(intel'”

Intel® Math Kernel Library
for Windows* OS

User's Guide

Intel® MKL - Windows* OS
Document Number: 315930-025US

Legal Information

Contents

Contents

Legal Information....ccciiiiiiimirssssmssssssssssssssssnssssssansssssannsssssnnnnnnnnns 7
Introducing the Intel® Math Kernel Library.....ccccivicrmrsesiassasssasssasssanas 9
Getting Help and Support......cccciiiiiciiiii s inmss s snsssssssssssssssassssssnnnsnnannns 11
Notational ConventionS.......cccivirmimrmsrssnsmsassssnssssnsssassssnsssnnssnnsssnnsnnns 13

Chapter 1: Overview

[T Yol U] 4 1] 0 L@ AV Z=T 1Y L5 2 15
LAY = Lo =Y 2, 15
(2] P21 =T I 0 0] o 1 1= [0 1 15

Chapter 2: Getting Started

Checking Your Installation........cciiiiiiiiii e 17
Setting Environment Variablesoooiiiiiiiiiii 17
(@001 o101 1=T oY U] 0] o o o o PP 18
USING Code EXAMIPIES. ..ttt ettt e e e e ae e enens 19
What You Need to Know Before You Begin Using the Intel® Math Kernel

1] =Y o 19

Chapter 3: Structure of the Intel® Math Kernel Library

ArChiteCtUrE SUP PO, . r s e e anens 23
High-level Directory StruCtUre.oiviiii i e 23
(=) V7Y o <Ta I\ T 1= I @0 g [0l <] o) 25
Contents of the Documentation DireCtories.covviiiiiiiiiiiii e 26

Chapter 4: Linking Your Application with the Intel® Math Kernel Library

Linking QUICK STart. . oo 27
Using the /Qmkl Compiler Option......cv i e 27
Automatically Linking a Project in the Visual Studio* Integrated

Development Environment with Intel® MKL.......ccoviiiiiiiiiiiin i 28
Automatically Linking Your Microsoft Visual C/C++* Project with
INEEI® MK L. .ttt e e 28
Automatically Linking Your Intel® Visual Fortran Project with
INEEI® MK L. ittt e e e 28
Using the Single Dynamic Library.......coooiiiiiiiiiiii 28
Selecting Libraries to Link wWith........cooiii i 29
Using the Link-line AdViSOr. ..ot e 29
Using the Command-line Link TOOL.......ociiiiiiii e 30

LiNKING EXamMIDIES. ittt e e e e 30
Linking on IA-32 Architecture Systems.......ccooeiiiiii i 30
Linking on Intel(R) 64 Architecture Systems.........cooviiiiiiiiiiiiiiens 31

LinKing iN Detail.....oieiieii e e 32
Dynamically Selecting the Interface and Threading Layer...................... 32
Linking with Interface Libraries.......ccovieiieiiiii e 33

Using the cdecl and stdcall Interfaces.........ccovviiiiiiiiiiiiiii s 33
Using the ILP64 Interface vs. LP64 Interface.........cccovvviiiiviiinnnnn. 34
Linking with Fortran 95 Interface Libraries...........ccoooeiiiiiiiiiiinnnnn. 36

Intel® Math Kernel Library for Windows* OS User's Guide

Linking with Threading Libraries.........cviiiiiiiiiiii e 36
Sequential Mode of the Library.....cccoviiiiiiiiiiiiicc e 36
Selecting the Threading Layer.......ccooeviiiiiiiiii e 36
Linking with Computational Libraries..........cooiiiiiii s 37
Linking with Compiler Run-time Libraries.........cccoooiiiiiiiiiiiiiiii e 38
Linking with System Libraries.cccvviiiiiii i 39
Building Custom Dynamic-link Libraries........c.ccoiiiiiiii e 39
Using the Custom Dynamic-link Library Builder in the Command-line
17 Yo 1 P 39
Composing a List of FUNCLIONS ...ciiiiiiiiiiii e 41
Specifying FUNCEION NamEs....iviiiiii i i e en e raneaas 41
Building a Custom Dynamic-link Library in the Visual Studio*
Development System.. .o 42
Distributing Your Custom Dynamic-link Library.........cccoiiiiiiiiiiiinnn e, 43
Chapter 5: Managing Performance and Memory
Improving Performance with Threading.......ccooiviiiiii i e 45
Threaded Functions and Problems.cooiiiiiiiiii e 45
Avoiding Conflicts in the Execution Environment...........coovviiiviiviinnnnnnns 47
Techniques to Set the Number of Threads........ccoviiiiiiiiiiii e, 48
Setting the Number of Threads Using an OpenMP* Environment
LY £= [1=] o] L= T R 48
Changing the Number of Threads at Run Time.......cvveiiiiiiiiiiiicii s 48
Using Additional Threading Control........cccviiiiiiiiiiiii e 50
Intel MKL-specific Environment Variables for Threading Control..... 50
MKL_DYNAMIC. ..ttt et et e e e e e e e e e e reeeenens 51
MKL_DOMAIN_NUM_THREADS. ... ciit ittt eienieaneanaans 52
Setting the Environment Variables for Threading Control.............. 53
Other Tips and Techniques to Improve Performance........cocvviviiineiiineernnnennne, 54
(@foTo 1o Vo [l Ir=Tel o1 oY le LU= 1= 54
Hardware Configuration TiPS.....ouvivieiiiieiiinee e eaeenre e reeaeaneannens 54
Managing Multi-core PerformancCe......c.oooiii i i 55
Operating on DeNOIrMaAlS.oeiie e 56
FFT Optimized RAdiCES. . .ot e e eeaaens 56
Using Memory Management ... e 56
Intel MKL Memory Management Software........cccoooviiiiiiiic i 56
Redefining Memory FUNCHIONS.ouiieii e 56

Chapter 6: Language-specific Usage Options

Using Language-Specific Interfaces with Intel® Math Kernel Library................. 59
Interface Libraries and MOdUIES.coiviiiiiiiii i e e 59
Fortran 95 Interfaces to LAPACK and BLAS.ccoiiiii i e 61
Compiler-dependent Functions and Fortran 90 Modules............c.ccce.e.e. 61
Using the stdcall Calling Convention in C/CH+.....ccviiiiiiiiiiiiiie e 62
Compiling an Application that Calls the Intel® Math Kernel Library and

Uses the CVF Calling Conventions.......ocoiieiii i 62

Mixed-language Programming with the Intel Math Kernel Library.................... 63

Calling LAPACK, BLAS, and CBLAS Routines from C/C++ Language
ENVirONMENES. e 63
Using Complex TYpes iN C/CH 4. uiiiiiiiii i i i i i i rane e e 64

Contents

Calling BLAS Functions that Return the Complex Values in C/C++

o o [P 65
Support for Boost uBLAS Matrix-matrix Multiplication..................coevi 67
Invoking Intel MKL Functions from Java* Applications.............c.coeenenee. 68

Intel MKL Java* EXamples. . .ccoiiiiiiiiiiiiiiiiiee i neesnneenaens 68
Running the Java* Examples.....c.coooiiiiiiiiiiiiiic e 69
Known Limitations of the Java* Examples........ccvivviiiiiiiiinnninnnns 70

Chapter 7: Obtaining Numerically Reproducible Results

Getting Started with Conditional Numerical Reproducibilitycoceenatt. 72
Specifying the Code BranChes........covviiiiiiii e 73
Reproducibility Conditions......cviiiii i i 74
Setting the Environment Variable for Conditional Numerical Reproducibility...... 75
(@foTo L ot Yo 0] 0] L= PP 75
Chapter 8: Coding Tips
Example of Data AlIgNment.....o.oiii i 77
Using Predefined Preprocessor Symbols for Intel® MKL Version-Dependent
(@001 111 1= To] o F N PP 78

Chapter 9: Working with the Intel® Math Kernel Library Cluster
Software

1 RS U0 T o P 79
Linking with ScaLAPACK and Cluster FFTS.......oieii i e 79
Determining the Number of Threads.......coovviiiiiiii s 81
L L 1 Lo 0 81
Setting Environment Variables on a Cluster........c.oooviiiiiiii i e 82
BUilding SCaLAPACK TeSES. ...ttt e e 82
Examples for Linking with ScaLAPACK and Cluster FFT.......cociiiiiiiiiiiiiieenns 82

Examples for Linking a C Application........c.coiiiiiiiiiiciiiic i 83

Examples for Linking a Fortran Application........ccccoieiiiiiiiiiiiic e 83

Chapter 10: Programming with Intel® Math Kernel Library in
Integrated Development Environments (IDE)
Configuring Your Integrated Development Environment to Link with Intel

Math Kernel Library ..o s s e e e e e 85
Configuring the Microsoft Visual C/C++* Development System to Link
1T g T g =T 1 S 85
Configuring Intel® Visual Fortran to Link with Intel MKL...........ccoccvvinnns 85
Running an Intel MKL Example in the Visual Studio* 2008 IDE............... 86
Creating, Configuring, and Running the Intel® C/C++ and/or
Visual C++* 2008 Project.....ccceiiiiiiiiii i 86
Creating, Configuring, and Running the Intel Visual Fortran
PrOJeCE. i e 88
Support Files for Intel® Math Kernel Library Examples................... 90
Known Limitations of the Project Creation Procedure.................... 90
Getting Assistance for Programming in the Microsoft Visual Studio* IDE 90
Viewing Intel MKL Documentation in Visual Studio* IDE....................... 90
Using Context-Sensitive Help.. ..o 91
Using the IntelliSense* Capability.......ccoooiiiiiiii 92

Intel® Math Kernel Library for Windows* OS User's Guide

Chapter 11: LINPACK and MP LINPACK Benchmarks

Intel® Optimized LINPACK Benchmark for Windows* OS........ccccocviiiiiiiiiinennne, 95
Contents of the Intel® Optimized LINPACK Benchmark............ocovviinnnnns 95
RUNNING the SOftWare. .. c.vce i e 96
Known Limitations of the Intel® Optimized LINPACK Benchmark............. 97

Intel® Optimized MP LINPACK Benchmark for Clusters..........ccoovvieiiiiiiiniinnnn. 97

Overview of the Intel® Optimized MP LINPACK Benchmark for Clusters....97
Contents of the Intel® Optimized MP LINPACK Benchmark for Clusters....98

Building the MP LINPACKttt i e v v rae s 99

New Features of Intel® Optimized MP LINPACK Benchmark.................... 99

Benchmarking @ ClUSter......viiiiiiiii e 100

Options to Reduce Search Time. . oo iiiiii i e 100
Appendix A: Intel® Math Kernel Library Language Interfaces Support

Language Interfaces Support, by Function Domain........ccovviiiiiiiiiiiiinennans 103

1 Tl 18 T L T 104

Appendix B: Support for Third-Party Interfaces

FFTW Interface SUP PO . v i e e aaee e 107
Appendix C: Directory Structure in Detail
Detailed Structure of the IA-32 Architecture DireCtorieS.......vovvvviiiiirerriinness 109
Static Libraries in the lib\ia32 Directory.....cccoiviiiiiiiiiiiicc e 109
Dynamic Libraries in the lib\ia32 Directory.......ccooeviiiiiiiiiiiiiiieinens 110
Contents of the redist\ia32\mkl Directory.......cccoiiiiiiiiiiiiiiiiiiiie e 110
Detailed Structure of the Intel® 64 Architecture DirectorieS......covvvvvvvirerreeenn. 111
Static Libraries in the lib\intel64 Directory.........ccovviiiiiiiiiiiiiiiieane, 112
Dynamic Libraries in the lib\intel64 Directory.........ccvviiiiiiiiiiiininennnnn. 113
Contents of the redist\intel64\mkl Directory.......cccovviiiiiiiiiiiiii i 113

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH,
HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR
DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR
ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL
PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order. Copies of documents which have an order number and are referenced in this
document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://
www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within
each processor family, not across different processor families. Go to: http://www.intel.com/products/
processor_number/

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with
other products.

BlueMoon, BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Cilk, Core Inside, E-GOLD,
Flexpipe, i960, Intel, the Intel logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel CoFluent, Intel Core,
Intel Inside, Intel Insider, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel
StrataFlash, Intel vPro, Intel Xeon Phi, Intel XScale, InTru, the InTru logo, the InTru Inside logo, InTru
soundmark, Itanium, Itanium Inside, MCS, MMX, Pentium, Pentium Inside, Puma, skoool, the skoool logo,
SMARTI, Sound Mark, Stay With It, The Creators Project, The Journey Inside, Thunderbolt, Ultrabook, vPro
Inside, VTune, Xeon, Xeon Inside, X-GOLD, XMM, X-PMU and XPOSYS are trademarks of Intel Corporation in
the U.S. and/or other countries.

*QOther names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Intel® Math Kernel Library for Windows* OS User's Guide

Java is a registered trademark of Oracle and/or its affiliates.
Copyright © 2007 - 2012, Intel Corporation. All rights reserved.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Introducing the Intel® Math Kernel
Library

Intel® Math Kernel Library (Intel® MKL) is a computing math library of highly optimized, extensively threaded
routines for applications that require maximum performance. Intel MKL provides comprehensive functionality
support in these major areas of computation:

e BLAS (level 1, 2, and 3) and LAPACK linear algebra routines, offering vector, vector-matrix, and matrix-
matrix operations.

e The PARDISO* direct sparse solver, an iterative sparse solver, and supporting sparse BLAS (level 1, 2,
and 3) routines for solving sparse systems of equations.

e ScalAPACK distributed processing linear algebra routines for Linux* and Windows* operating systems, as
well as the Basic Linear Algebra Communications Subprograms (BLACS) and the Parallel Basic Linear
Algebra Subprograms (PBLAS).

e Fast Fourier transform (FFT) functions in one, two, or three dimensions with support for mixed radices
(not limited to sizes that are powers of 2), as well as distributed versions of these functions provided for
use on clusters of the Linux* and Windows* operating systems.

e Vector Math Library (VML) routines for optimized mathematical operations on vectors.

e Vector Statistical Library (VSL) routines, which offer high-performance vectorized random number
generators (RNG) for several probability distributions, convolution and correlation routines, and summary
statistics functions.

e Data Fitting Library, which provides capabilities for spline-based approximation of functions, derivatives
and integrals of functions, and search.

For details see the Intel® MKL Reference Manual.

Intel MKL is optimized for the latest Intel processors, including processors with multiple cores (see the Inte/®
MKL Release Notes for the full list of supported processors). Intel MKL also performs well on non-Intel
processors.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Intel® Math Kernel Library for Windows* OS User's Guide

10

Getting Help and Support

Intel provides a support web site that contains a rich repository of self help information, including getting
started tips, known product issues, product errata, license information, user forums, and more. Visit the Intel
MKL support website at http://www.intel.com/software/products/support/.

The Intel MKL documentation integrates into the Microsoft Visual Studio* integrated development
environment (IDE). See Getting Assistance for Programming in the Microsoft Visual Studio* IDE.

11

Intel® Math Kernel Library for Windows* OS User's Guide

12

Notational Conventions

The following term is used in reference to the operating system.

Windows* OS

This term refers to information that is valid on all supported Windows* operating
systems.

The following notations are used to refer to Intel MKL directories.

<Composer XE
directory>

<mkl directory>

The installation directory for the Intel® C++ Composer XE or Intel® Visual Fortran
Composer XE .

The main directory where Intel MKL is installed:
<mkl directory>=<Composer XE directory>\mkl.

Replace this placeholder with the specific pathname in the configuring, linking, and
building instructions.

The following font conventions are used in this document.

Italic

Monospace
lowercase mixed
with uppercase

UPPERCASE
MONOSPACE

Monospace
italic

[items]

{ item | item }

Italic is used for emphasis and also indicates document names in body text, for
example:
see Intel MKL Reference Manual.

Indicates:

¢ Commands and command-line options, for example,

ifort myprog.f mkl blas95.1ib mkl c.lib libiomp5md.lib
* Filenames, directory names, and pathnames, for example,

C:\Program Files\Java\jdkl.5.0 09

e C/C++ code fragments, for example,
a = new double [SIZE*SIZE];

Indicates system variables, for example, SMKLPATH.

Indicates a parameter in discussions, for example, 1da.

When enclosed in angle brackets, indicates a placeholder for an identifier, an
expression, a string, a symbol, or a value, for example, <mkl directory>.
Substitute one of these items for the placeholder.

Square brackets indicate that the items enclosed in brackets are optional.

Braces indicate that only one of the items listed between braces should be selected.
A vertical bar (|) separates the items.

13

Intel® Math Kernel Library for Windows* OS User's Guide

14

Overview

Document Overview

The Intel® Math Kernel Library (Intel® MKL) User's Guide provides usage information for the library. The
usage information covers the organization, configuration, performance, and accuracy of Intel MKL, specifics
of routine calls in mixed-language programming, linking, and more.

This guide describes OS-specific usage of Intel MKL, along with OS-independent features. The document
contains usage information for all Intel MKL function domains.

This User's Guide provides the following information:

e Describes post-installation steps to help you start using the library

e Shows you how to configure the library with your development environment

e Acquaints you with the library structure

e Explains how to link your application with the library and provides simple usage scenarios
e Describes how to code, compile, and run your application with Intel MKL

This guide is intended for Windows OS programmers with beginner to advanced experience in software
development.

See Also
Language Interfaces Support, by Function Domain

What's New

This User's Guide documents Intel® Math Kernel Library (Intel® MKL) 11.0.

The following new functionality and features of Intel MKL 11.0 have been described in the document:

e The Conditional Numerical Reproducibility (CNR) mode of Intel MKL has been introduced to ensure bitwise

reproducibility of results from run to run under certain conditions. It is documented in the Obtaining
Numerically Reproducible Results section.
e The GNU Multiple Precision (GMP) arithmetic functions have been removed from the library.

e Themkl set num threads local function, which sets the number of threads on the current execution
thread, has been added. See Using Additional Threading Control.

Additionally, minor updates have been made to correct errors in the document.

Related Information

To reference how to use the library in your application, use this guide in conjunction with the following
documents:

e The Intel® Math Kernel Library Reference Manual, which provides reference information on routine
functionalities, parameter descriptions, interfaces, calling syntaxes, and return values.
e The Intel® Math Kernel Library for Windows* OS Release Notes.

15

1 Intel® Math Kernel Library for Windows* OS User's Guide

16

Getting Started

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Checking Your Installation

After installing the Intel® Math Kernel Library (Intel® MKL), verify that the library is properly installed and
configured:

1. Intel MKL installs in <Composer XE directory>.

Check that the subdirectory of <Composer XE directory> referred to as <mkl directory> was
created.

Check that subdirectories for Intel MKL redistributable DLLs redist\ia32\mkl and redist
\intel64\mkl were created in the <Composer XE directory> directory (See redist.txt in the
Intel MKL documentation directory for a list of files that can be redistributed.)

2. If you want to keep multiple versions of Intel MKL installed on your system, update your build scripts to
point to the correct Intel MKL version.

3. Check that the following files appear in the <mk1 directory>\bin directory and its subdirectories:
mklvars.bat
ia32\mklvars ia32.bat
intel64\mklvars intel64.bat

Use these files to assign Intel MKL-specific values to several environment variables, as explained in
Setting Environment Variables
4. To understand how the Intel MKL directories are structured, see Intel® Math Kernel Library Structure.

5. To make sure that Intel MKL runs on your system, do one of the following:

e Launch an Intel MKL example, as explained in Using Code Examples

e In the Visual Studio* IDE, create and run a simple project that uses Intel MKL, as explained in
Running an Intel MKL Example in the Visual Studio IDE

See Also
Notational Conventions

Setting Environment Variables

When the installation of Intel MKL for Windows* OS is complete, set the PATH, LIB, and INCLUDE
environment variables in the command shell using one of the script files in the bin subdirectory of the Intel
MKL installation directory:

ia32\mklvars ia32.bat for the IA-32 architecture,

17

2 Intel® Math Kernel Library for Windows* OS User's Guide

intel64\mklvars intel64.bat fortheInteK>64-archnecture,
mklvars.bat for the IA-32 and Intel® 64 architectures.
Running the Scripts

The parameters of the scripts specify the following:

e Architecture.

e Use of Intel MKL Fortran modules precompiled with the Intel® Visual Fortran compiler. Supply this

parameter only if you are using this compiler.
e Programming interface (LP64 or ILP64).

Usage and values of these parameters depend on the script. The following table lists values of the script
parameters.

Script Architecture Use of Fortran Interface
(required, Modules (optional) (optional)
when applicable)

mklvars ia32 n/a’ mod n/a
mklvars intel64 n/a mod 1p64, default
ilp64
mklvars ia32 mod 1p64, default
inteloc4 ilp64

™ Not applicable.
For example:

e The command
mklvars ia32
sets the environment for Intel MKL to use the IA-32 architecture.
e The command
mklvars intel64 mod ilp64
sets the environment for Intel MKL to use the Intel® 64 architecture, ILP64 programming interface, and
Fortran modules.
e The command
mklvars intel64 mod
sets the environment for Intel MKL to use the Intel® 64 architecture, LP64 interface, and Fortran modules.

NOTE Supply the parameter specifying the architecture first, if it is needed. Values of the other two
parameters can be listed in any order.

See Also

High-level Directory Structure

Interface Libraries and Modules

Fortran 95 Interfaces to LAPACK and BLAS

Setting the Number of Threads Using an OpenMP* Environment Variable

Compiler Support

Intel MKL supports compilers identified in the Release Notes. However, the library has been successfully used
with other compilers as well.

18

Getting Started 2

Although Compaq no longer supports the Compaq Visual Fortran* (CVF) compiler, Intel MKL still preserves
the CVF interface in the IA-32 architecture implementation. You can use this interface with the Intel® Fortran
Compiler. Intel MKL provides both stdcall (default CVF interface) and cdecl (default interface of the Microsoft
Visual C* application) interfaces for the IA-32 architecture.

Intel MKL provides a set of include files to simplify program development by specifying enumerated values
and prototypes for the respective functions. Calling Intel MKL functions from your application without an
appropriate include file may lead to incorrect behavior of the functions.

See Also

Compiling an Application that Calls the Intel® Math Kernel Library and Uses the CVF Calling
Conventions

Using the cdecl and stdcall Interfaces
Include Files

Using Code Examples

The Intel MKL package includes code examples, located in the examples subdirectory of the installation
directory. Use the examples to determine:

e Whether Intel MKL is working on your system

e How you should call the library

e How to link the library

The examples are grouped in subdirectories mainly by Intel MKL function domains and programming
languages. For instance, the examples\spblas subdirectory contains a makefile to build the Sparse BLAS
examples and the examples\vmlc subdirectory contains the makefile to build the C VML examples. Source
code for the examples is in the next-level sources subdirectory.

See Also
High-level Directory Structure
Running an Intel MKL Example in the Visual Studio* 2008 IDE

What You Need to Know Before You Begin Using the Intel®
Math Kernel Library

Target platform Identify the architecture of your target machine:

e IA-32 or compatible
* Intel® 64 or compatible

Reason: Because Intel MKL libraries are located in directories corresponding to your
particular architecture (see Architecture Support), you should provide proper paths
on your link lines (see Linking Examples). To configure your development
environment for the use with Intel MKL, set your environment variables using the
script corresponding to your architecture (see Setting Environment Variables for

details).
Mathematical Identify all Intel MKL function domains that you require:
problem

* BLAS

e Sparse BLAS

* LAPACK

* PBLAS

* ScalAPACK
e Sparse Solver routines
* Vector Mathematical Library functions (VML)

19

2 Intel® Math Kernel Library for Windows* OS User's Guide

Programming
language

Range of integer
data

Threading model

Number of threads

Linking model

20

e Vector Statistical Library functions

* Fourier Transform functions (FFT)

e Cluster FFT

e Trigonometric Transform routines

e Poisson, Laplace, and Helmholtz Solver routines
e Optimization (Trust-Region) Solver routines

¢ Data Fitting Functions

Reason: The function domain you intend to use narrows the search in the Reference
Manual for specific routines you need. Additionally, if you are using the Intel MKL
cluster software, your link line is function-domain specific (see Working with the
Cluster Software). Coding tips may also depend on the function domain (see Other
Tips and Techniques to Improve Performance).

Intel MKL provides support for both Fortran and C/C++ programming. Identify the
language interfaces that your function domains support (see Intel® Math Kernel
Library Language Interfaces Support).

Reason: Intel MKL provides language-specific include files for each function domain
to simplify program development (see Language Interfaces Support, by Function
Domain).

For a list of language-specific interface libraries and modules and an example how to
generate them, see also Using Language-Specific Interfaces with Intel® Math Kernel
Library.

If your system is based on the Intel 64 architecture, identify whether your
application performs calculations with large data arrays (of more than 231-1
elements).

Reason: To operate on large data arrays, you need to select the ILP64 interface,
where integers are 64-bit; otherwise, use the default, LP64, interface, where
integers are 32-bit (see Using the ILP64 Interface vs. LP64 Interface).

Identify whether and how your application is threaded:

e Threaded with the Intel compiler
e Threaded with a third-party compiler
* Not threaded

Reason: The compiler you use to thread your application determines which
threading library you should link with your application. For applications threaded
with a third-party compiler you may need to use Intel MKL in the sequential mode
(for more information, see Sequential Mode of the Library and Linking with
Threading Libraries).

Determine the number of threads you want Intel MKL to use.

Reason: Intel MKL is based on the OpenMP* threading. By default, the OpenMP*
software sets the number of threads that Intel MKL uses. If you need a different
number, you have to set it yourself using one of the available mechanisms. For more
information, see Improving Performance with Threading.

Decide which linking model is appropriate for linking your application with Intel MKL
libraries:

¢ Static
* Dynamic

Reason: The link libraries for static and dynamic linking are different. For the list of
link libraries for static and dynamic models, linking examples, and other relevant
topics, like how to save disk space by creating a custom dynamic library, see Linking
Your Application with the Intel® Math Kernel Library.

Getting Started 2

MPI used Decide what MPI you will use with the Intel MKL cluster software. You are strongly
encouraged to use Intel® MPI 3.2 or later.
MPI used

Reason: To link your application with ScaLAPACK and/or Cluster FFT, the libraries
corresponding to your particular MPI should be listed on the link line (see Working
with the Cluster Software).

21

2 Intel® Math Kernel Library for Windows* OS User's Guide

22

Structure of the Intel® Math
Kernel Library

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Architecture Support

Intel® Math Kernel Library (Intel® MKL) for Windows* OS provides architecture-specific implementations for
supported platforms. The following table lists the supported architectures and directories where each
architecture-specific implementation is located.

