OREILLY

DIGITAL SIGNAL PROCESSING IN PYTHON

Allen B. Downey

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Think DSP
by Allen B. Downey

Copyright © 2016 O’'Reilly Media. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com .

Editors: Nan Barber and Susan Conant Proofreader: FILL IN PROOFREADER
Production Editor: FILL IN PRODUCTION EDI- Indexer: FILL IN INDEXER

TOR Interior Designer: David Futato
Copyeditor: FILL IN COPYEDITOR Cover Designer: Karen Montgomery

lllustrator: Rebecca Demarest
January -4712: First Edition

Revision History for the First Edition
2016-03-01: First Early Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491938485 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. Think DSP, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author(s) have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author(s) disclaim all responsibil-
ity for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-93848-5
[FILL IN]

www.it-ebooks.info

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491938485
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface. .o Xi
1. Soundsandsignals..........c.oeeueeiieiiieenieeiiereneeenieenerenenenes 15
Periodic signals 16
Spectral decomposition 18
Signals 19
Reading and writing Waves 21
Spectrums 22
Wave objects 23
Signal objects 23
Exercises 25
2. HarmoniCs. ...ttt i e 27
Triangle waves 27
Square waves 30
Aliasing 32
Computing the spectrum 35
Exercises 36
3. Non-periodicsignals.ooviniiiiiiiii it i i i 39
Linear chirp 40
Exponential chirp 42
Spectrum of a chirp 43
Spectrogram 44
The Gabor limit 45
Leakage 46
Windowing 48
Implementing spectrograms 50

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises 51

S 1] R 55
Uncorrelated noise 56
Integrated spectrum 58
Brownian noise 60
Pink Noise 64
Gaussian noise 67
Exercises 68

R 1110141 1] (] 71
Correlation 71
Serial correlation 74
Autocorrelation 75
Autocorrelation of periodic signals 77
Correlation as dot product 81
Using NumPy 82
Exercises 83

6. Discrete cosine transform.vvuiiiiiiieiii ittt i, 85

7. Discrete Fourier Transform.o.overie ettt it i iie e e eaenns 87

8. Filteringand Convolution.covviuiiiuiieiiiiiiiriinienneenierennens 89

9. Signalsand systems.veuiiiiiiiiiiiiiiiiiiiii i, 92

10. Modulationand sampling...........covviuiiiiiiiiiiiiiiieiiienieriierennnes 93

T4 95

iv | Tableof Contents

www.it-ebooks.info

http://www.it-ebooks.info/

TH EDITION

Think DSP

Allen B. Downey

Beijing + Boston + Farnham - Sebastopol + Tokyo KOA{={|HAE

www.it-ebooks.info

http://www.it-ebooks.info/

Think DSP
by Allen B. Downey

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface. .o Xi
1. Soundsandsignals..........c.oeeueeiieiiieenieeiiereneeenieenerenenenes 15
Periodic signals 16
Spectral decomposition 18
Signals 19
Reading and writing Waves 21
Spectrums 22
Wave objects 23
Signal objects 23
Exercises 25
2. HarmoniCs. ...ttt i e 27
Triangle waves 27
Square waves 30
Aliasing 32
Computing the spectrum 35
Exercises 36
3. Non-periodicsignals.ooviniiiiiiiii it i i i 39
Linear chirp 40
Exponential chirp 42
Spectrum of a chirp 43
Spectrogram 44
The Gabor limit 45
Leakage 46
Windowing 48
Implementing spectrograms 50

vii

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises 51

S 1] R 55
Uncorrelated noise 56
Integrated spectrum 58
Brownian noise 60
Pink Noise 64
Gaussian noise 67
Exercises 68

R 1110141 1] (] 71
Correlation 71
Serial correlation 74
Autocorrelation 75
Autocorrelation of periodic signals 77
Correlation as dot product 81
Using NumPy 82
Exercises 83

6. Discrete cosine transform.vvuiiiiiiieiii ittt i, 85

7. Discrete Fourier Transform.o.overie ettt it i iie e e eaenns 87

8. Filteringand Convolution.covviuiiiuiieiiiiiiiriinienneenierennens 89

9. Signalsand systems.veuiiiiiiiiiiiiiiiiiiiii i, 92

10. Modulationand sampling...........covviuiiiiiiiiiiiiiiieiiienieriierennnes 93

T4 95

vii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Signal processing is one of my favorite topics. It is useful in many areas of science and
engineering, and if you understand the fundamental ideas, it provides insight into
many things we see in the world, and especially the things we hear.

But unless you studied electrical or mechanical engineering, you probably haven’t had
a chance to learn about signal processing. The problem is that most books (and the
classes that use them) present the material bottom-up, starting with mathematical
abstractions like phasors. And they tend to be theoretical, with few applications and
little apparent relevance.

The premise of this book is that if you know how to program, you can use that skill to
learn other things, and have fun doing it.

With a programming-based approach, I can present the most important ideas right
away. By the end of the first chapter, you can analyze sound recordings and other sig-
nals, and generate new sounds. Each chapter introduces a new technique and an
application you can apply to real signals. At each step you learn how to use a techni-
que first, and then how it works.

This approach is more practical and, I hope you’ll agree, more fun.

Who is this book for?

The examples and supporting code for this book are in Python. You should know
core Python and you should be familiar with object-oriented features, at least using
objects if not defining your own.

If you are not already familiar with Python, you might want to start with my other
book, Think Python, which is an introduction to Python for people who have never
programmed, or Mark Lutz’s Learning Python, which might be better for people with
programming experience.

