie (время смерти), как следовало бы, если верить докумен
тации. Все будет хорошо, пока код записи и код чтения содержат одну и ту же
ошибку. Но исправьте ее в одном месте или добавьте новое приложение, читаю
щее тот же документ, и симметрия рухнет, как и весь код.

Когда в коде два дефекта, а отказ на вид только один, может стать бесполезным
сам методический подход к исправлению ошибок. Получив сообщение об ошибке,
разработчик обнаруживает дефект, исправляет его и проводит тестирование. Воз
никает тот же самый отказ, но уже в силу действия второго дефекта. Тогда отме
няется первое исправление, код снова исследуется, и обнаруживается второй де
фект, который и исправляется. Но первый дефект снова на месте, снова возникает
тот же отказ, и тогда откатывается второе исправление. Процесс повторяется, но

1	 http://www.netjeff.com/humor/item.cgi?file=ApolloComputer

Две ошибки могут гасить
одна другую (и тогда
их трудно исправлять)

Две ошибки могут гасить одна другую (и тогда их трудно исправлять) 	 193

теперь разработчик отказался от двух исправлений и пытается найти третье, чего
ему никогда не удастся.

Взаимодействие двух дефектов в коде, проявляющих себя одинаковым сбоем, не
только затрудняет решение проблемы, но и заводит разработчиков в тупик, где
они обнаруживают, что их ранние решения проблемы были правильными.

Такое случается не только с кодом: проблемы встречаются в документах, содер
жащих технические требования. И они способны распространяться, подобно ви
русу, из одного места в другое. Ошибка в коде компенсирует ошибку в письмен
ной спецификации.

Вирус может поразить и человека: пользователи обнаруживают, что когда про
грамма говорит «левая», она имеет в виду «правая», и подстраивают под нее свои
действия. Они даже сообщают о проблеме новым пользователям: «Запомни, ко
гда приложение говорит, что нужно щелкнуть левой кнопкой, это значит, что
нужно щелкнуть правой». Стоит исправить ошибку, и пользователям придется
переучиваться.

Одиночные ошибки, как правило, легко обнаруживаются и исправляются. Про
блемы возникают в случае множества ошибок, требующих множества исправле
ний. Частично это вызвано тем, что простые проблемы легко исправлять, и по
тому их обычно не откладывают, а более сложные проблемы копятся до лучших
времен.

Нет простого ответа на вопрос, как решать проблемы, возникающие в связи с род
ственными дефектами. Нужно помнить об их существовании, иметь ясную голо
ву и готовность при необходимости рассмотреть все возможности.

Аслам Хан

Очень час­то мы про­грам­ми­ру­ем в изо­ля­ции, и наши программы отражают как
нашу личную интерпретацию проблемы, так и очень личное ее решение. Мы мо
жем работать в команде, но и тогда мы изолированы как команда. Мы легко за
бываем, что код, созданный в такой изоляции, будут выполнять, использовать
и расширять другие люди. Легко упустить из вида социальную сторону про
граммирования. Создание программ – одновременно и техническое, и социаль
ное занятие. Нам следует чаще оглядываться вокруг, чтобы понять, что мы рабо
таем не изолированно и что мы несем общую ответственность за возможный ус
пех не только группы разработчиков, но и каждого человека вокруг нас.

Можно написать код высокого качества в отрыве от реальности, полностью уйдя
в себя. С одной стороны, это эгоцентричный подход (эго не в смысле высокоме
рия, а в смысле личности). Это философия Дзен, и в момент создания программы
в этом случае действительно существуете только вы. Я всегда стараюсь жить
в текущем моменте, поскольку это помогает приблизиться к лучшему качеству,
но при этом я живу в своем текущем моменте. А как же быть с текущим момен
том моей команды? Мой момент и момент моей команды – совпадают ли они?

На языке зулу философия Убунту определяется как «Умунту нгумунту нгабан
ту», что в первом приближении можно перевести так: «Личность – это личность
через (другие) личности». Я становлюсь лучше, поскольку ты делаешь меня луч
ше своими добрыми поступками. Но, с другой стороны, вы хуже делаете свое де
ло, если я плохо делаю свое. Для разработчиков это сводится к тому, что «разра
ботчик – это разработчик через (других) разработчиков». Если опуститься до
«железа», то «код – это код через (другой) код».

Качество кода, который пишу я, влияет на качество кода, который пишете вы.
А что если мой код низкого качества? Даже если вы напишете очень чистый код,
там, где вы будете пользоваться моим кодом, качество вашего кода упадет при
мерно до уровня моего кода. Можно применять множество шаблонов и приемов,
чтобы ограничить ущерб, но полностью от него уже не избавиться. Я заставил

Написание кода
в духе Убунту для друзей

Написание кода в духе Убунту для друзей	 195

вас делать больше, чем требовалось, просто потому, что не думал о вас, когда
жил в своем моменте.

Я могу считать свой код чистым, но все же можно сделать его еще лучше, при
держиваясь духа Убунту. Как выглядит код в духе Убунту? Он выглядит, как
хороший, ясный код. И речь идет даже не о коде как артефакте. Все дело в акте
создания этого артефакта. Программирование для своих друзей в духе Убунту
поможет вашей команде жить, согласуясь с собственными ценностями, и укреп
лять свои принципы. Следующий человек, который каким-либо образом при
коснется к вашему коду, станет лучше как личность и как разработчик.

Дзен – это дело личное. Убунту – это Дзен для группы людей. Крайне редко мы
пишем программы исключительно для самих себя.

Диомидис Спинеллис

Ес­ли бы, от­прав­ля­ясь в из­гна­ние на не­оби­тае­мый ост­ров, я должен был выби
рать между IDE и набором инструментов UNIX, я бы, не колеблясь, выбрал ути
литы UNIX. Вот причины, по которым следует овладеть искусством работы с ути
литами UNIX.

Во-первых, IDE ориентированы на конкретные языки, а утилиты UNIX могут
работать с любым материалом в текстовом виде. В современных условиях разра
ботки, когда новые языки и нотации появляются каждый год, затраты на изуче
ние работы с утилитами UNIX окупятся многократно.

Кроме того, IDE предлагают только те команды, которые решили реализовать
их создатели, тогда как средствами UNIX можно выполнить любую мыслимую
задачу. Их можно представить себе как классические (до появления Bionicle)
блоки Lego: вы создаете собственные команды, просто комбинируя маленькие,
но универсальные утилиты UNIX. К примеру, следующая последовательность
представляет собой текстовую реализацию анализа сигнатуры по Каннингему –
последовательность использования точки с запятой, фигурных скобок и кавы
чек в любом файле может многое сказать о его содержимом:

for i in *.java; do
 echo -n "$i: "
 sed 's/[^"{};]//g' $i | tr -d '\n'
 echo
done

Далее, каждая изученная вами операция IDE специфична для данной задачи,
например добавление нового шага в конфигурацию отладочной сборки проекта.
Напротив, более глубокое изучение утилит UNIX повышает вашу эффектив
ность при решении любых задач. Например, я применил утилиту sed, использо
ванную в приведенной выше последовательности команд, чтобы преобразовать
процедуру сборки проекта для кросскомпиляции на многопроцессорных архи
тектурах.

Утилиты UNIX – ваши друзья

Утилиты UNIX – ваши друзья	 197

Утилиты UNIX были разработаны в ту эпоху, когда многопользовательские ком
пьютеры располагали ОЗУ размером в 128 Кбайт. При их создании была прояв
лена такая изобретательность, что сейчас они могут очень эффективно обрабаты
вать огромные наборы данных. Большинство утилит представляет собой фильт
ры, обрабатывающие по одной строке за раз, а потому нет верхней границы объ
ема данных, которые они могут обработать. Вы хотите узнать, сколько редакций
хранится в дампе английской Википедии, имеющем размер полтерабайта? Про
стой вызов команды

grep ‘<revision>’ | wc –l

без труда даст вам ответ. Если какая-то последовательность команд покажется
вам полезной в общем случае, можно создать на ее основе сценарий интерпрета
тора команд, применив в нем некоторые исключительно мощные программные
конструкции, такие как направление данных в циклы и условные операторы.
Еще более впечатляет, что конвейерное выполнение команд UNIX (как в преды
дущем примере) естественным образом распределяет нагрузку по нескольким
конвейерам обработки современных многоядерных процессоров.

Принцип «прекрасное в малом» и открытость реализаций утилит UNIX делают
их доступными повсеместно, даже на платформах с ограниченными ресурсами,
таких как медиа-проигрыватель, подключаемый к телевизору, или маршрутиза
тор DSL. Такие устройства едва ли располагают мощным графическим интер
фейсом пользователя, но часто содержат приложение BusyBox, предлагающее
наиболее часто используемые утилиты. Если вы занимаетесь разработкой под
Windows, среда Cygwin предложит вам все мыслимые утилиты UNIX как в виде
исполняемых файлов, так и в виде исходного кода.

Наконец, если вас не удовлетворяют существующие утилиты UNIX, вы можете
легко расширить их набор. Напишите программу, которая решает нужную вам
задачу, на любом понравившемся вам языке, соблюдая следующие простые пра
вила: программа должна выполнять одну единственную задачу, читать данные
со стандартного ввода в виде строк текста и печатать результат на стандартный
вывод без всяких заголовков и прочих украшательств. Параметры, влияющие
на функционирование утилиты, задаются в командной строке. Следуйте этим
правилам, и тогда «Земля – твое, мой мальчик, достоянье».

Ян Кристиаан ван Винкель

Крупный банк с большим количеством филиалов пожаловался, что куплен
ные для кассиров новые компьютеры работают слишком медленно. Это было
еще до повсеместного использования интернет-банкинга, и банкоматы тоже
не были так широко распространены, как сейчас. Люди ходили в банк гораздо
чаще, а из-за медленно работающих компьютеров выстраивались очереди. Че
рез какое-то время банк пригрозил разорвать контракт с поставщиком.

Поставщик направил в банк специалиста по анализу и настройке произво
дительности, чтобы выяснить, в чем причина задержек. Тот быстро нашел
на терминале программу, съедавшую почти всю производительность процес
сора. Посредством инструмента профилирования он нашел в этой програм
ме функцию, виновную в происходящем. Ее исходный код выглядел так:

for (i=0; i<strlen(s); ++i) {
 if (... s[i] ...) ...
}

При этом строка s обычно содержала несколько тысяч символов. Код (кото
рый был написан в самом банке) быстро изменили, и с тех пор банковские
кассиры зажили счастливо...

По­че­му про­грам­ми­сту не при­шло в го­ло­ву ничего умнее, чем написать код
с квадратичной сложностью без всякой необходимости?

При каждом вызове strlen программа просматривает каждый из нескольких ты
сяч символов строки, пока не будет обнаружен завершающий ее нулевой символ.
Строка при этом не меняется. Заранее вычислив ее длину, программист избавил
ся бы от тысяч вызовов strlen (и миллионов итераций цикла):

n=strlen(s);
for (i=0; i<n; ++i) {
 if (... s[i] ...) ...
}

Правильно выбирайте алгоритмы
и структуры данных

Правильно выбирайте алгоритмы и структуры данных	 199

Всем известен принцип «сделай так, чтобы код работал, потом сделай так, чтобы
он работал быстро», который направлен против оптимизаций на микроуровне.
Но по приведенному примеру можно решить, что программист исполнил макиа
веллевское адажио «сначала сделай так, чтобы код работал медленно».

Подобная бездумность встречается, и нередко. И дело не только в том, что не нуж
но «заново изобретать колесо». Иногда молодые программисты бросаются, не осо
бо раздумывая, писать код и вдруг «изобретают» пузырьковую сортировку. При
этом они, случается, еще и хвастают этим.

Обратной стороной выбора правильного алгоритма является выбор структуры
данных. Этот выбор может серьезно повлиять на скорость работы: если для хра
нения коллекции в миллион объектов, по которой нужно выполнять поиск, вы
используете связный список – а не структуру с хешированием данных либо дво
ичное дерево, – пользователю найдется что сказать насчет вашего умения про
граммировать.

Программисты должны не изобретать колесо, а по возможности использовать
имеющиеся библиотеки. Но, чтобы избежать таких проблем, как у вышеупомя
нутого банка, они должны также обладать знаниями об алгоритмах и возможно
стях их масштабирования. Что делает современные текстовые редакторы таки
ми же медлительными, как старые программы 1980-х типа WordStar – только
ли навороченный интерфейс? Многие говорят, что в программировании важней
шее значение имеет повторное использование кода. Но прежде всего програм
мист должен знать, когда, что и как использовать повторно. Для этого ему нужно
знать предметную область, а также алгоритмы и структуры данных.

Хороший программист должен также знать, когда стоит использовать плохой
алгоритм. Например, если предметная область такова, что в ней не может быть
больше пяти элементов (скажем, количество костей в покере на костях), вы по
нимаете, что сортировать придется не более пяти элементов. В таком случае пу
зырьковая сортировка действительно может оказаться наиболее разумным вы
бором. На каждой улице бывает праздник.

Поэтому прочтите несколько хороших книг – и хорошенько в них разберитесь.
А если вы глубоко изучите «Искусство программирования» Дональда Кнута,
вам может даже повезти: найдите у автора ошибку, и вы получите от него чек на
один шестнадцатеричный доллар ($2.56).

Йоханнес Бродуолл

Ко­гда я встре­чаю сис­те­му, которая достаточно давно разрабатывается или функ
ционирует, первым признаком реальных неприятностей всегда оказывается
«грязный» журнал. Вы знаете, о чем я говорю: это когда переход по ссылке при
нормальной работе с веб-страницей приводит к целому потоку сообщений, запи
сываемых в единственный журнал системы. Слишком большое количество за
писей в журнале может быть столь же бесполезным, как и их полное отсутствие.

Если ваши системы похожи на мои, то когда заканчивается ваша работа, начи
нается работа других людей. После завершения разработки система будет долго
и успешно обслуживать клиентов (если вам повезет). Как вы узнаете о пробле
мах, если система в эксплуатации, и что вы будете с ними делать?

Возможно, кто-то осуществляет мониторинг системы вместо вас, а возможно, это
делаете вы. В любом случае мониторинг, вероятно, включает в себя просмотр
журналов. Если что-то случилось, и вас будят среди ночи, желательно, чтобы
причина была веской. Если моя система при смерти, я должен знать об этом. Но
если она просто икнула, я бы предпочел, чтобы мой сладкий сон не нарушали.

Во многих системах первым признаком неприятностей служит запись сообще
ния в какой-нибудь журнал. Обычно это журнал регистрации ошибок. Так что
окажите себе услугу: организуйте процесс таким образом, чтобы с первого же
дня разработки, как только что-то появляется в журнале ошибок, вас будили
среди ночи телефонным звонком. Если во время системного тестирования вы
сможете смоделировать нагрузку на свою систему, чистый журнал ошибок, ско
рее всего, засвидетельствует надежность вашей системы, а «грязный» послужит
первым сигналом тревоги.

Распределенные системы создают дополнительный уровень сложности. Вы долж
ны решить, как действовать в случае отказа внешних зависимостей. Если систе
ма сильно распределена, это может происходить часто. Учтите это обстоятельст
во при выборе политики ведения журнала.