Architecture Location

IA-32 or compatible <mkl directory>\1ib\ia32
<Composer XE directory>\redist\ia32\mkl
(DLLs)

Intel® 64 or compatible <mkl directory>\1lib\intel64

<Composer XE directory>\redist
\intel64\mkl (DLLs)

See Also

High-level Directory Structure

Detailed Structure of the IA-32 Architecture Directories
Detailed Structure of the Intel® 64 Architecture Directories

High-level Directory Structure

Directory Contents

<mk1l directory> Installation directory of the Intel® Math Kernel Library (Intel® MKL)

Subdirectories of <mk1 directory>

bin Batch files to set environmental variables in the user shell
bin\ia32 Batch files for the IA-32 architecture

bin\intelo64 Batch files for the Intel® 64 architecture

benchmarks\linpack Shared-Memory (SMP) version of the LINPACK benchmark
benchmarks\mp linpack Message-passing interface (MPI) version of the LINPACK benchmark

23

3 Intel® Math Kernel Library for Windows* OS User's Guide

Directory Contents

1lib\ia32 Static libraries and static interfaces to DLLs for the IA-32 architecture
lib\intelé64 Static libraries and static interfaces to DLLs for the Intel® 64 architecture
examples Examples directory. Each subdirectory has source and data files

include INCLUDE files for the library routines, as well as for tests and examples
include\ia32 Fortran 95 .mod files for the IA-32 architecture and Intel Fortran compiler
include\intel64\1p64 Fortran 95 .mod files for the Intel® 64 architecture, Intel® Fortran

include\intel64\ilp64

include\fftw
interfaces\blas95
interfaces\fftw2x cdft
interfaces\fftw3x cdft
interfaces\fftw2xc
interfaces\fftw2xf
interfaces\fftw3xc
interfaces\fftw3xf
interfaces\lapack95
tests

tools

tools\builder

compiler, and LP64 interface

Fortran 95 .mod files for the Intel® 64 architecture, Intel Fortran
compiler, and ILP64 interface

Header files for the FFTW2 and FFTW3 interfaces

Fortran 95 interfaces to BLAS and a makefile to build the library
MPI FFTW 2.x interfaces to Intel MKL Cluster FFTs

MPI FFTW 3.x interfaces to Intel MKL Cluster FFTs

FFTW 2.x interfaces to the Intel MKL FFTs (C interface)

FFTW 2.x interfaces to the Intel MKL FFTs (Fortran interface)
FFTW 3.x interfaces to the Intel MKL FFTs (C interface)

FFTW 3.x interfaces to the Intel MKL FFTs (Fortran interface)
Fortran 95 interfaces to LAPACK and a makefile to build the library
Source and data files for tests

Commad-line link tool and tools for creating custom dynamically linkable
libraries

Tools for creating custom dynamically linkable libraries

Subdirectories of <Composer XE directory>

redist\ia32\mkl

redist\intel64\mkl

Documentation\en US\MKL

Documentation\vshelp
\1033\
intel.mkldocs

Documentation\msvhelp
\1033\mkl

DLLs for applications running on processors with the IA-32 architecture
DLLs for applications running on processors with Intel® 64 architecture
Intel MKL documentation

Help2-format files for integration of the Intel MKL documentation with the
Microsoft Visual Studio* 2008 IDE

Microsoft Help Viewer*-format files for integration of the Intel MKL
documentation with the Microsoft Visual Studio* 2010 IDE

See Also
Notational Conventions

24

Structure of the Intel® Math Kernel Library 3

Layered Model Concept

Intel MKL is structured to support multiple compilers and interfaces, different OpenMP* implementations,
both serial and multiple threads, and a wide range of processors. Conceptually Intel MKL can be divided into
distinct parts to support different interfaces, threading models, and core computations:

1. Interface Layer

2. Threading Layer

3. Computational Layer

You can combine Intel MKL libraries to meet your needs by linking with one library in each part layer-by-
layer. Once the interface library is selected, the threading library you select picks up the chosen interface,

and the computational library uses interfaces and OpenMP implementation (or non-threaded mode) chosen in
the first two layers.

To support threading with different compilers, one more layer is needed, which contains libraries not included
in Intel MKL:

e Compiler run-time libraries (RTL).

The following table provides more details of each layer.

Layer Description

Interface Layer This layer matches compiled code of your application with the threading and/or
computational parts of the library. This layer provides:

* cdecl and CVF default interfaces.

e LP64 and ILP64 interfaces.

e Compatibility with compilers that return function values differently.

* A mapping between single-precision names and double-precision names for
applications using Cray*-style naming (SP2DP interface).
SP2DP interface supports Cray-style naming in applications targeted for the Intel
64 architecture and using the ILP64 interface. SP2DP interface provides a
mapping between single-precision names (for both real and complex types) in the
application and double-precision names in Intel MKL BLAS and LAPACK. Function
names are mapped as shown in the following example for BLAS functions ?GEMM:

SGEMM -> DGEMM
DGEMM -> DGEMM
CGEMM -> ZGEMM
ZGEMM -> ZGEMM
Mind that no changes are made to double-precision names.

Threading Layer This layer:

* Provides a way to link threaded Intel MKL with different threading compilers.
* Enables you to link with a threaded or sequential mode of the library.

This layer is compiled for different environments (threaded or sequential) and
compilers (from Intel, Microsoft, and so on).

Computational This layer is the heart of Intel MKL. It has only one library for each combination of

Layer architecture and supported OS. The Computational layer accommodates multiple
architectures through identification of architecture features and chooses the
appropriate binary code at run time.

Compiler Run-time To support threading with Intel compilers, Intel MKL uses RTLs of the Intel® C++

Libraries (RTL) Composer XE or Intel® Visual Fortran Composer XE. To thread using third-party
threading compilers, use libraries in the Threading layer or an appropriate
compatibility library.

See Also
Using the ILP64 Interface vs. LP64 Interface

25

3 Intel® Math Kernel Library for Windows* OS User's Guide

Linking Your Application with the Intel® Math Kernel Library
Linking with Threading Libraries

Contents of the Documentation Directories

Most of Intel MKL documentation is installed at <Composer XE directory>\Documentation\<locale>
\mk1l. For example, the documentation in English is installed at <Composer XE directory>
\Documentation\en US\mkl. However, some Intel MKL-related documents are installed one or two levels
up. The following table lists MKL-related documentation.

File name Comment

Files in <Composer XE directory>\Documentation

<locale>\clicense.rtf or Common end user license for the Intel® C++ Composer XE or Intel®
<locale>\flicense.rtf Visual Fortran Composer XE, respectively
mklsupport.txt Information on package number for customer support reference

Contents of <Composer XE directory>\Documentation\<locale>\mkl

redist.txt List of redistributable files

mkl documentation.htm Overview and links for the Intel MKL documentation

mklman90.pdf ' Intel MKL 9.0 Reference Manual in Japanese

Release Notes.htm Intel MKL Release Notes

mkl userguide\index.htm Intel MKL User's Guide in an uncompressed HTML format, this
document

mkl link line advisor.htm Intel MKL Link-line Advisor

T Included only in the Japanese versions of the Intel® C++ Composer XE and Intel® Visual Fortran Composer
XE.

For more documents, search Intel MKL documentation at http://software.intel.com/en-us/articles/intel-math-
kernel-library-documentation/.

26

Linking Your Application with
the Intel® Math Kernel Library

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Linking Quick Start

Intel® Math Kernel Library (Intel® MKL) provides several options for quick linking of your application. The
simplest options depend on your development environment:

Intel® Composer XE compiler see Using the /omk1 Compiler Option.

Microsoft Visual Studio* Integrated Development Environment see Automatically Linking a Project in the
(IDE) Visual Studio* IDE with Intel MKL.

Other options are independent of your development environment, but depend on the way you link:

Explicit dynamic linking see Using the Single Dynamic Library for
how to simplify your link line.

Explicitly listing libraries on your link line see Selecting Libraries to Link with for a
summary of the libraries.

Using an interactive interface see Using the Link-line Advisor to
determine libraries and options to specify
on your link or compilation line.

Using an internally provided tool see Using the Command-line Link Tool to
determine libraries, options, and
environment variables or even compile and
build your application.

Using the /Qmkl Compiler Option

The Intel® Composer XE compiler supports the following variants of the /Qmk1 compiler option:

/Qmkl or to link with standard threaded Intel MKL.

/Qmkl:parallel

/0mkl:sequential to link with sequential version of Intel MKL.

/Qmkl:cluster to link with Intel MKL cluster components (sequential) that use
Intel MPI.

For more information on the /Qmk1 compiler option, see the Intel Compiler User and Reference Guides.

For each variant of the /Qmk1 option, the compiler links your application using the following conventions:

27

4 Intel® Math Kernel Library for Windows* OS User's Guide

e cdecl for the IA-32 architecture
e LP64 for the Intel® 64 architecture

If you specify any variant of the /Qmk1 compiler option, the compiler automatically includes the Intel MKL
libraries. In cases not covered by the option, use the Link-line Advisor or see Linking in Detail.

See Also

Using the ILP64 Interface vs. LP64 Interface
Using the Link-line Advisor

Intel® Software Documentation Library

Automatically Linking a Project in the Visual Studio* Integrated Development Environment
with Intel® MKL

After a default installation of the Intel® Math Kernel Library (Intel® MKL), Intel® C++ Composer XE, or Intel®
Visual Fortran Composer XE, you can easily configure your project to automatically link with Intel MKL.

Automatically Linking Your Microsoft Visual C/C++* Project with Intel® MKL
Configure your Microsoft Visual C/C++* project for automatic linking with Intel MKL as follows:
e For the Visual Studio* 2010 development system:

1. Go to Project>Properties>Configuration Properties>Intel Performance Libraries.
2. Change the Use MKL property setting by selecting Parallel, Sequential, or Cluster as
appropriate.
e For the Visual Studio 2008 development system:

1. Go to Project>Intel C++ Composer XE 2011 >Select Build Components.
2. From the Use MKL drop-down menu, select Parallel, Sequential, or Cluster as appropriate.

Specific Intel MKL libraries that link with your application may depend on more project settings. For details,
see the Intel® Composer XE documentation.

See Also
Intel® Software Documentation Library

Automatically Linking Your Intel® Visual Fortran Project with Intel® MKL
Configure your Intel® Visual Fortran project for automatic linking with Intel MKL as follows:

Go to Project > Properties > Libraries > Use Intel Math Kernel Library and select Parallel,
Sequential, or Cluster as appropriate.

Specific Intel MKL libraries that link with your application may depend on more project settings. For details
see the Intel® Visual Fortran Compiler XE User and Reference Guides.

See Also
Intel® Software Documentation Library

Using the Single Dynamic Library
You can simplify your link line through the use of the Intel MKL Single Dynamic Library (SDL).
To use SDL, place mkl rt.lib on your link line. For example:

icl.exe application.c mkl rt.lib
mkl rt.lib isthe import library for mkl rt.dl1l.

SDL enables you to select the interface and threading library for Intel MKL at run time. By default, linking
with SDL provides:

28

http://software.intel.com/en-us/articles/intel-software-technical-documentation/
http://software.intel.com/en-us/articles/intel-software-technical-documentation/
http://software.intel.com/en-us/articles/intel-software-technical-documentation/

Linking Your Application with the Intel® Math Kernel Library 4

e LP64 interface on systems based on the Intel® 64 architecture
e Intel threading

To use other interfaces or change threading preferences, including use of the sequential version of Intel MKL,
you need to specify your choices using functions or environment variables as explained in section
Dynamically Selecting the Interface and Threading Layer.

Selecting Libraries to Link with
To link with Intel MKL:

e Choose one library from the Interface layer and one library from the Threading layer
e Add the only library from the Computational layer and run-time libraries (RTL)

The following table lists Intel MKL libraries to link with your application.

Interface layer Threading layer Computational RTL
layer

IA-32 mkl intel c.lib mkl intel mkl core.lib libiomp5md.lib
architecture, thread.lib
static linking
IA-32 mkl intel c_ mkl intel mkl core dll. libiomp5md.lib
architecture, dll.lib thread dll.lib 1lib
dynamic linking
Intel® 64 mkl intel mkl intel mkl core.lib libiompbmd.1lib
architecture, 1p64.1ib thread.lib
static linking
Intel® 64 mkl intel mkl intel mkl core dll. libiomp5md.lib
architecture, 1p64_dll.1lib thread dll1.1ib lib

dynamic linking

The Single Dynamic Library (SDL) automatically links interface, threading, and computational libraries and
thus simplifies linking. The following table lists Intel MKL libraries for dynamic linking using SDL. See
Dynamically Selecting the Interface and Threading Layer for how to set the interface and threading layers at
run time through function calls or environment settings.

SDL RTL

IA-32 and Intel® 64 mkl rt.lib libiomp5md.lib"
architectures

* Linking with 1ibiomp5md.lib is not required.

For exceptions and alternatives to the libraries listed above, see Linking in Detail.

See Also

Layered Model Concept

Using the Link-line Advisor

Using the /Qmkl Compiler Option

Working with the Intel® Math Kernel Library Cluster Software

Using the Link-line Advisor

Use the Intel MKL Link-line Advisor to determine the libraries and options to specify on your link or
compilation line.

The latest version of the tool is available at http://software.intel.com/en-us/articles/intel-mkl-link-line-
advisor. The tool is also available in the product.

29

4 Intel® Math Kernel Library for Windows* OS User's Guide

The Advisor requests information about your system and on how you intend to use Intel MKL (link
dynamically or statically, use threaded or sequential mode, etc.). The tool automatically generates the
appropriate link line for your application.

See Also
Contents of the Documentation Directories

Using the Command-line Link Tool

Use the command-line Link tool provided by Intel MKL to simplify building your application with Intel MKL.

The tool not only provides the options, libraries, and environment variables to use, but also performs
compilation and building of your application.

The tool mk1l link tool.exe is installed in the <mkl directory>\tools directory.

See the knowledge base article at http://software.intel.com/en-us/articles/mkl-command-line-link-tool for
more information.

Linking Examples

See Also
Using the Link-line Advisor
Examples for Linking with ScaLAPACK and Cluster FFT

Linking on IA-32 Architecture Systems
The following examples illustrate linking that uses Intel(R) compilers.

The examples use the . £ Fortran source file. C/C++ users should instead specify a .cpp (C++) or .c (C) file
and replace ifort with icc:

e Static linking of myprog. f and parallel Intel MKL supporting the cdecl interface:

ifort myprog.f mkl intel c.lib mkl intel thread.lib mkl core.lib libiomp5md.lib
e Dynamic linking of myprog. £ and parallel Intel MKL supporting the cdecl interface:
ifort myprog.f mkl intel c dll.lib mkl intel thread dll.lib mkl core dll.lib
libiomp5md.lib
e Static linking of myprog. f and sequential version of Intel MKL supporting the cdecl interface:

ifort myprog.f mkl intel c.lib mkl sequential.lib mkl core.lib
e Dynamic linking of myprog. £ and sequential version of Intel MKL supporting the cdecl interface:

ifort myprog.f mkl intel c dll.lib mkl sequential dll.lib mkl core dll.lib
e Static linking of user code myprog. f and parallel Intel MKL supporting the stdcall interface:

ifort myprog.f mkl intel s.lib mkl intel thread.lib mkl core.lib libiomp5md.lib
e Dynamic linking of user code myprog. f and parallel Intel MKL supporting the stdcall interface:

ifort myprog.f mkl intel s dll.lib mkl intel thread dll.lib mkl core dll.lib
libiompbmd.1lib

e Dynamic linking of user code myprog. f and parallel or sequential Intel MKL supporting the cdecl or stdcall
interface (Call the mkl set threading layer function or set value of the MKL THREADING LAYER
environment variable to choose threaded or sequential mode):

ifort myprog.f mkl rt.lib

e Static linking of myprog. f, Fortran 95 LAPACK interface, and parallel Intel MKL supporting the cdecl
interface:

30

Linking Your Application with the Intel® Math Kernel Library 4

ifort myprog.f mkl lapack95.1ib mkl intel c.lib mkl intel thread.lib mkl core.lib
libiompbmd.1lib

e Static linking of myprog. f, Fortran 95 BLAS interface, and parallel Intel MKL supporting the cdecl
interface:

ifort myprog.f mkl blas95.1ib mkl intel c.lib mkl intel thread.lib mkl core.lib
libiompbmd.1lib

See Also

Fortran 95 Interfaces to LAPACK and BLAS
Examples for Linking a C Application
Examples for Linking a Fortran Application
Using the Single Dynamic Library

Linking on Intel(R) 64 Architecture Systems
The following examples illustrate linking that uses Intel(R) compilers.

The examples use the . £ Fortran source file. C/C++ users should instead specify a .cpp (C++) or .c (C) file
and replace ifort with icc:

e Static linking of myprog. £ and parallel Intel MKL supporting the LP64 interface:
ifort myprog.f mkl intel 1p64.lib mkl intel thread.lib mkl core.lib
libiomp5md.1lib

e Dynamic linking of myprog. f and parallel Intel MKL supporting the LP64 interface:
ifort myprog.f mkl intel 1p64 dll.lib mkl intel thread dll.1lib mkl core dll.lib
libiomp5md.lib

e Static linking of myprog. £ and sequential version of Intel MKL supporting the LP64 interface:

ifort myprog.f mkl intel 1p64.lib mkl sequential.lib mkl core.lib
e Dynamic linking of myprog. f and sequential version of Intel MKL supporting the LP64 interface:

ifort myprog.f mkl intel 1p64 dll.lib mkl sequential dll.lib mkl core dll.lib
e Static linking of myprog. f and parallel Intel MKL supporting the ILP64 interface:

ifort myprog.f mkl intel ilp64.lib mkl intel thread.lib mkl core.lib libiomp5md.lib
e Dynamic linking of myprog. £ and parallel Intel MKL supporting the ILP64 interface:
ifort myprog.f mkl intel ilp64 dll.lib mkl intel thread dll.lib mkl core dll.lib
libiompbmd.1lib
e Dynamic linking of user code myprog. f and parallel or sequential Intel MKL supporting the LP64 or ILP64
interface (Call appropriate functions or set environment variables to choose threaded or sequential mode
and to set the interface):
ifort myprog.f mkl rt.lib
e Static linking of myprog. f, Fortran 95 LAPACK interface, and parallel Intel MKL supporting the LP64
interface:
ifort myprog.f mkl lapack95 1p64.1lib mkl intel 1p64.1lib mkl intel thread.lib
mkl core.lib libiomp5Smd.lib
e Static linking of myprog. f, Fortran 95 BLAS interface, and parallel Intel MKL supporting the LP64
interface:

ifort myprog.f mkl blas95 1p64.1ib mkl intel 1p64.1ib mkl intel thread.lib
mkl core.lib libiomp5md.lib

See Also

Fortran 95 Interfaces to LAPACK and BLAS
Examples for Linking a C Application
Examples for Linking a Fortran Application

31

4 Intel® Math Kernel Library for Windows* OS User's Guide

Using the Single Dynamic Library

Linking in Detail

This section recommends which libraries to link with depending on your Intel MKL usage scenario and
provides details of the linking.

Dvnamically Selecting the Interface and Threading Layer

The Single Dynamic Library (SDL) enables you to dynamically select the interface and threading layer for
Intel MKL.

Setting the Interface Layer
Available interfaces depend on the architecture of your system.

On systems based on the Intel® 64 architecture, LP64 and ILP64 interfaces are available. To set one of these
interfaces at run time, use the mkl set interface layer function or the MKL INTERFACE LAYER
environment variable. The following table provides values to be used to set each interface.

Interface Layer Value of MKL._INTERFACE LAYER Value of the Parameter of
mkl set_ interface_layer

LP64 LP64 MKL INTERFACE LP64

ILP64 ILP64 MKL INTERFACE ILP64

If the mkl set interface layer function is called, the environment variable MKL INTERFACE LAYER is
ignored.

By default the LP64 interface is used.

See the Intel MKL Reference Manual for details of the mkl set interface layer function.

On systems based on the IA-32 architecture, the cdecl and stdcall interfaces are available. These interfaces
have different function naming conventions, and SDL selects between cdecl and stdcall at link time according
to the function names.

Setting the Threading Layer

To set the threading layer at run time, use the mkl set threading layer function or the

MKL THREADING LAYER environment variable. The following table lists available threading layers along with
the values to be used to set each layer.

Threading Layer Value of Value of the Parameter of
MKL_THREADING LAYER mkl set_threading_ layer

Intel threading INTEL MKL THREADING INTEL

Sequential mode SEQUENTIAL MKL THREADING SEQUENTIAL

of Intel MKL

PGI threading PGI MKL THREADING PGI

If the mkl set threading layer function is called, the environment variable MKI. THREADING LAYER is
ignored.

By default Intel threading is used.

See the Intel MKL Reference Manual for details of the mkl set threading layer function.

32

Linking Your Application with the Intel® Math Kernel Library 4

Replacing Error Handling and Progress Information Routines

You can replace the Intel MKL error handling routine xerbla or progress information routine mkl progress
with your own function. If you are using SDL, to replace xerbla or mkl progress, call the mkl set xerbla
and mkl set progress function, respectively. See the Intel MKL Reference Manual for details.

NOTE If you are using SDL, you cannot perform the replacement by linking the object file with your
implementation of xerbla or mkl progress.

See Also

Using the Single Dynamic Library
Layered Model Concept

Using the cdecl and stdcall Interfaces
Directory Structure in Detail

Linking with Interface Libraries

Using the cdecl and stdcall Interfaces
Intel MKL provides the following interfaces in its IA-32 architecture implementation:

e stdcall

Default Compaq Visual Fortran* (CVF) interface. Use it with the Intel® Fortran Compiler.
e cdecl

Default interface of the Microsoft Visual C/C++* application.

To use each of these interfaces, link with the appropriate library, as specified in the following table:

Interface Library for Static Linking Library for Dynamic Linking
cdecl mkl intel c.lib mkl intel c¢ dll.lib
stdcall mkl intel s.lib mkl intel s dll.lib

To link with the cdecl or stdcall interface library, use appropriate calling syntax in C applications and
appropriate compiler options for Fortran applications.

If you are using a C compiler, to link with the cdecl or stdcall interface library, call Intel MKL routines in your
code as explained in the table below:

Interface Library Calling Intel MKL Routines

mkl intel s Call a routine with the following statement:
[dl1].1lib extern stdcall name(<prototype variablel>, <prototype variable2>, ..);

where stdcall is actually the CVF compiler default compilation, which differs from
the regular stdcall compilation in the way how strings are passed to the routine.
Because the default CVF format is not identical with stdcall, you must specially
handle strings in the calling sequence. See how to do it in sections on interfaces in
the CVF documentation.

mkl intel c

i Use the following declaration:
[d11].1lib

<type> name(<prototype variablel>, <prototype variable2>, ..);

If you are using a Fortran compiler, to link with the cdecl or stdcall interface library, provide compiler options
as explained in the table below:

33

4 Intel® Math Kernel Library for Windows* OS User's Guide

Interface Library Compiler Options Comment

CVF compiler
mkl intel s[dl11].lib Default

mkl intel c[dl1].1lib /iface=(cref,
nomixed str len arg)

Intel® Fortran compiler

mkl intel c[dl11].1lib Default
mkl intel s[dl11].lib /Gm /Gm and /iface:cvf options
or enable compatibility of the CVF and
/iface:cvf Powerstation calling conventions
See Also

Using the stdcall Calling Convention in C/C++

Compiling an Application that Calls the Intel® Math Kernel Library and Uses the CVF Calling
Conventions

Using the ILP64 Interface vs. LP64 Interface

The Intel MKL ILP64 libraries use the 64-bit integer type (necessary for indexing large arrays, with more than
231-1 elements), whereas the LP64 libraries index arrays with the 32-bit integer type.

The LP64 and ILP64 interfaces are implemented in the Interface layer. Link with the following interface
libraries for the LP64 or ILP64 interface, respectively:

e mkl intel 1p64.libormkl intel ilpé64.1lib for static linking
e mkl intel 1p64 dll.lib ormkl intel ilp64 dll.1ib for dynamic linking

The ILP64 interface provides for the following:

e Support large data arrays (with more than 231-1 elements)
e Enable compiling your Fortran code with the /418 compiler option

The LP64 interface provides compatibility with the previous Intel MKL versions because "LP64" is just a new
name for the only interface that the Intel MKL versions lower than 9.1 provided. Choose the ILP64 interface if
your application uses Intel MKL for calculations with large data arrays or the library may be used so in future.

Intel MKL provides the same include directory for the ILP64 and LP64 interfaces.

Compiling for LP64/ILP64

The table below shows how to compile for the ILP64 and LP64 interfaces:

Fortran

Compiling for ifort /418 /I<mkl directory>\include
ILP64

Compiling for LP64 ifort /I<mkl directory>\include

Cor C++

Compiling for icl /DMKL ILP64 /I<mkl directory>\include
ILP64

Compiling for LP64 icl /I<mkl directory>\include

34

Linking Your Application with the Intel® Math Kernel Library 4

B CAUTION Linking of an application compiled with the /418 or /DMKL ILP64 option to the LP64
libraries may result in unpredictable consequences and erroneous output.

Coding for ILP64
You do not need to change existing code if you are not using the ILP64 interface.

To migrate to ILP64 or write new code for ILP64, use appropriate types for parameters of the Intel MKL
functions and subroutines:

Integer Types Fortran Cor C++

32-bit integers INTEGER*4 or int
INTEGER (KIND=4)

Universal integers for ILP64/ INTEGER MKL INT
LP64: without specifying KIND

e 64-bit for ILP64

e 32-bit otherwise

Universal integers for ILP64/ INTEGER*8 or MKL INT64
LP64: INTEGER (KIND=8)

e 64-bit integers

FFT interface integers for ILP64/ INTEGER MKL LONG
LP64 without specifying KIND

To determine the type of an integer parameter of a function, use appropriate include files. For functions that
support only a Fortran interface, use the C/C++ include files * .h.

The above table explains which integer parameters of functions become 64-bit and which remain 32-bit for
ILP64. The table applies to most Intel MKL functions except some VML and VSL functions, which require
integer parameters to be 64-bit or 32-bit regardless of the interface:

e VML: The mode parameter of VML functions is 64-bit.
¢ Random Number Generators (RNG):

All discrete RNG except viRngUniformBits64 are 32-bit.

The viRngUniformBits64 generator function and vs1SkipAheadStream service function are 64-bit.

e Summary Statistics: The estimate parameter of the vs1sSSCompute/vsldSSCompute function is 64-
bit.

Refer to the Intel MKL Reference Manual for more information.

To better understand ILP64 interface details, see also examples and tests.

Limitations
All Intel MKL function domains support ILP64 programming with the following exceptions:
e FFTW interfaces to Intel MKL:

e FFTW 2.x wrappers do not support ILP64.
e FFTW 3.2 wrappers support ILP64 by a dedicated set of functions plan guru64.

See Also
High-level Directory Structure
Include Files

35

4 Intel® Math Kernel Library for Windows* OS User's Guide

Language Interfaces Support, by Function Domain
Layered Model Concept
Directory Structure in Detail

Linking with Fortran 95 Interface Libraries

The mkl blas95*.1ib and mkl lapack95*.1ib libraries contain Fortran 95 interfaces for BLAS and
LAPACK, respectively, which are compiler-dependent. In the Intel MKL package, they are prebuilt for the
Intel® Fortran compiler. If you are using a different compiler, build these libraries before using the interface.

See Also
Fortran 95 Interfaces to LAPACK and BLAS
Compiler-dependent Functions and Fortran 90 Modules

Linking with Threading Libraries

Sequential Mode of the Library

You can use Intel MKL in a sequential (non-threaded) mode. In this mode, Intel MKL runs unthreaded code.
However, it is thread-safe (except the LAPACK deprecated routine ?1acon), which means that you can use it
in a parallel region in your OpenMP* code. The sequential mode requires no compatibility OpenMP* run-time
library and does not respond to the environment variable OMP_NUM THREADS or its Intel MKL equivalents.

You should use the library in the sequential mode only if you have a particular reason not to use Intel MKL
threading. The sequential mode may be helpful when using Intel MKL with programs threaded with some
non-Intel compilers or in other situations where you need a non-threaded version of the library (for instance,
in some MPI cases). To set the sequential mode, in the Threading layer, choose the *sequential.* library.

See Also

Directory Structure in Detail

Improving Performance with Threading
Avoiding Conflicts in the Execution Environment
Linking Examples

Selecting the Threading Layer

Several compilers that Intel MKL supports use the OpenMP* threading technology. Intel MKL supports
implementations of the OpenMP* technology that these compilers provide. To make use of this support, you
need to link with the appropriate library in the Threading Layer and Compiler Support Run-time Library
(RTL).

Threading Layer

Each Intel MKL threading library contains the same code compiled by the respective compiler (Intel and PGI*
compilers on Windows OS).

RTL

This layer includes 1ibiomp, the compatibility OpenMP* run-time library of the Intel compiler. In addition to
the Intel compiler, 1ibiomp provides support for one more threading compiler on Windows OS (Microsoft
Visual C++*). That is, a program threaded with the Microsoft Visual C++ compiler can safely be linked with
Intel MKL and 1ibiomp.

The table below helps explain what threading library and RTL you should choose under different scenarios
when using Intel MKL (static cases only):

36

Linking Your Application with the Intel® Math Kernel Library 4

Compiler Application Threading Layer RTL Recommended Comment
Threaded?
Intel Does not mkl intel libiomp5md.lib
matter thread.lib

PGI Yes mkl pgi thread. PGI* supplied Use of
1ib or mkl sequential.lib
mkl sequential. removes threading from
1lib Intel MKL calls.

PGI No mkl intel libiomp5md.1lib
thread.lib

PGI No mkl pgi thread. PGI* supplied
1lib

PGI No mkl sequential. None
1lib

Microsoft Yes mkl intel libiomp5md.lib For the OpenMP* library of
thread.lib the Microsoft Visual Studio*

IDE version 2008 or later.

Microsoft Yes mkl sequential. None For Win32 threading.
1lib

Microsoft No mkl intel libiomp5md.lib
thread.lib

other Yes mkl sequential. None
1lib

other No mkl intel libiomp5md.lib
thread.lib

Linking with Computational Libraries

If you are not using the Intel MKL cluster software, you need to link your application with only one

computational library, depending on the linking method:

Static Linking Dynamic Linking

mkl core.lib mkl core dll.lib

Computational Libraries for Applications that Use the Intel MKL Cluster Software

ScalLAPACK and Cluster Fourier Transform Functions (Cluster FFTs) require more computational libraries,
which may depend on your architecture.

