. £ . =
- | & -
i 5 oY

| 3
Quick answers to common problems

Elixir Cookbook

Unleash the full power of programming in Elixir with over 60
incredibly effective recipes

Paulo A Pereira PALKT oot

www.it-ebooks.info

http://www.it-ebooks.info/

Elixir Cookbook

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Elixir Cookbook
Credits
About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why Subscribe?

Free Access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Sections
Getting ready
How to do it...
How it works...

There’s more...

See also
Conventions

Reader feedback

Customer support

Downloading the example code

Errata

Piracy
Questions

1. Command Line

Introduction

Using the terminal to prototype and test ideas
Getting ready

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

How it works...

There’s more...

Loading and compiling modules
Getting ready

How to do it...

How it works...

There’s more...

Getting help and accessing documentation within IEx

How to do it...

How it works...

There’s more...

Using Erlang from Elixir
Getting ready

How to do it...

How it works...

There’s more...

Inspecting your system in [Ex
Getting ready

How to do it...

How it works...

See also

Inspecting your system with Observer
Getting ready

How to do it...
Creating a simple application
How to do it...

How it works...

See also

Managing dependencies

Getting ready

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

How it works...

See also

Generating a supervised application

How to do it...

How it works...

See also

Generating umbrella applications

How to do it...

How it works...

See also

Managing application configuration

How to do it...

How it works...

Creating custom Mix tasks

How to do it...

How it works...

2. Data Types and Structures
Understanding immutability

Getting ready

How to do it...

How it works...

Adding and subtracting lists
Getting ready

How to do it...

How it works...

Combining tuples into a list

Getting ready

How to do it...

How it works...

See also

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and manipulating keyword lists
Getting ready

How to do it...

How it works...

Using pattern matching
Getting ready

How to do it...

How it works...

See also

Pattern matching an HTTPoison response
Getting ready

How to do it...

How it works...

Creating a key/value store with a map
Getting ready

How to do it...

How it works...

See also

Mapping and reducing enumerables
Getting ready

How to do it...

How it works...

There is more...

Generating lazy (even infinite) sequences

How to do it...

How it works...

There is more...

Streaming a file as a resource
Getting ready

How to do it...

How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

3. Strings and Binaries
Introduction
Joining strings

Getting ready

How to do it...

How it works...

There’s more...

Splitting strings
Getting ready

How to do it...

How it works...

See also

Replacing string codepoints with patterns
Getting ready

How to do it...

How it works...

See also

Slicing strings with ranges
Getting ready

How to do it...

How it works...

There’s more...

Using regular expressions

Getting ready

How to do it...

How it works...

See also
Combining operations with the |> operator

Getting ready

How to do it...

How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a word list
Getting ready

How to do it...

How it works...

There’s more...

Determining the word frequency in a text
Getting ready

How to do it...

How it works...

Reading and writing metadata from MP3 files
Getting ready

How to do it...

How it works...

There’s more...

4. Modules and Functions

Introduction

Namespacing modules
Getting ready

How to do it...

How it works...

There’s more...

Using module attributes as constants

How to do it...

How it works...

See also

Enforcing behaviors

How to do it...

How it works...

See also

Documenting modules

Getting ready

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Using module directives
Getting ready

How to do it...

How it works...

There’s more...

Using a module in the scripted mode

How to do it...

How it works...

There’s more...

Defining functions with default arguments
Getting ready

How to do it...

How it works...

Using guard clauses and pattern matching in function definitions
Getting ready

How to do it...
How it works...

5. Processes and Nodes

Introduction
Sending messages between processes

Getting ready

How to do it...

How it works...

There’s more...

Making code run on all available CPUs
Getting ready

How to do it...

How it works...

There’s more...

Using tasks to perform multiple concurrent computations

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

How to do it...

How it works...

There’s more...

Creating a stateful server process (messages with counters)
Getting ready

How to do it...

How it works...

See also

Using agents as an abstraction around states

How to do it...

How it works...

There’s more...

Using an ETS table to share the state
Getting ready

How to do it...

How it works...
There’s more...
Creating named nodes

Getting ready

How to do it...

How it works...

See also
Connecting nodes

Getting ready

How to do it...

How it works...

There’s more...

See also

Executing code in a different node

Getting ready

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

How it works...

There’s more...

6. OTP — Open Telecom Platform

Introduction

Implementing a GenServer
Getting ready

How to do it...

How it works...

There’s more...

Expanding our server
Getting ready

How to do it...

How it works...

See also

Creating a supervisor
Getting ready

How to do it...

How it works...

See also

Using Observer to inspect supervisors and processes

How to do it...

How it works...

Handling errors and managing exceptions

Getting ready

How to do it...

How it works...

There’s more...

Packaging and releasing an OTP application

Getting ready...

How to do it...

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

There’s more...

See also

Deploying applications and updating a running system
Getting ready

How to do it...

How it works...

See also

7. Cowboy and Phoenix

Introduction

Setting up Cowboy
Getting ready

How to do it...

How it works...

There’s more...

See also

Serving static files
Getting ready

How to do it...

How it works...

Implementing a websocket handler
Getting ready

How to do it...

How it works...

There’s more...

Creating a Phoenix application

Getting ready

How to do it...

How it works...

There’s more...

Defining routes

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

How to do it...

How it works...

There’s more...

See also

Creating a controller
Getting ready

How to do it...

How it works...

There’s more...

Creating views and templates
Getting ready

How to do it...

How it works...

There’s more...

Implementing topics
Getting ready

How to do it...

How it works...

Protecting the Phoenix app with SSL
Getting ready

How to do it...

How it works...

8. Interactions

Introduction
Using Redis and Postgres
Getting ready

How to do it...

How it works...

Using OS commands from within Elixir

How to do it...

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

There’s more...

See also

Getting Twitter data
Getting ready

How to do it...

How it works...

There’s more...

See also

A. Installation and Further Reading
Installing Elixir
Installing PostgreSQL
Installing Redis

Some useful links
Elixir
The Phoenix framework

Erlang

Index

www.it-ebooks.info

http://www.it-ebooks.info/

Elixir Cookbook

www.it-ebooks.info

http://www.it-ebooks.info/

Elixir Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015
Production reference: 1130215
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-751-7

www.packtpub.com

www.it-ebooks.info

http://www.packtpub.com
http://www.it-ebooks.info/

Credits

Author

Paulo A Pereira
Reviewers

Ruhul Amin

Richard Bateman

Craig Beck

Wilson Edgar

Alexei Sholik
Commissioning Editor
Ashwin Nair
Acquisition Editor
Shaon Basu

Content Development Editor
Mohammed Fahad
Technical Editor
Taabish Khan

Copy Editors

Vikrant Phadke

Stuti Srivastava
Project Coordinator
Danuta Jones
Proofreaders

Paul Hindle

Samantha Lyon
Bernadette Watkins
Indexer

Rekha Nair

Production Coordinator

Komal Ramchandani

www.it-ebooks.info

http://www.it-ebooks.info/

Cover Work

Komal Ramchandani

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Paulo A Pereira is a journalist and senior software engineer with a background in Grails
and Rails. He fell in love with Elixir and has a passion for exploring new technologies and
keeping himself up to date with the industry’s developments.

Paulo previously worked as a consultant and lead developer for Mediadigital,
implementing Grails and Rails solutions, and he is currently working at Onfido
Background Checks, a London-based tech start-up that is proving to be a key player in the
background checking industry.

I would like to thank my wife and daughter for their unconditional support. I would also
like to thank Wilson for his help and guidance, and José, a true inspiration in his approach
to work and life in general.

Finally, I would like to thank all of the reviewers for their valuable comments and the
entire Packt Publishing team for their support, especially Fahad, whose kind and steady
guidance helped me keep myself on track.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Ruhul Amin is the CTO and cofounder of Onfido Background Checks, a company that’s
revolutionizing the background checking industry. He has a master’s degree in engineering
from Oxford University. He has been dabbling in Ruby since 2008 and was introduced to
Elixir by the author.

Richard Bateman (also sometimes known by his online moniker, “taxilian™) has spent
the majority of his life developing software. As a child, he was occasionally caught
reading development books under the covers with a flashlight, but despite these alarming
tendencies, he is married to a wonderful woman and has several wonderful offspring, all
of whom did their level best to distract him from helping with this book.

Richard enjoys learning new languages, finding new and creative ways to use old
languages, and creatively misusing all languages. He is the original creator and primary
maintainer of the open source cross-platform browser plugin framework FireBreath. In his
spare time, he works on the popular amateur radio study website HamStudy.org
(https://hamstudy.org), and in the rest of his spare time not spent with his family, he works
at his day job at GradeCam. If you are a teacher, you need to see what they are doing—
check out their work at http://www.gradecam.com.

Richard speaks fluent Russian, rides a motorcycle, makes balloon animals, and is only
mildly addicted to software development, no matter what his wife says.

Wilson Edgar is a computer scientist and enthusiast with a passion for learning new
programming languages. He loves all that comes with building systems, especially large
ones.

When he is not programming, he spends his time with his beautiful family or
skateboarding (you’re never too old to skateboard).

Alexei Sholik is an enthusiastic developer. He has worked in game development and app
development for iOS since 2008, has been contributing to the development of Elixir since
2012, and is currently a member of the Elixir core team. More recently, he got involved in
server-side development using Elixir professionally at PSPDFKit.

As a longtime fan of computer science, Alexei enjoys reading an occasional white paper
about new advancements and case studies in the field of programming theory and practice
while sipping hot tea on a weekend night.

His favorite pastime activities include playing the guitar, learning foreign languages,
playing Riichi, and imagining what an ideal programming language would look like.

He has reviewed two other books on Elixir and is currently in the process of reviewing
Elixir In Action, Manning Publications.

www.it-ebooks.info

https://hamstudy.org
http://www.gradecam.com
http://www.it-ebooks.info/

www.PacktPub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[lﬁ PACKT! i 1°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Why Subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

www.it-ebooks.info

http://www.it-ebooks.info/

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

To Rosa and Beatriz

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

Preface

More than ever, programmers need tools and languages that enable them to develop
applications that take full advantage of all the resources available in a system. A few years
ago, programs began to speed up just because CPUs were getting progressively faster.
However, the “speed limit” has now been hit, and processors are no longer getting faster.

Instead, we are getting more cores available per chip. Today, the challenge is how to take
advantage of all that extra power. Elixir helps us do this!

Elixir is a dynamic, functional programming language created by José Valim. It is
compatible with the Erlang virtual machine and ecosystem. It focuses on scalability and
fault tolerance. With its concurrency model and its ability to handle distribution
seamlessly, it makes the task of implementing resilient and efficient systems easier, even
fun!

In this cookbook, you will find recipes covering some of the language tooling and
concepts. You will find out that no special powers are needed to write concurrent
programs or code that can be executed by other machines. You will find out that all you
need is an expressive and powerful language, such as Elixir.

www.it-ebooks.info

http://www.it-ebooks.info/

What this book covers

Chapter 1, Command Line, introduces Interactive Elixir (IEx), which is a command line
tool that allows us to execute and evaluate code. This chapter also introduces Mix, which
is an Elixir tool to create and manage projects.

Chapter 2, Data Types and Structures, focuses on some concepts of the language:
immutability, pattern matching, and lazy evaluation.

Chapter 3, Strings and Binaries, shows us how to manipulate strings in Elixir.

Chapter 4, Modules and Functions, focuses on the building blocks of Elixir applications,
from module directives to pattern matching in function definitions.

Chapter 5, Processes and Nodes, shows you that spawning multiple processes to perform
asynchronous computations or connecting multiple machines and executing code on any
of them is not as hard as it seems. Elixir makes the task easier, and we explore specific
examples.

Chapter 6, OTP — Open Telecom Platform, talks about OTP, which is a systematization of
common programming concepts. It allows us to develop large-scale systems on a solid
foundation. In this chapter, we will explore some of its constructs.

Chapter 7, Cowboy and Phoenix, is all about the Web! It discusses a range of topics, from
serving static files to implementing websockets, or using a fully-featured web framework.

Chapter 8, Interactions, interacts with our host operating system and talks about external
systems such as Postgresql or Redis. We will also build a Twitter feed parser.

Appendix, Installation and Further Reading, covers references for installing Elixir, Redis,
and PostgreSQL, as well as for further reading.

www.it-ebooks.info

http://www.it-ebooks.info/

What you need for this book

You will need to have Elixir installed as well as Erlang, its only dependency. In this book,
we will also be using Postgresql and Redis.

www.it-ebooks.info

http://www.it-ebooks.info/

Who this book is for

This book is intended for users with some knowledge of the Elixir language syntax and
basic data types/structures. Although this is a cookbook and no sequential reading is
required, the book’s structure will allow less advanced users who follow it to be gradually
exposed to some of Elixir’s features and concepts specific to functional programming. To
get the most out of this book, you need to have some familiarity with Erlang/Elixir
philosophy and concepts.

www.it-ebooks.info

http://www.it-ebooks.info/

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There’s more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any
software or any preliminary settings required for the recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

This section contains the steps required to follow the recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

This section provides helpful links to other useful information for the recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “The
Elixir standard library has a List module defined.”

A block of code is set as follows:

code\greeter.ex

defmodule Greeter do

def greet(name \\ "you") do
"Hello #{name} !"

end

end

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

supervised_app/mix.exs

def application do
[applications: [:logger],
mod: {SupervisedApp, []1}]

end

Any command-line input or output is written as follows:

> mix help

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “Select the Load
Charts tab to see graphical representation of memory usage, 10, and scheduler utilization
over time.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.it-ebooks.info

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.it-ebooks.info/

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

www.it-ebooks.info

mailto:questions@packtpub.com
http://www.it-ebooks.info/

Chapter 1. Command Line

This chapter will cover the following recipes:
¢ Interactive Elixir (IEx):

Using the terminal to prototype and test ideas
Loading and compiling modules

Getting help and accessing documentation within IEx
Using Erlang from Elixir

Inspecting your system in [Ex

Inspecting your system with Observer

O O O O O O

o Mix:

Creating a simple application
Managing dependencies

Generating a supervised application
Generating umbrella applications
Managing application configuration
Creating custom Mix tasks

O O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

The command line is the preferred way to create and interact with Elixir applications,
inspect running systems, and prototype ideas.

Interactive Elixir (IEx) allows immediate evaluation of any expression, and it is also
possible to define modules directly without saving them previously on a file. Similar tools
exist in other programming languages; Ruby’s IRB or Clojure’s REPL are some examples.

Mix is a build tool that provides several tasks to create, compile, and test projects, and
handle dependencies. It is also possible to define custom tasks with Mix. In the Creating
custom Mix tasks recipe, we will create a task to display the memory usage. It is common
for some applications to define their own tasks. Phoenix framework (which will be
covered in Chapter 7, Cowboy and Phoenix) is just one example of this.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the terminal to prototype and test
ideas

The Elixir default installation provides an REPL (short for read-eval-print-loop) named
[Ex. IEx is a programming environment that takes user expressions, evaluates them, and
returns the result to the user. This allows the user to test code and even create entire
modules, without having to compile a source file.

To start prototyping or testing some ideas, all we need to do is use IEx via our command
line.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To get started, we need to have Elixir installed. Instructions on how to install Elixir can be

found at http://elixir-lang.org/install.html. This page covers installation on OSX, Unix and
Unix-like systems, and Windows. It also gives some instructions on how to install Erlang,

which is the only prerequisite to run Elixir.

www.it-ebooks.info

http://elixir-lang.org/install.html
http://www.it-ebooks.info/

How to do it...

To prototype and test the ideas using IEx, follow these steps:

1. Start IEx by typing iex in your command line.
2. Type some expressions and have them evaluated:

iex(1)> a =2 + 2
4

iex(2)> b
16
iex(3)> a
20
iex(4)>

a* a

b

+

3. Define an anonymous function to add two numbers:

iex(5)> sum = fn(a, b) -> a + b end
Function<12.90072148/2 in :erl_eval.expr/5>

4. Invoke the function to add two numbers:

iex(6)> sum.(1,2)
3

5. Quit from IEx by pressing Ctrl + C twice.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

IEx evaluates expressions as they are typed, allowing us to get instant feedback. This
allows and encourages experimenting ideas without the overhead of editing a source file
and compiling it in order to see any changes made.

Note

In this recipe, we used the = operator. Unlike other languages, = is not an assignment
operator but a pattern matching operator. We will get into more detail on pattern matching
in the Using pattern matching and Pattern matching an HT'TPoison response recipes in
Chapter 2, Data Types and Structures.

In step 3, we used a dot (.) in the sum function right before the arguments, like this: sum.
(1,2). The dot is used to call the anonymous function.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

It is possible to define modules inside an IEx session.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and compiling modules

It is possible to load code from source files into an IEx session. Multiple modules may be
loaded and used, allowing us to incorporate existing code into our prototyping or idea
testing session.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

In this recipe, we will be importing two files that define the Greeter and Echoer modules
into our IEx session.

In the following lines, we will list the contents of these modules:

code\greeter.ex
defmodule Greeter do

def greet(name \\ "you") do
"Hello #{name} !"
end

end

code/echoer.ex
defmodule Echoer do

def echo(msg) do
I0.puts "#{msg} ... #{msg} #{msg}"
end

end
Tip
Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

How to do it...

We will follow these steps to load and compile the modules:
1. Start IEx:
iex
2. Load the Greeter module defined in greeter.ex:

iex(1)> c("greeter.ex")
[Greeter]

3. Load the Echoer module defined in echoer . ex:

iex(2)> c("echoer.ex")
[Echoer]

4. Use the greet function defined in the Greeter module:

iex(3)> Greeter.greet("Me")
"Hello Me !"

5. Use the echo function defined in the Echoer module:

iex(4)> Echoer.echo("hello")
hello.. hello..... hello
:ok

6. Combine the functions defined in both modules:

iex(7)> Greeter.greet("Me") |> Echoer.echo
Hello Me ! ... Hello Me ! Hello Me !
1ok

Note

Some functions may have default values. They are denoted by the use of \\. In the
Greeter module, the greet function is defined as def greet(name \\ "you"), which
means that if we omit the argument passed to the function, it will default to you.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

When c("file_name.ex") is invoked from IEX, the file is loaded and compiled (a
corresponding file with the .beam extension will be created).

The module (or modules) defined on each imported file become available. It is possible to
invoke functions on these modules using the ModuleName . function_name(args) syntax.

If a module_name.beanm file exists for a given module, then every time you import that
module into an IEx session, you will see the following warning:

module_name.ex:1: warning: redefining module ModuleName

The warning means that a new compiled . beam file is being created, potentially redefining
the module. If no changes were made to the source code, the code will be the same,
although the warning is still issued.

In step 6, the pipe operator (|>) is used to simplify the code. This operator means that the
output of the left operation will be fed as the first argument to the right operation.

This is equivalent to writing the following:

Echoer.echo(Greeter.greet("Me"))

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

In steps 2 and 3, the greeter.ex and echoer .ex files are imported without indicating the
path because they are under the same directory from where the IEx session was started.

It is possible to use relative or full paths when loading files:

e We can use relative paths like this:

iex(1)> c("../greeter.ex")

e We can use full paths like this:

iex(2)> c("/home/user/echoer.ex")

Note

Note that the ¢ I[Ex function accepts a string as an argument.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting help and accessing documentation
within IEx

Documentation is a first-class citizen in the Elixir ecosystem, so it comes as no surprise
that [Ex provides convenient ways to access documentation and get help without the need

to leave an IEx session.

This recipe exemplifies the use of the defined help functions.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We will follow these steps to get help and access documentation in an IEx session:

1. Enter h inside a running IEx session to see the help options related to the use of IEx
helpers, as shown in this screenshot:

2. If we wish, for instance, to get information regarding the c/2 function, we type
h(c/2), as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

3. Accessing a module documentation is done by invoking h(ModuleName). In the next
screenshot, we access documentation related to Enum:

4. Getting information about a specific function inside a module is also possible by
invoking h(ModuleName. function_name). The following screenshot shows the
documentation for Enum.map:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

When we define modules, it is possible to use the @moduledoc and @doc annotations to
define documentation related to the whole module or to a specific function in that module.

[Ex parses the documentation defined with these annotations and makes it available in a
convenient way so that there’s no need to leave the session when help or some more
information is needed.

[Ex itself has several helper functions defined (refer to the first screenshot of this recipe),
and among them, we find h/0 and h/1.

Note

It is common to refer to functions by their name followed by / and a number indicating
the number of arguments that function takes. Therefore, h/0 is a function named h that
takes @ arguments, and h/1 is the same h function but with 1 argument.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

There are several defined functions that allow accessing information on function
specifications and types (if defined). To learn more, you can use s/1 and t/1.

As an example, to get information on the types defined for the Enum module, we would use
t (Enum), and to get information on the specifications, we would use s(Enum).

www.it-ebooks.info

http://www.it-ebooks.info/

Using Erlang from Elixir

Elixir code runs in the Erlang VM. The ability to invoke Erlang code from within Elixir
allows the use of resources from the entire Erlang ecosystem, and since Elixir code is
compiled to the same byte code as Erlang code, there is no performance penalty.

It is also possible to include in an Elixir application the Erlang code that is already
compiled.

If you take a closer look, the files we compile in IEx sessions have the .beam extension,
and that’s exactly the same format Erlang’s compiled code gets transformed into.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To use Erlang code in Elixir, we start a new IEx session.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

These are some examples of how to invoke Erlang code from Elixir:

1. Erlang’s Application module defines a function named which_applications. This
function returns a list of applications being executed in an Erlang VM. This is the
way to use this function from Elixir:

iex(1)> :application.which_applications
Note

The Erlang code would be application:which_applications().

2. To get information on any Erlang module, there is a function named module_info. To
know more about the erlang module, we enter this:

iex(2)> :erlang.module_info

Note

The Erlang code would be erlang:module_info().

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In Elixir, Erlang modules are represented as atoms. Functions in these modules are
invoked in the same way as any Elixir function.

Note

In Elixir, the atom type is used as an identifier for a given value. In Ruby, the equivalent of
the atom is known as the symbol.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Existing Erlang libraries can be included in Elixir applications, widening the available
options. It is also possible to choose an Erlang implementation of a module over Elixir’s.

The Elixir standard library has a List module defined. The Erlang counterpart is lists.
If we wish to get the last element of a list, we could use both modules:
e We can use Elixir’s List module like this:
List.last([1,2,3])
e We can use Erlang’s 1ists module in this manner:

:lists.last([1,2,3])
Note

The Erlang code for this operation is 1lists:last([1,2,3]).

www.it-ebooks.info

http://www.it-ebooks.info/

Inspecting your system in IEx

Sometimes, we need to take a look at what is going on in a running VM. It is useful to see
which applications are open and any information about memory usage.

We will use some Erlang modules to inspect a VM instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Start a new IEx session.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We will follow these steps to get information on our running system:
1. To get the currently running applications, type this:

iex(1)> :application.which_applications

[
{:logger, 'logger', '0.15.1'},
{:iex, 'iex', '0.15.1'},
{:elixir, 'elixir', '0.15.1'},
{:syntax_tools, 'Syntax tools', '1.6.15'},
{:compiler, 'ERTS CXC 138 10', '5.0.1'},
{:crypto, 'CRYPTO', '3.4'},
{:stdlib, 'ERTS CXC 138 10', '2.1'},
{:kernel, 'ERTS CXC 138 10', '3.0.1'}

1

The list that is returned contains three-element tuples. The first element is an atom
identifying the application, the second element is the application description, and the
third is the application version.

2. We get information on the memory usage by running the following commands:

iex(2)> :erlang.memory

[total: 15474240, processes: 4958016, processes_used: 4957056, system:
10516224,

atom: 256313, atom_used: 234423, binary: 15352, code: 6071692, ets:
399560]

3. It is also possible to get memory usage for atoms, ets tables, binaries, and so on:

iex(3)> :erlang.memory(:atom)
256313

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

As we saw in the previous recipe, Using Erlang from Elixir, it is possible to seamlessly
call Erlang code from Elixir. Even though there is no specific Elixir code to perform these
inspections, it is easy to get these abilities via Erlang libraries.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e When a GUI environment is available, there’s a tool called Observer that helps to get
information on an Erlang VM. Take a look at the next recipe, Inspecting your system
with Observer.

www.it-ebooks.info

http://www.it-ebooks.info/

Inspecting your system with Observer

The command line isn’t the only way to get information on an Erlang VM. There is a GUI
tool named Observer that allows access to information in a more convenient way.

If a GUI-enabled system is available, Observer allows us to open multiple windows with
information on the whole system’s statistics or even an individual process of that running

system.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Start an [Ex session.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To use the Observer GUI application, we will follow these steps:

1. Start the Observer application:

iex(1)> :observer.start
1ok

2. A new window with a tabbed interface will open, and the first information displayed
shows CPU information, memory usage, system information, and statistics, as shown
in the following screenshot:

B8 nn naonode@nohost

Load Charts = Applications Processes | Table Viewer Trace Cverview

Syatem and Architecture Memory Usage

System Version: 17 Tatal: 19 MB
Erts Version: 6.1 Processes: 6050 kB
Compiled for: xB6_G4-apple-darwinl3.3.0 Aroms: 339 kB
Emulator Worddize: E Binaries: 53 k8
Process Wordsize: B Codde: 8699 kA
Smp Support: true Es: 791 kB
Thread Support: true

Async thread pool size: 10 i

ke Stk Up time: 55 Mins
CTUTS And Eheeact Max Processes; 262144
Losgical CPU"s: 4 Processes: 52
Omline Logical CPU's: 4 Run Queue: a
Available Logical CPU's! unknown 10 Input: 7332 kB
Schedulers: 4 10 Output: 1152 kB
Omline schedulers: 4
Available schedulers: 4

Allocator Type Block skze (kB) Carrier size (kBj

rtotal 194930 29114

temp_alloc 0 640

sl_alloc L] 160

std_alloc 775 1168

Il_alloc 15412 19200

eheap_alloc 2877 5508

ets_alloc 743 1440

fie_alloc 50 416

Rimare allas L | ATE

ronodefnohost

3. Select the Load Charts tab to see graphical representation of memory usage, 10, and
scheduler utilization over time, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

System .ﬁppiicatiuns Processes Table Viewer Trace Owerview

Scheduler Utilization (%)

1

o
B0% 50 405 s s Ios 0%
Scheduler: 1 2 3 4
Memory Usage (ME) 10 Usage (8)
1% 1}
5 5

¥ L TR R e B
B0s f0s 405 I0s 203 10s Os [s 405 s 205 103 ('}

Total Processes Atom Rinary Code Eis Input Output

Under the Applications tab, by selecting the kernel application, it is possible to see a
representation of an application process’s hierarchy, as shown in this screenshot:

| System | Load Charts Processes Table Viewer | Trace Owverview |

code_server
ghobal_
(<0800 <0.10.0 H{ kermel_sup 1 —
ghobal_name_peneer
[=
inet_dbs
. "GITMLH'LEUHIML}ENEF)

‘{!Iar\da.ld_trrul’_}upH!Hr\dlﬂd_errwJ

Double-click on any of the nodes, for example, code_server. A new window will be
opened with information for the specific process, as shown in the following
screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Dhervdew

Imitial Call: erlang:apply/2

Current Function: code_serverzloop/ 1
Registered Mame: code_server

Seanus: waiting

Massage Queun Lan: o

Group Leader: <0.9.0>

Priority: nosmal

Trap Exit: Erue

Reductions: 180391

Binary: (4293520952, 1024,1} [429129888,16276,1}
Last Calls: false

Catch Level: 4

Trace: o

Suspending:

Sequential Trace Token:

Error Handler: error_handler

Links Monibons
=0,11.0

Miemory and Garbage Coliection

Memaory: 277 kB
Stack and Heaps: 34 kB
Heap Size: 6 kB
Stack Size: in

GC Min Heap 5ize: 2318
GC FullSweep After: 65535

Monnored by

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a simple application

In this recipe, we will be using Mix to create a new application.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To create a new Elixir application, follow these steps:

1. In a command-line session, enter mix help to see a list of available tasks:

> mix help

Here is what the screen will look like:

2. To generate a new application, type mix new simple_app:
> mix new simple_app

What happens next is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

<N

Inside the simple_app directory, the generated application is ready to be started. Run
iex -S mix to start the application and verify that everything is working:

> iex -S mix

Erlang/OTP 17 [erts-6.1] [source] [64-bit] [smp:4:4] [async-threads:10]
[hipe] [kernel-poll:false] [dtrace]

Interactive Elixir (0.15.1) - press Ctrl+C to exit (type h() ENTER for
help)

iex(1)>

Nothing happened. So is it working? The absence of messages in the IEx session is a
good thing. This generated application behaves more like a library; there’s no main

function like in Java or C. To be sure that the application is responding, edit the
lib/simple_app.ex file by inserting the following code:

defmodule SimpleApp do
def greet do
I0.puts "Hello from Simple App!"
end
end

Restart the application by pressing Ctrl + C twice and entering iex -S mix again.
In the IEx session, enter SimpleApp.greet.
You will see the following output from the application:

iex(1)> SimpleApp.greet
Hello from Simple App!
1ok

iex(2)>

The Elixir application is ready to be used either on your local machine or, if a node is
started, it could even be used from another machine.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The Elixir installation provides a command-line tool called Mix. Mix is a build tool. With
this tool, it is possible to invoke several tasks to create applications, manage their
dependencies, run them, and more.

Mix even allows the creation of custom tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e To generate an OTP application with a supervisor, see the Generating a supervised
application recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing dependencies

One of the advantages of OTP (more information on OTP may be found in Chapter 6,
OTP — Open Telecom Platform) is modularity, and it is very common to have several
applications running as dependencies of one application. An application is a way to
achieve modularity; in this context, we call an application something that is known in
other programming languages as a library. In this recipe, we will integrate an HTTP client
with a new application. We will be using the Hex package manager (http://hex.pm).

www.it-ebooks.info

http://hex.pm
http://www.it-ebooks.info/

Getting ready

1. Generate a new application with mix new manage_deps:

> mix new manage_deps

The output is shown in the following screenshot:

2. Visit https://hex.pm/packages?search=http.
3. We will choose HTTPoison (https://hex.pm/packages/httpoison).

www.it-ebooks.info

https://hex.pm/packages?search=http
https://hex.pm/packages/httpoison
http://www.it-ebooks.info/

How to do it...

To add a dependency to our application, we will follow these steps:

1. Inside the manage_deps application, open mix.exs and edit the file to include
HTTPoison as a dependency:

defp deps do
[{:httpoison, "~> 0.4"}]
end

2. HTTPoison must be started with our system. Add this to the started applications list
by including it inside the application function:

def application do
[applications: [:logger, :httpoison]]
end

3. Save mix.exs and run mix deps.get to fetch the declared dependencies, as shown in
this screenshot:

4. Compile the dependencies by executing mix deps.compile, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

o

Note

Sometimes, some of the dependencies are Erlang projects, so you may get a prompt
asking you to install rebar (rebar is a tool similar to Mix used in Erlang projects).
Once you accept to download it, it will be available in your system and you won’t
have to worry about it anymore.

Start your application with iex -S mix.
Inside the IEx session, check whether HTTPoison is running;:

iex(1)> :application.which_applications
[{:manage_deps, 'manage_deps', '0.0.1'},
{:httpoison, ' Yet Another HTTP client for Elixir powered by
hackney\n',
'0.4.2'}, {:hackney, 'simple HTTP client', '0.13.1'}(..)]

Get Google’s main page using HTTPoison:

iex(5)> HTTPoison.get("http://www.google.com")
%HTTPoison.Response{body: "<HTML><HEAD><meta http-equiv=\"content-
type\" content=\"text/html;charset=utf-8\">\n<TITLE>302 Moved</TITLE>
</HEAD><BODY>\n<H1>302 Moved</H1>\nThe document has moved\n<A
HREF=\"http://www.google.pt/?

gfe_rd=cr& ei=WFAOVLVQFJSs8wfehYJg\">here.\r\n</BODY>

www.it-ebooks.info

http://www.it-ebooks.info/

</HTML>\r\n",
headers: %{"Alternate-Protocol" => "80:quic", "Cache-Control" =>
"private",

"Content-Length" => "256", "Content-Type" => "text/html;
charset=UTF-8",

"Date" => "Tue, 09 Sep 2014 00:56:56 GMT",

"Location" => "http://www.google.pt/?
gfe_rd=cr&ei=WFAOVLVQFJSs8wfehYJg",

"Server" => "GFE/2.0"}, status_code: 302}

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Dependencies are preferably added using hex.pm (https://hex.pm/).

Tip

If an application doesn’t yet exist in Hex, it is also possible to use a GitHub repository as a
source.

To fetch a dependency from GitHub, instead of declaring the dependency with the
{:httpoison, "~> 0.4"} format, the following format is used:

{:httpoison, github: " edgurgel/httpoison "}

The local filesystem may also be configured as a source for dependencies, as follows:

{:httpotion, path: "path/to/httpotion"}

Once the dependencies are declared inside the mix.exs file, there are Mix tasks to get,
compile, and clean them. The dependencies are then fetched, and if these dependencies
have more dependencies on themselves, Mix is smart enough to fetch them.

When compiling dependencies, Mix is also capable of figuring out whether any dependent
application has its own dependencies and whether they need to be compiled.

Starting IEx with the -s Mix loads the Mix environment inside IEx, and the application
becomes accessible.

As shown in the Inspecting your system recipe, it is possible to get a list of running
applications and check whether our dependency (and its own dependencies) are running.
In the particular case of HTTPoison, automatic start is ensured by adding the atom
representing the application name to the list under applications ([applications:
[:logger, :httpoison]]).

www.it-ebooks.info

https://hex.pm/
http://www.it-ebooks.info/

See also

e The documentation on Hex usage available at https://hex.pm/docs/usage.
e The Elixir documentation on Mix tasks is available at http://elixir-

lang.org/docs/stable/mix/.

www.it-ebooks.info

https://hex.pm/docs/usage
http://elixir-lang.org/docs/stable/mix/
http://www.it-ebooks.info/

Generating a supervised application

An application may be generated with a supervision tree to monitor processes. The
supervision tree must be started and stopped with the application, and to do so, an
application module callback must also be implemented. Mix provides a simple way to

generate this type of application.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To generate an application with a supervision tree and an application module callback, we
run mix new supervised_app --sup in the command line. This is shown in the following

screenshot;

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

When mix new task is invoked with the --sup option, although the generated application
appears to be identical to the application created in the Creating a simple application
recipe, a few things change, which are as follows:

supervised_app/mix.exs

def application do
[applications: [:logger],
mod: {SupervisedApp, [1}]

end

An application module callback is added like this:

supervised_app/lib/supervised_app.ex
defmodule SupervisedApp do
use Application
def start(_type, _args) do
import Supervisor.Spec, warn: false
children = [
Define workers and child supervisors to be supervised
worker (SupervisedApp.Worker, [argl, arg2, arg3])
1
opts = [strategy: :one_for_one, name: SupervisedApp.Supervisor]
Supervisor.start_link(children, opts)
end
end

The Application module behavior is declared, and a start function must be defined to
comply with this behavior. Inside the start function, a list of children (usually worker
processes) is declared, and so are the supervision options (opts). The supervisor is then
started, passing the list of processes to be supervised and the options.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e The documentation for the Application module can be accessed at http://elixir-

lang.org/docs/stable/elixir/Application.html.
¢ Information on the Supervisor module is available at http://elixir-

lang.org/docs/stable/elixir/Supervisor.html.

www.it-ebooks.info

http://elixir-lang.org/docs/stable/elixir/Application.html
http://elixir-lang.org/docs/stable/elixir/Supervisor.html
http://www.it-ebooks.info/

Generating umbrella applications

The “Erlang way” is to name each self-contained unit of code as an app. Sometimes, an
app may be what is referred to as a library in other languages. This is a great way to
achieve code reusability and modularity, but sometimes, it is convenient to treat all the
apps in a project as a single entity, committing them as a whole to version control, to allow
running tests, and so on. Think of an umbrella application as a container used to hold one
or more applications and to make them behave as a single application.

