/theory/in/ practice

The Art of Application
Performance Testing

From Strategy to Tools

[an Molyneaux

www.it-ebooks.info

http://www.it-ebooks.info/

US $44.99 CAN $47.99
ISBN: 978-1-491-90054-3

O'REILLY"

/theory/in/ practice

The Art of Application Performance Testing

Because performance is paramount today, this thoroughly updated guide shows you how

to test mission-critical applications for scalability and performance before you deploy them—
whether it's to the cloud or a mobile device. You'll learn the complete testing process lifecycle
step-by-step, along with best practices to plan, coordinate, and conduct performance tests
on your applications.

Set realistic performance testing goals

Implement an effective application performance testing strategy
Interpret performance test results

Cope with different application technologies and architectures
Understand the importance of End User Monitoring (EUM)

Use automated performance testing tools

Test traditional local applications, web applications, and web services

Recognize and resolves issues often overlooked in performance tests

Written by a consultant with over 15 years' experience with performance testing, The Art of
Application Performance Testing thoroughly explains the pitfalls of an inadequate testing strategy
and offers a robust, structured approach for ensuring that your applications perform well and
scale effectively when the need arises.

lan Molyneaux, EMEA SME (Subject Matter Expert), is Head of Performance at Intechnica, a
software consultancy based in Manchester, UK. He specializes in performance assurance for
the enterprise with a strong focus on people, process, and tooling.

Twitter: @oreillymedia
facebook.com/oreilly
oreilly.com

44

Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

The Art of Application
Performance Testing

SECOND EDITION

Ian Molyneaux

Beijing + Cambridge + Farnham - Kaln « Sebastopol - Tokyo [KOAR{=|MNE

www.it-ebooks.info

http://www.it-ebooks.info/

The Art of Application Performance Testing
by Ian Molyneaux

Copyright © 2015 Ian Molyneaux. All rights reserved.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safaribooksonline.com). For more information,

contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Brian Anderson Indexer: Wendy Catalano
Production Editor: Melanie Yarbrough Interior Designer: David Futato
Copyeditor: Rachel Monaghan Cover Designer: Ellie Volkhausen
Proofreader: Sharon Wilkey Illustrator: Rebecca Demarest

December 2014: Second Edition

Revision History for the Second Edition
2014-12-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491900543 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Art of Application Perfor-
mance Testing, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information
and instructions contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the information and instructions con-
tained in this work is at your own risk. If any code samples or other technology this work con-
tains or describes is subject to open source licenses or the intellectual property rights of others,
it is your responsibility to ensure that your use thereof complies with such licenses and/or
rights.

978-1-491-90054-3

[LSI]

www.it-ebooks.info

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491900543
http://www.it-ebooks.info/

TABLE OF CONTENTS

What Is Performance? The End-User Perspective
Performance Measurement
Performance Standards
The World Wide Web and Ecommerce

Bad Performance: Why It’s So Common
The IT Business Value Curve
Performance Testing Maturity: What the Analysts Think
Lack of Performance Considerations in Application Design
Performance Testing Is Left to the Last Minute
Scalability
Underestimating Your Popularity
Performance Testing Is Still an Informal Discipline
Not Using Automated Testing Tools
Application Technology Impact

Summary

Choosing an Appropriate Performance Testing Tool..............

Performance Testing Tool Architecture

Choosing a Performance Testing Tool

Performance Testing Toolset: Proof of Concept
Proof of Concept Checklist

Summary

The Fundamentals of Effective Application Performance Testing

Making Sure Your Application Is Ready

Allocating Enough Time to Performance Test

Obtaining a Code Freeze

Designing a Performance Test Environment
Virtualization

www.it-ebooks.info

—

S O 0O 0V X 0 N NNV v W N~

—

12
13
16
17
19

21
23
24
25
26
27

http://www.it-ebooks.info/

Cloud Computing
Load Injection Capacity

Addressing Different Network Deployment Models

Environment Checklist

Software Installation Constraints
Setting Realistic Performance Targets

Consensus

Performance Target Definition

Network Utilization

Server Utilization

Identifying and Scripting the Business-Critical Use Cases

Use-Case Checklist
Use-Case Replay Validation
What to Measure
To Log In or Not to Log In
Peaceful Coexistence
Providing Test Data
Input Data
Target Data
Session Data
Data Security
Ensuring Accurate Performance-Test Design
Principal Types of Performance Test
The Load Model
Think Time
Pacing
Identifying the KPIs
Server KPIs
Network KPIs
Application Server KPIs
Summary

The Process of Performance Testing....................

Activity Duration Guidelines
Performance Testing Approach

Step 1: Nonfunctional Requirements Capture
Step 2: Performance Test Environment Build

Step 3: Use-Case Scripting

CONTENTS

www.it-ebooks.info

29
31
32
34
35
35
35
37
41
42
43
44
45
46
46
47
47
47
48
49
49
49
50
51
54
54
59
59
62
64
64

65
65
66
67
70
71

http://www.it-ebooks.info/

Step 4: Performance Test Scenario Build
Step 5: Performance Test Execution

Step 6: Post-Test Analysis and Reporting

Case Study 1: Online Banking
Application Landscape
Application Users
Step 1: Pre-Engagement NFR Capture
Step 2: Test Environment Build
Step 3: Use-Case Scripting
Step 4: Performance Test Build
Step 5: Performance Test Execution
Online Banking Case Study Review
Case Study 2: Call Center
Application Landscape
Application Users
Step 1: Pre-Engagement NFR Capture
Step 2: Test Environment Build
Step 3: Use-Case Scripting
Step 4: Performance Test Scenario Build
Step 5: Performance Test Execution
Call Center Case Study Review
Summary

Interpreting Results: Effective Root-Cause Analysis

The Analysis Process
Real-Time Analysis
Post-Test Analysis
Types of Output from a Performance Test
Statistics Primer
Response-Time Measurement
Throughput and Capacity
Monitoring Key Performance Indicators
Server KPI Performance
Network KPI Performance
Load Injector Performance
Root-Cause Analysis
Scalability and Response Time
Digging Deeper

www.it-ebooks.info

72
74
75
75
76
76
77
78
79
80
81
81
83
83
85
85
86
86
87
87
88
89

92
92
93
93
93
96
99
100
102
103
104
105
105
107

CONTENTS

v

http://www.it-ebooks.info/

Inside the Application Server 108

Looking for the Knee 109
Dealing with Errors 110
Baseline Data 111
Analysis Checklist 111
Pre-Test Tasks 111
Tasks During Test Execution 112
Post-Test Tasks 114
Summary 115
6 Performance Testing and the Mobile Client......................... 117
What's Different About a Mobile Client? 117
Mobile Testing Automation 118
Mobile Design Considerations 119
Mobile Testing Considerations 120
Mobile Test Design 120
On-Device Performance Not in Scope 121
On-Device Performance Testing Is in Scope 122
Summary 123
7 End-User Experience Monitoring and Performance.................. 125
What Is External Monitoring? 126
Why Monitor Externally? 127
External Monitoring Categories 130
Active Monitoring 130
Output Metrics 132
ISP Testing Best Practices 133
Synthetic End-User Testing Best Practices 135
Passive Monitoring 136
How Passive Monitoring Works 138
Pros and Cons of Active Versus Passive Monitoring 140
Active Pros 140
Active Cons 141
Passive Pros 141
Passive Cons 141
Tooling for External Monitoring of Internet Applications 141
Tool Selection Criteria 142
Active Monitoring Tooling 144
vi CONTENTS

www.it-ebooks.info

http://www.it-ebooks.info/

Passive Monitoring Tooling
Creating an External Monitoring Testing Framework
Building Blocks of an Effective Testing Framework
Specific Design Aspects of Active Monitoring
Specific Design Aspects of Passive Monitoring
Isolating and Characterizing Issues Using External Monitoring
Monitoring Native Mobile Applications
Essential Considerations for CDN Monitoring
Performance Results Interpretation

Key Performance Indicators for Web-Based Ecommerce Applications

Setting KPI Values
The Application Performance Index (APDEX)
Management Information
Data Preparation
Statistical Considerations
Correlation
Effective Reporting
Competitive Understanding
Visitor performance map
Alerting
Gotchas!
Summary

Integrating External Monitoring and Performance Testing.........

Tooling Choices
Active and Passive Integration with Static Performance Testing
Passive and Performance Testing
RUM and APM
Integration of Active Test Traffic with APM Tooling
Active External Monitoring and Performance Testing
Test Approach
Test Scheduling
Performance Testing of Multimedia Content

End-User Understanding in Non-Internet Application Performance

Tests
Usetul Source Materials

www.it-ebooks.info

145
147
148
149
151
152
154
157
161
162
l64
166
167
168
168
172
174
175
177
179
181
183

187
188
189
191
191
192
192
193
195

196
199

CONTENTS

vii

http://www.it-ebooks.info/

Summary 200

9 Application Technology and Its Impact on Performance Testing...... 201
Asynchronous Java and XML (AJAX) 201
Push Versus Pull 202
Citrix 202
Citrix Checklist 203
Citrix Scripting Advice 204
Virtual Desktop Infrastructure 205
HTTP Protocol 205
Web Services 205
.NET Remoting 206
Browser Caching 207
Secure Sockets Layer 207
Java 208
Oracle 209
Oracle Two-Tier 209
Oracle Forms Server 209
Oracle Checklist 209
SAP 210
SAP Checklist 210
Service-Oriented Architecture 211
Web 2.0 212
Windows Communication Foundation and Windows Presentation
Foundation 213
Oddball Application Technologies: Help, My Load Testing Tool Won't
Record It! 213
Before Giving Up in Despair . . . 213
Alternatives to Capture at the Middleware Level 215
Manual Scripting 215
Summary 216
10 CONCIUSION. . .. 217
A Use-Case Definition Example...............ccooiiiiiiiinnnn 219
B Proof of Concept and Performance Test Quick Reference............ 223
C Performance and Testing ToolVendors.c.cciiiiiiinnnnnn. 235

viii CONTENTS

www.it-ebooks.info

http://www.it-ebooks.info/

Sample Monitoring Templates: Infrastructure Key Performance Indicator

=Y T 239
Sample ProjectPlan. ... i i 243
g Ve 1= 245

CONTENTS ix

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

WHEN | PUBLISHED THE ORIGINAL EDITION OF THIS BOOK IN JANUARY 2009, | HAD
no idea how popular it would prove to be within the performance testing community.
I received many emails from far and wide thanking me for putting pen to paper, which
was an unexpected and very pleasant surprise. This book was and still is primarily
written for the benefit of those who would like to become performance testing special-
ists. It is also relevant for IT professionals who are already involved in performance
testing, perhaps as part of a web-first company (large or small), especially if they are
directly responsible for the performance of the systems they work with.

While I believe that the fundamentals discussed in the original edition still hold true, a
lot has happened in the IT landscape since 2009 that has impacted the way software
applications are deployed and tested. Take cloud computing, for example: very much a
novelty in 2009, with very few established cloud vendors. In 2014 the cloud is pretty
much the norm for web deployment, with on-the-fly environment spin-up and spin-
down for dev, test, and production requirements. I have added cloud considerations to
existing chapter content where appropriate.

Then consider the meteoric rise of the mobile device, which, as of 2014, is expected to
be the largest source of consumer traffic on the Internet. I made passing mention of it
in the original edition, which I have now expanded into a whole new chapter devoted
to performance testing the mobile device. End-user monitoring, or EUM, has also come
of age in the past five years. It has a clear overlap with performance testing, so I have

www.it-ebooks.info

xi

http://www.it-ebooks.info/

xii

added two new chapters discussing how EUM data is an important component to
understanding the real-world performance of your software application.

Pretty much all of the original chapters and appendixes have been revised and expan-
ded with new material that I am confident will be of benefit to those involved with
performance testing, be they novices or seasoned professionals. Businesses in today’s
world continue to live and die by the performance of mission-critical software applica-
tions. Sadly, applications are often still deployed without adequate testing for scalabil-
ity and performance. To reiterate, effective performance testing identifies performance
bottlenecks quickly and early so they can be rapidly triaged, allowing you to deploy
with confidence. The Art of Application Performance Testing, Second Edition, addresses a
continuing need in the marketplace for reference material on this subject. However,
this is still zot a book on how to tune technology X or optimize technology Y. I've
intentionally stayed well away from specific tech stacks except where they have a sig-
nificant impact on how you go about performance testing. My intention remains to
provide a commonsense guide that focuses on planning, execution, and interpretation
of results and is based on over 15 years of experience managing performance testing
projects.

In the same vein, I won't touch on any particular industry performance testing meth-
odology because—truth be told—they (still) don’t exist. Application performance test-
ing is a unique discipline and is (still) crying out for its own set of industry standards.

I'm hopeful that the second edition of this book will continue to carry the flag for the
appearance of formal process.

My career has moved on since 2009, and although I continue to work for a company
that’s passionate about performance, this book remains tool- and vendor-neutral. The
processes and strategies described here can be used with any professional automated
testing solution.

Hope you like the revised and updated edition!

—Ian Molyneaux, 2014

Audience

This book is intended as a primer for anyone interested in learning or updating their
knowledge about application performance testing, be they seasoned software testers or
complete novices.

I would argue that performance testing is very much an art in line with other software
disciplines and should be not be undertaken without a consistent methodology and
appropriate automation tooling. To become a seasoned performance tester takes many
years of experience; however, the basic skills can be learned in a comparatively short
time with appropriate instruction and guidance.

PREFACE

www.it-ebooks.info

http://www.it-ebooks.info/

The book assumes that readers have some familiarity with software testing techniques,
though not necessarily performance-related ones. As a further prerequisite, effective
performance testing is really possible only with the use of automation. Therefore, to
get the most from the book, you should have some experience or at least awareness of
automated performance testing tools.

Some additional background reading that you may find useful includes the following:

e Web Load Testing for Dummies by Scott Barber with Colin Mason (Wiley)

e .NET Performance Testing and Optimization by Paul Glavich and Chris Farrell (Red
Gate Books)

e Web Performance Tuning by Patrick Killilea (O'Reilly)
e Web Performance Warrior by Andy Still (O'Reilly)

About This Book

Based on a number of my jottings (that never made it to the white paper stage) and 10
years plus of hard experience, this book is designed to explain why it is so important to
performance test any application before deploying it. The book leads you through the
steps required to implement an effective application performance testing strategy.

Here are brief summaries of the book’s chapters and appendixes:

Chapter 1, Why Performance Test?, discusses the rationale behind application perfor-
mance testing and looks at performance testing in the IT industry from a historical per-
spective.

Chapter 2, Choosing an Appropriate Performance Testing Tool, discusses the importance of
automation and of selecting the right performance testing tool.

Chapter 3, The Fundamentals of Effective Application Performance Testing, introduces the
building blocks of effective performance testing and explains their importance.

Chapter 4, The Process of Performance Testing, suggests a best-practice approach. It builds
on Chapter 3, applying its requirements to a model for application performance test-
ing. The chapter also includes a number of case studies to help illustrate best-practice
approaches.

Chapter 5, Interpreting Results: Effective Root-Cause Analysis, teaches effective root-cause
analysis. It discusses the typical output of a performance test and how to interpret
results.

Chapter 6, Performance Testing and the Mobile Client, discusses performance and the
mobile device and the unique challenges of performance testing mobile clients.

PREFACE

www.it-ebooks.info

xiii

http://www.it-ebooks.info/

Chapter 7, End-User Experience Monitoring and Performance, describes the complementary
relationship between end-user experience monitoring and performance testing.

Chapter 8, Integrating External Monitoring and Performance Testing, explains how to inte-
grate end-user experience monitoring and performance testing.

Chapter 9, Application Technology and Its Impact on Performance Testing, discusses the
impact of particular software tech stacks on performance testing. Although the
approach outlined in this book is generic, certain tech stacks have specific require-
ments in the way you go about performance testing.

Chapter 10, Conclusion is something I omitted from the original edition. I thought it
would be good to end with a look at future trends for performance testing and under-
standing the end-user experience.

Appendix A, Use-Case Definition Example, shows how to prepare use cases for inclusion
in a performance test.

Appendix B, Proof of Concept and Performance Test Quick Reference, reiterates the practical
steps presented in the book.

Appendix C, Performance and Testing Tool Vendors, lists sources for the automation tech-
nologies required by performance testing and performance analysis. Although I have
attempted to include the significant tool choices available at the time of writing, this
list is not intended as an endorsement for any particular vendor or to be definitive.

Appendix D, Sample Monitoring Templates: Infrastructure Key Performance Indicator Metrics,
provides some examples of the sort of key performance indicators you would use to
monitor server and network performance as part of a typical performance test configu-
ration.

Appendix E, Sample Project Plan, provides an example of a typical performance test plan
based on Microsoft Project.

Conventions Used in This Book
The following typographical conventions will be used:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings and also within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

xiv PREFACE

www.it-ebooks.info

http://www.it-ebooks.info/

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-

mined by context.

TIP
Signifies a tip or suggestion.

——NOTE
Indicates a general note.

Glossary

The following terms are used in this book:

APM
Application performance monitoring. Tooling that provides deep-dive analysis of
application performance.

APMaa$S
APM as a Service (in the cloud).

Application landscape
A generic term describing the server and network infrastructure required to

deploy a software application.

AWS
Amazon Web Services.

CDN
Content delivery network. Typically a service that provides remote hosting of
static and increasingly nonstatic website content to improve the end-user experi-
ence by storing such content local to a user’s geolocation.

CI
Continuous integration. The practice, in software engineering, of merging all
developer working copies with a shared mainline several times a day. It was first
named and proposed as part of extreme programming (XP). Its main aim is to pre-
vent integration problems, referred to as integration hell in early descriptions of XP.
(Definition courtesy of Wikipedia.)

PREFACE

www.it-ebooks.info

Xv

http://en.wikipedia.org/wiki/Continuous_integration
http://www.it-ebooks.info/

DevOps
A software development method that stresses communication, collaboration, and
integration between software developers and information technology professio-
nals. DevOps is a response to the interdependence of software development and IT
operations. It aims to help an organization rapidly produce software products and
services. (Definition courtesy of Wikipedia.)

EUM
End-user monitoring. A generic term for discrete monitoring of end-user response
time and behavior.

laa$S
Infrastructure as a Service (in the cloud).

ICA
Independent Computing Architecture. A Citrix proprietary protocol.

ITIL
Information Technology Infrastructure Library.

ITPM
Information technology portfolio management.

ITSM
Information technology service management.

JMS
Java Message Service (formerly Java Message Queue).

Load injector
A PC or server used as part of an automated performance testing solution to simu-
late real end-user activity.

IBM/WebSphere MQ
IBM’s message-oriented middleware.

Pacing
A delay added to control the execution rate, and by extension the throughput, of
scripted use-case deployments within a performance test.

Paa$S
Platform as a Service (in the cloud).

POC
Proof of concept. Describes a pilot project often included as part of the sales cycle.
It enables customers to compare the proposed software solution to their current
application and thereby employ a familiar frame of reference. Often used inter-
changeably with proof of value.

xvi PREFACE

www.it-ebooks.info

http://en.wikipedia.org/wiki/DevOps
http://www.it-ebooks.info/

RUM
Real-user monitoring. The passive form of end-user experience monitoring.

Saa$S
Software as a Service (in the cloud).

SOA
Service-oriented architecture.

SUT
System under test. The configured performance test environment.

Think time
Similar to pacing, think time refers to pauses within scripted use cases represent-
ing human interaction with a software application. Used more to provide a realis-
tic queueing model for requests than for throughput control.

Timing
A component of a transaction. Typically a discrete user action you are interested in
timing, such as log in or add to bag.

Transaction
A typical piece of application functionality that has clearly defined start and end
points, for example, the action of logging into an application or carrying out a
search. Often used interchangeably with the term use case.

UEM
User experience monitoring. A generic term for monitoring and trending end-user
experience, usually of live application deployments.

Use case, user journey
A set of end-user transactions that represent typical application activity. A typical
transaction might be log in, navigate to a search dialog, enter a search string, click the
search button, and log out. Transactions form the basis of automated performance
testing.

WOSI
Windows Operating System Instance. Basically the (hopefully licensed) copy of
Windows running on your workstation or server.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for per-
mission unless you're reproducing a significant portion of the code. For example, writ-
ing a program that uses several chunks of code from this book does not require per-

PREFACE

www.it-ebooks.info

xvii

http://www.it-ebooks.info/

mission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: The Art of Application Performance Testing, Sec-
ond Edition, by Ian Molyneaux. Copyright 2015 Ian Molyneaux, 978-1-491-90054-3.

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library

‘ D)o that delivers expert content in both book and video
form from the world’s leading authors in technology
and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xviii ~ PREFACE

www.it-ebooks.info

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://www.it-ebooks.info/

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/art-app-perf-testing.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Many thanks to everyone at O’Reilly who helped to make this book possible and put
up with the fumbling efforts of a novice author. These include my editor, Andy Oram;
assistant editor, Isabel Kunkle; managing editor, Marlowe Shaeffer; Robert Romano for
the figures and artwork; Jacquelynn Mcllvaine and Karen Tripp for setting up my blog
and providing me with the materials to start writing; and Karen Tripp and Keith Fahlg-
ren for setting up the DocBook repository and answering all my questions.

For the updated edition, I would also like to thank my assistant editor, Allyson Mac-
Donald, and development editor, Brian Anderson, for their invaluable feedback and
guidance.

In addition, I would like to thank my former employer and now partner, Compuware
Corporation, for their kind permission to use screenshots from a number of their per-
formance solutions to help illustrate points in this book. I would also like to thank the
following specialists for their comments and assistance on a previous draft: Peter Cole,
formerly president and CTO of Greenhat, for his help with understanding and expand-
ing on the SOA performance testing model; Adam Brown of Quotium; Scott Barber,
principal and founder of Association of Software Testers; David Collier-Brown, for-
merly of Sun Microsystems; Matt St. Onge; Paul Gerrard, principal of Gerrard Consult-
ing; Francois MacDonald, formerly of Compuware’s Professional Services division; and
Alexandre Mechain, formerly of Compuware France and now with AppDynamics.

I would also like to thank my esteemed colleague Larry Haig for his invaluable insight
and assistance with the new chapters on end-user monitoring and its alignment with
performance testing.

Finally, I would like to thank the many software testers and consultants whom I have
worked with over the last decade and a half. Without your help and feedback, this
book would not have been written!

PREFACE

www.it-ebooks.info

Xix

http://bit.ly/art-app-perf-testing
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER ONE

Why Performance Test?

Faster than a speeding bullet . . .
—Superman, Action Comics

WELCOME! BEFORE DIVING INTO THE BASICS OF PERFORMANCE TESTING, | WANT
to use this first chapter to talk a little about what we mean by good and bad perfor-
mance and why performance testing is such a vital part of the software development
life cycle (SDLC). Non-performant (i.e., badly performing) applications generally don’t
deliver their intended benefit to an organization; they create a net cost of time and
money, and a loss of kudos from the application users, and therefore can’t be consid-
ered reliable assets. If a software application is not delivering its intended service in a
performant and highly available manner, regardless of causation, this reflects badly on
the architects, designers, coders, and testers (hopefully there were some!) involved in
its gestation.

Performance testing continues to be the poor, neglected cousin of functional and
operational acceptance testing (OAT), which are well understood and have a high
maturity level in most business organizations. It is strange that companies continue to
overlook the importance of performance testing, frequently deploying applications
with little or no understanding of their performance, only to be beset with perfor-
mance and scalability problems soon after the release. This mindset has changed little
over the past 15 years, despite the best efforts of consultants like myself and the
widely publicized failure of many high-profile software applications. (Need we men-
tion HealthCare.gov?)

What Is Performance? The End-User Perspective

So when is an application considered to be performing well? My many years of work-
ing with customers and performance teams suggest that the answer is ultimately one
of perception. A well-performing application is one that lets the end user carry out a
given task without undue perceived delay or irritation. Performance really is in the eye
of the beholder. With a performant application, users are never greeted with a blank

www.it-ebooks.info

http://www.it-ebooks.info/

screen during login and can achieve what they set out to accomplish without their
attention wandering. Casual visitors browsing a website can find what they are look-
ing for and purchase it without experiencing too much frustration, and the call-center
manager is not being harassed by the operators with complaints of poor performance.

It sounds simple enough, and you may have your own thoughts on what constitutes
good performance. But no matter how you define it, many applications struggle to
deliver even an acceptable level of performance when it most counts (i.e., under con-
ditions of peak loading). Of course, when I talk about application performance, I'm
actually referring to the sum of the parts, since an application is made up of many
components. At a high level we can define these as the client, the application software,
and the hosting infrastructure. The latter includes the servers required to run the soft-
ware as well as the network infrastructure that allows all the application components
to communicate. Increasingly this includes the performance of third-party service pro-
viders as an integral part of modern, highly distributed application architectures. The
bottom line is that if any of these areas has problems, application performance is likely
to suffer. You might think that all we need do to ensure good application performance
is observe the behavior of each of these areas under load and stress and correct any
problems that occur. The reality is very different because this approach is often “too
little, too late,” so you end up dealing with the symptoms of performance problems
rather than the cause.

Performance Measurement

So how do we go about measuring performance? We've discussed end-user percep-
tion, but in order to accurately measure performance, we must take into account cer-
tain key performance indicators (KPIs). These KPIs are part of the nonfunctional require-
ments discussed further in Chapter 3, but for now we can divide them into two types:
service-oriented and efficiency-oriented.

Service-oriented indicators are availability and response time; they measure how well (or
not) an application is providing a service to the end users. Efficiency-oriented indicators
are throughput and capacity; they measure how well (or not) an application makes
use of the hosting infrastructure. We can further define these terms briefly as follows:

Availability
The amount of time an application is available to the end user. Lack of availability
is significant because many applications will have a substantial business cost for
even a small outage. In performance terms, this would mean the complete inabil-
ity of an end user to make effective use of the application either because the appli-
cation is simply not responding or response time has degraded to an unacceptable
degree.

2 CHAPTER ONE: WHY PERFORMANCE TEST?

www.it-ebooks.info

http://www.it-ebooks.info/

Response time
The amount of time it takes for the application to respond to a user request. In
performance testing terms you normally measure system response time, which is
the time between the end user requesting a response from the application and a
complete reply arriving at the user’s workstation. In the current frame of refer-
ence a response can be synchronous (blocking) or increasingly asynchronous,
where it does not necessarily require end users to wait for a reply before they can
resume interaction with the application. More on this in later chapters.

Throughput
The rate at which application-oriented events occur. A good example would be
the number of hits on a web page within a given period of time.

Utilization
The percentage of the theoretical capacity of a resource that is being used. Exam-
ples include how much network bandwidth is being consumed by application traf-
fic or the amount of memory used on a web server farm when 1,000 visitors are
active.

Taken together, these KPIs can provide us with an accurate idea of an application’s
performance and its impact on the hosting infrastructure.

Performance Standards

By the way, if you were hoping I could point you to a generic industry standard for
good and bad performance, you're (still) out of luck because no such guide exists.
There continue to be various informal attempts to define a standard, particularly for
browser-based applications. For instance, you may have heard the term minimum page
refresh time. I can remember a figure of 20 seconds being bandied about, which rapidly
became 8 seconds and in current terms is now 2 seconds or better. Of course, the
application user (and the business) wants “instant response” (in the words of the
Eagles, “Everything all the time”), but this sort of consistent performance is likely to
remain elusive.

The following list summarizes research conducted in the late 1980s (Martin et al.,
1988) that attempted to map end-user productivity to response time. The original
research was based largely on green-screen text applications, but its conclusions are
still very relevant.

Greater than 15 seconds
This rules out conversational interaction. For certain types of applications, certain
types of end users may be content to sit at a terminal for more than 15 seconds
waiting for the answer to a single simple inquiry. However, to the busy call-center
operator or futures trader, delays of more than 15 seconds may seem intolerable.

WHAT IS PERFORMANCE? THE END-USER PERSPECTIVE

www.it-ebooks.info

3

http://www.it-ebooks.info/

If such delays could occur, the system should be designed so that the end user can
turn to other activities and request the response at some later time.

Greater than 4 seconds
These delays are generally too long for a conversation, requiring the end user to
retain information in short-term memory (the end user’s memory, not the com-
puter’s!). Such delays would inhibit problem-solving activity and frustrate data
entry. However, after the completion of a transaction, delays of 4 to 15 seconds
can be tolerated.

2 to 4 seconds
A delay longer than 2 seconds can be inhibiting to operations that demand a high
level of concentration. A wait of 2 to 4 seconds can seem surprisingly long when
the end user is absorbed and emotionally committed to completing the task at
hand. Again, a delay in this range may be acceptable after a minor closure. It may
be acceptable to make purchasers wait 2 to 4 seconds after typing in their address
and credit card number, but not at an earlier stage when they may be comparing
various product features.

Less than 2 seconds
When the application user has to remember information throughout several
responses, the response time must be short. The more detailed the information to
be remembered, the greater the need for responses of less than 2 seconds. Thus,
for complex activities, such as browsing products that vary along multiple dimen-
sions, 2 seconds represents an important response-time limit.

Subsecond response time
Certain types of thought-intensive work (such as writing a book), especially with
applications rich in graphics, require very short response times to maintain end
users’ interest and attention for long periods of time. An artist dragging an image
to another location must be able to act instantly on his next creative thought.

Decisecond response time
A response to pressing a key (e.g., seeing the character displayed on the screen) or
to clicking a screen object with a mouse must be almost instantaneous: less than
0.1 second after the action. Many computer games require extremely fast interac-
tion.

As you can see, the critical response-time barrier seems to be 2 seconds, which, inter-
estingly, is where expected application web page response time now sits. Response
times greater than 2 seconds have a definite impact on productivity for the average
end user, so our nominal page refresh time of 8 seconds for web applications is cer-
tainly less than ideal.

CHAPTER ONE: WHY PERFORMANCE TEST?

www.it-ebooks.info

http://www.it-ebooks.info/

The World Wide Web and Ecommerce

The explosive growth of the World Wide Web has contributed in no small way to the
need for applications to perform at warp speed. Many (or is that all?) ecommerce busi-
nesses now rely on cyberspace for the lion’s share of their revenue in what is the most
competitive environment imaginable. If an end user perceives bad performance from
your website, her next click will likely be on your-competition.com.

Ecommerce applications are also highly vulnerable to sudden spikes in demand, as
more than a few high-profile retail companies have discovered at peak shopping times
of the year.

Bad Performance: Why I's So Common

OK, I've tried to provide a basic definition of good and bad performance. It seems
obvious, so why do many applications fail to achieve this noble aspiration? Let’s look
at some common reasons.

The IT Business Value Curve

Performance problems have a nasty habit of turning up late in the application life
cycle, and the later you discover them, the greater the cost and effort to resolve.
Figure 1-1 illustrates this point.

Development Production
A 4
: Planned
Positive +
Benefit/ | 4 h'é'x--— : Time
cost ratio . ‘,_.v“l' P i
: L Actual
Negative-| T
v
v

Figure 1-1. The IT business value curve

BAD PERFORMANCE: WHY IT'S SO COMMON

www.it-ebooks.info

http://www.it-ebooks.info/

The solid line (planned) indicates the expected outcome when the carefully factored
process of developing an application comes to fruition at the planned moment (black
diamond). The application is deployed successfully on schedule and immediately starts
to provide benefit to the business with little or no performance problems after deploy-
ment.

The broken line (actual) demonstrates the all-too-frequent reality when development
and deployment targets slip (striped diamond) and significant time and cost is involved
in trying to fix performance issues in production. This is bad news for the business
because the application fails to deliver the expected benefit.

This sort of failure is becoming increasingly visible at the board level as companies seek
to implement information technology service management (ITSM) and information
technology portfolio management (ITPM) strategies on the way to the holy grail of
Information Technology Infrastructure Library (ITIL) compliance. The current frame of
reference considers IT as just another (important) business unit that must operate and
deliver within budgetary constraints. No longer is IT a law unto itself that can con-
sume as much money and resources as it likes without challenge.

Performance Testing Maturity: What the Analysts Think

But don’t just take my word for it. Figure 1-2 is based on data collected by Forrester
Research in 2006 looking at the number of performance defects that have to be fixed
in production for a typical application deployment. For the revised edition I was con-
sidering replacing this example with something more recent, but on reflection (and
rather disappointingly) not much has really changed since 2009!

Resolving Performance Defects (2006)

Approach % Resolved in Production
Firefighting ... 100%
Performance Validation 30%
Performance Driven 5%

Source: Forrester Research

Figure 1-2. Forrester Research on resolution of performance defects

As you can see, three levels of performance testing maturity were identified. The first
one, firefighting, occurs when little or no performance testing was carried out prior to
application deployment, so effectively all performance defects must be resolved in the

CHAPTER ONE: WHY PERFORMANCE TEST?

www.it-ebooks.info

http://www.it-ebooks.info/

live environment. This is the least desirable approach but, surprisingly, is still relatively
common. Companies in this mode are exposing themselves to serious risk.

The second level, performance validation (or verification) covers companies that set aside
time for performance testing but not until late in the application life cycle; hence, a
significant number of performance defects are still found in production (30%). This is
where most organizations currently operate.

The final level, performance driven, is where performance considerations have been
taken into account at every stage of the application life cycle. As a result, only a small
number of performance defects are discovered after deployment (5%). This is what
companies should aim to adopt as their performance testing model.

Lack of Performance Considerations in Application Design

Returning to our discussion of common reasons for failure: if you don’t take perfor-
mance considerations into account during application design, you are asking for trou-
ble. A “performance by design” mindset lends itself to good performance, or at least
the agility to change or reconfigure an application to cope with unexpected perfor-
mance challenges. Design-related performance problems that remain undetected until
late in the life cycle can be difficult to overcome completely, and doing so is sometimes
impossible without significant (and costly) application reworking.

Most applications are built from software components that can be tested individually
and may perform well in isolation, but it is equally important to consider the applica-
tion as a whole. These components must interact in an efficient and scalable manner
in order to achieve good performance.

Performance Testing Is Left to the Last Minute

As mentioned, many companies operate in performance validation/verification mode.
Here performance testing is done just before deployment, with little consideration
given to the amount of time required or to the ramifications of failure. Although better
than firefighting, this mode still carries a significant risk that you won't identify serious
performance defects—only for them to appear in production—or you won't allow
enough time to correct problems identified before deployment.

One typical result of this mode is a delay in the application rollout while the problems
are resolved. An application that is deployed with significant performance issues will
require costly, time-consuming remedial work after deployment. Even worse, the
application might have to be withdrawn from circulation entirely until it’s battered
into shape.

BAD PERFORMANCE: WHY IT'S SO COMMON

www.it-ebooks.info

7

http://www.it-ebooks.info/

All of these outcomes have an extremely negative effect on the business and on the
confidence of those expected to use the application. You need to test for performance
issues as early as you can, rather than leave it to the last minute.

Scalability

Often, not enough thought is given to capacity requirements or an application’s ability
to scale. The design of the application and the anticipated deployment model may
overlook the size and geography of the end-user community. Many applications are
developed and subsequently tested without more than a passing thought for the fol-
lowing considerations:

e How many end users will actually use the application?

e Where are these end users located?

e How many of these end users will use it concurrently?

e How will the end users connect to the application?

e How many additional end users will require access to the application over time?

e What will the final application landscape look like in terms of the number and
location of the servers?

e What effect will the application have on network capacity?

Neglect of these issues manifests itself in unrealistic expectations for the number of
concurrent end users that the application is expected to support. Furthermore, there is
often little thought given to end users who may be at the end of low-bandwidth, high-
latency WAN links. I will cover connectivity issues in more detail in Chapter 2.

Underestimating Your Popularity

This might sound a little strange, but many companies underestimate the popularity of
their new web applications. This is partly because they deploy them without taking
into account the novelty factor. When something’s shiny and new, people generally
find it interesting and so they turn up in droves, particularly where an application
launch is accompanied by press and media promotion. Therefore, the 10,000 hits you
had carefully estimated for the first day of deployment suddenly become 1,000,000
hits, and your application infrastructure goes into meltdown!

Putting it another way, you need to plan for the peaks rather than the troughs.

8 CHAPTER ONE: WHY PERFORMANCE TEST?

www.it-ebooks.info

http://www.it-ebooks.info/

Spectacular Failure: A Real-World Example

Some years ago, the UK government decided to make available the results of the 1901
census on the Internet. This involved a great deal of effort converting old documents
into a modern digital format and creating an application to provide public access.

| was personally looking forward to the launch, since | was tracing my family history at
the time and this promised to be a great source of information. The site was launched
and | duly logged in. Although | found things a little slow, | was able to carry out my
initial searches without too much issue. However, when | returned to the site 24 hours
later, | was greeted with an apologetic message saying that the site was unavailable. It
remained unavailable for many weeks until finally being relaunched.

This is a classic example of underestimating your popularity. The amount of interest in
the site was far greater than anticipated, so it couldn’t deal with the volume of hits. This
doesn’t mean that no performance testing was carried out prior to launch. But it does
suggest that the performance and importantly capacity expectations for the site were
too conservative.

You have to allow for those peaks in demand.

Performance Testing Is Still an Informal Discipline

As mentioned previously, performance testing is still very much an informal exercise.
The reason for this is hard to fathom, because functional testing has been well estab-
lished as a discipline for many years. There is a great deal of literature and expert opin-
ion available in that field, and many established companies specialize in test consult-
ing.

Back in 2009 the converse was true, at least in terms of reference material. One of the
reasons that I was prompted to put (virtual) pen to paper was the abject lack of any-
thing in the way of written material that focused on (static) software performance test-
ing. There were and still are myriad publications that explain how to tune and opti-
mize an application, but little about how to carry out effective performance testing in
the first place.

In 2014 1 am pleased to say that the situation has somewhat improved and any Google
search for performance testing will now bring up a range of companies offering perfor-
mance testing services and tooling, together with a certain amount of training,
although this remains very tooling-centric.

Not Using Automated Testing Tools

You can’t carry out effective performance testing without using automated test tools.
Getting 100 (disgruntled) statff members in on a weekend (even if you buy them all
lunch) and strategically deploying people with stopwatches just won’t work. Why?

BAD PERFORMANCE: WHY IT'S SO COMMON

www.it-ebooks.info

http://www.it-ebooks.info/

You’ll never be able to repeat the same test twice. Furthermore, making employees
work for 24 hours if you find problems is probably a breach of human rights.

Also, how do you possibly correlate response times from 100 separate individuals, not
to mention what’s happening on the network and the servers? It simply doesn’t work
unless your application has fewer than 5 users, in which case you probably don’t need
this book.

A number of vendors make great automated performance testing tools, and the choice
continues to grow and expand. Costs will vary greatly depending on the scale of the
testing you need to execute, but it’s a competitive market and biggest is not always
best. So you need to do your homework and prepare a report for those who control
your IT budget. Appendix C contains a list of the leading vendors. Chapter 2 talks
more on how to choose the right performance tool for your requirements.

Application Technology Impact

Certain technologies that were commonly used in creating applications didn’t work
well with the first and even second generation of automated test tools. This has
become a considerably weaker excuse for not doing any performance testing, since the
vast majority of applications are now web-enabled to some degree. Web technology is
generally well supported by the current crop of automated test solutions.

The tech-stack choices for web software development have crystallized by now into a
(relatively) few core technologies. Accordingly, most automated tool vendors have fol-
lowed suit with the support that their products provide. I will look at current (and
some legacy) application technologies and their impact on performance testing in
Chapter 9.

Summary

This chapter has served as a brief discussion about application performance, both good
and bad. I've touched on some of the common reasons why failure to do effective per-
formance testing leads to applications that do not perform well. You could summarize
the majority of these reasons with a single statement:

Designing and testing for performance is (still) not given the importance it
deserves as part of the software development life cycle.

In the next chapter we move on to a discussion of why automation is so important to
effective performance testing and how to choose the most appropriate automation sol-
ution for your requirements.

10 CHAPTER ONE: WHY PERFORMANCE TEST?

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER TWO

Choosing an Appropriate
Performance Testing Tool

One only needs two tools in life: WD-40 to make things
go, and duct tape to make them stop.

—G. Weilacher

AUTOMATED TOOLS FOR PERFORMANCE TESTING HAVE BEEN AROUND IN SOME
form for the best part of 20 years. During that period, application technology has gone
through many changes, moving from a norm of fat client to web and, increasingly,
mobile enablement. Accordingly, the sort of capabilities that automated tools must
now provide is very much biased toward web and mobile development, and there is
much less requirement to support legacy technologies that rely on a two-tier applica-
tion model. This change in focus is good news for the performance tester, because
there are now many more automated tool vendors in the marketplace to choose from
with offerings to suit even modest budgets. There are also a number of popular open
source tools available. (See Appendix C.)

All of this is well and good, but here’s a note of caution: when your performance test-
ing does occasionally need to move outside of the Web, the choice of tool vendors
diminishes rapidly, and technology challenges that have plagued automated tools for
many years are still very much in evidence. You are also much more unlikely to find
an open source solution, so there will be a cost implication. These problems center not
so much on execution and analysis, but rather on your being able to successfully
record application activity and then modify the resulting scripts for use in a perfor-
mance test. Terms such as encryption and compression are not good news for perfor-
mance test tools; unless these technologies can be disabled, it is unlikely that you will
be able to record scripts—meaning you will have to resort to manual coding or creat-
ing some form of test harness. Even web-based applications can present problems. For
example, if you need to deal with streaming media or (from a security perspective) cli-
ent certificates, then not all tooling vendors may be able to offer you a solution. You

www.it-ebooks.info

11

http://www.it-ebooks.info/

should carefully match your needs to performance tool capabilities before making your
final choice, and I strongly recommend you insist on a proof of concept (POC) before
making any commitment to buy. Despite these challenges, you cannot carry out effec-
tive performance testing without tooling. In Chapter 1 I mentioned this as a reason
why many applications are not properly performance tested prior to deployment.
There is simply no practical way to provide reliable, repeatable performance tests
without using some form of automation.

Accordingly, the aim of any automated performance testing tool is to simplify the test-
ing process. It normally achieves this by enabling you to record end-user activity and
render this data as scripts. The scripts are then used to create performance testing ses-
sions or scenarios that represent a mix of typical end-user activity. These are the actual
performance tests and, once created, they can easily be rerun on demand, which is a
big advantage over any form of manual testing. Automation tooling also provides sig-
nificant benefits to the analysis process, with the results of each test run automatically
stored and readily available for comparison with any previous set of test results.

Performance Testing Tool Architecture

Automated performance test tools typically have the following components:

Scripting module
Enables the recording of end-user activity and may support many different middle-
ware protocols. Allows modification of the recorded scripts to associate internal/
external data and configure granularity of response-time measurement. The term
middleware refers to the primary protocol used by the application to communicate
between the client and first server tier (for web applications this is principally
HTTP or HTTPS).

Test management module
Allows the creation and execution of performance test sessions or scenarios that
represent different mixes of end-user activity. These sessions make use of nomina-
ted scripts and one or more load injectors depending on the volume of load
required.

Load injector(s)
Generates the load—normally from multiple workstations or servers, depending
on the amount of load required. Each load injector generates multiple “virtual”
users, simulating a large amount of end-user activity from a relatively small num-
ber of physical or virtual machines. The application client memory and CPU foot-
print can have a significant impact on the number of virtual users that can run
within a given injector platform, affecting the number of injectors required.

12 CHAPTER TWO: CHOOSING AN APPROPRIATE PERFORMANCE TESTING TOOL

www.it-ebooks.info

http://www.it-ebooks.info/

Analysis module
Provides the ability to analyze the data collected from each test execution. This
data is typically a mixture of autogenerated reports and configurable graphical or
tabular presentation. There may also be an expert capability that provides auto-
mated analysis of results and highlights areas of concern.

Optional modules
Complements the aforementioned components to monitor server and network
performance while a load test is running or allow integration with another ven-
dor’s software. Figure 2-1 demonstrates a typical automated performance test tool
deployment. The application users have been replaced by a group of servers or
workstations that will be used to inject application load by creating virtual users.

Performance test
management Load injection and KPI monitoring

Test execution @ @ @ @
and analysis

Target application landscape

Database
server

Web servers Application servers

iy
¢

ime
T
&)
&)

Transaction capture
and preparation

Figure 2-1. Typical performance tool deployment

Choosing a Performance Testing Tool

Many performance testing projects run into problems during the scripting stage due to
insufficient technical evaluation of the tool being used. Most testing service providers
keep a toolbox of solutions from a range of vendors, which allows them to choose the

CHOOSING A PERFORMANCE TESTING TOOL 13

www.it-ebooks.info

http://www.it-ebooks.info/

most appropriate performance testing tool for a particular performance testing require-
ment.

With the current predominance of web technology, every serious tool vendor provides
HTTP/S support. However, there are a lot of subtleties to web design, particularly at
the client end, so if you make heavy use of JavaScript, JSON, or Microsoft Silverlight,
for example, then be very certain you understand the capabilities and limitations of
support in the tools that you shortlist. Here are some considerations to help you
choose your tools wisely:

Protocol support
The most important single requirement when you are choosing a performance
testing tool is to ensure that it supports your application tech stack, specifically
how the application client talks to the next application tier. For example, in most
cases a typical browser client will be using HTTP or HTTPS as its primary commu-
nication protocol.

Licensing model
Having satisfied yourself on the tech-stack support, look next at the licensing
model. Most performance testing tool vendors offer a licensing model based on
the following components:

e The largest load test you can execute in terms of virtual users

This value may be organized in breaks or bands, perhaps offering an entry
level of up to 100 virtual users, with additional cost for higher numbers. You
may also find tool vendors who offer an unlimited number of virtual users for
a (higher) fixed cost. Some vendors can offer a term-license model whereby
you can temporarily extend your license for one-off or occasional require-
ments to test much greater numbers of virtual users.

¢ Additional protocols that the tool can support

You may purchase the tool with support for the HTTP protocol, but a later
requirement to support, for example, Citrix, would incur an additional cost.
The additional protocol support may or may not be locked to the virtual users.

¢ Additional plug-ins for integration and specific tech-stack monitoring

As discussed, many tool vendors offer a range of optional modules you can
add to your base license. These may include monitors for specific tech stacks
like Oracle, MS SQL Server, and IIS, together with plug-ins to allow integra-
tion with application performance monitoring (APM) or continuous integra-
tion (CI) solutions. These may be extra cost (most likely) or free of charge; the
important thing to bear in mind is that integration will likely require network
access via specific ports or installation of agent software on target servers, so

14 CHAPTER TWO: CHOOSING AN APPROPRIATE PERFORMANCE TESTING TOOL

www.it-ebooks.info

http://www.it-ebooks.info/

you need to ensure that this can be accommodated by the system under test
(SUT).

Make sure that you are clear in your own mind about the licensing model
before making the decision to shortlist a tool.

Scripting effort
Many performance tool vendors claim that there is little or no need to make man-
ual changes to the scripts that their tools generate. This may be true for simple
browser use cases that navigate around a couple of pages, but the reality is that
you will have to delve into code at some point during scripting (if only to insert
JavaScript or code modules to deal with some complexity of application client
design).

You may ultimately find that you'll need to make many manual changes to your
recorded use case before it will replay successfully. If each set of changes requires
several hours per script to implement with one tool but seems to be automatically
handled by another, then you need to consider the potential cost savings and the
impact of the extra work on your performance testing project and the testing team
members.

Consider also the skill level of your testing team. If they come from a largely
development background, then getting their hands dirty coding should not
present too much of a problem. If, however, they are relatively unfamiliar with
coding, you may be better off considering a tool that provides a lot of wizard-
driven functionality to assist with script creation and preparation even if the
upfront cost is greater.

Solution versus load testing tool
Some vendors offer only a load testing tool, whereas others offer a performance
testing solution. Solution offerings will inevitably cost more but generally allow
for a much greater degree of granularity in the analysis they provide. In addition
to performance testing, they may include any or all of the following: automated
requirements management, automated data creation and management, pre-
performance test application tuning and optimization, response-time prediction
and capacity modeling, APM providing analysis to class and method level, integra-
tion with end-user experience (EUE) monitoring after deployment, and dash-
boarding to provide visibility of test results and test assets.

In-house versus outsourced
If you have limited resources internally or are working within strict time con-
straints, consider outsourcing the performance testing project to an external ven-
dor. Some tool vendors offer a complete range of services, from tool purchase with
implementation assistance to a complete performance testing service, and there

CHOOSING A PERFORMANCE TESTING TOOL

www.it-ebooks.info

http://www.it-ebooks.info/

are many companies that specialize in testing and can offer the same kind of ser-
vice using whatever performance toolset is considered appropriate. This has the
advantage of moving the commercials to time and materials and removes the bur-
den of selecting the right testing tool for your application. The main disadvantage
of this approach is that if you need to carry out frequent performance tests, the
cost per test may rapidly exceed the cost of buying an automated performance
testing solution outright.

The alternatives
If your application is web-based and customer-facing, you might want to consider
one of a growing number of Software as a Service (SaaS) vendors who provide a
completely external performance testing service. Essentially, they manage the
whole process for you, scripting key use cases and delivering the load via multiple
remote points of presence. This approach has the advantages of removing the bur-
den of providing enough injection hardware and of being a realistic way of simu-
lating user load, since these vendors typically connect directly to the Internet
backbone via large-capacity pipes. This is an attractive alternative for one-off or
occasional performance tests, particularly if high volumes of virtual users are
required. These vendors often provide an EUE monitoring service that may also be
of interest to you.

The downside is that you will have to pay for each test execution, and any server
or network KPI monitoring will be your responsibility to implement and syn-
chronize with the periods of performance test execution. This could become an
expensive exercise if you find problems with your application that require many
test reruns to isolate and correct.

Still, this alternative is well worth investigating. Appendix C includes a list of ven-
dors who provide this service.

Performance Testing Toolset: Proof of Concept

You need to try the performance testing tools you shortlist against your application, so
insist on a proof of concept so you can be certain that the toolset can deliver to your
requirements. Identify a minimum of two use cases to record: one that can be consid-
ered read-only (e.g., a simple search activity that returns a result set of one or more
entries), and one that inserts or makes updates to the application database. This will
allow you to check that the recorded use case actually replays correctly. If your appli-
cation is read-only, make sure to check the replay logs for each use case to ensure that
there are no errors indicating replay failure.

The POC accomplishes the following:

CHAPTER TWO: CHOOSING AN APPROPRIATE PERFORMANCE TESTING TOOL

www.it-ebooks.info

http://www.it-ebooks.info/

Provides an opportunity for a technical evaluation of the performance testing tool against
the target application
Obviously, technical compliance is a key goal; otherwise, you would struggle (or
fail!) during the use-case scripting phase. You must try out the tool against the
real application so that you can expose and deal with any problems before com-
mitting (or not) to the project.

Identifies scripting data requirements
The typical POC is built around a small number of the use cases that will form the
basis of the performance testing project. It is effectively a dress rehearsal for the
scripting phase that allows you to identify the input and the runtime data require-
ments for successful test execution. Because the POC tests only two or three use
cases, you’'ll have additional data requirements for the remaining ones; these need
to be identified later in the scripting phase of the project. However, the POC will
frequently identify such common test input data requirements as login credentials
and stateful information that keeps a user session valid.

Allows assessment of scripting effort
The POC allows you to estimate the amount of time it will take to script a typical
use case and take into account the time to make alterations to scripts based on
results of the POC.

Demonstrates capabilities of the performance testing solution versus the target application
It is always much more desirable to test a toolset against your application than
against some sort of demo sandbox.

Proof of Concept Checklist

The following checklist provides a guide to carrying out an effective POC. Every POC
will have its unique aspects in terms of schedule, but you should anticipate no more
than a couple of days for completion—assuming that the environment and application
are available from day one.

Prerequisites
Allocate these early in the project to make sure they’re in place by the time you
need to set up the POC environment:

e A set of success or exit criteria that you and the customer (or internal depart-
ment) have agreed on as determining the success or failure of the POC. Have
this signed off and in writing before starting the POC.

e Access to a standard build workstation or client platform that meets the mini-
mum hardware and software specification for your performance testing tool
or solution. This machine must have the application client and any supporting
software installed.

PERFORMANCE TESTING TOOLSET: PROOF OF CONCEPT

www.it-ebooks.info

17

http://www.it-ebooks.info/

e Permission to install any required monitoring software (such as server and
network monitors) into the application landscape.

e Ideally, sole access to the application for the duration of the POC.

e Access to a person who is familiar with the application (i.e., a power user)
and can answer your usability questions as they arise.

e Access to an expert who is familiar with the application (i.e., a developer) for
times when you come up against technical difficulties or require an explana-
tion of how the application architecture works at a middleware level.

e A user account that will allow correct installation of the performance testing
software onto the standard build workstation and access to the application
client.

e At least two sets of login credentials (if relevant) for the target application.
The reason for having at least two is that you need to ensure that there are no
problems with concurrent execution of the scripted use cases.

e Two sample use cases to use as a basis for the POC. One transaction should be
a simple read-only operation, and the other should be a complex use case that
updates the target data repository. These let you check that your script replay
works correctly.

Process
This list helps you make sure the POC provides a firm basis for the later test:

e Record two instances of each sample use case and compare the differences
between them using whatever method is most expedient. Windiff is one pos-
sibility, although there are better alternatives, or your performance testing
tool may already provide this capability. Identifying what has changed
between recordings of the same activity should highlight any runtime or ses-
sion data requirements that need to be addressed.

e After identifying input and runtime data requirements as well as any neces-
sary modifications to scripts, ensure that each scripted use case will replay
correctly in single-user and multiuser mode. Make sure that any database
updates occur as expected and that there are no errors in the relevant replay
logs. In the POC (and the subsequent project), make certain that any modifi-
cations you have made to the scripts are free from memory leaks and other
undesirable behavior.

18 CHAPTER TWO: CHOOSING AN APPROPRIATE PERFORMANCE TESTING TOOL

www.it-ebooks.info

http://www.it-ebooks.info/

— NOTE

Windiff.exe is a Windows utility program that allows you to identify the differences
between two files; it's free and has been part of Windows for some time. If you
need greater functionality, try these tools:

» ExamDiff Pro from prestoSoft
* WinMerge

Deliverables
These are the results of the POC and the basis for approaching any subsequent
project with confidence:

e The output of a POC should be a go/no-go assessment of the technical suita-
bility of the performance testing tool for scripting and replaying application
use cases.

¢ You should have identified the input and session data requirements for the
sample use cases and gained insight into the likely data requirements for the
performance testing project.

¢ You should identify any script modifications required to ensure accurate
replay and assess the typical time required to script an application use case.

e If this is part of a sales cycle, you should have impressed the customer, met all
the agreed-upon success criteria, and be well on the way to closing the sale!

Summary

This chapter has illustrated the importance of automation to performance testing and
discussed the options available. The key takeaways are as follows:

¢ You simply cannot performance test effectively without automation.

e It is essential to select the most appropriate automation options for your require-
ments.

In the next chapter we move on to a discussion of the building blocks that are required
to carry out effective application performance testing. These are commonly referred to
as (non)functional requirements.

SUMMARY

www.it-ebooks.info

19

http://www.prestosoft.com
http://winmerge.org
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER THREE

The Fundamentals of
Effective Application
Performance Testing

For the want of a nail . . .

—Anonymous

AFTER OUR BRIEF DISCUSSION OF THE DEFINITION OF GOOD AND BAD PERFOR-
mance and the reasons for performance testing in Chapters 1 and 2, this chapter focu-
ses on what is required to performance test effectively—that is, the prerequisites. The
idea of a formal approach to performance testing is still considered novel by many,
although the reason is something of a mystery, because (as with any kind of project)
failing to plan properly will inevitably lead to misunderstandings and problems. Perfor-
mance testing is no exception. If you don’t plan your software development projects
with performance testing in mind, then you expose yourself to a significant risk that
your application will never perform to expectation. As a starting point with any new
software development project, you should ask the following questions:

e How many end users will the application need to support at release? After 6
months, 12 months, 2 years?

e Where will these users be located, and how will they connect to the application?

e How many of these users will be concurrent at release? After 6 months, 12
months, 2 years?