Многословный журнал
лишит вас сна

Многословный журнал лишит вас сна	 201

В целом, лучшим свидетельством того, что все в порядке, служит регулярное по
явление сообщений низкого приоритета. Меня устраивает, когда на каждое су
щественное событие в приложении появляется примерно одно сообщение уров
ня INFO.

Слишком подробный журнал говорит о том, что систему трудно контролировать
во время эксплуатации. Если вы исходите из того, что журнал ошибок должен
оставаться пустым, вам будет гораздо легче разобраться в проблеме, когда в нем
что-то все-таки появится.

Кирк Пеппердин

Зна­чи­мость прин­ци­па DRY (Don’t Repeat Yourself – не повторяйся) состоит в том,
что он формализует следующую идею: каждый элемент знаний в системе должен
иметь единственное представление. Иными словами, знание должно ограничи
ваться единственной реализацией. Полную противоположность DRY представ
ляет WET (Write Every Time – пиши каждый раз). Наш код можно назвать «сы
рым» (WET), когда знание представлено в коде одновременно несколькими спосо
бами. Скрытое влияние DRY и WET на производительность становится понят
ным после рассмотрения их многочисленных эффектов на конкретном примере.

Рассмотрим некоторую функциональность нашей системы (назовем ее X), яв
ляющуюся узким местом для процессора. Допустим, что функция X потребляет
30% мощности процессора. Теперь предположим, что у функции X есть 10 раз
личных реализаций. В среднем каждая реализация потребляет 3% процессор
ного времени. Поскольку такой уровень использования процессора не вызывает
беспокойства, при беглом анализе можно не заметить, что эта функция создает
узкое место. Но допустим, что мы каким-то образом выяснили, что функция X –
узкое место. Тогда ставится задача найти и исправить каждую реализацию. Для
WET у нас есть 10 разных реализаций, которые нужно найти и исправить. В слу
чае DRY мы сразу увидим загрузку процессора в 30%, а размер кода для исправ
ления будет в 10 раз меньше. К тому же не потребуется выискивать все много
численные реализации.

Есть один сценарий, в котором мы часто нарушаем DRY, а именно при работе
с коллекциями. Стандартный прием реализации запроса заключается в проходе
по коллекции и применении запроса к каждому ее элементу:

public class UsageExample {
 private ArrayList<Customer> allCustomers = new ArrayList<Customer>();
 // ...
 public ArrayList<Customer> findCustomersThatSpendAtLeast(Money amount) {
 ArrayList<Customer> customersOfInterest = new ArrayList<Customer>();
 for (Customer customer: allCustomers) {

WET размазывает узкие
места производительности

WET размазывает узкие места производительности 	 203

 if (customer.spendsAtLeast(amount))
 customersOfInterest.add(customer);
 }
 return customersOfInterest;
 }
}

Сделав эту коллекцию напрямую доступной клиентам, мы нарушили принцип
инкапсуляции. Это не только снижает потенциал рефакторинга, но и заставляет
пользователей кода нарушать DRY, поскольку каждому из них придется заново
реализовывать потенциально идентичный запрос. Такой ситуации легко избе
жать, если убрать открытые коллекции из API. В данном примере можно ввести
новый предметно-ориентированный тип коллекции с именем CustomerList. Этот
класс семантически лучше согласован с предметной областью. Естественным об
разом он станет местом, в котором содержатся все наши запросы.

Наличие этого нового типа-коллекции позволит также легко выяснить, являют
ся ли эти запросы узким местом в смысле производительности. Включив запро
сы в класс, мы устраняем необходимость открывать клиентам варианты пред
ставления, такие как ArrayList. Это дает нам свободу для последующего измене
ния реализаций без нарушения контрактов с клиентами:

public class CustomerList {
 private ArrayList<Customer> customers = new ArrayList<Customer>();
 private SortedList<Customer> customersSortedBySpendingLevel =
 new SortedList<Customer>();
 // ...
 public CustomerList findCustomersThatSpendAtLeast(Money amount) {
 return new CustomerList(
 customersSortedBySpendingLevel.elementsLargerThan(amount));
 }
}
public class UsageExample {
 public static void main(String[] args) {
 CustomerList customers = new CustomerList();
 // ...
 CustomerList customersOfInterest =
 customers.findCustomersThatSpendAtLeast(someMinimalAmount);
 // ...
 }
}

В этом примере следование принципу DRY позволило нам ввести измененную
систему индексирования, в которой используется SortedList, а ключом служит
объем трат наших покупателей. И, если абстрагироваться от данного примера,
намного важнее, что следование DRY помогло найти и исправить узкое место.
Пиши мы код по принципу WET, сделать это было бы труднее.

Джанет Грегори

Ко­гда тес­ти­ров­щи­ки и про­грам­ми­сты на­чи­на­ют со­труд­ни­чать, происходят чу
деса. Меньше времени уходит на игру в пинг-понг дефектами в системе отслежи
вания дефектов. Меньше времени тратится на обсуждение того, является ли по
ведение ошибкой или новой функцией, а больше – на разработку качественного
программного обеспечения, отвечающего ожиданиям заказчиков. Существует
много возможностей наладить сотрудничество еще до того, как начнется напи
сание кода.

Тестировщики могут помочь заказчикам написать приемочные тесты на языке
их предметной области с помощью таких инструментов, как Fit (Framework for
Integrated Test). Если передать эти тесты программистам перед тем, как они нач
нут писать код, те смогут применить практику разработки на основе приемочно
го тестирования (acceptance test-driven development, ATDD). Программисты пи
шут фреймворки для прогона тестов, а потом код с проверкой на прохождение
этих тестов. Далее эти тесты входят в набор регрессионных тестов. При такой
организации сотрудничества функциональное тестирование проходит быстро,
и остается больше времени на экспериментальное тестирование граничных ус
ловий или сценариев более изощренных рабочих процессов.

Можно пойти еще дальше. Будучи тестировщиком, я могу изложить свои сооб
ражения по тестированию еще до того, как программисты начнут писать код но
вой функции. Если я интересуюсь соображениями программистов, они почти
всегда предоставляют мне сведения, позволяющие мне добиться лучшего покры
тия кода или сократить затраты времени на ненужные тесты. Часто нам удава
лось предотвратить появление дефектов за счет того, что тесты проясняют мно
гие первоначальные идеи. Например, в одном из проектов, где я участвовала,
я передала программистам Fit-тесты, которые показывали, какие результаты
ожидаются при поиске по маске. Программист до этого твердо намеревался реа
лизовать только поиск по конкретным словам. Нам удалось пообщаться с заказ
чиком, и мы смогли договориться о правильной интерпретации поиска до того,

Когда программисты
и тестировщики сотрудничают

Когда программисты и тестировщики сотрудничают	 205

как начать писать код. В результате мы предотвратили возникновение дефекта
и сэкономили всем уйму времени.

Программисты могут сотрудничать с тестировщиками и в деле автоматизации.
Они знакомы с хорошей практикой написания кода и способны помочь тести
ровщикам создать надежный комплекс автоматизированных тестов, что послу
жит интересам всей команды. Мне часто приходилось видеть, как проекты по
автоматизации тестирования завершались неудачей из-за неумелого проектиро
вания тестов. Либо тесты пытаются проверить слишком многое, либо тестиров
щики недостаточно разбираются в технологии, чтобы сделать тесты независи
мыми от кода. Тестировщики часто создают узкие места, поэтому полезно, когда
программисты работают с ними вместе над такими задачами, как автоматиза
ция. Определив вместе с тестировщиками, что можно протестировать на раннем
этапе – возможно, с помощью какого-нибудь простого инструмента, – програм
мисты получают дополнительный канал обратной связи, что в конечном итоге
позволяет им создать более качественный код.

Если тестировщики перестанут думать лишь о том, как бы им сломать програм
му или найти ошибки в коде разработчиков, то и программисты перестанут счи
тать, что тестировщики стараются только «достать» их, и будут более склонны
к сотрудничеству. Когда программисты понимают, что они отвечают за качество
своего кода, легкость его тестирования становится естественным дополнитель
ным качеством, и команда может совместно автоматизировать больше регресси
онных тестов. Таково чудо успешной групповой работы.

Юрий Зубарев

Мож­но за­дать во­прос о том, что должен знать и уметь любой программист, 97 раз
ным людям и получить 97 разных ответов. Это может одновременно ошеломить
и напугать. Все советы хороши, все принципы здравы, все истории убедитель
ны, но с чего начать? И, что еще более важно, как, однажды начав применять
лучшие практики, оставаться на должном уровне и сделать их составной частью
своей практики программирования?

Я думаю, что ответ – в вашем настрое или просто в вашем подходе. Если вам без
различны ваши коллеги-разработчики, тестировщики, менеджеры, сотрудники
отделов продаж и маркетинга, а также конечные пользователи, у вас не возник
нет побуждения вести, к примеру, разработку на основе тестов или писать понят
ные комментарии в коде. Думаю, что есть простой способ изменить свое отноше
ние и развить в себе стремление выпускать продукты самого лучшего качества:

Пишите код так, как будто вам предстоит сопровождать его всю остав
шуюся жизнь.

Вот и все. Если вы примете эту мысль, начнут происходить удивительные вещи.
Согласившись с тем, что любой из ваших прежних или нынешних работодате
лей имеет право позвонить вам среди ночи и попросить объяснить, на чем осно
ваны решения, сделанные вами при написании некоего метода fooBar, вы начне
те свой путь к мастерству в программировании. Вам самим захочется придумы
вать лучшие имена для переменных и методов. Вы постараетесь не допускать,
чтобы блоки кода состояли из сотен строк. Вы будете искать, изучать и приме
нять шаблоны проектирования. Вы станете писать комментарии, тестировать
код и непрерывно осуществлять его рефакторинг. Поддерживать весь написан
ный вами код в течение всей оставшейся жизни? Эта задача будет становиться
все более грандиозной. У вас просто не останется иного выбора, кроме как рабо
тать лучше, изобретательнее и эффективнее.

Если вдуматься, то код, написанный вами много лет назад, продолжает влиять
на вашу карьеру, нравится вам это или нет. Каждый метод, класс или модуль,

Пишите код так, как будто
вам предстоит сопровождать
его всю оставшуюся жизнь

Пишите код так, как будто вам предстоит сопровождать его всю оставшуюся жизнь	 207

который вы спроектировали или написали, хранит отпечаток ваших знаний, от
ношения к работе, упорства, профессионализма, степени вовлеченности и уров
ня удовольствия. Люди формируют о вас свое мнение на основе кода, который
они видят. Если это мнение постоянно оказывается отрицательным, ваша карье
ра не будет развиваться так быстро, как вам хотелось бы. Каждая строка вашего
кода должна быть на благо вашей карьере, ваших клиентов и ваших пользовате
лей – пишите код так, как если бы вам пришлось сопровождать его всю остав
шуюся жизнь.

Кейт Брэйтуэйт

Мы хо­тим пи­сать пра­виль­ный код и иметь на руках свидетельство его правиль
ности. В обоих случаях будет полезным принять во внимание «размер» функ
ции. Не в смысле объема кода, который реализует функцию – хотя и это интерес
но, – а как размер математической функции, которую демонстрирует наш код.

Например, в игре го есть положение, называемое атари, в котором фишки игро
ка могут быть захвачены противником: фишка с двумя и более свободными со
седними клетками (называемыми степенями свободы), не находится в положе
нии атари. Подсчитать количество степеней свободы у фишки бывает нелегко,
но, когда оно известно, определить атари легко. Можно для начала написать та
кую функцию:

boolean atari(int libertyCount)
 libertyCount < 2

Здесь спрятано больше, чем кажется на первый взгляд. Математическую функ
цию можно рассматривать как множество – некоторое подмножество декартова
произведения области определения (здесь это int) и области принимаемых значе
ний (здесь – boolean). Будь эти множества одинакового размера, как в Java, в мно
жестве int × boolean было бы 2L*(Integer.MAX_VALUE+(–1L*Integer.MIN_VALUE)+1L), или
8 589 934 592 элементов. Половина из них принадлежит подмножеству, являю
щемуся нашей функцией, поэтому для полного доказательства корректности на
шей функции нужно проверить около 4,3 × 109 случаев.

На этом и основывается утверждение, что тестами нельзя доказать отсутствие
дефектов. Тесты способны продемонстрировать, что функциональность реализо
вана. Но проблема размера сохраняется.

Выход подсказывает предметная область. Природа го такова, что число степеней
свободы фишки является не любым целым числом, а одним из чисел {1,2,3,4}.
Поэтому можно написать другой вариант кода:

Пишите маленькие функции
на основе примеров

Пишите маленькие функции на основе примеров	 209

LibertyCount = {1,2,3,4}
boolean atari(LibertyCount libertyCount)
 libertyCount == 1

Это уже гораздо легче поддается обработке: вычисляемая функция – это множе
ство, в котором максимум восемь элементов. Фактически проверка четырех слу
чаев может дать полную уверенность, что функция корректна. Это одна из при
чин, почему при написании программ лучше использовать типы, тесно связан
ные с предметной областью, а не встроенные типы языка. Использование пред
метно-ориентированных типов часто позволяет значительно уменьшить размер
функций. Один из способов выяснить, какими должны быть эти типы, – это
найти примеры и определить термины предметной области до того, как писать
функцию.

Джерард Мезарос

Вы по­кры­вае­те ав­то­ма­ти­зи­ро­ван­ны­ми тес­та­ми весь готовый код или его фраг
менты. Поздравляем! Пишете сначала тесты, а потом код? Еще лучше! Уже бла
годаря этому вас можно причислить к программистам, практикующим передо
вые подходы в разработке программного обеспечения. Но хороши ли ваши тес
ты? Как это определить? Один из способов – спросить себя: «А для кого я пишу
эти тесты?». Если ответом будет «я пишу их для себя, чтобы сократить затраты
на исправление ошибок» или «для компилятора, чтобы их можно было выпол
нить», то вполне возможно, что вы пишете не самые лучшие тесты. Так для кого
же нужно писать тесты? Для того, кто будет пытаться понять ваш код.

Хорошие тесты играют роль документации для тестируемого ими кода. Они опи
сывают, как работает код. Для каждого сценария использования тесты делают
следующее:

•	 Описывают контекст, начальную точку или предусловия, которые должны
удовлетворяться.

•	 Иллюстрируют, как вызывается приложение.

•	 Описывают ожидаемые результаты или постусловия, которые необходимо
проверить.

В различных сценариях использования варианты этих действий будут слегка
различаться. Тот, кто попытается понять ваш код, должен иметь возможность
посмотреть на несколько тестов и, сравнив эти три части рассматриваемых тес
тов, суметь определить, что заставляет программу в разных случаях работать
по-разному. Каждый тест должен ясно иллюстрировать причинно-следственные
связи между этими тремя частями.

Отсюда следует, что невидимая часть теста столь же важна, как и видимая. Оби
лие кода в тесте отвлекает внимание читателя на несущественные мелочи. По
возможности скрывайте такие мелочи в понятных вызовах методов, и в этом вам
здорово поможет прием рефакторинга Extract Method (Извлечь метод). И поста
райтесь дать каждому тесту выразительное название, чтобы оно описывало кон

Тесты пишутся для людей

Тесты пишутся для людей	 211

кретный сценарий использования, а читающему тесты человеку не пришлось
анализировать каждый тест в попытке понять, в чем заключаются различия
между сценариями. Во всех случаях имя класса теста и имя метода класса долж
ны содержать хотя бы начальную точку и способ вызова приложения. Это позво
лит простым прочтением имен методов проверить покрытие кода тестами. В име
на методов тестов полезно бывает включить ожидаемые результаты, если только
это не сделает имена слишком длинными для чтения или восприятия.