The following table lists computational libraries for IA-32 architecture applications that use ScalLAPACK or
Cluster FFTs.

Computational Libraries for IA-32 Architecture

Function domain Static Linking Dynamic Linking

ScalLAPACK ' mkl scalapack core.lib mkl scalapack core dll.lib

37

4 Intel® Math Kernel Library for Windows* OS User's Guide

Function domain Static Linking Dynamic Linking
mkl core.lib mkl core dll.lib
Cluster Fourier mkl cdft core.lib mkl cdft core dl1l.1lib
Transform .)
. + mkl core.lib mkl core dll.lib
Functions — _ _

T Also add the library with BLACS routines corresponding to the MPI used.

The following table lists computational libraries for Intel® 64 architecture applications that use ScaLAPACK or
Cluster FFTs.

Computational Libraries for the Intel® 64 Architecture

Function domain Static Linking Dynamic Linking
ScalAPACK, LP64 mkl scalapack 1p64.lib mkl scalapack 1p64 dll.lib
interface* , ,

mkl core.lib mkl core dll.1lib
ScalLAPACK, ILP64 mkl scalapack ilp64.1lib mkl scalapack ilp64 dll.lib
interface” , .

mkl core.lib mkl core dll.lib
Cluster Fourier mkl cdft core.lib mkl cdft core dll.lib
Transform))

. + mkl core.lib mkl core dll.lib

Functions - - -

* Also add the library with BLACS routines corresponding to the MPI used.

See Also

Linking with ScaLAPACK and Cluster FFTs
Using the Link-line Advisor

Using the ILP64 Interface vs. LP64 Interface

Linking with Compiler Run-time Libraries
Dynamically link 1ibiomp5, the compatibility OpenMP* run-time library, even if you link other libraries
statically.

Linking to the 1ibiomp5 statically can be problematic because the more complex your operating
environment or application, the more likely redundant copies of the library are included. This may result in
performance issues (oversubscription of threads) and even incorrect results.

To link 1ibiomp5 dynamically, be sure the PATH environment variable is defined correctly.

Sometimes you may improve performance of your application with threaded Intel MKL by using the /MT
compiler option. The compiler driver will pass the option to the linker and the latter will load multi-thread
(MT) static run-time libraries.

However, to link a Vector Math Library application that uses the errno variable for error reporting, compile
and link your code using the option that depends on the linking model:

e /MT for linking with static Intel MKL libraries
e /MD for linking with dynamic Intel MKL libraries

See Also
Setting Environment Variables
Layered Model Concept

38

Linking Your Application with the Intel® Math Kernel Library 4

Linking with System Libraries

If your system is based on the Intel® 64 architecture, be aware that Microsoft SDK builds 1289 or higher
provide the bufferoverflowu.lib library to resolve the = security cookie external references.
Makefiles for examples and tests include this library by using the buf lib=bufferoverflowu.lib macro. If
you are using older SDKs, leave this macro empty on your command line as follows: buf lib= .

See Also
Linking Examples

Building Custom Dynamic-link Libraries

Custom dynamic-link libraries (DLL) reduce the collection of functions available in Intel MKL libraries to those
required to solve your particular problems, which helps to save disk space and build your own dynamic
libraries for distribution.

The Intel MKL custom DLL builder enables you to create a dynamic library containing the selected functions
and located in the tools\builder directory. The builder contains a makefile and a definition file with the list

of functions.

Using the Custom Dynamic-link Library Builder in the Command-line Mode
To build a custom DLL, use the following command:
nmake target [<options>]

The following table lists possible values of target and explains what the command does for each value:

Value Comment
libia32

The builder uses static Intel MKL interface, threading, and core libraries to build a
custom DLL for the IA-32 architecture.

libintel64 The builder uses static Intel MKL interface, threading, and core libraries to build a
custom DLL for the Intel® 64 architecture.

dllias3z The builder uses the single dynamic library 1ibmkl rt.dll to build a custom DLL
for the IA-32 architecture.

dllintel6d The builder uses the single dynamic library 1ibmkl rt.d11 to build a custom DLL
for the Intel® 64 architecture.

help

The command prints Help on the custom DLL builder

The <options> placeholder stands for the list of parameters that define macros to be used by the makefile.
The following table describes these parameters:

Parameter Description
[Values]

interface Defines which programming interface to use.Possible values:

e For the IA-32 architecture, {cdecl|stdcall}. The default value is cdecl.
* For the Intel 64 architecture, {1p64|ilp64}. The default value is 1p64.

threading = Defines whether to use the Intel MKL in the threaded or sequential mode. The

{parallel| default value is parallel.
sequential}

39

4 Intel® Math Kernel Library for Windows* OS User's Guide

Parameter Description
[Values]

export =

. Specifies the full name of the file that contains the list of entry-point functions to be
<file name>

included in the DLL. The default name is user example list (no extension).

name = <dll Specifies the name of the dll and interface library to be created. By default, the
name> names of the created libraries are mk1 custom.dll and mkl custom.lib.
xerbla =

Specifies the name of the object file <user xerbla>.obj that contains the user's
error handler. The makefile adds this error handler to the library for use instead of
the default Intel MKL error handler xerbla. If you omit this parameter, the native
Intel MKL xerbla is used. See the description of the xerbla function in the Intel
MKL Reference Manual on how to develop your own error handler. For the IA-32
architecture, the object file should be in the interface defined by the interface macro
(cdecl or stdcall).

<error handler>

MKLROOT =

) Specifies the location of Intel MKL libraries used to build the custom DLL. By default,
<mkl directory>

the builder uses the Intel MKL installation directory.

buf_1ib Manages resolution of the security cookie external references in the custom
DLL on systems based on the Intel® 64 architecture.
By default, the makefile uses the bufferoverflowu.1lib library of Microsoft SDK
builds 1289 or higher. This library resolves the security cookie external
references.
To avoid using this library, set the empty value of this parameter. Therefore, if you
are using an older SDK, set buf lib= .
CAUTION Use the buf 1ib parameter only with the empty value. Incorrect
value of the parameter causes builder errors.
crt = <c run-

Specifies the name of the Microsoft C run-time library to be used to build the custom

time library> DLL. By default, the builder uses msvecrt.1lib.

manifest =

Manages the creation of a Microsoft manifest for the custom DLL:
{yes|no|embed}

* If manifest=yes, the manifest file with the name defined by the name
parameter above and the manifest extension will be created.

e Ifmanifest=no, the manifest file will not be created.
* If manifest=embed, the manifest will be embedded into the DLL.

By default, the builder does not use the manifest parameter.

All the above parameters are optional.

In the simplest case, the command line is nmake ia32, and the missing options have default values. This
command creates the mkl custom.dll and mkl custom.lib libraries with the cdecl interface for
processors using the IA-32 architecture. The command takes the list of functions from the functions list
file and uses the native Intel MKL error handler xerbla.

An example of a more complex case follows:

nmake ia32 interface=stdcall export=my func list.txt name=mkl small
xerbla=my xerbla.obj

In this case, the command creates the mk1 small.dll and mkl small.lib libraries with the stdcall
interface for processors using the IA-32 architecture. The command takes the list of functions from
my func list.txt file and uses the user's error handler my xerbla.obj.

The process is similar for processors using the Intel® 64 architecture.

40

Linking Your Application with the Intel® Math Kernel Library 4

See Also
Linking with System Libraries

Composing a List of Functions

To compose a list of functions for a minimal custom DLL needed for your application, you can use the
following procedure:

1. Link your application with installed Intel MKL libraries to make sure the application builds.
2. Remove all Intel MKL libraries from the link line and start linking.

Unresolved symbols indicate Intel MKL functions that your application uses.
3. Include these functions in the list.

Important Each time your application starts using more Intel MKL functions, update the list to include
the new functions.

See Also
Specifying Function Names

Specifying Function Names

In the file with the list of functions for your custom DLL, adjust function names to the required interface. For
example, you can list the cdecl entry points as follows:

DGEMM

DTRSM

DDOT

DGETRF
DGETRS
cblas dgemm
cblas ddot
You can list the stdcall entry points as follows:
_ DGEMME 60
_DDOT@20
_DGETRF@24

For more examples, see domain-specific lists of function names in the <mk1 directory>\tools\builder
folder. This folder contains lists of function names for both cdecl or stdcall interfaces.

NOTE The lists of function names are provided in the <mkl directory>\tools\builder folder
merely as examples. See Composing a List of Functions for how to compose lists of functions for your
custom DLL.

ﬂ TIP Names of Fortran-style routines (BLAS, LAPACK, etc.) can be both upper-case or lower-case, with
or without the trailing underscore. For example, these names are equivalent:
BLAS: dgemm, DGEMM, dgemm , DGEMM
LAPACK: dgetrf, DGETRF, dgetrf , DGETRF .

Properly capitalize names of C support functions in the function list. To do this, follow the guidelines below:

41

4 Intel® Math Kernel Library for Windows* OS User's Guide

1. Inthemkl service.h include file, look up a #define directive for your function
(mkl service.h is included in the mk1.h header file).

2. Take the function name from the replacement part of that directive.

For example, the #define directive for the mkl disable fast mm function is
#define mkl disable fast mm MKL Disable Fast MM.

Capitalize the name of this function in the list like this: MKL. Disable Fast MM.

For the names of the Fortran support functions, see the tip.

Building a Custom Dynamic-link Library in the Visual Studio* Development System

You can build a custom dynamic-link library (DLL) in the Microsoft Visual Studio* Development System
(VS*) . To do this, use projects available in the tools\builder\MSVS Projects subdirectory of the Intel
MKL directory. The directory contains the vs2008 and vs2010 subdirectories with projects for the respective
versions of the Visual Studio Development System. For each version of VS two solutions are available:

e libia32.sln builds a custom DLL for the IA-32 architecture.
e libintel64.sln builds a custom DLL for the Intel® 64 architecture.

The builder uses the following default settings for the custom DLL:

Interface: cdecl for the IA-32 architecture and LP64 for the Intel 64
architecture

Error handler: Native Intel MKL xerbla

Create Microsoft manifest: yes

List of functions: in the project's source file examples.def

To build a custom DLL:

1. Set the MKLROOT environment variable with the installation directory of the Intel MKL version you are
going to use.
2. Openthe libia32.slnor libintel64.sln solution depending on the architecture of your system.

The solution includes the following projects:

e 1 malloc dll

e vml dll core

e cdecl parallel (in libia32.sln) or 1p64 parallel (in libintel64.sln)

e cdecl sequential (in libia32.sln) or 1p64 sequential (in libintel64.sln)

3. [Optional] To change any of the default settings, select the project depending on whether the DLL will
use Intel MKL functions in the sequential or multi-threaded mode:

e Inthe 1ibia32 solution, select the cdecl sequential or cdecl parallel project.
e Inthe libintelé64 solution, select the 1p64 sequential or 1p64 parallel project.

4. [Optional] To build the DLL that uses the stdcall interface for the IA-32 architecture or the ILP64
interface for the Intel 64 architecture:

a. Select Project>Properties>Configuration Properties>Linker>Input>Additional
Dependencies.
b. Inthe libia32 solution, change mkl intel c.lib tomkl intel s.lib.
In the 1ibintel64 solution, change mkl intel 1p64.1lib tomkl intel ilp64.lib.
5. [Optional] To include your own error handler in the DLL:

a. Select Project>Properties>Configuration Properties>Linker>Input.
b. Add <user xerbla>.ob]
6. [Optional] To turn off creation of the manifest:

42

Linking Your Application with the Intel® Math Kernel Library 4

a. Select Project>Properties>Configuration Properties>Linker>Manifest File>Generate
Manifest.

b. Select: no.
7. [Optional] To change the list of functions to be included in the DLL:

a. Select Source Files.
b. Edit the examples.def file. Refer to Specifying Function Names for how to specify entry points.
8. To build the library:

e In VS2005 - VS2008, select Build>Project Only>Link Only and link projects in this order:
i malloc dll, vml dll core, cdecl sequential/lp64 sequential Or cdecl parallel/
1p64 parallel.

e In VS2010, select Build>Build Solution.

See Also
Using the Custom Dynamic-link Library Builder in the Command-line Mode

Distributing Your Custom Dynamic-link Library

To enable use of your custom DLL in a threaded mode, distribute 1ibiomp5md.d11 along with the custom
DLL.

43

4 Intel® Math Kernel Library for Windows* OS User's Guide

44

Managing Performance and
Memory

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Improving Performance with Threading

Intel MKL is extensively parallelized. See Threaded Functions and Problems for lists of threaded functions and
problems that can be threaded.

Intel MKL is thread-safe, which means that all Intel MKL functions (except the LAPACK deprecated routine ?
lacon) work correctly during simultaneous execution by multiple threads. In particular, any chunk of
threaded Intel MKL code provides access for multiple threads to the same shared data, while permitting only
one thread at any given time to access a shared piece of data. Therefore, you can call Intel MKL from
multiple threads and not worry about the function instances interfering with each other.

The library uses OpenMP* threading software, so you can use the environment variable OMP NUM THREADS to
specify the number of threads or the equivalent OpenMP run-time function calls. Intel MKL also offers
variables that are independent of OpenMP, such as MKL NUM THREADS, and equivalent Intel MKL functions
for thread management. The Intel MKL variables are always inspected first, then the OpenMP variables are
examined, and if neither is used, the OpenMP software chooses the default number of threads.

By default, Intel MKL uses the number of threads equal to the number of physical cores on the system.

To achieve higher performance, set the number of threads to the number of real processors or physical
cores, as summarized in Techniques to Set the Number of Threads.

See Also
Managing Multi-core Performance

Threaded Functions and Problems

The following Intel MKL function domains are threaded:
e Direct sparse solver.

e LAPACK.

For the list of threaded routines, see Threaded LAPACK Routines.
e Levell and Level2 BLAS.

For the list of threaded routines, see Threaded BLAS Levell and Level2 Routines.
e All Level 3 BLAS and all Sparse BLAS routines except Level 2 Sparse Triangular solvers.
e All mathematical VML functions.
e FFT.

For the list of FFT transforms that can be threaded, see Threaded FFT Problems.

45

5 Intel® Math Kernel Library for Windows* OS User's Guide

Threaded LAPACK Routines

In the following list, ? stands for a precision prefix of each flavor of the respective routine and may have the
value of s, d, c, or z.

The following LAPACK routines are threaded:
e Linear equations, computational routines:

e Factorization: ?2getrf, ?2gbtrf, ?potrf, ?pptrf, ?sytrf, ?hetrf, ?sptrf, ?hptrf
e Solving: ?dttrsb, ?2gbtrs, ?gttrs, ?pptrs, ?pbtrs, ?pttrs, ?sytrs, 2?sptrs, ?hptrs, ?
tptrs, ?tbtrs
e Orthogonal factorization, computational routines:
?geqrf, ?ormgr, ?2unmqgr, ?ormlqg, ?2unmlqg, ?ormgl, ?unmgl, ?ormrg, ?unmrqg
e Singular Value Decomposition, computational routines:
?gebrd, ?bdsqgr
e Symmetric Eigenvalue Problems, computational routines:
?sytrd, ?hetrd, ?sptrd, ?hptrd, ?steqr, ?stedc.
e Generalized Nonsymmetric Eigenvalue Problems, computational routines:
chgeqgz/zhgeqgz.

A number of other LAPACK routines, which are based on threaded LAPACK or BLAS routines, make effective
use of parallelism:

?gesv, ?posv, ?gels, ?gesvd, ?syev, 2heev, cgegs/zgegs, cgegv/zgegv, cgges/zgges,
cggesx/zggesx, cggev/zggev, cggevx/zggevx, and so on.

Threaded BLAS Level1 and Level2 Routines

In the following list, ? stands for a precision prefix of each flavor of the respective routine and may have the
value of s, d, c, or z.

The following routines are threaded for Intel® Core™2 Duo and Intel® Core™ i7 processors:

e Levell BLAS:

?axpy, ?copy, ?swap, ddot/sdot, cdotc, drot/srot
e Level2 BLAS:

?gemv, ?2trmv, dsyr/ssyr, dsyr2/ssyr2, dsymv/ssymv

Threaded FFT Problems

The following characteristics of a specific problem determine whether your FFT computation may be
threaded:

e rank

e domain

e size/length

e precision (single or double)

e placement (in-place or out-of-place)

e strides

e number of transforms

e layout (for example, interleaved or split layout of complex data)

Most FFT problems are threaded. In particular, computation of multiple transforms in one call (number of
transforms > 1) is threaded. Details of which transforms are threaded follow.

One-dimensional (1D) transforms

1D transforms are threaded in many cases.

46

Managing Performance and Memory 5

1D complex-to-complex (c2c) transforms of size v using interleaved complex data layout are threaded under
the following conditions depending on the architecture:

Architecture Conditions

Intel® 64 N is a power of 2, 1ogy(N) > 9, the transform is double-precision out-of-place, and
input/output strides equal 1.

IA-32 N is a power of 2, 1og>(N) > 13, and the transform is single-precision.
N is a power of 2, 1og>(N) > 14, and the transform is double-precision.

Any N is composite, 1og>(N) > 16, and input/output strides equal 1.

1D complex-to-complex transforms using split-complex layout are not threaded.
Multidimensional transforms

All multidimensional transforms on large-volume data are threaded.

Avoiding Conflicts in the Execution Environment

Certain situations can cause conflicts in the execution environment that make the use of threads in Intel MKL
problematic. This section briefly discusses why these problems exist and how to avoid them.

If you thread the program using OpenMP directives and compile the program with Intel compilers, Intel MKL
and the program will both use the same threading library. Intel MKL tries to determine if it is in a parallel
region in the program, and if it is, it does not spread its operations over multiple threads unless you
specifically request Intel MKL to do so via the MKL DYNAMIC functionality. However, Intel MKL can be aware
that it is in a parallel region only if the threaded program and Intel MKL are using the same threading library.
If your program is threaded by some other means, Intel MKL may operate in multithreaded mode, and the
performance may suffer due to overuse of the resources.

The following table considers several cases where the conflicts may arise and provides recommendations
depending on your threading model:

Threading model Discussion

You thread the program using If more than one thread calls Intel MKL, and the function being called is

OS threads (Win32* threads threaded, it may be important that you turn off Intel MKL threading. Set

on Windows* OS). the number of threads to one by any of the available means (see
Techniques to Set the Number of Threads).

You thread the program using This is more problematic because setting of the OMP_NUM THREADS

OpenMP directives and/or environment variable affects both the compiler's threading library and
pragmas and compile the libiomp5. In this case, choose the threading library that matches the
program using a compiler layered Intel MKL with the OpenMP compiler you employ (see Linking
other than a compiler from Examples on how to do this). If this is not possible, use Intel MKL in the
Intel. sequential mode. To do this, you should link with the appropriate

threading library: mkl sequential.lib ormkl sequential.dll (see
High-level Directory Structure).

There are multiple programs The threading software will see multiple processors on the system even
running on a multiple-cpu though each processor has a separate MPI process running on it. In this
system, for example, a case, one of the solutions is to set the number of threads to one by any
parallelized program that runs of the available means (see Techniques to Set the Number of Threads).
using MPI for communication Section Intel(R) Optimized MP LINPACK Benchmark for Clusters discusses
in which each processor is another solution for a Hybrid (OpenMP* + MPI) mode.

treated as a node.

Using the mkl set num threads and mkl domain set num_ threads functions to control parallelism of
Intel MKL from parallel user threads may result in a race condition that impacts the performance of the
application because these functions operate on internal control variables that are global, that is, apply to all
threads. For example, if parallel user threads call these functions to set different numbers of threads for the

47

5 Intel® Math Kernel Library for Windows* OS User's Guide

same function domain, the number of threads actually set is unpredictable. To avoid this kind of data races,
use the mkl set num threads local function (see the "Support Functions" chapter in the Intel MKL
Reference Manual for the function description).

See Also
Using Additional Threading Control
Linking with Compiler Run-time Libraries

Techniques to Set the Number of Threads
Use the following techniques to specify the number of threads to use in Intel MKL:
e Set one of the OpenMP or Intel MKL environment variables:

e OMP NUM THREADS
e MKL NUM THREADS
e MKL DOMAIN NUM THREADS
e Call one of the OpenMP or Intel MKL functions:

e omp set num threads()

e mkl set num threads()

e mkl domain_ set num threads|()
¢ mkl set num threads local ()

When choosing the appropriate technique, take into account the following rules:

e The Intel MKL threading controls take precedence over the OpenMP controls because they are inspected
first.

e A function call takes precedence over any environment settings. The exception, which is a consequence of
the previous rule, is that a call to the OpenMP subroutine omp _set num_ threads () does not have
precedence over the settings of Intel MKL environment variables such as MK, NUM THREADS. See Using
Additional Threading Control for more details.

e You cannot change run-time behavior in the course of the run using the environment variables because
they are read only once at the first call to Intel MKL.

Setting the Number of Threads Using an OpenMP* Environment Variable

You can set the number of threads using the environment variable oMP_NUM THREADS. To change the
number of threads, in the command shell in which the program is going to run, enter:

set OMP_NUM THREADS=<number of threads to use>.

Some shells require the variable and its value to be exported:

export OMP NUM THREADS=<number of threads to use>.

You can alternatively assign value to the environment variable using Microsoft Windows* OS Control Panel.

Note that you will not benefit from setting this variable on Microsoft Windows* 98 or Windows* ME because
multiprocessing is not supported.

See Also
Using Additional Threading Control

Changing the Number of Threads at Run Time

You cannot change the number of threads during run time using environment variables. However, you can
call OpenMP API functions from your program to change the number of threads during run time. The
following sample code shows how to change the number of threads during run time using the

omp set num threads () routine. See also Techniques to Set the Number of Threads.

48

Managing Performance and Memory 5

The following example shows both C and Fortran code examples. To run this example in the C language, use
the omp.h header file from the Intel(R) compiler package. If you do not have the Intel compiler but wish to
explore the functionality in the example, use Fortran API for omp_set num threads () rather than the C
version. For example, omp set num threads (&i one);

// *kkk kK% C language *kkkk k%

#include "omp.h"

#include "mkl.h"

#include <stdio.h>

#define SIZE 1000

int main(int args, char *argv[]) {

double *a, *b, *c;

a = (double*)malloc (sizeof (double)*SIZE*SIZE) ;

b = (double*)malloc(sizeof (double)*SIZE*SIZE) ;

¢ = (double*)malloc (sizeof (double) *SIZE*SIZE) ;

double alpha=1, beta=1;

int m=SIZE, n=SIZE, k=SIZE, 1da=SIZE, 1db=SIZE, ldc=SIZE, i=0, j=0;

char transa='n', transb='n';

for(1=0; 1i<SIZE; 1i++)({

for(j=0; Jj<SIZE; j++){

a[i*SIZE+j]= (double) (i+j);

b[i*SIZE+j]= (double) (i*j);

c[i*SIZE+j]= (double)O;

}

}

cblas_dgemm (CblasRowMajor, CblasNoTrans, CblasNoTrans,

m, n, k, alpha, a, lda, b, 1ldb, beta, c, 1ldc);

printf ("row\ta\tc\n");

for (1=0;i<10;1i++){

printf ("$d:\t3$f\t%f\n", i, a[i*SIZE], c[i*SIZE]);

}

omp set num threads(1);

for(i=0; i<SIZE; i++)

for(j=0; j<SIZE; j++)

a[i*SIZE+j]= (double) (i+j);
(1*3)
0;

{
{
1
b[i*SIZE+j]= (double) (i
c[1*SIZE+j]= (double)
}
}
cblas_dgemm (CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, a, lda, b, 1ldb, beta, c, 1ldc);
printf ("row\ta\tc\n");
for (1=0;1<10;i++){
printf ("$d:\t$£\t%f\n", i, a[i*SIZE], c[i*SIZE]);
}
omp_set num threads(2);
for(i=0; i<SIZE; i++)
for(j=0; j<SIZE; j++)
a[1*SIZE+j]= (double) (
(
0;

’

{
{
i+g);
b[i*SIZE+j]= (double) (i*j);
c[1i*SIZE+j]= (double)
}
}
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, a, lda, b, 1db, beta, c, 1ldc);
printf ("row\ta\tc\n");
for (1=0;1<10;i++){
printf ("$d:\t$f\t%f\n", 1, a[i*SIZE],
c[1*SIZE]);
}
free (
free (
free (
return

}

a);
b);
c)i
0!

/] **¥*xx%% Fortran language *******
PROGRAM DGEMM DIFF THREADS

49

5 Intel® Math Kernel Library for Windows* OS User's Guide

INTEGER N, I, J

PARAMETER (N=100)

REAL*8 A(N,N),B(N,N),C(N,N)
REAL*8 ALPHA, BETA

nmunn ==
—
+
<

o H
<t
ou.

END DO

CALL DGEMM('N','N',6N,N,N,ALPHA,A,N,B,N,BETA,C,N)
print *,'Row A C'

DO i=1,10

write(*,'(I4,F20.8,F20.8)"') I, A(1,I),C(1,I)

END DO

CALL OMP_SET NUM THREADS (1) ;

vs]
=
S
I
—
>+
ja-—

CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA,C,N)
print *,'Row A C'

DO i=1,10
write (*,'(I4,F20.8,F20.8)") I, A(Ll,I),C(1,I)
END DO

CALL OMP_SET NUM THREADS (2) ;

DO I=1,N

DO J=1,N

A(I,J) = I+J

B(I,J) = I*j

C(I,J) = 0.0

END DO

END DO

CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BET2,C,N)
print *,'Row A C'

DO i=1,10

write(*,'(I4,F20.8,F20.8)"') I, A(1,I),C(1,I)
END DO

STOP

END

Using Additional Threading Control

Intel MKL-specific Environment Variables for Threading Control

Intel MKL provides optional threading controls, that is, the environment variables and support functions that
are independent of OpenMP. They behave similar to their OpenMP equivalents, but take precedence over
them in the meaning that the Intel MKL-specific threading controls are inspected first. By using these
controls along with OpenMP variables, you can thread the part of the application that does not call Intel MKL
and the library independently of each other.

These controls enable you to specify the number of threads for Intel MKL independently of the OpenMP
settings. Although Intel MKL may actually use a different number of threads from the number suggested, the
controls will also enable you to instruct the library to try using the suggested number when the number used
in the calling application is unavailable.

50

Managing Performance and Memory 5

NOTE Sometimes Intel MKL does not have a choice on the number of threads for certain reasons,
such as system resources.

Use of the Intel MKL threading controls in your application is optional. If you do not use them, the library will
mainly behave the same way as Intel MKL 9.1 in what relates to threading with the possible exception of a
different default number of threads.

Section "Number of User Threads" in the "Fourier Transform Functions" chapter of the Intel MKL Reference
Manual shows how the Intel MKL threading controls help to set the number of threads for the FFT
computation.

The table below lists the Intel MKL environment variables for threading control, their equivalent functions,
and OMP counterparts:

Environment Variable Support Function Comment Equivalent OpenMP*
Environment Variable

MKL NUM_ THREADS mkl set num threads Suggests the number of = OMP NUM THREADS

threads to use.
mkl set num threads

_local
MKL DOMAIN NUM mkl domain set num_ Suggests the number of
THREADS threads threads for a particular
function domain.
MKL DYNAMIC mkl set dynamic Enables Intel MKL to OMP_DYNAMIC

dynamically change the
number of threads.

NOTE The functions take precedence over the respective environment variables.

Therefore, if you want Intel MKL to use a given number of threads in your application and do not want
users of your application to change this number using environment variables, set the number of
threads by a call to mk1l set num_threads (), which will have full precedence over any environment
variables being set.

The example below illustrates the use of the Intel MKL function mkl set num threads () to set one thread.

// * ok Kk kk kK C language * Kk Kk kk kK
#include <omp.h>
#include <mkl.h>

mkl set num threads (1);
// *kkkkk*k Fortran language)k kkkk*x
call mkl set num threads(1)

See the Intel MKL Reference Manual for the detailed description of the threading control functions, their
parameters, calling syntax, and more code examples.

MKL_DYNAMIC
The MKL DYNAMIC environment variable enables Intel MKL to dynamically change the number of threads.

The default value of MKL DYNAMIC is TRUE, regardless of OMP DYNAMIC, whose default value may be FALSE.