These answers then lead to other questions, such as the following:

e How many and what specification of servers will I need for each application tier?

¢ Where should these servers be hosted?

www.it-ebooks.info

21

http://www.it-ebooks.info/

e What sort of network infrastructure do I need to provide?

You may not be able to answer all of these questions definitively or immediately, but
the point is that you've started the ball rolling by thinking early on about two vital
topics, capacity and scalability, which form an integral part of design and its impact on
application performance and availability. You have probably heard the terms functional
and nonfunctional requirements. Broadly, functional requirements define what a sys-
tem is supposed to do, and nonfunctional requirements (NFRs) define how a system is
supposed to be (at least according to Wikipedia). In software testing terms, perfor-
mance testing is a measure of the performance and capacity quality of a system against
a set of benchmark criteria (i.e., what the system is supposed to be), and as such sits in
the nonfunctional camp. Therefore, in my experience, to performance test effectively,
the most important considerations include the following:

e Project planning
— Making sure your application is stable enough for performance testing
— Allocating enough time to performance test effectively
— Obtaining a code freeze

e Essential NFRs
— Designing an appropriate performance test environment
— Setting realistic and appropriate performance targets
— Identifying and scripting the business-critical use cases
— Providing test data
— Creating a load model
— Ensuring accurate performance test design

— Identifying the KPIs

—NOTE

There are a number of possible mechanisms for gathering requirements, both
functional and nonfunctional. For many companies, this step requires nothing
more sophisticated than Microsoft Word. But serious requirements management,
like serious performance testing, benefits enormously from automation. A number
of vendors provide tools that allow you to manage requirements in an automated
fashion; these scale from simple capture and organization to solutions with full-
blown Unified Modeling Language (UML) compliance. You will find a list of tools
from leading vendors in Appendix C.

22 CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://en.wikipedia.org/wiki/Non-functional_requirement
http://www.it-ebooks.info/

Many of these (nonfunctional) requirements are obvious, but some are not. It’s the
requirements you overlook that will have the greatest impact on the success or failure
of a performance testing project. Let’s examine each of them in detail.

Making Sure Your Application Is Ready

Before considering any sort of performance testing, you need to ensure that your
application is functionally stable. This may seem like stating the obvious, but all too
often performance testing morphs into a frustrating bug-fixing exercise, with the time
allocated to the project dwindling rapidly. Stability is confidence that an application
does what it says on the box. If you want to create a purchase order, this promise
should be successful every time, not 8 times out of 10. If there are significant problems
with application functionality, then there is little point in proceeding with perfor-
mance testing because these problems will likely mask any that are the result of load
and stress. It goes almost without saying that code quality is paramount to good per-
formance. You need to have an effective unit and functional test strategy in place.

I can recall being part of a project to test the performance of an insurance application
for a customer in Dublin, Ireland. The customer was adamant that the application had
passed unit/regression testing with flying colors and was ready to performance test. A
quick check of the database revealed a stored procedure with an execution time
approaching 60 minutes for a single iteration! This is an extreme example, but it serves
to illustrate my point. There are tools available (see Appendix C) that help you to
assess the suitability of your application to proceed with performance testing. The fol-
lowing are some common areas that may hide problems:

High data presentation
Your application may be functionally stable but have a high network data presen-
tation due to coding or design inefficiencies. If your application’s intended users
have limited bandwidth, then such behavior will have a negative impact on per-
formance, particularly over the last mile. Excessive data may be due to large
image files within a web page or large numbers of redundant conversations
between client and server.

Poorly performing SQL
If your application makes use of an SQL database, then there may be SQL calls or
database stored procedures that are badly coded or configured. These need to be
identified and corrected before you proceed with performance testing; otherwise,
their negative effect on performance will only be magnified by increasing load
(see Figure 3-1).

Large numbers of application network round-trips
Another manifestation of poor application design is large numbers of conversa-
tions leading to excessive network chattiness between application tiers. High num-

MAKING SURE YOUR APPLICATION IS READY

www.it-ebooks.info

23

http://www.it-ebooks.info/

bers of conversations make an application vulnerable to the effects of latency,
bandwidth restriction, and network congestion. The result is performance prob-
lems in this sort of network condition.

Undetected application errors

Although the application may be working successfully from a functional perspec-
tive, there may be errors occurring that are not apparent to the users (or develop-
ers). These errors may be creating inefficiencies that affect scalability and perfor-
mance. An example is an HTTP 404 error in response to a nonexistent or missing
web page element. Several of these in a single transaction may not be a problem,
but when multiplied by several thousand transactions per minute, the impact on
performance could be significant.

Database and Connection Pool o:m.mﬂm-ﬂ' s
4 2 app@amazona-rp6gl da:easyTravelBusiness (Tomcat) T

2 select joumney0_.id as id]__ journey0_.amount as amountl_ journey0_description as descript3 1_ journeyl_.destination_name as destinat8_1_, journey0_fromDate as fromDatel _ joumey BECiadl | 14,127

2 select location0_name a5 name6_0_from Location locs] - [0~ I 8418

2 select userd_name as name3. 0. userd_email as emaif3| | D€ RIS | B password as | 1166

z Database and Connection Pack select journey0_iid as idL_ journey0_amount as amountl._,
call verity Jocation() Journey0_description a5 desaipt3_L_, joumne)0_.destination_name as LE
destinats_L_ journey0_fromDate as fromDatel_, journey0_name as namel_, | | where tenant0_r| 74
journey0__content as contentl_ joumney_start_name as sarts_1_, journey]_.destir 690
journey0_tenant_name as tenantl0_1_, journey0_toDate as toDatel_from
aumey0_ where ?=journeyd_destination_name and ? 28
<222 1gurmey0_toDate and [nomalize_location(, 7] 7

20
Contribition: 52
2 select location2_name as col_0_0_ count(booking0_id!

%
| mey_id=joumeyt »

Erecut Large number of calls 14177
2 select location2_name 25 col_0_0_ count(booking0_id] [o 7 mey id=joumey1 0

> Fress F2 for focus.
2 selectjoumeyd id asidl 3 _journey amount as amot = te a5 fromDatel, 2

2 select tenantfl_name as named_0_ tenantd_descriptio Signficant
contributor to
response

time

& select location)_name as name6_from Location locati
2 update LoginUser set email=?, fullName=?, lzstLogin=7)

2 insertinto Booking (baokingDate, joumney_id, user_na
2 select sum(journeyl_amount) as col 0_0_from Bookin

is not null)

Figure 3-1. Example of (dramatically) bad SQL performance

Allocating Enough Time to Performance Test

It is extremely important to factor into your project plan enough time to performance
test effectively. This cannot be a “finger in the air” decision and must take into account
the following considerations:

Lead time to prepare test environment
If you already have a dedicated performance test environment, this requirement
may be minimal. Alternatively, you may have to build the environment from
scratch, with the associated time and costs. These include sourcing and configur-
ing the relevant hardware as well as installing and configuring the application into
this environment.

Lead time to provision sufficient load injectors
In addition to the test environment itself, consider also the time you’ll need to
prepare the resource required to inject the load. This typically involves a worksta-
tion or server to manage the performance testing and multiple workstations/
servers to provide the load injection capability.

Time to identify and script use cases
It is vitally important to identify and script the use cases that will form the basis of
your performance testing. Identifying the use cases may take from days to weeks,

24 CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

but the actual scripting effort is typically 0.5 days per use case, assuming an expe-
rienced technician. The performance test scenarios are normally constructed and
validated as part of this process. By way of explanation, a use case is a discrete
piece of application functionality that is considered high volume or high impact. It
can be as simple as navigating to a web application home page or as complex as
completing an online mortgage application.

Time to identify and create enough test data
Because test data is key to a successful performance testing project, you must
allow enough time to prepare it. This is often a nontrivial task and may take many
days or even weeks. You should also consider how long it may take to reset the
target data repository or re-create test data between test executions, if necessary.

Time to instrument the test environment
This covers the time to install and configure any monitoring of the application
landscape to observe the behavior of the application, servers, database, and net-
work under load. This may require a review of your current tooling investment
and discussions with Ops to ensure that you have the performance visibility
required.

Time to deal with any problems identified
This can be a significant challenge, since you are dealing with unknowns. How-
ever, if sufficient attention has been given to performance during development of
the application, the risk of significant performance problems during the testing
phase is substantially reduced. That said, you still need to allocate time for resolv-
ing any issues that may crop up. This may involve the application developers and
code changes, including liaison with third-party suppliers.

Obtaining a Code Freeze

There’s little point in performance testing a moving target. It is absolutely vital to carry
out performance testing against a consistent release of code. If you find problems dur-
ing performance testing that require a code change, that’s fine, but make sure the
developers aren’t moving the goalposts between—or, even worse, during—test cycles
without good reason. If they do, make sure somebody tells the testing team! As men-
tioned previously, automated performance testing relies on scripted use cases that are a
recording of real user activity. These scripts are normally version dependent; that is,
they represent a series of requests and expected responses based on the state of the
application at the time they were created. An unanticipated new release of code may
partially or completely invalidate these scripts, requiring in the worst case that they be
completely re-created. More subtle effects may be an apparently successful execution
but an invalid set of performance test results, because code changes have rendered the
scripts no longer an accurate representation of end-user activity. This is a common

OBTAINING A CODE FREEZE

www.it-ebooks.info

25

http://www.it-ebooks.info/

26

problem that often highlights weaknesses in the control of building and deploying
software releases and the communication between the Dev and QA teams.

Designing a Performance Test Environment

Next we need to consider the performance test environment. In an ideal world, it
would be an exact copy of the production environment, but for a variety of reasons
this is rarely the case.

The number and specification of servers (probably the most common reason)
It is often impractical, for reasons of cost and complexity, to provide an exact rep-
lica of the server content and architecture in the test environment. Nonetheless,
even if you cannot replicate the numbers of servers at each application tier, try to
at least match the specification of the production servers. This will allow you to
determine the capacity of an individual server and provide a baseline for modeling
and extrapolation purposes.

Bandwidth and connectivity of network infrastructure
In a similar vein, it is uncommon for the test servers to be deployed in the same
location as their production counterparts, although it is often possible for them to
share the same network infrastructure.

Tier deployment
It is highly desirable to retain the production tier deployment model in your per-
formance test environment unless there is absolutely no alternative. For example,
if your production deployment includes a web application server and database tier,
then make sure this arrangement is maintained in your performance test environ-
ment even if the number of servers at each tier cannot be replicated. Avoid the
temptation to deploy multiple application tiers to a single physical platform.

Sizing of application databases
The size and content of the test environment database should closely approximate
the production one; otherwise, the difference will have a considerable impact on
the validity of performance test results. Executing tests against a 1 GB database
when the production deployment will be 1 TB is completely unrealistic.

Therefore, the typical performance test environment is a subset of the production
environment. Satisfactory performance here suggests that things can only get better as
we move to full-blown deployment. (Unfortunately, that’s not always true!)

I have come across projects where all performance testing was carried out on the pro-
duction environment. However, this is fairly unusual and adds its own set of addi-
tional considerations, such as the effect of other application traffic and the impact on
real application users when a volume performance test is executed. Such testing is

CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

usually scheduled out of normal working hours in order to minimize external effects
on the test results and the impact of the testing on the production environment.

In short, you should strive to make the performance test environment as close a rep-
lica of production as possible within existing constraints. This requirement differs from
functional testing, where the emphasis is on ensuring that the application works cor-
rectly. The misconception persists that a minimalist deployment will be suitable for
both functional and performance testing. (Fail!) Performance testing needs a dedicated
environment. Just to reiterate the point: unless there is absolutely no way to avoid it, you
should never try to use the same environment for functional and performance testing.

For example, one important UK bank has a test lab set up to replicate its largest single
branch. This environment comprises over 150 workstations, each configured to repre-
sent a single teller, with all the software that would be part of a standard desktop
build. On top of this is deployed test automation software providing an accurate simu-
lation environment for functional and performance testing projects.

As you can see, setting up a performance test environment is rarely a trivial task, and
it may take many weeks or even months to achieve. Therefore, you need to allow for
a realistic amount of time to complete this activity.

To summarize, there are three levels of preference when it comes to designing a per-
formance test environment:

An exact or very close copy of the production environment
This ideal is often difficult to achieve for practical and commercial reasons.

A subset of the production environment with fewer servers but specification and tier-
deployment matches to that of the production environment
This is frequently achievable—the important consideration being that from a bare-
metal perspective, the specification of the servers at each tier should match that of
the production environment. This allows you to accurately assess the capacity lim-
its of individual servers, providing you with a model to extrapolate horizontal and
vertical scaling.

A subset of the production environment with fewer servers of lower specification
This is probably the most common situation; the performance test environment is
sufficient to deploy the application, but the number, tier deployment, and specifi-
cation of servers may differ significantly from the production environment.

Virtualization

A common factor influencing test environment design is the use of virtualization tech-
nology that allows multiple virtual server instances to exist on a single physical
machine. VMWare remains the market leader despite challenges from other vendors
(such as Microsoft) and open source offerings from Xen.

DESIGNING A PERFORMANCE TEST ENVIRONMENT

www.it-ebooks.info

27

http://www.it-ebooks.info/

On a positive note, virtualization makes a closer simulation possible with regard to the
number and specification of servers present in the production environment. It also
simplifies the process of adding more RAM and CPU power to a given server deploy-
ment. If the production environment also makes use of virtualization, then so much
the better, since a very close approximation will then be possible between test and
production.

Possible negatives include the fact that you generally need more virtual than physical
resources to represent a given bare-metal specification, particularly with regard to CPU
performance where virtual servers deal more in virtual processing units rather than
CPU cores. The following are some other things to bear in mind when comparing logi-
cal (virtual) to physical (real) servers:

Hypervisor layer
Any virtualization technology requires a management layer. This is typically pro-
vided by what is termed the hypervisor, which acts as the interface between the
physical and virtual world. The hypervisor allows you to manage and deploy your
virtual machine instances but invariably introduces an overhead into the environ-
ment. You need to understand how this will impact your application behavior
when performance testing.

Bus versus LAN-WAN
Communication between virtual servers sharing the same physical bus will exhibit
different characteristics than servers communicating over LAN or WAN. Although
such virtual communication may use virtual network interface cards (NICs), it will
not suffer (unless artificially introduced) typical network problems like bandwidth
restriction and latency effects. In a data center environment there should be few
network problems, so this should not be an issue. However, if your physical pro-
duction servers connect across distance via LAN or WAN, then substituting
common-bus virtual servers in test will not give you a true representation of
server-to-server communication. In a similar vein, it is best (unless you are match-
ing the production architecture) to avoid deploying virtual servers from different
tiers on the same physical machine. In other words, don’t mix and match: keep all
web, application, and database virtual servers together but on different physical
Servers.

Physical versus virtual NICs
Virtual servers tend to use virtual NICs. This means that, unless there is one physi-
cal NIC for each virtual server, multiple servers will have to share the same physi-
cal NIC. Current NIC technology is pretty robust, so it takes a lot to overload a
card. However, channeling several servers” worth of network traffic down a single
NIC increases the possibility of overload. I would advise minimizing the ratio of
physical NICs to virtual servers.

28 CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Cloud Computing

The emergence of cloud computing has provided another avenue for designing perfor-
mance test environments. You could argue that the cloud, at the end of the day, is
nothing more than commoditized virtualized hosting; however, the low cost and rela-
tive ease of environment spin-up and teardown makes the cloud an attractive option
for hosting many kinds of test environments.

Having gone from novelty to norm in a few short years, cloud computing has become
one of the most disruptive influences on IT since the appearance of the Internet and
the World Wide Web. Amazon has made the public cloud available to just about any-
one who wants to set up her own website, and now other cloud vendors, too numer-
ous to mention, offer public and private cloud services in all kinds of configurations
and cost models. The initial concerns about data security have largely been dealt with,
and the relatively low cost (provided you do your homework) and almost infinite hor-
izontal and vertical flex (server spin-up/spin-down on demand) make the cloud a very
compelling choice for application hosting, at least for your web tier. If you don’t want
the worry of managing individual servers, you can even go down the Platform as a
Service (PaaS) route, principally offered by Microsoft Azure.

So is cloud computing a mini-revolution in IT? Most definitely, but how has the adop-
tion of the cloud affected performance testing?

Load injection heaven
One of the biggest historical bug-bears for performance testing has been the need
to supply large amounts of hardware to inject load. For smaller tests—say, up to a
couple of thousand virtual users—this may not have been too much of a problem,
but when you started looking at 10,000, 20,000, or 100,000 virtual users, the
amount of hardware typically required often became impractical, particularly
where the application tech stack imposed additional limits on the number of vir-
tual users you could generate from a given physical platform. Certainly, hardware
costs have come down dramatically over the last 10 years and you now get con-
siderably more bang for your buck in terms of server performance; however, hav-
ing to source, say, 30 servers of a given spec for an urgent performance testing
requirement is still unlikely to be a trivial investment in time and money. Of
course, you should be managing performance testing requirements from a strate-
gic perspective, so you should never be in this situation in the first place. That
said, the cloud may give you a short-term way out while you work on that tacti-
cal, last-minute performance mind-set.

On the surface, the cloud appears to solve the problem of load injector provisioning in
a number of ways, but before embracing load injection heaven too closely, you need to
consider a few important things.

DESIGNING A PERFORMANCE TEST ENVIRONMENT

www.it-ebooks.info

29

http://www.it-ebooks.info/

On the plus side:

It’s cheap.
Certainly, the cost per cloud server—even of comparatively high spec—borders on
the trivial, especially given that you need the servers to be active only while the
performance test is executing. A hundred dollars can buy you a lot of computing
power.

It’s rapid (or relatively so).
With a little planning you can spin up (and spin down) a very large number of
injector instances in a comparatively short time. I say comparatively in that 1,000
injectors might take 30+ minutes to spin up but typically a much shorter period of
time to spin down.

It's highly scalable.
If you need more injection capacity, you can keep spinning up more instances
pretty much on demand, although some cloud providers may prefer you give
them a little advance notice. In the early days of cloud computing, my company
innocently spun up 500 server instances for a large-scale performance test and
managed to consume (at the time) something like 25 percent of the total server
capacity available to Western Europe from our chosen cloud vendor. Needless to
say, we made an impression.

It’s tooling friendly.
There are a lot of performance testing toolsets that now have built-in support for
cloud-based injectors. Many will let you combine cloud-based and locally hosted
injectors in the same performance test scenario so you have complete flexibility in
injector deployment. A note of caution, though: level of automation to achieve
this will vary from point-and-click to having to provide and manage your own
load injector model instance and manually spin up/spin down as many copies as
you need.

And now on the minus side:

It’s not cheap.
This is particularly true if you forget to spin down your injector farm after that
200,000-virtual-user performance test has finished. While cloud pricing models
have become cheaper and more flexible, I would caution you about the cost of
leaving 1,000 server instances running for 24 hours as opposed to the intended 3
hours. Think $10,000 instead of $100.

It’s not always reliable.
Something I've noticed about cloud computing that has never entirely gone away
is that you occasionally spin up server instances that, for some reason, don’t work
properly. It’s usually pretty fundamental (e.g., you can’t log in or connect to the

30 CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

instance). This is not too much of a problem, as you can simply terminate the
faulty instance and spin up another, but it is something you need to bear in mind.

Load Injection Capacity

As part of setting up the performance test environment, you need to make sure there
are sufficient server resources to generate the required load. Automated performance
test tools use one or more machines as load injectors to simulate real user activity.
Depending on the application technology, there will be a limit on the number of vir-
tual users that you can generate from a given machine.

During a performance test execution, you need to monitor the load being placed on
the injector machines. It’s important to ensure that none of the injectors are overloa-
ded in terms of CPU or memory utilization, since this can introduce inaccuracy into
your performance test results. Although tool vendors generally provide guidelines on
injection requirements, there are many factors that can influence injection limits per
machine. You should always carry out a dress rehearsal to determine how many vir-
tual users can be generated from a single injector platform. This will give you a more
accurate idea of how many additional injector machines are required to create a given
virtual user load.

Automated performance testing will always be a compromise, simply because you are
(normally) using a relatively small number of machines as load injectors to represent
many application users. In my opinion it’s a better strategy to use as many injector
machines as possible to spread the load. For example, if you have 10 machines avail-
able but could generate the load with 4 machines, it’s preferable to use all 10.

The number of load injectors in use can also affect how the application reacts to the
Internet Protocol (IP) address of each incoming virtual user. This has relevance in the
following situations:

Load balancing
Some load balancing strategies use the IP address of the incoming user to deter-
mine the server to which the user should be connected for the current session. If
you don’t take this into consideration, then all users from a single injector will
have the same IP address and may be allocated to the same server, which will not
be an accurate test of load balancing and likely cause the SUT to fail. In these cir-
cumstances you may need to ask the client to modify its load balancing configura-
tion or to implement IP spoofing, where multiple IP addresses are allocated to the
NIC on each injector machine and the automated performance tool allocates a dif-
ferent IP address to each virtual user. Not all automated performance test tools
provide this capability, so bear this in mind when making your selection.

DESIGNING A PERFORMANCE TEST ENVIRONMENT

www.it-ebooks.info

31

http://www.it-ebooks.info/

User session limits
Application design may enforce a single user session from one physical location. In
these situations, performance testing will be difficult unless this limitation can be
overcome. If you are limited to one virtual user per injector machine, then you
will need a very large number of injectors!

Certain other situations will also affect how many injectors you will need to create
application load:

The application technology may not be recordable at the middleware level
Chapter 9 discusses the impact of technology on performance testing. In terms of
load injection, if you cannot create middleware-level scripts for your application,
you have a serious problem. Your options are limited to (a) making use of func-
tional testing tools to provide load from the presentation layer; (b) making use of
some form of thin-client deployment that can be captured with your performance
testing tool—for example, Citrix ICA or MS Terminal Services RDP protocol; or (c)
building some form of custom test harness to generate protocol-level tratfic that
can be recorded. If you can’t take the thin-client route, then your injection capa-
bility will probably be limited to one virtual user per machine.

You need to measure performance from a presentation layer perspective
Performance testing tools tend to work at the middleware layer, and so they have
no real concept of activity local to the application client apart from periods of dead
time on the wire. If you want to time, for example, how long it takes a user to
click on a combo box and choose the third item, you may need to use presenta-
tion layer scripts and functional testing tools. Some tool vendors allow you to
freely combine load and functional scripts in the same performance test, but this is
not a universal capability. If you need this functionality, check to see that the ven-
dors on your shortlist can provide it.

Addressing Different Network Deployment Models

From where will end users access the application? If everybody is on the local area
network (LAN), your load injection can be entirely LAN based. However, if you have
users across a wide area network (WAN), you need to take into account the prevailing
network conditions they will experience. These primarily include the following:

Available bandwidth
A typical LAN currently offers a minimum of 100 Mb, and many LANs now boast
1,000 or even 10,000 Mb of available bandwidth. WAN users, however, are not as
fortunate and may have to make do with as little as 256 Kb. Low bandwidth and
high data presentation do not generally make for good performance, so you must
factor this into your performance testing network deployment model.

32 CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Network latency
Think of this as delay. Most LANs have little or no latency, but the WAN user is
often faced with high latency conditions that can significantly affect application
performance.

Application design can have a major impact on how WAN friendly the application
turns out to be. I have been involved in many projects where an application flew on
the LAN but crawled on the WAN. Differing network deployment models will have a
bearing on how you design your performance testing environment.

——NOTE

You may be interested to know that inherent network latency is based on a num-
ber of factors, including these:

Speed of light

Physics imposes an unavoidable overhead of 1 millisecond of delay per
~130 kilometers of distance.

Propagation delay

Basically the impact of the wiring and network devices such as switches,
routers, and servers between last mile and first mile.

There are tools available that allow you to model application performance in differing
network environments. If significant numbers of your application users will be WAN-
based, then I encourage you to consider using those. Typically they allow you to vary
the bandwidth, latency, and congestion against a live recording of application traffic.
This allows you to accurately re-create the sort of experience an end user would have
at the end of a modest ADSL connection.

You may also wish to include WAN-based users as part of your performance test
design. There are a number of ways to achieve this:

Load injection from a WAN location
This is certainly the most realistic approach, although it is not always achievable in
a test environment. You need to position load injector machines at the end of real
WAN links and simulate the use-case mix and the number of users expected to
use this form of connectivity as part of your performance test execution. (See
Chapter 7 for further discussion on measuring performance from the perspective
of the end user.)

Modify transaction replay
Some performance testing tools allow you to simulate WAN playback even though
the testing is carried out on a LAN environment. They achieve this by altering the
replay characteristics of nominated use-case load-injector deployments to repre-

DESIGNING A PERFORMANCE TEST ENVIRONMENT

www.it-ebooks.info

33

http://www.it-ebooks.info/

34

sent a reduction in available bandwidth—in other words, slowing down the rate
of execution. In my experience, there is considerable variation in how tool ven-
dors implement this feature, so be sure that what is provided will be accurate
enough for your requirements.

Network simulation
There are products available that allow you to simulate WAN conditions from a
network perspective. Essentially, a device is inserted into your test network that
can introduce a range of network latency effects, including bandwidth reduction.

Environment Checklist

The following checklist will help you determine how close your test environment will
be to the production deployment. From the deployment model for the application, col-
lect the following information where relevant for each server tier. This includes black-
box devices such as load balancers and content servers if they are present.

Number of servers
The number of physical or virtual servers for this tier.

Load balancing strategy
The type of load balancing mechanism in use (if relevant).

Hardware inventory
Number and type of CPUs, amount of RAM, number and type of NICs.

Software inventory
Standard-build software inventory excluding components of application to be per-
formance tested.

Application component inventory
Description of application components to be deployed on this server tier.

Internal and external links
Any links to internal or external third-party systems. These can be challenging to
replicate in a test environment and are often completely ignored or replaced by
some sort of stub or mock-up. Failing to take them into account is to ignore a
potential source of performance bottlenecks. At the very minimum you should
provide functionality that represents expected behavior. For example, if the exter-
nal link is a web service request to a credit reference service that needs to provide
subsecond response, then build this into your test environment. You will then
have confidence that your application will perform well as long as external services
are doing their part. (Make sure that any external link stub functionality you pro-
vide is robust enough to cope with the load that you create!)

CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Network connectivity is usually less challenging to replicate during testing, at least
with regard to connections between servers. Remember that any load you apply
should be present at the correct location in the infrastructure. For incoming Internet
or intranet traffic, this is typically in front of any security or load balancing devices
that may be present.

Software Installation Constraints

An important and often-overlooked step is to identify any constraints that may apply
to the use of third-party software within the test environment. By constraints, I mean
internal security policies that restrict the installation of software or remote access to
servers and network infrastructure. These may limit the granularity of server and net-
work monitoring that will be possible, and in the worst case may prevent the use of
any remote monitoring capability built into the performance test tool you wish to use.

Although not normally a concern when you are performance testing in-house, such
constraints are a real possibility when you're providing performance testing services to
other organizations. This situation is more common than you might think and is not
something you want to discover at the last minute! If this situation does arise unex-
pectedly, then you will be limited to whatever monitoring software is already installed
in the performance test environment.

Setting Realistic Performance Targets

Now, what are your performance targets? These are often referred to as performance

goals and may be derived in part from the service-level agreement (SLA). Unless you
have some clearly defined performance targets in place against which you can com-
pare the results of your performance testing, you could be wasting your time.

Consensus

It’s crucial to get consensus on performance targets from all stakeholders. Every group
on whom the application will have an impact—including the application users and
senior management—must agree on the same performance targets. Otherwise, they
may be reluctant to accept the results of the testing. This is equally true if you are per-
formance testing in-house or providing a testing service to a third party.

Application performance testing should be an integral part of an internal strategy for
application life cycle management. Performance testing has traditionally been an over-
looked or last-minute activity, and this has worked against promoting consensus on
what it delivers to the business.

Strategies for gaining consensus on performance testing projects within an organiza-
tion should center on promoting a culture of consultation and involvement. You
should get interested parties involved in the project at an early stage so that everyone

SETTING REALISTIC PERFORMANCE TARGETS

www.it-ebooks.info

35

http://www.it-ebooks.info/

36

has a clear idea of the process and the deliverables. This includes the following groups
or individuals:

The business

C-level management responsible for budget and policy decision—-making:

e Chief information officer (CIO)
e Chief technology officer (CTO)
e Chief financial officer (CFO)

e Departmental heads

Remember that you may have to build a business case to justity purchase of an
automated performance testing solution and construction of an (expensive) test
environment. So it’s a good idea to involve the people who make business-level
decisions and manage mission-critical business services (and sign the checks!).

IT

Stakeholders responsible for performance testing the application:

e The developers

e The testers (internal or outsourced)

e The infrastructure team(s)

e The service providers (internal and external)

e The end users

All these groups are intimately involved in the application, so they need to be clear on
expectations and responsibility. The developers, whether in-house or external, put the
application together; hence, there needs to be a clear path back to them should
application-related problems occur during performance testing.

The testers are the people at the sharp end, so among other considerations they need
to know the correct use cases to script, the type of test design required, and the perfor-
mance targets they are aiming for.

Just as important are the people who look after the IT infrastructure. They need to be
aware well in advance of what’s coming to ensure that there is enough server and net-
work capacity and that the application is correctly configured and deployed.

CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

— NOTE

If your application makes use of internal or external service providers, it is vital for
them to be involved at an early stage. Make sure that any service SLAs contain
specific content on expected performance and capacity.

Last but not least are the end users. End users will (or should have been) involved in
the application design process and user acceptance testing (UAT). Assuming they have
been using a legacy application that the application under test will replace, then they
will have a clear and informed view of what will be considered acceptable perfor-
mance.

Performance Target Definition

Moving on to specifics, I would argue that the following performance targets apply to
any performance testing engagement. These are based on the service-oriented perfor-
mance indicators that we have already discussed briefly in Chapter 1:

e Availability or uptime
e Concurrency
e Throughput

e Response time

To these can be added the following, which are as much a measure of capacity as of
performance:

e Network utilization

e Server utilization

Availability or uptime

This requirement is simple enough: the application must be available to the end user
at all times, except perhaps during periods of planned maintenance. It must not fail
within the target level of concurrency or throughput. Actually, testing for availability is
a matter of degree. A successful ping of the web server’s physical machine doesn’t nec-
essarily mean that the application is available. Likewise, just because you can connect
to the web server from a client browser doesn’t mean that the application’s home page
is available. Finally, the application may be available at modest loads but may start to
time out or return errors as the load increases, which (assuming no application prob-
lems) would suggest a lack of capacity for the load being generated.

SETTING REALISTIC PERFORMANCE TARGETS

www.it-ebooks.info

37

http://www.it-ebooks.info/

Concurrency

Concurrency is probably the least understood performance target. Customers will
often quote some number of concurrent users that the application must support
without giving sufficient thought to what this actually entails.

In his excellent white paper “Get performance requirements right: Think like a user,”
Scott Barber suggests that calculating concurrency based on an hourly figure is more
realistic and straightforward. Concurrency from the perspective of a performance test-
ing tool is the number of active users generated by the software, which is not necessar-
ily the same as the number of users concurrently accessing the application. Being able
to provide an accurate level of concurrency depends very much on the design of your
use-case scripts and performance test scenarios, discussed later in this chapter.

Scott also makes the point that from concurrency and scalability we derive capacity
goals. In other words, achieving our scalability targets demonstrates sufficient capacity
in the application landscape for the application to deliver to the business. Yet equally
important is finding out just how much extra capacity is available.

In performance testing terms, concurrency refers to the following two distinct areas:

Concurrent virtual users
The number of active virtual users from the point of view of your performance testing
tool. This number is often very different from the number of virtual users actually
accessing the system under test (SUT).

Concurrent application users
The number of active virtual application users. By active I mean actually logged
into or accessing the SUT. This is a key measure of the actual virtual user load
against the SUT at any given moment during a performance test. It depends to a
large degree on how you design your performance testing use cases (discussed
later in the chapter). For now you need to decide if the login and logout process—
whatever that involves—will be part of the application activity that is to be tested.

If you do include login-logout, then there will be a recurring point for every virtual
user during test execution where he or she is logged out of the application and there-
fore not truly concurrent with other users. Achieving a certain number of concurrent
virtual users is a balancing act between the time it takes for a use-case iteration to
complete and the amount of pacing (or delay) you apply between use-case iterations.
This is also called use-case throughput.

38 CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Tool Versus Application Users Example

An example of this situation occurred in a recent project | was involved with. The cus-
tomer wanted to test to 1,000 concurrent users. But because each user was logging in,
completing an application activity, and then logging out, there were never more than a
couple hundred users actively using the application at any point during the performance
test. This was despite the testing tool indicating 1,000 active users.

The solution was (1) to increase the execution time or persistence of each use case
iteration so that the user involved remained active for longer, and (2) to apply sufficient
pacing between use-case executions to slow down the rate of execution. At the same
time, it was important to ensure that the rate of throughput achieved was an accurate
reflection of application behavior.

If you do not intend to include login-logout as part of use-case iteration, then concur-
rency becomes a whole lot easier to deal with, because every user who successtully
logs in remains active (errors aside) for the duration of the performance test.

The concurrency target quoted either will be an extrapolation of data from an existing
application or, in the case of a new application, will probably be based on a percentage
of the expected total user community.

As with many things in business, the 80/20 rule often applies here: out of a total user
community of 100, an average of 20 users will be using the application at any time
during the working day. That said, every application will be different, and it’s better to
go for the high end of the scale rather than the low end. It is just as important that you
look beyond deployment to determine what the concurrency will be 6 months, 12
months, or even 18 months later.

You must also include allowances for usage peaks outside of normal limits. Take, for
example, an application that provides services to the students and staff of a large uni-
versity. Day-to-day usage is relatively flat, but at certain times of the year—such as
during student enrollment or when examination results are published online—concur-
rent usage increases significantly. Failure to allow for such usage peaks is a common
oversight that may lead to unexpected performance degradation and even system
failure.

Throughput

In certain circumstances throughput rather than concurrency is the performance testing
target. This often occurs with applications that are considered stateless; that is to say,
there is no concept of a logged-in session. Casual browsing of any website’s home page
would fall into this category. In these situations, the specific number of users who are
simultaneously accessing the site is less important than the number of accesses or hits

SETTING REALISTIC PERFORMANCE TARGETS

www.it-ebooks.info

39

http://www.it-ebooks.info/

in a given time frame. This kind of performance is typically measured in hits or page
views per minute or per second.

In the world of ecommerce you can liken the usage profile of a website to a funnel in
that the vast majority of activity will be casual browsing and “add to basket.” When a
customer decides to buy (or convert), he normally needs to log in to complete his pur-
chase, thereby returning to a more traditional concurrency model. Interestingly, this is
typically less than 5% of site activity (hence the funnel profile) even during peak times
such as sales.

TIP

In the first edition of this book | suggested that a good rule of thumb was to add
10% to your anticipated “go live" concurrency or throughput target so you would
at least be testing beyond predicted requirements. Building on this recommenda-
tion now, | would strongly advise including stress testing in your performance test
scenarios so that you gain a real appreciation of your application’s capacity limits
and supporting infrastructure.

Response time

Upon reaching the target concurrency (or throughput), the application must allow the
end users to carry out their tasks in a timely fashion.

As discussed in Chapter 1, from an end-user perspective good response time is very
much a matter of perception; for example, an average response time of 60 seconds for
a call-center application may be perfectly acceptable, whereas the same response for a
critical stock-trading application would render it completely unusable. It could also be
that the time taken to complete an activity such as a stock trade is more important
than a visual indication of success appearing on the end user’s PC.

This is often the challenge with migrating from a legacy green-screen application to a
web-enabled replacement that is feature rich but cannot provide the same kind of
instant response. Thoughtful application design—that is, making use of asynchronous
functionality where appropriate—can go a long way toward convincing application
users that the new version is a winner.

——NOTE

In programming, asynchronous events are those occurring independently of the
main program flow. Asynchronous actions are those executed in a nonblocking
scheme, allowing the main program flow to continue processing. The effect on
the application users is that they don't have to wait for something to complete
before they can move on to a new activity. In contrast, synchronous events
impose a strict sequence of events in that users cannot normally continue until
the most recent request has completed or at least returned a success/fail
response.

40 CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

If there is an existing system that the application under test will replace, then there
may be some performance statistics on current functionality to provide guidance on
what is an acceptable response time for key application tasks. Absent this, your next
resort is to use baselining. This is where a single user—running a single use case for a
set period of time with no other activity occurring in the performance test environ-
ment—can provide a best possible response-time figure, assuming no significant appli-
cation design problems.

Assuming this baseline value is acceptable, it will be the amount of variance from this
figure at target concurrency (or throughput) that determines success or failure. For
example, you may baseline the time it takes to raise a purchase order as 75 seconds. If
this response time increases to an average of 500 seconds when 1,000 users are active,
then this may be considered unacceptable. However, a smaller increase—say, 250 sec-
onds—may be a perfectly acceptable result to maintain end-user productivity.

The bottom line is that there will almost always be some slowdown in response time as
load increases, but this should not be in lockstep with the injection of additional load.
More on this in Chapter 5.

Network Utilization

Every application presents data to the network. Just how much of an impact this has
on performance will depend on the available bandwidth between application tiers and
the end user. Within a modern data center, there is little chance of exhausting avail-
able bandwidth (thus, on-premise testing is not likely to turn up a network capacity-
related performance problem here). However, as you move progressively closer to the
user, performance can change dramatically—especially when communication involves
the Internet.

High data presentation rates with large numbers of network conversations will typi-
cally have the strongest impact on the transmission path with the lowest bandwidth.
So the data presented by our application may have to stay below a predetermined
threshold, particularly for the last-mile connection to the Internet user.

In summary, the typical network metrics that you should measure when performance
testing include the following:

Data volume
The amount of data presented to the network. As discussed, this is particularly
important when the application will have end users connecting over low-

SETTING REALISTIC PERFORMANCE TARGETS

www.it-ebooks.info

a4

http://www.it-ebooks.info/

bandwidth WAN links. High data volume, when combined with bandwidth
restrictions and network latency effects, does not usually yield good performance.

The Impact of WAN on Application Performance

When looking to optimize WAN performance you are often working with limited band-
width and higher-than-desirable latency conditions. It is therefore very important to mini-
mize data presentation so you are consuming only the bandwidth you need and to make
sure that your application can deal with periods of network slowdown and even occas-
sional loss of connectivity. This is particularly important for mobile devices, where pat-
chy network and cellular communications is pretty much the norm.

Data throughput
The rate that data is presented to the network. You may have a certain number of
page hits per second as a performance target. Monitoring data throughput will let
you know if this rate is being achieved or if throughput is being throttled back.
Often a sudden reduction in throughput is the first symptom of capacity problems,
where the servers cannot keep up with the number of requests being made and
virtual users start to suffer from server time-outs.

Data error rate
Large numbers of network errors that require retransmission of data may slow
down throughput and degrade application performance. Ideally, there should be
zero network errors present; however, the reality is that there will almost always
be some. It is important to determine the nature and severity of any errors that
are detected and whether they are related to the application or to problems with
the network infrastructure. Packet sniffing technology, as provided by the popular
Wireshark toolset, can be extremely insightful when you are investigating net-
work problems.

Server Utilization

In a similar fashion to the network, there may be fixed limits on the amount of server
resources that an application is allowed to use. You can determine this information
only by monitoring while the servers are under load. Obtaining this information relies
on appropriately set server KPIs, which are discussed later in this chapter. There are
many server KPIs that can be monitored, but in my experience the most common are
as follows:

e CPU utilization

e Memory utilization

42 CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

e Input/output—disk and network

These categories are frequently broken down by process or thread into the top 10 CPU,
memory, and I/0 hogs to provide a high-level view of the impact of load on server
capacity and performance.

In an ideal world we would own the entire application landscape, but in real life the
servers or network are often hosted by external vendors. This forces us to reassess the
scope of infrastructure performance targets that can be realistically set.

You can probably test the data center comprehensively, but you often can’t do so for
the environment outside of the data center, where application traffic may pass through
the hands of multiple service providers (Internet and SaaS) before reaching the end
user. You have little real control over how the performance of your application will be
affected by events in cyberspace, but you can try to ensure that there are no server
and network performance bottlenecks within the data center.

—NOTE

It is possible to enter into performance agreements with ISPs, but in my experi-
ence these are very difficult to enforce and will cover only a single ISP’s area of
responsibility.

In these situations, often the best you can aim for is to ensure your application is opti-
mized to be as WAN-friendly as possible by minimizing the negative effects of band-
width restriction, latency, and network congestion.

Identifying and Scripting the Business-Critical
Use Cases

Use cases will form the basis of all your performance tests, so you must be sure that
you have identified them correctly. A simple example of a use case is logging in to the
application, navigating to the search page, executing a search, and then logging out
again. You need to determine the high-volume, mission-critical activities that an aver-
age user will carry out during a normal working day.

Don’t confuse performance testing use cases with their functional equivalents.
Remember that your aim is not to test the application functionality (you should have
already done that) but to create a realistic load to stress the application and then assess
its behavior from a performance perspective. This should aim to reveal any problems
that are a result of concurrency, lack of adequate capacity, or less-than-optimal config-
uration.

IDENTIFYING AND SCRIPTING THE BUSINESS-CRITICAL USE CASES

www.it-ebooks.info

43

http://www.it-ebooks.info/

Use-Case Checklist

For each use case selected, you should complete the following actions:

Document each step so that there is no ambiguity in the scripting process
Each step must be clearly defined with appropriate inputs and outputs. This is
important not only for generating accurate scripts but also for defining the parts of
each use case that will be timed during performance test execution. (See Appen-
dix A for an example of a well-documented use case.)

Identify all input data requirements and expected responses
This is the information that needs to be entered by the user at each step and is a
critical part of defining the use case. Examples include logging in, entering a pass-
word, and—significantly—what should happen in response to these activities.
Accurate documentation of input data will determine the test data requirements
for each use case.

Determine user types
Examples include a new or returning user for ecommerce applications, and super-
visor, customer, call-center operator, and team leader for other application types.
Deciding on the type of user will help you determine whether this is a high- or
low-volume use case. For example, there are more call-center operators than
supervisors, so supervisor users will likely limit themselves to background admin-
istration tasks, whereas the operators will be dealing with large numbers of cus-
tomer inquiries.

Determine LAN or WAN
What is the network distribution of users for each use case? They could be dis-
tributed via the LAN, the WAN, the Internet, or perhaps a combination. As dis-
cussed, a use case that performs well in a LAN environment may not do so when
deployed in a low-bandwidth, high-latency WAN environment.

Decide whether the use case will be active or passive
Active use cases represent the high-volume activities that you want to perform
well, whereas passive use cases are background activities often included just to
provide the test scenario with a realistic load. For example, there may be a
requirement to include a proportion of users who are logged in but not actively
using the application. The use-case definition for this sort of user may simply be
logging in, doing nothing for a period of time, and then logging out—a passive use
case.

44 CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

TIP

Don't worry about this step, even if your application is considered complex and
rich in features. In my experience, the number of use cases that are finally
selected rarely exceeds 10, pretty much regardless of what the application does
or how it is architectured. If you should find yourself with a larger-than-expected
number of use cases, it may be necessary to carry out a risk assessment to deter-
mine those activities that must be tested in the time available for performance
testing.

Use-Case Replay Validation

Once you have identified the use cases, you must convert them to some form of script
using your performance testing tool. You typically achieve this by putting the testing
tool into “record” mode and then carrying out the activity to be scripted. At the end of
the recording process, the tool should automatically generate a script file representing
your use-case activity. The actual format of the script will vary depending on the tool-
set used and may be a short program in C++ or C# or a more abstract document object
model (DOM) presentation.

Once the script has been created, you will need to prep it by addressing any data
requirements (discussed in the next section) and making any other changes required
for the script to replay correctly. After you complete this task, your final step is to vali-
date script replay. As part of the validation process, you will need to do the following:

Verify single user replay
Always check that each script replays correctly using whatever validation func-
tionality is provided by your performance testing tool. Obvious enough, you might
think, but it is easy to wrongly assume that—because no obvious errors are
present—your script has worked OK. Your performance testing tool should make
it easy to verify successful replay by providing a trace of every client request and
server response. I have seen many occasions where a performance testing project
has been completed, only for the team to find that one or more scripted use cases
were not replaying correctly, severely compromising the results.

Verify multiuser replay
Once you are satisfied that the scripts are replaying correctly, you should always
carry out a small multiuser replay to ensure that there are no problems that relate
to concurrent execution. Testing for concurrency is, of course, a common perfor-
mance target; however, as part of the validation process you should ensure that
nothing related to script design prevents even a small number of virtual users
from executing concurrently.

IDENTIFYING AND SCRIPTING THE BUSINESS-CRITICAL USE CASES

www.it-ebooks.info

45

http://www.it-ebooks.info/

46

What to Measure

As just discussed, after identifying the key use cases, you need to record and script
them using your performance tool of choice. As part of this process you must decide
which parts of the use case to measure primarily in terms of response time.

You can indicate areas of interest while recording a use case simply by inserting com-
ments, but most performance testing tools will allow you to ring-fence parts of a use
case by inserting begin and end markers around individual or groups of requests, which
I will refer to as checkpoints.

When the scripts are eventually used in a performance test, these checkpoints provide
better response-time granularity than for the use case as a whole. For example, you
may choose to checkpoint the login process or perhaps one or more search activities
within the script. Simply replaying the whole use case without this sort of instrumen-
tation will make it much harder to identify problem areas.

Checkpoints are really your first port of call when analyzing the results of a perfor-
mance test, because they provide initial insight into any problems that may be present.
For example, your total average response time for raising a purchase order may be 30
seconds, but analysis of your checkpoints shows that Log into App Server was taking 25
of the 30 seconds and therefore is the major contributor to use-case response time (see
Figure 3-2).

=-[]B APP_SvR_TESTING

&[] Automatic

=] User
F-[= Loginto App Server
- Enter client number
F-[= Update client info
F-[]= Save client info
---D?’ Disconnect From App Server

Figure 3-2. Checkpoints within a scripted use case, in this case APP_SVR_TESTING

To Log In or Not to Log In

Recall from our previous discussion of concurrency that the use case you script should
reflect how the application will be used on a day-to-day basis. An important consider-
ation here is the end-user usage profile. By this I mean whether users log in, complete
an activity, and log out, or more typically log in once and remain logged in to the
application during the working day.

Logging in to an application is often a load-intensive activity, so if users log in just a
few times during a working day, it is unrealistic to include this step in every script iter-

CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

ation. Most performance testing tools allow you to specify which parts of a scripted use
case are repeated during test execution.

Remember that including or excluding the login-logout process in your scripts will
have a significant impact on achieving your target application virtual user concurrency.

Peaceful Coexistence

Something else that is important to consider is whether your application will exist in
isolation (very unlikely) or have to share resources with other applications. An appli-
cation may perform magnificently on its own but fall down in a heap when it must
coexist with others. Common examples include web traffic and email when used
together or with other core company applications.

It may be that your application has its own dedicated servers but must still share net-
work bandwidth. Simulating network effects may be as simple as factoring in enough
additional traffic to approximate current bandwidth availability during testing. Creat-
ing an additional load where applications share mid-tier and database servers will be
more complex, ideally requiring you to generate load for other applications to be
included in performance testing. This means that you may need to identify and script
use cases from other applications in order to provide a suitable level of background
noise when executing performance tests.

Providing Test Data

OK, you have your performance targets and you have your scripted use cases; the next
thing to consider is data. The importance of providing enough quality test data cannot
be overstated. It would be true to say that performance testing lives and dies on the
quality and quantity of the test data provided. It is a rare performance test that does
not require any data to be provided as input to the scripted use cases.

Creating even a moderate amount of test data can be a nontrivial task. Most automa-
ted test tools by default take a file in comma-separated values (CSV) format as input to
their scripts, so you can potentially use any program that can create a file in this for-
mat to make data creation less painful. Common examples are MS Excel and using
SQL scripts to extract and manipulate data into a suitable format.

Three types of test data are critical: input data, target data, and session data.

Input Data

Input data is data that will be provided as input to your scripted use cases. You need to
look at exactly what is required, how much of it you require, and—significantly—how
much work is required to create it. If you have allocated two weeks for performance
testing and it will take a month to produce enough test data, you need to think again!

PROVIDING TEST DATA

www.it-ebooks.info

a7

http://www.it-ebooks.info/

Some typical examples of input data are as follows:

User credentials
For applications that are designed around user sessions, this data would typically
consist of a login ID and password. Many performance tests are executed with a
limited number of test user credentials. This introduces an element of risk regard-
ing multiple users with the same login credentials being active simultaneously,
which in some circumstances can lead to misleading results and execution errors.
Whenever possible, you should provide unique login credentials for every virtual
user to be included in a performance test.

Search criteria
There will almost always be use cases in any performance test that are designed to
carry out various kinds of searches. In order to make these searches realistic, you
should provide a variety of data that will form the search criteria. Typical exam-
ples include customer name and address details, invoice numbers, and product
codes. You may also want to carry out wildcard searches where only a certain
number of leading characters are provided as a search key. Wildcard searches typi-
cally take longer to execute and return more data to the client. If the application
allows the end user to search for all customer surnames that begin with A, then
you need to include this in your test data.

Associated files
For certain types of performance tests, it may be necessary to associate files with
use cases. This is a common requirement with document management systems,
where the time to upload and download document content is a critical indicator of
performance. These documents may be in a variety of formats (e.g., PDE, MS
Word), so you need to ensure that sufficient numbers of the correct size and type
are available.

Target Data

What about the target database? (It’s rare not to have one.) This needs to be populated
with realistic volumes of valid data so that your inquiries are asking the database
engine to perform realistic searches. If your test database is 50 MB and the live data-
base is 50 GB, this is a sure fire recipe for misleading results.

Let’s look at the principal challenges of trying to create and manage a test database:

Sizing
It is important to ensure that you have a realistically sized test database. Signifi-
cantly smaller amounts of data than will be present at deployment provide the
potential for misleading database response times, so consider this option only as a
last resort. Often it’s possible to use a snapshot of an existing production database,
which has the added benefit of being real rather than test data. However, for new

48 CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

applications this won’t normally be possible, and the database will have to be
populated to realistic levels in advance of any testing.

Data rollback
If any of the performance tests that you run change the content of the data within
the test database, then ideally—prior to each performance test execution—the
database should be restored to the same state it was in before the start of the first
performance test. It’s all about minimizing the differences between test runs so
that comparisons between sets of results can be carried out with confidence.

You need to have a mechanism in place to accomplish this data rollback in a realistic
amount of time. If it takes two hours to restore the database, then this must be fac-
tored into the total time allowed for the performance testing project.

Session Data

During performance test execution, it is often necessary to intercept and make use of
data returned from the application. This data is distinct from that entered by the user.
A typical example is information related to the current user session that must be
returned as part of every request made by the client. If this information is not provided
or is incorrect, the server would return an error or disconnect the session. Most perfor-
mance testing tools provide functionality to handle this kind of data.

In these situations, if you fail to deal correctly with session data, then it will usually be
pretty obvious, because your scripts will fail to replay. However, there will be cases
where a script appears to work but the replay will not be accurate; in this situation,
your performance testing results will be suspect. Always verify that your scripts are work-
ing correctly before using them in a performance test.

Data Security

It’s all very well getting your hands on a suitable test database, but you must also con-
sider the confidentiality of the information it contains. You may need to anonymize
details such as names, addresses, and bank account numbers in order to prevent per-
sonal security from being compromised by someone casually browsing through test
data. Given the rampant climate of identity fraud, this is a common condition of use
that must be addressed.

Ensuring Accurate Performance-Test Design

Accurate performance-test design relies on combining the requirements discussed so
far into a coherent set of performance test scenarios that accurately reflect the concur-
rency and throughput defined by the original performance targets. The first step in this
process is to understand the type of performance tests that are typically executed.

ENSURING ACCURATE PERFORMANCE-TEST DESIGN

www.it-ebooks.info

49

http://www.it-ebooks.info/

50

Principal Types of Performance Test

Once you've identified the key use cases and their data requirements, the next step is
to create a number of different types of performance tests. The final choice will largely
be determined by the nature of the application and how much time is available for
performance testing. The following testing terms are generally well known in the
industry, although there is often confusion over what they actually mean:

Pipe-clean test

The pipe-clean test is a preparatory task that serves to validate each performance
test script in the performance test environment. The test is normally executed for
a single use case as a single virtual user for a set period of time or for a set number
of iterations. This execution should ideally be carried out without any other activ-
ity on the system to provide a best-case measurement. You can then use the met-
rics obtained as a baseline to determine the amount of performance degradation
that occurs in response to increasing numbers of users and to determine the server
and network footprint for each scripted use case. This test also provides important
input to the transaction volume or load model, as discussed later in this chapter.

Volume test
This is the classic performance test, where the application is loaded up to the tar-
get concurrency but usually no further. The aim is to meet performance targets for
availability, concurrency or throughput, and response time. Volume testing is the
closest approximation of real application use, and it normally includes a simula-
tion of the effects of user interaction with the application client. These include the
delays and pauses experienced during data entry, as well as (human) responses to
information returned from the application.

Stress test
This has quite a different aim from a volume test. A stress test attempts to cause
the application or some part of the supporting infrastructure to fail. The purpose is
to determine the capacity threshold of the SUT. Thus, a stress test continues until
something breaks: no more users can log in, response time exceeds the value you
defined as acceptable, or the application becomes unavailable. The rationale for
stress testing is that if our target concurrency is 1,000 users, but the infrastructure
fails at only 1,005 users, then this is worth knowing because it clearly demon-
strates that there is very little extra capacity available. The results of stress testing
provide a measure of capacity as much as performance. It’s important to know
your upper limits, particularly if future growth of application traffic is hard to pre-
dict. For example, the scenario just described would be disastrous for something
like an airport air-traffic control system, where downtime is not an option.

CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Soak, or stability, test
The soak test is intended to identify problems that may appear only after an
extended period of time. A classic example would be a slowly developing memory
leak or some unforeseen limitation in the number of times that a use case can be
executed. This sort of test cannot be carried out effectively unless appropriate
infrastructure monitoring is in place. Problems of this sort will typically manifest
themselves either as a gradual slowdown in response time or as a sudden loss of
availability of the application. Correlation of data from the injected load and infra-
structure at the point of failure or perceived slowdown is vital to ensure accurate
diagnosis.

Smoke test
The definition of smoke testing is to focus only on what has changed. Therefore, a
performance smoke test may involve only those use cases that have been affected
by a code change.

——NOTE

The term smoke testing originated in the hardware industry. The term derived
from this practice: after a piece of hardware or a hardware component was
changed or repaired, the equipment was simply powered up. If there was no
smoke (or flames!), the component passed the test.

Isolation test
This variety of test is used to home in on an identified problem. It usually consists
of repeated executions of specific use cases that have been identified as resulting
in a performance issue.

I believe that you should always execute pipe-clean, volume, stress, and soak tests.
The other test types are more dependent on the application and the amount of time
available for testing—as is the requirement for isolation testing, which will largely be
determined by what problems are discovered.

Having covered the basic kinds of performance test, let’s now discuss how we distrib-
ute load across the use cases included in a performance test scenario.

The Load Model

The load model is key to accurate and relevant performance testing. It defines the dis-
tribution of load across the scripted use cases, and very importantly, the target levels of
concurrency and throughput required for testing. The load model is initially created
for a volume test and should reflect the performance targets agreed on for the SUT,
after which it is varied as required for other performance test types. It is important to
take into account the effects of think time and pacing (discussed in the next section),
as these variables will have an important impact on throughput calculations.