Xi

www.it-ebooks.info

http://www.it-ebooks.info/

I use NumPy and SciPy extensively. If you are familiar with them already, that’s great,
but I will also explain the functions and data structures I use.

I assume that the reader knows basic mathematics, including complex numbers. You
don’t need much calculus; if you understand the concepts of integration and differen-
tiation, that will do. T use some linear algebra, but I will explain it as we go along.

Using the code

The code and sound samples used in this book are available from https://github.com/
AllenDowney/ThinkDSP. Git is a version control system that allows you to keep track
of the files that make up a project. A collection of files under Git’s control is called a
“repository”. GitHub is a hosting service that provides storage for Git repositories and
a convenient web interface.

The GitHub homepage for my repository provides several ways to work with the
code:

 You can create a copy of my repository on GitHub by pressing the Fork button. If
you don’t already have a GitHub account, you’'ll need to create one. After forking,
you’ll have your own repository on GitHub that you can use to keep track of code
you write while working on this book. Then you can clone the repo, which means
that you copy the files to your computer.

 Or you could clone my repository. You don't need a GitHub account to do this,
but you won’t be able to write your changes back to GitHub.

o If you don’t want to use Git at all, you can download the files in a Zip file using
the button in the lower-right corner of the GitHub page.

All of the code is written to work in both Python 2 and Python 3 with no translation.

I developed this book using Anaconda from Continuum Analytics, which is a free
Python distribution that includes all the packages you’ll need to run the code (and
lots more). I found Anaconda easy to install. By default it does a user-level installa-
tion, not system-level, so you don’t need administrative privileges. And it supports
both Python 2 and Python 3. You can download Anaconda from http://continuum.io/
downloads.

If you don’t want to use Anaconda, you will need the following packages:
o NumPy for basic numerical computation, http://www.numpy.org/;

o SciPy for scientific computation, http://www.scipy.org/;

 matplotlib for visualization, http://matplotlib.org/.

xii | Preface

www.it-ebooks.info

https://github.com/AllenDowney/ThinkDSP
https://github.com/AllenDowney/ThinkDSP
http://continuum.io/downloads
http://continuum.io/downloads
http://www.numpy.org/
http://www.scipy.org/
http://matplotlib.org/
http://www.it-ebooks.info/

Although these are commonly used packages, they are not included with all Python
installations, and they can be hard to install in some environments. If you have trou-
ble installing them, I recommend using Anaconda or one of the other Python distri-
butions that include these packages.

Most exercises use Python scripts, but some also use the IPython notebook. If you
have not used IPython notebook before, I suggest you start with the documentation
at http://ipython.org/ipython-doc/stable/notebook/notebook.html.

Good luck, and have fun!

Contributor List

If you have a suggestion or correction, please send email to downey@allendow
ney.com. If I make a change based on your feedback, I will add you to the contributor
list (unless you ask to be omitted).

If you include at least part of the sentence the error appears in, that makes it easy for
me to search. Page and section numbers are fine, too, but not as easy to work with.
Thanks!

o Before I started writing, my thoughts about this book benefited from conversa-
tions with Boulos Harb at Google and Aurelio Ramos, formerly at Harmonix
Music Systems.

o During the Fall 2013 semester, Nathan Lintz and Ian Daniher worked with me on
an independent study project and helped me with the first draft of this book.

o On Reddit’s DSP forum, the anonymous user RamjetSoundwave helped me fix a
problem with my implementation of Brownian Noise. And andodli found a typo.

o In Spring 2015 I had the pleasure of teaching this material along with Prof. Oscar
Mur-Miranda and Prof. Siddhartan Govindasamy. Both made many suggestions
and corrections.

o Silas Gyger corrected an arithmetic error.

Special thanks to Freesound, which is the source of many of the sound samples I use
in this book, and to the Freesound users who uploaded those sounds. I include some
of their wave files in the GitHub repository for this book, using the original file
names, so it should be easy to find their sources.

Unfortunately, most Freesound users don’t make their real names available, so I can
only thank them using their user names. Samples used in this book were contributed
by Freesound users: iluppai, wcfll0, thirsk, docquesting, kleeb, landup, zippil, the-
musicalnomad, bcjordan, rockwehrmann, marcgascon?, jeveliz. Thank you all!

Preface | xiii

www.it-ebooks.info

http://ipython.org/ipython-doc/stable/notebook/notebook.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1
Sounds and signals

A signal represents a quantity that varies in time, or space, or both. That definition is
pretty abstract, so let’s start with a concrete example: sound. Sound is variation in air
pressure. A sound signal represents variations in air pressure over time.

A microphone is a device that measures these variations and generates an electrical
signal that represents sound. A speaker is a device that takes an electrical signal and
produces sound. Microphones and speakers are called transducers because they
transduce, or convert, signals from one form to another.

This book is about signal processing, which includes processes for synthesizing,
transforming, and analyzing signals. I will focus on sound signals, but the same meth-
ods apply to electronic signals, mechanical vibration, and signals in many other
domains.

They also apply to signals that vary in space rather than time, like elevation along a
hiking trail. And they apply to signals in more than one dimension, like an image,
which you can think of as a signal that varies in two-dimensional space. Or a movie,
which is a signal that varies in two-dimensional space and time.

But we start with simple one-dimensional sound.

The code for this chapter is in chap01.ipynb, which is in the repository for this book
(see “Using the code” on page xii). You can also view it at http://tinyurl.com/

thinkdsp01.