51

5 Intel® Math Kernel Library for Windows* OS User's Guide

When MKL DYNAMIC is TRUE, Intel MKL tries to use what it considers the best number of threads, up to the
maximum number you specify.

For example, MKL. DYNAMIC set to TRUE enables optimal choice of the number of threads in the following
cases:

e If the requested number of threads exceeds the number of physical cores (perhaps because of using the
Intel® Hyper-Threading Technology), and MKL_DYNAMIC is not changed from its default value of TRUE,
Intel MKL will scale down the number of threads to the number of physical cores.

e If you are able to detect the presence of MPI, but cannot determine if it has been called in a thread-safe
mode (it is impossible to detect this with MPICH 1.2.x, for instance), and MKL DYNAMIC has not been
changed from its default value of TRUE, Intel MKL will run one thread.

When MKL DYNAMIC is FALSE, Intel MKL tries not to deviate from the number of threads the user requested.
However, setting MKL DYNAMIC=FALSE does not ensure that Intel MKL will use the number of threads that
you request. The library may have no choice on this number for such reasons as system resources.
Additionally, the library may examine the problem and use a different number of threads than the value
suggested. For example, if you attempt to do a size one matrix-matrix multiply across eight threads, the
library may instead choose to use only one thread because it is impractical to use eight threads in this event.

Note also that if Intel MKL is called in a parallel region, it will use only one thread by default. If you want the
library to use nested parallelism, and the thread within a parallel region is compiled with the same OpenMP
compiler as Intel MKL is using, you may experiment with setting MKL. DYNAMIC to FALSE and manually
increasing the number of threads.

In general, set MKL DYNAMIC to FALSE only under circumstances that Intel MKL is unable to detect, for
example, to use nested parallelism where the library is already called from a parallel section.

MKL_DOMAIN_NUM_THREADS

The MKL DOMAIN NUM THREADS environment variable suggests the number of threads for a particular
function domain.

MKL DOMAIN NUM THREADS accepts a string value <MKL-env-string>, which must have the following
format:

<MKL-env-string> ::= <MKL-domain-env-string> { <delimiter><MKL-domain-env-string> }
<delimiter> ::= [<space-symbol>*] (<space-symbol> | <comma-symbol> | <semicolon-
symbol> | <colon-symbol>) [<space-symbol>*]

<MKL-domain-env-string> ::= <MKL-domalin-env-name><uses><number-of-threads>
<MKL-domain-env-name> ::= MKL DOMAIN ALL | MKL DOMAIN BLAS | MKL DOMAIN FFT |

MKL DOMAIN VML | MKL DOMAIN PARDISO

<uses> ::= [<space-symbol>*] (<space-symbol> | <equality-sign> | <comma-symbol>)
[<space-symbol>*]

<number-of-threads> ::= <positive-number>
<positive-number> ::= <decimal-positive-number> | <octal-number> | <hexadecimal-number>

In the syntax above, values of <MKIL-domain-env-name> indicate function domains as follows:

MKL DOMAIN ALL All function domains

MKL DOMAIN BLAS BLAS Routines

MKL DOMAIN FFT non-cluster Fourier Transform Functions
MKL DOMAIN VML Vector Mathematical Functions

MKL DOMAIN PARDISO PARDISO

For example,

MKL DOMAIN ALL 2 : MKL DOMAIN BLAS 1 : MKL DOMAIN FFT 4

52

Managing Performance and Memory 5

MKL DOMAIN ALL=2 : MKL DOMAIN BLAS=1 : MKL DOMAIN FFT=4
MKL DOMAIN ALL=2, MKL DOMAIN BLAS=1, MKL DOMAIN FFT=4

MKL DOMAIN ALL=2; MKL DOMAIN BLAS=1; MKL DOMAIN FFT=4

MKL DOMAIN ALL = 2 MKL DOMAIN BLAS 1 , MKL DOMAIN FFT 4
MKL DOMAIN ALL,2: MKL DOMAIN BLAS 1, MKL DOMAIN FFT,4

The global variables MKL DOMAIN ALL, MKL DOMAIN BLAS, MKL DOMAIN FFT, MKL DOMAIN VML, and
MKL DOMAIN PARDISO, as well as the interface for the Intel MKL threading control functions, can be found in
the mk1.h header file.

The table below illustrates how values of MKL DOMAIN NUM THREADS are interpreted.

Value of Interpretation
MKL DOMAIN NUM _
THREADS

MKL DOMAIN ALL= All parts of Intel MKL should try four threads. The actual number of threads may be
4 still different because of the MKL DYNAMIC setting or system resource issues. The
setting is equivalent to MKL. NUM THREADS = 4.

MKL DOMAIN ALL= All parts of Intel MKL should try one thread, except for BLAS, which is suggested to
1, try four threads.

MKL DOMAIN BLAS

=4

MKL DOMAIN VML= VML should try two threads. The setting affects no other part of Intel MKL.
2

Be aware that the domain-specific settings take precedence over the overall ones. For example, the

"MKL DOMAIN BLAS=4"value of MKL DOMAIN NUM THREADS suggests trying four threads for BLAS,
regardless of later setting MKL._NUM THREADS, and a function call "mkl domain set num threads (4,
MKL DOMAIN BLAS) ;" suggests the same, regardless of later calls to mkl set num threads().
However, a function call with input "MKL_ DOMAIN ALL", such as "mkl domain set num threads (4,
MKL DOMAIN ALL) ;" is equivalent to "mkl set num threads (4)", and thus it will be overwritten by later
calls to mkl set num threads. Similarly, the environment setting of MKL._ DOMAIN NUM THREADS with
"MKL DOMAIN ALL=4" will be overwritten with MKL NUM THREADS = 2.

Whereas the MKL. DOMAIN NUM THREADS environment variable enables you set several variables at once, for
example, "MKL DOMAIN BLAS=4,MKL DOMAIN FFT=2", the corresponding function does not take string
syntax. So, to do the same with the function calls, you may need to make several calls, which in this
example are as follows:

mkl domain set num threads (4, MKL DOMAIN BLAS);

mkl domain set num threads (2, MKL DOMAIN FFT);

Setting the Environment Variables for Threading Control

To set the environment variables used for threading control, in the command shell in which the program is
going to run, enter:

set <VARIABLE NAME>=<value>

For example:

set MKL NUM THREADS=4

set MKL DOMAIN NUM THREADS="MKL DOMAIN ALL=1, MKL DOMAIN BLAS=4"
set MKL DYNAMIC=FALSE

Some shells require the variable and its value to be exported:

export <VARIABLE NAME>=<value>

53

5 Intel® Math Kernel Library for Windows* OS User's Guide

For example:

export MKL NUM THREADS=4

export MKL DOMAIN NUM THREADS="MKL DOMAIN ALL=1, MKL DOMAIN BLAS=4"
export MKL DYNAMIC=FALSE

You can alternatively assign values to the environment variables using Microsoft Windows* OS Control Panel.

Other Tips and Techniques to Improve Performance

Coding Techniques

To improve performance of your application that calls Intel MKL, align your arrays on 64-byte boundaries and
ensure that the leading dimensions of the arrays are divisible by 64.

LAPACK Packed Routines

The routines with the names that contain the letters up, op, PP, SP, TP, UP in the matrix type and
storage position (the second and third letters respectively) operate on the matrices in the packed format (see
LAPACK "Routine Naming Conventions" sections in the Intel MKL Reference Manual). Their functionality is
strictly equivalent to the functionality of the unpacked routines with the names containing the letters HE,

OR, PO, SY, TR, UN in the same positions, but the performance is significantly lower.

If the memory restriction is not too tight, use an unpacked routine for better performance. In this case, you
need to allocate nN2/2 more memory than the memory required by a respective packed routine, where v is the
problem size (the number of equations).

For example, to speed up solving a symmetric eigenproblem with an expert driver, use the unpacked routine:

call dsyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, iwork,
ifail, info)

where a is the dimension I1da-by-n, which is at least N2 elements,
instead of the packed routine:

call dspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, 1ldz, work, iwork, ifail, info)

where ap is the dimension nv*(n+1)/2.

Hardware Configuration Tips

Dual-Core Intel® Xeon® processor 5100 series systems

To get the best performance with Intel MKL on Dual-Core Intel® Xeon® processor 5100 series systems, enable
the Hardware DPL (streaming data) Prefetcher functionality of this processor. To configure this functionality,
use the appropriate BIOS settings, as described in your BIOS documentation.

Intel® Hyper-Threading Technology

Intel® Hyper-Threading Technology (Intel® HT Technology) is especially effective when each thread performs
different types of operations and when there are under-utilized resources on the processor. However, Intel
MKL fits neither of these criteria because the threaded portions of the library execute at high efficiencies
using most of the available resources and perform identical operations on each thread. You may obtain
higher performance by disabling Intel HT Technology.

54

Managing Performance and Memory 5

If you run with Intel HT Technology enabled, performance may be especially impacted if you run on fewer
threads than physical cores. Moreover, if, for example, there are two threads to every physical core, the
thread scheduler may assign two threads to some cores and ignore the other cores altogether. If you are
using the OpenMP* library of the Intel Compiler, read the respective User Guide on how to best set the
thread affinity interface to avoid this situation. For Intel MKL, apply the following setting:

set KMP_AFFINITY=granularity=fine, compact,1,0

See Also
Improving Performance with Threading

Managing Multi-core Performance

You can obtain best performance on systems with multi-core processors by requiring that threads do not
migrate from core to core. To do this, bind threads to the CPU cores by setting an affinity mask to threads.
Use one of the following options:

e OpenMP facilities (recommended, if available), for example, the KMP_AFFINITY environment variable
using the Intel OpenMP library
e A system function, as explained below

Consider the following performance issue:

e The system has two sockets with two cores each, for a total of four cores (CPUs)
e Performance of t he four -thread parallel application using the Intel MKL LAPACK is unstable

The following code example shows how to resolve this issue by setting an affinity mask by operating system
means using the Intel compiler. The code calls the system function SetThreadAffinityMask to bind the
threads to appropriate cores , thus preventing migration of the threads. Then the Intel MKL LAPACK routine
is called:

// Set affinity mask

#include <windows.h>

#include <omp.h>

int main(void) {

tpragma omp parallel default (shared)
{

int tid = omp get thread num();

// 2 packages x 2 cores/pkg x 1 threads/core (4 total cores)
DWORD PTR mask = (1 << (tid =072 0 : 2));
SetThreadAffinityMask(GetCurrentThread(), mask);

}
// Call Intel MKL LAPACK routine
return 0;

}

Compile the application with the Intel compiler using the following command:
icl /Qopenmp test application.c

where test application.c is the filename for the application.

Build the application. Run it in four threads, for example, by using the environment variable to set the
number of threads:

set OMP_NUM THREADS=4
test application.exe

See Windows API documentation at msdn.microsoft.com/ for the restrictions on the usage of Windows API
routines and particulars of the SetThreadaffinityMask function used in the above example.

See also a similar example at en.wikipedia.org/wiki/Affinity_mask .

55

5 Intel® Math Kernel Library for Windows* OS User's Guide

Operating on Denormals

The IEEE 754-2008 standard, "An IEEE Standard for Binary Floating-Point Arithmetic", defines denormal (or
subnormal) numbers as non-zero numbers smaller than the smallest possible normalized numbers for a
specific floating-point format. Floating-point operations on denormals are slower than on normalized
operands because denormal operands and results are usually handled through a software assist mechanism
rather than directly in hardware. This software processing causes Intel MKL functions that consume
denormals to run slower than with normalized floating-point numbers.

You can mitigate this performance issue by setting the appropriate bit fields in the MXCSR floating-point
control register to flush denormals to zero (FTZ) or to replace any denormals loaded from memory with zero
(DAZ). Check your compiler documentation to determine whether it has options to control FTZ and DAZ.
Note that these compiler options may slightly affect accuracy.

FFT Optimized Radices

You can improve the performance of Intel MKL FFT if the length of your data vector permits factorization into
powers of optimized radices.

In Intel MKL, the optimized radices are 2, 3, 5, 7, 11, and 13.

Using Memory Management

Intel MKL Memory Management Software

Intel MKL has memory management software that controls memory buffers for the use by the library
functions. New buffers that the library allocates when your application calls Intel MKL are not deallocated
until the program ends. To get the amount of memory allocated by the memory management software, call
the mkl mem stat () function. If your program needs to free memory, call mkl free buffers (). If another
call is made to a library function that needs a memory buffer, the memory manager again allocates the
buffers and they again remain allocated until either the program ends or the program deallocates the
memory. This behavior facilitates better performance. However, some tools may report this behavior as a
memory leak.

The memory management software is turned on by default. To turn it off, set the MKL DISABLE FAST MM
environment variable to any value or call the mkl disable fast mm() function. Be aware that this change
may negatively impact performance of some Intel MKL routines, especially for small problem sizes.

Redefining Memory Functions

In C/C++ programs, you can replace Intel MKL memory functions that the library uses by default with your
own functions. To do this, use the memory renaming feature.

Memory Renaming

Intel MKL memory management by default uses standard C run-time memory functions to allocate or free
memory. These functions can be replaced using memory renaming.

Intel MKL accesses the memory functions by pointers i malloc, i free, i calloc, and i reallog,
which are visible at the application level. These pointers initially hold addresses of the standard C run-time
memory functions malloc, free, calloc, and realloc, respectively. You can programmatically redefine
values of these pointers to the addresses of your application's memory management functions.

Redirecting the pointers is the only correct way to use your own set of memory management functions. If
you call your own memory functions without redirecting the pointers, the memory will get managed by two
independent memory management packages, which may cause unexpected memory issues.

56

Managing Performance and Memory 5

How to Redefine Memory Functions
To redefine memory functions, use the following procedure:

If you are using the statically linked Intel MKL,

1. Include the i malloc.h header file in your code.

This header file contains all declarations required for replacing the memory allocation functions. The
header file also describes how memory allocation can be replaced in those Intel libraries that support
this feature.

2. Redefine values of pointers i malloc, i free, i calloc, and i realloc prior to the first call to
MKL functions, as shown in the following example:

#include "i malloc.h"

i malloc

i = my malloc;
i calloc = my calloc;
i realloc = my realloc;
i free = my free;

// Now you may call Intel MKL functions

If you are using the dynamically linked Intel MKL,

1. Includethe i malloc.h header file in your code.

2. Redefine values of pointers i malloc dll, i free dll, i calloc _dll, and i realloc dll prior
to the first call to MKL functions, as shown in the following example:

#include "i malloc.h"

i malloc dll

N = my malloc;
i calloc dl1 = my calloc;
i realloc dll = my realloc;
i free dll = my free;

// Now you may call Intel MKL functions

57

5 Intel® Math Kernel Library for Windows* OS User's Guide

58

Language-specific Usage Options

The Intel® Math Kernel Library (Intel® MKL) provides broad support for Fortran and C/C++ programming.
However, not all functions support both Fortran and C interfaces. For example, some LAPACK functions have
no C interface. You can call such functions from C using mixed-language programming.

If you want to use LAPACK or BLAS functions that support Fortran 77 in the Fortran 95 environment,
additional effort may be initially required to build compiler-specific interface libraries and modules from the
source code provided with Intel MKL.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Using Language-Specific Interfaces with Intel® Math Kernel
Library

This section discusses mixed-language programming and the use of language-specific interfaces with Intel
MKL.

See also the "FFTW Interface to Intel® Math Kernel Library" Appendix in the Intel MKL Reference Manual for
details of the FFTW interfaces to Intel MKL.

Interface Libraries and Modules

You can create the following interface libraries and modules using the respective makefiles located in the
interfaces directory.

File name Contains

Libraries, in Intel MKL architecture-specific directories

mkl blas95.1ib! Fortran 95 wrappers for BLAS (BLAS95) for IA-32 architecture.

mkl blas95 ilp64.libl Fortran 95 wrappers for BLAS (BLAS95) supporting LP64
interface.

mkl blas95 1p64.1ib! Fortran 95 wrappers for BLAS (BLAS95) supporting ILP64
interface.

mkl lapack95.1lib? Fortran 95 wrappers for LAPACK (LAPACK95) for IA-32
architecture.

mkl lapack95 1p64.1ib? Fortran 95 wrappers for LAPACK (LAPACK95) supporting LP64
interface.

mkl lapack95 ilp64.1ib! Fortran 95 wrappers for LAPACK (LAPACK95) supporting ILP64
interface.

59

6 Intel® Math Kernel Library for Windows* OS User's Guide

File name

Contains

fftw2xc_intel.lib?
fftw2xc ms.lib

fftw2xf intel.lib
fftw3xc_intel.lib?
fftw3xc ms.lib

fftw3xf intel.lib?
fftw2x_cdft SINGLE.lib
fftw2x_cdft DOUBLE.lib
fftw3x cdft.lib

fftw3x cdft ilp64.1lib

Interfaces for FFTW version 2.x (C interface for Intel
compilers) to call Intel MKL FFTs.

Contains interfaces for FFTW version 2.x (C interface for
Microsoft compilers) to call Intel MKL FFTs.

Interfaces for FFTW version 2.x (Fortran interface for Intel
compilers) to call Intel MKL FFTs.

Interfaces for FFTW version 3.x (C interface for Intel compiler)
to call Intel MKL FFTs.

Interfaces for FFTW version 3.x (C interface for Microsoft
compilers) to call Intel MKL FFTs.

Interfaces for FFTW version 3.x (Fortran interface for Intel
compilers) to call Intel MKL FFTs.

Single-precision interfaces for MPI FFTW version 2.x (C
interface) to call Intel MKL cluster FFTs.

Double-precision interfaces for MPI FFTW version 2.x (C
interface) to call Intel MKL cluster FFTs.

Interfaces for MPI FFTW version 3.x (C interface) to call Intel
MKL cluster FFTs.

Interfaces for MPI FFTW version 3.x (C interface) to call Intel
MKL cluster FFTs supporting the ILP64 interface.

Modules, in architecture- and interface-specific subdirectories of the Intel MKL include

directory
blas95.mod?!
lapack95.mod !

f957precision.mod1
mkl957blas.mod1
mkl95ilapack.mod1

mkl957precision.mod1

mkl_service.mod1

Fortran 95 interface module for BLAS (BLAS95).
Fortran 95 interface module for LAPACK (LAPACK95).

Fortran 95 definition of precision parameters for BLAS95 and
LAPACK95.

Fortran 95 interface module for BLAS (BLAS95), identical to
blas95.mod. To be removed in one of the future releases.

Fortran 95 interface module for LAPACK (LAPACK95), identical
to lapack95.mod. To be removed in one of the future releases.

Fortran 95 definition of precision parameters for BLAS95 and
LAPACK9S5, identical to £95 precision.mod. To be removed
in one of the future releases.

Fortran 95 interface module for Intel MKL support functions.

1 Prebuilt for the Intel® Fortran compiler

2 FFTW3 interfaces are integrated with Intel MKL. Look into <mkl directory>\interfaces\fftw3x*
\makefile for options defining how to build and where to place the standalone library with the wrappers.

See Also

Fortran 95 Interfaces to LAPACK and BLAS

60

Language-specific Usage Options 6

Fortran 95 Interfaces to LAPACK and BLAS

Fortran 95 interfaces are compiler-dependent. Intel MKL provides the interface libraries and modules
precompiled with the Intel® Fortran compiler. Additionally, the Fortran 95 interfaces and wrappers are
delivered as sources. (For more information, see Compiler-dependent Functions and Fortran 90 Modules). If
you are using a different compiler, build the appropriate library and modules with your compiler and link the
library as a user's library:

1. Go to the respective directory <mkl directory>\interfaces\blas95 or <mkl directory>
\interfaces\lapack95
2. Type one of the following commands depending on your architecture:

e For the IA-32 architecture,

nmake libia32 install dir=<user dir>
e For the Intel® 64 architecture,

nmake libintel64 [interface=1p64|ilp64] install dir=<user dir>

B Important The parameter install dir is required.

As a result, the required library is built and installed in the <user dir>\1ib directory, and the .mod files are
built and installed in the <user dir>\include\<arch>[\{1lp64|ilp64}] directory, where <arch> is one of
{ia32, intelo4}.

By default, the ifort compiler is assumed. You may change the compiler with an additional parameter of
nmake:

FC=<compiler>.

For example, the command

nmake libintel64 FC=£f95 install dir=<userf95 dir> interface=1p64

builds the required library and .mod files and installs them in subdirectories of <userf95 dir>.
To delete the library from the building directory, use one of the following commands:

e For the IA-32 architecture,

nmake cleania32 install dir=<user dir>
e For the Intel® 64 architecture,

nmake cleanintel64 [interface=1p64|ilp64] install dir=<user dir>
e For all the architectures,

nmake clean install dir=<user dir>

B CAUTION Even if you have administrative rights, avoid setting install dir=..\.. or
install dir=<mkl directory> in a build or clean command above because these settings replace
or delete the Intel MKL prebuilt Fortran 95 library and modules.

Compiler-dependent Functions and Fortran 90 Modules

Compiler-dependent functions occur whenever the compiler inserts into the object code function calls that
are resolved in its run-time library (RTL). Linking of such code without the appropriate RTL will result in
undefined symbols. Intel MKL has been designed to minimize RTL dependencies.

In cases where RTL dependencies might arise, the functions are delivered as source code and you need to
compile the code with whatever compiler you are using for your application.

61

6 Intel® Math Kernel Library for Windows* OS User's Guide

In particular, Fortran 90 modules result in the compiler-specific code generation requiring RTL support.
Therefore, Intel MKL delivers these modules compiled with the Intel compiler, along with source code, to be
used with different compilers.

Using the stdcall Calling Convention in C/C++
Intel MKL supports stdcall calling convention for the following function domains:

e BLAS Routines

Sparse BLAS Routines
LAPACK Routines

Vector Mathematical Functions
Vector Statistical Functions
PARDISO

e Direct Sparse Solvers

RCI Iterative Solvers

Support Functions

To use the stdcall calling convention in C/C++, follow the guidelines below:

e In your function calls, pass lengths of character strings to the functions. For example, compare the
following calls to dgemm:

cdecl: dgemm ("N", "N", &n, &m, &k, &alpha, b, &ldb, a, &lda, &beta, c, &ldc);

stdcall: dgemm ("N", 1, "N", 1, &n, &m, &k, &alpha, b, &ldb, a, &lda, &beta, c,
&ldc) ;
e Define the MKL STDCALL macro using either of the following techniques:

- Define the macro in your source code before including Intel MKL header files:

#define MKL STDCALL
#include "mkl.h"

- Pass the macro to the compiler. For example:

icl -DMKL STDCALL foo.c
e Link your application with the following library:

- mkl intel s.lib for static linking
- mkl intel s dll.1lib for dynamic linking

A

See Also
Using the cdecl and stdcall Interfaces

Compiling an Application that Calls the Intel® Math Kernel Library and Uses the CVF Calling
Conventions

Include Files

Compiling an Application that Calls the Intel® Math Kernel Library and Uses the CVF Calling
Conventions

The IA-32 architecture implementation of Intel MKL supports the Compagq Visual Fortran* (CVF) calling
convention by providing the stdcall interface.

62

Language-specific Usage Options 6

Although the Intel MKL does not provide the CVF interface in its Intel® 64 architecture implementation, you
can use the Intel® Visual Fortran Compiler to compile your Intel® 64 architecture application that calls Intel
MKL and uses the CVF calling convention. To do this:

e Provide the following compiler options to enable compatibility with the CVF calling convention:
/Gm or /iface:cvf

e Additionally provide the following options to enable calling Intel MKL from your application:
/iface:nomixed str len arg

See Also
Using the cdecl and stdcall Interfaces
Compiler Support

Mixed-language Programming with the Intel Math Kernel
Library

Appendix A: Intel(R) Math Kernel Library Language Interfaces Support lists the programming languages
supported for each Intel MKL function domain. However, you can call Intel MKL routines from different
language environments.

Calling LAPACK, BLAS, and CBLAS Routines from C/C++ Language Environments

Not all Intel MKL function domains support both C and Fortran environments. To use Intel MKL Fortran-style
functions in C/C++ environments, you should observe certain conventions, which are discussed for LAPACK
and BLAS in the subsections below.

CAUTION Avoid calling BLAS 95/LAPACK 95 from C/C++. Such calls require skills in manipulating the
descriptor of a deferred-shape array, which is the Fortran 90 type. Moreover, BLAS95/LAPACK95
routines contain links to a Fortran RTL.

LAPACK and BLAS

Because LAPACK and BLAS routines are Fortran-style, when calling them from C-language programs, follow
the Fortran-style calling conventions:

e Pass variables by address, not by value.
Function calls in Example "Calling a Complex BLAS Level 1 Function from C++" and Example "Using
CBLAS Interface Instead of Calling BLAS Directly from C" illustrate this.

e Store your data in Fortran style, that is, column-major rather than row-major order.

With row-major order, adopted in C, the last array index changes most quickly and the first one changes
most slowly when traversing the memory segment where the array is stored. With Fortran-style column-
major order, the last index changes most slowly whereas the first index changes most quickly (as illustrated
by the figure below for a two-dimensional array).

1 2 3 4 0 1 2 3

1 - - — 0 -—
e)
T | | | e

2 | | | 1 1 (| R | A—
P s r -

3 l\,) ~ "r 2 oy e e

A: Column-major order {Fortran-style) B: Row-major order (C-style}

63

6 Intel® Math Kernel Library for Windows* OS User's Guide

For example, if a two-dimensional matrix A of size mxn is stored densely in a one-dimensional array B, you
can access a matrix element like this:

A[i][j] = B[i*n+3]inC (i=0, ... , m-1, =0, ... , -1)
A(i,j) = B((j-1)*m+i) in Fortran (i=1, ... , m, j=1, ... , n).

When calling LAPACK or BLAS routines from C, be aware that because the Fortran language is case-
insensitive, the routine names can be both upper-case or lower-case, with or without the trailing underscore.
For example, the following names are equivalent:

e LAPACK: dgetrf, DGETRF, dgetrf , and DGETRF
e BLAS: dgemm, DGEMM, dgemm , and DGEMM

See Example "Calling a Complex BLAS Level 1 Function from C++" on how to call BLAS routines from C.

See also the Intel(R) MKL Reference Manual for a description of the C interface to LAPACK functions.

CBLAS
Instead of calling BLAS routines from a C-language program, you can use the CBLAS interface.

CBLAS is a C-style interface to the BLAS routines. You can call CBLAS routines using regular C-style calls.
Use the mk1.h header file with the CBLAS interface. The header file specifies enumerated values and
prototypes of all the functions. It also determines whether the program is being compiled with a C++
compiler, and if it is, the included file will be correct for use with C++4+ compilation. Example "Using CBLAS
Interface Instead of Calling BLAS Directly from C" illustrates the use of the CBLAS interface.

C Interface to LAPACK

Instead of calling LAPACK routines from a C-language program, you can use the C interface to LAPACK
provided by Intel MKL.

The C interface to LAPACK is a C-style interface to the LAPACK routines. This interface supports matrices in
row-major and column-major order, which you can define in the first function argument matrix order. Use
the mk1.h header file with the C interface to LAPACK. mk1.h includes the mk1l lapacke.h header file, which
specifies constants and prototypes of all the functions. It also determines whether the program is being
compiled with a C++4+ compiler, and if it is, the included file will be correct for use with C++4+ compilation. You
can find examples of the C interface to LAPACK in the examples\lapacke subdirectory in the Intel MKL
installation directory.

Using Complex Types in C/C++

As described in the documentation for the Intel® Visual Fortran Compiler XE, C/C++ does not directly
implement the Fortran types COMPLEX (4) and COMPLEX (8). However, you can write equivalent structures.
The type COMPLEX (4) consists of two 4-byte floating-point numbers. The first of them is the real-number
component, and the second one is the imaginary-number component. The type COMPLEX (8) is similar to
COMPLEX (4) except that it contains two 8-byte floating-point numbers.

Intel MKL provides complex types MKL Complex8 and MKL Complex16, which are structures equivalent to
the Fortran complex types COMPLEX (4) and COMPLEX (8), respectively. The MKL Complex8 and

MKL Complex16 types are defined in the mkl types.h header file. You can use these types to define
complex data. You can also redefine the types with your own types before including the mkl types.h header
file. The only requirement is that the types must be compatible with the Fortran complex layout, that is, the
complex type must be a pair of real numbers for the values of real and imaginary parts.