ENSURING ACCURATE PERFORMANCE-TEST DESIGN

www.it-ebooks.info

51

http://www.it-ebooks.info/

52

Another very important but often overlooked factor is the impact that test data can
have on load model design. Take, for example, a use case that represents searching for
a product on an ecommerce site. If your test data to drive the script is all based on
complete product names, then the search functionality tested, while consistent, is not
necessarily representative of how customers will use the site. What happens, for
example, if a customer searches for all black dresses instead of a specific item and this
exposes a poorly configured search algorithm?

My advice is to always structure your load model to take this sort of scenario into
account. While wildcard and partial searches are permitted, I tend to configure multi-
ple use-case deployments that reflect different sizes of the (expected) result set based
on the data supplied. So if we use the aforementioned example, my deployments
would look as follows:

Small data model
Test data comprises specific product names or IDs.

Medium data model
Test data comprises partial product names.

Large data model
Test data comprises wildcard or minimal product name content.

Using this approach makes throughput calculation a little more complex in that the
medium and large data model use-case iterations will generally take longer to execute,
but the advantage is that you cover yourself against missing problems with search,
which is an important part of most applications’ functionality.

Moving on, there are several types of load model that you can create.

The simple concurrency model

This simply states that the target concurrency is X and that each scripted use case will
be allocated a %X of virtual users, the sum of which represents the target concurrency
value. The configuration of load injection and throughput is important only in that it
mimics as accurately as possible real use of the application. For example, all users may
log in between 9 and 10 a.m. and typically stay logged in for the working day, or there
are never more than 100 purchase orders processed in an hour.

Table 3-1 provides an example of 10 use cases distributed among a total application
concurrency of 1,000 virtual users.

CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-1. Virtual user use-case allocation

Use case Allocated virtual users
MiniStatement 416
CustomStatement 69
ViewStandingOrders 69
TextAlertCreateCancel 13
TransferBetweenOwnAccounts 145
BillPaymentCreate 225
BusMiniStatement 33
BusCustomStatement 4
BusTransferBetweenOwnAccounts 10
BusBillPaymentCreate 16

Decide on the number of virtual users to allocate to each use-case deployment per test.
Most automated performance test tools allow you to deploy the same use case multiple
times with different numbers of virtual users and different injection profiles. In fact,
this would be an extremely good idea for an application that has significant numbers
of users connecting over differing WAN environments. Each deployment could simu-
late a different WAN bandwidth, allowing you to observe the effects of bandwidth
reduction on application performance under load.

You should apportion the number of virtual users per use case to represent the variety
and behavior of activity that would occur during normal usage. Where possible, make
use of any existing historical data to ensure that your virtual user allocation is as accu-
rate as possible. For new applications, the allocation can be based only on expectation
and thus may need refinement during test execution.

The throughput model

This type of load model is more complex to create, as it relies on reaching but not nec-
essarily exceeding a specified level of throughput. This may be based on complete use-
case iterations per time period or, as is often the case with ecommerce applications, a
certain number of page views per minute or second.

For existing applications you may source this information from business intelligence
services such as Google Analytics or WebTrends if implemented, where it is a straight-
forward process to determine volumetrics data for a given period. For new applica-
tions, this can once again be only an estimate, but it should be based on the most

ENSURING ACCURATE PERFORMANCE-TEST DESIGN

www.it-ebooks.info

53

http://www.it-ebooks.info/

54

accurate information available and the resulting load model agreed upon between
application stakeholders.

As a starting point I would determine the iteration and throughput metrics from a sin-
gle user execution for each scripted use case. However, you will almost certainly need
to experiment to achieve the appropriate level of throughput, as there are too many
variables to rely on simple extrapolation from a baseline.

Think Time

Think time represents the delays and pauses that any end user will introduce while
interacting with a software application. Examples include pausing to speak to a cus-
tomer during data entry and deciding how much to bid for an item on eBay. When
recording a use case, you’d typically represent think time by inserting pause com-
mands within the logic flow of the resulting script.

My advice is to always retain think time, ideally as recorded, with a small variation if
this can be easily introduced into the scripted use case. For example, vary each
instance of recorded think time by +10%. Think time is, by default, excluded from the
response-time calculations of most performance test toolsets. An important point to
note is that any think time included in your scripts should be realistic and represent
normal delays as part of interaction with the application. You should avoid any unreal-
istically long pauses within your scripts.

The important thing about think time is that it introduces an element of realism into
the test execution, particularly with regard to the queueing of requests in any given
script iteration.

Pacing

Pacing is the principal way to affect the execution of a performance test. Whereas think
time influences the rate of execution per iteration, pacing affects overall throughput.
This is an important difference that I'll take a moment to explain.

Consider this example: even though an online banking application has 6,000 custom-
ers, we know that the number of people who choose to view their statements is never
more than 100 per hour even at the busiest time of day. Therefore, if our volume test

results in 1,000 views per hour, it is not a realistic test of this activity.

We might want to increase the rate of execution as part of a stress test, but not for vol-
ume testing. As usual, our goal is to make the performance test as true to life as we
can. By inserting a pacing value, we can reduce the number of iterations and, by defi-
nition, the throughput.

For example, if a typical mini-statement use case takes 60 seconds to execute, then
applying a pacing value of 2 minutes will limit the maximum number per hour to 30

CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

per virtual user. We accomplish this by making each virtual user wait 2 minutes (less
the use-case execution time) before beginning the next iteration. In other words, the
execution time per virtual user iteration cannot be less than 2 minutes.

Load injection profile

Next, decide how you will inject the application load. There are five types of injection
profile that are typically used as part of a performance test configuration:

Big Bang
This is where all virtual users start at the same time. Typically, these users will run
concurrently but not in lockstep; that is, they will start executing at approximately
the same time but will never be doing exactly the same thing at the same moment
during test execution.

Ramp-up
This profile begins with a set number of virtual users and then adds more users at
specified time intervals until a target number is reached. This is the usual way of
testing to see if an application can support a certain number of concurrent users.

Ramp-up (with step)
In this variation of straight ramp-up, there is a final target concurrency or
throughput, but the intention is to pause injection at set points during test execu-
tion. For example, the target concurrency may be 1,000 users, but we need to
observe the steady-state response time at 250, 500, and 750 concurrent users; so,
upon reaching each of these values, injection is paused for a period of time. Not all
automated performance test tools provide this capability within a single perfor-
mance test. But it is a simple matter to configure separate tests for each of the step
values and mimic the same behavior.

Ramp up (with step), ramp down (with step)
Building on the previous profile, you may want to ramp up to a certain number of
concurrent users (with or without steps) and then gradually reduce the number of
virtual users (with or without steps) back to zero, which may signal the end of the
test. Again, not all automated performance test tools provide this capability within
a single performance test.

Delayed start
This may be combined with any of the preceding injection profiles; it simply
involves delaying the start of injection for a period of time for a particular script
deployment.

If you choose the ramp-up approach, aim to build up to your target concurrency for
each script deployment in a realistic period of time. You should configure the injection
rate for each use-case deployment to reach full load simultaneously. Remember that

ENSURING ACCURATE PERFORMANCE-TEST DESIGN

www.it-ebooks.info

55

http://www.it-ebooks.info/

56

the longer you take ramping up (and ramping down), the longer the duration of the
performance test.

For Big Bang load injection, caution is advised because large numbers of virtual users
starting together can create a fearsome load, particularly on web servers. This may lead
to system failure before the performance test has even had a chance to start properly.

For example, many client/server applications have a user login period at the start of
the working day that may encompass an hour or more. Replicating 1,000 users logging
in at the same moment when this would actually be spread over an hour is unrealistic
and increases the chance of system failure by creating an artificial period of extreme
loading. This sort of injection profile choice is not recommended unless it is intended
to form part of a stress test.

Deciding on performance test types

After validation and pipe-clean, I tend to structure my performance tests in the follow-
ing format, although the order may differ based on your own requirements:

Volume test each use case

Decide on the maximum number of concurrent users or throughput you want for
each scripted use case; then run a separate test for each up to the limit you set.
This will provide a good indication of whether there are any concurrency-related
issues on a per-use-case basis. Depending on the number of concurrent users, you
may want to use a straight ramp-up or the ramp-up-with-step injection profile. I
tend to use the ramp-up-with-step approach, since this allows fine-grained analy-
sis of problems that may occur at a particular level of concurrency or throughput.

Isolation-test individual use cases
If problems do occur, then isolation testing is called for to triage the cause of the
problem.

Volume test use-case groups
Once you've tested in isolation, the next step is normally to combine all scripted
use cases in a single load test. This then tests for problems with infrastructure
capacity or possible conflicts between use cases such as database lock contention.
Once again, you may decide to use the ramp-up or ramp-up-with-step injection
profile.

Isolation test use-case groups
As with individual use-case performance tests, any problems you find may require
running isolation tests to confirm diagnoses and point to solutions.

Stress test use-case groups
Repeat the individual use case and/or use-case group tests, but reduce the amount
of pacing or increase the number of virtual users to create a higher throughput

CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

than was achieved during volume testing. This allows you to ascertain the upper
capacity limits of the hosting infrastructure and to determine how the application
responds to extreme peaks of activity.

Soak test use-case groups
Repeat the individual use-case and/or use-case group performance tests for an
extended duration. This should reveal any problems that manifest themselves
only after a certain amount of application activity has occurred (for example,
memory leaks or connection pool limitations).

Nonperformance tests
Finally, carry out any tests that are not specifically related to load or stress. These
may include testing different methods of load balancing or perhaps testing failover
behavior by disabling one or more servers in the SUT.

Load injection point of presence

As part of creating performance test scenarios, you next have to decide from where
you will inject the load. This is an important consideration, because you need to
ensure that you are not introducing artificially high data presentation into areas where
this simply wouldn’t happen in the production environment. For example, trying to
inject the equivalent of 100 users” worth of traffic down a 512 Kb ADSL link that
would normally support a single user is completely unrealistic—you will simply run
out of bandwidth. Even if you were successful, the resulting performance data would
bear no relationship to the real end-user experience (unless 100 users may at some
point share this environment). Once again, the cloud offers great flexibility for remote
deployment of load injectors.

If you consider how users connect to most applications, there is a clear analogy with a
system of roads. The last connection to the end user is the equivalent of a country lane
that slowly builds into main roads, highways, and finally freeways with progressively
more and more traffic. The freeway connection is the Internet or corporate LAN pipe
to your data center or hosting provider, so this is where the high-volume load needs to
be injected.

In other words, you must match the load you create at any given point in your test
infrastructure with the amount of load that would be present in a real environment. If
you don’t, you run the risk of bandwidth constraints limiting the potential throughput
and number of virtual users. The result is a misleading set of performance data.

Putting it all together

After taking into consideration all the points discussed so far, you should by now have
a clear idea of how your performance tests will look. Figure 3-3 provides an example
of a comprehensive set of data taken from an actual performance test document. I'm

ENSURING ACCURATE PERFORMANCE-TEST DESIGN

www.it-ebooks.info

57

http://www.it-ebooks.info/

not saying that you will always need to provide this level of detail, but it’s an excellent
example to which we can aspire.

ity Calculated Users as P 3
Rate as per ; Simulated Load (L oad factors applisd)
RefHlo Transaction Duration | baseline Lol Legend
tpd | tph |Minw ':%"; w | th | w | Rameup yacind tpd =Transactions per Day
1.7 |Movement Continuation 25| 20m| sessd]| 2831843 wr|iamen| o 0017 04418 :\;i’; wu E":::“D\;'ft‘;: :Z:f’s
11 1.10]customer ceount Enguiry- Persanal 21w| o] sesea] zaovses] = [1amee| s o0 03561 | pis (%) < Distribution Percentage
7 2]approval Process 15| 19m| assas] 14| 1050] o21]1am7a| &3 [n2aB3| WU -Virtusl Users
23|Enquire & amendon a Petner Record] 2000] 10m| 1mea| 1o | 7ar| 15| swer| s 0043 03485
121104 fcustomer Account Enguiry- Group 21w| 10| 1mse] 18| vra| 15| swe| s 0043 03485
4.5 [kl memisers i & g schems aam| 6| o] 10| 7sr| 15| amss| iz i 2015
113 1|Process Resipts (2 payments) sem| | 90| 16 118e] oa| amss| mo o on-zn| 1082
5 |Crenie alsmwe o quote 77w e| 773l 1m|viss| os| cmae| s 00016 14358
1161 |aie rtpestet Party Rele arn| am| eed| o] eos| 12| aesa| a0 [4z 2
18 2|Remave Interested Party Role mm :sau_| ek o9 se| | oees| 1m s 05046
Total 10z200] 185455] 137] 1000] oo |egwor| e
s Interval (himm:ss) a0 Do stion o businsss dy (i) 55
Stert up V'S fransaction 1 Tranaction retelcad factor (%) @
Fisline WI's gl Ll factor 155) 10

Figure 3-3. Example performance test configuration

Observe that there is a section in the figure for baseline and a separate section for
simulated load. The application was already supporting 200 virtual users without
issue, and data was available to determine the use-case iteration rate per day and per
hour for the existing load. This is the information presented in the baseline section and
used as the first target for the performance test.

The simulated load section specified the final target load for the performance test,
which was 500 virtual users. An important part of achieving this increased load was
ensuring that the use-case execution and throughput rates were a realistic extrapola-
tion of current levels. Accordingly, the virtual user (distribution), ramp-up, and pacing
values were calculated to achieve this aim.

Here is a line-by-line description of the figure:

e Ref No: Sections in the master document that involve the use case
e Use Case: Name of the application use case
e Duration: Amount of time in seconds that the use case takes to complete
e Use-Case Rate (per baseline)
—tpd: Use case rate per day
— tph: Use case rate per hour
e Calculated Users (per baseline)
— Min VU: Minimum number of virtual users for this use case

— Dist %: Distribution of this use case as a percentage of the total number of vir-
tual users in this test

— VU: Number of virtual users allocated to this use case based on the Dist %

58 CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

e Simulated Load (load factors applied)
— tph: Target use-case rate per hour
— VU: Total number of virtual users allocated for this use case
— Ramp-up (hh:mm:ss): Rate of virtual user injection for this use case

— Pacing (hh:mm:ss): Rate of pacing for this use case

Identifying the KPIs

You need to identify the server and network key performance indicators (KPIs) that
should be monitored for your application. This information is vital to achieve accurate
root-cause analysis of any problems that may occur during performance test
execution. Ideally, the monitoring is integrated with your automated performance test
solution. However, a lack of integration is no excuse for failing to address this vital
requirement.

Server KPIs

You are aiming to create a set of monitoring models or templates that can be applied to
the servers in each tier of your SUT. Just what these models comprise will depend
largely on the server operating system and the technology that was used to build the
application.

Server performance is measured by monitoring software configured to observe the
behavior of specific performance metrics or counters. This software may be included or
integrated with your automated performance testing tool, or it may be an independent
product.

Perhaps you are familiar with the Perfmon (Performance Monitor) tool that has been
part of Windows for many years. If so, then you are aware of the literally hundreds of
performance counters that could be monitored on any given Windows server. From
this vast selection, there is a core of a dozen or so metrics that can reveal a lot about
how any Windows server is performing.

In the Unix/Linux world there are long-standing utilities like monitor, top, vmstat,
iostat, and SAR that provide the same sort of information. In a similar vein, main-
frames have their own monitoring tools that can be employed as part of your perfor-
mance test design.

It is important to approach server KPI monitoring in a logical fashion—ideally, using a
number of layers. The top layer is what I call generic monitoring, which focuses on a
small set of counters that will quickly tell you if any server (Windows Linux or Unix)
is under stress. The next layer of monitoring should focus on specific technologies that

IDENTIFYING THE KPIS

www.it-ebooks.info

59

http://www.it-ebooks.info/

are part of the application tech stack as deployed to the web, application, and database
servers. It is clearly impractical to provide lists of suggested metrics for each application
technology. Hence, you should refer to the documentation provided by the appropri-
ate technology vendors for guidance on what to monitor. To aid you in this process,
many performance testing tools provide suggested templates of counters for popular
application technologies.

TIP

The ideal approach is to build separate templates of performance metrics for
each layer of monitoring. Once created, these templates can form part of a reusa-
ble resource for future performance tests. | provide sample templates in Appen-
dix D.

So to summarize, depending on the application architecture, any or all of the follow-
ing models or templates may be required.

Generic templates

This is a common set of metrics that will apply to every server in the same tier that has
the same operating system. Its purpose is to provide first-level monitoring of the
effects of load and stress. Typical metrics would include monitoring how busy the
CPUs are and how much available memory is present. Appendix D contains examples
of generic and other templates. If the application landscape is complex, you will likely
have several versions.

In my experience, a generic template for monitoring a Windows OS server based on
Windows Performance Monitor should include at a minimum the following counters,
which cover the key areas of CPU, memory, and disk I/O, and provide some visibility
of the network in terms of errors:

e Total processor utilization %

e Processor queue length

e Context switches/second

e Available memory in bytes

e Memory pages faults/second

e Memory cache faults/second

¢ Memory page reads/second

e Page file usage %

e Top 10 processes in terms of the previous counters

e Free disk space %

60 CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

e Physical disk: average disk queue length
e Physical disk: % disk time
e Network interface: Packets Received errors

e Network interface: Packets Outbound errors

Web and application server tier

These templates focus on a particular web or application server technology, which may
involve performance counters that differ from those provided by Microsoft’s Perfor-
mance Monitor tool. Instead, this model may refer to the use of monitoring technol-
ogy to examine the performance of a particular application server such as Oracle Web-
Logic or IBM’s WebSphere.

Other examples include the following:

e Apache
e IIS (Microsoft Internet Information Server)

e JBOSS

Database server tier

Enterprise SQL database technologies are provided by a number of familiar vendors.
Most are reasonably similar in architecture and modus operandi, but differences
abound from a monitoring perspective. As a result, each type of database will require
its own unique template. Examples familiar to most include the following:

e Microsoft SQL Server
e Oracle

e [BM DB2

¢ MySQL

e Sybase

e Informix

e Some newer database technologies are now commonly part of application design.
These include NoSQL databases such as MongoDB, Cassandra, and DynamoDB.

IDENTIFYING THE KPIS

www.it-ebooks.info

61

http://www.it-ebooks.info/

62

Mainframe tier

If there is a mainframe tier in your application deployment, you should include it in
performance monitoring to provide true end-to-end coverage. Mainframe monitoring
tends to focus on a small set of metrics based around memory and CPU utilization per
job and logical partition (LPAR). Some vendors allow integration of mainframe perfor-
mance data into their performance testing solution. Performance monitoring tools for
mainframes tend to be fairly specialized. The most common are as follows:

e Strobe from Compuware Corporation

e Candle from IBM

Depending on how mainframe connectivity is integrated into the application architec-
ture, application performance monitoring (APM) tooling can also provide insight into
the responsiveness of I/0 between the mainframe and other application tiers.

Hosting providers and KPl monitoring

With the emergence of cloud computing, there is an accompanying requirement to
monitor the performance of hosted cloud platforms. The challenge is that the level of
monitoring information provided by hosting providers pre- and post-cloud computing
varies greatly in terms of historical storage, relevance, and granularity.

I am very much a fan of the self-service approach (assuming your hosting provider
allows this) in that by configuring your own monitoring you can at least be sure of
what is being monitored. The cloud in particular makes this relatively easy to put in
place. That said, if there are monitoring services already available (such as Amazon
CloudWatch), then by all means make use of them but bear in mind they are not nec-
essarily free of charge.

Cloud also provides the opportunity to bake monitoring technology into machine
image templates (or AMI, in Amazon-speak). We have a number of clients who do this
with New Relic APM and it works very well. The only word of caution with this
approach is that if you are regularly flexing up large numbers of virtual server instan-
ces, then you may be accidentally violating the license agreement with your software
tool vendor.

Network KPIs

In performance testing, network monitoring focuses mainly on packet round-trip time,
data presentation, and the detection of any errors that may occur as a result of high
data volumes. As with server KPI monitoring, this capability can be built into an auto-
mated performance test tool or provided separately.

CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

If you have followed the guidelines on where to inject the load and have optimized
the data presentation of your application, then network issues should prove the least
likely cause of problems during performance test execution.

For network monitoring the choice of KPIs is much simpler, as there are a small set of
metrics you should always be monitoring. These include the following:

Network errors
Any network errors are potentially bad news for performance. They can signal
anything from physical problems with network devices to a simple traffic over-
load.

Latency
We discussed latency a little earlier in this chapter. From a network perspective,
this is any delay introduced by network conditions affecting application perfor-
mance.

Bandwidth consumption
How much of the available network capacity is your application consuming? It’s
very important to monitor the bytes in and out during performance testing to
establish the application network footprint and whether too high a footprint is
leading to performance problems or network errors.

For Windows and Unix/Linux operating systems, there are performance counters that
monitor the amount of data being handled by each NIC card as well as the number of
errors (both incoming and outgoing) detected during a performance test execution.
These counters can be part of the suggested monitoring templates described previously.

To help better differentiate between server and network problems, some automated
performance test tools separate server and network time for each element within a
web page (Figure 3-4).

Name Response | Total Average Average Averace Server | Network
Code Reguests | response time Server netneork ||
‘https:X.-"OnlineBanking.uk.-fonline.-fimg.-“arrow.gif zo0 z Z.0816 99,9581 % | 0.0119 % _I
https://OnlineBanking uk/online/css/advIE .css 200 2 2.9855 31.8739 % | 68,1261 % I_-
hitp:/f0OnlineBanking uk/ssloan.js =] -] 0.4469 99,9912 % | 0.0038 % _I
hitp://onlineBanking uk/ima/warning.jpg 200 =] 0.0219 99,863 % 0,137 % I
hitp:/fonlineBanking uk/img/logo.gif 200 & 0.0519 09,0554 % | 00446 % I
http:ffonlineBanking uk/img/award.gif z00 -] 0.13%96 99,9756 % | 0.0244 % I
hitp:#f0onlineBanking .uk/fimg/small jpg 200 =] 0.4033 99,9864 % | 0.0136 % I

Figure 3-4. Example server/network response-time breakdown

IDENTIFYING THE KPIS

www.it-ebooks.info

63

http://www.it-ebooks.info/

64

Application Server KPIs

The final and very important layer involves the application server (if relevant) and
shifts the focus away from counters to component- and method-level performance.
Essentially, this is looking inside the application server technology to reveal its contri-
bution to performance problems that may initially be revealed by generic server and
network monitoring.

Previously you saw the term application performance management, or APM. This is a rap-
idly growing area of IT, and the use of APM tooling greatly enhances the speed and
effectiveness of triaging application performance problems either in test or in produc-
tion. Application components that are memory or CPU hogs can be very difficult to
isolate without the sort of insight that APM brings to monitoring. I talk more about
how to leverage the benefits of APM tooling in Chapter 5.

Specific application KPI areas to consider are calls from the application to services
internal and external. For example, you may choose to outsource the search function-
ality of your ecommerce site to a third party via an APIL. You should always look to
monitor such API calls, as they can easily become performance bottlenecks. If these
metrics are not forthcoming from the service provider, then consider instrumenting
your application to monitor the performance of the service or indeed any other soft-
ware components crucial to performance.

Summary

In this chapter we have taken a look at the nonfunctional requirements that are the
essential prerequisites of effective performance testing. In the next chapter we turn
our attention to making use of these requirements in order to build an effective perfor-
mance testing process.

CHAPTER THREE: THE FUNDAMENTALS OF EFFECTIVE APPLICATION PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER FOUR

The Process of
Performance Testing

I see plans within plans.
—Frank Herbert, Dune

AS DISCUSSED IN CHAPTER 1, MANY PERFORMANCE TESTING PROJECTS COME
together as a last-minute exercise. I would happily wager that you have been involved
in a project that falls into this category. In such cases, you are constrained by limited
time to test and pressure from the business to deploy by a certain date, even though
the application may have serious performance problems. This chapter describes a per-
formance testing approach to follow so that any new projects you participate in are
unlikely to suffer from the same pitfalls.

In Chapter 3, my intention was to cover nonfunctional requirements (NFRs) in a logi-
cal but informal way. This chapter is about using these requirements to build a test
plan: a performance testing checklist divided into logical stages. We’ll also look at how
this plan can be applied to a couple of case studies based on real projects. Each case
study will demonstrate different aspects of the performance test process and will pro-
vide some of the examples we’ll cover in Chapter 5 to explore the interpretation of
performance test results. Each case study features a review of how closely (or not) the
performance project aligns with the NFRs discussed in Chapter 3 and the suggested
approach provided in this chapter.

Activity Duration Guidelines

Before describing a suggested approach, I thought it would be helpful to provide some
guidelines on how much time to allow for typical performance testing activities. Cer-
tain activities, like building and commissioning a suitable test environment, are too
varied and complex to allow meaningtful estimates, but for other key tasks I can offer
the following guidance:

www.it-ebooks.info

65

http://www.it-ebooks.info/

66

Scoping and NFR capture
It’s important to accurately determine the scope of a performance testing engage-
ment and to allow enough time to capture all of the NFR requirements. Provided
that you already have this information (and stakeholders), this activity rarely
takes more than a couple of days.

Scripting performance test use cases
Allow half a day per use case, assuming an experienced performance engineer is
doing the work. The reality is that some use cases will take more time to script,
and others less. But from my experience with many performance testing engage-
ments, this is a realistic estimate. Note that the correct tool choice can make a huge differ-
ence to success or failure of this task.

Creating and validating performance test scenarios
This is typically one to two days” work, provided that you have created an accu-
rate load model. This should simply be a job of work, since you will have already
defined the structure and content of each performance test as part of your
requirements capture. Most of your time will likely be spent conducting dress
rehearsals to ensure that the tests execute correctly.

Executing the performance test
For all but the simplest of projects, allow a minimum of five days. The unknown
in this process is how many reruns will be required to deal with any problems that
surface during test execution. Make sure that you also factor in time for database
restore between performance test executions. You can get a lot of performance
testing done in five days, and if you don’t actually need them all, then you don’t
have to charge the client.

Collecting data and uninstalling software
Allow one day. If you are testing in-house, then it’s unlikely that you’ll need to
uninstall software. If you are providing a service, then you may have to remove
the performance testing software. Give yourself a day to do this and to collect the
results of the tests and KPI monitoring.

Conducting the final analysis and reporting
Typically this takes two to three days. Make sure you allow sufficient time to com-
plete your analysis and to prepare a comprehensive report aligned to the perfor-
mance targets for the engagement. Skimping on this task is something that greatly
reduces the value of many performance testing engagements.

Performance Testing Approach

To set the scene, the following list demonstrates the major steps in a suggested perfor-
mance testing approach. I will then expand on each step in detail. The approach

CHAPTER FOUR: THE PROCESS OF PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

described is applicable to most performance testing projects, whether you are execut-
ing in-house or providing a service to a customer. By design, this approach does not
enforce the use of any specific tools, so you can keep using your preferred project
management and requirements capture solution even if it amounts to nothing more
than MS Word.

e Step 1: Nonfunctional Requirements Capture

e Step 2: Performance Test Environment Build

e Step 3: Use-Case Scripting

e Step 4: Performance Test Scenario Build

e Step 5: Performance Test Execution and Analysis

e Step 6: Post-Test Analysis and Reporting

——NOTE
The steps are repeated in Appendix B as a handy quick reference.

Step 1: Nonfunctional Requirements Capture

Your first task in any performance testing project should be to set the following in
motion. Gather or elicit performance NFRs from all relevant stakeholders, as discussed
in Chapter 3. You will need this information to create a successful project plan or
statement of work (SOW).

—— NOTE
This is often termed a scoping exercise.

At the very minimum you should have the following NFRs agreed upon and signed off
before undertaking anything else.

¢ Deadlines available to complete performance testing, including the scheduled
deployment date.

¢ Internal or external resources to perform the tests. This decision will largely
depend on time scales and in-house expertise (or lack thereof).

e Test environment design. Remember that the test environment should be as close
an approximation of the live environment as you can achieve and will require
longer to create than you estimate.

¢ A code freeze that applies to the test environment within each testing cycle.

PERFORMANCE TESTING APPROACH

www.it-ebooks.info

67

http://www.it-ebooks.info/

¢ A test environment that will not be affected by other user activity. Nobody else
should be using the test environment while performance test execution is taking
place; otherwise, there is a danger that the test execution and results may be com-
promised.

e Identified performance targets. Most importantly, these must be agreed to by
appropriate business stakeholders. See Chapter 3 for a discussion on how to ach-
ieve stakeholder consensus.

e Key use cases. These must be identified, documented, and ready to script.
Remember how vital it is to have correctly identified the key use cases to script.
Otherwise, your performance testing is in danger of becoming a wasted exercise.

e Parts of each use case (such as login or time spent on a search) that should be
monitored separately. This will be used in Step 3 for checkpointing.

e The input, target, and session data requirements for the use cases that you select.
This critical consideration ensures that the use cases you script run correctly and
that the target database is realistically populated in terms of size and content. As
discussed in Chapter 3, quality test data is critical to performance testing. Make
sure that you can create enough test data of the correct type within the time-
frames of your testing project. You may need to look at some form of automated
data management, and don’t forget to consider data security and confidentiality.

¢ A load model created for each application in scope for performance testing.

e Performance test scenarios identified in terms of the number, type, use-case con-
tent, and virtual user deployment. You should also have decided on the think
time, pacing, and injection profile for each use-case deployment.

¢ Identified and documented application, server, and network KPIs. Remember that
you must monitor the hosting infrastructure as comprehensively as possible to
ensure that you have the necessary information available to identitfy and resolve
any problems that may occur.

¢ Identified deliverables from the performance test in terms of a report on the test’s
outcome versus the agreed-upon performance targets. It’s a good practice to pro-
duce a document template that can be used for this purpose.

e A defined procedure for submitting any performance defects discovered during
testing cycles to the development or application vendor. This is an important con-
sideration that is often overlooked. What happens if you find major application-
related problems? You need to build contingency into your test plan to accommo-
date this possibility. There may also be the added complexity of involving offshore
resources in the defect submission and resolution process. If your plan is to carry
out the performance testing using in-house resources, then you will also need to
have the following in place:

68 CHAPTER FOUR: THE PROCESS OF PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

— Test team members and reporting structure. Do you have a dedicated and tech-
nically competent performance testing team? Often organizations hurriedly put
together such teams by grabbing functional testers and anyone else unlucky
enough to be available. To be fair, if you have only an intermittent requirement
to performance test, it’s hard to justify keeping a dedicated team on standby.
Larger organizations, however, should consider moving toward establishing an
internal center of testing excellence. Ensure at the very minimum that you
have a project manager and enough testing personnel assigned to handle the
scale of the project. Even large-scale performance testing projects rarely require
more than a project manager and a couple of engineers. Figure 4-1 demon-
strates a sample team structure and its relationship to the customer.

— The tools, resources, skills, and appropriate licenses for the performance test.
Make sure the team has what it needs to test effectively.

— Adequate training for all team members in the tools to be used. A lack of test-
ing tool experience is a major reason why many companies’ introduction to
performance testing is via an outsourced project.

Project sponsor Account manager
<<customer>> <<vendor>>

Project manager Project manager

<<customer>> <<vendor>>
Technical architect > Senior consultant
<<customer>> <<vendor>>

Application specialist] Junior consultant

<<customer>> <<vendor>>

Figure 4-1. Example performance-testing team structure
With this information available, you can proceed with the following:

1. Develop a high-level plan that includes resources, timelines, and milestones based
on these requirements.

2. Develop a detailed performance test plan that includes all dependencies and asso-
ciated timelines, detailed scenarios and use cases, load models, and environment
information.

PERFORMANCE TESTING APPROACH

www.it-ebooks.info

69

http://www.it-ebooks.info/

3. Make sure that you include a risk assessment of not meeting schedule or perfor-
mance targets just in case things don’t go according to plan.

Be sure to include contingency for additional testing cycles and defect resolution if
problems are found with the application during performance test execution. This pre-
caution is frequently overlooked.

With these actions under way, you can proceed through the remaining steps. Not
everything mentioned may be relevant to your particular testing requirements, but the
order of events is important.

——NOTE

See Appendix E for an example MS Project—based performance testing project
plan.

Step 2: Performance Test Environment Build

You should have already identified the hardware, software, and network requirements
for your performance test environment. Recall that you should strive to make your
test environment a close approximation of the production environment. If this is not
possible, then at a minimum your setup should reflect the server tier deployment of
the production environment and your target database should be realistically populated
in terms of both data content and sizing. This activity should be started as soon as pos-
sible because it frequently takes (much) longer than expected.

—— WARNING

You may have to build a business case to justify creating your performance test
environment!

The performance test environment build involves the following steps:

1. Allow enough time to source equipment and to configure and build the environ-
ment.

2. Take into account all deployment models. You may need to test several different
configurations over LAN and WAN environments for your application, so you
need to ensure that each of these can be created in your test environment.

3. Take into account links to external systems. You should never ignore external
links, since they are a prime location for performance bottlenecks. As discussed in
Chapter 3, you need either to use real links or to create some kind of stub or sim-
ulation that represents external communication working as designed.

70 CHAPTER FOUR: THE PROCESS OF PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

4. Provide enough load injection capacity for the scale of testing envisaged. Think
about the locations from which you will need to inject load. If these are not all
local to the application infrastructure, then you must ensure that the load injector
machines can be managed remotely or station local personnel at each remote site.
Don't forget about considering cloud-based load injectors if this simplifies your
task.

5. Ensure that the application is correctly deployed into the test environment. I have
been involved in more than one performance test engagement that was unfavora-
bly affected by mistakes made when the application—supposedly ready for testing
—was actually deployed.

6. Provide sufficient software licenses for the application and supporting software
(e.g., Citrix or SAP licenses). You’d be surprised how often an oversight here
causes problems.

7. Deploy and configure performance testing tools. Make sure that you correctly
install and configure your performance testing solution.

8. Deploy and configure KPI monitoring. This may be part of your performance test-
ing solution or entirely separate tooling. In either case, make sure that it is cor-
rectly configured to return the information you need.

Step 3: Use-Case Scripting

For each use case that you have selected to script, you must perform the following:

e Identify the session data requirements. Some of this information may be available
from a proof of concept (POC) exercise, although this will have focused on only a
few transactions. In many cases, you will not be able to confirm session data
requirements for the remaining use cases until you begin the full scripting process.

e Confirm and apply input data requirements. These should have been identified as
part of the pre-engagement requirements capture. See Appendix A for an example
of the sort of detail you should provide, particularly with regard to data for each
use case that will form part of your performance testing project.

¢ Decide on how you will checkpoint the use case in terms of what parts you need to
monitor separately for response time. This is an important consideration because it
provides first-level analysis of potential problem areas within the use case. You
should have addressed this after identifying the key use cases during pre-
engagement NFR capture.

e Identify and apply any scripting changes required for use cases to replay correctly.
If you have already carried out a POC, then you should have a sense of the nature
of these changes and the time required to implement them.

PERFORMANCE TESTING APPROACH

www.it-ebooks.info

http://www.it-ebooks.info/

72

e Ensure that the use case replays correctly—from both a single-user and multiuser
perspective—before signing it off as ready to include in a performance test. Make
sure that you can verify what happens on replay either by, for example, checking
that database updates have occurred correctly or examining replay logfiles.

Step 4: Performance Test Scenario Build

Making use of the load model created as part of NFR capture, consider the following
points for each performance test scenario that you create:

e What kind of test will this represent—pipe-clean, volume, soak, or stress? A typi-
cal scenario is to run pipe-clean tests for each use case initially as a single user to
establish a performance baseline, and then up to the target maximum currency or
throughput for the use case. If problems are encountered at this stage, you may
need to run isolation tests to identify and deal with what’s wrong. This would be
followed by a volume test combining all use cases up to target concurrency, which
would in turn be followed by further isolation tests if problems are discovered.
You may then want to run stress and soak tests for the final testing cycles, fol-
lowed perhaps by non-performance-related tests that focus on optimizing the load
balancing configuration or perhaps exploring different disaster recovery scenarios.

¢ Decide how you will represent think time and pacing for each use case included in
the testing. You should normally include think time and pacing in all performance
test types (except possibly the stress test); otherwise, you run the risk of creating
an unrealistic throughput model.

e For each use case, decide how many load injector deployments you require and
how many virtual users to assign to each point of presence. As already mentioned,
if your load injectors are widely distributed, then be sure there’s a local expert
available to deal with any problems that may surface and don’t forget the option
of cloud-based load injectors.

e Decide on the injection profile for each load injector deployment Big Bang, ramp-
up, ramp-up/ramp-down with step, or delayed start. Depending on what you are
trying to achieve, your choices will likely involve a combination of Big Bang
deployments to represent static load and one or more of the ramp variations to
test for scalability. Figure 4-2 demonstrates a performance test plan using this
approach. The darker rectangles on the bottom show the static load created by the
Big Bang deployment, on top of which a variety of extra load tests are deployed in
ramp-up steps.

o Will the test execute for a set period of time or rather be stopped by running out
of data, reaching a certain number of use-case iterations, or user intervention? If
the test will be data-driven, make sure that you have created enough test data!

CHAPTER FOUR: THE PROCESS OF PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

e Do you need to spoof IP addresses to correctly exercise application load balancing
requirements? If so, then the customer will need to provide a list of valid IP
addresses, and these will have to be distributed and configured against the load
injection machines.

¢ Do you need to simulate different baud rates? If so, then confirm the different
baud rates required. Any response-time prediction or capacity modeling carried
out prior to performance testing should have already given you valuable insight
into how the application reacts to bandwidth restrictions.

e What runtime monitoring needs to be configured using the server and network
KPIs that have already been set up? If appropriate, the actual monitoring software
should have been deployed as part of the test environment build phase, and you
should already have a clear idea of exactly what to monitor in the system under
test (SUT).

e If this is a web-based performance test, what level of browser caching simulation
do you need to provide—new user, active user, returning user? This will very
much depend on the capabilities of your performance testing solution. See Chap-
ter 9 for a discussion on caching simulation.

e Consider any effects that the application technology will have on your perfor-
mance test design. For example, SAP performance tests that make use of the SAP-
GUI client will have a higher resource requirement than, say, a simple terminal
emulator and thus will require more load injector machines to generate a given
number of virtual users. Chapter 9 discusses additional considerations for SAP and
other application technologies.

-

=

=
|

Rep. Load :

Rep. Load

o
=]

Rep. Load

x)
=

Fep. Load

.
-

Users (Percentage)

20

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 3

Figure 4-2. Performance test plan using background (static) load and ramp-up injection
profiles

PERFORMANCE TESTING APPROACH 73

www.it-ebooks.info

http://www.it-ebooks.info/

Step 5: Performance Test Execution

Run and monitor your tests. Make sure that you carry out a dress rehearsal of each
performance test scenario as a final check that there are no problems accessing the
application or with the test configuration.

This phase should be the most straightforward part of any performance testing project.
You’ve done the hard work: preparing the test environment, creating the scripts,
addressing the data requirements, and building the performance tests. In an ideal
world, performance test execution would be solely a matter of validating your applica-
tion performance targets. It should not become a bug-fixing exercise.

The only unknown is how many test cycles will be required before your performance
testing goals are achieved. I wish I could answer this question for you, but like many
things in life, this is in the hands of the gods. But if you’ve followed the suggested per-
formance testing checklist religiously to this point, you're in pretty good shape to be
granted a miracle!

Looking at the execution process, I recommend that you run tests in the following
order:

1. Execute dress-rehearsal or pipe-clean tests as a final check on your performance
test environment and test scenarios to ensure that you haven’t omitted anything
fundamental in your performance test configuration—for example, forgetting to
include an external data file needed by a script.

2. Execute volume tests, ideally resetting target database content between test cycles.
Once you have established performance baselines, the volume test is normally the
next step: all scripted use cases should be apportioned among the target number
of virtual users as per the application load model.

3. Execute isolation tests to explore any problems revealed by volume testing and
then supply results to the developers or application vendor. This is why it’s impor-
tant to allow contingency time in your test plan, since even minor problems can
have a significant impact on project time scales.

4. Execute stress tests, which are crucial from a capacity perspective. You should
have a clear understanding of how much spare capacity remains within the host-
ing infrastructure at peak load to allow for future growth. You may also use stress
testing to establish horizontal scalability limits for servers at a particular applica-
tion tier.

5. Execute soak tests to reveal any memory leaks or problems related to high-
volume executions. Although it is not always feasible, I strongly recommend you
include soak testing in your performance testing plan.

74 CHAPTER FOUR: THE PROCESS OF PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

6. Execute any tests that are not performance related. For example, experiment with
different load balancing configurations.

Step 6: Post-Test Analysis and Reporting

The final step involves collecting and analyzing data from all test runs, creating reports
and a performance baseline, and possibly retesting:

e Carry out final data collection (and possibly software uninstall if you are providing
a service to a customer). Make sure that you capture and back up all data created
as part of the performance testing project. It’s easy to overlook important metrics
and then discover they’re missing as you prepare the project report.

e Determine success or failure by comparing test results to performance targets set
as part of project requirements. Consensus on performance targets and delivera-
bles prior to the project’s commencement makes the task of presenting results and
proving application compliance a great deal less painful. (See Chapter 3 for a dis-
cussion on gaining consensus.)

e Document the results using your preferred reporting template. The format of the
report will be based on your own preferences and company or customer require-
ments, but it should include sections for each of the performance targets defined
during NFR capture. This makes it much easier to present and justify the findings
to the client.

Case Study 1: Online Banking
Now let’s move on to the first case study, which I will refer to as Online Banking.

Online Banking is a critical customer-facing web application for a large multinational
bank. It’s been around for some time and provides a good service to the bank’s cus-
tomers. The motivation for the performance testing project that we’ll discuss was an
imminent expansion in terms of customer numbers and a need to explore the capacity
limits of the current application infrastructure. The aim was to establish a baseline
model for horizontal scaling of servers at the web, application server, and database
tiers.

CASE STUDY 1: ONLINE BANKING

www.it-ebooks.info

75

http://www.it-ebooks.info/

Application Landscape

Figure 4-3 shows the application landscape for Online Banking, which includes the
following elements:

Clients
This application provides a service to customers of the bank who connect using
the Internet. This means that customers use whatever Internet browser software
they prefer. Microsoft’s Internet Explorer is still the most common choice, but
there are many others, including Mozilla, Firefox, Opera, and Netscape. There is
no requirement for the end user to have any other software installed apart from
her preferred browser.

Mid-tier servers
Because the application is web-based, the first tier is web servers. There are two
quad-blade servers, each running Windows 2003 Server as the operating system
and Microsoft’s IIS 6 as the web server software. The servers are load-balanced
through Microsoft’s Network Load Balancing (NLB) technology. Behind the two
web servers is a mid-tier layer of a single dual-CPU application server.

Database servers
This is a single high-specification machine running MS SQL 2005 database soft-
ware on Windows 2003 Server.

Network infrastructure
All servers reside in a single data center with gigabit Ethernet connectivity. Inter-
net connectivity to the data center consists of a single 8 Mb WAN link to the local
Internet backbone. There is also a 100 Mb LAN connection to the company net-
work.

Application Users

The application currently supports a maximum of approximately 380 concurrent users
at the busiest point during a 24-hour period. These are mainly Internet customers,
although there are likely to be a number of internal users carrying out administration
tasks. Every user has a unique set of login credentials and a challenge/response secu-
rity question. The services provided by the application are typical for online banking:

e Viewing statements
e Making payments
e Setting up direct deposits and standing orders

e Applying for a personal loan

76 CHAPTER FOUR: THE PROCESS OF PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Load injection

Call center infrastructure

Application Database
server server

ALY
I

Load injectors

<4+—> Web servers

4

Management station

Figure 4-3. Online Banking application landscape

Step 1: Pre-Engagement NFR Capture

Project time scales amounted to a week of lead time and three days to carry out the
testing engagement. The client decided to outsource the entire testing project because
of the short schedule and lack of in-house testing expertise.

The test environment required little preparation, since testing was to be carried out
using the production infrastructure. (More on this approach in Step 2.)

Performance targets for online banking were limited to availability and concurrency.
The application had to be available and performant at a concurrent load of 1,000 vir-
tual users. As mentioned, the application was coping with approximately 380 concur-
rent users at peak periods on a daily basis without problems, but this number was
expected to increase significantly during the next year.

Ten use cases were identified as core to the performance testing project. Input data
requirements amounted to a list of card numbers representing real user accounts and
an accompanying PIN that provided an additional level of account security. Target data
requirements were unusually straightforward in that the production application data-

CASE STUDY 1: ONLINE BANKING

www.it-ebooks.info

77

http://www.it-ebooks.info/

78

base was to be used with the caveat of no insert or update use cases unless the use
case backed up any changes made to the database as its final action.

The only performance test identified was a progressive ramp-up (without step) to the
target concurrency of 1,000 virtual users. Had more time been available, a ramp-up
with step variation would have provided a more granular view of steady-state perfor-
mance.

Server and network KPIs focused on generic Windows performance metrics. There was
no requirement to specifically monitor the application server or database layer. It sub-
sequently transpired that application server monitoring would have been useful to
identify poorly performing Java components whose presence had to be extrapolated
from slow rendering of client-side content.

Step 2: Test Environment Build

What was unusual about this project was that there was no dedicated test environ-
ment. All performance testing was carried out against the production infrastructure.
This is certainly not the norm, but neither is it a unique situation.

This case study provided some unique challenges (although an accurate test environ-
ment was not one of them). The first was dealing with an application already deployed
and being actively used by customers and internal users. Any testing could be affected
by other user activity, so we had to take this into account when examining test results.
In addition, performance test execution would definitely have an impact on the expe-
rience of real end users, particularly if high volumes of load are being generated.

So in this rather unusual situation, the performance test environment was immedi-
ately available and consisted of the following:

e Two load-balanced web servers
e One application server

¢ One database server

The one element missing was the resource needed to inject load. This resource was
identified as four PCs as injectors to provide a load of 1,000 virtual users (250 users
per machine), with one PC also acting as the test management station. Another con-
sideration was that the volume load had to be injected onto the 8 Mb WAN link that
provided the connection from the Internet to the corporate data center. This involved
distributing the load across a number of proxy servers to minimize the chance of over-
loading any single point of entry.

Because performance testing was carried out on the live environment, it was not pos-
sible to use integrated server and network monitoring capabilities of the chosen perfor-

CHAPTER FOUR: THE PROCESS OF PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

mance test tool. Corporate security constraints prevented the installation onto produc-
tion servers of any software that was not part of the standard build configuration. (The
infrastructure was, after all, for a live banking application, so the restrictions were
hardly surprising or draconian.)

This was an example of installation constraints. Internal security policies can prohibit
the installation of monitoring software onto the target servers or even connecting to
them remotely. In these circumstances, the only options are to dispense with infra-
structure monitoring altogether (not recommended) or to rely on whatever independ-
ent monitoring software has access to the application landscape.

For Online Banking it was possible to make use of Microsoft’s Performance Monitor
(Perfmon) application to view server performance under load. This software is nor-
mally part of a default install on Windows server operating systems. A generic set of
Windows server KPIs was instrumented with Perfmon and set to run in parallel with
each performance test execution.

Step 3: Use-Case Scripting

The 10 use cases that were identified as key activities are listed in Table 4-1. Because
this was a vanilla browser-based application, there were few challenges recording and
preparing the scripts. The only complication concerned session data requirements that
involved adding logic to the scripts to deal with the random selection of three charac-
ters from the account PIN at application login.

Table 4-1. Online Banking use cases

Use case Description

MiniStatement Log in, view a mini statement, log out
CustomStatement Log in, view a custom statement, log out
ViewStandingOrders Log in, view standing orders, log out
TextAlertCreateCancel Log in, create or cancel a text alert, log out
TransferBetweenOwnAccount Log in, transfer an amount between personal

accounts, log out

BillPaymentCreate Log in, create a bill payment to a nominated
beneficiary, log out

BusMiniStatement Log in, generate a mini statement for nominated
card numbers, log out

BusCustomStatement Log in, generate a custom statement for nominated
card numbers, log out

CASE STUDY 1: ONLINE BANKING

www.it-ebooks.info

79

http://www.it-ebooks.info/

Use case Description

BusTransferBetweenOwnAccounts | Log in, transfer $5.00 between personal accounts
for nominated card number, log out

BusBillPaymentCreate Log in, create a $5.00 bill payment to nominated

beneficiary for nominated card numbers, log out

Once logged in, users were restricted to visibility of their own account information.
This limited search activity to date/account ranges and meant that the resulting scripts
were navigation-driven rather than data-driven.

Step 4: Performance Test Build

For Online Banking the performance test design was based on scaling from 1 to 1,000
concurrent virtual users. The test was designed so that all users were active after a 30-
minute period. Because different numbers of users were assigned to each use case,
each one had its own injection rate.

As shown in Table 4-2, the number of virtual users assigned to each use case was
based on an assessment of their likely frequency during a 24-hour period (this infor-
mation is displayed in the table’s fourth column). For example, the transaction MiniS-
tatement was considered the most common activity, since most customers who use an
online banking service will want to check their latest statement. (I know it’s usually
my first port of call!) As a result, 416 virtual users out of the 1,000 were allocated to
this activity.

Table 4-2. Virtual user injection profile

Target
Starting Injection rate per virtual
Use case virtual users one virtual user users
MiniStatement 1 4 seconds 416
CustomStatement 1 26 seconds 69
ViewStandingOrders 1 26 seconds 69
TextAlertCreateCancel 1 2 minutes, 18 13
seconds
TransferBetweenOwnAccounts 1 12 seconds 145
BillPaymentCreate 1 8 seconds 225
BusMiniStatement 1 55 seconds 33
BusCustomStatement 1 7 minutes, 30 4
seconds

80 CHAPTER FOUR: THE PROCESS OF PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Target

Starting Injection rate per virtual
Use case virtual users one virtual user users
BusTransferBetweenOwnAccounts | 1 3 minutes 10
BusBillPaymentCreate 1 1 minute, 52 16
seconds

Differing numbers of users per use case required different injection rates to ensure that
all virtual users were active after a 30-minute period; this information is demonstrated
in column three, which shows how the virtual users were injected into the perfor-
mance test. An important consideration to performance test design involves the accu-
rate simulation of throughput. You may recall our discussion in Chapter 3 about con-
currency and how the number of concurrent virtual users does not necessarily reflect
the number of users actually logged in to the application. For Online Banking it was
necessary to apply specific pacing values to the performance test and transactions; this
ensured that throughput did not reach unrealistic levels during test execution.

Step 5: Performance Test Execution

Performance test execution principally involved multiple executions of ramp-up
(without step) from 1 to 1,000 virtual users. As already mentioned, there was no inte-
gration of KPI monitoring of server or network data. Although the appropriate KPIs
were identified as part of NFR capture, this information was monitored separately by
the customer. Consequently, test execution had to be synchronized with existing mon-
itoring tools—in this case, Perfmon.

The client also monitored the number of active users independently over the period of
the performance test. This raises an interesting point concerning the definition of con-
currency. For an application, concurrency measures the number of users actually log-
ged in. But automated performance tools measure concurrency as the number of
active virtual users, which exclude virtual users who are logged in but kept in a wait-
ing state. If your performance testing use cases include logging in and logging out as
part of the execution flow (as was the case with Online Banking), then the number of
active virtual users will be fewer than the number of users as seen by the application.
Therefore, you will need to inflate the number of virtual users or (as I did with Online
Banking) use a slower pacing and execution rate to extend the time that virtual users
remained logged in to the application and so create the proper concurrent load.

Online Banking Case Study Review

Let’s now assess the Online Banking case study in light of the suggested performance
testing requirements checklist:

CASE STUDY 1: ONLINE BANKING

www.it-ebooks.info

81

http://www.it-ebooks.info/

The test team
The test team amounted to a single individual—certainly not the ideal situation,
but not uncommon. Companies that provide performance testing as a service will
generally supply a minimum of a project manager and at least one testing opera-
tive. When performance testing is carried out in-house, the situation is more fluid:
many organizations do not have a dedicated performance testing team and tend to
allocate resources on an ad hoc basis. For medium to large enterprises that carry
out regular performance testing, a dedicated performance testing resource is a
necessity in my view.

The test environment
In terms of providing an accurate performance testing environment, this case was
ideal in terms of similarity to the deployment environment (i.e., they were one
and the same). This relatively unusual situation led to the challenges of other
activity affecting the performance testing results and the potentially negative
effect of scalability testing on real application users. If these challenges can be
managed successfully, then this approach provides an ideal, albeit unusual, perfor-
mance test environment.

KPI monitoring
As mentioned previously, internal constraints prevented the use of any integrated
monitoring with the performance testing tool. It was therefore necessary for cus-
tomers to carry out their own monitoring, after which the testing team had to
manually integrate this data with that provided by the performance testing tool.
These situations are far from ideal because they complicate the analysis process
and make it difficult to accurately align response time and scalability data with
network and server performance metrics. However, sometimes there is no choice.
In this particular case, the performance data was exported to MS Excel in CSV for-
mat to allow graphical analysis. The ability to import third-party data into the
analysis module of your performance testing tool is an extremely useful feature if
you are unable to use integrated KPI monitoring.

Performance targets
The sole performance target was scalability based on 1,000 concurrent users.
There was no formal requirement for a minimum response time, which could
have been estimated fairly easily since the application was already deployed and
in regular use. The 1,000-user scalability target was arrived at in a rather arbitrary
manner, and there was little evidence of consensus between the application stake-
holders. This can be a significant risk to any performance testing project because it
opens the door to challenges to interpretation of the results. In this case, inde-
pendent monitoring of application end-user activity during performance test exe-
cution allayed any fears that the stated load was not achieved. As discussed earlier,
even though the performance test tool achieved 1,000 concurrent virtual users,

82 CHAPTER FOUR: THE PROCESS OF PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

this on its own would not have achieved the target of 1,000 concurrent applica-
tion users. The difference was addressed by several hundred real users being active
during performance test execution, who effectively topped up the number of con-
current application users generated by the performance testing tool.

Use-case scripting
Ten use cases were selected and carefully documented in order to preclude any
ambiguity over what was recorded. This followed the general trend whereby it is
unusual to require more than 20 unique use cases in a performance testing
engagement. The only required scripting changes involved login security.

Data requirements
Input data requirements for Online Banking were limited to a list of valid card
numbers. These numbers provided initial access to the application for each virtual
user. The target database was the live database, which presented no problems in
terms of content or realistic sizing. However, the use cases were limited in terms of
what data could be committed to the database. Although there was significant
testing of user activity via database reads, there was little opportunity to test the
effects of significant database write activity, and this introduced an element of risk.
Session data requirements involved the identification and reuse of a set of stan-
dard challenge/response questions together with random characters selected from
a range of PINs associated with the card number data used as input to the test use
cases.

Performance test design
Performance test design focused on a single test type that I would characterize as a
load test. The application was already comfortably supporting 380 users at peak
periods, and the stated intention was to try to achieve 1,000 users—some five
times the existing capacity. As already mentioned, the test design incorporated
specific pacing changes to ensure that an accurate throughput was maintained.

Case Study 2: Call Center

The second case study involves an application that is very different from Online Bank-
ing: a typical call center that provides driver and vehicle testing services to a region of
the United Kingdom. The Call Center application undergoes frequent code changes as
a result of government legislation changes, and there is a requirement to performance
test the application prior to each new release. Extensive user acceptance testing (UAT)
is carried out to eliminate any significant functional issues before the updated applica-
tion is released for performance testing.

Application Landscape

The landscape for the Call Center application is demonstrated by Figure 4-4.

