
www.it-ebooks.info

http://www.it-ebooks.info/

Elixir	Cookbook

www.it-ebooks.info

http://www.it-ebooks.info/

Table	of	Contents

Elixir	Cookbook

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Sections

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Command	Line

Introduction

Using	the	terminal	to	prototype	and	test	ideas

Getting	ready

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…

How	it	works…

There’s	more…

Loading	and	compiling	modules

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Getting	help	and	accessing	documentation	within	IEx

How	to	do	it…

How	it	works…

There’s	more…

Using	Erlang	from	Elixir

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Inspecting	your	system	in	IEx

Getting	ready

How	to	do	it…

How	it	works…

See	also

Inspecting	your	system	with	Observer

Getting	ready

How	to	do	it…

Creating	a	simple	application

How	to	do	it…

How	it	works…

See	also

Managing	dependencies

Getting	ready

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…

How	it	works…

See	also

Generating	a	supervised	application

How	to	do	it…

How	it	works…

See	also

Generating	umbrella	applications

How	to	do	it…

How	it	works…

See	also

Managing	application	configuration

How	to	do	it…

How	it	works…

Creating	custom	Mix	tasks

How	to	do	it…

How	it	works…

2.	Data	Types	and	Structures

Understanding	immutability

Getting	ready

How	to	do	it…

How	it	works…

Adding	and	subtracting	lists

Getting	ready

How	to	do	it…

How	it	works…

Combining	tuples	into	a	list

Getting	ready

How	to	do	it…

How	it	works…

See	also

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	and	manipulating	keyword	lists

Getting	ready

How	to	do	it…

How	it	works…

Using	pattern	matching

Getting	ready

How	to	do	it…

How	it	works…

See	also

Pattern	matching	an	HTTPoison	response

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	key/value	store	with	a	map

Getting	ready

How	to	do	it…

How	it	works…

See	also

Mapping	and	reducing	enumerables

Getting	ready

How	to	do	it…

How	it	works…

There	is	more…

Generating	lazy	(even	infinite)	sequences

How	to	do	it…

How	it	works…

There	is	more…

Streaming	a	file	as	a	resource

Getting	ready

How	to	do	it…

How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

3.	Strings	and	Binaries

Introduction

Joining	strings

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Splitting	strings

Getting	ready

How	to	do	it…

How	it	works…

See	also

Replacing	string	codepoints	with	patterns

Getting	ready

How	to	do	it…

How	it	works…

See	also

Slicing	strings	with	ranges

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	regular	expressions

Getting	ready

How	to	do	it…

How	it	works…

See	also

Combining	operations	with	the	|>	operator

Getting	ready

How	to	do	it…

How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	a	word	list

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Determining	the	word	frequency	in	a	text

Getting	ready

How	to	do	it…

How	it	works…

Reading	and	writing	metadata	from	MP3	files

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

4.	Modules	and	Functions

Introduction

Namespacing	modules

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	module	attributes	as	constants

How	to	do	it…

How	it	works…

See	also

Enforcing	behaviors

How	to	do	it…

How	it	works…

See	also

Documenting	modules

Getting	ready

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…

Using	module	directives

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	a	module	in	the	scripted	mode

How	to	do	it…

How	it	works…

There’s	more…

Defining	functions	with	default	arguments

Getting	ready

How	to	do	it…

How	it	works…

Using	guard	clauses	and	pattern	matching	in	function	definitions

Getting	ready

How	to	do	it…

How	it	works…

5.	Processes	and	Nodes

Introduction

Sending	messages	between	processes

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Making	code	run	on	all	available	CPUs

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	tasks	to	perform	multiple	concurrent	computations

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	stateful	server	process	(messages	with	counters)

Getting	ready

How	to	do	it…

How	it	works…

See	also

Using	agents	as	an	abstraction	around	states

How	to	do	it…

How	it	works…

There’s	more…

Using	an	ETS	table	to	share	the	state

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	named	nodes

Getting	ready

How	to	do	it…

How	it	works…

See	also

Connecting	nodes

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Executing	code	in	a	different	node

Getting	ready

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…

How	it	works…

There’s	more…

6.	OTP	–	Open	Telecom	Platform

Introduction

Implementing	a	GenServer

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Expanding	our	server

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	a	supervisor

Getting	ready

How	to	do	it…

How	it	works…

See	also

Using	Observer	to	inspect	supervisors	and	processes

How	to	do	it…

How	it	works…

Handling	errors	and	managing	exceptions

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Packaging	and	releasing	an	OTP	application

Getting	ready…

How	to	do	it…

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…

There’s	more…

See	also

Deploying	applications	and	updating	a	running	system

Getting	ready

How	to	do	it…

How	it	works…

See	also

7.	Cowboy	and	Phoenix

Introduction

Setting	up	Cowboy

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Serving	static	files

Getting	ready

How	to	do	it…

How	it	works…

Implementing	a	websocket	handler

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	Phoenix	application

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Defining	routes

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	a	controller

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	views	and	templates

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Implementing	topics

Getting	ready

How	to	do	it…

How	it	works…

Protecting	the	Phoenix	app	with	SSL

Getting	ready

How	to	do	it…

How	it	works…

8.	Interactions

Introduction

Using	Redis	and	Postgres

Getting	ready

How	to	do	it…

How	it	works…

Using	OS	commands	from	within	Elixir

How	to	do	it…

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…

There’s	more…

See	also

Getting	Twitter	data

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

A.	Installation	and	Further	Reading

Installing	Elixir

Installing	PostgreSQL

Installing	Redis

Some	useful	links

Elixir

The	Phoenix	framework

Erlang

Index

www.it-ebooks.info

http://www.it-ebooks.info/

Elixir	Cookbook

www.it-ebooks.info

http://www.it-ebooks.info/

Elixir	Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1130215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-751-7

www.packtpub.com

www.it-ebooks.info

http://www.packtpub.com
http://www.it-ebooks.info/

Credits
Author

Paulo	A	Pereira

Reviewers

Ruhul	Amin

Richard	Bateman

Craig	Beck

Wilson	Edgar

Alexei	Sholik

Commissioning	Editor

Ashwin	Nair

Acquisition	Editor

Shaon	Basu

Content	Development	Editor

Mohammed	Fahad

Technical	Editor

Taabish	Khan

Copy	Editors

Vikrant	Phadke

Stuti	Srivastava

Project	Coordinator

Danuta	Jones

Proofreaders

Paul	Hindle

Samantha	Lyon

Bernadette	Watkins

Indexer

Rekha	Nair

Production	Coordinator

Komal	Ramchandani

www.it-ebooks.info

http://www.it-ebooks.info/

Cover	Work

Komal	Ramchandani

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Author
Paulo	A	Pereira	is	a	journalist	and	senior	software	engineer	with	a	background	in	Grails
and	Rails.	He	fell	in	love	with	Elixir	and	has	a	passion	for	exploring	new	technologies	and
keeping	himself	up	to	date	with	the	industry’s	developments.

Paulo	previously	worked	as	a	consultant	and	lead	developer	for	Mediadigital,
implementing	Grails	and	Rails	solutions,	and	he	is	currently	working	at	Onfido
Background	Checks,	a	London-based	tech	start-up	that	is	proving	to	be	a	key	player	in	the
background	checking	industry.

I	would	like	to	thank	my	wife	and	daughter	for	their	unconditional	support.	I	would	also
like	to	thank	Wilson	for	his	help	and	guidance,	and	José,	a	true	inspiration	in	his	approach
to	work	and	life	in	general.

Finally,	I	would	like	to	thank	all	of	the	reviewers	for	their	valuable	comments	and	the
entire	Packt	Publishing	team	for	their	support,	especially	Fahad,	whose	kind	and	steady
guidance	helped	me	keep	myself	on	track.

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Reviewers
Ruhul	Amin	is	the	CTO	and	cofounder	of	Onfido	Background	Checks,	a	company	that’s
revolutionizing	the	background	checking	industry.	He	has	a	master’s	degree	in	engineering
from	Oxford	University.	He	has	been	dabbling	in	Ruby	since	2008	and	was	introduced	to
Elixir	by	the	author.

Richard	Bateman	(also	sometimes	known	by	his	online	moniker,	“taxilian”)	has	spent
the	majority	of	his	life	developing	software.	As	a	child,	he	was	occasionally	caught
reading	development	books	under	the	covers	with	a	flashlight,	but	despite	these	alarming
tendencies,	he	is	married	to	a	wonderful	woman	and	has	several	wonderful	offspring,	all
of	whom	did	their	level	best	to	distract	him	from	helping	with	this	book.

Richard	enjoys	learning	new	languages,	finding	new	and	creative	ways	to	use	old
languages,	and	creatively	misusing	all	languages.	He	is	the	original	creator	and	primary
maintainer	of	the	open	source	cross-platform	browser	plugin	framework	FireBreath.	In	his
spare	time,	he	works	on	the	popular	amateur	radio	study	website	HamStudy.org
(https://hamstudy.org),	and	in	the	rest	of	his	spare	time	not	spent	with	his	family,	he	works
at	his	day	job	at	GradeCam.	If	you	are	a	teacher,	you	need	to	see	what	they	are	doing—
check	out	their	work	at	http://www.gradecam.com.

Richard	speaks	fluent	Russian,	rides	a	motorcycle,	makes	balloon	animals,	and	is	only
mildly	addicted	to	software	development,	no	matter	what	his	wife	says.

Wilson	Edgar	is	a	computer	scientist	and	enthusiast	with	a	passion	for	learning	new
programming	languages.	He	loves	all	that	comes	with	building	systems,	especially	large
ones.

When	he	is	not	programming,	he	spends	his	time	with	his	beautiful	family	or
skateboarding	(you’re	never	too	old	to	skateboard).

Alexei	Sholik	is	an	enthusiastic	developer.	He	has	worked	in	game	development	and	app
development	for	iOS	since	2008,	has	been	contributing	to	the	development	of	Elixir	since
2012,	and	is	currently	a	member	of	the	Elixir	core	team.	More	recently,	he	got	involved	in
server-side	development	using	Elixir	professionally	at	PSPDFKit.

As	a	longtime	fan	of	computer	science,	Alexei	enjoys	reading	an	occasional	white	paper
about	new	advancements	and	case	studies	in	the	field	of	programming	theory	and	practice
while	sipping	hot	tea	on	a	weekend	night.

His	favorite	pastime	activities	include	playing	the	guitar,	learning	foreign	languages,
playing	Riichi,	and	imagining	what	an	ideal	programming	language	would	look	like.

He	has	reviewed	two	other	books	on	Elixir	and	is	currently	in	the	process	of	reviewing
Elixir	In	Action,	Manning	Publications.

www.it-ebooks.info

https://hamstudy.org
http://www.gradecam.com
http://www.it-ebooks.info/

www.PacktPub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

www.it-ebooks.info

http://www.it-ebooks.info/

Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

To	Rosa	and	Beatriz

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

Preface
More	than	ever,	programmers	need	tools	and	languages	that	enable	them	to	develop
applications	that	take	full	advantage	of	all	the	resources	available	in	a	system.	A	few	years
ago,	programs	began	to	speed	up	just	because	CPUs	were	getting	progressively	faster.
However,	the	“speed	limit”	has	now	been	hit,	and	processors	are	no	longer	getting	faster.

Instead,	we	are	getting	more	cores	available	per	chip.	Today,	the	challenge	is	how	to	take
advantage	of	all	that	extra	power.	Elixir	helps	us	do	this!

Elixir	is	a	dynamic,	functional	programming	language	created	by	José	Valim.	It	is
compatible	with	the	Erlang	virtual	machine	and	ecosystem.	It	focuses	on	scalability	and
fault	tolerance.	With	its	concurrency	model	and	its	ability	to	handle	distribution
seamlessly,	it	makes	the	task	of	implementing	resilient	and	efficient	systems	easier,	even
fun!

In	this	cookbook,	you	will	find	recipes	covering	some	of	the	language	tooling	and
concepts.	You	will	find	out	that	no	special	powers	are	needed	to	write	concurrent
programs	or	code	that	can	be	executed	by	other	machines.	You	will	find	out	that	all	you
need	is	an	expressive	and	powerful	language,	such	as	Elixir.

www.it-ebooks.info

http://www.it-ebooks.info/

What	this	book	covers
Chapter	1,	Command	Line,	introduces	Interactive	Elixir	(IEx),	which	is	a	command	line
tool	that	allows	us	to	execute	and	evaluate	code.	This	chapter	also	introduces	Mix,	which
is	an	Elixir	tool	to	create	and	manage	projects.

Chapter	2,	Data	Types	and	Structures,	focuses	on	some	concepts	of	the	language:
immutability,	pattern	matching,	and	lazy	evaluation.

Chapter	3,	Strings	and	Binaries,	shows	us	how	to	manipulate	strings	in	Elixir.

Chapter	4,	Modules	and	Functions,	focuses	on	the	building	blocks	of	Elixir	applications,
from	module	directives	to	pattern	matching	in	function	definitions.

Chapter	5,	Processes	and	Nodes,	shows	you	that	spawning	multiple	processes	to	perform
asynchronous	computations	or	connecting	multiple	machines	and	executing	code	on	any
of	them	is	not	as	hard	as	it	seems.	Elixir	makes	the	task	easier,	and	we	explore	specific
examples.

Chapter	6,	OTP	–	Open	Telecom	Platform,	talks	about	OTP,	which	is	a	systematization	of
common	programming	concepts.	It	allows	us	to	develop	large-scale	systems	on	a	solid
foundation.	In	this	chapter,	we	will	explore	some	of	its	constructs.

Chapter	7,	Cowboy	and	Phoenix,	is	all	about	the	Web!	It	discusses	a	range	of	topics,	from
serving	static	files	to	implementing	websockets,	or	using	a	fully-featured	web	framework.

Chapter	8,	Interactions,	interacts	with	our	host	operating	system	and	talks	about	external
systems	such	as	Postgresql	or	Redis.	We	will	also	build	a	Twitter	feed	parser.

Appendix,	Installation	and	Further	Reading,	covers	references	for	installing	Elixir,	Redis,
and	PostgreSQL,	as	well	as	for	further	reading.

www.it-ebooks.info

http://www.it-ebooks.info/

What	you	need	for	this	book
You	will	need	to	have	Elixir	installed	as	well	as	Erlang,	its	only	dependency.	In	this	book,
we	will	also	be	using	Postgresql	and	Redis.

www.it-ebooks.info

http://www.it-ebooks.info/

Who	this	book	is	for
This	book	is	intended	for	users	with	some	knowledge	of	the	Elixir	language	syntax	and
basic	data	types/structures.	Although	this	is	a	cookbook	and	no	sequential	reading	is
required,	the	book’s	structure	will	allow	less	advanced	users	who	follow	it	to	be	gradually
exposed	to	some	of	Elixir’s	features	and	concepts	specific	to	functional	programming.	To
get	the	most	out	of	this	book,	you	need	to	have	some	familiarity	with	Erlang/Elixir
philosophy	and	concepts.

www.it-ebooks.info

http://www.it-ebooks.info/

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it,	How	it	works,	There’s	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“The
Elixir	standard	library	has	a	List	module	defined.”

A	block	of	code	is	set	as	follows:

code\greeter.ex

defmodule	Greeter	do

def	greet(name	\\	"you")	do

"Hello	#{name}	!"

end

end

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

supervised_app/mix.exs

def	application	do

		[applications:	[:logger],

		mod:	{SupervisedApp,	[]}]

end

Any	command-line	input	or	output	is	written	as	follows:

>	mix	help

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Select	the	Load
Charts	tab	to	see	graphical	representation	of	memory	usage,	IO,	and	scheduler	utilization
over	time.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

www.it-ebooks.info

http://www.it-ebooks.info/

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

www.it-ebooks.info

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.it-ebooks.info/

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

www.it-ebooks.info

mailto:questions@packtpub.com
http://www.it-ebooks.info/

Chapter	1.	Command	Line
This	chapter	will	cover	the	following	recipes:

Interactive	Elixir	(IEx):

Using	the	terminal	to	prototype	and	test	ideas
Loading	and	compiling	modules
Getting	help	and	accessing	documentation	within	IEx
Using	Erlang	from	Elixir
Inspecting	your	system	in	IEx
Inspecting	your	system	with	Observer

Mix:

Creating	a	simple	application
Managing	dependencies
Generating	a	supervised	application
Generating	umbrella	applications
Managing	application	configuration
Creating	custom	Mix	tasks

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
The	command	line	is	the	preferred	way	to	create	and	interact	with	Elixir	applications,
inspect	running	systems,	and	prototype	ideas.

Interactive	Elixir	(IEx)	allows	immediate	evaluation	of	any	expression,	and	it	is	also
possible	to	define	modules	directly	without	saving	them	previously	on	a	file.	Similar	tools
exist	in	other	programming	languages;	Ruby’s	IRB	or	Clojure’s	REPL	are	some	examples.

Mix	is	a	build	tool	that	provides	several	tasks	to	create,	compile,	and	test	projects,	and
handle	dependencies.	It	is	also	possible	to	define	custom	tasks	with	Mix.	In	the	Creating
custom	Mix	tasks	recipe,	we	will	create	a	task	to	display	the	memory	usage.	It	is	common
for	some	applications	to	define	their	own	tasks.	Phoenix	framework	(which	will	be
covered	in	Chapter	7,	Cowboy	and	Phoenix)	is	just	one	example	of	this.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	the	terminal	to	prototype	and	test
ideas
The	Elixir	default	installation	provides	an	REPL	(short	for	read-eval-print-loop)	named
IEx.	IEx	is	a	programming	environment	that	takes	user	expressions,	evaluates	them,	and
returns	the	result	to	the	user.	This	allows	the	user	to	test	code	and	even	create	entire
modules,	without	having	to	compile	a	source	file.

To	start	prototyping	or	testing	some	ideas,	all	we	need	to	do	is	use	IEx	via	our	command
line.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	get	started,	we	need	to	have	Elixir	installed.	Instructions	on	how	to	install	Elixir	can	be
found	at	http://elixir-lang.org/install.html.	This	page	covers	installation	on	OSX,	Unix	and
Unix-like	systems,	and	Windows.	It	also	gives	some	instructions	on	how	to	install	Erlang,
which	is	the	only	prerequisite	to	run	Elixir.

www.it-ebooks.info

http://elixir-lang.org/install.html
http://www.it-ebooks.info/

How	to	do	it…
To	prototype	and	test	the	ideas	using	IEx,	follow	these	steps:

1.	 Start	IEx	by	typing	iex	in	your	command	line.
2.	 Type	some	expressions	and	have	them	evaluated:

iex(1)>	a	=	2	+	2

4

iex(2)>	b	=	a	*	a

16

iex(3)>	a	+	b

20

iex(4)>

3.	 Define	an	anonymous	function	to	add	two	numbers:

iex(5)>	sum	=	fn(a,	b)	->	a	+	b	end

Function<12.90072148/2	in	:erl_eval.expr/5>

4.	 Invoke	the	function	to	add	two	numbers:

iex(6)>	sum.(1,2)

3

5.	 Quit	from	IEx	by	pressing	Ctrl	+	C	twice.

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
IEx	evaluates	expressions	as	they	are	typed,	allowing	us	to	get	instant	feedback.	This
allows	and	encourages	experimenting	ideas	without	the	overhead	of	editing	a	source	file
and	compiling	it	in	order	to	see	any	changes	made.

Note
In	this	recipe,	we	used	the	=	operator.	Unlike	other	languages,	=	is	not	an	assignment
operator	but	a	pattern	matching	operator.	We	will	get	into	more	detail	on	pattern	matching
in	the	Using	pattern	matching	and	Pattern	matching	an	HTTPoison	response	recipes	in
Chapter	2,	Data	Types	and	Structures.

In	step	3,	we	used	a	dot	(.)	in	the	sum	function	right	before	the	arguments,	like	this:	sum.
(1,2).	The	dot	is	used	to	call	the	anonymous	function.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
It	is	possible	to	define	modules	inside	an	IEx	session.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading	and	compiling	modules
It	is	possible	to	load	code	from	source	files	into	an	IEx	session.	Multiple	modules	may	be
loaded	and	used,	allowing	us	to	incorporate	existing	code	into	our	prototyping	or	idea
testing	session.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
In	this	recipe,	we	will	be	importing	two	files	that	define	the	Greeter	and	Echoer	modules
into	our	IEx	session.

In	the	following	lines,	we	will	list	the	contents	of	these	modules:

code\greeter.ex

defmodule	Greeter	do

		def	greet(name	\\	"you")	do

				"Hello	#{name}	!"

		end

end

code/echoer.ex

defmodule	Echoer	do

		def	echo(msg)	do

				IO.puts	"#{msg}	...	#{msg}	#{msg}"

		end

end

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

How	to	do	it…
We	will	follow	these	steps	to	load	and	compile	the	modules:

1.	 Start	IEx:

iex

2.	 Load	the	Greeter	module	defined	in	greeter.ex:

iex(1)>	c("greeter.ex")

[Greeter]

3.	 Load	the	Echoer	module	defined	in	echoer.ex:

iex(2)>	c("echoer.ex")

[Echoer]

4.	 Use	the	greet	function	defined	in	the	Greeter	module:

iex(3)>	Greeter.greet("Me")

"Hello	Me	!"

5.	 Use	the	echo	function	defined	in	the	Echoer	module:

iex(4)>	Echoer.echo("hello")

hello…	hello…...	hello

:ok

6.	 Combine	the	functions	defined	in	both	modules:

iex(7)>	Greeter.greet("Me")	|>	Echoer.echo

Hello	Me	!	...	Hello	Me	!	Hello	Me	!

:ok

Note
Some	functions	may	have	default	values.	They	are	denoted	by	the	use	of	\\.	In	the
Greeter	module,	the	greet	function	is	defined	as	def	greet(name	\\	"you"),	which
means	that	if	we	omit	the	argument	passed	to	the	function,	it	will	default	to	you.

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
When	c("file_name.ex")	is	invoked	from	IEx,	the	file	is	loaded	and	compiled	(a
corresponding	file	with	the	.beam	extension	will	be	created).

The	module	(or	modules)	defined	on	each	imported	file	become	available.	It	is	possible	to
invoke	functions	on	these	modules	using	the	ModuleName.function_name(args)	syntax.

If	a	module_name.beam	file	exists	for	a	given	module,	then	every	time	you	import	that
module	into	an	IEx	session,	you	will	see	the	following	warning:

module_name.ex:1:	warning:	redefining	module	ModuleName

The	warning	means	that	a	new	compiled	.beam	file	is	being	created,	potentially	redefining
the	module.	If	no	changes	were	made	to	the	source	code,	the	code	will	be	the	same,
although	the	warning	is	still	issued.

In	step	6,	the	pipe	operator	(|>)	is	used	to	simplify	the	code.	This	operator	means	that	the
output	of	the	left	operation	will	be	fed	as	the	first	argument	to	the	right	operation.

This	is	equivalent	to	writing	the	following:

Echoer.echo(Greeter.greet("Me"))

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
In	steps	2	and	3,	the	greeter.ex	and	echoer.ex	files	are	imported	without	indicating	the
path	because	they	are	under	the	same	directory	from	where	the	IEx	session	was	started.

It	is	possible	to	use	relative	or	full	paths	when	loading	files:

We	can	use	relative	paths	like	this:

iex(1)>	c("../greeter.ex")

We	can	use	full	paths	like	this:

iex(2)>	c("/home/user/echoer.ex")

Note
Note	that	the	c	IEx	function	accepts	a	string	as	an	argument.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	help	and	accessing	documentation
within	IEx
Documentation	is	a	first-class	citizen	in	the	Elixir	ecosystem,	so	it	comes	as	no	surprise
that	IEx	provides	convenient	ways	to	access	documentation	and	get	help	without	the	need
to	leave	an	IEx	session.

This	recipe	exemplifies	the	use	of	the	defined	help	functions.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
We	will	follow	these	steps	to	get	help	and	access	documentation	in	an	IEx	session:

1.	 Enter	h	inside	a	running	IEx	session	to	see	the	help	options	related	to	the	use	of	IEx
helpers,	as	shown	in	this	screenshot:

2.	 If	we	wish,	for	instance,	to	get	information	regarding	the	c/2	function,	we	type
h(c/2),	as	shown	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

3.	 Accessing	a	module	documentation	is	done	by	invoking	h(ModuleName).	In	the	next
screenshot,	we	access	documentation	related	to	Enum:

4.	 Getting	information	about	a	specific	function	inside	a	module	is	also	possible	by
invoking	h(ModuleName.function_name).	The	following	screenshot	shows	the
documentation	for	Enum.map:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
When	we	define	modules,	it	is	possible	to	use	the	@moduledoc	and	@doc	annotations	to
define	documentation	related	to	the	whole	module	or	to	a	specific	function	in	that	module.

IEx	parses	the	documentation	defined	with	these	annotations	and	makes	it	available	in	a
convenient	way	so	that	there’s	no	need	to	leave	the	session	when	help	or	some	more
information	is	needed.

IEx	itself	has	several	helper	functions	defined	(refer	to	the	first	screenshot	of	this	recipe),
and	among	them,	we	find	h/0	and	h/1.

Note
It	is	common	to	refer	to	functions	by	their	name	followed	by	/	and	a	number	indicating
the	number	of	arguments	that	function	takes.	Therefore,	h/0	is	a	function	named	h	that
takes	0	arguments,	and	h/1	is	the	same	h	function	but	with	1	argument.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
There	are	several	defined	functions	that	allow	accessing	information	on	function
specifications	and	types	(if	defined).	To	learn	more,	you	can	use	s/1	and	t/1.

As	an	example,	to	get	information	on	the	types	defined	for	the	Enum	module,	we	would	use
t(Enum),	and	to	get	information	on	the	specifications,	we	would	use	s(Enum).

www.it-ebooks.info

http://www.it-ebooks.info/

Using	Erlang	from	Elixir
Elixir	code	runs	in	the	Erlang	VM.	The	ability	to	invoke	Erlang	code	from	within	Elixir
allows	the	use	of	resources	from	the	entire	Erlang	ecosystem,	and	since	Elixir	code	is
compiled	to	the	same	byte	code	as	Erlang	code,	there	is	no	performance	penalty.

It	is	also	possible	to	include	in	an	Elixir	application	the	Erlang	code	that	is	already
compiled.

If	you	take	a	closer	look,	the	files	we	compile	in	IEx	sessions	have	the	.beam	extension,
and	that’s	exactly	the	same	format	Erlang’s	compiled	code	gets	transformed	into.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	use	Erlang	code	in	Elixir,	we	start	a	new	IEx	session.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
These	are	some	examples	of	how	to	invoke	Erlang	code	from	Elixir:

1.	 Erlang’s	Application	module	defines	a	function	named	which_applications.	This
function	returns	a	list	of	applications	being	executed	in	an	Erlang	VM.	This	is	the
way	to	use	this	function	from	Elixir:

iex(1)>	:application.which_applications

Note
The	Erlang	code	would	be	application:which_applications().

2.	 To	get	information	on	any	Erlang	module,	there	is	a	function	named	module_info.	To
know	more	about	the	erlang	module,	we	enter	this:

iex(2)>	:erlang.module_info

Note
The	Erlang	code	would	be	erlang:module_info().

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	Elixir,	Erlang	modules	are	represented	as	atoms.	Functions	in	these	modules	are
invoked	in	the	same	way	as	any	Elixir	function.

Note
In	Elixir,	the	atom	type	is	used	as	an	identifier	for	a	given	value.	In	Ruby,	the	equivalent	of
the	atom	is	known	as	the	symbol.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
Existing	Erlang	libraries	can	be	included	in	Elixir	applications,	widening	the	available
options.	It	is	also	possible	to	choose	an	Erlang	implementation	of	a	module	over	Elixir’s.

The	Elixir	standard	library	has	a	List	module	defined.	The	Erlang	counterpart	is	lists.

If	we	wish	to	get	the	last	element	of	a	list,	we	could	use	both	modules:

We	can	use	Elixir’s	List	module	like	this:

List.last([1,2,3])

We	can	use	Erlang’s	lists	module	in	this	manner:

:lists.last([1,2,3])

Note
The	Erlang	code	for	this	operation	is	lists:last([1,2,3]).

www.it-ebooks.info

http://www.it-ebooks.info/

Inspecting	your	system	in	IEx
Sometimes,	we	need	to	take	a	look	at	what	is	going	on	in	a	running	VM.	It	is	useful	to	see
which	applications	are	open	and	any	information	about	memory	usage.

We	will	use	some	Erlang	modules	to	inspect	a	VM	instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Start	a	new	IEx	session.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
We	will	follow	these	steps	to	get	information	on	our	running	system:

1.	 To	get	the	currently	running	applications,	type	this:

iex(1)>	:application.which_applications

[

		{:logger,	'logger',	'0.15.1'},

		{:iex,	'iex',	'0.15.1'},

		{:elixir,	'elixir',	'0.15.1'},	

		{:syntax_tools,	'Syntax	tools',	'1.6.15'},

		{:compiler,	'ERTS		CXC	138	10',	'5.0.1'},	

		{:crypto,	'CRYPTO',	'3.4'},

		{:stdlib,	'ERTS		CXC	138	10',	'2.1'},	

		{:kernel,	'ERTS		CXC	138	10',	'3.0.1'}

]

The	list	that	is	returned	contains	three-element	tuples.	The	first	element	is	an	atom
identifying	the	application,	the	second	element	is	the	application	description,	and	the
third	is	the	application	version.

2.	 We	get	information	on	the	memory	usage	by	running	the	following	commands:

iex(2)>	:erlang.memory

[total:	15474240,	processes:	4958016,	processes_used:	4957056,	system:	

10516224,

	atom:	256313,	atom_used:	234423,	binary:	15352,	code:	6071692,	ets:	

399560]

3.	 It	is	also	possible	to	get	memory	usage	for	atoms,	ets	tables,	binaries,	and	so	on:

iex(3)>	:erlang.memory(:atom)

256313

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
As	we	saw	in	the	previous	recipe,	Using	Erlang	from	Elixir,	it	is	possible	to	seamlessly
call	Erlang	code	from	Elixir.	Even	though	there	is	no	specific	Elixir	code	to	perform	these
inspections,	it	is	easy	to	get	these	abilities	via	Erlang	libraries.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
When	a	GUI	environment	is	available,	there’s	a	tool	called	Observer	that	helps	to	get
information	on	an	Erlang	VM.	Take	a	look	at	the	next	recipe,	Inspecting	your	system
with	Observer.

www.it-ebooks.info

http://www.it-ebooks.info/

Inspecting	your	system	with	Observer
The	command	line	isn’t	the	only	way	to	get	information	on	an	Erlang	VM.	There	is	a	GUI
tool	named	Observer	that	allows	access	to	information	in	a	more	convenient	way.

If	a	GUI-enabled	system	is	available,	Observer	allows	us	to	open	multiple	windows	with
information	on	the	whole	system’s	statistics	or	even	an	individual	process	of	that	running
system.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Start	an	IEx	session.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	use	the	Observer	GUI	application,	we	will	follow	these	steps:

1.	 Start	the	Observer	application:

iex(1)>	:observer.start

:ok

2.	 A	new	window	with	a	tabbed	interface	will	open,	and	the	first	information	displayed
shows	CPU	information,	memory	usage,	system	information,	and	statistics,	as	shown
in	the	following	screenshot:

3.	 Select	the	Load	Charts	tab	to	see	graphical	representation	of	memory	usage,	IO,	and
scheduler	utilization	over	time,	as	shown	here:

www.it-ebooks.info

http://www.it-ebooks.info/

4.	 Under	the	Applications	tab,	by	selecting	the	kernel	application,	it	is	possible	to	see	a
representation	of	an	application	process’s	hierarchy,	as	shown	in	this	screenshot:

5.	 Double-click	on	any	of	the	nodes,	for	example,	code_server.	A	new	window	will	be
opened	with	information	for	the	specific	process,	as	shown	in	the	following
screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	a	simple	application
In	this	recipe,	we	will	be	using	Mix	to	create	a	new	application.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	create	a	new	Elixir	application,	follow	these	steps:

1.	 In	a	command-line	session,	enter	mix	help	to	see	a	list	of	available	tasks:

>	mix	help

Here	is	what	the	screen	will	look	like:

2.	 To	generate	a	new	application,	type	mix	new	simple_app:

>	mix	new	simple_app

What	happens	next	is	shown	in	the	following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

3.	 Inside	the	simple_app	directory,	the	generated	application	is	ready	to	be	started.	Run
iex	–S	mix	to	start	the	application	and	verify	that	everything	is	working:

>	iex	-S	mix

Erlang/OTP	17	[erts-6.1]	[source]	[64-bit]	[smp:4:4]	[async-threads:10]	

[hipe]	[kernel-poll:false]	[dtrace]

Interactive	Elixir	(0.15.1)	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	

help)

iex(1)>		

4.	 Nothing	happened.	So	is	it	working?	The	absence	of	messages	in	the	IEx	session	is	a
good	thing.	This	generated	application	behaves	more	like	a	library;	there’s	no	main
function	like	in	Java	or	C.	To	be	sure	that	the	application	is	responding,	edit	the
lib/simple_app.ex	file	by	inserting	the	following	code:

defmodule	SimpleApp	do

		def	greet	do

				IO.puts	"Hello	from	Simple	App!"

		end

end

5.	 Restart	the	application	by	pressing	Ctrl	+	C	twice	and	entering	iex	–S	mix	again.
6.	 In	the	IEx	session,	enter	SimpleApp.greet.
7.	 You	will	see	the	following	output	from	the	application:

iex(1)>	SimpleApp.greet

Hello	from	Simple	App!

:ok

iex(2)>

The	Elixir	application	is	ready	to	be	used	either	on	your	local	machine	or,	if	a	node	is
started,	it	could	even	be	used	from	another	machine.

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
The	Elixir	installation	provides	a	command-line	tool	called	Mix.	Mix	is	a	build	tool.	With
this	tool,	it	is	possible	to	invoke	several	tasks	to	create	applications,	manage	their
dependencies,	run	them,	and	more.

Mix	even	allows	the	creation	of	custom	tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
To	generate	an	OTP	application	with	a	supervisor,	see	the	Generating	a	supervised
application	recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing	dependencies
One	of	the	advantages	of	OTP	(more	information	on	OTP	may	be	found	in	Chapter	6,
OTP	–	Open	Telecom	Platform)	is	modularity,	and	it	is	very	common	to	have	several
applications	running	as	dependencies	of	one	application.	An	application	is	a	way	to
achieve	modularity;	in	this	context,	we	call	an	application	something	that	is	known	in
other	programming	languages	as	a	library.	In	this	recipe,	we	will	integrate	an	HTTP	client
with	a	new	application.	We	will	be	using	the	Hex	package	manager	(http://hex.pm).

www.it-ebooks.info

http://hex.pm
http://www.it-ebooks.info/

Getting	ready
1.	 Generate	a	new	application	with	mix	new	manage_deps:

>	mix	new	manage_deps

The	output	is	shown	in	the	following	screenshot:

2.	 Visit	https://hex.pm/packages?search=http.
3.	 We	will	choose	HTTPoison	(https://hex.pm/packages/httpoison).

www.it-ebooks.info

https://hex.pm/packages?search=http
https://hex.pm/packages/httpoison
http://www.it-ebooks.info/

How	to	do	it…
To	add	a	dependency	to	our	application,	we	will	follow	these	steps:

1.	 Inside	the	manage_deps	application,	open	mix.exs	and	edit	the	file	to	include
HTTPoison	as	a	dependency:

defp	deps	do

				[{:httpoison,	"~>	0.4"}]

end

2.	 HTTPoison	must	be	started	with	our	system.	Add	this	to	the	started	applications	list
by	including	it	inside	the	application	function:

def	application	do

				[applications:	[:logger,	:httpoison]]

end

3.	 Save	mix.exs	and	run	mix	deps.get	to	fetch	the	declared	dependencies,	as	shown	in
this	screenshot:

4.	 Compile	the	dependencies	by	executing	mix	deps.compile,	as	shown	in	the
following	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Note
Sometimes,	some	of	the	dependencies	are	Erlang	projects,	so	you	may	get	a	prompt
asking	you	to	install	rebar	(rebar	is	a	tool	similar	to	Mix	used	in	Erlang	projects).
Once	you	accept	to	download	it,	it	will	be	available	in	your	system	and	you	won’t
have	to	worry	about	it	anymore.

5.	 Start	your	application	with	iex	–S	mix.
6.	 Inside	the	IEx	session,	check	whether	HTTPoison	is	running:

iex(1)>	:application.which_applications

[{:manage_deps,	'manage_deps',	'0.0.1'},

	{:httpoison,	'		Yet	Another	HTTP	client	for	Elixir	powered	by	

hackney\n',

		'0.4.2'},	{:hackney,	'simple	HTTP	client',	'0.13.1'}(…)]

7.	 Get	Google’s	main	page	using	HTTPoison:

iex(5)>	HTTPoison.get("http://www.google.com")

%HTTPoison.Response{body:	"<HTML><HEAD><meta	http-equiv=\"content-

type\"	content=\"text/html;charset=utf-8\">\n<TITLE>302	Moved</TITLE>

</HEAD><BODY>\n<H1>302	Moved</H1>\nThe	document	has	moved\n<A	

HREF=\"http://www.google.pt/?

gfe_rd=cr&ei=WFAOVLvQFJSs8wfehYJg\">here.\r\n</BODY>

www.it-ebooks.info

http://www.it-ebooks.info/

</HTML>\r\n",

	headers:	%{"Alternate-Protocol"	=>	"80:quic",	"Cache-Control"	=>	

"private",

			"Content-Length"	=>	"256",	"Content-Type"	=>	"text/html;	

charset=UTF-8",

			"Date"	=>	"Tue,	09	Sep	2014	00:56:56	GMT",

			"Location"	=>	"http://www.google.pt/?

gfe_rd=cr&ei=WFAOVLvQFJSs8wfehYJg",

			"Server"	=>	"GFE/2.0"},	status_code:	302}

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
Dependencies	are	preferably	added	using	hex.pm	(https://hex.pm/).

Tip
If	an	application	doesn’t	yet	exist	in	Hex,	it	is	also	possible	to	use	a	GitHub	repository	as	a
source.

To	fetch	a	dependency	from	GitHub,	instead	of	declaring	the	dependency	with	the
{:httpoison,	"~>	0.4"}	format,	the	following	format	is	used:

{:httpoison,	github:	"	edgurgel/httpoison	"}	

The	local	filesystem	may	also	be	configured	as	a	source	for	dependencies,	as	follows:

	{:httpotion,	path:	"path/to/httpotion"}

Once	the	dependencies	are	declared	inside	the	mix.exs	file,	there	are	Mix	tasks	to	get,
compile,	and	clean	them.	The	dependencies	are	then	fetched,	and	if	these	dependencies
have	more	dependencies	on	themselves,	Mix	is	smart	enough	to	fetch	them.

When	compiling	dependencies,	Mix	is	also	capable	of	figuring	out	whether	any	dependent
application	has	its	own	dependencies	and	whether	they	need	to	be	compiled.

Starting	IEx	with	the	–S	Mix	loads	the	Mix	environment	inside	IEx,	and	the	application
becomes	accessible.

As	shown	in	the	Inspecting	your	system	recipe,	it	is	possible	to	get	a	list	of	running
applications	and	check	whether	our	dependency	(and	its	own	dependencies)	are	running.
In	the	particular	case	of	HTTPoison,	automatic	start	is	ensured	by	adding	the	atom
representing	the	application	name	to	the	list	under	applications	([applications:
[:logger,	:httpoison]]).

www.it-ebooks.info

https://hex.pm/
http://www.it-ebooks.info/

See	also
The	documentation	on	Hex	usage	available	at	https://hex.pm/docs/usage.
The	Elixir	documentation	on	Mix	tasks	is	available	at	http://elixir-
lang.org/docs/stable/mix/.

www.it-ebooks.info

https://hex.pm/docs/usage
http://elixir-lang.org/docs/stable/mix/
http://www.it-ebooks.info/

Generating	a	supervised	application
An	application	may	be	generated	with	a	supervision	tree	to	monitor	processes.	The
supervision	tree	must	be	started	and	stopped	with	the	application,	and	to	do	so,	an
application	module	callback	must	also	be	implemented.	Mix	provides	a	simple	way	to
generate	this	type	of	application.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	generate	an	application	with	a	supervision	tree	and	an	application	module	callback,	we
run	mix	new	supervised_app	–-sup	in	the	command	line.	This	is	shown	in	the	following
screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
When	mix	new	task	is	invoked	with	the	–-sup	option,	although	the	generated	application
appears	to	be	identical	to	the	application	created	in	the	Creating	a	simple	application
recipe,	a	few	things	change,	which	are	as	follows:

supervised_app/mix.exs

def	application	do

		[applications:	[:logger],

		mod:	{SupervisedApp,	[]}]

end

An	application	module	callback	is	added	like	this:

supervised_app/lib/supervised_app.ex

defmodule	SupervisedApp	do

		use	Application

		def	start(_type,	_args)	do

				import	Supervisor.Spec,	warn:	false

				children	=	[

						#	Define	workers	and	child	supervisors	to	be	supervised

						#	worker(SupervisedApp.Worker,	[arg1,	arg2,	arg3])

]

				opts	=	[strategy:	:one_for_one,	name:	SupervisedApp.Supervisor]

				Supervisor.start_link(children,	opts)

		end

end

The	Application	module	behavior	is	declared,	and	a	start	function	must	be	defined	to
comply	with	this	behavior.	Inside	the	start	function,	a	list	of	children	(usually	worker
processes)	is	declared,	and	so	are	the	supervision	options	(opts).	The	supervisor	is	then
started,	passing	the	list	of	processes	to	be	supervised	and	the	options.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
The	documentation	for	the	Application	module	can	be	accessed	at	http://elixir-
lang.org/docs/stable/elixir/Application.html.
Information	on	the	Supervisor	module	is	available	at	http://elixir-
lang.org/docs/stable/elixir/Supervisor.html.

www.it-ebooks.info

http://elixir-lang.org/docs/stable/elixir/Application.html
http://elixir-lang.org/docs/stable/elixir/Supervisor.html
http://www.it-ebooks.info/

Generating	umbrella	applications
The	“Erlang	way”	is	to	name	each	self-contained	unit	of	code	as	an	app.	Sometimes,	an
app	may	be	what	is	referred	to	as	a	library	in	other	languages.	This	is	a	great	way	to
achieve	code	reusability	and	modularity,	but	sometimes,	it	is	convenient	to	treat	all	the
apps	in	a	project	as	a	single	entity,	committing	them	as	a	whole	to	version	control,	to	allow
running	tests,	and	so	on.	Think	of	an	umbrella	application	as	a	container	used	to	hold	one
or	more	applications	and	to	make	them	behave	as	a	single	application.