15

www.it-ebooks.info

http://tinyurl.com/thinkdsp01
http://tinyurl.com/thinkdsp01
http://www.it-ebooks.info/

Periodic signals

0.5

0.0

-0.5

_10 L
0.000 0.001 0.002 0.003 0.004 0.005 0.006
Time (s) +7

Figure 1-1. Segment from a recording of a bell.

We'll start with periodic signals, which are signals that repeat themselves after some
period of time. For example, if you strike a bell, it vibrates and generates sound. If you
record that sound and plot the transduced signal, it looks like Figure 1-1.

This signal resembles a sinusoid, which means it has the same shape as the trigono-
metric sine function.

You can see that this signal is periodic. I chose the duration to show three full periods,
also known as cycles. The duration of each cycle is about 2.3 ms.

The frequency of a signal is the number of cycles per second, which is the inverse of
the period. The units of frequency are cycles per second, or Hertz, abbreviated “Hz”.

The frequency of this signal is about 439 Hz, slightly lower than 440 Hz, which is the
standard tuning pitch for orchestral music. The musical name of this note is A, or
more specifically, A4. If you are not familiar with “scientific pitch notation”, the
numerical suffix indicates which octave the note is in. A4 is the A above middle C. A5
is one octave higher. See http://en.wikipedia.org/wiki/Scientific_pitch_notation.

16 | Chapter 1: Sounds and signals

www.it-ebooks.info

http://en.wikipedia.org/wiki/Scientific_pitch_notation
http://www.it-ebooks.info/

0.5 R

0.0 i

—0.5}

—-1.0} i
0.001 0.002 0.003 0.004 0.005 0.006 0.007
Time (s) +1.302

Figure 1-2. Segment from a recording of a violin.

A tuning fork generates a sinusoid because the vibration of the tines is a form of sim-
ple harmonic motion. Most musical instruments produce periodic signals, but the
shape of these signals is not sinusoidal. For example, Figure 1-2 shows a segment
from a recording of a violin playing Boccherini’s String Quintet No. 5 in E, 3rd move-
ment.

Again we can see that the signal is periodic, but the shape of the signal is more com-
plex. The shape of a periodic signal is called the waveform. Most musical instruments
produce waveforms more complex than a sinusoid. The shape of the waveform deter-
mines the musical timbre, which is our perception of the quality of the sound. People
usually perceive complex waveforms as rich, warm and more interesting than sinus-
oids.

Periodicsignals | 17

www.it-ebooks.info

http://www.it-ebooks.info/

Spectral decomposition

4000

3500} R

3000} R

2500} i

Amplitude
N
o
o
o

1500} 1
1000} |
500} l l 1

0 41 I I 1 I P PR

0 2000 4000 6000 8000 10000

Frequency (Hz)

Figure 1-3. Spectrum of a segment from the violin recording.

The most important topic in this book is spectral decomposition, which is the idea
that any signal can be expressed as the sum of sinusoids with different frequencies.

The most important mathematical idea in this book is the discrete Fourier trans-
form, or DFT, which takes a signal and produces its spectrum. The spectrum is the
set of sinusoids that add up to produce the signal.

And the most important algorithm in this book is the Fast Fourier transform, or
FFT, which is an efficient way to compute the DFT.

For example, Figure 1-3 shows the spectrum of the violin recording in Figure 1-2.
The x-axis is the range of frequencies that make up the signal. The y-axis shows the
strength or amplitude of each frequency component.

The lowest frequency component is called the fundamental frequency. The funda-
mental frequency of this signal is near 440 Hz (actually a little lower, or “flat”).

18 | Chapter 1: Sounds and signals

www.it-ebooks.info

http://www.it-ebooks.info/

In this signal the fundamental frequency has the largest amplitude, so it is also the
dominant frequency. Normally the perceived pitch of a sound is determined by the
fundamental frequency, even if it is not dominant.

The other spikes in the spectrum are at frequencies 880, 1320, 1760, and 2200, which
are integer multiples of the fundamental. These components are called harmonics
because they are musically harmonious with the fundamental:

o 880 is the frequency of A5, one octave higher than the fundamental.

o 1320 is approximately E6, which is a major fifth above A5. If you are not familiar
with musical intervals like “major fifth’, see https://en.wikipedia.org/wiki/Inter
val_(music).

« 1760 is A6, two octaves above the fundamental.

e 2200 is approximately C#7, which is a major third above A6.

These harmonics make up the notes of an A major chord, although not all in the
same octave. Some of them are only approximate because the notes that make up
Western music have been adjusted for equal temperament (see http://en.wikipe
dia.org/wiki/Equal_temperament).

Given the harmonics and their amplitudes, you can reconstruct the signal by adding
up sinusoids. Next we'll see how.

Signals

I wrote a Python module called thinkdsp.py that contains classes and functions for
working with signals and spectrums’. You will find it in the repository for this book
(see “Using the code” on page xii).

To represent signals, thinkdsp provides a class called Signal, which is the parent
class for several signal types, including Sinusoid, which represents both sine and
cosine signals.

thinkdsp provides functions to create sine and cosine signals:

thinkdsp.CosSignal(freq=440, amp=1.0, offset=0)
thinkdsp.SinSignal(freq=880, amp=0.5, offset=0)

cos_sig
sin_sig

freq is frequency in Hz. amp is amplitude in unspecified units where 1.0 is defined as
the largest amplitude we can record or play back.