CASE STUDY 2: CALL CENTER

www.it-ebooks.info

http://www.it-ebooks.info/

Load injection

Call center infrastructure

Web server

Load injector < >

Database
server

Management station Application server

Figure 4-4. Call Center application landscape

Clients
The application client is slightly unusual in that it is a traditional fat client written
in Visual Basic but makes use of web services technology to connect to the appli-
cation server layer. There are two versions of the fat client deployed: one for the
call-center operators and another for operators at each of the regional vehicle test-
ing centers. There is also a public-domain self-service website available with a
limited set of functionality. Public users can use whatever Internet browser soft-
ware they prefer.

Mid-tier servers
The mid-tier application architecture consists of two load-balanced application
servers running Windows 2003 Server OS directly connected to call-center clients
and a web server layer providing connectivity for public domain users.

Database servers
The database server is a single high-specification machine running the MS SQL
database software on Windows 2003 Server.

Network infrastructure
All servers reside in a single data center with gigabit Ethernet connectivity. All
connectivity to the application servers is via 100 Mb LAN for call-center users or
via ISP connection for public domain users.

84 CHAPTER FOUR: THE PROCESS OF PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Application Users

There is a typical maximum of 100 concurrent users during a normal working day in
addition to an increasing number of self-service users through the 24/7 public-facing
web portal. The call-center and regional test-center users each have their own login
credentials, whereas web portal users provide information about their vehicle or driv-
er’s license to initiate a session. Typical transaction volumes are in the order of 1,500
transactions per 24-hour period.

Step 1: Pre-Engagement NFR Capture

Project time scales were typical, amounting to a week of lead time and five days to
carry out the testing engagement. The client had outsourced the entire testing project
for a number of years because it lacked in-house performance testing expertise.

A dedicated performance test environment was provided, although (as is often the
case) the number and specification of servers differed from the live environment.

Performance targets for the Call Center case study were availability, concurrency, and
response time. The application had to be available and performant at a concurrent load
of 100 virtual users. In terms of response-time targets, performance at the web service
level had to match or exceed that of the previous release.

Five use cases were identified as core to the performance testing project. Input data
requirements were relatively complex and involved the following types of data.

Call-center use IDs
A range of call-center login credentials was needed to provide variation in user
sessions. For the target concurrency of 100 users, 20 sets of credential were pro-
vided.

Test centers
Drivers can book appointments at a number of regional vehicle testing centers, so
a list of all possible test centers was required for a realistic simulation.

Vehicle registration numbers
Because appointments could be booked by vehicle registration number, a large
number of valid registration numbers needed to be made available.

Driver’s license numbers
Appointments could also be booked on behalf of the driver, so the vehicle registra-
tion numbers had to be accompanied by a list of valid driver’s license numbers.

The target database was a recent copy of the live database, so there were no problems
with inadequate data sizing affecting performance test results. Although normally
desirable, in this case the test database was rarely restored between performance test
runs (it would have required a fresh cut of live data).

CASE STUDY 2: CALL CENTER

www.it-ebooks.info

85

http://www.it-ebooks.info/

86

Performance tests used the ramp-up-with-step approach, reaching the target of 100
concurrent users. The tests would start focusing on baseline performance for each use
case, which ran with one virtual user in steady state for 10 minutes. Ramp-up then
came in increments of 25 users with a steady-state period of 15 minutes at each step.
The 15-minute period of stability allowed incremental observation of steady-state per-
formance.

Server and network KPIs focused once again on generic Windows performance met-
rics, although this time it was possible to use the integrated monitoring capability of
the performance testing tool.

The testing team for this case study was more conventional in that a project manager
and testing consultant were assigned to the engagement. As mentioned before, I see
this as the typical staffing requirement for the majority of performance testing projects.

Step 2: Test Environment Build

In Chapter 3 we discussed the need to set up the performance test environment cor-
rectly. What is important is to retain the deployment architecture in terms of the dif-
ferent types of server tiers. The test environment for our case study manages to retain
the tier deployment, but it has only a single application server whereas the live envi-
ronment has two that are load-balanced. This implies less capacity, which we must
take into account when building our performance tests.

As shown earlier, the performance test environment for the call center comprised the
following:

e One web server

¢ One application server

¢ One database server

Load injection was provided by two workstations, one to inject the load and another
to act as the management station.

Network analysis was carried out using packet-level sniffer technology to determine
the amount of data presentation per use case and to model application performance in
a WAN environment. This is a valuable exercise to carry out prior to performance test-
ing because it enables additional tuning and optimization of an application, potentially
removing a layer of problems that may affect performance and scalability.

Step 3: Use-Case Scripting

For the Call Center case study, five use cases were identified that could all be consid-
ered active. Since the call-center and regional test-center clients were similar, the test
use cases were selected only from the call center. Session data requirements were com-

CHAPTER FOUR: THE PROCESS OF PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

plex, requiring the extraction and reuse of information relating to the appointment
booking selection. It was necessary to add code to the scripts to extract the required
information. Unforeseen scripting challenges can have a significant impact on perfor-
mance testing projects; it is therefore extremely important to identify and resolve them
in advance of the scripting phase.

To ensure that the target concurrency was achieved, login and logout were not
included as iterative activities during performance test execution. Each virtual user
logged in at the start of the performance test and remained logged in until test conclu-
sion, when the final action was to log out. Table 4-3 lists the use cases tested.

Table 4-3. Call Center use cases

Use case Description

DriverBookingSearch Log in, search for first available driver booking slots, log out
FindSlotFirstAvailable Log in, search for first available vehicle booking slots, log out
FindVRN Log in, find vehicle by registration number, log out

SearchForAppointment Log in, find appointment by appointment ID number, log out

VehicleBooking Log in, make a vehicle booking, log out

Step 4: Performance Test Scenario Build

The Call Center application architecture is based on web services that invoke stored
procedure calls on the MS SQL database. Historical problems with changes to web
services and stored procedure calls between releases highlighted the importance of
timing each web service call and monitoring the impact on the database server. Thus,
timing checkpoints were inserted between all web service calls to allow granular tim-
ing of each request.

Step 5: Performance Test Execution

Performance test execution involved the following steps:

1. Pipe-clean test execution for each use case, executing as a single user for a period
of 10 minutes to establish a performance baseline.

2. Then ramp-up with step execution for each use case in increments of 25 virtual
users, with a steady-state period of 15 minutes at each increment.

Since the use cases in the Call Center case study did not include login and logout
within their execution loop, there were no challenges with maintaining true applica-
tion user concurrency (as had occurred in the Online Banking case study).

CASE STUDY 2: CALL CENTER

www.it-ebooks.info

87

http://www.it-ebooks.info/

Call Center Case Study Review
Let’s now assess the Call Center case study in terms of our checklist:

The test team
The test team consisted of a project manager and a single test operative, meeting
what I consider to be typical requirements for a performance testing project.
Because the application was not developed in-house, any problems that arose had
to be fed back to the application vendor. This meant that test execution had to be
suspended while the problems were investigated, which led on more than one
occasion to a postponement of the target deployment date.

The test environment
The environment was typical: dedicated hardware isolated from the production
infrastructure in its own network environment. Application tier deployment
largely matched that of the production application; the one major difference was
the single application server versus the load-balanced pair of the production envi-
ronment. Any significant difference in the number of application servers between
test and production could lead to a bottleneck in the mid-tier. In such cases you
should approach any stress-testing requirements with caution. An excessively
aggressive injection profile might result in premature application server overload
and misleading results.

KPI monitoring
Because a dedicated testing environment was available, there were no obstacles to
using the integrated server and network monitoring capability of the chosen per-
formance testing tool. We obtained server information by integrating the testing
tool with Microsoft’s Perfmon application. This is the preferred situation, and it
allowed automated correlation of response time and monitoring data at the con-
clusion of each performance test execution—an important benefit of using auto-
mated performance testing tools.

Performance targets
Performance targets were supporting a concurrency of 100 users and ensuring
that response time did not deteriorate from that observed during the previous
round of testing. We used checkpointing to focus on web service performance and
to provide an easy mechanism for comparing releases.

Scripting
Five use cases were selected from the call-center client to be used as the basis for
performance testing the application. Scripting challenges focused on the unusual
nature of the application architecture, which involved large numbers of web ser-
vice requests, each with an extensive set of parameters. These parameters would
frequently change between releases, and the accompanying documentation was

88 CHAPTER FOUR: THE PROCESS OF PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

often unclear. This made it difficult to identify exactly what changes had occurred.
As a result, scripting time varied considerably between testing cycles and some-
times required creation of a completely new set of scripts (rather than the prefer-
red method of copying the scripts from the previous testing cycle and simply mod-
ifying the code). This shows the vulnerability of scripted use cases to code being
invalidated by changes introduced in a new release.

Data requirements
Input data requirements for the Call Center were more complex than those for
Online Banking. Large numbers of valid booking and vehicle registration numbers
were needed before testing could proceed. We handled this task by extracting the
relevant information from the target database via SQL scripts and then outputting
the information in CSV format files. The target database was a recent copy of the
live database, which once again presented no problems in terms of realistic con-
tent or sizing. Since this was a true test environment, there were no restrictions
on the type of end-user activity that could be represented by the scripted use
cases. The one negative factor was the decision not to restore the database
between test runs. I always advise that data be restored between test executions in
order to avoid any effects on performance test results that are caused by changes
in database content from previous test runs. Session data requirements were
rather complex and involved the interception and reuse of several different data
elements, which represent server-generated information about the vehicle book-
ing process. This made creating the original scripts a nontrivial exercise requiring
the involvement of the application developers.

Performance test design
This test design used the ramp-up-with-step approach, which allowed observation
of steady-state response time of the application at increments of 25 virtual users
for intervals of approximately 15 minutes.

Summary

I hope that the case studies in this chapter have struck some chords and that the
checklists provided outline a practical way for you to approach application perfor-
mance testing. The next step is to look at test execution and try to make sense of the
information coming back from your performance testing toolset and KPI monitoring.

SUMMARY

www.it-ebooks.info

89

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER FIVE

Interpreting Results: Effective
Root-Cause Analysis

Statistics are like lamp posts: they are good to lean on,
but they often don’t shed much light.

—Anonymous

OK, SO I'M RUNNING A PERFORMANCE TEST—WHAT'’S IT TELLING ME? THE

correct interpretation of results is obviously vitally important. Since we're assuming
you’'ve (hopefully) set proper performance targets as part of your testing requirements,
you should be able to spot problems quickly during the test or as part of the analysis
process at test completion.

If your application concurrency target was 250 users, crashing and burning at 50 rep-
resents an obvious failure. What’s important is having all the necessary information at
hand to detect when things go wrong and diagnose what happened when they do.
Performance test execution is often a series of false starts, especially if the application
you're testing has significant design or configuration problems.

I'll begin this chapter by talking a little about the types of information you should
expect to see from an automated performance test tool. Then we’ll look at real-world
examples, some of which are based on the case studies in Chapter 4.

——NOTE

For the purposes of this chapter you can define root-cause analysis as a method
of problem solving that tries to identify the root causes of (performance) prob-
lems. This is distinct from a causal factor that may affect an event's outcome but
is not a root cause. (Courtesy of Wikipedia.)

www.it-ebooks.info

91

http://en.wikipedia.org/wiki/Root_cause_analysis
http://www.it-ebooks.info/

The Analysis Process

Depending on the capabilities of your performance test tooling, analysis can be per-
formed either as the test executes (in real time) or at its conclusion. Let’s take a look at
each approach in turn.

Real-Time Analysis

Real-time analysis is very much a matter of what I call watchful waiting. You're essen-
tially waiting for something to happen or for the test to complete without apparent
incident. If a problem does occur, your KPI monitoring tools are responsible for report-
ing the location of the problem in the application landscape. If your performance test-
ing tool can react to configured events, you should make use of this facility to alert
you when any KPI metric is starting to come off the rails.

——NOTE

As it happens, watchful waiting is also a term used by the medical profession to
describe watching the progress of some fairly nasty diseases. Here, however, the
worst you're likely to suffer from is boredom or perhaps catching cold after sitting
for hours in an overly air-conditioned data center. (These places are definitely not
designed with humans in mind!)

So while you are sitting there bored and shivering, what should you expect to see as a
performance test is executing? The answer very much depends on the capabilities of
your performance testing tool. As a general rule, the more you pay, the more sophisti-
cated the analysis capabilities are. But at an absolute minimum, I would expect to see
the following:

¢ You need response-time data for each use case in the performance test in tabular
and graphical form. The data should cover the complete use case as well as any
subparts that have been separately marked for analysis. This might include such
activities as the time to complete login or the time to complete a search.

e You must be able to monitor the injection profile for the number of users assigned
to each script and a total value for the overall test. From this information you will
be able to see how the application reacts in direct response to increasing user load
and throughput.

¢ You should be able to monitor the state of all load injectors so you can check that
they are not being overloaded.

¢ You need to monitor data that relates to any server, application server, or network
KPIs that have been set up as part of the performance test. This may involve inte-
gration with other monitoring software if you're using a prepackaged performance
testing solution rather than just a performance testing tool.

92 CHAPTER FIVE: INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

¢ You need a display of any performance thresholds configured as part of the test
and an indication of any breaches that occur.

e You need a display of all errors that occur during test execution that includes the
time of occurrence, the virtual users affected, an explanation of the error, and pos-
sibly advice on how to correct the error condition.

Post-Test Analysis

All performance-related information that was gathered during the test should be avail-
able at the test’s conclusion and may be stored in a database repository or as part of a
simple file structure. The storage structure is not particularly important so long as
you're not at risk of losing data and it’s readily accessible. At a minimum, the data you
acquired during real-time monitoring should be available afterward. Ideally, you
should also have additional information available, such as error analysis for any virtual
users who encountered problems during test execution.

This is one of the enormous advantages of using automated performance testing tools:
the output of each test run is stored for future reference. This means that you can
easily compare two or more sets of test results and see what’s changed. In fact, many
tools provide a templating capability so that you can define in advance the comparison
views you want to see.

As with real-time analysis, the capabilities of your performance testing tool will largely
determine how easy it is to decipher what has been recorded. The less expensive and
open source tools tend to be weaker in the areas of real-time analysis and post-test
analysis and diagnostics.

Make sure that you make a record of what files represent the output of a particular
performance test execution. It’s quite easy to lose track of important data when you're
running multiple test iterations.

Types of Output from a Performance Test

You’'ve probably heard the phrase “Lies, damned lies, and statistics.” Cynicism aside,
statistical analysis lies at the heart of all automated performance test tools. If statistics
are close to your heart, that’s well and good, but for the rest of us I thought it a good
idea to provide a little refresher on some of the jargon to be used in this chapter. For
more detailed information, take a look at Wikipedia or any college text on statistics.

Statistics Primer

What follows is a short discussion on the elements of statistics that are relevant to per-
formance testing:

TYPES OF OUTPUT FROM A PERFORMANCE TEST

www.it-ebooks.info

93

http://www.it-ebooks.info/

Mean and median
Loosely described, the mean is the average of a set of values. It is commonly used
in performance testing to derive average response times. It should be used in con-
junction with the nth percentile (described later) for best effect. There are actually
several different types of mean value, but for the purpose of performance testing
we tend to focus on what is called the arithmetic mean.

For example: to determine the arithmetic mean of 1, 2, 3, 4, 5, 6, simply add them
together and then divide by the number of values (6). The result is an arithmetic
mean of 3.5.

A related metric is the median, which is simply the middle value in a set of num-
bers. This is useful in situations where the calculated arithmetic mean is skewed
by a small number of outliers, resulting in a value that is not a true reflection of
the average.

For example: the arithmetic mean for the number series 1, 2, 2, 2, 3, 9is 3.17, but
the majority of values are 2 or less. In this case, the median value of 2 is thus a
more accurate representation of the true average.

Standard deviation and normal distribution
Another common and useful indicator is standard deviation, which refers to the
average variance from the calculated mean value. It’s based on the assumption
that most data in random, real-life events exhibits a normal distribution—more
familiar to most of us from high school as a bell curve. The higher the standard
deviation, the farther the items of data tend to lie from the mean. Figure 5-1 pro-
vides an example courtesy of Wikipedia.

049

034

0.2

0.1

0.0

I
=30 -2c -lo n lo 20 3o

Figure 5-1. Simple bell curve example

94 CHAPTER FIVE: INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

+ In performance testing terms, a high standard deviation can indicate an erratic end-
user experience. For example, a use case may have a calculated mean response time of
40 seconds but a standard deviation of 30 seconds. This would mean that an end user
has a high chance of experiencing a response time as low as 25 and as high as 55 sec-
onds for the same activity. You should seek to achieve a small standard deviation.

nth percentile
Percentiles are used in statistics to determine where a certain percent of results
fall. For instance, the 40th percentile is the value at or below which 40 percent of
a set of results can be found. Calculating a given percentile for a group of numbers
is not straightforward, but your performance testing tool should handle this auto-
matically. All you normally need to do is select the percentile (anywhere from 1 to
100) to eliminate the values you want to ignore.

For example, let’s take the set of numbers from our earlier skewed example (1, 2,
2,2, 3,9) and ask for the 90th percentile. This would lie between 3 and 9, so we
eliminate the high value 9 from the results. We could then apply our arithmetic
mean to the remaining five values, giving us the much more representative value
of 2 (1 +2+ 2+ 2+ 3divided by 5).

Response-time distribution
Based on the normal distribution model, this is a way of aggregating all the
response times collected during a performance test into a series of groups, or
buckets. This distribution is usually rendered as a bar graph (see Figure 5-2),
where each bar represents a range of response times and what percentage of
transaction iterations fell into that range. You can normally define how many bars
you want in the graph and the time range that each bar represents. The y-axis is
simply an indication of measured response time.

4000
3800
36.00
3400
3200
3000
2600
26.00

g\ 2400

g

5

2 2200

()

c 2000

&

£ 18.00

S 1400

1200

10.00

8.00

6.00

4.00

T I

000]

24.94-55.96 5595 - 86.98 8698-11800 | 11800-14902 | 143.02-16004 | 180.04-21106 | 21106-24208 & 24208-27310 | 27310-30412 30412-33514
Distribution Bin (Seconds)

£ 1600

Figure 5-2. Response-time distribution

TYPES OF OUTPUT FROM A PERFORMANCE TEST

www.it-ebooks.info

95

http://www.it-ebooks.info/

96

Response-Time Measurement

The first set of data you will normally look at is a measurement of application—or,
more correctly, server—response time. Automated performance test tools typically
measure the time it takes for an end user to submit a request to the application and
receive a response. If the application fails to respond to a client request in the required
time, the performance tool will record some form of time-out error. If this situation
occurs frequently, it may be indicative of an overload condition somewhere in the
application landscape. We then need to check the server and network KPIs to help us
determine where the overload occurred.

TIP

An overload doesn't always represent a problem with the application. It may sim-
ply mean that you need to increase one or more time-out values in the perfor-
mance test configuration.

Any application time spent exclusively on the client is rendered as periods of think
time, which represents the normal delays and hesitations that are part of end-user
interaction with a software application. Performance testing tools generally work at
the middleware level—that is, under the presentation layer—so they have no concept
of events such as clicking on a combo box and selecting an item unless this action gen-
erates traffic on the wire.

User activity like this will normally appear as a period of inactivity or sleep time and
may represent a simple delay to simulate the user digesting what has been displayed
on the screen. If you need to time such activities separately, you may need to combine
functional and performance testing tools as part of the same performance test (see
Chapter 9).

These think-time delays are not normally included in response-time measurement,
since your focus is on how long it took for the server to send back a complete response
after a request is submitted. Some tools may break this down further by identifying at
what point the server started to respond and how long it took to complete sending the
response.

Moving on to some examples, the next three figures demonstrate typical response-
time data that would be available as part of the output of a performance test. This
information is commonly available both in real time (as the test is executing) and as
part of the completed test results.

Figure 5-3 depicts simple use-case response time (y-axis) versus the duration of the
performance test (x-axis). On its own this metric tells us little more than the response-
time behavior for each use case over the duration of the performance test. If there are

CHAPTER FIVE: INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

any fundamental problems with the application, then response-time performance is
likely to be bad regardless of the number of active virtual users.

22000
21000
20000
190,00
180.00
17000
160.00
150.00
140,00
13000
12000
11000
10000

Response (Second)

s0.00
.00
0,00
&0.00
s0.00
.00
3000
2000
1000
000
000 10000

20000 30000

400,00

500.00

600,00

Use case response
time

90000 1000.00
Elapsed Time (Second)

70000 800.00 110000 120000 130000 140000 150000 1600.00 170000 1600.00

Figure 5-3. Use-case response time for the performance test duration

Figure 5-4 shows response time for the same test but this time adds the number of
concurrent virtual users. Now you can see the effect of increasing numbers of virtual
users on application response time. You would normally expect an increase in
response time as more virtual users become active, but this should not be in lock step

with increasing load.

22000
21000
20000
190,00
180.00
17000
160.00
150,00
14000
13000
12000
110.00
10000
20.00
.00
.00
60.00
000
400
3000
2000
1000

L+

0.00 100.00

Response (Second)

20000 300.00

400.00

500.00

800.00

10000

Increasing
numbers of
ual users

90.00

8000

7000

€0.00

s0.00

S5 N g0

Use case response
time

90000 1000.00
Elapsed Time (Second)

70000 800.00 110000 120000 130000 140000 150000 1600.00 1700.00 1800.00

Figure 5-4. Use-case response time correlated with concurrent users for test duration

Figure 5-5 builds on the previous two figures by adding response-time data for the
checkpoints that were defined as part of the use case. As mentioned in Chapter 3,
adding checkpoints improves the granularity of response-time analysis and allows cor-
relation of poor response-time performance with the specific activities within a use
case. The figure shows that the spike in use-case response time at approximately 1,500
seconds corresponded to an even more dramatic spike in checkpoints but did not corre-
spond to the number of active virtual users.

TYPES OF OUTPUT FROM A PERFORMANCE TEST 97

www.it-ebooks.info

http://www.it-ebooks.info/

22000 100.00
21000
20000
190,00
180.00
17000
180.00
150,00
14000

13000 60.00 §

8 12000 T

o0 :

£ 10000 7
& o000
.00

70.00 l 3000 8

50.00] 1 i 2

am 5 rops—
40.00 'l i Checkpoint
J recpones tmss

9000

2000

7000

101

24 'S1950 BN

Re

2000

o

2000

1000 g i A g e ;

L VIVART VN 0P (OB § W QPR S L T RN o o T R N

o0 10000 20000 30000 40000 500D G0000 70000 S00UO SO000 {00000 {10000 120000 130000 140000 150000 180000 70000 100,00
Elapsed Time (Second)

1000

Figure 5-5. Use-case and checkpoint response time correlated with concurrent users

In fact, the response-time spike at about 1,500 seconds was caused by an invalid set of
login credentials supplied as part of the input data. This demonstrates the effect that
inappropriate data can have on the results of a performance test.

Figure 5-6 provides a tabular view of response-time data graphed in the earlier exam-
ples. Here we see references to mean and standard deviation values for the complete
use case and for each checkpoint.

Mame hin Mean LS Last Std Dev.
Transaction Response Time 248380 §6.0255 J335.1410 2027350 E1.57T
Total Running Virtusl Users 10.0000 455 7353 913.0000 913.0000 261 5142
Login Response Time 0.7E660 73413 24 2350 7870 53617
Security Guestion Responzse Time 05330 B.7az24 206250 £ 9690 50116
Click Custom Statements Response Time 08120 E.0654 350470 47970 5.2828
Showy Statement Response Time 07970 E.05582 159630 §.4840 4.0250
Logoff Response Time 1.2030 151565 245.0940 10.7520 22105

Figure 5-6. Table of response-time data

Performance testing tools should provide us with a clear starting point for analysis. For
example, Figure 5-7 lists the 10 worst-performing checkpoints for all the use cases
within a performance test. This sort of graph is useful for highlighting problem areas
when there are many checkpoints and use cases.

98 CHAPTER FIVE: INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

15.00

12.00
Q.00
g.00
f
.00] I l
o : ! | | (]
1 2 3 4 5 B 7 g 9 10
Checkpoint
. UsenGet SlobResponse Time . 2. Uzer'LoginiResponse Time
. UserPick Test Category'Respanse Time 4. UserOk MotificationResponze Time
. UserSelect Siot\Response Time . 6. UserTestCentre FindSlots KMLReC'Response Time
. UserDiary LockSlotResponse Time . 8. Userdppointment GetlastFeeChangebate XMLReC'Responze Time
. Uservehicle.GetvehicleXMLRec'Response Time . 10. UzerTestBooker BookAppoirtment Response Time

Figure 5-7. Top 10 worst-performing checkpoints

Throughput and Capacity

Along with response time, performance testers are usually most interested in how
much data or how many use cases can be handled simultaneously. You can think of
this measurement as throughput to emphasize how fast a particular number of use
cases are handled, or as capacity to emphasize how many use cases can be handled in
a particular time period.

Figure 5-8 illustrates use-case throughput per second for the duration of a perfor-
mance test. This view shows when peak throughput was achieved and whether any
significant variation in throughput occurred at any point.

26000
25000

100.00

26000
23000 Increasing 000
22000 numbers of
21000 virtual users 5000
20000
13000
180.00 70.00
17000
180.00 000
15000 2
La000 Use case g
8 12000 £
11000 7
100.00 w00y
000
0.00 2000
LA
000
c000 | W 000
4000 | Hl m
5

0.00 10000 20000 30000 40000 50000 600.00 70000 80000 90000 1000.00 110000 120000 1300.00 140000 150000 1600.00 1700.00 1800.00
Elapsed Time (Second)

Figure 5-8. Use-case throughput

A sudden reduction in throughput invariably indicates problems and may coincide
with errors encountered by one or more virtual users. I have seen this frequently
occur when the web server tier reaches its saturation point for incoming requests. Vir-
tual users start to stall while waiting for the web servers to respond, resulting in an
attendant drop in throughput. Eventually users will start to time out and fail, but you
may find that throughput stabilizes again (albeit at a lower level) once the number of
active users is reduced to a level that can be handled by the web servers. If you're

TYPES OF OUTPUT FROM A PERFORMANCE TEST 99

www.it-ebooks.info

http://www.it-ebooks.info/

really unlucky, the web or application servers may not be able to recover and all your
virtual users will fail. In short, reduced throughput is a useful indicator of the capacity
limitations in the web or application server tier.

Figure 5-9 looks at the number of GET and POST requests for active concurrent users

during a web-based performance test. These values should gradually increase over the
duration of the test. Any sudden drop-off, especially when combined with the appear-
ance of virtual user errors, could indicate problems at the web server tier.

100.00

90000.00

Increasing

90.00 numbers of
virtual users 80000.00
80,00

70000.00

70.00
HTTP GET
Requests 60000.00
60.00

5000000
50.00 g

40000.00

Total Virual Users

2000

00 3000000

20.00 HTTP POST 2000000
Requests
10.00 1000000

0.00 —
000 10000 20000 300.00 400.00 500.00 G00.00 700.00 300.00 900.00 1000.00 110000 1200.00 1300.00 1400.00 1500.00 1600.00 1700.00 1300.00

Elapsed Time (Second)

000

Figure 5-9. Concurrent virtual users correlated with web request attempts

Of course, the web servers are not always the cause of the problem. I have seen many
cases where virtual users timed out waiting for a web server response, only to find that
the actual problem was a long-running database query that had not yet returned a
result to the application or web server tier. This demonstrates the importance of setting
up KPI monitoring for all server tiers in the system under test (SUT).

Monitoring Key Performance Indicators

As discussed in Chapter 3, you can determine server and network performance by
configuring your monitoring software to observe the behavior of key generic and
application-specific performance counters. This monitoring software may be included
or integrated with your automated performance testing tool, or it may be an inde-
pendent product. Any server and network KPIs configured as part of performance test-
ing requirements fall into this category.

You can use a number of mechanisms to monitor server and network performance,
depending on your application technology and the capabilities of your performance
testing solution. The following sections divide the tools into categories, describing the
most common technologies in each individual category.

100 CHAPTER FIVE: INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

Remote monitoring

These technologies provide server performance data (along with other metrics) from a
remote system; that is, the server being tested passes data over the network to the part
of your performance testing tool that runs your monitoring software.

The big advantage of using remote monitoring is that you don’t usually need to install
any software onto the servers you want to monitor. This circumvents problems with
internal security policies that prohibit installation of any software that is not part of
the standard build. A remote setup also makes it possible to monitor many servers
from a single location.

That said, each of these monitoring solutions needs to be activated and correctly con-
figured. You'll also need to be provided with an account that has sufficient privilege to
access the monitoring software. You should be aware that some forms of remote moni-
toring, particularly SNMP or anything using remote procedure calls (RPC), may be
prohibited by site policy because they can compromise security.

Common remote monitoring technologies include the following:

Windows Registry
This provides essentially the same information as Microsoft’s Performance Monitor
(Perfmon). Most performance testing tools provide this capability. This is the stan-
dard source of KPI performance information for Windows operating systems and
has been in common use since Windows 2000 was released.

Web-Based Enterprise Management (WBEM)
Web-Based Enterprise Management is a set of systems management technologies
developed to unity the management of distributed computing environments.
WBEM is based on Internet standards and Distributed Management Task Force
(DMTF) open standards: the Common Information Model (CIM) infrastructure
and schema, CIM-XML, CIM operations over HTTP, and WS-Management.
Although its name suggests that WBEM is web-based, it is not necessarily tied to
any particular user interface. Microsoft has implemented WBEM through its Win-
dows Management Instrumentation (WMI) model. Its lead has been followed by
most of the major Unix vendors, such as SUN (now Oracle) and HP. This is rele-
vant to performance testing because Windows Registry information is so useful on
Windows systems and is universally used as the source for monitoring, while
WBEM itself is relevant mainly for non-Windows operating systems. Many perfor-
mance testing tools support Microsoft’s WMI, although you may have to manually
create the WMI counters for your particular application and there may be some
limitations in each tool’s WMI support.

TYPES OF OUTPUT FROM A PERFORMANCE TEST

www.it-ebooks.info

101

http://www.it-ebooks.info/

102

Simple Network Monitoring Protocol (SNMP)
A misnomer if ever there was one: I don’t think anything is simple about using
SNMP. However, this standard has been around in one form or another for many
years and can provide just about any kind of information for any network or
server device. SNMP relies on the deployment of management information base
(MIB) files that contain lists of object identifiers (OIDs) to determine what infor-
mation is available to remote interrogation. For the purposes of performance test-
ing, think of an OID as a counter of the type available from Perfmon. The OID,
however, can be a lot more abstract, providing information such as the fan speed
in a network switch. There is also a security layer based on the concept of com-
munities to control access to information. Therefore, you need to ensure that you
can connect to the appropriate community identifier; otherwise, you won't see
much. SNMP monitoring is supported by a number of performance tool vendors.

Java Monitoring Interface (JMX)
Java Management Extensions is a Java technology that supplies tools for manag-
ing and monitoring applications, system objects, devices (such as printers), and
service-oriented networks. Those resources are represented by objects called
MBeans (for managed beans). JMX is useful mainly for monitoring Java applica-
tion servers such as IBM WebSphere, ORACLE WebLogic, and JBOSS. JMX sup-
port is version-specific, so you need to check which versions are supported by
your performance testing solution.

Rstatd
This is a legacy RPC-based utility that has been around in the Unix world for some
time. It provides basic kernel-level performance information. This information is
commonly provided as a remote monitoring option, although it is subject to the
same security scrutiny as SNMP because it uses RPC.

Installed agent

When it isn’t possible to use remote monitoring—perhaps because of network firewall
constraints or security policies—your performance testing solution may provide an
agent component that can be installed directly onto the servers you wish to monitor.
You may still fall foul of internal security and change requests, causing delays or pre-
venting installation of the agent software, but it’s a useful alternative if your perfor-
mance testing solution offers this capability and the remote monitoring option is not
available.

Server KPI Performance

Server KPIs are many and varied. However, two that stand out from the crowd are
how busy the server CPUs are and how much virtual memory is available. These two
metrics on their own can tell you a lot about how a particular server is coping with

CHAPTER FIVE: INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

increasing load. Some automated tools provide an expert analysis capability that
attempts to identify any anomalies in server performance that relate to an increase in
the number of virtual users or use-case response time (e.g., a gradual reduction in
available memory in response to an increasing number of virtual users).

Figure 5-10 demonstrates a common correlation by mapping the number of concur-
rent virtual users against how busy the server CPU is. These relatively simple views

can quickly reveal if a server is under stress. The figure depicts a ramp-up-with-step
virtual user injection profile.

120,00 12000
110.00 1nono

100.00 10000

AT

000
I - 1000

1 W0l BO00 G000 1E000 1E0000 TEm D000 M0 00 W00 TE00) SN0 0000 4X000 AW000 480000

Increasing ” H
nnl

numbers of l
virtual users '

i

Application server

CPU utilization
as a percentage

000

Rl 0w P ONBONNG ounter

» T

Bapsed Trne (Second)

Figure 5-10. Concurrent virtual users correlated with database CPU utilization

A notable feature is the spike in CPU usage right after each step up in virtual users. For
the first couple of steps the CPU soon settles down and handles that number of users
better, but as load increases, the CPU utilization becomes increasingly intense.
Remember that the injection profile you select for your performance test scripts can
create periods of artificially high load, especially right after becoming active, so you
need to bear this in mind when analyzing test results.

Network KPI Performance

As with server KPIs, any network KPIs instrumented as part of the test configuration
should be available afterward for post-mortem analysis. Figure 5-11 demonstrates typ-
ical network KPI data that would be available as part of the output of a performance
test.

Figure 5-11 also correlates concurrent virtual users with various categories of data pre-
sented to the network. This sort of view provides insight into the data footprint of an
application, which can be seen either from the perspective of a single use case or single
user (as may be the case when baselining) or during a multi-use-case performance

TYPES OF OUTPUT FROM A PERFORMANCE TEST 103

www.it-ebooks.info

http://www.it-ebooks.info/

104

test. This information is useful for estimating the application’s potential impact on net-
work capacity when deployed.

In this example it’s pretty obvious that a lot more data is being received than sent by
the client, suggesting that whatever caching mechanism is in place may not be opti-
mally configured.

12000 1400000000.00

110.00 1300000000.00

100,00 Increasing 1200000000.00
numbers of

2000 virtual users

1100000000.00
100000000000
2000
200000000.00
000 800000000.00

50.00

Tomso000006 %

Total bytes
received

000 500000000.00

Total irtual Users

500000000.00
2000

Total bytes
sent

400000000.00
30.00

300000000.00
2000
200000000.00
10.00 100000000.00
0.00 —

000 10000 20000 30000 40000 50000 60000 70000 800.00 S00.00 1000.00 110000 120000 1300.00 140000 1500.00 1600.00 1700.00 1800.00

Elapsed Time (Second)

000

Figure 5-11. Network byte transfers correlated with concurrent virtual users

Load Injector Performance

Every automated performance test uses one or more workstations or servers as load
injectors. It is very important to monitor the stress on these machines, as they create
increasing numbers of virtual users. As mentioned in Chapter 4, if the load injectors
themselves become overloaded, your performance test will no longer represent real-
life behavior and so will produce invalid results that may lead you astray. Overstressed
load injectors don’t necessarily cause the test to fail, but they could easily distort the
use case and data throughput as well as the number of virtual user errors that occur
during test execution. Carrying out a dress rehearsal in advance of full-blown testing
will help ensure that you have enough injection capacity.

Typical metrics you need to monitor include the following:
e Percent of CPU utilization
e Amount of free memory
e Page file utilization
e Disk time

e Amount of free disk space

CHAPTER FIVE: INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-12 offers a typical runtime view of load injector performance monitoring. In
this example, we see that load injector CPU increases alarmingly in response to
increasing numbers of virtual users suggesting we need more load injector resource.

100.00

000 Load injector CPU
utilization as a
percentage

000

7000

o u”l

i —
s0.00 = Ad_.ﬁ s000 §

000 000 §

WWWWW -

7000

Increasing
numbers of

virtual users eo.00

" IepL

ald

30.00 3000

2000 2000

000 M.M_.ILM Al Oy ab Pl M 000
000 10000 20000 30000 40000 50000 60000 70000 80000 9000 100000 110000 120000 130000 140000 150000 1600.00 1700.00 1800.00
Elapsed Time (Second)

Figure 5-12. Load injector performance monitoring

Root-Cause Analysis

So what are we looking for to determine how our application is performing? Every
performance test (should) offer a number of KPIs that can provide the answers.

TIP

Before proceeding with analysis, you might want to adjust the time range of your
test data to eliminate the startup and shutdown periods that can denormalize your
statistical information. This also applies if you have been using a ramp-up-with-
step injection profile. If each ramp-up step is carried out en masse (e.g., you add
25 users every 15 minutes), then there will be a period of artificial stress immedi-
ately after the point of injection that may influence your performance stats. After
very long test runs, you might also consider thinning the data—reducing the num-
ber of data points to make analysis easier. Most automated performance tools
offer the option of data thinning.

Scalability and Response Time

A good model of scalability and response time demonstrates a moderate but acceptable
increase in mean response time as virtual user load and throughput increase. A poor
model exhibits quite different behavior: as virtual user load increases, response time
increases in lockstep and either does not flatten out or starts to become erratic, exhib-
iting high standard deviations from the mean.

Figure 5-13 demonstrates good scalability. The line representing mean response time
increases to a certain point in the test but then gradually flattens out as maximum
concurrency is reached. Assuming that the increased response time remains within

ROOT-CAUSE ANALYSIS

www.it-ebooks.info

105

http://www.it-ebooks.info/

106

your performance targets, this is a good result. (The spikes toward the end of the test
were caused by termination of the performance test and don’t indicate a sudden
application-related problem.)

000 oM

200.00 0000

- Increasing load mam
of virtual users

o0 = E

Response time increases
initially but then flattens out

Foasponss (Seeers)

oo 0000 40000 EDOO0 B0OOD 100000 ENOD0 140000 1EDDD0 1SN000 200000 NMOO00 MO000 20000
Bimpzod Tree (Second)

W00 MO0 EMNO00

Figure 5-13. Good scalability/response-time model

The next two figures demonstrate undesirable response-time behavior. In Figure 5-14,
the line representing mean use-case response time closely follows the line representing
the number of active virtual users until it hits approximately 750. At this point,
response time starts to become erratic, indicating a high standard deviation and a
potentially bad end-user experience.

120000
1100 00

1000 00

el Increasing load
: of virtual users

Siacnnt), Tofil Vs Ut

Rz

increases in direct
response to virtual user
o0 P i) o0 L0 R 1C0000 120020 RL i) 160050 150000 Ho0o0 220000 2600 260000 250000 om0 L0000
Clonsed Time (Sacond)

Use case response time J

Figure 5-14. Poor scalability/response-time model

Figure 5-15 demonstrates this same effect in more dramatic fashion. Response time
and concurrent virtual users in this example increase almost in lockstep.

CHAPTER FIVE: INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

13000 180,00
120.00 180,00
f | 170.00
110.00 P‘ >‘"I i "I ! 160,00
100.00 e) ‘ | 150.00
Tl \ & 15000
= L’ | [} 13000
g i Concurrent . 0} i \ l 12000 _,
virtual users | | W, i 11000 §
& Tom I i h =
i, e SR K | 10000 X
= il | ML 4
E 60.00]) W - 8000 =
4] | . soo0 &
¥ &0 { (Use case response time] g
& <A 70.00
&0.00 l 4 | .44 1 ‘ . EDO0
g ! 50,00
30,00 | e
4000
2000 Ak} - 3000
R 2000
1000 | B
\ 1000
000 [0.00
000 10000 20000 30000 40000 SO000 60000 70000 80000 S0000 100000 110000 120000
Bapszed Time (Seconds)

Figure 5-15. Consistently worsening scalability/response-time mode/

Digging Deeper

Of course, scalability and response-time behavior is only half the story. Once you see a
problem, you need to find the cause. This is where the server and network KPIs come
into play.

Examine the KPI data to see whether any metric correlates with the observed scalabil-
ity/response-time behavior. Some performance testing tools have an autocorrelation
feature that provides this information at the end of the test. Other tools require a
greater degree of manual effort to achieve the same result.

Figure 5-16 demonstrates how it is possible to map server KPI data with scalability and
response-time information to perform this type of analysis. It also builds on the previ-
ous examples, adding the Windows Server KPI metric called context switches per second.
This metric is a good indicator on Windows servers of how well the CPU is handling
requests from active threads. This example shows the CPU quickly reaching a high
average value, indicating a potential lack of CPU capacity for the load being applied.
This, in turn, has a negative impact on the ability of the application to scale efficiently
and thus on response time.

ROOT-CAUSE ANALYSIS 107

www.it-ebooks.info

http://www.it-ebooks.info/

108

The server KPI mefric Context
Switches per Second rises to
a very high value for the duration
of the test indicating potentially
inadequate CPU capacity

R0
ey L]
100.00 . T ‘\-.-
-..

~

Transaction response time
increases in direcl response
to virtual user load

000 2000 4000 €0D00 BOOOD 100DO0 120000 140000 EODE0 100000 200DN0 220000 XNOODD 20000 0000 0000 X000

Eiagaed Tene (Se0007)

Figure 5-16. Mapping context switches per second to poor scalability/response-time model

Inside the Application Server

In Chapter 3 we discussed setting appropriate server and network KPIs. I suggested
defining these as layers, starting from a high-level, generic perspective and then
adding others that focus on specific application technologies. One of the more specific
KPIs concerned the performance of any application server component present in the
application landscape. This type of monitoring lets you look inside the application
server down to the level of class and methods.

Simple generic monitoring of application servers won't tell you much if there are
problems in the application. In the case of a Java-based application server, all you'll
see is one or more java.exe processes consuming a lot of memory or CPU. You need to
discover which specific component calls are causing the problem.

You may also run into the phenomenon of the stalled thread, where an application
server component is waiting for a response from another internal component or from
another server such as the database host. When this occurs, there is usually no indica-
tion of excessive CPU or memory utilization, just slow response time. The cascading
nature of these problems makes them difficult to diagnose without detailed application
server analysis.

Figures 5-17 and 5-18 present examples of the type of performance data that this anal-
ysis provides.

CHAPTER FIVE: INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

Database and Connection Pool RT/Trans [ms] Acqu Time/Trans [ms] Executions/Trans Exec Avg [ms] Exec Min [ms] Exec Max [ms] BrecTotal[ms] Executions Failed% ~
e . = = = o A
= v i o g e i g —
> insert [CreditCard)([number], [user), [validThi s PaymentDatasdt 1759 141 20279 42215 2 0% L
7" SELECT COUNT(") FROM report Connection Pool Type: .NET SqiServer CE 742 708 si #s ° 0%
el by et = B R —
e e T = B % F —
> SELECT [Limit1].[C1] AS [C1), [Limit1].{bookif) . ~ Round tips: 251 251 251 251 1 0%
& St Liiabial (1 im0l T
> st il oot R —
2 SELECT [Limit1}[CL] AS [C1], [Limit1] {bookin | =€ "™ [28865 1943 99058 Lz 247 247 247 247 1 0%

» SELECT [Limit11[C1] AS [C1], [Limit1}[bookig | *<uisition Time [m:] 246 246 246 246 1 0%
> SELECT [Limit1 L[C1] AS [CL], R Time [ms]: 2365 2365 o1 173192 246 246 246 245 1 0%
> SELECT [Limit1}[C1] AS [C1], S 245 246 246 246 1 0%
> S LA ASICL ook S oo o = R —
* SELECT [Limit1 1[C1] AS [C1], [Limit1].[bookingld] AS [bookingld], [Limit1]{am 000 000 245 245 245 245 1 0%
S S mALCA AL Moo 5 oot o B F—
> SELECT [Limit1)C1] AS [CL), [Limit1}{bookingld) AS [bookingld). [Limitt](am 000 000 285 245 285 245 1 0%
ST ka1 AS{EL i bl 5 bt ik o B & B b T
3 S Riniatic {3 it ol oot Wl B o o o —
> St b LG bt 5 oot i B = X ! M
| SEUECT i 1) SO0 (i o) 45 oo 1t o o - om m 2u i =) Gt o b
Figure 5-17. Database hotspots
Method Class Argument APL ® BeecTotallms] @ CPUTotallms] @ SyncTotsllms] @ WaitTotallms] (@ Suspension Total [ms] Thread Name

@ Thresdstart) ThreadHelper Threading 65820286 = 65759513 000 69775 <no name> <40>

@ Weithultiple(WaitHandle[,in, boolean, boolean) WaitHandle NET Remoting 65759513 000 65759513 - <noneme> <d0>

@ Run(ExecutionContext, ContextCallback, Object) ExecutionContext Threading 65759513 0.00 65759513 - <noname> <40>

@ Threadstart_ Content(Object) ThreadHelper Threading 65759513 000 65750513 - <noname> <d0>

@ ThreadProc) TimerThread Threading 65759513 00 65759513 - <noname> <40>

© WaitAny(WaitHandlel], int, boolean) WaitHandle NET Remoting 65750513 000 65759513 - <noname> <40>

® CreateReport(Object stateinfc) PaymentReport casyTravel 5521005 856 B T <noname> <28>

@ PerformTimerCallback(Object) _TimerCallback easyTravel 5521005 88.58 - <noname> <28>

@ Run(BrecutionContex, ContextCallback, Object) ExecutionContext easyTravel 5521005 8858 - <noname> <28>

@ TimerCallback Context(Object) TimerCallback asyTrave 5521005 8858 - <noname> <28>

® ymentRep easyTravel 242707 221 - <noname> <28>

& Ch | NET WCF 2411870 1n -

[Thread Serviet 2411581 1290 28119

@ wnp ThreadPoolExecut... Servlet 2411581 1290 28119

@ runTask(Runnable) ThreadPoolExecut.. Serviet 2411581 1290 28119

@ process(SocketWrapper, SocketStatus) AbstractProtocols... Servet 2411581 1290 28119

@ process(SocketWirapper) AbstractHttp11Pr.. Servet 211581 1290 8110

@ service(Request, Response) CoyoteAdapter Servet 2111581 1290 28119

@ invoke(Request, Response) StandardEngineVa. Serviet 11581 1290 8119

@ invoke(Request, Response) ErrorReportValve Servlet 21581 1290 28119

@ invoke(Request, Response) StandardHostValve Servet 211581 1290 28119

@ invoke(Request, Response) AuthenticatorBase Serviet 2411581 1290 28119

@ invoke(Request, Response) StandardContextV... Servet 2111581 1290 28119

@ invoke(Request, Response) StandardWrapper. Senviet 1581 1290 8119 .

® e 3 Senvlet 211581 129 28110 hitp-bio-8091-exec...

Figure 5-18. Worst performance methods

Looking for the Knee

You may find that, at a certain throughput or number of concurrent virtual users dur-
ing a performance test, the performance testing graph demonstrates a sharp upward
trend—known colloquially as a knee—in response time for some or all use cases. This
indicates that some capacity limit has been reached within the hosting infrastructure
and has started to affect application response time.

Figure 5-19 demonstrates this effect during a large-scale, multi-use-case performance
test. At approximately 260 concurrent users, there is a distinct knee in the measured
response time of all use cases. After you observe this behavior, your next step should
be to look at server and network KPIs at the same point in the performance test. This
may, for example, reveal high CPU utilization or insufficient memory on one or more
of the application server tiers.

www.it-ebooks.info

ROOT-CAUSE ANALYSIS

109

http://www.it-ebooks.info/

1000

“Knee" in respanse time for all
transactions at approximately
oo | 260 concurrent virtual users

indicating a capacity limit has
weo| been reached

S0000

]
Increasing number
of virtual users

B0000

0000

Fesponss (Se00nd)

ﬁ‘iﬁ‘ ¢
g
AL

am 200,00 40000 EODDO BO0O0 100000 100D 140000 160000 1EOOD0 200000 Z200DD 4000 360000 90000 00000 300000
Elazaed Tene (Second)

Figure 5-19. Knee performance profile indicating that capacity limits have been reached

In this particular example, the application server was found to have high CPU utiliza-
tion and very high context switching, indicating a lack of CPU capacity for the
required load. To fix the problem, the application server was upgraded to a more pow-
erful machine. It is a common strategy to simply throw hardware at a performance
problem. This may provide a short-term fix, but it carries a cost and a significant
amount of risk that the problem will simply reappear at a later date. In contrast, a clear
understanding of the problem’s cause provides confidence that the resolution path
chosen is the correct one.

Dealing with Errors

It is most important to examine any errors that occur during a performance test, since
these can also indicate hitting some capacity limit within the SUT. By errors I mean vir-
tual user failures, both critical and (apparently) noncritical. Your job is to find patterns
of when these errors start to occur and the rate of further errors occurring after that
point. A sudden appearance of a large number of errors may coincide with the knee
effect described previously, providing further confirmation that some limit has been
reached. Figure 5-20 adds a small line to the earlier graph that demonstrated poor per-
formance, showing the sudden appearance of errors. The errors actually start before
the test shows any problem in response time, and they spike about when response
time suddenly peaks.

110 CHAPTER FIVE: INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

Increasing number
of virtual users

Saspeanse (Sevo)

Transaction
response lime

om 2 © B0 10O0OD OO0 140000 1EODD 16MO00 0

Esugrgod Trie (Secard)

Z=mo

errors start occurring

Point at which virtual user]

Figure 5-20. Example of errors occurring during a performance test

Baseline Data

The final output from a successful performance testing project should be baseline per-
formance data that can be used when you are monitoring application performance
after deployment. You now have the metrics available that allow you to set realistic
performance SLAs for client, network, and server (CNS) monitoring of the application
in the production environment. These metrics can form a key input to your informa-
tion technology service management (ITSM) implementation, particularly with regard
to end-user experience (EUE) monitoring (see Chapter 7).

Analysis Checklist

To help you adopt a consistent approach to analyzing the results of a performance test
both in real time and after execution, here is another checklist. There’s some overlap
with the checklist from Chapter 4, but the focus here is on analysis rather than execu-
tion. For convenience, I have repeated this information as part of the quick-reference
guides in Appendix B.

Pre-Test Tasks

e Make sure that you have configured the appropriate server, application server,
and network KPIs. If you are planning to use installed agents instead of remote
monitoring, make sure there will be no obstacles to installing and configuring the
agent software on the servers.

ANALYSIS CHECKLIST

www.it-ebooks.info

111

http://www.it-ebooks.info/

112

Make sure that you have decided on the final mix of performance tests to execute.
As discussed in Chapter 4, this commonly includes pipe-clean tests, volume tests,
and isolation tests of any errors found, followed by stress and soak tests.

Make sure that you can access the application from your injectors! You’d be sur-
prised how often a performance test has failed to start because of poor application
connectivity. This can also be a problem during test execution: testers may be sur-
prised to see a test that was running smoothly suddenly fail completely, only to
find after much headscratching that the network team has decided to do some
unscheduled housekeeping.

If your performance testing tool provides the capability, set any thresholds for per-
formance targets as part of your test configuration. This capability may simply
count the number of times a threshold is breached during the test, and it may also
be able to control the behavior of the performance test as a function of the num-
ber of threshold breaches that occur—for example, more than 10 breaches of a
given threshold could terminate the test.

If your performance testing tool provides the capability, configure autocorrelation
between use-case response time, concurrent virtual users, and server or network
KPI metrics. This extremely useful feature is often included in recent generations
of performance testing software. Essentially, it will automatically look for (unde-
sirable) changes in KPIs or response time in relation to increasing virtual user load
or throughput. It’s up to you to decide what constitutes undesirable by setting
thresholds for the KPIs you are monitoring, although the tool should provide
some guidance.

If you are using third-party tools to provide some or all of your KPI monitoring,
make sure that they are correctly configured before running any tests. Ideally,
include them in your dress rehearsal and examine their output to make sure it’s
what you expect. I have been caught running long duration tests only to find that
the KPI data collection was wrongly configured or even corrupted!

You frequently need to integrate third-party data with the output of your perfor-
mance testing tool. Some tools allow you to automatically import and correlate
data from external sources. If you're not fortunate enough to have this option,
then you'll need to come up with a mechanism to do it efficiently yourself. I tend
to use MS Excel or even MS Visio, as both are good at manipulating data. But be
aware that this can be a very time-consuming task.

Tasks During Test Execution

At this stage, your tool is doing the work. You need only periodically examine the per-
formance of your load injectors to ensure that they are not becoming stressed. The
dress rehearsal carried out before starting the test should have provided you with con-

CHAPTER FIVE: INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

fidence that enough injection capacity is available, but it’s best not to make assump-
tions.

e Make sure you document every test that you execute. At a minimum, record the
following information:

— The name of the performance test execution file and the date and time of exe-
cution.

— A brief description of what the test comprised. (This also goes into the test
itself, if the performance testing tool allows it.)

—1If relevant, the name of the results file associated with the current test execu-
tion.

— Any input data files associated with the performance test and which use cases
they relate to.

— A brief description of any problems that occurred during the test. It’s easy to
lose track of how many tests you’'ve executed and what each test represented.
If your performance testing tool allows you to annotate the test configuration
with comments, make use of this facility to include whatever information will
help you to easily identify the test run. Also make sure that you document
which test result files relate to each execution of a particular performance test.
Some performance testing tools store the results separately from other test
assets, and the last thing you want when preparing your report is to wade
through dozens of sets of data looking for the one you need. (I speak from
experience on this one!) Finally, if you can store test assets on a project basis,
this can greatly simplify the process of organizing and accessing test results.

e Things to look out for during execution include the following:

The sudden appearance of errors
This frequently indicates that some limit has been reached within the SUT. If
your test is data-driven, it can also mean you’ve run out of data. It's worth
determining whether the errors relate to a certain number of active virtual
users. Some performance tools allow manual intervention to selectively
reduce the number of active users for a troublesome use case. You may find
that errors appear when, say, 51 users are active, but go away when you drop
back to 50 users.

ANALYSIS CHECKLIST

www.it-ebooks.info

http://www.it-ebooks.info/

— NOTE

Sudden errors can also indicate a problem with the operating system'’s default
settings. | recall a project where the application mid-tier was deployed on a num-
ber of blade servers running Sun Solaris Unix. The performance tests persistently
failed at a certain number of active users, although there was nothing to indicate a
lack of capacity from the server KPI monitoring we configured. A search through
system logfiles revealed that the problem was an operating system limit on the
number of open file handles for a single user session. When we increased the
limit from 250 to 500, the problem went away.

A sudden drop in throughput
This is a classic sign of trouble, particularly with web applications where the vir-
tual users wait for a response from the web server. If the problem is critical
enough, the queue of waiting users will eventually exceed the time-out threshold
for server responses and the test will exit. Don’t immediately assume that the web
server layer is the problem; it could just as easily be the application server or data-
base tier. You may also find that the problem resolves itself when a certain num-
ber of users have dropped out of the test, identifying another capacity limitation in
the hosting infrastructure. If your application is using links to external systems,
check to ensure that none of these links is the cause of the problem.

An ongoing reduction in available server memory
You would expect available memory to decrease as more and more virtual users
become active, but if the decrease continues after all users are active, then you
may have a memory leak. Application problems that hog memory should reveal
themselves pretty quickly, but only a soak test can reveal more subtle problems
with releasing memory. This is a particular problem with application servers, and
it confirms the value of providing analysis down to the component and method
level.

Panicked phone calls from infrastructure staff
Seriously! I've been at testing engagements where the live system was accidentally
caught up in the performance testing process. This is most common with web
applications, where it’s all too easy to target the wrong URL.

Post-Test Tasks

¢ Once a performance test has completed—whatever the outcome—make sure that
you collect all relevant data for each test execution. It is easy to overlook impor-
tant data, only to find it missing when you begin your analysis. Most performance
tools collect this information automatically at the end of each test execution, but if
you're relying on other third-party tools to provide monitoring data, then make
sure you preserve the files you need.