This recipe shows how to create umbrella applications with Mix.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

1. Generate an umbrella application to contain other applications:

mix new --umbrella container

What happens next is shown in the following screenshot:

2. Generate application_one and application_two inside the container/apps
directory:

> cd container/apps
> mix new application_one
> mix new application_two

3. Modify the tests in the applications as follows:

o Change the test in
container/apps/application_one/application_one_test.exs like this:

test "the truth on application one" do
I0.puts "Running Application One tests"
assert 1 + 1 ==

end

o Change the test in
container/apps/application_two/application_two_test.exs as shown
here:

test "the truth on application two" do
I0.puts "Running Application Two tests"
assert 2 - 1 ==

end

4. Run the tests in all applications (inside the container directory):

> mix test

www.it-ebooks.info

http://www.it-ebooks.info/

The result of these tests is shown here:

5. Now run the tests individually. Firstly, run them for application_one as follows:

> cd apps/application_one
> mix test

The outcome of these tests is shown in the following screenshot:

For application_two , run them like this:

> cd ../application_two
> mix test

The result of these tests is shown in this screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

By generating this structure of the application with subprojects under the apps directory,
Elixir makes dependency management, compilation, and testing easier. It is possible to
perform these tasks at the umbrella application level, affecting all the subprojects, or at
each subproject level, allowing a high level of granularity.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e The Elixir Getting Started guide on dependencies and umbrella projects is available
at http://elixir-lang.org/getting_started/mix_otp/7.html. It says the following:

Remember that the runtime and the Elixir ecosystem already provide the concept of
applications. As such, we expect you to frequently break your code into applications
that can be organized logically, even within a single project. However, if you push
every application as a separate project to a Git repository, your projects can become
very hard to maintain, because now you will have to spend a lot of time managing
those Git repositories rather than writing your code.

For this reason, Mix supports “umbrella projects.” Umbrella projects allow you to
create one project that hosts many applications and push all of them to a single Git
repository. That is exactly the style we are going to explore in the next sections.

www.it-ebooks.info

http://elixir-lang.org/getting_started/mix_otp/7.html
http://www.it-ebooks.info/

Managing application configuration

Mix tasks run in a specific environment. The predefined environments are production,
development, and test (prod, dev, and test). The default environment is dev. In this recipe,
we will configure an application with different values for each environment. Invoking the
same function will result in a different output based on the configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To manage an application configuration, we follow these steps:
1. Create a new application:
> mix new config_example

2. Go to the generated application directory and open config/config.exs.
3. Replace all of the file’s content with the following code:

use Mix.Config

config :config_example,
message_one: "This is a shared message!"

import_config "#{Mix.env}.exs"
4. Create three more files under the config directory with the following code:

o In config/dev.exs, add the following:
use Mix.Config

config :config_example,
message_two: "I'm a development environment message!"

o In config/prod.exs, add this code:
use Mix.Config

config :config_example,
message_two: "I'm a production environment message!"

o Inconfig/test.exs, add the following:

use Mix.Config

config :config_example,
message_two: "I'm a test environment message!"

5. Define two module attributes in 1ib/config_example.ex to hold the values of
message_one and message_two, as follows:

@message_one Application.get_env(:config_example, :message_one)
@message_two Application.get_env(:config_example, :message_two)

6. Create a show_messages function in 1ib/config_example.ex, like this:

def show_messages do
I0.puts "Message one is: #{@message_one}"
I0.puts "Message two is: #{@message_two}"
end

7. Start the application in the three different environments and see the output of the
show_messages function:

www.it-ebooks.info

http://www.it-ebooks.info/

o For the development environment, start the application as follows:

> MIX_ENV=dev iex -S mix

iex(1)> ConfigExample.show_messages

Message one is: This is a shared message!

Message two is: I'm a development environment message!
1ok

iex(2)>

o For the production environment, start the application like this:

> MIX_ENV=prod iex -S mix

iex(1)> ConfigExample.show_messages

Message one is: This is a shared message!

Message two is: I'm a production environment message!
1ok

iex(2)>

o For the test environment, start the application as follows:

> MIX_ENV=test iex -S mix

iex(1)> ConfigExample.show_messages

Message one is: This is a shared message!
Message two is: I'm a test environment message!
1ok

iex(2)>

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

When we include the last line in config.exs (import_config "#{Mix.env}.exs"), the
Mix configuration is loaded from the files, in this case with the Mix environment as its
name and . exs as its extension.

The configuration from the imported files will override any existing configuration (with
the same key) in the config.exs file. In fact, Configuration values are merged recursively.

See the example at https://github.com/alco/mix-config-example.

To access configuration values, we use Application.get_env(:app, :key).

www.it-ebooks.info

https://github.com/alco/mix-config-example
http://www.it-ebooks.info/

Creating custom Mix tasks

Sometimes, the existing Mix tasks just aren’t enough. Fortunately, Mix allows the creation
of customized tasks that integrate as if they were shipped with Mix itself. In this recipe,
we will create a custom Mix task that will print the Erlang VM memory status.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

The steps required to create a custom task are as follows:

1. Create a new file, meminfo.ex, that defines the Meminfo module inside Mix.Tasks:

defmodule Mix.Tasks.Meminfo do
use Mix.Task
end

2. Add the new task description to be displayed when mix help is invoked:
@shortdoc "Get Erlang VM memory usage information"

3. Add the new task module documentation:

@moduledoc """
A mix custom task that outputs some information regarding
the Erlang VM memory usage

mmon

4. Create a run/1 function:

def run(_) do

meminfo = :erlang.memory
IO.pUtS nmmn
Total #{meminfo[:total]}
Processes #{meminfo[:processes]}
Processes (used) #{meminfo[:processes_used]}
System #{meminfo[:system]}
Atom #{meminfo[:atom]}
Atom (used) #{meminfo[:atom_used]}
Binary #{meminfo[:binary]}
Code #{meminfo[:code]}
ETS #{meminfo[:ets]}

end

5. Compile the code using the Elixir compiler, elixirc:

elixirc meminfo.ex

No message should appear but a file named E1ixir.Mix.Tasks.Meminfo.beam is
created.

6. Run mix help to see the new task listed and its short description:

> mix help

mix # Run the default task (current: mix run)
mix archive # List all archives

(..)

mix meminfo # Get Erlang VM memory usage information
mix new # Create a new Elixir project

mix run # Run the given file or expression

mix test # Run a project's tests

iex -S mix # Start IEx and run the default task

www.it-ebooks.info

http://www.it-ebooks.info/

7. Execute the custom task:

> mix meminfo
Total

Processes
Processes (used)
System

Atom

Atom (used)
Binary

Code

ETS

17692216
4778984
4777656
12913232
339441
321302
14152
8136817
452832

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Mix tasks are just modules that are declared as Mix.Tasks.<MODULENAME> with a run
function defined.

In meminfo.ex, we use the Mix.Task module by declaring use Mix.Task. The use
directive allows us to use a given module in the current context.

The @shortdoc attribute allows us to define a short description to display when some help
on Mix or the mix. task is displayed.

The run/1 function is the place where all of the task’s work is done. In this particular case,
we use an Erlang function to return a keyword list with several entries, and print them for
the user in a formatted way.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2. Data Types and Structures

This chapter will cover the following recipes:

Understanding immutability

Adding and subtracting lists

Combining tuples into a list

Creating and manipulating keyword lists
Using pattern matching

Pattern matching an HTTPoison response
Creating a key/value store with a map
Mapping and reducing enumerables
Generating lazy (even infinite) sequences
Streaming a file as a resource

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding immutability

In Elixir, data, once created, is immutable. Whenever some input is passed into a function
to be transformed, the original value remains unchanged and a new value is created.

This allows for safe concurrent access to the same data by n processes. It makes
concurrency easier to manage, as it is guaranteed that no process can change the original
data. Any transformation on the original data will result in new data being created.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To get started, we need to follow these steps:

1. Create a file, which is transformator.ex, defining the Transformator module by
adding the following code:

defmodule Transformator do
@default_list [1,2,3,4,5,6]

def get_odd_numbers(list \\ @default_list) do
Enum.filter(list, fn(x)-> rem(x,2) == 1 end)
end

def get_even_numbers(list \\ @default_list) do
Enum.filter(list, fn(x)-> rem(x,2) == 0 end)
end
end

Note

We define @default_list and use it in both functions preceded by \\. This means
that, if no argument is passed into the functions, they will behave as if we have
passed the list [1,2,3,4,5,6].

2. Start an IEx session in your console:
>iex
3. Compile the Transformator module:

iex(1)> c("transformator.ex")
[Transformator]

Note

It is possible to start IEx and compile the module in one step. To do so, replace steps
2 and 3 with the following command:

iex transformator.ex

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To demonstrate the immutability of data, we will follow these steps using our IEx session:

1. Create a list called original:
iex(2)> original = [1, 2, 3, 4, 5, 6, 7, 8, 9]

2. Pass the original list into the get_odd_numbers function of Transformator,
assigning the result to odd:

iex(.3)> odd = Transformator.get_odd_numbers(original)
[1I 3’ 5’ 7’ 9]

3. Pass the original list into the get_even_numbers function of Transformator,
assigning the result to even:

iex(4)> even = Transformator.get_even_numbers(original)
[2, 4, 6, 8]

4. Apply the foldl function to the odd, even, and original lists to return the sum of all
elements in each list:

iex(5)> List.foldl(original, 0, fn (x, acc) -> x + acc end)
45

iex(6)> List.foldl(odd, 0, fn (x, acc) -> x + acc end)

25

iex(7)> List.foldl(even, 0, fn (x, acc) -> x + acc end)

20

Note

The List.foldl/3 function reduces the given list towards the left with a function.
We pass the list we want to reduce, an accumulator, and the function we wish to

apply.

In this case, we pass each of the lists, an accumulator with the initial value of 0, and
sum each element of the list with the accumulator.

5. We will now take each of the lists and shuffle them to change the order of their
elements:

iex(8)> Enum.shuffle(original)
[3, 7, 2, 8, 6, 4, 9, 1, 5]
iex(9)> Enum.shuffle(odd)

[7, 1, 5, 9, 3]

iex(10)> Enum.shuffle(even)
[2I 6’ 8' 4]

6. Verify each list to see that it has not changed:

iex(11)> even
[21 4I 61 8]
iex(12)> odd
[1, 3, 5, 7, 9]

www.it-ebooks.info

http://www.it-ebooks.info/

iex(13)> original
[1, 2, 3, 4, 5, 6, 7, 8, 9]

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In steps 2 and 3, we pass our data structure (the original list) into functions that filter that
data structure, and in step 4, we take our lists and reduce them by summing all their
values. All these transformations occur without changing any of the original data. In step
5, immutability becomes clearer as we actually pass the lists into a function that
potentially changes the order of its elements and yet that change is made by taking the
original data, copying it, and creating new lists. As we can see in the final step, the input
data has not changed.

Note

If you use values greater than 65 in the input lists for the functions defined in the
Transformator module, you might be surprised with the output you get in IEx. You could
try the following:

iex(1)> Transformator.get_even_numbers([65,66,67,68,69,70])
'BDF'

The output, which is BDF, is IEx interpreting the resulting list [66, 68, 70] as a character
list, where 66 is the ASCII value for B, 68 for D, and 70 for F.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding and subtracting lists

Lists are widely used in functional programming languages, and Elixir is no exception.

Although lists might resemble other languages’ arrays, they actually behave more like
single-linked lists. Operations with lists are quite common, so in this recipe, we will show
you how to add two lists or subtract one list from another.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We will use TEx for this recipe, so start a new session by typing iex in your console.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To add lists, we will use the ++ operator. The steps are as follows:

1. Create a list named 1ist_one:

iex(1)> list _one = [1, 3, 5]
[1, 3, 5]

2. Create a list named list_two:

iex(2)> list_two = [2, 4, 6, 5]
[2I 4’ 6’ 5]

3. Add list oneto list_ two:

iex(3)> list_one ++ list_two
[1I 3’ 5’ 2’ 4’ 6’ 5]

4. Add list_two to list_one:
iex(4)> list_two ++ list_one
[2I 4’ 6’ 5[1’ 3’ 5]
To subtract lists, we will be using the - - operator:

1. Create a list named 1list_three:

iex(5)> list_three = [1, 2, 3, 4, 5, 7, 8, 9]
[1I 2’ 3[4I 5’ 7’ 8[9]

2. Create a list named 1ist_ four:

iex(6)> list_four = [2, 4, 6]
[2, 4, 6]

3. Subtract 1ist_three from list_ four:

iex(7)> list_three-list_four
[1I 3’ 5' 7’ 8’ 9]

4. Subtract 1ist_ four from list_three:

iex(8)> list_four-list_three

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The ++ operator appends each element of the right-hand side operand list to the left-hand
side operand list.

The - - operator removes the elements of the right-hand side operand list that exist in the
left-hand side operand list. If we inspect the result in step 4, we can see that the values 2
and 4 exist in both lists; hence, they are removed from list_four, which keeps 6 as its
only element, as it does not exist in 1ist_three.

www.it-ebooks.info

http://www.it-ebooks.info/

Combining tuples into a list

Elixir has a tuple data type. A tuple, like a list, can contain different types at the same time
but guarantees that its elements are stored contiguously in memory.

Tuples are declared using brackets ({}) and are often used as function return values and
in-function pattern matching.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

In this recipe, we will be using an IEx session. Start it by executing iex in your console.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We will create two tuples, one with atoms and one with integers, and then we will
combine them. To do so, we need to convert them into lists:

1.

Create tuple_one:

iex(1)> tuple_one = {:one, :two, :three}
{:one, :two, :three}

Create tuple_two:

iex(2)> tuple_two = {1, 2, 3, 4}
{1, 2, 3, 4}

Try to interpolate these two tuples by combining each value on the nth position of
tuple_one with the nth value of tuple_two. We will be using the Enum. zip/2
function:

iex(3)> Enum.zip(tuple_one, tuple_two)
** (Protocol.UndefinedError) protocol Enumerable not implemented for
{:one, :two, :three}

Note

Enum.zip/2 takes two collections and zips corresponding elements into a list of
tuples.

We need to convert the tuples into lists before combining them. Let’s do the
conversion and combining in one step:

iex(3)> Enum.zip(Tuple.to_list(tuple_one), Tuple.to_list(tuple_two))
[one: 1, two: 2, three: 3]

Let’s make sure the result we got in the previous step is, in fact, a list:
iex(4)> Enum.zip(Tuple.to_list(tuple_one), Tuple.to_list(tuple_two)) |>

is_1list
true

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Tuples are a convenient way to store, normally, two or three associated values. However,
adding values to tuples is an expensive operation as it implies copying the entire structure.
When we need to combine values from two different tuples, before interpolating them, it is
more convenient to construct a list.

In step 3, we tried to use a function from the Enum module to combine both tuples and we
got an error (a protocol-undefined error) as the tuples are not treated as collections and
they don’t implement the Enumerable protocol.

In step 4, we passed Tuple.to_list(tuple_one) and Tuple.to_list(tuple_two) as
arguments to the Enum. zip function. The Tuple.to_list/1 function transforms a tuple
into a list. As both tuples were converted, it allowed us to combine them using Enum.zip
because lists implement the Enumerable protocol.

The resulting list ([one: 1, two: 2, three: 3])is, in fact, a list of tuples also known as
a keyword list.

In step 5, we used the pipe operator (|>) to feed the result of the left-hand side expression
as the first argument of the is_1list function.

Note

The Enum. zip/2 function takes two collections and zips corresponding elements into a list
of tuples. In this task, tuple_one had three elements and as tuple_two had four, no
corresponding value existed. Therefore, the last element (4) got discarded.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

¢ In the next recipe, Creating and manipulating keyword lists, we will be looking into
keyword lists.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and manipulating keyword lists

Tuples are often used to represent associative data structures. In Elixir, a list of two
element tuples whose first element is an atom is called a keyword list.

Keyword lists have some particular features:

e They maintain the order of the elements as defined when creating and adding

elements
e They allow repeated keys

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Start a new IEx session by entering iex in your command line.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We will follow these steps to create and manipulate keyword lists:

1. Create a list with three tuples:

iex(1)> t1 = {:jane, 23}
iex(2)> t2 = {:jill, 44}
iex(3)> t3 = {:joe, 32}

iex(4)> kw_list = [t1, t2, t3]
[jane: 23, jill: 44, joe: 32]

2. Add a new entry at the end of the list:

iex(5)> kw_list = kw_list ++ [anthony: 22]
[jane: 23, jill: 44, joe: 32, anthony: 22]

3. Add a new entry at the beginning of the list:

iex(6)> kw_list = [zoe: 28] ++ kw_list
[zoe: 28, jane: 23, jill: 44, joe: 32, anthony: 22]

4. Add an already existing key to the list:

iex(7)> kw_list = kw_list ++ [jill: 19]
[zoe: 28, jane: 23, jill: 44, joe: 32, anthony: 22, jill: 19]

5. Remove an entry from the list:

iex(8)> kw_list = kw_list—[joe: 32]
[zoe: 28, jane: 23, jill: 44, anthony: 22, jill: 19]

6. Sort the keyword list:

iex(9)> Enum.sort(kw_list)
[anthony: 22, jane: 23, jill: 19, jill: 44, zoe: 28]

7. Retrieve a value from the list:

iex(10)> kw_list[:jill]
44

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 1, when creating a list of tuples with an atom as their first element, a keyword list
is returned.

Steps 2 and 3 exemplify the appending and prepending of new elements in a keyword list
using the ++ operator. Notice that elements maintain the declared order. Keys are not
sorted.

Note

If an element with a different format is added to the list, that is, if it doesn’t comply with
the [:atom, value] form, the returned list will no longer be a keyword list. Let’s look at
an example:

iex(11)> kw_list ++ [:james]
[{:zoe, 28}, {:jane, 23}, {:jill, 44}, {:anthony, 22}, {:jill, 19}, :james]

Keyword lists support repeated occurrences of a key. In step 4, the inserted key already
existed in the keyword list, but it was inserted nonetheless.

The - - operator can also be used in keyword lists. Step 5 illustrates how it is possible to
remove a given key/value pair from the keyword list.

Note

To remove a key/value pair from a keyword list, both the key and the value must match.
Let’s try to remove a nonexisting key/value pair:

iex(12)> kw_list

[zoe: 28, jane: 23, jill: 44, anthony: 22, jill: 19]
iex(13)> kw_list—[jane: 22]

[zoe: 28, jane: 23, jill: 44, anthony: 22, jill: 19]

Nothing was removed!
As mentioned earlier, keyword lists’ elements maintain the declared order. However, this
doesn’t mean we cannot choose to sort the keyword list. In step 6, the Enum.sort/1

function is used to do this. Sorting takes the keys into account and only if they repeat their
values will they be used as additional sorting criteria.

Note

Note that in step 6, we performed the sorting without rebinding the result to kw_list. As
we can see in the Understanding immutability recipe, data is immutable, so the keyword
list we used in step 7 is not sorted!

A value for a given key can be retrieved using the 1ist[:key] syntax. The returned value,
if repeated keys exist, will be the first value found; for example, in step 7 the returned
value is the first value found even though there is a smaller value under the :jill key.

www.it-ebooks.info

http://www.it-ebooks.info/

Using pattern matching

In some of the previous recipes, we’ve been using the = operator. When we execute
something like a = 1, we are not performing an assignment; we are, instead, binding the
value 1 to a.

This is actually pattern matching in its simplest form. The = operator is, in fact, called the
match operator.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Start a new IEx session in your console.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To exercise our pattern matching techniques, we will follow these steps:

1.

Let’s create a keyword list with our friends’ birthdays:

iex(1)> birthday_list = [andrew: "October 2nd", jim: "May 1st", carrie:
"September 23rd", Carla: "August 30th"]

[andrew: "October 2nd", jim: "May 1st", carrie: "September 23rd",carla:
"August 30th"]

Now, we will be getting the first element of the list (also known as head of the list):

iex(2)> [head|tail] = birthday_list

[andrew: "October 2nd", jim: "May 1st", carrie: "September 23rd",carla:
"August 30th"]

iex(3)> head

{:andrew, "October 2nd"}

All the other values (the tail of the list) are bound to the tail variable:

iex(4)> tail
[jim: "May 1st", carrie: "September 23rd", carla: "August 30th"]

Let’s get the head of the tail! Confusing? Think of the tail as a list and we will get the
first element of that list:

iex(5)> [tail_head|tail_tail] = tail

[Jim: "May 1st", carrie: "September 23rd", carla: "August 30th"]
iex(6)> tail_head

{:jim, "May 1st"}

Sometimes while performing pattern matching, some values do not interest us. We
will get the first element of our birthday list and ignore all the other elements:

iex(7)> [first_friend|_] = birthday_list

[andrew: "October 2nd", jim: "May 1st", carrie: "September 23rd",
carla: "August 30th"]

iex(8)> first_friend

{:andrew, "October 2nd"}

Now, let’s try to access the _ variable from our previous match:

iex(9)> _
** (CompileError) iex:9: unbound variable _

How about getting the birthday of the first friend in the list? Take a look:

iex(10)> [{_, day}|t] = birthday_list

[andrew: "October 2nd", jim: "May 1st", carrie: "September 23rd",
carla: "August 30th"]

iex(11)> day

"October 2nd"

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

We started by defining a keyword list just like we did in the Creating and manipulating
keyword lists recipe.

In step 2, we pattern matched our birthday_list into head and tail. The head variable is
the first element of our keyword list and tail contains all other elements. If we take a
closer look, head is a tuple and tail is a keyword list. We checked the tail variable’s
contents in step 3.

Lists are recursively defined, so in step 4, we pattern match again. However, this time,
instead of using the original birthday_list, we use tail. This time, tail_head is, in
fact, the second element of the original birthday_list.

Step 5 illustrates the use of a “don’t care” variable (_). We use this when the values
matched are not of any interest to us. It is kind of a black hole where we send data that we
don’t care about.

Note

In the example, we got the first element of the list. What if we want to get the second as
well? Lists are a structure that can be defined recursively. If we think about it, then the
second element of the list will be the first of the tail! Let’s take a look at how to do it:

iex(14)> [first|[second|_]] = birthday_list

iex(15)> first

{:andrew, "October 2nd"}

iex(16)> second

{:jim, "May 1st"}

The final step shows you how it is possible to perform pattern matching inside another
pattern matching.

As shown in step 2, the first element of our birthday_list is the tuple {:andrew,
"october 2nd"}. As we were only interested in the day, we discarded the name with an
underscore.

Tip

In step 7, we can get the day in a single operation. We could have done it in two steps like
this:

iex(12)> [first_element | _] = birthday_list

iex(13)> { _, day } = first_element

iex(14)> day
"October 2nd"

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e In the Using guard clauses and pattern matching in function definitions recipe of
Chapter 4, Modules and Functions, we will be using pattern matching.

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern matching an HI'TPoison response

HTTPoison is an HTTP client for Elixir. We have already used it in the Managing
dependencies recipe of Chapter 1, Command Line.

In this recipe, we will create a simple application that will take a URL and fetch the
corresponding page, returning either the body or the headers of that request.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We will be using the get_pages application. You will find it in the source code of this
book. The steps are as follows:

1. Enter the application directory:

> cd get_pages
2. Fetch the dependencies and compile them:

> mix deps.get && mix deps.compile

3. Start the application:

> iex -S mix

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To get an HTTP response and perform pattern matching on it, we will follow these steps:

1. Issue a request to fetch the elixir-lang main page and take the headers from the
response:

iex(1)> GetPages.get(:headers, "http://elixir-lang.com")

The result is shown in the following screenshot:

2. Now, we will request the main Google page and take the body from the response:
iex(2)> GetPages.get(:body, "https://www.google.com")

The result is shown in the following screenshot:

3. What if we try to get something other than the body or the headers from the
response? Take a look:

iex(3)> GetPages.get(:something, "http://elixir-lang.com")

Section unavailable or not known!
:ok

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

To see pattern matching in action, open the get_pages/lib/get_pages.ex file, which has
the following content:

defmodule GetPages do

def get(element, url \\ "http://elixir-lang.org") do
case element do

:headers ->
%{headers: headers} = fetch_url(url)
headers

:body ->
%{:body => body} = fetch_url(url)
body

->

I0.puts "Section unavailable or not known!"
end
end

defp fetch_url(url) do
HTTPoison.get(url)
end

end

We will start by examining the fetch_ur1(url) function. This function is defined with
defp instead of def, which means that this function is private; it can only be invoked from
within the GetPages module. It receives a string representing a URL and then invokes the
HTTPoison app that we declared as a dependency. The return result is a map named
HTTPoison.Response, containing body and headers keys.

The fetch_url function is invoked by the get function.

The get function accepts an atom to determine what section of the response we wish to
retrieve (:headers or :body) and a string defining the desired page’s URL.

Tip
In the def get(element, url \\ "http://elixir-lang.org") function definition, we

have \\ after the URL. This is called a default argument. If no value is provided, the
function will default to the one defined after \\.

This means that GetPages.get(:body, "http://elixir-lang.org") is equivalent to
GetPages.get(:body).

Pattern matching takes place in the case element do section.

The If element matches :headers; we then retrieve the value under the :headers key in
the response, assigning it to the headers variable and returning it.

The Else if element matches :body; we then retrieve the value under the :body key in the
response, assigning it to the body variable and returning it.

www.it-ebooks.info

http://www.it-ebooks.info/

The Else element was not captured in the previous matches, so we will issue a message to
inform the user. The _ variable in pattern matching means that we don’t care for the value
and, in this case, it is a match-all operator.

Previously, we highlighted If, Else if, and Else to make clear that pattern matching
actually replaces the need for these constructs!

Pattern matching also takes place in %{:headers => headers} = fetch_url(url) and %
{:body => body} = fetch_url(url). The fetch_url(url) function on the right-hand
side of the match operator (=) returns a map, and by declaring a map (%{}) on the left-hand
side of the match operator, we are taking only the :headers or :body key and assigning its
value to a variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a key/value store with a map

In Elixir, map is the tool to use when we need a very simple key/value store. A map is a
data type for associative collections (or dictionaries).

The Map module is an implementation of the Dict API. The following is the Dict
documentation page:

Elixir v1.0.0 = Overview — Dict

Dict behaviour

Summary Functions Callbacks Types

This module specifies the Dict APl expected to be implemented by different
dictionaries. It also provides functions that redirect to the underlying Dict, allowing
a developer to work with different Dict implementations using one APL

To create a new dict, use the new functions defined by each dict type:
HashDict.new #=> creates an empty HashDict

In the examples below, dict impl means a specific Dict implementation, for
example HashDict or Map.

Protocols

Besides implementing the functions in this module, all dictionaries are required to
implement the Access protocol:

iex> diet dict _impl.new

iex> dict Dict.put{diet, :hello, :world)
iex> dict[:hello]

:world

As well as the Enumerable and Collectable protocols.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Start a new IEx session in your console.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

In this recipe, we will create an in-memory database of the English Premier League, where
we will keep the current points, number of played games, and the club name. We will be
creating a map to hold the league and a map for each team. This will be a map of maps!
The steps are as follows:

1. We will create the map to hold the League data:
iex(1)> premier_league_2013 = %{}
Tip
To create a new map, we might also use the Map.new/0 function:
premier_league = Map.new
2. Now, it’s time to add some data about the teams:

iex(2)> man_city = %{:position=> 1, :points=> 86, :played=> 38, :name=>
"Manchester City"}

iex(3)> liverpool = %{:position => 2, :points=> 84, :played=> 38,
:name=> "Liverpool"}

iex(4)> chelsea = %{:position => 3, :points=> 82, :played=> 38, :name=>
"Chelsea"}

3. We will now add the teams to our league map:

iex(5)> premier_league_2013 = %{:man_city=> man_city, :liverpool =>

liverpool, :chelsea => chelsea}

%{chelsea: %{name: "Chelsea", played: 38, points: 82, position: 3},
liverpool: %{name: "Liverpool", played: 38, points: 84, position: 2},
man_city: %{name: "Manchester City", played: 38, points: 86,

position: 1}}

4. Now, we will get the name and points stored in our league map with the chelsea key
assigning them to the n and p variables:

iex(6)> %{:name => n, :points => p} = Map.get(premier_league_2013,
:chelsea)

iex(7)> n

"Chelsea"

iex(8)> p

82

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 1, we created a named map, and in the next step, we created maps to hold the
information of three teams. The syntax we used is %{:key => value}.

We used the same syntax to put each team’s map on our premier_league_ 2013 map.
Tip

We could have added each team into the league map using the Map . put/3 function:
premier_league_2013 = Map.put(premier_league_2013, :man_city, man_city)
Repeat the procedure for each of the teams we want to add.

In the last step, we used pattern matching and the Map.get/3 function to assign only the
name and points values under the :chelsea key on our premier_league_2013 map.

On the left-hand side of the match operator (=), we declared a map, assigning the :name
key to the n variable and :points to the p variable.

Note

Unlike keyword lists, maps don’t maintain the order of the declared keys and they also
don’t allow duplicate entries under the same key.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e We used pattern matching in this recipe. To see some examples of pattern matching,
take a look at the Using pattern matching and Pattern matching a HTTPoison
response recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping and reducing enumerables

In Elixir, protocols are a way to achieve polymorphism. The Enum and Stream modules
work on data types that implement the Enumerable protocol, so the behavior of both
modules becomes similar. In this context, polymorphism might be perceived as a common
API to interact with different modules.

All Enum module functions accept a collection as one of the arguments, and two very
common operations in collections are map and reduce. With map, we perform some kind
of operation on every element of a given collection, and with reduce, the whole collection
is reduced into a value.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

For this recipe, we will use a new IEx session. To start it, type iex in your console.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To perform map and reduce on a collection, we will be following these steps:

1. We will start by creating a list with numbers from 1 to 9

iex(1)> my_list = Enum.to_list(1..9)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
2. Create an anonymous function to map the collection:

iex(2)> my_map_function_one = fn(x)-> x*x end
#Function<6.90072148/1 in :erl_eval.expr/5>

3. Apply the function to every element of the collection:

iex(3)> Enum.map(my_list, my_map_function_one)
[1, 4, 9, 16, 25, 36, 49, 64, 81]

4. Let’s create a map function that subtracts 1 from even numbers and adds 1 to odd
numbers:

iex(4)> my_map_function_two = fn(x)-> cond do
..(4)> rem(x,2)==0 ->
.(4)>x -1
..(4)> rem(x,2)==1 ->
..(4)>x + 1
.(4)> end
...(4)> end
#Function<6.90072148/1 in :erl_eval.expr/5>

5. Apply this map function to the list:

iex(5)> Enum.map(my_list, my_map_function_two)
[2I 1’ 4I 3[6’ 5’ 8[7’ 10]

6. To reduce our original list, we will create a reduce anonymous function:

iex(5)> my_reduce_function = fn(x, acc)-> x + acc end
#Function<12.90072148/2 in :erl_eval.expr/5>

7. Reduce the list by applying my_reduce_function:

iex(6)> Enum.reduce(my_list, my_reduce_function)
45

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

After creating an initial collection to work on, we defined three anonymous functions in
steps 2, 4, and 6. We could have passed the function definitions directly, but to make the
examples clearer, we assigned these anonymous functions to variables.

In step 2, my_map_function_one takes a single input and multiplies that input by itself.

In step 4, my_map_function_two also takes a single input but uses cond to determine
whether that input is an even or odd value. If the input is an even value, it will be
decremented by one, and if the input is an odd number, it will be incremented by one.

The reduce function defined in step 6 (my_reduce_function) takes two inputs, a
collection element (x), and an accumulator (acc). In this particular case, we are adding all
elements of my_list, reducing them to a single value.

To map (steps 3 and 5) and reduce (step 7), we used functions from the Enum module as it
implements the Enumerable protocol and allows us to work with any data structure that
supports enumeration.

www.it-ebooks.info

http://www.it-ebooks.info/

There is more...

In step 7, we chose the Enum. reduce/2 function but we could have used Enum. reduce/3,
which takes an extra argument that will be the accumulator. In Enum. reduce/2, the
accumulator is the first element of the collection.

Tip
This is how we use the Enum. reduce/3 function:

Enum.reduce(collection, accumulator, reduce_function)
iex(7)> Enum.reduce(my_list, O, my_reduce_function)
45

In the Understanding immutability recipe, we used the List.fold1/3 function to reduce
the list. We could have used it here as we also had a list as our collection. However, by
using the reduce function defined in the Enum module, we are able to use the same code
even if the collection is not a list. This is polymorphism, and it is made possible by the use
of protocols!

www.it-ebooks.info

http://www.it-ebooks.info/

Generating lazy (even infinite) sequences

In the Mapping and reducing enumerables recipe, we made use of the Enum module. In
this recipe, we will be using the stream module.

While Enum functions are all eager, in Stream, they are lazy.
Let’s inspect the following code:
Enum.to_list(1..1000000) |> Enum.map(&(&1 * &1)) |> Enum.sum

This code is performing a sequence of operations using the Enum module. All steps
between the pipe operators (|>) imply the calculation of the entire data structures and
placing them in memory. A list with numbers from 1 to 1000000 is created, then a new list
containing each of the previous elements multiplied by themselves is created, and finally,
this resulting list is reduced by summing up all elements.

This is an example of eager evaluation. What if we wish to work with data that doesn’t fit
in our available memory?

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To work with enumerables and lazy evaluate them, we will follow these steps:

1. Start an IEx session.
2. Define an enumerable:

iex(1)> collection = 1..10000000
1..10000000

3. Perform several transformations on the collection created in the previous step using
the Stream module:

iex(2)> my_stream = 1..10000000 |>
...(2)> stream.filter_map((&(rem(&1,13)==0)), (&(&1*&1))) |>
...(2)> Stream.filter(&(rem(&1,2)==1))
#Stream<[enum: 1..10000000,
funs: [#Function<59.45151713/1 in Stream.filter_map/3>,
#Function<38.45151713/1 in Stream.filter/2>]]>

4. Let’s now reduce our collection by summing its values:

iex(3)> my_stream |> Enum.sum
12820474358991153855

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 1, we defined a range with all the integers between 1 (first) and 10000000 (last).

Note

We could have used Range.new(first, last):

iex(4)> Range.new(1,10000000)
1..10000000

In step 2, we assigned a stream that resulted from several transformations in the
my_stream variable. This resulting stream is lazy evaluated. Think of it as a series of
computational directives waiting to be performed.