This	recipe	shows	how	to	create	umbrella	applications	with	Mix.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
1.	 Generate	an	umbrella	application	to	contain	other	applications:

mix	new	--umbrella	container

What	happens	next	is	shown	in	the	following	screenshot:

2.	 Generate	application_one	and	application_two	inside	the	container/apps
directory:

>	cd	container/apps

>	mix	new	application_one

>	mix	new	application_two

3.	 Modify	the	tests	in	the	applications	as	follows:

Change	the	test	in
container/apps/application_one/application_one_test.exs	like	this:

test	"the	truth	on	application	one"	do

		IO.puts	"Running	Application	One	tests"

		assert	1	+	1	==	2

end

Change	the	test	in
container/apps/application_two/application_two_test.exs	as	shown
here:

test	"the	truth	on	application	two"	do

		IO.puts	"Running	Application	Two	tests"

		assert	2	-	1	==	1

end

4.	 Run	the	tests	in	all	applications	(inside	the	container	directory):

>	mix	test

www.it-ebooks.info

http://www.it-ebooks.info/

The	result	of	these	tests	is	shown	here:

5.	 Now	run	the	tests	individually.	Firstly,	run	them	for	application_one	as	follows:

>	cd	apps/application_one

>	mix	test

The	outcome	of	these	tests	is	shown	in	the	following	screenshot:

For	application_two	,	run	them	like	this:

>	cd	../application_two

>	mix	test

The	result	of	these	tests	is	shown	in	this	screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
By	generating	this	structure	of	the	application	with	subprojects	under	the	apps	directory,
Elixir	makes	dependency	management,	compilation,	and	testing	easier.	It	is	possible	to
perform	these	tasks	at	the	umbrella	application	level,	affecting	all	the	subprojects,	or	at
each	subproject	level,	allowing	a	high	level	of	granularity.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
The	Elixir	Getting	Started	guide	on	dependencies	and	umbrella	projects	is	available
at	http://elixir-lang.org/getting_started/mix_otp/7.html.	It	says	the	following:

Remember	that	the	runtime	and	the	Elixir	ecosystem	already	provide	the	concept	of
applications.	As	such,	we	expect	you	to	frequently	break	your	code	into	applications
that	can	be	organized	logically,	even	within	a	single	project.	However,	if	you	push
every	application	as	a	separate	project	to	a	Git	repository,	your	projects	can	become
very	hard	to	maintain,	because	now	you	will	have	to	spend	a	lot	of	time	managing
those	Git	repositories	rather	than	writing	your	code.

For	this	reason,	Mix	supports	“umbrella	projects.”	Umbrella	projects	allow	you	to
create	one	project	that	hosts	many	applications	and	push	all	of	them	to	a	single	Git
repository.	That	is	exactly	the	style	we	are	going	to	explore	in	the	next	sections.

www.it-ebooks.info

http://elixir-lang.org/getting_started/mix_otp/7.html
http://www.it-ebooks.info/

Managing	application	configuration
Mix	tasks	run	in	a	specific	environment.	The	predefined	environments	are	production,
development,	and	test	(prod,	dev,	and	test).	The	default	environment	is	dev.	In	this	recipe,
we	will	configure	an	application	with	different	values	for	each	environment.	Invoking	the
same	function	will	result	in	a	different	output	based	on	the	configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	manage	an	application	configuration,	we	follow	these	steps:

1.	 Create	a	new	application:

>	mix	new	config_example

2.	 Go	to	the	generated	application	directory	and	open	config/config.exs.
3.	 Replace	all	of	the	file’s	content	with	the	following	code:

use	Mix.Config

config	:config_example,

		message_one:	"This	is	a	shared	message!"

import_config	"#{Mix.env}.exs"

4.	 Create	three	more	files	under	the	config	directory	with	the	following	code:

In	config/dev.exs,	add	the	following:

use	Mix.Config

config	:config_example,

		message_two:	"I'm	a	development	environment	message!"

In	config/prod.exs,	add	this	code:

use	Mix.Config

config	:config_example,

		message_two:	"I'm	a	production	environment	message!"

In	config/test.exs,	add	the	following:

use	Mix.Config

config	:config_example,

		message_two:	"I'm	a	test	environment	message!"

5.	 Define	two	module	attributes	in	lib/config_example.ex	to	hold	the	values	of
message_one	and	message_two,	as	follows:

@message_one	Application.get_env(:config_example,	:message_one)

@message_two	Application.get_env(:config_example,	:message_two)

6.	 Create	a	show_messages	function	in	lib/config_example.ex,	like	this:

def	show_messages	do

		IO.puts	"Message	one	is:	#{@message_one}"

		IO.puts	"Message	two	is:	#{@message_two}"

end

7.	 Start	the	application	in	the	three	different	environments	and	see	the	output	of	the
show_messages	function:

www.it-ebooks.info

http://www.it-ebooks.info/

For	the	development	environment,	start	the	application	as	follows:

>	MIX_ENV=dev	iex	–S	mix

iex(1)>	ConfigExample.show_messages

Message	one	is:	This	is	a	shared	message!

Message	two	is:	I'm	a	development	environment	message!

:ok

iex(2)>

For	the	production	environment,	start	the	application	like	this:

>	MIX_ENV=prod	iex	–S	mix

iex(1)>	ConfigExample.show_messages

Message	one	is:	This	is	a	shared	message!

Message	two	is:	I'm	a	production	environment	message!

:ok

iex(2)>

For	the	test	environment,	start	the	application	as	follows:

>	MIX_ENV=test	iex	–S	mix

iex(1)>	ConfigExample.show_messages

Message	one	is:	This	is	a	shared	message!

Message	two	is:	I'm	a	test	environment	message!

:ok

iex(2)>

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
When	we	include	the	last	line	in	config.exs	(import_config	"#{Mix.env}.exs"),	the
Mix	configuration	is	loaded	from	the	files,	in	this	case	with	the	Mix	environment	as	its
name	and	.exs	as	its	extension.

The	configuration	from	the	imported	files	will	override	any	existing	configuration	(with
the	same	key)	in	the	config.exs	file.	In	fact,	Configuration	values	are	merged	recursively.
See	the	example	at	https://github.com/alco/mix-config-example.

To	access	configuration	values,	we	use	Application.get_env(:app,	:key).

www.it-ebooks.info

https://github.com/alco/mix-config-example
http://www.it-ebooks.info/

Creating	custom	Mix	tasks
Sometimes,	the	existing	Mix	tasks	just	aren’t	enough.	Fortunately,	Mix	allows	the	creation
of	customized	tasks	that	integrate	as	if	they	were	shipped	with	Mix	itself.	In	this	recipe,
we	will	create	a	custom	Mix	task	that	will	print	the	Erlang	VM	memory	status.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
The	steps	required	to	create	a	custom	task	are	as	follows:

1.	 Create	a	new	file,	meminfo.ex,	that	defines	the	Meminfo	module	inside	Mix.Tasks:

defmodule	Mix.Tasks.Meminfo	do

		use	Mix.Task

end

2.	 Add	the	new	task	description	to	be	displayed	when	mix	help	is	invoked:

@shortdoc	"Get	Erlang	VM	memory	usage	information"

3.	 Add	the	new	task	module	documentation:

@moduledoc	"""

		A	mix	custom	task	that	outputs	some	information	regarding	

		the	Erlang	VM	memory	usage

		"""

4.	 Create	a	run/1	function:

def	run(_)	do

		meminfo	=	:erlang.memory

		IO.puts	"""

		Total												#{meminfo[:total]}

		Processes								#{meminfo[:processes]}

		Processes	(used)	#{meminfo[:processes_used]}

		System											#{meminfo[:system]}

		Atom													#{meminfo[:atom]}

		Atom	(used)						#{meminfo[:atom_used]}

		Binary											#{meminfo[:binary]}

		Code													#{meminfo[:code]}

		ETS														#{meminfo[:ets]}

		"""

end

5.	 Compile	the	code	using	the	Elixir	compiler,	elixirc:

elixirc	meminfo.ex

No	message	should	appear	but	a	file	named	Elixir.Mix.Tasks.Meminfo.beam	is
created.

6.	 Run	mix	help	to	see	the	new	task	listed	and	its	short	description:

>	mix	help

mix															#	Run	the	default	task	(current:	mix	run)

mix	archive							#	List	all	archives

(…)

mix	meminfo					#	Get	Erlang	VM	memory	usage	information

mix	new											#	Create	a	new	Elixir	project

mix	run											#	Run	the	given	file	or	expression

mix	test										#	Run	a	project's	tests

iex	-S	mix								#	Start	IEx	and	run	the	default	task

www.it-ebooks.info

http://www.it-ebooks.info/

7.	 Execute	the	custom	task:

>	mix	meminfo

Total												17692216

Processes								4778984

Processes	(used)	4777656

System											12913232

Atom													339441

Atom	(used)						321302

Binary											14152

Code													8136817

ETS														452832

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
Mix	tasks	are	just	modules	that	are	declared	as	Mix.Tasks.<MODULENAME>	with	a	run
function	defined.

In	meminfo.ex,	we	use	the	Mix.Task	module	by	declaring	use	Mix.Task.	The	use
directive	allows	us	to	use	a	given	module	in	the	current	context.

The	@shortdoc	attribute	allows	us	to	define	a	short	description	to	display	when	some	help
on	Mix	or	the	mix.task	is	displayed.

The	run/1	function	is	the	place	where	all	of	the	task’s	work	is	done.	In	this	particular	case,
we	use	an	Erlang	function	to	return	a	keyword	list	with	several	entries,	and	print	them	for
the	user	in	a	formatted	way.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	2.	Data	Types	and	Structures
This	chapter	will	cover	the	following	recipes:

Understanding	immutability
Adding	and	subtracting	lists
Combining	tuples	into	a	list
Creating	and	manipulating	keyword	lists
Using	pattern	matching
Pattern	matching	an	HTTPoison	response
Creating	a	key/value	store	with	a	map
Mapping	and	reducing	enumerables
Generating	lazy	(even	infinite)	sequences
Streaming	a	file	as	a	resource

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding	immutability
In	Elixir,	data,	once	created,	is	immutable.	Whenever	some	input	is	passed	into	a	function
to	be	transformed,	the	original	value	remains	unchanged	and	a	new	value	is	created.

This	allows	for	safe	concurrent	access	to	the	same	data	by	n	processes.	It	makes
concurrency	easier	to	manage,	as	it	is	guaranteed	that	no	process	can	change	the	original
data.	Any	transformation	on	the	original	data	will	result	in	new	data	being	created.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	get	started,	we	need	to	follow	these	steps:

1.	 Create	a	file,	which	is	transformator.ex,	defining	the	Transformator	module	by
adding	the	following	code:

defmodule	Transformator	do

		@default_list	[1,2,3,4,5,6]

		def	get_odd_numbers(list	\\	@default_list)	do

				Enum.filter(list,	fn(x)->	rem(x,2)	==	1	end)

		end

		def	get_even_numbers(list	\\	@default_list)	do

				Enum.filter(list,	fn(x)->	rem(x,2)	==	0	end)

		end

end

Note
We	define	@default_list	and	use	it	in	both	functions	preceded	by	\\.	This	means
that,	if	no	argument	is	passed	into	the	functions,	they	will	behave	as	if	we	have
passed	the	list	[1,2,3,4,5,6].

2.	 Start	an	IEx	session	in	your	console:

>iex

3.	 Compile	the	Transformator	module:

iex(1)>	c("transformator.ex")

[Transformator]

Note
It	is	possible	to	start	IEx	and	compile	the	module	in	one	step.	To	do	so,	replace	steps
2	and	3	with	the	following	command:

iex	transformator.ex

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	demonstrate	the	immutability	of	data,	we	will	follow	these	steps	using	our	IEx	session:

1.	 Create	a	list	called	original:

iex(2)>	original	=	[1,	2,	3,	4,	5,	6,	7,	8,	9]

2.	 Pass	the	original	list	into	the	get_odd_numbers	function	of	Transformator,
assigning	the	result	to	odd:

iex(.3)>	odd	=	Transformator.get_odd_numbers(original)

[1,	3,	5,	7,	9]

3.	 Pass	the	original	list	into	the	get_even_numbers	function	of	Transformator,
assigning	the	result	to	even:

iex(4)>	even	=	Transformator.get_even_numbers(original)

[2,	4,	6,	8]

4.	 Apply	the	foldl	function	to	the	odd,	even,	and	original	lists	to	return	the	sum	of	all
elements	in	each	list:

iex(5)>	List.foldl(original,	0,	fn	(x,	acc)	->	x	+	acc	end)

45

iex(6)>	List.foldl(odd,	0,	fn	(x,	acc)	->	x	+	acc	end)

25

iex(7)>	List.foldl(even,	0,	fn	(x,	acc)	->	x	+	acc	end)

20

Note
The	List.foldl/3	function	reduces	the	given	list	towards	the	left	with	a	function.
We	pass	the	list	we	want	to	reduce,	an	accumulator,	and	the	function	we	wish	to
apply.

In	this	case,	we	pass	each	of	the	lists,	an	accumulator	with	the	initial	value	of	0,	and
sum	each	element	of	the	list	with	the	accumulator.

5.	 We	will	now	take	each	of	the	lists	and	shuffle	them	to	change	the	order	of	their
elements:

iex(8)>	Enum.shuffle(original)

[3,	7,	2,	8,	6,	4,	9,	1,	5]

iex(9)>	Enum.shuffle(odd)

[7,	1,	5,	9,	3]

iex(10)>	Enum.shuffle(even)

[2,	6,	8,	4]

6.	 Verify	each	list	to	see	that	it	has	not	changed:

iex(11)>	even

[2,	4,	6,	8]

iex(12)>	odd

[1,	3,	5,	7,	9]

www.it-ebooks.info

http://www.it-ebooks.info/

iex(13)>	original

[1,	2,	3,	4,	5,	6,	7,	8,	9]

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	steps	2	and	3,	we	pass	our	data	structure	(the	original	list)	into	functions	that	filter	that
data	structure,	and	in	step	4,	we	take	our	lists	and	reduce	them	by	summing	all	their
values.	All	these	transformations	occur	without	changing	any	of	the	original	data.	In	step
5,	immutability	becomes	clearer	as	we	actually	pass	the	lists	into	a	function	that
potentially	changes	the	order	of	its	elements	and	yet	that	change	is	made	by	taking	the
original	data,	copying	it,	and	creating	new	lists.	As	we	can	see	in	the	final	step,	the	input
data	has	not	changed.

Note
If	you	use	values	greater	than	65	in	the	input	lists	for	the	functions	defined	in	the
Transformator	module,	you	might	be	surprised	with	the	output	you	get	in	IEx.	You	could
try	the	following:

iex(1)>	Transformator.get_even_numbers([65,66,67,68,69,70])

'BDF'

The	output,	which	is	BDF,	is	IEx	interpreting	the	resulting	list	[66,	68,	70]	as	a	character
list,	where	66	is	the	ASCII	value	for	B,	68	for	D,	and	70	for	F.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	and	subtracting	lists
Lists	are	widely	used	in	functional	programming	languages,	and	Elixir	is	no	exception.

Although	lists	might	resemble	other	languages’	arrays,	they	actually	behave	more	like
single-linked	lists.	Operations	with	lists	are	quite	common,	so	in	this	recipe,	we	will	show
you	how	to	add	two	lists	or	subtract	one	list	from	another.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
We	will	use	IEx	for	this	recipe,	so	start	a	new	session	by	typing	iex	in	your	console.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	add	lists,	we	will	use	the	++	operator.	The	steps	are	as	follows:

1.	 Create	a	list	named	list_one:

iex(1)>	list_one	=	[1,	3,	5]

[1,	3,	5]

2.	 Create	a	list	named	list_two:

iex(2)>	list_two	=	[2,	4,	6,	5]

[2,	4,	6,	5]

3.	 Add	list_one	to	list_two:

iex(3)>	list_one	++	list_two

[1,	3,	5,	2,	4,	6,	5]

4.	 Add	list_two	to	list_one:

iex(4)>	list_two	++	list_one

[2,	4,	6,	5,	1,	3,	5]

To	subtract	lists,	we	will	be	using	the	--	operator:

1.	 Create	a	list	named	list_three:

iex(5)>	list_three	=	[1,	2,	3,	4,	5,	7,	8,	9]

[1,	2,	3,	4,	5,	7,	8,	9]

2.	 Create	a	list	named	list_four:

iex(6)>	list_four	=	[2,	4,	6]

[2,	4,	6]

3.	 Subtract	list_three	from	list_four:

iex(7)>	list_three—list_four

[1,	3,	5,	7,	8,	9]

4.	 Subtract	list_four	from	list_three:

iex(8)>	list_four—list_three

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
The	++	operator	appends	each	element	of	the	right-hand	side	operand	list	to	the	left-hand
side	operand	list.

The	--	operator	removes	the	elements	of	the	right-hand	side	operand	list	that	exist	in	the
left-hand	side	operand	list.	If	we	inspect	the	result	in	step	4,	we	can	see	that	the	values	2
and	4	exist	in	both	lists;	hence,	they	are	removed	from	list_four,	which	keeps	6	as	its
only	element,	as	it	does	not	exist	in	list_three.

www.it-ebooks.info

http://www.it-ebooks.info/

Combining	tuples	into	a	list
Elixir	has	a	tuple	data	type.	A	tuple,	like	a	list,	can	contain	different	types	at	the	same	time
but	guarantees	that	its	elements	are	stored	contiguously	in	memory.

Tuples	are	declared	using	brackets	({})	and	are	often	used	as	function	return	values	and
in-function	pattern	matching.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
In	this	recipe,	we	will	be	using	an	IEx	session.	Start	it	by	executing	iex	in	your	console.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
We	will	create	two	tuples,	one	with	atoms	and	one	with	integers,	and	then	we	will
combine	them.	To	do	so,	we	need	to	convert	them	into	lists:

1.	 Create	tuple_one:

iex(1)>	tuple_one	=	{:one,	:two,	:three}

{:one,	:two,	:three}

2.	 Create	tuple_two:

iex(2)>	tuple_two	=	{1,	2,	3,	4}

{1,	2,	3,	4}

3.	 Try	to	interpolate	these	two	tuples	by	combining	each	value	on	the	nth	position	of
tuple_one	with	the	nth	value	of	tuple_two.	We	will	be	using	the	Enum.zip/2
function:

iex(3)>	Enum.zip(tuple_one,tuple_two)

**	(Protocol.UndefinedError)	protocol	Enumerable	not	implemented	for	

{:one,	:two,	:three}

Note
Enum.zip/2	takes	two	collections	and	zips	corresponding	elements	into	a	list	of
tuples.

4.	 We	need	to	convert	the	tuples	into	lists	before	combining	them.	Let’s	do	the
conversion	and	combining	in	one	step:

iex(3)>	Enum.zip(Tuple.to_list(tuple_one),	Tuple.to_list(tuple_two))

[one:	1,	two:	2,	three:	3]

5.	 Let’s	make	sure	the	result	we	got	in	the	previous	step	is,	in	fact,	a	list:

iex(4)>	Enum.zip(Tuple.to_list(tuple_one),	Tuple.to_list(tuple_two))	|>	

is_list

true

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
Tuples	are	a	convenient	way	to	store,	normally,	two	or	three	associated	values.	However,
adding	values	to	tuples	is	an	expensive	operation	as	it	implies	copying	the	entire	structure.
When	we	need	to	combine	values	from	two	different	tuples,	before	interpolating	them,	it	is
more	convenient	to	construct	a	list.

In	step	3,	we	tried	to	use	a	function	from	the	Enum	module	to	combine	both	tuples	and	we
got	an	error	(a	protocol-undefined	error)	as	the	tuples	are	not	treated	as	collections	and
they	don’t	implement	the	Enumerable	protocol.

In	step	4,	we	passed	Tuple.to_list(tuple_one)	and	Tuple.to_list(tuple_two)	as
arguments	to	the	Enum.zip	function.	The	Tuple.to_list/1	function	transforms	a	tuple
into	a	list.	As	both	tuples	were	converted,	it	allowed	us	to	combine	them	using	Enum.zip
because	lists	implement	the	Enumerable	protocol.

The	resulting	list	([one:	1,	two:	2,	three:	3])	is,	in	fact,	a	list	of	tuples	also	known	as
a	keyword	list.

In	step	5,	we	used	the	pipe	operator	(|>)	to	feed	the	result	of	the	left-hand	side	expression
as	the	first	argument	of	the	is_list	function.

Note
The	Enum.zip/2	function	takes	two	collections	and	zips	corresponding	elements	into	a	list
of	tuples.	In	this	task,	tuple_one	had	three	elements	and	as	tuple_two	had	four,	no
corresponding	value	existed.	Therefore,	the	last	element	(4)	got	discarded.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
In	the	next	recipe,	Creating	and	manipulating	keyword	lists,	we	will	be	looking	into
keyword	lists.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	and	manipulating	keyword	lists
Tuples	are	often	used	to	represent	associative	data	structures.	In	Elixir,	a	list	of	two
element	tuples	whose	first	element	is	an	atom	is	called	a	keyword	list.

Keyword	lists	have	some	particular	features:

They	maintain	the	order	of	the	elements	as	defined	when	creating	and	adding
elements
They	allow	repeated	keys

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Start	a	new	IEx	session	by	entering	iex	in	your	command	line.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
We	will	follow	these	steps	to	create	and	manipulate	keyword	lists:

1.	 Create	a	list	with	three	tuples:

iex(1)>	t1	=	{:jane,	23}

iex(2)>	t2	=	{:jill,	44}

iex(3)>	t3	=	{:joe,	32}

iex(4)>	kw_list	=	[t1,	t2,	t3]

[jane:	23,	jill:	44,	joe:	32]

2.	 Add	a	new	entry	at	the	end	of	the	list:

iex(5)>	kw_list	=	kw_list	++	[anthony:	22]

[jane:	23,	jill:	44,	joe:	32,	anthony:	22]

3.	 Add	a	new	entry	at	the	beginning	of	the	list:

iex(6)>	kw_list	=	[zoe:	28]	++	kw_list

[zoe:	28,	jane:	23,	jill:	44,	joe:	32,	anthony:	22]

4.	 Add	an	already	existing	key	to	the	list:

iex(7)>	kw_list	=	kw_list	++	[jill:	19]

[zoe:	28,	jane:	23,	jill:	44,	joe:	32,	anthony:	22,	jill:	19]

5.	 Remove	an	entry	from	the	list:

iex(8)>	kw_list	=	kw_list—[joe:	32]

[zoe:	28,	jane:	23,	jill:	44,	anthony:	22,	jill:	19]

6.	 Sort	the	keyword	list:

iex(9)>	Enum.sort(kw_list)

[anthony:	22,	jane:	23,	jill:	19,	jill:	44,	zoe:	28]

7.	 Retrieve	a	value	from	the	list:

iex(10)>	kw_list[:jill]

44

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	1,	when	creating	a	list	of	tuples	with	an	atom	as	their	first	element,	a	keyword	list
is	returned.

Steps	2	and	3	exemplify	the	appending	and	prepending	of	new	elements	in	a	keyword	list
using	the	++	operator.	Notice	that	elements	maintain	the	declared	order.	Keys	are	not
sorted.

Note
If	an	element	with	a	different	format	is	added	to	the	list,	that	is,	if	it	doesn’t	comply	with
the	[:atom,	value]	form,	the	returned	list	will	no	longer	be	a	keyword	list.	Let’s	look	at
an	example:

iex(11)>	kw_list	++	[:james]

[{:zoe,	28},	{:jane,	23},	{:jill,	44},	{:anthony,	22},	{:jill,	19},	:james]

Keyword	lists	support	repeated	occurrences	of	a	key.	In	step	4,	the	inserted	key	already
existed	in	the	keyword	list,	but	it	was	inserted	nonetheless.

The	--	operator	can	also	be	used	in	keyword	lists.	Step	5	illustrates	how	it	is	possible	to
remove	a	given	key/value	pair	from	the	keyword	list.

Note
To	remove	a	key/value	pair	from	a	keyword	list,	both	the	key	and	the	value	must	match.
Let’s	try	to	remove	a	nonexisting	key/value	pair:

iex(12)>	kw_list

[zoe:	28,	jane:	23,	jill:	44,	anthony:	22,	jill:	19]

iex(13)>	kw_list—[jane:	22]

[zoe:	28,	jane:	23,	jill:	44,	anthony:	22,	jill:	19]

Nothing	was	removed!

As	mentioned	earlier,	keyword	lists’	elements	maintain	the	declared	order.	However,	this
doesn’t	mean	we	cannot	choose	to	sort	the	keyword	list.	In	step	6,	the	Enum.sort/1
function	is	used	to	do	this.	Sorting	takes	the	keys	into	account	and	only	if	they	repeat	their
values	will	they	be	used	as	additional	sorting	criteria.

Note
Note	that	in	step	6,	we	performed	the	sorting	without	rebinding	the	result	to	kw_list.	As
we	can	see	in	the	Understanding	immutability	recipe,	data	is	immutable,	so	the	keyword
list	we	used	in	step	7	is	not	sorted!

A	value	for	a	given	key	can	be	retrieved	using	the	list[:key]	syntax.	The	returned	value,
if	repeated	keys	exist,	will	be	the	first	value	found;	for	example,	in	step	7	the	returned
value	is	the	first	value	found	even	though	there	is	a	smaller	value	under	the	:jill	key.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	pattern	matching
In	some	of	the	previous	recipes,	we’ve	been	using	the	=	operator.	When	we	execute
something	like	a	=	1,	we	are	not	performing	an	assignment;	we	are,	instead,	binding	the
value	1	to	a.

This	is	actually	pattern	matching	in	its	simplest	form.	The	=	operator	is,	in	fact,	called	the
match	operator.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Start	a	new	IEx	session	in	your	console.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	exercise	our	pattern	matching	techniques,	we	will	follow	these	steps:

1.	 Let’s	create	a	keyword	list	with	our	friends’	birthdays:

iex(1)>	birthday_list	=	[andrew:	"October	2nd",	jim:	"May	1st",	carrie:	

"September	23rd",	Carla:	"August	30th"]

[andrew:	"October	2nd",	jim:	"May	1st",	carrie:	"September	23rd",carla:	

"August	30th"]

2.	 Now,	we	will	be	getting	the	first	element	of	the	list	(also	known	as	head	of	the	list):

iex(2)>	[head|tail]	=	birthday_list

[andrew:	"October	2nd",	jim:	"May	1st",	carrie:	"September	23rd",carla:	

"August	30th"]

iex(3)>	head

{:andrew,	"October	2nd"}

3.	 All	the	other	values	(the	tail	of	the	list)	are	bound	to	the	tail	variable:

iex(4)>	tail

[jim:	"May	1st",	carrie:	"September	23rd",	carla:	"August	30th"]

4.	 Let’s	get	the	head	of	the	tail!	Confusing?	Think	of	the	tail	as	a	list	and	we	will	get	the
first	element	of	that	list:

iex(5)>	[tail_head|tail_tail]	=	tail

[jim:	"May	1st",	carrie:	"September	23rd",	carla:	"August	30th"]

iex(6)>	tail_head

{:jim,	"May	1st"}

5.	 Sometimes	while	performing	pattern	matching,	some	values	do	not	interest	us.	We
will	get	the	first	element	of	our	birthday	list	and	ignore	all	the	other	elements:

iex(7)>	[first_friend|_]	=	birthday_list

[andrew:	"October	2nd",	jim:	"May	1st",	carrie:	"September	23rd",	

carla:	"August	30th"]

iex(8)>	first_friend

{:andrew,	"October	2nd"}

6.	 Now,	let’s	try	to	access	the	_	variable	from	our	previous	match:

iex(9)>	_

**	(CompileError)	iex:9:	unbound	variable	_

7.	 How	about	getting	the	birthday	of	the	first	friend	in	the	list?	Take	a	look:

iex(10)>	[{_,	day}|t]	=	birthday_list

[andrew:	"October	2nd",	jim:	"May	1st",	carrie:	"September	23rd",	

carla:	"August	30th"]

iex(11)>	day

"October	2nd"

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
We	started	by	defining	a	keyword	list	just	like	we	did	in	the	Creating	and	manipulating
keyword	lists	recipe.

In	step	2,	we	pattern	matched	our	birthday_list	into	head	and	tail.	The	head	variable	is
the	first	element	of	our	keyword	list	and	tail	contains	all	other	elements.	If	we	take	a
closer	look,	head	is	a	tuple	and	tail	is	a	keyword	list.	We	checked	the	tail	variable’s
contents	in	step	3.

Lists	are	recursively	defined,	so	in	step	4,	we	pattern	match	again.	However,	this	time,
instead	of	using	the	original	birthday_list,	we	use	tail.	This	time,	tail_head	is,	in
fact,	the	second	element	of	the	original	birthday_list.

Step	5	illustrates	the	use	of	a	“don’t	care”	variable	(_).	We	use	this	when	the	values
matched	are	not	of	any	interest	to	us.	It	is	kind	of	a	black	hole	where	we	send	data	that	we
don’t	care	about.

Note
In	the	example,	we	got	the	first	element	of	the	list.	What	if	we	want	to	get	the	second	as
well?	Lists	are	a	structure	that	can	be	defined	recursively.	If	we	think	about	it,	then	the
second	element	of	the	list	will	be	the	first	of	the	tail!	Let’s	take	a	look	at	how	to	do	it:

iex(14)>	[first|[second|_]]	=	birthday_list

iex(15)>	first

{:andrew,	"October	2nd"}

iex(16)>	second

{:jim,	"May	1st"}

The	final	step	shows	you	how	it	is	possible	to	perform	pattern	matching	inside	another
pattern	matching.

As	shown	in	step	2,	the	first	element	of	our	birthday_list	is	the	tuple	{:andrew,
"October	2nd"}.	As	we	were	only	interested	in	the	day,	we	discarded	the	name	with	an
underscore.

Tip
In	step	7,	we	can	get	the	day	in	a	single	operation.	We	could	have	done	it	in	two	steps	like
this:

iex(12)>	[first_element	|	_]	=	birthday_list

iex(13)>	{	_,	day	}	=	first_element

iex(14)>	day

"October	2nd"

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
In	the	Using	guard	clauses	and	pattern	matching	in	function	definitions	recipe	of
Chapter	4,	Modules	and	Functions,	we	will	be	using	pattern	matching.

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern	matching	an	HTTPoison	response
HTTPoison	is	an	HTTP	client	for	Elixir.	We	have	already	used	it	in	the	Managing
dependencies	recipe	of	Chapter	1,	Command	Line.

In	this	recipe,	we	will	create	a	simple	application	that	will	take	a	URL	and	fetch	the
corresponding	page,	returning	either	the	body	or	the	headers	of	that	request.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
We	will	be	using	the	get_pages	application.	You	will	find	it	in	the	source	code	of	this
book.	The	steps	are	as	follows:

1.	 Enter	the	application	directory:

>	cd	get_pages

2.	 Fetch	the	dependencies	and	compile	them:

>	mix	deps.get	&&	mix	deps.compile

3.	 Start	the	application:

>	iex	–S	mix

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	get	an	HTTP	response	and	perform	pattern	matching	on	it,	we	will	follow	these	steps:

1.	 Issue	a	request	to	fetch	the	elixir-lang	main	page	and	take	the	headers	from	the
response:

iex(1)>	GetPages.get(:headers,	"http://elixir-lang.com")

The	result	is	shown	in	the	following	screenshot:

2.	 Now,	we	will	request	the	main	Google	page	and	take	the	body	from	the	response:

iex(2)>	GetPages.get(:body,	"https://www.google.com")

The	result	is	shown	in	the	following	screenshot:

3.	 What	if	we	try	to	get	something	other	than	the	body	or	the	headers	from	the
response?	Take	a	look:

iex(3)>	GetPages.get(:something,	"http://elixir-lang.com")

Section	unavailable	or	not	known!

:ok

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
To	see	pattern	matching	in	action,	open	the	get_pages/lib/get_pages.ex	file,	which	has
the	following	content:

defmodule	GetPages	do

		def	get(element,	url	\\	"http://elixir-lang.org")	do

				case	element	do

						:headers	->

								%{headers:	headers}	=	fetch_url(url)

								headers

						:body	->

								%{:body	=>	body}	=	fetch_url(url)

								body

						_	->

								IO.puts	"Section	unavailable	or	not	known!"

				end

		end

		defp	fetch_url(url)		do

				HTTPoison.get(url)

		end

end

We	will	start	by	examining	the	fetch_url(url)	function.	This	function	is	defined	with
defp	instead	of	def,	which	means	that	this	function	is	private;	it	can	only	be	invoked	from
within	the	GetPages	module.	It	receives	a	string	representing	a	URL	and	then	invokes	the
HTTPoison	app	that	we	declared	as	a	dependency.	The	return	result	is	a	map	named
HTTPoison.Response,	containing	body	and	headers	keys.

The	fetch_url	function	is	invoked	by	the	get	function.

The	get	function	accepts	an	atom	to	determine	what	section	of	the	response	we	wish	to
retrieve	(:headers	or	:body)	and	a	string	defining	the	desired	page’s	URL.

Tip
In	the	def	get(element,	url	\\	"http://elixir-lang.org")	function	definition,	we
have	\\	after	the	URL.	This	is	called	a	default	argument.	If	no	value	is	provided,	the
function	will	default	to	the	one	defined	after	\\.

This	means	that	GetPages.get(:body,	"http://elixir-lang.org")	is	equivalent	to
GetPages.get(:body).

Pattern	matching	takes	place	in	the	case	element	do	section.

The	If	element	matches	:headers;	we	then	retrieve	the	value	under	the	:headers	key	in
the	response,	assigning	it	to	the	headers	variable	and	returning	it.

The	Else	if	element	matches	:body;	we	then	retrieve	the	value	under	the	:body	key	in	the
response,	assigning	it	to	the	body	variable	and	returning	it.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Else	element	was	not	captured	in	the	previous	matches,	so	we	will	issue	a	message	to
inform	the	user.	The	_	variable	in	pattern	matching	means	that	we	don’t	care	for	the	value
and,	in	this	case,	it	is	a	match-all	operator.

Previously,	we	highlighted	If,	Else	if,	and	Else	to	make	clear	that	pattern	matching
actually	replaces	the	need	for	these	constructs!

Pattern	matching	also	takes	place	in	%{:headers	=>	headers}	=	fetch_url(url)	and	%
{:body	=>	body}	=	fetch_url(url).	The	fetch_url(url)	function	on	the	right-hand
side	of	the	match	operator	(=)	returns	a	map,	and	by	declaring	a	map	(%{})	on	the	left-hand
side	of	the	match	operator,	we	are	taking	only	the	:headers	or	:body	key	and	assigning	its
value	to	a	variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	a	key/value	store	with	a	map
In	Elixir,	map	is	the	tool	to	use	when	we	need	a	very	simple	key/value	store.	A	map	is	a
data	type	for	associative	collections	(or	dictionaries).

The	Map	module	is	an	implementation	of	the	Dict	API.	The	following	is	the	Dict
documentation	page:

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Start	a	new	IEx	session	in	your	console.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
In	this	recipe,	we	will	create	an	in-memory	database	of	the	English	Premier	League,	where
we	will	keep	the	current	points,	number	of	played	games,	and	the	club	name.	We	will	be
creating	a	map	to	hold	the	league	and	a	map	for	each	team.	This	will	be	a	map	of	maps!
The	steps	are	as	follows:

1.	 We	will	create	the	map	to	hold	the	League	data:

iex(1)>	premier_league_2013	=	%{}

Tip
To	create	a	new	map,	we	might	also	use	the	Map.new/0	function:

premier_league	=	Map.new

2.	 Now,	it’s	time	to	add	some	data	about	the	teams:

iex(2)>	man_city	=	%{:position=>	1,	:points=>	86,	:played=>	38,	:name=>	

"Manchester	City"}

iex(3)>	liverpool	=	%{:position	=>	2,	:points=>	84,	:played=>	38,	

:name=>	"Liverpool"}

iex(4)>	chelsea	=	%{:position	=>	3,	:points=>	82,	:played=>	38,	:name=>	

"Chelsea"}

3.	 We	will	now	add	the	teams	to	our	league	map:

iex(5)>	premier_league_2013	=	%{:man_city=>	man_city,	:liverpool	=>	

liverpool,	:chelsea	=>	chelsea}

%{chelsea:	%{name:	"Chelsea",	played:	38,	points:	82,	position:	3},

		liverpool:	%{name:	"Liverpool",	played:	38,	points:	84,	position:	2},

		man_city:	%{name:	"Manchester	City",	played:	38,	points:	86,	

position:	1}}

4.	 Now,	we	will	get	the	name	and	points	stored	in	our	league	map	with	the	Chelsea	key
assigning	them	to	the	n	and	p	variables:

iex(6)>	%{:name	=>	n,	:points	=>	p}	=		Map.get(premier_league_2013,	

:chelsea)

iex(7)>	n

"Chelsea"

iex(8)>	p

82

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	1,	we	created	a	named	map,	and	in	the	next	step,	we	created	maps	to	hold	the
information	of	three	teams.	The	syntax	we	used	is	%{:key	=>	value}.

We	used	the	same	syntax	to	put	each	team’s	map	on	our	premier_league_2013	map.

Tip
We	could	have	added	each	team	into	the	league	map	using	the	Map.put/3	function:

premier_league_2013	=	Map.put(premier_league_2013,	:man_city,	man_city)

Repeat	the	procedure	for	each	of	the	teams	we	want	to	add.

In	the	last	step,	we	used	pattern	matching	and	the	Map.get/3	function	to	assign	only	the
name	and	points	values	under	the	:chelsea	key	on	our	premier_league_2013	map.

On	the	left-hand	side	of	the	match	operator	(=),	we	declared	a	map,	assigning	the	:name
key	to	the	n	variable	and	:points	to	the	p	variable.

Note
Unlike	keyword	lists,	maps	don’t	maintain	the	order	of	the	declared	keys	and	they	also
don’t	allow	duplicate	entries	under	the	same	key.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
We	used	pattern	matching	in	this	recipe.	To	see	some	examples	of	pattern	matching,
take	a	look	at	the	Using	pattern	matching	and	Pattern	matching	a	HTTPoison
response	recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping	and	reducing	enumerables
In	Elixir,	protocols	are	a	way	to	achieve	polymorphism.	The	Enum	and	Stream	modules
work	on	data	types	that	implement	the	Enumerable	protocol,	so	the	behavior	of	both
modules	becomes	similar.	In	this	context,	polymorphism	might	be	perceived	as	a	common
API	to	interact	with	different	modules.

All	Enum	module	functions	accept	a	collection	as	one	of	the	arguments,	and	two	very
common	operations	in	collections	are	map	and	reduce.	With	map,	we	perform	some	kind
of	operation	on	every	element	of	a	given	collection,	and	with	reduce,	the	whole	collection
is	reduced	into	a	value.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
For	this	recipe,	we	will	use	a	new	IEx	session.	To	start	it,	type	iex	in	your	console.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	perform	map	and	reduce	on	a	collection,	we	will	be	following	these	steps:

1.	 We	will	start	by	creating	a	list	with	numbers	from	1	to	9

iex(1)>	my_list	=	Enum.to_list(1..9)

[1,	2,	3,	4,	5,	6,	7,	8,	9]

2.	 Create	an	anonymous	function	to	map	the	collection:

iex(2)>	my_map_function_one	=	fn(x)->	x*x	end

#Function<6.90072148/1	in	:erl_eval.expr/5>

3.	 Apply	the	function	to	every	element	of	the	collection:

iex(3)>	Enum.map(my_list,	my_map_function_one)

[1,	4,	9,	16,	25,	36,	49,	64,	81]

4.	 Let’s	create	a	map	function	that	subtracts	1	from	even	numbers	and	adds	1	to	odd
numbers:

iex(4)>	my_map_function_two	=	fn(x)->	cond	do

...(4)>	rem(x,2)==0	->

...(4)>	x	-	1

...(4)>	rem(x,2)==1	->

...(4)>	x	+	1

...(4)>	end

...(4)>	end

#Function<6.90072148/1	in	:erl_eval.expr/5>

5.	 Apply	this	map	function	to	the	list:

iex(5)>	Enum.map(my_list,	my_map_function_two)

[2,	1,	4,	3,	6,	5,	8,	7,	10]

6.	 To	reduce	our	original	list,	we	will	create	a	reduce	anonymous	function:

iex(5)>	my_reduce_function	=	fn(x,	acc)->	x	+	acc	end

#Function<12.90072148/2	in	:erl_eval.expr/5>

7.	 Reduce	the	list	by	applying	my_reduce_function:

iex(6)>	Enum.reduce(my_list,	my_reduce_function)

45

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
After	creating	an	initial	collection	to	work	on,	we	defined	three	anonymous	functions	in
steps	2,	4,	and	6.	We	could	have	passed	the	function	definitions	directly,	but	to	make	the
examples	clearer,	we	assigned	these	anonymous	functions	to	variables.

In	step	2,	my_map_function_one	takes	a	single	input	and	multiplies	that	input	by	itself.

In	step	4,	my_map_function_two	also	takes	a	single	input	but	uses	cond	to	determine
whether	that	input	is	an	even	or	odd	value.	If	the	input	is	an	even	value,	it	will	be
decremented	by	one,	and	if	the	input	is	an	odd	number,	it	will	be	incremented	by	one.

The	reduce	function	defined	in	step	6	(my_reduce_function)	takes	two	inputs,	a
collection	element	(x),	and	an	accumulator	(acc).	In	this	particular	case,	we	are	adding	all
elements	of	my_list,	reducing	them	to	a	single	value.

To	map	(steps	3	and	5)	and	reduce	(step	7),	we	used	functions	from	the	Enum	module	as	it
implements	the	Enumerable	protocol	and	allows	us	to	work	with	any	data	structure	that
supports	enumeration.

www.it-ebooks.info

http://www.it-ebooks.info/

There	is	more…
In	step	7,	we	chose	the	Enum.reduce/2	function	but	we	could	have	used	Enum.reduce/3,
which	takes	an	extra	argument	that	will	be	the	accumulator.	In	Enum.reduce/2,	the
accumulator	is	the	first	element	of	the	collection.

Tip
This	is	how	we	use	the	Enum.reduce/3	function:

Enum.reduce(collection,	accumulator,	reduce_function)

iex(7)>	Enum.reduce(my_list,	0,	my_reduce_function)

45

In	the	Understanding	immutability	recipe,	we	used	the	List.foldl/3	function	to	reduce
the	list.	We	could	have	used	it	here	as	we	also	had	a	list	as	our	collection.	However,	by
using	the	reduce	function	defined	in	the	Enum	module,	we	are	able	to	use	the	same	code
even	if	the	collection	is	not	a	list.	This	is	polymorphism,	and	it	is	made	possible	by	the	use
of	protocols!

www.it-ebooks.info

http://www.it-ebooks.info/

Generating	lazy	(even	infinite)	sequences
In	the	Mapping	and	reducing	enumerables	recipe,	we	made	use	of	the	Enum	module.	In
this	recipe,	we	will	be	using	the	Stream	module.

While	Enum	functions	are	all	eager,	in	Stream,	they	are	lazy.

Let’s	inspect	the	following	code:

Enum.to_list(1..1000000)	|>	Enum.map(&(&1	*	&1))	|>	Enum.sum	

This	code	is	performing	a	sequence	of	operations	using	the	Enum	module.	All	steps
between	the	pipe	operators	(|>)	imply	the	calculation	of	the	entire	data	structures	and
placing	them	in	memory.	A	list	with	numbers	from	1	to	1000000	is	created,	then	a	new	list
containing	each	of	the	previous	elements	multiplied	by	themselves	is	created,	and	finally,
this	resulting	list	is	reduced	by	summing	up	all	elements.

This	is	an	example	of	eager	evaluation.	What	if	we	wish	to	work	with	data	that	doesn’t	fit
in	our	available	memory?

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	work	with	enumerables	and	lazy	evaluate	them,	we	will	follow	these	steps:

1.	 Start	an	IEx	session.
2.	 Define	an	enumerable:

iex(1)>	collection	=	1..10000000

1..10000000

3.	 Perform	several	transformations	on	the	collection	created	in	the	previous	step	using
the	Stream	module:

iex(2)>	my_stream	=	1..10000000	|>

...(2)>	Stream.filter_map((&(rem(&1,13)==0)),	(&(&1*&1)))	|>

...(2)>	Stream.filter(&(rem(&1,2)==1))

#Stream<[enum:	1..10000000,

	funs:	[#Function<59.45151713/1	in	Stream.filter_map/3>,

		#Function<38.45151713/1	in	Stream.filter/2>]]>

4.	 Let’s	now	reduce	our	collection	by	summing	its	values:

iex(3)>	my_stream	|>	Enum.sum

12820474358991153855

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	1,	we	defined	a	range	with	all	the	integers	between	1	(first)	and	10000000	(last).