114 CHAPTER FIVE: INTERPRETING RESULTS: EFFECTIVE ROOT-CAUSE ANALYSIS

www.it-ebooks.info

http://www.it-ebooks.info/

e It’s good practice to back up all testing resources (e.g., scripts, input data files, test
results) onto a separate archive, because you never know when you may need to
refer back to a particular test run.

e When producing your report, make sure that you map results to the performance
targets that were set as part of the pre-test requirements capture phase. Meaning-
ful analysis is possible only if you have a common frame of reference.

Summary

This chapter has served to demonstrate the sort of information provided by automated
performance testing tools and how to go about effective root-cause analysis. In the
next chapter, we discuss how the emergence of the mobile client has impacted applica-
tion performance testing.

SUMMARY 115

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER SIX

Performance Testing and the
Mobile Client

The mobile phone...is a tool for those whose professions
require a fast response, such as doctors or plumbers.

—Umberto Eco

THE RISE OF THE MOBILE DEVICE HAS BEEN RAPID AND REMARKABLE. THIS YEAR
(2014) will see the mobile device become the greatest contributor to Internet traffic,
and is unlikely to easily relinquish this position. As a highly disruptive technology, the
mobile device has impacted most areas of IT, and performance testing is no exception.
This impact is significant enough in my opinion that I have included this new chapter
to provide help and guidance to those approaching mobile performance testing for the
first time. I have also made reference to mobile technology where relevant in other
chapters. I will first discuss the unique aspects of mobile device technology and how
they impact your approach to performance testing, including design considerations,
and then examine mobile performance testing challenges and provide a suggested
approach.

What’s Different About a Mobile Client?

Depending on your point of view, you could say, “not much” or “a whole lot.” As you
might be aware, there are four broad types of mobile client:

The mobile website
This client type differs the least from traditional clients in that as far as the applica-
tion is concerned it is really just another browser user. The technology used to
build mobile sites can be a little specialized (i.e., HTML5), as can the on-device
rendering, but it still uses HTTP or HTTPS as its primary protocol so can usually be
recorded and scripted just like any other browser client. This is true for functional
and performance testing. You might have to play around with the proxy setting

www.it-ebooks.info

117

http://www.it-ebooks.info/

configuration in your chosen toolset, but this is about the only consideration over
and above creating a scripted use case from a PC browser user. Early implementa-
tions of mobile sites were often hosted by SaaS vendors such as UsableNet; how-
ever, with the rapid growth of mobile skills in IT, those companies that choose to
retain a mobile, or m., site are generally moving the hosting in-house. There is a
definite shift away from mobile sites to mobile applications, although both are
likely to endure at least in the medium term.

The mobile application
The mobile application is more of a different animal, although only in certain
ways. It is first and foremost a fat client that communicates with the outside world
via one or more APIs. Ironically, it has much in common with legacy application
design, at least as far as the on-device application is concerned. Mobile applica-
tions have the advantage of eliminating the need to ensure cross-browser compli-
ance, although they are, of course, still subject to cross-device and cross-OS
constraints.

The hybrid mobile application
As the name suggests, this type of application incorporates elements of mobile site
and mobile application design. A typical use case would be to provide on-device
browsing and shopping as an application and then seamlessly switch to a common
browser-based checkout window, making it appear to the user that he is still
within the mobile application. While certainly less common, hybrids provide a
more complex testing model than an m. site or mobile application alone.

The m. site designed to look like a mobile application
The least common commercial option, this client was born of a desire to avoid the
Apple App Store. In reality this is a mobile site, but it’s designed and structured to
look like a mobile application. While this client type is really relevant only to iOS
devices, there are some very good examples of noncommercial applications, but
they are increasingly rare in the commercial space. If you wish to explore this
topic further, I suggest reading Building iPhone Apps with HTML, CSS, and JavaScript
by Jonathan Stark (O'Reilly).

Mobile Testing Automation

Tools to automate the testing of mobile devices lagged somewhat behind the appear-
ance of the devices themselves. Initial test automation was limited to bespoke test har-
nesses and various forms of device emulation, which allowed for the testing of generic
application functionality but nothing out-of-the-box in terms of on-device testing. The
good news is that there are now a number of vendors that can provide on-device
automation and monitoring solutions for all the principal OS platforms. This includes

CHAPTER SIX: PERFORMANCE TESTING AND THE MOBILE CLIENT

www.it-ebooks.info

http://www.it-ebooks.info/

on-premise tooling and Saa$ offerings. I have included a list of current tool vendors in
Appendix C.

Mobile Design Considerations

As you may know, there are a number of development IDEs available for mobile:

e BlackBerry
¢ i0S for Apple devices
e Android

e Windows Phone for Windows Phone devices

Regardless of the tech stack, good mobile application (and mobile site) design is key to
delivering a good end-user experience. This is no different from any other kind of soft-
ware development, although there are some unique considerations:

Power consumption

Mobile devices are battery-powered devices. (I haven’t yet seen a solar-powered
device, although one may exist somewhere.) This imposes an additional require-
ment on mobile application designers to ensure that their application does not
make excessive power demands on the device. The logical way to test this would
be to automate functionality on-device and run it for an extended period of time
using a fully charged battery without any other applications running. I haven't
personally yet had to do this; however, it seems straightforward enough to ach-
ieve. Another option to explore would be to create a leaderboard of mobile appli-
cations and their relative power consumption on a range of devices. While this is
probably more interesting than useful, it could be the next big startup success!

The cellular WiFi connection
Mobile devices share the cellular network with mobile phones, although phone-
only devices are becoming increasingly rare. Interestingly, with the proliferation of
free metropolitan WiFi, a lot of urban mobile comms doesn’t actually use the cel-
lular network anymore. Cellular-only traffic is pretty much limited to calls and
text messages unless you are using Skype or similar VoIP phone technology. Cellu-
lar and WiFi impose certain characteristics on device communication, but in per-
formance testing terms this really comes down to taking into account the effect of
moderate to high latency, which is always present, and the reliability of connec-
tion, which leads nicely into the next point.

Asynchronous design
Mobile devices are the epitome of convenience: you can browse or shop at any
time in any location where you can get a cellular or wireless connection. This fact
alone dictates that mobile applications should be architected to deal as seamlessly

MOBILE DESIGN CONSIDERATIONS

www.it-ebooks.info

119

http://www.it-ebooks.info/

120

as possible with intermittent or poor connections to external services. A big part of
achieving this is baking in as much async functionality as you can so that the user
is minimally impacted by a sudden loss of connection. This has less to do with
achieving a quick response time and more to do with ensuring as much as possible
that the end user retains the perception of good performance even if the device is
momentarily offline.

Mobile Testing Considerations
Moving on to the actual testing of mobile devices, we face another set of challenges:

Proliferation of devices

Mainly as a result of mobile’s popularity, the number of ditferent devices now has
reached the many hundreds. If you add in different browsers and OS versions,
you have thousands of different client combinations—basically a cross-browser,
cross-device, cross-OS nightmare. This makes ensuring appropriate test coverage,
and by extension mobile application and m. site device compatibility, a very chal-
lenging task indeed. You have to focus on the top device (and browser for mobile
site) combinations, using these as the basis for functional and performance testing.
You can deal with undesirable on-device functional and performance defects for
other combinations by exception and by using data provided by an appropriate
end user experience (EUE) tool deployment (as we’ll discuss in the next chapter).

API testing

For mobile applications that communicate using external APIs (which is the vast
majority), the volume performance testing model is straightforward. In order to
generate volume load, you simply have to understand the API calls that are part of
each selected use case and then craft performance test scripts accordingly. Like any
API-based testing, this process relies on the relevant API calls being appropriately
documented and the API vendor (if there is one) being prepared to provide addi-
tional technical details should they be required. If this is not the case, then you
will have to reverse-engineer the API calls, which has no guarantee of success—
particularly where the protocol used is proprietary and/or encrypted.

Mobile Test Design

Incorporating mobile devices into a performance testing scenario design depends on
whether you are talking about a mobile m. site, a mobile application, or indeed both
types of client. It also depends on whether you are concerned about measuring on-
device performance or just about having a representative percentage of mobile users as
part of your volume load requirement. Let’s look at each case in turn.

CHAPTER SIX: PERFORMANCE TESTING AND THE MOBILE CLIENT

www.it-ebooks.info

http://www.it-ebooks.info/

On-Device Performance Not in Scope

In my view, on-device performance really should be in scope! However, that is com-
monly not the case, particularly when you are testing a mobile site rather than a
mobile application.

Mobile site

Test design should incorporate a realistic percentage of mobile browser users rep-
resenting the most commonly used devices and browsers. You can usually deter-
mine these using data provided by Google Analytics and similar business services.
The device and browser type can be set in your scripts using HTTP header content
such as User agent, or this capability may be provided by your performance tool-
ing. This means that you can configure virtual users to represent whatever combi-
nation of devices or browser types you require.

Mobile application

As already mentioned, volume testing of mobile application users can really only
be carried out using scripts incorporating API calls made by the on-device applica-
tion. Therefore, they are more abstract in terms of device type unless this informa-
tion is passed as part of the API calls. As with mobile site users, you should include
a representative percentage to reflect likely mobile application usage during vol-
ume performance test scenarios. Figure 6-1 demonstrates the sort of mobile data
available from Google Analytics.

O @ oEoo @

O

Acquisition Behaviour

Mobile Device Info Pages/

% New Bounce Rate Session

Avg. Session
e New Users

Sessions Duration

730,196 46.65% 00:03:06
o of Total: 56.04% Site Avg S
(1.282 467)

44.62%

"
1. Apple iPhone o 337,586 (45.20%) 4405% | 148711 (23.56%) 4731% 373 00:02:30
2. AppleiPad o 285262 (39.07%) 4787% | 136,567 (40.00%) 40.40% 642 00:03:47
3. Samsung GTI9505 Galaxy SV (81 15766 (2.15%) 4795% | 7555 (220%) 47.18% 446 00:02:55
4 Samsung GTIO300 Galay I @1 11181 (1.53%) 4457% | 4975 (145 4724% 432 00:03:11
5 (not sef) 4459 (0.61%) 6786% | 3026 (059%) 5138% 365 00:02:34
6. Google Nexus 7 C 3682 (0.50%) 6453% | 2376 (070%) 57.20% 3.96 00:02:23
7. ameung GTI95 Galaxy s4 = 3474 (0.45%) 52.10% 1813 4560% 427 00:02:25
8. awsung GTIB190N Galaxy SII € 3,275 (0.45%) 48.46% 15687 (047%) 47.88% 426 00:02:58
g, Samsung SMLNSODS Galaxy Note < 3269 (0.45%) 4471% 1457 (0.42%) 45.57% 504 00:03:37

10. Amazon KFTT Kindle Fire HD 7 (# 2945 (0.40%) 5147% | 1,507 (0.44%) 4197% 715 00:04:04

Figure 6-1. Google Analytics mobile device analysis

MOBILE TEST DESIGN

www.it-ebooks.info

121

http://www.it-ebooks.info/

On-Device Performance Testing Is in Scope

Again, it’s certainly my recommendation for on-device performance testing to be in
scope, but it’s often challenging to implement depending on the approach taken. It is
clearly impractical to incorporate the automation of hundreds of physical devices as
part of a performance test scenario. In my experience a workable alternative is to com-
bine a small number of physical devices, appropriately automated with scripts working
at the API or HTTP(S) level, that represent the volume load. The steps to achieve this
are the same for mobile sites and mobile applications:

1. Identify the use cases and test data requirements.

2. Create API level and on-device scripts. This may be possible using the same tool-
set, but assume that you will require different scripting tools.

3. Baseline the response-time performance of the on-device scripts for a single user
with no background load in the following sequence:

e Device only. Stub external API calls as appropriate.

e Device with API active.

4. Create a volume performance test scenario incorporating where possible the on-
device automation and API-level scripts.

5. Execute only the on-device scripts.

6. Finally execute the API-level scripts concurrently with the on-device scripts.

As API level volume increases, you can observe and compare the effect on the on-
device performance compared to the baseline response times. Measuring on-device
performance for applications was initially a matter of making use of whatever
performance-related metrics could be provided by the IDE and OS. Mobile sites were
and still are easier to measure, as you can make use of many techniques and tooling
common to capturing browser performance. I remain a fan of instrumenting applica-
tion code to expose a performance-related API that can integrate with other perfor-
mance monitoring tooling such as APM. This is especially relevant to the mobile appli-
cation, where discrete subsets of functionality have historically been challenging to
accurately time. As long as this is carefully implemented, there is no reason why build-
ing in code-hook should create an unacceptable resource overhead. It also provides the
most flexibility in the choice of performance metrics to expose. As an alternative, the
major APM tool vendors and others now inevitably offer monitoring solutions tailored
for the mobile device. I have included appropriate details in Appendix C.

122 CHAPTER SIX: PERFORMANCE TESTING AND THE MOBILE CLIENT

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

Now that we’ve discussed the challenges of mobile client performance testing, the next
chapter looks at how monitoring the end-user experience is closely aligned with appli-
cation performance requirements.

SUMMARY 123

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER SEVEN

End-User Experience
Monitoring and Performance

Now you see it—now you don't.
—Anonymous

HAVING DISCUSSED A BEST-PRACTICE APPROACH TO WHAT COULD BE CONSID-
ered static performance testing in the preceding chapters, I want to now discuss the
importance of measuring and understanding the end-user experience. To aid in this
process I have called on my friend and colleague, Larry Haig, to provide much of this
chapter’s content. Larry’s many years of experience with customer engagements, both
while working for one of the major performance vendors and as an independent con-
sultant, have made him one of the industry’s leading lights in end-user experience
monitoring.

Traditional performance testing is designed to compare a system with itself, using a
variety of infrastructure and application KPIs (as discussed earlier in this book). If
effectively designed and executed, this will provide a degree of performance assurance.
However, crucially, this approach gives no absolute extrapolation to the experience of
end users of the tested application. This chapter and the next address the subject of
external monitoring, both in its wider aspects and as an extension to performance test-
ing. They can be read as a standalone guide to effective end-user experience manage-
ment, looking at the wider situation of ongoing application performance assurance, as
well as an exploration of end-user satisfaction as a component of performance testing
(the core subject of this book).

There is no shortage of external monitoring products available, and I have listed some
of the more well-known in Appendix C. License costs vary from nothing at all to hun-
dreds of thousands of dollars or more over a calendar year. All seek to answer the
question, how well is my site performing outside my data center?, and all will provide you
with an answer—of a sort. How relevant the answer is depends upon the nature of the
question, and the stakes are high particularly for ecommerce: £15.9 billion was spent

www.it-ebooks.info

125

http://www.it-ebooks.info/

126

online during Christmas 2012 in the United Kingdom alone (retailresearch.org), and
the research shows that poor performance is a key determinant of site abandonment.

End-user performance, not the number of green lights in the data center, is what
determines whether your investment in application delivery is a success. Further,
environmental simplicity is a distant memory, at least as far as major corporate appli-
cations are concerned. Effective strategies are required for you to understand external
application performance and obtain timely, relevant data to support effective interven-
tion. This chapter aims to supply those, and to help performance professionals design
appropriate monitors for all types of content, whether native HTML, multimedia, SMS,
affiliate-based content, or anything else. The importance of understanding key user
behaviors and devices, as well as being aware of device trends, will be emphasized.

Ultimately, as this book has hopefully demonstrated, performance is not an absolute.
Key performance metrics need to be determined relative to user expectation—which is
increasing all the time. A recent review of historic benchmark performance trends by
my own company, Intechnica, showed an average increase in landing page perfor-
mance across tested sectors of one-third. This was based on retail, media, and banking
website performance over an average of the three years from September 2010 to Octo-
ber 2013. Customer expectation follows this trend, so standing still is not an option.
You should bear this important factor in mind for all web applications, although it is
especially true of ecommerce sites, given their direct revenue implications.

This chapter is designed to ensure that the crucial importance of end-user delivery is
not forgotten as a component of application performance. It provides a bird’s-eye view
of external monitoring, from first principles to some more detailed considerations,
with (hopefully) useful further reading suggested at the end. Given the prominence of
Internet browser-based applications, they are the primary area of consideration,
although the underlying principles apply equally to nonweb situations. Some thoughts
about relevant tools and techniques are also included.

What Is External Monitoring?

A good working definition of external monitoring is simply the use of tools and techniques
to provide and interpret IT application response metrics from outside the edge servers of the core
application delivery infrastructure (that is, the data center). At first glance, the simplicity
of this definition is immediately compromised by the inherent complexity of most
modern web-based applications.

As an example, my company recently examined 10 major UK ecommerce sites (see
Table 7-1). These contained between them over 70 distinct third-party affiliates, even
after we excluded content delivery network (CDN) providers that were directly associ-
ated with delivery performance. Further, core site content is often distributed. Exam-
ples include the external delivery of static content by a specialist provider (e.g., Adobe

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

Scene 7), the use of cloud-based applications (often for reasons of high scalability), or
the deployment of high-redundancy distributed environments to provide disaster
recovery capability.

Table 7-1. Affiliate load range of third-party inclusions from 10 major UK ecommerce sites

End-user performance
overhead (total response

Non-performance- time, search ATB

Site related affiliates (hosts) transaction, in seconds)
Very 43 18.7

Tesco 1 0.2

Sainsbury 27 11.6

Ralph Lauren 11 1.0

Next 1 0.5

New Look 53 23.4

Marks and Spencer 27 10.3

John Lewis 19 3.2

Debenhams 2 15.9

ASOS 49 10.9

Why Monitor Externally?

The power and sophistication of application and infrastructure monitoring has
increased greatly in recent years, much as a result of the wholesale move to distributed
web deployment of core applications. One argument is that such on-premise monitor-
ing is sufficient for effective risk management of application performance; however,
external monitoring has a vital role to play.

Consider modern developments—service-oriented architectures, distributed cloud-
based hosting—together with the plethora of third-party components included in
many sites that must be considered performance related (CDNs, application delivery
controllers) and revenue centric (personalization, ad servers, web analytics). Anything
that is provided from or includes delivery components outside the application’s edge
servers requires management, and external monitoring enables it.

The various types of external monitoring will be considered in “External Monitoring
Categories” on page 130, but the key benefits of an outside-in testing approach can be
summarized as follows:

WHY MONITOR EXTERNALLY? 127

www.it-ebooks.info

http://www.it-ebooks.info/

e Impact analysis: external testing, particularly with an end-user dimension, pro-
vides visibility as to the business relevance of a particular issue—that is, its likely
revenue impact. Such insight enables operations teams to effectively prioritize per-
formance interventions.

e Predictive understanding: synthetic external monitoring enables testing of applica-
tion performance in the absence of baseline traffic—for example, new sites (or
prelaunch upgrades), new markets, and new products.

¢ Related to the preceding point is the ability to obtain proactive data on the perfor-
mance of particular functions or processes. This is particularly valuable when pre-
vious difficulties have led to significant reductions in relevant visitor tratfic (e.g.,
failure with a major browser version or wireless carrier).

e Careful test design enables objective (rather than inferential) data to be obtained
—at the transaction, page, individual object, and subobject level.

e Active monitoring permits contextual understanding and goal setting (e.g., com-
petitive benchmarking).

¢ Finally, this testing approach helps you obtain a detailed understanding of all
external factors involved in delivery to end users; for example:

— Third-party service-level management
— Internet service provider (ISP) peerage effects

— Validation/assurance of key user performance

A final point regarding end-user understanding: it is sometimes argued that there is no
point in understanding performance in true end-user conditions (wireless mobile con-
nectivity, limiting conditions of bandwidth, ISP peerage, consumer PC system con-
straints, and similar). The logical extension of that thinking is that testing should be
undertaken only in completely stable, clean-room conditions, as otherwise you may
not see the forest for the trees.

There is certainly an important place for best-case testing, and test conditions should
always be consistent and understood to enable effective results interpretation. How-
ever, the important point is that your application lives in the real world, which is by its
nature heterogeneous. Understanding whether an issue affects a particular class of
user enables you to make appropriate interventions.

In some cases, these interventions can be as simple as putting a text message on the
site advising particular users that their performance will be compromised (or institut-
ing some form of elegant degradation of functionality).

128 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

Even if issues are outside the ability of operations teams to address directly, access to
objective data will enable them to be addressed through their third party (i.e., ISP,
CDN provider).

In summary, the essential function of external monitoring is to act as a “canary in a
coal mine” (Figure 7-1). Nineteenth-century miners needed to know when they were
facing a problem—in their case, odorless (and deadly) carbon monoxide gas—the can-
ary provided the understanding that: (a) a problem existed, and (b) the miners needed
to exit stage right!

Figure 7-1. External monitoring can be likened to the proverbial canary in a coal mine

External monitoring will not, except in certain specific edge cases, isolate the root
cause of an issue, but if used appropriately it will provide impact-based understanding
and isolate the area in which the issue exists. A single relevant example: applications
exhibiting poor performance at high-traffic periods of the business demand cycle are
strong candidates for diagnostic performance load testing. In short, external monitor-
ing is essential to relative, contextual management of application performance.

The increasingly plural nature of modern web applications and components—whether
mobile devices, server push technologies, service worker delivery, adaptive elements,
or similar—are likely to present challenges to effective external monitoring in the
future, making a new “best practice” an increasingly important and evolving require-
ment. However, this chapter provides some pointers on approaches to use in the cur-
rent situation.

WHY MONITOR EXTERNALLY? 129

www.it-ebooks.info

http://www.it-ebooks.info/

130

Many tools exist to provide end-user performance visibility. However, regardless of the
competing claims of the individual vendors, there are some fundamental differences
that should be understood. Any single type of testing has limitations as well as advan-
tages, and one size most certainly does not fit all.

External Monitoring Categories

In the parlance of external analysis, all monitoring may be grouped into one of two
core types:

Active
Also known as synthetic monitoring, active monitoring is effectively prescheduled,
repetitive automated testing from known testing nodes (or node categories such as
“Chicago-based end users” in some cases).

Active monitoring is delivered by tooling that replays scripted use cases much in
the manner of performance test automation. The key difference is that replay is
normally from the perspective of a single virtual user per device deployment and
usually involves a complete UI or browser session—i.e., a headed replay.

This tooling typically presents as a web-based management console to manage the
deployment of multiple remote agents, a scripting component to record and create
the use cases for replay, and an analysis dashboard to monitor and interpret
results. It is not uncommon for a range of integrations to be available, and this
capability is now part of many application performance management (APM) tool-
sets. You can find a list of leading vendors in Appendix C.

Passive
Also known as real-user monitoring (RUM), user experience monitoring (UEM),
and some other similar acronyms, passive monitoring relies on analysis of visitor
traffic from the operation of code snippets residing either in the headers of instru-
mented pages, or in certain cases, dynamically injected into client browsers by the
host application server.

Active and passive monitoring vary in sophistication depending upon the tooling
employed.

Active Monitoring

The most basic (and original) active monitoring was simply to ping a website and listen
and time the return of a test byte, and this still constitutes the entry level of basic
availability monitoring. However, while this approach is inexpensive (or free), the
actionable visibility it provides is extremely limited.

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

In the first place, these tools are only testing the availability of the base HTML object;
they offer no visibility of the other page components that make up a full download
(and therefore successful user experience), let alone those of complex multistep trans-
actions. A large white space with a red cross in it where your banner image should be
is unlikely to inspire confidence in your brand.

The second key limitation is linked to the first. Such tools can rapidly tell you that
your site is down, but what do you do then? Without effective object-level informa-
tion, rapid diagnosis and issue resolution is extremely difficult. Such a basic level of
analysis is far less timely in any case than advanced predictive diagnostics, which will
often alert you to an impending failure before it occurs (which should be a goal of
your performance monitoring strategy).

It is important to emphasize that however it is obtained, some understanding of appli-
cation availability is essential. This understanding cannot be obtained from other types
of passive analysis, which are, by definition, visitor analyses. All of the potential users
who fail to reach a site due to the dozens of potential external issues (e.g., DNS resolu-
tion failure, ISP peerage) are by definition nof visitors. Most professional active moni-
toring tooling today provides for full object-level visibility, combined with the ability to
script transactions through the site. Table 7-2 summarizes the test perspectives.

Table 7-2. Test perspectives

Test origin Purpose

Tier 1 data center, “Clean room” testing, (theoretically) free of bandwidth or
industrial-capacity test test system constraints. For trend/iterative goal

node management, competitor comparison, third-party SLA

management (excepting CDNs).

End user “Dirty” but real-world data. Provides insights into

(PC, mobile device) performance or limiting conditions (e.g., of bandwidth). For
CDN, performance assurance and quality of service
monitoring in existing and new markets.

Private peer Testing from known locations (e.g., specific high-value
customers or departments/locations within a corporate
organization).

Site visitor performance Also known as real user or user experience monitoring. Also
analysis known as EUM or RUM. Records and analyzes the
performance (possibly together with other metrics, e.g.,

transaction abandonment) of all successful visitors to a site.

ACTIVE MONITORING

www.it-ebooks.info

131

http://www.it-ebooks.info/

Test origin Purpose

Native mobile application Captures performance and associated data (e.g., crash
metrics) of the users of native mobile applications. Typically
cross-device but operating-system (i0S, Android) specific.

Figure 7-2 illustrates the use of multiple active test perspectives to provide a presched-
uled heartbeat test. These results, particularly when combined with the visitor base
metrics listed in the next section, can provide a comprehensive model of end-user

response.

Active data users

Private
Peer 9
ISP node /j
Site (abc.com) End
iser Vendor
objects
Page or
transaction

Figure 7-2. Active (synthetic) monitoring—multiple perspectives

Output Metrics

Active monitoring includes the following key metrics:

Availability
The key metric from active monitoring. Because such monitoring is typically pre-
scheduled, the “fate” of every active test in terms of success (access to the test site)

132 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

or failure is known. In contrast, passive monitoring (RUM) analyzes the response
of successful visits to the site only.

Total response time
It is important to understand what the page load or response time reported by
active monitoring systems actually represents. Such tooling operates by effectively
listening to the network traffic associated with a web page request. Thus it records
the total time for page delivery—that is, the elapsed time between the receipt of
the HTTP request and the delivery of the final byte of data associated with the
page. This response time and the underlying component-level data is extremely
valuable in understanding comparative performance, and in the isolation of some
categories of application issues. Although page response times will be longer in
end-user test conditions that make use of consumer-grade devices over tertiary
ISP or wireless carrier links, this metric differs from the browser fill time experi-
enced by an actual site user. This latter metric, also known as the perceived render
time or some variant thereof, is recorded by some of the more sophisticated passive
monitoring tools. Figure 7-3 illustrates the difference.

ISP Testing Best Practices
When configuring ISP-based testing, you should consider the following points:

Connectivity
This class of testing is designed to be best case. It is crucial to ensure that no con-
straints or variations in the test environment exist, either of connectivity or test
node. The major vendors of this type of monitoring will either deploy multiple
nodes within tier-one ISP data centers close to the major confluences of the Web,
or locate testing within LINX exchanges. The latter approach ensures that a range
of ISPs are selected in successive tests, while the former enables specific peerage
issues to be screened (at least among the ISPs for whom test nodes are available).
Avoid tooling based in tertiary data centers where high levels of minimum band-
width cannot be assured.

Triangulation
Undertake testing from across a variety of ISPs and/or test nodes. Doing so ensures
that any performance disparities reported are effectively isolated to the test site
concerned (assuming that the issue is detected across multiple nodes/tests), rather
than potentially being an ISP- or test-node-specific issue—which could be the case
if testing was undertaken from a single node. Ideally, you should use three or four
nodes, distributing testing evenly across each.

Location
When selecting vendors, and in designing tests, test from multiple locations with a
similar latency. It is not essential for all test nodes to be from the same country as

ACTIVE MONITORING 133

www.it-ebooks.info

http://www.it-ebooks.info/

the target, but take care to ensure that, if not, they are in regional locations on the
primary backbone of the Internet.

Perceived Render Time
(browser fill)

“Below the line” components

awny peo| abed [eyo|

jQuery.fn = jQuery.prototype = {
//The current version of jQuery being used
jquery:core version,

constructor. jQuery,
init: function(selector, context, rootjQuery){
var match, elem;

//HANDLE :$(*”),$(null),$(undefined), $(false)
if (!selector){

return this
}

//Handle HTML strings
\ y,

Figure 7-3. Total page load time (active monitoring) versus perceived render time

Frequency
With the advent of passive monitoring (RUM), which by its nature is (or should
be) continuous, the requirement for high-frequency active monitoring has
declined. A distinction should be made between ping (availability, aka up/down
testing) where test frequencies tend to be very high and strategic, and full object-
level or use-case monitoring. The key is to have recent data and trend information
available to drill into when a potential issue is flagged. Thus, a heartbeat test fre-

134 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

quency of, say, one or two tests per hour from four nodes giving a nominal fre-
quency of one test every 7.5 minutes should suffice. Test frequency can always be
increased during active issue investigation if required.

Agent type
As a general rule, the primary browser agent you use should reflect the predomi-
nant browser in the country being tested (or the browser/version with the highest
penetration among your customer base if different). Browser usage changes signif-
icantly over time, and some entrenched patterns of usage (such as that of Internet
Explorer 6 in China, for example) can be expected to change rapidly following
withdrawal of support and malware protection by the vendor.

Analysis
Automated analysis is a useful feature of some tooling. Even if present, it provides
no more than a shortcut to some of the more common factors to consider. A struc-
tured issue isolation model should be adopted and followed.

Synthetic End-User Testing Best Practices

Synthetic end-user testing differs from backbone in that it is essentially about quality
of service (errors and performance) rather than ideal, comparative external tests. It is
not an alternative to active ISP-based and passive (RUM) testing, but rather a supple-
ment. Some important differences include the following:

e Public peers have the advantage of multiple tertiary ISPs. Consider black/white
listing and PC specifications.

e Private peers are useful for testing from known locations. They can be particularly
useful in testing in closed intranet application situations, or from specific partner
organizations, for example. Private peer-agent deployment has also been success-
fully used for scheduled testing from specific high-net-worth customers (e.g., in
the gaming industry).

¢ Note that end-user response data is always inconsistent—but so is the real world.
Artificially throttled testing from data center test nodes is cleaner, but does not
represent the heterogeneity of actual usage conditions. It also tests from very few,
fixed locations with constant conditions of ISP connectivity.

e Connectivity—mapping to typical/desired users and use cases—helps you to
understand site performance in limiting conditions. It is particularly important for
large-footprint sites or those delivered into regions with poor Internet infrastruc-
ture.

e Mode, or wireless connectivity, is essential to understand the performance of
mobile users, both from a device and network perspective. Hardwired ISP testing
of mobile users should never be used other than as a reference point, because the

ACTIVE MONITORING

www.it-ebooks.info

135

http://www.it-ebooks.info/

136

results cannot be extrapolated to the real world. Synthetic testing of mobile end
users has limitations, however, as it typically occurs from fixed test nodes. This has
the advantage of more replicable testing in terms of signal strength but may suffer
from saturation of the local cellular mast, which introduces distortion into the
results. Triangulation of results (as with backbone tests) is particularly important,
as is careful attention to the connection speed: 3G has a maximum theoretical
bandwidth of more than 6 Mbps, but connection speeds of less than 100 Kbps are
not uncommon in remote areas and situations of high traffic.

e Consider the browser agent used, as it is not usually possible to read across back-
bone and last-mile tests measured using different browsers (particularly if one of
them is IE).

e Peer size is an important factor. Due to the inherent variability of testing from
end-user machines, you must test from sufficiently large clusters to enable aver-
age smoothing of the results. You must carefully consider the peer results selected
for object-level analysis, and engage in progressive “pruning” by blacklisting any
specific test peers that consistently produce erroneous results. Take care to operate
blacklisting using rational exclusion criteria in addition to poor performance;
otherwise, you may be actively removing evidence of a fault that you should be
dealing with. If testing from public end-user machines, adopt a minimum peer
cluster size of 7 to 10 nodes as a best practice to enable meaningful baselining.
Peer groups should be selected from machines and connectivity bandwidths of
similar characteristics. Results should be further filtered where possible to remove
outliers due to rogue low (or high) connectivity tests.

All these caveats can lead you to think that scheduled end-user monitoring is of no
value in a passive (RUM)-based world. Although continuous scheduled end-user mon-
itoring may be of limited utility (for reasons, among others, of cost), this class of moni-
toring can prove invaluable in isolating or excluding unusual issues (e.g., tertiary ISP
peerage, DNS resolution issues, CDN assurance). The ability to study object-level data
from end users and error codes provides a useful view of quality of service to end users
(see Figure 7-4), particularly in areas where base traffic is low (e.g., new markets).

Passive Monitoring

Passive monitoring is typically based on the capture of performance metrics from end-
user browsers, although custom instrumentation is possible for any client type. Unlike
active monitoring, which is essentially proactive in nature, passive monitoring requires
visitor traffic, as you can see in Figure 7-5. It is also known as real-user monitoring
(RUM), user-experience monitoring (EUM), and other similar names. I use passive
(RUM) going forward.

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

Last 30 days.
%
Z
.
22,181 é
173 % é
.
2.
From Oct-04 00:00 to Nov-02 23:00
22,023
ailed User Actins
1.74%
Faiure Rate
Error Hotspots by Application (Last 30 days) Error Hotspots (Last 30 days)
SaTiave mobi w0 Mobie App ror e
conTael portal E « Acton fils 0 50 HTTP Respen: 3306

Figure 7-4. Quality of service—fatal errors generated by UK ecommerce site landing page
(30-day test window)

RUM data users
Site visitors ’ '
www.abc.com Site (abc.com) Third-party
— i > lag content Vendor
—1 0 Iy
Object

= Objects

onunload Database

Figure 7-5. Passive (RUM) monitoring

PASSIVE MONITORING 137

www.it-ebooks.info

http://www.it-ebooks.info/

How Passive Monitoring Works

The most common technique for browser clients is to place a JavaScript tag or beacon
in web page headers designed to detect user traffic. In most cases, the tag permanently
resides on instrumented pages, placed via a simple cut-and-paste or a global include
statement. EUE toolset vendors are increasingly offering the option of dynamic injec-
tion of JavaScript into the visitor browser by the site application servers during the
page request.

The code executes, writing cookies as needed to capture browser information, naviga-
tion metrics, and potentially other data such as connection speed or ISP. After the on-
unload step, data is passed back using a GET request via HTTP or HTTPS to the vendor
database. This data is then made available via appropriate dashboards in the product
client.

Passive (RUM) tooling is typically provided either as a standalone product or as part of
an integrated end-to-end visibility extension to APM tools. While the mode of action is
similar, APM tooling has the advantage of associating browser-side performance met-
rics with those of the delivery infrastructure, whether application (often to code
method level) or hardware. A rapid growth in recent years has followed the publica-
tion (by W3C) and adoption by many browser vendors of standard navigation and
resource metrics. Although broadly similar from a basic technical standpoint, passive
(RUM) tools do ditfer fairly substantially. Some key considerations are listed here:

Sophistication/coverage
As previously mentioned, many passive (RUM) products are based on the stan-
dard W3C navigation metrics, which means they are not supported in all brows-
ers, primarily older versions and Safari. In certain cases, basic performance data is
collected from these metrics to supplement the core metrics. Key aspects of
sophistication include the following:

e Ability to record user journeys: Less evolved products act at the individual
page level.

e Ability to capture and report individual session-level data: This includes
reporting on business-relevant metrics, such as transaction abandonment and
shopping cart conversion by different categories of user.

¢ Detailed reporting: This includes reporting on bounce rate, stickiness (time on
site), abandonment, and similar.

e Ability to record above-the-line performance: Browser fill or perceived render
time.

138 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

This metric is rarely estimated by active monitoring tools (the only one of which I am
aware is WebPagetest). Therefore, passive (RUM) tooling supporting this metric pro-
vides a useful additional perspective into end-user satisfaction.

Real-time reporting
Tools vary in two principal ways with regard to data handling:

e How long captured data is stored. As with other monitoring, the problem for
vendors storing customer data is that they rapidly become data storage rather
than monitoring companies. However, the ability to view trend data over
extended periods is extremely useful, so individual vendor strategies to man-
age that requirement are relevant. This problem is exacerbated if object-level
metrics are captured.

e The frequency of customer data updates. This can vary from 24 hours to less
than 5 minutes. Near-real-time updates are relevant to active operations man-
agement, while daily information has limited historic value only.

All traffic or traffic sampling
Because passive (RUM) data is inferential in nature, it is important to capture all
visitor traffic rather than a sample. Some tooling offers the option of user-defined
sampling, often to reduce license costs. This is unlikely to be good practice except
possibly in the case of extremely high-traffic sites. Within Europe, this situation is
exacerbated by EU legislation enabling individual users to opt for do-not-send
headers, which restrict the transmission of tag-based data.

API access
Passive (RUM) tooling will always provide some form of output charting or graph-
ing. You can derive additional value by integrating passive (RUM) data with the
outputs from other tooling. This is particularly true for those products that do not
report on session-level data, such as conversion and abandonment rates. In such
cases, it may be advantageous to combine such data from web analytics with pas-
sive (RUM)-based performance metrics.

Page or object level
Although, theoretically, all products could be extended to capture object-level
rather than page-delivery metrics, this is not the case with every passive (RUM)
offering.

User event capture
This is the ability to record the time between two events (e.g., mouse clicks). Such
subpage instrumentation is valuable in supporting design and development deci-
sions.

PASSIVE MONITORING

www.it-ebooks.info

139

http://www.webpagetest.org/?
http://www.it-ebooks.info/

Extensibility
This is the ability to capture and integrate nonperformance user data. Examples
include associating user login details with session performance, and collecting
details of the originating application or database server.

Reporting
This metric refers to the extent, type, and ability to customize built-in reporting.

The strength of passive monitoring (RUM) lies in the breadth of its reach in terms of
browsers/versions, geography, ISP, and similar. High-level patterns of performance—
for example, regional CDN performance—and national performance delivery deficits
in challenging markets can be identified. At a more granular level, patterns of perfor-
mance between browsers or ISPs can readily be determined, which in the case of
smaller players would be unlikely through active monitoring.

Passive monitoring (RUM) has two primary weaknesses:

The inferential nature of the results
Passive (RUM) data, being based on visitors, is essentially reactive. It does not sup-
port the proactive testing of particular markets, devices, or functionality. Different
patterns of usage in different markets could be a reflection of cultural differences
or of functional/nonfunctional issues, requiring active monitoring to accurately
determine. By definition, prospective site visitors who fail to reach the site are not
visitors, so the concept (and metric) of availability is not valid.

The absence of object data (in the majority of cases)
This is extremely limiting if you are seeking to isolate the cause of a performance
issue.

Pros and Cons of Active Versus Passive Monitoring

This section summarizes the key advantages and disadvantages of active (synthetic)
and passive (RUM) external monitoring.

Active Pros

¢ Enables you to target monitoring to issues, browsers, location, conditions, content,
services (e.g., multimedia, payment service provider)

e Offers round-the-clock (if required) visibility in periods of low base traffic
e Provides consistent comparative data (internal or competitive)

e Allows you to monitor any public site (benchmarking)

e Is easily repeatable

e Can capture host-level data

140 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

e Allows full-object capture and single-object testing

¢ Enables availability testing

Active Cons

¢ Is not real world
e Provides only a subset of true conditions

e Can be conducted only with limited frequency (depending upon a realistic
budget)

Passive Pros

e Provides true visitor understanding
e Allows discovery of origin-related issues

e Provides an aggregate understanding of application components (CDN perfor-
mance, for example)

Passive Cons

e Is potentially limited in new markets because visibility depends on visitor traffic
¢ Is inferential—that is, not based on proactive test design

e Can be counterfactual (e.g., poor quality of service producing low regional traffic
volumes)

e Offers limited understanding in that results are not (usually) object based, can be
limited by browser coverage, and can be skewed by cookie blocking from end
users

Tooling for External Monitoring of Internet
Applications

Tooling choices for external monitoring are numerous, and need to be considered from
multiple perspectives. These include the following:

e Technology to be monitored: native mobile, RIA, server push
e User characteristics: location, browsers, mobile devices

e Application features and components: third-party content, multimedia, SMS

TOOLING FOR EXTERNAL MONITORING OF INTERNET APPLICATIONS

www.it-ebooks.info

141

http://www.it-ebooks.info/

142

¢ Performance interventions: for example, CDNs, ADC (ability to filter, A/B test as
required)

e In-house skills and resources: outsourcing (tooling, agency) versus self-service
e Application development strategy and goals

e Performance management strategy: in-house or outsourced

e Realistic budget, taking account of both opportunities and risks

e Any givens with regard to technology or tooling

As reiterated during this chapter, we would strongly recommend considering tooling
holistically, both across the DevOps life cycle (code profiling, continuous integration)
and in the context of an integrated data management approach. This approach, for
example, could seek to deliver a combination of tooling with minimal products and
feature overlap to support, among others:

e Performance testing

e External monitoring

e Application performance management (all tiers, including mainframe if present)
e Network management

e Database support

e Runbook automation

e Reporting and dashboarding

The ability to check many boxes is usually the prerogative of the larger vendors. How-
ever, given that much extensive tooling is obtained by successive acquisition, take care
to ensure that multiple products are integrated in practice, not just at brand level. It is
highly recommended that you undertake a structured comparative proof-of-concept
trial to expose the various salespersons’ claims to the harsh light of practical usage.
Gartner Inc.’s Magic Quadrant assessments can provide a useful stepping-otf point for
navigating the plethora of products and vendors in the marketplace. A few words of
caution, however: some of Garner’s product classifications can feel somewhat con-
trived, its underlying selection criteria do change over time (and should be considered
with your particular situation in mind), and the rate of introduction and consolidation
in the tooling world can outpace the best efforts of even the most experienced to call
it.

Tool Selection Criteria

A number of professional tools exist for external monitoring. As with any other com-
petitive market, the cost and detailed characteristics of individual tools will vary. You

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.gartner.com/technology/research/methodologies/research_mq.jsp
http://www.it-ebooks.info/

should make your selections with knowledge of these details, in the light of the needs
and constraints of your particular business. While several tools may fit the bill, mixing
more than one of the same (e.g. active testing) is not good practice. Differences in test
agents, design, test location, and more can make comparing results a difficult under-
taking. At the very least, you should undertake a detailed parallel test study to deter-
mine the offsets between the tools, although these may not be consistent or linear.

In selecting suitable tooling, here are the key considerations:

Technical sophistication
Ability to detect and isolate issues, and to support evolving site components such
as RIA technologies (e.g., Flex); server push functionality; scripting filtering and
custom coding; and validation for logins, message-based components (SMS), and
multimedia stream monitoring (encryption codices, formats, and adaptive
streams). Specific features within some tooling of potential benefit include the fol-
lowing:

e Automatic analysis and scoring against key performance factors and page
components

¢ Alert sophistication and integration with third-party alert management tools

e Screen capture and trace route on error or success

e Ability to parse and trace individual (e.g., third-party) object performance

e Ability to test complex transactions (e.g., select random or nth product from a
list, select only in-stock product)

Ease of use of product with regard to scripting, test commissioning, and reporting as well
as the speed of response of vendor support and script modification.
The relative importance of these factors will depend on the time criticality and
dynamic nature of the application(s) monitored and the extent of in-house skills.

API
Ability to integrate data, alerts, and so forth with external systems

Report flexibility
Ability to compare multiple perspectives (e.g., trafficc RUM, mobile, back-
bone) on single chart

Cost
As with all tooling, total cost of ownership should be considered—licenses, per-
sonnel, training, and support. Dependent upon the flexibility of the tooling and
the licensing model, strategies to mitigate cost include the following:

e Maintenance windows (change test frequency outside core business hours)

TOOLING FOR EXTERNAL MONITORING OF INTERNET APPLICATIONS

www.it-ebooks.info

143

http://www.it-ebooks.info/

144

e “Follow the sun” testing

e Continuous and active heartbeat testing

Flexibility/range of test perspectives (relevant to your particular site)
It is important to bear in mind that (a) all monitoring tools will provide a response
metric of some kind, but (b) as performance analysts—or at least consumers of
this data—we are required to draw business-relevant insights from them, and the
measurements can and do vary wildly between vendors and across the various
products offered by given providers (see Figure 7-6). The first key to effective
external monitoring is to understand the question you wish to ask and select tool-
ing that will enable you to ask it.

Backbone [ISP] Scheduled end user [l Private peer (examples) [} Visitors [RUM]

Figure 7-6. External monitoring—a many-headed beast

Tool selection considerations relevant to active (synthetic) and passive monitoring
(RUM) ditfer, as we’ll discuss next.

Active Monitoring Tooling

There are a relatively small number of active monitoring solutions to choose from. The
predominance of web technology and the relative ease of passive monitoring (RUM)
deployment makes RUM the easy option. As we will discover, active (synthetic) moni-
toring provides unique insights that RUM cannot offer, but is more complex to deploy
and configure and is not intended for discrete monitoring of end-user performance.
Synthetic monitoring typically has capability beyond just browser clients into thin-
client technology, such as Citrix, and legacy fat clients such as SAP GUI.

e Clean-room (ISP backbone) testing.

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

— Test node location and class, connectivity/assurance.

— Number of nodes in relevant regions (minimum three at same round-trip
latency).

— Number and type of test agents—native browser agents (and type) versus cus-
tom agents.

e End-user testing.
— Consumer-grade end user versus fixed-bandwidth data center testing.

— Number, quality, and control of test peers. It can be important to test from par-
ticular tertiary ISPs or at specific bandwidths:

— Mobile device testing—emulation versus real devices.
— Wireless carrier/known bandwidth versus hardwired ISP connectivity.

e The importance of controlled test conditions. Figure 7-7 illustrates the effect of
wireless connectivity conditions. Paired 3G wireless carrier and WiFi-based tests
for a panel of major UK ecommerce sites are shown. Note the high (and variable)
discrepancy between the readings.

40

35

30 I

25

m 3G

20

WIFi
15 .

10

Landing page response {sec)

Test sites

Figure 7-7. Test-panel mobile landing-page response, 3G versus WiFi

Passive Monitoring Tooling

At the time of writing there are over 50 passive (RUM) products available. Their large
growth has been driven by the W3C’s publication, and the subsequent adoption by
many browser vendors, of a number of performance-related metrics. The metrics most
relevant to this discussion are for navigation and resources.(see Figure 7-8).

TOOLING FOR EXTERNAL MONITORING OF INTERNET APPLICATIONS

www.it-ebooks.info

145

http://www.it-ebooks.info/

Navigation s
Unload event
Redirect

Fetch

Domain lookup
Connect
Secure connect
Request
Response

DOM load
DOM content load
Load event

Figure 7-8. W3C navigation metrics

Although some convergence in functionality is becoming apparent (at least in terms of
stated vendor roadmaps, even if not always currently available), the following aspects
are worth considering when you are selecting a passive (RUM) product.

e Standalone or integrated (e.g., with APM tooling)

e Real-time reporting (can vary from less than 5 minutes to 24 hours).
e All traffic or traffic sampling.

e API availability and granularity.

e Alert capability; that is, the ability to customize and export to existing alert man-
agement tools.

e Browser and device coverage—versions, types (e.g., Safari).

e Manually instrumented or dynamically injected (this has a bearing on cost of
ownership).

e Page or object level.

e User event capture.

146 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

e Complete use case or single page.

¢ Extensibility, that is, the ability to associate and report by specific session metrics
(e.g., user login).

e Business metrics, including abandonment, conversion rate, bounce rate, and time
on site.

¢ Reporting, including standard and customizable, email-based (e.g., .pdf), dash-
board outputs.

e License model and economics (e.g., per domain, by traffic).

Creating an External Monitoring Testing Framework

Now that we’ve briefly described the various approaches to external monitoring,
including their relative strengths and weaknesses, it is important to emphasize the
importance of an effective test framework design. At its core, external monitoring
must complement and extend the insights gained by infrastructure-based tooling (e.g.,
APM, server monitoring, network monitoring). To do this effectively while supporting
the requirements of the business, external monitoring must provide information that
reliably reflects the usage of the application and therefore maps closely to its effective-
ness in meeting business goals.

As mentioned in the introduction, any monitoring will generate a result. Gaining
accurate, actionable insights requires a clear understanding of the question that is
being asked. A common error is either not to accurately reflect usage conditions, or
(perhaps for reasons of perceived economy) to treat results from different tools as
equivalent.

A Salutary Lesson

A good example of not accurately reflecting usage conditions was seen recently at a
major UK online retailer. We were engaged to review its external monitoring strategy. It
had deployed an impressive array of external tests, including a range of mobile end user
tests using one of the major vendor toolsets. Its response results were superficially
good, although a disparity between active monitoring and passive (RUM) was apparent.
A more detailed examination of test configuration revealed that its mobile end-user syn-
thetic monitoring was all set up using hardwired tier-one ISP nodes.

This option, which was included by the tool vendor solely to provide a comparison with
wireless carrier—derived tests, provided a false sense of security that was rapidly punc-
tured when wireless-based testing revealed a significant peerage issue affecting sub-
scribers to one of the major networks (Figure 7-9).

CREATING AN EXTERNAL MONITORING TESTING FRAMEWORK

www.it-ebooks.info

147

http://www.it-ebooks.info/

R Lt - TS [Pt al oM I L]
R - L - 120 TP EREH T L]
L Lt - Thea (et Tt [I
L
L

LI

U Ll - Vilai (P 1433 [E8-
L Ll i [P 15m3 wa

Figure 7-9. Silent issue affecting major UK wireless carrier

Building Blocks of an Effective Testing Framework

Best practices for external monitoring in many ways mirrors that discussed elsewhere
in relation to performance testing; that is, it begins with consideration of the business
rationale for, and characteristics of, the application to be monitored:

e Why does it exist?

e Who uses it?

e What are the relevant trends and strategic vision, and when is it anticipated that
these will be realized?

Begin with good information on existing usage. The following questions illustrate this
approach:

e Where are application users located—now and anticipated?

e How does behavior vary in different user subsets? (This may suggest the types of
test transaction to monitor.)

e What is the pattern of traffic throughout the day, week, or month? This can vary
in ditfferent markets. Modeling test frequencies and monitoring windows can
make big differences to the license costs of some tools.

e What differences exist in browser/version and mobile devices? Popular browsers
vary widely by region (e.g., Opera in Russia). Particularly in emerging markets,
versions that are long obsolete in the UK and US may still have high market share.

148 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

For example, until recently, Internet Explorer 6 was the most popular browser in
China.

e What is the strategic direction of the business with regard to new markets?

e What is the strategic direction with regard to mobile device usage and/or develop-
ment of native applications for iOS and Android?

e Who are the key digital competitors (international or local) serving the target
demographic in all key markets?

It is not necessary (although desirable, if somewhat impractical) to proactively monitor
all regions and devices all the time, but the monitoring regime should seek to avoid
major blind spots and to validate and extend data obtained from passive sources (i.e.,
passive tooling).

As you answer these questions, it is essential to work from objective sources of infor-
mation (such as web analytics), rather than assumptions. The absence of promotion to
a particular region does not necessarily imply that it is irrelevant from a revenue per-
spective. Prior to the aggressive internationalization of more recent years, many high
street retailers experienced an English-speaking diaspora effect in terms of site visits,
both from areas with a high population of English immigrants (such as southern
Spain) as well as more permanent ex-colonial outposts. The world is not homogene-
ous; consider cultural/behavioral characteristics affecting devices, buying behavior, and
use cases in general. As an example, consider the window shopping behavior of Japa-
nese mobile users scanning Q codes. Other factors include the quality of the local
infrastructure (developing world), legal/regulatory restrictions (Cuba, China), and the
nature of user devices such as PC capacity and mobile devices (Africa).

Having determined the objective data required, and the key pages and use you need to
understand, you should next consider the type(s) of monitoring to be employed. Key
aspects are as follows:

e Multiple perspectives (triangulation)

e APM integration (root-cause isolation)

e Integration. (external, APM, and performance testing)

e Pre/per/post-load test results (memory leakage, cache effects, and similar)

Specific Design Aspects of Active Monitoring

When considering the design of a synthetic monitoring solution, you should take into
account the following points:

CREATING AN EXTERNAL MONITORING TESTING FRAMEWORK

www.it-ebooks.info

149

http://www.it-ebooks.info/

Triangulation
It is important to test from multiple locations, and ideally from a range of core ser-
vice providers. Backbone testing is designed to provide consistent, best-case exter-
nal results, and test design should enable this. Ideally, a minimum of three ISP test
nodes should be used per key location (e.g., country or region). If three nodes are
not available within a specific country, either due to lack of availability from your
chosen vendor, or to the requirement to test smaller economic areas, then loca-
tions with approximately similar round-trip latencies should be used. Political
geography does not matter, but core Internet connectivity does, and this should
inform your choice. Use key Internet hubs (in Northern Europe: London, Amster-
dam, Frankfurt, Paris) rather than secondary backwater locations where possible.

Avoid tier-two locations (i.e., local data center) where possible—this is clean-room
testing requiring consistent test conditions without test node system or communi-
cation bandwidth constraints. Failure to adhere to this suggestion will lead to
problems with interpreting long-term trend data, and will affect your ability to set
and monitor effective goals.

Frequency
Key considerations around test frequency include coverage, the nature of the out-
put required, and cost management. A common approach is to set up active moni-
toring at a relatively low frequency, used in concert with continuous monitoring
using passive (RUM) and/or APM monitoring. The detailed object level (and avail-
ability) data provided by the active testing supports pattern analysis and rapid
issue isolation/confirmation of potential issues suggested by passive (RUM) results.
Detailed test configuration will depend upon the tooling used, but I tend to work
with groups of four nodes, each testing at hourly intervals (i.e., providing a nomi-
nal test interval of 15 minutes). Frequencies can, of course, be increased during
investigation of issues, and often the tooling itself will provide additional confir-
matory testing automatically when alert thresholds are breached.

If using active testing to support dashboard displays, you must ensure that test fre-
quencies are matched to the refresh/display rate of the dashboard. Failure to do
this will lead to long latencies in flagging changes in performance status and/or
misleading results.

If you are using tooling where frequency of testing is a component of cost, then it
is worthwhile to devise a test plan that is modeled to the patterns of usage of the
application. Taking the time to introduce maintenance windows, or reduce test
frequency outside core business hours across different global time zones, can lead
to major savings in license costs.

150 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

Agent
In the early days of external testing, many vendors developed their own propriet-
ary test agents. These were designed to provide good average visibility of site
response across the (very limited) numbers of major browsers then in use, while
increasing the detailed information available compared to the black-box limitation
of native browser testing. Modern tooling almost exclusively prefers the data rele-
vance provided by native browser-based test agents. Ideally, you should undertake
testing using a variety of major browsers. This does not necessarily need to form
part of ongoing monitoring, but periodic cross-browser studies enable you to cap-
ture any gross issues of incompatibility, and take into account indicative perfor-
mance offsets.

Browsers differ in their detailed mode of operation, and it is important to review
site design to account for these differences across browser types and versions.
Such differences include the number of parallel connections, JavaScript handling,
and the sophistication (or otherwise) of script prefetching. Site modifications to
work around earlier browser limitations, if not reviewed, may lead to suboptimal
performance with later modified browsers.

As a general rule, where possible, active monitoring should seek to match the browser
agent used to the predominant end-user browser and version in the market con-
cerned. In cases where this is not available, some vendors will enable spoofing by set-
ting header and document object model (DOM) identifier information on a different
underlying browser engine. This approach has variable benefits depending upon the
nature of any underlying site issues, but it can be useful in identifying intractable
problems. Such a hybrid approach is also commonly used in mobile emulation testing
—that is, setting specific device headers on an underlying PC browser engine. This is
flexible, and it provides consistency of performance. However, it will not uncover
issues due to client-side system limitations. For these, real-device testing should be
used.

Specific Design Aspects of Passive Monitoring

The key points with passive monitoring are to understand any blind spots and to com-
pensate for them. Many passive (RUM) tools (those based on the W3C navigation
metrics) cannot collect detailed metrics on Safari or older browsers. Supplementing
with appropriate active testing (e.g., during periods of low base traffic) will ensure
rapid response should issues occur outside core trading periods.