Тестировать сами тесты – тоже хорошая идея. Можно проверить, смогут ли они
обнаружить ошибки, которые должны находить, если ввести эти ошибки в про
изводственный (production) код (разумеется, в локальную копию кода, которую
вы потом выкинете). Проверьте, что тесты выдают полезные и осмысленные от
четы. Нужно также проверить, что ваши тесты говорят языком, понятным тому,
кто разбирается с вашим кодом. Это можно сделать, только если дать прочесть
тесты программисту, который не знаком с вашим кодом, и выслушать его впе
чатления. Если ему что-то непонятно, не связывайте это с нехваткой умствен
ных способностей. Более вероятно, что это вы не сумели написать ясный код.
(Попробуйте поменяться ролями и почитать его тесты!)

Пит Гудлиф

Не нуж­но быть Шер­ло­ком Хол­мсом, чтобы понять, что хорошие программисты
пишут хороший код. Ну, а плохие – нет. Они создают уродливые вещи, которые
всем остальным приходится доводить до ума. Но вы-то хотите писать хороший
код, правда? Тогда вам нужно стремиться стать хорошим программистом.

Хороший код не возникает сам по себе из ничего. Его появление не вызвано бла
гоприятным расположением планет. Чтобы сделать код хорошим, нужно над
ним работать, и немало. Вы создадите хороший код только тогда, когда действи
тельно к этому стремитесь.

Хорошее программирование не является результатом одной лишь технической
компетентности. Я встречал очень умных программистов, которые способны
создавать сильные и впечатляющие алгоритмы, в совершенстве знают стандар
ты своего языка и пишут при этом совершенно отвратительный код. Его тяжело
читать, с ним тяжело работать и его тяжело модифицировать. Я встречал и про
граммистов с более скромными способностями, которые тяготеют к очень про
стому коду, но пишут элегантные и выразительные программы, работать с кото
рыми одно удовольствие.

Опыт работы в отрасли разработки программного обеспечения привел меня
к заключению, что на практике разница между просто компетентными про
граммистами и выдающимися программистами заключается в одном: это отно
шение к работе. Хорошее программирование требует профессионального подхо
да и стремления написать как можно лучший код с учетом ограничений, накла
дываемых окружающей действительностью и требованиями отрасли.

Код, ведущий в ад, вымощен благими намерениями. Чтобы стать отличным про
граммистом, нужно отказаться от благих намерений и действительно проявить
заботу о коде – воспитывать в себе позитивный взгляд на написание кода и вы
рабатывать здоровое отношение к работе. Выдающийся код есть плод тщатель
ных усилий искусных мастеров, а не поделка, небрежно сляпанная программи
стом, или таинственное создание самопровозглашенных гуру от кодирования.

Нужно заботиться о коде

Нужно заботиться о коде	 213

Вы хотите писать хороший код. Вы хотите быть хорошим программистом. Тогда
вы должны стремиться к следующему:

•	 Какими бы ни были условия работы, вы отказываетесь наскоро писать код,
который предположительно решает задачу. Вы стремитесь писать красивый
код, корректность которого очевидна (и доказывается хорошо написанными
тестами).

•	 Вы пишете код, доступный для понимания (другие программисты могут быст
ро разобраться в нем и продолжить работу), легкий в сопровождении (вы или
другие программисты легко сможете модифицировать его в будущем) и вер
ный (вы сделали все возможное, чтобы показать, что вы действительно реши
ли задачу, а не просто создали видимость работающей программы).

•	 Вы хорошо ладите с другими программистами. Программист не должен быть
отшельником. Редкий программист работает в одиночку: большинство тру
дится в составе команды программистов, будь то в рамках компании или
проекта с открытым исходным кодом. Вы учитываете особенности других
программистов и пишете код так, чтобы они могли его прочесть. Вы стреми
тесь помочь команде создать как можно лучший продукт, а не показать, ка
кой вы умный.

•	 Когда к вам в руки попадает код, вы стараетесь, чтобы после вас он стал не
много лучше (лучше организован, лучше протестирован, более понятен…).

•	 Вы любите код и программирование, поэтому вы постоянно изучаете новые
языки, идиомы и новые приемы. Но применяете их только тогда, когда это
уместно.

К счастью, вы читаете эти советы потому, что действительно любите код. Вам это
интересно. Это ваше увлечение. Получайте удовольствие от программирования.
Радуйтесь, написав код для решения сложной задачи. Пишите программы, ко
торыми можно гордиться.

Нэйт Джексон

Я еще не встре­чал за­каз­чи­ка, который не был бы рад возможности рассказать
мне, что ему нужно – обычно до мельчайших подробностей. Проблема в том, что
заказчики не всегда рассказывают всю правду. В целом заказчики не лгут, но
они говорят на своем языке заказчиков, а не на языке разработчиков. У них свой
словарь и свой контекст. Они опускают важные детали. Они говорят так, будто
вы тоже проработали в их компании лет двадцать. А осложняется это все тем,
что на самом деле заказчики часто сами не знают, что им нужно! У одних есть
понимание общей картины, но они редко в состоянии толково выразить свое
представление. У других общее представление может быть менее ярким, но они
знают, чего им не нужно. Так как же можно разработать программный проект
для того, кто не способен правдиво рассказать, что именно ему нужно? Выход
достаточно прост. Нужно больше взаимодействовать с заказчиком.

Начинайте задавать своим заказчикам вопросы как можно раньше, и задавайте
вопросы чаще. Не стоит повторять их же словами то, что они сказали о своих по
желаниях. Помните: они имели в виду не то, что сказали вам. Я часто провожу
такую проверку: в разговоре с заказчиком заменяю термины заказчика своими
собственными и наблюдаю за его реакцией. Вы не поверите, как часто термин
заказчик имеет смысл, совершенно отличный от термина клиент. Тем не менее
человек, который объясняет вам, что он хочет видеть в программном продукте,
считает эти слова взаимозаменяемыми и уверен, что вы понимаете, какой свой
статус он имеет в виду в конкретный момент. А вас это дезориентирует, и качест
во вашей программы страдает.

Обсуждайте рабочие темы со своими заказчиками бесчисленное количество раз
до тех пор, пока не придете к выводу, что вам действительно понятно, что им тре
буется. Попробуйте вместе с ними переформулировать задачу два-три раза. Обсу
ждайте с ними то, что происходит непосредственно перед выполнением задачи,
и то, что следует за выполнением задачи, чтобы лучше понять контекст. Если
есть возможность, обсудите ту же тему с разными людьми в разное время. Рас
сказы почти всегда будут разными, что выявит отдельные, но связанные факты.

Ваши заказчики имеют
в виду не то, что говорят

Ваши заказчики имеют в виду не то, что говорят	 215

Рассказывая об одном и том же, два человека часто противоречат друг другу. Луч
ше всего разобраться с этими расхождениями, прежде чем приступать к сверх
сложной задаче разработки.

Используйте в беседах наглядные средства. Это могут быть такие простые вещи,
как доска во время совещания или простой макет на стадии проектирования, ли
бо такие сложные, как действующий прототип. Общеизвестно, что использова
ние наглядных средств во время обсуждения помогает удержать внимание и за
крепить информацию в памяти. Пользуйтесь этим обстоятельством, чтобы обес
печить успех своего проекта.

В прежнюю эпоху своей жизни мне довелось поработать «мультимедийным про
граммистом» в команде, выпускавшей гламурные продукты. Одна наша заказ
чица очень подробно описала, как она представляет себе внешний вид проекта.
Цветовая схема, обсуждавшаяся на проектных совещаниях, предполагала про
ведение презентации на черном фоне. Мы думали, что все оговорено. Целые ко
манды дизайнеров принялись выдавать сотни многослойных графических фай
лов. Уйму времени мы убили на формирование конечного продукта. В тот день,
когда мы показали клиентке плоды своего труда, нас ждала ошеломительная
новость. Увидев продукт и цвет фона, она произнесла: «Когда я говорила „чер
ный“, я имела в виду „белый“». Как видите, «черное» не всегда значит «черное».

Алан Гриффитс (Alan Griffiths)

Алан Гриффитс прошел через многие модные поветрия в процессах
разработки, технологиях и языках программирования. За эти годы
он создал работоспособные программы и процессы разработки для
многих организаций, печатался в ряде журналов, выступал на кон
ференциях и подружился со многими людьми. Твердо убежденный

в том, что здравый смысл – редкий и ценный рыночный товар, Алан сейчас ра
ботает независимым консультантом в собственной компании Octopull Limited.

«Не полагайтесь на “автоматические чудеса”», стр. 78

Алекс Миллер (Alex Miller)

Алекс Миллер – технический руководитель и инженер в Terracotta,
Inc., специализирующейся на разработке решений кластеризации
с открытым исходным кодом на Java. До Terracotta Алекс работал
в BEA Systems над линейкой продуктов AquaLogic и был главным
архитектором в MetaMatrix. В сферу его интересов попадают Java,

конкурентные вычисления, распределенные системы, языки запросов и проек
тирование программного обеспечения.

Алекс с удовольствием ведет свой блог http://tech.puredanger.com. Вместе с други
ми разработчиками Terracotta он написал выпущенное в 2008 году «The Defini
tive Guide to Terracotta» (Полное руководство по Terracotta), Apress. Алекс часто
выступает на встречах пользователей и конференциях и является одним из осно
вателей конференции Strange Loop в Сент-Льюисе (http://thestrangeloop.com).

«Сначала скажите “да”», стр. 174

Авторы

Авторы	 217

Аллан Келли (Allan Kelly)

Аллан Келли – профессионал в области разработки программного
обеспечения, но сейчас работает в роли менеджера команды разра
ботки. Он помогает командам разработчиков повышать эффектив
ность своего труда и внедрять методы гибкого программирования.
Аллан работает в Лондоне, предлагает мелким и крупным компани

ям услуги по обучению, коучингу и консультированию.

Аллан часто публикуется в журналах, появляется на конференциях и является
соавтором «Changing Software Development: Learning to Be Agile» (John Wiley &
Sons). У Келли степень бакалавра по информатике и MBA по администрирова
нию. В настоящее время он пишет книгу о шаблонах бизнес-стратегий для ком
паний, выпускающих программное обеспечение. Подробнее узнать о нем можно
на сайте http://www.allankelly.net.

«Прежде чем пенять на других, проверь собственный код», стр. 38
«Две ошибки могут гасить одна другую (и тогда их трудно исправлять)», стр. 192

Андерс Норас (Anders Nora° s)

Андерс Норас – закаленный разработчик программного обеспечения
и оратор. «Энтерпрайзность» EJB подтолкнула его к Microsoft .NET
в 2002 году. Он быстро прославился в сообществе Microsoft, посколь
ку опыт работы с Java дал ему хорошую фору. В 2006 он восстановил
свои отношения с бывшей любовью – Java, и сегодня он – полиглот,

отбирающий лучшие решения обеих платформ для создания более качествен
ных программ. Андерс – основатель проекта Quaere и участник нескольких про
ектов с открытым исходным кодом. Он выступает на многих конференциях
и встречах групп пользователей, где обычно показывает мало слайдов и много
кода. Андерс живет в Норвегии, где работает главным технологическим еванге
листом в Objectware. Ведет свой блог по адресу http://andersnoras.com.

«Не просто учите язык, поймите его культуру», стр. 74

Анн Кэтрин Гэгнат (Ann Katrin Gagnat)

Анн Кэтрин Гэгнат четыре года работает с Java и занимает долж
ность системного разработчика в Steria AS в Норвегии. Профессио
нально интересуется гибкой разработкой, шаблонами и написанием
легко читаемого кода.

«Программируйте парами и входите в поток», стр. 148

218	 Авторы

Аслам Хан (Aslam Khan)

Аслам Хан больше половины своей жизни занимался созданием
программного обеспечения. Он по-прежнему верит, что истина за
ключается в исполняемом коде, но трезво уравновешивает эту веру
другим своим базовым принципом: люди важнее компиляторов. Как
архитектор программного обеспечения и инструктор Аслам занима

ется тем, что помогает командам проектировать и выпускать хорошее программ
ное обеспечение, не упуская при этом возможности развлекаться и заводить хо
роших друзей. Аслам входит в команду factor10 и работает редактором в сообще
стве архитекторов на DZone. Адрес его блога: http://aslamkhan.net.

«Написание кода в духе Убунту для друзей», стр. 194

Берк Хафнагель (Burk Hufnagel)

С 1978 года Берк Хафнагель как архитектор и разработчик про
граммного обеспечения занимается созданием правильных пользо
вательских интерфейсов. Проведя большую часть своей жизни за
проектированием и созданием программ, Берк выработал привычку
к тому, чтобы разрабатывать практичные решения сложных задач.

Он – библиофил и технофил, интересуется эзотерической тематикой.

Берк был одним из соавторов книги «97 Things Every Software Architect Should
Know»1, O’Reilly. Он выступал в 2008 году на конференции JavaOne с речью, по
священной улучшению условий работы пользователя, и на региональных кон
ференциях Международной ассоциации программных архитекторов в 2007
и 2009 годах. Он также написал статью для библиотеки IASA Skills Library на
тему «незаметного слона», а именно связи между опытом взаимодействия поль
зователя и качеством проектирования пользовательского интерфейса.

«Невероятно, но факт: тестировщики – ваши друзья», стр. 140
«Брось мышь и медленно отойди от клавиатуры», стр. 158

Верити Стоб (Verity Stob)

Верити Стоб – это псевдоним программистки, живущей в Лондоне.
Хотя она демонстрирует знание C++ и обычных интерпретируемых
языков с фигурными скобками, а также проектирует и пишет код
для различных платформ, пожалуй, наиболее удачны и безвредны
ее программы для Windows, написанные на CodeGear Delphi.

Свыше 20 лет Верити писала якобы занимательные статьи и колонки для раз
ных журналов, газет и веб-сайтов, включая легендарный (т. е. давно почивший)

1	 Сборник «97 этюдов для архитекторов программных систем», Символ-Плюс, 2010.

Авторы	 219

«.EXE Magazine», разбивающий общие представления (т. е. почивший несколь
ко позднее) «Dr. Dobb’s Journal» и непристойный (т. е. действительно принося
щий доход) «The Register». В 2005 году она опубликовала собрание своих трудов
под названием «The Best of Verity Stob» (Apress), достигнув тем самым главной
цели своей жизни – дважды получить гонорар за одну и ту же работу.

Верити считает посвященную ей в Википедии статью карикатурой на краткость.

«Не прибивайте программу гвоздями к стене», стр. 76

Грег Колвин (Greg Colvin)

Грег Колвин успешно занимается «кодежом» с 1972 года. В свобод
ное от написания кода и чтения специальной литературы время он
гуляет со своей собакой по пляжу или играет блюз в местных кабач
ках.