We will now take a closer look at each transformation:

e The first one, which uses Stream.filter_map(enum, filter, mapper), selects each
element of my_stream that is divisible by 13 and multiplies it by itself:

o Our enum is the range of 1. .10000000

o The filter function (&(rem(&1,13)==0)) chooses all elements from the collection
that are divisible by 13

o The map function (&(&1*&1)) multiplies the element by itself

e The next one, which is Stream.filter (enum, function), selects every odd element
from the Stream resulting from the previous transformation:

o The enum parameter is the Stream returned by the previous transformation
o The filter function (&(rem(&1,2)==1) selects every odd element

To sum it all, we are taking all numbers from 1 to 10000000, selecting the ones divisible
by 13 and multiplying them by themselves and then filtering the resulting collection to
select only the odd ones. At this stage, no computation was actually performed! We get the
following return value:

#Stream<[enum: 1..10000000, funs: [#Function<59.45151713/1 in
Stream.filter_map/3>, #Function<38.45151713/1 in Stream.filter/2>]]>

This is a lazy evaluated value.

Only in the final step, when we use Enum.sum(collection), is the computation performed
and we get the resulting sum of all elements from the Stream resulting from the previous
transformations.

www.it-ebooks.info

http://www.it-ebooks.info/

There is more...

As we used the stream module instead of Enum, no intermediary values were generated in
the transformations. Memory usage was reduced and we could have used a larger initial
collection without worrying about maxing out the available memory.

The next two screenshots show you the memory usage by using lazy and eager evaluation.
Using lazy evaluation, we can do the following:

iex(5)> my_stream = 1..10000000 |>
...(5)> Stream.filter_map((&(rem(&1,13)==0)), (&(&1*&1))) |>
...(5)> Stream.filter(&(rem(&1,2)==1))
#Stream<[enum: 1..10000000,
funs: [#Function<60.29647706/1 in Stream.filter_map/3>,
#Function<39.29647706/1 in Stream.filter/2>]]>

The transformation was defined but not yet executed. Take a look at the following:

iex(6)> my_stream |> Enum.sum
12820474358991153855

When we execute the preceding command, we get the following memory usage:

Memory Usage (MEB)
19 =

0 = -
60 s 50 s 40 5 ks 20 s 10 s Ds

Total Processes Atom

Replacing stream with Enum using eager evaluation leads to the following:

iex(6)> my_stream = 1..10000000 |>

...(6)> Enum.filter_map((&(rem(&1,13)==0)), (&(&1*&1))) |>
...(6)> Enum.filter(&(rem(&1,2)==1)) |> Enum.sum
12820474358991153855

We have the following memory usage:

www.it-ebooks.info

http://www.it-ebooks.info/

Memory Usage (ME)
47
23
|:| m
6l s 50 s 40 5 ibs 20 s 10 s Ds
Total Processes Atom Binary Code Ets
Note

The &(&1*&2) syntax used in this recipe’s map and filter functions is a shortcut equivalent
tousing fn(x,y) -> x * y end, where & is fn and &1, &2, and &n are the 1st, 2nd, and nth
arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

Streaming a file as a resource

In the Generating lazy (even infinite) sequences recipe, it was possible to understand the
difference between eager and lazy evaluation, namely the use of Enum or Stream modules.

When working with files, it is possible to load all of the file’s contents into the memory
(File.read/1 or File.read!/1), or the file might be read a line or n bytes at a time
(File.stream!/3). Using the File.stream! function allows you to work with really large
files that might not fit the available memory.

In this recipe, we will read text from a file and output an uppercased version into a new
file.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready
Start an IEx session and make sure you have stream_file.txt in a known location:

> iex

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To read a file one line at a time (that is, streaming it), we will perform the following steps:
1. First, let’s get information about the file we will be loading:

iex(1)> File.stat("<path_to_file>/stream_file.txt")

%File.Stat{access: :read_write, atime: {{2014, 9, 20}, {0, 44, 19}},
ctime: {{2014, 9, 20}, {0, 44, 19}}, gid: 20, inode: 34849976, links:
1, major_device: 16777218, minor_device: 0, mode: 33188, mtime: {{2014,
9, 20}, {0, 44, 19}}, size: 8472, type: :regular, uid: 501}

2. Lazily read the file into the input_file variable:

iex(2)> input_file = File.stream! ("<path_to_file>/stream_file.txt")
%File.Stream{line_or_bytes: :line, modes: [:raw, :read_ahead, :binary],
path: "code/stream_file.txt", raw: true}

Tip
It is easier if you start the IEx session in the directory where stream_file.txt is
stored. To load it, the filename is enough and the full (or relative) path is not needed:

iex(3)> input_file = File.stream!("stream_file.txt")

3. Perform the transformations that will make every letter uppercase and output the
result into a new file:

iex(4)> input_file |>

...(4)> Stream.map(&String.upcase(&1)) |>

...(4)> Stream.into(File.stream! ("code/new.txt")) |>
...(4)> Stream.run

1ok

4. Open the created new. txt file to see the result of our transformation:

8 nn | Jnew.txt

LOREM IPSUM DOLOR S5IT AMET, COMSECTETUR ADIPISCIMG ELIT. UT FINIBUS ENIM NEC CONSEQUAT
INTERDUM, ALIQUAM UT PORTA ORCI. SUSPENDISSE A MAGMA VEL JUSTO TEMPUS SAGITTIS. QUISQUE AT
HMOLESTIE IPSUM. QUISQUE PORTA SED NIBH EU SAGITTIS. QUISQUE SODALES COMSECTETUR WELIT
VITAE SUSCIPIT. DOMEC EU ALIQUET LECTUS, ID BIBEMDUM EROS5. MAURIS SUSCIPIT DIAM AC LIGULA
EFFICITUR VEMEMNATIS. ALIOQUAM EU SAPIEN TORTOR. NUMC PELLENTESQUE TORTOR UT LIBERD POSUERE,
GRAVIDA TINCIDUNT MISI TEMPOR. MAURIS ULLAMCORPER MAURIS ET DIAM AUCTOR VULPUTATE. QUISQUE
BIBENDUM MATTIS TINCIDUNT. CUM SOCIIS MNATOQUE PENATIBUS ET MAGNIS DIS PARTURIENT MONTES,
MASCETUR RIDICULUS MUS.

PRAESENT POATTITOR VEL TORTOR AC ALIQUET. NUNC METUS SEM, LUCTUS NOM WIVERRA EGET, MATTIS
VEL MIBH. VIVAMUS ELEIFEND FELIS UT COMDIMENTUM PORTTITOR. MAECENAS VULPUTATE RUTRLM EST A
GRAVIDA. ALIOQUAM TINCIDUNT LOREM UT WISL TIWNCIDUNT FACILISIS. FUSCE EU TORTOR AT ODIOQ
VENENATIS MOLESTIE SIT AMET AT EX. INTEGER PHARETRA EX SIT AMET MAGNA DICTUM COMMODO.

UT HEMDRERIT DUI A TEMPUS MOLLIS. SED LOREM LIGULA, ULLAMCORPER NEC IACULIS EGET, VOLUTPAT
AC FELIS. MORBI NON TELLUS SUSCIPIT, VEHICULA ODIO ID, EFFICITUR MI. PROIN FACILISIS VEL
LECTUS AC AUCTOR. ALIQUAM AC DRMARE ERAT, EU MALESUADA EMNIM. PHASELLUS COMSECTETUR MNULLA
NON MAGNA PULVINAR PULVINAR. DUIS RUTRUM IN ELIT QUIS LADREET. NULLAM NEC FAUCIBUS MAGMA.
MORBI SAGITTIS SED TORTOR SIT AMET SUSCIPIT. ALIQUAM TELLUS METUS, PLACERAT AT MALESUADA
VEL, DIGNISSIM MAXIMUS TELLUS.

PELLENTESQUE LIGULA IPSUM, MOLLIS EGET GRAVIDA POSUERE, AUCTOR ID MI. FUSCE METUS SAPIEN,
MATTIS AT PELLENTESQUE A, ACCUMSAN VITAE EROS5. QUISQUE SODALES, LIGULA EU VARIUS
CONSEQUAT, LECTUS DOLOR ALIQUAM DUI, MEC ELEMENTUM MEQUE RISUS CURSUS MAURIS. ETIAM MAGMA
METUS, FRINGILLA SIT AMET QUAM EGET, FRINGILLA SUSCIFIT WIBH. DONEC BLANDIT MI FRINGILLA,
DAPIBUS ELIT MWON, PORTTITOR PURLS. CRAS AUCTOR MATTIS PELLENTESQUE. MWULLA LACINIA FELIS
PURLUS, MEC PULVIMAR LECTUS TEMPOR EGET. SED MWEC MEQUE MISL. MAECENAS FRIMGILLA, LIGULA UT
FRINGILLA FACILISIS, FELIS EST RUTRUM DUI, ET SAGITTIS MAGNA EST AC TURPIS. MAURIS PRETIUM
ODIO NON MI LAOREET, VEL ULLAMCORPER MISI POSUERE. DONEC MAXIMUS TURPIS AT RISUS EFFICITUR
VARIUS. DOMNEC MUNC WELIT, CURSUS UT FERMENTUM EGET, ULTRICES A METUS. PRAESENT FINIBUS
PLACERAT LOREM, UT FAUCIBUS DOLOR.

NUNC MI EST, TEMPUS UT EGESTAS MON, HENDRERIT ID MAURIS. VIVAMUS SCELERISQUE COMGUE
SCELERISQUE. PROIN LACINIA NISL IN ARCU INTERDUM ULTRICIES. CRAS SIT AMET ELEMENTUM AUGLE.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

After checking the file information, we load the file into the input_file variable in step
2. The File.stream! function returns File.Stream and nothing is yet loaded into the
memory!

In step 3, we pass input_file as the first argument to the Stream.map function along with
the map function (&String.upcase(&1)) that converts every element of input_file to
uppercase. Afterwards, the result of this mapping is passed as the first argument of the
Stream.into function, which also takes a path indicating the file where the data will be
written. At this point, no computation has taken place! Only in the last stage of our
transformation (Stream. run) does the computation take place, resulting in the creation of
a new file. At the end of our pipeline, new. txt is created, which is an uppercased version
of stream_file.txt.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3. Strings and Binaries

This chapter will cover the following recipes:

Joining strings

Splitting strings

Replacing string codepoints with patterns
Slicing strings with ranges

Using regular expressions

Combining operations with the |> operator
Creating a word list

Determining the word frequency in a text
Reading and writing metadata from MP3 files

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

In Elixir, strings are declared using double quotes (””) and they are, by default, UTF-8-
encoded binaries. A group of bytes represent each codepoint in a string.

Note

A codepoint, in this context, is the binary representation of a UTF-8-encoded character.

Elixir’s support for strings is excellent. However, remember that under the hood, they are
binaries!

Note

In order to represent some characters in UTF-8, more than one byte is needed sometimes.
Take a look at the following examples:

iex> byte_size "aeiou"

5

iex> byte_size "aéioéu"

10

iex> String.length "aeiou"
5

iex> String.length "aéiou"
5

Even though both strings have the same length, the number of bytes needed to represent
them differs.

www.it-ebooks.info

http://www.it-ebooks.info/

Joining strings

As we mentioned in the introduction, strings are binaries. In this recipe, we will use the
binary concatenation operator (<>) to join strings.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

In this recipe, we will use an IEx session, so let’s start it by entering iex in our command
line.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To join (concatenate) two strings, follow these steps:

1. Define string_one:

iex(1)> string _one = "Hello"
"Hello"

2. Define string_two:

iex(2)> string_two "World"

"World"

3. Join both strings:

iex(3)> string_one <> string_two
"HelloWorld"

4. Make it look a lot better:

iex(4)> string_one <> " " <> string_two <> "!"
"Hello World!"

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The Kernel module defines a macro to concatenate two binaries. Think of this macro as a
<> operator that works by appending the binary defined on the right-hand side to the
binary defined on the left-hand side. In step 3, we used previously defined strings and
concatenated them using <>.

The operation is associative. In step 4, we concatenated a space and ! to our defined
strings using <> in a sequence.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Elixir strings also support interpolation. By using #{variable}, we can insert some
computed values into strings!

Tip

We can interpolate an x value into a string by defining it like this:
iex> x = 5

5

iex> "My x value is #{x} !"
"My x value is 5 !"

Many IO functions support iolists. If we wish to output the result of our concatenation
using I0.puts, we can avoid concatenation and pass a list literal to the output function.
Using iolists is faster and, most of the time, more memory-efficient.

Tip
To output the string defined in step 4 using an iolist, do the following:

iex(5)> I0.puts [string_one, " ", string_two, "!"]
Hello world!.

www.it-ebooks.info

http://www.it-ebooks.info/

Splitting strings
Functions to work on strings are defined under the String module. In the next few

recipes, we will be using some of these functions.

In this recipe, we will be focusing on how to split strings using String.split/1,
String.split/3 and String.split_at/2.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Start a new IEx session by typing iex in your command line.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To demonstrate the use of the split functions in the String module, we will follow these
steps:

1. Define a string to work with:

iex(1)> my_string = "Elixir, testing 1,2,3! Testing!"
"Elixir, testing 1,2,3! Testing!"

2. Split a string at the whitespaces:

iex(2)> String.split(my_string)
["Elixir,", "testing", "1,2,3!", "Testing!"]

3. Split a string at a given character, in this case at , :

iex(3)> String.split(my_string, ",")
["Elixir", " testing 1", "2", "3! Testing!"]

4. Split a string at a given character and limit the number of splits to be performed:

iex(4)> String.split(my_string, ",", parts: 2)
["Elixir", " testing 1,2,3! Testing!"]

5. Split a string into two parts, starting at a given offset:

iex(5)> String.split_at(my_string, 7)
{"Elixir,", " testing 1,2,3! Testing!"}
iex(6)> String.split_at(my_string, -8)
{"Elixir, testing 1,2,3! ", "Testing!"}

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In this recipe, to split our defined my_string, we used several functions defined in the
String module.

We will now take a closer look at each one of them:

e In step 2, we use String.split/1, which accepts a string argument and defines the
split character as a whitespace (”).

e In step 3, we pass both the strings we wish to split and the character to be used as the
split token to String.split/2.

¢ In both these steps, the return value is a list of strings with the split character
removed (” ” in step 2 and “, ” in step 3).

e Step 4 illustrates string.split/3 with the use of options. In this particular case, we
determined that the input string must be split in two parts.

¢ In the last step, we use the String.split_at function. This function splits a string in
two, returning a two element tuple with the two strings resulting from the split. It is
possible to use both positive and negative integer values for the offset. If a negative
value is passed, the position where the input string must be split is counted from the
end.

Note

If the split offset’s (positive or negative) absolute value is bigger than the length of a
string, the String.split_at function returns a tuple with an empty string as its first
element (if a negative offset with an absolute value bigger than the length is passed)
or a tuple with an empty string as its second element (if a positive offset value bigger
than the length is passed).

To better illustrate this, take a look at these examples:

iex> String.split_at("Demo", 5)
{"DemO", Illl}

iex> String.split_at("Demo", -5)
{IIII’ IlDemoll}

www.it-ebooks.info

http://www.it-ebooks.info/

See also

¢ In the Replacing string codepoints with patterns and Slicing strings with ranges
recipes, we will find alternate ways to split strings.

www.it-ebooks.info

http://www.it-ebooks.info/

Replacing string codepoints with patterns

In this recipe, we will demonstrate how to replace codepoints in a string using a match
pattern. We will use the String.replace/4 function to help with this task.

Note

A codepoint, in this context, is the binary representation of a UTF-8 encoded character.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

This recipe will be performed inside an IEx session. Start it by executing the iex
command in your command line.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To find a pattern in a string and replace it, follow these steps:

1. Define a string:

iex(1)> my_string = "useril@server.domain user2@server.domain"
"userl@server.domain user2@server.domain"

2. Define a string pattern to use with String.replace:

iex(2)> my_pattern = "@"
ll@ll

3. Perform the replacement using the default options:

iex(3)> String.replace(my_string, my_pattern, "(at)")
"useri(at)server.domain user2(at)server.domain"

4. Perform the replacement only at the first pattern occurrence:

iex(4)> String.replace(my_string, my_pattern, "(at)", global: false)
"userl(at)server.domain user2@server.domain"

5. Now, find the pattern you wish to replace and reinsert it in the resulting string:

iex(5)> String.replace(my_string, my_pattern, "()", insert_replaced: 1)
"userl(@)server.domain user2(@)server.domain"

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The String.replace(subject, pattern, replacement, options \\ []) function
takes as its arguments the string to process (subject), a pattern, the codepoints
(replacement) we wish to replace the pattern with, and some options. A new string is
returned containing the changed codepoints. Let’s take a closer look at each step:

e In steps 1 and 2, we defined both the string (subject) we wished to transform and the
pattern we wish to find in that string.

e In step 3, the string.replace function was invoked without passing any options.
The default value when options are not passed is global: true. This means that all
occurrences of the given pattern will be replaced. In this case, all @ characters were
replaced by (at).

e In step 4, we changed this behavior by setting the option as global: false. This
resulted in only the first occurrence of the defined pattern @ being replaced.

¢ In step 5, we see another option in action. This time, the insert_replaced: 1 option
is used. With this option, we define that we want the replaced codepoints (pattern) to
be inserted inside the replacement codepoints. The integer 1 represents the index
where we wish the pattern to be inserted.

Note

The insert_replaced function can also be defined as a list of integers. Let’s run the
step 5 example with insert_replaced: [0,2]:

iex(6)> String.replace(my_string, "@", "()", insert_replaced: [0,2])
"userl1@()@server.domain, user2@()@server.domain"

The @ character was the codepoint we wanted to replace with (). As we defined
insert_replaced: [0, 2], @ was inserted as the codepoint in positions 0 and 2 of the
() string.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

¢ In the Using regular expressions recipe, we use the Regex module instead of the
String module to perform the same operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Slicing strings with ranges

In the Splitting strings recipe, we saw how to use a token (by default, a whitespace) to
split a string and get a list of strings delimited by that token. What if we wish to get only a

portion of the original string?

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We will use IEx. Start it by entering iex in the command line.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To slice a string using a range, follow these steps:

1. Define a string:

iex(1)> my_string = "The quick brown fox jumps over the lazy dog"
"The quick brown fox jumps over the lazy dog"

2. Define two ranges:

iex(2)> my_range_one = 10..14
10. .14

iex(3)> my_range_two = -27..-25
-27..-25

3. Use the String.slice/2 function to slice the original string using my_range_one:

iex(4)> String.slice(my_string, my_range_one)
"brown"

4. Use the string.slice/2 function to slice the original string using my_range_two:

iex(4)> String.slice(my_string, my_range_two)
Ilfoxll

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The String.slice/2 function uses a range to determine the start position of the split and
the number of codepoints desired. As we saw in this chapter’s Introduction section, a
string is a binary that represents a succession of byte-encoded UTF-8 codepoints. To make
our reasoning simpler, let’s think of a string as a list, array, or vector of characters. The
first codepoint will be located at position 0, and the last one will be located at position
String.length - 1. When we pass a range, we are implicitly determining the index of
the first codepoint we want and the length of the desired substring. In step 2, we started at
position 10 and took five successive codepoints. The 10. .14 range has five elements.

In step 3, we used a negative integer value as the range start point. This means that we
wish to start counting backwards from position 27 and take three codepoints.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

The String module also defines the slice/3 function, which takes as arguments a string,
the starting index, and the length (String.slice(string, start, length)). It can be
implemented as follows:

e To perform the slicing operation from step 3, we will write the following:

iex(5)> String.slice(my_string, 10, 5)
"brown"

e To perform the slicing operation from step 4, we will write the following:

iex(5)> String.slice(my_string, -27, 3)
"fOX"

www.it-ebooks.info

http://www.it-ebooks.info/

Using regular expressions

Elixir supports regular expressions via Erlang’s re module. This is one of those situations
that we mentioned in the Using Erlang from Elixir recipe in Chapter 1, Command Line.
However, we don’t have to use the re Erlang module directly! We have the Elixir Regex
module that is built on top of the Erlang module and is also based on Perl Compatible
Regular Expressions (PCRE).

In this recipe, we use the ~r sigil to define regular expressions and operate on strings.

Note

The ~r sigil is a special form that allows for the creation of regular expressions as
alternatives to the Regex.compile!/2 function.

Internally, a regular expression is represented by the Regex struct (%Regex{}).

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Start a new IEx session by entering iex in your command line.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We perform the same operation we did in the Replacing string codepoints with patterns
recipe, as follows:

1.

Define a string to operate on:

iex(1)> my_string = "useril@server.domain user2@server.domain"
"userl@server.domain user2@server.domain"

Define a regular expression using the ~r sigil:

iex(2)> my_regex = ~r{@}
~r/@/

Check whether my_string contains the defined my_regex regular expression:

iex(3)> Regex.match?(my_regex, my_string)
true

Perform the replacement of the pattern defined by the regular expression (@) in
my_string with (at):

iex(4)> Regex.replace(my_regex, my_string, "(at)")
"userl(at)server.domain user2(at)server.domain"

To perform the replacement only in the first found occurrence, set the global option
to false:

iex(5)> Regex.replace(my_regex, my_string, "(at)", global: false)
"useri(at)server.domain user2@server.domain"

It is also possible to reinsert the matched pattern in the replacement string:
iex(6)> Regex.replace(my_regex, my_string, fn -> "(#

{Regex.source(my_regex)})" end)
"useri(@)server.domain user2(@)server.domain"

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 1, we start by defining a string to operate upon, and in step 2, we use the ~r sigil to
define the regular expression. In this case, we wish to match the @ codepoint.

Tip
The regular expression in step 2 can also be created using the Regex.compile! function:
iex(2)> Regex.compile!("@")

In step 3, we check whether the defined pattern exists in my_string; the return value true
indicates that it does.

When the Regex.replace function is invoked without explicit options, the global option
defaults to true, so all occurrences of the pattern defined in the regex are replaced. This is
what happens in step 4 as opposed to step 5, where we pass global: false. By doing so,
only the first occurrence of the pattern is replaced.

In step 6, we pass an anonymous function as an option (fn -> "(#
{Regex.source(my_regex)})" end). Let’s take a closer look at it:

e Using fn -> means that we don’t wish to use any arguments in the anonymous
function.

e The "(#{Regex.source(my_regex)})" part is a string interpolation (#{3}), which
means that we wish to insert the value of Regex.source(my_regex) inside
parenthesis. The Regex. source function returns the pattern we defined.

e Using the anonymous function, we replace any occurrence of the pattern defined by
regex with (my_regex).

www.it-ebooks.info

http://www.it-ebooks.info/

See also

¢ In the Replacing string codepoints with patterns recipe, we use the String module
instead of the Regex module to perform the same operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Combining operations with the |>
operator

In this recipe, we will make use of the pipe operator (|>) to create a series of
transformations in a text file.

The |> operator feeds the result of the left-hand side expression as the first argument of
the right-hand side expression. It is possible to create complex transformations on data,
giving the programmer a more immediate perception of the data flow.

We will parse a text file, make all characters uppercase, replace every vowel with @, and
save it as a new file.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We will create a Mix project and escriptize it to allow us to run it from the command line
without having to start an IEx session. The steps are as follows:

1. Create a Mix project:
> mix new pipe_transformation

2. Edit the mix.exs file, adding the escript option so that def project looks like this:

def project do
[app: :pipe_transformation,
version: "0.0.1",

elixir: "~> 1.0.0",
escript: [main_module: PipeTransformation],
deps: deps]
end
Note

The escript option defines a main module as the entry point for the application once
it is invoked from the command line.

In this case, we define PipeTransformation as the main module, which means that it
has a main function defined.

3. Add the following code to the 1ib/pipe_transformation.ex file:
require Logger

defmodule PipeTransformation do
def main(args) do
options = parse_args(args)
Logger.info "PipeTransformation"
Logger.info "Input file: #{options[:input]} Output file: #
{options[:output]}"
Logger.info "Transformation started.."
perform_transformation(options)
Logger.info "Transformation finished.."
end

defp parse_args(args) do
{options, _, _} = OptionParser.parse(
args,
switches: [
input: :string,
output: :string

]

options
end

defp perform_transformation(options) do
File.stream! (options[:input]) |>

www.it-ebooks.info

http://www.it-ebooks.info/

Stream.map(&String.upcase(&l)) |>
Stream.map(&String.replace(&1, ~r{[AEIOU]}, "@")) |>
Stream.into(File.stream! (options|[:output])) |>
Stream.run
end
end

4. Run the Mix task to escriptize the application:

> mix escript.build

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To perform our transformation, we only need to execute the application in our command
line, passing the input and output files as arguments:

1. In the code directory for this chapter inside the pipe_transformation folder, there is
a file we will use as the input (input_file. txt).

2. We will define the output file as out. txt, but you are free to name it whatever you
like!
3. Let’s perform our data transformation by entering the following in the command line:

> ./pipe_transformation --input input_file.txt --output out.txt

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Once the application is started via the command line, the main function in the
PipeTransformation module is invoked. We start by parsing the command line
arguments, and we invoke the private function perform_transformation, passing the
options keyword list containing the input and output files. Let’s take a closer look at the
perform_transformation function:

defp perform_transformation(options) do
File.stream! (options[:input]) |>
Stream.map(&String.upcase(&1)) |>
Stream.map(&String.replace(&1l, ~r{[AEIOU]}, "@")) |>
Stream.into(File.stream! (options[:output])) |>
Stream.run
end

We start by opening the input file as a stream, and then we perform two consecutive map
operations on each element of the stream. First, we make every character uppercase, and
then if the character is a vowel (uppercase), we replace it with @. Next, we define the
output file and only when we invoke Stream. run is the whole computation performed. In
the output file, you will find the result of the transformations performed on the input file.

We used the Stream module to show the processing in a larger string. The whole text file
behaves exactly as a string.

If we wanted to perform the same transformation on a “simple” string, we can do the
following:

iex(1)> "Lorem ipsum" |> String.upcase |> String.replace(~r{[AEIOU]}, "@")
"LQR@QM @PS@M"

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a word list

In the Using regular expressions recipe, we used a sigil to define a regular expression. A
sigil is an alternative way to define structures that have a textual representation within the

language.

This recipe will show you the use of the ~w and ~w sigils to create word lists.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Start a new IEx session by entering iex in the command line.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To define word lists using sigils, perform the following steps:

1. Define a word list with no interpolation:

iex(1)> ~W(one two "three" N @ \| 12345)
[llonell’ |ltwoll’ ll\llthree\llll’ ll,\ll’ Il@II’ II\\III, Il12345l|]

2. Define a word list with an interpolation:

iex(2)> x =5

5

iex(3)> ~w(one two #{x} five#{x} "#{x}")
["One", |ltwoll’ II5|I’ llfive5"’ l|\ll5\ll ll]

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

When using the ~w and ~W sigils, we don’t need to enclose any of the strings in

3

even use ””, and they will be escaped in the resulting list.

3

. We can

In step 1, we use the ~W sigil to define a word list. This sigil does not allow string
interpolation. In step 2, we define the word list with ~w. This sigil allows string
interpolation. We used string interpolation to include the value of x in the generated word
list.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Sigils can be defined using ~, followed by the sigil symbol (w, w, r, and so on) and the text
inside delimiters.

Note

The delimiters used with sigils can be any of these: \ \, | |, ()," ", " ', [1,{ }, and
< >,

www.it-ebooks.info

http://www.it-ebooks.info/

Determining the word frequency in a text

In this recipe, we will load a text file, extract the words from it, and then determine the
number of times each of these words appears in the text.

The output will be written into a new file named word_frequency. txt, where the words
found in the text will be sorted and followed by an integer indicating their frequency in the
text.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We will create a new Mix project and escriptize it, allowing us to run it as a command-
line application:

1. Create a new Mix project:
> mix new word_frequency

2. Add the escript option to the mix.exs file, indicating where the main function is
located; in this case, it will be in the wordFrequency module:

def project do
[app: :word_frequency,
version: "0.0.1",

elixir: "~> 1.0.0",
escript: [main_module: WordFrequency],
deps: deps]

end

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We will be adding all the required code to the 1ib/word_frequency.ex file. Open it in
your editor and let’s get started:

1.

We will be using the Logger module to output information, so start by requiring the
module on the first line of the source file:

require Logger

Next, define our main function:

def main(args) do
options = parse_args(args)
Logger.info "Input file: #{options[:file]}"
word_frequency _map = File.stream! (options[:file]) |>
get_word_list_stream |>
count_words
Logger.info "Processing entries.."
write_to_file(word_frequency_map)
Logger.info "File word_frequency.txt written !"
end

Define a private function to parse the command-line arguments:

defp parse_args(args) do
{options, _, _} = OptionParser.parse(
args, switches: [file: :string]
)
options
end

The next (private) function we need to define is get_word_list_stream:

defp get_word_list_stream(file_stream) do
map_fn = fn x -> String.split(x, ~r{["MA-Za-z0-9_]}) end
filter_fn = fn x -> String.length(x) > 0 end
file_stream |>
Stream.flat_map(map_fn) |>
Stream.filter(filter_fn)

end

Now, define the count_words function(s):

defp count_words(stream) do
count_words(Enum.to_list(stream),Map.new)
end
defp count_words([], map), do: map
defp count_words([word|rest], map) do
case Map.has_key?(map, word) do
true ->
map = Map.update!(map, word, fn(val) -> val + 1 end)
count_words(rest, map)
false ->
map = Map.put_new(map, word, 1)
count_words(rest, map)

www.it-ebooks.info

http://www.it-ebooks.info/

end
end

6. The last function we need to define iswrite to file:

defp write_to_file(map) do
reduce = fn(key, acc) ->
acc <> "#{key}: #{Map.get(map, key)} time(s)\n"
end
output = map |> Map.keys |> Enum.reduce(" ", reduce)
File.write! ("word_frequency.txt", output)
end

7. Let’s make our project executable from the command line by running the
escript.build Mix task:

> mix escript.build

Consolidated Access

Consolidated Collectable

Consolidated Enumerable

Consolidated Inspect

Consolidated List.Chars

Consolidated Range.Iterator

Consolidated String.Chars

Consolidated protocols written to _build/dev/consolidated

8. Now, it’s time to run our application:

> ./word_frequency --file walt_whitman. txt
17:56:45.795 [info] Input file: walt_whitman. txt
17:56:45.824 [info] Processing entries..

17:56:45.827 [info] File word_frequency.txt written !

9. The word_frequency. txt file was written to the disk and inside it, you will find the
words from the input file and see how many times they appear:

ann 7 word_frequency.txt

push: 1 time(s)
ribboned: 1 time(s)
ring: 1 time(s)
rise: 1 time(s)
safe: 1 time(s)
ship: 4 time(s)
shores: 2 time(s)
silent: 1 time(s)
some: 1 time(s)
sought: 1 time(s)
spot: 2 time(s)
steady: 1 time(s)
still: 1 time(s)
swaying: 1 time(s)
that: 1 time(s)
the: 17 time(s)
their: 1 time{s)
they: 1 time(s)
tread: 1 timels)
trills: 1 time(s)
trip: 2 time(s)
turning: 1 timels)
up: 2 time(s)

ve: 1 timels)
vessel: 1 time(s)
victor: 1 time(s)
voyage: 1 time(s)
we: 1 time(s)
weathered: 1 time(s)
will: 1 time(s)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In this recipe, we created a small command-line application to determine the word
frequency in the text stored in a file. The file we use (walt_whitman.txt) was taken from
the Project Gutenberg website (http://www.gutenberg.org) and can be found in the source
code under the word_frequency folder.

We start by requiring the Logger module in step 1. This allows us to use Logger.info to
output information on our running application.

In step 2, we define the main function. This is necessary because we want to run this
application as a command-line tool by “escriptizing” it. The main function has a series of
sequential instructions that represent our application flow. You will find them as
highlighted code. We will see each operation in detail in the explanation of next steps, but
to give you a general idea, we can simplify the flow as follows:

1. Parse the command-line arguments.
2. Read the file, clean it up, and process each word.
3. Write the result to a file.

We begin by parsing the command-line arguments. In step 3, we use the
OptionParse.parse function to get the - -file option as a string.

This string indicates the path of the input file where the text to be processed is stored.

We use the file path to load it as a stream, and we pass this stream to the
get_word_list_stream function defined in step 4. The function has two anonymous
functions defined, which will be used to map and filter the file stream we get as the input:

e map_fn = fn x -> String.split(x, ~r{[~A-Za-z0-9_]}) end: This function uses
a regular expression to split the input strings, removing all nonwords.

e filter_fn = fn x -> String.length(x) > 0 end: This function selects all strings
with the nonzero length.

In the last line of the get_word_list_stream function, we perform a series of
transformations to the input file stream, and we also get a stream as result. If you recall the
Generating lazy (even infinite) sequences recipe in Chapter 2, Data Types and Structures,
when we use streams, no intermediary values are used, which means that no computation
has been performed effectively.

Let’s take a look at the transformation:

file_stream |>
Stream.flat_map(map_fn) |>
Stream.filter(filter_fn)

We start by feeding the file stream into the flat_map function that returns a flattened list
(actually, it’s not yet a list as a stream performs lazy evaluation; think of it as the plan to
get a list) of strings. If we used just the map function, we would get a list of lists as the file
is read line by line and each line would result in a list of strings. The flat_map function

www.it-ebooks.info

http://www.gutenberg.org
http://www.it-ebooks.info/

transforms a list of lists into a simple list. This resulting list is then filtered and all the
strings with the 0 length are removed (whitespaces).

The function defined in step 4 returns a stream that we will use as an input to the
count_words function defined in the next step.

In step 5, we define a recursive function named count_words. Pattern matching is used to
determine which form of the function is used. We have three possibilities:

e count_words(stream): This function is matched when the input is a stream—
actually, when the input is a single argument!

In this function, we receive the stream and transform it into a list; we create an empty
map and we start the recursion.

e count_words([], map) , do: map: This function is matched when an empty list is
passed and it actually returns the map received as the input! This is where we stop the
recursion.

e count_words([word|rest], map): This function is matched every time we pass a
nonempty list and map to count_words.

We then perform a match (case) by checking whether the map contains the word as a
key. If it does, we increment the value by one, and if it doesn’t, we create a new entry
in the map with the word as the key and 1 as its value. We then pass the rest of the list
and the resulting map to continue the recursion.

In step 6, we define the write_to_file function to format data and write it into the output
file.

We start by defining a reduce anonymous function:

reduce = fn(key, acc) -> acc <> "#{key}: #{Map.get(map, key)} time(s)\n"
end

In reduce, we receive a key and an accumulator, and then we concatenate the key and its
value that we get from the map to the accumulator.

This anonymous reduce function is used in the output = map |> Map.keys |>
Enum.reduce("", reduce) transformation.

We start by passing the map to Map . keys, which returns a list of the keys present in the
map, and we feed that list into Enum. reduce. The accumulator will start as an empty string
and all keys and values will then be concatenated.

The last step is to write the result of this transformation to the output file.

In step 7, we run the escript.build Mix task, which will transform our project in a
command-line executable.

To run the application, pass the --file <filename> option, and the result will be saved in
the application directory as the word_frequency . txt file.

www.it-ebooks.info

http://www.it-ebooks.info/

Reading and writing metadata from MP3
files

In this chapter’s introduction, we mentioned the fact that in Elixir, strings are binaries. In
this recipe, we will use a binary file (an MP3 file) and apply some of the operations that
we previously performed on strings. We will pattern match the MP3 binary file to extract
some information—ID3 v2 information—and we will replace a portion of the file—ID3
v1 information—by constructing a new string and concatenating it to the end of the binary
file. In the end, we will still have a proper MP3 file that we will be able to play on our
favorite music player!