Note
We	could	have	used	Range.new(first,	last):

iex(4)>	Range.new(1,10000000)

1..10000000

In	step	2,	we	assigned	a	stream	that	resulted	from	several	transformations	in	the
my_stream	variable.	This	resulting	stream	is	lazy	evaluated.	Think	of	it	as	a	series	of
computational	directives	waiting	to	be	performed.

We	will	now	take	a	closer	look	at	each	transformation:

The	first	one,	which	uses	Stream.filter_map(enum,	filter,	mapper),	selects	each
element	of	my_stream	that	is	divisible	by	13	and	multiplies	it	by	itself:

Our	enum	is	the	range	of	1..10000000
The	filter	function	(&(rem(&1,13)==0))	chooses	all	elements	from	the	collection
that	are	divisible	by	13
The	map	function	(&(&1*&1))	multiplies	the	element	by	itself

The	next	one,	which	is	Stream.filter(enum,	function),	selects	every	odd	element
from	the	Stream	resulting	from	the	previous	transformation:

The	enum	parameter	is	the	Stream	returned	by	the	previous	transformation
The	filter	function	(&(rem(&1,2)==1)	selects	every	odd	element

To	sum	it	all,	we	are	taking	all	numbers	from	1	to	10000000,	selecting	the	ones	divisible
by	13	and	multiplying	them	by	themselves	and	then	filtering	the	resulting	collection	to
select	only	the	odd	ones.	At	this	stage,	no	computation	was	actually	performed!	We	get	the
following	return	value:

#Stream<[enum:	1..10000000,	funs:	[#Function<59.45151713/1	in	

Stream.filter_map/3>,	#Function<38.45151713/1	in	Stream.filter/2>]]>

This	is	a	lazy	evaluated	value.

Only	in	the	final	step,	when	we	use	Enum.sum(collection),	is	the	computation	performed
and	we	get	the	resulting	sum	of	all	elements	from	the	Stream	resulting	from	the	previous
transformations.

www.it-ebooks.info

http://www.it-ebooks.info/

There	is	more…
As	we	used	the	Stream	module	instead	of	Enum,	no	intermediary	values	were	generated	in
the	transformations.	Memory	usage	was	reduced	and	we	could	have	used	a	larger	initial
collection	without	worrying	about	maxing	out	the	available	memory.

The	next	two	screenshots	show	you	the	memory	usage	by	using	lazy	and	eager	evaluation.

Using	lazy	evaluation,	we	can	do	the	following:

iex(5)>	my_stream	=	1..10000000	|>

...(5)>	Stream.filter_map((&(rem(&1,13)==0)),	(&(&1*&1)))	|>

...(5)>	Stream.filter(&(rem(&1,2)==1))

#Stream<[enum:	1..10000000,

	funs:	[#Function<60.29647706/1	in	Stream.filter_map/3>,

		#Function<39.29647706/1	in	Stream.filter/2>]]>

The	transformation	was	defined	but	not	yet	executed.	Take	a	look	at	the	following:

iex(6)>	my_stream	|>	Enum.sum

12820474358991153855

When	we	execute	the	preceding	command,	we	get	the	following	memory	usage:

Replacing	Stream	with	Enum	using	eager	evaluation	leads	to	the	following:

iex(6)>	my_stream	=	1..10000000	|>

...(6)>	Enum.filter_map((&(rem(&1,13)==0)),	(&(&1*&1)))	|>

...(6)>	Enum.filter(&(rem(&1,2)==1))	|>	Enum.sum

12820474358991153855

We	have	the	following	memory	usage:

www.it-ebooks.info

http://www.it-ebooks.info/

Note
The	&(&1*&2)	syntax	used	in	this	recipe’s	map	and	filter	functions	is	a	shortcut	equivalent
to	using	fn(x,y)	->	x	*	y	end,	where	&	is	fn	and	&1,	&2,	and	&n	are	the	1st,	2nd,	and	nth
arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

Streaming	a	file	as	a	resource
In	the	Generating	lazy	(even	infinite)	sequences	recipe,	it	was	possible	to	understand	the
difference	between	eager	and	lazy	evaluation,	namely	the	use	of	Enum	or	Stream	modules.

When	working	with	files,	it	is	possible	to	load	all	of	the	file’s	contents	into	the	memory
(File.read/1	or	File.read!/1),	or	the	file	might	be	read	a	line	or	n	bytes	at	a	time
(File.stream!/3).	Using	the	File.stream!	function	allows	you	to	work	with	really	large
files	that	might	not	fit	the	available	memory.

In	this	recipe,	we	will	read	text	from	a	file	and	output	an	uppercased	version	into	a	new
file.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Start	an	IEx	session	and	make	sure	you	have	stream_file.txt	in	a	known	location:

>	iex

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	read	a	file	one	line	at	a	time	(that	is,	streaming	it),	we	will	perform	the	following	steps:

1.	 First,	let’s	get	information	about	the	file	we	will	be	loading:

iex(1)>	File.stat("<path_to_file>/stream_file.txt")

%File.Stat{access:	:read_write,	atime:	{{2014,	9,	20},	{0,	44,	19}},	

ctime:	{{2014,	9,	20},	{0,	44,	19}},	gid:	20,	inode:	34849976,	links:	

1,	major_device:	16777218,	minor_device:	0,	mode:	33188,	mtime:	{{2014,	

9,	20},	{0,	44,	19}},	size:	8472,	type:	:regular,	uid:	501}

2.	 Lazily	read	the	file	into	the	input_file	variable:

iex(2)>	input_file	=	File.stream!("<path_to_file>/stream_file.txt")

%File.Stream{line_or_bytes:	:line,	modes:	[:raw,	:read_ahead,	:binary],	

path:	"code/stream_file.txt",	raw:	true}

Tip
It	is	easier	if	you	start	the	IEx	session	in	the	directory	where	stream_file.txt	is
stored.	To	load	it,	the	filename	is	enough	and	the	full	(or	relative)	path	is	not	needed:

iex(3)>	input_file	=	File.stream!("stream_file.txt")

3.	 Perform	the	transformations	that	will	make	every	letter	uppercase	and	output	the
result	into	a	new	file:

iex(4)>	input_file	|>

...(4)>	Stream.map(&String.upcase(&1))	|>

...(4)>	Stream.into(File.stream!("code/new.txt"))	|>

...(4)>	Stream.run

:ok

4.	 Open	the	created	new.txt	file	to	see	the	result	of	our	transformation:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
After	checking	the	file	information,	we	load	the	file	into	the	input_file	variable	in	step
2.	The	File.stream!	function	returns	File.Stream	and	nothing	is	yet	loaded	into	the
memory!

In	step	3,	we	pass	input_file	as	the	first	argument	to	the	Stream.map	function	along	with
the	map	function	(&String.upcase(&1))	that	converts	every	element	of	input_file	to
uppercase.	Afterwards,	the	result	of	this	mapping	is	passed	as	the	first	argument	of	the
Stream.into	function,	which	also	takes	a	path	indicating	the	file	where	the	data	will	be
written.	At	this	point,	no	computation	has	taken	place!	Only	in	the	last	stage	of	our
transformation	(Stream.run)	does	the	computation	take	place,	resulting	in	the	creation	of
a	new	file.	At	the	end	of	our	pipeline,	new.txt	is	created,	which	is	an	uppercased	version
of	stream_file.txt.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	3.	Strings	and	Binaries
This	chapter	will	cover	the	following	recipes:

Joining	strings
Splitting	strings
Replacing	string	codepoints	with	patterns
Slicing	strings	with	ranges
Using	regular	expressions
Combining	operations	with	the	|>	operator
Creating	a	word	list
Determining	the	word	frequency	in	a	text
Reading	and	writing	metadata	from	MP3	files

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
In	Elixir,	strings	are	declared	using	double	quotes	(””)	and	they	are,	by	default,	UTF-8-
encoded	binaries.	A	group	of	bytes	represent	each	codepoint	in	a	string.

Note
A	codepoint,	in	this	context,	is	the	binary	representation	of	a	UTF-8-encoded	character.

Elixir’s	support	for	strings	is	excellent.	However,	remember	that	under	the	hood,	they	are
binaries!

Note
In	order	to	represent	some	characters	in	UTF-8,	more	than	one	byte	is	needed	sometimes.
Take	a	look	at	the	following	examples:

iex>	byte_size	"aeiou"

5

iex>	byte_size	"àéíôù"

10

iex>	String.length	"aeiou"

5

iex>	String.length	"àéíôù"

5

Even	though	both	strings	have	the	same	length,	the	number	of	bytes	needed	to	represent
them	differs.

www.it-ebooks.info

http://www.it-ebooks.info/

Joining	strings
As	we	mentioned	in	the	introduction,	strings	are	binaries.	In	this	recipe,	we	will	use	the
binary	concatenation	operator	(<>)	to	join	strings.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
In	this	recipe,	we	will	use	an	IEx	session,	so	let’s	start	it	by	entering	iex	in	our	command
line.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	join	(concatenate)	two	strings,	follow	these	steps:

1.	 Define	string_one:

iex(1)>	string_one	=	"Hello"

"Hello"

2.	 Define	string_two:

iex(2)>	string_two	=	"World"

"World"

3.	 Join	both	strings:

iex(3)>	string_one	<>	string_two

"HelloWorld"

4.	 Make	it	look	a	lot	better:

iex(4)>	string_one	<>	"	"	<>	string_two	<>	"!"

"Hello	World!"

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
The	Kernel	module	defines	a	macro	to	concatenate	two	binaries.	Think	of	this	macro	as	a
<>	operator	that	works	by	appending	the	binary	defined	on	the	right-hand	side	to	the
binary	defined	on	the	left-hand	side.	In	step	3,	we	used	previously	defined	strings	and
concatenated	them	using	<>.

The	operation	is	associative.	In	step	4,	we	concatenated	a	space	and	!	to	our	defined
strings	using	<>	in	a	sequence.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
Elixir	strings	also	support	interpolation.	By	using	#{variable},	we	can	insert	some
computed	values	into	strings!

Tip
We	can	interpolate	an	x	value	into	a	string	by	defining	it	like	this:

iex>	x	=	5

5

iex>	"My	x	value	is	#{x}	!"

"My	x	value	is	5	!"

Many	IO	functions	support	iolists.	If	we	wish	to	output	the	result	of	our	concatenation
using	IO.puts,	we	can	avoid	concatenation	and	pass	a	list	literal	to	the	output	function.
Using	iolists	is	faster	and,	most	of	the	time,	more	memory-efficient.

Tip
To	output	the	string	defined	in	step	4	using	an	iolist,	do	the	following:

iex(5)>	IO.puts	[string_one,	"	",	string_two,	"!"]

Hello	World!.

www.it-ebooks.info

http://www.it-ebooks.info/

Splitting	strings
Functions	to	work	on	strings	are	defined	under	the	String	module.	In	the	next	few
recipes,	we	will	be	using	some	of	these	functions.

In	this	recipe,	we	will	be	focusing	on	how	to	split	strings	using	String.split/1,
String.split/3	and	String.split_at/2.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Start	a	new	IEx	session	by	typing	iex	in	your	command	line.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	demonstrate	the	use	of	the	split	functions	in	the	String	module,	we	will	follow	these
steps:

1.	 Define	a	string	to	work	with:

iex(1)>	my_string	=	"Elixir,	testing	1,2,3!	Testing!"

"Elixir,	testing	1,2,3!	Testing!"

2.	 Split	a	string	at	the	whitespaces:

iex(2)>	String.split(my_string)

["Elixir,",	"testing",	"1,2,3!",	"Testing!"]

3.	 Split	a	string	at	a	given	character,	in	this	case	at	,:

iex(3)>	String.split(my_string,	",")

["Elixir",	"	testing	1",	"2",	"3!	Testing!"]

4.	 Split	a	string	at	a	given	character	and	limit	the	number	of	splits	to	be	performed:

iex(4)>	String.split(my_string,	",",	parts:	2)

["Elixir",	"	testing	1,2,3!	Testing!"]

5.	 Split	a	string	into	two	parts,	starting	at	a	given	offset:

iex(5)>	String.split_at(my_string,	7)

{"Elixir,",	"	testing	1,2,3!	Testing!"}

iex(6)>	String.split_at(my_string,	-8)

{"Elixir,	testing	1,2,3!	",	"Testing!"}

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	this	recipe,	to	split	our	defined	my_string,	we	used	several	functions	defined	in	the
String	module.

We	will	now	take	a	closer	look	at	each	one	of	them:

In	step	2,	we	use	String.split/1,	which	accepts	a	string	argument	and	defines	the
split	character	as	a	whitespace	(”	“).
In	step	3,	we	pass	both	the	strings	we	wish	to	split	and	the	character	to	be	used	as	the
split	token	to	String.split/2.
In	both	these	steps,	the	return	value	is	a	list	of	strings	with	the	split	character
removed	(”	”	in	step	2	and	“,”	in	step	3).
Step	4	illustrates	String.split/3	with	the	use	of	options.	In	this	particular	case,	we
determined	that	the	input	string	must	be	split	in	two	parts.
In	the	last	step,	we	use	the	String.split_at	function.	This	function	splits	a	string	in
two,	returning	a	two	element	tuple	with	the	two	strings	resulting	from	the	split.	It	is
possible	to	use	both	positive	and	negative	integer	values	for	the	offset.	If	a	negative
value	is	passed,	the	position	where	the	input	string	must	be	split	is	counted	from	the
end.

Note
If	the	split	offset’s	(positive	or	negative)	absolute	value	is	bigger	than	the	length	of	a
string,	the	String.split_at	function	returns	a	tuple	with	an	empty	string	as	its	first
element	(if	a	negative	offset	with	an	absolute	value	bigger	than	the	length	is	passed)
or	a	tuple	with	an	empty	string	as	its	second	element	(if	a	positive	offset	value	bigger
than	the	length	is	passed).

To	better	illustrate	this,	take	a	look	at	these	examples:

iex>	String.split_at("Demo",	5)

{"Demo",	""}

iex>	String.split_at("Demo",	-5)

{"",	"Demo"}

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
In	the	Replacing	string	codepoints	with	patterns	and	Slicing	strings	with	ranges
recipes,	we	will	find	alternate	ways	to	split	strings.

www.it-ebooks.info

http://www.it-ebooks.info/

Replacing	string	codepoints	with	patterns
In	this	recipe,	we	will	demonstrate	how	to	replace	codepoints	in	a	string	using	a	match
pattern.	We	will	use	the	String.replace/4	function	to	help	with	this	task.

Note
A	codepoint,	in	this	context,	is	the	binary	representation	of	a	UTF-8	encoded	character.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
This	recipe	will	be	performed	inside	an	IEx	session.	Start	it	by	executing	the	iex
command	in	your	command	line.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	find	a	pattern	in	a	string	and	replace	it,	follow	these	steps:

1.	 Define	a	string:

iex(1)>	my_string	=	"user1@server.domain	user2@server.domain"

"user1@server.domain	user2@server.domain"

2.	 Define	a	string	pattern	to	use	with	String.replace:

iex(2)>	my_pattern	=	"@"

"@"

3.	 Perform	the	replacement	using	the	default	options:

iex(3)>	String.replace(my_string,	my_pattern,	"(at)")	

"user1(at)server.domain	user2(at)server.domain"

4.	 Perform	the	replacement	only	at	the	first	pattern	occurrence:

iex(4)>	String.replace(my_string,	my_pattern,	"(at)",	global:	false)

"user1(at)server.domain	user2@server.domain"

5.	 Now,	find	the	pattern	you	wish	to	replace	and	reinsert	it	in	the	resulting	string:

iex(5)>	String.replace(my_string,	my_pattern,	"()",	insert_replaced:	1)

"user1(@)server.domain	user2(@)server.domain"

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
The	String.replace(subject,	pattern,	replacement,	options	\\	[])	function
takes	as	its	arguments	the	string	to	process	(subject),	a	pattern,	the	codepoints
(replacement)	we	wish	to	replace	the	pattern	with,	and	some	options.	A	new	string	is
returned	containing	the	changed	codepoints.	Let’s	take	a	closer	look	at	each	step:

In	steps	1	and	2,	we	defined	both	the	string	(subject)	we	wished	to	transform	and	the
pattern	we	wish	to	find	in	that	string.
In	step	3,	the	String.replace	function	was	invoked	without	passing	any	options.
The	default	value	when	options	are	not	passed	is	global:	true.	This	means	that	all
occurrences	of	the	given	pattern	will	be	replaced.	In	this	case,	all	@	characters	were
replaced	by	(at).
In	step	4,	we	changed	this	behavior	by	setting	the	option	as	global:	false.	This
resulted	in	only	the	first	occurrence	of	the	defined	pattern	@	being	replaced.
In	step	5,	we	see	another	option	in	action.	This	time,	the	insert_replaced:	1	option
is	used.	With	this	option,	we	define	that	we	want	the	replaced	codepoints	(pattern)	to
be	inserted	inside	the	replacement	codepoints.	The	integer	1	represents	the	index
where	we	wish	the	pattern	to	be	inserted.

Note
The	insert_replaced	function	can	also	be	defined	as	a	list	of	integers.	Let’s	run	the
step	5	example	with	insert_replaced:	[0,2]:

iex(6)>	String.replace(my_string,	"@",	"()",	insert_replaced:	[0,2])

"user1@()@server.domain,	user2@()@server.domain"

The	@	character	was	the	codepoint	we	wanted	to	replace	with	().	As	we	defined
insert_replaced:[0,2],	@	was	inserted	as	the	codepoint	in	positions	0	and	2	of	the
()	string.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
In	the	Using	regular	expressions	recipe,	we	use	the	Regex	module	instead	of	the
String	module	to	perform	the	same	operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Slicing	strings	with	ranges
In	the	Splitting	strings	recipe,	we	saw	how	to	use	a	token	(by	default,	a	whitespace)	to
split	a	string	and	get	a	list	of	strings	delimited	by	that	token.	What	if	we	wish	to	get	only	a
portion	of	the	original	string?

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
We	will	use	IEx.	Start	it	by	entering	iex	in	the	command	line.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	slice	a	string	using	a	range,	follow	these	steps:

1.	 Define	a	string:

iex(1)>	my_string	=	"The	quick	brown	fox	jumps	over	the	lazy	dog"

"The	quick	brown	fox	jumps	over	the	lazy	dog"

2.	 Define	two	ranges:

iex(2)>	my_range_one	=	10..14

10..14

iex(3)>	my_range_two	=	-27..-25

-27..-25

3.	 Use	the	String.slice/2	function	to	slice	the	original	string	using	my_range_one:

iex(4)>	String.slice(my_string,	my_range_one)

"brown"

4.	 Use	the	String.slice/2	function	to	slice	the	original	string	using	my_range_two:

iex(4)>	String.slice(my_string,	my_range_two)

"fox"

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
The	String.slice/2	function	uses	a	range	to	determine	the	start	position	of	the	split	and
the	number	of	codepoints	desired.	As	we	saw	in	this	chapter’s	Introduction	section,	a
string	is	a	binary	that	represents	a	succession	of	byte-encoded	UTF-8	codepoints.	To	make
our	reasoning	simpler,	let’s	think	of	a	string	as	a	list,	array,	or	vector	of	characters.	The
first	codepoint	will	be	located	at	position	0,	and	the	last	one	will	be	located	at	position
String.length	-	1.	When	we	pass	a	range,	we	are	implicitly	determining	the	index	of
the	first	codepoint	we	want	and	the	length	of	the	desired	substring.	In	step	2,	we	started	at
position	10	and	took	five	successive	codepoints.	The	10..14	range	has	five	elements.

In	step	3,	we	used	a	negative	integer	value	as	the	range	start	point.	This	means	that	we
wish	to	start	counting	backwards	from	position	27	and	take	three	codepoints.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
The	String	module	also	defines	the	slice/3	function,	which	takes	as	arguments	a	string,
the	starting	index,	and	the	length	(String.slice(string,	start,	length)).	It	can	be
implemented	as	follows:

To	perform	the	slicing	operation	from	step	3,	we	will	write	the	following:

iex(5)>	String.slice(my_string,	10,	5)

"brown"

To	perform	the	slicing	operation	from	step	4,	we	will	write	the	following:

iex(5)>	String.slice(my_string,	-27,	3)

"fox"

www.it-ebooks.info

http://www.it-ebooks.info/

Using	regular	expressions
Elixir	supports	regular	expressions	via	Erlang’s	re	module.	This	is	one	of	those	situations
that	we	mentioned	in	the	Using	Erlang	from	Elixir	recipe	in	Chapter	1,	Command	Line.
However,	we	don’t	have	to	use	the	re	Erlang	module	directly!	We	have	the	Elixir	Regex
module	that	is	built	on	top	of	the	Erlang	module	and	is	also	based	on	Perl	Compatible
Regular	Expressions	(PCRE).

In	this	recipe,	we	use	the	~r	sigil	to	define	regular	expressions	and	operate	on	strings.

Note
The	~r	sigil	is	a	special	form	that	allows	for	the	creation	of	regular	expressions	as
alternatives	to	the	Regex.compile!/2	function.

Internally,	a	regular	expression	is	represented	by	the	Regex	struct	(%Regex{}).

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Start	a	new	IEx	session	by	entering	iex	in	your	command	line.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
We	perform	the	same	operation	we	did	in	the	Replacing	string	codepoints	with	patterns
recipe,	as	follows:

1.	 Define	a	string	to	operate	on:

iex(1)>	my_string	=	"user1@server.domain	user2@server.domain"

"user1@server.domain	user2@server.domain"

2.	 Define	a	regular	expression	using	the	~r	sigil:

iex(2)>	my_regex	=	~r{@}

~r/@/

3.	 Check	whether	my_string	contains	the	defined	my_regex	regular	expression:

iex(3)>	Regex.match?(my_regex,	my_string)

true

4.	 Perform	the	replacement	of	the	pattern	defined	by	the	regular	expression	(@)	in
my_string	with	(at):

iex(4)>	Regex.replace(my_regex,	my_string,	"(at)")

"user1(at)server.domain	user2(at)server.domain"

5.	 To	perform	the	replacement	only	in	the	first	found	occurrence,	set	the	global	option
to	false:

iex(5)>	Regex.replace(my_regex,	my_string,	"(at)",	global:	false)

"user1(at)server.domain	user2@server.domain"

6.	 It	is	also	possible	to	reinsert	the	matched	pattern	in	the	replacement	string:

iex(6)>	Regex.replace(my_regex,	my_string,	fn		->	"(#

{Regex.source(my_regex)})"	end)

"user1(@)server.domain	user2(@)server.domain"

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	1,	we	start	by	defining	a	string	to	operate	upon,	and	in	step	2,	we	use	the	~r	sigil	to
define	the	regular	expression.	In	this	case,	we	wish	to	match	the	@	codepoint.

Tip
The	regular	expression	in	step	2	can	also	be	created	using	the	Regex.compile!	function:

iex(2)>	Regex.compile!("@")

In	step	3,	we	check	whether	the	defined	pattern	exists	in	my_string;	the	return	value	true
indicates	that	it	does.

When	the	Regex.replace	function	is	invoked	without	explicit	options,	the	global	option
defaults	to	true,	so	all	occurrences	of	the	pattern	defined	in	the	regex	are	replaced.	This	is
what	happens	in	step	4	as	opposed	to	step	5,	where	we	pass	global:	false.	By	doing	so,
only	the	first	occurrence	of	the	pattern	is	replaced.

In	step	6,	we	pass	an	anonymous	function	as	an	option	(fn	->	"(#
{Regex.source(my_regex)})"	end).	Let’s	take	a	closer	look	at	it:

Using	fn	->	means	that	we	don’t	wish	to	use	any	arguments	in	the	anonymous
function.
The	"(#{Regex.source(my_regex)})"	part	is	a	string	interpolation	(#{}),	which
means	that	we	wish	to	insert	the	value	of	Regex.source(my_regex)	inside
parenthesis.	The	Regex.source	function	returns	the	pattern	we	defined.
Using	the	anonymous	function,	we	replace	any	occurrence	of	the	pattern	defined	by
regex	with	(my_regex).

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
In	the	Replacing	string	codepoints	with	patterns	recipe,	we	use	the	String	module
instead	of	the	Regex	module	to	perform	the	same	operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Combining	operations	with	the	|>
operator
In	this	recipe,	we	will	make	use	of	the	pipe	operator	(|>)	to	create	a	series	of
transformations	in	a	text	file.

The	|>	operator	feeds	the	result	of	the	left-hand	side	expression	as	the	first	argument	of
the	right-hand	side	expression.	It	is	possible	to	create	complex	transformations	on	data,
giving	the	programmer	a	more	immediate	perception	of	the	data	flow.

We	will	parse	a	text	file,	make	all	characters	uppercase,	replace	every	vowel	with	@,	and
save	it	as	a	new	file.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
We	will	create	a	Mix	project	and	escriptize	it	to	allow	us	to	run	it	from	the	command	line
without	having	to	start	an	IEx	session.	The	steps	are	as	follows:

1.	 Create	a	Mix	project:

>	mix	new	pipe_transformation

2.	 Edit	the	mix.exs	file,	adding	the	escript	option	so	that	def	project	looks	like	this:

				def	project	do

							[app:	:pipe_transformation,

								version:	"0.0.1",

								elixir:	"~>	1.0.0",

								escript:	[main_module:	PipeTransformation],

								deps:	deps]

				end

Note
The	escript	option	defines	a	main	module	as	the	entry	point	for	the	application	once
it	is	invoked	from	the	command	line.

In	this	case,	we	define	PipeTransformation	as	the	main	module,	which	means	that	it
has	a	main	function	defined.

3.	 Add	the	following	code	to	the	lib/pipe_transformation.ex	file:

	require	Logger

	defmodule	PipeTransformation	do

			def	main(args)	do

					options	=	parse_args(args)

					Logger.info	"PipeTransformation"

					Logger.info	"Input	file:	#{options[:input]}	Output	file:	#

{options[:output]}"

					Logger.info	"Transformation	started…"

					perform_transformation(options)

					Logger.info	"Transformation	finished…"

			end

			defp	parse_args(args)	do

					{options,	_,	_}	=	OptionParser.parse(

																									args,

																									switches:	[

																																			input:	:string,

																																			output:	:string

]

)

					options

			end

			defp	perform_transformation(options)	do

					File.stream!(options[:input])	|>

www.it-ebooks.info

http://www.it-ebooks.info/

					Stream.map(&String.upcase(&1))	|>

					Stream.map(&String.replace(&1,	~r{[AEIOU]},	"@"))	|>

					Stream.into(File.stream!(options[:output]))	|>

					Stream.run

			end

end

4.	 Run	the	Mix	task	to	escriptize	the	application:

>	mix	escript.build

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	perform	our	transformation,	we	only	need	to	execute	the	application	in	our	command
line,	passing	the	input	and	output	files	as	arguments:

1.	 In	the	code	directory	for	this	chapter	inside	the	pipe_transformation	folder,	there	is
a	file	we	will	use	as	the	input	(input_file.txt).

2.	 We	will	define	the	output	file	as	out.txt,	but	you	are	free	to	name	it	whatever	you
like!

3.	 Let’s	perform	our	data	transformation	by	entering	the	following	in	the	command	line:

>	./pipe_transformation	--input	input_file.txt	--output	out.txt

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
Once	the	application	is	started	via	the	command	line,	the	main	function	in	the
PipeTransformation	module	is	invoked.	We	start	by	parsing	the	command	line
arguments,	and	we	invoke	the	private	function	perform_transformation,	passing	the
options	keyword	list	containing	the	input	and	output	files.	Let’s	take	a	closer	look	at	the
perform_transformation	function:

defp	perform_transformation(options)	do

		File.stream!(options[:input])	|>

		Stream.map(&String.upcase(&1))	|>

					Stream.map(&String.replace(&1,	~r{[AEIOU]},	"@"))	|>

					Stream.into(File.stream!(options[:output]))	|>

					Stream.run

end

We	start	by	opening	the	input	file	as	a	stream,	and	then	we	perform	two	consecutive	map
operations	on	each	element	of	the	stream.	First,	we	make	every	character	uppercase,	and
then	if	the	character	is	a	vowel	(uppercase),	we	replace	it	with	@.	Next,	we	define	the
output	file	and	only	when	we	invoke	Stream.run	is	the	whole	computation	performed.	In
the	output	file,	you	will	find	the	result	of	the	transformations	performed	on	the	input	file.

We	used	the	Stream	module	to	show	the	processing	in	a	larger	string.	The	whole	text	file
behaves	exactly	as	a	string.

If	we	wanted	to	perform	the	same	transformation	on	a	“simple”	string,	we	can	do	the
following:

iex(1)>	"Lorem	ipsum"	|>	String.upcase	|>	String.replace(~r{[AEIOU]},	"@")

"L@R@M	@PS@M"

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	a	word	list
In	the	Using	regular	expressions	recipe,	we	used	a	sigil	to	define	a	regular	expression.	A
sigil	is	an	alternative	way	to	define	structures	that	have	a	textual	representation	within	the
language.

This	recipe	will	show	you	the	use	of	the	~W	and	~w	sigils	to	create	word	lists.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Start	a	new	IEx	session	by	entering	iex	in	the	command	line.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	define	word	lists	using	sigils,	perform	the	following	steps:

1.	 Define	a	word	list	with	no	interpolation:

iex(1)>	~W(one	two	"three"	^	@	\|	12345)

["one",	"two",	"\"three\"",	"^",	"@",	"\\|",	"12345"]

2.	 Define	a	word	list	with	an	interpolation:

iex(2)>	x	=	5

5

iex(3)>	~w(one	two	#{x}	five#{x}	"#{x}")

["one",	"two",	"5",	"five5",	"\"5\""]

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
When	using	the	~w	and	~W	sigils,	we	don’t	need	to	enclose	any	of	the	strings	in	””.	We	can
even	use	””,	and	they	will	be	escaped	in	the	resulting	list.

In	step	1,	we	use	the	~W	sigil	to	define	a	word	list.	This	sigil	does	not	allow	string
interpolation.	In	step	2,	we	define	the	word	list	with	~w.	This	sigil	allows	string
interpolation.	We	used	string	interpolation	to	include	the	value	of	x	in	the	generated	word
list.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
Sigils	can	be	defined	using	~,	followed	by	the	sigil	symbol	(W,	w,	r,	and	so	on)	and	the	text
inside	delimiters.

Note
The	delimiters	used	with	sigils	can	be	any	of	these:	\	\,	|	|,	(),	"	",	'	',	[],	{	},	and
<	>.

www.it-ebooks.info

http://www.it-ebooks.info/

Determining	the	word	frequency	in	a	text
In	this	recipe,	we	will	load	a	text	file,	extract	the	words	from	it,	and	then	determine	the
number	of	times	each	of	these	words	appears	in	the	text.

The	output	will	be	written	into	a	new	file	named	word_frequency.txt,	where	the	words
found	in	the	text	will	be	sorted	and	followed	by	an	integer	indicating	their	frequency	in	the
text.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
We	will	create	a	new	Mix	project	and	escriptize	it,	allowing	us	to	run	it	as	a	command-
line	application:

1.	 Create	a	new	Mix	project:

>	mix	new	word_frequency

2.	 Add	the	escript	option	to	the	mix.exs	file,	indicating	where	the	main	function	is
located;	in	this	case,	it	will	be	in	the	WordFrequency	module:

def	project	do

		[app:	:word_frequency,

		version:	"0.0.1",

		elixir:	"~>	1.0.0",

		escript:	[main_module:	WordFrequency],

		deps:	deps]

end

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
We	will	be	adding	all	the	required	code	to	the	lib/word_frequency.ex	file.	Open	it	in
your	editor	and	let’s	get	started:

1.	 We	will	be	using	the	Logger	module	to	output	information,	so	start	by	requiring	the
module	on	the	first	line	of	the	source	file:

require	Logger

2.	 Next,	define	our	main	function:

def	main(args)	do

		options	=	parse_args(args)

		Logger.info	"Input	file:	#{options[:file]}"

		word_frequency_map	=	File.stream!(options[:file])	|>

																							get_word_list_stream	|>

																							count_words

		Logger.info	"Processing	entries…"

		write_to_file(word_frequency_map)

		Logger.info	"File	word_frequency.txt	written	!"

end

3.	 Define	a	private	function	to	parse	the	command-line	arguments:

defp	parse_args(args)	do

		{options,	_,	_}	=	OptionParser.parse(

																				args,	switches:	[file:	:string]

)

		options

end

4.	 The	next	(private)	function	we	need	to	define	is	get_word_list_stream:

defp	get_word_list_stream(file_stream)	do

		map_fn	=	fn	x	->	String.split(x,	~r{[^A-Za-z0-9_]})	end

		filter_fn	=	fn	x	->	String.length(x)	>	0	end

		file_stream	|>	

		Stream.flat_map(map_fn)	|>	

		Stream.filter(filter_fn)

end

5.	 Now,	define	the	count_words	function(s):

defp	count_words(stream)	do

		count_words(Enum.to_list(stream),Map.new)

end

defp	count_words([],	map),	do:	map

defp	count_words([word|rest],	map)	do

		case	Map.has_key?(map,	word)	do

				true	->

						map	=	Map.update!(map,	word,	fn(val)	->	val	+	1	end)

						count_words(rest,	map)

				false	->

						map	=	Map.put_new(map,	word,	1)

						count_words(rest,	map)

www.it-ebooks.info

http://www.it-ebooks.info/

				end

		end

6.	 The	last	function	we	need	to	define	is	write_to_file:

defp	write_to_file(map)	do

		reduce	=	fn(key,	acc)	->	

											acc	<>	"#{key}:	#{Map.get(map,	key)}	time(s)\n"

											end

		output	=	map	|>	Map.keys	|>	Enum.reduce("	",	reduce)

		File.write!("word_frequency.txt",	output)

end

7.	 Let’s	make	our	project	executable	from	the	command	line	by	running	the
escript.build	Mix	task:

>	mix	escript.build

Consolidated	Access

Consolidated	Collectable

Consolidated	Enumerable

Consolidated	Inspect

Consolidated	List.Chars

Consolidated	Range.Iterator

Consolidated	String.Chars

Consolidated	protocols	written	to	_build/dev/consolidated

8.	 Now,	it’s	time	to	run	our	application:

>	./word_frequency	--file	walt_whitman.txt

17:56:45.795	[info]		Input	file:	walt_whitman.txt

17:56:45.824	[info]		Processing	entries…

17:56:45.827	[info]		File	word_frequency.txt	written	!

9.	 The	word_frequency.txt	file	was	written	to	the	disk	and	inside	it,	you	will	find	the
words	from	the	input	file	and	see	how	many	times	they	appear:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	this	recipe,	we	created	a	small	command-line	application	to	determine	the	word
frequency	in	the	text	stored	in	a	file.	The	file	we	use	(walt_whitman.txt)	was	taken	from
the	Project	Gutenberg	website	(http://www.gutenberg.org)	and	can	be	found	in	the	source
code	under	the	word_frequency	folder.

We	start	by	requiring	the	Logger	module	in	step	1.	This	allows	us	to	use	Logger.info	to
output	information	on	our	running	application.

In	step	2,	we	define	the	main	function.	This	is	necessary	because	we	want	to	run	this
application	as	a	command-line	tool	by	“escriptizing”	it.	The	main	function	has	a	series	of
sequential	instructions	that	represent	our	application	flow.	You	will	find	them	as
highlighted	code.	We	will	see	each	operation	in	detail	in	the	explanation	of	next	steps,	but
to	give	you	a	general	idea,	we	can	simplify	the	flow	as	follows:

1.	 Parse	the	command-line	arguments.
2.	 Read	the	file,	clean	it	up,	and	process	each	word.
3.	 Write	the	result	to	a	file.

We	begin	by	parsing	the	command-line	arguments.	In	step	3,	we	use	the
OptionParse.parse	function	to	get	the	--file	option	as	a	string.

This	string	indicates	the	path	of	the	input	file	where	the	text	to	be	processed	is	stored.

We	use	the	file	path	to	load	it	as	a	stream,	and	we	pass	this	stream	to	the
get_word_list_stream	function	defined	in	step	4.	The	function	has	two	anonymous
functions	defined,	which	will	be	used	to	map	and	filter	the	file	stream	we	get	as	the	input:

map_fn	=	fn	x	->	String.split(x,	~r{[^A-Za-z0-9_]})	end:	This	function	uses
a	regular	expression	to	split	the	input	strings,	removing	all	nonwords.
filter_fn	=	fn	x	->	String.length(x)	>	0	end:	This	function	selects	all	strings
with	the	nonzero	length.

In	the	last	line	of	the	get_word_list_stream	function,	we	perform	a	series	of
transformations	to	the	input	file	stream,	and	we	also	get	a	stream	as	result.	If	you	recall	the
Generating	lazy	(even	infinite)	sequences	recipe	in	Chapter	2,	Data	Types	and	Structures,
when	we	use	streams,	no	intermediary	values	are	used,	which	means	that	no	computation
has	been	performed	effectively.

Let’s	take	a	look	at	the	transformation:

file_stream	|>	

Stream.flat_map(map_fn)	|>	

Stream.filter(filter_fn)

We	start	by	feeding	the	file	stream	into	the	flat_map	function	that	returns	a	flattened	list
(actually,	it’s	not	yet	a	list	as	a	stream	performs	lazy	evaluation;	think	of	it	as	the	plan	to
get	a	list)	of	strings.	If	we	used	just	the	map	function,	we	would	get	a	list	of	lists	as	the	file
is	read	line	by	line	and	each	line	would	result	in	a	list	of	strings.	The	flat_map	function

www.it-ebooks.info

http://www.gutenberg.org
http://www.it-ebooks.info/

transforms	a	list	of	lists	into	a	simple	list.	This	resulting	list	is	then	filtered	and	all	the
strings	with	the	0	length	are	removed	(whitespaces).

The	function	defined	in	step	4	returns	a	stream	that	we	will	use	as	an	input	to	the
count_words	function	defined	in	the	next	step.

In	step	5,	we	define	a	recursive	function	named	count_words.	Pattern	matching	is	used	to
determine	which	form	of	the	function	is	used.	We	have	three	possibilities:

count_words(stream):	This	function	is	matched	when	the	input	is	a	stream—
actually,	when	the	input	is	a	single	argument!

In	this	function,	we	receive	the	stream	and	transform	it	into	a	list;	we	create	an	empty
map	and	we	start	the	recursion.

count_words([],	map)	,	do:	map:	This	function	is	matched	when	an	empty	list	is
passed	and	it	actually	returns	the	map	received	as	the	input!	This	is	where	we	stop	the
recursion.
count_words([word|rest],	map):	This	function	is	matched	every	time	we	pass	a
nonempty	list	and	map	to	count_words.

We	then	perform	a	match	(case)	by	checking	whether	the	map	contains	the	word	as	a
key.	If	it	does,	we	increment	the	value	by	one,	and	if	it	doesn’t,	we	create	a	new	entry
in	the	map	with	the	word	as	the	key	and	1	as	its	value.	We	then	pass	the	rest	of	the	list
and	the	resulting	map	to	continue	the	recursion.

In	step	6,	we	define	the	write_to_file	function	to	format	data	and	write	it	into	the	output
file.

We	start	by	defining	a	reduce	anonymous	function:

reduce	=	fn(key,	acc)	->	acc	<>	"#{key}:	#{Map.get(map,	key)}	time(s)\n"	

end

In	reduce,	we	receive	a	key	and	an	accumulator,	and	then	we	concatenate	the	key	and	its
value	that	we	get	from	the	map	to	the	accumulator.

This	anonymous	reduce	function	is	used	in	the	output	=	map	|>	Map.keys	|>
Enum.reduce("",	reduce)	transformation.

We	start	by	passing	the	map	to	Map.keys,	which	returns	a	list	of	the	keys	present	in	the
map,	and	we	feed	that	list	into	Enum.reduce.	The	accumulator	will	start	as	an	empty	string
and	all	keys	and	values	will	then	be	concatenated.

The	last	step	is	to	write	the	result	of	this	transformation	to	the	output	file.

In	step	7,	we	run	the	escript.build	Mix	task,	which	will	transform	our	project	in	a
command-line	executable.

To	run	the	application,	pass	the	--file	<filename>	option,	and	the	result	will	be	saved	in
the	application	directory	as	the	word_frequency.txt	file.

www.it-ebooks.info

http://www.it-ebooks.info/

Reading	and	writing	metadata	from	MP3
files
In	this	chapter’s	introduction,	we	mentioned	the	fact	that	in	Elixir,	strings	are	binaries.	In
this	recipe,	we	will	use	a	binary	file	(an	MP3	file)	and	apply	some	of	the	operations	that
we	previously	performed	on	strings.	We	will	pattern	match	the	MP3	binary	file	to	extract
some	information—ID3	v2	information—and	we	will	replace	a	portion	of	the	file—ID3
v1	information—by	constructing	a	new	string	and	concatenating	it	to	the	end	of	the	binary
file.	In	the	end,	we	will	still	have	a	proper	MP3	file	that	we	will	be	able	to	play	on	our
favorite	music	player!

Note
MP3	files	have	some	metadata	stored	on	them	in	the	form	of	ID3	tags.	The	first	version	of
the	ID3	tag	was	stored	in	the	last	128	bytes	of	the	file.	The	new	ID3	tag	(v2)	is	stored	at
the	beginning	of	the	file	and	may	have	variable	length.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	get	started,	create	a	new	mp3_info.ex	file	and	add	the	following	code:

defmodule	Mp3Info	do

		@file_name	"Divider.mp3"

		def	id3_v2_basic_info(input_file	\\	@file_name)	do

				{:ok,	mp3_file}	=	File.read(input_file)

				<<		tag_id			::	binary-size(3),

								major_v		::	unsigned-integer-size(8),

								revision	::	unsigned-integer-size(8),

								_								::	bitstring	>>	=	mp3_file

				IO.puts	"""

				[ID3v2	Info]

				Tag:												#{tag_id}

				Major	Version:		#{major_v}

				Revision:							#{revision}

				"""

		end

		def	id3_v1_info(input_file	\\	@file_name)	do

				{:ok,	mp3_file}	=	File.read(input_file)

				mp3_size_without_id3	=	(byte_size(mp3_file)	-	128)

				<<	_	::	binary-size(mp3_size_without_id3),	id3_v1_tag_data	::	binary	>>	

=	mp3_file

				<<	tag						::	binary-size(3),

							title				::	binary-size(30),

							artist			::	binary-size(30),

							album				::	binary-size(30),

							year					::	binary-size(4),

							comments	::	binary-size(30),

							_								::	binary	>>	=	id3_v1_tag_data

				IO.puts	"""

				[ID3v1	Info]

				Tag:												#{tag}

				Title:										#{title}

				Artist:									#{artist}

				Album:										#{album}

				Year:											#{year}

				Comments:							#{comments}

				"""

		end

		def	write_info(input_file	\\	@file_name,	output_file	\\	"new.mp3")	do

				{:ok,	mp3_file}	=	File.read(input_file)

				tag						=	"TAG"

				author			=	pad("Chris	Zabriskie",	30)

				title				=	pad("Divider",	30)

				album				=	pad("Divider",	30)

				year					=	"2011"

				comments	=	pad("Copyright:	Creative	Commons",	30)

www.it-ebooks.info

http://www.it-ebooks.info/

				tag_to_write	=	pad((tag	<>	author	<>	title	<>	album	<>	year	<>	

comments),	128)

				mp3_size_without_id3	=	(byte_size(mp3_file)	-	128)

				<<	other_data	::	binary-size(mp3_size_without_id3),	_	::	binary	>>	=	

mp3_file

				File.write(output_file,	(other_data	<>	tag_to_write))

		end

		defp	pad(string,	desired_size)	do

				String.ljust(string,desired_size)

		end

end

Note
We	are	hardcoding	some	information	to	be	placed	in	the	ID3v1	tag	of	the	mp3	file.	So	if
you	are	able	to,	download	the	Divider.mp3	file	bundled	with	the	code	and	place	it	in	the
same	directory	as	the	mp3_info.ex	file.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	read	and	write	ID3	information	to	a	binary	(MP3)	file,	follow	these	steps:

1.	 Start	IEx,	loading	the	mp3_info.ex	file:

>	iex	mp3_info.ex

2.	 Read	the	version	from	the	ID3	v2	tag	in	the	MP3	file:

iex(1)>	Mp3Info.id3_v2_basic_info

[ID3v2	Info]

Tag:												ID3

Major	Version:		4

Revision:							0

:ok

3.	 Read	the	current	ID3	v1	metadata	from	the	MP3	file:

iex(2)>	Mp3Info.id3_v1_info

[ID3v1	Info]

Tag:												UUU

Title:										UUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

Artist:									UUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

Album:										UUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

Year:											UUUU

Comments:							UUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

:ok

4.	 As	the	information	we	got	in	the	last	step	is	no	good,	let’s	replace	it:

iex(3)>	Mp3Info.write_info

:ok.