Integration with APM tooling will also serve to extend this understanding across the
full range of visitor usage. Advanced passive (RUM) tools supporting individual
session-level information are particularly useful. Such products support more
advanced business—providing relevant metrics such as the relationship between per-
formance and bounce rate or transaction abandonment.

CREATING AN EXTERNAL MONITORING TESTING FRAMEWORK

www.it-ebooks.info

151

http://www.it-ebooks.info/

When interpreting passive (RUM) outputs, bear in mind that the results relate to suc-
cessful visitors to the site. Visit requests that were not successful will not appear.
Potential visitors (or visitor subsets, such as mobile users of a particular carrier or
device) who persistently experience problems may not seek to access the site in the
future. For these reasons, it is advisable to approach passive (RUM) data interpretation
from the perspective of expected results. Significant deviation from expectation (e.g.,
the absence or very low conversion rates for a popular device or certain region) should
prompt you to perform validation testing using active monitoring and visual fidelity
testing to offer confirmatory assurance of performance.

Isolating and Characterizing Issues Using External
Monitoring

The approach detailed in this section is one that I have used for many years. It was
designed for active monitoring (i.e., using scheduled synthetic testing) and hence it
would typically be used to validate and/or investigate potential issues flagged by con-
tinuous visitor passive (RUM) outputs.

The ability to perform the testing will depend upon the tooling available.

1. Start with clean room (backbone results).

e Examine average backbone trace (ideally for a minimum of two weeks).
— What are the patterns of performance degradation? One-off, periodic, sys-
temic?

— What is the most likely correlation (e.g., traffic patterns, periods of mainte-
nance)? If possible, examine passive (RUM)-based traffic versus perfor-
mance.

—Is there any progressive deterioration/sudden improvement (memory leak-
age, caching issues)?

e Look for regular periods of poor performance in direct response to load (sine
wave). Typically, this indicates an infrastructure capacity deficit, but other
explanations exist.

¢ Look for random outlying results.

e Compare cross-browser results: are they the same for all? Focus on major
browsers for the relevant country or region and/or the browsers reported by
customer services.

— Validate passive (RUM) results using active monitoring (set browser/device
headers as required).

152 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

— Review any automated analysis (consider the likely extent/significance of
any red flags).

— Analyze by ISP node:

—If problems point to the same node, select that node and chart on it
alone.

— If multiple nodes are implicated, view a scattergram of performance by
node to determine any patterns.

—1If there is a drop in availability, view using a test-by-time scatterchart to
show the timing of the failed tests. Examine for cause of failure.

— Validate availability by payload (byte count): is there any drop in content or
evidence of errors in page delivery? Examine passive (RUM) data if error
page(s) are instrumented.

— Characterize the error (details will depend upon the tooling deployed):
— Implement screen capture on error if this is supported by the tooling.
—Is there evidence of content failure?

— Are there content match errors?

. Focus on areas with performance degradation.

¢ Split by page (if transactional).

¢ Split page by component (e.g., core, third party). Consider the following aspects
of individual page components: DNS resolution, connection time, first byte
time, content delivery time.

e Compare performance relative to reference baseline data (for the site under test
or top-performing competitors).

— Consider median and 95th percentile response values, together with a meas-
ure of variation (e.g., MAD, MADe).

e Review the pattern of results using overall scattergram patterns and by associat-
ing slow delivery times with spikes in performance of the relevant page or use
case.

e Compare average results from multiple perspectives—ISP backbone, scheduled
end user (PC and mobile/wireless carrier), passive.

— Correlate key parameters (e.g., traffic, ISP, end-user device).

e From the backbone, drill down to object waterfall view if supported by the tool-
ing. Compare three or four good and poor results: what is the difference?

e View objects by host.

ISOLATING AND CHARACTERIZING ISSUES USING EXTERNAL MONITORING

www.it-ebooks.info

153

http://www.it-ebooks.info/

¢ Plot suspect object(s) over time: do any patterns emerge?

e Undertake a rapid object audit of page(s): number, type, size, header settings.

3. Look at the quality of service.

e Generate an end-user error chart for the period.
— View by type (pie chart).
— View by time.
— Drill down on particular error(s).
— View report: are any patterns to objects/hosts/speeds/ISPs involved?

— Beware of “rogue” errors caused by limitations of connection speed—set
(or filter) for known bandwidth.

e Look at visitor passive (RUM) reporting.
— Where is the slow performance (geography, ISP, browser version, etc.)?

—Is there any association between traffic and errors or abandonment?

4. Capture, summarize, and report findings for future comparison.

e Ensure that the data you capture is retained and easily accessible for baselining
and comparison purposes.

Monitoring Native Mobile Applications

Internet-based delivery to mobile is evolving in two dimensions. First, mobile is
increasingly becoming the primary retail digital purchase channel (anecdotally, several
major retailers report close to 40 percent of their digital revenue from this source). The
trendlines between PC-based purchase (declining) and mobile (increasing) are set to
cross within the next 12 months (i.e., by early 2015), as you can see in Figure 7-10.

154 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

Number of Global Users (Millions)

2,000
1,800
1,600
1,400
1,200
1,000
800
600
400
200

0

—Desktop
—Mabile

2007 2008 2009 2010 2011 2012 2013 2014 2015

() cOmSCORE. e G G

b

Figure 7-10. The trendlines between desktop (declining) and mobile (increasing) consumers
are set to cross by early 2015

The second dynamic is the migration from relatively simple 7. (mobile-enabled) web-
sites to native mobile applications, although the advent of web apps, particularly when
supported by some of the emerging network-independent components, may prove dis-
ruptive to this in the future. Setting aside web apps for now, native mobile applications
have a number of advantages:

e They are network independent. You can use them in train tunnels and other areas
where Internet connectivity is poor or nonexistent.

e They are productive at all times. In other words, you can store key information
such as documentation and product SKUs locally.

e They are (or can be) faster and richer in functionality. Developers have access to a
rich, closed OS environment, and therefore do not have to make cross-device
compromises.

These strengths present difficulties, however, from an external monitoring perspective.
These are complete, compiled applications, so the concept of the web page does not
exist. They are also not necessarily HTTP/HTTPS based, so tooling designed for the Web
may be unsuitable anyway.

MONITORING NATIVE MOBILE APPLICATIONS 155

www.it-ebooks.info

http://www.it-ebooks.info/

156

Monitoring native mobile applications requires different approaches, which T will term
explicit and inherent. Explicit monitoring uses a software development kit (SDK) to
instrument the application code and link these together to create logical user journeys.
Typically, i0S Views and Android Activities are referenced using the SDK. Data from
application traffic (either actual end users or from specific VNC-linked devices) is col-
lected and reported.

The ability to relate application performance to device variables (for example, memory,
battery state, and signal strength) is particularly valuable. Crash metrics may addition-
ally be reported in case of application failure. This approach is primarily used by
mobile test tool vendors such as SOASTA (Touchtest).

Inherent monitoring is similar, but is easier to manage in that it requires a one-time
instrumentation of the code with a compiled component. This is injected automatically
at runtime, enabling capture of all user activity without requiring use-case scripting.

This is the route typically favored by native mobile application monitoring extensions
of APM tooling (for example, New Relic, shown in Figure 7-11). The ability to com-
pare performance across devices and OS versions is extremely useful, particularly if
elements are used to feed composite dashboards (via the tool API) relating perfor-
mance to business operation metrics (e.g., order rate).

- N . Versions . Last 7 days -
I New Relic for i0S... App Network Usage Settings Al versions () Ending now
Overview Interactions Devices OS versions Alerts Experimental NR
Execution tme 1.14sec Hitipresponse time 1.14 sec
Average Average
DA ALV Pl
api.microsofttranslator com
staging.newrsiic.com [Staging] === api.mixpanel.con

— gravaar com = api.newrdiic.com [RPM UI|

Http errors / network falures

B Database [images B JSON B Network B View Loading

Figure 7-11. Typical APM mobile dashboard

From the point of view of external monitoring, the principal disadvantage of native
mobile applications is that it is not possible to monitor apps without access to the code.
Thus, it is not possible to monitor competitors, and sector benchmarks do not exist (at

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

the time of writing). This makes it challenging to appropriately define target perfor-
mance.

Essential Considerations for CDN Monitoring

External content caching, or CDN, acceleration is one of the more established and
widely used of the many performance-centric interventions now available. A recent
(2014) study by my company Intechnica on the top 20 UK retail sites identified more
than 75 percent of third-party services being represented by one major independent
CDN provider alone. CDN adoption is far from a one-size-fits-all decision. The market
itself is both large and fairly volatile, with the contending capabilities and claims of
independents (Akamai, CD Networks, Limelight, Fastly, and many others), platform-
based offerings (e.g., Amazon Cloudfront), and ISP-based services—which are often
themselves delivered through licensing agreements with independents (e.g., Deutsche
Telecom and EdgeCast). The broad choice is less relevant than the inherently dynamic
nature of the problem. At its most basic level, CDN usage is far from binary; a given
site may well employ several CDNs either directly or indirectly (through third-party
content). So what are some of the core considerations?

e What are you accelerating? Depending upon the nature of the site and its usage,
all or part may be accelerated. Is CDN caching applied just to large static images
(for example), or all content?

e Where is it going? What are your key global markets? CDN providers ditfer widely
in their capacity across the globe (indeed, some are regional niche players).

e Which primary regional ISPs are involved in web delivery?

e What is the nature of your core content and to whom is it principally delivered?
Web HTTP and/or video (total download, adaptive streaming, etc.), PC browser,
mobile device, or other (gaming console)?

Specific considerations apply in optimizing each of these areas. These may or may not
be embraced by a particular product or service. As an example, delivery optimization
to mobile devices may involve test compression (to reduce overall payload), video pac-
ing, and TCP acceleration. All of these factors should influence test design and tooling
approaches. An effective CDN-based strategy begins with initial selection, informed by
some of the aforementioned considerations. As we have seen, determining optimal
return on investment repays a thorough approach, and some form of comparative
proof-of-concept trial is likely to pay major dividends. Following the purchase decision
and deployment, key ongoing questions remain, if you are to maintain best value:

e Where are the priorities for usage optimization?

ESSENTIAL CONSIDERATIONS FOR CDN MONITORING

www.it-ebooks.info

157

http://www.it-ebooks.info/

158

Is there an end-user monitoring strategy in place across all key (and potential)
markets?

Do target KPIs (absolute or relative to local competitors) exist for all markets and
usage categories?

Is a service-level agreement (SLA) with defined interventions and remedies in
place with the selected provider?

How do these stack up, both during business as usual and across peak demand
events?

These questions should be answered by an ongoing monitoring program supported by
a best-practice-based testing framework. Having defined which areas (functional, geo-
graphic, and demographic) would potentially benefit from the use of CDN approaches,
and assuming other interventions (e.g., appliance based, FEO) have been discounted,
you should then ask the following:

e Is the CDN accelerating all appropriate components?

— Some “entry-level” providers are restricted to caching static content such as
images. If other elements are required (e.g., login and search), are these also
included and effectively measured?

Test design. Where does caching occur? At a single POP/ISP domain, via multiple
hosts, or at cellular network mast?

— Testing should reflect any potential constraints implied by the design of a par-
ticular CDN providers network.

— For maximum effectiveness, conduct prescheduled, active (synthetic) testing
from appropriate end users (PC and/or mobile) in the country concerned.

— You should employ a parallel testing methodology comparing performance
directly to the origin servers with that delivered locally by the CDN provider.

This approach will ensure not only that end-user performance is satisfactory, but also
that the extent of benefit delivered to (and purchased from) the CDN is maintained.

An example may help here:

Comparative monitoring of cached content to PC end users in a key regional market
(known connectivity conditions), origin versus local cache

Figure 7-12 shows the overall benefit delivered (some 7 seconds on average). The
highlighted area illustrates a convergence between the traces (i.e., transient failure
of the CDN to deliver performance acceleration).

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

Bz e

§ e] T
§| 4 & & £ 4§ 1 s 5 2 45 13
Por b oror b ororororoboiod

B T it

] S oy a
e wm

I skl 2 B B b (V04 78900) =
1 aticT i B 178 441 9
I sk 2 S B b (B0.20.295.8) T —

1 shic) i o (1156 78000 1)) e B 50 8 1
B shatic) i b (B30 255 0] 1 st s 17 P L1

Figure 7-12. Timebase: 1 hour

Importance of test location
Figure 7-13 compares the number of CDN hosts used to deliver content (i.e., be
monitored) over a one-week period by a major CDN provider. Testing from the
tier-one ISP cloud provisions (left image) cached content from 2 CDN host groups
(16 individual hosts).

The image on the right shows results from the same geography when tested from
a wide range of PC end users (using a variety of tertiary ISPs). Ninety-six individ-
ual hosts were employed.

ESSENTIAL CONSIDERATIONS FOR CDN MONITORING 159

www.it-ebooks.info

http://www.it-ebooks.info/

160

CDN TEST LOCATION COMPARISON

 smatetd

W a3 0

Tier 1 ISP testing
"=l 7 days /1 ISP NODE
. CDN content from
i 2 Host groups
mes 16 INDIVIDUAL HOSTS |
W e Y e

B a2 i b 30 200 88
I 7 o g | Ve PRTEEI 1)
B ot i S e (B0 T3S 1)
B et v . 114 0 1530 0
I ey 3 4 b (90 0 PR

I 0 o e PRTED

] o b 79 B
[T ST T
Vst pir b B 0 1)
W e i o 1
[T UL IR
e e R T Y

W i b

""" EndUserPCtesting
sasna. IR days fend user tests
s CDN content from
PR 12 Host groups
96 INDIVIDUAL HOSTS

) g
W i b
) i
) e i it - [8 G 1
) s] s gt e 77U 50 8 W
LI = 1 TR B R R
] o B 71 38 T 1)
) i o b (7 R 1)

W st} o g - (AT B0)

Figure 7-13. CDN test location comparison

Relevance
Failure or poor performance by any of the 80 hosts not detected by ISP-level mon-

itoring would not be detected, while being paid for, and impacting all end users of

that particular host.

Figure 7-14 illustrates the range of performance at the individual CDN host level

during a five-day test window.

Fesporas Tams (e

14 Jan - D0k
an - (5
14 Jan - 154

14 Jan - 208
15 Jan - 068

15 Jan - 16k

14 Jan - Wk
15 Jan - 11k

4 Jan -

18 Jan - 0Th

18 Jan - 10

18 Jan - 1Th

f &£ 8§ 2 84 8 1 ¢ % & §
i § § § § %8 § § § §8 3}

Figure 7-14. CDN host-level performance

Note that the selection of CDN delivery node location will be influenced by several fac-
tors. These include existence of a point-of-presence (POP) in the region to be opti-
mized. Absence of a local POP need not be disastrous, but it will mean that round-trip
times to the source of the cached data (e.g., UK to US) will be extended.

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

Even if a local POP exists, it is important that end-user traffic is mapped efficiently to
the CDN host that will most efficiently deliver the cached content. Such mapping is
typically effected using the IP location of the DNS resolver rather than that of the end
user. In the case of most consumer end users, DNS resolution will be undertaken by
their ISP at a central in-country location. Corporate or institutional users may, on
occasion, use DNS proxies distant from their location (e.g., on another continent). This
may lead to inefficiencies due to incorrect CDN location mapping, with commensurate
round-trip latency. Whether or not this occurs, you should certainly correct for it
when undertaking CDN assurance screening, by identifying and blacklisting such end-
user peers.

Finally, having selected your CDN provider, ensure that configuration is optimized,
both in terms of origin/CDN interaction, and ensuring that headers are set appropri-
ately at the individual object level. Failure to do (and police this) can result in perfor-
mance being compromised by origin rush, whereby the individual CDN delivery
nodes, rather than serving locally cached content, are constrained to request all or part
of the content from the origin servers, thus defeating the objective of the exercise.
Such misconfiguration can have relatively dramatic effects on site performance even if
a relative small proportion of total content is misconfigured, particularly if the origin
infrastructure is prone to capacity constraints.

Performance Results Interpretation

Effective performance management requires an understanding of ongoing perfor-
mance, both in absolute terms, and relative to key competitors and visitor expecta-
tions. A wide range of tooling exists for external monitoring of application perfor-
mance. All will produce a series of results. The validity of these results, and therefore
the quality of the business inferences drawn from them, can vary significantly. This
section highlights some pitfalls and suggested approaches to maximizing beneficial
outcomes from investment in performance.

You must take care when selecting appropriate tooling, taking into account the nature
of the application, its detailed technical characteristics, the nature of visitor traffic, the
location of key global markets (existing or planned), and many other considerations.
Having developed a test matrix for external monitoring (with regard to established
best practice), you should collect and inspect data over a full monthly business cycle.
This will provide a set of reference baseline values across a range of business-as-usual
conditions.

A given application will typically exhibit recurrent patterns of performance behavior
across a weekly demand cycle. Such patterns often provide an initial high-level indica-
tion of overall application characteristics, such as capacity deficits or gross issues in

PERFORMANCE RESULTS INTERPRETATION

www.it-ebooks.info

161

http://www.it-ebooks.info/

serving particular visitor groups (e.g., mobile users). These preliminary findings can
inform your subsequent approaches to the performance strategy.

Assuming that overall application performance is reasonably stable, it is then appropri-
ate to determine the KPIs and any associated SLAs that will be used for performance
understanding and management.

Key Performance Indicators for Web-Based Ecommerce
Applications

KPI determination should reference many factors. In summary, these include the fol-
lowing:

e Best-practice values derived from top performers in a relevant business sector,
“bellwether” sites (i.e., places where your customers are visiting if not on your
site), and expert advice.

e Performance of key competitors.
e Historic performance of your site.

e Key use cases—that is, those with maximum business relevance. These fall into
three categories:

— Direct revenue sources (e.g., purchase transactions).

— Activities that reduce business overhead (e.g., web-based customer service chat
versus telephone-based support).

— Functions that are important to brand perception and/or deferred revenue.
Examples include color simulator for paint/car manufacturer; booking sales
representative appointments.

e Key pages. Use case should always be deconstructed to examine the performance
of each page or logical step, as an exclusive focus on end-to-end response times
may mask poor performance at a key step. Poor performance at individual key
steps has been shown to be highly correlated with abandonment.

e Subpage performance—that is, response and consistency of individual objects/
links, either core or third party.

The purpose of KPIs and any SLAs based on them is to ensure and optimize business
outcomes. These outcomes can take many forms, but those most relevant to ecom-
merce are revenue, customer satisfaction, and brand perception. Site/application
behavior has both a direct and indirect impact on performance. Direct factors include
lack of availability and high levels of delayed page response and inconsistency.

From an end-user-experience perspective, key performance-related metrics are
response time (seconds), availability (%), and consistency (standard deviation or

162 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

median absolute deviation). You need to monitor and understand the influence (if
any) of performance on conversion rate, visitor abandonment, bounce rate, and sticki-
ness (time on site).

Performance has been shown to have a less direct effect on other key revenue metrics
(e.g., conversion and abandonment). These factors are influenced by many variables,
including site design, user demographics, and aspects of the offer (e.g., shipping costs).
Setting and managing performance KPIs while controlling for other variables has been
shown to have a positive effect on digital revenue. Visitor metrics should be analyzed
using robust statistics to mitigate the distorting effect of outliers. Once thresholds have
been established, the use of—and setting KPIs for—APDEX-derived measures of visitor
satisfaction is useful. (APDEX will be described shortly.)

Consider key markets: the nature of competitors and delivery conditions (quality of
core Internet infrastructure, browser version, mobile device usage, and other factors)
affects the detail of the monitoring undertaken and target KPI values. There can be lit-
tle point in applying common KPIs derived from performance in advanced markets
indiscriminately across all regions. It’s better to understand local conditions and con-
straints and seek to be the best on the ground market by market. This is likely to pro-
vide a more pragmatic and lower-cost approach.

You should have in place a procedure for the regular, systematic review of all KPIs.
Factors to be considered include the following:

e Historic performance relative to existing values
e Trending of all defined metrics and business processes

e Performance and trends in key competitors and bellwether sites (e.g., BBC, Face-
book)

A fully evolved performance strategy gives attention to both objective (hard) and sub-
jective (soft) aspects of performant delivery:

Hard metrics
e External: set target responses to the ISP cloud (best case) as well as to PC and
mobile device end users across a range of connection bandwidths, to cached/
uncached visitors, and between total (all object) page response and above-
the-line (browser fill) response time. External KPIs/SLAs should exist for the
following:

—Key use cases
—Key pages
— Third-party objects/affiliates

PERFORMANCE RESULTS INTERPRETATION

www.it-ebooks.info

163

http://www.it-ebooks.info/

¢ Internal: Set and manage internal (infrastructure-based) KPI metrics. These
metrics are outside the scope of this chapter.

Soft metrics
e Visual fidelity across key browser version/operating system/screen resolution
combinations, and to key mobile devices/form factors.

e Fidelity of page links (internal and external).

Setting KPI Values

Consider the nature of the application and the goals for the business/brand. For exam-
ple, do you wish to be in (and invest to achieve) the number-one benchmark position,
top 10 percent, top quartile? A common approach is to aim for a position in the top 25
percent of all companies in your business sector (in key markets), with a response at
least as good as a panel of specified direct competitors.

Reference second-order values (quoted retail industry average), as outlined in
Table 7-3.

Table 7-3. Reference second-order values

eCommerce retail KPI Upper quartile benchmark mean
Conversion rate (total site visitors) >3.0%]

Shopping cart abandonment <60%

Target page weight (PC browser) <1 Mb

Add to cart (new visitors) 6.4902

Add to cart (returning visitors) 10.8%2

Total page weight (mobile devices) *3

Quoted average values are very dependent upon the nature and positioning of particu-
lar sites, the selection of data, and the dynamic nature of the metrics themselves. Users
should discuss this with their web analytics and/or tag management system provider
to derive target KPI data more specific to their precise offer. Consider the following:

e Understand the key users of the site in terms of browser versions, connectivity
(fixed wire and mobile dongle), mobile device, location, and ISP.

e Distinguish between the performance of first time (uncached) users and frequent
visitors. Note that unless specifically designed (by scripting duplicate consecutive

164 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

tests), active (synthetic) monitoring testing is usually uncached, thus providing
Wworst-case responses.

e Understand key trends in interface (e.g., specific mobile phone or tablet) uptake
among your key target demographics.

e Test performance to major browser (e.g., Internet Explorer, Chrome, Firefox)
upgrades at beta stage if possible.

e In terms of capacity, undertake performance assurance of application KPIs:

— Across the range of demand of the normal (daily/weekly/monthly) business
cycle.

— To anticipated peak demand—Christmas trading, sales, and so on (typically
1.5x projection from previous years).

— Prior to release of significant site/application upgrades or other related activities
(e.g., hosting provider or primary ISP changes). Periodic nonfunctional perfor-
mance testing should form part of continuous integration-based DevOps strate-
gies.

External KPIs are typically as follows:

e Business relevant, that is, they affect revenue throughput directly or indirectly.

e Based on degradation over a period or with a defined pattern of occurrence rather
than point or transient episodes.

e Based on the three cardinal metrics:
— Response time (seconds)
— Availability (% successful tests)

— Consistency (standard deviation, seconds)
What to measure? Typically:

e Use-case times
¢ Individual page times

e Response consistency

Object/delivery component (e.g., DNS) times
External KPIs should specify the source of testing:

e Site visitor monitoring (perceived render times, browser version/device response
times)

¢ Clean-room ISP cloud testing (absolute metrics, competitor benchmarks)

PERFORMANCE RESULTS INTERPRETATION

www.it-ebooks.info

165

http://www.it-ebooks.info/

166

¢ Scheduled end-user testing (geographic/specific location testing, subjective met-
rics)

e Performance capacity testing (internal/cloud/end user)
There are three types of metrics:

e Absolute

— Breaches indicate a prima facie issue requiring intervention and resolution.

— Deviations from range of standard behavior across the business demand cycle.
e Subjective

— Based on judgment and/or empirical behavior data (e.g., abandonment rates).
e Relative

— To competitors (public sites).

— To other internal applications.

— To other objective criteria.

The preceding categories apply to monitoring metrics, that is to say, the application
response across the normal cycle of business usage. Performance metrics apply to the
application response across conditions of simulated demand (performance testing).
SLAs imply involvement of another actor (typically external, but may be a defined
internal IT/operations function).

The Application Performance Index (APDEX)

The APDEX, or Application Performance Index, is a means of comparing end-user sat-
isfaction by measuring application response. It was initially derived in 2005 by Peter
Sevcik of NetForecast Inc., and is currently supported and developed by corporate
members of the Apdex Alliance (typically larger performance-related companies such
as Akamai, Compuware, and Keynote Systems).

The principal goal of APDEX is to provide a clear and unambiguous method of com-
paring user experience across any application, user group, or enterprise. All members
of the Alliance produce products that calculate and report the APDEX score. In theory,
it is possible to calculate the index from any end-user response metrics. However, this
does not obviate the requirement to critically examine the results delivered by your
tooling to ensure that they accurately represent the end users” perception of the appli-
cation response. As an example, user wait times are not equivalent to the total page
response metrics produced by synthetic monitoring systems. These are essentially
recording the total network traffic time, so unless the above-the-fold time is indicated

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

(as it is with some synthetic tooling, such as Google WebPagetest), a passive (RUM)
tool providing a browser fill metric is required.

The APDEX has a potential range of zero (least overall satisfaction) to one (greatest
overall satisfaction) experienced by users of the application. Users are segmented into
one of three categories (Satisfied, Tolerating, or Frustrated) on the basis of their expe-
rience of application response. The index is calculated through a comparison of the
number of responses in each category relative to the total sample.

Categories are related to a target value (f seconds) as follows:

Satisfied zone
Zero tot

Tolerating zone
tto 4t

Frustrating zone
4t and above

If you are interested in the theoretical basis of APDEX, references are provided at the
end of this chapter.

Management Information

Before embarking on an information delivery program, you need to define and group
specific indicator metrics, via a minimal number of relevant summary management
reports. Popular approaches include the following:

e Balanced scorecards
e Traffic light (RAG)-based matrix

e Dashboard reports

Although some metrics, such as availability, are likely to be common to all business
constituencies, the particular metrics selected and, in particular, the RAG thresholds
used will differ depending upon the target audience.

For example, the Operations team will require early warning of potential issues. It will
typically set far tighter warning thresholds based on root-cause indicators. Senior busi-
ness (e.g., C-level) users are usually focused on issues that impact business perfor-
mance (e.g., order rates, market share) and are focused on first-cause metrics that will
typically have broader thresholds.

Having agreed upon a master set of KPIs and the type and mode of delivery (heads-up
dashboard, daily email, SMS alert), you must now consider how best to process the
raw performance data for maximum relevance.

MANAGEMENT INFORMATION

www.it-ebooks.info

167

http://www.it-ebooks.info/

168

Data Preparation

The importance of pattern interpretation (that is, the variation of site behavior across
the business demand cycle) has been mentioned. However, in drawing conclusions
from data, it is important to consider and minimize where possible the inherent limita-
tions in the figures presented. These derive from three principal sources:

e Limitations inherent in the nature of the test design. As an example, some tooling
vendors use artificially throttled bandwidth tests from core Internet cloud loca-
tions as a proxy for end-user performance. Others use outdated HTTP 1.0-based
agents, which cannot monitor modern client-based processes.

e Limitations dependent upon the test source—for example, using tertiary retail ISP
test locations rather than near-tier-one dedicated ISP or LINX-based tests.

e Limitations based on the nature of the results obtained. This is covered in the fol-
lowing section.

Statistical Considerations

Ongoing week-to-week or month-to-month performance monitoring (as opposed to
specific deep-dive issue-resolution activities) are based on three parameters:

Availability:: The proportion of external scheduled tests that are successful or fail—
reported as a percentage of total (active) tests. Response time:: The time taken for a
process, page, or transaction to execute. Various subtleties should be considered (e.g.,
total load time versus above-the-fold or browser-fill times); these are covered else-
where. Reported in seconds or milliseconds. Consistency:: The variation of the results
from multiple repetitions of a given test. Often reported as standard deviation,
although there are better metrics (as discussed momentarily).

Treatment of availability is acceptable, provided any inherent underlying confounding
variables are noted/known. These would include such factors as low test volumes. As
an example, a single failure from a run of 5 tests is reported as an availability of 80
percent. The same single failure from 100 tests results in a reported availability of 99
percent. When you are considering availability metrics, it is important to exercise par-
ticular care in distinguishing between reported (or what I term nominal) availability
and actual functional availability.

Active (synthetic) monitoring tooling will typically record a page load as successful
even if a proportion of the content has failed to download (or, indeed, if it is an error
trap page of the “Our site is having problems; please try later” type delivered in place
of the requested page). Before you regard reported availability as accurate, therefore, it
is strongly recommended that you do the following:

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

¢ Smoke test the results. A recorded availability of less than, say, 85 percent would
almost always be accompanied by other symptoms, even if they are calls to the
customer support center. Is this a test artifact?

— Does the site work when you visit it?
— What do the site traffic and order volumes look like?
e Run a payload test. This is very useful for picking up the delivery of partial or

error pages.

Measurement of response times and consistency can present more difficulties if you do
not take care to understand (and, if necessary, correct for) any inherent distortion in
the raw data.

Consider the charts in Figure 7-15 and Figure 7-16.

THE s e

A B

Figure 7-15. End-user average response time

MANAGEMENT INFORMATION 169

www.it-ebooks.info

http://www.it-ebooks.info/

170

50000 ¥ - -

800 *TT 1 Outliers
40.000 3 .

.
e e .
“mm - * ;) P - o - > M - [d - » # - -
g:nmu . *

10.000

0000 -
SRRRCBLESER2BYIARCBEY ARCBUHYERER
s&:‘ﬁﬁﬁﬁﬁgffﬁﬁsﬁns;ﬁﬁﬁ SEEERMETHS
LR L e R mesoooonaz
EE SR E LR EEEEEEE R R TTTTITTDDD D
000000000 0000000000 000000000
EFERRRRARARERERREERRRREREEERSR FRREERREERERRAR

Figure 7-16. End-user outlier response time

Figure 7-15 illustrates the value of examining the raw individual data points before
determining the best statistical treatment. Averages can hide a multitude of sins. In
this case, a scattergram display was used. It represents each individual data point as a
single point, color-coded by its origin (location of ISP node). The value of such an
approach in understanding underlying application behavior is clear.

Point A shows a state change in response from the British Telecom test node location.
As BT carries over 80 percent of UK traffic, and any performance changes (e.g., due to
peerage issues between customers using BT and the data center home ISP) can have
major commercial consequences in terms of user experience. After the state change at
A, two separate performance bands are detected in the BT results. This is characteristic
of load-balancing issues, but more relevant to our current discussion is the effect on
the distribution of results producing a multimodal distribution.

At point B, you can see the effect of an issue localized to the Verizon (orange) node. In
this case, the effect is transient, and would be well reflected in an increase in average
response, flagging alerting, and more detailed investigation.

Figure 7-16 illustrates a different scenario. In this case, the scattergram shows a high
dispersion of results that is not transient (as with the Verizon example), but systemic.
The application throws off frequent, sporadic results that are much higher (or in a few
cases, lower) than the majority of the results. In the chart, the core response times
(average of ~26 seconds) are bounded by the red lines. Outliers (which in certain cases
are three times as long) appear in the (blue) shaded portion of the chart outside this
area.

This kind of dispersion in results is not uncommon, particularly in applications that are
operating close to their infrastructure capacity, either in the general run of business, or
at times of peak demand (e.g., pre-Christmas trading, or in intranet applications close
to internal deadlines).

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

The issue that this presents in interpretation is that the simple and commonly used
measures of central tendency—the arithmetic mean (for response) and the standard
deviation (for consistency, or results variability around the mean)—make a core
assumption of normality of distribution This is demonstrated in Figure 7-17.

Figure 7-17. Normal distribution curve

As you can see, this distribution is symmetrical (i.e., the proportion of results of a
given value are the same to the left and right of the center line). The presence of outli-
ers (or other distortions such as distributions that exhibit kurtosis or skewedness) ren-
der this core assumption invalid and tend to likewise invalidate results that are based
on it. In simple terms, if an application has responses to (say) 1 in 10 visitors in one
month that are much higher than the majority, and the following month this does not
occur (or the proportion of outliers changes significantly), the mean value will be
markedly affected. This sensitivity to data quality makes the mean a poor choice when
you are comparing a long series of performance results. Fortunately, a number of alter-
natives exist. These are more or less involved depending upon the standard character-
istics of the data. While professional statisticians may have resource-to-data transfor-
mations (e.g., logarithmic), in the case of most correctly specified corporate systems,
one of two approaches usually suffices, namely:

Monitor the median rather than the mean. The median is the value that cuts the data
in half. It is, in statistician’s parlance, a more robust indicator than the mean. In other
words, it is less affected by small numbers of results that vary from a standard normal
probability distribution.

In cases where preliminary examination of the data shows a large number of outliers
and/or the results of such regular outliers are likely to significantly distort the mean,
you should see a truncated distribution when reporting on central tendency (i.e., the

MANAGEMENT INFORMATION 171

www.it-ebooks.info

http://www.it-ebooks.info/

172

peak of the probability distribution curve—which is what the mean seeks to do). As
mentioned, data transformation is one solution.

Provided that the residual data volume is sufficiently high, a simpler solution is to use
a trimmed mean. The trimmed mean is calculated in the same way as a simple arith-
metic mean (i.e., the sum of all values divided by their number), but a fixed propor-
tion of data points are removed (the same amount for either end of the scale). As an
example, a 20 percent trimmed mean would discard the highest and lowest 20 percent
of values. The amount of trimming required will depend upon the particular results
distribution obtained.

If the data is reasonably normally distributed, then the standard deviation can be used.
Should many outliers exist, another truncated distribution (such as Caudy) may be
preferred to model the data. This is similar to Figure 7-17, but it has fatter tails. You
may be more familiar with Student’s ¢, which has the same probability distribution (at
1 degree of freedom) as the Caudy distribution. The equivalent consistency measure
for this model is the median absolute deviation (MAD). Due to differences in its calcu-
lation, the MAD is more resistant to the distorting effects of outliers than the standard
deviation.

Although replacing the mean and standard deviation with the median (or trimmed
mean) and MAD will assist in ongoing comparison and iterative goal setting for your
site, it has the disadvantage that these figures are not quoted for other (e.g., competi-
tive) sites. Although the assumption of normality cannot, of course, necessarily be
made for these sites either, it may be helpful to note that, for normal distributions,
multiplying the MAD by 1.48 will give the appropriate standard deviation.

An alternative, if justified, would be to monitor key competitors and apply the trans-
formation to the results obtained. This is rarely an appropriate use of investment, but
one other metric is worthy of mention, as it can provide a comparative figure inde-
pendent of the mean. This is the percentile rank. The percentile rank represents the fig-
ure above (or below) which x% of results lie. This metric can sometimes provide a
simple alternative comparator for performance over time. It is more commonly used in
situations such as the comparison of year-on-year performance of students at public
examinations than in performance monitoring. It is most seen in an IT context (often
at the 95th percentile) in situations of utilization/capacity planning, such as burstable
bandwidth contracts.

Correlation

Statistics is a fascinating field of study, but the further reaches of it are perhaps best left
to researchers who have the time and justification for their efforts. The small number
of robust metrics just described is sufficient for almost all day-to-day monitoring pur-
poses.

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

One final metric, correlation, is worthy of mention in an introductory text. You may
have discovered an issue that has several possible causes. Correlation enables statistical
comparison of two data sets. It provides a measure of the extent of association
between them. This does not necessarily imply causation, as other factors may be act-
ing on the data measured, but measuring correlation can certainly serve to exclude
unconnected metrics, and to some extent rank others in terms of likely importance.

Correlation between data may be simple (i.e., linear) or more complex, requiring vari-
ous transformations of the raw data. Rapid comparison of data sets for linear relation-
ships is straightforward with Student’s ¢ test. Details of how to apply the test and the
tables required for derivation of the correlation coefficient can be found in any basic
statistical text.

If you are using the ¢ test, here are a few points to bear in mind:

e It is a measure of a linear (straight line) relationship between variables, but others
(e.g., exponential) may exist.

e Its accuracy will be affected by the size of the sample—biological statistics some-
times works with as few as 20 pairs, but the more the better—and this is not usu-
ally a constraint in performance work.

e The correlation coefficient varies between zero (no relationship) and one (perfect
relationship, either negative [-1] or positive [+1]).

Interpretation will depend upon the circumstances, but values greater than around 0.7
may be regarded as relatively strong.

One final point: if you are using Student’s t-tables, you will find values for one- and
two-tailed tests. Which to apply? This depends on what you are trying to determine. A
one-tailed test indicates the strength of a single-direction (positive or negative) rela-
tionship between the pairs of figures—in other words, when testing the strength of a
particular hypothesis. The two-tailed test indicates the likelihood of either a positive or
negative correlation (i.e., when you have no idea whether any relationship exists).

In performance work you will almost always be using one-tailed tests. As an example,
consider Table 7-4: what aspects of third-party affiliate content have the most impact
on site performance?

MANAGEMENT INFORMATION

www.it-ebooks.info

173

http://www.it-ebooks.info/

174

Table 7-4. Third-party response-time contribution

Page response (total # Third-party # Third-party
load time [sec])? # Third-party hosts connections objects
Median 9.4 26.5 08

91.5 Correlation coefficient 0.723

(Pearson r)

In this case, neither of the factors examined had an overwhelmingly strong claim to be
the key factor, and (of course) they are all interrelated; the more third-party objects
you have, the more connections there will be, and so forth. A clear understanding
would require a larger sample volume and (probably) better test design than was
applied here, but, inasmuch as it illustrates the point, examination of the correlation
coefficients shows that, for this single test at least, the number of third-party hosts
appears to have the least single influence on page load performance, while the number
of third-party connections has the greatest.

Further investigation could consider whether some combination of individual factors
provided a stronger result (e.g., one metric divided or multiplied by another), or
indeed whether a weighted model (applying a constant value to one or several met-
rics) was more satisfactory. The next step would depend on your reasons for conduct-
ing the investigation.

Effective Reporting

Application monitoring is about gaining understanding. This short section addresses
some aspects of the delivery of that understanding via appropriate management
reports. Effective management reports should be as follows:

e Relevant
e Timely

¢ Readily comprehensible

Creation of reports is not a mundane activity. The challenge is not the creation of the
reports themselves; this can usually be undertaken within the monitoring tool, or
alternatively exported to one of the literally hundreds of report/dashboard creation
applications available. Rather, the important aspect is to make the reports appropriate
and actionable. It is sensible to begin by considering the audience(s) for the various
reports, both technical (IT, operations) and business (C-level management, department
heads, marketing, ecommerce, and others).

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

Reports should address the various user groups in their terms. Some they will tell you,
and others you can to infer from the nature of their roles and (particularly) how they
are remunerated. An example may be an emerging markets product or marketing
manager. Data relating performance to key in-market competitors and monthly
changes in net new customers will be more meaningful than more arcane throughput
or network utilization metrics useful to an operations function.

When you understand what is required (in an ideal world), an audit of existing sys-
tems (web analytics, sales, order processing) will reveal the base data available to
enrich basic performance data. Web analytics in particular is a useful source of
business-relevant metrics (conversion, abandonment, bounce rate, stickiness), should
these not be available within the monitoring tooling itself.

Report outputs should be as simple to comprehend and as short as possible. Balanced
scorecard approaches, which score agreed-upon key metrics at regular intervals (daily,
weekly, monthly) are often useful. They are particularly powerful if supported by a
traffic-light-based RAG (red/amber/green) output.

Thresholds, also, should be appropriate to the audience. An Operations team will typi-
cally wish to have far tighter triggers in place—providing early warning of approaching
issues—than business management. Senior management, in particular, typically is
interested only in output impacts such as revenue or significant competitive deficits.
Too many red lights on their reports are likely to result in the sort of profile-raising
phone calls that most ops teams can do without!

Trend charts are useful in setting and managing iterative goals, and for future plan-
ning. The appropriate statistical treatments should be applied to any projections gener-
ated. A combination of regular, standard charts to support specific regular business
meetings, together with real-time dashboards in key locations, is useful, both as a
source of actionable data and to convey a perception of control across the business.

Finally, consider using subjective outputs. The comparative videos generated by Goo-
gle WebPagetest are a good example, as are APDEX values for performance-related
customer satisfaction; these can trigger beneficial actions (e.g., IT investment) as
opposed to dry tables, which, however accurate, are less emotionally engaging.

Competitive Understanding

There are several aspects to understanding website performance relative to that of key
competitors. These include the following:

e Perspective (clean room versus end user—specific category or all visitor)

¢ Device and delivery mode (PC browser, mobile phone, tablet; fixed-wire and wire-
less network)

COMPETITIVE UNDERSTANDING

www.it-ebooks.info

175

http://www.it-ebooks.info/

e Geography

e Selection criteria (sector competitors, bellwether sites)

Internet cloud testing provides the best data for absolute competitive comparison in
ideal conditions.

End-user data is noisier, but also more revenue-relevant. Passive (RUM) visitor data is
continuous and has broad reach, but is often partial (e.g., excluding Safari and some
older browser versions) and does not record failed visit attempts. Typical passive
(RUM) data is based on page delivery rather than on individual objects.

The line chart in Figure 7-18 provides an average performance trace across a number
of test locations. The example compares two key metrics: response (total page load)
time and availability.

Backbona, Last Mile, Prvate Pear. Mobsle - Response Tima (s0c) by Test G |Z|
i
B
g &
s
©
2 N N At e s AN i 0 N NP ey s
o
b1 2 1 2 1 g g g g & g g g 2 g g g
= & = 2 £ & § & & 8 § 8§ 8 8 8 5 =
& & & 3 » & 3 : 3 » 3 ¥ 3 3 3 :® &
o o o o o £ e o e o o o & o o o o
] b £ b E b a8 > 5] & b b & =1] b
[=Juegens
Respanns Time (sech
W Bank of Scotiand Homegage - FF Agent - Backbone 1 7\22
Hakfax Homegage - FF agent - Backbone 1X3
I Lioyes TSE Homegage - FF Agent - Backbone £5%

Figure 7-18. Multilocation average performance trace

Benchmarks (public/private)
Benchmarks provide a periodic (typically weekly or monthly) league table of the
performance of the target site relative to a set of defined comparator sites
(Figure 7-19).

176 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

UK Ratail
March &1, 3012 - Apell 01, D2 14D - midnight | (04T) Sreemsich Mean Tims | Dutlin, Lesdon
Response Time Availability Sonsistency
- [- P SR —
1 Tesom s (] 1 iz L% 10090 1 Tesoalx ()
T et a1 1 e
3 o ams 1 s 1
4 Teang aw 1 uataan UK Retail = Last Mile
ERRat R o LT Biarch B, BOUE - April #1, BH1E 1 0:00 - masaight | {BMT) Dreermich M an Tme - Dublin, Lonssn
& irmitase 1na 1 Basit U
T epiel ™ 1 TonRUSIK Response Time Availability Consistency
L 1088 LI - PR———— — e, — S——
¥ Comit ETT 8 cusx
W o 11 " Comat 1578 w4 e
1 Camin T f o 2am e e
s ez
.
12 tmep v 1503 B M g Beencer i o
13 Ton AU UK 151 B g g A
M Cumy 1532 ™ 4508 - 241
15 Rovetisinnd 1884 P s o
L 1esd H Soieia A1) L AW,
1am s
17 Ba LK 1 [T
aan e arsr
[rar T A 4 Smsnsin ae — — — —
s 13 i ET ET]
s 1 - A
1 " pem LT s
. " sges “x T
1o " g - 418

Figure 7-19. UK retail website end-user-performance leaderboard

Dashboard displays
Operational dashboard—RAG display.

Figure 7-20 is a heads-up display of key transaction performance across a range of
end-user bandwidths, as used by a major UK retailer.

Selects Dashboard . [=|(0) | (EEEEDD | e | = Lagout

LM ops dbd example Last Mile Operations msfresh | sii parameters
End-to-End Time: bv Connection Spﬁtﬂ | Time Period: Tues, 24 Apr 2012 10:39 to Tue, 24 Apr 2012 11:3% m

Figure 7-20. Key transaction bandwidth performance

Visitor performance map

Heads-up display of aggregate visitor satisfaction (performance versus user-defined
thresholds) for satisfactory (green), tolerating (amber), and frustrating (red).

Global view (illustrated in Figure 7-21)—site performance by country. Such displays
are particularly suited to the display of visitor-based passive (RUM) data. All major
vendors now supply such a view as standard within their products.

COMPETITIVE UNDERSTANDING

www.it-ebooks.info

177

http://www.it-ebooks.info/

o BowserPages (ol Pages - Bowserang e Pages [tooSomnars 55
Page View I PR Tima | Apdax. I Rate_| | Page Views: 2182
Tise, 24 Aipr 2012 00:00 fo Tue, 24 Apr 2012 205 (GUT -04:00) Easbern Daylght Savings Time BRIV Losd Tins: 4,008 00
A ot i) W O.'Qm’“ Percetved Render Tme: 2.153 sec
Apdex o.8a7
abandonment Rate 20.12%
W Satisfed: 1518
Telenating 50
W Frusinated 134

Page Views by Browser

[[RCHF]

11.00%

¢ ‘\!fw

Browsers Views Load Time

W MSETR 504 2703

’ W uSES 503 3088

‘ M Chromets m 6151
w) W Frefoxil 251 5585

W FirefoxS %4 1850

Page Views by Device

Losd Time

Browsar Page: W > 1036 6-10aec B <Gaec Page Views by 05

Page Performance Tabla

Figure 7-21. Performance trend—24hr

Figure 7-22 shows performance over a rolling 24-hour period, illustrating the relation-
ship between site traffic and performance. The tabular display below it shows metrics
based on pages, originating ISP, visitor browser/version, and geographic location. It is
color-coded to show the trend versus the previous day or week.

Performance and Traffic Chart for pages (Last 24 Hours)

7.000
B6.000
5000
4000
3000
2000
1.000
0.000

09 41100
09 Apr-12:00
09 41300
09 Apr-1400
00 pr15:00
09 Ape-16:00
09 41700
09 Apr16:00
09 Ape-10:00
10 Ape-00:00
10.4pe01:00
104200
10 40300
1040400
0 Apr 500

g
3
8

== il pages (Load Time) - Allpages (Page Views)

Page Performance [last 24 hours) Browser Performance (last 24 hours)

Pages satisfied Viewss Eincelast prowsers Load Tame Sincelast

Load Times Waek Wk
(httpe/fwww. ... - 7948 2360 +28.68% MSIES 4752 1.625 +24.58%
Test your Wa... = 49z 4,473 -30.19% | MSIE? 2282 2.243 -0.74%
Gomez Home = - 477 0.763 +5.38% Chromeld 994 S.198 +47.23%
Gomez Cross: 34 £.060 +43.32% | Firefox3.s 238 2.832 -0.86%
Gomaz Wabs: L] 260 2.998 +16.33% Firafasxil 761 3.720 +7.12%

ISP Perfonmance {last 24 hours) Geographic Performance (last 24 hours)

~ Lond Time Sincelost ~ Load Time SiNSSLOS
15Ps Views a Geography Views AR
ATET Services 1798 1.264 +8.13% United States 28379 2.131 +4.48%

I Jataet 1208 N.923 40, 7% Inrus S30 AIRN +1%.A1%

Figure 7-22. Visitor satisfaction

178 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

The stacked bar chart shown in Figure 7-23 displays the relationship between (propor-
tion of) customer satisfaction (satisfactory/tolerating/frustrated—the APDEX adopted

by many vendors in recent years) versus overall site traffic. Such a display is useful for
highlighting traffic-related performance issues.

Thase Periad:
Projects/ Pages:

02 Ak AT
0G0 m
(LR EEe]
[ERFRLR]
AT
[N)

O A AP

W =aushed
Tioshir i
W s ated

drntrated toed T Theeshobis

Vo iy Ll frmatrskia
5 x Din .

Satlind Lo-sd Tovis Thesshalds

[a0

e b b0 m

LR]

Traffic: Visitor Satisfaction

T, 02 Bl 2009 12000 to Th, 16 kd 2000 12:58 (GMT «01:000 U Daylght: Savings Tma
Trpical Uiar Mornay Fifs Drojed caced

LRETE-T]

(LB FRRT]

LR e]
[VT]

O A5 00

06 b T 0

| edet]
1 E
=]

-

Figure 7-23. End-user visitor satisfaction

Alerting

The core issue with alerting is not whether a given tool will generate alerts, as any-
thing sensible certainly will. Rather, the central problem is what could be termed the
actionability of the alerts generated. Failure to flag issues related to poor performance is
clearly deficient, but unfortunately over-alerting has the same etfect, as such alerts will

rapidly be ignored.

Effective alert definition hinges on the determination of normal performance. Simplis-
tically, you can determine this by testing across a business cycle (ideally, a minimum of
three to four weeks). That approach is fine provided that performance is reasonably
stable. However, that is often not the case, particularly for applications experiencing
large fluctuations in demand at different times of the day, week, or year.

www.it-ebooks.info

ALERTING

179

http://www.it-ebooks.info/

180

In such cases (which are extremely common), the question becomes at which point of
the demand cycle should you base your alert threshold? Too low, and your system is
simply telling you that it’s lunchtime (or the weekend, or whenever greatest demand
occurs). Too high, and you will miss issues occurring during periods of lower demand.
There are several approaches to this difficulty, of varying degrees of elegance:

e Select tooling incorporating a sophisticated baseline algorithm that’s capable of

applying alert thresholds dynamically based on time of day, week, month. Surpris-
ingly, many major tools use extremely simplistic baseline models, but some (e.g.,
App Dynamics APM) certainly have an approach that assists. When you're select-
ing tooling, you'll find it worthwhile to investigate this area.

Set up independent parallel (active monitoring) tests separated by maintenance
windows, with different alert thresholds applied depending upon when they are
run. This is a messy approach that comes with its own problem:s.

Look for proxies other than pure performance as alert metrics. Using this
approach, you set a catch-all performance threshold that is manifestly poor
regardless of when it is generated. This is supplemented by alerting based upon
other factors that flag delivery issues. Examples include the following:

— Payload—that is, error pages or partial downloads will have lower byte counts.
Redirect failures (e.g., to mobile devices) will have higher-than-expected page
weights.

— Number of objects.
— Specific flag objects.

Ensure confirmation before triggering an alert. Some tooling will automatically
generate confirmatory repeat testing, whereas some will enable triggers to be
based on a specified number or percentage of total node results.

Gotchas—make sure to account for these. Good test design—for example, control-
ling the bandwidth of end-user testing to screen out results based on low-
connectivity tests—will improve the reliability of both alerts and results generally.

Passive (RUM)-based alerting presents its own difficulties. Because it is based on visitor
traffic, alert triggers based on a certain percentage of outliers may become distorted in

very low-traffic conditions. For example, a single long delivery time in a 10-minute
time slot where there are only 4 other normal visits would represent 20 percent of

total traffic, whereas the same outlier recorded during a peak business period with 200

normal results is less than 1 percent of the total. Passive (RUM) tooling that enables
alert thresholds to be modified based on traffic is advantageous. While it does not
address the normal variation issue, replacing binary trigger thresholds with dynamic

ones (i.e., an alert state exists when the page/transaction slows by more than x% com-
pared to its average over the past period) can sometimes be useful. Some form of trend

CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

state messaging (that is, condition worsening/improving) subsequent to initial alerting
can serve to mitigate the amount of physical and emotional energy invoked by simple
fire alarm alerting, particularly in the middle of the night.

A few final thoughts on alerts post-generation. The more evolved alert management
systems will permit conditional escalation of alerts—that is, alert group A first, then
inform group B if the condition persists/worsens. Systems allowing custom-coding
around alerts (such as Neustar) are useful here, as are the specific third-party alert-
handling systems available. If using tooling that permits only basic alerting, you might
consider integration with external alerting, either of the standalone service type, or (in
larger corporations) integrated with central infrastructure management software.
Lastly, as far as delivery mode, email is the basis for many systems. It is tempting to
regard SMS texting as beneficial, particularly in extreme cases. However, as anyone
who has sent a celebratory text on New Year’s Eve only to have it show up 12 hours
later can attest, such store-and-forward systems can be false friends.

Gotchas!

Arguably, active (synthetic) external monitoring, to a greater extent than related disci-
plines such as application performance or passive (RUM) monitoring, is prone to errors
of interpretation. These typically stem either from poor test design (not framing the
question with sufficient rigor) or from failure to control the quality of the data
obtained. However, as I have reiterated several times, clean-room testing, while neces-
sary, is insufficient within a comprehensive performance management schema
designed to maximize end-user satisfaction. Unfortunately, the more you try to repli-
cate end-user conditions, the more dangers arise in capturing and reporting erroneous
findings. The following list summarizes some of the areas for which it is important to
check and control:

Target destination errors
You know what you entered as a test target. However, redirects, whether inten-
tional or accidental, can lead to your testing something other than the intended
page. Typical examples are the delivery of a PC site to a mobile device, or the
delivery of a partial or error page instead of the complete version. Validate tests
(particularly if abnormally fast or slow) by examining the size of the page down-
loaded and/or the number of objects. If available, consider using screen capture
functionality to confirm.

Failure to discriminate between “fatal” errors
Fatal errors (i.e., those causing a page to fail, as opposed to individual content fail-
ures) are reflected as lack of availability in active testing. Always examine the
point at which a page failed (i.e., how many objects successfully loaded). In addi-
tion to often providing insight into the nature of the root cause, such investigation

ALERTING

www.it-ebooks.info

181

http://www.it-ebooks.info/

will often indicate whether the error is of one consistent type or a mixture
(although the latter may still have a common cause).

Latency
Ensure that aberrant results are not due to round-trip latency (e.g., from poor ISP
node selection or inadvertent inclusion of end-user peers using distant proxy DNS
servers).

Peerage
Group and compare results by ISP. Although there will always be some variation,
systemic problems will be obvious if results over an extended period are com-
pared. Filter and compare end-user results by tertiary ISP (and/or set up confirma-
tory tests) if in doubt.

Banding
Average traces (while they have their uses) can hide a multitude of detail. Always
examine a scattergram trace of individual results to identify patterns of outliers or
the delivery of banded clusters of results. Further examination at object level may
provide further insight. Banding is commonly an indication of poor load-balancer
configuration.

Browser version
Passive (RUM) data can be useful in identifying performance differences between
browsers or versions—provided the browser concerned is recorded by your passive
(RUM) tooling. Beware of reliance on active testing from a single browser agent
without cross-validation.

Device and/or PC client limitations
Differences in processor speed, operating system, signal strength, and memory
state (and more) can affect recorded performance.

Native versus third-party domains
Third-party affiliates can have significant and unpredictable effects on perfor-
mance. Always examine at individual object level, plot suspect objects individu-
ally, and/or run confirmatory tests with object filtering.

Connection speed
Particularly when testing from end users (especially if using wireless carriers), you
absolutely must filter out any very low connectivity tests (and/or clearly specify
test conditions). Very low connectivity conditions are extremely distortive. They
can lead you to draw incorrect inferences despite them being, in fact, a correct
representation of performance in those conditions.

182 CHAPTER SEVEN: END-USER EXPERIENCE MONITORING AND PERFORMANCE

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

Now that we’ve covered in some detail the importance of understanding performance
from the end-user’s perspective, the next chapter looks at how to integrate external
monitoring with static performance testing.