For example, you can use the following definitions in your C++ code:

#define MKL Complex8 std::complex<float>

and
#define MKL Complexl6 std::complex<double>

64

Language-specific Usage Options 6

See Example "Calling a Complex BLAS Level 1 Function from C++" for details. You can also define these
types in the command line:

-DMKL Complex8="std::complex<float>"
-DMKL Complexl6="std::complex<double>"

See Also
Intel® Software Documentation Library

Calling BLAS Functions that Return the Complex Values in C/C++ Code

Complex values that functions return are handled differently in C and Fortran. Because BLAS is Fortran-style,
you need to be careful when handling a call from C to a BLAS function that returns complex values. However,
in addition to normal function calls, Fortran enables calling functions as though they were subroutines, which
provides a mechanism for returning the complex value correctly when the function is called from a C
program. When a Fortran function is called as a subroutine, the return value is the first parameter in the
calling sequence. You can use this feature to call a BLAS function from C.

The following example shows how a call to a Fortran function as a subroutine converts to a call from C and
the hidden parameter result gets exposed:

Normal Fortran function call: result = cdotc(n, x, 1, y, 1)
A call to the function as a subroutine: call cdotc(result, n, x, 1, vy, 1)

A call to the function from C: cdotc(&result, &n, x, &one, y, &one)

NOTE Intel MKL has both upper-case and lower-case entry points in the Fortran-style (case-
insensitive) BLAS, with or without the trailing underscore. So, all these names are equivalent and
acceptable: cdotc, CDOIC, cdotc_, and CDOTC_.

The above example shows one of the ways to call several level 1 BLAS functions that return complex values
from your C and C++ applications. An easier way is to use the CBLAS interface. For instance, you can call
the same function using the CBLAS interface as follows:

cblas cdotu(n, x, 1, y, 1, é&result)

g NOTE The complex value comes last on the argument list in this case.

The following examples show use of the Fortran-style BLAS interface from C and C++, as well as the CBLAS
(C language) interface:

e Example "Calling a Complex BLAS Level 1 Function from C"

e Example "Calling a Complex BLAS Level 1 Function from C++"

e Example "Using CBLAS Interface Instead of Calling BLAS Directly from C"

Example "Calling a Complex BLAS Level 1 Function from C”

The example below illustrates a call from a C program to the complex BLAS Level 1 function zdotc (). This
function computes the dot product of two double-precision complex vectors.

In this example, the complex dot product is returned in the structure c.

#include "mkl.h"

#define N 5

int main ()

{

int n = N, inca =1, incb =1, i;
MKL Complexl6 a[N], b[N], c;

65

http://software.intel.com/en-us/articles/intel-software-technical-documentation/

6 Intel® Math Kernel Library for Windows* OS User's Guide

for(i =0; 1 < n; i++){

afi].real (double)i; a[i].imag = (double)i * 2.0;

b[i].real (double) (n - i); b[i].imag = (double)i * 2.0;

}

zdotc(&c, &n, a, &inca, b, &incb);

printf("The complex dot product is: (%6.2f, %6.2f)\n", c.real, c.imag);
return 0;

}

Example "Calling a Complex BLAS Level 1 Function from C++"

Below is the C++ implementation:

#include <complex>

#include <iostream>

#define MKL Complexl6 std::complex<double>
#include "mkl.h"

#define N 5

int main ()

{
int n, inca = 1, incb =1, 1i;
std::complex<double> a[N], b[N], c;

n =N;

for(i =0; i < n; i++){
af[i] = std::complex<double>(i,i*2.0);
b[i] = std::complex<double>(n-i,i*2.0);

zdotc (&c, &n, a, &inca, b, &incb);
std::cout << "The complex dot product is: " << ¢ << std::endl;
return 0;

Example “Using CBLAS Interface Instead of Calling BLAS Directly from C"
This example uses CBLAS:

#include <stdio.h>

#include "mkl.h"

typedef struct{ double re; double im; } complexl6;
#define N 5

int main()

{

int n, inca = 1, incb = 1, 1i;

complexl6 a[N], b[N], c;

n = N;

for(1 =0; 1 < n; 1i++){

a[i].re = (double)i; a[i].im = (double)i * 2.0;
b[i].re = (double) (n - i); b[i].im = (double)i * 2.0;

}

cblas_zdotc sub(n, a, inca, b, incb, &c);

printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re, c.im);
return 0;

}

66

Language-specific Usage Options 6

Support for Boost uBLAS Matrix-matrix Multiplication

If you are used to uBLAS, you can perform BLAS matrix-matrix multiplication in C++ using Intel MKL
substitution of Boost uBLAS functions. uBLAS is the Boost C++ open-source library that provides BLAS
functionality for dense, packed, and sparse matrices. The library uses an expression template technique for
passing expressions as function arguments, which enables evaluating vector and matrix expressions in one
pass without temporary matrices. uBLAS provides two modes:

e Debug (safe) mode, default.
Checks types and conformance.

e Release (fast) mode.
Does not check types and conformance. To enable this mode, use the NDEBUG preprocessor symbol.

The documentation for the Boost uBLAS is available at www.boost.org.

Intel MKL provides overloaded prod () functions for substituting uBLAS dense matrix-matrix multiplication
with the Intel MKL gemm calls. Though these functions break uBLAS expression templates and introduce
temporary matrices, the performance advantage can be considerable for matrix sizes that are not too small
(roughly, over 50).

You do not need to change your source code to use the functions. To call them:

¢ Include the header file mkl boost ublas matrix_prod.hpp in your code (from the Intel MKL include
directory)
e Add appropriate Intel MKL libraries to the link line.

The list of expressions that are substituted follows:
prod(ml, m2)

prod(trans(ml), m2)

prod(trans(conj(ml)), m2)

prod(conj(trans(ml)), m2)

prod(ml, trans(m2))

prod(trans(ml), trans(m2))

prod(trans(conj(ml)), trans(m2))

prod(conj(trans(ml)), trans(m2))

prod(ml, trans(conj(m2)))

prod(trans(ml), trans(conj(m2)))

prod(trans(conj(ml)), trans(conj(m2)))
prod(conj(trans(ml)), trans(conj(m2)))
prod(ml, conj(trans(m2)))

prod(trans(ml), conj(trans(m2)))

prod(trans(conj(ml)), conj(trans(m2)))
prod(conj(trans(ml)), conj(trans(m2)))

These expressions are substituted in the release mode only (with NDEBUG preprocessor symbol defined).
Supported uBLAS versions are Boost 1.34.1 and higher. To get them, visit www.boost.org.

A code example provided in the <mk1 directory>\examples\ublas\source\sylvester.cpp file
illustrates usage of the Intel MKL uBLAS header file for solving a special case of the Sylvester equation.

To run the Intel MKL ublas examples, specify the boost root parameter in the n make command, for
instance, when using Boost version 1.37.0:

nmake libia32 boost root = <your path>\boost 1 37 0

Intel MKL ublas examples on default Boost uBLAS configuration support only:

67

6 Intel® Math Kernel Library for Windows* OS User's Guide

e Microsoft Visual C++* Compiler versions 2008 and higher
e Intel C++ Compiler versions 11.1 and higher with Microsoft Visual Studio IDE versions 2008 and higher

See Also
Using Code Examples

Invoking Intel MKL Functions from Java* Applications

Intel MKL Java* Examples

To demonstrate binding with Java, Intel MKL includes a set of Java examples in the following directory:
<mkl directory>\examples\java.

The examples are provided for the following MKL functions:

e ?gemm, ?gemv, and ?dot families from CBLAS

e The complete set of non-cluster FFT functions

e ESSL!-like functions for one-dimensional convolution and correlation

e VSL Random Number Generators (RNG), except user-defined ones and file subroutines

e VML functions, except GetErrorCallBack, SetErrorCallBack, and ClearErrorCallBack

You can see the example sources in the following directory:
<mkl directory>\examples\java\examples.

The examples are written in Java. They demonstrate usage of the MKL functions with the following variety of
data:

e 1- and 2-dimensional data sequences

e Real and complex types of the data

e Single and double precision

However, the wrappers, used in the examples, do not:

e Demonstrate the use of large arrays (>2 billion elements)
e Demonstrate processing of arrays in native memory

e Check correctness of function parameters

e Demonstrate performance optimizations

The examples use the Java Native Interface (JNI* developer framework) to bind with Intel MKL. The JNI
documentation is available from
http://java.sun.com/javase/6/docs/technotes/guides/jni/.

The Java example set includes JNI wrappers that perform the binding. The wrappers do not depend on the
examples and may be used in your Java applications. The wrappers for CBLAS, FFT, VML, VSL RNG, and
ESSL-like convolution and correlation functions do not depend on each other.

To build the wrappers, just run the examples. The makefile builds the wrapper binaries. After running the
makefile, you can run the examples, which will determine whether the wrappers were built correctly. As a
result of running the examples, the following directories will be created in <mkl directory>\examples
\java:

e docs

e include
e classes
e bin

e results

The directories docs, include, classes, and bin will contain the wrapper binaries and documentation;
the directory results will contain the testing results.

For a Java programmer, the wrappers are the following Java classes:

68

Language-specific Usage Options 6

e com.intel.mkl.CBLAS
e com.intel.mkl.DFTI
e com.intel.mkl.ESSL
e com.intel.mkl.VML

e com.intel.mkl.VSL

Documentation for the particular wrapper and example classes will be generated from the Java sources while
building and running the examples. To browse the documentation, open the index file in the docs directory
(created by the build script):

<mkl directory>\examples\java\docs\index.html.

The Java wrappers for CBLAS, VML, VSL RNG, and FFT establish the interface that directly corresponds to the
underlying native functions, so you can refer to the Intel MKL Reference Manual for their functionality and
parameters. Interfaces for the ESSL-like functions are described in the generated documentation for the
com.intel.mkl.ESSL class.

Each wrapper consists of the interface part for Java and JNI stub written in C. You can find the sources in the
following directory:

<mkl directory>\examples\java\wrappers.

Both Java and C parts of the wrapper for CBLAS and VML demonstrate the straightforward approach, which
you may use to cover additional CBLAS functions.

The wrapper for FFT is more complicated because it needs to support the lifecycle for FFT descriptor objects.
To compute a single Fourier transform, an application needs to call the FFT software several times with the
same copy of the native FFT descriptor. The wrapper provides the handler class to hold the native descriptor,
while the virtual machine runs Java bytecode.

The wrapper for VSL RNG is similar to the one for FFT. The wrapper provides the handler class to hold the
native descriptor of the stream state.

The wrapper for the convolution and correlation functions mitigates the same difficulty of the VSL interface,
which assumes a similar lifecycle for "task descriptors". The wrapper utilizes the ESSL-like interface for those
functions, which is simpler for the case of 1-dimensional data. The JNI stub additionally encapsulates the
MKL functions into the ESSL-like wrappers written in C and so "packs" the lifecycle of a task descriptor into a
single call to the native method.

The wrappers meet the JNI Specification versions 1.1 and 5.0 and should work with virtually every modern
implementation of Java.

The examples and the Java part of the wrappers are written for the Java language described in "The Java
Language Specification (First Edition)" and extended with the feature of "inner classes" (this refers to late
1990s). This level of language version is supported by all versions of the Sun Java Development Kit* (JDK*)
developer toolkit and compatible implementations starting from version 1.1.5, or by all modern versions of
Java.

The level of C language is "Standard C" (that is, C89) with additional assumptions about integer and floating-
point data types required by the Intel MKL interfaces and the JNI header files. That is, the native float and
double data types must be the same as JNI jfloat and jdouble data types, respectively, and the native
int must be 4 bytes long.

1 IBM Engineering Scientific Subroutine Library (ESSL*).

See Also
Running the Java* Examples

Running the Java* Examples

The Java examples support all the C and C++ compilers that Intel MKL does. The makefile intended to run
the examples also needs the n make utility, which is typically provided with the C/C++ compiler package.

To run Java examples, the JDK* developer toolkit is required for compiling and running Java code. A Java
implementation must be installed on the computer or available via the network. You may download the JDK
from the vendor website.

The examples should work for all versions of JDK. However, they were tested only with the following Java
implementation s for all the supported architectures:

69

6 Intel® Math Kernel Library for Windows* OS User's Guide

e J2SE* SDK 1.4.2, JDK 5.0 and 6.0 from Sun Microsystems, Inc. (http://sun.com/).
e JRockit* JDK 1.4.2 and 5.0 from Oracle Corporation (http://oracle.com/).

Note that the Java run-time environment* (JRE*) system, which may be pre-installed on your computer, is
not enough. You need the JDK* developer toolkit that supports the following set of tools:

e java

e javac

e javah

e javadoc

To make these tools available for the examples makefile, set the JAVA HOME environment variable and add
the JDK binaries directory to the system PATH, for example :

SET JAVA HOME=C:\Program Files\Java\jdkl.5.0 09

SET PATH=%JAVA HOME%$\bin; $PATHS%

You may also need to clear the JDK_HOME environment variable, if it is assigned a value:

SET JDK HOME=

To start the examples, use the makefile found in the Intel MKL Java examples directory:

nmake {dllia32|dllintel64|1libia32|libintel64} [function=...] [compiler=...]

If you type the make command and omit the target (for example, d11ia32), the makefile prints the help
info, which explains the targets and parameters.

For the examples list, see the examples.1st file in the Java examples directory.

Known Limitations of the Java* Examples

This section explains limitations of Java examples.

Functionality

Some Intel MKL functions may fail to work if called from the Java environment by using a wrapper, like those
provided with the Intel MKL Java examples. Only those specific CBLAS, FFT, VML, VSL RNG, and the
convolution/correlation functions listed in the Intel MKL Java Examples section were tested with the Java
environment. So, you may use the Java wrappers for these CBLAS, FFT, VML, VSL RNG, and convolution/
correlation functions in your Java applications.

Performance

The Intel MKL functions must work faster than similar functions written in pure Java. However, the main goal
of these wrappers is to provide code examples, not maximum performance. So, an Intel MKL function called
from a Java application will probably work slower than the same function called from a program written in C/
C++ or Fortran.

Known bugs

There are a number of known bugs in Intel MKL (identified in the Release Notes), as well as incompatibilities
between different versions of JDK. The examples and wrappers include workarounds for these problems.
Look at the source code in the examples and wrappers for comments that describe the workarounds.

70

Obtaining Numerically
Reproducible Results

Intel® Math Kernel Library (Intel® MKL) offers functions and environment variables that help you obtain
Conditional Numerical Reproducibility (CNR) of floating-point results when calling the library functions from
your application. These new controls enable Intel MKL to run in a special mode, when functions return bitwise
reproducible floating-point results from run to run under the following conditions:

e Calls to Intel MKL occur in a single executable
e Input and output arrays in function calls are properly aligned
e The number of computational threads used by the library does not change in the run

It is well known that for general single and double precision IEEE floating-point numbers, the associative
property does not always hold, meaning (a+b)+c may not equal a +(b+c). Let's consider a specific example.
In infinite precision arithmetic 2763 + 1 + -1 = 2-63, If this same computation is done on a computer using
double precision floating-point numbers, a rounding error is introduced, and the order of operations becomes
important:

(28 + 1)+ (-1) =1+ (-1)

I
o

versus
2763 + (1 + (-1)) =263+ 0 =263
This inconsistency in results due to order of operations is precisely what the new functionality addresses.

The application related factors that affect the order of floating-point operations within a single executable
program include selection of a code path based on run-time processor dispatching, alignment of data arrays,
variation in number of threads, threaded algorithms and internal floating-point control settings. You can
control most of these factors by controlling the number of threads and floating-point settings and by taking
steps to align memory when it is allocated (see the Getting Reproducible Results with Intel® MKL knowledge
base article for details). However, run-time dispatching and certain threaded algorithms did not allow users
to make changes that can ensure the same order of operations from run to run.

Intel MKL does run-time processor dispatching in order to identify the appropriate internal code paths to
traverse for the Intel MKL functions called by the application. The code paths chosen may differ across a wide
range of Intel processors and Intel architecture compatible processors and may provide differing levels of
performance. For example, an Intel MKL function running on an Intel® Pentium® 4 processor may run one
code path, while on the latest Intel® Xeon® processor it will run another code path. This happens because
each unique code path has been optimized to match the features available on the underlying processor. One
key way that the new features of a processor are exposed to the programmer is through the instruction set
architecture (ISA). Because of this, code branches in Intel MKL are designated by the latest ISA they use for
optimizations: from the Intel® Streaming SIMD Extensions 2 (Intel® SSE2) to the Intel® Advanced Vector
Extensions (Intel® AVX). The feature-based approach introduces a challenge: if any of the internal floating-
point operations are done in a different order or are re-associated, the computed results may differ.

Dispatching optimized code paths based on the capabilities of the processor on which the code is running is
central to the optimization approach used by Intel MKL. So it is natural that consistent results require some
performance trade-offs. If limited to a particular code path, performance of Intel MKL can in some
circumstances degrade by more than a half. To understand this, note that matrix-multiply performance
nearly doubled with the introduction of new processors supporting Intel AVX instructions. Even if the code
branch is not restricted, performance can degrade by 10-20% because the new functionality restricts
algorithms to maintain the order of operations.

71

7 Intel® Math Kernel Library for Windows* OS User's Guide

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Getting Started with Conditional Numerical Reproducibility

Intel MKL offers functions and environment variables to increase your chances of getting reproducible results.
You can configure Intel MKL using functions or environment variables, but the functions provide more
flexibility.

The following specific examples introduce you to the conditional numerical reproducibility.

Intel CPUs supporting Intel AVX
To ensure Intel MKL calls return the same results on every Intel CPU supporting Intel AVX instructions:
1. Make sure that:

e Your application uses a fixed number of threads
e Input and output arrays in Intel MKL function calls are aligned properly
2. Do either of the following:

o Call

mkl cbwr set (MKL CBWR AVX)
e Set the environment variable

MKL CBWR BRANCH = AVX

NOTE On non-Intel CPUs and on Intel CPUs that do not support Intel AVX, this environment setting
may cause results to differ because the AUTO branch is used instead, while the above function call
returns an error and does not enable the CNR mode.

Intel CPUs supporting Intel SSE2
To ensure Intel MKL calls return the same results on every Intel CPU supporting Intel SSE2 instructions:
1. Make sure that:

e Your application uses a fixed number of threads
e Input and output arrays in Intel MKL function calls are aligned properly
2. Do either of the following:

o Call

mkl cbwr set (MKL CBWR SSE2)
e Set the environment variable

MKL CBWR BRANCH = SSE2

! NOTE On non-Intel CPUs and on Intel CPUs that do not support Intel SSE2, this environment setting
may cause results to differ because the AUTO branch is used instead, while the above function call
returns an error and does not enable the CNR mode.

72

Obtaining Numerically Reproducible Results 7

Intel or Intel compatible CPUs supporting Intel SSE2

On non-Intel CPUs, only the MKL CBWR AUTO and MKL CBWR_COMPATIBLE options are supported for function
calls and only AUTO and COMPATIBLE options for environment settings.

To ensure Intel MKL calls return the same results on all Intel or Intel compatible CPUs supporting Intel SSE2
instructions:

1. Make sure that:

¢ Your application uses a fixed number of threads
e Input and output arrays in Intel MKL function calls are aligned properly
2. Do either of the following:

e Call

mkl cbwr set (MKL CBWR COMPATIBLE)
e Set the environment variable

MKL CBWR BRANCH = COMPATIBLE

NOTE The special MKL._CBWR COMPATIBLE/COMPATIBLE option is provided because Intel and Intel
compatible CPUs have two approximation instructions(rcpps/rsqrtps) that may return different results.
This option ensures that Intel MKL does not use these instructions and forces a single Intel SSE2 only
code path to be executed.

Next steps

See Specifying the Code Branches for details of specifying the branch using
environment variables.

See the following sections in the Intel MKL Reference Manual:

Support Functions for Conditional Numerical Reproducibility for how to configure the CNR mode of Intel
MKL using functions.

PARDISO* - Parallel Direct Sparse Solver Interface for how to configure the CNR mode for
PARDISO.

See Also
Code Examples

Specifying the Code Branches

Intel MKL provides conditional numerically reproducible results for a code branch determined by the
supported instruction set architecture (ISA). The values you can specify for the MKL CBWR environment
variable may have one of the following equivalent formats:

e MKL CBWR="<branch>"
e MKL CBWR="BRANCH=<branch>"

The <branch> placeholder specifies the CNR branch with one of the following values:

Value Description

AUTO CNR mode uses:

73

7 Intel® Math Kernel Library for Windows* OS User's Guide

Value Description

* The standard ISA-based dispatching model on Intel processors
while ensuring fixed cache sizes, deterministic reductions, and
static scheduling

* The branch corresponding to COMPATIBLE otherwise

CNR mode uses the branch for the following ISA:

COMPATIBLE Intel® Streaming SIMD Extensions 2 (Intel® SSE2) without rcpps/
rsqrtps instructions

SSE2 Intel SSE2

SSE3 Intel® Streaming SIMD Extensions 3 (Intel® SSE3)

SSSE3 Supplemental Streaming SIMD Extensions 3 (SSSE3)

SSE4 1 Intel® Streaming SIMD Extensions 4-1 (Intel® SSE4-1)

SSE4 2 Intel® Streaming SIMD Extensions 4-2 (Intel® SSE4-2)

AVX Intel® Advanced Vector Extensions (Intel® AVX)

AVX2 Intel® Advanced Vector Extensions 2 (Intel® AVX2)

When specifying the CNR branch, be aware of the following:

e Reproducible results are provided under certain conditions.
e Settings other than AUTO or COMPATIBLE are available only for Intel processors. The code branch specified
by COMPATIBLE is run on all non-Intel processors.

e To get the CNR branch optimized for the processor where your program is currently running, choose the
value of AUTO or call the mkl cbwr get auto branch function.

Setting the MKL_CBWR environment variable or a call to an equivalent mkl set cbwr branch function fixes
the code branch and sets the reproducibility mode.

e If the value of the branch is incorrect or your processor does not support the specified branch, CNR
ignores this value and uses the AUTO branch without providing any warning messages.
e Calls to functions that define the behavior of CNR must precede any of the math library functions
that they control.
e Settings specified by the functions take precedence over the settings specified by the environment
variable.

See the Intel MKL Reference Manual for how to specify the branches using functions.

See Also
Getting Started with Conditional Numerical Reproducibility

Reproducibility Conditions

Reproducible results are provided under these conditions:

e The number of threads is fixed and constant.
Specifically:

e If you are running your program on different processors, explicitly specify the number of threads.

e To ensure that your application has deterministic behavior with OpenMP* parallelization and does not
adjust the number of threads dynamically at run time, set MKL DYNAMIC and OMP DYNAMIC to FALSE.
This is especially needed if you are running your program on different systems.

74

Obtaining Numerically Reproducible Results 7

e Input and output arrays are aligned on 128-byte boundaries.

Instead of the general 128-byte alignment, you can use a more specific alignment depending on the ISA.
For example: 16-byte alignment suffices for Intel SSE2 or higher and 32-byte alignment suffices for Intel
AVX or Intel AVX2. To ensure proper alignment of arrays, allocate memory for them using mkl malloc.

Setting the Environment Variable for Conditional Numerical
Reproducibility

The following examples illustrate the use of the MKL._ CBWR environment variable. The first command sets
Intel MKL to run in the CNR mode based on the default dispatching for your platform. The other two
commands are equivalent and set the CNR branch to Intel AVX:

e set MKL CBWR="AUTO"

e set MKL CBWR="AVX"

e set MKL CBWR="BRANCH=AVX"

See Also
Specifying the Code Branches

Code Examples

The following simple programs show how to obtain reproducible results from run to run of Intel MKL
functions. See the Intel MKL Reference Manual for more examples.

C Example of CNR

#include <mkl.h>
int main(void) {
int my cbwr branch;
/* Align all input/output data on 128-byte boundaries to get reproducible results of Intel MKL
function calls */
void *darray;
int darray size=1000;
/* Set alignment value in bytes */
int alignment=128;
/* Allocate aligned array */
darray = mkl malloc (sizeof (double)*darray size, alignment);
/* Find the available MKL CBWR BRANCH automatically */
my cbwr branch = mkl cbwr get auto branch();
/* User code without Intel MKL calls */
/* Piece of the code where CNR of Intel MKL is needed */
/* The performance of Intel MKL functions might be reduced for CNR mode */
if (mkl cbwr set(my cbwr branch)) {
printf (“Error in setting MKL CBWR BRANCH! Aborting.\n”);
return;

}

/* CNR calls to Intel MKL + any other code with aligned input\output data */
/* Free the allocated aligned array */

mkl free(darray);

Fortran Example of CNR

PROGRAM MAIN
INCLUDE 'mkl.fi'
INTEGER*4 MY CBWR BRANCH
! Align all input/output data on 128-byte boundaries to get reproducible results of Intel MKL function
calls
! Declare Intel MKL memory allocation routine
#ifdef TIA32
INTEGER MKL MALLOC

75

7 Intel® Math Kernel Library for Windows* OS User's Guide

#else
INTEGER*8 MKL MALLOC
#endif
EXTERNAL MKL MALLOC, MKL FREE
DOUBLE PRECISION DARRAY
POINTER (P_DARRAY, DARRAY (1)
INTEGER DARRAY SIZE
PARAMETER (DARRAY SIZE=1000)
! Set alignment value in bytes
INTEGER ALIGNMENT
PARAMETER (ALIGNMENT=128)
! Allocate aligned array
P DARRAY = MKL MALLOC (%VAL(8*DARRAY SIZE), S%VAL(ALIGNMENT));
! Find the available MKL CBWR BRANCH automatically
MY CBWR BRANCH = MKL CBWR GET AUTO BRANCH ()
! User code without Intel MKL calls
! Piece of the code where CNR of Intel MKL is needed
! The performance of Intel MKL functions may be reduced for CNR mode
IF (MKL CBWR SET (MY CBWR BRANCH) .NE. MKL CBWR SUCCESS) THEN
PRINT *, 'Error in setting MKL CBWR BRANCH! Aborting..'
RETURN B B
ENDIF
! CNR calls to Intel MKL + any other code
! Free the allocated aligned array
CALL MKL FREE (P _DARRAY)

END

76

Coding Tips

This section provides coding tips for managing data alignment and version-specific compilation.

Example of Data Alignment

Needs for best performance with Intel MKL or for reproducible results from run to run of Intel MKL functions
require alignment of data arrays. The following example shows how to align an array on 64-byte boundaries.
To do this, use mk1l malloc () in place of system provided memory allocators, as shown in the code example
below.

Aligning Addresses on 64-byte Boundaries

// *kkkkkk (O language * kK k ok kx

#include <stdlib.h>
#include <mkl.h>

void *darray;

int workspace;

// Set value of alignment
int alignment=64;

// Allocate aligned workspace
darray = mkl malloc(sizeof (double)*workspace, alignment);

// call the program using MKL
mkl app(darray);

// Free workspace
mkl free(darray);

| x*x%xx% Fortran language *****xx*

! Set value of alignment
integer alignment
parameter (alignment=64)

! Declare Intel MKL routines

#ifdef IA32

integer mkl malloc

#else

integer*8 mkl malloc

tendif

external mkl malloc, mkl free, mkl app

double precision darray
pointer (p_wrk,darray (1)
integer workspace

! Allocate aligned workspace
p wrk = mkl malloc(%val (8*workspace), %val(alignment))

! call the program using Intel MKL
call mkl app(darray)

! Free workspace
call mkl free(p wrk)

77

8 Intel® Math Kernel Library for Windows* OS User's Guide

Using Predefined Preprocessor Symbols for Intel® MKL
Version-Dependent Compilation

Preprocessor symbols (macros) substitute values in a program before it is compiled. The substitution is
performed in the preprocessing phase.

The following preprocessor symbols are available:

Predefined Preprocessor Symbol Description

___INTEL MKL Intel MKL major version

__INTEL MKL MINOR Intel MKL minor version

__INTEL MKL UPDATE Intel MKL update number

INTEL MKL VERSION Intel MKL full version in the following format:

INTEL MKL VERSION =
(_INTEL MKL *100+ INTEL MKL MINOR)*100+ I
NTEL MKL UPDATE

These symbols enable conditional compilation of code that uses new features introduced in a particular
version of the library.