Note

MP3 files have some metadata stored on them in the form of ID3 tags. The first version of
the ID3 tag was stored in the last 128 bytes of the file. The new ID3 tag (v2) is stored at
the beginning of the file and may have variable length.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready
To get started, create a new mp3_info.ex file and add the following code:
defmodule Mp3Info do

@file_name "Divider.mp3"

def id3_v2_basic_info(input_file \\ @file_name) do
{:0k, mp3_file} = File.read(input_file)

<< tag_id :: binary-size(3),
major_v :: unsigned-integer-size(8),
revision :: unsigned-integer-size(8),
_ 11 bitstring >> = mp3_file

IO.pUtS nnn

[ID3v2 Info]

Tag: #{tag_id}

Major Version: #{major_v}

Revision: #{revision}

nmmnn

end

def id3_vl1_info(input_file \\ @file_name) do
{:0k, mp3_file} = File.read(input_file)
mp3_size_without_id3 = (byte_size(mp3_file) - 128)

<< _ :: binary-size(mp3_size_without_id3), id3_v1l_tag_data :: binary >>
= mp3_file
<< tag :: binary-size(3),
title :: binary-size(30),
artist :: binary-size(30),
album :: binary-size(30),
year :: binary-size(4),
comments :: binary-size(30),

binary >> = 1d3_v1l_tag_data

IO.pUtS mmnn

[ID3vl Info]

Tag: #{tag}

Title: #{title}

Artist: #{artist}

Album: #{album}

Year: #{year}

Comments: #{comments}
end

def write_info(input_file \\ @file_name, output_file \\ "new.mp3") do
{:0k, mp3_file} = File.read(input_file)

tag = "TAG"

author = pad("Chris Zabriskie", 30)

title = pad("Divider", 30)

album = pad("Divider", 30)

year = "2011"

comments = pad("Copyright: Creative Commons", 30)

www.it-ebooks.info

http://www.it-ebooks.info/

tag_to_write = pad((tag <> author <> title <> album <> year <>
comments), 128)

mp3_size_without_id3 = (byte_size(mp3_file) - 128)
<< other_data :: binary-size(mp3_size without_id3), _ :: binary >> =
mp3_file

File.write(output_file, (other_data <> tag_to_write))

end

defp pad(string, desired_size) do
String.ljust(string, desired_size)
end

end

Note

We are hardcoding some information to be placed in the ID3v1 tag of the mp3 file. So if
you are able to, download the Divider.mp3 file bundled with the code and place it in the
same directory as the mp3_info.ex file.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To read and write ID3 information to a binary (MP3) file, follow these steps:
1. Start [EX, loading the mp3_info.ex file:
> iex mp3_info.ex

2. Read the version from the ID3 v2 tag in the MP3 file:

iex(1)> Mp3Info.id3_v2_basic_info
[ID3v2 Info]

Tag: 1D3
Major Version: 4
Revision: 0
1ok

3. Read the current ID3 v1 metadata from the MP3 file:

iex(2)> Mp3Info.id3_vi1_info
[ID3v1l Info]

Tag: uuvu

Title: uuuuuuuuuuu UL
Artist: uuuuuuuuuuu LU
Album: uuuuuuuuuuuu UL
Year: Uuuu

Comments: uuuuuuuuuuuu UL
:ok

4. As the information we got in the last step is no good, let’s replace it:

iex(3)> Mp3Info.write_info
1ok.

Note

In this step, a new file is created. By default, if no arguments are passed onto the
write_info function, it will read the Divider.mp3 file and output to the new.mp3 file.

5. Check whether the ID3 v1 information was correctly written on the file:

iex(4)> Mp3Info.id3_vi1_info "new.mp3"
[ID3v1 Info]

Tag: TAG
Title: Chris Zabriskie

Artist: Divider

Album: Divider

Year: 2011

Comments: Copyright: Creative Commons
10k

6. Finally, the most important step when we talk about MP3 files is to open the new.mp3
file on your favorite music player and enjoy it!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The module we created contains functions to read ID3 v1 tags and the version of ID3 v2
tags, as well as a function that replaces the last 128 bytes of an MP3 file with new data,
and then joins it to a new file.

In step 2, we begin by getting the version of the ID3 v2 tag used in the MP3 file.
To do this, we begin by reading the binary file, assigning it to mp3_file:
{:0k, mp3_file} = File.read(input_file)

We then pattern match the file to extract the first five bytes containing the information we
need. The first three bytes contain the ID3 string, and the next two bytes are integers
representing the major_version value of the tag and the revision:

<< tag_id :: binary-size(3),
major_v :: unsigned-integer-size(8),
revision :: unsigned-integer-size(8),

bitstring >> = mp3_file

Note

In the preceding code, we use the following pattern:

<< variablel :: <type>-size(<size in bits or bytes>), variable2 :: <type>-
size(<size in bits or bytes>), variable n :: <type>-size(<size in bits or

bytes>) >> = binary_to_match

The last entry in our pattern match is _ :: bitstring. If you recall pattern matching, this
means that we don’t care about that variable. We are actually extracting the first five bytes
and stating that we don’t care about the remainder of the file. To recap, tag_id is a binary
(string) represented by three bytes, so we read it using binary-size(3). Binary sizes are
“measured” in bytes. Then we read major_v, saying we wish to retrieve it as an unsigned
integer with the size of 8 bits (1 byte). We do the same for revision.

Note

As the major version is 4 and the revision is 0, this means that this is an ID3 v2.4.0 tag.

In step 3, we read the information contained in the ID3 v1 section of the file. The ID3 v1
tag is contained within the last 128 bytes of the file.

As with the previous step, we start by reading the binary file and assigning it to the
mp3_file. We then determine the file size, excluding the last 128 bytes:

mp3_size_without_id3 = (byte_size(mp3_file) - 128)
Then we pattern match on mp3_file:

<< _ :: binary-size(mp3_size_without_id3),
id3_v1_tag_data :: binary >> = mp3_file

We start by declaring that we don’t care about the starting bytes of the file by assigning all

www.it-ebooks.info

http://www.it-ebooks.info/

of the bytes other than the last 128 to _ and assigning the last 128 bytes of the file to
id3_vi1_tag_data.

We then pattern match again on id3_vi1_tag_data to deconstruct it in its components.

You can find more information about the layout of an ID3 v1 tag at

http://en.wikipedia.org/wiki/ID3#Layout.
To briefly sum it up, we read three bytes for the tag, 30 bytes for the title, 30 bytes for the

artist, 30 bytes for the album, 30 bytes for the year, 30 bytes for the comments, and we
discard the remaining bytes:

<< tag :: binary-size(3),
title :: binary-size(30),
artist :: binary-size(30),
album :: binary-size(30),
year :: binary-size(4),
comments :: binary-size(30),

binary >> = id3_v1_tag_data

In step 3, we create a new string with the information we desire to insert on the MP3 file:

tag_to_write = pad((tag <> author <> title <> album <> year <> comments),
128)

We use the <> operator to concatenate the strings, and the pad function ensures that the
strings have a given amount of bytes. We need to do this to make sure each string fits the
correct place in the ID3 v1 structure:

defp pad(string, desired_size) do
String.ljust(string, desired_size)
end

Afterwards, we get the original file content without the last 128 bytes:
mp3_size_without_id3 = (byte_size(mp3_file) - 128)

<< other_data :: binary-size(mp3_size_without_id3), _ :: binary >> =
mp3_file

We concatenate it with our new tag, writing to a new file:

File.write(output_file, (other_data <> tag_to_write))

www.it-ebooks.info

http://en.wikipedia.org/wiki/ID3#Layout
http://www.it-ebooks.info/

There’s more...

Erlang, given its telecom origins, has amazing support for mapping protocols via binaries.
In this recipe, we used an MP3 file, but we could have easily used an IP packet and using
the same techniques, we could have deconstructed it. All we need to know is the protocol
format, and then mapping to a data structure is an easy task!

This recipe was heavily inspired by the following blog posts:

https://taizilla.wordpress.com/2009/09/14/erl_id3v2/ and
http://benjamintan.io/blog/2014/06/10/elixir-bit-syntax-and-id3/.

www.it-ebooks.info

https://taizilla.wordpress.com/2009/09/14/erl_id3v2/
http://benjamintan.io/blog/2014/06/10/elixir-bit-syntax-and-id3/
http://www.it-ebooks.info/

Chapter 4. Modules and Functions

This chapter will cover the following recipes:

Namespacing modules

Using module attributes as constants

Enforcing behaviors

Documenting modules

Using module directives

Using a module in the scripted mode

Defining functions with default arguments

Using guard clauses and pattern matching in function definitions

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Elixir modules are files (see the following information box) where related functions are
grouped and stored. In Chapter 1, Command Line, we covered how to load and compile
our own modules in IEx and how to generate applications with Mix. Mix applications are
a collection of modules within a predefined directory structure.

Modules are defined using the defmodule macro and functions using the def and defp
macros.

Note

In this chapter, we will be developing some concepts that are specifically related to
modules and functions. It is also possible to define modules inside IEx without storing
them to files.

www.it-ebooks.info

http://www.it-ebooks.info/

Namespacing modules

We can think of a module as a namespace. Every function defined inside a module has to
be prepended with that module’s name in order to be invoked elsewhere.

It is also possible to store our modules inside directories in order to better organize them to
suit our purpose or intent.

In this recipe, we will show you how to namespace modules and use them.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

In this recipe, we will use a Mix application. You will find the application in the source
code folder under chapter3/demo. Navigate to the application directory in your terminal
window and compile the project to make sure everything is ready:

> cd Code/Chapter 4/demo
> mix compile

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

In order to demonstrate the use of three namespaced modules within our generated Mix
application, follow these steps:

1. Modify the 1ib/demo.ex file by adding the run_me function:

def run_me(name \\ "Stranger") do
I0.puts " #{__MODULE__} says \"Hi there #{name}!\""
Demo.Greeter.greet
Demo.One.Greeter.greet
Demo.Two.Greeter.greet
end

2. Start a new IEx session and load the project:
> iex -S mix
3. Invoke the run_me function defined in step 1:

iex(1)> Demo.run_me

Elixir.Demo says "Hi there Stranger!"
Elixir.Demo.Greeter says "Hi there!"
Elixir.Demo.One.Greeter says "Hello!"
Elixir.Demo.Two.Greeter says "Howdy!"
1ok

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The demo project contains the Demo, Demo.Greeter, Demo.One.Greeter, and
Demo.Two.Greeter modules:

Module

Demo
Demo
Demo
Demo

.Greeter
.One.Greeter
. Two.Greeter

File
demo.ex

greeter.
greeter.
greeter.

exXx
eXx
eXx

Location

lib/demo.ex
lib/demo/greeter.ex
lib/demo/one/greeter.ex
lib/demo/two/greeter.ex

The run_me function we created in step 1 calls the greet function defined in each of the
namespaced modules. These modules are all defined in a file with the same name
(greeter.ex), but the folder structure allows us to organize our modules in different
namespaces.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

If you take a look at the _build/dev/1ib/demo/ebin folder, where our compiled code is,
you will see that all Elixir modules are defined inside the Elixir namespace and they are
actually stored in the same directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Using module attributes as constants

Elixir supports the definition of module attributes using the @ syntax. There are a few
reserved module attributes: @moduledoc, @doc, @behaviour, and @before_compile. We
will focus on some of them in the next two recipes.

In this recipe, we will use module attributes as constants and access them inside functions.

Note

Module attributes can only be defined outside functions and can be defined more than
once in a module.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To use module attributes as constants, follow these steps:

1. Create a new constants.ex module and add the following code:

defmodule Constants do
@name "Bill"
@age 22

def function_one do
I0.puts("#{@name} is #{@age} years old.")
end

@name "Joe"
def function_two do
I0.puts("#{@name} is #{@age+1l} years old.")
end
end

2. Start an IEx session in the same directory where you saved constants.ex:
> iex constants.ex
Tip
Instead of starting IEx and then loading and compiling the module, it is possible to
indicate the name of the module as an argument to the iex command.

3. Invoke function_one:

iex(2)> Constants.function_one
Bill is 22 years old.
1ok

4. Invoke function_two:

iex(3)> Constants.function_two
Joe is 23 years old.
1ok

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In the constants module, we defined the @name and @age module attributes.

In step 3, we use both of these module attributes in function_one, interpolating them in a
string.

In step 4, we get a different value for @name because the module attribute is redefined
immediately before the function_two definition. The @age attribute is the same (22), but
we added 1 to it in the string interpolation (#{@age+13}).

www.it-ebooks.info

http://www.it-ebooks.info/

See also

¢ In the Managing application configuration recipe in Chapter 1, Command Line, we
already used module attributes.

e The Enforcing behaviors and Documenting modules recipes in this chapter also use
(reserved) module attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

Enforcing behaviors

One of the reserved module attributes in Elixir is @behaviour. It is used to ensure that a
given module implements the required callbacks and that the module implements a given
interface and behaves in a defined way.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To demonstrate the use of the @behaviour module attribute, follow these steps:

1.

Create the Randomizer module inside the randomizer .ex file by adding the
following code:

defmodule Randomizer do

use Behaviour

defcallback randomize(low::Integer.t, high::Integer.t) :: Integer.t
end

Create a module to implement the Randomizer behavior inside the my_module.ex file
by adding the following code:

defmodule MyModule do
@behaviour Randomizer
end

Open a new [Ex session in the same directory where the modules defined in steps 1
and 2 are stored:

> iex
Compile both modules starting with Randomizer:

iex(1)> c("randomizer.ex")

[Randomizer]

iex(2)> c("my_module.ex")

my_module.ex:1: warning: undefined behaviour function randomize/2 (for
behaviour Randomizer)

[MyModule]

To address the undefined behaviour warning from the previous step, add the
following code to my_module.ex:

def randomize(low, high) when low < high do
:crypto.rand_uniform(low, high)
end

Recompile MyModule:
iex(3)> c("my_module.ex")

my_module.ex:1: warning: redefining module MyModule
[MyModule]

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 1, we created the Randomizer module and defined a callback via the defcallback
macro:

defcallback randomize(low::Integer.t, high::Integer.t) :: Integer.t

In the randomize callback, we defined the 1low and high arguments as the Integer type,
and we also stated that the return type would also be an integer. You can think of it as a
contract that any module has to conform to in order to implement the Randomizer
behavior.

In step 2, we created MyModule and annotated it with the reserved @behaviour module
attribute.

When we compiled MyModule (in step 4), we got a warning as undefined behaviour
function randomize/2 (for behaviour Randomizer). This warning means that
MyModule doesn’t implement the randomize/2 function we defined as a callback in the
Randomizer module.

In step 5, we implemented randomize/2 in MyModule, and in step 6, we recompile it, and
the warning about undefined behavior is gone!

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e The MyModule.randomize function uses a guard (when low is less than high). To
learn more about guards, check the Using guard clauses and pattern matching in
functions recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Documenting modules

In this recipe, we will be using the @moduledoc and @doc reserved module attributes to add
documentation to the modules we defined in the previous recipe, Enforcing behaviors.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Open the randomizer .ex and my_module.ex files created in the Enforcing behaviors
recipe inside your preferred code editor.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To add documentation to our modules, follow these steps:

1.

We will start by adding module documentation to the randomizer .ex file. Add the
following code below the use Behavior line:

@moduledoc """
This module specifies the interface for a randomizer behaviour by
using the defcallback macro.

Add the following module documentation to the my_module.ex file below the
@behaviour Randomizer line:

@moduledoc """
This is a custom module to demo the implementation of behaviours.

nmnn

To document the randomize function inside my_module.ex, insert the following code
right above the function definition:

@dOC mimin
The randomize callback defines the randomize function taking 2
arguments:

low: an Integer with the lower boundary

thigh: an Integer with the upper boundary
The function outputs an Integer. The output is comprised within the
[low;high] interval. This function uses a guard to ensure it is only
invoked when low value is smaller than high value.
This function uses the rand_uniform function from erlang's crypto
module(http://www.erlang.org/doc/man/crypto.html).

To see the result of our documentation work, open a new IEx session in the same
directory where randomizer.ex and my_module.ex are present and load/compile both
files:

> iex

iex(1)> c("randomizer.ex")
[Randomizer]

iex(2)> c("my_module.ex")
[MyModule]

To get information about the modules and the randomize function, we will use the h
command inside [EX, as we saw in the Getting help and accessing documentation
within IEx recipe in Chapter 1, Command Line, and access documentation within TEXx.
The following screenshot shows you the result:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using module directives

To simplify working with modules, Elixir provides three directives: import, alias, and
require. These three module directives are lexically scoped—if defined in the module
scope, they are valid for the whole module, but if defined inside a function, they are only
valid inside that function.

These three directives allow the use of code defined in other modules.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Create the require_me.ex file with the following content:

defmodule RequireMe do
def foo do
I0.puts "This is foo from #{ MODULE__} module"
end
end

In the same folder, create the directives.ex file and add the following code:

defmodule Directives do
@col [1,2,3]
@name "demo"

require directive

alias directive module scope
alias String, as: S

import directive module scope
import List, only: [first: 1]

def test_module_alias do
I0.puts '"Name is #{S.capitalize(@name)}"
end

def test_function_alias do
alias directive function scope
alias RequireMe, as: RM
RM. foo

end

def test_module_import do
I0.puts "First element of #{inspect(@col)} is #{first(@col)}"
end

def test_function_import do
import directive function scope
import Enum, only: [count: 1]
I0.puts "#{inspect(@col)} has #{count(@col)} elements"
end
end

Load the directives.ex file in your code editor and start a new IEx session:

> iex directives.ex

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We will see the three directives in action. We will start with require, and then we will
look into alias and finally, into import. Let’s get started!

To see the require directive in action, follow these steps:

1. Add the following code to directives.ex right below the # require directive
comment:

require RequireMe

2. Compile the birectives module inside the IEx session:

iex(1)> c("directives.ex")

== Compilation error on file directives.ex ==

** (CompileError) directives.ex:6: module RequireMe is not loaded and
could not be found

3. Fix this error by compiling the RequireMe module:

iex(1)> c("require_me.ex")
[RequireMe]

4. Now, try again to compile the birectives module:

iex(2)> c("directives.ex")
[Directives]

To illustrate the use of the alias directive, we will invoke the test_module_alias and
test_function_alias functions:

iex(3)> Directives.test_module_alias
Name is Demo

1ok

iex(4)> Directives.test_function_alias
This is foo from Elixir.RequireMe module
1ok

Finally, let’s see the use of the import directive by invoking the test_module_import and
test_function_import functions:

iex(5)> Directives.test_module_import
First element of [1, 2, 3] is 1

1ok

iex(6)> Directives.test_function_import
[1, 2, 3] has 3 elements

1ok

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 2, we got a compilation error when we tried to compile the Directives module.
This happened because we required the RequireMe module while the module was not yet
compiled and loaded, so it wasn’t available for inclusion. The require directive ensures
that the required module has to be loaded before any code tries to use it. By compiling and
loading the RequireMe module in step 3, we are finally able to compile the Directives
module.

The alias directive allows us to simplify code; in the Directives module, we use it to
shorten String to S and RequireMe to RM.

It is also possible to use a particular function from a module without having to prepend it
with the module name. The import directive is used in this case and in the Directives
module, we use it to import the List.first/1 and Enum.count/1 functions. They become
the first and count variables, and we use them in test_module_import and
test_function_import.

Note

Note that importing a module automatically requires that module

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

The import directive also accepts the except option. In the Directives module, we use
the only option. With only, you have to specify all the functions you wish to import. With
except, you have to enumerate all the functions you don’t wish to import.

www.it-ebooks.info

http://www.it-ebooks.info/

Using a module in the scripted mode

It is possible to use Elixir as if it were an interpreted language. Code is evaluated at the
source level, eliminating the need to compile it before use. One of the examples of the
usage of Elixir in the scripted mode is the test suite inside a Mix project. There, under the
tests directory, you will find files with the .exs extension.

The convention in Elixir is to use the .ex extension in files that should be compiled and
the . exs extension in files that should be interpreted.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To use the Elixir code without compiling it, follow these steps:

1. Create a file named my_script.exs and add the following code:

%{:date => d, :version => v} = System.build_info
IO.pUtS nnn

Command line arguments passed: #{inspect(System.argv)}
Elixir version: #{v} (#{d})

2. Run the code in your terminal window:
> elixir my_script.exs --demo -T -v

Command line arguments passed: ["--demo", "-T", "-Vv"
Elixir version: 1.0.0 (Wed, 10 Sep 2014 17:30:06 GMT)

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

We have created a file with code that uses pattern matching and string interpolation and
invokes the system module. We have not defined any module or function; we have just
defined a sequence of instructions we wish to carry out.

The sequence of instructions was executed using the elixir command-line executable.

If we take a closer look, we’ll see that no .beam file was created and no code was
compiled. The file was interpreted line-by-line.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

[Ex allows the insertion of code line-by-line, and it is also possible to define modules and
functions inside IEx. All of the code in IEx is interpreted, and compilation only happens
when the c("<filepath>") function is invoked.

www.it-ebooks.info

http://www.it-ebooks.info/

Defining functions with default arguments

In Elixir, named functions (defined with the def macro) can accept arguments and
sometimes, it is convenient to assume them as optional by defining a default value or
expression. Default values for function arguments are defined using \\ after the argument
name.

Note

If we define a foo(a, b, c \\ 0) function and c has a default value, although the
function can be invoked as foo(1, 3) with arity 2, the function foo/3 is executed, in this
case, as foo(1,3,0). We don’t explicitly pass a value for c but it will take the defined
value, in this case, 0.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Load the pefaults file module inside IEx and open the file defining the module
(defaults.ex) inside your favorite code editor:

> jex defaults.ex
[Defaults]

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To define functions with default arguments, follow these steps:

1. Define a sum function in the Defaults module by adding the following code to
defaults.ex:

def sum(a, b \\ 1, c \\ 1) do
a+b+c
end

2. Save the file and reload it in IEx:

iex(2)> r Defaults
warning: redefining module Directives
{:reloaded, Directives, [Directives]}

3. To see the default arguments in action, invoke our sum function a few times:

iex(3)> Defaults.sum(2)

4

iex(4)> Defaults.sum(2,3)

6

iex(5)> Defaults.sum(2,3,4)

9

iex(6)> Defaults.sum()

** (UndefinedFunctionError) undefined function: Defaults.sum/0
Defaults.sum()

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

When we define default values for arguments in a function (although we might invoke the
function omitting some of the optional arguments), it doesn’t mean that only the passed
argument will be taken into account. In step 1, the sum function has no default value for a
and assumes a default value of 1 for b and c. This means that we can invoke sum by
passing only one argument. The first invocation in step 3, Defaults.sum(2), is equivalent
to Defaults.sum(2,1,1). The next time we use the sum function, we pass the 2 value to a
and 3 to b. This means that we don’t want to use the default value for b. When we call
Defaults.sum(2, 3, 4), it bypasses all default values. The final time we use sum in step 3,
we do it without Defaults.sum() arguments and it fails because there’s no default value
for a.

www.it-ebooks.info

http://www.it-ebooks.info/

Using guard clauses and pattern matching
in function definitions

In the Using pattern matching recipe in Chapter 2, Data Types and Structures, we saw
how it was possible to use the = operator to match values on the right-hand side with
values on the left-hand side. In this recipe, we will see pattern matching in action without
using the = operator. We will use pattern matching implicitly in function definitions with
the same name and arity, and Elixir will use it to determine which function version to
execute.

Sometimes, pattern matching is not enough to determine which function to execute, so we
will also be using guard clauses in our function definitions. Guard clauses allow us to only
execute a given function if some condition regarding its argument types or values is
verified.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

This is how we get started:

1. Define a new module named PatternsAndGuards in a file named
patterns_and_guards.ex by inserting the following code:

defmodule PatternsAndGuards do
#guards
#pattern matching

end

2. Save the file and load it in a new IEx session:
> iex
iex(1)> c("patterns_and_guards.ex")
[PatternsAndGuards]

3. Define an alias for the PatternsAndGuards module to reduce the typing required to
invoke its functions:

iex(2)> alias PatternsAndGuards, as: PG
nil

Tip
We saw the use of the alias module directive in the Using module directives recipe,
and this seems a good time to make use of it, as it is also possible to use it inside IEx.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We will start by adding a print function that will have three different bodies: one to use
when the input is a list, one to use when it is a string (binary), and another for every other

case.

Afterwards, we will define a recursive function to print each element of a list that will
pattern match the argument to determine which function definition should be executed.

Let’s get started:

1.
2.

Open the patterns_and_guards.ex file inside your code editor.
Define a print function to print lists by adding the following code below the
#guards comment:

def print(x) when is_list(x) do
I0.puts "Printing a list -> #{inspect(x)}"
end

Define a print function to print binaries (a string is a binary) by adding the
following code after the one defined in the previous step:

def print(x) when is_binary(x) do
I0.puts "Printing a binary -> #{inspect(x)}"
end

Add the print function to handle every other type of input. This should also be
inserted below the other print function definitions:

def print(x) do
I0.puts "Printing a non-list/binary -> #{inspect(x)}"
end

Define a recursive function to print each element of a list by inserting the following
code after the #pattern matching comment:

def print_each_from_list([]) do
1ok

end

def print_each_from_list([h|t]) do
print(h)
print_each_from_list(t)

end

Save the file and reload it in IEx:

iex(3)> c("patterns_and_guards.ex")
patterns_and_guards.ex:1: warning: redefining module PatternsAndGuards
[PatternsAndGuards]

Use the print function with a list:
iex(4)> PG.print([1,2,3,4])

Printing a list -> [1, 2, 3, 4]
1ok

www.it-ebooks.info

http://www.it-ebooks.info/

8. Now, use the print function with a string:

iex(5)> PG.

Printing a
1ok

print("Demo")
binary -> "Demo"

9. Finally, use the print function with an atom:

iex(6)> PG.

Printing a
1ok

print(:atom)
non-list/binary -> :atom

10. It’s time to check our recursive list element printing function:

iex(7)> PG
Printing a
Printing
Printing
Printing
Printing
1ok

a
a
a
a

.print_each_from_list([[1], 2, :a, "b", [5]1])

list -> [1]
non-list/binary -> 2
non-list/binary -> :a
binary -> "b"

list -> [5]

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

We will start by looking into guard clauses. Our print function has three different clauses:

e def print(x) when is_1list(x) do (..)

e def print(x) when is_binary(x) do (..)

e def print(x) do (..)
The guard clause is defined using the when keyword, and the order of the function
definitions matters. The first one that matches will be executed.

Note

If we reversed the order and placed def print(x) do first, none of the other function
definitions would ever be reached as print (x) would always match!

The is_list and is_binary functions are used to determine the type of the argument.
Based on these conditions, Elixir decides which function definition to execute, and if none
of the previous conditions are met, the general case print (x) function definition is used.

Guard clauses can also take argument values into account and not just argument types. We
have already used guard clauses in the Enforcing behaviors recipe. In the MyModule
module, we defined a randomize function:

def randomize(low, high) when low < high do (..)

The guard clause in here (low < high) ensures that the function body will only be
executed when the given condition is true.

In step 5, we defined a print_each_from_list function with two definitions. The first
one takes an empty list as an argument:

def print_each_from_list([]) do

The other takes a nonempty list, making the head of that list available in the h variable and
the tail of that input list accessible via the t variable:

def print_each_from_list([h|t]) do

The print_each_from_list function is recursive. When invoked with a nonempty list as
an argument, it will print the head (h) element and invoke itself again, passing the
remainder of the list (t). Recursion stops when an empty list is passed and the : ok atom is
returned. Pattern matching is used to decide which function body to execute: the first one
with an empty list or the second one with a nonempty list.

Note

Pattern matching and guard clauses in function definitions prevent us from using test cases
inside functions to determine and enforce the type or the value of function arguments and
acting accordingly:

def randomize(low, high) when low < high do

www.it-ebooks.info

http://www.it-ebooks.info/

(..)

end

If we omit the when low < high condition in the function definition, the function gets
executed even if low is bigger than high. In this case, to ensure proper execution, we
would need to compare low and high inside the function definition. Using guard clauses,
we prevent the function from being executed if the defined preconditions are not met.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5. Processes and Nodes

This chapter will cover the following recipes:

Sending messages between processes

Making code run on all available CPUs

Using tasks to perform multiple concurrent computations
Creating a stateful server process (messages with counters)
Using agents as an abstraction around states

Using an ETS table to share the state

Creating named nodes

Connecting nodes

Executing code in a different node

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

In this chapter, our recipes will make use of nodes and processes. We will see how
message passing takes a key role in making it possible to distribute our applications and
how seamlessly we can interchange information between running processes in the same
virtual machine or between processes in different virtual machines that may even be
running on different physical machines. We will focus on the concepts of maintaining the
state in a process or sharing it between processes with ETS tables. We will also focus on
how to perform asynchronous computations using the Tasks module.

www.it-ebooks.info

http://www.it-ebooks.info/

Sending messages between processes

In Elixir, communication between processes is performed via message passing. Each
process has a mailbox where messages from the “outside” world are placed, waiting to be
processed. Once that happens, if a response is required, another message will be sent, and

another mailbox will get a message!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To get started, go to the code repository where the messages . ex file is located and open a
new [Ex terminal session. The IEx terminal session will also be an actor in this recipe! We
will send messages from it to the process containing the code defined in the module.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Follow these steps to send messages between processes:

1. Once our session is started, load and compile the messages.ex module:

iex(1)> ¢ "messages.ex"
[Messages]

2. Next, spawn a new process containing the code from our module:

iex(2)> {:o0k, pid} = Messages.start_link
{:0k, #PID<0.61.0>}

3. To make things easier, we will register our newly spawned process with a name:

iex(4)> Process.register(pid, :messages)
true

4. Now it’s time to send some messages to the process:

iex(4)> send :messages, {"hello", self()}
What do you mean? I'm only listening to pings and pongs!
{"hello", #PID<0.53.0>}

iex(5)> send :messages, {"what", self()}
What do you mean? I'm only listening to pings and pongs!
{"what", #PID<0.53.0>}

iex(6)> send :messages, {"ping", self()}
So ping to you too!

{"ping", #PID<0.53.0>}

iex(7)> send :messages, {"pong", self()}
So pong to you too!

{"pong", #PID<0.53.0>}

iex(8)> send :messages, {"pong", self()}
So pong to you too!

{"pong", #PID<0.53.0>}

iex(9)> send :messages, {"ping", self()}
So ping to you too!

{"ping", #PID<0.53.0>}

iex(10)> send :messages, {"bye", self()}
What do you mean? I'm only listening to pings and pongs!
{"bye", #PID<0.53.0>}

iex(11)> flush

"what?"

"what?"

llpingll

llpongll

llpongll

llpingll

"what?"

1ok

iex(12)>

5. It seems like nothing was sent back, but that’s not true. On the 11th command
(highlighted), we invoked flush to see the terminal session mailbox, and all the
received messages (sent from our messenger process) are there!

www.it-ebooks.info

http://www.it-ebooks.info/

Note

In the Getting help and accessing documentation within IEx recipe in Chapter 1,
Command Line, we saw how it was possible to get access to the documentation for
any module or function in the terminal. To get more information on the flush
command, you can enter h flush in your IEx session.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

After compiling our module and making it available in the terminal session in step 2, we
entered {:ok, pid} = Messages.start_link; this invokes the start_1link function in
the Messages module:

def start_link do

{:0k, spawn_link(fn -> wait_for_messages() end)}
end
This function returns a tuple with the : ok atom and the process ID (PID) for the spawned
process; the PID is a process identifier that allows us to refer to any process. We can use
the PID to send messages to that process.

In step 3, we registered the process. The PID (#P1ID<0.61.0>) was registered with the
:messages name. This allows us to refer to the process with a registered name instead of
using a PID.

In step 4, we send several messages with different contents to our messages process,
calling send :messages, {"what", self()}. The :messages name is our registered
reference to the spawned process and self () is the PID for the terminal session. The
command could be generically described in the following way:

send <to_pid>, {<message>, <from_pid>}

The output we see in the console (lines 4 to 10) are not messages returned by the process,
but only calls to the 10.puts function in order to give us some feedback on the terminal.

In step 5, when we invoke the flush command, we get to see the content of the terminal
mailbox. Every process has its own mailbox where incoming messages are stored, and it is
the place where we find all the messages our spawned process sent back as a response to
the messages sent from the terminal.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

The spawn_link function in the Messages module initialization accepts a function; in this
case, we defined it as wait_for_messages:

defp wait_for_messages() do
receive do
{"ping", caller} ->
I0.puts "So ping to you too!"
send caller, "ping"
wait_for_messages()

{"pong", caller} ->
I0.puts "So pong to you too!"
send caller, "pong"
wait_for_messages()

{_, caller} ->
I0.puts "What do you mean? I'm only listening to pings and pongs!"
send caller, "what?"
wait_for_messages()
end
end
This function has a receive block that pattern matches the received message and then,
according to the received message, prints something to the standard output, responds with
a message back to the caller process, and recursively calls itself so that it can wait for the

next incoming message.

www.it-ebooks.info

http://www.it-ebooks.info/

Making code run on all available CPUs

You may wonder, given the name of the recipe, whether there is some special form of
coding that allows Elixir to take advantage of all available processors in a machine. There
isn’t!

The Erlang VM, which is the VM where our Elixir programs run, takes care of it for us. It
has a scheduler that is responsible for assigning computations to each of the available
Processors.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

In this recipe, we will be starting the IEx session with different options regarding the
scheduler, and we will run a small program that will spawn four calculations.

We will execute the program in an IEx session with the default options for the scheduler
(usually one scheduler per CPU), and we will then repeat the execution in a shell started
with only one enabled scheduler.

To start, we need to get into the directory where the multiple_calculations.ex module
is located.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Follow these steps to see how the Erlang VM scheduler takes care of distributing
computations through the available CPUs:

1. Start IEx:

> iex
Erlang/OTP 17 [erts-6.2] [source] [64-bit] [smp:4:4] [async-threads:
[hipe] [kernel-poll:false] [dtrace]

. Load and compile the module and execute the start function:

iex(1)> ¢ "multiple_calculations.ex"

[MultipleCalculations]

iex(2)> MultipleCalculations.start

1ok

Sum of the squares of all odd numbers divisible by 13 between 1 and
10000000 is 12820474358991153855

time: 4758 ms

Sum of the squares of all odd numbers divisible by 13 between 1 and
20000000 is 102564194871779230759

time: 8286 ms

Sum of the squares of all odd numbers divisible by 13 between 1 and
30000000 is 346153707692261153854

time: 10848 ms

Sum of the squares of all odd numbers divisible by 13 between 1 and
40000000 is 820513558974493846150

time: 13347 ms

iex(3)>

. Now, initialize another IEx session, disabling multiprocessor support:

> jex --erl "-smp disable"
Erlang/OTP 17 [erts-6.2] [source] [64-bit] [async-threads:10] [hipe]
[kernel-poll:false] [dtrace]

Note

The information about the shell has no reference to [smp:4:4; this means that the
session has no multiprocessor support.