«Знай свои возможности», стр. 112

Грегор Хоп (Gregor Hohpe)

Грегор Хоп – инженер-программист, работающий в Google. Извест
ность приобрел благодаря своим идеям насчет асинхронной переда
чи сообщений и сервисно-ориентированной архитектуры, которыми
он делится в ряде публикаций, включая фундаментальный труд
«Enterprise Integration Patterns»1 (Addison-Wesley Professional). По

дробнее о его работе можно узнать на сайте http://www.eaipatterns.com.

«Удобство – не атрибут качества», стр. 58

Гудни Хаукнес (Gudny Hauknes)

Гудни Хаукнес – ведущий разработчик программного обеспечения
в норвежском отделении консультативной фирмы Steria. Закончив
в 1987 году Норвежский Технологический университет (NTH/NTNU),
она занимала различные должности в системных разработках, управ
лении проектами и контроле качества.

Особенно ее интересуют способы организации спокойной совместной работы, при
ятной и эффективной, а также, разумеется, создание качественного программно
го обеспечения.

«Программируйте парами и входите в поток», стр. 148

1	 Грегор Хоп, Бобби Вульф «Шаблоны интеграции корпоративных приложений». –
Пер. с англ. – Вильямс, 2007.

220	 Авторы

Диомидис Спинеллис (Diomidis Spinellis)

Диомидис Спинеллис – профессор факультета науки и технологии
управления в Университете экономики и бизнеса города Афины, Гре
ция. Он ведет исследования в области разработки программного обес
печения, компьютерной безопасности и языков программирования.
Автор двух отмеченных наградами книг из серии «Open Source Per

spective»: «Code Reading: The Open Source Perspective»1 и «Code Quality» (обе изда
ны в Addison-Wesley Professional), а также десятков научных статей. Его послед
няя работа – сборник «Beautiful Architecture»2 (O’Reilly). Диомидис входит в ред
коллегию IEEE Software и ведет постоянную колонку «Tools of the Trade». Он уча
ствует в разработке FreeBSD, а также UMLGraph и других программных пакетов,
библиотек и инструментов с открытым исходным кодом. Получил степень маги
стра в области разработки ПО и доктора информатики в Имперском колледже
Лондона. Диомидис – старший член ACM и IEEE, а также член Usenix Association.

«Место для больших наборов взаимосвязанных данных – в базе данных», стр. 116
«Держите все в системе управления версиями», стр. 156
«Утилиты UNIX – ваши друзья», стр. 196

Джанет Грегори (Janet Gregory)

Соавтор «Agile Testing: A Practical Guide for Agile Testers and Teams»
(Addison-Wesley Professional), Джанет Грегори – консультант, помо
гающий командам создавать качественные системы с помощью ме
тодов гибкого программирования. Джанет живет и работает в Кана
де, и ее главная страсть – внедрение гибких методов создания каче

ственного программного обеспечения. В качестве инструктора и тестировщика
она помогала компаниям внедрять практики гибкого программирования и ус
пешно перевела несколько команд традиционного тестирования в мир гибкого
программирования. Ее цель – помочь бизнес-пользователям и тестировщикам
осознать свою роль в проектах с гибким программированием. Джанет читает
курсы на тему гибкого тестирования и часто выступает на международных кон
ференциях, посвященных гибкому программированию и тестированию. По
дробности см. по адресу http://janetgregory.ca.

«Когда программисты и тестировщики сотрудничают», стр. 204

1	 Диомидис Спинеллис «Анализ программного кода на примере проектов Open Sour
ce». – Пер. с англ. – Вильямс, 2004.

2	 Диомидис Спинеллис, Георгиос Гусиос «Идеальная архитектура. Ведущие специали
сты о красоте программных архитектур». – Пер. с англ. – СПб.: Символ-Плюс, 2010.

Авторы	 221

Джейсон П. Сэйдж (Jason P. Sage)

Джейсон П. Сэйдж – консультант по компьютерам и владелец пред
приятия. Его основные интересы – системное проектирование, инте
грация, управление отношениями с клиентами (CRM), оригиналь
ное серверное программное обеспечение, обработка данных и про
граммы для трехмерной графики. Джейсон – настоящий энтузиаст

программирования; он отправился в свое путешествие в 1981 году в возрасте
10 лет при помощи Timex Sinclair с двумя килобайтами памяти и кассетным
магнитофоном. За прошедшее время он написал множество разнообразных про
грамм, начиная с игр и кончая операционной системой для программного обес
печения управления складскими запасами в одной из крупнейших компаний
страны, торгующей продовольственными товарами. Он часто появляется в сете
вых форумах, помогая коллегам-программистам и учащимся разного возраста.

«Почаще изобретайте колесо», стр. 164

Джерард Мезарос (Gerard Meszaros)

Джерард Мезарос – независимый консультант, инструктор и препо
даватель в области программного обеспечения с 25-летним опытом
создания программ и почти 10-летним опытом применения методов
гибкого программирования, таких как Scrum, eXtreme Programming
и Lean. Он регулярно выступает на таких конференциях по разработ

ке и тестированию программного обеспечения, как OOPSLA, Agile200x и STAR.
Написал книгу «xUnit Test Patterns: Refactoring Test Code»1 (Addison-Wesley)
и ведет сайт http://xunitpatterns.com.

«Тесты пишутся для людей», стр. 210

Джованни Аспрони (Giovanni Asproni)

Джованни Аспрони – независимый контрагент и консультант, про
живающий в Великобритании. Несмотря на то, что он часто работа
ет архитектором, руководителем команды, преподавателем или на
ставником, в душе он остается программистом, который предпочи
тает простой код. Он регулярно выступает на конференциях, входит

в комитет конференции London XPDay и руководит конференцией ACCU. Джо
ванни является членом ACCU, AgileAlliance, ACM и IEEE.

«Тщательно выбирайте инструменты», стр. 40
«Учитесь делать оценки», стр. 120

1	 Джерард Мезарос «Шаблоны тестирования xUnit. Рефакторинг кода тестов». – Пер.
с англ. – Вильямс, 2009.

222	 Авторы

Джон Джаггер (Jon Jagger)

Джон Джаггер – независимый консультант/инструктор/програм
мист/наставник/энтузиаст, специализирующийся на гибком про
граммировании (люди и процесс), разработке на основе тестов, UML,
проектировании, анализе, объектно-ориентированном программи-
ровании и языках с фигурными скобками (C#, C, C++, Java). Он член

британской комиссии по C, бывший член британской комиссии по C++, а также
член и главный эксперт (PUKE – Principal UK Expert) британской комиссии по
ECMA-стандартизации C#.

Джон также придумал игру «Average Time To Green», опубликовал множество
статей в Интернете и журналах и выступил соавтором двух книг: «Microsoft®
Visual C#® .NET Step by Step» (Microsoft Press) и «C# Annotated Standard»
(Morgan Kaufmann).

Джон женат на прелестной Натали, он счастливый отец Элли, Пенни и Патрика.
Безумно увлекается рыбалкой в проточной воде.

«Больше осознанной практики», стр. 64
«Пусть невидимое станет более видимым», стр. 132

Дэн Берг Джонссон (Dan Bergh Johnsson)

Дэн Берг Джонссон – ведущий консультант, партнер и официальный
представитель Omegapoint AB. Энтузиаст проектирования на основе
предметной области, давний поклонник гибкого программирования,
наследник традиций искусства в программировании и «школы раз
работки OOPSLA». Один из основателей шведской группы предметно-

ориентированного проектирования DDD Sverige, регулярно участвует в работе
http://domaindrivendesign.org/ и часто выступает на международных конферен
циях. О своей любви к профессии он рассказывает в блоге «Dear Junior: Letters
to a Junior Programmer» по адресу http://dearjunior.blogspot.com.

«Отличайте исключения в бизнес-логике от технических», стр. 62
«Знай, что сохранишь в репозиторий», стр. 114

Дэн Норт (Dan North)

Дэн Норт пишет программы и консультирует команды по методам
гибкого и упрощенного программирования. Он ставит во главу угла
хорошее отношение к людям и написание простых, практичных
программ. Он также считает, что большинство проблем, с которыми
сталкиваются команды, вызвано плохо налаженным общением –
как, впрочем, и все остальные проблемы тоже.

Авторы	 223

Поэтому он уделяет такое внимание «правильному выбору слов» и так увлечен
разработкой на основе поведения, проблемами обмена информацией и методами
обучения. Дэн работает в IT-отрасли с момента окончания учебы в 1991 году
и иногда пишет в блоге http://dannorth.net.

«Пишите код на языке предметной области», стр. 42

Дэниэл Линднер (Daniel Lindner)

Дэниэл Линднер разрабатывал программное обеспечение в течение
15 лет – как ради денег, так и за интерес (проекты с открытым исход
ным кодом). Является одним из основателей компании по разработ
ке программного обеспечения в Карлсруэ (Германия) и читает лек
ции по разработке программного обеспечения. Он также участвует

в общественной жизни.

«Пусть ваш проект говорит сам за себя», стр. 124

Жиль Колборн (Giles Colborne)

Жиль Колборн в течение двух десятилетий занимался вопросами эр
гономики в British Aerospace, Institute of Physics Publishing и Euro
RSCG. За это время он провел сотни часов, наблюдая за пользовате
лями в лабораторных и реальных условиях. В 2004 году он основал
cxpartners – проектную компанию, ориентированную на пользова

теля, которая исследует поведение пользователя и проектирует пользователь
ские интерфейсы для заказчиков со всего света, включая Nokia, Marriott и eBay.

Колборн был президентом британской ассоциации профессионалов в области
юзабилити в течение 2003–2007 годов и работал в Британском институте стан
дартизации, создавая стандарты и руководящие документы по универсальности
доступа.

«Выясните, как поступит пользователь (и вы – не пользователь)», стр. 26
«Предотвращайте появление ошибок», стр. 152

Йехиль Кимхи (Yechiel Kimchi)

Йехиль Кимхи – математик (докторская степень Еврейского универ
ситета в Иерусалиме за работу в теории множеств), исследователь
в области информатики (более 10 лет преподает на факультете ин
форматики в Технионе, Израиль) и разработчик программного обес
печения – более 15 лет работает на большие «хай-тековские» компа
нии и как консультант в собственной небольшой фирме.

224	 Авторы

Начав писать на C, а потом перейдя на C++, он интересуется ООП и способами
разработки программ, которые были бы одновременно корректными, легкими
в сопровождении и эффективными. Помимо этого он разработал эвристики для
эффективного решения NP-сложных задач, но своим величайшим достижением
считает влияние, оказанное на техническое образование тысяч израильских ин
женеров-программистов.

«Пиши код с умом», стр. 50

Йорн Ольмхейм (Jo/ rn Ølmheim)

Йорн Ольмхейм профессионально занимается программированием
уже более 10 лет: поработал и разработчиком, и архитектором, и ав
тором/докладчиком. В настоящее время работает в Statoil, создавая
программное обеспечение для ряда исследовательских проектов –
в основном с использованием Java, Ruby и Python, а иногда добавляя

Fortran и C/C++, если требуются высокоскоростные вычисления. В числе его
главных интересов – практика гибкого программирования с упором на мастер
ство разработчика, языки программирования и автономные системы.

В свободное время Йорн увлекается лыжами, горным велосипедом и общением
со своими близкими.

«Красота – следствие простоты», стр. 30

Йоханнес Бродуолл (Johannes Brodwall)

Йоханнес Бродуолл – ведущий научный специалист норвежского от
деления консультативной компании Steria. Он любит взглянуть на
проект с общей точки зрения, чтобы понять, как сочетание различ
ных дисциплин и технологий может (и может ли) представлять цен
ность для пользователей программных систем. Он активно участву

ет в работе сообщества гибкой разработки в Осло. Больше всего времени отнима
ют у него Oslo Extreme Programming Meetup и ежегодные конференции Smidig
200x (smidig на норвежском означает «agile» – гибкий). Он регулярно выступает
на мероприятиях, проводимых в районе Осло, и часто пишет о разработке про
граммного обеспечения в своем блоге по адресу http://johannesbrodwall.com.

«Сборка должна быть чистой», стр. 104
«Многословный журнал лишит вас сна», стр. 200

Авторы	 225

Кари Россланд (Kari Ro/ ssland)

Кари Россланд – разработчик программного обеспечения в норвеж
ском отделении консультативной компании Steria. За три года, про
шедшие после получения степени магистра информатики в NTNU
(Тронхейм, Норвегия), Кари приняла участие в нескольких проектах.
Ее особенно интересуют гибкая разработка и приятное и эффектив

ное сотрудничество между участниками программных проектов.

«Программируйте парами и входите в поток», стр. 148

Карианне Берг (Karianne Berg)

Карианне Берг получила диплом магистра в Университете Бергена,
Норвегия, и в данное время работает в норвежской консультацион
ной фирме Objectware. Ей нравится помогать людям достигать успе
ха в разработке; она участвует в организации конференций ROOTS
и Smidig, а также Oslo XP Meetup. Карианне выступала на несколь

ких конференциях, и последний раз ее видели на Smidig 2009. Основные сферы
ее интересов включают гибкую разработку, шаблоны и фреймворк Spring.

«Читайте код», стр. 160

Кевлин Хенни (Kevlin Henney)

Кевлин Хенни – независимый консультант и инструктор. В основном
он занимается шаблонами и архитектурой, приемами программиро
вания и языками, процессами и практикой разработки. Вел колонки
в разных журналах и сетевых изданиях, включая «The Register»,
«Better Software», «Java Report», «CUJ» и «C++ Report». Кевлин – со

автор двух книг серии «Pattern-Oriented Software Architecture» (Архитектура
ПО, ориентированная на шаблоны): «A Pattern Language for Distributed Compu
ting» и «On Patterns and Pattern Languages» (Wiley). Он также участвовал в на
писании книги «97 Things Every Software Architect Should Know»1.

«Комментируйте только то, о чем не скажет код», стр. 54
«Тестируйте требуемое, а не случайное поведение», стр. 180
«Тестируйте точно и конкретно», стр. 182

1	 Сборник «97 этюдов для архитекторов программных систем». – Пер. с англ. – СПб.:
Символ-Плюс, 2010.

226	 Авторы

Кейт Брэйтуэйт (Keith Braithwaite)

Кейт Брэйтуэйт – один из главных консультантов Zuhlke. Он также
руководит в этой организации Центром практики гибкого програм
мирования. Эта группа осуществляет обучение, инструктирование,
наставничество, системное программирование и прямолинейную
разработку с целью усиления способностей клиентских команд. Кейт

занимался сопровождением компиляторов, моделированием сетей GSM и порти
рованием систем спутниковой навигации для стартапов, промышленных компа
ний и глобальных сервисных организаций. Он зарабатывал деньги написанием
кода на C, C++, Java, Python и Smalltalk. Кейт все более сосредоточивается на ис
пользовании «проверенных примеров» или «автоматизированных тестов» как
эффективных инструментов для сбора и анализа технических требований, сис
темного проектирования и управления проектами.

Его блог см. по адресу http://peripateticaxiom.blogspot.com; его презентации на
конференциях можно найти здесь: http://www.keithbraithwaite.demon.co.uk/pro
fessional/presentations/.