To perform conditional compilation:
1. Include in your code the file where the macros are defined:
e mkl.h for C/C++
e mkl.fi for Fortran
2. [Optionally] Use the following preprocessor directives to check whether the macro is defined:
o #ifdef, #endif for C/C++
e !DECSIF DEFINED, !DECSENDIF for Fortran
3. Use preprocessor directives for conditional inclusion of code:

e #if, #endif for C/C++
e !DECSIF, !DECSENDIF for Fortran

Example

This example shows how to compile a code segment conditionally for a specific version of Intel MKL. In this
case, the version is 10.3 Update 4:

C/C++:

#include "mkl.h"
#ifdef INTEL MKL VERSION

#if INTEL MKL VERSION == 100304

// Code to be conditionally compiled
#endif

#endif

Fortran:

include "mkl.fi"
|DECSIF DEFINED INTEL MKL VERSION
IDECSIF INTEL MKL VERSION .EQ. 100304
* Code to be conditionally compiled
| DECSENDIF
| DECSENDIF

78

Working with the Intel® Math
Kernel Library Cluster Software

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

MPI Support

Intel MKL ScalLAPACK and Cluster FFTs support MPI implementations identified in the Inte/® Math Kernel
Library (Intel® MKL) Release Notes.

To link applications with ScaLAPACK or Cluster FFTs, you need to configure your system depending on your
message-passing interface (MPI) implementation as explained below.

If you are using MPICH2, do the following:

1. Add mpich2\include to the include path
(assuming the default MPICH?2 installation).

Add mpich2\1ib to the library path.

Add mpi.1lib to your link command.

Add fmpich2.1lib to your Fortran link command.

Add cxx.1lib to your Release target link command and cxxd.1lib to your Debug target link command
for C++ programs.

nhwn

If you are using the Microsoft MPI, do the following:

1. AddMicrosoft Compute Cluster Pack\include to the include path
(assuming the default installation of the Microsoft MPI).
2. AddMicrosoft Compute Cluster Pack\Lib\AMDG64 to the library path.

3. Add msmpi.lib to your link command.
If you are using the Intel® MPI, do the following:

1. Add the following string to the include path: $ProgramFiles%\Intel\MPI\<ver>\<arch>\include,
where <ver> is the directory for a particular MPI version and <arch>is 1a32 or intel64, for example,
$ProgramFiles%\Intel\MPI\3.1\intel64\include.

2. Add the following string to the library path: $ProgramFiles%\Intel\MPI\<ver>\<arch>\1lib, for
example, $ProgramFiles%\Intel\MPI\3.1\intel64\1ib.
3. Add impi.lib and impicxx.lib to your link command.

Check the documentation that comes with your MPI implementation for implementation-specific details of
linking.

Linking with ScalAPACK and Cluster FFTs

To link with Intel MKL ScalLAPACK and/or Cluster FFTs, use the following commands :

79

9 Intel® Math Kernel Library for Windows* OS User's Guide

set lib =<path to MKL libraries>;<path to MPI libraries>;%1ib%

<linker> <files to link> <MKL cluster library> <BLACS> <MKL core libraries> <MPI
libraries>

where the placeholders stand for paths and libraries as explained in the following table:

<path to MKL libraries> <mkl directory>\1ib\{ia32]|intel64},
depending on your architecture. If you performed
the Setting Environment Variables step of the
Getting Started process, you do not need to add
this directory to the 1ib environment variable.

<path to MPI libraries> Typically the 1ib subdirectory in the MPI
installation directory. For example, C:\Program
Files (x86)\Intel\MPI\3.2.0.005\1a32\11ib
for a default installation of Intel MPI 3.2.

<linker> One of icl, ifort, xilink.

<MKL cluster library> One of ScaLAPACK or Cluster FFT libraries for the
appropriate architecture, which are listed in
Directory Structure in Detail. For example, for the
IA-32 architecture, it is one of
mkl scalapack core.lib or
mkl cdft core.lib.

<BLACS> The BLACS library corresponding to your
architecture, programming interface (LP64 or
ILP64), and MPI version. These libraries are listed
in Directory Structure in Detail. For example, for
the IA-32 architecture, choose one of
mkl blacs mpich2.1lib or
mkl blacs intelmpi.lib in case of static linking
ormkl blacs dll.lib in case of dynamic linking;
specifically, for MPICH2, choose
mkl blacs mpich2.1ib in case of static linking.

<MKL core libraries> Intel MKL libraries other than ScalLAPACK or Cluster
FFTs libraries.

TIP Use the Link-line Advisor to quickly choose the appropriate set of <MKL. cluster Library>,
<BLACS>, and <MKL core libraries>.

Intel MPI provides prepackaged scripts for its linkers to help you link using the respective linker. Therefore, if
you are using Intel MPI, the best way to link is to use the following commands:

<path to Intel MPI binaries>\mpivars.bat
set lib = <path to MKL libraries>;%$1ib%
<mpilinker> <files to link> <MKL cluster Library> <BLACS> <MKL core libraries>

where the placeholders that are not yet defined are explained in the following table:

80

Working with the Intel® Math Kernel Library Cluster Software 9

<path to MPI By default, the bin subdirectory in the MPI installation directory. For example, C:
binaries> \Program Files (x86)\Intel\MPI\3.2.0.005\1a32\1ib for a default
installation of Intel MPI 3.2;

<MPI linker> mpicl ormpiifort

See Also
Linking Your Application with the Intel® Math Kernel Library
Examples for Linking with ScaLAPACK and Cluster FFT

Determining the Number of Threads

The OpenMP* software responds to the environment variable OMP_NUM THREADS. Intel MKL also has other
mechanisms to set the number of threads, such as the MK NUM THREADS or MKL DOMAIN NUM THREADS
environment variables (see Using Additional Threading Control).

Make sure that the relevant environment variables have the same and correct values on all the nodes. Intel
MKL versions 10.0 and higher no longer set the default number of threads to one, but depend on the OpenMP
libraries used with the compiler to set the default number. For the threading layer based on the Intel
compiler (mkl intel thread.lib), this value is the number of CPUs according to the OS.

B CAUTION Avoid over-prescribing the number of threads, which may occur, for instance, when the
number of MPI ranks per node and the number of threads per node are both greater than one. The
product of MPI ranks per node and the number of threads per node should not exceed the number of
physical cores per node.

The OMP_NUM THREADS environment variable is assumed in the discussion below.

Set OMP_NUM_THREADS so that the product of its value and the number of MPI ranks per node equals the
number of real processors or cores of a node. If the Intel® Hyper-Threading Technology is enabled on the
node, use only half nhumber of the processors that are visible on Windows OS.

See Also
Setting Environment Variables on a Cluster

Using DLLs

All the needed DLLs must be visible on all the nodes at run time, and you should install Intel® Math Kernel
Library (Intel® MKL) on each node of the cluster. You can use Remote Installation Services (RIS) provided by
Microsoft to remotely install the library on each of the nodes that are part of your cluster. The best way to
make the DLLs visible is to point to these libraries in the PATH environment variable. See Setting
Environment Variables on a Cluster on how to set the value of the PATH environment variable.

The ScalLAPACK DLLs for the IA-32 and Intel® 64 architectures (in the <Composer XE directory>\redist
\ia32\mkl and <Composer XE directory>\redist\intelé64\mkl directories, respectively) use the MPI
dispatching mechanism. MPI dispatching is based on the MKL._BLACS MPI environment variable. The BLACS
DLL uses MKL_BLACS_MPI for choosing the needed MPI libraries. The table below lists possible values of the
variable.

Value Comment

MPICH2 Default value. MPICH2 1.0.x for Windows* OS is used for message passing

INTELM Intel MPI is used for message passing
PI

81

9 Intel® Math Kernel Library for Windows* OS User's Guide

Value Comment

MSMPI Microsoft MPI is used for message passing

If you are using a non-default MPI, assign the same appropriate value to MKL. BLACS_MPI on all nodes.

See Also
Setting Environment Variables on a Cluster

Setting Environment Variables on a Cluster

If you are using MPICH2 or Intel MPI, to set an environment variable on the cluster, use -env, -genv,
genvlist keys of mpiexec.

See the following MPICH2 examples on how to set the value of OMP NUM THREADS:
mpiexec —-genv OMP NUM THREADS 2
mpiexec —-genvlist OMP_NUM THREADS

mpiexec -n 1 -host first -env OMP NUM THREADS 2 test.exe : -n 1 -host second -env
OMP NUM THREADS 3 test.exe

See the following Intel MPI examples on how to set the value of MKL BLACS MPTI:
mpiexec -genv MKL BLACS MPI INTELMPI
mpiexec -genvlist MKL BLACS MPI

mpiexec -n 1 -host first -env MKL BLACS MPI INTELMPI test.exe : -n 1 -host second -env
MKL BLACS MPI INTELMPI test.exe.

When using MPICH2, you may have problems with getting the global environment, such as MKL._BLACS MPI,
by the -genvlist key. In this case, set up user or system environments on each node as follows:

From the Start menu, select Settings > Control Panel > System > Advanced > Environment
Variables.

If you are using Microsoft MPI, the above ways of setting environment variables are also applicable if the
Microsoft Single Program Multiple Data (SPMD) process managers are running in a debug mode on all nodes
of the cluster. However, the best way to set environment variables is using the Job Scheduler with the
Microsoft Management Console (MMC) and/or the Command Line Interface (CLI) to submit a job and pass
environment variables. For more information about MMC and CLI, see the Microsoft Help and Support page at
the Microsoft Web site (http://www.microsoft.com/).

Building ScaLAPACK Tests

To build ScaLAPACK tests:

e For the IA-32 architecture, add mkl scalapack core.lib to your link command.

e For the Intel® 64 architecture, add mkl scalapack 1p64.1lib or mkl scalapack ilp64.lib,
depending on the desired interface.

Examples for Linking with ScalAPACK and Cluster FFT

This section provides examples of linking with ScaLAPACK and Cluster FFT.

Note that a binary linked with ScaLAPACK runs the same way as any other MPI application (refer to the
documentation that comes with your MPI implementation).

For further linking examples, see the support website for Intel products at http://www.intel.com/software/
products/support/.

82

Working with the Intel® Math Kernel Library Cluster Software 9

See Also
Directory Structure in Detail

Examples for Linking a C Application
These examples illustrate linking of an application whose main module is in C under the following conditions:

e MPICH2 1.0.x is installed in c:\mpich2x64.
e You use the Intel® C++ Compiler 10.0 or higher.

To link with ScaLAPACK using LP64 interface for a cluster of Intel® 64 architecture based systems, set the
environment variable and use the link line as follows:

set lib=c:\mpich2x64\1ib; <mkl directory>\1lib\intel64;%1ib%

icl <user files to link> mkl scalapack 1lp64.lib mkl blacs mpich2 1p64.1lib
mkl intel 1p64.l1ib mkl intel thread.lib mkl core.lib libiomp5md.lib mpi.lib cxx.lib
bufferoverflowu.lib

To link with Cluster FFT using LP64 interface for a cluster of Intel® 64 architecture based systems, set the
environment variable and use the link line as follows:

set lib=c:\mpich2x64\1ib; <mkl directory>\1lib\intel64;%1ib%

icl <user files to link> mkl cdft core.lib mkl blacs mpich2 1p64.1lib mkl intel 1p64.1lib
mkl intel thread.lib mkl core.lib libiomp5md.lib mpi.lib cxx.lib bufferoverflowu.lib

See Also
Linking with ScaLAPACK and Cluster FFTs
Linking with System Libraries

Examples for Linking a Fortran Application

These examples illustrate linking of an application whose main module is in Fortran under the following
conditions:

e Microsoft Windows Compute Cluster Pack SDK is installed in c:\MS CCP SDK.
e You use the Intel® Fortran Compiler 10.0 or higher.

To link with ScaLAPACK using LP64 interface for a cluster of Intel® 64 architecture based systems, set the
environment variable and use the link line as follows:

set lib="c:\MS CCP SDK\Lib\AMD64";<mkl directory>\1lib\intel64;%1ib%

ifort <user files to link> mkl scalapack 1lp64.lib mkl blacs mpich2 1p64.1lib
mkl intel 1p64.1ib mkl intel thread.lib mkl core.lib libiomp5md.lib msmpi.lib
bufferoverflowu.lib

To link with Cluster FFTs using LP64 interface for a cluster of Intel® 64 architecture based systems, set the
environment variable and use the link line as follows:

set lib="c:\MS CCP SDK\Lib\AMD64"; <mkl directory>\1lib\intel64;%1ib%

ifort <user files to link> mkl cdft core.lib mkl blacs mpich2 1p64.1lib
mkl intel 1p64.l1ib mkl intel thread.lib mkl core.lib libiomp5md.lib msmpi.lib
bufferoverflowu.lib

See Also
Linking with ScaLAPACK and Cluster FFTs
Linking with System Libraries

83

9 Intel® Math Kernel Library for Windows* OS User's Guide

84

Programming with Intel® Math
Kernel Library in Integrated
Development Environments (IDE)

Configuring Your Integrated Development Environment to
Link with Intel Math Kernel Library

Configuring the Microsoft Visual C/C++* Development System to Link with Intel® MKL

Steps for configuring Microsoft Visual C/C++* development system for linking with Intel® Math Kernel Library
(Intel® MKL) depend on whether If you installed the C++ Integration(s) in Microsoft Visual Studio*
component of the Intel® Composer XE:

e If you installed the integration component, see Automatically Linking Your Microsoft Visual C/C++ Project
with Intel MKL.

e If you did not install the integration component or need more control over Intel MKL libraries to link, you
can configure the Microsoft Visual C++* development system by performing the following steps. Though
some versions of the Visual C++* development system may vary slightly in the menu items mentioned
below, the fundamental configuring steps are applicable to all these versions.

1. In Solution Explorer, right-click your project and click Properties (for Visual C++* 2010 or
higher) or select Tools > Options (for Visual C++* 2008)

2. Select Configuration Properties > VC++ Directories (for Visual C++* 2010 or higher) or
select Projects and Solutions > VC++ Directories (for Visual C++* 2008)

3. Select Include Directories. Add the directory for the Intel MKL include files, that is, <mk1
directory>\include

4. Select Library Directories. Add architecture-specific directories for Intel MKL and OpenMP*
libraries,
for example: <mkl directory>\1ib\ia32 and <Composer XE directory>\compiler\lib
\ia32

5. Select Executable Directories. Add architecture-specific directories with dynamic-link libraries:

e For OpenMP* support, for example: <Composer XE directory>\redist\ia32\compiler
e For Intel MKL (only if you link dynamically), for example: <Composer XE directory>\redist
\i1a32\mkl

6. Select Configuration Properties > Custom Build Setup > Additional Dependencies. Add the
libraries required, for example, mkl intel c.lib mkl intel thread.lib mkl core.lib
libiompbSmd.1lib

See Also
Intel® Software Documentation Library
Linking in Detail

Configuring Intel® Visual Fortran to Link with Intel MKL

Steps for configuring Intel® Visual Fortran for linking with Intel® Math Kernel Library (Intel® MKL) depend on
whether you installed the Visual Fortran Integration(s) in Microsoft Visual Studio* component of the Intel®
Composer XE:

85

http://software.intel.com/en-us/articles/intel-software-technical-documentation/

1 0 Intel® Math Kernel Library for Windows* OS User's Guide

e If you installed the integration component, see Automatically Linking Your Intel® Visual Fortran Project
with Intel® MKL.

e If you did not install the integration component or need more control over Intel MKL libraries to link, you
can configure your project as follows:

1. Select Project > Properties > Linker > General > Additional Library Directories. Add
architecture-specific directories for Intel MKL and OpenMP* libraries,
for example: <mkl directory>\1ib\ia32 and <Composer XE directory>\compiler\lib
\ia32

2. Select Project > Properties > Linker > Input > Additional Dependencies. Insert names of
the required libraries, for example: mk1l intel c.lib mkl intel thread.lib mkl core.lib
libiompb5md.1lib

3. Select Project > Properties > Debugging > Environment. Add architecture-specific paths to
dynamic-link libraries:

e For OpenMP* support; for example: enter PATH=%PATHS%; <Composer XE directory>\redist
\ia32\compiler

e For Intel MKL (only if you link dynamically); for example: enter PATH=%PATHS; <Composer XE
directory>\redist\ia32\mkl

See Also
Intel® Software Documentation Library

Running an Intel MKL Example in the Visual Studio* 2008 IDE

This section explains how to create and configure projects with the Intel® Math Kernel Library (Intel® MKL)
examples in Microsoft Visual Studio* 2008. For Intel MKL examples where the instructions below do not
work, see Known Limitations.

To run the Intel MKL C examples in Microsoft Visual Studio 2008:
1. Do either of the following:

e Install Intel® C/C++ Compiler and integrate it into Visual Studio (recommended).
e Use the Microsoft Visual C++* 2008 Compiler integrated into Visual Studio*.
2. Create, configure, and run the Intel C/C++ and/or Microsoft Visual C++* 2008.

To run the Intel MKL Fortran examples in Microsoft Visual Studio 2008:

1. Install Intel® Visual Fortran Compiler and integrate it into Visual Studio.
The default installation of the Intel Visual Fortran Compiler performs this integration. For more
information, see the Intel Visual Fortran Compiler documentation.

2. Create, configure, and run the Intel Visual Fortran project.

Creating, Configuring, and Running the Intel® C/C++ and/or Visual C++* 2008 Project

This section demonstrates how to create a Visual C/C++ project using an Intel® Math Kernel Library (Intel®
MKL) example in Microsoft Visual Studio 2008.

The instructions below create a Win32/Debug project running one Intel MKL example in a Console window.
For details on creation of different kinds of Microsoft Visual Studio projects, refer to MSDN Visual Studio
documentation at http://www.microsoft.com.

To create and configure the Win32/Debug project running an Intel MKL C example with the Intel® C/C++
Compiler integrated into Visual Studio and/or Microsoft Visual C++* 2008, perform the following steps:
1. Create a C Project:

a. Open Visual Studio 2008.
b. On the main menu, select File > New > Project to open the New Project window.

c. Select Project Types > Visual C++ > Win32, then select Templates > Win32 Console
Application. In the Name field, type <project name>, for example, MKL_CBLAS_CAXPYIX, and
click OK.

86

http://software.intel.com/en-us/articles/intel-software-technical-documentation/

Programming with Intel® Math Kernel Library in Integrated Development Environments (IDE) 1 O

u ok

The New Project window closes, and the Win32 Application Wizard - <project name>
window opens.

d. Select Next, then select Application Settings, check Additional options > Empty project,
and click Finish.
The Win32 Application Wizard - <project name> window closes.

The next steps are performed inside the Solution Explorer window. To open it, select View >
Solution Explorer from the main menu.

(optional) To switch to the Intel C/C++ project, right-click <project name> and from the drop-down
menu, select Convert to use Intel® C++ Project System. (The menu item is available if the Intel® C/C+
+ Compiler is integrated into Visual Studio.)

Add sources of the Intel MKL example to the project:

a. Right-click the Source Files folder under <project name> and select Add > Existing Item...
from the drop-down menu.

The Add Existing Item - <project name> window opens.

b. Browse to the Intel MKL example directory, for example, <mkl directory>\examples\cblas
\source. Select the example file and supporting files with extension ".c" (C sources), for
example, select files cblas caxpyix.c and common func.c For the list of supporting files in
each example directory, see Support Files for Intel MKL Examples. Click Add.

The Add Existing Item - <project name> window closes, and selected files appear in the
Source Files folder in Solution Explorer.

The next steps adjust the properties of the project.

Select <project name> .

On the main menu, select Project > Properties to open the <project name> Property Pages
window.

Set Intel MKL Include dependencies:

a. Select Configuration Properties > C/C++ > General. In the right-hand part of the window,
select Additional Include Directories > ... (the browse button).
The Additional Include Directories window opens.

b. Click the New Line button (the first button in the uppermost row). When the new line appears in
the window, click the browse button.
The Select Directory window opens.

C. Browse to the <mkl directory>\include directory and click OK.
The Select Directory window closes, and full path to the Intel MKL include directory appears in
the Additional Include Directories window.

d. Click OK to close the window.

Set library dependencies:

a. Select Configuration Properties > Linker > General. In the right-hand part of the window, select
Additional Library Directories > ... (the browse button).

The Additional Library Directories window opens.

b. Click the New Line button (the first button in the uppermost row). When the new line appears in
the window, click the browse button.
The Select Directory window opens.

C. Browse to the directory with the Intel MKL libraries <mkl directory>\lib\<architecture>,
where <architecture>is one of {ia32, intel64}, for example: <mkl directory>\1lib\ia32.
(For most laptop and desktop computers, <architecture>is ia32.). Click OK.

The Select Directory window closes, and the full path to the Intel MKL libraries appears in the
Additional Library Directories window.

d. Click the New Line button again. When the new line appears in the window, click the browse
button.

The Select Directory window opens.

e. Browse to the <Composer XE directory>compiler\lib\<architecture>, where
<architecture>is one of { 1a32, intel64 }, for example: <Composer XE directory>
\compiler\1lib\ia32. Click OK.

The Select Directory window closes, and the specified full path appears in the Additional
Library Directories window.
f. Click OK to close the Additional Library Directories window.

87

1 O Intel® Math Kernel Library for Windows* OS User's Guide

g. Select Configuration Properties > Linker > Input. In the right-hand part of the window, select
Additional Dependencies > ... (the browse button).
The Additional Dependencies window opens.

h. Type the libraries required, for example, if <architecture> =ia32, type mkl intel c.lib
mkl intel thread.lib mkl core.lib libiompS5md.lib For more details, see Linking in
Detail. -

i Click OK to close the Additional Dependencies window.

j- If the Intel MKL example directory does not contain a data directory, skip the next step.

8. Set data dependencies for the Intel MKL example:

a. Select Configuration Properties > Debugging. In the right-hand part of the window, select
Command Arguments > ¥ > <Edit...>.

The Command Arguments window opens.

b. Type the path to the proper data file in quotes. The name of the data file is the same as the name
of the example file, with a "d" extension, for example, "<mkl directory>\examples\cblas
\data\cblas caxpyix.d".

C. Click OK to close the Command Arguments window.

9, Click OK to close the <project name> Property Pages window.

10. Certain examples do not pause before the end of execution. To see the results printed in the Console
window, set a breakpoint at the very last 'return 0;' statement or add a call to 'getchar () ;"'
before the last 'return 0' statement.

11. To build the solution, select Build > Build Solution .

ﬂ NOTE You may see warnings about unsafe functions and variables. To get rid of these warnings, go to
Project > Properties, and when the <project name> Property Pages window opens, go to
Configuration Properties > C/C++ > Preprocessor. In the right-hand part of the window, select
Preprocessor Definitions, add CRT SECURE NO WARNINGS, and click OK.

12. To run the example, select Debug > Start Debugging.
The Console window opens.

13. You can see the results of the example in the Console window. If you used the 'getchar () ;'
statement to pause execution of the program, press Enter to complete the run. If you used a
breakpoint to pause execution of the program, select Debug > Continue.

The Console window closes.

See Also
Running an Intel MKL Example in the Visual Studio* 2008 IDE

Creating, Configuring, and Running the Intel Visual Fortran Project

This section demonstrates how to create an Intel Visual Fortran project running an Intel MKL example in
Microsoft Visual Studio 2008.

The instructions below create a Win32/Debug project running one Intel MKL example in a Console window.
For details on creation of different kinds of Microsoft Visual Studio projects, refer to MSDN Visual Studio
documentation at http://www.microsoft.com.

To create and configure a Win32/Debug project running the Intel MKL Fortran example with the Intel Visual
Fortran Compiler integrated into Visual Studio, perform the following steps:

1. Create a Visual Fortran Project:

a. Open Visual Studio 2008.

b. On the main menu, select File > New > Project to open the New Project window.

c. Select Project Types > Intel® Fortran > Console Application, then select Templates >
Empty Project. When done, in the Name field, type <project name> for example,
MKL_PDETTF_D_TRIG_TRANSFORM_BVP, and click OK.

The New Project window closes.

The next steps are performed inside the Solution Explorer window. To open it, select View>Solution
Explorer from the main menu.

88

Programming with Intel® Math Kernel Library in Integrated Development Environments (IDE) 1 O

10.
11.

12,

Add sources of Intel MKL example to the project:

Right-click the Source Files folder under <project name> and select Add > Existing Item...
from the drop-down menu.

The Add Existing Item - <project name> window opens.

Browse to the Intel MKL example directory, for example, <mkl directory>\examples\pdettf
\source. Select the example file and supporting files with extension ".f" or ". £90" (Fortran
sources). For example, select the d trig tforms bvp.£90 file. For the list of supporting files in
each example directory, see Support Files for Intel MKL Examples. Click Add.

The Add Existing Item - <project name> window closes, and the selected files appear in the
Source Files folder in Solution Explorer. Some examples with the "use" statements require the
next two steps.

Right-click the Header Files folder under <project name> and select Add > Existing Item...
from the drop-down menu.

The Add Existing Item - <project name> window opens.

Browse to the <mkl directory>\include directory. Select the header files that appear in the
"use" statements. For example, select the mk1l dfti.f9%0 and mkl trig transforms.f90 files.
Click Add.

The Add Existing Item - <project name>window closes, and the selected files to appear in
theHeader Filesfolder in Solution Explorer.

The next steps adjust the properties of the project:

Select the <project name>.

On the main menu, select Project > Properties to open the <project name> Property Pages
window.

Set the Intel MKL include dependencies:

b.

Select Configuration Properties > Fortran > General. In the right-hand part of the window,

select Additional Include Directories > ™ > <Edit...>.
The Additional Include Directories window opens.

Type the Intel MKL include directory in quotes: "<mk1l directory>\include". Click OK to close
the window.

Select Configuration Properties > Fortran > Preprocessor. In the right-hand part of the window,
select Preprocess Source File > Yes (default is No). This step is recommended because some
examples require preprocessing.

Set library dependencies:

Select Configuration Properties > Linker > General. In the right-hand part of the window,

select Additional Library Directories > ¥ > <Edit...>.

The Additional Library Directories window opens.

Type the directory with the Intel MKL libraries in quotes, that is, "<mk1l directory>\1lib
\<architecture>", where <architecture>is one of { ia32, intel64 }, for example: "<mk1
directory>\1ib\ia32". (For most laptop and desktop computers <architecture>is ia32.)
Click OK to close the window.

Select Configuration Properties > Linker > Input. In the right-hand part of the window, select
Additional Dependencies and type the libraries required, for example, if <architecture>
=ia32, type mkl intel c.lib mkl intel thread.lib mkl core.lib libiomp5md.1lib.

In the <project name> Property Pages window, click OK to close the window.

Some examples do not pause before the end of execution. To see the results printed in the Console
window, set a breakpoint at the very end of the program or add the 'pause' statement before the last
'end' statement.

To build the solution, select Build > Build Solution.

To run the example, select Debug > Start Debugging.

The Console window opens.

You can see the results of the example in the Console window. If you used 'pause’' statement to pause
execution of the program, press Enter to complete the run. If you used a breakpoint to pause
execution of the program, select Debug > Continue.

The Console window closes.

89

1 0 Intel® Math Kernel Library for Windows* OS User's Guide

Support Files for Intel® Math Kernel Library Examples
Below is the list of support files that have to be added to the project for respective examples:
examples\cblas\source: common func.c

examples\dftc\source: dfti example status print.c dfti example support.c

Known Limitations of the Project Creation Procedure

You cannot create a Visual Studio* project using the instructions from Creating, Configuring, and Running
the Intel® C/C++ and/or Visual C++* 2008 Project or Creating, Configuring, and Running the Intel® Visual
Fortran Project for examples from the following directories:

examples\blas
examples\blas95
examples\cdftc
examples\cdftf
examples\dftf
examples\fftw2x cdf
examples\fftw2xc
examples\fftw2xf
examples\fftw3xc
examples\fftw3xf
examples\java
examples\lapack

examples\lapack95

Getting Assistance for Programming in the Microsoft Visual
Studio* IDE

Viewing Intel MKL Documentation in Visual Studio* IDE

Viewing Intel MKL Documentation in Document Explorer (Visual Studio* 2008 IDE)
Intel MKL documentation is integrated in the Visual Studio IDE (VS) help collection. To open Intel MKL help,

1. Select Help > Contents from the menu.
This displays the list of VS Help collections.

2. Click Intel Math Kernel Library Help.
3. In the help tree that expands, click Intel MKL Reference Manual.

To open the help index, select Help > Index from the menu. To search in the help, select Help > Search
from the menu and enter a search string.