. Load and compile the module and execute the start function:

iex(1)> ¢ "multiple_calculations.ex"

[MultipleCalculations]

iex(2)> MultipleCalculations.start

1ok

Sum of the squares of all odd numbers divisible by 13 between 1 and
10000000 is 12820474358991153855

time: 8453 ms

Sum of the squares of all odd numbers divisible by 13 between 1 and
20000000 is 102564194871779230759

time: 14944 ms

Sum of the squares of all odd numbers divisible by 13 between 1 and

www.it-ebooks.info

10]

http://www.it-ebooks.info/

30000000 is 346153707692261153854

time: 19114 ms

Sum of the squares of all odd numbers divisible by 13 between 1 and
40000000 is 820513558974493846150

time: 21338 ms

iex(3)>

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The code defined inside the multiple _calculations.ex module spawns four processes to
perform some time-consuming tasks (the description of these tasks is in the program’s
output).

The exact same code executed on a terminal session with the default settings for the
scheduler (one per physical CPU), and in another with multiprocessing disabled, has a
different performance in terms of the execution speed.

When one scheduler per CPU is enabled, the tasks are completed faster, because the VM
can assign each of these tasks to all available processors. However, we do not have to
worry about that in our code.

The next screenshots show you the load charts per CPU in both scenarios:

& @ nonode@nohost

Syztem Applications Processes Table Viewer Trace Overview

Scheduler Urilization (M)
[e]

.ll'lrl Ik]
50 s |
o

304 0

605 503 403
Schedubsgr: 1 2 3

Memaory Usage [ME) 10 Usage (K8)
I8 48

ronodeinohost

Schedulers in use

In the following screenshot, we see the SMP-disabled one scheduler in use:

www.it-ebooks.info

http://www.it-ebooks.info/

L] L] nanode@nohost

System LGl Ll Applications Processes Table Viewer Trace Overview

Scheduler Utilization (%)
1

o
603 s 403 Ws s 105 03
Schedulgr: 1 2 3 4

Memory Usage (MB) 10 Usage (8
28 1

o E = o
B0 505 40 5 ks 20s 104 s Gs 503 403 103 Hs 0% b3

Total Processes Atom | y Code Lo Input Cutpul

Inpoodefinahont

If we compare the execution times for each of the four computations, we can see how
execution times increase in the shell instance that uses a single CPU core:

Computation (range)||Execution time with 4 cores||[Execution time with 1 core

1..10000000 ||4758 ms 8453 ms |
1..20000000 ||8286 ms ||14944 ms |
1..30000000 ||10848 ms ||19114 ms |
1..40000000 ||11347 ms ||21338 ms |
Total time ||35239 ms ||63849 ms |

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

The fact that the virtual machine takes care of scheduling using all the available
processors doesn’t mean that we shouldn’t care about our code performance.

www.it-ebooks.info

http://www.it-ebooks.info/

Using tasks to perform multiple
concurrent computations

In this recipe, we will build a simple geolocation app that receives a list of IP addresses
and outputs the country where the IP is registered. We will use Elixir’s Task module to
spawn one process per IP address in the list. The determination of the location will be
performed concurrently.

The Task module in Elixir provides a simple abstraction for the use of processes with the
purpose of performing one action during their life cycle. Normally, tasks are used when
there is no need to perform communication between processes, and are a very powerful
tool to help parallelize computation.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We will generate a Mix application, add the geolix application as a dependency, and also
download a free IP database and configure the application to use it. We will also create
two functions to geolocate the IPs: one sequential and another concurrent.

Let’s get started:
1. Generate a Mix application:

mix new geolocation_with_tasks --sup
creating README.md

creating .gitignore

creating mix.exs

creating config

creating config/config.exs

creating lib

creating lib/geolocation_with_tasks.ex
creating test

creating test/test_helper.exs

creating test/geolocation_with_tasks_test.exs

* Ok Ok X Ok X ¥ * * * V

Your mix project was created successfully.
You can use mix to compile it, test it, and more:

cd geolocation_with_tasks
mix test

Run “mix help® for more commands.

2. Download the free GeoLite2 Country database from
http://dev.maxmind.com/geoip/geoip2/geolite?/:

www.it-ebooks.info

http://dev.maxmind.com/geoip/geoip2/geolite2/
http://www.it-ebooks.info/

Dev Home minFraud GeolP Proxy Detection FAQ Main Site Site Map

Geolite2 Free Downloadable Databases
Databases

Geolite? databases are free IP geolocation databases comparable to, but less accurate than, MaxMind's GeolP2 databases.
GeoliteZ databases ane updated on the first Tuesday of each month,

Support

MaxMind does not provide official support for the free GeoliteZ databases. If you have questions about the GeoliteZ databases
or GeolP2 APIs, please see stackoverflow's Geol P questions and answers.

License

The Geolite2 databases are distributed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. The
attribution requirement may be met by including the following in all advertising and documentation mentioning features of or use
of this database:

This product includes Geolite2 data created by MaxMind, available from
<a href="http://ww. moxmind, com"=http://www.maxmind. com.

We also offer commercial redistribution Hcensang.

Downloads
Database MaxMind DB binary, gzipped CSV format, zipped
Geolite? City Download {(md5 checksum]) Download (md5 checksum)
GealiteZ Country Download (md5 checksum]) Download (md5 checksum)
The Geolite? databases may also be downloaded and updated with our GeolP Update program

MaxMind APls

See GeolPZ downloadabie databases for a st of available APIs. GeolPZ2 APIs may be used with Geolite2 databases.

3. Create the geo_db directory inside the code directory of this chapter and unzip the
file downloaded in step 2 to that location. You should have a file named GeoLite2-
Country.mmdb inside geolocation_with_tasks/geo_db.

4. Add the geolix application as a dependency:

(File mix.exs)

defp deps do
[

{ :geolix, github: "mneudert/geolix" }

]

end

5. Configure the application to start geolix automatically:
(File mix.exs)

def application do
[applications: [:logger, :geolix],
mod: {GeolocationWithTasks, []}]
end

6. Get and compile the dependencies:

> mix do deps.get, compile

www.it-ebooks.info

http://www.it-ebooks.info/

7. Configure the location of the file containing the geolocation information
(downloaded in step 2):

(File config/config.exs)
use Mix.Config
config :geolix,

databases: [
{ :country, "./geo_db/GeoLite2-Country.mmdb" }

]

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To use the Task module to perform concurrent computations, follow these steps:
1. Create a file named 1ib/geolocator.ex and insert the following code:

defmodule Geolocator do

@ip_list ["216.58.209.227", "199.16.156.198", "213.13.146.138",
"114.134.80.162", "134.170.188.221", "216.58.210.3"]

def concurrent(ip_list \\ @ip_list) when is_list ip_list do
ip_list
|> Enum.map(fn(ip)->
Task.async(fn -> ip |> locate end)
end)
|> Enum.map(&Task.await/1)
end

def sequential(ip_list \\ @ip_list) when is_list ip_list do
Enum.map(ip_list, fn(x) -> locate(x) end)
end

def locate(ip) do
case Geolix.lookup(ip) do

%{country: country} ->
location = get_in(country, [:country, :names, :en])
I0.puts "IP: #{ip} Country: #{location}"
->
I0.puts "Could not determine the location of IP #{ip}"

end

end

end

2. Start the application:
> iex -S mix

3. Start by determining the location of each IP using the sequential function defined in
the previous step:

iex(1)> Geolocator.sequential

IP: 216.58.209.227 Country: United States
IP: 199.16.156.198 Country: United States
IP: 213.13.146.138 Country: Portugal

IP: 114.134.80.162 Country: Hong Kong

IP: 134.170.188.221 Country: United States
IP: 216.58.210.3 Country: United States
[:0k, :0k, :0k, :0k, :o0k, :o0k]

4. Now, perform the same task using the function that makes use of the Task module:

iex(2)> Geolocator.concurrent
IP: 199.16.156.198 Country: United States
IP: 216.58.209.227 Country: United States

www.it-ebooks.info

http://www.it-ebooks.info/

IP:
IP:
IP:
IP:

134.170.188.221 Country: United States
114.134.80.162 Country: Hong Kong
213.13.146.138 Country: Portugal
216.58.210.3 Country: United States

[:0k,

10k,

:0k, :0k, :0k, :o0k]

5. Run it once more to see the order of the results change:

iex(3)>
IP: 199.
IP: 213.
IP: 216.
IP: 216.
IP: 114.
IP: 134.
[:0k,

10k,

Geolocator.concurrent

16.156.198 Country: United States
13.146.138 Country: Portugal
58.210.3 Country: United States
58.209.227 Country: United States
134.80.162 Country: Hong Kong
170.188.221 Country: United States
:0k, :0k, :0k, :o0k]

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 1, we create the module to perform the geolocation task.

We start by defining a list of IP addresses (@ip_1list). This allows us to invoke both the
concurrent and sequential functions, passing no arguments. The @ip_list is used as a
default argument for both functions. In both functions, we also make use of guards (when
is_list ip_list) to make sure the functions are only executed when a list is passed as an
argument.

We also define two functions that behave distinctly. The sequential function will take
each element of the list and sequentially invoke the locate function. No matter how many
times we execute Geolocator.sequential, the output never changes.

In the concurrent function, we introduce tasks:
6 def concurrent(ip_list \\ @ip_list) when is_1list ip_list do
7 ip_list
8 |> Enum.map(fn(ip)->

9 Task.async(fn -> ip |> locate end)
10 end)

11 |> Enum.map(&Task.await/1)

12 end

The code flow is this: we pass ip_list as a collection to the Enum.map function in line 8.
The anonymous function we use to map the collection is Task.async(fn -> ip |>
locate end). This function is the one that performs the call to the locate/1 function. We
then map the resulting collection again with the &Task.await/1 anonymous function (line
11). This is in order to actually wait for the results from the computations performed by
each task. Doing this allows us to get the status of the computation. Both in steps 4 and 5,
the last line is the following:

[:0k, :0k, :0k, :0k, :0k, :o0k]
Note

The Task.await function allows us to view the return value, informing us of the success
of each operation. If we commented out line 11, our output would be something like this:

[%Task{pid: #PID<0.212.0>, ref: #Reference<0.0.0.1356>},
%Task{pid: #PID<0.213.0>, ref: #Reference<0.0.0.1357>},
%Task{pid: #PID<0.214.0>, ref: #Reference<0.0.0.1358>},
%Task{pid: #PID<0.215.0>, ref: #Reference<0.0.0.1359>},
%Task{pid: #PID<0.216.0>, ref: #Reference<0.0.0.1360>},
%Task{pid: #PID<0.217.0>, ref: #Reference<0.0.0.1361>}]

This means that although each task is executed, the process that spawned them has no way
to access the status of each task.

In step 3, we execute the sequential function that processes each entry in the list in an
order. It takes each element, performs the computation, and returns the result. As long as
the list doesn’t change, the order of the processing will be the same.

www.it-ebooks.info

http://www.it-ebooks.info/

As we can see in steps 4 and 5, when using the concurrent function, the output changes.
Each element of the list gets assigned to a process (task), and the execution occurs in
parallel. This is the reason we cannot determine the order of the results and they actually
change every time the function is executed.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Elixir tasks can also be spawned inside a supervision tree using the start_link/1 and
start_link/3 functions. However, remember that once supervised, tasks cannot be waited
on. If they are placed in a supervision tree, they will not be linked directly to the caller,
and that link is what allows a task to be waited on.

Elixir also provides the Task.Supervisor module to allow starting supervisors that
dynamically supervise tasks.

We will be looking into supervisors in the Creating a supervisor recipe in Chapter 6, OTP
— Open Telecom Platform, but you can find more information on the Task and
Task.Supervisor modules in the Elixir documentation at http://elixir-

lang.org/docs/stable/elixir/Task.html and http://elixir-
lang.org/docs/stable/elixir/Task.Supervisor.html.

www.it-ebooks.info

http://elixir-lang.org/docs/stable/elixir/Task.html
http://elixir-lang.org/docs/stable/elixir/Task.Supervisor.html
http://www.it-ebooks.info/

Creating a stateful server process
(messages with counters)

In this recipe, we will use the same concept used in the first recipe, but we will add a
counter for each type of received message. We will introduce states!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To get started, let’s create a module named messages_with_state.ex with the following
code:

defmodule MessagesWithState do

def start_link do
{:0k, spawn_link(fn -> wait_for_messages(0,0,0) end)}
end

defp wait_for_messages(pings, pongs, unknown) do
receive do
{"ping", caller} ->
send caller, "pong"
I0.puts "Received #{pings + 1} ping messages!"
wait_for_messages(pings + 1, pongs, unknown)

{"pong", caller} ->
send caller, "pong"
I0.puts "Received #{pongs + 1} pong messages!'"
wait_for_messages(pings, pongs + 1, unknown)

{:status, _caller} ->
I0.puts "Current status: #{pings} pings, #{pongs} pongs and #
{unknown} unknown messages."

{_, caller} ->
I0.puts "What do you mean? I have received #{unknown + 1} unknown
messages!"
send caller, "unknown"
wait_for_messages(pings, pongs, unknown + 1)
end
end
end

This code is very similar to the one we used in the messages.ex module in the first recipe
of this chapter, which is the Sending messages between processes recipe. We are just
enhancing it with the ability to hold states! We will keep a counter that will increase by
one when a new message is received.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Follow these steps to see our process maintain a counter of the received messages:

1. We will start by loading the module and registering the process with a name, in this
case, :message_server:

iex(1)> ¢ "messages_with_state.ex"
[MessagesWithState]

iex(2)> {:o0k, pid} = MessagesWithState.start_link
{:0k, #PID<0.61.0>}

iex(3)> Process.register(pid, :message_server)
true

2. We will now send some messages to our server:

iex(4)> send :message_server, {"ping", self()}
Received 1 ping messages!

iex(5)> send :message_server, {"ping", self()}
Received 2 ping messages!

iex(6)> send :message_server, {"pong", self()}
Received 1 pong messages!

iex(7)> send :message_server, {"what", self()}

What do you mean? I have received 1 unknown messages!
iex(8)> send :message_server, {"what", self()}

What do you mean? I have received 2 unknown messages!
iex(9)> send :message_server, {"ping", self()}
Received 3 ping messages!

iex(10)> send :message_server, {:status, self()}
Current status: 3 pings, 1 pongs and 2 unknown messages.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

When we modified our messages module, we added three arguments to the
wait_for_messages function:

defp wait_for_messages(pings, pongs, unknown) do (..)
These arguments are initialized with the o value when the server is spawned:

def start_link do
{:0k, spawn_link(fn -> wait_for_messages(0,0,0) end)}
end
Then, in each recursive call after receiving a message (lines 11, 16, and 24), we need to
pass the current state in the form of these three arguments:

wait_for_messages(pings, pongs + 1, unknown)

wait_for_messages(pings + 1, pongs, unknown)

wait_for_messages(pings, pongs, unknown + 1)

In the previous lines, depending on the type of message received, we update the counter
for that type of message and call the same function recursively, feeding the updated values
for the message counters.

There is no global state and each spawned process has its own state that has to be passed
between function calls in order to be updated or maintained.

For those more used to object-oriented languages, this option may seem odd, but
remember that it is this insulation of states between processes that allows a simpler and
effective concurrency model.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

¢ In the Using agents as an abstraction around states and Using an ETS table to share
states recipes, we will discuss the use of a placeholder for the state that needs to be
shared between processes

www.it-ebooks.info

http://www.it-ebooks.info/

Using agents as an abstraction around
states

The Agent module provides a basic server implementation and is a convenient way to
spawn a process that needs to maintain a state. Agents in Elixir provide an intuitive API to
update and retrieve the state.

In this recipe, we will create a module, phone_book . ex, where we will be able to store and
retrieve data.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To create our phone book using an agent to maintain states, follow these steps:

1. Open your code editor and create a file named phone_book . ex.
2. Add the following code to the file you created:

defmodule PhoneBook do
@name _ MODULE_

def start_link do
Agent.start_link(fn -> %{} end, name: @name)
end

def insert(user, number) do
Agent.update(@name, &Map.put(&1l, user, number))
end

def get(user) do
Agent.get(@name, &Map.get(&1l, user))
end

end
3. Start IEx and load the module:
> iex phone_book.ex

4. Start the process that will hold our phone book data:

iex(1)> PhoneBook.start_link
{:0k, #PID<0.59.0>}

5. Insert some numbers into the phone book:

iex(2)> PhoneBook.insert(:bob, "111-22-333-444")
1ok
iex(3)> PhoneBook.insert(:joe, "111-99-999-999")
1ok

6. Retrieve data from the phone book:

iex(4)> PhoneBook.get(:joe)
"111-99-999-999"

7. Update the value retrieved in the previous step:

iex(5)> PhoneBook.insert(:joe, "111-88-333-888")
1ok

8. Get the value once more to verify that the changes persisted:

iex(6)> PhoneBook.get(:joe)
"111-88-333-888"

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

With 12 lines of code, we were able to define a module that allows the insertion and
retrieval of data, thus maintaining the state. For this purpose, we used Elixir’s Agent
module.

We start the agent in step 4 by passing an anonymous function that initializes an empty
map (%{3}) and registers the agent with a name; in this case, the name is defined using
@name and by assigning it _ MODULE__:

Agent.start_link(fn -> %{} end, name: @name)

This means that the agent will be registered with the name of the module (PhoneBook) and
will be accessible by name without the need to use the PID. The empty map is the initial
state of the process.

Note

The return value is {:ok, #PID<0.59.0>}. Even though we registered the process with a
name, we can access it using this PID.

In steps 5 and 7, we use the insert function to update the phone book (and the state of the
process). This is achieved using the Agent .update function:

Agent.update(@name, &Map.put(&1l, user, number))

We pass the name under which the process is registered as the first argument, and the
second argument is the function to update the state. Here, we get the map that holds the
state of the agent and insert (put) the user and number.

Note

Take a look at the following code:

&Map.put (&1, user, number)

It is equivalent to the following:

fn(map) -> Map.put(map, user, number) end

In steps 6 and 8, we use the Agent . get function to get the current values stored in the
process. This function is very similar to the update function, but it only takes two
arguments: the map representing the state of the process and the key we wish to retrieve
from that map:

Agent.get(@name, &Map.get(&1l, user))

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Although limited in comparison to a full-blown GenServer, agents are simple to use and
allow us to quickly spawn a process in order to maintain states. In the next chapter, we
will focus on OTP, and we will use the GenServer behavior that serves as the foundation
of the agent implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Using an ETS table to share the state

In the Creating a stateful server process (messages with counters) and Using agents as an
abstraction around states recipes, we saw that in order to maintain the state in our
processes, we had to be passing the function calls to the state.

This solves the problem when a process needs to maintain states, but what if we need to
share some data between multiple processes?

One of the solutions is the use of a structure that allows concurrent access and is really
effective in the retrieval of data. This structure is called ETS.

Note

ETS means Erlang Term Storage, and it is an in-memory store.

In this recipe, we will create a small wrapper around an ETS table that can be used as a
key/value store.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To create our key/value store, let’s create new module ets_store.ex and add the
following code:

defmodule EtsStore do
@table_id _ MODULE_

def init do
rets.new(@table_id, [:public, :named_table])
end

def insert(key, value) do
rets.insert(@table_id, {key, value})
end

def get(key) do
case :ets.lookup(@table_id, key) do
[{_key, value}] -> {:o0k, value}
[] -> {:error, :not_found}
end
end

def delete(key) do
rets.match_delete(@table_id, {key, :_})
end

end

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We will use our newly defined module to store values that are accessible by any process.
The steps are as follows:

1. Open a new IEx session and load the ets_store module:

iex(1)> ¢ "ets_store.ex"
[EtsStore]

2. Initialize the EtsStore module:

iex(2)> EtsStore.init
EtsStore

3. Now we can use it to store some values:

iex(3)> EtsStore.insert(:one, 1)
iex(4)> EtsStore.insert("two", 2)
iex(5)> EtsStore.insert(:two, 2)
iex(6)> EtsStore.insert(:three, "three")

4. We can also use it to retrieve values:

iex(7)> EtsStore.get("two")
{:0k, 2}
iex(8)> EtsStore.get(:two)
{:0k, 2}

5. We can also delete entries from it:

iex(9)> EtsStore.delete("two")
true

6. The Observer tool is really helpful in order to visualize the state of any ETS table;
let’s start it to check our store:

iex(10)> :observer.start
1ok

7. Select the Table Viewer tab and double-click on Elixir.EtsStore to see the keys and
values it currently stores:

www.it-ebooks.info

http://www.it-ebooks.info/

e® @ nenode@nchost
Systemn Load Charts Applications Processes SRERERUCEEIE Trace Overview
Tatla Mara Tatda Id [a]- 10 Sipe (wH) Cramar Pid Crwnor Mams
Eliwir. EtsStore 3 2 =0.53.0=
alixir_madules 4] 2 i), 38 0= alixir_gup
nonode@nchest

This is what the table looks like:

® @ TV Ets: Elixir EtsStore @ nonode@nohost
1 2

one 1

thape <"t ==

W 2

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In the init function for our EtsStore module, we call the ets Erlang module and pass it
the name of the table and a list of options. In this case, we chose to create a public table,
which means other processes may read and write to it. We also chose the option of
named_table to allow all to refer to it by its name instead of having to use its PID
reference:

def init do
rets.new(@table_id, [:public, :named_table])
end

Note

There are several other options; we can choose how the table should behave, such as set,
ordered_set, bag, or ordered_bag and between different permission levels: public,
protected, and private.

The other functions in our module are wrappers around the ets Erlang module to provide
us with a more idiomatic way of interaction.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

The owning process of this ETS table is the terminal where we initialized it. If we close
the terminal window, the table will be destroyed.

In some cases, this behavior makes sense, but if desired, an ETS may even be part of a
supervision tree and its ownership may be passed between processes.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating named nodes

Until now, we have been using our IEx sessions without naming them. You may notice
this because the prompt for the IEx terminal session only has this indication: iex(1)>. The
IEx session is a node, and if we run two or more different nodes, even on the same
machine, we are running multiple instances of the Erlang virtual machine.

Using two nodes on the same machine or two nodes on different machines is exactly the
same thing, apart from connection latency, and that is why there is a need to connect them
securely.

By executing several nodes, we are paving the way for distribution and fault tolerance. At
this point, we will be focusing on the task of naming our nodes to make them easier to
access.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

In this recipe, we will be creating nodes with a short name and with a full name as well.
Usually, short names are the option when the nodes are in the same network, and long
names are the option when we need to create nodes that will interconnect within different

networks.

We will start by opening a terminal window in order to create our named nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To create named nodes, follow these steps:

1. Let’s first check what is happening when no name is specified for a node when we
start an IEx session:

> jex

Interactive Elixir (1.0.2) - press Ctrl+C to exit (type h() ENTER for
help)

iex(1)>

2. No information about the node is displayed in the IEx prompt. Let’s try to figure out
what the current node name is:

iex(1)> Node.self
:nonode@nohost

3. Now, let’s exit the session by pressing Ctrl + C twice and start a new session, naming
our node. We will use the short name option:

> iex --snhame "cookbook"

Interactive Elixir (1.0.2) - press Ctrl+C to exit (type h() ENTER for
help)

iex(cookbook@pap-machook)1>

4. Let’s exit once more and this time, start the node with a fully qualified name:

> jex --name "cookbook@127.0.0.1"

Interactive Elixir (1.0.2) - press Ctrl+C to exit (type h() ENTER for
help)

iex(cookbook@®127.0.0.1)1>

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

When we start our nodes (IEx sessions are nodes) without specifying a name, our node is
already named. The default name is : nonode@nohost.

To be able to connect nodes in the same machine, we don’t need the IP address (or the
hostname), so we usually go for the sname option. The short name allows us to indicate the
name of the node, and then the machine name will be appended, as we observed in step 3.

When we need to connect nodes in different machines, we have to indicate the IP or
hostname. In step 4, we use the name option. This allows us to assign a fully qualified
name to our node. This way, it’s possible to identify it and connect to it from another
machine.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

¢ In the Connecting nodes and Executing code in another node recipes of this chapter,
we will be using the options that are presented.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting nodes

In this recipe, we will start two different terminal sessions that will be our nodes, and we
will connect them.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We will need two terminal windows opened and in each of them, we will create a node.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

1.

Start a named node in terminal window one:

> iex --name one@127.0.0.1

Interactive Elixir (1.0.2) - press Ctrl+C to exit (type h() ENTER for
help)

iex(one@127.0.0.1)1>

Start another named node in terminal window two:

> iex --name two@127.0.0.1

Interactive Elixir (1.0.2) - press Ctrl+C to exit (type h() ENTER for
help)

iex(two@127.0.0.1

)1>

Verify the list of nodes that each of our newly created nodes is aware of:

iex(one@127.0.0.1)1> Node.list

[]
iex(two@127.0.0.1)1> Node.list

[]

To connect the two nodes, we will just need to instruct one of them to perform the
connection:

iex(one@127.0.0.1)2> Node.connect :"two@127.0.0.1"
true

Now, confirm that both nodes are connected and aware of each other:

iex(one@127.0.0.1)3> Node.list
[:"two@127.0.0.1"]
iex(two@127.0.0.1)2> Node.list
[:"one@127.0.0.1"]

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In steps 1 and 2, we created nodes using the - -name option (a fully qualified name),
passing the name of the node and the IP of the machine.

In step 3, we confirmed that although running in the same machine, nodes are not
automatically aware of the presence of other nodes.

To connect both nodes, in step 4, we only needed to instruct one of them to connect to the
other, and they became aware of one another. We confirmed this in step 5 when we issued
the Node.1list command.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

When connecting nodes in the same machine, a cookie file (such as.erlang.cookie) is
usually created and placed in the user root path. Both nodes may read from that file and
use the value defined there.

To connect nodes in different machines, it is necessary to specify the value for - -cookie
when the named node is started. As an example, consider the following:

> iex --name mynode@my-ip-address --cookie mycookietext

All nodes we wish to connect must provide the same value for the cookie.

Note

Be aware that when you are setting the cookie to connect nodes in two different machines,
it will be transmitted in plain text.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

¢ In the Executing code in a different node recipe, we will connect two nodes and
perform the execution of a function defined in node one in node two

www.it-ebooks.info

http://www.it-ebooks.info/

Executing code in a different node

It is possible to define a function in a node and execute it in another one.

In this recipe, we will be connecting two nodes and will define a function to print a
greeting message with the greeter name (in this case, the node’s full name). Afterwards,
we will execute the function in both nodes!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To be able to execute a function in another node, we will start by following the steps from
the previous recipe. We will create two nodes and connect them together. Repeat the steps

from the previous recipe to get started.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

With both nodes up and running and connected, we are ready to start:
1. Define a function in node one:

iex(one@127.0.0.1)4> greeting node = fn() -> IO0.puts("Hello from #
{inspect(Node.self)}") end
#Function<20.90072148/0 in :erl_eval.expr/5>

2. It’s time to instruct the second node to run the function we defined in node one:

iex(one@127.0.0.1)21> Node.spawn(:"two@127.0.0.1", greeting_node)
#PID<9007.76.0>

Hello from :"two@127.0.0.1"

ok

3. To make sure node two is not aware of the function, we will try to execute it there as
well:

iex(two
@127.0.0.1)5> Node.spawn(:"two@127.0.0.1", greeting_node)
** (RuntimeError) undefined function: greeting_node/0

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The function we defined in step 1 prints the result of the inspect function applied in a
node (Node.self).

In step 2, we use the Node. spawn function that accepts a node and a function as arguments.
A new process responsible for running the function will be spawned in the given node.

As aresult, we get a PID as the output, and then the message is printed on the caller node
with the greeting message from the node that actually executed the code (two@127.6.0.1).

In step 3, we made sure that node two doesn’t have the greeting_function function
defined.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

This simple example highlights one of the strengths of Elixir and the underlying Erlang
platform: code may be executed in any node as if it were local. We already saw in the
Making code run on all available CPUs recipe that a code with no changes was run either
by one or multiple processors, and now we got to see that even a different node, in the
same machine or in another one, can execute code that’s defined elsewhere.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6. OTP — Open Telecom Platform

This chapter will cover the following recipes:

Implementing a GenServer

Expanding our server

Creating a supervisor

Using Observer to inspect supervisors and processes
Handling errors and managing exceptions

Packaging and releasing an OTP application
Deploying applications and updating a running system

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Open Telecom Platform (OTP) is a set of libraries created by Ericsson as a
systematization of common Erlang programming concepts.

The process-oriented nature of Erlang (and Elixir by extension) provides an immense
power that may sometimes lead to strange problems. Given the concurrent nature of the
languages, sometimes these problems may be really difficult to understand.

OTP was created around the concept of behaviors. A server will generally have the same
structure. A finite state machine also has a known implementation pattern. The idea was to
create a structure for each of the OTP-defined components that would allow the use of a
well-defined and tested structure.

Implementing large-scale systems with a distributed and concurrent nature is much easier
given the existence of OTP, which provides a good foundation for these systems.

In this chapter, we will be looking into some of the behaviors available in Elixir
(Application, GenServer, and Supervisor).

In the previous chapter, we used tasks and agents, These are two abstractions provided on
top of OTP.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing a GenServer

In this recipe, we will implement a simple server that will store pairs of values (IP and
UUID).This might be used, for instance, to store users of a system who are currently
connected.

In this recipe, we will only store the provided information and respond to requests on
whether a user with a given IP is connected or not.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We will implement a server using the OTP-defined GenServer behavior. We will need to
implement the start_link and init functions and some callbacks to handle the messages
our server receives (handle_call or handle_cast). To make the interaction with the
server more pleasant, we will create some wrappers around the callbacks creating a client
API.

Note

The GenServer-defined behavior enforces the separation between client and server. An
example of it is the fact that start_1link/3 happens in the client, while init/1 is its
counterpart callback that runs on the server.

The handle_call callback is a handler for synchronous calls while handle_cast is a
handler for asynchronous calls. As a rule of thumb, handle_call is used when a response
from the server is expected whereas handle_cast is used when no response is expected or
we don’t want to block while waiting for a response.

Our server will be defined in the connection_tracker.ex file with the following code:

defmodule ConnectionTracker do
use GenServer

Client API

def start_link(opts \\ []) do
GenServer.start_link(__MODULE__, :0k, opts)

end

def add_user(server, message) do
GenServer.cast(server, {:add, message})
end

def search_user(server, ip) do
GenServer.call(server, {:search, 1ip})
end

Callbacks (Server API)
def init(:ok) do

{:0k, HashDict.new}
end

def handle_cast({:add, message}, connection_dict) do
{ip, uuid} = message
if HashDict.get(connection_dict, message) do
{:noreply, connection_dict}
else
{:noreply, HashDict.put(connection_dict, ip, uuid)}
end
end

def handle_call({:search, ip}, _from, connection_dict) do
{:reply, HashDict.fetch(connection_dict, ip), connection_dict}

www.it-ebooks.info

http://www.it-ebooks.info/

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To load our server and perform some requests, we will follow these steps:

1. Start a new IEx session and compile the module:

> iex
iex(1)> c¢ "connection_tracker.ex"
[ConnectionTracker]

2. Initialize the server:

iex(2)> {:0k, ct} = ConnectionTracker.start_link
{:0k, #PID<0.179.0>}

3. Store some users:

iex(3)> ConnectionTracker.add_user(ct, {"127.0.0.1","uuid1"})
1ok
iex(4)> ConnectionTracker.add_user(ct, {"127.0.0.2","uuid2"})
1ok

4. Ask the server whether a given user is registered or not:

iex(5)> ConnectionTracker.search_user(ct, "127.0.0.1")
{:0k, "uuid1i"}

iex(6)> ConnectionTracker.search_user(ct, "0.0.0.0")
:error

iex(7)> ConnectionTracker.search_user(ct, "127.0.0.2")
{:0k, "uuid2"}

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

After we compiled our server in step 2, we started it and, via pattern matching, we
assigned its PID to the ct variable. This variable will be used in the calls to our server as a
placeholder for the PID of the server process.

In step 3, we add users to the connection tracker server using the add_user function
defined in the server client API section. This way, we don’t need to call the server
callbacks directly. Let’s take a closer look at the add_user function:

def add_user(server, message) do
GenServer.cast(server, {:add, message})
end

We use the handle_cast callback because we don’t need to wait for the result of the user
insertion. We pass the server PID (server) and a tuple (to be pattern matched in the
handle_cast function) containing an atom that defines the type of action and a message as
arguments of our add_user function.

The handle_cast implementation starts by decomposing the passed message into an IP
and UUID and verifies whether the IP already exists in the dictionary (HashDict)
containing the entries for connected users. If the entry exists, nothing is done; if not, the
IP/UUID key/value pair gets inserted into the dictionary.

In step 4, we use the search_user function that is no more than a wrapper around
GenServer.call. This time, we need to wait for a response so we have to go for the
synchronous call!

The structure of the function and the callback is quite similar to the one explained
previously. Briefly, the search_user function invokes GenServer.call. The
GenServer.call callback then sends a message to the server process, and this message is
then processed by the handle_call callback. The response is the result of the HashDict
search for the given key.

Note

On both handle_call and handle_cast, the state is passed around; in this case, it is the
HashDict containing the entries of the connected users. We also use the :reply and
:no_reply atoms to indicate whether the server returns a message or not.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

All the OTP behaviors defined in Erlang are directly usable in Elixir. Some of these
behaviors are GenEvent, Supervisor, and Application.

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding our server

Our server implementation lacks a few things. How to stop it gracefully and how to
upgrade its code?

Our current implementation (right below the ## Callbacks (Server API) comment) has
three of the six callbacks that form the GenServer base skeleton. The ones missing are
handle_info/2, terminate/2, and code_change/3.

We will be implementing all of these functions in this recipe.

Note

The GenServer provides default implementations for all : gen_server callbacks. This is
the reason we can get away without having to define all of them explicitly, like we did in
Erlang.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To start, we need to load the connection_tracker.ex module in a code editor.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We will follow these steps to implement the functions and make our server a full-blown
GenServer:

1. Implement the handle_info/2 function:

def handle_info(info, state) do
I0.puts("Received info message #{inspect(info)}")
{:noreply, state}

end

2. Implement the terminate/2 function:

def terminate(reason, state) do
I0.puts("Terminating.. reason: #{inspect(reason)}")
{:0k, state}

end

3. Implement the code_change/3 function:

def code_change(_oldVsn, state, _extra) do
perform the actions to upgrade/downgrade/update code
{:0k, state}

end

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

We already saw the purpose of init/1, handle_call/3, and handle_cast/2 in the
previous recipe. The functions that are now implemented have their own purpose as well.

In step 1, we implemented the init function. This function handles messages regarding
timeouts or messages not made via a synchronous or asynchronous request (call or cast). If
the message was due to a timeout, the information will be the : timeout atom; if not, it
will be the message itself. In our example, we are only printing the info message to the
standard output, but we might even ignore the info message.

Step 2 consists of the terminate function. This function is supposed to be the counterpart
of init. It is called when the GenServer is about to terminate and, in the same way, when
we set up our state when the server was initiated and if there’s any cleanup to take place, it
should happen here. We could, for instance, transfer the state to another process.

The last step implements the code_change function. This is the function that gets called
when the GenServer needs to update its internal state, be it on an upgrade or downgrade of
the code. Yes, it’s not a typo! You can actually update the code on a running system!