Note
In	this	step,	a	new	file	is	created.	By	default,	if	no	arguments	are	passed	onto	the
write_info	function,	it	will	read	the	Divider.mp3	file	and	output	to	the	new.mp3	file.

5.	 Check	whether	the	ID3	v1	information	was	correctly	written	on	the	file:

iex(4)>	Mp3Info.id3_v1_info	"new.mp3"

[ID3v1	Info]

Tag:												TAG

Title:										Chris	Zabriskie

Artist:									Divider

Album:										Divider

Year:											2011

Comments:							Copyright:	Creative	Commons

:ok

6.	 Finally,	the	most	important	step	when	we	talk	about	MP3	files	is	to	open	the	new.mp3
file	on	your	favorite	music	player	and	enjoy	it!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
The	module	we	created	contains	functions	to	read	ID3	v1	tags	and	the	version	of	ID3	v2
tags,	as	well	as	a	function	that	replaces	the	last	128	bytes	of	an	MP3	file	with	new	data,
and	then	joins	it	to	a	new	file.

In	step	2,	we	begin	by	getting	the	version	of	the	ID3	v2	tag	used	in	the	MP3	file.

To	do	this,	we	begin	by	reading	the	binary	file,	assigning	it	to	mp3_file:

{:ok,	mp3_file}	=	File.read(input_file)

We	then	pattern	match	the	file	to	extract	the	first	five	bytes	containing	the	information	we
need.	The	first	three	bytes	contain	the	ID3	string,	and	the	next	two	bytes	are	integers
representing	the	major_version	value	of	the	tag	and	the	revision:

<<		tag_id			::	binary-size(3),

				major_v		::	unsigned-integer-size(8),

				revision	::	unsigned-integer-size(8),

				_								::	bitstring	>>	=	mp3_file

Note
In	the	preceding	code,	we	use	the	following	pattern:

<<	variable1	::	<type>-size(<size	in	bits	or	bytes>),	variable2	::	<type>-

size(<size	in	bits	or	bytes>),	variable	n	::	<type>-size(<size	in	bits	or	

bytes>)	>>	=	binary_to_match

The	last	entry	in	our	pattern	match	is	_	::	bitstring.	If	you	recall	pattern	matching,	this
means	that	we	don’t	care	about	that	variable.	We	are	actually	extracting	the	first	five	bytes
and	stating	that	we	don’t	care	about	the	remainder	of	the	file.	To	recap,	tag_id	is	a	binary
(string)	represented	by	three	bytes,	so	we	read	it	using	binary-size(3).	Binary	sizes	are
“measured”	in	bytes.	Then	we	read	major_v,	saying	we	wish	to	retrieve	it	as	an	unsigned
integer	with	the	size	of	8	bits	(1	byte).	We	do	the	same	for	revision.

Note
As	the	major	version	is	4	and	the	revision	is	0,	this	means	that	this	is	an	ID3	v2.4.0	tag.

In	step	3,	we	read	the	information	contained	in	the	ID3	v1	section	of	the	file.	The	ID3	v1
tag	is	contained	within	the	last	128	bytes	of	the	file.

As	with	the	previous	step,	we	start	by	reading	the	binary	file	and	assigning	it	to	the
mp3_file.	We	then	determine	the	file	size,	excluding	the	last	128	bytes:

mp3_size_without_id3	=	(byte_size(mp3_file)	-	128)

Then	we	pattern	match	on	mp3_file:

<<	_											::	binary-size(mp3_size_without_id3),	

id3_v1_tag_data	::	binary	>>	=	mp3_file

We	start	by	declaring	that	we	don’t	care	about	the	starting	bytes	of	the	file	by	assigning	all

www.it-ebooks.info

http://www.it-ebooks.info/

of	the	bytes	other	than	the	last	128	to	_	and	assigning	the	last	128	bytes	of	the	file	to
id3_v1_tag_data.

We	then	pattern	match	again	on	id3_v1_tag_data	to	deconstruct	it	in	its	components.

You	can	find	more	information	about	the	layout	of	an	ID3	v1	tag	at
http://en.wikipedia.org/wiki/ID3#Layout.

To	briefly	sum	it	up,	we	read	three	bytes	for	the	tag,	30	bytes	for	the	title,	30	bytes	for	the
artist,	30	bytes	for	the	album,	30	bytes	for	the	year,	30	bytes	for	the	comments,	and	we
discard	the	remaining	bytes:

<<	tag						::	binary-size(3),

			title				::	binary-size(30),

			artist			::	binary-size(30),

			album				::	binary-size(30),

			year					::	binary-size(4),

			comments	::	binary-size(30),

			_								::	binary	>>	=	id3_v1_tag_data

In	step	3,	we	create	a	new	string	with	the	information	we	desire	to	insert	on	the	MP3	file:

tag_to_write	=	pad((tag	<>	author	<>	title	<>	album	<>	year	<>	comments),	

128)	

We	use	the	<>	operator	to	concatenate	the	strings,	and	the	pad	function	ensures	that	the
strings	have	a	given	amount	of	bytes.	We	need	to	do	this	to	make	sure	each	string	fits	the
correct	place	in	the	ID3	v1	structure:

defp	pad(string,	desired_size)	do

		String.ljust(string,desired_size)

end

Afterwards,	we	get	the	original	file	content	without	the	last	128	bytes:

mp3_size_without_id3	=	(byte_size(mp3_file)	-	128)

<<	other_data	::	binary-size(mp3_size_without_id3),	_	::	binary	>>	=	

mp3_file	

We	concatenate	it	with	our	new	tag,	writing	to	a	new	file:

File.write(output_file,	(other_data	<>	tag_to_write))

www.it-ebooks.info

http://en.wikipedia.org/wiki/ID3#Layout
http://www.it-ebooks.info/

There’s	more…
Erlang,	given	its	telecom	origins,	has	amazing	support	for	mapping	protocols	via	binaries.
In	this	recipe,	we	used	an	MP3	file,	but	we	could	have	easily	used	an	IP	packet	and	using
the	same	techniques,	we	could	have	deconstructed	it.	All	we	need	to	know	is	the	protocol
format,	and	then	mapping	to	a	data	structure	is	an	easy	task!

This	recipe	was	heavily	inspired	by	the	following	blog	posts:
https://taizilla.wordpress.com/2009/09/14/erl_id3v2/	and
http://benjamintan.io/blog/2014/06/10/elixir-bit-syntax-and-id3/.

www.it-ebooks.info

https://taizilla.wordpress.com/2009/09/14/erl_id3v2/
http://benjamintan.io/blog/2014/06/10/elixir-bit-syntax-and-id3/
http://www.it-ebooks.info/

Chapter	4.	Modules	and	Functions
This	chapter	will	cover	the	following	recipes:

Namespacing	modules
Using	module	attributes	as	constants
Enforcing	behaviors
Documenting	modules
Using	module	directives
Using	a	module	in	the	scripted	mode
Defining	functions	with	default	arguments
Using	guard	clauses	and	pattern	matching	in	function	definitions

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
Elixir	modules	are	files	(see	the	following	information	box)	where	related	functions	are
grouped	and	stored.	In	Chapter	1,	Command	Line,	we	covered	how	to	load	and	compile
our	own	modules	in	IEx	and	how	to	generate	applications	with	Mix.	Mix	applications	are
a	collection	of	modules	within	a	predefined	directory	structure.

Modules	are	defined	using	the	defmodule	macro	and	functions	using	the	def	and	defp
macros.

Note
In	this	chapter,	we	will	be	developing	some	concepts	that	are	specifically	related	to
modules	and	functions.	It	is	also	possible	to	define	modules	inside	IEx	without	storing
them	to	files.

www.it-ebooks.info

http://www.it-ebooks.info/

Namespacing	modules
We	can	think	of	a	module	as	a	namespace.	Every	function	defined	inside	a	module	has	to
be	prepended	with	that	module’s	name	in	order	to	be	invoked	elsewhere.

It	is	also	possible	to	store	our	modules	inside	directories	in	order	to	better	organize	them	to
suit	our	purpose	or	intent.

In	this	recipe,	we	will	show	you	how	to	namespace	modules	and	use	them.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
In	this	recipe,	we	will	use	a	Mix	application.	You	will	find	the	application	in	the	source
code	folder	under	chapter3/demo.	Navigate	to	the	application	directory	in	your	terminal
window	and	compile	the	project	to	make	sure	everything	is	ready:

>	cd	Code/Chapter	4/demo

>	mix	compile

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
In	order	to	demonstrate	the	use	of	three	namespaced	modules	within	our	generated	Mix
application,	follow	these	steps:

1.	 Modify	the	lib/demo.ex	file	by	adding	the	run_me	function:

def	run_me(name	\\	"Stranger")	do

		IO.puts	"	#{__MODULE__}	says	\"Hi	there	#{name}!\""

		Demo.Greeter.greet

		Demo.One.Greeter.greet

		Demo.Two.Greeter.greet

end

2.	 Start	a	new	IEx	session	and	load	the	project:

>	iex	-S	mix

3.	 Invoke	the	run_me	function	defined	in	step	1:

iex(1)>	Demo.run_me

Elixir.Demo	says	"Hi	there	Stranger!"

Elixir.Demo.Greeter	says	"Hi	there!"

Elixir.Demo.One.Greeter	says	"Hello!"

Elixir.Demo.Two.Greeter	says	"Howdy!"

:ok

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
The	demo	project	contains	the	Demo,	Demo.Greeter,	Demo.One.Greeter,	and
Demo.Two.Greeter	modules:

Module														File											Location

Demo																demo.ex								lib/demo.ex

Demo.Greeter								greeter.ex					lib/demo/greeter.ex

Demo.One.Greeter				greeter.ex					lib/demo/one/greeter.ex

Demo.Two.Greeter				greeter.ex					lib/demo/two/greeter.ex

The	run_me	function	we	created	in	step	1	calls	the	greet	function	defined	in	each	of	the
namespaced	modules.	These	modules	are	all	defined	in	a	file	with	the	same	name
(greeter.ex),	but	the	folder	structure	allows	us	to	organize	our	modules	in	different
namespaces.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
If	you	take	a	look	at	the	_build/dev/lib/demo/ebin	folder,	where	our	compiled	code	is,
you	will	see	that	all	Elixir	modules	are	defined	inside	the	Elixir	namespace	and	they	are
actually	stored	in	the	same	directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	module	attributes	as	constants
Elixir	supports	the	definition	of	module	attributes	using	the	@	syntax.	There	are	a	few
reserved	module	attributes:	@moduledoc,	@doc,	@behaviour,	and	@before_compile.	We
will	focus	on	some	of	them	in	the	next	two	recipes.

In	this	recipe,	we	will	use	module	attributes	as	constants	and	access	them	inside	functions.

Note
Module	attributes	can	only	be	defined	outside	functions	and	can	be	defined	more	than
once	in	a	module.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	use	module	attributes	as	constants,	follow	these	steps:

1.	 Create	a	new	constants.ex	module	and	add	the	following	code:

defmodule	Constants	do

		@name	"Bill"

		@age	22

		def	function_one	do

				IO.puts("#{@name}	is	#{@age}	years	old.")

		end

		@name	"Joe"

		def	function_two	do

				IO.puts("#{@name}	is	#{@age+1}	years	old.")

		end

end

2.	 Start	an	IEx	session	in	the	same	directory	where	you	saved	constants.ex:

>	iex	constants.ex

Tip
Instead	of	starting	IEx	and	then	loading	and	compiling	the	module,	it	is	possible	to
indicate	the	name	of	the	module	as	an	argument	to	the	iex	command.

3.	 Invoke	function_one:

iex(2)>	Constants.function_one

Bill	is	22	years	old.

:ok

4.	 Invoke	function_two:

iex(3)>	Constants.function_two

Joe	is	23	years	old.

:ok

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	the	Constants	module,	we	defined	the	@name	and	@age	module	attributes.

In	step	3,	we	use	both	of	these	module	attributes	in	function_one,	interpolating	them	in	a
string.

In	step	4,	we	get	a	different	value	for	@name	because	the	module	attribute	is	redefined
immediately	before	the	function_two	definition.	The	@age	attribute	is	the	same	(22),	but
we	added	1	to	it	in	the	string	interpolation	(#{@age+1}).

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
In	the	Managing	application	configuration	recipe	in	Chapter	1,	Command	Line,	we
already	used	module	attributes.
The	Enforcing	behaviors	and	Documenting	modules	recipes	in	this	chapter	also	use
(reserved)	module	attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

Enforcing	behaviors
One	of	the	reserved	module	attributes	in	Elixir	is	@behaviour.	It	is	used	to	ensure	that	a
given	module	implements	the	required	callbacks	and	that	the	module	implements	a	given
interface	and	behaves	in	a	defined	way.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	demonstrate	the	use	of	the	@behaviour	module	attribute,	follow	these	steps:

1.	 Create	the	Randomizer	module	inside	the	randomizer.ex	file	by	adding	the
following	code:

defmodule	Randomizer	do

		use	Behaviour

		defcallback	randomize(low::Integer.t,	high::Integer.t)	::	Integer.t

end

2.	 Create	a	module	to	implement	the	Randomizer	behavior	inside	the	my_module.ex	file
by	adding	the	following	code:

defmodule	MyModule	do

		@behaviour	Randomizer

end

3.	 Open	a	new	IEx	session	in	the	same	directory	where	the	modules	defined	in	steps	1
and	2	are	stored:

>	iex

4.	 Compile	both	modules	starting	with	Randomizer:

iex(1)>	c("randomizer.ex")

[Randomizer]

iex(2)>	c("my_module.ex")

my_module.ex:1:	warning:	undefined	behaviour	function	randomize/2	(for	

behaviour	Randomizer)

[MyModule]

5.	 To	address	the	undefined	behaviour	warning	from	the	previous	step,	add	the
following	code	to	my_module.ex:

def	randomize(low,	high)	when	low	<	high	do

		:crypto.rand_uniform(low,	high)

end

6.	 Recompile	MyModule:

iex(3)>	c("my_module.ex")

my_module.ex:1:	warning:	redefining	module	MyModule

[MyModule]

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	1,	we	created	the	Randomizer	module	and	defined	a	callback	via	the	defcallback
macro:

defcallback	randomize(low::Integer.t,	high::Integer.t)	::	Integer.t

In	the	randomize	callback,	we	defined	the	low	and	high	arguments	as	the	Integer	type,
and	we	also	stated	that	the	return	type	would	also	be	an	integer.	You	can	think	of	it	as	a
contract	that	any	module	has	to	conform	to	in	order	to	implement	the	Randomizer
behavior.

In	step	2,	we	created	MyModule	and	annotated	it	with	the	reserved	@behaviour	module
attribute.

When	we	compiled	MyModule	(in	step	4),	we	got	a	warning	as	undefined	behaviour
function	randomize/2	(for	behaviour	Randomizer).	This	warning	means	that
MyModule	doesn’t	implement	the	randomize/2	function	we	defined	as	a	callback	in	the
Randomizer	module.

In	step	5,	we	implemented	randomize/2	in	MyModule,	and	in	step	6,	we	recompile	it,	and
the	warning	about	undefined	behavior	is	gone!

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
The	MyModule.randomize	function	uses	a	guard	(when	low	is	less	than	high).	To
learn	more	about	guards,	check	the	Using	guard	clauses	and	pattern	matching	in
functions	recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Documenting	modules
In	this	recipe,	we	will	be	using	the	@moduledoc	and	@doc	reserved	module	attributes	to	add
documentation	to	the	modules	we	defined	in	the	previous	recipe,	Enforcing	behaviors.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Open	the	randomizer.ex	and	my_module.ex	files	created	in	the	Enforcing	behaviors
recipe	inside	your	preferred	code	editor.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	add	documentation	to	our	modules,	follow	these	steps:

1.	 We	will	start	by	adding	module	documentation	to	the	randomizer.ex	file.	Add	the
following	code	below	the	use	Behavior	line:

@moduledoc	"""

		This	module	specifies	the	interface	for	a	randomizer	behaviour	by	

using	the	defcallback	macro.

"""

2.	 Add	the	following	module	documentation	to	the	my_module.ex	file	below	the
@behaviour	Randomizer	line:

@moduledoc	"""

		This	is	a	custom	module	to	demo	the	implementation	of	behaviours.

"""

3.	 To	document	the	randomize	function	inside	my_module.ex,	insert	the	following	code
right	above	the	function	definition:

@doc	"""

The	randomize	callback	defines	the	randomize	function	taking	2	

arguments:

				low:		an	Integer	with	the	lower	boundary

				thigh:	an	Integer	with	the	upper	boundary

The	function	outputs	an	Integer.	The	output	is	comprised	within	the	

[low;high]	interval.	This	function	uses	a	guard	to	ensure	it	is	only	

invoked	when	low	value	is	smaller	than	high	value.

This	function	uses	the	rand_uniform	function	from	erlang's	crypto	

module(http://www.erlang.org/doc/man/crypto.html).

"""	

4.	 To	see	the	result	of	our	documentation	work,	open	a	new	IEx	session	in	the	same
directory	where	randomizer.ex	and	my_module.ex	are	present	and	load/compile	both
files:

>	iex

iex(1)>	c("randomizer.ex")

[Randomizer]

iex(2)>	c("my_module.ex")

[MyModule]

5.	 To	get	information	about	the	modules	and	the	randomize	function,	we	will	use	the	h
command	inside	IEx,	as	we	saw	in	the	Getting	help	and	accessing	documentation
within	IEx	recipe	in	Chapter	1,	Command	Line,	and	access	documentation	within	IEx.
The	following	screenshot	shows	you	the	result:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using	module	directives
To	simplify	working	with	modules,	Elixir	provides	three	directives:	import,	alias,	and
require.	These	three	module	directives	are	lexically	scoped—if	defined	in	the	module
scope,	they	are	valid	for	the	whole	module,	but	if	defined	inside	a	function,	they	are	only
valid	inside	that	function.

These	three	directives	allow	the	use	of	code	defined	in	other	modules.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Create	the	require_me.ex	file	with	the	following	content:

defmodule	RequireMe	do

		def	foo	do

				IO.puts	"This	is	foo	from	#{__MODULE__}	module"

		end

end

In	the	same	folder,	create	the	directives.ex	file	and	add	the	following	code:

defmodule	Directives	do

		@col		[1,2,3]

		@name	"demo"

		#	require	directive

		#	alias	directive	module	scope

		alias	String,	as:	S

		#	import	directive	module	scope

		import	List,	only:	[first:	1]

		def	test_module_alias	do

				IO.puts	"Name	is	#{S.capitalize(@name)}"

		end

		def	test_function_alias	do

				#	alias	directive	function	scope

				alias	RequireMe,	as:	RM

				RM.foo

		end

		def	test_module_import	do

				IO.puts	"First	element	of	#{inspect(@col)}	is	#{first(@col)}"

		end

		def	test_function_import	do

				#	import	directive	function	scope

				import	Enum,	only:	[count:	1]

				IO.puts	"#{inspect(@col)}	has	#{count(@col)}	elements"

		end

end

Load	the	directives.ex	file	in	your	code	editor	and	start	a	new	IEx	session:

>	iex	directives.ex

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
We	will	see	the	three	directives	in	action.	We	will	start	with	require,	and	then	we	will
look	into	alias	and	finally,	into	import.	Let’s	get	started!

To	see	the	require	directive	in	action,	follow	these	steps:

1.	 Add	the	following	code	to	directives.ex	right	below	the	#	require	directive
comment:

require	RequireMe

2.	 Compile	the	Directives	module	inside	the	IEx	session:

iex(1)>	c("directives.ex")

==	Compilation	error	on	file	directives.ex	==

**	(CompileError)	directives.ex:6:	module	RequireMe	is	not	loaded	and	

could	not	be	found

3.	 Fix	this	error	by	compiling	the	RequireMe	module:

iex(1)>	c("require_me.ex")

[RequireMe]	

4.	 Now,	try	again	to	compile	the	Directives	module:

iex(2)>	c("directives.ex")

[Directives]

To	illustrate	the	use	of	the	alias	directive,	we	will	invoke	the	test_module_alias	and
test_function_alias	functions:

iex(3)>	Directives.test_module_alias

Name	is	Demo

:ok

iex(4)>	Directives.test_function_alias

This	is	foo	from	Elixir.RequireMe	module

:ok

Finally,	let’s	see	the	use	of	the	import	directive	by	invoking	the	test_module_import	and
test_function_import	functions:

iex(5)>	Directives.test_module_import

First	element	of	[1,	2,	3]	is	1

:ok

iex(6)>	Directives.test_function_import

[1,	2,	3]	has	3	elements

:ok

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	2,	we	got	a	compilation	error	when	we	tried	to	compile	the	Directives	module.
This	happened	because	we	required	the	RequireMe	module	while	the	module	was	not	yet
compiled	and	loaded,	so	it	wasn’t	available	for	inclusion.	The	require	directive	ensures
that	the	required	module	has	to	be	loaded	before	any	code	tries	to	use	it.	By	compiling	and
loading	the	RequireMe	module	in	step	3,	we	are	finally	able	to	compile	the	Directives
module.

The	alias	directive	allows	us	to	simplify	code;	in	the	Directives	module,	we	use	it	to
shorten	String	to	S	and	RequireMe	to	RM.

It	is	also	possible	to	use	a	particular	function	from	a	module	without	having	to	prepend	it
with	the	module	name.	The	import	directive	is	used	in	this	case	and	in	the	Directives
module,	we	use	it	to	import	the	List.first/1	and	Enum.count/1	functions.	They	become
the	first	and	count	variables,	and	we	use	them	in	test_module_import	and
test_function_import.

Note
Note	that	importing	a	module	automatically	requires	that	module

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
The	import	directive	also	accepts	the	except	option.	In	the	Directives	module,	we	use
the	only	option.	With	only,	you	have	to	specify	all	the	functions	you	wish	to	import.	With
except,	you	have	to	enumerate	all	the	functions	you	don’t	wish	to	import.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	a	module	in	the	scripted	mode
It	is	possible	to	use	Elixir	as	if	it	were	an	interpreted	language.	Code	is	evaluated	at	the
source	level,	eliminating	the	need	to	compile	it	before	use.	One	of	the	examples	of	the
usage	of	Elixir	in	the	scripted	mode	is	the	test	suite	inside	a	Mix	project.	There,	under	the
tests	directory,	you	will	find	files	with	the	.exs	extension.

The	convention	in	Elixir	is	to	use	the	.ex	extension	in	files	that	should	be	compiled	and
the	.exs	extension	in	files	that	should	be	interpreted.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	use	the	Elixir	code	without	compiling	it,	follow	these	steps:

1.	 Create	a	file	named	my_script.exs	and	add	the	following	code:

%{:date	=>	d,	:version	=>	v}	=	System.build_info

IO.puts	"""

Command	line	arguments	passed:	#{inspect(System.argv)}

Elixir	version:	#{v}	(#{d})

"""

2.	 Run	the	code	in	your	terminal	window:

>	elixir	my_script.exs	--demo	–T	–v

Command	line	arguments	passed:	["--demo",	"–T",	"-v"]

Elixir	version:	1.0.0	(Wed,	10	Sep	2014	17:30:06	GMT)

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
We	have	created	a	file	with	code	that	uses	pattern	matching	and	string	interpolation	and
invokes	the	System	module.	We	have	not	defined	any	module	or	function;	we	have	just
defined	a	sequence	of	instructions	we	wish	to	carry	out.

The	sequence	of	instructions	was	executed	using	the	elixir	command-line	executable.

If	we	take	a	closer	look,	we’ll	see	that	no	.beam	file	was	created	and	no	code	was
compiled.	The	file	was	interpreted	line-by-line.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
IEx	allows	the	insertion	of	code	line-by-line,	and	it	is	also	possible	to	define	modules	and
functions	inside	IEx.	All	of	the	code	in	IEx	is	interpreted,	and	compilation	only	happens
when	the	c("<filepath>")	function	is	invoked.

www.it-ebooks.info

http://www.it-ebooks.info/

Defining	functions	with	default	arguments
In	Elixir,	named	functions	(defined	with	the	def	macro)	can	accept	arguments	and
sometimes,	it	is	convenient	to	assume	them	as	optional	by	defining	a	default	value	or
expression.	Default	values	for	function	arguments	are	defined	using	\\	after	the	argument
name.

Note
If	we	define	a	foo(a,	b,	c	\\	0)	function	and	c	has	a	default	value,	although	the
function	can	be	invoked	as	foo(1,3)	with	arity	2,	the	function	foo/3	is	executed,	in	this
case,	as	foo(1,3,0).	We	don’t	explicitly	pass	a	value	for	c	but	it	will	take	the	defined
value,	in	this	case,	0.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Load	the	Defaults	file	module	inside	IEx	and	open	the	file	defining	the	module
(defaults.ex)	inside	your	favorite	code	editor:

>	iex	defaults.ex

[Defaults]	

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	define	functions	with	default	arguments,	follow	these	steps:

1.	 Define	a	sum	function	in	the	Defaults	module	by	adding	the	following	code	to
defaults.ex:

def	sum(a,	b	\\	1,	c	\\	1)	do

		a	+	b	+	c

end

2.	 Save	the	file	and	reload	it	in	IEx:

iex(2)>	r	Defaults

warning:	redefining	module	Directives

{:reloaded,	Directives,	[Directives]}

3.	 To	see	the	default	arguments	in	action,	invoke	our	sum	function	a	few	times:

iex(3)>	Defaults.sum(2)

4

iex(4)>	Defaults.sum(2,3)

6

iex(5)>	Defaults.sum(2,3,4)

9

iex(6)>	Defaults.sum()

**	(UndefinedFunctionError)	undefined	function:	Defaults.sum/0

				Defaults.sum()

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
When	we	define	default	values	for	arguments	in	a	function	(although	we	might	invoke	the
function	omitting	some	of	the	optional	arguments),	it	doesn’t	mean	that	only	the	passed
argument	will	be	taken	into	account.	In	step	1,	the	sum	function	has	no	default	value	for	a
and	assumes	a	default	value	of	1	for	b	and	c.	This	means	that	we	can	invoke	sum	by
passing	only	one	argument.	The	first	invocation	in	step	3,	Defaults.sum(2),	is	equivalent
to	Defaults.sum(2,1,1).	The	next	time	we	use	the	sum	function,	we	pass	the	2	value	to	a
and	3	to	b.	This	means	that	we	don’t	want	to	use	the	default	value	for	b.	When	we	call
Defaults.sum(2,3,4),	it	bypasses	all	default	values.	The	final	time	we	use	sum	in	step	3,
we	do	it	without	Defaults.sum()	arguments	and	it	fails	because	there’s	no	default	value
for	a.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	guard	clauses	and	pattern	matching
in	function	definitions
In	the	Using	pattern	matching	recipe	in	Chapter	2,	Data	Types	and	Structures,	we	saw
how	it	was	possible	to	use	the	=	operator	to	match	values	on	the	right-hand	side	with
values	on	the	left-hand	side.	In	this	recipe,	we	will	see	pattern	matching	in	action	without
using	the	=	operator.	We	will	use	pattern	matching	implicitly	in	function	definitions	with
the	same	name	and	arity,	and	Elixir	will	use	it	to	determine	which	function	version	to
execute.

Sometimes,	pattern	matching	is	not	enough	to	determine	which	function	to	execute,	so	we
will	also	be	using	guard	clauses	in	our	function	definitions.	Guard	clauses	allow	us	to	only
execute	a	given	function	if	some	condition	regarding	its	argument	types	or	values	is
verified.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
This	is	how	we	get	started:

1.	 Define	a	new	module	named	PatternsAndGuards	in	a	file	named
patterns_and_guards.ex	by	inserting	the	following	code:

defmodule	PatternsAndGuards	do

		#guards

		#pattern	matching

end

2.	 Save	the	file	and	load	it	in	a	new	IEx	session:

>	iex

iex(1)>	c("patterns_and_guards.ex")

[PatternsAndGuards]

3.	 Define	an	alias	for	the	PatternsAndGuards	module	to	reduce	the	typing	required	to
invoke	its	functions:

iex(2)>	alias	PatternsAndGuards,	as:	PG

nil

Tip
We	saw	the	use	of	the	alias	module	directive	in	the	Using	module	directives	recipe,
and	this	seems	a	good	time	to	make	use	of	it,	as	it	is	also	possible	to	use	it	inside	IEx.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
We	will	start	by	adding	a	print	function	that	will	have	three	different	bodies:	one	to	use
when	the	input	is	a	list,	one	to	use	when	it	is	a	string	(binary),	and	another	for	every	other
case.

Afterwards,	we	will	define	a	recursive	function	to	print	each	element	of	a	list	that	will
pattern	match	the	argument	to	determine	which	function	definition	should	be	executed.

Let’s	get	started:

1.	 Open	the	patterns_and_guards.ex	file	inside	your	code	editor.
2.	 Define	a	print	function	to	print	lists	by	adding	the	following	code	below	the

#guards	comment:

def	print(x)	when	is_list(x)	do

		IO.puts	"Printing	a	list	->	#{inspect(x)}"

end

3.	 Define	a	print	function	to	print	binaries	(a	string	is	a	binary)	by	adding	the
following	code	after	the	one	defined	in	the	previous	step:

def	print(x)	when	is_binary(x)	do

		IO.puts	"Printing	a	binary	->	#{inspect(x)}"

end

4.	 Add	the	print	function	to	handle	every	other	type	of	input.	This	should	also	be
inserted	below	the	other	print	function	definitions:

def	print(x)	do

		IO.puts	"Printing	a	non-list/binary	->	#{inspect(x)}"

end

5.	 Define	a	recursive	function	to	print	each	element	of	a	list	by	inserting	the	following
code	after	the	#pattern	matching	comment:

def	print_each_from_list([])	do

		:ok

end

def	print_each_from_list([h|t])	do

		print(h)

		print_each_from_list(t)

end

6.	 Save	the	file	and	reload	it	in	IEx:

iex(3)>	c("patterns_and_guards.ex")

patterns_and_guards.ex:1:	warning:	redefining	module	PatternsAndGuards

[PatternsAndGuards]

7.	 Use	the	print	function	with	a	list:

iex(4)>	PG.print([1,2,3,4])

Printing	a	list	->	[1,	2,	3,	4]

:ok

www.it-ebooks.info

http://www.it-ebooks.info/

8.	 Now,	use	the	print	function	with	a	string:

iex(5)>	PG.print("Demo")

Printing	a	binary	->	"Demo"

:ok

9.	 Finally,	use	the	print	function	with	an	atom:

iex(6)>	PG.print(:atom)

Printing	a	non-list/binary	->	:atom

:ok

10.	 It’s	time	to	check	our	recursive	list	element	printing	function:

iex(7)>	PG.print_each_from_list([[1],	2,	:a,	"b",	[5]])

Printing	a	list	->	[1]

Printing	a	non-list/binary	->	2

Printing	a	non-list/binary	->	:a

Printing	a	binary	->	"b"

Printing	a	list	->	[5]

:ok

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
We	will	start	by	looking	into	guard	clauses.	Our	print	function	has	three	different	clauses:

def	print(x)	when	is_list(x)	do	(…)

def	print(x)	when	is_binary(x)	do	(…)

def	print(x)	do	(…)

The	guard	clause	is	defined	using	the	when	keyword,	and	the	order	of	the	function
definitions	matters.	The	first	one	that	matches	will	be	executed.

Note
If	we	reversed	the	order	and	placed	def	print(x)	do	first,	none	of	the	other	function
definitions	would	ever	be	reached	as	print(x)	would	always	match!

The	is_list	and	is_binary	functions	are	used	to	determine	the	type	of	the	argument.
Based	on	these	conditions,	Elixir	decides	which	function	definition	to	execute,	and	if	none
of	the	previous	conditions	are	met,	the	general	case	print(x)	function	definition	is	used.

Guard	clauses	can	also	take	argument	values	into	account	and	not	just	argument	types.	We
have	already	used	guard	clauses	in	the	Enforcing	behaviors	recipe.	In	the	MyModule
module,	we	defined	a	randomize	function:

	def	randomize(low,	high)	when	low	<	high	do	(…)

The	guard	clause	in	here	(low	<	high)	ensures	that	the	function	body	will	only	be
executed	when	the	given	condition	is	true.

In	step	5,	we	defined	a	print_each_from_list	function	with	two	definitions.	The	first
one	takes	an	empty	list	as	an	argument:

def	print_each_from_list([])	do

The	other	takes	a	nonempty	list,	making	the	head	of	that	list	available	in	the	h	variable	and
the	tail	of	that	input	list	accessible	via	the	t	variable:

def	print_each_from_list([h|t])	do

The	print_each_from_list	function	is	recursive.	When	invoked	with	a	nonempty	list	as
an	argument,	it	will	print	the	head	(h)	element	and	invoke	itself	again,	passing	the
remainder	of	the	list	(t).	Recursion	stops	when	an	empty	list	is	passed	and	the	:ok	atom	is
returned.	Pattern	matching	is	used	to	decide	which	function	body	to	execute:	the	first	one
with	an	empty	list	or	the	second	one	with	a	nonempty	list.

Note
Pattern	matching	and	guard	clauses	in	function	definitions	prevent	us	from	using	test	cases
inside	functions	to	determine	and	enforce	the	type	or	the	value	of	function	arguments	and
acting	accordingly:

def	randomize(low,	high)	when	low	<	high	do	

www.it-ebooks.info

http://www.it-ebooks.info/

		(…)

end

If	we	omit	the	when	low	<	high	condition	in	the	function	definition,	the	function	gets
executed	even	if	low	is	bigger	than	high.	In	this	case,	to	ensure	proper	execution,	we
would	need	to	compare	low	and	high	inside	the	function	definition.	Using	guard	clauses,
we	prevent	the	function	from	being	executed	if	the	defined	preconditions	are	not	met.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	5.	Processes	and	Nodes
This	chapter	will	cover	the	following	recipes:

Sending	messages	between	processes
Making	code	run	on	all	available	CPUs
Using	tasks	to	perform	multiple	concurrent	computations
Creating	a	stateful	server	process	(messages	with	counters)
Using	agents	as	an	abstraction	around	states
Using	an	ETS	table	to	share	the	state
Creating	named	nodes
Connecting	nodes
Executing	code	in	a	different	node

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
In	this	chapter,	our	recipes	will	make	use	of	nodes	and	processes.	We	will	see	how
message	passing	takes	a	key	role	in	making	it	possible	to	distribute	our	applications	and
how	seamlessly	we	can	interchange	information	between	running	processes	in	the	same
virtual	machine	or	between	processes	in	different	virtual	machines	that	may	even	be
running	on	different	physical	machines.	We	will	focus	on	the	concepts	of	maintaining	the
state	in	a	process	or	sharing	it	between	processes	with	ETS	tables.	We	will	also	focus	on
how	to	perform	asynchronous	computations	using	the	Tasks	module.

www.it-ebooks.info

http://www.it-ebooks.info/

Sending	messages	between	processes
In	Elixir,	communication	between	processes	is	performed	via	message	passing.	Each
process	has	a	mailbox	where	messages	from	the	“outside”	world	are	placed,	waiting	to	be
processed.	Once	that	happens,	if	a	response	is	required,	another	message	will	be	sent,	and
another	mailbox	will	get	a	message!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	get	started,	go	to	the	code	repository	where	the	messages.ex	file	is	located	and	open	a
new	IEx	terminal	session.	The	IEx	terminal	session	will	also	be	an	actor	in	this	recipe!	We
will	send	messages	from	it	to	the	process	containing	the	code	defined	in	the	module.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
Follow	these	steps	to	send	messages	between	processes:

1.	 Once	our	session	is	started,	load	and	compile	the	messages.ex	module:

iex(1)>	c	"messages.ex"

[Messages]

2.	 Next,	spawn	a	new	process	containing	the	code	from	our	module:

iex(2)>	{:ok,	pid}	=	Messages.start_link

{:ok,	#PID<0.61.0>}

3.	 To	make	things	easier,	we	will	register	our	newly	spawned	process	with	a	name:

iex(4)>	Process.register(pid,	:messages)

true

4.	 Now	it’s	time	to	send	some	messages	to	the	process:

iex(4)>	send	:messages,	{"hello",	self()}

What	do	you	mean?	I'm	only	listening	to	pings	and	pongs!

{"hello",	#PID<0.53.0>}

iex(5)>	send	:messages,	{"what",	self()}

What	do	you	mean?	I'm	only	listening	to	pings	and	pongs!

{"what",	#PID<0.53.0>}

iex(6)>	send	:messages,	{"ping",	self()}

So	ping	to	you	too!

{"ping",	#PID<0.53.0>}

iex(7)>	send	:messages,	{"pong",	self()}

So	pong	to	you	too!

{"pong",	#PID<0.53.0>}

iex(8)>	send	:messages,	{"pong",	self()}

So	pong	to	you	too!

{"pong",	#PID<0.53.0>}

iex(9)>	send	:messages,	{"ping",	self()}

So	ping	to	you	too!

{"ping",	#PID<0.53.0>}

iex(10)>	send	:messages,	{"bye",	self()}

What	do	you	mean?	I'm	only	listening	to	pings	and	pongs!

{"bye",	#PID<0.53.0>}

iex(11)>	flush

"what?"

"what?"

"ping"

"pong"

"pong"

"ping"

"what?"

:ok

iex(12)>

5.	 It	seems	like	nothing	was	sent	back,	but	that’s	not	true.	On	the	11th	command
(highlighted),	we	invoked	flush	to	see	the	terminal	session	mailbox,	and	all	the
received	messages	(sent	from	our	messenger	process)	are	there!

www.it-ebooks.info

http://www.it-ebooks.info/

Note
In	the	Getting	help	and	accessing	documentation	within	IEx	recipe	in	Chapter	1,
Command	Line,	we	saw	how	it	was	possible	to	get	access	to	the	documentation	for
any	module	or	function	in	the	terminal.	To	get	more	information	on	the	flush
command,	you	can	enter	h	flush	in	your	IEx	session.

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
After	compiling	our	module	and	making	it	available	in	the	terminal	session	in	step	2,	we
entered	{:ok,	pid}	=	Messages.start_link;	this	invokes	the	start_link	function	in
the	Messages	module:

def	start_link	do

		{:ok,	spawn_link(fn	->	wait_for_messages()	end)}

end

This	function	returns	a	tuple	with	the	:ok	atom	and	the	process	ID	(PID)	for	the	spawned
process;	the	PID	is	a	process	identifier	that	allows	us	to	refer	to	any	process.	We	can	use
the	PID	to	send	messages	to	that	process.

In	step	3,	we	registered	the	process.	The	PID	(#PID<0.61.0>)	was	registered	with	the
:messages	name.	This	allows	us	to	refer	to	the	process	with	a	registered	name	instead	of
using	a	PID.

In	step	4,	we	send	several	messages	with	different	contents	to	our	messages	process,
calling	send	:messages,	{"what",	self()}.	The	:messages	name	is	our	registered
reference	to	the	spawned	process	and	self()	is	the	PID	for	the	terminal	session.	The
command	could	be	generically	described	in	the	following	way:

send	<to_pid>,	{<message>,	<from_pid>}

The	output	we	see	in	the	console	(lines	4	to	10)	are	not	messages	returned	by	the	process,
but	only	calls	to	the	IO.puts	function	in	order	to	give	us	some	feedback	on	the	terminal.

In	step	5,	when	we	invoke	the	flush	command,	we	get	to	see	the	content	of	the	terminal
mailbox.	Every	process	has	its	own	mailbox	where	incoming	messages	are	stored,	and	it	is
the	place	where	we	find	all	the	messages	our	spawned	process	sent	back	as	a	response	to
the	messages	sent	from	the	terminal.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
The	spawn_link	function	in	the	Messages	module	initialization	accepts	a	function;	in	this
case,	we	defined	it	as	wait_for_messages:

defp	wait_for_messages()	do

		receive	do

				{"ping",	caller}	->

						IO.puts	"So	ping	to	you	too!"

						send	caller,	"ping"

						wait_for_messages()

				{"pong",	caller}	->

						IO.puts	"So	pong	to	you	too!"

						send	caller,	"pong"

						wait_for_messages()

				{_,	caller}	->

						IO.puts	"What	do	you	mean?	I'm	only	listening	to	pings	and	pongs!"

						send	caller,	"what?"

						wait_for_messages()

		end

end

This	function	has	a	receive	block	that	pattern	matches	the	received	message	and	then,
according	to	the	received	message,	prints	something	to	the	standard	output,	responds	with
a	message	back	to	the	caller	process,	and	recursively	calls	itself	so	that	it	can	wait	for	the
next	incoming	message.

www.it-ebooks.info

http://www.it-ebooks.info/

Making	code	run	on	all	available	CPUs
You	may	wonder,	given	the	name	of	the	recipe,	whether	there	is	some	special	form	of
coding	that	allows	Elixir	to	take	advantage	of	all	available	processors	in	a	machine.	There
isn’t!

The	Erlang	VM,	which	is	the	VM	where	our	Elixir	programs	run,	takes	care	of	it	for	us.	It
has	a	scheduler	that	is	responsible	for	assigning	computations	to	each	of	the	available
processors.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
In	this	recipe,	we	will	be	starting	the	IEx	session	with	different	options	regarding	the
scheduler,	and	we	will	run	a	small	program	that	will	spawn	four	calculations.

We	will	execute	the	program	in	an	IEx	session	with	the	default	options	for	the	scheduler
(usually	one	scheduler	per	CPU),	and	we	will	then	repeat	the	execution	in	a	shell	started
with	only	one	enabled	scheduler.

To	start,	we	need	to	get	into	the	directory	where	the	multiple_calculations.ex	module
is	located.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
Follow	these	steps	to	see	how	the	Erlang	VM	scheduler	takes	care	of	distributing
computations	through	the	available	CPUs:

1.	 Start	IEx:

>	iex

Erlang/OTP	17	[erts-6.2]	[source]	[64-bit]	[smp:4:4]	[async-threads:10]	

[hipe]	[kernel-poll:false]	[dtrace]

2.	 Load	and	compile	the	module	and	execute	the	start	function:

iex(1)>	c	"multiple_calculations.ex"

[MultipleCalculations]

iex(2)>	MultipleCalculations.start

:ok

Sum	of	the	squares	of	all	odd	numbers	divisible	by	13	between	1	and	

10000000	is	12820474358991153855

time:	4758	ms

Sum	of	the	squares	of	all	odd	numbers	divisible	by	13	between	1	and	

20000000	is	102564194871779230759

time:	8286	ms

Sum	of	the	squares	of	all	odd	numbers	divisible	by	13	between	1	and	

30000000	is	346153707692261153854

time:	10848	ms

Sum	of	the	squares	of	all	odd	numbers	divisible	by	13	between	1	and	

40000000	is	820513558974493846150

time:	13347	ms

iex(3)>

3.	 Now,	initialize	another	IEx	session,	disabling	multiprocessor	support:

>	iex	--erl	"-smp	disable"

Erlang/OTP	17	[erts-6.2]	[source]	[64-bit]	[async-threads:10]	[hipe]	

[kernel-poll:false]	[dtrace]

Note
The	information	about	the	shell	has	no	reference	to	[smp:4:4;	this	means	that	the
session	has	no	multiprocessor	support.