90

Programming with Intel® Math Kernel Library in Integrated Development Environments (IDE) 1 O

@2 Start Page - Microsoft Visual Studio

File Edit Tools Window Help

R B M S N DN o T = R O I

Wiew Community

e 2y A — — i A f.v
~ X | Contents -« 1 X
| Filkered by:
} L E| %(unfiltered) v|
L 2 VISl.Ial - ¥isual Studia SDK ~

|] Help on Help {Microsoft Document Explorer Help) 1

. - | (=) Intel Math kernel Library Help
Recent Projects - Intel Math Kernel Library Reference Manual |
Legal Information
m ol [Overview
S| > [ELAS and Sparse BLAS Routines
IOUtput e E’:EI LAPACK Routines: Linear Equations
3 [#- LAPACK Routines: Least Squares and Eigenv
io | - LAPACK Auiliary and Ukility Routines i
. 1l |
i=Imme. .. |[Z] Output éi_s%lndex... Q‘QSUIution ;@Contents ;_.;%Index EEHeIp Fav...
Ready

You can filter Visual Studio Help collections to show only content related to installed Intel tools. To do this,
select "Intel" from the Filtered by list. This hides the contents and index entries for all collections that do not
refer to Intel.

@9 Start Page - Microsoft Visual Studio

File Edit View Tools ‘Window Community Help

Legal Information

T .) o Wersion Information —
= = Orverview
Index Results » & % BLAS and Sparse BLAS Routines
Title LAPACK Routines: Linear Equations
LAPACK Routines: Least Squares and Eigenvalue Problems b
Q’:—gSqution Explarer @Contents L@Index leeIp Favorites
Dyniamic Help -« 1 X
< | 3 @ HowDo1 Q, Search | 3 Index @Contents
&L [E 0. —’%I i How bo: Mavigate with the Table of Contents —
Ready

Accessing Intel MKL Documentation in Visual Studio* 2010 IDE
To access the Intel MKL documentation in Visual Studio* 2010 IDE:
e Configure the IDE to use local help (once). To do this,

Go to Help > Manage Help Settings and check I want to use online help
e Use the Help > View Help menu item to view a list of available help collections and open the Intel MKL
documentation.

Using Context-Sensitive Help
When typing your code in the Visual Studio* (VS) IDE Code Editor, you can get context-sensitive help using
the F1 Help and Dynamic Help features.

F1 Help
To open the help topic relevant to the current selection, press F1.

In particular, to open the help topic describing an Intel MKL function called in your code, select the function
name and press F1. The topic with the function description opens in the window that displays search results:

91

1 O Intel® Math Kernel Library for Windows* OS User's Guide

pp

File Edit View Debug Tools Window Community Help

@ - -FH A 6 S SRAESN SN « -
~Sourcel.cpp [Start Page | Search - X
| {Unknown Scope) w | | w
1% ~

2E| t input data into x[0],...,%x[31]: ¥[0],....¥[31]=
3 DftiCreateDescriptor | &my_descl handle, DFTI :
PESSRS R s el ee e | my_descl handle] ;
DftiComputeForward(my_descl handle, x]: &
DftiFreebescriptor (&my_descl handle) ;
1t is =[O0 PPN ke 1 Bt

Hl CommitDescriptor

Dynarn Help
@ HowDo1 O, 54
(3 Help CommitDescriptor
CommitDescriptar

F1 Options: {choose) -

4 T

Performs all initialization for the actual FFT computation.

[@]Dynamic Help |3 Syntax
Fortran:

Zratus = DftiCommitDescriptor| Desc Handle |

£

|

|

Dynamic Help

Dynamic Help also provides access to topics relevant to the current selection or to the text being typed. Links
to all relevant topics are displayed in the Dynamic Help window.

To get the list of relevant topics each time you select the Intel MKL function name or as you type it in your
code, open the Dynamic Help window by selecting Help > Dynamic Help from the menu.

To open a topic from the list, click the appropriate link in the Dynamic Help window, shown in the above
figure. Typically only one link corresponds to each Intel MKL function.

Using the IntelliSense* Capability

IntelliSense is a set of native Visual Studio*(VS) IDE features that make language references easily
accessible.

The user programming with Intel MKL in the VS Code Editor can employ two IntelliSense features: Parameter
Info and Complete Word.

Both features use header files. Therefore, to benefit from IntelliSense, make sure the path to the include files
is specified in the VS or solution settings. For example, see Configuring the Microsoft Visual C/C++*
Development System to Link with Intel® MKL on how to do this.

Parameter Info

The Parameter Info feature displays the parameter list for a function to give information on the number and
types of parameters. This feature requires adding the include statement with the appropriate Intel MKL
header file to your code.

To get the list of parameters of a function specified in the header file,

1. Type the function name.
2. Type the opening parenthesis.

This brings up the tooltip with the list of the function parameters:

92

Programming with Intel® Math Kernel Library in Integrated Development Environments (IDE) 1 O

File Edit View Project Build Debug Tools
Window Community Help

T
T — &
mkl_dFti.h_,. ‘proj.c* | Start Page Search - X
| (Global Scope) v || = main() |
| ; 5| |
1@ "mkl dfti.h" =

zib

DftiCreatelescriptor [&my_

: DFTI_C¢
8| = DftiCommitDescriptor | vi

£ | |I0ng DftiCommitDescriptor {DFTI_Descriptor_struck "‘)|
.Output - a %
Show output: From: i

5

jBreakpoin.ts !jlmmediate o | =] Cutput '%Index Results
Ready Ln& Col 32 Ch 32

Complete Word

For a software library, the Complete Word feature types or prompts for the rest of the name defined in the
header file once you type the first few characters of the name in your code. This feature requires adding the
include statement with the appropriate Intel MKL header file to your code.

To complete the name of the function or named constant specified in the header file,

1. Type the first few characters of the name.

2. Press Alt+RIGHT ARROW or Ctrl+SPACEBAR.
If you have typed enough characters to disambiguate the name, the rest of the name is typed
automatically. Otherwise, a pop-up list appears with the names specified in the header file

3. Select the name from the list, if needed.

File Edit View Project Build Debug Tools
Window Community Help
T
e &
Mh_, ‘proj.c’™ | Stark Page Search - X
E(Global Scope) VH “igmaing) vl
T o =
z 7|
3E int maini) =
a7 i
=1 | [
6 status = DftiCreateDescriptc
7
8| status = Dftic
8 i DFTI_UNCOMMITTED ~
(_ | = DFTI_UNIMPLEMEMTED

sf DFTI_VERSION
= DFTI_VERSION_LENGTH
Shew output From: = Db ommitDescripkor
‘4 DftiComputeBackward

= e S DftiComputeForward
—jBreakpolnts filitce ‘i DftiCopyDescriptor

Ready ‘i DftiCreateDescriptor
‘i DftiErrorClass B

.Output

93

1 O Intel® Math Kernel Library for Windows* OS User's Guide

94

LINPACK and MP LINPACK
Benchmarks

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Intel® Optimized LINPACK Benchmark for Windows* 0S

Intel® Optimized LINPACK Benchmark is a generalization of the LINPACK 1000 benchmark. It solves a dense
(real*8) system of linear equations (Ax=b), measures the amount of time it takes to factor and solve the
system, converts that time into a performance rate, and tests the results for accuracy. The generalization is
in the number of equations (N) it can solve, which is not limited to 1000. It uses partial pivoting to assure
the accuracy of the results.

Do not use this benchmark to report LINPACK 100 performance because that is a compiled-code only
benchmark. This is a shared-memory (SMP) implementation which runs on a single platform. Do not confuse
this benchmark with:

e MP LINPACK, which is a distributed memory version of the same benchmark.
e LINPACK, the library, which has been expanded upon by the LAPACK library.

Intel provides optimized versions of the LINPACK benchmarks to help you obtain high LINPACK benchmark
results on your genuine Intel processor systems more easily than with the High Performance Linpack (HPL)
benchmark. Use this package to benchmark your SMP machine.

Additional information on this software as well as other Intel software performance products is available at
http://www.intel.com/software/products/.

Contents of the Intel® Optimized LINPACK Benchmark

The Intel Optimized LINPACK Benchmark for Windows* OS contains the following files, located in the
benchmarks\linpack\ subdirectory of the Intel® Math Kernel Library (Intel® MKL) directory:

File in benchmarks Description

\linpack\

linpack xeon32.exe The 32-bit program executable for a system based on Intel® Xeon® processor
or Intel® Xeon® processor MP with or without Streaming SIMD Extensions 3
(SSE3).

linpack xeon64.exe The 64-bit program executable for a system with Intel Xeon processor using

Intel® 64 architecture.

runme_xeon32.bat A sample shell script for executing a pre-determined problem set for
linpack xeon32.exe.

runme xeon64.bat A sample shell script for executing a pre-determined problem set for
linpack xeoné64.exe.

95

1 1 Intel® Math Kernel Library for Windows* OS User's Guide

File in benchmarks Description
\linpack\
lininput xeon32 Input file for a pre-determined problem for the runme xeon32 script.
lininput xeon64 Input file for a pre-determined problem for the runme xeon64 script.
win xeon32.txt Result of the runme xeon32 script execution.
win xeon64.txt Result of the runme xeon64 script execution
help.lpk Simple help file.
xhelp.lpk Extended help file.
See Also

High-level Directory Structure

Running the Software

To obtain results for the pre-determined sample problem sizes on a given system, type one of the following,
as appropriate:

runme xeon32.bat
runme xeonb64.bat

To run the software for other problem sizes, see the extended help included with the program. Extended help
can be viewed by running the program executable with the -e option:

linpack xeon32.exe -e
linpack xeon64.exe -e

The pre-defined data input files 1ininput xeon32 and lininput xeon64 are provided merely as examples.
Different systems have different nhumbers of processors or amounts of memory and thus require new input
files. The extended help can be used for insight into proper ways to change the sample input files.

Each input file requires at least the following amount of memory:
lininput xeon32 2 GB
lininput xeon64 16 GB

If the system has less memory than the above sample data input requires, you may need to edit or create
your own data input files, as explained in the extended help.

Each sample script uses the OMP_NUM_THREADS environment variable to set the number of processors it is
targeting. To optimize performance on a different number of physical processors, change that line
appropriately. If you run the Intel Optimized LINPACK Benchmark without setting the number of threads, it
will default to the number of cores according to the OS. You can find the settings for this environment
variable in the runme * sample scripts. If the settings do not yet match the situation for your machine, edit
the script.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

96

LINPACK and MP LINPACK Benchmarks 1 1

Known Limitations of the Intel® Optimized LINPACK Benchmark
The following limitations are known for the Intel Optimized LINPACK Benchmark for Windows* OS:

e Intel Optimized LINPACK Benchmark is threaded to effectively use multiple processors. So, in multi-
processor systems, best performance will be obtained with the Intel® Hyper-Threading Technology turned
off, which ensures that the operating system assigns threads to physical processors only.

e If an incomplete data input file is given, the binaries may either hang or fault. See the sample data input
files and/or the extended help for insight into creating a correct data input file.

Intel® Optimized MP LINPACK Benchmark for Clusters

Overview of the Intel® Optimized MP LINPACK Benchmark for Clusters

The Intel® Optimized MP LINPACK Benchmark for Clusters is based on modifications and additions to HPL 2.0
from Innovative Computing Laboratories (ICL) at the University of Tennessee, Knoxville (UTK). The Intel
Optimized MP LINPACK Benchmark for Clusters can be used for Top 500 runs (see http://www.top500.0rg).
To use the benchmark you need be intimately familiar with the HPL distribution and usage. The Intel
Optimized MP LINPACK Benchmark for Clusters provides some additional enhancements and bug fixes
designed to make the HPL usage more convenient, as well as explain Intel® Message-Passing Interface (MPI)
settings that may enhance performance. The .\benchmarks\mp linpack directory adds techniques to
minimize search times frequently associated with long runs.

The Intel® Optimized MP LINPACK Benchmark for Clusters is an implementation of the Massively Parallel MP
LINPACK benchmark by means of HPL code. It solves a random dense (real*8) system of linear equations
(Ax=b), measures the amount of time it takes to factor and solve the system, converts that time into a
performance rate, and tests the results for accuracy. You can solve any size (v) system of equations that fit
into memory. The benchmark uses full row pivoting to ensure the accuracy of the results.

Use the Intel Optimized MP LINPACK Benchmark for Clusters on a distributed memory machine. On a shared
memory machine, use the Intel Optimized LINPACK Benchmark.

Intel provides optimized versions of the LINPACK benchmarks to help you obtain high LINPACK benchmark
results on your systems based on genuine Intel processors more easily than with the HPL benchmark. Use
the Intel Optimized MP LINPACK Benchmark to benchmark your cluster. The prebuilt binaries require that
you first install Intel® MPI 3.x be installed on the cluster. The run-time version of Intel MPI is free and can be
downloaded from www.intel.com/software/products/ .

The Intel package includes software developed at the University of Tennessee, Knoxville, Innovative
Computing Laboratories and neither the University nor ICL endorse or promote this product. Although HPL
2.0 is redistributable under certain conditions, this particular package is subject to the Intel MKL license.

Intel MKL has introduced a new functionality into MP LINPACK, which is called a hybrid build, while continuing
to support the older version. The term hybrid refers to special optimizations added to take advantage of
mixed OpenMP*/MPI parallelism.

If you want to use one MPI process per node and to achieve further parallelism by means of OpenMP, use the
hybrid build. In general, the hybrid build is useful when the number of MPI processes per core is less than
one. If you want to rely exclusively on MPI for parallelism and use one MPI per core, use the non-hybrid
build.

In addition to supplying certain hybrid prebuilt binaries, Intel MKL supplies some hybrid prebuilt libraries for
Intel® MPI to take advantage of the additional OpenMP* optimizations.

If you wish to use an MPI version other than Intel MPI, you can do so by using the MP LINPACK source
provided. You can use the source to build a non-hybrid version that may be used in a hybrid mode, but it
would be missing some of the optimizations added to the hybrid version.

Non-hybrid builds are the default of the source code makefiles provided. In some cases, the use of the hybrid
mode is required for external reasons. If there is a choice, the non-hybrid code may be faster. To use the
non-hybrid code in a hybrid mode, use the threaded version of Intel MKL BLAS, link with a thread-safe MPI,
and call function MPI_init thread() so as to indicate a need for MPI to be thread-safe.

97

1 1 Intel® Math Kernel Library for Windows* OS User's Guide

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Contents of the Intel® Optimized MP LINPACK Benchmark for Clusters

The Intel Optimized MP LINPACK Benchmark for Clusters (MP LINPACK Benchmark) includes the HPL 2.0
distribution in its entirety, as well as the modifications delivered in the files listed in the table below and
located in the benchmarks\mp_ linpack\ subdirectory of the Intel MKL directory.

NOTE Because MP LINPACK Benchmark includes the entire HPL 2.0 distribution, which provides a
configuration for Linux* OS only, some Linux OS files remain in the directory.

Directory/File in benchmarks Contents
\mp_linpack)\

testing\ptest\HPL pdtest.c HPL 2.0 code modified to display captured DGEMM information
in ASYOUGO2 DISPLAY if it was captured (for details, see New
Features).

src\blas\HPL dgemm.c HPL 2.0 code modified to capture DGEMM information, if

desired, from ASYOUGO2 DISPLAY.

src\grid\HPL grid init.c HPL 2.0 code modified to do additional grid experiments
originally not in HPL 2.0.

src\pgesv\HPL pdgesvK2.c HPL 2.0 code modified to do ASYOUGO and ENDEARLY
modifications.

src\pgesv\HPL pdgesv0.c HPL 2.0 code modified to do ASYOUGO, ASYOUGO2, and
ENDEARLY modifications.

testing\ptest\HPL.dat HPL 2.0 sample HPL.dat modified.

makes All the makefiles in this directory have been rebuilt in the
Windows OS distribution.

testing\ptimer\ Some files in here have been modified in the Windows OS
distribution.

testing\timer\ Some files in here have been modified in the Windows OS
distribution.

Make (New) Sample architecture makefile for nmake utility to be

used on processors based on the IA-32 and Intel® 64
architectures and Windows OS.

bin intell\ia32\xhpl ia32.exe (New) Prebuilt binary for the IA-32 architecture, Windows OS,
and Intel® MPI.

bin intel (New) Prebuilt binary for the Intel® 64 architecture, Windows

\intel64\xhpl intel64.exe 0S, and Intel MPI.

98

LINPACK and MP LINPACK Benchmarks 1 1

Directory/File in benchmarks Contents
\mp linpack\

lib hybrid (New) Prebuilt library with the hybrid version of MP LINPACK
\ia32\1libhpl hybrid.lib for the IA-32 architecture and Intel MPI.

lib hybrid (New) Prebuilt library with the hybrid version of MP LINPACK
\intel64\1libhpl hybrid.lib for the Intel® 64 architecture and Intel MPI.

bin intel (New) Prebuilt hybrid binary for the IA-32 architecture,
\ia32\xhpl hybrid ia32.exe Windows OS, and Intel MPI.

bin intel (New) Prebuilt hybrid binary for the Intel® 64 architecture,

\intel64\xhpl hybrid intelé64.exe Windows OS, and Intel MPI.

nodeperf.c (New) Sample utility that tests the DGEMM speed across the
cluster.

See Also
High-level Directory Structure

Building the MP LINPACK

The MP LINPACK Benchmark contains a few sample architecture makefiles. You can edit them to fit your

specific configuration. Specifically:

e Set TOPdir to the directory that MP LINPACK is being built in.

e Set MPI variables, that is, MPdir, MPinc, and MP1lib.

e Specify the location Intel MKL and of files to be used (LAdir, LAinc, LAlib).

e Adjust compiler and compiler/linker options.

e Specify the version of MP LINPACK you are going to build (hybrid or non-hybrid) by setting the version
parameter for the nmake command. For example:
nmake arch=intel64 mpi=intelmpi version=hybrid install

For some sample cases, the makefiles contain values that must be common. However, you need to be
familiar with building an HPL and picking appropriate values for these variables.

New Features of Intel® Optimized MP LINPACK Benchmark

The toolset is basically identical with the HPL 2.0 distribution. There are a few changes that are optionally
compiled in and disabled until you specifically request them. These new features are:

ASYOUGO: Provides non-intrusive performance information while runs proceed. There are only a few
outputs and this information does not impact performance. This is especially useful because many runs can
go for hours without any information.

ASYOUGO2: Provides slightly intrusive additional performance information by intercepting every DGEMM call.
ASYOUGO2_DISPLAY: Displays the performance of all the significant DGEMMs inside the run.
ENDEARLY: Displays a few performance hints and then terminates the run early.

FASTSWAP: Inserts the LAPACK-optimized DLASWP into HPL's code. You can experiment with this to
determine best results.

HYBRID: Establishes the Hybrid OpenMP/MPI mode of MP LINPACK, providing the possibility to use threaded
Intel MKL and prebuilt MP LINPACK hybrid libraries.

CAUTION Use this option only with an Intel compiler and the Intel® MPI library version 3.1 or higher.
You are also recommended to use the compiler version 10.0 or higher.

99

1 1 Intel® Math Kernel Library for Windows* OS User's Guide

Benchmarking a Cluster

To benchmark a cluster, follow the sequence of steps below (some of them are optional). Pay special
attention to the iterative steps 3 and 4. They make a loop that searches for HPL parameters (specified in
HPL.dat) that enable you to reach the top performance of your cluster.

1.
2.

Install HPL and make sure HPL is functional on all the nodes.

You may run nodeperf.c (included in the distribution) to see the performance of DGEMM on all the
nodes.

Compile nodeperf.c with your MPI and Intel MKL. For example:

icl /Za /03 /w /D WIN /I"<Home directory of MPI>\include" "<Home directory of MPI libraries>\<MPI
library>" -

"<mkl directory>\lib\intel64\mkl core.lib"

"<Composer XE directory>\1ib\intel64\1ibiomp5md.1lib" nodeperf.c

where <MPI library>is msmpi.lib in the case of Microsoft* MPI and mpi.1lib in the case of MPICH.

Launching nodeperf.c on all the nodes is especially helpful in a very large cluster. nodeperf enables
quick identification of the potential problem spot without numerous small MP LINPACK runs around the
cluster in search of the bad node. It goes through all the nodes, one at a time, and reports the
performance of DGEMM followed by some host identifier. Therefore, the higher the DGEMM performance,
the faster that node was performing.

Edit HPL.dat to fit your cluster needs.

Read through the HPL documentation for ideas on this. Note, however, that you should use at least 4
nodes.

Make an HPL run, using compile options such as ASYOUGO, ASYOUGO2, or ENDEARLY to aid in your
search. These options enable you to gain insight into the performance sooner than HPL would normally
give this insight.

When doing so, follow these recommendations:
e Use MP LINPACK, which is a patched version of HPL, to save time in the search.

All performance intrusive features are compile-optional in MP LINPACK. That is, if you do not use the
new options to reduce search time, these features are disabled. The primary purpose of the
additions is to assist you in finding solutions.

HPL requires a long time to search for many different parameters. In MP LINPACK, the goal is to get
the best possible number.

Given that the input is not fixed, there is a large parameter space you must search over. An
exhaustive search of all possible inputs is improbably large even for a powerful cluster. MP LINPACK
optionally prints information on performance as it proceeds. You can also terminate early.

e Save time by compiling with -DENDEARLY -DASYOUGO2 and using a negative threshold (do not use a
negative threshold on the final run that you intend to submit as a Top500 entry). Set the threshold
in line 13 of the HPL 2.0 input file HPL.dat

e If you are going to run a problem to completion, do it with -DASYOUGO.

Using the quick performance feedback, return to step 3 and iterate until you are sure that the

performance is as good as possible.

See Also
Options to Reduce Search Time

Options to Reduce Search Time

Running large problems to completion on large numbers of nodes can take many hours. The search space for
MP LINPACK is also large: not only can you run any size problem, but over a number of block sizes, grid
layouts, lookahead steps, using different factorization methods, and so on. It can be a large waste of time to
run a large problem to completion only to discover it ran 0.01% slower than your previous best problem.

100

LINPACK and MP LINPACK Benchmarks 1 1

Use the following options to reduce the search time:

e -DASYOUGO
e -DENDEARLY
e -DASYOUGO2

Use -DASYOUGO2 cautiously because it does have a marginal performance impact. To see DGEMM internal
performance, compile with ~-DASYOUGO2 and -DASYOUGO2 DISPLAY. These options provide a lot of useful
DGEMM performance information at the cost of around 0.2% performance loss.

If you want to use the old HPL, simply omit these options and recompile from scratch. To do this, try "nmake
arch=<arch> clean _arch all".

-DASYOUGO

-DASYOUGO gives performance data as the run proceeds. The performance always starts off higher and then
drops because this actually happens in LU decomposition (a decomposition of a matrix into a product of a
lower (L) and upper (U) triangular matrices). The ASYOUGO performance estimate is usually an overestimate
(because the LU decomposition slows down as it goes), but it gets more accurate as the problem proceeds.
The greater the lookahead step, the less accurate the first number may be. ASYOUGO tries to estimate where
one is in the LU decomposition that MP LINPACK performs and this is always an overestimate as compared to
ASYOUGO2, which measures actually achieved DGEMM performance. Note that the ASYOUGO output is a subset
of the information that ASYOUGO2 provides. So, refer to the description of the -DASYOUGO2 option below for
the details of the output.

-DENDEARLY

-DENDEARLY t erminates the problem after a few steps, so that you can set up 10 or 20 HPL runs without
monitoring them, see how they all do, and then only run the fastest ones to completion. -DENDEARLY
assumes -DASYOUGO. You do not need to define both, although it doesn't hurt. To avoid the residual check
for a problem that terminates early, set the "threshold" parameter in HPL.dat to a negative number when
testing ENDEARLY. It also sometimes gives a better picture to compile with -DASYOUGO2 when using -
DENDEARLY.

Usage notes on -DENDEARLY follow:

e -DENDEARLY stops the problem after a few iterations of DGEMM on the block size (the bigger the blocksize,
the further it gets). It prints only 5 or 6 "updates", whereas -DASYOUGO prints about 46 or so output
elements before the problem completes.

e Performance for -DASYOUGO and -DENDEARLY always starts off at one speed, slowly increases, and then
slows down toward the end (because that is what LU does). -DENDEARLY is likely to terminate before it
starts to slow down.

e -DENDEARLY terminates the problem early with an HPL Error exit. It means that you need to ignore the
missing residual results, which are wrong because the problem never completed. However, you can get an
idea what the initial performance was, and if it looks good, then run the problem to completion without -
DENDEARLY. To avoid the error check, you can set HPL's threshold parameter in HPL.dat to a negative
number.

e Though -DENDEARLY terminates early, HPL treats the problem as completed and computes Gflop rating as
though the problem ran to completion. Ignore this erroneously high rating.

e The bigger the problem, the more accurately the last update that -DENDEARLY returns is close to what
happens when the problem runs to completion. -DENDEARLY is a poor approximation for small problems.
It is for this reason that you are suggested to use ENDEARLY in conjunction with ASYOUGO02, because
ASYOUGO2 reports actual DGEMM performance, which can be a closer approximation to problems just
starting.

101

1 1 Intel® Math Kernel Library for Windows* OS User's Guide

-DASYOUGOZ2

-DASYOUGO2 gives detailed single-node DGEMM performance information. It captures all DGEMM calls (if you
use Fortran BLAS) and records their data. Because of this, the routine has a marginal intrusive overhead.
Unlike -DASYOUGO, which is quite non-intrusive, —-DASYOUGO?2 interrupts every DGEMM call to monitor its
performance. You should beware of this overhead, although for big problems, it is, less than 0.1%.

Here is a sample ASYOUGO2 output (the first 3 non-intrusive numbers can be found in ASYOUGO and
ENDEARLY), so it suffices to describe these numbers here:

Col=001280 Fract=0.050 Mflops=42454.99 (DT=9.5 DF=34.1 DMF=38322.78)

The problem size was N=16000 with a block size of 128. After 10 blocks, that is, 1280 columns, an output
was sent to the screen. Here, the fraction of columns completed is 1280/16000=0.08. Only up to 40 outputs
are printed, at various places through the matrix decomposition: fractions

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070
0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140
0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190 0.195 0.200 0.205 0.210
0.215 0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275 0.280
0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350
0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390 0.395 0.400 0.405 0.410 0.415 0.420
0.425 0.430 0.435 0.440 0.445 0.450 0.455 0.460 0.465 0.470 0.475 0.480 0.485 0.490
0.495 0.515 0.535 0.555 0.575 0.595 0.615 0.635 0.655 0.675 0.695 0.795 0.895.

However, this problem size is so small and the block size so big by comparison that as soon as it prints the
value for 0.045, it was already through 0.08 fraction of the columns. On a really big problem, the fractional
number will be more accurate. It never prints more than the 112 numbers above. So, smaller problems will
have fewer than 112 updates, and the biggest problems will have precisely 112 updates.

Mflops is an estimate based on 1280 columns of LU being completed. However, with lookahead steps,
sometimes that work is not actually completed when the output is made. Nevertheless, this is a good
estimate for comparing identical runs.

The 3 numbers in parenthesis are intrusive ASYOUGO2 addins. DT is the total time processor 0 has spent in
DGEMM. DF is the number of billion operations that have been performed in DGEMM by one processor. Hence,
the performance of processor 0 (in Gflops) in DGEMM is always DF/DT. Using the number of DGEMM flops as a
basis instead of the number of LU flops, you get a lower bound on performance of the run by looking at DMF,
which can be compared to Mflops above (It uses the global LU time, but the DGEMM flops are computed
under the assumption that the problem is evenly distributed amongst the nodes, as only HPL's node (0,0)
returns any output.)

Note that when using the above performance monitoring tools to compare different HPL.dat input data sets,
you should be aware that the pattern of performance drop-off that LU experiences is sensitive to some input
data. For instance, when you try very small problems, the performance drop-off from the initial values to end
values is very rapid. The larger the problem, the less the drop-off, and it is probably safe to use the first few
performance values to estimate the difference between a problem size 700000 and 701000, for instance.
Another factor that influences the performance drop-off is the grid dimensions (P and Q). For big problems,
the performance tends to fall off less from the first few steps when P and Q are roughly equal in value. You
can make use of a large number of parameters, such as broadcast types, and change them so that the final
performance is determined very closely by the first few steps.

Using these tools will greatly assist the amount of data you can test.

See Also
Benchmarking a Cluster

102

Intel® Math Kernel Library
Language Interfaces Support

Language Interfaces Support, by Function Domain

The following table shows language interfaces that Intel® Math Kernel Library (Intel® MKL) provides for each
function domain. However, Intel MKL routines can be called from other languages using mixed-language
programming. See Mixed-language Programming with Intel® MKL for an example of how to call Fortran
routines from C/C++.