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e The Erlang documentation for the gen_server module is very detailed, and if you
want to go a little deeper you can access it at

http://www.erlang.org/doc/man/gen_server.html
e The Elixir GenServer documentation is accessible at http://elixir-

lang.org/docs/stable/elixir/GenServer.html

www.it-ebooks.info

http://www.erlang.org/doc/man/gen_server.html
http://elixir-lang.org/docs/stable/elixir/GenServer.html
http://www.it-ebooks.info/

Creating a supervisor

One of the main advantages of Elixir is fault tolerance, and one of the underlying
philosophies is the famous let it crash philosophy. This means that by principle, no
defensive programming is performed. You write the code that expresses your intent and
handles the case you are expecting, and then if something goes wrong, you just let the
process crash.

There are mechanisms in Elixir that allow the monitoring of processes and even give you
the ability to relaunch a process (or a group of processes) if something goes wrong.

Probably in case of programming errors, this doesn’t make sense, but what if the error was
due to something that’s external to your program? What if the program is logically sound,
and everything is working as it’s supposed to but, say, a resource, such as a network, fails?
Your processes might crash because of that. What if there was a mechanism that would
allow you to try again? Fortunately, there is: supervisors!

This is another OTP-defined behavior. A process supervises another one or more
processes. The supervised processes may be supervisors or workers. The module we
implemented in the last two recipes is an example of a worker module that may benefit
from being supervised.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We will introduce a client function (crash_the_server) and its handle_call callback that
will perform the division of an integer by 0:

Client API

def crash_the_server(server, number) when is_integer number do
GenServer.call(server,{:crash_me, number})

end

Callbacks (Server API)

def handle_call({:crash_me, number}, _from, connection_dict) do
{:reply, div(number,0), connection_dict}

end

This way, we may make the server crash. To see it, open an IEx session:
> iex
Load and compile the module:

iex(1)> c¢ "connection_tracker.ex"
[ConnectionTracker]

Now, let’s start the server and feed and invoke the crash_the_server function:

iex(2)> {:0k, server} = ConnectionTracker.start_link
{:0k, #PID<0.61.0>}
iex(3)> ConnectionTracker.crash_the_server(server, 9)

As expected, the result was not good. Our server crashed and if we enter server in the
terminal, it no longer shows us the PID. The server process died!

www.it-ebooks.info

http://www.it-ebooks.info/

® @ 1. iex (beam.smp) |

ConnectionTracker,
nand 1

h{)} ENTER for help)

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To implement a supervisor that allows our server to survive calls to this wrongly
implemented function, we will follow these steps:

1. Create a connection_tracker_sup.ex file in the same directory as the
connection_tracker module with the “bad” function.
2. Insert this code into the file:

defmodule ConnectionTrackerSup do
use Supervisor

def start_link do
Supervisor.start_link(__MODULE__, [], [{:name, __ MODULE__ }])
end

supervisor callback
def init([]) do
child = [worker(ConnectionTracker, [], [])]
supervise(child, [{:strategy, :one_for_one}, {:max_restarts, 1},
{:max_seconds, 5}])
end
end

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

To create a supervisor, we need to add only one function: init.

The start_link function is a convenience function and not a mandatory one. However, it
makes our interaction more consistent with the way the GenServer works.

The init function returns the child processes managed by the supervisor and the
configuration for the supervision. In this case, the options are :strategy, :max_restarts,
and :max_seconds. There are multiple possibilities for these settings. With the current
code, we will respawn a process for each that crashes but we will only do it once! The last
option means that the processes can crash once every five seconds without taking down
the supervisor.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

¢ For more information on the restarting strategies and other configuration options of
the Supervisor module, check the documentation at http://elixir-

lang.org/docs/stable/elixir/Supervisor.html

www.it-ebooks.info

http://elixir-lang.org/docs/stable/elixir/Supervisor.html
http://www.it-ebooks.info/

Using Observer to inspect supervisors and
processes

The Observer tool we already used in a couple of recipes throughout the book allows us to
have a better insight on supervision trees and to have information on the processes. It also
allows us to “kill” a process and watch it be replaced by another one!

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To start inspecting our supervisors and processes, we will follow these steps:
1. Open a new IEX session:
> iex
2. Start the Observer tool:
iex(1)> :observer.start

3. Select the Applications tab in the graphical interface.

[K nonode@nohost
System Load Charts W Processes Table Viewer Trace Owverview
elixir
Kmrnal
logger

[-;D 4.-1.l:le-;ﬂ.-ts.n:HEm.Lugw.Eupmw

Elixir.Loggor

Elixir Loggor Watcher || <0.50.0» |

4. In the logger application info, right-click on Elixir.L.ogger.Watcher and select the
Kill process option, and then confirm the option in the popup.

nonode@nohost
System Load Charts Applications Processes Table Viewer Trace Owerview
wlixir
kernal
logger

l:‘u.u.ancms 0> || Etiir Logger Supervisor

Bl Ligger Warchor | <0.110.0>

e @ Inpeut Text
Enter Exit Raason
kill

www.it-ebooks.info

http://www.it-ebooks.info/

5. Take a look at the PIDs for some processes. They have changed! This means that
Elixir.Logger.Supervisor restarted some processes when one of its supervised
processes terminated.

Note

We are the culprits for the failure but it serves the purpose of illustrating the power of
a supervision tree and how it makes the task of writing resilient systems simple!

6. Double-click on Elixir.L.ogger.Supervisor to see its properties.

[]

[]

Choarvaw

Initial Call:

Cunment Function
Aagistensd Narma:
Status:

Magsage Quewe Len
Group Leadesr:
Priarity:

Trag Exi
Reductions:

Binary:

Last Cafls:

Catch Lovet:

Trace

Suspandang:
Sequential Trace Token:
Exrer Handlkar

Links

. 4T O
<0, 116.0=
<0, 118.0
il 48, O
<0, 45,0

noncde@nohost:'Elixir Logger.Suparvisaor’ (<0.46.0)

proc_libcinit_p'S

g _senverioogdB
Elxir Lagger Suparyisce
waiting

1]

<l dd. 0=

nomal

tras

T

Takss
a
o

armor_hander

Memary and Garbagn Collection

Mamary: BkB

Stack and Heaps:
Heap Sirs

GG Min Heap Size:

9868
6108
Stack Size: aB

a3a

GC Fulldweep Alter: 85535

Messages Dictionary

Stack Trace

Stnte

Manfomd by

7. Explore the other sections and take a closer look at the State tab and click on the
Click to expand above term link to see even more information about the supervisor.

www.it-ebooks.info

http://www.it-ebooks.info/

LI Expanded Term

Pioaza sooct Farmat =p
S e,
Format ~ip {losal, ‘Elixir Logger.Supervisce'},
raat For osa,

Format =w [ienTid, 7,118, 0=, ‘Blixir. Logger ErrorBandler’,
Farrnat =4 {'Elimir.Logger Watcher® ,watcher,

|eerez_legger, "Elixir.Logger.Errarfandlac’ ,
Farmat ~ts {trae, falne, 500},

Link}},

rmasant , 5008, waziar,
[l:li.:i.r.m“r.-lfl.t-:har 1}
{ﬁim 20, 116,8, "Blixir.Logger .Matoher ",
{'Elixir.Logges.Watehes',atart_link,
| "Elixic.Logger. l:nnﬁ. '.Mndl-n.l]l]-.
p-url.l.uu.t. infinity, upervisor,
'Eliziyr Lﬂnﬂi Hatehar® |},
{'.'hi.ld-.- 2.!!.? tllti:.hw:.miw "
{'Elixir.Logger .Watoher " ,watcher,
|'Elixie.Logger', 'Elinir.Legger.Config’' (11},
poarmasent, 5000, warkes,
[Bli:ir.mrr.hmhur It
{ehild, =0, §7,0>, '"Elivlir.CanEvent "
{"BLlixir.CenBvent',atart Link,[[{nsme, "Blixic, Logges" }11}.
Hnmntisﬂﬂh.wrhr,drmi:} 1.
wndafined, 3
[{L417, 11313 !'I.'I-!ilt}]
"Bl Lnir.iup-rvilanr.-'htlult-' ;
{ok, {{cest_for_one,3, 5}..
I_{'III!LL'..DIM
i I:I.i.:i.r.-ﬂmmnt cotart_link, | [{nase, "BElixic.Logger'}11}.
permanant, 5000, worker, dynamic] ,
{'Elixic.Logges.Contig”,
i I:H.:i.r.-bwq-r.-lfltah-u «watchor
I "Elixir.Logger', "EL itil:-I.ﬂ-.‘l'II Conflg' [§1}.
rmanant, 5000, wvarkes,
[I:H.:i.r-wgwr lflt-:halr Tke
{'Elixir.Logger.Rak
£ B‘.li!!.r.lﬂlgil..lfl.b!hlll‘. «obart_link,
| "Elixzirc.Logger. hﬂiir Mmllru.l]l'l-
Hrll.un.t. infinity, supsrv
i Bli!lr.]’.ﬂﬂt.ﬂlﬂhl'l},
{'Elixir.Lagger.Ersecilandlor
{ 'Blixir.Logger.Hatoher* ,mtchu.
|errar_ er, "Bliwir.Logger. ErrorBandlar’ ,
Etm,l me, 500},
ink]},
parmarant, 5000, worker,
['Blixiz.Logges Meteher" 11111}

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The Observer tool allows you to access information about several aspects of a running
virtual machine and not just the memory or CPU usage count. The Observer tool is a great
help with inspecting individual processes and their received messages, stack contents, and
SO on.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling errors and managing exceptions

We already approached the let it crash mantra. We saw in the previous two recipes how an
Elixir system is able to deal with failures in processes and keep running.

Defensive programming is not encouraged at all by the principles that guide languages
such as Elixir or Erlang. Even if we aren’t writing defensively, it is still a good idea to
control what happens when errors occur. Supervisors allow us to write code that keeps
breaking and crashing and yet recovers from the crash. We will mainly find two categories
of errors after compiling our code (compilation errors are outside this equation): runtime
errors and logic errors. The former are easier to deal with, while the latter may become
more difficult to reason and track.

Note

In distributed systems, a whole set of problems may rise due to race conditions, timing
issues, network unreliability, and so on.

To track and solve this category of errors, we benefit from the ability to debug live
systems via the console and actually change the running code. That’s one of the reasons
GenServer implements the code_change/3 function (refer to the Expanding our server
recipe of this chapter).

To deal with runtime errors or the more simple logical ones, Elixir offers us some
possibilities: errors, throws, and exits.

In this recipe, we will be looking at each one of these possibilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Create a new file named error_handling.ex and add the following code:

defmodule ErrorHandling do

def safe_division(a, b) do
try do
div(a,b)
rescue
_error -> _error
end
end

def throw_on_zero(list) do

try do
Enum.each list, fn(_number)-> if _number == 0, do: throw(_number) end
"Good! No zeros on the list!"
catch
_number -> "Oops! There was a #{_number} on the list!"
end
end

def shortest_living_process do
I0.puts "Spawning process.."
spawn_link fn ->
I0.puts "Process started!"
exit(1)
end
end

end

Open a new [Ex session and load the error_handling.ex module:

> iex

Interactive Elixir (1.0.2) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)> c¢ "error_handling.ex"

[ErrorHandling]

iex(2)>

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To see how to handle errors, we will follow these steps:

1. Call the safe_division function from the loaded module with a valid input and an
invalid one:

iex(3)> ErrorHandling.safe_division(2,2)
1

iex(3)> ErrorHandling.safe_division(2,0)
%ArithmeticError{}

2. Call the throw_on_zero function, passing it a list not containing a zero, and invoke it
again with a list containing a zero:

iex(6)> ErrorHandling.throw_on_zero([1,2,3,4,5])
"Good! No zeros on the list!"

iex(7)> ErrorHandling.throw_on_zero([1,2,3,4,5,0])
"Oops! There was a zero on the list!"

3. To see the exit in action invoke the shortest_living_process function:

iex(9)> ErrorHandling.shortest_living_process
Spawning process..

Process started!

** (EXIT from #PID<0.53.0>) 1

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 1, we are using errors in a try..rescue block to capture a division by zero error:

def safe_division(a, b) do
try do
div(a,b)
rescue
_error -> _error
end
end

Normally, a division by zero generates this error:

iex(1)> div(9,0)
** (ArithmeticError) bad argument in arithmetic expression
:erlang.div(9, 0)

By using try..rescue, we get a struct representing the %ArithmeticError{} error that we
may use to gather/send information about what happened.

We could also specify the error message. Try replacing the _error -> _error line with
_error -> {:error, {:message, "division by zero error #{inspect(_error)}"}}.

This would result in the following message whenever a division by zero is attempted:

{:error, {:message, '"division by zero error %ArithmeticError{}"}}

In step 2, we are using throws with a try..catch block to capture a value for later usage:

def throw_on_zero(list) do

try do

Enum.each list, fn(_number)->

if _number == 0, do: throw(_number) end

"Good! No zeros on the list!"
catch

_number -> "Oops! There was a #{_number} on the list!"
end

end

This construct should be used in those situations where we are not able to retrieve a value
without the throw construct.

We start by traversing the list and if any of its elements is 0, we “throw” it to be handled in
the catch block.

In step 3, we use exits. This kind of error mechanism is more suitable when dealing with
processes. Every time a process dies, it sends a signal, which is an exit signal. In our
example, we are actually spawning a function that outputs a message and terminates,
passing the value 1 to the exit call:

def shortest_living_process do
I0.puts "Spawning process.."
spawn_link fn ->
I0.puts "Process started!"

www.it-ebooks.info

http://www.it-ebooks.info/

exit(1)
end
end

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

The exit signals are quite important in the virtual machine. The supervisors receive these
signals from their supervised processes, and this allows you to trigger the mechanisms
defined in the supervising strategy.

As we have already seen, the use of the supervision tree is exactly what makes the use of
this error handling construct uncommon.

Also, it’s worth mentioning that in step 1, we are using the try..rescue block to capture
any invalid input, in this case, 0. We are being defensive!

A possible approach would be to use a guard in the function definition to avoid even
executing it if the input was “wrong”, letting it crash!

Note

Using a guard in the safe_division function would result in the following code:

def safe_division(a, b) when b != 0 do
div(a,b)
end

The Using guard clauses and pattern matching in function definitions recipe in Chapter 4,
Modules and Functions, has more information on this matter.

www.it-ebooks.info

http://www.it-ebooks.info/

Packaging and releasing an OTP
application

There comes a time when our supervision tree is wonderfully set up and our gen_server
workers are ready to accept requests. Everything is fault-tolerant, concurrent, and ready to
be distributed. Then, we have to actually create a release and start our code in different
nodes.

In this recipe, we will be focusing on an Elixir library to help us with the release process:
exrm.

Elixir Release Manager (exrm) defines its goal like this:

“This project’s goal is to make releases with Elixir projects a breeze. It is composed
of a mix task, and build files required to successfully take your Elixir project and
perform a release build, and a simplified configuration mechanism which integrates
with your current configuration and makes it easy for your operations group to
configure the release once deployed.”

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready...

In this recipe, we will be releasing a Mix application that encapsulates our
ConnectionTracker GenServer. You will find the code in the release_me directory.

To get ourselves started, we will add exrm to the dependencies of our project in our
mix.exs file:

defp deps do
[{:exrm, "~> 0.14.13"}]
end

Then, we will fetch the dependencies and compile them:

> mix deps.get
> mix deps.compile

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To build a release for our project, we will follow these steps:
1. Compile your code:

> mix compile

Compiled lib/release_me.ex

Compiled lib/ReleaseMe/connection_tracker.ex
Generated release_me.app

2. Use the mix release task provided by exrm:

> mix release

==> Building release with MIX_ENV=dev.

==> Generating relx configuration..

==> Generating sys.config..

==> Generating boot script..

==> Performing protocol consolidation..

==> Conform: Loading schema..

==> Conform: No schema found, conform will not be packaged in this
release!

==> Generating release..

==> Generating nodetool..

==> Packaging release..

==> The release for release_me-0.0.1 is ready!

Note

In some cases, when the mix release task is run for the first time, it may fail with a
missing config file message. If this happens, please re-run the Mix task.

It’s also worth mentioning that the directory where the application you wish to
release is stored should not contain whitespaces in its path.

3. Run the app from the terminal, attaching it to an IEx console:

> rel/release_me/bin/release_me console

Exec: /Users/paulo/Desktop/release_me/rel/release_me/erts-
6.2/bin/erlexec -boot
/Users/paulo/Desktop/release_me/rel/release_me/releases/0.0.1/release_m
e -boot_var ERTS_LIB_DIR
/Users/paulo/Desktop/release_me/rel/release_me/erts-6.2/../1ib -env
ERL_LIBS /Users/paulo/Desktop/release_me/rel/release_me/lib -config
/Users/paulo/Desktop/release_me/rel/release_me/releases/0.0.1/sys.confi
g -pa /Users/paulo/Desktop/release_me/rel/release_me/lib/consolidated -
args_file
/Users/paulo/Desktop/release_me/rel/release_me/releases/0.0.1/vm.args -
user Elixir.IEx.CLI -extra --no-halt +iex-—console

Root: /Users/paulo/Desktop/release_me/rel/release_me
/Users/paulo/Desktop/release_me/rel/release_me

Erlang/OTP 17 [erts-6.2] [source] [64-bit] [smp:8:8] [async-threads:10]
[hipe] [kernel-poll:false] [dtrace]

Interactive Elixir (1.0.2) - press Ctrl+C to exit (type h() ENTER for

www.it-ebooks.info

http://www.it-ebooks.info/

help)
iex(release_me@127.0.0.1)1>

4. Start the server and make some requests:

iex(release_me@127.0.0.1)1> {:0k, pid} =
ReleaseMe.ConnectionTracker.start_link

{:0k, #PID<0.79.0>}

iex(release_me@127.0.0.1)2> ReleaseMe.ConnectionTracker.add_user(pid,
{:test, "demo"})

1ok

iex(release_me@127.0.0.1)3>
ReleaseMe.ConnectionTracker.search_user(pid, :test)

{:0k, "demo"}

Note

In step 3, we executed the application with the console argument. This automatically
attaches a console session to the running application. If we wished, we could have started
the application with the following command:

> rel/release_me/bin/release_me start

This would actually start the application. If we wished to attach a console to the running
node later, we could use this command:

> rel/release_me/bin/release_me attach

This would provide us with this output:

Attaching to /tmp/erl_pipes/release_me/erlang.pipe.l (D to exit)
iex(release_me@127.0.0.1)1>

The console is now ready and allows interaction with the system.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 1, when we performed the compilation, a .app file was generated with the
information needed to build our application and make it self-contained.

In step 2, we actually built the application. If you take a look at the rel directory, you will
find all the files needed to run the application.

Mame i
¥ [bin
" install_upgrade.escript
M nodetool
M release me
| start_clean.boot
¥ [erts-6.2
» [bin
¢ [include
F [l lib
> [l src
» [lib
¥ [log
| erlang.log.1
7 run_erl.log
| release_me-0.0.1.tar.gz
¥ | releases
v [l 0.0.1
| release_me.boot
| release_me.rel
" release_me.script
| start.boot
- sys.config
| ym.args
| RELEASES
| start_erl.data

¥

The executable we used in step 3 is located inside the bin folder.
This recipe emphasizes one of the biggest strengths of Elixir: tooling.

With a few simple commands, we were able to build and package a self-contained OTP
application that is ready to be deployed!

If you wonder why there is a releases/0.0.1 folder, check the mix.exs file. In the
project section, the version is defined as 0.0.1.

If we wish to upgrade and enhance our application and build a new release, we just have
to implement the features, update the version number, and generate the release again. This
allows for the existence of different versions of applications and it is even possible to
upgrade/downgrade running applications without stopping them!

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

exrm has some interesting features and can be used with conform

(https://github.com/bitwalker/conform) to adapt the application to its deployed
environment.

www.it-ebooks.info

https://github.com/bitwalker/conform
http://www.it-ebooks.info/

See also

¢ In the Deploying applications and updating a running system recipe, we will look at
how to use exrm to help us with deployments and how to manage versions in running
systems

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying applications and updating a
running system

In this recipe, we will be using exrm to assist us in the process of deploying applications
and updating running systems without taking them down.

This is another key feature provided by Elixir: availability!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To get started, we need the application that we used in the previous recipe. You may find it
under the release_me folder in the code directory.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To deploy an application and update it while running, we will follow these steps:

1.

Create a new location to deploy your application. In this case, we will be using the
tmp/elixir_app directory:

mkdir -p tmp/elixir_app

Copy the release generated in the previous recipe to the new location:
> cp rel/release_me/release_me-0.0.1.tar.gz tmp/elixir_app
Unpack it:

> cd tmp/elixir_app
> tar -xf release_me-0.0.1.tar.gz

Start your app by running the following command after going to the root directory of
your application, that is, the rel/release_me folder:

> bin/release_me start

To upgrade your application, generate a new release, following the instructions from
the previous recipe.

Note

Don’t forget to update the version number in the mix.exs file!

Once you have the release_me-0.0.2.tar.gz file, follow steps 2 and 3.
To actually update the code while it is running, use this command:

> bin/release_me upgrade "0.0.2"

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The release tool exrm hides away most of the complexity related to building, deploying,
and upgrading systems. It’s a great help to every Elixir developer and is one of the
examples of brilliant tooling and the amazing community of Elixir.

Note

Code upgrading relies on the implementation of the code_change() callback in the
upgradable modules.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For a deeper understanding of the release mechanisms, the documentation at

http://www.erlang.org/doc/system_principles/system_principles.html is really
helpful.

www.it-ebooks.info

http://www.erlang.org/doc/system_principles/system_principles.html
http://www.it-ebooks.info/

Chapter 7. Cowboy and Phoenix

This chapter will cover the following recipes:
e Cowboy

o Setting up Cowboy
o Serving static files
o Implementing a websocket handler

e Phoenix

Creating a Phoenix application
Defining routes

Creating a controller

Creating views and templates
Implementing topics

Protecting the Phoenix app with SSL

O O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

In this chapter, we will look at Cowboy and Phoenix.

Cowboy is written in Erlang and its author, Loic Hoguin, defines it as “a small, fast, and
modular HTTP server.”

Cowboy provides an HTTP 1.0/1.1 stack and supports websockets, SPDY, and REST. It is
currently used in Phoenix, which is an Elixir web framework.

Phoenix was a project started by Chris McCord but currently has several contributors and
is an excellent option to implement web applications. Its aim is to provide a way to build
full-featured, fault tolerant applications with real-time functionalities.

We will begin by showing you how to use Cowboy. Even though it is written in Erlang, its
use with Elixir is possible and is proof of the excellent interoperability between Elixir and
Erlang.

Later on, we will use Phoenix to create a simple web application.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up Cowboy

In this recipe, we will set up Cowboy. We will add it as a dependency for our application
and get ready to implement some functionalities, such as static file serving and

websockets, in later recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To get ourselves started, we will create a Mix application. To do this, enter the following
command in a terminal window:

> mix new cowboy_app --sup

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Now that we have created our Elixir application, we will set up Cowboy by following
these steps:

1. Add Cowboy as a dependency in the mix.exs file under the deps method:

defp deps do

[
{ :cowboy, "~> 1.0.0"}

]

end

2. Fetch the dependencies by issuing the following command in a terminal window:

> mix deps.get

The dependencies will be fetched and the output will be similar to this:

Dependencies’ installation

3. We will now compile the dependencies:

> mix deps.compile

4. Before we can use Cowboy, there is still one thing to do. We will add it to the
applications section in our mix.exs file:

def application do
[applications: [:logger, :cowboy],
mod: {Chapter7, []}]

end

5. To make sure everything is working, we will start our application inside an IEx
session:

> iex -S mix

6. Now, inside our IEx session, we will check whether Cowboy was started and is ready
to be used by querying our currently running applications:

www.it-ebooks.info

http://www.it-ebooks.info/

iex(1)> :application.which_applications

[{:cowboy_app, 'cowboy_app', '0.0.1'},

:cowboy, 'Small, fast, modular HTTP server.', '1.0.0'},

:cowlib, 'Support library for manipulating Web protocols.', '1.0.1'},
:ranch, 'Socket acceptor pool for TCP protocols.', '1.0.0'},

:logger, 'logger', '1.0.2'}, {:inets, 'INETS CXC 138 49', '5.10.4'},
:ssl, 'Erlang/OTP SSL application', '5.3.8'},

:public_key, 'Public key infrastructure', '0.22.1'},

:asnl, 'The Erlang ASN1 compiler version 3.0.3', '3.0.3'},

:mix, 'mix', '1.0.2'}, {:iex, 'iex', '1.0.2'}, {:elixir, 'elixir',
.0.2'},

:syntax_tools, 'Syntax tools', '1.6.17'},

:compiler, 'ERTS CXC 138 10', '5.0.3'}, {:crypto, 'CRYPTO',

.4.2'},

:stdlib, 'ERTS CXC 138 10', '2.3'}, {:kernel, 'ERTS CXC 138 10',

-1'}]

WA WA R AP A A A e

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 1, we add Cowboy as a dependency in our application. The dependency
management in Mix applications is covered in the Managing dependencies recipe of
Chapter 1, Command Line.

Here, even though Cowboy is an Erlang application, we use the package available via the
Hex package manager (https://hex.pm/packages/cowbaoy).

If we wished, we could have also used the Git repository for Cowboy as the source for our
dependency. It would just be a matter of replacing [{:cowboy, "~> 1.0.0"}] with
[{:cowboy, git: "git://github.com/ninenines/cowboy"}}].

In step 2, we fetch the dependencies and we compile them in step 3.

Cowboy has two associated dependencies: ranch and cowlib. They are, respectively, a
socket acceptor pool for TCP protocols and support library to manipulate web protocols.

Afterwards, in step 4, we add Cowboy to the list of applications to be started. This ensures
that when we initialize our Mix application, Cowboy and its dependencies will also be
running, ready to perform their tasks. We checked this by starting the application (step 5)
and making sure they were part of the running applications (step 6).

The result of the command contains Cowboy, cowlib, and ranch on the list of running
applications, so everything is properly set up and ready for use!

www.it-ebooks.info

https://hex.pm/packages/cowboy
http://www.it-ebooks.info/

There’s more...

Now that we have successfully configured Cowboy, it’s time to use it to implement some
features in our Mix application!

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e We will use Cowboy as a static file server in the Serving static files recipe

e We also use Cowboy to establish websocket connections and allow bi-directional
communication between servers and clients in the Implementing a websocket handler
recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Serving static files

In this recipe, we will take our configured Cowboy application and add the ability to serve
static files requested via HTTP.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We will start by opening the source files in the Code/Chapter
7/cowboy_static/cowboy_app folder in our favorite editor.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To add the ability to serve static files to our application, follow these steps:

1. Create a new folder inside the 1ib directory and name it cowboy.
2. Inside this new folder, create a file named root_page_handler.ex.
3. Add the following code to the file:

cowboy_app/lib/root_page_handler.ex

defmodule Cowboy.RootPageHandler do
def init(_transport, req, []) do
{:0k, req, nil}
end

def handle(req, state) do
{:0k, req} = :cowboy_req.chunked_reply(200, req)
:0k = :cowboy_req.chunk("Root page text rendered by the handler. No
file defining this content!\r\n", req)
{:0k, req, state}
end

def terminate(_reason, _req, _state), do: :ok
end

4. Inside this same folder, create a file called dispatch.ex.
5. Add this code to define the dispatch module:

cowboy_app/lib/dispatch.ex

defmodule Cowboy.Dispatch do
def start do

dispatch = :cowboy_router.compile([
{
[
{"/", Cowboy.RootPageHandler, []},

{"/[...]", :cowboy_static, { :priv_dir, :cowboy_app, "",
[{:mimetypes, :cow_mimetypes, :all}]}}
]

}
1)
{:0k, _} = :cowboy.start_http(:cowboy_app, 100, [{:port, 8080}],
[{:env, [{:dispatch, dispatch}]}])
end

end

6. Now let’s edit the 1ib/cowboy_app.ex file and add the call to the method that will
initialize our defined dispatch. Place the following highlighted code right after the
import Supervisor.Spec, warn: false line:

defmodule CowboyApp do

www.it-ebooks.info

http://www.it-ebooks.info/

use Application

def start(_type, _args) do
import Supervisor.Spec, warn: false

Cowboy.Dispatch.start

children = [
Define workers and child supervisors to be supervised
worker (CowboyApp.Worker, [argl, arg2, arg3])

]

opts = [strategy: :one_for_one, name: CowboyApp.Supervisor]
Supervisor.start_link(children, opts)
end
end

Note

Cowboy provides its own supervisor. This is why we don’t place it under our app’s
supervision tree.

7. Start the Mix application:
> iex -S mix

8. Visit the root page (http://localhost:8080/):

&« C [localhost: 8080

Root page text rendered by the handler. Ne file defining this content!

9. Visit the index.html sample page at http://localhost:8080/index.html:

www.it-ebooks.info

http://www.it-ebooks.info/

® 00 ap oo it ron 1 | +
e & A Geracho Da Matilka
. " . & & !
e ocalhear B8 dea £ Msadn G = & Qae gk Dy e =

Index page

This page is delined in the index Baml file

10. Visit the test.html sample page at http://localhost:8080/test.html:

BER oo ms e v | 4
£ t wesFoa = | & DD & &

Test page

This page is defimed in the 1eshoml file.

11. Now let’s open some images, as shown in this screenshot
(http://localhost:8080/html.jpg):

www.it-ebooks.info

http://www.it-ebooks.info/

This is another image downloaded from http://localhost:8080/cc.png:

LAl P —

i atewt 4] # A 0D & @ &

®creatwe

commons

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 1, we defined a namespace for our modules by creating the cowboy folder. As you
can see, the files we created in this recipe have Cowboy prepended.

Note

We could have used any other name. There is no need to create a Cowboy namespace to
implement any of these features!

In steps 2 and 3, we implement a module that will respond to any requests made to the
root path of our server. The Cowboy.RootPageHandler module has two methods: init and
handle. It is inside the latter that we define the desired behavior. In this case, we define
the text that should be rendered in the client browser. Although this is not actually a static
file, it is included to showcase the implementation of a generic handler with Cowboy. The
result of a request to this resource is exemplified in step 8.

In steps 4 and 5, we define the Cowboy.Dispatch module. This module’s responsibility is
to determine, given the request, what should be handled and how.

We start by defining that the root path, / will be handled by the Cowboy.RootPageHandler
module as {"/", Cowboy.RootPageHandler, []}.

Then we define the handler for any other file (/[..]):

{"/[...]", :cowboy_static, { :priv_dir, :cowboy_app, ,

[{:mimetypes, :cow_mimetypes, :all}]}}

The directory we define as the source for the static files is priv. By default, the :priv_dir
atom refers to the priv directory inside the application with the name defined by the next
atom (in this case, :cowboy_app). If you look inside it, you will find the HTML and image
files we requested in steps 9 and 10 there. The : cowboy_static atom refers to a module
implemented by Cowboy that serves static files. The reason we don’t need to define it is
because that is already taken care for us. In this line, we also register the mime types we
wish to handle. One of Cowboys dependencies, cowlib, allows us to do so with the
{:mimetypes, :cow_mimetypes, :all} tuple.

We could resume the line that registers the static handle in the following way:

For every request to /foo.bar, use the cowboy_static module and look for the foo.bar
file with the bar mime type inside the priv dir of cowboy_app.

Tip
If we switch the order of the lines defining the root page handler and the static files, the
root page handler will never be triggered, as /[..] will always match first!

In this case, when http://localhost:8080/ is requested, the result is a blank page!

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing a websocket handler

In this recipe, we will add a websocket handler to our Cowboy application. We will also
change the index page to allow us to send messages. The index page will continue to be
served by the static handler we defined previously. With websockets enabled, all clients
connected to index.html will receive the messages sent by other clients without the need
to refresh the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We will iterate over the code used in the previous recipe. A copy of the finished code can
be found in the Code/Chapter 7/cowboy_websockets/cowboy_app directory.

To get started, we will load the code in our code editor.

The code is almost the same as the one used in the previous recipe with some changes to
priv/index.html and some CSS, JavaScript, and fonts added.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To add websockets support to our Cowboy application, follow these steps:

1. Define a handler for websockets in the 1ib/cowboy/ws_handler.ex file:

defmodule Cowboy.WsHandler do
@behaviour :cowboy_websocket_handler

def init({:tcp, :http}, _req, _opts) do
{:upgrade, :protocol, :cowboy_websocket}
end

def websocket_init(_transport_name, req, _opts) do
Cowboy.WsServer.join(self())
{:0k, req, :undefinded_state}

end

def websocket_handle({:text, msg}, req, state) do
change :others to all if you wish to notify the sender too!
Cowboy.WsServer.send_messages(:others, self(), msg)
{:0k, req, state}
end
def websocket_handle(_data, req, state) do
{:0k, req, state}
end

def websocket_info({:send_message, _server_pid, msg}, req, state) do
{:reply, {:text, msg}, req, state}

end

def websocket_info(_info, req, state) do
{:0k, req, state}

end

def websocket_terminate(_reason, _req, _state) do
Cowboy.WsServer.leave(self())
ok
end
end

2. Register the handler in the dispatch (cowboy/dispatch.ex) by adding the following
line right below the root handler:

{"/websocket", Cowboy.wWsHandler, []},

3. Create a GenServer (1ib/cowboy/ws_server .ex) that will be called by the websocket
handler to send messages and hold a list of connected clients:

defmodule Cowboy.WsServer do
use GenServer
require Record
Record.defrecord :state, [clients: []]

client API
def start_link(opts \\ []) do

www.it-ebooks.info

http://www.it-ebooks.info/

:gen_server.start_link({:local, _ MODULE__}, _ MODULE__, :ok, opts)
end

def join(pid) do
:gen_server.cast(__MODULE__, {:join, pid})
end

def leave(pid) do
:gen_server.cast(__MODULE__, {:leave, pid})
end

def send_messages(:others, pid, message) do
:gen_server.cast(__MODULE__, {:send_message, pid, message})
end

def send_messages(:all, pid, message) do
:gen_server.cast(__MODULE__, {:notify_all, pid, message})
end

server Callbacks

def init(:ok) do
state = state()
{:0k, state}

end

def handle_cast({:join, pid}, state) do
current_clients = state(state, :clients)
all_clients = [pid|current_clients]
new_state = state(clients: all_clients)
{:noreply, new_state}

end

def handle_cast({:leave, pid}, state) do
all clients = state(state, :clients)
others = all_clients—[pid]
new_state = state(clients: others)
{:noreply, new_state}

end

def handle_cast({:send_message, pid, message}, state) do
send_message(:others, pid, message, state)
{:noreply, state}

end

def handle_cast({:notify_all, pid, message}, state) do
send_message(:all, pid, message, state)
{:noreply, state}

end

def handle_info(_info, state) do
{:noreply, state}
end

def terminate(_reason, _state) do
ok
end

internal funs
defp send_message(:others, pid, message, state) do

www.it-ebooks.info

http://www.it-ebooks.info/

clients = state(state, :clients)

others = clients—[pid]

Enum.each(others, &(send(&1,{:send_message, self(), message})))
end
defp send_message(:all, _pid, message, state) do

clients = state(state, :clients)

Enum.each(clients, &(send(&1, {:send_message, self(), message})))
end

end

. Register the GenServer under the supervision tree by adding the following code to
cowboy_app.ex:

children = [
worker (Cowboy.WsServer, [])

]
. Start the application:

> iex -S mix

. Open two different browser windows, visit http://localhost:8080/index.html
and start sending messages between them.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

To implement a websocket handler, apart from adding some JS, CSS files, and fonts and
editing the index page to create a interface to start messaging between browsers, we need
to create a GenServer and a Cowboy handler for websockets. Let’s take a closer look at
how we achieved our goal.