1 The plural of “spectrum” is often written “spectra’, but I prefer to use standard English plurals. If you are
familiar with “spectra’, I hope my choice doesn’'t sound too strange.

Signals | 19

www.it-ebooks.info

https://en.wikipedia.org/wiki/Interval_(music)
https://en.wikipedia.org/wiki/Interval_(music)
http://en.wikipedia.org/wiki/Equal_temperament
http://en.wikipedia.org/wiki/Equal_temperament
http://www.it-ebooks.info/

offset is a phase offset in radians. Phase offset determines where in the period the
signal starts. For example, a sine signal with offset=0 starts at sin 0, which is 0. With
offset=p1/2 it starts at sin 77/2, which is 1. A cosine signal with offset=0 also starts
at 0. In fact, a cosine signal with offset=0 is identical to a sine signal with off
set=pi/2.

Signals have an __add__ method, so you can use the + operator to add them:
mix = sin_sig + cos_sig
The result is a SumSignal, which represents the sum of two or more signals.

A Signal is basically a Python representation of a mathematical function. Most signals
are defined for all values of t, from negative infinity to infinity.

You can't do much with a Signal until you evaluate it. In this context, “evaluate”
means taking a sequence of points in time, ts, and computing the corresponding val-
ues of the signal, ys. I represent ts and ys using NumPy arrays and encapsulate them
in an object called a Wave.

A Wave represents a signal evaluated at a sequence of points in time. Each point in
time is called a frame (a term borrowed from movies and video). The measurement
itself is called a sample, although “frame” and “sample” are sometimes used inter-
changeably.

Signal provides make_wave, which returns a new Wave object:
wave = mix.make_wave(duration=0.5, start=0, framerate=11025)

duration is the length of the Wave in seconds. start is the start time, also in seconds.
framerate is the (integer) number of frames per second, which is also the number of
samples per second.

11,025 frames per second is one of several framerates commonly used in audio file
formats, including Waveform Audio File (WAV) and mp3.

This example evaluates the signal from t=0 to t=0.5 at 5,513 equally-spaced frames
(because 5,513 is half of 11,025). The time between frames, or timestep, is 1/11025
seconds, or 91 ys.

Wave provides a plot method that uses pyplot. You can plot the wave like this:

wave.plot()
pyplot.show()

pyplot is part of matplotlib; it is included in many Python distributions, or you
might have to install it.

20 | Chapter 1: Sounds and signals

www.it-ebooks.info

http://www.it-ebooks.info/

1.5F R

1.0

0.5

0.0

-0.5

-1.0

—-1.5¢ . . ‘ ‘ . . b
0.000 0.001 0.002 0.003 0.004 0.005 0.006
Time (s)

Figure 1-4. Segment from a mixture of two sinusoid signals.

At freq=440 there are 220 periods in 0.5 seconds, so this plot would look like a solid
block of color. To zoom in on a small number of periods, we can use segment, which
copies a segment of a Wave and returns a new wave:

period = mix.period
segment = wave.segment(start=0, duration=period*3)

period is a property of a Signal; it returns the period in seconds.

start and duration are in seconds. This example copies the first three periods from
mix. The result is a Wave object.

If we plot segment, it looks like Figure 1-4. This signal contains two frequency com-
ponents, so it is more complicated than the signal from the tuning fork, but less com-
plicated than the violin.

Reading and writing Waves

thinkdsp provides read_wave, which reads a WAV file and returns a Wave:

violin_wave = thinkdsp.read_wave('input.wav')

Reading and writing Waves | 21

www.it-ebooks.info

http://www.it-ebooks.info/

And Wave provides write, which writes a WAV file:
wave.write(filename="'output.wav')

You can listen to the Wave with any media player that plays WAV files. On UNIX sys-
tems, I use aplay, which is simple, robust, and included in many Linux distributions.

thinkdsp also provides play_wave, which runs the media player as a subprocess:
thinkdsp.play_wave(filename='output.wav', player='aplay')

It uses aplay by default, but you can provide the name of another player.

Spectrums

Wave provides make_spectrum, which returns a Spectrum:
spectrum = wave.make_spectrum()
And Spectrum provides plot:

spectrum.plot()
thinkplot.show()

thinkplot is a module I wrote to provide wrappers around some of the functions in
pyplot. It is included in the Git repository for this book (see “Using the code” on
page xii).
Spectrum provides three methods that modify the spectrum:
« low_pass applies a low-pass filter, which means that components above a given
cutoff frequency are attenuated (that is, reduced in magnitude) by a factor.

 high_pass applies a high-pass filter, which means that it attenuates components
below the cutoff.

o band_stop attenuates components in the band of frequencies between two cut-
offs.
This example attenuates all frequencies above 600 by 99%:
spectrum. low_pass(cutoff=600, factor=0.01)

A low pass filter removes bright, high-frequency sounds, so the result sounds muffled
and darker. To hear what it sounds like, you can convert the Spectrum back to a
Wave, and then play it.

wave = spectrum.make_wave()

wave.play('temp.wav')
The play method writes the wave to a file and then plays it. If you use IPython note-
books, you can use make_audio, which makes an Audio widget that plays the sound.

22 | Chapter1: Sounds and signals

www.it-ebooks.info

http://www.it-ebooks.info/

Wave objects

Sia\vml Wave Srec’rmm

Figure 1-5. Relationships among the classes in thinkdsp.

There is nothing very complicated in thinkdsp.py. Most of the functions it provides
are thin wrappers around functions from NumPy and SciPy.