Function Domain FORTRAN Fortran9 C/C++
77 0/95 interface
interface interface

Basic Linear Algebra Subprograms (BLAS) Yes Yes via CBLAS

BLAS-like extension transposition routines Yes Yes

Sparse BLAS Level 1 Yes Yes via CBLAS

Sparse BLAS Level 2 and 3 Yes Yes Yes

LAPACK routines for solving systems of linear equations Yes Yes Yes

LAPACK routines for solving least-squares problems, eigenvalue Yes Yes Yes

and singular value problems, and Sylvester's equations

Auxiliary and utility LAPACK routines Yes Yes
Parallel Basic Linear Algebra Subprograms (PBLAS) Yes

ScalLAPACK routines Yes T
DSS/PARDISO* solvers Yes Yes Yes
Other Direct and Iterative Sparse Solver routines Yes Yes Yes
Vector Mathematical Library (VML) functions Yes Yes Yes
Vector Statistical Library (VSL) functions Yes Yes Yes
Fourier Transform functions (FFT) Yes Yes
Cluster FFT functions Yes Yes
Trigonometric Transform routines Yes Yes
Fast Poisson, Laplace, and Helmholtz Solver (Poisson Library) Yes Yes
routines

Optimization (Trust-Region) Solver routines Yes Yes Yes
Data Fitting functions Yes Yes Yes
Support functions (including memory allocation) Yes Yes Yes

T Supported using a mixed language programming call. See Intel® MKL Include Files for the respective header
file.

103

/ \ Intel® Math Kernel Library for Windows* OS User's Guide

Include Files

The table below lists Intel MKL include files.

NOTE The *.£90 include files supersede the *.£77 include files and can be used for FORTRAN 77 as
well as for later versions of Fortran. However, the *.£77 files are kept for backward compatibility.

Function domain

Fortran Include Files

C/C++ Include Files

All function domains
BLACS Routines

BLAS Routines

BLAS-like Extension Transposition

Routines
CBLAS Interface to BLAS
Sparse BLAS Routines

LAPACK Routines

C Interface to LAPACK
PBLAS Routines
ScalLAPACK Routines

All Sparse Solver Routines

PARDISO

DSS Interface

RCI Iterative Solvers

ILU Factorization
Optimization Solver Routines

Vector Mathematical Functions

Vector Statistical Functions

Fourier Transform Functions

Cluster Fourier Transform Functions

Partial Differential Equations Support

Routines

104

mkl.fi

blas.£90
mkl blas.fif

mkl_trans.fiT

mkl_spblas.ffr

lapack.£90
mkl lapack.fil

mkl solver.f90
mkl_solver.ffr

mkl pardiso.f90
mkl_pardiso.ffr

mkl dss.f90
mkl dss.fi'

mkl_rci.fiT

mklirci.fiT

mkl vml.90
mkl vml.fi'
mkl vml.£77

mkl vsl.£f90
mkl vsl.fi'
mkl vsl.£77

mkl dfti.f90

mkl cdft.£90

mkl.h
mkl blacs.h*¥

mkl blas.h?

mkl_trans.hi

mkl cblas.h®
mkl_spblas.h¢

mkl_lapack.hi

mkl_lapacke.hi
mkl pblas.h®
mkl_scalapack.h**'i

mkl_solver.h¢
mkl_pardiso.h*
mkl dss.h*

mkl_rci.h*

mklirci.hi

mkl vml.h*

mkl vsl.h¥

mkl dfti.h?

mkl cdft.h**

Intel® Math Kernel Library Language Interfaces Support A

Function domain Fortran Include Files C/C++ Include Files
Trigonometric Transforms mkl trig transforms.f90 mklitrigitransform.hi
Poisson Solvers mkl poisson.£90 mkl poisson.h?

Data Fitting functions mkl df.£90 mkl df.h*

mkl df.f77
Support functions mkl service.f90 mkl service.h*

mkl service. £if

Declarations for replacing memory i malloc.h
allocation functions. See Redefining
Memory Functions for details.

T You can use the mk1. fi include file in your code instead.
* You can include the mk1.h header file in your code instead.

** Also include the mk1.h header file in your code.

See Also
Language Interfaces Support, by Function Domain

105

/ \ Intel® Math Kernel Library for Windows* OS User's Guide

106

Support for Third-Party Interfaces

FFTW Interface Support

Intel® Math Kernel Library (Intel® MKL) offers two collections of wrappers for the FFTW interface
(www.fftw.org). The wrappers are the superstructure of FFTW to be used for calling the Intel MKL Fourier
transform functions. These collections correspond to the FFTW versions 2.x and 3.x and the Intel MKL
versions 7.0 and later.

These wrappers enable using Intel MKL Fourier transforms to improve the performance of programs that use
FFTW without changing the program source code. See the "FFTW Interface to Intel® Math Kernel Library"
appendix in the Intel MKL Reference Manual for details on the use of the wrappers.

g Important For ease of use, FFTW3 interface is also integrated in Intel MKL.

107

B Intel® Math Kernel Library for Windows* OS User's Guide

108

Directory Structure in Detalil

Tables in this section show contents of the Intel(R) Math Kernel Library (Intel(R) MKL) architecture-specific

directories.

Optimization Notice

Notice revision #20110804

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Detailed Structure of the IA-32 Architecture Directories

Static Libraries in the 1iv\ 1232 Directory

File

Contents

Interface layer
mkl intel c.lib
mkl intel s.lib

mkl blas95.1ib

mkl lapack95.1ib

Threading layer

mkl intel thread.lib

mkl pgi thread.lib

mkl sequential.lib
Computational layer

mkl core.lib

mkl solver.lib

mkl solver sequential.lib
mkl scalapack core.lib
mkl cdft core.lib

Run-time Libraries (RTL)

cdecl interface library
CVF default interface library

Fortran 95 interface library for BLAS. Supports the Intel®
Fortran compiler

Fortran 95 interface library for LAPACK. Supports the
Intel® Fortran compiler

Threading library for the Intel compilers
Threading library for the PGI* compiler

Sequential library

Kernel library for IA-32 architecture

Deprecated. Empty library for backward compatibility
Deprecated. Empty library for backward compatibility
ScalAPACK routines

Cluster version of FFTs

109

C Intel® Math Kernel Library for Windows* OS User's Guide

File Contents
mkl blacs intelmpi.lib BLACS routines supporting Intel MPI
mkl blacs mpich2.1lib BLACS routines supporting MPICH2

Dynamic Libraries in the 1iv\ia32 Directory

File Contents

mkl rt.lib Single Dynamic Library to be used for linking
Interface layer

mkl intel ¢ dll.1lib cdecl interface library for dynamic linking
mkl_intel s dll.1ib CVF default interface library for dynamic linking

Threading layer

mkl intel thread dl1l.1lib Threading library for dynamic linking with the Intel
compilers

mkl pgi thread dl1.1lib Threading library for dynamic linking with the PGI*
compiler

mkl sequential dl11.1lib Sequential library for dynamic linking

Computational layer

mkl core dll.lib Core library for dynamic linking
mkl scalapack core dll.1lib ScalAPACK routine library for dynamic linking
mkl cdft core dll.lib Cluster FFT library for dynamic linking

Run-time Libraries (RTL)

mkl blacs dll.lib BLACS interface library for dynamic linking

Contents of the redist\ia32\mk1 Directory

File Contents

mkl rt.dll Single Dynamic Library

Threading layer

mkl intel thread.dll Dynamic threading library for the Intel compilers
mkl pgi thread.dll Dynamic threading library for the PGI* compiler
mkl sequential.dll Dynamic sequential library

Computational layer

mkl core.dll Core library containing processor-independent code and a
dispatcher for dynamic loading of processor-specific code

mkl def.dll Default kernel (Intel® Pentium®, Pentium® Pro, Pentium® II, and
Pentium® III processors)

110

Directory Structure in Detail C

File

Contents

mkl pd.dll

mkl p4p.dll

mkl pdm.dll

mkl pd4m3.dll

mkl vml def.dll

mkl vml ia.dll

mkl vml p4.dll
mkl vml pédp.dll

mkl vml p4m.dll

mkl vml pd4m2.dll

mkl vml p4m3.dl1l

mkl vml avx.dll

libmkl vml cmpt.dll
mkl scalapack core.dll
mkl cdft core.dll
libimalloc.dll
Run-time Libraries (RTL)
mkl blacs.dll

mkl blacs intelmpi.dll
mkl blacs mpich2.dll

1033\mkl msg.dll

1041\mkl msg.dll

Pentium® 4 processor kernel

Kernel for the Intel® Pentium® 4 processor with Intel® Streaming
SIMD Extensions 3 (Intel® SSE3), including Intel® Core™ Duo and
Intel® Core™ Solo processors.

Kernel for processors based on the Intel® Core™
microarchitecture (except Intel® Core™ Duo and Intel® Core™
Solo processors, for which mk1 p4p.dl1 is intended)

Kernel for the Intel® Core™ i7 processors

Vector Math Library (VML)/Vector Statistical Library (VSL)/Data
Fitting (DF) part of default kernel for old Intel® Pentium®
processors

VML/VSL/DF default kernel for newer Intel® architecture
processors

VML/VSL/DF part of Pentium® 4 processor kernel
VML/VSL/DF for Pentium® 4 processor with Intel SSE3

VML/VSL/DF for processors based on the Intel® Core™
microarchitecture (except Intel® Core™ Duo and Intel® Core™
Solo processors, for which mkl vml p4p.dll is intended).

VML/VSL/DF for 45nm Hi-k Intel® Core™2 and Intel Xeon®
processor families

VML/VSL/DF for the Intel® Core™ i7 processors

VML/VSL/DF optimized for the Intel® Advanced Vector Extensions
(Intel® AVX)

VML/VSL/DF library for conditional numerical reproducibility
ScalAPACK routines
Cluster FFT dynamic library

Dynamic library to support renaming of memory functions

BLACS routines
BLACS routines supporting Intel MPI
BLACS routines supporting MPICH2

Catalog of Intel® Math Kernel Library (Intel® MKL) messages in
English

Catalog of Intel MKL messages in Japanese. Available only if the
Intel® C++ Composer XE or Intel® Visual Fortran Composer XE
that includes Intel MKL provides Japanese localization. Please see
the Release Notes for this information.

Detailed Structure of the Intel® 64 Architecture Directories

111

C Intel® Math Kernel Library for Windows* OS User's Guide

Static Libraries in the 1in\inte164 Directory

File

Contents

Interface layer

mkl intel 1p64.1lib
mkl intel ilp64.1lib
mkl intel sp2dp.a

mkl blas95 1p64.1ib

mkl blas95 ilp64.1lib

mkl lapack95 1p64.1lib

mkl lapack95 ilp64.1lib

Threading layer

mkl intel thread.lib

mkl pgi thread.lib

mkl sequential.lib
Computational layer

mkl core.lib

mkl solver 1p64.lib

mkl solver 1p64 sequential.lib
mkl solver ilp64.1lib

mkl solver ilp64 sequential.lib
mkl scalapack 1p64.lib

mkl scalapack ilp64.lib

mkl cdft core.lib

Run-time Libraries (RTL)

mkl blacs intelmpi 1p64.lib
mkl blacs intelmpi ilp64.1lib
mkl blacs mpich2 1p64.1lib

mkl blacs mpich2 ilp64.1lib

mkl blacs msmpi 1p64.lib

mkl blacs msmpi ilp64.1lib

LP64 interface library for the Intel compilers
ILP64 interface library for the Intel compilers
SP2DP interface library for the Intel compilers

Fortran 95 interface library for BLAS. Supports the Intel®
Fortran compiler and LP64 interface

Fortran 95 interface library for BLAS. Supports the Intel®
Fortran compiler and ILP64 interface

Fortran 95 interface library for LAPACK. Supports the
Intel® Fortran compiler and LP64 interface

Fortran 95 interface library for LAPACK. Supports the
Intel® Fortran compiler and ILP64 interface

Threading library for the Intel compilers
Threading library for the PGI* compiler

Sequential library

Kernel library for the Intel® 64 architecture

Deprecated. Empty library for backward compatibility
Deprecated. Empty library for backward compatibility
Deprecated. Empty library for backward compatibility
Deprecated. Empty library for backward compatibility
ScalAPACK routine library supporting the LP64 interface
ScaLAPACK routine library supporting the ILP64 interface

Cluster version of FFTs

LP64 version of BLACS routines supporting Intel MPI
ILP64 version of BLACS routines supporting Intel MPI
LP64 version of BLACS routines supporting MPICH2

ILP64 version of BLACS routines supporting MPICH2

LP64 version of BLACS routines supporting Microsoft* MPI

ILP64 version of BLACS routines supporting Microsoft*
MPI

112

Directory Structure in Detail C

Dynamic Libraries in the 1iv\inte164 Directory

File

Contents

mkl rt.lib
Interface layer

mkl intel 1p64 dll.lib

mkl intel ilp64 dll.lib

Threading layer

mkl intel thread dll.lib

mkl pgi thread dll.lib

mkl sequential dll.lib
Computational layer
mkl core dll.1lib

mkl scalapack 1p64 dll.lib

mkl scalapack ilp64 dll.lib

mkl cdft core dll.lib
Run-time Libraries (RTL)

mkl blacs 1p64 dll.1lib

mkl blacs ilp64 dll.lib

Single Dynamic Library to be used for linking

LP64 interface library for dynamic linking with the Intel
compilers

ILP64 interface library for dynamic linking with the Intel
compilers

Threading library for dynamic linking with the Intel
compilers

Threading library for dynamic linking with the PGI*
compiler

Sequential library for dynamic linking

Core library for dynamic linking

ScalAPACK routine library for dynamic linking supporting
the LP64 interface

ScalAPACK routine library for dynamic linking supporting
the ILP64 interface

Cluster FFT library for dynamic linking

LP64 version of BLACS interface library for dynamic
linking

ILP64 version of BLACS interface library for dynamic
linking

Contents of the redist\inte164\mk1 Directory

File Contents

mkl rt.dll Single Dynamic Library
Threading layer
mkl intel thread.dll Dynamic threading library for the Intel compilers

mkl pgi thread.dll Dynamic threading library for the

PGI* compiler
mkl sequential.dll Dynamic sequential library

Computational layer

113

C Intel® Math Kernel Library for Windows* OS User's Guide

File

Contents

mkl core.dll

mkl def.dll

mkl pd4n.dll

mkl mc.dll

mkl mc3.dll

mkl avx.dll

mkl vml def.dll

mkl vml pd4n.dll

mkl vml mc.dll

mkl vml mc2.dll

mkl vml mc3.dll

mkl vml avx.dll

libmkl vml cmpt.dll

mkl scalapack 1lp64.dll

mkl scalapack ilp64.dll

mkl cdft core.dll
libimalloc.dll

Run-time Libraries (RTL)

mkl blacs 1p64.dll

mkl blacs ilp64.dll

mkl blacs intelmpi 1p64.dl1l
mkl blacs intelmpi ilp64.dll
mkl blacs mpich2 1p64.dll
mkl blacs mpich2 ilp64.dll
mkl blacs msmpi 1p64.dll
mkl blacs msmpi ilp64.dll

1033\mkl msg.dll

114

Core library containing processor-independent code and a
dispatcher for dynamic loading of processor-specific code

Default kernel for the Intel® 64 architecture

Kernel for the Intel® Xeon® processor using the Intel® 64
architecture

Kernel for processors based on the Intel® Core™
microarchitecture

Kernel for the Intel® Core™ i7 processors

Kernel optimized for the Intel® Advanced Vector Extensions
(Intel® AVX)

Vector Math Library (VML)/Vector Statistical Library (VSL)/Data
Fitting (DF) part of default kernel

VML/VSL/DF for the Intel® Xeon® processor using the Intel® 64
architecture

VML/VSL/DF for processors based on the Intel® Core™
microarchitecture

VML/VSL/DF for 45nm Hi-k Intel® Core™2 and Intel Xeon® proces-
sor families

VML/VSL/DF for the Intel® Core® i7 processors

VML/VSL/DF optimized for the Intel® Advanced Vector Extensions
(Intel® AVX)

VML/VSL/DF library for conditional numerical reproducibility
ScalAPACK routine library supporting the LP64 interface
ScalLAPACK routine library supporting the ILP64 interface
Cluster FFT dynamic library

Dynamic library to support renaming of memory functions

LP64 version of BLACS routines

ILP64 version of BLACS routines

LP64 version of BLACS routines supporting Intel MPI

ILP64 version of BLACS routines supporting Intel MPI

LP64 version of BLACS routines supporting MPICH2

ILP64 version of BLACS routines supporting MPICH2

LP64 version of BLACS routines supporting Microsoft* MPI
ILP64 version of BLACS routines supporting Microsoft* MPI

Catalog of Intel® Math Kernel Library (Intel® MKL) messages in
English

Directory Structure in Detail C

File Contents

1041\mkl msg.dll Catalog of Intel MKL messages in Japanese. Available only if the
Intel® C++ Composer XE or Intel® Visual Fortran Composer XE
that includes Intel MKL provides Japanese localization. Please see
the Release Notes for this information.

115

C Intel® Math Kernel Library for Windows* OS User's Guide

116

Index

Index

affinity mask 55
aligning data, example 77
architecture support 23

BLAS
calling routines from C 63
Fortran 95 interface to 61
threaded routines 45
building a custom DLL
in Visual Studio* IDE 42

C

C interface to LAPACK, use of 63
C, calling LAPACK, BLAS, CBLAS from 63
C/C++, Intel(R) MKL complex types 64
calling
BLAS functions from C 65
CBLAS interface from C 65
complex BLAS Level 1 function from C 65
complex BLAS Level 1 function from C++ 65
Fortran-style routines from C 63
calling convention, cdecl and stdcall 18
CBLAS interface, use of 63
cdecl interface, use of 33
Cluster FFT, linking with 79
cluster software, Intel(R) MKL
cluster software, linking with
commands 79
linking examples 82
code examples, use of 19
coding
data alignment
techniques to improve performance 54
compilation, Intel(R) MKL version-dependent 78
compiler run-time libraries, linking with 38
compiler support 18
compiler-dependent function 61
complex types in C and C++, Intel(R) MKL 64
computation results, consistency
computational libraries, linking with 37
conditional compilation 78
configuring
Intel(R) Visual Fortran 85
Microsoft Visual* C/C++ 85
project that runs Intel(R) MKL code example in Visual
Studio* 2008 IDE 86
consistent results
context-sensitive Help, for Intel(R) MKL, in Visual Studio*
IDE 91
conventions, notational 13
ctdcall interface, use of 33
custom DLL
building 39
composing list of functions 41
specifying function names 41
CVF calling convention, use with Intel(R) MKL 62

D

data alignment, example 77

denormal number, performance 56
directory structure

documentation 26

high-level 23

in-detail
documentation directories, contents 26

Enter index keyword 27
environment variables, setting 17
examples, linking
for cluster software 82
general 30

F

FFT interface
data alignment 54
optimised radices 56
threaded problems 45
FFTW interface support 107
Fortran 95 interface libraries 36

H

header files, Intel(R) MKL 104

Help, for Intel(R) MKL in Visual Studio* IDE 90
HT technology, configuration tip 54

hybrid, version, of MP LINPACK 97

I

ILP64 programming, support for 34
include files, Intel(R) MKL 104
installation, checking 17
Intel(R) Hyper-Threading Technology, configuration tip 54
Intel(R) Visual* Fortran project, linking with Intel(R) MKL
28
IntelliSense*, with Intel(R) MKL, in Visual Studio* IDE 92
interface
cdecl and stdcall, use of 33
Fortran 95, libraries 36
LP64 and ILP64, use of 34
interface libraries and modules, Intel(R) MKL 59
interface libraries, linking with 33

J

Java* examples 68

L

language interfaces support 103
language-specific interfaces

interface libraries and modules 59
LAPACK

C interface to, use of 63

calling routines from C 63

Fortran 95 interface to 61

117

Intel® Math Kernel Library for Windows* OS User's Guide

performance of packed routines 54
threaded routines 45
layers, Intel(R) MKL structure 25
libraries to link with
computational 37
interface 33
run-time 38
system libraries 39
threading 36
link tool, command line 30
linking
Intel(R) Visual* Fortran project with Intel(R) MKL 28
Microsoft Visual* C/C++ project with Intel(R) MKL 28
linking examples
cluster software 82
general 30
linking with
compiler run-time libraries 38
computational libraries 37
interface libraries 33
system libraries 39
threading libraries 36
linking, quick start 27
linking, Web-based advisor 29
LINPACK benchmark 95

M

memory functions, redefining 56

memory management 56

memory renaming 56

Microsoft Visual* C/C++ project, linking with Intel(R) MKL
28

mixed-language programming 63

module, Fortran 95 61

MP LINPACK benchmark 97

multi-core performance 55

notational conventions 13
number of threads
changing at run time 48
changing with OpenMP* environment variable 48
Intel(R) MKL choice, particular cases 51
setting for cluster 81
techniques to set 48
numerically reproducible results

P

parallel performance 47

118

parallelism, of Intel(R) MKL 45
performance

multi-core 55

with denormals 56

with subnormals 56

R

results, consistent, obtaining
results, numerically reproducible, obtaining

S

ScalAPACK, linking with 79
SDL 28, 32
sequential mode of Intel(R) MKL 36
Single Dynamic Library 28, 32
stdcall calling convention, use in C/C++ 62
structure

high-level 23

in-detail

model 25
support, technical 11
supported architectures 23
system libraries, linking with 39

T

technical support 11

thread safety, of Intel(R) MKL 45
threaded functions 45

threaded problems 45

threading control, Intel(R) MKL-specific 50
threading libraries, linking with 36

V)

uBLAS, matrix-matrix multiplication, substitution with
Intel MKL functions 67

unstable output, getting rid of

usage information 15

\'J

Visual Studio* 2008 IDE, configuring a project that runs
Intel(R) MKL code example 86
Visual Studio* IDE
IntelliSense*, with Intel(R) MKL 92
using Intel(R) MKL context-sensitive Help in 91
Veiwing Intel(R) MKL documentation in 90

	Legal Information
	Contents
	Introducing the Intel® Math Kernel Library
	Getting Help and Support
	Notational Conventions
	Overview
	Document Overview
	What's New
	Related Information

	Getting Started
	Checking Your Installation
	Setting Environment Variables
	Compiler Support
	Using Code Examples
	What You Need to Know Before You Begin Using the Intel® Math Kernel Library

	Structure of the Intel® Math Kernel Library
	Architecture Support
	High-level Directory Structure
	Layered Model Concept
	Contents of the Documentation Directories

	Linking Your Application with the Intel® Math Kernel Library
	Linking Quick Start
	Using the /Qmkl Compiler Option
	Automatically Linking a Project in the Visual Studio* Integrated Development Environment with Intel® MKL
	Automatically Linking Your Microsoft Visual C/C++* Project with Intel® MKL
	Automatically Linking Your Intel® Visual Fortran Project with Intel® MKL

	Using the Single Dynamic Library
	Selecting Libraries to Link with
	Using the Link-line Advisor
	Using the Command-line Link Tool

	Linking Examples
	Linking on IA-32 Architecture Systems
	Linking on Intel(R) 64 Architecture Systems

	Linking in Detail
	Dynamically Selecting the Interface and Threading Layer
	Linking with Interface Libraries
	Using the cdecl and stdcall Interfaces
	Using the ILP64 Interface vs. LP64 Interface
	Linking with Fortran 95 Interface Libraries

	Linking with Threading Libraries
	Sequential Mode of the Library
	Selecting the Threading Layer

	Linking with Computational Libraries
	Linking with Compiler Run-time Libraries
	Linking with System Libraries

	Building Custom Dynamic-link Libraries
	Using the Custom 	 Dynamic-link Library Builder in the Command-line Mode
	Composing a List of Functions
	Specifying Function Names
	Building a Custom Dynamic-link Library in the Visual Studio* Development System
	Distributing Your Custom Dynamic-link Library

	Managing Performance and Memory
	Improving Performance with Threading
	Threaded Functions and Problems
	Avoiding Conflicts in the Execution Environment
	Techniques to Set the Number of Threads
	Setting the Number of Threads Using an OpenMP* Environment Variable
	Changing the Number of Threads at Run Time
	Using Additional Threading Control
	Intel MKL-specific Environment Variables for Threading Control
	MKL_DYNAMIC
	MKL_DOMAIN_NUM_THREADS
	Setting the Environment Variables for Threading Control

	Other Tips and Techniques to Improve Performance
	Coding Techniques
	Hardware Configuration Tips
	Managing Multi-core Performance
	Operating on Denormals
	FFT Optimized Radices

	Using Memory Management
	Intel MKL Memory Management Software
	Redefining Memory Functions

	Language-specific Usage Options
	Using Language-Specific Interfaces with Intel® Math Kernel Library
	Interface Libraries and Modules
	Fortran 95 Interfaces to LAPACK and BLAS
	Compiler-dependent Functions and Fortran 90 Modules
	Using the stdcall Calling Convention in C/C++
	Compiling an Application that Calls the Intel® Math Kernel Library and Uses the CVF Calling Conventions

	Mixed-language Programming with the Intel Math Kernel Library
	Calling LAPACK, BLAS, and CBLAS Routines from C/C++ Language Environments
	Using Complex Types in C/C++
	Calling BLAS Functions that Return the Complex Values in C/C++ Code
	Support for Boost uBLAS Matrix-matrix Multiplication
	Invoking Intel MKL Functions from Java* Applications
	Intel MKL Java* Examples
	Running the Java* Examples
	Known Limitations of the Java* Examples

	Obtaining Numerically Reproducible Results
	Getting Started with Conditional Numerical Reproducibility
	Specifying the Code Branches
	Reproducibility Conditions
	Setting the Environment Variable for Conditional Numerical Reproducibility
	Code Examples

	Coding Tips
	Example of Data Alignment
	Using Predefined Preprocessor Symbols for Intel® MKL Version-Dependent Compilation

	Working with the Intel® Math Kernel Library Cluster Software
	MPI Support
	Linking with ScaLAPACK and Cluster FFTs
	Determining the Number of Threads
	Using DLLs
	Setting Environment Variables on a Cluster
	Building ScaLAPACK Tests
	Examples for Linking with ScaLAPACK and Cluster FFT
	Examples for Linking a C Application
	Examples for Linking a Fortran Application

	Programming with Intel® Math Kernel Library in Integrated Development Environments (IDE)
	Configuring Your Integrated Development Environment to Link with Intel Math Kernel Library
	Configuring the Microsoft Visual C/C++* Development System to Link with Intel® MKL
	Configuring Intel® Visual Fortran to Link with Intel MKL
	Running an Intel MKL Example in the Visual Studio* 2008 IDE
	Creating, Configuring, and Running the Intel® C/C++ and/or Visual C++* 2008 Project
	Creating, Configuring, and Running the Intel Visual Fortran Project
	Support Files for Intel® Math Kernel Library Examples
	Known Limitations of the Project Creation Procedure

	Getting Assistance for Programming in the 	 Microsoft Visual Studio* 	 IDE
	Viewing Intel MKL Documentation in Visual Studio* IDE
	Using Context-Sensitive Help
	Using the IntelliSense* Capability

	LINPACK and MP LINPACK Benchmarks
	Intel® Optimized LINPACK Benchmark for Windows* OS
	Contents of the Intel® Optimized LINPACK Benchmark
	Running the Software
	Known Limitations of the Intel® Optimized LINPACK Benchmark

	Intel® Optimized MP LINPACK Benchmark for Clusters
	Overview of the Intel® Optimized MP LINPACK Benchmark for Clusters
	Contents of the Intel® Optimized MP LINPACK Benchmark for Clusters
	Building the MP LINPACK
	New Features of Intel® Optimized MP LINPACK Benchmark
	Benchmarking a Cluster
	Options to Reduce Search Time

	Intel® Math Kernel Library Language Interfaces Support
	Language Interfaces Support, by Function Domain
	Include Files

	Support for Third-Party Interfaces
	FFTW Interface Support

	Directory Structure in Detail
	Detailed Structure of the IA-32 Architecture Directories
	Static Libraries in the lib\ia32 Directory
	Dynamic Libraries in the lib\ia32 Directory
	Contents of the redist\ia32\mkl Directory

	Detailed Structure of the Intel® 64 Architecture Directories
	Static Libraries in the lib\intel64 Directory
	Dynamic Libraries in the lib\intel64 Directory
	Contents of the redist\intel64\mkl Directory

	Index