4.	 Load	and	compile	the	module	and	execute	the	start	function:

iex(1)>	c	"multiple_calculations.ex"

[MultipleCalculations]

iex(2)>	MultipleCalculations.start

:ok

Sum	of	the	squares	of	all	odd	numbers	divisible	by	13	between	1	and	

10000000	is	12820474358991153855

time:	8453	ms

Sum	of	the	squares	of	all	odd	numbers	divisible	by	13	between	1	and	

20000000	is	102564194871779230759

time:	14944	ms

Sum	of	the	squares	of	all	odd	numbers	divisible	by	13	between	1	and	

www.it-ebooks.info

http://www.it-ebooks.info/

30000000	is	346153707692261153854

time:	19114	ms

Sum	of	the	squares	of	all	odd	numbers	divisible	by	13	between	1	and	

40000000	is	820513558974493846150

time:	21338	ms

iex(3)>

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
The	code	defined	inside	the	multiple_calculations.ex	module	spawns	four	processes	to
perform	some	time-consuming	tasks	(the	description	of	these	tasks	is	in	the	program’s
output).

The	exact	same	code	executed	on	a	terminal	session	with	the	default	settings	for	the
scheduler	(one	per	physical	CPU),	and	in	another	with	multiprocessing	disabled,	has	a
different	performance	in	terms	of	the	execution	speed.

When	one	scheduler	per	CPU	is	enabled,	the	tasks	are	completed	faster,	because	the	VM
can	assign	each	of	these	tasks	to	all	available	processors.	However,	we	do	not	have	to
worry	about	that	in	our	code.

The	next	screenshots	show	you	the	load	charts	per	CPU	in	both	scenarios:

Schedulers	in	use

In	the	following	screenshot,	we	see	the	SMP-disabled	one	scheduler	in	use:

www.it-ebooks.info

http://www.it-ebooks.info/

If	we	compare	the	execution	times	for	each	of	the	four	computations,	we	can	see	how
execution	times	increase	in	the	shell	instance	that	uses	a	single	CPU	core:

Computation	(range) Execution	time	with	4	cores Execution	time	with	1	core

1..10000000 4758	ms 8453	ms

1..20000000 8286	ms 14944	ms

1..30000000 10848	ms 19114	ms

1..40000000 11347	ms 21338	ms

Total	time 35239	ms 63849	ms

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
The	fact	that	the	virtual	machine	takes	care	of	scheduling	using	all	the	available
processors	doesn’t	mean	that	we	shouldn’t	care	about	our	code	performance.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	tasks	to	perform	multiple
concurrent	computations
In	this	recipe,	we	will	build	a	simple	geolocation	app	that	receives	a	list	of	IP	addresses
and	outputs	the	country	where	the	IP	is	registered.	We	will	use	Elixir’s	Task	module	to
spawn	one	process	per	IP	address	in	the	list.	The	determination	of	the	location	will	be
performed	concurrently.

The	Task	module	in	Elixir	provides	a	simple	abstraction	for	the	use	of	processes	with	the
purpose	of	performing	one	action	during	their	life	cycle.	Normally,	tasks	are	used	when
there	is	no	need	to	perform	communication	between	processes,	and	are	a	very	powerful
tool	to	help	parallelize	computation.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
We	will	generate	a	Mix	application,	add	the	geolix	application	as	a	dependency,	and	also
download	a	free	IP	database	and	configure	the	application	to	use	it.	We	will	also	create
two	functions	to	geolocate	the	IPs:	one	sequential	and	another	concurrent.

Let’s	get	started:

1.	 Generate	a	Mix	application:

>	mix	new	geolocation_with_tasks	--sup

*	creating	README.md

*	creating	.gitignore

*	creating	mix.exs

*	creating	config

*	creating	config/config.exs

*	creating	lib

*	creating	lib/geolocation_with_tasks.ex

*	creating	test

*	creating	test/test_helper.exs

*	creating	test/geolocation_with_tasks_test.exs

Your	mix	project	was	created	successfully.

You	can	use	mix	to	compile	it,	test	it,	and	more:

				cd	geolocation_with_tasks

				mix	test

Run	`mix	help`	for	more	commands.

2.	 Download	the	free	GeoLite2	Country	database	from
http://dev.maxmind.com/geoip/geoip2/geolite2/:

www.it-ebooks.info

http://dev.maxmind.com/geoip/geoip2/geolite2/
http://www.it-ebooks.info/

3.	 Create	the	geo_db	directory	inside	the	code	directory	of	this	chapter	and	unzip	the
file	downloaded	in	step	2	to	that	location.	You	should	have	a	file	named	GeoLite2-
Country.mmdb	inside	geolocation_with_tasks/geo_db.

4.	 Add	the	geolix	application	as	a	dependency:

(File	mix.exs)

defp	deps	do

		[

				{	:geolix,	github:	"mneudert/geolix"	}

]

end

5.	 Configure	the	application	to	start	geolix	automatically:

(File	mix.exs)

def	application	do

		[applications:	[:logger,	:geolix],

			mod:	{GeolocationWithTasks,	[]}]

end

6.	 Get	and	compile	the	dependencies:

>	mix	do	deps.get,	compile

www.it-ebooks.info

http://www.it-ebooks.info/

7.	 Configure	the	location	of	the	file	containing	the	geolocation	information
(downloaded	in	step	2):

(File	config/config.exs)

use	Mix.Config

config	:geolix,

		databases:	[

				{	:country,	"./geo_db/GeoLite2-Country.mmdb"	}

]

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	use	the	Task	module	to	perform	concurrent	computations,	follow	these	steps:

1.	 Create	a	file	named	lib/geolocator.ex	and	insert	the	following	code:

defmodule	Geolocator	do

@ip_list	["216.58.209.227",	"199.16.156.198",	"213.13.146.138",	

"114.134.80.162",	"134.170.188.221",	"216.58.210.3"]

		def	concurrent(ip_list	\\	@ip_list)	when	is_list	ip_list	do

				ip_list

				|>	Enum.map(fn(ip)->

						Task.async(fn	->	ip	|>	locate	end)

				end)

				|>	Enum.map(&Task.await/1)

		end

		def	sequential(ip_list	\\	@ip_list)	when	is_list	ip_list	do

				Enum.map(ip_list,	fn(x)	->	locate(x)	end)

		end

		def	locate(ip)	do

				case	Geolix.lookup(ip)	do

						%{country:	country}	->

								location	=	get_in(country,	[:country,	:names,	:en])

								IO.puts	"IP:	#{ip}		Country:	#{location}"

						_	->

								IO.puts	"Could	not	determine	the	location	of	IP	#{ip}"

						end

		end

end

2.	 Start	the	application:

>	iex	-S	mix

3.	 Start	by	determining	the	location	of	each	IP	using	the	sequential	function	defined	in
the	previous	step:

iex(1)>	Geolocator.sequential

IP:	216.58.209.227		Country:	United	States

IP:	199.16.156.198		Country:	United	States

IP:	213.13.146.138		Country:	Portugal

IP:	114.134.80.162		Country:	Hong	Kong

IP:	134.170.188.221		Country:	United	States

IP:	216.58.210.3		Country:	United	States

[:ok,	:ok,	:ok,	:ok,	:ok,	:ok]

4.	 Now,	perform	the	same	task	using	the	function	that	makes	use	of	the	Task	module:

iex(2)>	Geolocator.concurrent

IP:	199.16.156.198		Country:	United	States

IP:	216.58.209.227		Country:	United	States

www.it-ebooks.info

http://www.it-ebooks.info/

IP:	134.170.188.221		Country:	United	States

IP:	114.134.80.162		Country:	Hong	Kong

IP:	213.13.146.138		Country:	Portugal

IP:	216.58.210.3		Country:	United	States

[:ok,	:ok,	:ok,	:ok,	:ok,	:ok]

5.	 Run	it	once	more	to	see	the	order	of	the	results	change:

iex(3)>	Geolocator.concurrent

IP:	199.16.156.198		Country:	United	States

IP:	213.13.146.138		Country:	Portugal

IP:	216.58.210.3		Country:	United	States

IP:	216.58.209.227		Country:	United	States

IP:	114.134.80.162		Country:	Hong	Kong

IP:	134.170.188.221		Country:	United	States

[:ok,	:ok,	:ok,	:ok,	:ok,	:ok]

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	1,	we	create	the	module	to	perform	the	geolocation	task.

We	start	by	defining	a	list	of	IP	addresses	(@ip_list).	This	allows	us	to	invoke	both	the
concurrent	and	sequential	functions,	passing	no	arguments.	The	@ip_list	is	used	as	a
default	argument	for	both	functions.	In	both	functions,	we	also	make	use	of	guards	(when
is_list	ip_list)	to	make	sure	the	functions	are	only	executed	when	a	list	is	passed	as	an
argument.

We	also	define	two	functions	that	behave	distinctly.	The	sequential	function	will	take
each	element	of	the	list	and	sequentially	invoke	the	locate	function.	No	matter	how	many
times	we	execute	Geolocator.sequential,	the	output	never	changes.

In	the	concurrent	function,	we	introduce	tasks:

	6		def	concurrent(ip_list	\\	@ip_list)	when	is_list	ip_list	do

	7				ip_list

	8				|>	Enum.map(fn(ip)->

	9								Task.async(fn	->	ip	|>	locate	end)

10							end)

11				|>	Enum.map(&Task.await/1)

12		end

The	code	flow	is	this:	we	pass	ip_list	as	a	collection	to	the	Enum.map	function	in	line	8.
The	anonymous	function	we	use	to	map	the	collection	is	Task.async(fn	->	ip	|>
locate	end).	This	function	is	the	one	that	performs	the	call	to	the	locate/1	function.	We
then	map	the	resulting	collection	again	with	the	&Task.await/1	anonymous	function	(line
11).	This	is	in	order	to	actually	wait	for	the	results	from	the	computations	performed	by
each	task.	Doing	this	allows	us	to	get	the	status	of	the	computation.	Both	in	steps	4	and	5,
the	last	line	is	the	following:

[:ok,	:ok,	:ok,	:ok,	:ok,	:ok]

Note
The	Task.await	function	allows	us	to	view	the	return	value,	informing	us	of	the	success
of	each	operation.	If	we	commented	out	line	11,	our	output	would	be	something	like	this:

[%Task{pid:	#PID<0.212.0>,	ref:	#Reference<0.0.0.1356>},

	%Task{pid:	#PID<0.213.0>,	ref:	#Reference<0.0.0.1357>},

	%Task{pid:	#PID<0.214.0>,	ref:	#Reference<0.0.0.1358>},

	%Task{pid:	#PID<0.215.0>,	ref:	#Reference<0.0.0.1359>},

	%Task{pid:	#PID<0.216.0>,	ref:	#Reference<0.0.0.1360>},

	%Task{pid:	#PID<0.217.0>,	ref:	#Reference<0.0.0.1361>}]

This	means	that	although	each	task	is	executed,	the	process	that	spawned	them	has	no	way
to	access	the	status	of	each	task.

In	step	3,	we	execute	the	sequential	function	that	processes	each	entry	in	the	list	in	an
order.	It	takes	each	element,	performs	the	computation,	and	returns	the	result.	As	long	as
the	list	doesn’t	change,	the	order	of	the	processing	will	be	the	same.

www.it-ebooks.info

http://www.it-ebooks.info/

As	we	can	see	in	steps	4	and	5,	when	using	the	concurrent	function,	the	output	changes.
Each	element	of	the	list	gets	assigned	to	a	process	(task),	and	the	execution	occurs	in
parallel.	This	is	the	reason	we	cannot	determine	the	order	of	the	results	and	they	actually
change	every	time	the	function	is	executed.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
Elixir	tasks	can	also	be	spawned	inside	a	supervision	tree	using	the	start_link/1	and
start_link/3	functions.	However,	remember	that	once	supervised,	tasks	cannot	be	waited
on.	If	they	are	placed	in	a	supervision	tree,	they	will	not	be	linked	directly	to	the	caller,
and	that	link	is	what	allows	a	task	to	be	waited	on.

Elixir	also	provides	the	Task.Supervisor	module	to	allow	starting	supervisors	that
dynamically	supervise	tasks.

We	will	be	looking	into	supervisors	in	the	Creating	a	supervisor	recipe	in	Chapter	6,	OTP
–	Open	Telecom	Platform,	but	you	can	find	more	information	on	the	Task	and
Task.Supervisor	modules	in	the	Elixir	documentation	at	http://elixir-
lang.org/docs/stable/elixir/Task.html	and	http://elixir-
lang.org/docs/stable/elixir/Task.Supervisor.html.

www.it-ebooks.info

http://elixir-lang.org/docs/stable/elixir/Task.html
http://elixir-lang.org/docs/stable/elixir/Task.Supervisor.html
http://www.it-ebooks.info/

Creating	a	stateful	server	process
(messages	with	counters)
In	this	recipe,	we	will	use	the	same	concept	used	in	the	first	recipe,	but	we	will	add	a
counter	for	each	type	of	received	message.	We	will	introduce	states!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	get	started,	let’s	create	a	module	named	messages_with_state.ex	with	the	following
code:

defmodule	MessagesWithState	do

		def	start_link	do

				{:ok,	spawn_link(fn	->	wait_for_messages(0,0,0)	end)}

		end

		defp	wait_for_messages(pings,	pongs,	unknown)	do

				receive	do

						{"ping",	caller}	->

								send	caller,	"pong"

								IO.puts	"Received	#{pings	+	1}	ping	messages!"

								wait_for_messages(pings	+	1,	pongs,	unknown)

						{"pong",	caller}	->

								send	caller,	"pong"

								IO.puts	"Received	#{pongs	+	1}	pong	messages!"

								wait_for_messages(pings,	pongs	+	1,	unknown)

						{:status,	_caller}	->

								IO.puts	"Current	status:	#{pings}	pings,	#{pongs}	pongs	and	#

{unknown}	unknown	messages."

						{_,	caller}	->

								IO.puts	"What	do	you	mean?	I	have	received	#{unknown	+	1}	unknown	

messages!"

								send	caller,	"unknown"

								wait_for_messages(pings,	pongs,	unknown	+	1)

				end

		end

end

This	code	is	very	similar	to	the	one	we	used	in	the	messages.ex	module	in	the	first	recipe
of	this	chapter,	which	is	the	Sending	messages	between	processes	recipe.	We	are	just
enhancing	it	with	the	ability	to	hold	states!	We	will	keep	a	counter	that	will	increase	by
one	when	a	new	message	is	received.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
Follow	these	steps	to	see	our	process	maintain	a	counter	of	the	received	messages:

1.	 We	will	start	by	loading	the	module	and	registering	the	process	with	a	name,	in	this
case,	:message_server:

iex(1)>	c	"messages_with_state.ex"

[MessagesWithState]

iex(2)>	{:ok,	pid}	=	MessagesWithState.start_link

{:ok,	#PID<0.61.0>}

iex(3)>	Process.register(pid,	:message_server)

true

2.	 We	will	now	send	some	messages	to	our	server:

iex(4)>	send	:message_server,	{"ping",	self()}

Received	1	ping	messages!

iex(5)>	send	:message_server,	{"ping",	self()}

Received	2	ping	messages!

iex(6)>	send	:message_server,	{"pong",	self()}

Received	1	pong	messages!

iex(7)>	send	:message_server,	{"what",	self()}

What	do	you	mean?	I	have	received	1	unknown	messages!

iex(8)>	send	:message_server,	{"what",	self()}

What	do	you	mean?	I	have	received	2	unknown	messages!

iex(9)>	send	:message_server,	{"ping",	self()}

Received	3	ping	messages!

iex(10)>	send	:message_server,	{:status,	self()}

Current	status:	3	pings,	1	pongs	and	2	unknown	messages.

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
When	we	modified	our	messages	module,	we	added	three	arguments	to	the
wait_for_messages	function:

defp	wait_for_messages(pings,	pongs,	unknown)	do	(…)

These	arguments	are	initialized	with	the	0	value	when	the	server	is	spawned:

def	start_link	do

		{:ok,	spawn_link(fn	->	wait_for_messages(0,0,0)	end)}

end

Then,	in	each	recursive	call	after	receiving	a	message	(lines	11,	16,	and	24),	we	need	to
pass	the	current	state	in	the	form	of	these	three	arguments:

wait_for_messages(pings,	pongs	+	1,	unknown)

wait_for_messages(pings	+	1,	pongs,	unknown)

wait_for_messages(pings,	pongs,	unknown	+	1)

In	the	previous	lines,	depending	on	the	type	of	message	received,	we	update	the	counter
for	that	type	of	message	and	call	the	same	function	recursively,	feeding	the	updated	values
for	the	message	counters.

There	is	no	global	state	and	each	spawned	process	has	its	own	state	that	has	to	be	passed
between	function	calls	in	order	to	be	updated	or	maintained.

For	those	more	used	to	object-oriented	languages,	this	option	may	seem	odd,	but
remember	that	it	is	this	insulation	of	states	between	processes	that	allows	a	simpler	and
effective	concurrency	model.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
In	the	Using	agents	as	an	abstraction	around	states	and	Using	an	ETS	table	to	share
states	recipes,	we	will	discuss	the	use	of	a	placeholder	for	the	state	that	needs	to	be
shared	between	processes

www.it-ebooks.info

http://www.it-ebooks.info/

Using	agents	as	an	abstraction	around
states
The	Agent	module	provides	a	basic	server	implementation	and	is	a	convenient	way	to
spawn	a	process	that	needs	to	maintain	a	state.	Agents	in	Elixir	provide	an	intuitive	API	to
update	and	retrieve	the	state.

In	this	recipe,	we	will	create	a	module,	phone_book.ex,	where	we	will	be	able	to	store	and
retrieve	data.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	create	our	phone	book	using	an	agent	to	maintain	states,	follow	these	steps:

1.	 Open	your	code	editor	and	create	a	file	named	phone_book.ex.
2.	 Add	the	following	code	to	the	file	you	created:

defmodule	PhoneBook	do

		@name	__MODULE__

		def	start_link	do

				Agent.start_link(fn	->	%{}	end,	name:	@name)

		end

		def	insert(user,	number)	do

				Agent.update(@name,	&Map.put(&1,	user,	number))

		end

		def	get(user)	do

				Agent.get(@name,	&Map.get(&1,	user))

		end

end

3.	 Start	IEx	and	load	the	module:

>	iex	phone_book.ex

4.	 Start	the	process	that	will	hold	our	phone	book	data:

iex(1)>	PhoneBook.start_link

{:ok,	#PID<0.59.0>}

5.	 Insert	some	numbers	into	the	phone	book:

iex(2)>	PhoneBook.insert(:bob,	"111-22-333-444")

:ok

iex(3)>	PhoneBook.insert(:joe,	"111-99-999-999")

:ok

6.	 Retrieve	data	from	the	phone	book:

iex(4)>	PhoneBook.get(:joe)

"111-99-999-999"

7.	 Update	the	value	retrieved	in	the	previous	step:

iex(5)>	PhoneBook.insert(:joe,	"111-88-333-888")

:ok

8.	 Get	the	value	once	more	to	verify	that	the	changes	persisted:

iex(6)>	PhoneBook.get(:joe)

"111-88-333-888"

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
With	12	lines	of	code,	we	were	able	to	define	a	module	that	allows	the	insertion	and
retrieval	of	data,	thus	maintaining	the	state.	For	this	purpose,	we	used	Elixir’s	Agent
module.

We	start	the	agent	in	step	4	by	passing	an	anonymous	function	that	initializes	an	empty
map	(%{})	and	registers	the	agent	with	a	name;	in	this	case,	the	name	is	defined	using
@name	and	by	assigning	it	__MODULE__:

Agent.start_link(fn	->	%{}	end,	name:	@name)

This	means	that	the	agent	will	be	registered	with	the	name	of	the	module	(PhoneBook)	and
will	be	accessible	by	name	without	the	need	to	use	the	PID.	The	empty	map	is	the	initial
state	of	the	process.

Note
The	return	value	is	{:ok,	#PID<0.59.0>}.	Even	though	we	registered	the	process	with	a
name,	we	can	access	it	using	this	PID.

In	steps	5	and	7,	we	use	the	insert	function	to	update	the	phone	book	(and	the	state	of	the
process).	This	is	achieved	using	the	Agent.update	function:

Agent.update(@name,	&Map.put(&1,	user,	number))	

We	pass	the	name	under	which	the	process	is	registered	as	the	first	argument,	and	the
second	argument	is	the	function	to	update	the	state.	Here,	we	get	the	map	that	holds	the
state	of	the	agent	and	insert	(put)	the	user	and	number.

Note
Take	a	look	at	the	following	code:

&Map.put(&1,	user,	number)

It	is	equivalent	to	the	following:

fn(map)	->	Map.put(map,	user,	number)	end

In	steps	6	and	8,	we	use	the	Agent.get	function	to	get	the	current	values	stored	in	the
process.	This	function	is	very	similar	to	the	update	function,	but	it	only	takes	two
arguments:	the	map	representing	the	state	of	the	process	and	the	key	we	wish	to	retrieve
from	that	map:

Agent.get(@name,	&Map.get(&1,	user))

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
Although	limited	in	comparison	to	a	full-blown	GenServer,	agents	are	simple	to	use	and
allow	us	to	quickly	spawn	a	process	in	order	to	maintain	states.	In	the	next	chapter,	we
will	focus	on	OTP,	and	we	will	use	the	GenServer	behavior	that	serves	as	the	foundation
of	the	agent	implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	an	ETS	table	to	share	the	state
In	the	Creating	a	stateful	server	process	(messages	with	counters)	and	Using	agents	as	an
abstraction	around	states	recipes,	we	saw	that	in	order	to	maintain	the	state	in	our
processes,	we	had	to	be	passing	the	function	calls	to	the	state.

This	solves	the	problem	when	a	process	needs	to	maintain	states,	but	what	if	we	need	to
share	some	data	between	multiple	processes?

One	of	the	solutions	is	the	use	of	a	structure	that	allows	concurrent	access	and	is	really
effective	in	the	retrieval	of	data.	This	structure	is	called	ETS.

Note
ETS	means	Erlang	Term	Storage,	and	it	is	an	in-memory	store.

In	this	recipe,	we	will	create	a	small	wrapper	around	an	ETS	table	that	can	be	used	as	a
key/value	store.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	create	our	key/value	store,	let’s	create	new	module	ets_store.ex	and	add	the
following	code:

defmodule	EtsStore	do

		@table_id	__MODULE__

		def	init	do

				:ets.new(@table_id,	[:public,	:named_table])

		end

		def	insert(key,	value)	do

				:ets.insert(@table_id,	{key,	value})

		end

		def	get(key)	do

				case	:ets.lookup(@table_id,	key)	do

						[{_key,	value}]		->	{:ok,	value}

						[]															->	{:error,	:not_found}

				end

		end

		def	delete(key)	do

				:ets.match_delete(@table_id,	{key,	:_})

		end

end

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
We	will	use	our	newly	defined	module	to	store	values	that	are	accessible	by	any	process.
The	steps	are	as	follows:

1.	 Open	a	new	IEx	session	and	load	the	ets_store	module:

iex(1)>	c	"ets_store.ex"

[EtsStore]

2.	 Initialize	the	EtsStore	module:

iex(2)>	EtsStore.init

EtsStore

3.	 Now	we	can	use	it	to	store	some	values:

iex(3)>	EtsStore.insert(:one,	1)

iex(4)>	EtsStore.insert("two",	2)

iex(5)>	EtsStore.insert(:two,	2)

iex(6)>	EtsStore.insert(:three,	"three")

4.	 We	can	also	use	it	to	retrieve	values:

iex(7)>	EtsStore.get("two")

{:ok,	2}

iex(8)>	EtsStore.get(:two)

{:ok,	2}

5.	 We	can	also	delete	entries	from	it:

iex(9)>	EtsStore.delete("two")

true

6.	 The	Observer	tool	is	really	helpful	in	order	to	visualize	the	state	of	any	ETS	table;
let’s	start	it	to	check	our	store:

iex(10)>	:observer.start

:ok

7.	 Select	the	Table	Viewer	tab	and	double-click	on	Elixir.EtsStore	to	see	the	keys	and
values	it	currently	stores:

www.it-ebooks.info

http://www.it-ebooks.info/

This	is	what	the	table	looks	like:

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	the	init	function	for	our	EtsStore	module,	we	call	the	ets	Erlang	module	and	pass	it
the	name	of	the	table	and	a	list	of	options.	In	this	case,	we	chose	to	create	a	public	table,
which	means	other	processes	may	read	and	write	to	it.	We	also	chose	the	option	of
named_table	to	allow	all	to	refer	to	it	by	its	name	instead	of	having	to	use	its	PID
reference:

def	init	do

		:ets.new(@table_id,	[:public,	:named_table])

end

Note
There	are	several	other	options;	we	can	choose	how	the	table	should	behave,	such	as	set,
ordered_set,	bag,	or	ordered_bag	and	between	different	permission	levels:	public,
protected,	and	private.

The	other	functions	in	our	module	are	wrappers	around	the	ets	Erlang	module	to	provide
us	with	a	more	idiomatic	way	of	interaction.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
The	owning	process	of	this	ETS	table	is	the	terminal	where	we	initialized	it.	If	we	close
the	terminal	window,	the	table	will	be	destroyed.

In	some	cases,	this	behavior	makes	sense,	but	if	desired,	an	ETS	may	even	be	part	of	a
supervision	tree	and	its	ownership	may	be	passed	between	processes.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	named	nodes
Until	now,	we	have	been	using	our	IEx	sessions	without	naming	them.	You	may	notice
this	because	the	prompt	for	the	IEx	terminal	session	only	has	this	indication:	iex(1)>.	The
IEx	session	is	a	node,	and	if	we	run	two	or	more	different	nodes,	even	on	the	same
machine,	we	are	running	multiple	instances	of	the	Erlang	virtual	machine.

Using	two	nodes	on	the	same	machine	or	two	nodes	on	different	machines	is	exactly	the
same	thing,	apart	from	connection	latency,	and	that	is	why	there	is	a	need	to	connect	them
securely.

By	executing	several	nodes,	we	are	paving	the	way	for	distribution	and	fault	tolerance.	At
this	point,	we	will	be	focusing	on	the	task	of	naming	our	nodes	to	make	them	easier	to
access.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
In	this	recipe,	we	will	be	creating	nodes	with	a	short	name	and	with	a	full	name	as	well.
Usually,	short	names	are	the	option	when	the	nodes	are	in	the	same	network,	and	long
names	are	the	option	when	we	need	to	create	nodes	that	will	interconnect	within	different
networks.

We	will	start	by	opening	a	terminal	window	in	order	to	create	our	named	nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	create	named	nodes,	follow	these	steps:

1.	 Let’s	first	check	what	is	happening	when	no	name	is	specified	for	a	node	when	we
start	an	IEx	session:

>	iex

Interactive	Elixir	(1.0.2)	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	

help)

iex(1)>

2.	 No	information	about	the	node	is	displayed	in	the	IEx	prompt.	Let’s	try	to	figure	out
what	the	current	node	name	is:

iex(1)>	Node.self

:nonode@nohost

3.	 Now,	let’s	exit	the	session	by	pressing	Ctrl	+	C	twice	and	start	a	new	session,	naming
our	node.	We	will	use	the	short	name	option:

>	iex	--sname	"cookbook"

Interactive	Elixir	(1.0.2)	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	

help)

iex(cookbook@pap-macbook)1>

4.	 Let’s	exit	once	more	and	this	time,	start	the	node	with	a	fully	qualified	name:

>	iex	--name	"cookbook@127.0.0.1"

Interactive	Elixir	(1.0.2)	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	

help)

iex(cookbook@127.0.0.1)1>

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
When	we	start	our	nodes	(IEx	sessions	are	nodes)	without	specifying	a	name,	our	node	is
already	named.	The	default	name	is	:nonode@nohost.

To	be	able	to	connect	nodes	in	the	same	machine,	we	don’t	need	the	IP	address	(or	the
hostname),	so	we	usually	go	for	the	sname	option.	The	short	name	allows	us	to	indicate	the
name	of	the	node,	and	then	the	machine	name	will	be	appended,	as	we	observed	in	step	3.

When	we	need	to	connect	nodes	in	different	machines,	we	have	to	indicate	the	IP	or
hostname.	In	step	4,	we	use	the	name	option.	This	allows	us	to	assign	a	fully	qualified
name	to	our	node.	This	way,	it’s	possible	to	identify	it	and	connect	to	it	from	another
machine.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
In	the	Connecting	nodes	and	Executing	code	in	another	node	recipes	of	this	chapter,
we	will	be	using	the	options	that	are	presented.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting	nodes
In	this	recipe,	we	will	start	two	different	terminal	sessions	that	will	be	our	nodes,	and	we
will	connect	them.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
We	will	need	two	terminal	windows	opened	and	in	each	of	them,	we	will	create	a	node.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
1.	 Start	a	named	node	in	terminal	window	one:

>	iex	--name	one@127.0.0.1

Interactive	Elixir	(1.0.2)	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	

help)

iex(one@127.0.0.1)1>

2.	 Start	another	named	node	in	terminal	window	two:

>	iex	--name	two@127.0.0.1

Interactive	Elixir	(1.0.2)	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	

help)

iex(two@127.0.0.1

)1>

3.	 Verify	the	list	of	nodes	that	each	of	our	newly	created	nodes	is	aware	of:

iex(one@127.0.0.1)1>	Node.list

[]

iex(two@127.0.0.1)1>	Node.list

[]

4.	 To	connect	the	two	nodes,	we	will	just	need	to	instruct	one	of	them	to	perform	the
connection:

iex(one@127.0.0.1)2>	Node.connect	:"two@127.0.0.1"

true

5.	 Now,	confirm	that	both	nodes	are	connected	and	aware	of	each	other:

iex(one@127.0.0.1)3>	Node.list

[:"two@127.0.0.1"]

iex(two@127.0.0.1)2>	Node.list

[:"one@127.0.0.1"]

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	steps	1	and	2,	we	created	nodes	using	the	--name	option	(a	fully	qualified	name),
passing	the	name	of	the	node	and	the	IP	of	the	machine.

In	step	3,	we	confirmed	that	although	running	in	the	same	machine,	nodes	are	not
automatically	aware	of	the	presence	of	other	nodes.

To	connect	both	nodes,	in	step	4,	we	only	needed	to	instruct	one	of	them	to	connect	to	the
other,	and	they	became	aware	of	one	another.	We	confirmed	this	in	step	5	when	we	issued
the	Node.list	command.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
When	connecting	nodes	in	the	same	machine,	a	cookie	file	(such	as.erlang.cookie)	is
usually	created	and	placed	in	the	user	root	path.	Both	nodes	may	read	from	that	file	and
use	the	value	defined	there.

To	connect	nodes	in	different	machines,	it	is	necessary	to	specify	the	value	for	--cookie
when	the	named	node	is	started.	As	an	example,	consider	the	following:

>	iex	--name	mynode@my-ip-address	--cookie	mycookietext

All	nodes	we	wish	to	connect	must	provide	the	same	value	for	the	cookie.

Note
Be	aware	that	when	you	are	setting	the	cookie	to	connect	nodes	in	two	different	machines,
it	will	be	transmitted	in	plain	text.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
In	the	Executing	code	in	a	different	node	recipe,	we	will	connect	two	nodes	and
perform	the	execution	of	a	function	defined	in	node	one	in	node	two

www.it-ebooks.info

http://www.it-ebooks.info/

Executing	code	in	a	different	node
It	is	possible	to	define	a	function	in	a	node	and	execute	it	in	another	one.

In	this	recipe,	we	will	be	connecting	two	nodes	and	will	define	a	function	to	print	a
greeting	message	with	the	greeter	name	(in	this	case,	the	node’s	full	name).	Afterwards,
we	will	execute	the	function	in	both	nodes!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	be	able	to	execute	a	function	in	another	node,	we	will	start	by	following	the	steps	from
the	previous	recipe.	We	will	create	two	nodes	and	connect	them	together.	Repeat	the	steps
from	the	previous	recipe	to	get	started.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
With	both	nodes	up	and	running	and	connected,	we	are	ready	to	start:

1.	 Define	a	function	in	node	one:

iex(one@127.0.0.1)4>	greeting_node	=	fn()	->	IO.puts("Hello	from	#

{inspect(Node.self)}")	end

#Function<20.90072148/0	in	:erl_eval.expr/5>

2.	 It’s	time	to	instruct	the	second	node	to	run	the	function	we	defined	in	node	one:

iex(one@127.0.0.1)21>	Node.spawn(:"two@127.0.0.1",	greeting_node)

#PID<9007.76.0>

Hello	from	:"two@127.0.0.1"

ok

3.	 To	make	sure	node	two	is	not	aware	of	the	function,	we	will	try	to	execute	it	there	as
well:

iex(two

@127.0.0.1)5>	Node.spawn(:"two@127.0.0.1",	greeting_node)

**	(RuntimeError)	undefined	function:	greeting_node/0

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
The	function	we	defined	in	step	1	prints	the	result	of	the	inspect	function	applied	in	a
node	(Node.self).

In	step	2,	we	use	the	Node.spawn	function	that	accepts	a	node	and	a	function	as	arguments.
A	new	process	responsible	for	running	the	function	will	be	spawned	in	the	given	node.

As	a	result,	we	get	a	PID	as	the	output,	and	then	the	message	is	printed	on	the	caller	node
with	the	greeting	message	from	the	node	that	actually	executed	the	code	(two@127.0.0.1).

In	step	3,	we	made	sure	that	node	two	doesn’t	have	the	greeting_function	function
defined.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
This	simple	example	highlights	one	of	the	strengths	of	Elixir	and	the	underlying	Erlang
platform:	code	may	be	executed	in	any	node	as	if	it	were	local.	We	already	saw	in	the
Making	code	run	on	all	available	CPUs	recipe	that	a	code	with	no	changes	was	run	either
by	one	or	multiple	processors,	and	now	we	got	to	see	that	even	a	different	node,	in	the
same	machine	or	in	another	one,	can	execute	code	that’s	defined	elsewhere.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	6.	OTP	–	Open	Telecom	Platform
This	chapter	will	cover	the	following	recipes:

Implementing	a	GenServer
Expanding	our	server
Creating	a	supervisor
Using	Observer	to	inspect	supervisors	and	processes
Handling	errors	and	managing	exceptions
Packaging	and	releasing	an	OTP	application
Deploying	applications	and	updating	a	running	system

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
Open	Telecom	Platform	(OTP)	is	a	set	of	libraries	created	by	Ericsson	as	a
systematization	of	common	Erlang	programming	concepts.

The	process-oriented	nature	of	Erlang	(and	Elixir	by	extension)	provides	an	immense
power	that	may	sometimes	lead	to	strange	problems.	Given	the	concurrent	nature	of	the
languages,	sometimes	these	problems	may	be	really	difficult	to	understand.

OTP	was	created	around	the	concept	of	behaviors.	A	server	will	generally	have	the	same
structure.	A	finite	state	machine	also	has	a	known	implementation	pattern.	The	idea	was	to
create	a	structure	for	each	of	the	OTP-defined	components	that	would	allow	the	use	of	a
well-defined	and	tested	structure.

Implementing	large-scale	systems	with	a	distributed	and	concurrent	nature	is	much	easier
given	the	existence	of	OTP,	which	provides	a	good	foundation	for	these	systems.

In	this	chapter,	we	will	be	looking	into	some	of	the	behaviors	available	in	Elixir
(Application,	GenServer,	and	Supervisor).

In	the	previous	chapter,	we	used	tasks	and	agents,	These	are	two	abstractions	provided	on
top	of	OTP.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing	a	GenServer
In	this	recipe,	we	will	implement	a	simple	server	that	will	store	pairs	of	values	(IP	and
UUID).This	might	be	used,	for	instance,	to	store	users	of	a	system	who	are	currently
connected.

In	this	recipe,	we	will	only	store	the	provided	information	and	respond	to	requests	on
whether	a	user	with	a	given	IP	is	connected	or	not.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
We	will	implement	a	server	using	the	OTP-defined	GenServer	behavior.	We	will	need	to
implement	the	start_link	and	init	functions	and	some	callbacks	to	handle	the	messages
our	server	receives	(handle_call	or	handle_cast).	To	make	the	interaction	with	the
server	more	pleasant,	we	will	create	some	wrappers	around	the	callbacks	creating	a	client
API.

Note
The	GenServer-defined	behavior	enforces	the	separation	between	client	and	server.	An
example	of	it	is	the	fact	that	start_link/3	happens	in	the	client,	while	init/1	is	its
counterpart	callback	that	runs	on	the	server.

The	handle_call	callback	is	a	handler	for	synchronous	calls	while	handle_cast	is	a
handler	for	asynchronous	calls.	As	a	rule	of	thumb,	handle_call	is	used	when	a	response
from	the	server	is	expected	whereas	handle_cast	is	used	when	no	response	is	expected	or
we	don’t	want	to	block	while	waiting	for	a	response.

Our	server	will	be	defined	in	the	connection_tracker.ex	file	with	the	following	code:

defmodule	ConnectionTracker	do

		use	GenServer

		##	Client	API

		def	start_link(opts	\\	[])	do

				GenServer.start_link(__MODULE__,	:ok,	opts)

		end

		def	add_user(server,	message)	do

				GenServer.cast(server,	{:add,	message})

		end

		def	search_user(server,	ip)	do

				GenServer.call(server,	{:search,	ip})

		end

		##	Callbacks	(Server	API)

		def	init(:ok)	do

				{:ok,	HashDict.new}

		end

		def	handle_cast({:add,	message},	connection_dict)	do

				{ip,	uuid}	=	message

				if	HashDict.get(connection_dict,	message)	do

						{:noreply,	connection_dict}

				else

						{:noreply,	HashDict.put(connection_dict,	ip,	uuid)}

				end

		end

		def	handle_call({:search,	ip},	_from,	connection_dict)	do

				{:reply,	HashDict.fetch(connection_dict,	ip),	connection_dict}

www.it-ebooks.info

http://www.it-ebooks.info/

		end

end

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	load	our	server	and	perform	some	requests,	we	will	follow	these	steps:

1.	 Start	a	new	IEx	session	and	compile	the	module:

>	iex

iex(1)>	c	"connection_tracker.ex"

[ConnectionTracker]

2.	 Initialize	the	server:

iex(2)>	{:ok,	ct}	=	ConnectionTracker.start_link

{:ok,	#PID<0.179.0>}

3.	 Store	some	users:

iex(3)>	ConnectionTracker.add_user(ct,	{"127.0.0.1","uuid1"})

:ok

iex(4)>	ConnectionTracker.add_user(ct,	{"127.0.0.2","uuid2"})

:ok

4.	 Ask	the	server	whether	a	given	user	is	registered	or	not:

iex(5)>	ConnectionTracker.search_user(ct,	"127.0.0.1")

{:ok,	"uuid1"}

iex(6)>	ConnectionTracker.search_user(ct,	"0.0.0.0")

:error

iex(7)>	ConnectionTracker.search_user(ct,	"127.0.0.2")

{:ok,	"uuid2"}

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
After	we	compiled	our	server	in	step	2,	we	started	it	and,	via	pattern	matching,	we
assigned	its	PID	to	the	ct	variable.	This	variable	will	be	used	in	the	calls	to	our	server	as	a
placeholder	for	the	PID	of	the	server	process.

In	step	3,	we	add	users	to	the	connection	tracker	server	using	the	add_user	function
defined	in	the	server	client	API	section.	This	way,	we	don’t	need	to	call	the	server
callbacks	directly.	Let’s	take	a	closer	look	at	the	add_user	function:

def	add_user(server,	message)	do

		GenServer.cast(server,	{:add,	message})

end

We	use	the	handle_cast	callback	because	we	don’t	need	to	wait	for	the	result	of	the	user
insertion.	We	pass	the	server	PID	(server)	and	a	tuple	(to	be	pattern	matched	in	the
handle_cast	function)	containing	an	atom	that	defines	the	type	of	action	and	a	message	as
arguments	of	our	add_user	function.

The	handle_cast	implementation	starts	by	decomposing	the	passed	message	into	an	IP
and	UUID	and	verifies	whether	the	IP	already	exists	in	the	dictionary	(HashDict)
containing	the	entries	for	connected	users.	If	the	entry	exists,	nothing	is	done;	if	not,	the
IP/UUID	key/value	pair	gets	inserted	into	the	dictionary.

In	step	4,	we	use	the	search_user	function	that	is	no	more	than	a	wrapper	around
GenServer.call.	This	time,	we	need	to	wait	for	a	response	so	we	have	to	go	for	the
synchronous	call!

The	structure	of	the	function	and	the	callback	is	quite	similar	to	the	one	explained
previously.	Briefly,	the	search_user	function	invokes	GenServer.call.	The
GenServer.call	callback	then	sends	a	message	to	the	server	process,	and	this	message	is
then	processed	by	the	handle_call	callback.	The	response	is	the	result	of	the	HashDict
search	for	the	given	key.

Note
On	both	handle_call	and	handle_cast,	the	state	is	passed	around;	in	this	case,	it	is	the
HashDict	containing	the	entries	of	the	connected	users.	We	also	use	the	:reply	and
:no_reply	atoms	to	indicate	whether	the	server	returns	a	message	or	not.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
All	the	OTP	behaviors	defined	in	Erlang	are	directly	usable	in	Elixir.	Some	of	these
behaviors	are	GenEvent,	Supervisor,	and	Application.

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding	our	server
Our	server	implementation	lacks	a	few	things.	How	to	stop	it	gracefully	and	how	to
upgrade	its	code?

Our	current	implementation	(right	below	the	##	Callbacks	(Server	API)	comment)	has
three	of	the	six	callbacks	that	form	the	GenServer	base	skeleton.	The	ones	missing	are
handle_info/2,	terminate/2,	and	code_change/3.

We	will	be	implementing	all	of	these	functions	in	this	recipe.

Note
The	GenServer	provides	default	implementations	for	all	:gen_server	callbacks.	This	is
the	reason	we	can	get	away	without	having	to	define	all	of	them	explicitly,	like	we	did	in
Erlang.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	start,	we	need	to	load	the	connection_tracker.ex	module	in	a	code	editor.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
We	will	follow	these	steps	to	implement	the	functions	and	make	our	server	a	full-blown
GenServer:

1.	 Implement	the	handle_info/2	function:

def	handle_info(info,	state)	do

		IO.puts("Received	info	message	#{inspect(info)}")

		{:noreply,	state}

end

2.	 Implement	the	terminate/2	function:

def	terminate(reason,	state)	do

		IO.puts("Terminating…	reason:	#{inspect(reason)}")

		{:ok,	state}

end

3.	 Implement	the	code_change/3	function:

def	code_change(_oldVsn,	state,	_extra)	do

		#	perform	the	actions	to	upgrade/downgrade/update	code

		{:ok,	state}

end

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
We	already	saw	the	purpose	of	init/1,	handle_call/3,	and	handle_cast/2	in	the
previous	recipe.	The	functions	that	are	now	implemented	have	their	own	purpose	as	well.