The primary classes in thinkdsp are Signal, Wave, and Spectrum. Given a Signal, you
can make a Wave. Given a Wave, you can make a Spectrum, and vice versa. These
relationships are shown in Figure 1-5.

A Wave object contains three attributes: ys is a NumPy array that contains the values
in the signal; ts is an array of the times where the signal was evaluated or sampled;
and framerate is the number of samples per unit of time. The unit of time is usually
seconds, but it doesn’t have to be. In one of my examples, it’s days.

Wave also provides three read-only properties: start, end, and duration. If you
modify ts, these properties change accordingly.

To modify a wave, you can access the ts and ys directly. For example:

wave.ys *= 2
wave.ts += 1

The first line scales the wave by a factor of 2, making it louder. The second line shifts
the wave in time, making it start 1 second later.

But Wave provides methods that perform many common operations. For example,
the same two transformations could be written:

wave.scale(2)
wave.shift(1)

You can read the documentation of these methods and others at http://think-dsp.com/
thinkdsp.html.

Signal objects

Signal is a parent class that provides functions common to all kinds of signals, like
make_wave. Child classes inherit these methods and provide evaluate, which evalu-
ates the signal at a given sequence of times.

For example, Sinusoid is a child class of Signal, with this definition:

Wave objects | 23

www.it-ebooks.info

http://think-dsp.com/thinkdsp.html
http://think-dsp.com/thinkdsp.html
http://www.it-ebooks.info/

class Sinusoid(Signal):

def __init__(self, freq=440, amp=1.0, offset=0, func=np.sin):
Signal.__init__(self)
self.freq = freq
self.amp = amp
self.offset = offset
self.func = func

The parameters of __init__ are:

o fregq: frequency in cycles per second, or Hz.

o amp: amplitude. The units of amplitude are arbitrary, usually chosen so 1.0 corre-
sponds to the maximum input from a microphone or maximum output to a
speaker.

o offset: indicates where in its period the signal starts; offset is in units of radi-
ans, for reasons I explain below.

o func: a Python function used to evaluate the signal at a particular point in time. It
is usually either np.sin or np.cos, yielding a sine or cosine signal.

Like many init methods, this one just tucks the parameters away for future use.

Signal provides make_wave, which looks like this:

def make_wave(self, duration=1, start=0, framerate=11025):
n = round(duration * framerate)
ts = start + np.arange(n) / framerate
ys = self.evaluate(ts)
return Wave(ys, ts, framerate=framerate)

start and duration are the start time and duration in seconds. framerate is the
number of frames (samples) per second.

n is the number of samples, and ts is a NumPy array of sample times.

To compute the ys, make_wave invokes evaluate, is provided by Sinusoid:

def evaluate(self, ts):
phases = PI2 * self.freq * ts + self.offset
ys = self.amp * self.func(phases)
return ys

Let’s unwind this function one step at time:

1. self.freq is frequency in cycles per second, and each element of ts is a time in
seconds, so their product is the number of cycles since the start time.

24 | Chapter 1: Sounds and signals

www.it-ebooks.info

http://www.it-ebooks.info/

2. PI2isa constant that stores 27r. Multiplying by PI2 converts from cycles to phase.
You can think of phase as “cycles since the start time” expressed in radians. Each
cycle is 27 radians.

3. self.offset is the phase when ¢ = 0. It has the effect of shifting the signal left or
right in time.

4. If self.funcis np.sin or np.cos, the result is a value between —1 and +1.
5. Multiplying by self.amp vyields a signal that ranges from -self.amp to

+self.amp.

In math notation, evaluate is written like this:
y = A cos (2nft + ¢,)

where A is amplitude, fis frequency, t is time, and ¢, is the phase offset. It may seem
like I wrote a lot of code to evaluate one simple expression, but as we'll see, this code
provides a framework for dealing with all kinds of signals, not just sinusoids.

Exercises

Before you begin these exercises, you should download the code for this book, follow-
ing the instructions in “Using the code” on page xii.

Solutions to these exercises are in chap@1soln.ipynb.

Example 1-1.

If you have IPython, load chap01.ipynb, read through it, and run the examples. You
can also view this notebook at http://tinyurl.com/thinkdsp01.

Example 1-2.

Go to http://freesound.org and download a sound sample that includes music, speech,
or other sounds that have a well-defined pitch. Select a roughly half-second segment
where the pitch is constant. Compute and plot the spectrum of the segment you
selected. What connection can you make between the timbre of the sound and the
harmonic structure you see in the spectrum?

Use high_pass, low_pass, and band_stop to filter out some of the harmonics. Then
convert the spectrum back to a wave and listen to it. How does the sound relate to the
changes you made in the spectrum?

Exercises | 25

www.it-ebooks.info

http://tinyurl.com/thinkdsp01
http://freesound.org
http://www.it-ebooks.info/

Example 1-3.

Synthesize a compound signal by creating SinSignal and CosSignal objects and
adding them up. Evaluate the signal to get a Wave, and listen to it. Compute its Spec-
trum and plot it. What happens if you add frequency components that are not multi-
ples of the fundamental?

Example 1-4.

Write a function called stretch that takes a Wave and a stretch factor and speeds up
or slows down the wave by modifying ts and framerate. Hint: it should only take
two lines of code.

26 | Chapter 1: Sounds and signals

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2
Harmonics

In this chapter I present several new waveforms; we will look and their spectrums to
understand their harmonic structure, which is the set of sinusoids they are made up
of.

I'll also introduce one of the most important phenomena in digital signal processing:
aliasing. And I'll explain a little more about how the Spectrum class works.