«Читайте гуманитарные книги», стр. 162
«Пишите маленькие функции на основе примеров», стр. 208

Кирк Пеппердин (Kirk Pepperdine)

Кирк Пеппердин работает независимым консультантом и предлага
ет услуги, связанные с оптимизацией производительности кода на
Java. Прежде чем углубиться в Java, Кирк разрабатывал и доводил
до ума системы, написанные на C/C++, Smalltalk и ряде других язы
ков. Кирк написал много статей и выступал на ряде конференций,

посвященных настройке производительности. Он способствовал превращению
http://www.javaperformancetuning.com в ресурс, посвященный информации и ре
комендациям по настройке производительности.

«Упущенные возможности применения полиморфизма», стр. 138
«Путь к повышению эффективности программ заминирован грязным кодом»,
стр. 168
«WET размазывает узкие места производительности», стр. 202

Клаус Маркардт (Klaus Marquardt)

Опыт Клауса Маркардта в разработке программного обеспечения
включает в себя системы жизнеобеспечения, международные проек
ты, фреймворки и линейки продуктов, а также гибкую разработку на
режимных объектах. Он описал ряд диагнозов и терапевтических
мер для программных систем исходя из собственного интереса к вза

Авторы	 227

имному влиянию технологий, людей, процессов и организации; их можно найти
на сайте http://www.sustainable-architecture.eu. Кроме того, Клаус любит создавать
шаблоны, вести на конференциях встречи, где исследуются новые возможности,
и интересоваться в жизни чем-то еще помимо программирования.

«Учите иностранные языки», стр. 118
«Долговечность временных решений», стр. 128

Клинт Шэнк (Clint Shank)

Клинт Шэнк – разработчик программного обеспечения, консультант
и наставник в Sphere of Influence, Inc. – компании, которая лидирует
в проектных инновациях, применяя нестандартные подходы для
создания невероятных программ, потрясающих во всех смыслах.
Обычно он консультирует по вопросам проектирования и конструи

рования приложений промышленного масштаба.

Особенно его привлекают практики гибкого программирования, такие как не
прерывная интеграция и разработка на основе тестирования, языки программи
рования Java, Groovy, Ruby и Scala, фреймворки Spring и Hibernate, а также
проектирование и архитектура приложений в целом.

Клинт ведет блог по адресу http://clintshank.javadevelopersjournal.com, он один
из авторов сборника статей «97 Things Every Software Architect Should Know»1.

«Непрерывное обучение», стр. 56

Кэй Хорстман (Cay Horstmann)

Кэй Хорстман вырос в северной Германии и учился в Университете
им. Кристиана Альбрехтса в Киле – портовом городе на Балтийском
море. Получил степень магистра информатики в Сиракузском уни
верситете и доктора математики в Университете штата Мичиган
в Энн-Арбор. Четыре года Кэй выступал в роли вице-президента

и технического директора интернет-стартапа, разросшегося с трех человек в кро
шечном офисе до открытой акционерной компании. Сейчас он преподает инфор
матику в Университете Сан-Хосе. Располагая массой свободного времени, Кэй пи
шет книги и статьи, посвященные языку Java и обучению информатике.

«Шаг назад. Теперь автоматизируй, автоматизируй, автоматизируй…», стр. 176

1	 Сборник «97 этюдов для архитекторов программных систем». – Пер. с англ. – СПб.:
Символ-Плюс, 2010.

228	 Авторы

Кэл Эванс (Cal Evans)

Кэл Эванс – директор экспертного центра PHP (PCE, PHP Center of
Expertise) компании Ibuildings. Он программировал на различных
языках более 25 лет. Пишет книги и журнальные статьи, посвящен
ные нескольким языкам программирования. Кэл – американец, но
сейчас живет в Утрехте (Голландия), где выступает, публикуется,

пишет код и участвует в работе глобального сообщества PHP. У него есть блог:
http://blog.calevans.com.

«Комментарий о комментариях», стр. 52
«Этот код не трогать!», стр. 82

Кэрролл Робинсон (Carroll Robinson)

Кэрролл Робинсон – разработчик прошивок встраиваемых систем
с практическим опытом порядка 20 лет. Он писал микропрограммы
на C и ассемблере для самых разных процессоров (в том числе 8051,
80x86, 68k, ARM7 и C2000), применявшихся в медицинском оборудо
вании, лабораторных приборах и системах беспроводной связи. Кэр

роллу приходилось создавать и приложения на C++, Java и Python. Он предпочи
тает пользоваться инструментами с открытым исходным кодом (GCC, GAS, GDB)
на различных платформах Linux и создал несколько встроенных Linux-систем.

Кэрролл закончил магистратуру Университета Case Western Reserve (Кливленд,
Огайо) по специальности компьютерная инженерия.

«Умей пользоваться утилитами командной строки», стр. 106

Линда Райзинг (Linda Rising)

Линда Райзинг получила докторскую степень в Университете штата
Аризона, а ее резюме включает и преподавание в университете, и ра
боту в ряде промышленных отраслей. Линду знают во многих стра
нах благодаря ее выступлениям, посвященным шаблонам, ретро
спективам, гибкой разработке и процессам перемен. Она является

автором множества статей и четырех книг, последнюю из которых, «Fearless
Change: Patterns for Introducing New Ideas» (Addison-Wesley), написала в соав
торстве с Мэри Линн Маннс (Mary Lynn Manns).

«Послание потомкам», стр. 136

Авторы	 229

Майк Льюис (Mike Lewis)

Майк Льюис работает сейчас инженером-программистом в Lutron
Electronics, а в свободное время – независимым консультантом по
программному обеспечению. Его более чем 10-летний опыт програм
мирования помогает ему создавать элегантные и интуитивно понят
ные программные решения. Он пропагандирует совершенствование

процессов и страстно стремится улучшать пользовательские интерфейсы везде,
где только возможно.

У Майка степени бакалавра и магистра по разработке ПО, полученные в Роче
стерском технологическом институте. Сейчас он живет в Аллентауне, штат Пен
сильвания, у границы Нью-Йорка и Филадельфии.

«Не бойтесь что-нибудь сломать», стр. 68

Майкл Фезерс (Michael Feathers)

Майкл Фезерс – консультант в Object Mentor International. Он занят
работой с разными командами по всему миру, их обучением и настав
лением. Майкл разработал CppUnit, первый порт JUnit на C++,
и FitCpp, портированную на C++ среду интеграционного тестирова
ния Fit. Майкл – автор книги «Working Effectively with Legacy Code»1

(Prentice Hall).

«Золотое правило проектирования API», стр. 90

Маркус Бэйкер (Marcus Baker)

Маркус Бэйкер обожает заниматься программированием и поража
ется, что за это ему еще платят деньги. Его обожание распространя
ется на телефонию, анализ данных, робототехнику и веб-разработ
ку. Время от времени он пишет статьи или ведет колонки, организу
ет группы пользователей и конференции. В настоящее время он, од

нако, занят уходом за детьми.

«Установи меня!», стр. 100

1	 Майкл Фезерс «Эффективная работа с унаследованным кодом». – Пер. с англ. – Виль
ямс, 2009.

230	 Авторы

Маттиас Карлссон (Mattias Karlsson)

Маттиас Карлссон большую часть времени занимается разработкой
программного обеспечения для финансового сектора, а также руко
водит группой пользователей Java (JUG, Java User Group) в Сток
гольме (Швеция). Маттиас занимается объектно-ориентированны
ми разработками с 1993 года. С годами он приобрел опыт работы

в разных качествах, в том числе разработчика, архитектора, руководителя ко
манды, инструктора, менеджера и преподавателя. Во всех этих ролях его способ
ность вдохновлять и мотивировать своих сотрудников получила высокую оцен
ку. Группа JUG ежегодно проводит от шести до восьми представительных сове
щаний с числом участников более 200. Маттиас также выступил одним из орга
низаторов Jfokus, крупнейшей ежегодной конференции по Java в Стокгольме.

В свободное время Маттиас играет с детьми или катается на мотоцикле, а также
помогает строить жилье для неимущих в рамках организации Habitat for Huma
nity. Маттиас также поддерживает организацию взаимного микрокредитования
Kiva. Узнайте, как присоединиться к его стараниям улучшить мир, на http://
www.kiva.org/team/jug.

«Рецензирование кода», стр. 48

Микаэль Хунгер (Michael Hunger)

Микаэль Хунгер увлекся программированием еще в детские годы
в Восточной Германии. Особенно интересуется людьми, которые раз
рабатывают программное обеспечение, мастерством программирова
ния, языками программирования и совершенствованием кода. Ему
нравится заниматься инструктированием и внутрипроектными раз

работками в качестве независимого консультанта («евангелист разработки луч
ших программ» – http://jexp.de), но в его жизни есть и другие любимые проекты.

Половину жизни он отдает семье (у Микаэля трое детей), давней зависимости от
текстовой многопользовательской игры в подземелье (MUD MorgenGrauen), чте
нию книг, когда это возможно, работе в собственной кофейне «die-buchbar», где
есть мастерская для печати на разных материалах, и всяким поделкам с Lego®
или без него. Другая половина занята работой с одними языками программиро
вания и изучением других, прослушиванием IT-подкастов (особенно Software
Engineering Radio; http://se-radio.net/), участием в интересных и амбициозных
проектах типа qi4j, созданием DSL (jequel, squill и xmldsl), обширным рефакто
рингом и участием в написании и рецензировании книг. Недавно он стал высту
пать на конференциях.

«Предметно-ориентированные языки», стр. 66

Авторы	 231

Мэтт Доар (Matt Doar)

Мэтт Доар работает консультантом по инструментам программирова
ния, таким как системы управления версиями (CVS, Subversion), сис
темы сборки (make, Scons) и системы отслеживания ошибок (Bugzil
la, JIRA). Большая часть его клиентов – небольшие стартапы в Крем
ниевой долине. Мэтт – автор вышедшей в O’Reilly книги «Practical

Development Environments».

«Как пользоваться системой отслеживания ошибок», стр. 96

Никлас Нильссон (Niclas Nilsson)

Никлас Нильссон – наставник по разработке программного обеспе
чения, консультант, преподаватель и писатель, глубоко увлеченный
профессией и влюбленный в красивые архитектурные решения. Он
стал разработчиком в 1992 году. Никлас по собственному опыту зна
ет, какое огромное значение для разработки ПО может иметь выбор

языков, инструментов, способа общения и процессов. Вот почему он любит дина
мические языки, разработку на основе тестов, генерацию кода, метапрограмми
рование и методы гибкой разработки. Никлас входит в число создателей factor10
и работает редактором сообщества архитекторов в InfoQ. Его блог находится по
адресу http://niclasnilsson.se.

«Думайте состояниями», стр. 188

Нил Форд (Neal Ford)

Нил Форд – архитектор программного обеспечения и меметик в Tho
ughtWorks, глобальной консультативной компании в области IT, уде
ляющей исключительное внимание сквозной разработке и поставке
программного обеспечения. Он проектирует/разрабатывает прило
жения, обучающие материалы, учебные курсы, видеопрезентации,

пишет журнальные статьи, является автором и/или редактором пяти книг1. Он
также часто выступает на конференциях. Удовлетворить свой жадный интерес
к личности Нила вы сможете на сайте http://www.nealford.com.

«Тестирование – это инженерная строгость в разработке программного обеспече-
ния», стр. 186

1	 Нил Форд «Продуктивный программист». – Пер. с англ. – СПб.: Символ-Плюс, 2009.

232	 Авторы

Нэйт Джексон (Nate Jackson)

Нэйт Джексон – старший архитектор программного обеспечения
в Буффало, штат Нью-Йорк. Занимается написанием кода с 1979 го
да, когда у него появился TI-99 и картридж с эмулятором Бэйсика.
Следуя собственному совету, он удовлетворил всех своих клиентов –
даже ту даму, которая пожелала иметь белый фон.

«Ваши заказчики имеют в виду не то, что говорят», стр. 214

Олве Маудал (Olve Maudal)

Олве Маудал живет в Норвегии. Женат. Двое детей. Убежденный
компьютерный гик. В данное время в основном пишет код на C и C++.

В университете Олве изучал разработку ПО и искусственный интел
лект. Профессиональную карьеру он начал в нефтяной отрасли в ком
пании, разрабатывавшей системы разведки нефти и газа. Затем не

сколько лет занимался системами денежных переводов. Сегодня работает в теле
коммуникационной компании, создавая системы для эффективной связи между
людьми.

Олве – активный член энергичного сообщества гиков в Осло, где, среди прочего,
является организатором группы пользователей C++ в Осло. Его блог см. по адре
су http://olvemaudal.wordpress.com.

«Тяжелый труд не оправдывает себя», стр. 94

Петер Зоммерлад (Peter Sommerlad)

Петер Зоммерлад – профессор и глава Института программного обес
печения в HSR Rapperswil. Петер – соавтор книги «Pattern-Oriented
Software Architecture», Volume 1 и «Security Patterns» (обе изданы
Wiley). Его долгосрочная задача – сделать программное обеспечение
проще благодаря декрементной разработке: рефакторингу про

грамм до 10% их размера благодаря лучшей архитектуре, легкости тестирова
ния, качеству и функциональности.

«Правду скажет только код», стр. 144

Пит Гудлиф (Pete Goodliffe)

Пит Гудлиф – разработчик программного обеспечения, оратор и пи
сатель, который никогда долго не задерживается на одной роли в от
расли программного обеспечения. Он писал на многих языках во
многих проектах. Он также преподает и обучает программистов и ве

Авторы	 233

дет постоянную колонку «Professionalism in Programming» в журнале ACCU
«CVu» (http://accu.org/).

Написанная Питом популярная книга «Code Craft»1 (No Starch Press) служит
практичным и увлекательным исследованием самого занятия программирова
нием. Пит любит писать превосходный код, в котором отсутствуют ошибки, бла
годаря чему может больше времени проводить со своими детьми. Он обожает
карри и не носит обувь.

«Не проходите мимо ошибки!», стр. 72
«Улучшайте код, удаляя его», стр. 98
«Нужно заботиться о коде», стр. 212

Пол У. Гомер (Paul W. Homer)

Пол У. Гомер – разработчик программного обеспечения, писатель
и немного фотограф, который занялся разработкой программ не
сколько десятилетий назад и с тех пор стремится строить все более
сложные системы. Его опыт включает в себя работу в фирме, кон
сультирование и коммерческие разработки в самых разнообразных

должностях, включая аналитика, архитектора, программиста, менеджера и да
же – как ни глупо – технического директора. Он готов заниматься любым де
лом, направленным на создание и выпуск систем.

В последние несколько лет он стал уделять больше внимания общению с колле
гами-разработчиками, в связи с чем опубликовал книгу, ведет блог и очень мно
го выступает в надежде помочь программной отрасли лучше понять себя и до
стичь новых высот.

«Простота достигается сокращением», стр. 170

Раджит Аттапатту (Rajith Attapattu)

Раджит Аттапатту – старший инженер-программист в команде MRG
Red Hat. Раджит – энтузиаст открытых проектов и участник ряда
проектов Apache, в том числе Apache Qpid, Apache Synapse, Apache
Tuscany и Apache Axis2. В последнее время он сосредоточился на
разработке масштабируемого и надежного программного обеспече

ния промежуточного уровня для передачи сообщений и вошел в группу AMQP
(Advanced Message Queuing Protocol).