In	step	1,	we	implemented	the	init	function.	This	function	handles	messages	regarding
timeouts	or	messages	not	made	via	a	synchronous	or	asynchronous	request	(call	or	cast).	If
the	message	was	due	to	a	timeout,	the	information	will	be	the	:timeout	atom;	if	not,	it
will	be	the	message	itself.	In	our	example,	we	are	only	printing	the	info	message	to	the
standard	output,	but	we	might	even	ignore	the	info	message.

Step	2	consists	of	the	terminate	function.	This	function	is	supposed	to	be	the	counterpart
of	init.	It	is	called	when	the	GenServer	is	about	to	terminate	and,	in	the	same	way,	when
we	set	up	our	state	when	the	server	was	initiated	and	if	there’s	any	cleanup	to	take	place,	it
should	happen	here.	We	could,	for	instance,	transfer	the	state	to	another	process.

The	last	step	implements	the	code_change	function.	This	is	the	function	that	gets	called
when	the	GenServer	needs	to	update	its	internal	state,	be	it	on	an	upgrade	or	downgrade	of
the	code.	Yes,	it’s	not	a	typo!	You	can	actually	update	the	code	on	a	running	system!

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
The	Erlang	documentation	for	the	gen_server	module	is	very	detailed,	and	if	you
want	to	go	a	little	deeper	you	can	access	it	at
http://www.erlang.org/doc/man/gen_server.html
The	Elixir	GenServer	documentation	is	accessible	at	http://elixir-
lang.org/docs/stable/elixir/GenServer.html

www.it-ebooks.info

http://www.erlang.org/doc/man/gen_server.html
http://elixir-lang.org/docs/stable/elixir/GenServer.html
http://www.it-ebooks.info/

Creating	a	supervisor
One	of	the	main	advantages	of	Elixir	is	fault	tolerance,	and	one	of	the	underlying
philosophies	is	the	famous	let	it	crash	philosophy.	This	means	that	by	principle,	no
defensive	programming	is	performed.	You	write	the	code	that	expresses	your	intent	and
handles	the	case	you	are	expecting,	and	then	if	something	goes	wrong,	you	just	let	the
process	crash.

There	are	mechanisms	in	Elixir	that	allow	the	monitoring	of	processes	and	even	give	you
the	ability	to	relaunch	a	process	(or	a	group	of	processes)	if	something	goes	wrong.

Probably	in	case	of	programming	errors,	this	doesn’t	make	sense,	but	what	if	the	error	was
due	to	something	that’s	external	to	your	program?	What	if	the	program	is	logically	sound,
and	everything	is	working	as	it’s	supposed	to	but,	say,	a	resource,	such	as	a	network,	fails?
Your	processes	might	crash	because	of	that.	What	if	there	was	a	mechanism	that	would
allow	you	to	try	again?	Fortunately,	there	is:	supervisors!

This	is	another	OTP-defined	behavior.	A	process	supervises	another	one	or	more
processes.	The	supervised	processes	may	be	supervisors	or	workers.	The	module	we
implemented	in	the	last	two	recipes	is	an	example	of	a	worker	module	that	may	benefit
from	being	supervised.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
We	will	introduce	a	client	function	(crash_the_server)	and	its	handle_call	callback	that
will	perform	the	division	of	an	integer	by	0:

#	Client	API

def	crash_the_server(server,	number)	when	is_integer	number	do

		GenServer.call(server,{:crash_me,	number})

end

#	Callbacks	(Server	API)

def	handle_call({:crash_me,	number},	_from,	connection_dict)	do

		{:reply,	div(number,0),	connection_dict}

end

This	way,	we	may	make	the	server	crash.	To	see	it,	open	an	IEx	session:

>	iex

Load	and	compile	the	module:

iex(1)>	c	"connection_tracker.ex"

[ConnectionTracker]

Now,	let’s	start	the	server	and	feed	and	invoke	the	crash_the_server	function:

iex(2)>	{:ok,	server}	=	ConnectionTracker.start_link

{:ok,	#PID<0.61.0>}

iex(3)>	ConnectionTracker.crash_the_server(server,	9)

As	expected,	the	result	was	not	good.	Our	server	crashed	and	if	we	enter	server	in	the
terminal,	it	no	longer	shows	us	the	PID.	The	server	process	died!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	implement	a	supervisor	that	allows	our	server	to	survive	calls	to	this	wrongly
implemented	function,	we	will	follow	these	steps:

1.	 Create	a	connection_tracker_sup.ex	file	in	the	same	directory	as	the
connection_tracker	module	with	the	“bad”	function.

2.	 Insert	this	code	into	the	file:

defmodule	ConnectionTrackerSup	do

		use	Supervisor

		def	start_link	do

				Supervisor.start_link(__MODULE__,	[],	[{:name,	__MODULE__}])

		end

		#	supervisor	callback

		def	init([])	do

				child	=	[worker(ConnectionTracker,	[],	[])]

				supervise(child,	[{:strategy,	:one_for_one},	{:max_restarts,	1},	

{:max_seconds,	5}])

		end

end

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
To	create	a	supervisor,	we	need	to	add	only	one	function:	init.

The	start_link	function	is	a	convenience	function	and	not	a	mandatory	one.	However,	it
makes	our	interaction	more	consistent	with	the	way	the	GenServer	works.

The	init	function	returns	the	child	processes	managed	by	the	supervisor	and	the
configuration	for	the	supervision.	In	this	case,	the	options	are	:strategy,	:max_restarts,
and	:max_seconds.	There	are	multiple	possibilities	for	these	settings.	With	the	current
code,	we	will	respawn	a	process	for	each	that	crashes	but	we	will	only	do	it	once!	The	last
option	means	that	the	processes	can	crash	once	every	five	seconds	without	taking	down
the	supervisor.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
For	more	information	on	the	restarting	strategies	and	other	configuration	options	of
the	Supervisor	module,	check	the	documentation	at	http://elixir-
lang.org/docs/stable/elixir/Supervisor.html

www.it-ebooks.info

http://elixir-lang.org/docs/stable/elixir/Supervisor.html
http://www.it-ebooks.info/

Using	Observer	to	inspect	supervisors	and
processes
The	Observer	tool	we	already	used	in	a	couple	of	recipes	throughout	the	book	allows	us	to
have	a	better	insight	on	supervision	trees	and	to	have	information	on	the	processes.	It	also
allows	us	to	“kill”	a	process	and	watch	it	be	replaced	by	another	one!

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	start	inspecting	our	supervisors	and	processes,	we	will	follow	these	steps:

1.	 Open	a	new	IEx	session:

>	iex

2.	 Start	the	Observer	tool:

iex(1)>	:observer.start

3.	 Select	the	Applications	tab	in	the	graphical	interface.

4.	 In	the	logger	application	info,	right-click	on	Elixir.Logger.Watcher	and	select	the
Kill	process	option,	and	then	confirm	the	option	in	the	popup.

www.it-ebooks.info

http://www.it-ebooks.info/

5.	 Take	a	look	at	the	PIDs	for	some	processes.	They	have	changed!	This	means	that
Elixir.Logger.Supervisor	restarted	some	processes	when	one	of	its	supervised
processes	terminated.

Note
We	are	the	culprits	for	the	failure	but	it	serves	the	purpose	of	illustrating	the	power	of
a	supervision	tree	and	how	it	makes	the	task	of	writing	resilient	systems	simple!

6.	 Double-click	on	Elixir.Logger.Supervisor	to	see	its	properties.

7.	 Explore	the	other	sections	and	take	a	closer	look	at	the	State	tab	and	click	on	the
Click	to	expand	above	term	link	to	see	even	more	information	about	the	supervisor.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
The	Observer	tool	allows	you	to	access	information	about	several	aspects	of	a	running
virtual	machine	and	not	just	the	memory	or	CPU	usage	count.	The	Observer	tool	is	a	great
help	with	inspecting	individual	processes	and	their	received	messages,	stack	contents,	and
so	on.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling	errors	and	managing	exceptions
We	already	approached	the	let	it	crash	mantra.	We	saw	in	the	previous	two	recipes	how	an
Elixir	system	is	able	to	deal	with	failures	in	processes	and	keep	running.

Defensive	programming	is	not	encouraged	at	all	by	the	principles	that	guide	languages
such	as	Elixir	or	Erlang.	Even	if	we	aren’t	writing	defensively,	it	is	still	a	good	idea	to
control	what	happens	when	errors	occur.	Supervisors	allow	us	to	write	code	that	keeps
breaking	and	crashing	and	yet	recovers	from	the	crash.	We	will	mainly	find	two	categories
of	errors	after	compiling	our	code	(compilation	errors	are	outside	this	equation):	runtime
errors	and	logic	errors.	The	former	are	easier	to	deal	with,	while	the	latter	may	become
more	difficult	to	reason	and	track.

Note
In	distributed	systems,	a	whole	set	of	problems	may	rise	due	to	race	conditions,	timing
issues,	network	unreliability,	and	so	on.

To	track	and	solve	this	category	of	errors,	we	benefit	from	the	ability	to	debug	live
systems	via	the	console	and	actually	change	the	running	code.	That’s	one	of	the	reasons
GenServer	implements	the	code_change/3	function	(refer	to	the	Expanding	our	server
recipe	of	this	chapter).

To	deal	with	runtime	errors	or	the	more	simple	logical	ones,	Elixir	offers	us	some
possibilities:	errors,	throws,	and	exits.

In	this	recipe,	we	will	be	looking	at	each	one	of	these	possibilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Create	a	new	file	named	error_handling.ex	and	add	the	following	code:

defmodule	ErrorHandling	do

		def	safe_division(a,	b)	do

				try	do

						div(a,b)

				rescue

						_error	->	_error

				end

		end

		def	throw_on_zero(list)	do

				try	do

						Enum.each	list,	fn(_number)->	if	_number	==	0,	do:	throw(_number)	end

						"Good!	No	zeros	on	the	list!"

				catch

						_number	->	"Oops!	There	was	a	#{_number}	on	the	list!"

				end

		end

		def	shortest_living_process	do

				IO.puts	"Spawning	process…"

				spawn_link	fn	->

																IO.puts	"Process	started!"

																exit(1)

														end

		end

end

Open	a	new	IEx	session	and	load	the	error_handling.ex	module:

>	iex

Interactive	Elixir	(1.0.2)	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	help)

iex(1)>	c	"error_handling.ex"

[ErrorHandling]

iex(2)>

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	see	how	to	handle	errors,	we	will	follow	these	steps:

1.	 Call	the	safe_division	function	from	the	loaded	module	with	a	valid	input	and	an
invalid	one:

iex(3)>	ErrorHandling.safe_division(2,2)

1

iex(3)>	ErrorHandling.safe_division(2,0)

%ArithmeticError{}

2.	 Call	the	throw_on_zero	function,	passing	it	a	list	not	containing	a	zero,	and	invoke	it
again	with	a	list	containing	a	zero:

iex(6)>	ErrorHandling.throw_on_zero([1,2,3,4,5])

"Good!	No	zeros	on	the	list!"

iex(7)>	ErrorHandling.throw_on_zero([1,2,3,4,5,0])

"Oops!	There	was	a	zero	on	the	list!"

3.	 To	see	the	exit	in	action	invoke	the	shortest_living_process	function:

iex(9)>	ErrorHandling.shortest_living_process

Spawning	process…

Process	started!

**	(EXIT	from	#PID<0.53.0>)	1

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	1,	we	are	using	errors	in	a	try…rescue	block	to	capture	a	division	by	zero	error:

def	safe_division(a,	b)	do

		try	do

				div(a,b)

		rescue

				_error	->	_error

		end

end

Normally,	a	division	by	zero	generates	this	error:

iex(1)>	div(9,0)

**	(ArithmeticError)	bad	argument	in	arithmetic	expression

				:erlang.div(9,	0)

By	using	try…rescue,	we	get	a	struct	representing	the	%ArithmeticError{}	error	that	we
may	use	to	gather/send	information	about	what	happened.

We	could	also	specify	the	error	message.	Try	replacing	the	_error	->	_error	line	with
_error	->	{:error,	{:message,	"division	by	zero	error	#{inspect(_error)}"}}.

This	would	result	in	the	following	message	whenever	a	division	by	zero	is	attempted:

{:error,	{:message,	"division	by	zero	error	%ArithmeticError{}"}}

In	step	2,	we	are	using	throws	with	a	try…catch	block	to	capture	a	value	for	later	usage:

def	throw_on_zero(list)	do

		try	do

				Enum.each	list,	fn(_number)->	

						if	_number	==	0,	do:	throw(_number)	end

				"Good!	No	zeros	on	the	list!"

		catch

				_number	->	"Oops!	There	was	a	#{_number}	on	the	list!"

		end

end

This	construct	should	be	used	in	those	situations	where	we	are	not	able	to	retrieve	a	value
without	the	throw	construct.

We	start	by	traversing	the	list	and	if	any	of	its	elements	is	0,	we	“throw”	it	to	be	handled	in
the	catch	block.

In	step	3,	we	use	exits.	This	kind	of	error	mechanism	is	more	suitable	when	dealing	with
processes.	Every	time	a	process	dies,	it	sends	a	signal,	which	is	an	exit	signal.	In	our
example,	we	are	actually	spawning	a	function	that	outputs	a	message	and	terminates,
passing	the	value	1	to	the	exit	call:

def	shortest_living_process	do

				IO.puts	"Spawning	process…"

				spawn_link	fn	->

																IO.puts	"Process	started!"

www.it-ebooks.info

http://www.it-ebooks.info/

																exit(1)

														end

		end

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
The	exit	signals	are	quite	important	in	the	virtual	machine.	The	supervisors	receive	these
signals	from	their	supervised	processes,	and	this	allows	you	to	trigger	the	mechanisms
defined	in	the	supervising	strategy.

As	we	have	already	seen,	the	use	of	the	supervision	tree	is	exactly	what	makes	the	use	of
this	error	handling	construct	uncommon.

Also,	it’s	worth	mentioning	that	in	step	1,	we	are	using	the	try…rescue	block	to	capture
any	invalid	input,	in	this	case,	0.	We	are	being	defensive!

A	possible	approach	would	be	to	use	a	guard	in	the	function	definition	to	avoid	even
executing	it	if	the	input	was	“wrong”,	letting	it	crash!

Note
Using	a	guard	in	the	safe_division	function	would	result	in	the	following	code:

def	safe_division(a,	b)	when	b	!=	0	do	

		div(a,b)	

end

The	Using	guard	clauses	and	pattern	matching	in	function	definitions	recipe	in	Chapter	4,
Modules	and	Functions,	has	more	information	on	this	matter.

www.it-ebooks.info

http://www.it-ebooks.info/

Packaging	and	releasing	an	OTP
application
There	comes	a	time	when	our	supervision	tree	is	wonderfully	set	up	and	our	gen_server
workers	are	ready	to	accept	requests.	Everything	is	fault-tolerant,	concurrent,	and	ready	to
be	distributed.	Then,	we	have	to	actually	create	a	release	and	start	our	code	in	different
nodes.

In	this	recipe,	we	will	be	focusing	on	an	Elixir	library	to	help	us	with	the	release	process:
exrm.

Elixir	Release	Manager	(exrm)	defines	its	goal	like	this:

“This	project’s	goal	is	to	make	releases	with	Elixir	projects	a	breeze.	It	is	composed
of	a	mix	task,	and	build	files	required	to	successfully	take	your	Elixir	project	and
perform	a	release	build,	and	a	simplified	configuration	mechanism	which	integrates
with	your	current	configuration	and	makes	it	easy	for	your	operations	group	to
configure	the	release	once	deployed.”

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready…
In	this	recipe,	we	will	be	releasing	a	Mix	application	that	encapsulates	our
ConnectionTracker	GenServer.	You	will	find	the	code	in	the	release_me	directory.

To	get	ourselves	started,	we	will	add	exrm	to	the	dependencies	of	our	project	in	our
mix.exs	file:

defp	deps	do

		[{:exrm,	"~>	0.14.13"}]

end

Then,	we	will	fetch	the	dependencies	and	compile	them:

>	mix	deps.get

>	mix	deps.compile

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	build	a	release	for	our	project,	we	will	follow	these	steps:

1.	 Compile	your	code:

>	mix	compile

Compiled	lib/release_me.ex

Compiled	lib/ReleaseMe/connection_tracker.ex

Generated	release_me.app

2.	 Use	the	mix	release	task	provided	by	exrm:

>	mix	release

==>	Building	release	with	MIX_ENV=dev.

==>	Generating	relx	configuration…

==>	Generating	sys.config…

==>	Generating	boot	script…

==>	Performing	protocol	consolidation…

==>	Conform:	Loading	schema…

==>	Conform:	No	schema	found,	conform	will	not	be	packaged	in	this	

release!

==>	Generating	release…

==>	Generating	nodetool…

==>	Packaging	release…

==>	The	release	for	release_me-0.0.1	is	ready!

Note
In	some	cases,	when	the	mix	release	task	is	run	for	the	first	time,	it	may	fail	with	a
missing	config	file	message.	If	this	happens,	please	re-run	the	Mix	task.

It’s	also	worth	mentioning	that	the	directory	where	the	application	you	wish	to
release	is	stored	should	not	contain	whitespaces	in	its	path.

3.	 Run	the	app	from	the	terminal,	attaching	it	to	an	IEx	console:

>	rel/release_me/bin/release_me	console

Exec:	/Users/paulo/Desktop/release_me/rel/release_me/erts-

6.2/bin/erlexec	-boot	

/Users/paulo/Desktop/release_me/rel/release_me/releases/0.0.1/release_m

e	-boot_var	ERTS_LIB_DIR	

/Users/paulo/Desktop/release_me/rel/release_me/erts-6.2/../lib	-env	

ERL_LIBS	/Users/paulo/Desktop/release_me/rel/release_me/lib	-config	

/Users/paulo/Desktop/release_me/rel/release_me/releases/0.0.1/sys.confi

g	-pa	/Users/paulo/Desktop/release_me/rel/release_me/lib/consolidated	-

args_file	

/Users/paulo/Desktop/release_me/rel/release_me/releases/0.0.1/vm.args	-

user	Elixir.IEx.CLI	-extra	--no-halt	+iex—console

Root:	/Users/paulo/Desktop/release_me/rel/release_me

/Users/paulo/Desktop/release_me/rel/release_me

Erlang/OTP	17	[erts-6.2]	[source]	[64-bit]	[smp:8:8]	[async-threads:10]	

[hipe]	[kernel-poll:false]	[dtrace]

Interactive	Elixir	(1.0.2)	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	

www.it-ebooks.info

http://www.it-ebooks.info/

help)

iex(release_me@127.0.0.1)1>

4.	 Start	the	server	and	make	some	requests:

iex(release_me@127.0.0.1)1>	{:ok,	pid}	=	

ReleaseMe.ConnectionTracker.start_link

{:ok,	#PID<0.79.0>}

iex(release_me@127.0.0.1)2>	ReleaseMe.ConnectionTracker.add_user(pid,	

{:test,	"demo"})

:ok

iex(release_me@127.0.0.1)3>	

ReleaseMe.ConnectionTracker.search_user(pid,	:test)

{:ok,	"demo"}

Note
In	step	3,	we	executed	the	application	with	the	console	argument.	This	automatically
attaches	a	console	session	to	the	running	application.	If	we	wished,	we	could	have	started
the	application	with	the	following	command:

>	rel/release_me/bin/release_me	start	

This	would	actually	start	the	application.	If	we	wished	to	attach	a	console	to	the	running
node	later,	we	could	use	this	command:

>	rel/release_me/bin/release_me	attach	

This	would	provide	us	with	this	output:

Attaching	to	/tmp/erl_pipes/release_me/erlang.pipe.1	(^D	to	exit)

iex(release_me@127.0.0.1)1>

The	console	is	now	ready	and	allows	interaction	with	the	system.

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	1,	when	we	performed	the	compilation,	a	.app	file	was	generated	with	the
information	needed	to	build	our	application	and	make	it	self-contained.

In	step	2,	we	actually	built	the	application.	If	you	take	a	look	at	the	rel	directory,	you	will
find	all	the	files	needed	to	run	the	application.

The	executable	we	used	in	step	3	is	located	inside	the	bin	folder.

This	recipe	emphasizes	one	of	the	biggest	strengths	of	Elixir:	tooling.

With	a	few	simple	commands,	we	were	able	to	build	and	package	a	self-contained	OTP
application	that	is	ready	to	be	deployed!

If	you	wonder	why	there	is	a	releases/0.0.1	folder,	check	the	mix.exs	file.	In	the
project	section,	the	version	is	defined	as	0.0.1.

If	we	wish	to	upgrade	and	enhance	our	application	and	build	a	new	release,	we	just	have
to	implement	the	features,	update	the	version	number,	and	generate	the	release	again.	This
allows	for	the	existence	of	different	versions	of	applications	and	it	is	even	possible	to
upgrade/downgrade	running	applications	without	stopping	them!

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
exrm	has	some	interesting	features	and	can	be	used	with	conform
(https://github.com/bitwalker/conform)	to	adapt	the	application	to	its	deployed
environment.

www.it-ebooks.info

https://github.com/bitwalker/conform
http://www.it-ebooks.info/

See	also
In	the	Deploying	applications	and	updating	a	running	system	recipe,	we	will	look	at
how	to	use	exrm	to	help	us	with	deployments	and	how	to	manage	versions	in	running
systems

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying	applications	and	updating	a
running	system
In	this	recipe,	we	will	be	using	exrm	to	assist	us	in	the	process	of	deploying	applications
and	updating	running	systems	without	taking	them	down.

This	is	another	key	feature	provided	by	Elixir:	availability!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	get	started,	we	need	the	application	that	we	used	in	the	previous	recipe.	You	may	find	it
under	the	release_me	folder	in	the	code	directory.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	deploy	an	application	and	update	it	while	running,	we	will	follow	these	steps:

1.	 Create	a	new	location	to	deploy	your	application.	In	this	case,	we	will	be	using	the
tmp/elixir_app	directory:

mkdir	-p	tmp/elixir_app

2.	 Copy	the	release	generated	in	the	previous	recipe	to	the	new	location:

>	cp	rel/release_me/release_me-0.0.1.tar.gz	tmp/elixir_app

3.	 Unpack	it:

>	cd	tmp/elixir_app

>	tar	-xf	release_me-0.0.1.tar.gz

4.	 Start	your	app	by	running	the	following	command	after	going	to	the	root	directory	of
your	application,	that	is,	the	rel/release_me	folder:

>	bin/release_me	start

5.	 To	upgrade	your	application,	generate	a	new	release,	following	the	instructions	from
the	previous	recipe.

Note
Don’t	forget	to	update	the	version	number	in	the	mix.exs	file!

6.	 Once	you	have	the	release_me-0.0.2.tar.gz	file,	follow	steps	2	and	3.
7.	 To	actually	update	the	code	while	it	is	running,	use	this	command:

>	bin/release_me	upgrade	"0.0.2"

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
The	release	tool	exrm	hides	away	most	of	the	complexity	related	to	building,	deploying,
and	upgrading	systems.	It’s	a	great	help	to	every	Elixir	developer	and	is	one	of	the
examples	of	brilliant	tooling	and	the	amazing	community	of	Elixir.

Note
Code	upgrading	relies	on	the	implementation	of	the	code_change()	callback	in	the
upgradable	modules.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
For	a	deeper	understanding	of	the	release	mechanisms,	the	documentation	at
http://www.erlang.org/doc/system_principles/system_principles.html	is	really
helpful.

www.it-ebooks.info

http://www.erlang.org/doc/system_principles/system_principles.html
http://www.it-ebooks.info/

Chapter	7.	Cowboy	and	Phoenix
This	chapter	will	cover	the	following	recipes:

Cowboy

Setting	up	Cowboy
Serving	static	files
Implementing	a	websocket	handler

Phoenix

Creating	a	Phoenix	application
Defining	routes
Creating	a	controller
Creating	views	and	templates
Implementing	topics
Protecting	the	Phoenix	app	with	SSL

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
In	this	chapter,	we	will	look	at	Cowboy	and	Phoenix.

Cowboy	is	written	in	Erlang	and	its	author,	Loïc	Hoguin,	defines	it	as	“a	small,	fast,	and
modular	HTTP	server.”

Cowboy	provides	an	HTTP	1.0/1.1	stack	and	supports	websockets,	SPDY,	and	REST.	It	is
currently	used	in	Phoenix,	which	is	an	Elixir	web	framework.

Phoenix	was	a	project	started	by	Chris	McCord	but	currently	has	several	contributors	and
is	an	excellent	option	to	implement	web	applications.	Its	aim	is	to	provide	a	way	to	build
full-featured,	fault	tolerant	applications	with	real-time	functionalities.

We	will	begin	by	showing	you	how	to	use	Cowboy.	Even	though	it	is	written	in	Erlang,	its
use	with	Elixir	is	possible	and	is	proof	of	the	excellent	interoperability	between	Elixir	and
Erlang.

Later	on,	we	will	use	Phoenix	to	create	a	simple	web	application.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	Cowboy
In	this	recipe,	we	will	set	up	Cowboy.	We	will	add	it	as	a	dependency	for	our	application
and	get	ready	to	implement	some	functionalities,	such	as	static	file	serving	and
websockets,	in	later	recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	get	ourselves	started,	we	will	create	a	Mix	application.	To	do	this,	enter	the	following
command	in	a	terminal	window:

>	mix	new	cowboy_app	--sup

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
Now	that	we	have	created	our	Elixir	application,	we	will	set	up	Cowboy	by	following
these	steps:

1.	 Add	Cowboy	as	a	dependency	in	the	mix.exs	file	under	the	deps	method:

defp	deps	do

		[

			{	:cowboy,	"~>	1.0.0"}	

]

end

2.	 Fetch	the	dependencies	by	issuing	the	following	command	in	a	terminal	window:

>	mix	deps.get

The	dependencies	will	be	fetched	and	the	output	will	be	similar	to	this:

Dependencies’	installation

3.	 We	will	now	compile	the	dependencies:

>	mix	deps.compile

4.	 Before	we	can	use	Cowboy,	there	is	still	one	thing	to	do.	We	will	add	it	to	the
applications	section	in	our	mix.exs	file:

def	application	do

		[applications:	[:logger,	:cowboy],

		mod:	{Chapter7,	[]}]

end

5.	 To	make	sure	everything	is	working,	we	will	start	our	application	inside	an	IEx
session:

>	iex	-S	mix

6.	 Now,	inside	our	IEx	session,	we	will	check	whether	Cowboy	was	started	and	is	ready
to	be	used	by	querying	our	currently	running	applications:

www.it-ebooks.info

http://www.it-ebooks.info/

iex(1)>	:application.which_applications

[{:cowboy_app,	'cowboy_app',	'0.0.1'},

	{:cowboy,	'Small,	fast,	modular	HTTP	server.',	'1.0.0'},

	{:cowlib,	'Support	library	for	manipulating	Web	protocols.',	'1.0.1'},

	{:ranch,	'Socket	acceptor	pool	for	TCP	protocols.',	'1.0.0'},

	{:logger,	'logger',	'1.0.2'},	{:inets,	'INETS		CXC	138	49',	'5.10.4'},

	{:ssl,	'Erlang/OTP	SSL	application',	'5.3.8'},

	{:public_key,	'Public	key	infrastructure',	'0.22.1'},

	{:asn1,	'The	Erlang	ASN1	compiler	version	3.0.3',	'3.0.3'},

	{:mix,	'mix',	'1.0.2'},	{:iex,	'iex',	'1.0.2'},	{:elixir,	'elixir',	

'1.0.2'},

	{:syntax_tools,	'Syntax	tools',	'1.6.17'},

	{:compiler,	'ERTS		CXC	138	10',	'5.0.3'},	{:crypto,	'CRYPTO',	

'3.4.2'},

	{:stdlib,	'ERTS		CXC	138	10',	'2.3'},	{:kernel,	'ERTS		CXC	138	10',	

'3.1'}]

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	1,	we	add	Cowboy	as	a	dependency	in	our	application.	The	dependency
management	in	Mix	applications	is	covered	in	the	Managing	dependencies	recipe	of
Chapter	1,	Command	Line.

Here,	even	though	Cowboy	is	an	Erlang	application,	we	use	the	package	available	via	the
Hex	package	manager	(https://hex.pm/packages/cowboy).

If	we	wished,	we	could	have	also	used	the	Git	repository	for	Cowboy	as	the	source	for	our
dependency.	It	would	just	be	a	matter	of	replacing	[{:cowboy,	"~>	1.0.0"}]	with
[{:cowboy,	git:	"git://github.com/ninenines/cowboy"}}].

In	step	2,	we	fetch	the	dependencies	and	we	compile	them	in	step	3.

Cowboy	has	two	associated	dependencies:	ranch	and	cowlib.	They	are,	respectively,	a
socket	acceptor	pool	for	TCP	protocols	and	support	library	to	manipulate	web	protocols.

Afterwards,	in	step	4,	we	add	Cowboy	to	the	list	of	applications	to	be	started.	This	ensures
that	when	we	initialize	our	Mix	application,	Cowboy	and	its	dependencies	will	also	be
running,	ready	to	perform	their	tasks.	We	checked	this	by	starting	the	application	(step	5)
and	making	sure	they	were	part	of	the	running	applications	(step	6).

The	result	of	the	command	contains	Cowboy,	cowlib,	and	ranch	on	the	list	of	running
applications,	so	everything	is	properly	set	up	and	ready	for	use!

www.it-ebooks.info

https://hex.pm/packages/cowboy
http://www.it-ebooks.info/

There’s	more…
Now	that	we	have	successfully	configured	Cowboy,	it’s	time	to	use	it	to	implement	some
features	in	our	Mix	application!

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
We	will	use	Cowboy	as	a	static	file	server	in	the	Serving	static	files	recipe
We	also	use	Cowboy	to	establish	websocket	connections	and	allow	bi-directional
communication	between	servers	and	clients	in	the	Implementing	a	websocket	handler
recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Serving	static	files
In	this	recipe,	we	will	take	our	configured	Cowboy	application	and	add	the	ability	to	serve
static	files	requested	via	HTTP.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
We	will	start	by	opening	the	source	files	in	the	Code/Chapter
7/cowboy_static/cowboy_app	folder	in	our	favorite	editor.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	add	the	ability	to	serve	static	files	to	our	application,	follow	these	steps:

1.	 Create	a	new	folder	inside	the	lib	directory	and	name	it	cowboy.
2.	 Inside	this	new	folder,	create	a	file	named	root_page_handler.ex.
3.	 Add	the	following	code	to	the	file:

cowboy_app/lib/root_page_handler.ex	

defmodule	Cowboy.RootPageHandler	do

		def	init(_transport,	req,	[])	do

				{:ok,	req,	nil}

		end

		def	handle(req,	state)	do

				{:ok,	req}	=	:cowboy_req.chunked_reply(200,	req)

				:ok	=	:cowboy_req.chunk("Root	page	text	rendered	by	the	handler.	No	

file	defining	this	content!\r\n",	req)

				{:ok,	req,	state}

		end

		def	terminate(_reason,	_req,	_state),	do:	:ok

end

4.	 Inside	this	same	folder,	create	a	file	called	dispatch.ex.
5.	 Add	this	code	to	define	the	dispatch	module:

cowboy_app/lib/dispatch.ex

defmodule	Cowboy.Dispatch	do

		def	start	do

				dispatch	=	:cowboy_router.compile([

						{	:_,

								[

										{"/",	Cowboy.RootPageHandler,	[]},

										{"/[...]",	:cowboy_static,	{	:priv_dir,	:cowboy_app,	"",

[{:mimetypes,:cow_mimetypes,:all}]}}

]

						}

])

				{:ok,	_}	=	:cowboy.start_http(:cowboy_app,	100,	[{:port,	8080}],

[{:env,	[{:dispatch,	dispatch}]}])

		end

end

6.	 Now	let’s	edit	the	lib/cowboy_app.ex	file	and	add	the	call	to	the	method	that	will
initialize	our	defined	dispatch.	Place	the	following	highlighted	code	right	after	the
import	Supervisor.Spec,	warn:	false	line:

defmodule	CowboyApp	do

www.it-ebooks.info

http://www.it-ebooks.info/

		use	Application

		def	start(_type,	_args)	do

				import	Supervisor.Spec,	warn:	false

				Cowboy.Dispatch.start

				children	=	[

						#	Define	workers	and	child	supervisors	to	be	supervised

						#	worker(CowboyApp.Worker,	[arg1,	arg2,	arg3])

]

				opts	=	[strategy:	:one_for_one,	name:	CowboyApp.Supervisor]

				Supervisor.start_link(children,	opts)

		end

end

Note
Cowboy	provides	its	own	supervisor.	This	is	why	we	don’t	place	it	under	our	app’s
supervision	tree.

7.	 Start	the	Mix	application:

>	iex	-S	mix

8.	 Visit	the	root	page	(http://localhost:8080/):

9.	 Visit	the	index.html	sample	page	at	http://localhost:8080/index.html:

www.it-ebooks.info

http://www.it-ebooks.info/

10.	 Visit	the	test.html	sample	page	at	http://localhost:8080/test.html:

11.	 Now	let’s	open	some	images,	as	shown	in	this	screenshot
(http://localhost:8080/html.jpg):

www.it-ebooks.info

http://www.it-ebooks.info/

This	is	another	image	downloaded	from	http://localhost:8080/cc.png:

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	1,	we	defined	a	namespace	for	our	modules	by	creating	the	cowboy	folder.	As	you
can	see,	the	files	we	created	in	this	recipe	have	Cowboy	prepended.

Note
We	could	have	used	any	other	name.	There	is	no	need	to	create	a	Cowboy	namespace	to
implement	any	of	these	features!

In	steps	2	and	3,	we	implement	a	module	that	will	respond	to	any	requests	made	to	the
root	path	of	our	server.	The	Cowboy.RootPageHandler	module	has	two	methods:	init	and
handle.	It	is	inside	the	latter	that	we	define	the	desired	behavior.	In	this	case,	we	define
the	text	that	should	be	rendered	in	the	client	browser.	Although	this	is	not	actually	a	static
file,	it	is	included	to	showcase	the	implementation	of	a	generic	handler	with	Cowboy.	The
result	of	a	request	to	this	resource	is	exemplified	in	step	8.

In	steps	4	and	5,	we	define	the	Cowboy.Dispatch	module.	This	module’s	responsibility	is
to	determine,	given	the	request,	what	should	be	handled	and	how.

We	start	by	defining	that	the	root	path,	/	will	be	handled	by	the	Cowboy.RootPageHandler
module	as	{"/",	Cowboy.RootPageHandler,	[]}.

Then	we	define	the	handler	for	any	other	file	(/[…]):

{"/[...]",	:cowboy_static,	{	:priv_dir,	:cowboy_app,	"",

[{:mimetypes,:cow_mimetypes,:all}]}}

The	directory	we	define	as	the	source	for	the	static	files	is	priv.	By	default,	the	:priv_dir
atom	refers	to	the	priv	directory	inside	the	application	with	the	name	defined	by	the	next
atom	(in	this	case,	:cowboy_app).	If	you	look	inside	it,	you	will	find	the	HTML	and	image
files	we	requested	in	steps	9	and	10	there.	The	:cowboy_static	atom	refers	to	a	module
implemented	by	Cowboy	that	serves	static	files.	The	reason	we	don’t	need	to	define	it	is
because	that	is	already	taken	care	for	us.	In	this	line,	we	also	register	the	mime	types	we
wish	to	handle.	One	of	Cowboys	dependencies,	cowlib,	allows	us	to	do	so	with	the
{:mimetypes,:cow_mimetypes,:all}	tuple.

We	could	resume	the	line	that	registers	the	static	handle	in	the	following	way:

For	every	request	to	/foo.bar,	use	the	cowboy_static	module	and	look	for	the	foo.bar
file	with	the	bar	mime	type	inside	the	priv	dir	of	cowboy_app.

Tip
If	we	switch	the	order	of	the	lines	defining	the	root	page	handler	and	the	static	files,	the
root	page	handler	will	never	be	triggered,	as	/[…]	will	always	match	first!

In	this	case,	when	http://localhost:8080/	is	requested,	the	result	is	a	blank	page!

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing	a	websocket	handler
In	this	recipe,	we	will	add	a	websocket	handler	to	our	Cowboy	application.	We	will	also
change	the	index	page	to	allow	us	to	send	messages.	The	index	page	will	continue	to	be
served	by	the	static	handler	we	defined	previously.	With	websockets	enabled,	all	clients
connected	to	index.html	will	receive	the	messages	sent	by	other	clients	without	the	need
to	refresh	the	page.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
We	will	iterate	over	the	code	used	in	the	previous	recipe.	A	copy	of	the	finished	code	can
be	found	in	the	Code/Chapter	7/cowboy_websockets/cowboy_app	directory.

To	get	started,	we	will	load	the	code	in	our	code	editor.

The	code	is	almost	the	same	as	the	one	used	in	the	previous	recipe	with	some	changes	to
priv/index.html	and	some	CSS,	JavaScript,	and	fonts	added.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	add	websockets	support	to	our	Cowboy	application,	follow	these	steps:

1.	 Define	a	handler	for	websockets	in	the	lib/cowboy/ws_handler.ex	file:

defmodule	Cowboy.WsHandler	do

		@behaviour	:cowboy_websocket_handler

		def	init({:tcp,	:http},	_req,	_opts)	do

				{:upgrade,	:protocol,	:cowboy_websocket}

		end

		def	websocket_init(_transport_name,	req,	_opts)	do

				Cowboy.WsServer.join(self())

				{:ok,	req,	:undefinded_state}

		end

		def	websocket_handle({:text,	msg},	req,	state)	do

				#	change	:others	to	all	if	you	wish	to	notify	the	sender	too!

				Cowboy.WsServer.send_messages(:others,	self(),	msg)

				{:ok,	req,	state}

		end

		def	websocket_handle(_data,	req,	state)	do

				{:ok,	req,	state}

		end

		def	websocket_info({:send_message,	_server_pid,	msg},	req,	state)	do

				{:reply,	{:text,	msg},	req,	state}

		end

		def	websocket_info(_info,	req,	state)	do

				{:ok,	req,	state}

		end

		def	websocket_terminate(_reason,	_req,	_state)	do

				Cowboy.WsServer.leave(self())

				:ok

		end

end

2.	 Register	the	handler	in	the	dispatch	(cowboy/dispatch.ex)	by	adding	the	following
line	right	below	the	root	handler:

{"/websocket",	Cowboy.WsHandler,	[]},

3.	 Create	a	GenServer	(lib/cowboy/ws_server.ex)	that	will	be	called	by	the	websocket
handler	to	send	messages	and	hold	a	list	of	connected	clients:

defmodule	Cowboy.WsServer	do

		use	GenServer

		require	Record

		Record.defrecord	:state,	[clients:	[]]

		###	client	API

		def	start_link(opts	\\	[])	do

www.it-ebooks.info

http://www.it-ebooks.info/

				:gen_server.start_link({:local,	__MODULE__},	__MODULE__,	:ok,	opts)

		end

		def	join(pid)	do

				:gen_server.cast(__MODULE__,	{:join,	pid})

		end

		def	leave(pid)	do

				:gen_server.cast(__MODULE__,	{:leave,	pid})

		end

		def	send_messages(:others,	pid,	message)	do

				:gen_server.cast(__MODULE__,	{:send_message,	pid,	message})

		end

		def	send_messages(:all,	pid,	message)	do

				:gen_server.cast(__MODULE__,	{:notify_all,	pid,	message})

		end

		###	server	Callbacks

		def	init(:ok)	do

				state	=	state()

				{:ok,	state}

		end

		def	handle_cast({:join,	pid},	state)	do

				current_clients	=	state(state,	:clients)

				all_clients	=	[pid|current_clients]

				new_state	=	state(clients:	all_clients)

				{:noreply,	new_state}

		end

		def	handle_cast({:leave,	pid},	state)	do

				all_clients	=	state(state,	:clients)

				others	=	all_clients—[pid]

				new_state	=	state(clients:	others)

				{:noreply,	new_state}

		end

		def	handle_cast({:send_message,	pid,	message},	state)	do

				send_message(:others,	pid,	message,	state)

				{:noreply,	state}

		end

		def	handle_cast({:notify_all,	pid,	message},	state)	do

				send_message(:all,	pid,	message,	state)

				{:noreply,	state}

		end

		def	handle_info(_info,	state)	do

				{:noreply,	state}

		end

		def	terminate(_reason,	_state)	do

				:ok

		end

		###	internal	funs

		defp	send_message(:others,	pid,	message,	state)	do

www.it-ebooks.info

http://www.it-ebooks.info/

				clients	=	state(state,	:clients)

				others	=	clients—[pid]

				Enum.each(others,	&(send(&1,{:send_message,	self(),	message})))

		end

		defp	send_message(:all,	_pid,	message,	state)	do

				clients	=	state(state,	:clients)

				Enum.each(clients,	&(send(&1,{:send_message,	self(),	message})))

		end

end

4.	 Register	the	GenServer	under	the	supervision	tree	by	adding	the	following	code	to
cowboy_app.ex:

children	=	[

		worker(Cowboy.WsServer,	[])

]

5.	 Start	the	application:

>	iex	-S	mix

6.	 Open	two	different	browser	windows,	visit	http://localhost:8080/index.html
and	start	sending	messages	between	them.

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
To	implement	a	websocket	handler,	apart	from	adding	some	JS,	CSS	files,	and	fonts	and
editing	the	index	page	to	create	a	interface	to	start	messaging	between	browsers,	we	need
to	create	a	GenServer	and	a	Cowboy	handler	for	websockets.	Let’s	take	a	closer	look	at
how	we	achieved	our	goal.

In	step	1,	we	begin	by	defining	a	websocket	handler.	The	second	line	of	the
ws_handler.ex	file	has	an	annotation	that	defines	a	behavior:	@behaviour
:cowboy_websocket_handler.	This	defines	the	interface	for	a	websocket	handler	and
forces	us	to	define	several	functions	in	the	file	to	comply	with	that	behavior.

Note
For	more	information	about	the	@behaviour	annotation,	refer	to	the	Enforcing	behaviors
recipe	in	Chapter	4,	Modules	and	Functions.

The	functions	defined	are	init,	websocket_init,	websocket_handle,	websocket_info,
and	websocket_terminate.

We	will	now	see	each	of	these	functions	in	more	detail:

init:	This	function	is	responsible	for	the	upgrade	of	the	protocol	to
cowboy_websocket.
websocket_init:	This	function	is	called	before	the	actual	protocol	upgrade	occurs
and	is	where	any	state	is	initialized	normally.	In	this	particular	case,	we	perform	a
call	to	the	join	function	of	the	ws_server.ex	GenServer	we	chose	to	implement.
There,	we	add	the	PID	of	the	new	connected	client	to	a	list	of	all	connected	clients
(the	ws_server.ex	file’s	lines	11-13	and	37-42).
websocket_handle:	This	function	handles	the	data	received	via	the	websocket.	We
defined	two	versions	of	this	function.	The	first	one	deals	with	the	case	of	messages
with	the	{:text,	msg}	format	and	the	other	deals	with	any	other	type	of	websocket
messages.	We	used	pattern	matching,	so	the	only	time	we	actually	perform	any	action
is	when	a	message	arrives	in	the	{:text,	msg}	format.	We	call	the	ws_server.ex
GenServer	function	to	send	messages	to	all	clients	except	the	one	sending	the
message.	If	you	wish	to	change	this	behavior,	change	the	:others	atom	to	:all	in
line	16	of	the	ws_handler.ex	file.	The	lines	of	the	GenServer	that	deal	with	this	are
49-56	and	71-79.
websocket_info:	This	function	is	responsible	for	handling	any	non-websocket
messages	received.	Similar	to	the	websocket_handle	function,	we	defined	two
versions	of	this	function:	the	first	one	to	respond	to	the	received	messages	with	the
{:send_message,	_server_pid,	msg}	format	and	the	last	one	to	handle	any	other
type	of	non-websocket	messages.	It	is	here	that	we	actually	perform	the	sending	of
the	message	to	the	client.
websocket_terminate:	This	is	the	function	responsible	for	performing	any	cleanup
tasks	when	the	websocket	connection	is	closed.	In	our	code,	we	invoke	the
ws_server.ex	file’s	Cowboy.WsServer.leave	function,	passing	the	PID	of	the

www.it-ebooks.info

http://www.it-ebooks.info/

handler	process	(self()).	This	function	unregisters	this	process	from	the	list	of
connected	clients	maintained	in	the	GenServer.