The code for this chapter is in chap02. ipynb, which is in the repository for this book
(see “Using the code” on page xii). You can also view it at http://tinyurl.com/
thinkdsp02.

Triangle waves

A sinusoid contains only one frequency component, so its spectrum has only one
peak. More complicated waveforms, like the violin recording, yield DFTs with many
peaks. In this section we investigate the relationship between waveforms and their
spectrums.

27

www.it-ebooks.info

http://tinyurl.com/thinkdsp02
http://tinyurl.com/thinkdsp02
http://www.it-ebooks.info/

1.0

0.5

0.0

-0.5

_1.0,
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Time (s)

Figure 2-1. Segment of a triangle signal at 200 Hz.

Il start with a triangle waveform, which is like a straight-line version of a sinusoid.
Figure 2-1 shows a triangle waveform with frequency 200 Hz.

To generate a triangle wave, you can use thinkdsp.TriangleSignal:

class TriangleSignal(Sinusoid):

def evaluate(self, ts):
cycles = self.freq * ts + self.offset / PI2
frac, _ = np.modf(cycles)
ys = np.abs(frac - 0.5)
ys = normalize(unbias(ys), self.amp)
return ys

TriangleSignal inherits __init__ from Sinusoid, so it takes the same arguments:
freq, amp, and of fset.

The only difference is evaluate. As we saw before, ts is the sequence of sample times
where we want to evaluate the signal.

There are many ways to generate a triangle wave. The details are not important, but
here’s how evaluate works:

28 | Chapter2: Harmonics

www.it-ebooks.info

http://www.it-ebooks.info/

1. cycles is the number of cycles since the start time. np.modf splits the number of
cycles into the fraction part, stored in frac, and the integer part, which is ignored
1

2. frac is a sequence that ramps from 0 to 1 with the given frequency. Subtracting
0.5 yields values between -0.5 and 0.5. Taking the absolute value yields a wave-
form that zig-zags between 0.5 and 0.

3. unbias shifts the waveform down so it is centered at 0; then normalize scales it
to the given amplitude, amp.
Here’s the code that generates Figure 2-1:

signal = thinkdsp.TriangleSignal(200)
signal.plot()

2500
2000+ E
1500} i
()
kel
2
=
£
1000} i
500+ E
0 l [] A L A " L
0 1000 2000 3000 4000 5000
Frequency (Hz)

Figure 2-2. Spectrum of a triangle signal at 200 Hz.

Next we can use the Signal to make a Wave, and use the Wave to make a Spectrum:

1 Using an underscore as a variable name is a convention that means, “I don’t intend to use this value”

Trianglewaves | 29

www.it-ebooks.info

http://www.it-ebooks.info/

wave = signal.make_wave(duration=0.5, framerate=10000)

spectrum = wave.make_spectrum()

spectrum.plot()
Figure 2-2 shows the result. As expected, the highest peak is at the fundamental fre-
quency, 200 Hz, and there are additional peaks at harmonic frequencies, which are
integer multiples of 200.

But one surprise is that there are no peaks at the even multiples: 400, 800, etc. The
harmonics of a triangle wave are all odd multiples of the fundamental frequency, in
this example 600, 1000, 1400, etc.

Another feature of this spectrum is the relationship between the amplitude and fre-
quency of the harmonics. Their amplitude drops off in proportion to frequency
squared. For example the frequency ratio of the first two harmonics (200 and 600 Hz)
is 3, and the amplitude ratio is approximately 9. The frequency ratio of the next two
harmonics (600 and 1000 Hz) is 1.7, and the amplitude ratio is approximately
1.7% = 2.9. This relationship is called the harmonic structure.

Square waves

1.0p

0.5 R

0.0 R

—-0.5} i

_10 4
0.000 0.005 0.010 0.015 0.020 0.025 0.030
Time (s)

Figure 2-3. Segment of a square signal at 100 Hz.

30 | Chapter2: Harmonics

www.it-ebooks.info

http://www.it-ebooks.info/

thinkdsp also provides SquareSignal, which represents a square signal. Here’s the
class definition:

class SquareSignal(Sinusoid):

def evaluate(self, ts):
cycles = self.freq * ts + self.offset / PI2
frac, _ = np.modf(cycles)
ys = self.amp * np.sign(unbias(frac))
return ys
Like TriangleSignal, SquareSignal inherits __init__ from Sinusoid, so it takes the
same parameters.

And the evaluate method is similar. Again, cycles is the number of cycles since the
start time, and frac is the fractional part, which ramps from 0 to 1 each period.

unbias shifts frac so it ramps from -0.5 to 0.5, then np.sign maps the negative val-
ues to -1 and the positive values to 1. Multiplying by amp yields a square wave that
jumps between -amp and amp.

3500

3000} R

2500} i

N
o
o
o
T
!

Amplitude

=
8]
o
o
T
!

1000

500}

0 ||||II|||IIIIII|||||||||

0 1000 2000 3000 4000 5000
Frequency (Hz)

Figure 2-4. Spectrum of a square signal at 100 Hz.

Squarewaves | 31

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-3 shows three periods of a square wave with frequency 100 Hz, and
Figure 2-4 shows its spectrum.

Like a triangle wave, the square wave contains only odd harmonics, which is why
there are peaks at 300, 500, and 700 Hz, etc. But the amplitude of the harmonics
drops off more slowly. Specifically, amplitude drops in proportion to frequency (not
frequency squared).

The exercises at the end of this chapter give you a chance to explore other waveforms
and other harmonic structures.