Он опубликовал несколько статей и выступил на ряде конференций и встреч
групп пользователей, в том числе ApacheCon, Colorado Software Summit и Toronto

1	 Питер Гудлиф «Ремесло программиста. Практика написания хорошего кода». – Пер.
с англ. – СПб.: Символ-Плюс, 2009.

234	 Авторы

JUG. В область научных интересов Раджита входит улучшение масштабируемо
сти и высокой доступности распределенных систем. В свободное время Раджит
любит рисовать и играть в крикет.

С ним можно связаться по адресу rajith@apache.org, а также найти на http://
rajith.2rlabs.com.

«Прежде чем приступать к рефакторингу», стр. 32
«Тестируйте во сне (и по выходным)», стр. 184

Райан Браш (Ryan Brush)

Райан Браш – директор и заслуженный инженер (Distinguished
Engineer) в Cerner Corporation, где он работает с 1999 года. Его глав
ный интерес – применение технологий в области здравоохранения.

«Код – это проектирование», стр. 44
«Миф о гуру», стр. 92

Рассел Уиндер (Russel Winder)

Рассел Уиндер – партнер в Concertant LLP, предоставляющей услуги
аналитики и консультаций по всем проблемам параллельных и кон
курентных вычислений и многоядерным системам. Он также высту
пает в качестве независимого консультанта, автора и преподавателя
по программированию, языкам программирования (Java, Groovy

и Python), системам управления версиями (Subversion, Bazaar и Git) и фрейм
воркам сборки (Gant, SCons, Gradle, Ant и Maven). Рассел – автор книги «Deve
loping C++ Software» (Wiley), соавтор книг «Developing Java Software» (Wiley)
и «Python for Rookies» (Cengage Learning Business Press).

«Как следует изучи более двух языков программирования», стр. 108
«Передача сообщений улучшает масштабируемость параллельных систем»,
стр. 134

Ричард Монсон-Хейфел (Richard Monson-Haefel)

Ричард Монсон-Хейфел – независимый разработчик программного
обеспечения, соавтор всех пяти изданий «Enterprise JavaBeans»1
и обоих изданий «Java Message Service» (O’Reilly), а также автор

1	 Ричард Монсон-Хейфел «Enterprise JavaBeans», 3-е издание. – Пер. с англ. – СПб.:
Символ-Плюс, 2002.

Авторы	 235

«J2EE Web Services» (Addison-Wesley). Ричард – редактор книги «97 Things
Every Software Architect Should Know»1. Является одним из основателей проек
та OpenEJB (проект с открытым исходным кодом), контейнера EJB для Apache
Geronimo, а сейчас консультирует разработки iPhone и Microsoft Surface.

«Удовлетворяйте свое честолюбие через Open Source», стр. 88

Роберт Мартин «Дядюшка Боб» (Robert C. Martin «Uncle Bob»)

Роберт Мартин (Дядюшка Боб) профессионально занимается разра
боткой программного обеспечения с 1970 года и является основате
лем и президентом Object Mentor, Inc. в Герни, штат Иллинойс. Obj
ect Mentor, Inc. – международная компания, где работают разработ
чики и менеджеры с большим опытом, которые помогают компани

ям доводить их проекты до завершения. Object Mentor предлагает консультации
по совершенствованию процессов, обучение, консультации и повышение квали
фикации в объектно-ориентированном программировании для крупных миро
вых компаний.

Боб опубликовал десятки статей в различных отраслевых журналах и часто вы
ступает на международных конференциях и выставках. Является автором и ре
дактором многих книг, включая «Designing Object-Oriented C++ Applications
Using the Booch Method» (Prentice Hall), «Patterns Languages of Program Design 3»
(Addison-Wesley Professional), «More C++ Gems» (Cambridge University Press),
«Extreme Programming in Practice» (Addison-Wesley Professional), «Agile Soft
ware Development: Principles, Patterns, and Practices»2, «UML for Java Program
mers» и «Clean Code»3 (все вышли в Prentice Hall).

Будучи одним из лидеров отрасли разработки ПО, Боб в течение трех лет выпол
нял обязанности главного редактора «C++ Report» и был первым президентом
«Agile Alliance».

«Правило бойскаута», стр. 36
«Профессиональный программист», стр. 154
«Принцип единственной ответственности», стр. 172

1	 Сборник «97 этюдов для архитекторов программных систем». – Пер. с англ. – СПб.:
Символ-Плюс, 2010.

2	 Роберт К. Мартин, Джеймс В. Ньюкирк, Роберт С. Косс «Быстрая разработка про
грамм. Принципы, примеры, практика». – Пер. с англ. – Вильямс, 2004.

3	 Роберт Мартин «Чистый код. Создание, анализ и рефакторинг». – Пер. с англ. – СПб.:
Питер, 2011.

236	 Авторы

Род Бегби (Rod Begbie)

Род Бегби ведет свой род из Шотландии, но сейчас его сердце поко
рил город Сан-Франциско.

Днем он работает ведущим проектировщиком в Slide, Inc., а вечером
ухаживает за пандами. Ранее он трудился архитектором API в Cur
rent TV, скрывался в исследовательской лаборатории Bose Corpora

tion, консультировал Sapient и успешно спасся от (первого) лопнувшего пузыря
доткомов в подвале банка, где разрабатывал системы для анализа ежегодных
рент с фиксированным доходом, что было интересно настолько же, насколько
интересно звучит.

«Не прикалывайтесь с тестовыми данными», стр. 70

Рэнди Стэффорд (Randy Stafford)

Рэнди Стэффорд – профессионал в области программного обеспече
ния с 20-летним опытом работы в качестве программиста, аналитика,
архитектора, менеджера, консультанта и автора/докладчика. Сейчас
он работает в Oracle, в команде A-Team, где занимается проектами
POC, рецензированием архитектуры и производственными кризиса

ми. Он специализируется на грид-вычислениях, SOA, производительности, HA
и JEE/ORM.

Рэнди работал техническим консультантом в Rally Software, главным архитекто
ром в IQNavigator, директором по развитию в SynXis, консультантом в GemStone
и Smalltalk, а также специалистом по моделированию в аэрокосмической отрас
ли и CASE-индустрии. Он соавтор книг: «97 Things Every Software Architect Sho
uld Know»1 (O’Reilly), «Patterns of Enterprise Application Architecture»2 (Wiley)
и «EJB Design Patterns» (Addison-Wesley Professional).

«Межпроцессная коммуникация влияет на время отклика приложения», стр. 102

Сара Маунт (Sarah Mount)

Сара Маунт – старший преподаватель информатики в Университете
Вулверхемптона. Она интересуется языками и инструментами про
граммирования, особенно для беспроводных сетей датчиков и дру
гих распределенных систем. Сара читала студентам вводный курс

1	 Сборник «97 этюдов для архитекторов программных систем». – Пер. с англ. – СПб.:
Символ-Плюс, 2010.

2	 М. Фаулер, Д. Райс, М. Фоммел, Э. Хайет, Р. Ми, Р. Стэффорд «Шаблоны корпоратив
ных приложений». – Пер. с англ. – Вильямс, 2010.

Авторы	 237

программирования в течение 9 лет и является соавтором учебника «Python for
Rookies» (Cengage Learning Business Press).

«Пользуйтесь инструментами для анализа кода», стр. 178

Себ Роуз (Seb Rose)

Себ Роуз – главный инженер-программист в эдинбургской команде
Rational DOORS. Он начал программировать в 1980 году, создавая
приложения для агентов по недвижимости и адвокатов на компили
руемом BASIC для Apple IIe. Окончив Эдинбургский университет
в 1987 году, он сначала участвовал в проекте REKURSIV, а потом стал

независимым разработчиком. Сегодня его главными профессиональными инте
ресами являются методики гибкого программирования и реанимация «унасле
дованных» программ.

«Будьте благоразумны», стр. 22

Скотт Мейерс (Scott Meyers)

Скотт Мейерс – автор, преподаватель, оратор и консультант. Его опыт
в разработке и научной работе превышает тридцать лет. Он написал
десятки журнальных статей, а также книги «Effective C++»1, «More
Effective C++»2 и «Effective STL»3 (все вышли в Addison-Wesley
Professional). Он также проектировал и контролировал их публика

цию в форматах HTML и PDF. Скотт – редактор-консультант издаваемой Addi
son-Wesley серии «Effective Software Development» и был одним из первых чле
нов консультативного совета сетевого журнала «The C++ Source» (http://www.ar
tima.com/cppsource). Он получил докторскую степень по информатике в Универ
ситете Брауна. Адрес его сайта http://www.aristeia.com.

«Интерфейсы должно быть легко использовать правильно и трудно – неправиль-
но», стр. 130

1	 Скотт Мейерс «Эффективное использование С++. 55 верных советов улучшить струк
туру и код ваших программ». – Пер. с англ. – ДМК Пресс, 2006.

2	 Скотт Мейерс «Эффективное использование С++. 35 новых способов улучшить стиль
программирования». – Пер. с англ. – СПб.: Питер, 2006.

3	 Скотт Мейерс «Эффективное использование STL». – Пер. с англ. – СПб.: Питер, 2002.

238	 Авторы

Стив Берчук (Steve Berczuk)

Стив Берчук – инженер-программист в Humedica, где занимается
разработкой интеллектуальных бизнес-приложений для медицины.
Разработкой программных приложений он занимается свыше 20 лет.
Стив – автор книги «Software Configuration Management Patterns:
Effective Teamwork, Practical Integration» (Addison-Wesley Professio

nal). Помимо разработки приложений он любит помогать командам более эф
фективно организовать свою работу на основе методов гибкого программирова
ния и управления конфигурациями программного обеспечения. Адрес его сайта
http://www.berczuk.com.

«Развертывание приложения: раннее и регулярное», стр. 60
«Возьмите сборку (и ее рефакторинг) на себя», стр. 146

Стив Смит (Steve Smith)

Стив Смит – разработчик программного обеспечения, оратор, автор
и наставник. Он профессионально занимается разработкой программ
ного обеспечения с 1997 года и участвовал в написании нескольких
книг, в основном в области ASP.NET. Регулярно выступает на встре
чах пользователей и таких профессиональных конференциях, как

DevConnections и Microsoft TechEd. Стив – бывший капитан инженерных войск
армии США и ветеран боевых действий в Ираке, где командовал взводом, за
нимавшимся обезвреживанием неразорвавшихся боеприпасов и самодельных
взрывных устройств. Стив живет в Огайо с женой и двумя детьми и является од
ним из координаторов группы Hudson Software Craftsmanship.

«Не повторяй свой код», стр. 80

Стив Фримен (Steve Freeman)

Стив Фримен – независимый консультант, специализирующийся на
методах гибкой разработки. Он возглавлял, инструктировал и обучал
команды во всех уголках мира. Стив – соавтор книги «Growing Obj
ect-Oriented Software, Guided by Tests» (Addison-Wesley). В 2006 году
Стив получил награду Agile Alliance Gordon Pask. Он участвует в про

ектах jMock и Hamcrest и создал NMock. Он член-основатель eXtreme Tuesday
Club и был руководителем первого London XpDay. Стив выполнял роль организа
тора и участника многих международных профессиональных конференций. По
лучил докторскую степень в Кембриджском университете, а еще раньше полу
чил степени в области статистики и музыки. В настоящее время его интересуют
проблемы создания хорошего кода и исследование сложности организаций.

«Важность форматирования кода», стр. 46
«Один бинарный файл», стр. 142

Авторы	 239

Сэм Сааристе (Sam Saariste)

Сэм Сааристе – дипломированный магистр электротехники, занима
ется профессиональной разработкой программного обеспечения
с 1995 года. Сэм отметился в различных предметных областях – от об
работки речи в реальном времени в телекоммуникационной сфере до
трейдерских приложений в инвестиционных банках. Его любимый

язык – C++, он член комиссии BSI C++ с 2005 года. Сэм – поклонник методов
гибкой разработки с того момента, как в 2000 году открыл для себя экстремаль
ное программирование. Его заботит качество программного обеспечения, и он
уверен, что с помощью «agile» и «lean» можно одновременно достичь как высо
кого качества, так и высокой продуктивности.

«Не поддавайтесь очарованию шаблона Singleton», стр. 166

Томас Гест (Thomas Guest)

Томас Гест – опытный и энергичный программист. Он предпочитает
языки высокого уровня и простые решения. Его тексты опубликова
ны в ряде сетевых и печатных изданий, а также на его личном сайте
http://www.wordaligned.org.

«Научитесь говорить «Hello, World»», стр. 122

Уди Дахан (Udi Dahan)

Уди Дахан – «The Software Simplist» (программный знахарь), все
мирно известный специалист по архитектуре и проектированию
программного обеспечения. MVP (Most Valuable Professional) в об
ласти архитектуры решений и связанных систем в течение четырех
лет подряд, Уди также входит в число 33 европейских экспертов,

признанных международной ассоциацией .NET, является автором и преподава
телем в International Association of Software Architects, а также гуру SOA, Web
Services и XML, рекомендованным журналом DDJ.

В свободное от консультаций, выступлений и преподавания время Уди руково
дит разработкой NServiceBus, самой популярной сервисной шиной предприятия
на основе .NET с открытым исходным кодом. Его можно найти по адресу http://
www.UdiDahan.com.

«Осторожно: общий код», стр. 34

240	 Авторы

Уолтер Брайт (Walter Bright)

Уолтер Брайт – создатель компиляторов, написавший их для C, C++,
ECMAScript, ABEL, Java и недавно для языка программирования D.
Он также известен как изобретатель игры-стратегии Empire.

«Компоновщик не таит в себе никаких чудес», стр. 126

Филип ван Лаенен (Filip van Laenen)

Филип ван Лаенен – ведущий инженер в норвежской софтверной
компании Computas AS, которая разрабатывает IT-решения в обще
ственном и частном секторе Норвегии. Он начинал разработчиком
в малых и больших командах, и за 10 лет работы в отрасли Филип
вырос до ведущего разработчика и руководителя, отвечающего за

безопасность и программную инженерию целой компании. В своей профессио
нальной деятельности он использовал различные языки программирования,
включая Smalltalk, Java, Perl, Ruby и PL/SQL. Особый интерес Филип проявля
ет к безопасности компьютеров и криптографии и несколько лет занимал в Com
putas должность ответственного за безопасность.

У Филипа степени магистра электроники и магистра информатики, полученные
в Католическом университете Левена. Он родом из Фландрии, но переехал
в 1997 году в Норвегию и теперь вместе с семьей живет в Колсосе около Осло.

«Автоматизируйте свой стандарт форматирования кода», стр. 28

Хейнц Кабуц (Heinz Kabutz)

Хейнц Кабуц – автор «The Java Specialists’ Newsletter» (Бюллетень
специалистов по Java), издания, которое читают 50 000 специали
стов по Java в 120 странах. Большую часть времени он пишет код на
Java в качестве подрядчика многочисленных компаний. Кроме того,
он читает в компаниях лекции о том, как эффективнее писать про

граммы на Java, используя развитые функции этого языка.

Хейнц входит в сообщество «Java Champions», интервью с ним опубликовано
Sun Microsystems (см. http://java.sun.com/developer/technicalArticles/Interviews/
community/kabutz_qa.html).