In	step	2,	we	register	the	handler	on	the	Cowboy	dispatch.	This	is	a	way	to	define	that	any
requests	established	via	the	ws://	protocol	to	the	websockets	endpoint	will	be	handled	by
this	handler.

Note
In	the	cowboy_websockets/cowboy_app/priv/js/index.js	file’s	lines	19	and	20,	we
define	the	connection	to	ws://localhost:8080/websockets.

Steps	3	and	4	are	where	we	define	the	GenServer	associated	with	the	websocket	handler
and	then	start	it	under	the	application	supervisor.

Note
We	will	not	go	into	details	of	the	GenServer	implementation.	More	details	on	GenServer
can	be	found	in	the	Implementing	a	GenServer	and	Expanding	our	server	recipes	in
Chapter	6,	OTP	–	Open	Telecom	Platform.

In	steps	5	and	6,	we	start	using	the	websocket	support	to	send	messages	that	appear	in	real
time	on	all	connected	browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
For	browsers	that	do	not	support	websockets,	there	is	an	alternative	named	Bullet,	also
created	by	Cowboy’s	author,	Loïc	Hoguin.	It	consists	of	an	Erlang	application	and	a
JavaScript	library	(bullet.js)	that	provides	a	compatibility	layer	via	fallback
mechanisms	such	as	long-poling	to	browsers	that	don’t	support	websockets.	More
information	can	be	found	at	https://github.com/extend/bullet.

We	have	included	it	and	used	it	in	this	recipe	in	order	to	make	it	work	in	as	many	browsers
as	possible.

www.it-ebooks.info

https://github.com/extend/bullet
http://www.it-ebooks.info/

Creating	a	Phoenix	application
The	following	recipes	of	this	chapter	will	relate	to	an	Elixir	web	framework:	Phoenix.

Phoenix	is	an	implementation	of	the	server-side	MVC	pattern.	It	is	very	similar	to	Ruby
on	Rails	or	Python	Django,	but	it	is	much	more	than	a	mere	clone.

Phoenix’s	goal	is	to	combine	the	high	productivity	of	the	mentioned	frameworks	with	high
performance,	and	introduces	several	concepts	such	as	channels	for	websocket
management,	topics	as	a	pub-sub	layer,	and	precompiled	templates	as	well.

Chris	McCord	created	Phoenix,	and	the	first	commit	dates	from	May	1,	2014.	The
implementation	pace	is	impressive	and	it	currently	has	almost	all	of	the	features	defined	in
the	initial	roadmap;	only	iOS	and	Android	clients	are	pending.	This	project	now	has	more
than	80	committers	and	among	them	is	José	Valim,	the	creator	of	Elixir.

Our	first	recipe	on	Phoenix	will	show	you	how	to	create	an	application.	We	will	generate
the	canonical	to-do	application.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	get	started	with	Phoenix	and	create	a	new	application,	we	will	need	to	clone	the
phoenixframework	repository	from	GitHub.	Open	a	terminal	window	and	go	to	the
directory	where	you	want	to	place	Phoenix.

Start	by	cloning	the	repository	with	the	following	command:

>	git	clone	https://github.com/phoenixframework/phoenix.git

Go	to	the	phoenix	directory	and	check	out	the	<x.y.z>	version:

>	cd	phoenix	&&	git	checkout	v0.8.0	

Get	the	dependencies	and	compile	phoenix:

>	mix	do	deps.get,	compile

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	create	a	new	Phoenix	application,	follow	these	steps:

1.	 Generate	the	application	from	the	cloned	phoenix	directory:

>	mix	phoenix.new	todo	../todo

2.	 Go	to	the	generated	application	directory:

>	cd	../todo

3.	 Install	and	compile	the	application	dependencies:

>	mix	do	deps.get,	compile

4.	 Test	everything	by	starting	the	server:

>	mix	phoenix.server

Running	Todo.Endpoint	with	Cowboy	on	port	4000	(http)

5.	 Open	a	browser	window	and	visit	http://localhost:4000,	as	shown	in	the
following	screenshot:

Phoenix	default	page

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
The	Phoenix	application	we	have	cloned	defines	several	Mix	tasks.	For	more	information
on	the	creation	of	custom	Mix	tasks,	refer	to	the	Creating	custom	Mix	tasks	recipe	in
Chapter	1,	Command	Line.

One	of	these	tasks,	phoenix.new,	is	responsible	for	generating	the	structure	of	a	Phoenix
application,	taking	into	account	the	name	of	the	app	and	the	location	where	you	want	to
create	it.	These	were	the	two	parameters	we	passed	to	the	task	in	step	1.

Afterwards,	the	procedure	is	pretty	much	standard	in	what	is	related	to	Mix	applications:
get	the	dependencies,	compile,	and	start	the	application.	In	the	particular	case	of	Phoenix,
as	we	saw	in	step	4,	there	is	also	a	Mix	task	that	starts	the	application	(mix
phoenix.server).

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
In	the	introduction	to	this	recipe,	I	mentioned	one	of	the	goals	of	Phoenix:	associate	high
productivity	with	high	performance.

In	the	following	recipes,	we	will	be	focusing	on	some	common	tasks	that	can	give	you	an
idea	of	the	productivity	gains	with	this	framework.

Now	we	will	focus	on	the	performance.

We	will	perform	two	additional	steps,	consolidating	the	protocols	and	running	the
application	in	the	production	mode	by	disabling	features	such	as	code	reloading	that
definitely	slow	down	our	application.

To	consolidate	protocols,	use	the	following	command:

>	MIX_ENV=prod	mix	compile.protocols

Now,	to	start	the	application	in	the	production	mode,	use	the	following	command:

>	MIX_ENV=prod	PORT=4001	elixir	-pa	_build/prod/consolidated	-S	mix	

phoenix.start

It’s	time	to	test	the	application	with	the	wrk	tool;	performing	15	concurrent	requests	with
15	connections	in	1	minute,	we	get	these	results:

The	machine	used	to	run	the	Phoenix	web	app	was	my	laptop,	a	2011	MacBook	Pro	13’
(2.3	GHz	Intel	Core	i5),	and	even	with	this	machine,	Phoenix	was	able	to	serve	3,793
requests	per	second!

www.it-ebooks.info

http://www.it-ebooks.info/

Defining	routes
In	the	previous	recipe,	we	created	our	first	Phoenix	application.	In	this	recipe,	we	will	add
some	routes	to	the	phoenix	to-do	application.

By	adding	routes,	we	define	the	behavior	of	the	application	whenever	a	given
URL/endpoint	is	accessed.	The	Router	task	is	used	to	parse	the	requests	and	then	dispatch
them	to	the	current	controller’s	action,	passing	any	existing	parameters	to	it.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Open	the	file	generated	in	the	previous	recipe	in	your	code	editor.	A	copy	of	the	full	code
for	this	recipe	can	be	found	at	Code/Chapter	7/phoenix_routes/todo/web/router.ex:

defmodule	Todo.Router	do

		use	Phoenix.Router

		pipeline	:browser	do

				plug	:accepts,	~w(html)

				plug	:fetch_session

				plug	:fetch_flash

				plug	:protect_from_forgery

		end

		pipeline	:api	do

				plug	:accepts,	~w(json)

		end

		scope	"/",	Todo	do

				pipe_through	:browser	#	Use	the	default	browser	stack

				get	"/",	PageController,	:index

				get	"/text",	MyController,	:plaintext

				get	"/generated",	MyController,	:send_html

		end

		#	Other	scopes	may	use	custom	stacks.

		#	scope	"/api",	Todo	do

		#			pipe_through	:api

		#	end

end

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	define	some	routes,	follow	these	steps:

1.	 Add	the	routes	to	define	the	/text	and	/generated	endpoints.	Below	get	"/",
PageController,	:index,	add	these	two	lines:

get	"/text",	MyController,	:plaintext

get	"/generated",	MyController,	:send_html

2.	 Define	the	routes	to	a	resource	by	adding	resources	"todos",	TodosController	to
the	router.ex	file:

defmodule	Todo.Router	do

		use	Phoenix.Router

		pipeline	:browser	do

				plug	:accepts,	~w(html)

				plug	:fetch_session

				plug	:fetch_flash

				plug	:protect_from_forgery

		end

		pipeline	:api	do

				plug	:accepts,	~w(json)

		end

		scope	"/",	Todo	do

				pipe_through	:browser	#	Use	the	default	browser	stack

				get	"/",	PageController,	:index

				get	"/text",	MyController,	:plaintext

				get	"/generated",	MyController,	:send_html

				resources	"todos",	TodosController

		end

		#	Other	scopes	may	use	custom	stacks.

		#	scope	"/api",	Todo	do

		#			pipe_through	:api

		#	end

end

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
As	mentioned	in	the	introduction	to	this	recipe,	the	router	is	responsible	for	parsing
incoming	requests	and	dispatching	them	to	the	controller	action	that	will	handle	the
request.

In	step	1,	we	defined	how	requests	to	/text	and	/generated	will	be	handled.

The	generic	definition	is	<method_macro>	<path>,	<controller>,	<action>.	We	use
the	get	macro	in	both	examples	in	step	1.	This	elixir	macro	expands	and	corresponds	to
the	HTTP	GET	verb.	There	are	macros	defined	for	the	other	verbs	(PUT,	POST,	PATCH,
DELETE,	HEAD,	OPTIONS,	CONNECT	and	TRACE).

The	macro	takes	three	arguments.	The	<path>	argument	is	the	endpoint	we	wish	to	define.
The	<controller>	and	<action>	arguments	specify	the	module	and	function	responsible
for	handling	the	request.

In	step	2,	we	defined	a	route	using	the	resource	macro.	This	macro	only	takes	two
arguments:	the	name	of	the	resource	and	the	controller	that	will	handle	requests	related	to
that	resource.	When	we	use	this	macro,	we	will	get	eight	actual	endpoints	for	the	todo
resource:

todos_path		GET					/todos											Todo.TodosController.index/2

todos_path		GET					/todos/:id/edit		Todo.TodosController.edit/2

todos_path		GET					/todos/new							Todo.TodosController.new/2

todos_path		GET					/todos/:id							Todo.TodosController.show/2

todos_path		POST				/todos											Todo.TodosController.create/2

todos_path		PATCH			/todos/:id							Todo.TodosController.update/2

												PUT					/todos/:id							Todo.TodosController.update/2

todos_path		DELETE		/todos/:id							Todo.TodosController.destroy/2

We	will	have	to	implement	the	index/2,	edit/2,	new/2,	show/2,	create/2,	update/2	and
destroy/2	functions	(or	actions,	as	they	are	called	in	this	context)	in	the
TodosController	module	(in	this	context,	the	controller).

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
When	defining	a	route	using	the	resources	macro,	it	is	possible	to	define	which	actions	to
include	or	exclude.

We	will	look	into	two	examples	about	the	usage	of	the	resources	macro	with	the	only
and	except	directives.

First,	define	that	our	todo	resources	will	only	be	listed	and	viewed	(index	and	show
actions):

resources	"todos",	TodosController,	only:	[:index,	:show]	

Note
The	actions	referred	here	are	functions	defined	in	the	controller.	Some	actions	are	standard
in	REST.	For	more	information	on	REST,	please	visit	http://restful-api-
design.readthedocs.org/en/latest/methods.html.

Then	define	that	our	todo	resources	may	not	be	changed	after	being	created	(no	editing
will	be	possible):

resources	"todos",	TodosController,	except:	[:edit,	:update]

To	inspect	the	routes	generated	by	each	of	these	options,	run	mix	phoenix.routes	in	the
command	line	inside	the	application’s	root	directory.

www.it-ebooks.info

http://restful-api-design.readthedocs.org/en/latest/methods.html
http://www.it-ebooks.info/

See	also
For	more	information	on	the	router,	visit
http://www.phoenixframework.org/v0.8.0/docs/routing

www.it-ebooks.info

http://www.phoenixframework.org/v0.8.0/docs/routing
http://www.it-ebooks.info/

Creating	a	controller
In	Phoenix,	controllers	are	Elixir	modules	that	define	functions	(or	actions)	to	handle	the
requests	dispatched	by	the	router.	The	controllers	are	responsible	for	preparing	and
passing	data	to	the	view	layer	and	determining	the	rendering	of	these	views.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	get	started,	we	will	extend	the	project	defined	in	the	Defining	routes	recipe.	The
defined	routes	are	as	follows:

	page_path		GET					/																Todo.PageController.index/2

			my_path		GET					/text												Todo.MyController.plaintext/2

			my_path		GET					/generated							Todo.MyController.send_html/2

todos_path		GET					/todos											Todo.TodosController.index/2

todos_path		GET					/todos/:id/edit		Todo.TodosController.edit/2

todos_path		GET					/todos/new							Todo.TodosController.new/2

todos_path		GET					/todos/:id							Todo.TodosController.show/2

todos_path		POST				/todos											Todo.TodosController.create/2

todos_path		PATCH			/todos/:id							Todo.TodosController.update/2

												PUT					/todos/:id							Todo.TodosController.update/2

todos_path		DELETE		/todos/:id							Todo.TodosController.destroy/2

The	root	path	(page_path)	is	handled	by	the	PageController	controller.	This	controller
was	generated	by	default	with	the	application.	We	will	need	to	create	the	controllers	to
handle	the	entries	under	my_path	and	todos_path.	To	do	this,	will	create	two	new	files:
todo/web/controllers/my_controller.ex	and
todo/web/controllers/todos_controller.ex.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	create	a	controller,	follow	these	steps:

1.	 We	will	start	by	adding	the	action	that	will	handle	requests	to	the	/text	endpoint.
Inside	my_controller.ex,	add	the	following	code:

defmodule	Todo.MyController	do

		use	Phoenix.Controller

		plug	:action

		def	plaintext(conn,	_params)	do

				text	conn,	"Plain	text	rendered	from	Phoenix	controller!"

		end

end

2.	 Now	we	will	add	an	action	to	handle	requests	performed	to	the	generated	endpoint
by	adding	this	code	right	below	the	plaintext	action	defined	in	the	previous	step:

def	send_html(conn,	_params)	do

			generated	=	"""

						<html>

								<head>

										<title>Generated	HTML</title>

								</head>

								<body>

										<h2>Creating	Controllers</h2>

										<p>It	is	possible	to	render	html	from	a	Phoenix	controller!

</p>

								</body>

						</html>

				"""

			html	conn,	generated

end

3.	 Now	we	will	define	the	index	action	(that	lists	all	todos)	for	the	todos	resource.	We
will	define	it	inside	the	todos_controller	module:

defmodule	Todo.TodosController	do

		use	Phoenix.Controller

		plug	:action

		def	index(conn,	_params)	do

				todo	=	[%{id:	1,	task:	"Write	the	other	controller	actions!",	

created_at:	"2014-12-13",	status:	"pending"},	%{id:	2,	task:	"Create	

Views",	created_at:	"2014-12-13",	status:	"pending"}]

				json	conn,	todo

		end

end

Note

www.it-ebooks.info

http://www.it-ebooks.info/

To	make	this	recipe	more	compact,	we	will	change	the	line	that	defines	the	routes	for
the	todos	resource.	Open	the	router	file	(web/router.ex)	and	find	the	following	line:

resources	"todos",	TodosController

Change	it	to	this:

resources	"todos",	TodosController,	only:	[:index]

This	way,	only	the	index	action	needs	to	be	defined	in	order	to	have	a	working
controller.

4.	 Now	it’s	time	to	start	the	server	(mix	phoenix.server)	and	visit	all	the	endpoints	for
which	we	have	defined	controller	actions	to	check	the	result	of	our	work:

1.	 http://localhost:4000/text
2.	 http://localhost:4000/generated
3.	 http://localhost:4000/todos

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
Both	controllers	we	defined	are	“namespaced”	with	the	application	name	(Todo),	and	both
import	the	Phoenix.Controller	module.	This	way,	they	have	access	to	functions	made
available	by	that	module	(more	information	on	this	mechanism	is	available	in	Using
module	directives	recipe	in	Chapter	4,	Modules	and	Functions).	The	controllers	also	share
the	plug	:action	line.	This	is	a	macro	that	handles	dispatching	to	the	right	controller	and
action	according	to	what	is	defined	in	the	router.

All	of	the	functions,	or	actions,	defined	also	share	a	common	pattern:	arguments.

They	all	accept	conn	and	_params.	The	first	argument	is	the	structure	that	represents	the
connection,	and	following	Elixir’s	message-passing,	non-state	sharing	philosophy,	the
connection	is	received	as	an	argument	and	then	returned	as	part	of	the	result.	In	all	three
cases,	we	return	the	connection:

text	conn	"Plain	text	rendered	from	Phoenix	controller!"
json	conn	todos
html	conn	generated

In	the	three	controller	actions	we	defined,	we	have	used	the	text,	HTML,	and	JSON
macros.

They	define	the	type	of	data	we	will	send	as	response.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
In	step	3,	we	define	the	todos	list	as	a	structure	(map)	inside	the	controller.	Phoenix
supports	the	interaction	with	the	data	stored	in	databases.	You	can	use	ETS,	DETS,	and
Mnesia,	and	you	can	also	use	an	external	database,	such	as	PostgreSQL,	via	an	Elixir
project	named	Ecto.	To	know	more	about	this,	please	visit	Ecto	project’s	website
(http://github.com/elixir-lang/ecto).

www.it-ebooks.info

http://github.com/elixir-lang/ecto
http://www.it-ebooks.info/

Creating	views	and	templates
After	the	router	determines	the	right	controller	and	action	to	handle	a	request	after	the
controller	performs	all	the	tasks	to	prepare	data	to	respond	to	the	request,	it	generally
needs	to	output	that	data.	In	the	previous	recipe,	we	saw	how	a	controller	could	respond
by	rendering	test	and	outputting	static	HTML	or	even	JSON.	What	if	we	need	to	generate
an	HTML	response	and	that	HTML	must	be	dynamic,	depending	on	the	values	passed	by
the	controller?

Before	we	proceed,	there	is	one	thing	we	have	to	make	clear	for	those	coming	from	other
frameworks:	the	view	is	not	an	HTML	(or	other	markup)	file.	Views	mainly	render
templates	but	they	are	also	responsible	for	providing	functions	that	make	data	easier	to
consume	by	templates.	In	Phoenix,	a	view	is	more	like	a	decorator.

We	may	also	use	templates	and	layouts.	Templates	are	the	HTML	structure	where	data
obtained	via	the	controller	and	prepared	by	the	view	is	displayed.	Layouts	are	a	way	to
define	a	common	structure	shared	by	(possibly)	multiple	templates.

In	this	recipe,	we	will	change	the	response	of	the	TodosController	index	action.	Instead
of	returning	JSON	containing	the	todos,	we	will	output	the	data	in	an	HTML	page.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	get	started,	open	the	application	resulting	from	the	Creating	a	controller	recipe	and
find	this	line:

json	conn,	todos

Replace	it	with	this	line:

assign(conn,	:todos,	todos)

We	will	also	add	plug	:render	right	below	plug	:action.

The	file	should	look	like	this:

defmodule	Todo.TodosController	do

		use	Phoenix.Controller

		plug	:action

		plug	:render

		def	index(conn,	_params)	do

				todos	=	[%{id:	1,	task:	"Write	the	other	controller	actions!",	

created_at:	"2014-12-13",	status:	"pending"},	%{id:	2,	task:	"Create	

Views",	created_at:	"2014-12-13",	status:	"pending"}]

				assign(conn,	:todos,	todos)

		end

end

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
After	changing	the	controller	so	that	it	renders	a	view,	we	will	follow	these	steps	to	create
the	view	and	a	new	layout:

1.	 Create	a	view	by	adding	a	new	web/views/todos.view.ex	file	with	the	following
content:

defmodule	Todo.TodosView	do

		use	Todo.View

		def	todos(conn)	do

				Enum.map(conn.assigns.todos,	fn(x)->x[:task]	end)

		end

end

2.	 Create	a	new	template	by	adding	the	templates’	/todos/index.html.eex	file	with
this	markup:

<div>

	<h3>Views	and	Templates</h3>

		<p>This	is	the	template	that	will	display	only	the	task	for	each	item	

in	our	todo	list.</p>

		

				<p>TODO:</p>

				<%=	for	t	<-	todos	@conn	do	%>

						<%=	t	%>

				<%	end	%>

		

</div>

3.	 Start	the	Phoenix	application:

>	mix	phoenix.server

4.	 Visit	http://localhost:4000/todos	to	see	the	new	template	render	a	list	with
pending	tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	1,	we	define	our	view.	As	was	mentioned	in	the	introduction	to	the	recipe,	the	view
acts	like	a	decorator.	In	the	index	action	of	TodosController,	we	pass	a	structure	and	a
list	of	maps,	each	one	defining	a	todo	map.	These	maps	have	several	keys:	id,	task,
created_at,	and	status.	We	use	the	view	to	filter	each	of	the	elements	of	the	list	and	get
only	the	task	field	with	this:

Enum.map(conn.assigns.todos,	fn(x)->x[:task]	end)

We	map	the	todos	structure	assigned	to	the	connection	and	define	an	anonymous	function
to	extract	only	the	task	key.	The	function	defined	in	the	view	is	todos/1.	In	step	2,	we	use
the	result	of	the	function	in	a	list	comprehension:

<%=	for	t	<-	todos	@conn	do	%>

		<%=	t	%>

<%	end	%>

The	file	extension	is	for	the	markup	file	is	html.eex,	which	means	that	we	are	using
HTML	with	embedded	Elixir	code	for	our	template.	The	preceding	block	defining	the	list
comprehension	mixes	HTML	and	Elixir.	Elixir	code	is	declared	inside	<%	%>,	and	when
we	append	the	=	sign,	it	means	that	the	expression	“appears”	in	the	result.

Note
The	code	to	render	the	todos	list	of	maps	mixes	HTML	and	Elixir,	as	shown	here:

#	start	of	block.	Each	entry	in	todos	that	will	be	represented	by	t

<%=	for	t	<-	todos	@conn	do	%>	

#	output	the	value	of	t	inside	an	html	li	tag	

<%=	t	%>	

#close	the	block	

<%	end	%>		

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
In	our	case,	we	only	assign	the	todos	data,	but	if	we	need	to	pass	multiple	values	into	the
view,	it’s	just	a	matter	of	calling	assign	several	times	in	the	controller	and	connecting
these	calls	with	the	pipe	operator	(|>).	The	assign	call	returns	the	connection	(conn),	and
it	would	be	passed	as	the	first	value	for	subsequent	assign	function	calls.

As	a	quick	example,	we	will	pass	the	todos	and	two	messages	to	the	view	by	writing	the
following	code:

defmodule	Todo.TodosController	do

		use	Phoenix.Controller

		plug	:action

		plug	:render

		def	index(conn,	_params)	do

				todos	=	[%{id:	1,	task:	"Write	the	other	controller	actions!",	

created_at:	"2014-12-13",	status:	"pending"},	%{id:	2,	task:	"Create	

Views",	created_at:	"2014-12-13",	status:	"pending"}]

				conn

				|>	assign(:todos,	todos)

				|>	assign(:message_one,	"Hello")

				|>	assign(:message_two,	"World!")

		end

end

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing	topics
Topics	in	Phoenix	are	a	form	of	implementing	the	publisher-subscriber	pattern.

In	this	recipe,	we	will	create	a	simple	counter	in	a	form	of	a	function	that	will	subscribe	a
channel.

In	TodosController,	we	will	broadcast	an	event	every	time	a	request	is	made	to	the	index
action.	The	counter	will	then	receive	the	notification	and	will	output	a	message	to	the
console	with	the	number	of	times	the	action	was	called.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
To	get	started,	we	will	take	the	code	resulting	from	the	previous	recipe.	Open	a	code	editor
and	prepare	to	add	pub/sub	to	the	Phoenix	application.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	implement	topics	in	the	Phoenix	application,	follow	these	steps:

1.	 Edit	TodoController	to	make	it	look	like	this:

defmodule	Todo.TodosController	do

		use	Phoenix.Controller

		plug	:action

		plug	:render

		def	index(conn,	_params)	do

				todos	=	[%{id:	1,	task:	"Write	the	other	controller	actions!",	

created_at:	"2014-12-13",	status:	"pending"},	%{id:	2,	task:	"Create	

Views",	created_at:	"2014-12-13",	status:	"pending"}]

				#	BROADCAST

				Phoenix.PubSub.broadcast	"counter_channel",	{	:action,	controller:	

"Todos",	action:	"index"	}

				assign(conn,	:todos,	todos)

		end

end

2.	 Create	a	new	lib/todo/access_counter.ex	file	and	add	the	following	code:

defmodule	Todo.AccessCounter	do

		def	start_link	do

				counter	=	0

				sub	=	spawn_link(Todo.AccessCounter,	:count,	[counter])

				Phoenix.PubSub.subscribe(sub,	"counter_channel")

				{:ok,	sub}

		end

		def	count(counter)	do

				receive	do

						{	:action,	params	}	->

								counter	=	counter	+	1

								IO.puts	"Action	#{params[:action]}	in	controller	#

{params[:controller]}	called	#{counter}	times!"

						_	->

				end

				count(counter)

		end

end

3.	 Register	the	new	file	as	a	worker	under	the	supervision	tree	of	the	application.	In	the
lib/todo.ex	file,	define	children	this	way:

children	=	[

		worker(Todo.AccessCounter,	[])

]

4.	 Start	the	application	(mix	phoenix.start)	and	visit	http://localhost:4000/todos.
Refresh	the	page	several	times	and	the	console	will	display	something	similar	to	this:

www.it-ebooks.info

http://www.it-ebooks.info/

20:44:18.652	request_id=SGu5Bs7IHfnS/oxHbPlY	[info]	GET	/todos

20:44:18.779	request_id=SGu5Bs7IHfnS/oxHbPlY	[debug]	Processing	by	

Todo.TodosController.index/2

		Parameters:	%{"format"	=>	"html"}

		Pipelines:	[:browser]

Action	index	in	controller	Todos	called	5	times!

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	step	1,	when	we	add	Phoenix.PubSub.broadcast	"counter_channel",	{	:action,
controller:	"Todos",	action:	"index"	}	to	the	controller	action,	we	are	notifying
“everyone”	listening	to	the	counter_channel	channel.	This	means	that	every	subscriber
of	the	channel	will	become	aware	of	the	message	being	published.

In	step	2,	we	define	a	module	that	subscribes	to	counter_channel.	Generically,	the
module	spawns	a	process	that	subscribes	counter_channel,	executing	the	count/1
function	every	time	a	message	arrives	in	the	subscribed	channel.	The	subscription	is
performed	with	this	code:

Phoenix.PubSub.subscribe(sub,	"counter_channel")

To	have	the	module	defined	in	step	2	running,	we	need	to	register	it	in	the	application’s
supervision	tree.	We	do	that	in	step	3	by	registering	the	Todo.AccessCounter	module	as	a
worker.

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting	the	Phoenix	app	with	SSL
In	a	production	scenario,	it	will	be	likely	for	a	Phoenix	application	to	listen	to	requests
using	a	secure	protocol.	HTTPS	will	be	used	in	detriment	of	plain	HTTP.

To	accept	connections	securely,	we	need	to	launch	the	application	with	SSL	support.

Fortunately,	in	Phoenix,	configuring	SSL	is	quite	simple.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
In	a	Phoenix	application,	place	the	*.key	and	*.cert	files	under	the	priv	directory.

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	configure	SSL	in	a	Phoenix	application,	we	will	need	to	add	the	following	to	the
config/prod.exs	file:

config	:phoenix,	Todo.Router,

		https:	[port:	443,

										host:	"example.com",

										keyfile:	System.get_env("YOUR_SSL_KEY_FILE"),

										certfile:	System.get_env("YOUR_APP_SSL_CERT_FILE")],

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
We	insert	the	configuration	for	HTTPS	connections	by	defining	the	values	of	the	port
where	the	application	will	listen	(443	is	the	default	HTTPS	port),	the	name	of	the	host	(the
host	for	which	the	certificate	files	were	generated),	and	the	location	of	the	certificate	files.

As	this	is	an	OTP	application,	these	files	will	be	searched	under	the	priv	directory	on	the
application’s	root.

By	inserting	the	configuration	code	in	the	prod.exs	file	under	the	conf	directory	of	the
application,	we	are	only	enabling	SSL	for	the	production	environment.	This	way,	our
application	will	run	by	listening	on	HTTP	in	the	development	and	test	environments.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	8.	Interactions
This	chapter	will	cover	the	following	recipes:

Using	Redis	and	Postgres
Using	OS	commands	from	within	Elixir
Getting	Twitter	data

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
In	this	chapter,	we	will	perform	some	tasks,	such	as	querying	social	media	websites,
interacting	with	the	underlying	operating	system,	implementing	pub-sub,	and	connecting
our	Elixir	applications	to	any	other	system	using	Redis.	These	recipes	will	be	a	little
longer,	given	that	the	tasks	are	a	little	more	elaborate	or	extended	than	those	in	the	recipes
from	the	previous	chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	Redis	and	Postgres
In	this	recipe,	we	will	be	using	Redis	and	Postgres.	The	idea	is	to	exemplify	how	we	can
interact	with	these	applications.	Redis	will	be	used	as	a	message	broker.	We	will
implement	the	pub-sub	pattern.	Using	the	Redis	console,	we	will	publish	messages	on	a
specific	channel,	and	our	Elixir	application	will	be	subscribed	to	that	channel	and	will
retrieve	those	messages,	saving	them	in	a	relational	database	(Postgres)	afterwards.

The	idea	behind	the	use	of	Redis	is	to	show	you	how	we	can	use	it	to	pass	messages
between	applications.	If	we	have	two	Erlang	or	Elixir	applications,	we	can	connect	them
and	pass	messages	between	them	without	using	any	message	broker.	It	is	even
recommended	that	you	not	use	any	intermediate	non-Elixir	or	non-Erlang	application,
because	we	would	then	have	to	add	the	overhead	of	data	marshaling	and	unmarshaling.
Between	applications	running	in	the	Erlang	VM,	however,	marshaling	and	unmarshaling
are	not	required.	However,	what	if	we	want	to	connect	two	or	more	applications	developed
in	Elixir	and	Ruby,	for	instance?

This	is	where	Redis	comes	in	handy.	More	robust	and	elaborate	applications	exist—
RabbitMQ,	for	instance—but	for	the	purposes	of	this	recipe,	and	for	most	simple	message
passing	needs	via	pub/sub,	Redis	is	fast,	simple,	and	really	easy	to	use.

As	for	the	use	of	Postgres,	we	could	definitely	choose	ETS,	DETS,	or	Mnesia.	These	are
solutions	that	come	for	free	in	Elixir.	They	are	included	in	the	Erlang	runtime.

However,	as	the	idea	of	this	chapter	is	to	show	you	how	to	interact,	Postgres	seems	to	be	a
good	candidate,	being	one	of	the	most	robust	RDBMS	that	are	used.

After	this	longer	than	usual	introduction,	let’s	get	started	with	building	an	application	that
will	listen	for	messages,	and	as	soon	as	they	arrive,	it	will	store	them	in	a	database.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
In	this	recipe,	we	will	need	to	have	Redis	and	Postgres	installed.	Please	refer	to	Appendix,
Installation	and	Further	Reading,	for	detailed	instructions	on	how	to	install	both
applications.

After	making	sure	both	applications	are	installed,	we	need	to	create	a	database	that	can	be
used	with	our	application.	We	will	name	it	elixir_cookbook.	To	do	this,	open	a	terminal
window	and	insert	this	command:

>	createdb	elixir_cookbook

www.it-ebooks.info

http://www.it-ebooks.info/

How	to	do	it…
To	create	our	application,	we	will	follow	these	steps:

1.	 Create	a	new	application:

>	mix	new	redis_and_postgresql	--sup

2.	 Add	the	dependencies	to	mix.exs:

defp	deps	do

		[

				{	:exredis,	github:	"artemeff/exredis",	tag:	"0.1.0"	},

				{	:postgrex,	"~>	0.7.0"	},

				{	:ecto,	"~>	0.7.1"	}

]

end

3.	 Add	postgrex	and	ecto	to	the	applications	list	to	be	started	with	the	application:

def	application	do

		[applications:	[:logger,	:postgrex,	:ecto],

			mod:	{RedisAndPostgresql,	[]}]

end

4.	 Fetch	the	dependencies	and	compile	them:

>	mix	deps.get	&&	mix	deps.compile

5.	 Create	the	redis	and	postgres	folders	under	the	lib	directory.
6.	 Create	the	lib/redis/subscriber.ex	module	with	the	following	content:

defmodule	Redis.Subscriber	do

		use	GenServer

		use	Exredis

		require	Record

		Record.defrecord	:state,	[client:	nil,	client_sub:	nil]

		@server															__MODULE__

		@redis_url												"127.0.0.1"

		@redis_port											"6379"

		@notification_channel	"elixir_cookbook"

		@name																	:pubsub

		def	start_link	do

				:gen_server.start_link({:local,	@server},	__MODULE__,	[],	[])

		end

		def	init(_options\\[])	do

				client_sub	=	Exredis.Sub.start

				client	=	Exredis.start_using_connection_string("redis://#

{@redis_url}:#{@redis_port}")

				:global.register_name(@name,	client)

				_pid	=	Kernel.self

				state	=	state(client:	client,	client_sub:	client_sub)

				#	Register	the	subscriber	function

www.it-ebooks.info

http://www.it-ebooks.info/

				client_sub	|>	Exredis.Sub.subscribe	@notification_channel,	fn(msg)	

->	Redis.MsgPusher.send(msg)	end

				{:ok,	state}

		end

		def	terminate(_reason,	state)	do

				#	close	redis	connection

				client_sub	=	:erlang.list_to_pid(state.client_sub)

				client_sub	|>	Exredis.Sub.stop

				client	=	:erlang.list_to_pid(state.client)

				client	|>	Exredis.stop

				:ok

		end

end

7.	 Create	the	lib/redis/msg_pusher.ex	module	and	add	this	code	to	it:

defmodule	Redis.MsgPusher	do

		def	send(msg)	do

				case	msg	do

						{:message,	_,	extracted_msg,	_}	->

								IO.puts	"#{log_time}	[REDIS	Msg	Received]	#{inspect	msg}"

								Postgres.Db.save_message(extracted_msg)

						_	->

				end

		end

		defp	log_time	do

				{{year,	month,	day},	{hour,	minute,	second}}	=	:erlang.now	|>	

:calendar.now_to_local_time

				"[#{year}/#{month}/#{day}	#{hour}:#{minute}:#{second}]"

		end

end

8.	 Add	Redis.Subscriber	to	the	application	supervision	tree	in	the
redis_and_postgresql.ex	file:

children	=	[

				worker(Redis.Subscriber,	[])

]

9.	 Create	the	lib/postgres/repo.ex	module	and	edit	it	so	that	it	looks	like	this:

defmodule	Postgres.Repo	do

		use	Ecto.Repo,	adapter:	Ecto.Adapters.Postgres

		def	conf	do

				#	ecto://<USER>:<PASSWORD>@<HOST>/<DATABASE>

				parse_url	"ecto://username@localhost/elixir_cookbook"

		end

		#	define	the	place	where	to	store	migrations	!

		def	priv	do

				app_dir(:redis_and_postgresql,	"priv/repo")

www.it-ebooks.info

http://www.it-ebooks.info/

		end

end

10.	 Create	the	lib/postgres/message.ex	module	and	add	these	lines:

defmodule	Postgres.Message	do

		use	Ecto.Model

		schema	"messages"	do

				field	:message_from,								:string

				field	:message_to,										:string

				field	:message_text,								:string

		end

end

11.	 Generate	a	migration:

>	mix	ecto.gen.migration	Repo	create_messages

12.	 Add	some	SQL	to	the	migration	to	define	the	table	for	the	Message	model.	The	file	is
priv/repo/migrations/<timestamp>_create_messages.exs:

defmodule	Repo.Migrations.CreateMessages	do

		use	Ecto.Migration

		def	up	do

				"CREATE	TABLE	IF	NOT	EXISTS	messages(id	serial	primary	key,	

message_from	text,	message_to	text,	message_text	text)"

		end

		def	down	do

				"DROP	TABLE	messages"

		end

end

13.	 Run	the	migration	to	prepare	the	database:

>	mix	ecto.migrate	Repo

Note
To	revert	all	migrations,	the	command	is	as	follows:

mix	ecto.rollback	Repo	--all

14.	 Create	the	lib/postgres/db.ex	module	and	add	this	code	to	it:

defmodule	Postgres.Db	do

		import	Ecto.Query,	only:	[from:	2]

		#	alias	to	allow	use	of	the	struct

		#	module	that	defines	schema	is	Postgres.Message	and	not	just	Message

		alias	Postgres.Message

		#	message	will	arrive	as	a	string

		def	save_message(message)	when	is_binary	message	do

				#	message	must	be	converted	to	a	map

www.it-ebooks.info

http://www.it-ebooks.info/

				[message_from,	message_to,	message_text]	=	String.split(message,	

",")

				msg	=	%Message{message_from:	message_from,	message_to:	message_to,	

message_text:	message_text}

				Postgres.Repo.insert(msg)

		end

		def	messages_from(from)	do

				query	=	from	m	in	Message,	where:	m.message_from	==	^from

				Postgres.Repo.all(query)

		end

		def	messages_to(to)	do

				query	=	from	m	in	Message,	where:	m.message_to	==	^to

				Postgres.Repo.all(query)

		end

end

15.	 Add	the	Postgres.Repo	module	to	the	application’s	supervision	tree:

children	=	[

				worker(Redis.Subscriber,	[]),

				worker(Postgres.Repo,	[])

]

16.	 Start	the	application:

>	iex	–S	mix

17.	 Open	a	Redis	command-line	session	on	another	terminal:

>	redis-cli

18.	 Start	publishing	messages	on	the	channel	and	take	a	look	at	the	application	log:

127.0.0.1:6379>	PUBLISH	elixir_cookbook	"foo,bar,hello"

127.0.0.1:6379>	PUBLISH	elixir_cookbook	"foo,baz,hello"

127.0.0.1:6379>	PUBLISH	elixir_cookbook	"bar,foo,hello"

127.0.0.1:6379>	PUBLISH	elixir_cookbook	"baz,foo,hello"

The	next	screenshot	shows	you	the	messages	being	published	on	the	channel:

19.	 Now,	it’s	time	to	take	a	look	at	our	database.	Let’s	retrieve	some	messages	with	these
commands:

www.it-ebooks.info

http://www.it-ebooks.info/

iex(2)>	Postgres.Db.messages_from("foo")

iex(3)>	Postgres.Db.messages_from("bar")

iex(4)>	Postgres.Db.messages_to("baz")

iex(5)>	Postgres.Db.messages_to("foo")

Here	is	the	result	of	our	queries:

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
In	steps	1	to	4,	we	create	the	application	and	add	the	dependencies:	exredis	for	Redis
access,	postgrex	to	interact	with	the	database,	and	ecto,	which	is	a	DSL	to	write	queries
and	interact	with	databases.

In	step	5,	we	create	two	folders	so	that	we	can	namespace	our	modules,	making	it	easier	to
organize	our	code.

The	module	we	define	in	step	6	is	a	GenServer	and	is	responsible	for	establishing	a
connection	to	a	Redis	server.	We	see	several	annotations	(@server,	@name,	@redis_url,
@notification_channel	and	@name)	that	make	it	easier	to	change	any	of	these	values.	We
covered	the	use	of	annotations	in	the	Using	module	attributes	as	constants	recipe	in
Chapter	4,	Modules	and	Functions.

In	the	init	function,	we	initialize	the	process	that	will	listen	to	the	subscribed	channel:

client_sub	=	Exredis.Sub.start

Start	the	connection	to	the	Redis	server:

client	=	Exredis.start_using_connection_string("redis://#{@redis_url}:#

{@redis_port}")

Register	the	name	of	this	GenServer	globally	to	make	it	accessible	by	name	(pubsub):

:global.register_name(@name,	client)

Note
Using	the	global	registration	allows	us	to	refer	to	this	process	by	its	name	from	any	node
of	a	cluster.

Initialize	the	state	of	the	GenServer	where	we	basically	store	the	PIDs	of	the	processes
that	connect	to	Redis	and	the	Redis	channel:

state	=	state(client:	client,	client_sub:	client_sub)

Finally,	we	determine	the	function	to	be	invoked	any	time	a	new	message	arrives	in	the
channel:

client_sub	|>	Exredis.Sub.subscribe	"#{@notification_channel}",	fn(msg)	->	

Redis.MsgPusher.send(msg)	end

The	function	is	send/1	and	is	defined	in	the	Redis.MsgPusher	module	we	defined	in	step
7.	We	use	pattern	matching	to	extract	the	message	we	get	from	Redis	and	then	send
extracted_message	(the	actual	message)	to	the	function	that	will	save	the	message	in	the
database	(Postgres.Db.save_message):

{:message,	_,	extracted_msg,	_}	->

								IO.puts	"#{log_time}	[REDIS	Msg	Received]	#{inspect	msg}"

								Postgres.Db.save_message(extracted_msg)

function

www.it-ebooks.info

http://www.it-ebooks.info/

In	step	8,	we	register	the	module	responsible	for	the	connection	to	Redis	under	the
supervision	tree.	We	don’t	want	any	glitches	to	deprive	us	from	the	connection	to	Redis!

Next,	we	start	dealing	with	database-related	logic.	Our	interaction	with	Postgres	is
achieved	via	Ecto.

In	step	9,	we	begin	by	defining	a	repository.	The	conf	function	is	responsible	for
determining	the	URL	we	use	to	connect	to	the	database,	and	the	priv	function	receives	the
name	of	the	application	and	the	location	where	the	migrations	will	be	stored	as	arguments.

In	step	10,	we	define	the	schema	for	our	messages.	We	determine	the	field	names	and	their
types.

In	steps	11	and	12,	we	use	a	custom	Ecto	Mix	task	to	generate	a	migration	file,	and	we	add
SQL	code	to	the	migration.	We	define	the	database	table	that	will	hold	our	messages.

In	step	13,	we	run	the	migration,	and	this	effectively	creates	the	database	table.

Afterwards,	we	create	the	module	that	will	interact	with	the	database,	which	is
Postgres.Db.	The	function	we	registered	as	the	one	to	be	triggered	when	the	Redis	client
receives	a	message	on	the	listening	channel	is	defined	in	this	module:

#	message	will	arrive	as	a	string

		def	save_message(message)	when	is_binary	message	do

				#	message	must	be	converted	to	a	map

				[message_from,	message_to,	message_text]	=	String.split(message,	",")

				msg	=	%Message{message_from:	message_from,	message_to:	message_to,	

message_text:	message_text}

				Postgres.Repo.insert(msg)

		end

We	begin	by	splitting	the	string	we	receive	(comma-separated)	and	pattern	match	it	to	get
the	message_from,	message_to,	and	message_text	fields	that	we	will	use	to	create	a	map
that	we	insert	into	the	database	via	the	Postgres.Repo	module.