Aliasing

2500

2000} R

1500 R

Amplitude

1000 i

5001 R

‘ . ‘ ‘ |
0 1000 2000 3000 4000 5000
Frequency (Hz)

Figure 2-5. Spectrum of a triangle signal at 1100 Hz sampled at 10,000 frames per sec-
ond.

I have a confession. I chose the examples in the previous section carefully to avoid
showing you something confusing. But now it’s time to get confused.

Figure 2-5 shows the spectrum of a triangle wave at 1100 Hz, sampled at 10,000
frames per second. The harmonics of this wave should be at 3300, 5500, 7700, and
9900 Hz.

32 | Chapter2: Harmonics

www.it-ebooks.info

http://www.it-ebooks.info/

In the figure, there are peaks at 1100 and 3300 Hz, as expected, but the third peak is at
4500, not 5500 Hz. The fourth peak is at 2300, not 7700 Hz. And if you look closely,
the peak that should be at 9900 is actually at 100 Hz. What's going on?

The problem is that when you evaluate the signal at discrete points in time, you lose
information about what happened between samples. For low frequency components,
that’s not a problem, because you have lots of samples per period.

But if you sample a signal at 5000 Hz with 10,000 frames per second, you only have
two samples per period. That turns out to be enough, just barely, but if the frequency
is higher, it’s not.

To see why, let’s generate cosine signals at 4500 and 5500 Hz, and sample them at
10,000 frames per second:

framerate = 10000

signal = thinkdsp.CosSignal(4500)

duration = signal.period*5

segment = signal.make_wave(duration, framerate=framerate)
segment.plot()

signal = thinkdsp.CosSignal(5500)
segment = signal.make_wave(duration, framerate=framerate)
segment.plot()

Aliasing | 33

www.it-ebooks.info

http://www.it-ebooks.info/

Lol : 7
4500
5500
0.5} 1
0.0} . I | w . I . :
-0.5 1
_1'07\ L L L L L]
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

Time (s)

Figure 2-6. Cosine signals at 4500 and 5500 Hz, sampled at 10,000 frames per second.
They are identical.

Figure 2-6 shows the result. I plotted the samples using vertical lines, to make it easier
to compare the two Waves, and I offset them slightly in time. The problem should be
clear: the the two Waves are exactly the same!

When we sample a 5500 Hz signal at 10,000 frames per second, the result is indistin-
guishable from a 4500 Hz signal. For the same reason, a 7700 Hz signal is indistin-
guishable from 2300 Hz, and a 9900 Hz is indistinguishable from 100 Hz.

This effect is called aliasing because when the high frequency signal is sampled, it
appears to be a low frequency signal.

In this example, the highest frequency we can measure is 5000 Hz, which is half the
sampling rate. Frequencies above 5000 Hz are folded back below 5000 Hz, which is
why this threshold is sometimes called the “folding frequency”. Is is sometimes also
called the Nyquist frequency. See http://en.wikipedia.org/wiki/Nyquist_frequency.

The folding pattern continues if the aliased frequency goes below zero. For example,
the 5th harmonic of the 1100 Hz triangle wave is at 12,100 Hz. Folded at 5000 Hz, it
would appear at -2100 Hz, but it gets folded again at 0 Hz, back to 2100 Hz. In fact,
you can see a small peak at 2100 Hz in Figure 2-4, and the next one at 4300 Hz.

34 | Chapter2: Harmonics

www.it-ebooks.info

http://en.wikipedia.org/wiki/Nyquist_frequency
http://www.it-ebooks.info/

Computing the spectrum

We have seen the Wave method make_spectrum several times. Here is the implemen-
tation (leaving out some details we'll get to later):

from np.fft import rfft, rfftfreq

class Wave:
def make_spectrum(self):
n = len(self.ys)

d =1 / self.framerate
hs = rfft(self.ys)
fs = rfftfreq(n, d)

return Spectrum(hs, fs, self.framerate)

The parameter self is a Wave object. n is the number of samples in the wave, and d is
the inverse of the frame rate, which is the time between samples.

np.fft is the NumPy module that provides functions related to the Fast Fourier
Transform (FFT), which is an efficient algorithm that computes the Discrete Fourier
Transform (DFT).

make_spectrum uses rfft, which stands for “real FFT”, because the Wave contains
real values, not complex. Later we'll see the full FFT, which can handle complex sig-
nals. The result of rfft, which I call hs, is a NumPy array of complex numbers that
represents the amplitude and phase offset of each frequency component in the wave.

The result of rfftfreq, which I call fs, is an array that contains frequencies corre-
sponding to the hs.

To understand the values in hs, consider these two ways to think about complex
numbers:

o A complex number is the sum of a real part and an imaginary part, often written
X + iy, where i is the imaginary unit, 4/—1. You can think of x and y as Cartesian
coordinates.

o A complex number is also the product of a magnitude and a complex exponen-
tial, Ae'®, where A is the magnitude and ¢ is the angle in radians, also called the
“argument”. You can think of A and ¢ as polar coordinates.

Each value in hs corresponds to a frequency component: its magnitude is propor-
tional to the amplitude of the corresponding component; its angle is the phase offset.

The Spectrum class provides two read-only properties, amps and angles, which
return NumPy arrays representing the magnitudes and angles of the hs. When we

Computing the spectrum | 35

www.it-ebooks.info

http://www.it-ebooks.info/

plot a Spectrum object, we usually plot amps versus fs. Sometimes it is also useful to
plot angles versus fs.