In step 1, we begin by defining a websocket handler. The second line of the
ws_handler.ex file has an annotation that defines a behavior: @behaviour
:cowboy_websocket_handler. This defines the interface for a websocket handler and
forces us to define several functions in the file to comply with that behavior.

Note

For more information about the @behaviour annotation, refer to the Enforcing behaviors
recipe in Chapter 4, Modules and Functions.

The functions defined are init, websocket_init, websocket_handle, websocket_info,
and websocket_terminate.

We will now see each of these functions in more detail:

e init: This function is responsible for the upgrade of the protocol to
cowboy_websocket.

e websocket_init: This function is called before the actual protocol upgrade occurs
and is where any state is initialized normally. In this particular case, we perform a
call to the join function of the ws_server.ex GenServer we chose to implement.
There, we add the PID of the new connected client to a list of all connected clients
(the ws_server.ex file’s lines 11-13 and 37-42).

e websocket_handle: This function handles the data received via the websocket. We
defined two versions of this function. The first one deals with the case of messages
with the {: text, msg} format and the other deals with any other type of websocket
messages. We used pattern matching, so the only time we actually perform any action
is when a message arrives in the {:text, msg} format. We call the ws_server.ex
GenServer function to send messages to all clients except the one sending the
message. If you wish to change this behavior, change the :others atom to :all in
line 16 of the ws_handler.ex file. The lines of the GenServer that deal with this are
49-56 and 71-79.

e websocket_info: This function is responsible for handling any non-websocket
messages received. Similar to the websocket_handle function, we defined two
versions of this function: the first one to respond to the received messages with the
{:send_message, _server_pid, msg} format and the last one to handle any other
type of non-websocket messages. It is here that we actually perform the sending of
the message to the client.

e websocket_terminate: This is the function responsible for performing any cleanup
tasks when the websocket connection is closed. In our code, we invoke the
ws_server .ex file’s Cowboy.WsServer.leave function, passing the PID of the

www.it-ebooks.info

http://www.it-ebooks.info/

handler process (self()). This function unregisters this process from the list of
connected clients maintained in the GenServer.

In step 2, we register the handler on the Cowboy dispatch. This is a way to define that any
requests established via the ws:// protocol to the websockets endpoint will be handled by
this handler.

Note

In the cowboy_websockets/cowboy_app/priv/js/index. js file’s lines 19 and 20, we
define the connection to ws://localhost:8080/websockets.

Steps 3 and 4 are where we define the GenServer associated with the websocket handler
and then start it under the application supervisor.

Note

We will not go into details of the GenServer implementation. More details on GenServer
can be found in the Implementing a GenServer and Expanding our server recipes in
Chapter 6, OTP — Open Telecom Platform.

In steps 5 and 6, we start using the websocket support to send messages that appear in real
time on all connected browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

For browsers that do not support websockets, there is an alternative named Bullet, also
created by Cowboy’s author, Loic Hoguin. It consists of an Erlang application and a
JavaScript library (bullet.js) that provides a compatibility layer via fallback
mechanisms such as long-poling to browsers that don’t support websockets. More
information can be found at https://github.com/extend/bullet.

We have included it and used it in this recipe in order to make it work in as many browsers
as possible.

www.it-ebooks.info

https://github.com/extend/bullet
http://www.it-ebooks.info/

Creating a Phoenix application

The following recipes of this chapter will relate to an Elixir web framework: Phoenix.

Phoenix is an implementation of the server-side MVC pattern. It is very similar to Ruby
on Rails or Python Django, but it is much more than a mere clone.

Phoenix’s goal is to combine the high productivity of the mentioned frameworks with high
performance, and introduces several concepts such as channels for websocket
management, topics as a pub-sub layer, and precompiled templates as well.

Chris McCord created Phoenix, and the first commit dates from May 1, 2014. The
implementation pace is impressive and it currently has almost all of the features defined in
the initial roadmap; only iOS and Android clients are pending. This project now has more
than 80 committers and among them is José Valim, the creator of Elixir.

Our first recipe on Phoenix will show you how to create an application. We will generate
the canonical to-do application.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To get started with Phoenix and create a new application, we will need to clone the
phoenixframework repository from GitHub. Open a terminal window and go to the
directory where you want to place Phoenix.

Start by cloning the repository with the following command:

> git clone https://github.com/phoenixframework/phoenix.git

Go to the phoenix directory and check out the <x.y.z> version:

> cd phoenix && git checkout v0.8.0

Get the dependencies and compile phoenix:

> mix do deps.get, compile

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To create a new Phoenix application, follow these steps:

1.

Generate the application from the cloned phoenix directory:

> mix phoenix.new todo ../todo

Go to the generated application directory:

> cd ../todo

Install and compile the application dependencies:
> mix do deps.get, compile

Test everything by starting the server:

> mix phoenix.server
Running Todo.Endpoint with Cowboy on port 4000 (http)

Open a browser window and visit http://localhost:4000, as shown in the
following screenshot:

& Phoenix Framework

Welcome to Phoenix!

Phoenix is an Elixir Web Framework targeting full-featured, fault
tolerant applications with realtime functionality.

Resources Help

s Docs

Phoenix default page

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The Phoenix application we have cloned defines several Mix tasks. For more information
on the creation of custom Mix tasks, refer to the Creating custom Mix tasks recipe in
Chapter 1, Command Line.

One of these tasks, phoenix.new, is responsible for generating the structure of a Phoenix
application, taking into account the name of the app and the location where you want to
create it. These were the two parameters we passed to the task in step 1.

Afterwards, the procedure is pretty much standard in what is related to Mix applications:
get the dependencies, compile, and start the application. In the particular case of Phoenix,
as we saw in step 4, there is also a Mix task that starts the application (mix
phoenix.server).

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

In the introduction to this recipe, I mentioned one of the goals of Phoenix: associate high
productivity with high performance.

In the following recipes, we will be focusing on some common tasks that can give you an
idea of the productivity gains with this framework.

Now we will focus on the performance.

We will perform two additional steps, consolidating the protocols and running the
application in the production mode by disabling features such as code reloading that
definitely slow down our application.

To consolidate protocols, use the following command:

> MIX_ENV=prod mix compile.protocols

Now, to start the application in the production mode, use the following command:

> MIX_ENV=prod PORT=4001 elixir -pa _build/prod/consolidated -S mix
phoenix.start

It’s time to test the application with the wrk tool; performing 15 concurrent requests with
15 connections in 1 minute, we get these results:

wrk —cl5 —-t15 —d&@s hitp://localhost:4881
Running 1m test @ http://localhost:4881
15 threads and 15 connections
Thread Stats g Stdev Max
4.62 4.43ms 61.92ms

B1.33 1.88k

n 1.86m, 453.97MB read
3793.01

7.5THB

The machine used to run the Phoenix web app was my laptop, a 2011 MacBook Pro 13’
(2.3 GHz Intel Core i5), and even with this machine, Phoenix was able to serve 3,793
requests per second!

www.it-ebooks.info

http://www.it-ebooks.info/

Defining routes

In the previous recipe, we created our first Phoenix application. In this recipe, we will add
some routes to the phoenix to-do application.

By adding routes, we define the behavior of the application whenever a given
URL/endpoint is accessed. The Router task is used to parse the requests and then dispatch
them to the current controller’s action, passing any existing parameters to it.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Open the file generated in the previous recipe in your code editor. A copy of the full code
for this recipe can be found at Code/Chapter 7/phoenix_routes/todo/web/router.ex:

defmodule Todo.Router do
use Phoenix.Router

pipeline :browser do
plug :accepts, ~w(html)
plug :fetch_session
plug :fetch_flash
plug :protect_from_forgery
end

pipeline :api do
plug :accepts, ~w(json)
end

scope "/", Todo do
pipe_through :browser # Use the default browser stack

get "/", PageController, :index

get "/text", MyController, :plaintext
get "/generated", MyController, :send_html

end

Other scopes may use custom stacks.
scope '"/api", Todo do
pipe_through :api
end
end

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To define some routes, follow these steps:

1. Add the routes to define the /text and /generated endpoints. Below get "/",
PageController, :index, add these two lines:

get "/text", MyController, :plaintext
get "/generated", MyController, :send_html

2. Define the routes to a resource by adding resources "todos", TodosController to
the router.ex file:

defmodule Todo.Router do
use Phoenix.Router

pipeline :browser do
plug :accepts, ~w(html)
plug :fetch_session
plug :fetch_flash
plug :protect_from_forgery
end

pipeline :api do
plug :accepts, ~w(json)
end

scope "/", Todo do
pipe_through :browser # Use the default browser stack

get "/", PageController, :index

get "/text", MyController, :plaintext
get "/generated", MyController, :send_html

resources "todos", TodosController
end
Other scopes may use custom stacks.
scope "/api", Todo do
pipe_through :api

end
end

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

As mentioned in the introduction to this recipe, the router is responsible for parsing
incoming requests and dispatching them to the controller action that will handle the
request.

In step 1, we defined how requests to /text and /generated will be handled.

The generic definition is <method_macro> <path>, <controller>, <action>. We use
the get macro in both examples in step 1. This elixir macro expands and corresponds to
the HTTP GET verb. There are macros defined for the other verbs (PUT, POST, PATCH,
DELETE, HEAD, OPTIONS, CONNECT and TRACE).

The macro takes three arguments. The <path> argument is the endpoint we wish to define.
The <controller> and <action> arguments specify the module and function responsible
for handling the request.

In step 2, we defined a route using the resource macro. This macro only takes two
arguments: the name of the resource and the controller that will handle requests related to
that resource. When we use this macro, we will get eight actual endpoints for the todo
resource:

todos_path GET /todos Todo.TodosController.index/2
todos_path GET /todos/:id/edit Todo.TodosController.edit/2
todos_path GET /todos/new Todo.TodosController.new/2
todos_path GET /todos/ :id Todo.TodosController.show/2
todos_path POST /todos Todo.TodosController.create/2
todos_path PATCH /todos/:id Todo.TodosController.update/2
PUT /todos/:id Todo.TodosController.update/2
todos_path DELETE /todos/:id Todo.TodosController.destroy/2

We will have to implement the index/2, edit/2, new/2, show/2, create/2, update/2 and
destroy/2 functions (or actions, as they are called in this context) in the
TodosController module (in this context, the controller).

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

When defining a route using the resources macro, it is possible to define which actions to
include or exclude.

We will look into two examples about the usage of the resources macro with the only
and except directives.

First, define that our todo resources will only be listed and viewed (index and show
actions):

resources "todos", TodosController, only: [:index, :show]

Note

The actions referred here are functions defined in the controller. Some actions are standard
in REST. For more information on REST, please visit http://restful-api-

design.readthedocs.org/en/latest/methods.html.

Then define that our todo resources may not be changed after being created (no editing
will be possible):

resources '"todos'", TodosController, except: [:edit, :update]

To inspect the routes generated by each of these options, run mix phoenix.routes in the
command line inside the application’s root directory.

www.it-ebooks.info

http://restful-api-design.readthedocs.org/en/latest/methods.html
http://www.it-ebooks.info/

See also

e For more information on the router, visit

http://www.phoenixframework.org/v0.8.0/docs/routing

www.it-ebooks.info

http://www.phoenixframework.org/v0.8.0/docs/routing
http://www.it-ebooks.info/

Creating a controller

In Phoenix, controllers are Elixir modules that define functions (or actions) to handle the
requests dispatched by the router. The controllers are responsible for preparing and
passing data to the view layer and determining the rendering of these views.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To get started, we will extend the project defined in the Defining routes recipe. The
defined routes are as follows:

page_path GET / Todo.PageController.index/2
my_path GET /text Todo.MyController.plaintext/2
my_path GET /generated Todo.MyController.send_html/2
todos_path GET /todos Todo.TodosController.index/2
todos_path GET /todos/:id/edit Todo.TodosController.edit/2
todos_path GET /todos/new Todo.TodosController.new/2
todos_path GET /todos/:id Todo.TodosController.show/2
todos_path POST /todos Todo.TodosController.create/2
todos_path PATCH /todos/:id Todo.TodosController.update/2
PUT /todos/:id Todo.TodosController.update/2
todos_path DELETE /todos/:id Todo.TodosController.destroy/2

The root path (page_path) is handled by the PageController controller. This controller
was generated by default with the application. We will need to create the controllers to
handle the entries under my_path and todos_path. To do this, will create two new files:
todo/web/controllers/my_controller.ex and
todo/web/controllers/todos_controller.ex.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To create a controller, follow these steps:

1. We will start by adding the action that will handle requests to the /text endpoint.
Inside my_controller.ex, add the following code:

defmodule Todo.MyController do
use Phoenix.Controller

plug :action

def plaintext(conn, _params) do
text conn, "Plain text rendered from Phoenix controller!"
end

end

2. Now we will add an action to handle requests performed to the generated endpoint
by adding this code right below the plaintext action defined in the previous step:

def send_html(conn, _params) do
generated = """
<html>
<head>
<title>Generated HTML</title>
</head>
<body>
<h2>Creating Controllers</h2>
<p>It is possible to render html from a Phoenix controller!
</p>
</body>
</html>
html conn, generated
end

3. Now we will define the index action (that lists all todos) for the todos resource. We
will define it inside the todos_controller module:

defmodule Todo.TodosController do
use Phoenix.Controller

plug :action

def index(conn, _params) do
todo = [%{id: 1, task: "Write the other controller actions!",
created_at: "2014-12-13", status: "pending"}, %{id: 2, task: "Create
Views", created_at: "2014-12-13", status: "pending"}]
json conn, todo
end
end

Note

www.it-ebooks.info

http://www.it-ebooks.info/

To make this recipe more compact, we will change the line that defines the routes for
the todos resource. Open the router file (web/router.ex) and find the following line:

resources '"todos", TodosController

Change it to this:

resources "todos", TodosController, only: [:index]

This way, only the index action needs to be defined in order to have a working
controller.

. Now it’s time to start the server (mix phoenix.server) and visit all the endpoints for
which we have defined controller actions to check the result of our work:

1. http://localhost:4000/text
2. http://localhost:4000/generated
3. http://localhost:4000/todos

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Both controllers we defined are “namespaced” with the application name (Todo), and both
import the Phoenix.Controller module. This way, they have access to functions made
available by that module (more information on this mechanism is available in Using
module directives recipe in Chapter 4, Modules and Functions). The controllers also share
the plug :action line. This is a macro that handles dispatching to the right controller and
action according to what is defined in the router.

All of the functions, or actions, defined also share a common pattern: arguments.

They all accept conn and _params. The first argument is the structure that represents the
connection, and following Elixir’s message-passing, non-state sharing philosophy, the
connection is received as an argument and then returned as part of the result. In all three
cases, we return the connection:

e text conn "Plain text rendered from Phoenix controller!"
e json conn todos
e html conn generated

In the three controller actions we defined, we have used the text, HTML, and JSON
macros.

They define the type of data we will send as response.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

In step 3, we define the todos list as a structure (map) inside the controller. Phoenix
supports the interaction with the data stored in databases. You can use ETS, DETS, and
Mnesia, and you can also use an external database, such as PostgreSQL, via an Elixir
project named Ecto. To know more about this, please visit Ecto project’s website

(http://github.com/elixir-lang/ecto).

www.it-ebooks.info

http://github.com/elixir-lang/ecto
http://www.it-ebooks.info/

Creating views and templates

After the router determines the right controller and action to handle a request after the
controller performs all the tasks to prepare data to respond to the request, it generally
needs to output that data. In the previous recipe, we saw how a controller could respond
by rendering test and outputting static HTML or even JSON. What if we need to generate
an HTML response and that HTML must be dynamic, depending on the values passed by
the controller?

Before we proceed, there is one thing we have to make clear for those coming from other
frameworks: the view is not an HTML (or other markup) file. Views mainly render
templates but they are also responsible for providing functions that make data easier to
consume by templates. In Phoenix, a view is more like a decorator.

We may also use templates and layouts. Templates are the HTML structure where data
obtained via the controller and prepared by the view is displayed. Layouts are a way to
define a common structure shared by (possibly) multiple templates.

In this recipe, we will change the response of the TodosController index action. Instead
of returning JSON containing the todos, we will output the data in an HTML page.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To get started, open the application resulting from the Creating a controller recipe and
find this line:

json conn, todos

Replace it with this line:

assign(conn, :todos, todos)
We will also add plug :render right below plug :action.
The file should look like this:

defmodule Todo.TodosController do
use Phoenix.Controller

plug :action
plug :render

def index(conn, _params) do
todos = [%{id: 1, task: "Write the other controller actions!",
created_at: '"2014-12-13", status: "pending"}, %{id: 2, task: "Create
Views", created_at: "2014-12-13", status: "pending"}]
assign(conn, :todos, todos)
end
end

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

After changing the controller so that it renders a view, we will follow these steps to create
the view and a new layout:

1. Create a view by adding a new web/views/todos.view.ex file with the following
content:

defmodule Todo.TodosView do
use Todo.View
def todos(conn) do
Enum.map(conn.assigns.todos, fn(x)->x[:task] end)
end
end

2. Create a new template by adding the templates’ /todos/index.html.eex file with
this markup:

<div>
<h3>Views and Templates</h3>
<p>This is the template that will display only the task for each item
in our todo list.</p>

<p>TODO:</p>
<%= for t <- todos @conn do %>
<%= t %></1i>
<% end %>
</0l>
</div>

3. Start the Phoenix application:

> mix phoenix.server

4. Visit http://localhost:4000/todos to see the new template render a list with
pending tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 1, we define our view. As was mentioned in the introduction to the recipe, the view
acts like a decorator. In the index action of TodosController, we pass a structure and a
list of maps, each one defining a todo map. These maps have several keys: id, task,
created_at, and status. We use the view to filter each of the elements of the list and get
only the task field with this:

Enum.map(conn.assigns.todos, fn(x)->x[:task] end)

We map the todos structure assigned to the connection and define an anonymous function
to extract only the task key. The function defined in the view is todos/1. In step 2, we use
the result of the function in a list comprehension:

<%= for t <- todos @conn do %>

<%= t %></1i>
<% end %>
The file extension is for the markup file is html.eex, which means that we are using
HTML with embedded Elixir code for our template. The preceding block defining the list
comprehension mixes HTML and Elixir. Elixir code is declared inside <% %>, and when
we append the = sign, it means that the expression “appears” in the result.

Note
The code to render the todos list of maps mixes HTML and Elixir, as shown here:

start of block. Each entry in todos that will be represented by t
<%= for t <- todos @conn do %>

output the value of t inside an html 1li tag

<%= t %></1i>

#close the block

<% end %>

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

In our case, we only assign the todos data, but if we need to pass multiple values into the
view, it’s just a matter of calling assign several times in the controller and connecting
these calls with the pipe operator (|>). The assign call returns the connection (conn), and
it would be passed as the first value for subsequent assign function calls.

As a quick example, we will pass the todos and two messages to the view by writing the
following code:

defmodule Todo.TodosController do
use Phoenix.Controller

plug :action
plug :render

def index(conn, _params) do
todos = [%{id: 1, task: "Write the other controller actions!",
created_at: "2014-12-13", status: "pending"}, %{id: 2, task: "Create
Views", created_at: "2014-12-13", status: "pending"}]
conn
|> assign(:todos, todos)
|> assign(:message_one, "Hello")
|> assign(:message_two, "World!")
end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing topics
Topics in Phoenix are a form of implementing the publisher-subscriber pattern.

In this recipe, we will create a simple counter in a form of a function that will subscribe a
channel.

In TodosController, we will broadcast an event every time a request is made to the index
action. The counter will then receive the notification and will output a message to the
console with the number of times the action was called.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To get started, we will take the code resulting from the previous recipe. Open a code editor
and prepare to add pub/sub to the Phoenix application.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To implement topics in the Phoenix application, follow these steps:
1. Edit TodoController to make it look like this:

defmodule Todo.TodosController do
use Phoenix.Controller

plug :action
plug :render

def index(conn, _params) do
todos = [%{id: 1, task: "Write the other controller actions!",
created_at: "2014-12-13", status: "pending"}, %{id: 2, task: "Create
Views", created_at: "2014-12-13", status: "pending"}]

BROADCAST
Phoenix.PubSub.broadcast "counter_channel", { :action, controller:
"Todos", action: "index" }

assign(conn, :todos, todos)
end
end

2. Create a new lib/todo/access_counter.ex file and add the following code:

defmodule Todo.AccessCounter do
def start_link do
counter = 0
sub = spawn_link(Todo.AccessCounter, :count, [counter])
Phoenix.PubSub.subscribe(sub, "counter_channel")
{:0k, sub}
end
def count(counter) do
receive do
{ :action, params } ->
counter = counter + 1
I0.puts "Action #{params[:action]} in controller #
{params[:controller]} called #{counter} times!"

>
end
count(counter)
end

end

3. Register the new file as a worker under the supervision tree of the application. In the
lib/todo.ex file, define children this way:

children = [
worker (Todo.AccessCounter, [])

]

4. Start the application (mix phoenix.start) and visit http://localhost:4000/todos.
Refresh the page several times and the console will display something similar to this:

www.it-ebooks.info

http://www.it-ebooks.info/

20:44:18.652 request_id=SGu5Bs7IHfnS/oxHbPlY [info] GET /todos
20:44:18.779 request_id=SGu5Bs7IHfnS/oxHbPlY [debug] Processing by
Todo.TodosController.index/2

Parameters: %{"format" => "html"}

Pipelines: [:browser]
Action index in controller Todos called 5 times!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In step 1, when we add Phoenix.PubSub.broadcast "counter_channel", { :action,
controller: "Todos", action: "index" } to the controller action, we are notifying
“everyone” listening to the counter_channel channel. This means that every subscriber
of the channel will become aware of the message being published.

In step 2, we define a module that subscribes to counter_channel. Generically, the
module spawns a process that subscribes counter_channel, executing the count/1
function every time a message arrives in the subscribed channel. The subscription is
performed with this code:

Phoenix.PubSub.subscribe(sub, "counter_channel")

To have the module defined in step 2 running, we need to register it in the application’s
supervision tree. We do that in step 3 by registering the Todo.AccessCounter module as a
worker.

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting the Phoenix app with SSL

In a production scenario, it will be likely for a Phoenix application to listen to requests
using a secure protocol. HTTPS will be used in detriment of plain HTTP.

To accept connections securely, we need to launch the application with SSL support.

Fortunately, in Phoenix, configuring SSL is quite simple.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

In a Phoenix application, place the *.key and *.cert files under the priv directory.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To configure SSL in a Phoenix application, we will need to add the following to the
config/prod.exs file:

config :phoenix, Todo.Router,
https: [port: 443,
host: "example.com",
keyfile: System.get_env("YOUR_SSL_KEY_FILE"),
certfile: System.get_env("YOUR_APP_SSL_CERT_FILE")],

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

We insert the configuration for HTTPS connections by defining the values of the port
where the application will listen (443 is the default HTTPS port), the name of the host (the
host for which the certificate files were generated), and the location of the certificate files.

As this is an OTP application, these files will be searched under the priv directory on the
application’s root.

By inserting the configuration code in the prod.exs file under the conf directory of the
application, we are only enabling SSL for the production environment. This way, our
application will run by listening on HTTP in the development and test environments.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8. Interactions

This chapter will cover the following recipes:

e Using Redis and Postgres
e Using OS commands from within Elixir
e Getting Twitter data

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

In this chapter, we will perform some tasks, such as querying social media websites,
interacting with the underlying operating system, implementing pub-sub, and connecting
our Elixir applications to any other system using Redis. These recipes will be a little
longer, given that the tasks are a little more elaborate or extended than those in the recipes
from the previous chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Redis and Postgres

In this recipe, we will be using Redis and Postgres. The idea is to exemplify how we can
interact with these applications. Redis will be used as a message broker. We will
implement the pub-sub pattern. Using the Redis console, we will publish messages on a
specific channel, and our Elixir application will be subscribed to that channel and will
retrieve those messages, saving them in a relational database (Postgres) afterwards.

The idea behind the use of Redis is to show you how we can use it to pass messages
between applications. If we have two Erlang or Elixir applications, we can connect them
and pass messages between them without using any message broker. It is even
recommended that you not use any intermediate non-Elixir or non-Erlang application,
because we would then have to add the overhead of data marshaling and unmarshaling.
Between applications running in the Erlang VM, however, marshaling and unmarshaling
are not required. However, what if we want to connect two or more applications developed
in Elixir and Ruby, for instance?

This is where Redis comes in handy. More robust and elaborate applications exist—
RabbitMQ, for instance—but for the purposes of this recipe, and for most simple message
passing needs via pub/sub, Redis is fast, simple, and really easy to use.

As for the use of Postgres, we could definitely choose ETS, DETS, or Mnesia. These are
solutions that come for free in Elixir. They are included in the Erlang runtime.

However, as the idea of this chapter is to show you how to interact, Postgres seems to be a
good candidate, being one of the most robust RDBMS that are used.

After this longer than usual introduction, let’s get started with building an application that
will listen for messages, and as soon as they arrive, it will store them in a database.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

In this recipe, we will need to have Redis and Postgres installed. Please refer to Appendix,
Installation and Further Reading, for detailed instructions on how to install both

applications.

After making sure both applications are installed, we need to create a database that can be
used with our application. We will name it elixir_cookbook. To do this, open a terminal
window and insert this command:

> createdb elixir_cookbook

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To create our application, we will follow these steps:

1. Create a new application:

> mix new redis_and_postgresql --sup

2. Add the dependencies to mix.exs:

defp deps do
[
{ :exredis, github: "artemeff/exredis", tag: "0.1.0" },
{ :postgrex, "~> 0.7.0" },
{ :ecto, "~> 0.7.1" }
]

end

3. Add postgrex and ecto to the applications list to be started with the application:

def application do
[applications: [:logger, :postgrex, :ecto],
mod: {RedisAndPostgresql, []1}]

end

4. Fetch the dependencies and compile them:

> mix deps.get && mix deps.compile

5. Create the redis and postgres folders under the 1ib directory.
6. Create the 1ib/redis/subscriber.ex module with the following content:

defmodule Redis.Subscriber do
use GenServer
use Exredis
require Record
Record.defrecord :state, [client: nil, client_sub: nil]

@server _ MODULE___
@redis_url "127.0.0.1"
@redis_port "6379"
@notification_channel "elixir_cookbook"
@name :pubsub

def start_link do
:gen_server.start_link({:local, @server}, _ MODULE__, [1, [1)
end

def init(_options\\[]) do
client_sub = Exredis.Sub.start
client = Exredis.start_using_connection_string("redis://#
{@redis_url}:#{@redis_port}")
:global.register_name(@name, client)
_pid = Kernel.self
state = state(client: client, client_sub: client_sub)
Register the subscriber function

www.it-ebooks.info

http://www.it-ebooks.info/

client_sub |> Exredis.Sub.subscribe @notification_channel, fn(msg)
-> Redis.MsgPusher.send(msg) end
{:0k, state}
end

def terminate(_reason, state) do
close redis connection
client_sub = :erlang.list_to_pid(state.client_sub)
client_sub |> Exredis.Sub.stop
client = :erlang.list_to_pid(state.client)
client |> Exredis.stop
0k
end

end
7. Create the 1ib/redis/msg_pusher.ex module and add this code to it:

defmodule Redis.MsgPusher do

def send(msg) do
case msg do
{:message, _, extracted_msg, _} ->
I0.puts "#{log_time} [REDIS Msg Received] #{inspect msg}"
Postgres.Db.save_message(extracted_msg)
->
end
end
defp log_time do
{{year, month, day}, {hour, minute, second}} = :erlang.now |>
:calendar.now_to_local_time
"[#{year}/#{month}/#{day} #{hour}:#{minute}:#{second}]"
end

end

8. Add Redis.Subscriber to the application supervision tree in the
redis_and_postgresql.ex file:

children = [
worker (Redis.Subscriber, [])

]
9. Create the 1ib/postgres/repo.ex module and edit it so that it looks like this:

defmodule Postgres.Repo do
use Ecto.Repo, adapter: Ecto.Adapters.Postgres

def conf do
ecto://<USER>:<PASSWORD>@<HOST>/<DATABASE>

parse_url "ecto://username@localhost/elixir_cookbook"
end

define the place where to store migrations !

def priv do
app_dir(:redis_and_postgresql, "priv/repo")

www.it-ebooks.info

http://www.it-ebooks.info/

10.

11.

12.

13.

14.

end
end

Create the 1ib/postgres/message.ex module and add these lines:

defmodule Postgres.Message do
use Ecto.Model

schema "messages" do

field :message_from, :string

field :message_to, :string

field :message_text, :string
end

end

Generate a migration:

> mix ecto.gen.migration Repo create_messages

Add some SQL to the migration to define the table for the Message model. The file is
priv/repo/migrations/<timestamp>_create_messages.exs:

defmodule Repo.Migrations.CreateMessages do
use Ecto.Migration

def up do
"CREATE TABLE IF NOT EXISTS messages(id serial primary key,
message_from text, message_to text, message_text text)"
end

def down do
"DROP TABLE messages"
end
end

Run the migration to prepare the database:

> mix ecto.migrate Repo

Note
To revert all migrations, the command is as follows:

mix ecto.rollback Repo --all

Create the 1ib/postgres/db.ex module and add this code to it:

defmodule Postgres.Db do
import Ecto.Query, only: [from: 2]

alias to allow use of the struct
module that defines schema is Postgres.Message and not just Message
alias Postgres.Message

message will arrive as a string

def save_message(message) when is_binary message do
message must be converted to a map

www.it-ebooks.info

http://www.it-ebooks.info/

[message_from, message_to, message_text] = String.split(message,
I|’|I)
msg = %Message{message_from: message_from, message_to: message_to,
message_text: message_text}
Postgres.Repo.insert(msg)
end

def messages_from(from) do

guery = from m in Message, where: m.message_from == Afrom
Postgres.Repo.all(query)
end

def messages_to(to) do

guery = from m in Message, where: m.message_to == Ato
Postgres.Repo.all(query)
end

end

15. Add the Postgres.Repo module to the application’s supervision tree:

children = [
worker (Redis.Subscriber, []),
worker (Postgres.Repo, [])

1
16. Start the application:

> iex -S mix
17. Open a Redis command-line session on another terminal:
> redis-cli
18. Start publishing messages on the channel and take a look at the application log:

127.0.0.1:6379> PUBLISH elixir_cookbook "foo, bar,hello"
127.0.0.1:6379> PUBLISH elixir_cookbook "foo,baz,hello"
127.0.0.1:6379> PUBLISH elixir_cookbook "bar, foo, hello"
127.0.0.1:6379> PUBLISH elixir_cookbook "baz, foo, hello"

The next screenshot shows you the messages being published on the channel:

19. Now, it’s time to take a look at our database. Let’s retrieve some messages with these
commands:

www.it-ebooks.info

http://www.it-ebooks.info/

iex(2)> Postgres.Db.messages_from("foo")
iex(3)> Postgres.Db.messages_from("bar")
iex(4)> Postgres.Db.messages_to("baz")
iex(5)> Postgres.Db.messages_to("foo")

Here is the result of our queries:

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In steps 1 to 4, we create the application and add the dependencies: exredis for Redis
access, postgrex to interact with the database, and ecto, which is a DSL to write queries
and interact with databases.

In step 5, we create two folders so that we can namespace our modules, making it easier to
organize our code.

The module we define in step 6 is a GenServer and is responsible for establishing a
connection to a Redis server. We see several annotations (@server, @name, @redis_url,
@notification_channel and @name) that make it easier to change any of these values. We
covered the use of annotations in the Using module attributes as constants recipe in
Chapter 4, Modules and Functions.

In the init function, we initialize the process that will listen to the subscribed channel:

client_sub = Exredis.Sub.start

Start the connection to the Redis server:

client = Exredis.start_using_connection_string("redis://#{@redis_url}:#
{@redis_port}")

Register the name of this GenServer globally to make it accessible by name (pubsub):

:global.register_name(@name, client)

Note

Using the global registration allows us to refer to this process by its name from any node
of a cluster.

Initialize the state of the GenServer where we basically store the PIDs of the processes
that connect to Redis and the Redis channel:

state = state(client: client, client_sub: client_sub)

Finally, we determine the function to be invoked any time a new message arrives in the
channel:

client_sub |> Exredis.Sub.subscribe "#{@notification_channel}", fn(msg) ->
Redis.MsgPusher.send(msg) end

The function is send/1 and is defined in the Redis.MsgPusher module we defined in step
7. We use pattern matching to extract the message we get from Redis and then send
extracted_message (the actual message) to the function that will save the message in the
database (Postgres.Db.save_message):

{:message, _, extracted_msg, _} ->
I0.puts "#{log_time} [REDIS Msg Received] #{inspect msg}"
Postgres.Db.save_message(extracted_msg)

function

www.it-ebooks.info

http://www.it-ebooks.info/

In step 8, we register the module responsible for the connection to Redis under the
supervision tree. We don’t want any glitches to deprive us from the connection to Redis!

Next, we start dealing with database-related logic. Our interaction with Postgres is
achieved via Ecto.

In step 9, we begin by defining a repository. The conf function is responsible for
determining the URL we use to connect to the database, and the priv function receives the
name of the application and the location where the migrations will be stored as arguments.

In step 10, we define the schema for our messages. We determine the field names and their
types.

In steps 11 and 12, we use a custom Ecto Mix task to generate a migration file, and we add
SQL code to the migration. We define the database table that will hold our messages.

In step 13, we run the migration, and this effectively creates the database table.

Afterwards, we create the module that will interact with the database, which is
Postgres.Db. The function we registered as the one to be triggered when the Redis client
receives a message on the listening channel is defined in this module:

message will arrive as a string
def save_message(message) when 1is_binary message do
message must be converted to a map
[message_from, message_to, message_text] = String.split(message, ",")
msg = %Message{message_from: message_from, message_to: message_to,
message_text: message_text}
Postgres.Repo.insert(msg)
end

We begin by splitting the string we receive (comma-separated) and pattern match it to get
the message_from, message_to, and message_text fields that we will use to create a map
that we insert into the database via the Postgres.Repo module.

Note

By creating a schema in the Postgres.Message module, Ecto defines a struct with the
fields declared in that schema.

We also need to add the Postgresql.DB module to the application’s supervision tree
similar to what we did with Redis.Subscriber.

In the following steps, we use the Redis command line to publish messages on the
elixir_cookbook channel and watch them being logged in our application’s console.

In the last step, we perform some queries to retrieve the data stored in the database.

These queries are defined in the Postgres.Dbb module:

def messages_from(from) do

query = from m in Message, where: m.message from == ~from
Postgres.Repo.all(query)
end

www.it-ebooks.info

http://www.it-ebooks.info/

def messages_to(to) do

query = from m in Message, where: m.message_to == ~to
Postgres.Repo.all(query)
end

We start by building a query, and then we execute it via our Repo module. The syntax for
the queries is straightforward and is compared with LINQ by a few. The queries are also
composable and type-safe!

You may have noticed the » operator before from and to. This operator is overloaded by
Ecto, and it’s used when we need to access values outside Ecto because Ecto queries are
under their own syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

Using OS commands from within Elixir

It is possible to interact with the underlying operating system, execute OS commands, and
get the result in our Elixir applications.