Note
By	creating	a	schema	in	the	Postgres.Message	module,	Ecto	defines	a	struct	with	the
fields	declared	in	that	schema.

We	also	need	to	add	the	Postgresql.DB	module	to	the	application’s	supervision	tree
similar	to	what	we	did	with	Redis.Subscriber.

In	the	following	steps,	we	use	the	Redis	command	line	to	publish	messages	on	the
elixir_cookbook	channel	and	watch	them	being	logged	in	our	application’s	console.

In	the	last	step,	we	perform	some	queries	to	retrieve	the	data	stored	in	the	database.

These	queries	are	defined	in	the	Postgres.Db	module:

def	messages_from(from)	do

		query	=	from	m	in	Message,	where:	m.message_from	==	^from

		Postgres.Repo.all(query)

end

www.it-ebooks.info

http://www.it-ebooks.info/

def	messages_to(to)	do

		query	=	from	m	in	Message,	where:	m.message_to	==	^to

		Postgres.Repo.all(query)

end

We	start	by	building	a	query,	and	then	we	execute	it	via	our	Repo	module.	The	syntax	for
the	queries	is	straightforward	and	is	compared	with	LINQ	by	a	few.	The	queries	are	also
composable	and	type-safe!

You	may	have	noticed	the	^	operator	before	from	and	to.	This	operator	is	overloaded	by
Ecto,	and	it’s	used	when	we	need	to	access	values	outside	Ecto	because	Ecto	queries	are
under	their	own	syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	OS	commands	from	within	Elixir
It	is	possible	to	interact	with	the	underlying	operating	system,	execute	OS	commands,	and
get	the	result	in	our	Elixir	applications.

To	do	this,	we	will	be	using	Alexei	Sholik’s	porcelain
(https://hex.pm/packages/porcelain).

We	will	build	a	very	simple	application	that	will	accept	a	string	defining	a	path	and	will
return	a	list	containing	the	entries	for	that	path.	We	will	use	the	ls	unix	command	without
leaving	our	Elixir	application!	We	will	also	define	a	generic	run	function	that	will	allow
the	running	of	any	command	we	pass	as	the	argument.

www.it-ebooks.info

https://hex.pm/packages/porcelain
http://www.it-ebooks.info/

How	to	do	it…
To	create	an	application	that	interacts	with	the	underlying	operating	system,	we	will
follow	these	steps:

1.	 Create	a	new	application:

>	mix	new	os_commands

2.	 Add	the	porcelain	app	as	a	dependency	in	the	mix.exs	file:

defp	deps	do

		[{:porcelain,	"~>	2.0"}]

end

3.	 Register	porcelain	into	the	list	of	applications	(inside	the	mix.exs	file):

def	application	do

		[applications:	[:logger,	:porcelain]]

end

4.	 Get	the	dependency	and	compile	it:

>	mix	deps.get	&&	mix	deps.compile

5.	 Define	the	list	function	that	will	return	the	entries	in	a	given	directory	by	entering
the	following	code	in	lib/os_commands.ex:

def	list(path	\\	".")	do

		%Result{out:	output,	status:	status}	=	Porcelain.exec("ls	#{path}")

		IO.puts	output

End

Note
First	of	all,	we	will	include	the	following	in	our	module:

alias	Porcelain.Result

This	will	allow	us	to	use	the	Result	struct	defined	by	porcelain	in	a	more	convenient
way.

6.	 Define	the	run	function	that	will	run	a	command	passed	as	the	argument	by	entering
the	following	code	in	lib/os_commands.ex:

def	run(command,	options	\\"")	do

		%Result{out:	output,	status:	status}	=	Porcelain.shell(command,	

[args])

		IO.puts	output

end

7.	 Compile	and	start	the	application:

>	mix	compile	&&	iex	-S	mix

8.	 Lastly,	let’s	try	to	inspect	some	of	our	directories:

www.it-ebooks.info

http://www.it-ebooks.info/

iex(1)>	OsCommands.list

README.md

_build

config

deps

lib

mix.exs

mix.lock

test

:ok

iex(2)>	OsCommands.list	"/usr"

X11

X11R6

bin

include

lib

libexec

local

sbin

share

standalone

:ok

9.	 Now,	let’s	run	some	commands:

iex(3)>	OsCommands.run("date")

Mon	Dec	8	20:15:25	WET	2014

:ok

10.	 We	can	even	see	the	content	of	modules:

iex(4)>	OsCommands.run("cat",	"lib/os_commands.ex")

defmodule	OsCommands	do

		alias	Porcelain.Result

		def	list(path	\\	".")	do

				%Result{out:	output,	status:	status}	=	Porcelain.exec("ls",	[path])

				IO.puts	output

		end

		def	run(command,	options	\\"")	do

				%Result{out:	output,	status:	status}	=	Porcelain.shell("#{command}	

#{options}")

				IO.puts	output

		end

end

:ok

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
After	creating	the	application	and	adding	porcelain	as	a	dependency,	we	have	to	configure
it	to	run	automatically.	In	step	3,	we	add	porcelain	to	the	list	of	applications	that	will	be
bootstrapped	once	the	OsCommands	application	starts.

In	steps	5	and	6,	we	define	two	functions.	The	first	one,	list,	performs	an	ls	command,
and	if	no	option	for	the	path	is	passed,	it	defaults	to	the	application	directory.	The	run
function	is	more	generic	and	allows	you	to	execute	any	command	available	in	the	OS.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
It	is	possible	to	define	the	input	as	a	file	or	a	stream	and	the	same	goes	for	output	as	well.
Porcelain	is	a	very	powerful	tool	that	allows	us	to	build	things	such	as	filesystem	monitors
that	perform	actions	any	time	a	file	is	changed.	The	most	impressive	thing	is	that	it	allows
us	to	leverage	the	power	of	the	underlying	operating	system,	expanding	the	available
options	we	have	in	Elixir.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
It	is	possible	to	use	the	Goon	driver	with	porcelain.	Goon	is	developed	in	Go	and
allows	access	to	more	features	with	porcelain,	specifically,	the	ability	to	signal	EOF
to	the	external	program	and	also	send	an	OS	signal	to	the	program.
For	more	information	on	porcelain,	refer	to	the	documentation	available	at
http://porcelain.readthedocs.org/.

www.it-ebooks.info

http://porcelain.readthedocs.org/
http://www.it-ebooks.info/

Getting	Twitter	data
In	this	recipe,	we	will	build	an	application	that	will	query	the	Twitter	timeline	for	a	given
word	and	will	display	any	new	tweet	with	that	keyword	in	real	time.	We	will	be	using	an
Elixir	twitter	client	extwitter	as	well	as	an	Erlang	application	to	deal	with	OAuth.	We	will
wrap	all	in	a	phoenix	web	application.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	ready
Before	getting	started,	we	need	to	register	a	new	application	with	Twitter	to	get	the	API
keys	that	will	allow	the	authentication	and	use	of	Twitter’s	API.	To	do	this,	we	will	go	to
https://apps.twitter.com	and	click	on	the	Create	New	App	button.	After	following	the
steps,	we	will	have	access	to	four	items	that	we	need:	consumer_key,	consumer_secret,
access_token,	and	access_token_secret.

These	values	can	be	used	directly	in	the	application	or	setup	as	environment	variables	in
an	initialization	file	for	bash	or	zsh	(if	using	Unix).

After	getting	the	keys,	we	are	ready	to	start	building	the	application.

www.it-ebooks.info

https://apps.twitter.com
http://www.it-ebooks.info/

How	to	do	it…
To	begin	with	building	the	application,	we	need	to	follow	these	steps:

1.	 Create	a	new	Phoenix	application:

>	mix	phoenix.new	phoenix_twitter_stream	code/phoenix_twitter_stream

Note
For	more	information	on	how	to	create	a	Phoenix	application,	please	refer	to	the
Creating	a	Phoenix	application	recipe	in	Chapter	7,	Cowboy	and	Phoenix.

2.	 Add	the	dependencies	in	the	mix.exs	file:

defp	deps	do

		[

				{:phoenix,	"~>	0.8.0"},

				{:cowboy,	"~>	1.0"},

				{:oauth,	github:	"tim/erlang-oauth"},

				{:extwitter,	"~>	0.1"}

]

end

3.	 Get	the	dependencies	and	compile	them:

>	mix	deps.get	&&	mix	deps.compile

4.	 Configure	the	application	to	use	the	Twitter	API	keys	by	adding	the	configuration
block	with	the	keys	we	got	from	Twitter	in	the	Getting	ready	section.	Edit
lib/phoenix_twitter_stream.ex	so	that	it	looks	like	this:

defmodule	PhoenixTweeterStream	do

		use	Application

		def	start(_type,	_args)	do

				import	Supervisor.Spec,	warn:	false

				ExTwitter.configure(

						consumer_key:	System.get_env("SMM_TWITTER_CONSUMER_KEY"),

						consumer_secret:	System.get_env("SMM_TWITTER_CONSUMER_SECRET"),

						access_token:	System.get_env("SMM_TWITTER_ACCESS_TOKEN"),

						access_token_secret:	

System.get_env("SMM_TWITTER_ACCESS_TOKEN_SECRET")

)

				children	=	[

						#	Start	the	endpoint	when	the	application	starts

						worker(PhoenixTweeterStream.Endpoint,	[]),

						#	Here	you	could	define	other	workers	and	supervisors	as	children

						#	worker(PhoenixTweeterStream.Worker,	[arg1,	arg2,	arg3]),

]

				opts	=	[strategy:	:one_for_one,	name:	

www.it-ebooks.info

http://www.it-ebooks.info/

PhoenixTweeterStream.Supervisor]

				Supervisor.start_link(children,	opts)

		end

		def	config_change(changed,	_new,	removed)	do

				PhoenixTweeterStream.Endpoint.config_change(changed,	removed)

				:ok

		end

end

Note
In	this	case,	the	keys	are	stored	as	environment	variables,	so	we	use	the
System.get_env	function:

	System.get_env("SMM_TWITTER_CONSUMER_KEY")	(…)

If	you	don’t	want	to	set	the	keys	as	environment	variables,	the	keys	can	be	directly
declared	as	strings	this	way:

consumer_key:	"this-is-an-example-key"	(…)

5.	 Define	a	module	that	will	handle	the	query	for	new	tweets	in	the
lib/phoenix_twitter_stream/tweet_streamer.ex	file,	and	add	the	following	code:

defmodule	PhoenixTwitterStream.TweetStreamer	do

		def	start(socket,	query)	do

				stream	=	ExTwitter.stream_filter(track:	query)

				for	tweet	<-	stream	do

						Phoenix.Channel.reply(socket,	"tweet:stream",	tweet)

				end

		end

end

6.	 Create	the	channel	that	will	handle	the	tweets	in	the	web/channels/tweets.ex	file:

defmodule	PhoenixTwitterStream.Channels.Tweets	do

		use	Phoenix.Channel

		alias	PhoenixTwitterStream.TweetStreamer

		def	join("tweets",	%{"track"	=>	query},	socket)	do

				spawn(fn()	->	TweetStreamer.start(socket,	query)	end)

				{:ok,	socket}

		end

end

7.	 Edit	the	application	router	(/web/router.ex)	to	register	the	websocket	handler	and
the	tweets	channel.	The	file	will	look	like	this:

defmodule	PhoenixTwitterStream.Router	do

		use	Phoenix.Router

		pipeline	:browser	do

www.it-ebooks.info

http://www.it-ebooks.info/

				plug	:accepts,	~w(html)

				plug	:fetch_session

				plug	:fetch_flash

				plug	:protect_from_forgery

		end

		pipeline	:api	do

				plug	:accepts,	~w(json)

		end

		

		socket	"/ws"	do

				channel	"tweets",	PhoenixTwitterStream.Channels.Tweets

		end

		

		scope	"/",	PhoenixTwitterStream	do

				pipe_through	:browser	#	Use	the	default	browser	stack

				get	"/",	PageController,	:index

		end

end

8.	 Replace	the	index	template	(web/templates/page/index.html.eex)	content	with
this:

<div	class="row">

		<div	class="col-lg-12">

				<ul	id="tweets">

		</div>

		<script	src="/js/phoenix.js"	type="text/javascript"></script>

		<script	src="https://code.jquery.com/jquery-2.1.1.js"	

type="text/javascript"></script>

		<script	type="text/javascript">

				var	my_track	=	"programming";

				var	socket	=	new	Phoenix.Socket("ws://"	+	location.host	+	"/ws");

				socket.join("tweets",	{track:	my_track},	function(chan){

						chan.on("tweet:stream",	function(message){

								console.log(message);

								$('#tweets').prepend($('').text(message.text));

								});

				});

		</script>

</div>

9.	 Start	the	application:

>	mix	phoenix.server

10.	 Go	to	http://localhost:4000/	and	after	a	few	seconds,	tweets	should	start	arriving
and	the	page	will	be	updated	to	display	every	new	tweet	at	the	top.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

How	it	works…
We	start	by	creating	a	Phoenix	application.	We	could	have	created	a	simple	application	to
output	the	tweets	in	the	console	or	even	used	something	like	what	was	implemented	in	the
Implementing	a	websocket	handler	recipe	in	Chapter	7,	Cowboy	and	Phoenix.	However,
Phoenix	is	a	great	choice	for	our	purposes,	displaying	a	web	page	with	tweets	getting
updated	in	real	time	via	websockets!

In	step	2,	we	add	the	dependencies	needed	to	work	with	the	Twitter	API.	We	use	parroty’s
extwitter	Elixir	application	(https://hex.pm/packages/extwitter)	and	Tim’s	erlang-oauth
application	(https://github.com/tim/erlang-oauth/).	After	getting	the	dependencies	and
compiling	them,	we	add	the	Twitter	API	keys	to	our	application	(step	4).	These	keys	will
be	used	to	authenticate	against	Twitter	where	we	previously	registered	our	application.

In	step	5,	we	define	a	function	that,	when	started,	will	query	Twitter	for	any	tweets
containing	a	specific	query.

The	stream	=	ExTwitter.stream_filter(track:	query)	line	defines	a	stream	that	is
returned	by	the	ExTwitter	application	and	is	the	result	of	filtering	Twitter’s	timeline,
extracting	only	the	entries	(tracks)	that	contain	the	defined	query.

The	next	line,	which	is	for	tweet	<-	stream	do	Phoenix.Channel.reply(socket,
"tweet:stream",	tweet),	is	a	stream	comprehension.	For	every	new	entry	in	the	stream
defined	previously,	send	the	entry	through	a	Phoenix	channel.

Step	6	is	where	we	define	the	channel.	This	channel	is	like	a	websocket	handler.	Actually,
we	define	a	join	function:

	def	join(socket,	"stream",	%{"track"	=>	query})	do

			reply	socket,	"join",	%{status:	"connected"}

			spawn(fn()	->	TweetStreamer.start(socket,	query)	end)

			{:ok,	socket}

	end

It	is	here,	when	the	websocket	connection	is	performed,	that	we	initialize	the	module
defined	in	step	5	in	the	spawn	call.	This	function	receives	a	query	string	defined	in	the
frontend	code	as	track	and	passes	that	string	to	ExTwitter,	which	will	use	it	as	the	filter.

In	step	7,	we	register	and	mount	the	websocket	handler	in	the	router	using	use
Phoenix.Router.Socket,	mount:	"/ws",	and	we	define	the	channel	and	its	handler
module	using	channel	"tweets",	PhoenixTwitterStream.Channels.Tweets.

Note
The	channel	definition	must	occur	outside	any	scope	definition!

If	we	tried	to	define	it,	say,	right	before	get	"/",	PageController,	:index,	the	compiler
would	issue	an	error	message	and	the	application	wouldn’t	even	start.

The	last	code	we	need	to	add	is	related	to	the	frontend.	In	step	8,	we	mix	HTML	and
JavaScript	on	the	same	file	that	will	be	responsible	for	displaying	the	root	page	and

www.it-ebooks.info

https://hex.pm/packages/extwitter
https://github.com/tim/erlang-oauth/
http://www.it-ebooks.info/

establishing	the	websocket	connection	with	the	server.	We	use	a	phoenix.js	library	helper
(<script	src="/js/phoenix.js"	type="text/javascript"></script>),	providing
some	functions	to	deal	with	Phoenix	websockets	and	channels.

We	will	take	a	closer	look	at	some	of	the	code	in	the	frontend:

//	initializes	the	query	…	in	this	case	filter	the	timeline	for	

//	all	tweets	containing	"programming"		

var	my_track	=	"programming";

//	initialize	the	websocket	connection.	The	endpoint	is	/ws.		//(we	already	

have	registered	with	the	phoenix	router	on	step	7)	

var	socket	=	new	Phoenix.Socket("ws://"	+	location.host	+	"/ws");

//	in	here	we	join	the	channel	'tweets'

//	this	code	triggers	the	join	function	we	saw	on	step	6

//	when	a	new	tweet	arrives	from	the	server	via	websocket	

//	connection	it	is	prepended	to	the	existing	tweets	in	the	page	

socket.join("tweets",	"stream",	{track:	my_track},	function(chan){

						chan.on("tweet:stream",	function(message){

								$('#tweets').prepend($('').text(message.text));

								});

				});

www.it-ebooks.info

http://www.it-ebooks.info/

There’s	more…
If	you	wish	to	see	the	page	getting	updated	really	fast,	select	a	more	popular	word	for	the
query.

www.it-ebooks.info

http://www.it-ebooks.info/

See	also
In	Chapter	7,	Cowboy	and	Phoenix,	there	are	several	recipes	related	to	the	Phoenix
framework,	from	creating	an	application	to	setting	up	each	of	the	components.	If	you
wish,	refer	to	these	recipes	to	gain	a	better	understanding	of	Phoenix.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix	A.	Installation	and	Further
Reading
Now	that	we	have	learnt	about	Elixir,	it	is	a	good	idea	to	also	see	which	useful	websites
are	available	that	will	help	us	to	enhance	our	knowledge.	In	this	appendix,	we	will	cover
how	to	install	Elixir,	PostgreSQL,	and	Redis,	and	we	will	look	at	a	few	external	website
links	that	will	help	us	with	further	reading.

Let’s	start	with	the	installation.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	Elixir
We	need	to	visit	http://elixir-lang.org/install.html	for	all	the	documentation	needed	to
install	Elixir.

This	page	will	help	you	with	all	the	information	on	installing	Elixir	and	Erlang	on	major
operating	systems.

www.it-ebooks.info

http://elixir-lang.org/install.html
http://www.it-ebooks.info/

Installing	PostgreSQL
Please	visit	the	following	links	to	install	PostgreSQL:

Information	on	several	operating	systems’	installation	process	for	PostgreSQL	can	be
found	at	https://wiki.postgresql.org/wiki/Detailed_installation_guides
PostgreSQL	can	be	downloaded	from	http://www.postgresql.org/download/

www.it-ebooks.info

https://wiki.postgresql.org/wiki/Detailed_installation_guides
http://www.postgresql.org/download/
http://www.it-ebooks.info/

Installing	Redis
The	following	links	will	help	you	get	up	and	running	with	Redis:

Visit	http://redis.io	to	get	to	the	Redis	homepage
The	download	page	and	installation	instructions	can	be	accessed	at
http://redis.io/download
If	you	want	to	go	through	the	official	documentation	for	Redis,	visit
http://redis.io/documentation

www.it-ebooks.info

http://redis.io
http://redis.io/download
http://redis.io/documentation
http://www.it-ebooks.info/

Some	useful	links
Further	reading	is	always	important	to	broaden	your	knowledge	base.	Let’s	go	through
some	of	the	useful	links	that	will	help	us	gain	more	insight.

www.it-ebooks.info

http://www.it-ebooks.info/

Elixir
Here	are	a	few	references	on	Elixir:

The	Elixir	homepage	is	available	at	http://elixir-lang.org.
The	Getting	Started	guide	is	available	at	http://elixir-lang.org/getting-
started/introduction.html.
The	Elixir	documentation	is	available	at	http://elixir-lang.org/docs.html.
Packages	(the	Elixir	package	manager)	can	be	accessed	at	https://hex.pm.
The	source	code	can	be	accessed	at	https://github.com/elixir-lang/elixir.

www.it-ebooks.info

http://elixir-lang.org
http://elixir-lang.org/getting-started/introduction.html
http://elixir-lang.org/docs.html
https://hex.pm
https://github.com/elixir-lang/elixir
http://www.it-ebooks.info/

The	Phoenix	framework
The	homepage	of	the	Phoenix	framework	can	be	accessed	at
http://www.phoenixframework.org.

www.it-ebooks.info

http://www.phoenixframework.org
http://www.it-ebooks.info/

Erlang
The	Erlang	homepage	is	available	at	http://www.erlang.org.

The	official	documentation	for	Erlang	can	accessed	at	http://www.erlang.org/doc.html.

www.it-ebooks.info

http://www.erlang.org
http://www.erlang.org/doc.html
http://www.it-ebooks.info/

Index
A

add_user	function	/	How	it	works…
Agent.get	function	/	How	it	works…
Agent.update	function	/	How	it	works…
Agent	module

about	/	Using	agents	as	an	abstraction	around	states
application	configuration

managing	/	How	to	do	it…,	How	it	works…
Application	module

URL	/	See	also
applications

deploying	/	Deploying	applications	and	updating	a	running	system,	How	it
works…

atoms	/	How	to	do	it…

www.it-ebooks.info

http://www.it-ebooks.info/

B
@behaviour	module	attribute

using	/	How	to	do	it…,	How	it	works…
behaviors

about	/	Introduction
Supervisor	/	There’s	more…
GenEvent	/	There’s	more…
Application	/	There’s	more…

binary	concatenation	operator	(<>)
used,	for	joining	strings	/	Joining	strings

Bullet
about	/	There’s	more…
URL	/	There’s	more…

www.it-ebooks.info

http://www.it-ebooks.info/

C
channels	/	Creating	a	Phoenix	application
code

executing,	in	different	node	/	Executing	code	in	a	different	node,	How	it
works…

codepoint	/	Introduction
code_change	function	/	How	it	works…
concurrent	function	/	How	it	works…
conf	function	/	How	it	works…
conform

URL	/	There’s	more…
constants

module	attributes,	using	as	/	Using	module	attributes	as	constants,	How	to	do
it…,	See	also

controller
creating	/	Creating	a	controller,	How	to	do	it…,	How	it	works…

Cowboy
about	/	Introduction
setting	up	/	Setting	up	Cowboy,	How	to	do	it…,	How	it	works…,	See	also

custom	Mix	tasks
creating	/	Creating	custom	Mix	tasks,	How	to	do	it…,	How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

D
dependencies

managing	/	Managing	dependencies,	How	to	do	it…,	How	it	works…
dev	/	Managing	application	configuration
documentation

accessing,	within	IEx	/	Getting	help	and	accessing	documentation	within	IEx,
How	to	do	it…,	How	it	works…,	There’s	more…
help,	getting	in	IEx	/	Getting	help	and	accessing	documentation	within	IEx,
How	to	do	it…,	How	it	works…,	There’s	more…

www.it-ebooks.info

http://www.it-ebooks.info/

E
Ecto	project

URL	/	There’s	more…
Elixir

Erlang,	using	from	/	Using	Erlang	from	Elixir,	There’s	more…
strings	/	Introduction
modules	/	Introduction
availability	feature	/	Deploying	applications	and	updating	a	running	system
OS	commands,	using	/	Using	OS	commands	from	within	Elixir,	How	to	do	it…,
How	it	works…
URL	/	Installing	Elixir
installing	/	Installing	Elixir
references	/	Elixir

Elixir	application
creating,	with	Mix	/	Creating	a	simple	application,	How	to	do	it…,	How	it
works…
URL	/	How	it	works…

Elixir	documentation,	Mix.Tasks
URL	/	See	also

Elixir	Release	Manager	(exrm)	/	Packaging	and	releasing	an	OTP	application
Enum.reduce/3	function

using	/	There	is	more…
Enum.zip/2	function	/	How	it	works…
enumerables

mapping	/	Mapping	and	reducing	enumerables,	How	to	do	it…,	How	it	works…
reducing	/	Mapping	and	reducing	enumerables,	How	to	do	it…,	How	it	works…
working	with	/	How	to	do	it…

Erlang
URL	/	Getting	ready,	Erlang
using,	from	Elixir	/	Using	Erlang	from	Elixir,	There’s	more…

erlang-oauth	application
URL	/	How	it	works…

Erlang	VM
about	/	Making	code	run	on	all	available	CPUs

Erlang	VM	scheduler
computations,	distributing	through	available	CPUs	/	How	to	do	it…,	How	it
works…

errors
handling	/	Handling	errors	and	managing	exceptions,	How	to	do	it…,	How	it
works…,	There’s	more…
using	/	How	it	works…

escript	option	/	Getting	ready
ETS

www.it-ebooks.info

http://www.it-ebooks.info/

about	/	Using	an	ETS	table	to	share	the	state
ETS	table

used	for	sharing	state	/	Using	an	ETS	table	to	share	the	state,	How	to	do	it…,
How	it	works…

exceptions
managing	/	Handling	errors	and	managing	exceptions,	How	to	do	it…,	How	it
works…,	There’s	more…

exits
using	/	How	it	works…

extwitter	/	Getting	Twitter	data

www.it-ebooks.info

http://www.it-ebooks.info/

F
fetch_url(url)	function	/	How	it	works…
fetch_url	function	/	How	it	works…
file

streaming,	as	resource	/	Streaming	a	file	as	a	resource,	How	to	do	it…,	How	it
works…

flush	command	/	How	it	works…
function	definitions

guard	clauses,	using	/	Using	guard	clauses	and	pattern	matching	in	function
definitions,	How	to	do	it…,	How	it	works…
pattern	matching,	using	/	Using	guard	clauses	and	pattern	matching	in	function
definitions,	How	to	do	it…,	How	it	works…

functions
with	default	arguments,	defining	/	Defining	functions	with	default	arguments,
How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

G
GenServer

implementing	/	Implementing	a	GenServer,	How	to	do	it…,	How	it	works…,
There’s	more…
expanding	/	Expanding	our	server,	How	it	works…
URL	/	See	also

gen_server	module
URL	/	See	also

get	function	/	How	it	works…
guard	clauses

using,	in	function	definitions	/	Using	guard	clauses	and	pattern	matching	in
function	definitions,	How	to	do	it…,	How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

H
HashDict	/	How	it	works…
hex.pm

URL	/	How	it	works…
Hex	package	manager

URL	/	Managing	dependencies
Hex	usage

URL	/	See	also
HTTPoison

URL	/	Getting	ready
HTTPoison	response

pattern	matching	/	Pattern	matching	an	HTTPoison	response,	How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

I
ID3	v1	tag

URL	/	How	it	works…
IEx

about	/	Introduction
used,	for	prototyping	ideas	/	Using	the	terminal	to	prototype	and	test	ideas,	How
it	works…
used,	for	testing	ideas	/	Using	the	terminal	to	prototype	and	test	ideas,	How	it
works…
URL	/	Getting	ready
documentation,	getting	help	/	How	to	do	it…,	How	it	works…
documentation,	accessing	/	How	to	do	it…,	How	it	works…
system,	inspecting	/	Inspecting	your	system	in	IEx,	How	to	do	it…,	See	also

immutability	of	data
about	/	Understanding	immutability,	Getting	ready
demonstrating	/	How	to	do	it…,	How	it	works…

init	function	/	How	it	works…
about	/	How	it	works…

insert_replaced	function	/	How	it	works…
integers	/	How	to	do	it…
is_binary	function	/	How	it	works…
is_list	function	/	How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

J
join	function	/	How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

K
key/value	store

creating,	with	map	/	Creating	a	key/value	store	with	a	map,	How	to	do	it…,
How	it	works…
about	/	Using	an	ETS	table	to	share	the	state
creating	/	Getting	ready

keyword	list
about	/	How	it	works…
manipulating	/	Creating	and	manipulating	keyword	lists,	How	to	do	it…,	How	it
works…
creating	/	Creating	and	manipulating	keyword	lists,	How	to	do	it…,	How	it
works…

www.it-ebooks.info

http://www.it-ebooks.info/

L
lazy	(even	infinite)	sequences

generating	/	Generating	lazy	(even	infinite)	sequences,	How	it	works…,	There	is
more…

List.foldl/3	function	/	How	to	do	it…
lists

adding	/	Adding	and	subtracting	lists,	How	it	works…
subtracting	/	Adding	and	subtracting	lists,	How	it	works…
adding,	with	++	operator	/	How	to	do	it…
subtracting,	with	—	operator	/	How	to	do	it…
tuples,	combining	into	/	Combining	tuples	into	a	list,	How	it	works…

locate	function	/	How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

M
map

about	/	Creating	a	key/value	store	with	a	map
used,	for	creating	key/value	store	/	Creating	a	key/value	store	with	a	map,	How
to	do	it…,	How	it	works…

Map.new/0	function	/	How	to	do	it…
messages

between	processes,	sending	/	Sending	messages	between	processes,	Getting
ready,	How	to	do	it…,	How	it	works…,	There’s	more…

metadata
reading,	from	MP3	files	/	Reading	and	writing	metadata	from	MP3	files,	How	to
do	it…,	How	it	works…,	There’s	more…
writing,	from	MP3	files	/	Reading	and	writing	metadata	from	MP3	files,	How	it
works…
references	/	There’s	more…

Mix
about	/	Introduction
used,	for	creating	Elixir	application	/	How	to	do	it…,	How	it	works…

module
using,	in	scripted	mode	/	Using	a	module	in	the	scripted	mode,	How	to	do	it…

module	attributes
using,	as	constants	/	Using	module	attributes	as	constants,	How	to	do	it…,	See
also

module	directives
using	/	Using	module	directives,	How	to	do	it…,	How	it	works…

modules
loading	/	Loading	and	compiling	modules,	How	to	do	it…,	How	it	works…
compiling	/	Loading	and	compiling	modules,	How	to	do	it…,	How	it	works…
about	/	Introduction
namespacing	/	Namespacing	modules,	There’s	more…
documenting	/	Documenting	modules,	How	to	do	it…

MP3	files
metadata,	writing	/	Reading	and	writing	metadata	from	MP3	files,	How	to	do
it…,	How	it	works…
metadata,	reading	/	Reading	and	writing	metadata	from	MP3	files,	How	to	do
it…,	How	it	works…,	There’s	more…

multiple	concurrent	computations
performing,	with	Task	module	/	Using	tasks	to	perform	multiple	concurrent
computations,	Getting	ready,	How	to	do	it…,	How	it	works…,	There’s	more…

www.it-ebooks.info

http://www.it-ebooks.info/

N
named	nodes

creating	/	Creating	named	nodes,	Getting	ready,	How	it	works…
Node.spawn	function	/	How	it	works…
nodes

connecting	/	Connecting	nodes,	How	it	works…,	See	also

www.it-ebooks.info

http://www.it-ebooks.info/

O
++	operator

used,	for	adding	lists	/	How	to	do	it…
—	operator

used,	for	subtracting	lists	/	How	to	do	it…
=	operator	/	How	it	works…
Observer

used,	for	inspecting	system	/	Inspecting	your	system	with	Observer,	How	to	do
it…
using,	for	inspecting	supervisors	/	Using	Observer	to	inspect	supervisors	and
processes,	How	to	do	it…,	How	it	works…
using,	for	inspecting	processes	/	Using	Observer	to	inspect	supervisors	and
processes,	How	to	do	it…,	How	it	works…

operations
combining,	|>	operator	/	Combining	operations	with	the	|>	operator,	Getting
ready,	How	to	do	it…,	How	it	works…

OptionParse.parse	function	/	How	it	works…
OS	commands

using,	from	Elixir	/	Using	OS	commands	from	within	Elixir,	How	to	do	it…,
How	it	works…

OTP
about	/	Introduction

OTP	application
packaging	/	Packaging	and	releasing	an	OTP	application,	How	to	do	it…,	How
it	works…,	There’s	more…
releasing	/	Packaging	and	releasing	an	OTP	application,	How	to	do	it…,	How	it
works…,	See	also

|>	operator
used,	for	combining	operations	/	Combining	operations	with	the	|>	operator,
Getting	ready,	How	to	do	it…,	How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

P
pattern	matching

using	/	Using	pattern	matching,	How	to	do	it…,	How	it	works…
HTTPoison	response	/	Pattern	matching	an	HTTPoison	response,	How	it
works…
using,	in	function	definitions	/	Getting	ready,	How	to	do	it…,	How	it	works…

patterns
string	codepoints,	replacing	with	/	Replacing	string	codepoints	with	patterns,
How	it	works…

Perl	Compatible	Regular	Expressions	(PCRE)	/	Using	regular	expressions
Phoenix

about	/	Introduction
Phoenix	application

creating	/	Creating	a	Phoenix	application,	How	it	works…,	There’s	more…
topics,	implementing	/	Implementing	topics,	How	to	do	it…,	How	it	works…
protecting,	with	SSL	/	Protecting	the	Phoenix	app	with	SSL,	How	it	works…

Phoenix	framework
URL	/	The	Phoenix	framework

phone_book.ex	module
creating	/	How	to	do	it…,	How	it	works…

porcelain
URL	/	Using	OS	commands	from	within	Elixir,	See	also

Postgres
using	/	Using	Redis	and	Postgres,	Getting	ready,	How	to	do	it…,	How	it
works…

Postgresql
installing	/	Installing	PostgreSQL
URL,	for	installation	/	Installing	PostgreSQL
URL,	for	download	/	Installing	PostgreSQL

print	function	/	How	to	do	it…
print_each_from_list	function	/	How	it	works…
process	ID	(PID)	/	How	it	works…
Project	Gutenberg

URL	/	How	it	works…
published	/	How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

R
range

used,	for	slicing	strings	/	Slicing	strings	with	ranges,	How	to	do	it…,	There’s
more…

recursive	function	/	How	to	do	it…
Redis

using	/	Using	Redis	and	Postgres,	How	to	do	it…,	How	it	works…
installing	/	Installing	Redis
URL	/	Installing	Redis
references	/	Installing	Redis

Regex.compile!	function	/	How	it	works…
regular	expressions

using	/	How	to	do	it…,	How	it	works…
release	mechanisms

URL	/	See	also
REPL

about	/	Using	the	terminal	to	prototype	and	test	ideas
resource

file,	streaming	as	/	Streaming	a	file	as	a	resource,	How	to	do	it…,	How	it
works…

REST
URL	/	There’s	more…

router
URL	/	See	also

routes
defining	/	Defining	routes,	How	to	do	it…,	How	it	works…,	There’s	more…

run/1	function	/	How	it	works…
running	system

updating	/	Deploying	applications	and	updating	a	running	system,	How	it
works…

run_me	function	/	How	to	do	it…

www.it-ebooks.info

http://www.it-ebooks.info/

S
@shortdoc	attribute	/	How	it	works…
scripted	mode

module,	using	/	Using	a	module	in	the	scripted	mode,	How	to	do	it…
search_user	function	/	How	it	works…
sequential	function	/	How	it	works…
spawn_link	function	/	There’s	more…
SSL

used,	for	protecting	Phoenix	application	/	How	to	do	it…,	How	it	works…
start_link	function	/	How	it	works…
stateful	server	process

creating	/	Creating	a	stateful	server	process	(messages	with	counters),	Getting
ready,	How	it	works…,	See	also

static	files
serving	/	Serving	static	files,	How	to	do	it…,	How	it	works…

String.slice/2	function	/	How	it	works…
String.split_at	function	/	How	it	works…
string	codepoints

replacing,	with	patterns	/	Replacing	string	codepoints	with	patterns,	How	to	do
it…,	How	it	works…

strings
joining	/	How	to	do	it…,	How	it	works…
splitting	/	Splitting	strings,	How	to	do	it…,	How	it	works…
slicing,	with	range	/	Slicing	strings	with	ranges,	How	it	works…,	There’s
more…

subscriber	/	How	it	works…
sum	function	/	How	it	works…
supervised	application

generating	/	Generating	a	supervised	application,	How	it	works…
supervisor

creating	/	Creating	a	supervisor,	Getting	ready,	How	it	works…
implementing	/	How	to	do	it…

Supervisor	module
URL	/	See	also,	See	also

symbol	/	How	it	works…
system

in	IEx,	inspecting	/	Inspecting	your	system	in	IEx,	How	to	do	it…,	See	also
inspecting,	with	Observer	/	Inspecting	your	system	with	Observer,	How	to	do
it…

System.get_env	function	/	How	to	do	it…

www.it-ebooks.info

http://www.it-ebooks.info/

T
Task.await	function	/	How	it	works…
Task.Supervisor	module

URL	/	There’s	more…
Task	module

used,	for	performing	multiple	concurrent	computations	/	Using	tasks	to	perform
multiple	concurrent	computations,	Getting	ready,	How	to	do	it…,	How	it
works…,	There’s	more…
URL	/	There’s	more…

templates
about	/	Creating	a	Phoenix	application
creating	/	Creating	views	and	templates,	How	it	works…,	There’s	more…

terminate	function	/	How	it	works…
text

word	frequency,	determining	/	Getting	ready,	How	to	do	it…,	How	it	works…
throws

using	/	How	it	works…
tooling,	Elixir	/	How	it	works…
topics

about	/	Creating	a	Phoenix	application
implementing,	in	Phoenix	application	/	Getting	ready,	How	to	do	it…,	How	it
works…

tuples
combining,	into	list	/	Combining	tuples	into	a	list,	How	it	works…

Twitter	data
obtaining	/	Getting	Twitter	data,	How	to	do	it…,	How	it	works…,	There’s
more…

www.it-ebooks.info

http://www.it-ebooks.info/

U
umbrella	applications

generating	/	Generating	umbrella	applications,	How	to	do	it…,	How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

V
views

creating	/	Creating	views	and	templates,	How	to	do	it…,	How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

W
websocket	handler

implementing	/	Implementing	a	websocket	handler,	How	to	do	it…,	How	it
works…

websocket_handle	function	/	How	it	works…
websocket_info	function	/	How	it	works…
websocket_init	function	/	How	it	works…
websocket_terminate	function	/	How	it	works…
word	frequency

determining,	in	text	/	Determining	the	word	frequency	in	a	text,	How	to	do	it…,
How	it	works…

word	list
creating	/	Creating	a	word	list,	There’s	more…

wrk	tool	/	There’s	more…
~W	sigils

using	/	Creating	a	word	list,	How	it	works…
~w	sigils

using	/	Creating	a	word	list,	How	it	works…

www.it-ebooks.info

http://www.it-ebooks.info/

	Elixir Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Command Line
	Introduction
	Using the terminal to prototype and test ideas
	Getting ready
	How to do it…
	How it works…
	There's more…
	Loading and compiling modules
	Getting ready
	How to do it…
	How it works…
	There's more…
	Getting help and accessing documentation within IEx
	How to do it…
	How it works…
	There's more…
	Using Erlang from Elixir
	Getting ready
	How to do it…
	How it works…
	There's more…
	Inspecting your system in IEx
	Getting ready
	How to do it…
	How it works…
	See also
	Inspecting your system with Observer
	Getting ready
	How to do it…
	Creating a simple application
	How to do it…
	How it works…
	See also
	Managing dependencies
	Getting ready
	How to do it…
	How it works…
	See also
	Generating a supervised application
	How to do it…
	How it works…
	See also
	Generating umbrella applications
	How to do it…
	How it works…
	See also
	Managing application configuration
	How to do it…
	How it works…
	Creating custom Mix tasks
	How to do it…
	How it works…
	2. Data Types and Structures
	Understanding immutability
	Getting ready
	How to do it…
	How it works…
	Adding and subtracting lists
	Getting ready
	How to do it…
	How it works…
	Combining tuples into a list
	Getting ready
	How to do it…
	How it works…
	See also
	Creating and manipulating keyword lists
	Getting ready
	How to do it…
	How it works…
	Using pattern matching
	Getting ready
	How to do it…
	How it works…
	See also
	Pattern matching an HTTPoison response
	Getting ready
	How to do it…
	How it works…
	Creating a key/value store with a map
	Getting ready
	How to do it…
	How it works…
	See also
	Mapping and reducing enumerables
	Getting ready
	How to do it…
	How it works…
	There is more…
	Generating lazy (even infinite) sequences
	How to do it…
	How it works…
	There is more…
	Streaming a file as a resource
	Getting ready
	How to do it…
	How it works…
	3. Strings and Binaries
	Introduction
	Joining strings
	Getting ready
	How to do it…
	How it works…
	There's more…
	Splitting strings
	Getting ready
	How to do it…
	How it works…
	See also
	Replacing string codepoints with patterns
	Getting ready
	How to do it…
	How it works…
	See also
	Slicing strings with ranges
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using regular expressions
	Getting ready
	How to do it…
	How it works…
	See also
	Combining operations with the |> operator
	Getting ready
	How to do it…
	How it works…
	Creating a word list
	Getting ready
	How to do it…
	How it works…
	There's more…
	Determining the word frequency in a text
	Getting ready
	How to do it…
	How it works…
	Reading and writing metadata from MP3 files
	Getting ready
	How to do it…
	How it works…
	There's more…
	4. Modules and Functions
	Introduction
	Namespacing modules
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using module attributes as constants
	How to do it…
	How it works…
	See also
	Enforcing behaviors
	How to do it…
	How it works…
	See also
	Documenting modules
	Getting ready
	How to do it…
	Using module directives
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using a module in the scripted mode
	How to do it…
	How it works…
	There's more…
	Defining functions with default arguments
	Getting ready
	How to do it…
	How it works…
	Using guard clauses and pattern matching in function definitions
	Getting ready
	How to do it…
	How it works…
	5. Processes and Nodes
	Introduction
	Sending messages between processes
	Getting ready
	How to do it…
	How it works…
	There's more…
	Making code run on all available CPUs
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using tasks to perform multiple concurrent computations
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating a stateful server process (messages with counters)
	Getting ready
	How to do it…
	How it works…
	See also
	Using agents as an abstraction around states
	How to do it…
	How it works…
	There's more…
	Using an ETS table to share the state
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating named nodes
	Getting ready
	How to do it…
	How it works…
	See also
	Connecting nodes
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Executing code in a different node
	Getting ready
	How to do it…
	How it works…
	There's more…
	6. OTP – Open Telecom Platform
	Introduction
	Implementing a GenServer
	Getting ready
	How to do it…
	How it works…
	There's more…
	Expanding our server
	Getting ready
	How to do it…
	How it works…
	See also
	Creating a supervisor
	Getting ready
	How to do it…
	How it works…
	See also
	Using Observer to inspect supervisors and processes
	How to do it…
	How it works…
	Handling errors and managing exceptions
	Getting ready
	How to do it…
	How it works…
	There's more…
	Packaging and releasing an OTP application
	Getting ready…
	How to do it…
	How it works…
	There's more…
	See also
	Deploying applications and updating a running system
	Getting ready
	How to do it…
	How it works…
	See also
	7. Cowboy and Phoenix
	Introduction
	Setting up Cowboy
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Serving static files
	Getting ready
	How to do it…
	How it works…
	Implementing a websocket handler
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating a Phoenix application
	Getting ready
	How to do it…
	How it works…
	There's more…
	Defining routes
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating a controller
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating views and templates
	Getting ready
	How to do it…
	How it works…
	There's more…
	Implementing topics
	Getting ready
	How to do it…
	How it works…
	Protecting the Phoenix app with SSL
	Getting ready
	How to do it…
	How it works…
	8. Interactions
	Introduction
	Using Redis and Postgres
	Getting ready
	How to do it…
	How it works…
	Using OS commands from within Elixir
	How to do it…
	How it works…
	There's more…
	See also
	Getting Twitter data
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	A. Installation and Further Reading
	Installing Elixir
	Installing PostgreSQL
	Installing Redis
	Some useful links
	Elixir
	The Phoenix framework
	Erlang
	Index