«Знай свою IDE», стр. 110

Авторы	 241

Чак Эллисон (Chuck Allison)

Чак Эллисон – адъюнкт-профессор информатики в Университете
Юта Вэлли. Предшествующие два десятилетия он работал инжене
ром-программистом на западе США. Чак активно участвовал в раз
работке стандарта C++98, был ведущим редактором «C/C++ Users
Journal» и вместе с Брюсом Эккелем (Bruce Eckel) участвовал в на

писании 2-го тома «Thinking in C++». Он также основал «The C++ Source» и яв
ляется пишущим редактором «Better Software Magzine». Подробнее о Чаке мож
но узнать на его сайте http://www.chuckallison.com.

«Числа с плавающей запятой недействительны», стр. 86

Эдвард Гарсон (Edward Garson)

Увлечение Эдварда Гарсона компьютерами началось с изучения Logo
для Apple II. Сегодня он независимый консультант по разработке
программного обеспечения, помогает компаниям переходить на ме
тоды гибкого программирования.

В число технических интересов Эдварда входят архитектура и проектирование
программного обеспечения, языки программирования, а также GNU/Linux. Он
энергичный оратор и выступал в Британском компьютерном обществе, Совете
архитекторов Microsoft и на различных конференциях. Эдвард участвовал в на
писании книги «97 Things Every Software Architect Should Know»1.

Эдвард живет в Монреале с женой и двумя сыновьями. В свободное время любит
кататься на лыжах, ходить в горы и путешествовать на велосипеде.

«Применяйте принципы функционального программирования», стр. 24

Эдриан Уайбл (Adrian Wible)

Эдриан сам себе присвоил титул «катализатор разработки ПО». Он
работает в ThoughtWorks, Inc. в основном как руководитель проек
тов, но старается опровергать обвинения в отрыве от реальности тем,
что время от времени сам занимается практической разработкой
программ. Работая в IBM, он усвоил методику каскадной разработки

(Waterfall/SDLC) и внедрял ее в управление проектами, людьми и процессами
на протяжении своей более чем 20-летней карьеры в IBM и Dell Computer Corpo
ration.

1	 Сборник «97 этюдов для архитекторов программных систем». – Пер. с англ. – СПб.:
Символ-Плюс, 2010.

242	 Авторы

С переходом в 2005 году в ThoughtWorks Эдриан открыл для себя «Манифест
гибкой разработки» (Agile Manifesto), а также экстремальное программирова
ние, Scrum и прочее и понял, что от участия в проекте и от руководства проектом
можно получать удовольствие, восторг и удовлетворение. К прежним подходам
он уже не вернулся.

Связаться с Эдрианом можно по адресу awible@thoughtworks.com.

«Одна голова хорошо, но две – часто лучше», стр. 190

Эйнар Ландре (Einar Landre)

Эйнар Ландре – практикующий профессионал в области программ
ного обеспечения, проработал 25 лет в качестве разработчика, архи
тектора, менеджера, консультанта и автора/лектора. Сейчас он рабо
тает в службе бизнес-приложений StatoilHydro, где занят разработ
кой критически важных для бизнеса приложений, рецензированием

архитектуры и совершенствованием процессов разработки программного обес
печения.

До поступления в StatoilHydro Эйнар работал в качестве разработчика, консуль
танта и менеджера, занимаясь проектированием и реализацией коммуникаци
онных протоколов, операционных систем и тестированием программного обес
печения для международной космической станции.

В последние годы Эйнар стал активно участвовать в профессиональном сообще
стве, написал или выступил соавтором ряда докладов, представленных на
OOPSLA и SPE (Society of Petroleum Engineers). Среди его профессиональных
интересов объектно-ориентированное программирование, проектирование авто
номных систем, применение практики системной инженерии, методологии гиб
кой разработки и лидерство в высокотехнологических организациях.

У Эйнара степень магистра информатики, полученная в Университете Страт
клайда, и диплом сертифицированного IEEE профессионального разработчика
программного обеспечения (CSDP). Он живет вместе с семьей в Ставангере (Нор
вегия).

«Инкапсулируйте поведение, а не только состояние», стр. 84
«Предпочитайте примитивам предметно-ориентированные типы данных»,
стр. 150

Авторы	 243

Юрий Зубарев (Yuriy Zubarev)

Юрий Зубарев – архитектор программных систем и руководитель
команды в YachtWorld.com, подразделении Dominion Enterprises.
Его деятельность сосредоточена на интеграции программных сис
тем, технологиях сбора знаний и слежения, а также на повышении
технической эффективности и уровня мастерства в его компании.

Юрий живет и работает в красивейшем городе Ванкувере в канадской провин
ции Британская Колумбия. Помимо написания кода он увлекается латиноаме
риканскими танцами.

«Пишите код так, как будто вам предстоит сопровождать его всю оставшуюся
жизнь», стр. 206

Ян Кристиаан ван Винкель (Jan Christiaan «JC» van Winkel)

Ян Кристиаан ван Винкель – инструктор и разработчик учебных кур
сов для небольшой голландской учебной и консультативной фирмы
AT Computing. В его работе преобладают системы UNIX/Linux (сис
темное администрирование, безопасность, анализ эффективности)
и языки программирования (в основном C, C++ и Python). Он также

представляет Голландию в процессе стандартизации C++. Двенадцать лет «JC»
входил в состав руководства голландской группы пользователей UNIX (Nether
lands UNIX User’s group, NLUUG), шесть из которых занимал пост председателя.

«Правильно выбирайте алгоритмы и структуры данных», стр. 198

A
Ada, 108, 150
Ant, система автоматизации сборки, 176
Autotools, система автоматизации сборки,

176

B
bash, 177
bazaar, система управления версиями, 143
BusyBox, приложение, 197

C
C, 108
C#, 74, 87, 90
C++, 76, 108, 135, 150
COBOL, 46, 78
CSP (Communicating Sequential Processes),

модель взаимодействующих последова-
тельных процессов, 135

CVS, система управления версиями, 156
Cygwin, среда, 197

D
DRY (Don’t Repeat Yourself – «не повто-

ряйся»), один из важнейших принципов
программирования, 80

и «один и только один раз» (Once and
Only Once), принцип ПО, 81

DSL, 67

E
Erlang, 75, 134

Extreme Feedback Device, XFD – оконеч-
ное устройство обратной связи, 124

F
Fit (Framework for Integrated Test), 204
Fortran, 108

G
Git, система управления версиями, 143,

156
Groovy, 135

H
Haskell, 108
HSQLDB, 116

I
IDE, интегрированные среды разработки,

106
iMacros, 177
IntelliSense, 67
IPC (Interprocess Communications),

взаимодействия между удаленными
процессами, 102

J
Java, 66, 75, 90, 104, 110, 117, 135, 150

L
LINQ, 75
lint, 178

Алфавитный указатель

Алфавитный указатель	 245

M
Mercurial, система управления версиями,

156
MySQL, 116

O
occam, 134
Once and Only Once – «один и только один

раз», принцип ПО, 81
open source (программы с открытым

исходным кодом), 88

P
Pascal, 108
PostgreSQL, 116
PowerShell, 177
Processing, 117
Prolog, 108
Pylint, 178
Python, 75, 87, 135, 150, 178

R
Ruby, 66, 75, 117

S
Scala, 66, 75
Selenium, 177
SOA, 173
Splint, 178
SQL, 116
SQLite, 116
Subversion, система управления версия-

ми, 156

W
WET (Write Every Time – пиши каждый

раз), 202

Y
YAGNI (You Arent Gonna Need It – вам это

не понадобится), 98

А
автоматизированные тесты, 124, 145, 205
анализ сложности, 112
аспектно-ориентированное программиро-

вание, 189
Аспрони, Джованни

биография, 221
Тщательно выбирайте инструменты,

40
Учитесь делать оценки, 120

Аттапатту, Раджит
биография, 233
Прежде чем приступать к рефакторин-

гу, 32
Тестируйте во сне (и по выходным),

184

Б
Банда Четырех, 75
Бегби, Род

биография, 236
Не прикалывайтесь с тестовыми

данными, 70
Берг, Карианне

биография, 225
Читайте код, 160

Берчук, Стив
биография, 238
Возьмите сборку (и ее рефакторинг)

на себя, 146
Развертывание приложения: раннее

и регулярное, 60
биография

Аспрони, Джованни, 221
Аттапатту, Раджит, 233
Бегби, Род, 236
Берг, Карианне, 225
Берчук, Стив, 238
Брайт, Уолтер, 240
Браш, Райан, 234
Бродуолл, Йоханнес, 224
Брэйтуэйт, Кейт, 226
Бэйкер, Маркус, 229
Винкель, Ян Кристиаан ван, 243
Гарсон, Эдвард, 241
Гест, Томас, 239
Гомер, Пол У., 233
Грегори, Джанет, 220
Гриффитс, Алан, 216

246	 Алфавитный указатель

Гудлиф, Пит, 232
Гэгнат, Анн Кэтрин, 217
Дахан, Уди, 239
Джаггер, Джон, 222
Джексон, Нэйт, 232
Джонссон, Дэн Берг, 222
Доар, Мэтт, 231
Зоммерлад, Петер, 232
Зубарев, Юрий, 243
Кабуц, Хейнц, 240
Карлссон, Маттиас, 230
Келли, Аллан, 217
Кимхи, Йехиль, 223
Колборн, Жиль, 223
Колвин, Грег, 219
Лаенен, Филип ван, 240
Ландре, Эйнар, 242
Линднер, Дэниэл, 223
Льюис, Майк, 229
Маркардт, Клаус, 226
Мартин, Роберт, 235
Маудал, Олве, 232
Маунт, Сара, 236
Мезарос, Джерард, 221
Мейерс, Скотт, 237
Миллер, Алекс, 216
Монсон-Хейфел, Ричард, 234
Нильссон, Никлас, 231
Норас, Андерс, 217
Норт, Дэн, 222
Ольмхейм, Йорн, 224
Пеппердин, Кирк, 226
Райзинг, Линда, 228
Робинсон, Кэрролл, 228
Россланд, Кари, 225
Роуз, Себ, 237
Сааристе, Сэм, 239
Смит, Стив, 238
Спинеллис, Диомидис, 220
Стоб, Верити, 218
Стэффорд, Рэнди, 236
Сэйдж, Джейсон П., 221
Уайбл, Эдриан, 241
Уиндер, Рассел, 234
Фезерс, Майкл, 229
Форд, Нил, 231
Фримен, Стив, 238
Хан, Аслам, 218
Хаукнес, Гудни, 219

Хафнагель, Берк, 218
Хенни, Кевлин, 225
Хоп, Грегор, 219
Хорстман, Кэй, 227
Хунгер, Микаэль, 230
Шэнк, Клинт, 227
Эванс, Кэл, 228
Эллисон, Чак, 241

блокировка с двойной проверкой (DCLP),
167

Брайт, Уолтер
биография, 240
Компоновщик не таит в себе никаких

чудес, 126
Браш, Райан

биография, 234
Код – это проектирование, 44
Миф о гуру, 92

Бродуолл, Йоханнес
биография, 224
Многословный журнал лишит вас сна,

200
Сборка должна быть чистой, 104

Брэйтуэйт, Кейт
биография, 226
Пишите маленькие функции на основе

примеров, 208
Читайте гуманитарные книги, 162

Бэйкер, Маркус
биография, 229
Установи меня!, 100

В
взаимодействия между удаленными

процессами (IPC), 102
Винкель, Ян Кристиаан ван

биография, 243
Правильно выбирайте алгоритмы

и структуры данных, 198
Витгенштейн, 162
время отклика приложения, 102

Г
Гарсон, Эдвард

биография, 241
Применяйте принципы функциональ-

ного программирования, 24
Гест, Томас

биография, 239

Алфавитный указатель	 247

Научитесь говорить «Hello, World»,
122

глобальные переменные, 51
Гомер, Пол У.

биография, 233
Простота достигается сокращением,

170
Грегори, Джанет

биография, 220
Когда программисты и тестировщики

сотрудничают, 204
Гриффитс, Алан

биография, 216
Не полагайтесь на «автоматические

чудеса», 78
Гудлиф, Пит

биография, 232
Не проходите мимо ошибки!, 72
Нужно заботиться о коде, 212
Улучшайте код, удаляя его, 98

Гэгнат, Анн Кэтрин
биография, 217
Программируйте парами и входите

в поток, 148

Д
Дахан, Уди

биография, 239
Осторожно: общий код, 34

действительные числа, 86
десятичные числа, 87
Джаггер, Джон

биография, 222
Больше осознанной практики, 64
Пусть невидимое станет более види-

мым, 132
Джексон, Нэйт

биография, 232
Ваши заказчики имеют в виду не то,

что говорят, 214
Джонссон, Дэн Берг

биография, 222
Знай, что сохранишь в репозиторий,

114
Отличайте исключения в бизнес-логи-

ке от технических, 62
динамическая типизация, 151
Доар, Мэтт

биография, 231

Как пользоваться системой отслежива-
ния ошибок, 96

допущения, 39
дублирование кода, 80

З
Зоммерлад, Петер

биография, 232
Правду скажет только код, 144

Зубарев, Юрий
биография, 243
Пишите код так, как будто вам

предстоит сопровождать его всю
оставшуюся жизнь, 206

И
идиомы языка, 108
изменяемые переменные, 24
инкапсуляция, 132
инструменты для работы с грамматика-

ми, 67
интегрированная среда разработки (IDE),

106, 110
интерфейсы

удобство использования, 130
исключения, 62

К
Кабуц, Хейнц

биография, 240
Знай свою IDE, 110

Карл Великий, 119
Карлссон, Маттиас

биография, 230
Рецензирование кода, 48

Келли, Аллан
биография, 217
Две ошибки могут гасить одна другую

(и тогда их трудно исправлять), 192
Прежде чем пенять на других, проверь

собственный код, 38
Керниган и Плоджер «Элементы стиля

программирования», 54
Кимхи, Йехиль

биография, 223
Пиши код с умом, 50

классы исключений, 62
Кнут, Дональд, 199

248	 Алфавитный указатель

Колборн, Жиль
биография, 223
Выясните, как поступит пользователь

(и вы – не пользователь), 26
Предотвращайте появление ошибок,

152
Колвин, Грег

биография, 219
Знай свои возможности, 112

командная строка и IDE, 106
комментарии, 144

как балласт, 54
как часть кода, 55

компилятор, редкость ошибок в, 38
компоновка, 126
конечные автоматы, 189
конкурентные вычисления, 134
контрактное программирование, 189
корректность программного обеспечения,

50

Л
Лаенен, Филип ван

Автоматизируйте свой стандарт
форматирования кода, 28

биография, 240
Ландре, Эйнар

биография, 242
Инкапсулируйте поведение, а не

только состояние, 84
Предпочитайте примитивам предмет-

но-ориентированные типы данных,
150

Линднер, Дэниэл
биография, 223
Пусть ваш проект говорит сам за себя,

124
лицензия GNU, 41
Льюис, Майк

биография, 229
Не бойтесь что-нибудь сломать, 68

М
Маркардт, Клаус

биография, 226
Долговечность временных решений,

128
Учите иностранные языки, 118

Мартин, Роберт
биография, 235
Правило бойскаута, 36
Принцип единственной ответственнос-