SUMMARY 183

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER EIGHT

Integrating External Monitoring
and Performance Testing

It’s performance, Jim, but not as we know it.
—Anonymous

AFTER THE EXPLANATION OF EXTERNAL MONITORING IN CHAPTER 7, THIS CHAP-
ter continues the discussion by focusing on how to integrate external monitoring with
static performance testing. The development and increasing uptake of new frontend
(i.e., client-side) technologies represent a challenge to traditional models of perfor-
mance testing. It is becoming ever more important to ensure end-user performance,
rather than continue to rely on infrastructure-based, thin-client testing models. Exam-
ples are many, but include the following:

Comet implementations
Comet interactions involve the use of persistent, server-initiated connections and
data transfer. They have the effect of breaking the traditional GET-POST/discrete
page-based model of web applications. Therefore, pages do not unload, marking
completion of delivery, but rather continue indefinitely while data (e.g., live chat,
sport results, new tickers) continues to be delivered. Comet is a generic term for
such connections. Several key variants exist, all of which have a common under-
lying philosophy (designed to reduce delivery latency). One example is HTTP long
polling (aka server push). This can be initiated either directly (typically using
JavaScript tagging), or via proxy server (to facilitate cross-domain delivery).
Among others, HTMLS5 has a defined method (specified within the WebSocket
API) for creating persistent server push connections. Other, nonapproved (i.e.,
non-W3C-standard compliant) web socket transport layers may be used. These
may or may not be possible to script for outside standard browsers.

185

www.it-ebooks.info

http://www.it-ebooks.info/

186

Multimedia stream delivery
Again, a number of variants exist. As an example, the Real Time Message Protocol
(RTMP), which is used for streaming in Adobe Flash, includes native, encapsula-
ted, or secure (SSL-based) options.

These and other rich Internet application (RIA) technologies (e.g., Ajax, Flex) in addi-
tion to potentially changing the individual object/page delivery paradigm, serve to lev-
erage increasing power on the client side—for both PC and (increasingly) mobile devi-
ces, especially through the availability of relatively high-system-capacity tablet devices.
In many retail ecommerce applications, these are coming to represent 40 percent or
more of digital channel revenue.

Therefore, the ability to test from, and to effectively script for and around, such con-
tent (e.g., bracketing particular calls to identify the source of application vulnerabili-
ties) is increasingly relevant.

Other confounding variables in real-world delivery that are relevant to thick-client
performance testing include the use of external performance interventions, particu-
larly CDNs, that have the potential to distort test interpretation (unless excluded), and
the introduction of responsive applications using HTML 5/CSS3 as replacements to
earlier multidevice application approaches. The latter will deliver different content
depending on the nature of the requesting end-user PC browser or device. Such
responsive delivery also applies to the server-initiated interactions previously dis-
cussed. All in all, they represent an inherent lack of consistency that can undermine
the basic steady-state comparison assumption that underpins interpretation of perfor-
mance tests.

It should be noted that these, and other noncommunication developments such as
Adobe expressive web CSS extensions (regions, shapes), as new technologies do not
have full browser version support. You must take care to match end-user test traffic
browsers when designing tests of applications incorporating all such innovations. For
example, the memory-intensive nature of rich browser testing severely limits the
number of such tests you can run from a single machine. Performance distortions due
to such system constraints may be introduced even though the tests run with apparent
success. A one-to-one model, such as is offered by some of the vendor solutions
employing distributed users, may be advantageous, although the countervailing issue
in such cases is the need to ensure similarity of system performance across the test
peers. Regardless of these limitations, you can gain considerable insight into the per-
formance of modern applications through rich client testing (at least as a component
of the overall test set). The incorporation of external monitoring/end-user response
into performance load testing can take one of two forms, which I have termed integral
or combined. They are briefly discussed next.

CHAPTER EIGHT: INTEGRATING EXTERNAL MONITORING AND PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Tooling Choices

There are a number of products that will generate all or a proportion of load traffic
from real browsers. In theory, at least, this should provide benefits by enabling you to
manage larger and/or geographically distributed rich browser traffic. Depending upon
the particular product, such insights may include the ability to accurately associate
external with internal event timing, drill down into the performance of individual
client-site components (e.g., JavaScript, CSS, and third-party affiliates) under different
load conditions, and, in certain cases, segment end-user performance by other end-
user-relevant metrics (e.g., geographic location, tertiary ISP).

While no recommendation of particular products is implied by what follows, those of
you for whom frontend optimization is important (and that should be everyone!) may
benefit from some initial pointers into the marketplace. A number of experienced per-
formance consultancies exist (at least in the UK and some European countries). These
are often well placed to advise and support the tool evaluation process or, indeed,
undertake such performance testing as required. It is to be anticipated that solutions
offering visibility into and support for in-client application processing will proliferate,
driven by the need to effectively test these aspects as part of a comprehensive perfor-
mance assurance strategy. At the time of writing (early 2014), tooling options include
the following:

Compuware Gomez
The originator of end-user-based performance testing, the Gomez Saa$S solution
(now known as Compuware APMaaS$) has evolved in the five or more years since
its inception to include the ability to run hybrid tests combining cloud-based, thin-
client HTTP traffic with real-user PC browser traffic derived from the vendors’
global last-mile network of private end-user PCs. This option is limited to true
HTTP/HTTPS-based applications. Mobile end-user traffic can be included, from a
number of wireless carrier test nodes around the world. However, note that such
mobile traffic, while it has the advantage of true wireless carrier connectivity, is
not derived from actual mobile devices, but rather is simulated through the intro-
duction of device headers based on a standard Mozilla or WebKit browser engine.
The Gomez Saa$ platform is designed to be self-service, which may be advanta-
geous in some circumstances (although it may be unrealistic for high-volume
and/or complex tests). One other advantage is conferred through the script
recorder, which facilitates the filtering of inappropriate content during testing.

TestPlant eggPlant/Eggon TestPlant (formerly Facilita Forecast)
This option offers the ability to integrate real-device traffic into load tests, gener-
ated via its performance load tooling or otherwise. The ability to link and analyze
native mobile applications (using the eggOn VNC) and to associate performance

TOOLING CHOICES

www.it-ebooks.info

187

http://www.it-ebooks.info/

188

issues with device-related state (e.g., memory or battery availability) is often bene-
ficial.

SOASTA CloudTest/Touchtest
Initially designed as a functional test tool for mobile devices, Touchtest also cap-
tures some system metrics, and can be integrated with its CloudTest performance-
load offering.

Neustar
The rich PC client-based load-testing product offered by this vendor has been
evolved from Browser Mob, an open source tool.

Keynote/Keynote systems
Keynote, a long-established vendor in this space, has a number of potentially rele-
vant offerings that you may wish to consider.

Your selection will depend on a number of factors, including the following:

e Volumes required

e Relevant geographic perspectives

e Ability to script the application transactions

¢ Ability to filter inappropriate components (e.g., CDN cached content)

e Understanding/control of the system characteristics (OS, memory, processor
speed, battery state)

e Ease of use/skills required

e Cost

Active and Passive Integration with Static
Performance Testing

Provided that the application under test can be reasonably effectively performance tes-
ted using traditional thin-client/HTTP parameterization/core infrastructure models—
that is, that it is not necessary to replicate the client-side coding in order to create
meaningful user transactions—then an alternative may be to run traditional thin-
client performance load testing, but to supplement it with end-user response visibility
derived from traffic generated during the test. However, simply running end-user
monitoring in parallel with performance testing will not usually provide sufficient
granularity to help you isolate and resolve an issue as a test output. In theory, it is pos-
sible to run testing on the production environment during trading periods. In theory,
any negative end-user effects would be recorded by passive (RUM) tooling.

CHAPTER EIGHT: INTEGRATING EXTERNAL MONITORING AND PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

However, this approach is limited by the shortcomings of most passive (RUM) tooling
in terms of browser support and object-level data capture. A further limitation is that
the normal user traffic will provide a variable base load on the application. This makes
the interpretation of results, and, in particular, the running of replica tests extremely
difficult.

Provided that the load generated is small in comparison to the base load profile, you
can, however, obtain useful data by running prescheduled synthetic end-user tests in
parallel with the load test. Although timestamp correlation can present difficulty (the
browser-based timings not being exactly synchronized with server timings), such an
approach can be beneficial, and certainly has advantages over not having any end-user
performance visibility.

Such testing should be run from as close to true end-user conditions as possible.
Assuming that it is practicable to install the monitoring agent onto a range of suitable
user machines (e.g., in the case of closed intranet systems or possibly applications,
such as some major retailers and gaming companies, that have access to a customer
test panel), then the private peer options offered by many monitoring vendors may be
utilized to good effect.

The first caveat is that the bulk of the following discussions relates specifically to the
performance testing of Internet-based applications. Obtaining end-user metrics from
closed client-server applications is equally important but more challenging, and I will
discuss this briefly at the end of this section.

As we have seen in the previous chapter, two types of external visibility are possible:
that from active (scheduled, synthetic) and passive (visitor or RUM) tooling. Both
have value as a component of effective performance testing, although care is required
in test design and interpretation. The fundamental issue of synchronized timestamping
has already been mentioned. To further clarify: end-user data (of whatever kind) will
usually report browser-derived timings. These will differ from infrastructure-based
timestamps. Usually, your understanding that there will not be an exact correlation is
all that is required, although these differences sometimes present difficulties in accu-
rate issue isolation, particularly in the case of sporadic/episodic errors. Luckily, most of
the issues derived from performance testing are not of this nature, but rather reflect
reaching of thresholds or uncovering other capacity gating factors.

Passive and Performance Testing

Passive real-user monitoring (RUM) data is of considerable value as part of an effective
production-quality assurance program. However, the general value to performance
testing may be limited, for a number of reasons. Consider the essence of passive RUM
—the secret is in the name—it is real-user (visitor) monitoring. Although all traffic
will, of course, be detected and analyzed, how much value is in knowing the end-user

ACTIVE AND PASSIVE INTEGRATION WITH STATIC PERFORMANCE TESTING

www.it-ebooks.info

189

http://www.it-ebooks.info/

metrics related to 1,000 identical thin-client users all delivered from a narrow IP range
on the Internet backbone in one (or a few) locations?

If your performance test model includes full-browser-originated traffic and/or mobile
device users, more value will likely be obtained. The use of such extensions to the per-
formance test model is often highly beneficial, particularly given the extent of client-
side application logic in modern applications.

The greatest value of passive (RUM) data in the practice of performance testing lies in
the particular case where the load testing is undertaken against a live production sys-
tem. The risk of introducing performance deficits during testing, with a knock-on reve-
nue effect, deters most from this approach. If, however, system characteristics are well
known from earlier development and preproduction testing, and the testing is effec-
tively business as usual (BAU) rather than stress based (for example, replicating antici-
pated traffic from a sale or marketing initiative), the value in accessing performance
impact data across all live users may be substantial.

You still need to keep in mind the limitations of the particular passive (RUM) tooling
employed, but you cannot deny the value of being able to examine distributed effects
to end users of increased system load. The core performance test principles apply: in
particular, to understand normal by baselining across a complete business cycle before-
hand. In this case, a detailed appreciation not only of generalized end-user perfor-
mance, but also of granular metrics by user type, is valuable. Such benefit is well
worth the effort involved, as it often serves to highlight areas that will repay tuning or
otherwise inform the marketing approach or design of the retail offer.

Depending on the passive (RUM) tooling available, you may wish to enrich raw per-
formance metrics with data from allied technologies such as web analytics. Table 8-1
provides a list of metrics that may prove valuable to the business both during and out-
side performance testing.

Table 8-1. Suggested passive (RUM) metrics

Page response (total load, perceived render [browser filll, DOM ready-time by)

Geography (region, country, area)

Browser type and version

Mobile device/operating system

Connectivity (ISP, hardwired/wireless, bandwidth)

Conversion rate

Abandonment (shopping cart, key transactions)

Bounce rate (key landing pages—e.g., SEO destinations)

190 CHAPTER EIGHT: INTEGRATING EXTERNAL MONITORING AND PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Stickiness (total time on site)

Table 8-1 is not exhaustive, but regular recording and trending against other key met-
rics (site traffic, online revenue) provides the basis of a true business-facing monitoring
and testing regime. It should also provide the basis of KPI definition and iterative goal
setting as part of a continuous performance improvement strategy.

Once defined, changes to key metrics during performance testing are simply flagged.
At Intechnica, we find that RAG-based standard reports provide a rapid and compre-
hensible way of interpreting test outputs.

RUM and APM

The advantages of application performance monitoring (APM) tooling are discussed
elsewhere in the book. In essence, it provides visibility across the tiers of the delivery
infrastructure, thus giving us insight into the cause of performance issues highlighted
by load testing. Almost all prominent vendors now offer a passive (RUM) extension to
their core product, thus giving more or less end-to-end visibility—that is, from
browser or mobile device through to the originating application or database server.

Integration of Active Test Traffic with APM Tooling

You can gain an additional advantage in terms of root-cause investigation of issues
arising during or following load testing by identifying and integrating the active (syn-
thetic) test traffic with session-based activity within the delivery infrastructure. Some
APM tooling will support this analysis, which is valuable for examining not only the
end-user traffic, but also the core load requests. You typically achieve such integration
by placing a flag in the header of the synthetic test pages, as you can see in Figure 8-1.

swrer DT PAGE LEVEL ADVERT TEST 250213 - FF AQOnt s see
¥ sme [1] Login smeere acton Custom

TR control

Code

Figure 8-1. Inserting a header flag to identify synthetic test traffic to an APM tool (in this
example Gomez SaaS/Compuware dynaTrace)

The more sophisticated and complex passive (RUM) products will capture specific indi-
vidual session data. This takes away the requirement to infer causation by comparing

ACTIVE AND PASSIVE INTEGRATION WITH STATIC PERFORMANCE TESTING

www.it-ebooks.info

191

http://www.it-ebooks.info/

passive (RUM) and infrastructure metrics, by providing an absolute link between these
elements.

Active External Monitoring and Performance Testing

So passive (RUM) monitoring has its place as part of an effective performance testing
strategy, although that place may be somewhat niche. The role of active (synthetic)
monitoring is somewhat different. As discussed previously, among the key advantages
of active monitoring are the ability to record application availability and compare
scheduled recurrent tests from known conditions/locations. Furthermore, testing from
browser clients and mobile devices, simulated or real, provides detailed visibility into
end-user performance of the system under test in the absence of real visitors (i.e., in
the common situation of testing preproduction environments or production environ-
ments with little or no native traffic).

A distinction should be made between systems that are using end-user devices to gen-
erate the load itself (examples include Browser Mob and Gomez SaaS) and the more
common situation where end-user monitoring is used to extend the understanding
from application performance while under load generated from elsewhere (typically,
within the delivery infrastructure or from external ISP cloud-based locations).

In the case of the former, where the base load is (or may be) generated from end-user
locations, considerations are similar to the load and monitoring scenario. Some
detailed provisions should be made. As an example, it is advisable to filter test scripts
at object level to remove components that are subject to CDN acceleration. To quote
an ex-colleague, there is little advantage in attempting to boil the ocean, and it also
avoids irate calls to the operations center from CDN providers concerned about DDoS
(distributed denial of service) attacks. CDN performance assurance is better under-
taken on an ongoing, live-system basis.

Test Approach

As with testing in general, we must begin here by defining an effective test matrix. In
the case of external monitoring, this essentially consists of defining a business-realistic
series of external tests to supplement the core performance load test. The test set
should map as closely as possible to the distribution of actual (or anticipated) applica-
tion usage. Basic considerations should include the following:

e Geographic location
e Script pack mapping
e PC system characteristics

e Browser(s), versions

192 CHAPTER EIGHT: INTEGRATING EXTERNAL MONITORING AND PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

e Mobile devices

e Connectivity—wireless networks should always be used for mobile device testing;
define bandwidth closely (or filter results) prior to interpretation of results

Depending upon the detailed nature of the application under test, it may be desirable
to further subdivide the testing (e.g., setting up clusters of test peers by specific tertiary
ISPs), although in practice it is usually sufficient to use results filtering for comparison,
provided that sufficiently large test clusters are used.

Apart from economic considerations it is important to ensure that there is not a high
disparity between the end-user traffic and the volumes of the performance test profile
to avoid distortion of the results. In other words, avoid mixing very high levels of
active (synthetic) end user monitoring traffic with low-volume performance tests.

Now that we have defined the monitoring scenario in terms of end-user devices and
locations, standard monitoring principles apply. Use-case scripts should be created to
mirror those used by the performance test tool.

Test Scheduling

End-user monitoring should commence considerably before the anticipated perfor-
mance load test. In an ideal situation, external testing should be ongoing anyway. A
period of two to three weeks is usually regarded as the minimum for etfective baselin-
ing, although a week or so may suffice in the case of applications with very predictable
usage patterns. Having established baseline values, end-user monitoring continues
throughout the load test, and for an extended period afterward. This approach will
detect any systemic deterioration (for example, due to memory leakage).

Figure 8-2 shows end-user performance pre-, per-, and post-performance test.

TEST APPROACH

www.it-ebooks.info

193

http://www.it-ebooks.info/

194

Performance tests

Average
end user
Response
(sec)

MV O

-1

|

Pre-test baseline Per-test performance Post-test baseline

Figure 8-2. End-user performance pre/per/post-performance testing

A represents the impact on end-user response (in practice, by page, transaction, band-
width, location, etc.) during the load tests. Response times should fall within agreed-
upon KPI thresholds. B represents the difference (if any) between pre- and post-
baseline values. If present, it should be investigated and the underlying issue resolved.

Figure 8-3 is an example taken from an end-user-based load test. The agreed-upon
upper page response threshold for the test transaction was 40 seconds. Note the varia-
tion by geography and tertiary ISP (inset).

CHAPTER EIGHT: INTEGRATING EXTERNAL MONITORING AND PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Geographic Perspective Results
Regionas

Alabama

Anzang

Ardansas

Calfornia

Celorada
Conmecticut

Dastrict of Columbia
Flonda

Georga

Hlimgag

lowa

“arias

Hartudky

HMpre

HMaryland
Massachusaits
Merrescta
Mugaggappn

Messoun

Mew Jersey

Avg. Response Time Errors
(3 [SP T .
(21555} £7.58 g
LIS 42,60 2
LY 42.53 a7
{1 I5F) 39.13 1
{1 152 34,64 2
e 34.12 5
—
T R e S e

ATTRTO0N 30104 AN Naed L Ll

CEmeme il ML

Hoad Laras

Figure 8-3. An end-user-based load test (source: Compuware Gomez)

Performance Testing of Multimedia Content

The progressive development of client-side system capacity as well as with the use of
content caching and the evolution of adaptive streaming, has acted together with mar-
keting’s demand for compelling site content to drive the inclusion of multimedia con-
tent. Such content may be core to the site or provided by third parties.

Regardless of the origin of such content, it is important to understand any capacity
limitations as part of performance testing. In terms of multimedia stream response, the
following KPI metrics are typically considered:

e Availability

e Startup time

www.it-ebooks.info

TEST APPROACH

195

http://www.it-ebooks.info/

196

e Rebuffer time

The availability metric is essentially the same as that for individual pages: what propor-
tion of requests for the content are successful? The importance of initial startup time
(latency) and rebuffer time (essentially, quality of delivery) is dependent upon the
nature of the content. Users of destination content (e.g., a recording of the Olympic
100m final) will typically be more tolerant of high startup time than for opportunist
content (such as personalized advertising delivered to an ecommerce site).

The test approach is the same as that adopted for other active external testing used in
concert with performance testing. The tooling choice (which, at the time of writing, is
rather limited) should consider support for the following:

e The nature of the stream (e.g., .swf, .mp3)
¢ The specific codex used

e Support for responsive delivery (e.g., adaptive streaming in conditions of limited
connectivity)

Multimedia performance testing is one use case where the end user (thick client/
mobile device) has a significant benefit. To avoid “boiling the ocean"-type testing,
where multimedia content is delivered via CDN, test managers may wish to test the
origin only (blocking CDN hosts from their test scripts), and/or exclude multimedia
content from stress testing, including it for the final BAU test phases.

End-User Understanding in Non-Internet Application
Performance Tests

As we have seen, there is a large body of tooling available for monitoring the end-user
performance of Internet-based applications, as part of performance load testing or
otherwise. However, understanding and managing the end-user experience of non-
Internet applications is equally important. Approaches fall into two categories: point-
to-point testing and non-Internet APM:

Point-to-point testing

Point-to-point testing (also known as transaction trace analysis) is based on test exe-
cution from an end-user machine, with subsequent analysis of the data generated.
Such analysis tends to be network-centric, but it can provide useful insight into
key gating factors inhibiting the effective delivery of end-user requests. Scripted
transactions may be executed on a single or multiple recurrent basis. The latter is
more relevant to data capture during performance load testing of the base infra-
structure. Provided that your tooling is able to script against the target application,
the key limitation of such testing (which, in many ways, is analogous to the use of
active end-user testing of web applications, as discussed earlier), is that such test-

CHAPTER EIGHT: INTEGRATING EXTERNAL MONITORING AND PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

ing is undertaken from one or more predefined individual end users rather than
on a distributed basis. This presents a number of potential problems, among them
are the following:

Test point selection
Begin by mapping (or gaining access to) a schematic of the network support-
ing the application and the distribution of end users across it. The test loca-
tions chosen should fairly represent performance across the entire user base.
Any users or user groups regularly complaining of poor performance, particu-
larly during periods of peak usage, should also be tested (and potentially flag-
ged as a subgroup).

Pinch point saturation
Take care in designing the end user-test traffic that it does not generate an
unreasonably high amount of usage across points in the network with known
constraints (e.g., limited WAN connections to distant offices).

Test commissioning and execution
One of the more difficult aspects of seeking to use individual point-to-point
test tools to provide end-user insight as part of a performance load test is the
practical difficulty of coordination, potentially across a globally distributed
user base. Sufficient time and resources should be allocated to this at the test
planning stage.

Non-Internet APM tooling
An alternative to scheduled, recurrent point-to-point analysis is to use one of the
application performance management tools that provides insight into the applica-
tion traffic across the supporting delivery infrastructure. Ideally, this should
include visibility into end-user performance, both individually and aggregated by
location or department. The choice of tool will critically depend upon the decodes
available for the application in question. As an example, Compuware’s long-
standing data center RUM product provided agentless monitoring (via port spans
or taps at the boundary of each infrastructure tier, together with a broad range of
decodes—for examples, see Figures 8-4 and 8-5). Agentless monitoring is designed
to deliver granular performance understanding without the performance over-
head associated with agent-based approaches.

TEST APPROACH 197

www.it-ebooks.info

http://www.it-ebooks.info/

198

1st tier 2nd tier Database/
Load Web application application backed
balancer server(s) server(s) server(s) server(s)

Users

Operational
reporting

External data
integration
(e.g., helpdesk)

Executive dashboards
& customer reporting

Figure 8-4. Agentless APM—typical tooling deployment

The following is a key checklist for performance testing of non-Internet applications:

Map and understand system architecture, usage, and traffic patterns.

Proof-of-concept APM instrumentation to ensure efficient decoding for specific
application (e.g., SAP, Seibel).

Instrument representative end-user machines.

Baseline usage over a complete daily/weekly business cycle.
Replicate test scripts between end-user and load scenarios.
Ensure effective timestamping/synchronization.

Seek to replicate errors identified.

CHAPTER EIGHT: INTEGRATING EXTERNAL MONITORING AND PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

s o
E@i

ana30I12

ORACLE 105

&, PureStack

Figure 8-5. Specific decodes—vendor-specific example (source: Compuware DC RUM)

Useful Source Materials

If you are interested in exploring end-user monitoring further, the following resources
may prove helpful.

Web

e W3C standards
e APDEX

Books

e High Performance Websites by Steve Souders (O’Reilly)

e Even Faster Web Sites by Steve Souders (O'Reilly)

e High Performance Browser Networking by Ilya Grigorik (O’Reilly)

e Complete Web Monitoring by Alistair Croll and Sean Power (O’Reilly)

e Statistics Without Tears by Derek Rowntree (Penguin Books)

USEFUL SOURCE MATERIALS 199

www.it-ebooks.info

http://www.w3.org/
http://www.apdex.org
http://shop.oreilly.com/product/9783897218505.do
http://shop.oreilly.com/product/9780596522315.do
http://shop.oreilly.com/product/0636920028048.do
http://shop.oreilly.com/product/9780596155148.do
http://www.it-ebooks.info/

Summary

Now that we’ve explored end-user experience performance considerations, the next
chapter looks at the impact of tech stacks on our approach to performance testing.

200 CHAPTER EIGHT: INTEGRATING EXTERNAL MONITORING AND PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER NINE

Application Technology and Its
Impact on Performance Testing

IDIC: infinite diversity in infinite combinations.
—Mr. Spock, Star Trek (1968)

AS MENTIONED IN THE PREFACE, THE PURPOSE OF THIS BOOK IS TO PROVIDE A
practical guide to application performance testing. The processes and practices
described are intended to be generic; however, there are situations where the applica-
tion tech stack may create additional challenges. It therefore seems appropriate to offer
some guidance on how different technologies may alter your approach to performance
testing. I'll try to cover all the important technologies that I've encountered over many
years of performance testing projects, as well as some of the newer offerings that have
emerged alongside NET.

Asynchronous Java and XML (AJAX)

This is not the Greek hero of antiquity, but rather a technology designed to make
things better for the poor end users. The key word here is asynchronous, which refers to
breaking the mold of traditional synchronous behavior where I do something and then 1
have to wait for you to respond before I can continue. Making use of AJAX in your applica-
tion design removes this potential logjam and can lead to a great end-user experience.
The crux of the problem is that automated test tools are by default designed to work in
synchronous fashion. Traditional applications make a request and then wait for the
server to respond.

In the AJAX world, a client can make a request, the server responds that it has
received the request (so the client can get on with something else), and then at some
random time later the actual response to the original request is returned. You see the
problem? It becomes a challenge to match requests with the correct responses. From a
programming standpoint, the performance tool must spawn a thread that waits for the

www.it-ebooks.info

201

http://www.it-ebooks.info/

202

correct response while the rest of the script continues to execute. A deft scripter may
be able to code around this, but it may require significant changes to a script with the
accompanying headache of ongoing maintenance. The reality is that not all testers are
bored developers, so it’s better for the performance tool to handle this automatically. If
AJAX is part of your application design, check that any performance testing tool you
are evaluating can handle this kind of challenge.

TIP

When the first edition of this book came out, most performance tools found this
sort of technology difficult to handle; however, asynchronous support in the cur-
rent generation of tooling is generally effective and reliable. That said, it is still
highly advisable to proof-of-concept a particular asynchronous requirement. |
recently came across ASP .NET Signalr, which is not well supported by any of
the mainstream tooling vendors.

Push Versus Pull

While we’re on the subject of requests and responses, let’s discuss the case where an
application makes requests to the client from the server (push) rather than the client
initiating a request (pull). I have seen an example of this recently in an application
designed to route incoming calls to operatives in a call center. The user logs in to
announce that he is ready to receive calls and then sits and waits for the calls to arrive.
This scenario is also known as publish and subscribe. How would you go about scripting
this situation using traditional automated performance testing tools? You can record
the user logging in, ready to receive calls, but then there’s a wait until the calls arrive.
This will require some manual intervention in the script to create some sort of loop
construct that waits for incoming calls. Sometimes you will have a mix of push and
pull requests within the same script. If your performance testing tool doesn’t handle
this situation particularly well, then you must determine if the pus/ content is impor-
tant from a performance testing perspective. Can the server-initiated requests be safely
ignored, or are they a critical part of the use-case flow? An example where you could
probably ignore push content would be a ticker-tape stock-market feed to a client. It’s
always available, but it may not relate to any use case that’s been identified and scrip-
ted.

Citrix

Citrix is a leader in the field of thin-client technology. In performance testing terms, it
represents a technology layer that sits between the application client and the applica-
tion user. In effect, Citrix becomes the presentation layer for any applications pub-

lished to the desktop and has the effect of moving the client part of an application to
the Citrix server farm. Testing considerations will revolve around ensuring that you

CHAPTER NINE: APPLICATION TECHNOLOGY AND ITS IMPACT ON PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

have enough capacity in the server farm to meet the needs of the number of virtual
users that will be generated by the performance test. An important point that is often
overlooked is to make sure that you have enough Citrix licenses for the load that you
want to create. I have been involved in more than one Citrix performance testing
engagement where this consideration (requirement!) had been overlooked, resulting
in delay or cancellation of the project.

TIP

Citrix provides guidelines on the number of concurrent sessions per server that

can be supported based on CPU type and memory specifications, among other
factors.

Performance tests involving Citrix will often have validation of the server farm load
balancing as a performance target. You must ensure that, when capturing your scripts
and creating your load test scenarios, you are actually accessing the farm via the load
balancer and not via individual servers. If there are problems, this should be pretty
obvious: typically, there will be a few servers with high CPU and memory utilization
while the other servers show little or no activity. What you want is a roughly even dis-
tribution of load across all the servers that make up the farm.

Figure 9-1 demonstrates Citrix load balancing under test from an actual engagement.

Citrin server farm CPU utilization % versus concurrent virtual users

[Ny
e S0

e 54000
- S
a0
45000
4000
000
000
2000

Citrix server farm o
L CPU perfarmance | .

ST T, B

0
e000
500
[

501103

e " i S0

00

aB AR AAM0 SSASH MG IBOOSY 10000 OO0 (BN EOOSG 380000 IMOS0 J4O000 JMM000 OO0 MANG EMOMD MOS0 MMOEO

Bogzed T (Second)

Figure 9-1. Citrix load balancing

Citrix Checklist

Here are some considerations to keep in mind before you use Citrix:

e Make sure that you have enough Citrix licenses for the number of virtual users
required for performance testing.

CITRIX

www.it-ebooks.info

203

http://www.it-ebooks.info/

e If you are performance testing a load-balanced Citrix server farm, make sure that
you capture your use cases using an independent computing architecture (ICA)
file; otherwise, on replay you may not correctly test the load balancing.

¢ Citrix connections rely on the appropriate version of the client ICA software being
present. Make sure that the correct version is installed on the machine that will be
recording your use cases and on the machines that function as load injectors. The
Citrix client software is a free download from the Citrix website.

e It is good practice to increase the default amount of time that your performance
tool will wait for a response from the Citrix server farm. I typically increase the
default value by a factor of three or four in order to counter any delays introduced
by slow Citrix responses during medium- to large-scale performance tests.

e It is also good practice to set the virtual memory page file size on each load injec-
tor machine to be three or four times total virtual memory. This is because the Cit-
rix client was never intended to be used in the manner that it is used by automa-
ted performance test tools, with dozens of simultaneous sessions active from a sin-
gle workstation or server. This means that Citrix is resource hungry, especially
regarding memory; I have seen many cases where servers with many gigabytes of
memory have struggled to reliably run 100 virtual users. You should anticipate
requiring a greater number of higher-specification load injectors than would be
the case for a simple web client application.

Citrix Scripting Advice

In my experience of scripting Citrix thin-client applications, I have learned some tips
and tricks that definitely make Citrix scripting more straightforward:

e Where the application permits, access functionality using the keyboard rather
than mouse or touchscreen. Hotkeys and Function keys are somewhat rarer in
modern application design, but they tend to be far more reliable waypoints than
mouse-driven or touch Ul interaction, especially when it comes to script replay.

e Where a particular part of the UI is hard to reliably capture using image or object
recognition, try tabbing from a location or control on the UI that you can capture
and then pressing the Enter key or space bar to set focus. The tab order in many
applications is somewhat random, so you may have to investigate a normalization
of tab order for this to work.

e Try to minimize the number of times that you log in and log out of a Citrix session
within your scripts. Citrix does not react well to frequent session connects and dis-
connects, so try to make this activity part of script init and end workflow rather
than the body or main.

204 CHAPTER NINE: APPLICATION TECHNOLOGY AND ITS IMPACT ON PERFORMANCE TESTING

www.it-ebooks.info

http://www.citrix.com
http://www.it-ebooks.info/

¢ Have someone on hand to kill off any orphan Citrix sessions that may persist after
a performance test has completed. (This can normally be done only via the Citrix
admin console.) This frequently happens when a Citrix VU session fails due to
errors or time-out during test execution. If you leave these sessions active, your
script will fail at session login unless you add code to select an already existing ses-
sion. (Not recommended!)

e Finally, it is good practice to reboot your load injectors between Citrix volume
tests. This removes any orphan socket connections that may persist even after a
performance test has finished.

Virtual Desktop Infrastructure

While we are talking about thin clients, something relatively new to IT is the concept
of a virtualized desktop infrastructure, or VDI. This differs from the Citrix model in
that you maintain a library of virtual desktops that run on a centralized server farm
rather than accessing applications or desktops via client-side software (you can even
have Citrix within VDI). This means that end users can make do with specialist thin-
client devices rather than PCs, simplifying configuration management even further.

In performance testing terms, this is yet another proprietary protocol layer between
the client and the application. I am not aware of any current toolset that can deal with
this technology, and I think it will be a difficult nut to crack, as the protocols sit lower
in the OSI stack than ICA or RDP. Ultimately, you face the same challenges as you do
with Citrix. And while it should be possible to embed the capture and load injection
components within a VDI desktop, they will persist only while the VDI stream to the
client device is active, so you may face licensing and connectivity issues when trying to
automate script capture and playback.

I would be very interested to hear from anyone who has successfully performance tes-
ted such an environment.

HTTP Protocol

A number of unique considerations apply to applications that make use of the HTTP
protocol. Rather than bundle them together under the term Web, the advent of .NET
and SOAP/XML has broadened the scope of HTTP applications beyond that of the tra-
ditional browser-based client connecting to a web server.

Web Services

Microsoft’s Web Services RFC has introduced a new challenge for automated perfor-
mance testing tools. Normally (although not exclusively) making use of the HTTP pro-

VIRTUAL DESKTOP INFRASTRUCTURE

www.it-ebooks.info

205

http://www.it-ebooks.info/

206

tocol, web services do not necessarily require deployment as part of the web server
tier, which creates a problem for those tools that make use of browser proxy server
settings to record use cases. It’s possible to make any application that uses web services
proxy enabled, but you shouldn’t assume that the customer or application developers
will be prepared to make this change on demand.

The web service architecture is built around the Web Services Definition Language
(WSDL) model, which exposes the web service to external consumers. This defines the
web methods and the parameters you need to supply so that the web service can pro-
vide the information of interest. In order to test web services etfectively, ideally you
simply generate use-case scripts directly from the WSDL file; a number of tool vendors
provide this capability. There are also several (free) test harnesses you can download
that provide a mechanism to record web service activity, which allows you to get
around the proxy server challenge.

See Appendix C for more details.

.NET Remoting

As part of. NET, Microsoft introduced the next generation of DCOM/COM+, which it
termed remoting. Essentially this is a mechanism to build distributed applications using
components that communicate over TCP or HTTP and thereby address some of the
serious shortcomings of the older technology.

Like web services, remoting does not rely on web server deployment. It therefore
presents the same challenges for automated performance testing tools with regard to
proxy enablement.

In my experience it is normally possible to capture and script only those remoting
applications that communicate over HTTP. I have had success with the TCP implemen-
tation in only a few cases (where the application use cases were extremely simple—
little more than logging in to an application and then logging out). Microsoft initially
recommended the TCP implementation as having superior performance over HTTP. Yet
because this difference has largely disappeared in later versions of .NET, TCP imple-
mentations are uncommon.

Although it may be possible to record remoting activity at the Windows Socket (WIN-
SOCK) level, the resulting scripts (because you are dealing with serialized objects) can
be difficult to modify so that they replay correctly. This is doubly so if the application
makes use of binary format data rather than SOAP/XML, which is in clear text. Such
cases may require an unrealistic amount of work to create usable scripts; a better solu-
tion may be to look for alternatives, as discussed later in this chapter.

CHAPTER NINE: APPLICATION TECHNOLOGY AND ITS IMPACT ON PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Browser Caching

It is extremely important that the default caching behavior of Internet browser appli-
cations be accurately reflected by the performance tool that you use. If caching emula-
tion is inaccurate, then it is likely that the number of requests generated between
browser client and web server will be considerably greater than would actually occur
in a live environment. This will have the effect of generating a much higher through-
put for a given number of virtual users. I can recall a recent example where a few
hundred virtual users generated as much throughput as 6,000 real users. This may be
satisfactory for a stress test when you are simply trying to find the upper limits of
capacity, but it is hardly a realistic performance test.

Typical default caching behavior involves page elements such as images, stylesheets,
and the like being stored locally on the client after the initial request, removing the
need for the server to resend this information. Various mechanisms exist to update the
cached elements, but the net result is to minimize the data presentation and network
round-trips between client and web server, reducing vulnerability to congestion and
latency effects and (we hope) improving the end-user experience.

Secure Sockets Layer

Many applications make use of the secure sockets layer (SSL) extension to the HTTP
protocol, which adds an encryption layer to the HTTP stack. If your automated perfor-
mance test tool can’t handle SSL, then you won'’t be able to record any use cases
unless you can do so from a non-SSL deployment of the application. There are two
other aspects of SSL that you should be aware of:

Certificates
One way of increasing security is to make use of client certificates, which can be
installed into the application client before access is permitted to an application.
This implements the full private/public key model. The certificates are provided in
a number of formats (typically pfx or p12) and must be made available to your
performance testing tool for successful capture and replay. If your application
makes use of client certificates, check that the performance testing tool can deal
with client certification; otherwise, you won’t be able to record your application.
Typically the certificates are imported into the testing tool prior to capture and
then automatically used at appropriate points within the resulting script.

Increased overhead
Making use of SSL increases the number of network round-trips and the load on
the client and web server. This is because there is an additional authentication
request sent as part of every client request as well as the need to encrypt and
decrypt each network conversation. Always try to retain the SSL content within

HTTP PROTOCOL

www.it-ebooks.info

207

http://www.it-ebooks.info/

your performance test scripts; otherwise, you may end up with misleading results
due to reduced network data presentation and a lighter load on the web server(s).

Java

Over recent years it would be fair to say that IT has embraced Java as the technology
of choice for distributed application server design. Products from IBM, such as Web-
Sphere and Oracle WebLogic, dominate the market in terms of deployed solutions, and
many other market leaders in packaged applications, such as SAP, provide the option
of a Java-based mid-tier. In addition there are many other Java application server
technologies for the software architect to choose from, including JBoss and JRun.

Java application clients can come in many forms, ranging from a pure Java fat client—
which is probably the most challenging for a performance testing tool that records at
the middleware level—to the typical browser client that uses the HTTP protocol to talk
to the web server tier.

Because of the component-based nature of Java applications, it is vital to have access
to the internal workings of the application server under load and stress. Several tools
are available (see Appendix C) to provide this level of visibility, exposing components
or methods that consume excessive amounts of memory and CPU as well as design
inefficiencies that have a negative impact on response time and scalability.

By no means unique to Java, the following are some common problems that cannot
easily be detected without detailed monitoring at the component and method level.

Memory leaks
This is the classic situation where a component uses memory but fails to release it,
gradually reducing the amount of memory available to the system. This is one rea-
son why it’s a good idea to run soak tests, because memory leaks may occur for a
long time before affecting the application.

Excessive component instantiations
There are often cases where excessive instances of a particular component are cre-
ated by the application logic. Although this doesn’t necessarily cause performance
issues, it does lead to inefficient use of memory and excessive CPU utilization. The
cause may be coding problems or improper configuration of the application server.
Either way, you won’t be aware of these issues unless you can inspect the applica-
tion server at the component level.

Stalled threads
This was mentioned briefly in Chapter 5. A stalled thread occurs when a compo-
nent within the application server waits for a response from another internal com-
ponent or (more commonly) an external call to the database or perhaps a third-
party application. Often the only symptom is poor response time without any

208 CHAPTER NINE: APPLICATION TECHNOLOGY AND ITS IMPACT ON PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

indication of excessive memory or CPU utilization. Without visibility of the appli-
cation server’s internal workings, this sort of problem is difficult to isolate.

Slow SQL
Application server components that make SQL calls can also be a source of perfor-
mance issues. Calls to stored procedures will be at the mercy of code efficiency
within the database. Note also that any SQL parsed on the fly by application
server components may have performance issues that are not immediately obvi-
ous from casual database monitoring.

Oracle

There are two common types of Oracle application technology you will encounter.
Each has its own unique challenges.

Oracle Two-Tier

Oracle two-tier applications were once the norm for a fat client that made use of the
Microsoft Open Database Connectivity (ODBC) standard or, alternatively, the native
Oracle Client Interface (OCI) or User Programming Interface (UPI) software libraries to
connect directly to an Oracle database. The OCI interface is pretty much public
domain, and a number of tool vendors can support this protocol without issue. How-
ever, the UPI protocol is an altogether different animal, and applications that make use
of this technology can be extremely difficult to record. It is not uncommon to come
across application clients that use a mix of both protocol stacks.

Oracle Forms Server

Current Oracle technology promotes the three-tier model, commonly making use of
Oracle Forms Server (OFS). This involves a browser-based connection using the HTTP
(with or without the SSL extension) to connect to a Java-based mid-tier that in turn
connects to a backend (Oracle) database. This HTTP traffic starts life as normal HTML
requests and then morphs into a series of HTTP POSTS, with the application traffic
represented as binary data in a proprietary format.

ORACLE provides a browser plug-in called JInitiator that manages the connection to
the Forms Server, which is a free download from the Oracle website.

Oracle Checklist

Here are some considerations to bear in mind before you use Oracle:

e If you are performance testing Oracle Forms, then make sure you have the correct
version of JInitiator installed on the workstation where you will be recording your
use cases and on the machines that will be acting as load injectors.

ORACLE

www.it-ebooks.info

209

http://www.it-ebooks.info/

¢ Remember that your performance testing tool must specifically support the ver-
sion of Oracle Forms that you will be using. It is not sufficient to use simple HTTP
recording to create scripts that will replay correctly.

e If your application is the older Oracle two-tier model that uses the Oracle client
communication, then the appropriate OCI/UPI library files must be present on the
machine that will be used to capture your transactions and on the machines that
will act as load injectors.

SAP

SAP has been a historical leader in customer relationship management (CRM) and
other packaged solutions for the enterprise. SAP applications can have a traditional fat
client or SAPGUI and can also be deployed using a variety of web clients.

One limitation that SAP places on performance testing tools is the relatively large
resource footprint associated with the SAPGUI client. If you consider for a moment
that the typical SAP user generally has only a single SAPGUI session running on her
workstation, then this is entirely understandable. With an automated performance test
tool we’re creating literally dozens of SAPGUI sessions on a single machine, a situation
that never occurs in the real world.

In order to maximize the number of virtual SAPGUI users, you should maximize the
amount of RAM in each injector machine and then increase the virtual memory page
file size to three to four times the amount of virtual memory. This will help, but even
with 4 GB of RAM you may find it difficult to get more than 100 virtual SAPGUI users
running on a single machine.

As with Citrix, you should anticipate requiring a greater number of machines to create
a given SAPGUI virtual user load than for a typical web application. Happily, this is not
so for the SAP web client, where you should find that injection requirements differ lit-
tle from any other browser-based client application.

SAP Checklist

If you plan to use SAP, here are some pointers to keep in mind:

¢ Increase load injector page file size to three to four times virtual memory in order
to maximize the number of virtual users per injector platform.

¢ Anticipate that a larger number of injector machines will be required to generate
the load you are looking to simulate than would be the case for a typical browser-
based application.

210 CHAPTER NINE: APPLICATION TECHNOLOGY AND ITS IMPACT ON PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

e If your performance testing tool makes use of the SAP Scripting API, then you will
need server-side scripting to be enabled on the server and on the client where
your transactions will be captured.

¢ To monitor SAP servers remotely, you can use either SNMP or WMI; otherwise,
you will need the latest version of the SAP JCo package installed on the machine
that will carry out the remote monitoring. You need to be a SAP customer or part-
ner to have access to this software.

e Make sure that the Computing Center Management System (CCMS) is enabled on
the SAP servers (and instances) that you wish to monitor; otherwise, you may fail
to collect any KPI data.

Service-Oriented Architecture

Service-oriented architecture (SOA) is one of the current crop of technology buzz-
words—along with Web 2.0, Information Technology Inventory Library (ITIL), infor-
mation technology service management (ITSM), and others. But trying to establish
clearly just what SOA means has been like trying to nail jelly to a wall. Nonetheless,
the first formal standards are starting to appear, and SOA adoption has become more
commonplace.

In essence, SOA redefines IT as delivering a series of services to a consumer (organiza-
tion) based around business process management (BPM). A service may consist of one
or more business processes that can be measured in various ways to determine the
value that the service is providing to the business. You could think of a business pro-
cess as something no more complicated than an end user bringing up a purchase order,
but it is just as likely to be much more complex and involve data exchange and inter-
action between many different systems within an organization. The business processes
themselves can also be measured, creating a multitiered view of how IT is delivering to
the business.

Traditional applications make the encapsulation of end-user activity a pretty straight-
forward process, where each activity can be recorded as a series of requests and
responses via a common middleware such as HTTP. With SOA, a business process can
involve multiple use cases with interdependencies and a multitude of protocols and
technologies that don’t necessarily relate directly to end-user activity. How do you ren-
der this as a script that can be replayed?

This brings us to the concept of the service. As you are probably aware, Microsoft’s
web service RFC is a mechanism for requesting information either internally or from
an external source via HTTP, the protocol of the Internet. It is usually simple to imple-
ment and understand, which is one of the advantages of using web services. A web
service can be integrated as part of an application client and/or deployed from the

SERVICE-ORIENTED ARCHITECTURE

www.it-ebooks.info

211

http://www.it-ebooks.info/

application mid-tier servers. If it’s part of the client, then this has little effect on our
performance testing strategy; but if it’s part of the mid-tier, we'll likely be testing for
concurrent service execution rather than for concurrent users. The use cases that we
script will not represent users but rather an execution of one or more web service
requests.

There is, of course, much more to the SOA performance testing model than web serv-
ices. Other queue and message-based technologies, such as JMS and MQ, have been
around for some time and, along with web services, are application technologies that
just happen to be part of many SOA implementations. Each of these technologies can
be tested in isolation, but the challenge is to performance test at the service and busi-
ness process level, which is generally still too abstract for the current generation of
automated performance testing tools.

Web 2.0

As with SOA you have probably heard the term Web 2.0 being bandied about, but what
does it mean? Well, it pretty much describes a collection of software development
technologies (some new, some not so new) that Microsoft and Adobe, in particular,
would like for us to use for development of the next generation of web applications:

e Asynchronous Java and XML (AJAX)
e Flex from Adobe

e Web services

Apart from Flex, I've already discussed how these technologies can affect your
approach to performance testing. The challenge that Web 2.0 introduces is the use of a
combination of different middleware technologies in a single application client. This is
not a new concept, as a number of tool vendors have provided a multiprotocol capture
facility for some time. Rather, it is the combination of .NET and Java technologies
working at the component level that must be captured and correctly interpreted, tak-
ing into account any encryption or encoding that may be present.

Working at this level requires an intimate understanding of how the application works
and helpful input from the developers. The output of your capture process is much
more likely to be a component map or template, which provides the information to
manually build a working script.

——NOTE

If you're not familiar with Flex, it essentially provides an easier programming model
for application developers to make use of the powerful animation and graphic
capabilities that are part of Adobe Flash. Have a look at Adobe’s website if you're
interested in learning more.

212 CHAPTER NINE: APPLICATION TECHNOLOGY AND ITS IMPACT ON PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Windows Communication Foundation and Windows
Presentation Foundation

You may know Windows Communication Foundation (WCF) by its Microsoft code-
name Indigo. WCF is a now established standard that unifies the following (Microsoft)
technologies into a common framework to allow applications to communicate inter-
nally or across the wire. You might call this Web 2.0 according to Microsoft:

e Web services
e NET remoting
e Distributed transactions

e Message queues

I've already discussed .NET remoting and web services, and these technologies have
their own challenges when it comes to performance testing. Distributed transactions
refer to the component-level interaction that is an increasingly common part of appli-
cation design, whereas message queues are rarely troublesome, as they tend to reside
on the application mid-tier rather than the client.

Windows Presentation Foundation (WPF), on the other hand, is very much focused on
the user interface making use of the new features of the Windows 7/8 operating sys-
tems and the latest version of the .NET framework (4.5 at time of writing). In perfor-
mance testing terms, WPF will probably have little impact, as it underpins the underly-
ing middleware changes introduced by Web 2.0. WCF has the most potential for chal-
lenges to scripting application use cases.

Oddball Application Technologies: Help, My Load
Testing Tool Won’t Record It!

There will always be applications that cannot be captured by automated performance
testing tools. Frequently this is because the application vendor declines to release
information about the inner workings of the application or does not provide an API
that will allow an external tool to hook the application so that it can be recorded.
There may also be challenges involving encryption and compression of data.

However, if you are quite certain that your performance testing tool should work with
the target application technology, then read on.

Before Giving Up in Despair...

Before conceding defeat, try the following suggestions to eliminate possible perfor-
mance tool or environment configuration issues.

ODDBALL APPLICATION TECHNOLOGIES: HELP, MY LOAD TESTING TOOL WON'T RECORD IT!

www.it-ebooks.info

213

http://www.it-ebooks.info/

214

On Windows operating systems, make sure you are hooking the correct executable

(EXE) file
Sometimes the executable file you need to ook with your performance testing
tool is not the one initiated by starting the target application. In these situations
the application will work fine, but your performance testing tool will fail to record
anything. Use the Windows Task Manager to check what executables are actually
started by the application; you may find that a second executable is lurking in the
background, handling all the client communication. If so, then hooking into this
executable may achieve successful capture.

Proxy problems
If your performance testing tool uses proxy substitution to record HTTP traffic,
then check to see that you are using the correct proxy settings. These are typically
defined within your browser client and specify the IP address or hostname of the
proxy server, together with the ports to be used for communication and any traffic
exceptions that should bypass the proxy server. Most performance testing tools
that use this approach will attempt to automatically choose the correct settings for
you, but sometimes they get it wrong. You may have to manually change your
browser proxy settings and then configure your performance tool appropriately.
(Don’t forget to record what the original settings were before you overwrite
them!)

Can the .NET application be proxy-enabled?
Applications written for .NET do not need a web server to communicate, so they
may not actually use the client browser settings. In most cases it is fairly simple to
proxy-enable these types of applications, so if the customer or development section
is willing, then this is a possible way forward.

Windows Firewall, IPsec, and other nasties
If you're convinced that everything is configured correctly but still capturing noth-
ing, check to see if Windows Firewall is turned on. It will (by design) usually pre-
vent performance testing tools from accessing the target application. If you can
turn the firewall off, then your problems may well disappear.

Something else that you may run into is Internet Protocol Security (IPsec). From a
technical perspective this is another form of traffic encryption (like SSL), but it works
at layer 3 of the protocol stack rather than layer 4. In short, this means that an appli-
cation need not be designed to make use of IPsec, which can simply be turned on
between cooperating nodes (machines). However, by design IPsec is intended to pre-
vent the replay of secure session traffic, hence the problem. Like Windows Firewall,
IPsec can be enabled or disabled in the configuration section of Windows and in the
configuration setup of your web or application server.

CHAPTER NINE: APPLICATION TECHNOLOGY AND ITS IMPACT ON PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

Antivirus software may also interfere with the capture process, and this may be more
difficult to disable. It may be hardwired into the standard build of the application client
machine.

Finally, check to see what other software is installed on the machine you’re using to
capture data. I have found, among other conflicts, that performance testing tools from
different vendors installed on the same box can cause problems with the capture pro-
cess. (Surely this is not by design!)

Alternatives to Capture at the Middleware Level
If all else fails, you still have a number of choices.

One, you can apologize to the customer or company, explaining that it is not possible
to performance test the application, and quietly walk away.

Two, try recording use cases using a functional automated test tool that works at the
presentation layer rather than the underlying middleware technology. These tools, as
their name suggests, are designed for unit and functional testing of an application
rather than for generating load, so the downside of this approach is that you can gen-
erally configure only a few virtual users per injection PC. Hence, you will need a large
number of machines to create even a modest load. You will also find that combining
functional and performance testing scripts in the same run is not enabled by the
majority of performance tool vendors.

Another approach is to convince your customer to deploy the application over thin-
client technology like Citrix. Several tool vendors provide support for the ICA proto-
col, and Citrix generally doesn’t care what technology an application is written in. This
strategy may involve the purchase of Citrix and an appropriate number of user licen-
ses, so be prepared to provide a convincing business case for return on investment!

Manual Scripting

If no capture solution is feasible, then there is still the option of manually creating the
scripts required to carry out performance testing. Some performance testing tools pro-
vide a link to popular integrated development environments (IDEs), such as Eclipse for
Java and Microsoft’s Visual Studio for .NET. This link allows the user to drop code
directly from an application into the performance testing tool for the purpose of build-
ing scripts. Often templates are provided to make this task easier and to keep the
resulting script code within the syntax required by the performance testing tool.

In most cases, manual scripting will greatly increase the time (and cost) of building
scripts and will complicate the process of ongoing maintenance. However, it may be
the only alternative to no performance testing at all.

ODDBALL APPLICATION TECHNOLOGIES: HELP, MY LOAD TESTING TOOL WON'T RECORD IT!

www.it-ebooks.info

215

http://www.it-ebooks.info/

216

Summary

This chapter has hopefully provided some useful advice for dealing with the challenges
that application technology can bring to performance testing. I suspect that these chal-
lenges will always be with us, as new technologies appear and are in turn superseded
by the next hot innovation. All we can do as performance testers is to try to keep
ahead of the game through self-study and by encouraging tool vendors to keep their
products current in terms of application tech-stack support.

CHAPTER NINE: APPLICATION TECHNOLOGY AND ITS IMPACT ON PERFORMANCE TESTING

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER TEN

Conclusion

This is the end, my only friend, the end.
—The Doors

SOMETHING | OMITTED FROM THE FIRST EDITION OF THIS BOOK WAS A CONCLUD-
ing chapter. No one commented on its absence, but I thought in the revised edition it
would be good to bring things to a close with a short look at future trends for perfor-
mance testing. Certainly, understanding the end-user experience continues to be an
ever-increasing focus of performance testing. The customer is king, and increasing
conversions is the goal (at least for ecommerce).

More and more, the EUE is impacted by the plethora of mobile devices available to the
consumer. Ironically, this makes IT’s job increasingly difficult as they try to ensure a
good EUE across an ever-expanding range of devices, operating systems, and browsers.
I predict that the inclusion of on-device automation will become the norm for perfor-
mance testing, together with the deployment of application performance monitoring
software into testing environments (with some overlap into development). The greatly
increased insight into and triage capability of software performance that APM pro-
vides, along with the relative ease of integration with performance test tooling, makes
APM in some form a must-have for most companies.

With the move to continuous integration (CI) driving ever-increasing numbers of
releases in shorter and shorter time scales, gaining early insight into performance
problems is critical. Performance test tooling, in conjunction with APM, is well placed
to provide this visibility so that problems can be dealt with early in the application life
cycle, thereby improving the quality, and importantly, speeding up the delivery of soft-
ware releases.

What will happen to performance tooling vendors is less certain. Enterprises are now
far more reluctant to invest in expensive tooling when they can get much the same
capability from SaaS and open source alternatives. This is a challenge facing software
companies in general; however, for performance tooling shops there has been an acute

www.it-ebooks.info

217

http://www.it-ebooks.info/

218

shift away from the established vendors for web testing requirements. Unless your per-
formance testing need relates to some of the big customer relationship managers,
enterprise resource planning packages (like BMC Remedy, SAP, or Oracle eBusiness
Suite), or perhaps thin-client technology (like Citrix), then you really are spoiled for
choice.

As a final thought, for those interested I extend an invitation to join my Performance
Testers group on the popular business networking site LinkedIn. This group has been
running for a number of years and has steadily grown to several thousand members. If
you have a question on any aspect of performance testing, then I am sure that you will
receive a helpful response. (You may even find gainful employment!) Best wishes and
happy performance testing.