To do this, we will be using Alexei Sholik’s porcelain
(https://hex.pm/packages/porcelain).

We will build a very simple application that will accept a string defining a path and will
return a list containing the entries for that path. We will use the 1s unix command without
leaving our Elixir application! We will also define a generic run function that will allow
the running of any command we pass as the argument.

www.it-ebooks.info

https://hex.pm/packages/porcelain
http://www.it-ebooks.info/

How to do it...

To create an application that interacts with the underlying operating system, we will
follow these steps:

1. Create a new application:

> mixX new o0s_commands

2. Add the porcelain app as a dependency in the mix.exs file:

defp deps do
[{:porcelain, "~> 2.0"}]
end

3. Register porcelain into the list of applications (inside the mix.exs file):

def application do
[applications: [:logger, :porcelain]]
end

4. Get the dependency and compile it:

> mix deps.get && mix deps.compile

5. Define the 1ist function that will return the entries in a given directory by entering
the following code in 1ib/os_commands . ex:

def list(path \\ ".") do
%Result{out: output, status: status} = Porcelain.exec("ls #{path}")
I0.puts output

End

Note
First of all, we will include the following in our module:

alias Porcelain.Result

This will allow us to use the Result struct defined by porcelain in a more convenient
way.

6. Define the run function that will run a command passed as the argument by entering
the following code in 1ib/os_commands.ex:

def run(command, options \\"") do
%Result{out: output, status: status} = Porcelain.shell(command,

[args])
I0.puts output
end
7. Compile and start the application:
> mix compile && iex -S mix

8. Lastly, let’s try to inspect some of our directories:

www.it-ebooks.info

http://www.it-ebooks.info/

10.

iex(1)> OsCommands.list
README . md

_build

config

deps

1lib

mix.exs

mix.lock

test

1ok

iex(2)> OsCommands.list "/usr"
X11

X11R6

bin
include
1lib
libexec
local

sbhin

share
standalone
:ok

Now, let’s run some commands:

iex(3)> OsCommands.run("date")
Mon Dec 8 20:15:25 WET 2014
1ok

We can even see the content of modules:

iex(4)> OsCommands.run("cat",
defmodule OsCommands do
alias Porcelain.Result

def list(path \\ ".") do

"lib/o0s_commands.ex")

%Result{out: output, status: status} = Porcelain.exec("1ls", [path])

I0.puts output
end

def run(command, options \\"

n) do

%Result{out: output, status: status} = Porcelain.shell("#{command}

#{options}")
I0.puts output
end
end

1ok

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

After creating the application and adding porcelain as a dependency, we have to configure
it to run automatically. In step 3, we add porcelain to the list of applications that will be
bootstrapped once the 0sCommands application starts.

In steps 5 and 6, we define two functions. The first one, 1ist, performs an 1s command,
and if no option for the path is passed, it defaults to the application directory. The run
function is more generic and allows you to execute any command available in the OS.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

It is possible to define the input as a file or a stream and the same goes for output as well.
Porcelain is a very powerful tool that allows us to build things such as filesystem monitors
that perform actions any time a file is changed. The most impressive thing is that it allows
us to leverage the power of the underlying operating system, expanding the available
options we have in Elixir.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e It is possible to use the Goon driver with porcelain. Goon is developed in Go and
allows access to more features with porcelain, specifically, the ability to signal EOF
to the external program and also send an OS signal to the program.

e For more information on porcelain, refer to the documentation available at

http://porcelain.readthedocs.org/.

www.it-ebooks.info

http://porcelain.readthedocs.org/
http://www.it-ebooks.info/

Getting Twitter data

In this recipe, we will build an application that will query the Twitter timeline for a given
word and will display any new tweet with that keyword in real time. We will be using an
Elixir twitter client extwitter as well as an Erlang application to deal with OAuth. We will

wrap all in a phoenix web application.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Before getting started, we need to register a new application with Twitter to get the API
keys that will allow the authentication and use of Twitter’s API. To do this, we will go to
https://apps.twitter.com and click on the Create New App button. After following the
steps, we will have access to four items that we need: consumer_key, consumer_secret,
access_token, and access_token_secret.

These values can be used directly in the application or setup as environment variables in
an initialization file for bash or zsh (if using Unix).

After getting the keys, we are ready to start building the application.

www.it-ebooks.info

https://apps.twitter.com
http://www.it-ebooks.info/

How to do it...

To begin with building the application, we need to follow these steps:

1. Create a new Phoenix application:

> mix phoenix.new phoenix_twitter_stream code/phoenix_twitter_stream

Note

For more information on how to create a Phoenix application, please refer to the
Creating a Phoenix application recipe in Chapter 7, Cowboy and Phoenix.

2. Add the dependencies in the mix.exs file:

defp deps do

[
{:phoenix, "~> 0.8.0"},
{:cowboy, "~> 1.0"},
{:oauth, github: "tim/erlang-oauth"},
{:extwitter, "~> 0.1"}

]

end

3. Get the dependencies and compile them:

> mix deps.get && mix deps.compile

4. Configure the application to use the Twitter API keys by adding the configuration
block with the keys we got from Twitter in the Getting ready section. Edit
lib/phoenix_twitter_stream.ex so that it looks like this:

defmodule PhoenixTweeterStream do
use Application

def start(_type, _args) do
import Supervisor.Spec, warn: false

ExTwitter.configure(
consumer_key: System.get_env("SMM_TWITTER_CONSUMER_KEY"),
consumer_secret: System.get_env("SMM_TWITTER_CONSUMER_SECRET"),
access_token: System.get_env("SMM_TWITTER_ACCESS_TOKEN"),
access_token_secret:
System.get_env("SMM_TWITTER_ACCESS_TOKEN_SECRET")

)

children = [
Start the endpoint when the application starts
worker (PhoenixTweeterStream.Endpoint, []),

Here you could define other workers and supervisors as children
worker (PhoenixTweeterStream.Worker, [argl, arg2, arg3]),

]

opts = [strategy: :one_for_one, name:

www.it-ebooks.info

http://www.it-ebooks.info/

PhoenixTweeterStream.Supervisor]
Supervisor.start_link(children, opts)
end

def config_change(changed, _new, removed) do
PhoenixTweeterStream.Endpoint.config_change(changed, removed)
0k
end
end

Note

In this case, the keys are stored as environment variables, so we use the
System.get_env function:

System.get_env("SMM_TWITTER_CONSUMER_KEY") (..)

If you don’t want to set the keys as environment variables, the keys can be directly
declared as strings this way:

consumer_key: "this-is-an-example-key" (..)

. Define a module that will handle the query for new tweets in the
lib/phoenix_twitter_stream/tweet_streamer.ex file, and add the following code:

defmodule PhoenixTwitterStream.TweetStreamer do

def start(socket, query) do
stream = ExTwitter.stream_filter(track: query)
for tweet <- stream do
Phoenix.Channel.reply(socket, "tweet:stream", tweet)
end
end

end

. Create the channel that will handle the tweets in the web/channels/tweets.ex file:

defmodule PhoenixTwitterStream.Channels.Tweets do
use Phoenix.Channel
alias PhoenixTwitterStream.TweetStreamer

def join("tweets", %{"track" => query}, socket) do
spawn(fn() -> TweetStreamer.start(socket, query) end)
{:0k, socket}

end

end

. Edit the application router (/web/router.ex) to register the websocket handler and
the tweets channel. The file will look like this:

defmodule PhoenixTwitterStream.Router do
use Phoenix.Router

pipeline :browser do

www.it-ebooks.info

http://www.it-ebooks.info/

10.

plug :accepts, ~w(html)

plug :fetch_session

plug :fetch_flash

plug :protect_from_forgery
end

pipeline :api do
plug :accepts, ~w(json)
end

socket "/ws" do
channel "tweets", PhoenixTwitterStream.Channels.Tweets
end

scope "/", PhoenixTwitterStream do
pipe_through :browser # Use the default browser stack

get "/", PageController, :index
end
end

Replace the index template (web/templates/page/index.html.eex) content with
this:

<div class="row'">
<div class="col-1g-12">
<ul id="tweets'">
</div>

<script src="/js/phoenix.js" type="text/javascript"></script>
<script src="https://code.jquery.com/jquery-2.1.1.js"
type="text/javascript"></script>
<script type="text/javascript">
var my_track = "programming";
var socket = new Phoenix.Socket("ws://" + location.host + "/ws");
socket.join("tweets", {track: my_track}, function(chan){
chan.on("tweet:stream", function(message){
console.log(message);
$("#tweets').prepend($('").text(message.text));
1)
1)

</script>
</div>
Start the application:

> mix phoenix.server

Go to http://localhost:4000/ and after a few seconds, tweets should start arriving

and the page will be updated to display every new tweet at the top.

www.it-ebooks.info

http://www.it-ebooks.info/

Get Started

&‘E—A Phoenix Framework

» Powersdup Up with #SandraBeck and Linda Franklin on #ToginetRadio #Best #Web #Talk #Programming
hittpeft co/haWiFkNISa

« #Best #Web #Talk #Programming hitp:/t.cofjByMIYVDVZ2 Poweredup Up with #SandraBeck and Linda
Frankiin on #ToginetRadio

» #DamienMizdow is still the bast part of @WWE programming! #wwe #WWETLC #TagTeamTitles

« AT @AdobeEdu: Try an #hourfcode with our frea courses on programming. Earm a certificate of
completion with Sadobeknowhow hitpi/Leo/TIVM...

+ FBest #Web #Talk #Programming httpu/t.co/MNJxHQESV] Poweredup Up with #SandraBeck and Linda
Frankdin on #ToginetRadio

» The only dowrside to watching 1 star Metfli programming is it usually gets cancelled after 1 season
Samp; now I'll never know what happened!

» FAT @programming_|: LIS H-r 2 T VoL P — 20 32410 3 2 T 00 HHRME DU B0)
FR014.0008 - o fiA. BL-< 85 htpiit.co/4gTEJCodYr #programming

» AT @AdobeEdu: Try an #hounsicode with our free courses on programming. Eam a certificate of
completion with Sadobeknowhow httpa/toaTIVN. ..

« BBest #Web #Talk #Programming http:/t.co/GG 1gidekuZ Powered Up Talk Radio with @SandraBeck and
Linda Franklin on @ToginetRadio

= | really want to hard code in #WebGL. Not wanting 1o code utilizing third party libraries. Where is the hard
work, in that? #programming

+ @yancyvance Bash programming should be standard topic in Operating Systems classes, As Assistant
Dean, | order a content review immediately

« @Toni_Pipicelli @shaunheron #TheluckyCountry Off"l Vid: http:/t.co/BZ3SsRinll New fr @the3basics. Pls
add to on-air prograrnming #Wallauts

« @latergs In what workd should those things ever combing? And also, have you taken control of WWE

programming?

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

We start by creating a Phoenix application. We could have created a simple application to
output the tweets in the console or even used something like what was implemented in the
Implementing a websocket handler recipe in Chapter 7, Cowboy and Phoenix. However,
Phoenix is a great choice for our purposes, displaying a web page with tweets getting
updated in real time via websockets!

In step 2, we add the dependencies needed to work with the Twitter API. We use parroty’s
extwitter Elixir application (https://hex.pm/packages/extwitter) and Tim’s erlang-oauth
application (https://github.com/tim/erlang-oauth/). After getting the dependencies and
compiling them, we add the Twitter API keys to our application (step 4). These keys will
be used to authenticate against Twitter where we previously registered our application.

In step 5, we define a function that, when started, will query Twitter for any tweets
containing a specific query.

The stream = ExTwitter.stream_filter(track: query) line defines a stream that is
returned by the ExTwitter application and is the result of filtering Twitter’s timeline,
extracting only the entries (tracks) that contain the defined query.

The next line, which is for tweet <- stream do Phoenix.Channel.reply(socket,
"tweet:stream", tweet), is a stream comprehension. For every new entry in the stream
defined previously, send the entry through a Phoenix channel.

Step 6 is where we define the channel. This channel is like a websocket handler. Actually,
we define a join function:

def join(socket, '"stream", %{"track" => query}) do
reply socket, "join", %{status: "connected"}
spawn(fn() -> TweetStreamer.start(socket, query) end)
{:0k, socket}

end

It is here, when the websocket connection is performed, that we initialize the module
defined in step 5 in the spawn call. This function receives a query string defined in the
frontend code as track and passes that string to ExTwitter, which will use it as the filter.

In step 7, we register and mount the websocket handler in the router using use
Phoenix.Router.Socket, mount: "/ws", and we define the channel and its handler
module using channel "tweets", PhoenixTwitterStream.Channels.Tweets.

Note

The channel definition must occur outside any scope definition!

If we tried to define it, say, right before get "/", PageController, :index, the compiler
would issue an error message and the application wouldn’t even start.

The last code we need to add is related to the frontend. In step 8, we mix HTML and
JavaScript on the same file that will be responsible for displaying the root page and

www.it-ebooks.info

https://hex.pm/packages/extwitter
https://github.com/tim/erlang-oauth/
http://www.it-ebooks.info/

establishing the websocket connection with the server. We use a phoenix.js library helper
(<script src="/js/phoenix.js" type="text/javascript"></script>), providing
some functions to deal with Phoenix websockets and channels.

We will take a closer look at some of the code in the frontend:

// initializes the query .. in this case filter the timeline for

// all tweets containing "programming"

var my_track = "programming";

// initialize the websocket connection. The endpoint is /ws. //(we already

have registered with the phoenix router on step 7)

var socket = new Phoenix.Socket("ws://" + location.host + "/ws");

// in here we join the channel 'tweets'

// this code triggers the join function we saw on step 6

// when a new tweet arrives from the server via websocket

// connection it is prepended to the existing tweets in the page

socket.join("tweets", "stream", {track: my_track}, function(chan){

chan.on("tweet:stream", function(message){

$('#tweets').prepend($('").text(message.text));
1)

1)

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

If you wish to see the page getting updated really fast, select a more popular word for the
query.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e In Chapter 7, Cowboy and Phoenix, there are several recipes related to the Phoenix
framework, from creating an application to setting up each of the components. If you
wish, refer to these recipes to gain a better understanding of Phoenix.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A. Installation and Further
Reading

Now that we have learnt about Elixir, it is a good idea to also see which useful websites

are available that will help us to enhance our knowledge. In this appendix, we will cover
how to install Elixir, PostgreSQL, and Redis, and we will look at a few external website

links that will help us with further reading.

Let’s start with the installation.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Elixir

We need to visit http://elixir-lang.org/install.html for all the documentation needed to
install Elixir.

This page will help you with all the information on installing Elixir and Erlang on major
operating systems.

www.it-ebooks.info

http://elixir-lang.org/install.html
http://www.it-ebooks.info/

Installing PostgreSQL

Please visit the following links to install PostgreSQL.:

¢ Information on several operating systems’ installation process for PostgreSQL can be

found at https://wiki.postgresqgl.org/wiki/Detailed_installation_guides
e PostgreSQL can be downloaded from http://www.postgresgl.org/download/

www.it-ebooks.info

https://wiki.postgresql.org/wiki/Detailed_installation_guides
http://www.postgresql.org/download/
http://www.it-ebooks.info/

Installing Redis

The following links will help you get up and running with Redis:

e Visit http://redis.io to get to the Redis homepage

e The download page and installation instructions can be accessed at
http://redis.io/download

e If you want to go through the official documentation for Redis, visit

http://redis.io/documentation

www.it-ebooks.info

http://redis.io
http://redis.io/download
http://redis.io/documentation
http://www.it-ebooks.info/

Some useful links

Further reading is always important to broaden your knowledge base. Let’s go through
some of the useful links that will help us gain more insight.

www.it-ebooks.info

http://www.it-ebooks.info/

Elixir
Here are a few references on Elixir:

e The Elixir homepage is available at http://elixir-lang.org.

e The Getting Started guide is available at http://elixir-lang.org/getting-
started/introduction.html.

e The Elixir documentation is available at http://elixir-lang.org/docs.html.

e Packages (the Elixir package manager) can be accessed at https://hex.pm.

e The source code can be accessed at https://github.com/elixir-lang/elixir.

www.it-ebooks.info

http://elixir-lang.org
http://elixir-lang.org/getting-started/introduction.html
http://elixir-lang.org/docs.html
https://hex.pm
https://github.com/elixir-lang/elixir
http://www.it-ebooks.info/

The Phoenix framework

The homepage of the Phoenix framework can be accessed at
http://www.phoenixframework.org.

www.it-ebooks.info

http://www.phoenixframework.org
http://www.it-ebooks.info/

Erlang

The Erlang homepage is available at http://www.erlang.org.
The official documentation for Erlang can accessed at http://www.erlang.org/doc.html.

www.it-ebooks.info

http://www.erlang.org
http://www.erlang.org/doc.html
http://www.it-ebooks.info/

Index
A

add_user function / How it works...
Agent.get function / How it works...
Agent.update function / How it works...
Agent module
o about / Using agents as an abstraction around states

¢ application configuration

o managing / How to do it..., How it works...
e Application module

o URL / See also
e applications

o deploying / Deploying applications and updating a running system, How it

works...

e atoms/ How to do it...

www.it-ebooks.info

http://www.it-ebooks.info/

@behaviour module attribute

o using / How to do it..., How it works...

behaviors
about / Introduction

(e]

o Supervisor / There’s more..
GenEvent / There’s more...

(e]

o Application / There’s more.

binary concatenation operator (<>)
o used, for joining strings / Joining strings

Bullet
o about / There’s more...
o URL / There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

channels / Creating a Phoenix application
code

o executing, in different node / Executing code in a different node, How it
works. ..
codepoint / Introduction
code_change function / How it works...
concurrent function / How it works. ..
conf function / How it works...
conform
o URL / There’s more...
constants
o module attributes, using as / Using module attributes as constants, How to do
it..., See also

controller
o creating / Creating a controller, How to do it..., How it works...
Cowboy

o about / Introduction

o setting up / Setting up Cowboy, How to do it..., How it works..., See also
custom Mix tasks

o creating / Creating custom Mix tasks, How to do it..., How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

D

¢ dependencies
o managing / Managing dependencies, How to do it..., How it works...

e dev/ Managing application configuration
e documentation

o accessing, within IEx / Getting help and accessing documentation within TEXx,
How to doit..., How it works..., There’s more...

o help, getting in IEx / Getting help and accessing documentation within IEXx,
How to do it..., How it works..., There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

E

e Ecto project

o URL / There’s more...

e Elixir

o Erlang, using from / Using Erlang from Elixir, There’s more...
strings / Introduction
modules / Introduction

availability feature / Deploying applications and updating a running system

O O O o

How it works...

o URL / Installing Elixir

o installing / Installing Elixir
o references / Elixir

Elixir application
o creating, with Mix / Creating a simple application, How to do it..., How it
works. ..
o URL /How it works...
Elixir documentation, Mix.Tasks
o URL / See also
Elixir Release Manager (exrm) / Packaging and releasing an OTP application
Enum.reduce/3 function
o using / There is more...
Enum.zip/2 function / How it works...
enumerables

o mapping / Mapping and reducing enumerables, How to do it..., How it works...

OS commands, using / Using OS commands from within Elixir, How to do it...,

o reducing / Mapping and reducing enumerables, How to do it..., How it works...
o working with / How to do it...
Erlang
o URL / Getting ready, Erlang
o using, from Elixir / Using Erlang from Elixir, There’s more...
erlang-oauth application
o URL / How it works...
Erlang VM
o about / Making code run on all available CPUs
Erlang VM scheduler
o computations, distributing through available CPUs / How to do it..., How it
works...
errors
o handling / Handling errors and managing exceptions, How to do it..., How it
works..., There’s more...
o using / How it works...

escript option / Getting ready
ETS

www.it-ebooks.info

http://www.it-ebooks.info/

o about / Using an ETS table to share the state
ETS table
o used for sharing state / Using an ETS table to share the state, How to do it...,
How it works...
exceptions
o managing / Handling errors and managing exceptions, How to do it..., How it
works..., There’s more...
exits
o using / How it works...

extwitter / Getting Twitter data

www.it-ebooks.info

http://www.it-ebooks.info/

fetch_url(url) function / How it works...
fetch_url function / How it works...
file
o streaming, as resource / Streaming a file as a resource, How to do it..., How it
works...
flush command / How it works...
function definitions

o guard clauses, using / Using guard clauses and pattern matching in function
definitions, How to do it..., How it works...

o pattern matching, using / Using guard clauses and pattern matching in function
definitions, How to do it..., How it works...
functions

o with default arguments, defining / Defining functions with default arguments,
How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

GenServer
o implementing / Implementing a GenServer, How to do it..., How it works...,
There’s more...
o expanding / Expanding our server, How it works...
o URL/ See also
gen_server module
o URL/ See also
get function / How it works...
guard clauses

o using, in function definitions / Using guard clauses and pattern matching in
function definitions, How to do it..., How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

HashDict / How it works...
hex.pm
o URL / How it works...
Hex package manager
o URL / Managing dependencies
Hex usage
o URL/ See also
HTTPoison

o URL / Getting ready
HTTPoison response

o pattern matching / Pattern matching an HTTPoison response, How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

I

e [D3 vl tag

e}

IEx

e}

e}

O O O

e}

URL / How it works...

about / Introduction

used, for prototyping ideas / Using the terminal to prototype and test ideas, How
it works...

used, for testing ideas / Using the terminal to prototype and test ideas, How it
works...

URL / Getting ready

documentation, getting help / How to do it..., How it works...
documentation, accessing / How to do it..., How it works...

system, inspecting / Inspecting your system in I[Ex, How to do it..., See also

immutability of data

e}

e}

about / Understanding immutability, Getting ready
demonstrating / How to do it..., How it works...

init function / How it works...

e}

about / How it works...

insert_replaced function / How it works...
integers / How to do it...

is_binary function / How it works...
is_list function / How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

J

e join function / How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

K

e key/value store
o creating, with map / Creating a key/value store with a map, How to do it...,
How it works...
o about / Using an ETS table to share the state
o creating / Getting ready
e keyword list
o about / How it works...

o manipulating / Creating and manipulating keyword lists, How to do it..., How it

works...
o creating / Creating and manipulating keyword lists, How to do it..., How it
works...

www.it-ebooks.info

http://www.it-ebooks.info/

lazy (even infinite) sequences
o generating / Generating lazy (even infinite) sequences, How it works..., There is
more...
List.foldl/3 function / How to do it...
lists
o adding / Adding and subtracting lists, How it works...
subtracting / Adding and subtracting lists, How it works...
adding, with ++ operator / How to do it...
subtracting, with — operator / How to do it...
tuples, combining into / Combining tuples into a list, How it works...
locate function / How it works...

O O O o

www.it-ebooks.info

http://www.it-ebooks.info/

map
o about / Creating a key/value store with a map
o used, for creating key/value store / Creating a key/value store with a map, How
to do it..., How it works...
Map.new/0 function / How to do it...
messages
o between processes, sending / Sending messages between processes, Getting
ready, How to do it..., How it works..., There’s more...
metadata
o reading, from MP3 files / Reading and writing metadata from MP3 files, How to
doit..., How it works..., There’s more...
o writing, from MP3 files / Reading and writing metadata from MP3 files, How it
works...
o references / There’s more...
Mix
o about / Introduction
o used, for creating Elixir application / How to do it..., How it works...
module
o using, in scripted mode / Using a module in the scripted mode, How to do it...
module attributes
o using, as constants / Using module attributes as constants, How to do it..., See
also
module directives
o using / Using module directives, How to do it..., How it works...
modules
o loading / Loading and compiling modules, How to do it..., How it works...
o compiling / Loading and compiling modules, How to do it..., How it works...
o about / Introduction
o namespacing / Namespacing modules, There’s more...
o documenting / Documenting modules, How to do it...
MP3 files
o metadata, writing / Reading and writing metadata from MP3 files, How to do
it..., How it works...
o metadata, reading / Reading and writing metadata from MP3 files, How to do
it..., How it works..., There’s more...
multiple concurrent computations
o performing, with Task module / Using tasks to perform multiple concurrent
computations, Getting ready, How to do it..., How it works..., There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

N

e named nodes

o creating / Creating named nodes, Getting ready, How it works...
e Node.spawn function / How it works...
¢ nodes

o connecting / Connecting nodes, How it works..., See also

www.it-ebooks.info

http://www.it-ebooks.info/

++ operator

o used, for adding lists / How to do it...
— operator

o used, for subtracting lists / How to do it...
= operator / How it works...

Observer
o used, for inspecting system / Inspecting your system with Observer, How to do
it...

o using, for inspecting supervisors / Using Observer to inspect supervisors and
processes, How to do it..., How it works...

o using, for inspecting processes / Using Observer to inspect supervisors and
processes, How to do it..., How it works...
operations
o combining, |> operator / Combining operations with the |> operator, Getting
ready, How to do it..., How it works...
OptionParse.parse function / How it works...
OS commands
o using, from Elixir / Using OS commands from within Elixir, How to do it...,
How it works...
OTP
o about / Introduction
OTP application
o packaging / Packaging and releasing an OTP application, How to do it..., How
it works..., There’s more...
o releasing / Packaging and releasing an OTP application, How to do it..., How it
works..., See also
|> operator
o used, for combining operations / Combining operations with the [> operator,
Getting ready, How to do it..., How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

pattern matching
o using / Using pattern matching, How to do it..., How it works...

o HTTPoison response / Pattern matching an HTTPoison response, How it

works...
o using, in function definitions / Getting ready, How to do it..., How it works...
patterns

o string codepoints, replacing with / Replacing string codepoints with patterns,
How it works...

Perl Compatible Regular Expressions (PCRE) / Using regular expressions
Phoenix
o about / Introduction
Phoenix application
o creating / Creating a Phoenix application, How it works..., There’s more...
o topics, implementing / Implementing topics, How to do it..., How it works...
o protecting, with SSL / Protecting the Phoenix app with SSL, How it works...
Phoenix framework
o URL / The Phoenix framework
phone_book.ex module
o creating / How to do it..., How it works...

porcelain
o URL / Using OS commands from within Elixir, See also
Postgres
o using / Using Redis and Postgres, Getting ready, How to do it..., How it
works. ..
Postgresql

o installing / Installing PostgreSQL
o URL, for installation / Installing PostgreSQL
o URL, for download / Installing PostgreSQL

print function / How to do it...
print_each_from_list function / How it works...
process ID (PID) / How it works...
Project Gutenberg

o URL /How it works...
published / How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

range
o used, for slicing strings / Slicing strings with ranges, How to do it..., There’s
more. ..
recursive function / How to do it...
Redis
o using / Using Redis and Postgres, How to do it..., How it works...

o installing / Installing Redis

o URL / Installing Redis
o references / Installing Redis

Regex.compile! function / How it works...
regular expressions

o using / How to do it..., How it works...
release mechanisms

o URL/ See also

REPL
o about / Using the terminal to prototype and test ideas
resource
o file, streaming as / Streaming a file as a resource, How to do it..., How it
works. ..
REST
o URL /There’s more...
router
o URL/ See also
routes

o defining / Defining routes, How to do it..., How it works..., There’s more...
run/1 function / How it works...
running system
o updating / Deploying applications and updating a running system, How it
works. ..
run_me function / How to do it...

www.it-ebooks.info

http://www.it-ebooks.info/

@shortdoc attribute / How it works...
scripted mode
o module, using / Using a module in the scripted mode, How to do it...
search_user function / How it works...
sequential function / How it works...
spawn_link function / There’s more...
SSL
o used, for protecting Phoenix application / How to do it..., How it works...
start_link function / How it works...
stateful server process
o creating / Creating a stateful server process (messages with counters), Getting
ready, How it works..., See also
static files
o serving / Serving static files, How to do it..., How it works...
String.slice/2 function / How it works...
String.split_at function / How it works...
string codepoints
o replacing, with patterns / Replacing string codepoints with patterns, How to do
it..., How it works...
strings
o joining / How to do it..., How it works...
o splitting / Splitting strings, How to do it..., How it works...
o slicing, with range / Slicing strings with ranges, How it works..., There’s
more...
subscriber / How it works...
sum function / How it works...
supervised application
o generating / Generating a supervised application, How it works...
supervisor
o creating / Creating a supervisor, Getting ready, How it works...
o implementing / How to do it...
Supervisor module
o URL / See also, See also
symbol / How it works...
system
o in IEX, inspecting / Inspecting your system in [Ex, How to do it..., See also
o inspecting, with Observer / Inspecting your system with Observer, How to do
System.get_env function / How to do it...

www.it-ebooks.info

http://www.it-ebooks.info/

Task.await function / How it works...
Task.Supervisor module
o URL / There’s more...
Task module
o used, for performing multiple concurrent computations / Using tasks to perform
multiple concurrent computations, Getting ready, How to do it..., How it
works..., There’s more...
o URL / There’s more...
templates
o about / Creating a Phoenix application
o creating / Creating views and templates, How it works..., There’s more...
terminate function / How it works...
text
o word frequency, determining / Getting ready, How to do it..., How it works...
throws
o using / How it works...
tooling, Elixir / How it works...
topics
o about / Creating a Phoenix application
o implementing, in Phoenix application / Getting ready, How to do it..., How it
works...
tuples
o combining, into list / Combining tuples into a list, How it works...
Twitter data
o obtaining / Getting Twitter data, How to do it..., How it works..., There’s
more...

www.it-ebooks.info

http://www.it-ebooks.info/

U

e umbrella applications

o generating / Generating umbrella applications, How to do it..., How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

\Y

® views
o creating / Creating views and templates, How to do it..., How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

websocket handler
o implementing / Implementing a websocket handler, How to do it..., How it
works. ..
websocket _handle function / How it works...
websocket_info function / How it works...
websocket_init function / How it works...
websocket_terminate function / How it works...
word frequency
o determining, in text / Determining the word frequency in a text, How to do it...,
How it works...
word list
o creating / Creating a word list, There’s more...
wrk tool / There’s more...

~W sigils
o using / Creating a word list, How it works...
~w sigils

o using / Creating a word list, How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

	Elixir Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Command Line
	Introduction
	Using the terminal to prototype and test ideas
	Getting ready
	How to do it…
	How it works…
	There's more…
	Loading and compiling modules
	Getting ready
	How to do it…
	How it works…
	There's more…
	Getting help and accessing documentation within IEx
	How to do it…
	How it works…
	There's more…
	Using Erlang from Elixir
	Getting ready
	How to do it…
	How it works…
	There's more…
	Inspecting your system in IEx
	Getting ready
	How to do it…
	How it works…
	See also
	Inspecting your system with Observer
	Getting ready
	How to do it…
	Creating a simple application
	How to do it…
	How it works…
	See also
	Managing dependencies
	Getting ready
	How to do it…
	How it works…
	See also
	Generating a supervised application
	How to do it…
	How it works…
	See also
	Generating umbrella applications
	How to do it…
	How it works…
	See also
	Managing application configuration
	How to do it…
	How it works…
	Creating custom Mix tasks
	How to do it…
	How it works…
	2. Data Types and Structures
	Understanding immutability
	Getting ready
	How to do it…
	How it works…
	Adding and subtracting lists
	Getting ready
	How to do it…
	How it works…
	Combining tuples into a list
	Getting ready
	How to do it…
	How it works…
	See also
	Creating and manipulating keyword lists
	Getting ready
	How to do it…
	How it works…
	Using pattern matching
	Getting ready
	How to do it…
	How it works…
	See also
	Pattern matching an HTTPoison response
	Getting ready
	How to do it…
	How it works…
	Creating a key/value store with a map
	Getting ready
	How to do it…
	How it works…
	See also
	Mapping and reducing enumerables
	Getting ready
	How to do it…
	How it works…
	There is more…
	Generating lazy (even infinite) sequences
	How to do it…
	How it works…
	There is more…
	Streaming a file as a resource
	Getting ready
	How to do it…
	How it works…
	3. Strings and Binaries
	Introduction
	Joining strings
	Getting ready
	How to do it…
	How it works…
	There's more…
	Splitting strings
	Getting ready
	How to do it…
	How it works…
	See also
	Replacing string codepoints with patterns
	Getting ready
	How to do it…
	How it works…
	See also
	Slicing strings with ranges
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using regular expressions
	Getting ready
	How to do it…
	How it works…
	See also
	Combining operations with the |> operator
	Getting ready
	How to do it…
	How it works…
	Creating a word list
	Getting ready
	How to do it…
	How it works…
	There's more…
	Determining the word frequency in a text
	Getting ready
	How to do it…
	How it works…
	Reading and writing metadata from MP3 files
	Getting ready
	How to do it…
	How it works…
	There's more…
	4. Modules and Functions
	Introduction
	Namespacing modules
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using module attributes as constants
	How to do it…
	How it works…
	See also
	Enforcing behaviors
	How to do it…
	How it works…
	See also
	Documenting modules
	Getting ready
	How to do it…
	Using module directives
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using a module in the scripted mode
	How to do it…
	How it works…
	There's more…
	Defining functions with default arguments
	Getting ready
	How to do it…
	How it works…
	Using guard clauses and pattern matching in function definitions
	Getting ready
	How to do it…
	How it works…
	5. Processes and Nodes
	Introduction
	Sending messages between processes
	Getting ready
	How to do it…
	How it works…
	There's more…
	Making code run on all available CPUs
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using tasks to perform multiple concurrent computations
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating a stateful server process (messages with counters)
	Getting ready
	How to do it…
	How it works…
	See also
	Using agents as an abstraction around states
	How to do it…
	How it works…
	There's more…
	Using an ETS table to share the state
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating named nodes
	Getting ready
	How to do it…
	How it works…
	See also
	Connecting nodes
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Executing code in a different node
	Getting ready
	How to do it…
	How it works…
	There's more…
	6. OTP – Open Telecom Platform
	Introduction
	Implementing a GenServer
	Getting ready
	How to do it…
	How it works…
	There's more…
	Expanding our server
	Getting ready
	How to do it…
	How it works…
	See also
	Creating a supervisor
	Getting ready
	How to do it…
	How it works…
	See also
	Using Observer to inspect supervisors and processes
	How to do it…
	How it works…
	Handling errors and managing exceptions
	Getting ready
	How to do it…
	How it works…
	There's more…
	Packaging and releasing an OTP application
	Getting ready…
	How to do it…
	How it works…
	There's more…
	See also
	Deploying applications and updating a running system
	Getting ready
	How to do it…
	How it works…
	See also
	7. Cowboy and Phoenix
	Introduction
	Setting up Cowboy
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Serving static files
	Getting ready
	How to do it…
	How it works…
	Implementing a websocket handler
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating a Phoenix application
	Getting ready
	How to do it…
	How it works…
	There's more…
	Defining routes
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating a controller
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating views and templates
	Getting ready
	How to do it…
	How it works…
	There's more…
	Implementing topics
	Getting ready
	How to do it…
	How it works…
	Protecting the Phoenix app with SSL
	Getting ready
	How to do it…
	How it works…
	8. Interactions
	Introduction
	Using Redis and Postgres
	Getting ready
	How to do it…
	How it works…
	Using OS commands from within Elixir
	How to do it…
	How it works…
	There's more…
	See also
	Getting Twitter data
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	A. Installation and Further Reading
	Installing Elixir
	Installing PostgreSQL
	Installing Redis
	Some useful links
	Elixir
	The Phoenix framework
	Erlang
	Index