ти, 172
Профессиональный программист, 154

Маудал, Олве
биография, 232
Тяжелый труд не оправдывает себя, 94

Маунт, Сара
биография, 236
Пользуйтесь инструментами для

анализа кода, 178
Мезарос, Джерард

биография, 221
Тесты пишутся для людей, 210

Мейерс, Скотт
биография, 237
Интерфейсы должно быть легко

использовать правильно и трудно –
неправильно, 130

метрики кода, 124
Миллер, Алекс

биография, 216
Сначала скажите «да», 174

модель взаимодействующих последова-
тельных процессов, 135

модульное тестирование, 133, 151, 166,
181

Монсон-Хейфел, Ричард
биография, 234
Удовлетворяйте свое честолюбие через

Open Source, 88

Н
невидимость как принцип разработки

качественного ПО, 132
инкапсуляция, 132
прозрачность механизма, 132

«не повторяйся» – DRY (Don’t Repeat
Yourself), один из важнейших принци-
пов программирования, 80

Нильссон, Никлас
биография, 231
Думайте состояниями, 188

Норас, Андерс
биография, 217
Не просто учите язык, поймите его

культуру, 74

Алфавитный указатель	 249

Норвиг, Питер, 64
Норт, Дэн

биография, 222
Пишите код на языке предметной

области, 42

О
обобщения (Java 5), 104
общая память, 134
общий код, 34
объектно-ориентированный подход, 25
объектно-реляционное отображение

(ORM), 102
«один и только один раз» (Once and Only

Once), принцип ПО, 81
оконечное устройство обратной связи, 124
Ольмхейм, Йорн

биография, 224
Красота – следствие простоты, 30

операторы goto, 50
«открыт/закрыт» (Open/Closed), принцип

ПО, 81
отладка, приемы, 38
ошибка округления, 87

П
парадигмы программирования, 108
параллелизм, 134
парное программирование, 148, 190
Пеппердин, Кирк

WET размазывает узкие места произ-
водительности , 202

биография, 226
Путь к повышению эффективности

программ заминирован грязным
кодом, 168

Упущенные возможности применения
полиморфизма, 138

побочные эффекты, 24
повторение в логике и шаблоны проекти-

рования, 81
повторение процессов в разработке ПО, 80
полиморфизм, 138
пользовательский интерфейс

всплывающие подсказки, 27
наблюдение за пользователями, 27

Поппендик, Мэри, 64
предметно-ориентированные типы

и примитивы, 150

принципы ПО
«не повторяйся» – DRY (Don’t Repeat

Yourself), 202
«один и только один раз» (Once and

Only Once), 81
«открыт/закрыт» (Open/Closed), 81
принцип единственной ответственнос-

ти (Single Responsibility Principle),
81, 172

принцип инверсии зависимости (DIP),
173

программные метрики, 168
проектирование хороших API, 58
прозрачность механизма, 132
производительность корпоративных

приложений, время отклика, 102
простота кода, 31, 39
процессы, 134
пульсирующая нагрузка, 102

Р
размывание в вычислениях, 87
разработка на основе приемочного

тестирования (ATDD), 204
разработка через тестирование, 131, 146
Райзинг, Линда

биография, 228
Послание потомкам, 136

распределенные системы управления
версиями, 143

регулярные выражения, 159
рефакторинг, 32, 68, 110, 144, 157, 168,

169, 203, 210
рецензирование кода, 48
Ривс, Джек, 186
Робинсон, Кэрролл

биография, 228
Умей пользоваться утилитами команд-

ной строки, 106
Россланд, Кари

биография, 225
Программируйте парами и входите

в поток, 148
Роуз, Себ

биография, 237
Будьте благоразумны, 22

Рош, Элеонора, 163
РСУБД, 116

250	 Алфавитный указатель

С
Сааристе, Сэм

биография, 239
Не поддавайтесь очарованию шаблона

Singleton, 166
связующее программное обеспечение, 41
сильная связность кода, 133, 145
синглтон, 90, 167
система управления версиями, 124, 156
системы автоматизации сборки, 176
слабая связанность кода, 133, 145, 160
Смит, Стив

биография, 238
Не повторяй свой код, 80

состояние потока, 148
Спинеллис, Диомидис

биография, 220
Держите все в системе управления

версиями, 156
Место для больших наборов взаимо-

связанных данных – в базе данных,
116

Утилиты UNIX – ваши друзья, 196
ссылочная прозрачность, 24
стандарт форматирования кода,

автоматизация, 28
статическая типизация, 151
Стоб, Верити

биография, 218
Не прибивайте программу гвоздями

к стене, 76
Стэффорд, Рэнди

биография, 236
Межпроцессная коммуникация

влияет на время отклика приложе-
ния, 102

сценарии сборки, их важность, 146
Сэйдж, Джейсон П.

биография, 221
Почаще изобретайте колесо, 164

Т
термины предметной области, 43
технический долг, 22

непреднамеренный, 22
умышленный, 22

У
Уайбл, Эдриан

биография, 241
Одна голова хорошо, но две – часто

лучше, 190
Убунту, философия, 194
Уиндер, Рассел

биография, 234
Как следует изучи более двух языков

программирования, 108
Передача сообщений улучшает

масштабируемость параллельных
систем, 134

управление потоком данных, 135

Ф
Фаулер, Мартин, 22, 103
Фезерс, Майкл

биография, 229
Золотое правило проектирования API,

90
Форд, Нил

биография, 231
Тестирование – это инженерная

строгость в разработке программно-
го обеспечения, 186

форматеры кода, 47
форматирование кода

автоматическое, 47
важность, 46

Фримен, Стив
биография, 238
Важность форматирования кода, 46
Один бинарный файл, 142

функциональная парадигма, 24
функциональное программирование, 24,

25, 109

Х
Хайдеггер, Мартин, 163
Хан, Аслам

биография, 218
Написание кода в духе Убунту для

друзей, 194
Хаукнес, Гудни

биография, 219
Программируйте парами и входите

в поток, 148

Алфавитный указатель	 251

Хафнагель, Берк
биография, 218
Брось мышь и медленно отойди от

клавиатуры, 158
Невероятно, но факт: тестировщики –

ваши друзья, 140
Хенни, Кевлин

биография, 225
Комментируйте только то, о чем не

скажет код, 54
Тестируйте точно и конкретно, 182
Тестируйте требуемое, а не случайное

поведение, 180
Хоар, Тони, 183
Хоп, Грегор

биография, 219
Удобство – не атрибут качества, 58

Хорстман, Кэй
биография, 227
Шаг назад. Теперь автоматизируй,

автоматизируй, автоматизируй...,
176

Хунгер, Микаэль
биография, 230
Предметно-ориентированные языки,

66

Ц
целостность стека, 39

Ч
числа с плавающей запятой, 86

Ш
шаблоны проектирования, 75, 80, 81, 139

Singleton, 166
Шэнк, Клинт

биография, 227
Непрерывное обучение, 56

Э
Эванс, Кэл

биография, 228
Комментарий о комментариях, 52
Этот код не трогать!, 82

экстремальное программирование, 98
Эллисон, Чак

биография, 241

Числа с плавающей запятой недей
ствительны, 86

эргономика программ, 102
эффект ложного согласия, 26

Издательство “СИМВОЛПЛЮС”
Основано в 1995 году

Наша специализация – книги компьютерной и деловой тематики.
Наши издания – плод сотрудничества известных зарубежных
и отечественных авторов, высококлассных переводчиков
и компетентных научных редакторов. Среди наших деловых
партнеров издательства: O’Reilly, Pearson Education, NewRiders,
Addison Wesley, Wiley, McGrawHill, No Starch Press, Packt, Dorset
House, Apress и другие.

О нас

Где купить Наши книги вы можете купить во всех крупных книжных магази­
нах России, Украины, Белоруссии и других стран СНГ. Однако
по минимальным ценам и оптом они продаются:

СанктПетербург:
главный офис издательства –

В. О. 16 линия, д. 7 (м. Василеостровская),
тел. (812) 380-5007

Москва:
московский филиал издательства –

ул. 2-я Магистральная, д. 14В
(м. Полежаевская/Беговая),
тел. (495) 6385305

www.symbol.ru

Заказ книг через Интернет http://www.symbol.ru 	
		

Приглашаем к сотрудничеству

Мы приглашаем к сотрудничеству умных и талантливых авторов,
переводчиков и редакторов. За более подробной информацией
обращайтесь, пожалуйста, на сайт издательства www.symbol.ru.

Также на нашем сайте вы можете высказать свое мнение
и замечания о наших книгах. Ждем ваших писем!

Бесплатный каталог книг высылается по запросу.

	Оглавление
	Статьи по категориям
	Предисловие
	Будьте благоразумны
	Себ Роуз

	Применяйте принципы функционального программирования
	Эдвард Гарсон

	Выясните, как поступит пользователь (и вы – не пользователь)
	Жиль Колборн

	Автоматизируйте свой стандарт форматирования кода
	Филип ван Лаенен

	Красота – следствие простоты
	Йорн Ольмхейм

	Прежде чем приступать к рефакторингу
	Раджит Аттапатту

	Осторожно: общий код
	Уди Дахан

	Правило бойскаута
	Роберт Мартин, известный также как «Дядюшка Боб»

	Прежде чем пенять на других, проверь собственный код
	Аллан Келли

	Тщательно выбирайте инструменты
	Джованни Аспрони

	Пишите код
на языке предметной области
	Дэн Норт

	Код – это проектирование
	Райан Браш

	Важность форматирования кода
	Стив Фримен

	Рецензирование кода
	Маттиас Карлссон

	Пиши код с умом
	Йехиль Кимхи

	Комментарий о комментариях
	Кэл Эванс

	Комментируйте только то, о чем не скажет код
	Кевлин Хенни

	Непрерывное обучение
	Клинт Шэнк

	Удобство – не атрибут качества
	Грегор Хоп

	Развертывание приложения: раннее и регулярное
	Стив Берчук

	Отличайте исключения в бизнес-логике от технических
	Дэн Берг Джонссон

	Больше осознанной практики
	Джон Джаггер

	Предметно-ориентированные языки
	Микаэль Хунгер

	Не бойтесь что-нибудь сломать
	Майк Льюис

	Не прикалывайтесь с тестовыми данными
	Род Бегби

	Не проходите мимо ошибки!
	Пит Гудлиф

	Не просто учите язык, поймите его культуру
	Андерс Норас

	Не прибивайте программу гвоздями к стене
	Верити Стоб

	Не полагайтесь на «автоматические чудеса»
	Алан Гриффитс

	Не повторяй свой код
	Стив Смит

	Этот код не трогать!
	Кэл Эванс

	Инкапсулируйте поведение, а не только состояние
	Эйнар Ландре

	Числа с плавающей запятой недействительны
	Чак Эллисон

	Удовлетворяйте свое честолюбие через Open Source
	Ричард Монсон-Хейфел

	Золотое правило проектирования API
	Майкл Фезерс

	Миф о гуру
	Райан Браш

	Тяжелый труд не оправдывает себя
	Олве Маудал

	Как пользоваться системой отслеживания ошибок
	Мэтт Доар

	Улучшайте код, удаляя его
	Пит Гудлиф

	Установи меня!
	Маркус Бэйкер

	Межпроцессная коммуникация влияет на время отклика приложения
	Рэнди Стэффорд

	Сборка должна быть чистой
	Йоханнес Бродуолл

	Умей пользоваться утилитами командной строки
	Кэрролл Робинсон

	Как следует изучи более двух языков программирования
	Рассел Уиндер

	Знай свою IDE
	Хейнц Кабуц

	Знай свои возможности
	Грег Колвин

	Знай, что сохранишь в репозиторий
	Дэн Берг Джонссон

	Место для больших наборов взаимосвязанных данных – в базе данных
	Диомидис Спинеллис

	Учите иностранные языки
	Клаус Маркардт

	Учитесь делать оценки
	Джованни Аспрони

	Научитесь говорить «Hello, World»
	Томас Гест

	Пусть ваш проект говорит сам за себя
	Дэниэл Линднер

	Компоновщик не таит в себе никаких чудес
	Уолтер Брайт

	Долговечность временных решений
	Клаус Маркардт

	Интерфейсы должно быть легко использовать правильно и трудно – неправильно
	Скотт Мейерс

	Пусть невидимое станет более видимым
	Джон Джаггер

	Передача сообщений улучшает масштабируемость параллельных систем
	Рассел Уиндер

	Послание потомкам
	Линда Райзинг

	Упущенные возможности применения полиморфизма
	Кирк Пеппердин

	Невероятно, но факт: тестировщики – ваши друзья
	Берк Хафнагель

	Один бинарный файл
	Стив Фримен

	Правду скажет только код
	Петер Зоммерлад

	Возьмите сборку (и ее рефакторинг) на себя
	Стив Берчук

	Программируйте парами и входите в поток
	Гудни Хаукнес, Кари Россланд и Анн Кэтрин Гэгнат

	Предпочитайте примитивам предметно-ориентированные типы данных
	Эйнар Ландре

	Предотвращайте появление ошибок
	Жиль Колборн

	Профессиональный программист
	Роберт Мартин (Дядюшка Боб)

	Держите все
в системе управления версиями
	Диомидис Спинеллис

	Брось мышь и медленно отойди от клавиатуры
	Берк Хафнагель

	Читайте код
	Карианне Берг

	Читайте гуманитарные книги
	Кейт Брэйтуэйт

	Почаще изобретайте колесо
	Джейсон П. Сэйдж

	Не поддавайтесь очарованию шаблона Singleton
	Сэм Сааристе

	Путь к повышению эффективности программ заминирован грязным кодом
	Кирк Пеппердин

	Простота достигается сокращением
	Пол У. Гомер

	Принцип единственной ответственности
	Роберт Мартин (Дядюшка Боб)

	Сначала скажите «да»
	Алекс Миллер

	Шаг назад. Теперь автоматизируй, автоматизируй, автоматизируй…
	Кэй Хорстман

	Пользуйтесь инструментами для анализа кода
	Сара Маунт

	Тестируйте требуемое, а не случайное поведение
	Кевлин Хенни

	Тестируйте точно и конкретно
	Кевлин Хенни

	Тестируйте во сне (и по выходным)
	Раджит Аттапатту

	Тестирование – это инженерная строгость в разработке программного обеспечения
	Нил Форд

	Думайте состояниями
	Никлас Нильссон

	Одна голова хорошо, но две – часто лучше
	Эдриан Уайбл

	Две ошибки могут гасить
одна другую (и тогда
их трудно исправлять)
	Аллан Келли

	Написание кода в духе Убунту для друзей
	Аслам Хан

	Утилиты UNIX – ваши друзья
	Диомидис Спинеллис

	Правильно выбирайте алгоритмы и структуры данных
	Ян Кристиаан ван Винкель

	Многословный журнал лишит вас сна
	Йоханнес Бродуолл

	WET размазывает узкие места производительности
	Кирк Пеппердин

	Когда программисты и тестировщики сотрудничают
	Джанет Грегори

	Пишите код так, как будто вам предстоит сопровождать его всю оставшуюся жизнь
	Юрий Зубарев

	Пишите маленькие функции на основе примеров
	Кейт Брэйтуэйт

	Тесты пишутся для людей
	Джерард Мезарос

	Нужно заботиться о коде
	Пит Гудлиф

	Ваши заказчики имеют в виду не то, что говорят
	Нэйт Джексон

	Авторы
	Алфавитный указатель
	Пустая страница
	Пустая страница