CHAPTER TEN: CONCLUSION

www.it-ebooks.info

http://linkd.in/1v3WFQO
http://www.it-ebooks.info/

APPENDIX A

Use-Case Definition Example

THIS APPENDIX CONTAINS AN EXAMPLE USE-CASE DEFINITION TAKEN FROM A

real performance testing project. Figure A-1 demonstrates the sort of detail you should
provide for each use case to be included in your performance test. The example is
based on a spreadsheet template that I have developed to capture use case informa-
tion.

Ideally, you should create a similar template entry for each use case that will be part of
your performance testing engagement.

Use Case 1 ‘ Bill Payment Pageviews

Step Test Data (i Step SLA Post Step Think Time| _Pa
Source File Name Range | Volume Required | Response Time (secs) Seconds View?

4

Action Timing Name

Banking number, internet password and dick _{Login Step 1
e past e ? DataFile : customers.csv. 2500

of personal access number (PAN) and cick Login Step 2
“Logi’ pe (e ansten Hard coded

Click “Payments & Transfer” from top tab menu Click Payments

Client Ut

Ciick “pay a bil" from secondary tab menu paya bill
Client Ut

‘Seliect payeein “To" diaiog FEETE Client U1

Select To and From Accounts
Client Ut

LTI O

Home.
Client Ut

[S B A S S A A

Logout
8 Client Ul

Figure A-1. Sample use-case definition

Please see the following for an explanation of the template contents:

www.it-ebooks.info

219

http://www.it-ebooks.info/

Use Case 1
Each use case should have a meaningful name such as “Bill Payment” in the

example.

PageViews
This is a calculated value based on the number of web page view per use case step

where this is relevant.

Step
The order that this step occurs in the use case.

Section
There are three options available:

Init
Whether this use case step is to occur only once at the start of a performance
test.

Body
Whether this use case step is to be iterated during performance test execution.

End
Whether this use case step is to be executed only once at the end of a perfor-

mance test.

Action
A description of the user action required for this use case step (e.g., step 1 requires
the user to “Enter online banking number, an Internet password, and then click

Continue”).

Timing name
A label to identify the use case step during performance test execution and analy-
sis (e.g., the timing name for step 1 is “Login Step 1”).

Step test data (as appropriate)
It is a common for use case steps to require data entry. This section of the template

attempts to capture information about any test data that may be required.

Source
The origin of the test data. This could be an external data file as indicated

against step 1. Alternatively, it could simply be a hardcoded value or provided
by the Client UI as indicated for the other use case steps.

Filename
The name of an external data file if this contains the test data required.

220 APPENDIX A: USE-CASE DEFINITION EXAMPLE

www.it-ebooks.info

http://www.it-ebooks.info/

Range
Any limits on the upper or lower value of the test data required (e.g., the
requirement may be for a range of values between 1 and 100).

Volume required
The number of unique test data items required (e.g., step 1 requires 2,500
unique sets of login credentials).

Step SLA
Whether there is a service level associated with this use case step. Typically a max-
imum response time.

Post-step think time
If any delay or pause should occur before execution of the next use case step.

Page view
Whether this use case step results in one or more web page views. A useful thing
to know when creating a load model if one of your performance targets is based
on a certain number of page views per second.

APPENDIX A: USE-CASE DEFINITION EXAMPLE

www.it-ebooks.info

221

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B

Proof of Concept and
Performance Test
Quick Reference

THIS APPENDIX CONTAINS A CONVENIENT QUICK REFERENCE, DRAWN FROM EAR-
lier chapters, of the steps required at each stage of planning and carrying out a proof of
concept (POC), performance test execution, and performance test analysis.

The Proof of Concept

A proof of concept is an important prerequisite because it does the following (see
Chapter 3 for details):

e Provides an opportunity for a technical evaluation of the performance testing tool
against the target application

¢ Identifies scripting test data requirements

¢ Allows an assessment of scripting effort

e Demonstrates the capabilities of the performance testing solution against the tar-
get application

223

www.it-ebooks.info

http://www.it-ebooks.info/

POC Checklist

You should anticipate no more than a couple of days for completion, assuming that
the environment and application are available from day one.

Prerequisites

The following should be in place before you set up the POC environment:

e A written set of success or exit criteria that you and the customer have agreed on
as determining the success or failure of the POC.

e Access to a standard build workstation or client platform that meets the minimum
hardware and software specification for your performance testing tool or solution;
this machine must have the application client and any supporting software
installed.

e Permission to install any monitoring software that may be required into the POC
test environment.

e Ideally, sole access to the application for the duration of the POC.

e Access to someone who is familiar with the application (i.e., a power user) and can
answer your usability questions as they arise.

e Access to an expert who is familiar with the application (i.e., a developer) in case
you need an explanation of how the application architecture works at a middle-
ware level.

e A user account that will allow correct installation of the performance testing soft-
ware onto the standard build workstation and access to the application client.

e At least two sets of login credentials (if relevant) for the target application.

e Two sample use cases to use as a basis for the POC: a simple read-only operation as
well as a complex activity that updates the target data repository. These let you
check that your script replay works correctly.

Process
Here are the steps involved in the POC process:
1. Record two instances of each sample use case and compare the differences
between them using whatever method is most expedient. Identifying what has

changed between recordings of the same activity will highlight any session data
requirements that need to be addressed.

2. After identifying the input and session data requirements and any modifications
needed to the scripts, ensure that each script will replay correctly in single-user

224 APPENDIX B: PROOF OF CONCEPT AND PERFORMANCE TEST QUICK REFERENCE

www.it-ebooks.info

http://www.it-ebooks.info/

and multiuser mode. Make sure that any database updates occur as expected and
that there are no errors in the replay logs for your scripts. Make certain that any
modifications you have made to the scripts are free from memory leaks and other
undesirable behavior.

Deliverables
Following are some guidelines for the POC deliverables:
e The output of a POC should be a go/no-go assessment of the technical suitability

of your performance testing tool for successfully scripting and replaying applica-
tion use cases.

¢ You should have identified the input and session data requirements for the sample
use cases and gained insight into the likely data requirements for the performance
testing project.

¢ You should identify any script modifications required to ensure accurate replay
and assess the typical time required to script each use case.

Performance Test Execution Checklist

See Chapter 4 for an expanded version of this material.

Activity Duration Guidelines

The following are suggested duration guidelines for typical performance test activities:

Project scoping
Time to complete nonfunctional requirements (NFR) capture and to produce a
statement of work (SOW). Allow a day for each activity.

Scripting use cases
For straightforward web applications, allow half a day per use case assuming an
experienced technician. For anything else, increase this to a full day per use case.

Creating and validating performance test sessions or scenarios
Typically allow one to two days” work.

Performance test execution
Allow a minimum of five days.

Data collection (and software uninstall)
Allow half a day.

APPENDIX B: PROOF OF CONCEPT AND PERFORMANCE TEST QUICK REFERENCE

www.it-ebooks.info

225

http://www.it-ebooks.info/

Final analysis and reporting
Allow at least one day.

Step 1: Pre-Engagement NFR Capture

You need this information to successfully create a project plan or statement of work:

¢ Deadlines available to complete performance testing, including the scheduled
deployment date.

¢ A decision on whether to use internal or external resources to perform the tests.

e An agreed-upon test environment design. (An appropriate test environment will
require longer to create than you estimate.)

¢ A code freeze that applies to the test environment within each testing cycle.
e A test environment that will not be affected by other user activity.

¢ All performance targets identified and agreed to by business stakeholders.

e The key application use cases identified, documented, and ready to script.

e A determination of which parts of use cases should be monitored separately (i.e.,
checkpointed).

e Identified input, target, and session data requirements for use cases that you select.
Make sure you can create enough test data of the correct type within the time-
frames of your testing project. Don’t forget about data security and confidentiality.

e Performance test scenarios identified in terms of number, type, use-case content,
and virtual user deployment. You should also have decided on the think time,
pacing, and injection profile for each scripted use-case deployment.

¢ Identified and documented application, server, and network KPIs.

e Identified deliverables from the performance test in terms of a report on the test’s
outcome versus the agreed-upon performance targets.

¢ A defined procedure for submitting any performance defects discovered during
testing cycles to development or the application vendor. If your plan is to carry
out the performance testing in-house, then you will also need to address the fol-
lowing points related to the testing team:

— Do you have a dedicated performance testing team? At a minimum you will
need a project manager and enough testing personnel (rarely are more than
two needed) to handle the scale of the project. See Figure B-1.

— Does the team have the tools and resources it needs to performance test effec-
tively?

— Are all team members adequately trained in the testing tools to be used?

226 APPENDIX B: PROOF OF CONCEPT AND PERFORMANCE TEST QUICK REFERENCE

www.it-ebooks.info

http://www.it-ebooks.info/

Project sponsor Account manager
<<customer>> <<vendor>>
Project manager Project manager
<<customer>> <<vendor>>
| | Technical architect = Senior consultant
<<customer>> <<vendor>>
Application specialist) Junior consultant
<<customer>> <<vendor>>

Figure B-1. Example performance testing team structure
Given this information, proceed as follows:

1. Develop a high-level plan that includes resources, timelines, and milestones based
on these requirements.

2. Develop a detailed performance test plan that includes all dependencies and asso-
ciated timelines, detailed scenarios and test cases, workloads, and environment
information.

3. Include contingency for additional testing cycles and defect resolution if problems
are found with the application during performance test execution.

4. Include a risk assessment of not meeting schedule or performance targets. With
these actions under way, you can continue with each of the following steps. Not
everything mentioned may be relevant to your particular testing requirements,
but the order of events is important. (See Appendix E for an example MS Project—
based performance testing project plan.)

Step 2: Test Environment Build

Strive to make your test environment a close approximation of the live environment.
At a minimum it should reflect the server tier deployment of the live environment,
and your target database should be populated realistically in terms of content and siz-
ing. (This activity frequently takes much longer than expected.)

e Allow enough time to source equipment and to configure and build the environ-
ment.

APPENDIX B: PROOF OF CONCEPT AND PERFORMANCE TEST QUICK REFERENCE 227

www.it-ebooks.info

http://www.it-ebooks.info/

228

Take into account all deployment models (including LAN and WAN environ-
ments).

Take external links into account, since they are a prime location for performance
bottlenecks. Either use real links or create a realistic simulation of external com-
munication.

Provide enough load injection capacity for the scale of testing envisaged. Think
about the locations where you will need to inject load from. If nonlocal load injec-
tor machines cannot be managed remotely, then local personnel must be on hand
at each remote location. (Don't forget to consider the cloud for load injection.)

Ensure that the application is correctly deployed into the test environment.

Provide sufficient software licenses for the application and supporting software
(e.g., Citrix or SAP).

Ensure correct deployment and configuration of performance testing tools.

Ensure correct deployment and configuration of KPI monitoring tools.

Step 3: Scripting

Proceed as follows for each use case to be scripted:

. Identify the use-case session data requirements. You may have some insight into

this requirement as part of a proof of concept.

. Confirm and apply use-case input data requirements (see Appendix A).

. Determine the use-case checkpoints that you will monitor separately for response

time.

. Identify and apply any changes required for the scripted use case to replay cor-

rectly.

. Ensure that the script replays correctly from both a single-user and a multiuser

perspective before including it in a performance test. Make sure you can verify
what happens on replay.

Step 4: Performance Test Build

Making use of the application load model created as part of NFR capture, for each per-
formance test consider the following points:

e Is it a pipe-clean, volume, stress, soak, or configuration test? A typical scenario is

to have pipe-clean tests for each use case, first in isolation as a single user and
then up to the target maximum currency or throughput. Run isolation tests to
identify and deal with any problems that occur, followed by a load test combining

APPENDIX B: PROOF OF CONCEPT AND PERFORMANCE TEST QUICK REFERENCE

www.it-ebooks.info

http://www.it-ebooks.info/

all use cases up to target concurrency. (You should then run stress and soak tests
for the final testing cycles, followed perhaps by non-performance-related tests.)

Decide on how you will represent think time and pacing for each use case based on
the type of performance test scenario.

For each use case, decide on how many load injector deployments you will make
and how many virtual users should be assigned to each injection point of presence.

Decide on the injection profile for each load injector deployment: Big Bang, ramp-
up, ramp-up/ramp-down with step, or delayed start. Your performance test choice
will likely involve a combination of Big Bang deployments to represent static load
and one or more of the ramp variations to test for scalability (see Figure B-2).

Will the tests execute for a certain length of time or be halted by running out of
data, reaching a certain number of use-case iterations, or user intervention?

Do you need to spoof IP addresses to correctly exercise application load balancing
requirements? (If so, then you will need a list of valid IP addresses.)

Do you need to simulate different network conditions like baud rates or cellular
network quality? If so, then confirm the different scenarios required. Any
response-time prediction or capacity modeling carried out prior to performance
testing should have already given you valuable insight into how the application
reacts to bandwidth restrictions.

What runtime monitoring needs to be configured using the client, server, and net-
work KPIs that have already been set up? The actual monitoring software should
have been deployed as part of the test environment build phase, so you should
already have a clear idea of exactly what you are going to monitor in the hosting
infrastructure.

If this is a web-based performance test, what level of browser caching simulation
do you need to provide? New user, active user, returning user? This will very
much depend on the capabilities of your performance testing solution. See Chap-
ter 9 for a discussion of caching simulation.

Consider any effects that the application technology will have on your perfor-
mance test design. For example, SAP performance tests that make use of the SAP-
GUI client will have a higher resource requirement than, say, a simple terminal
emulator and will require more load injector machines to generate a given num-
ber of virtual users. Chapter 9 discusses additional considerations for SAP and
other application technologies.

APPENDIX B: PROOF OF CONCEPT AND PERFORMANCE TEST QUICK REFERENCE

www.it-ebooks.info

229

http://www.it-ebooks.info/

—

=

=
|

Rep. Load i

Fep. Load

80

60
Fep. Load

40

Users (Percentage)

20

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Figure B-2. Performance test plan using background (static) load and ramp-up injection
profiles

Step 5: Performance Test Execution

Run and monitor your tests. Make sure that you carry out a dress rehearsal of each per-
formance test as a final check that there are no problems accessing the application or
with the test configuration. This phase should be the most straightforward part of any
performance testing project. You've done the hard work: preparing the test environ-
ment, creating the scripts, addressing the data requirements, and building the perfor-
mance tests. In an ideal world, performance test execution should be solely to validate
your application performance targets. It should not become a bug-fixing exercise. The
only unknown is how many test cycles will be required before you achieve your per-
formance testing goals. I wish I could answer this question for you, but like many
things in life this is in the lap of the gods. However, if you've followed the suggested
performance testing checklists religiously to this point, you're in pretty good shape to
be granted a miracle!

Here is a summary of tips related to performance text execution:
¢ Execute additional dress-rehearsal tests to verify you have sufficient load injection

capacity for the target concurrency. Unless your concurrency targets are very
modest, you should always check the upper limits of your load injectors.

¢ Execute pipe-clean tests to establish ideal response-time performance. (This is typi-
cally a single user per script for a set period of time or a certain number of itera-
tions.)

230 APPENDIX B: PROOF OF CONCEPT AND PERFORMANCE TEST QUICK REFERENCE

www.it-ebooks.info

http://www.it-ebooks.info/

e Execute volume tests, ideally resetting target database content between execu-
tions. This test normally includes all scripts prorated among the target number of
virtual users.

e Execute isolation tests to explore any problems revealed by load testing, and then
supply results to the developers or application vendor.

e Execute stress tests to generate data concerning future growth of transaction vol-
ume and application users.

e Execute soak tests (if time allows) to reveal any memory leaks and problems
related to high-volume transaction executions.

e Execute any tests that are not performance related (e.g., different load-balancing
configurations).

Step 6 (Post-Test Phase): Analyze Results, Report, Retest If
Required

The following are pointers on what to do during the post-test phase:
e Make sure that you capture and back up a// data created as part of the perfor-
mance testing project.

e Compare test results to performance targets set as part of project requirements;
this will determine the project’s success or failure.

e Document the results of the project. Your report should include sections that
address each of the performance targets.

e Use the final results as baseline data for end-user experience (EUE) monitoring.

Analysis Checklist

The focus here is on analysis rather than execution. See Chapter 5 for more details.
Pre-Test Analysis Tasks

e Make sure that you have configured the appropriate application, server, and net-
work KPIs. Make sure there are no obstacles to installing and configuring agent
software on the servers (unless you use remote monitoring).

e Set any available automatic thresholds for performance targets as part of your per-
formance test configuration.

APPENDIX B: PROOF OF CONCEPT AND PERFORMANCE TEST QUICK REFERENCE 231

www.it-ebooks.info

http://www.it-ebooks.info/

232

e If your performance testing tool provides the capability, configure autocorrelation
between response time, concurrent virtual users, and server or network KPI met-
rics.

e If you are using third-party tools to provide some or all of your KPI monitoring,
make sure that they are correctly configured before you run any tests—ideally,
include them in your dress rehearsal.

e Be sure you can integrate third-party data with the output of your performance
testing tool. Unless your tools do this automatically, this can be time-consuming.

Tasks During Test Execution

Here is a list of tasks to complete during test execution:

e Periodically examine the performance of your load injectors to ensure that they
are not becoming stressed.

e Document every test that you execute. At a minimum, record the following:

— The name of the performance test execution file and the date and time of exe-
cution

— A brief description of what the test comprised
— The name of the results file (if any) associated with the current test execution

— Any input data files associated with the performance test and which use cases
they relate to

— A brief description of any problems that occurred during the test

If your performance testing tool allows you to annotate the performance test configu-
ration with comments, use this facility to include whatever information will help you
easily identify the test run. During execution, you should do the following:

e Watch for the sudden appearance of errors. This frequently indicates that some
limit has been reached within the test environment; it can also mean that you’ve
run out of data or that the operating system’s default settings are interfering.

e Watch for a sudden drop in throughput. This is a classic sign of trouble, particu-
larly with web applications where the virtual users wait for a response from the
web server. If your application is using links to external systems, check to ensure
that none of these links is the cause of the problem.

e Watch for an ongoing reduction in available server memory. Available memory
should decrease as more and more virtual users become active, but if the decrease
continues after all users are active, then you may have a memory leak.

APPENDIX B: PROOF OF CONCEPT AND PERFORMANCE TEST QUICK REFERENCE

www.it-ebooks.info

http://www.it-ebooks.info/

Post-Test Tasks

Post-test tasks include the following:
e Collect all relevant data for each test execution. If you're relying on third-party
tools to provide monitoring data, make sure that you preserve the files you need.

e Back up, onto a separate archive, all testing resources (scripts, input data files, and
test results).

e Your report should map results to the performance targets that were set as part of
the pre-test requirements capture phase.

APPENDIX B: PROOF OF CONCEPT AND PERFORMANCE TEST QUICK REFERENCE 233

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C

Performance and Testing
Tool Vendors

THIS APPENDIX PROVIDES A LIST OF THE LEADING AUTOMATED TOOL VENDORS
for performance testing and related disciplines. I have also included entries for popular
open source tools where appropriate. The tool vendor market remains dynamic, with a
number of new entries since 2009. Many performance testing tool vendors now pro-
vide support for mobile testing either on-premise or as a Saa$S offering, and the major-
ity provide support for cloud-based load injection. The list is in no particular order and
is not intended to be exhaustive. For each section, I have listed the tool vendor fol-
lowed by the product name and (where appropriate) a link for more information.

Application Performance Management

Appdynamics
Appdynamics

Computer Associates: Introscope Compuware
dynaTrace

Correlsense
SharePath

www.it-ebooks.info

235

http://www.appdynamics.com
http://www.compuware.com
http://www.correlsense.com
http://www.it-ebooks.info/

236

New Relic
New Relic

End-User Experience and Website Monitoring

SOASTA
mPulse

Neustar
Website Monitoring Service

Google
WebPagetest

Functional Testing

Hewlett Packard
Quick Test Pro (QTP)

Selenium
Selenium

TestPlant
eggPlant Performance

Performance Testing

Borland
Silk Performer

Hewlett Packard
LoadRunner

IBM
Rational Performance Tester

Microsoft
Visual Studio Team System

Neotys
Neoload

Quotium
Qtest

TestPlant
eggPlant Performance

APPENDIX C: PERFORMANCE AND TESTING TOOL VENDORS

www.it-ebooks.info

http://www.newrelic.com
http://www.soasta.com/products/mpulse/
http://bit.ly/1Gy3Zcp
http://www.webpagetest.org
http://bit.ly/1Gy43Jg
http://bit.ly/1Gy47Zu
http://www.testplant.com
http://bit.ly/1Gy4anY
http://bit.ly/1Gy4bIG
http://ibm.co/1Gy4iE6
http://bit.ly/1Gy4mUo
http://www.neotys.com
http://www.quotium.com
http://www.testplant.com
http://www.it-ebooks.info/

Open Source

Gatling
Gatling

(The) Grinder
Grinder

JMeter
JMeter

SaaS Performance Testing

Blazemeter
Blazemeter

Compuware
Gomez

Intechnica
TratficSpike

KeyNote
KeyNote

NCC Group
SiteConfidence

SOASTA
Cloudtest

Requirements Management

Borland
Calibre-RM

IBM
Requisite-PRO

Open Source

TRUREQ
Trureq

APPENDIX C: PERFORMANCE AND TESTING TOOL VENDORS

www.it-ebooks.info

237

http://gatling-tool.org
http://grinder.sourceforge.net
http://jakarta.apache.org/jmeter/
http://www.blazemeter.com
http://www.compuware.com
http://www.intechnica.co.uk
http://www.keynote.com
http://www.siteconfidence.com
http://www.soasta.com
http://bit.ly/1Gy4PWF
http://ibm.co/1Gy4Sl2
http://www.truereq.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D

Sample Monitoring Templates:
Infrastructure Key Performance
Indicator Metrics

THE FOLLOWING EXAMPLES DEMONSTRATE GROUPS OF COMMON SERVER KPI
metrics that I use in performance testing projects. I have provided examples of generic
and application-specific templates to demonstrate the top-down approach I use when
troubleshooting performance issues revealed by performance testing.

Generic KPI Templates

Monitoring the use of this first set of metric templates provides a good indication of
when a server is under stress. The metrics configured are focused on fundamental
capacity indicators such as CPU loading and memory consumption. This is the basic
level of server monitoring I use when performance testing.

Windows OS : Generic KPlI Template

You will probably recognize these metrics, since they are taken from the Windows Per-
formance Monitor (Perfmon) application. This is a nice mix of counters that monitor
disk, memory, and CPU performance data, together with some high-level network
information that measures the number of errors encountered and data throughput in

www.it-ebooks.info

239

http://www.it-ebooks.info/

bytes per second. For many of these counters you will, of course, need to select the
appropriate instances and sampling period based on your system under test (SUT)
requirements. Make sure that the sampling period you select is not too frequent, as
this will place additional load on the servers being monitored. The default of 15 sec-
onds is usually sufficient to create enough data points without causing excessive load.
The number of counters you are monitoring can also have an impact on server perfor-
mance, so make sure that any templates you create have only the counters you really
need. I recommend that, in addition to using this template, you monitor the top 10
processes in terms of CPU utilization and memory consumption. Identifying the CPU
and memory hogs is often your best pointer to the next level of KPI monitoring, where
you need to drill down into specific software applications and components that are
part of the application deployment.

KPI metric Notes

Total processor utilization %

Processor queue length

Context switches per second

Memory available byes

Memory page faults per second *Use to assess soft page faults
Memory cache faults per second *Use to assess soft page faults
Memory page readers per second *Use to assess hard page faults

Free disk space %

Page File Usage %

Average disk queue length

% Disk time

Linux/Unix: Generic KPl Template

This next example is taken from the non-Windows OS world and demonstrates the
same basic metrics about server performance. You generally have to use a number of
different tools to get similar information to that provided by Windows Performance

Monitor.
KPI metric Source utility Indicative parameter(s)
% Processor time vmstat cs,us,sys,id,wa
Processes on runq vmstat r
Blocked queue vmstat b

240 APPENDIX D: SAMPLE MONITORING TEMPLATES: INFRASTRUCTURE KEY PERFORMANCE INDICATOR
METRICS

www.it-ebooks.info

http://www.it-ebooks.info/

KPI metric

Source utility

Indicative parameter(s)

Memory available bytes svmon free

Memory page faults per second sar faults per second
Memory pages out per second vmstat po

Memory pages in per sec vmstat pi

Paging space svmon pg space

Device interrupts per sec vmstat in

% Disk time iostat O%tm_act

Application-Specific KPl Templates

Drilling down from the generic KPI templates, the next level of analysis commonly
focuses on metrics that are application specific. Use these templates to monitor soft-
ware applications and discrete components that are part of your application deploy-
ment. These might include Microsoft’s SQL Server database or one of the many Java-
based application servers, such as JBOSS. Each application type will have its own rec-

ommended set of counters, so please refer to the corresponding vendor documentation

to ensure that your KPI template contains the appropriate entries.

Windows OS: MS SQOL Server KPl Template

The following example is also taken from Windows Performance Monitor and demon-
strates suggested counters for MS SQL Server.

KPI metric

Notes

Access methods: Forward records/sec

Access methods: Full table scans

*Missing indexes

Access methods: Index searches/sec

Access methods: Page splits/sec

Access methods: Table lock escalations/sec

Buffer manager: Buffer cache hit ratio

Buffer manager: Checkpoint pages/sec

Buffer manager: Free list stalls/sec

Buffer manager: Page life expectancy

Buffer manager: Page lookups/sec

Buffer manager: Page reads/sec

APPENDIX D: SAMPLE MONITORING TEMPLATES: INFRASTRUCTURE KEY PERFORMANCE INDICATOR

www.it-ebooks.info

METRICS

241

http://www.it-ebooks.info/

KPI metric Notes

Buffer manager: Page writes/sec

General statistics: Logins/sec

General statistics: Logouts/sec

General Statistics: User connections

Latches: Latch waits/sec

Latches: Total latch wait time (ms)

Locks: Lock wait time (ms) *Lock contention
Locks: Lock waits/sec *Lock contention
Locks: Number of deadlocks/sec *Lock contention
Memory manager: Target server memory (KB) *MS SQL memory
Memory manager: Total server memory (KB) *MS SQL memory

SQL statistics: Batch requests/sec

SQL statistics: Compilations/sec

SQL statistics: Recompilations/sec

242 APPENDIX D: SAMPLE MONITORING TEMPLATES: INFRASTRUCTURE KEY PERFORMANCE INDICATOR
METRICS

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX E

Sample Project Plan

THE EXAMPLE PROJECT PLAN IN FIGURE E-1 IS BASED ON A TYPICAL PERFOR-
mance project template in MS Project. I have updated the original content to reflect

current best practice.

——NOTE

The MS Project file is available from the book’s companion website.

© TaskName Duration Start Finish | Predecessors _|Resource Names

1 [&__]- Performance Test Planning Example (Based on 5 Use Cases) 10.6days? Mon 03/03/14 Mon 1703114, Project manager | Account manager

2 - Scoping / Statement of Work (SOW) 225days? Mon 03/03/14 Wed 05/03/14 Senior Performance Consultant | Performance Consultant
3 Execute scoping exercise with customer 1day? Mon03/03/14 Mon 03/03/14

4 Create full SOW / project plan 1day? Tue 040314 Tue 04/03/14 3

5 Sign-off SOW 025days? Wed 05/03/14 Wed 05/03/14 4

6 - Design 4days?| Wed 05/03114 Tue 1103114 2 Project Manager | Performance Consultant

7 Project kick-off meeting 025days? Wed 05/03/14 Wed 05/03/14

8 Build and validate scripts 3days? Wed 05/03/14 Mon 10/03/14

9 Bild and validate performance test scenarios 1day? Mon10/03/14 Tue 11/03/14 8

10 = Iterative execution and analysis 26days? Tue 110314 Thu 1303114 6 Performance Consultant

11 - Pipeclean 035days? Tue11/03/14 Tue 11/03/14

12 Execution - Real time feedback 025days? Tue 11/03/14 Tue 11/03/14

13 Establish baseline / adjust load model 01days? Tue 110314 Tue 11/03/14 12

% - Volume 05days? Tue 1100314 Wed 12/03/14 11

15 Execution - Real time feedback 025days? Tue 110314 Tue 11/03/14

16 Interim report 025days? Tue 11/03/14 Wed 12/03/14 15

17 = Stress 05days? Wed 12003114 Wed 12/03114 14

18 Execution - Real time feedback 025days? Wed 12/03/14 Wed 12/03/14

19 Interim report 025days?| Wed 12/03/14 Wed 12/03/14 18
2 - Soak 075days? Wed 1210314 Thu 1310314 17

21 Execution - Real time feedback 05days? Wed 12/03/14 Thu 13/03/14

2 Interim report 025days? Thu1303/14 Thu 1300314 21
3 - Configuration 05days? Thu13/03/14 Thu 13/0314 20
2 Execution - Real time feedback 025days? Thu1303/14 Thu 13/03/14
% Interim report 025days?| Thu13/03/14 Thu 13/03/14 24
% - Closure 175days? Thu13/0314 Mon 17103114 10 Senior Performance Consultant | Performance Consultant
27 Data collection / uninstall 05days? Thu1303/14 Fri 14/03/14 Performance Consultant
2 Produce final performance closure report 1day? 140314 Mon 17/03/14 27 ‘Senior Performance Consultant | Performance Consultant
2 Present findings to client 025days?| Mon 17/03/14 Mon 17/03/14 28 Senior Performance Consultant | Project Manager | Account Manager
30

Figure E-1. Example MS Project performance test plan

www.it-ebooks.info

243

http://examples.oreilly.com/9780596520670
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A

absolute metrics, 166
accuracy (see test design accuracy)
active monitoring, 130-136
design aspects of, 149-151
ISP-based testing, 133-135
output metrics, 132-133
versus passive monitoring, 140-141
and performance testing, 192
synthetic end-user testing, 135-136
test perspectives, 131
tooling for, 144-145
active test traffic, 191
active use cases, 44
active virtual users, 38
activity duration guidelines, 65-66
agent type, 135
AJAX, 201, 212
alerting, 179-182
analysis, 91-115
analysis checklist, 111-115

Index

automated analysis, 135
external monitoring, 161-166
post-test analysis, 75, 93, 231
post-test tasks, 114-115, 233
pre-test tasks, 111-112, 231
real-time analysis, 92-93
real-time tasks, 113-114, 232
root-cause analysis, 91, 105-111
(see also root-cause analysis)

types of test output, 93-105

analysis module, 13

antivirus software, 215

APDEX (see Application Performance
Index)

API access metrics, 139

API testing, 120

API-level scripts, 122

APM tooling (see application perfor-
mance management (APM))

application errors, undetected, 24

Application Performance Index (APDEX),
166-167

www.it-ebooks.info

245

http://www.it-ebooks.info/

246

application performance management
(APM)
and active test traffic, 191
in non-Internet-based tests, 197-198
and passive monitoring, 191
tool vendors, 235
application performance monitoring
(APM), 62
application server KPIs, 64-64
architecture, 12-13
arithmetic mean, 94
associated files, 48
asynchronous design, 119
asynchronous events/actions, 41
Asynchronous Java and XML (AJAX),
201, 212
asynchronous responses, 3
audits, 175
autocorrelation, 112
automated analysis, 135
automated testing tools, 9
(see also tools)
automated tools (see tools)
availability metrics, 2, 132, 168
available bandwidth, 32

backup, 115

balanced scorecards, 167

banding, 182

bandwidth, 26, 32

bandwidth consumption, 63

Barber, Scott, 38

baseline data, 111

baselining, 41

baud rates, 73

begin markers, 46

benchmarks, 176

best practices (see performance testing
process)

Big Bang load injection, 55

INDEX

bounce rate, 151

browser agent, 151

browser caching, 207

browser caching simulation, 73
browser limitations, 151
Browser Mob, 188

browser versions, 182

BUS versus LAN-WAN, 28

o

capacity, 22, 99

capacity expectations, 8

capture solutions, 215

case studies in performance testing
call center, 83-89
online banking, 75-83

CDN monitoring, 157-161, 186

cellular WiFi connection, 119

checkpoints, 46

Citrix, 202-205

clean-room testing, 144, 150, 181

client limitations, 182

cloud computing, 29-31

CloudTest, 188

code-hook, 122

combined monitoring/testing, 185-200
active and performance testing, 192
active test traffic and APM tooling,

191
integration process, 188-192
multimedia content, 195-196
non-Internet-based tests, 196-198
passive and APM tooling, 191
passive and performance testing,
189-191

test approach, 192-198
test scheduling, 193-195
tooling choices, 187

comet implementations, 185

comma-separated values (CSV) format,
47

www.it-ebooks.info

http://www.it-ebooks.info/

competitive understanding, 175-179
Compuware APMaas, 187
concurrency, 38
concurrent application users, 38
concurrent virtual users, 38
connection speed, 182
connectivity, 26

issues with, 112

testing, 133
consistency metrics, 168-169
constraints, software installation, 35
context switches per second, 107
controlled test conditions, 145
correlation, 172-175
coverage metrics, 138
CPU power/performance, 28
CSV format, 47

D

dashboard displays, 150, 177
dashboard reports, 167
data, 47

(see also test data)

baseline, 111

collection of, 114

error rate, 42

high data presentation, 23

limitations of, 168

rollback, 49

test data security, 49

thinning, 105

throughput, 42

volume, 41
database sizing, 26, 48
delayed start load injection, 55
device limitations, 182
documentation, 113
domains, native versus third-party, 182

E

ecommerce applications, KPI determina-
tion for, 162-164
ecommerce businesses, 5
efficiency-oriented indicators, 2
Eggon Testplant, 187
end markers, 46
end-user
experience (see external monitoring)
testing, 145
usage profile, 46
errors
sudden, 113
undetected, 24
event capture, 139
excessive component instantiations, 208
existing systems audit, 175
explicit monitoring, 156
extensibility, 140
external content caching (see CDN moni-
toring)
external KPIs, 165
external monitoring, 125-183
active, 130-136
(see also active monitoring)
alerting, 179-182
analysis, 161-166
APDEX, 166-167
CDN, 157-161
competitive understanding, 175-179
defining, 126
effective reporting, 174-175
integrating with performance testing
(see combined monitoring/testing)
issue isolation and characterization
with, 152-154
management reports, 167-174
(see also management reports)
native mobile applications, 154-157
in non-Internet-based tests, 196-198
overview, 125-126

INDEX

www.it-ebooks.info

247

http://www.it-ebooks.info/

passive, 130, 136-141
(see also passive monitoring)
pros and cons, 140-141
purposes, 127-130
testing, 192
(see also combined monitoring/
testing)
testing framework, 147-152
tool vendors, 236
tooling options, 141-147

F

Facilita Forecast, 187
fatal errors, 181
firefighting, 6
firewall issues, 214
Flex, 212
frequency, 150
frequency testing, 134
functional availability, 168
functional requirements, 22
functional scripts, 32
functional testing tool vendors, 236
fundamentals, 21-64
accurate test design, 49-59
(see also test design accuracy)
code freeze, 25-26
essential NFRs, 22
KPIs, 59-64
(see also key performance indica-
tors (KPIs))
performance targets, 35-43
(see also performance targets)
project planning, 22
providing test data, 47-49
(see also test data)
readiness for testing, 23-24
test environment considerations,
26-35
time allocation for testing, 24-25
use cases, 43-47

INDEX

(see also use cases)
funnel profile, 40

G

Gartner Inc., 142

global view, 177

goals (see performance targets)
Gomez Saas, 187

good performance, defined, 1-2
gotchas, 180, 181-182

H

hard metrics, 163
heartbeat test, 132
high data presentation, 23
HTMLS5, 185
HTTP long polling, 185
HTTP protocol applications
.NET remoting, 206
browser caching, 207
secure sockets layer (SSL), 207
Web services, 205
hybrid mobile applications, 118
hybrid testing, 151
Hypervisor layer, 28

in-house tools, 15

in-scope performance, mobile devices,
121-122

Indigo, 213

inherent monitoring, 156

input data, 47-48

instrumenting test environment, 25

1P address spoofing, 73

IP spoofing, 31

IPsec, 214

isolation test, 51

isolation test use case, 56

ISP testing, 144

www.it-ebooks.info

http://www.it-ebooks.info/

ISP-based testing, 133-135
issue isolation, 135
IT business value curve, 5-6

J

Java Monitoring Interface (JMX), 102

K

key performance indicators (KPIs), 2-3,
59-64, 107
application server KPIs, 64-64
for ecommerce applications, 162-164
efficiency-oriented, 2
external, 165
monitoring templates, 239-241
network KPIs, 62-63, 103
remote monitoring, 100-102
server KPIs, 102-103
service-oriented, 2
setting values, 164-166
Keynote, 188
knee performance profile, 109-110
KPIs (see key performance indicators)

L

LAN-based users, 32
LAN-WAN versus BUS, 28
latency, 63, 182
licensing model, 14
limitations of data, 168
link replication, 34
load balancing, 31
load injection, 24, 29-32
LAN-based, 32
point of presence, 57
WAN-based, 33
load injection deployments, 72
load injection profile, 72
load injection profile types, 55-56
load injectors, 12, 104

load model, 51-54

load testing tool, 15

local area network (LAN), 32
location testing, 133
login-logout process, 38, 47

m. sites, 118, 120
MAD (median absolute deviation), 172
Magic Quadrant assessments, 142
management reports, 167-174
correlation, 172-175
data preparation, 168
effective reporting, 174-175
statistical considerations, 168
manual scripting, 215
mean, 94, 171
(see also trimmed mean)
measures of central tendency, 171
measuring performance, 2-3
median, 94
median absolute deviation (MAD), 172
median versus mean, 171
memory leaks, 208
metrics, 168
(see also statistical considerations)
correlation, 172-174
output, 132
middleware-level scripts, 32
mini-statement use case, 54
minimalist deployment, 27
minimum page refresh time, 3
mobile applications, 118, 121, 154
(see also native mobile applications)
mobile clients, 117-123
client types, 117
design considerations, 119
hybrid applications, 118
native mobile applications, 154-157
test design, 120-122
testing automation, 118

INDEX

www.it-ebooks.info

249

http://www.it-ebooks.info/

250

testing considerations, 120
mobile device proliferation, 120
mobile emulation testing, 151
mobile websites, 117, 121
multimedia performance testing, 195-196
multimedia stream delivery, 186

N

native mobile applications, 154-157
advantages and disadvantages, 155
explicit versus inherent monitoring,

156

NET remoting, 206

network connectivity replication, 35

network deployment models, 32

network errors, 63

network infrastructure, 26

network interface cards (NICs), 28

network KPIs, 62-63, 103

network latency, 33

network round-trips, 23

network simulation, 34

network utilization, 41-42

Neustar, 188

NFRs (see nonfunctional requirements)

NICS (see network interface cards)

nominal availability, 168

non-Internet APM tooling, 197-198

non-performant applications, 1

nonfunctional requirements (NFRs), 22,
65, 226-227
(see also fundamentals)

nonperformance test use case, 57

normal distribution, 94, 171

nth percentile, 95

)

object-level metrics, 139
open source tool vendors, 237
open source tools, 11

INDEX

optional modules, 13
Oracle, 209
outsourced tools, 15

P

PaaS$ (see Platform as a Service (PaaS))
pacing, 54-59, 72
page load time, 133
page-delivery metrics, 139
passive (RUM) (see passive monitoring)
passive monitoring, 136-141
versus active monitoring, 140-141
and APM, 191
design aspects of, 151-152
integration with performance testing,
189-191
tooling for, 145-147
weaknesses, 140
passive use cases, 44
peerage, 182
percentile rank, 172
percentiles, 95
Perfmon tool, 59
performance driven, 7
performance monitoring software, 59
performance monitoring templates,
59-62
performance problems, reasons for, 5-10
application technology impact, 10
design-related, 7
discipline informality, 9
IT business value curve, 5-6
last-minute testing, 7
nonuse of automated testing tools, 9
popularity, 8
scalability, 8
performance targets, 35
availability or uptime, 37
concurrency, 38-39
consensus on, 35-37
network utilization metrics, 41

www.it-ebooks.info

http://www.it-ebooks.info/

response time, 40-41
server utilization metrics, 42-43
throughput, 39-40
performance testing
and active monitoring, 192
background
end-user perspective, 1-5
importance of, 1
measuring performance, 2-3
reasons for bad performance, 5-10
(see also performance problems,
reasons for)
standards, 3-4
World Wide Web and Ecommerce,
5
basics of (see fundamentals)
environment (see test environment)
integrating with external monitoring
(see combined monitoring/testing)
integrating with passive monitoring,
189-191
maturity, 6
process of, 65-89
activity duration guidelines, 65-66,
225
case study: call center, 83-89
case study: online banking, 75-83
in combined monitoring/testing,
192-198
nonfunctional requirements (NFR)
capture, 67-70, 226-227
post-test analysis and reporting, 75,
231
quick reference checklist, 225-231
test environment build, 70-71, 227,
228
test execution, 74, 230-231
use-case scripting, 71-72, 228
tool vendors, 236
types of tests, 50-51
performance validation, 7

pipe-clean test, 50

Platform as a Service (PaaS), 29

point-to-point testing, 196-197

post-test analysis, 75, 93

power consumption of mobile devices,
119

presentation-layer scripts, 32

problem resolution, 25, 213

project plan sample, 243

project planning, 22

proof of concept (POC), 12, 16-19,
223-225

protocol support, 14

proxy problems, 214

publish and subscribe, 202

push versus pull, 202

R

ramp-up load injection, 55

real-time analysis, 92-93

real-time reporting metrics, 139

real-user monitoring (RUM), 130
(see also passive monitoring)

relative metrics, 166

remote monitoring, 101-102

remoting, 206

replay validation, 45

reported availability, 168

reporting metrics, 140

requirements management tool vendors,
237

response time, 3-4, 105-107, 168-169

response timer, 40-41

response-time distribution, 95

response-time measurement, 96-98

results dispersion, 170

results interpretation (see analysis)

rich browser testing, 186

rich client testing, 186

rich Internet application (RIA) technolo-
gies, 186

INDEX

www.it-ebooks.info

251

http://www.it-ebooks.info/

252

root-cause analysis, 105
baseline data, 111
defining, 91
errors, 110
knee performance profile, 109-110
KPI data, 107
scalability and response time, 105-107
server analysis, 108
Rstatd, 102
runtime monitoring, 73

S

SaaS (see Software as a Service)
SAP, 210
scalability, 8, 22, 38, 105-107
scripted use cases (see use cases)
scripting, 71, 228
effort, 15
module, 12
scripts
API-level, 122
creation, 45
functional, 32
presentation-layer, 32
replay validation, 45
search criteria, 48
secure sockets layer (SSL), 207
server, 26
KPIs, 59-62
memory drop, 114
push connections, 185
utilization, 42-43
service-level agreement (SLA), 35
service-oriented architecture (SOA), 211
service-oriented indicators, 2
session data, 49
simple concurrency model, 52-53
Simple Network Monitoring Protocol
(SNMP), 102
site visits, unsuccessful, 152
sizing, 48

INDEX

smoke test, 51

SOA (service-oriented architecture), 211

soak test, 51, 57

SOASTA CloudTest/TouchTest, 188

soft metrics, 164

Software as a Service (SaaS), 16, 118,
187, 237

software installation constraints, 35

solution offerings, 15

sophistication metrics, 138

spoofing, 151

SQL, poorly performing, 23, 209

stability test, 51

stacked bar chart, 179

stakeholders, 35-37

stalled thread, 108, 208

standard deviation, 94, 168, 171-172,
172

standards, performance, 3-4

stress test, 40, 50, 56

subjective metrics, 166

subjective outputs, 175

SUT (system under test), 38

synchronous events, 41

synchronous responses, 3

synthetic monitoring (see active monitor-
ing)

system under test (SUT), 38

T

ttest, 173
target data, 48-49
target destination errors, 181
tech stack specifics, 201-216
templates
for KPI metrics, 239-241
for performance monitoring, 59
test agents, 151
test data, 47-49
data security, 49
input data, 47-48

www.it-ebooks.info

http://www.it-ebooks.info/

preparation, 25
session data, 49
target data, 48-49
test design accuracy, 49-59
example configuration, 57-59
load injection point of presence, 57
load injection profile types, 55-56
load model, 51-54
pacing, 54-59
test format, 56-57
think time, 54
types of performance tests, 50
test environment
building, 70-71, 227, 228
considerations, 26-35
checklist, 34-35
cloud computing, 29-31
load injection capacity, 31-32
network deployment models,
32-34
production versus test environ-
ment, 26-27
software installation constraints, 35
virtualization, 27-28
preparation, 24
test execution, 74, 230-231
test frequency, 150
test management module, 12
test output types, 93-105
installed-agent monitoring, 102
KPI monitoring, 100-102
load injector performance, 104
network KPI performance, 103
response-time measurement, 96-98
server KPI performance, 102-103
terminology, 94-95
throughput and capacity, 99-100
test process (see performance testing pro-
cess)
test scenario creation, 72-73
test validation, 181

testing
lead times, 24
readiness, 23
team structure, 69
TestPlant eggPlant, 187
thick-client performance, 186
thin-client deployment, 32
think time, 54, 72, 96
third-party data, 112
third-party service providers, 2
threshold breaches, 112
thresholds, 175
throughput, 3, 39-40, 99
drop in, 114
model, 53
tier deployment, 26
time allocation for testing, 24-25
time allowances, 65-66
tool vendors, 235-237
tooling costs, 150
tools
for external monitoring, 141-147
active monitoring, 144-145
passive monitoring, 145-147
tool selection criteria, 142-144
for performance testing, 11-19
challenges and advantages of,
11-12
considerations in choosing, 13-16
external testing, 16
in-house versus outsourced, 15
proof of concept (POC), 16-19
solution versus load testing, 15
tool architecture, 12-13
total response time, 133-133
TouchTest, 188
traffic light (RAG)-based matrix, 167
traffic metrics, 139
traffic-light-based RAG (red/amber/
green) output, 175
transaction abandonment, 151

INDEX

www.it-ebooks.info

253

http://www.it-ebooks.info/

254

transaction replay modification, 33
trend charts, 175

triangulation, 133, 150

trimmed mean, 172
troubleshooting testing issues, 213

U

usage
accurate reflecting of conditions, 147
peaks, 39
profile, 40
usage profile, 46
use cases, 43-47
active versus passive, 44
associated files, 48
checklist, 44
definition example, 219
identifying and scripting, 24
replay validation, 45
resource sharing, 47
scripting, 71-72, 228
search criteria, 48
volume test, 50
what to measure, 46
use-case response time, 97
use-case throughput, 38
user acceptance testing, 37
user credentials, 48
User Experience Monitoring (UEM), 130
(see also passive monitoring)
user session limits, 32
utilization, 3

\'}

VDI (virtualized desktop infrastructure),
205

INDEX

version-dependent scripts, 25

virtual user concurrency, 47

virtualization, 27-28

virtualized desktop infrastructure (VDI),
205

visitor performance map, 177

VMWare, 27

volume test, 50, 56

W

WAN, 42
(see also LAN-WAN versus Bus)

WAN-based users, 32, 33

watchful waiting, 92

WCEF, 213

Web 2.0, 212

Web services, 205, 212

Web-Based Enterprise Management
(WBEM), 101

wide-area network (WAN), 32

wildcard search, 48

Windows Communication Foundation
(WCF), 213

Windows Firewall, 214

Windows Presentation Foundation
(WPF), 213

Windows Registry, 101

World Wide Web, 5

X

Xen, 27

www.it-ebooks.info

http://www.it-ebooks.info/

Colophon

The cover fonts are URW Typewriter and Guardian Sans. The text font is Meridien;
the heading font is Akzidenz Grotesk; and the code font is Dalton Maag’s Ubuntu
Mono.

About the Author

Originally hailing from Auckland, New Zealand, Ian Molyneaux ended up in IT
purely by chance after applying for an interesting looking job advertised as “junior
computer operator” in the mid "70s. The rest is history: 36 years later Ian has held
many roles in IT but confesses to being a techie at heart with a special interest in appli-
cation performance. Ian’s current role is Head of Performance for Intechnica, a UK-
based digital performance consultancy.

On a personal level Ian enjoys crossfit training, music, and reading science fiction with
a particular fondness for the works of Larry Niven and Jerry Pournelle. Ian presently
resides in Buckinghamshire, UK, with wife Sarah and three cats, trying to get used to
the idea of turning 56!

www.it-ebooks.info

255

http://www.it-ebooks.info/

	Cover
	Table of Contents
	Preface
	Audience
	About This Book
	Conventions Used in This Book
	Glossary
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Why Performance Test?
	What Is Performance? The End-User Perspective
	Performance Measurement
	Performance Standards
	The World Wide Web and Ecommerce

	Bad Performance: Why It’s So Common
	The IT Business Value Curve
	Performance Testing Maturity: What the Analysts Think
	Lack of Performance Considerations in Application Design
	Performance Testing Is Left to the Last Minute
	Scalability
	Underestimating Your Popularity
	Performance Testing Is Still an Informal Discipline
	Not Using Automated Testing Tools
	Application Technology Impact

	Summary

	Choosing an Appropriate Performance Testing Tool
	Performance Testing Tool Architecture
	Choosing a Performance Testing Tool
	Performance Testing Toolset: Proof of Concept
	Proof of Concept Checklist

	Summary

	The Fundamentals of Effective Application Performance Testing
	Making Sure Your Application Is Ready
	Allocating Enough Time to Performance Test
	Obtaining a Code Freeze
	Designing a Performance Test Environment
	Virtualization
	Cloud Computing
	Load Injection Capacity
	Addressing Different Network Deployment Models
	Environment Checklist
	Software Installation Constraints

	Setting Realistic Performance Targets
	Consensus
	Performance Target Definition
	Network Utilization
	Server Utilization

	Identifying and Scripting the Business-Critical Use Cases
	Use-Case Checklist
	Use-Case Replay Validation
	What to Measure
	To Log In or Not to Log In
	Peaceful Coexistence

	Providing Test Data
	Input Data
	Target Data
	Session Data
	Data Security

	Ensuring Accurate Performance-Test Design
	Principal Types of Performance Test
	The Load Model
	Think Time
	Pacing

	Identifying the KPIs
	Server KPIs
	Network KPIs
	Application Server KPIs

	Summary

	The Process of Performance Testing
	Activity Duration Guidelines
	Performance Testing Approach
	Step 1: Nonfunctional Requirements Capture
	Step 2: Performance Test Environment Build
	Step 3: Use-Case Scripting
	Step 4: Performance Test Scenario Build
	Step 5: Performance Test Execution
	Step 6: Post-Test Analysis and Reporting

	Case Study 1: Online Banking
	Application Landscape
	Application Users
	Step 1: Pre-Engagement NFR Capture
	Step 2: Test Environment Build
	Step 3: Use-Case Scripting
	Step 4: Performance Test Build
	Step 5: Performance Test Execution
	Online Banking Case Study Review

	Case Study 2: Call Center
	Application Landscape
	Application Users
	Step 1: Pre-Engagement NFR Capture
	Step 2: Test Environment Build
	Step 3: Use-Case Scripting
	Step 4: Performance Test Scenario Build
	Step 5: Performance Test Execution
	Call Center Case Study Review

	Summary

	Interpreting Results: Effective Root-Cause Analysis
	The Analysis Process
	Real-Time Analysis
	Post-Test Analysis

	Types of Output from a Performance Test
	Statistics Primer
	Response-Time Measurement
	Throughput and Capacity
	Monitoring Key Performance Indicators
	Server KPI Performance
	Network KPI Performance
	Load Injector Performance

	Root-Cause Analysis
	Scalability and Response Time
	Digging Deeper
	Inside the Application Server
	Looking for the Knee
	Dealing with Errors
	Baseline Data

	Analysis Checklist
	Pre-Test Tasks
	Tasks During Test Execution
	Post-Test Tasks

	Summary

	Performance Testing and the Mobile Client
	What’s Different About a Mobile Client?
	Mobile Testing Automation
	Mobile Design Considerations
	Mobile Testing Considerations
	Mobile Test Design
	On-Device Performance Not in Scope
	On-Device Performance Testing Is in Scope

	Summary

	End-User Experience Monitoring and Performance
	What Is External Monitoring?
	Why Monitor Externally?
	External Monitoring Categories
	Active Monitoring
	Output Metrics
	ISP Testing Best Practices
	Synthetic End-User Testing Best Practices

	Passive Monitoring
	How Passive Monitoring Works

	Pros and Cons of Active Versus Passive Monitoring
	Active Pros
	Active Cons
	Passive Pros
	Passive Cons

	Tooling for External Monitoring of Internet Applications
	Tool Selection Criteria
	Active Monitoring Tooling
	Passive Monitoring Tooling

	Creating an External Monitoring Testing Framework
	Building Blocks of an Effective Testing Framework
	Specific Design Aspects of Active Monitoring
	Specific Design Aspects of Passive Monitoring

	Isolating and Characterizing Issues Using External Monitoring
	Monitoring Native Mobile Applications
	Essential Considerations for CDN Monitoring
	Performance Results Interpretation
	Key Performance Indicators for Web-Based Ecommerce Applications
	Setting KPI Values

	The Application Performance Index (APDEX)
	Management Information
	Data Preparation
	Statistical Considerations
	Correlation

	Effective Reporting
	Competitive Understanding
	Visitor performance map

	Alerting
	Gotchas!

	Summary

	Integrating External Monitoring and Performance Testing
	Tooling Choices
	Active and Passive Integration with Static Performance Testing
	Passive and Performance Testing
	RUM and APM
	Integration of Active Test Traffic with APM Tooling
	Active External Monitoring and Performance Testing

	Test Approach
	Test Scheduling
	Performance Testing of Multimedia Content
	End-User Understanding in Non-Internet Application Performance Tests

	Useful Source Materials
	Summary

	Application Technology and Its Impact on Performance Testing
	Asynchronous Java and XML (AJAX)
	Push Versus Pull

	Citrix
	Citrix Checklist
	Citrix Scripting Advice

	Virtual Desktop Infrastructure
	HTTP Protocol
	Web Services
	.NET Remoting
	Browser Caching
	Secure Sockets Layer

	Java
	Oracle
	Oracle Two-Tier
	Oracle Forms Server
	Oracle Checklist

	SAP
	SAP Checklist

	Service-Oriented Architecture
	Web 2.0
	Windows Communication Foundation and Windows Presentation Foundation

	Oddball Application Technologies: Help, My Load Testing Tool Won’t Record It!
	Before Giving Up in Despair . . .
	Alternatives to Capture at the Middleware Level
	Manual Scripting

	Summary

	Conclusion
	Appendix A. Use-Case Definition Example
	Appendix B. Proof of Concept and Performance Test Quick Reference
	The Proof of Concept
	POC Checklist

	Performance Test Execution Checklist
	Activity Duration Guidelines
	Step 1: Pre-Engagement NFR Capture
	Step 2: Test Environment Build
	Step 3: Scripting
	Step 4: Performance Test Build
	Step 5: Performance Test Execution
	Step 6 (Post-Test Phase): Analyze Results, Report, Retest If Required

	Analysis Checklist
	Pre-Test Analysis Tasks
	Tasks During Test Execution
	Post-Test Tasks

	Appendix C. Performance and Testing Tool Vendors
	Application Performance Management
	End-User Experience and Website Monitoring
	Functional Testing
	Performance Testing
	Open Source

	SaaS Performance Testing
	Requirements Management
	Open Source

	Appendix D. Sample Monitoring Templates: Infrastructure Key Performance Indicator Metrics
	Generic KPI Templates
	Windows OS : Generic KPI Template
	Linux/Unix: Generic KPI Template

	Application-Specific KPI Templates
	Windows OS: MS SQL Server KPI Template

	Appendix E. Sample Project Plan
	Index