Although it might be tempting to look at the real and imaginary parts of hs, you will
almost never need to. I encourage you to think of the DFT as a vector of amplitudes
and phase offsets that happen to be encoded in the form of complex numbers.

To modify a Spectrum, you can access the hs directly. For example:

spectrum.hs *= 2
spectrum.hs[spectrum.fs > cutoff] = 0

The first line multiples the elements of hs by 2, which doubles the amplitudes of all
components. The second line sets to 0 only the elements of hs where the correspond-
ing frequency exceeds some cutoff frequency.

But Spectrum also provides methods to perform these operations:

spectrum.scale(2)
spectrum.low_pass(cutoff)

You can read the documentation of these methods and others at http://think-dsp.com/
thinkdsp.html.

At this point you should have a better idea of how the Signal, Wave, and Spectrum
classes work, but I have not explained how the Fast Fourier Transform works. That
will take a few more chapters.

Exercises

Solutions to these exercises are in chap®2soln.ipynb.

Example 2-1.

If you use IPython, load chap@2.ipynb and try out the examples. You can also view
the notebook at http://tinyurl.com/thinkdsp02.

Example 2-2.

A sawtooth signal has a waveform that ramps up linearly from -1 to 1, then drops to
-1 and repeats. See http://en.wikipedia.org/wiki/Sawtooth_wave

Write a class called SawtoothSignal that extends Signal and provides evaluate to
evaluate a sawtooth signal.

Compute the spectrum of a sawtooth wave. How does the harmonic structure com-
pare to triangle and square waves?

36 | Chapter2: Harmonics

www.it-ebooks.info

http://think-dsp.com/thinkdsp.html
http://think-dsp.com/thinkdsp.html
http://tinyurl.com/thinkdsp02
http://en.wikipedia.org/wiki/Sawtooth_wave
http://www.it-ebooks.info/

Example 2-3.

Make a square signal at 1100 Hz and make a wave that samples it at 10000 frames per
second. If you plot the spectrum, you can see that most of the harmonics are aliased.
When you listen to the wave, can you hear the aliased harmonics?

Example 2-4.

If you have a spectrum object, spectrum, and print the first few values of spec
trum.fs, you'll see that they start at zero. So spectrum.hs[0] is the magnitude of the
component with frequency 0. But what does that mean?

Try this experiment:

1. Make a triangle signal with frequency 440 and make a Wave with duration 0.01
seconds. Plot the waveform.

2. Make a Spectrum object and print spectrum.hs[0]. What is the amplitude and
phase of this component?

3. Set spectrum.hs[0] = 100. Make a Wave from the modified Spectrum and plot
it. What effect does this operation have on the waveform?

Example 2-5.

Write a function that takes a Spectrum as a parameter and modifies it by dividing
each element of hs by the corresponding frequency from fs. Hint: since division by
zero is undefined, you might want to set spectrum.hs[0] = 0.

Test your function using a square, triangle, or sawtooth wave.

1. Compute the Spectrum and plot it.
2. Modity the Spectrum using your function and plot it again.

3. Make a Wave from the modified Spectrum and listen to it. What effect does this
operation have on the signal?

Example 2-6.

Triangle and square waves have odd harmonics only; the sawtooth wave has both
even and odd harmonics. The harmonics of the square and sawtooth waves drop off

in proportion to 1/ f; the harmonics of the triangle wave drop off like 1/ f2. Can you
find a waveform that has even and odd harmonics that drop off like 1/ f*?

Exercises | 37

www.it-ebooks.info

http://www.it-ebooks.info/

Hint: There are two ways you could approach this: you could construct the signal you
want by adding up sinusoids, or you could start with a signal that is similar to what
you want and modify it.

38 | Chapter2: Harmonics

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3
Non-periodic signals

The signals we have worked with so far are periodic, which means that they repeat
forever. It also means that the frequency components they contain do not change over
time. In this chapter, we consider non-periodic signals, whose frequency components
do change over time. In other words, pretty much all sound signals.

This chapter also presents spectrograms, a common way to visualize non-periodic
signals.

The code for this chapter is in chap03.ipynb, which is in the repository for this book
(see “Using the code” on page xii). You can also view it at http://tinyurl.com/

thinkdsp03.

39

www.it-ebooks.info

http://tinyurl.com/thinkdsp03
http://tinyurl.com/thinkdsp03
http://www.it-ebooks.info/

Linear chirp

T T T T T T T T ™
1.0 1

0.5F

0.0

—0.5}

—1.0b]
0.000 0.002 0.004 0.006 0.008 0.010 0.500 0.502 0.504 0.506 0.508 0.510 0.900 0.902 0.904 0.906 0.908 0.910
Time (s)

Figure 3-1. Chirp waveform near the beginning, middle, and end.

We'll start with a chirp, which is a signal with variable frequency. thinkdsp provides
a Signal called Chirp that makes a sinusoid that sweeps linearly through a range of
frequencies.

Here’s an example what sweeps from 220 to 880 Hz, which is two octaves from A3 to
A5:

signal = thinkdsp.Chirp(start=220, end=880)
wave = signal.make_wave()

Figure 3-1 shows segments of this wave near the beginning, middle, and end. It’s clear
that the frequency is increasing.

Before we go on, let’s see how Chirp is implemented. Here is the class definition:

class Chirp(Signal):

def __init__(self, start=440, end=880, amp=1.0):
self.start = start
self.end = end
self.amp = amp

start and end are the frequencies, in Hz, at the start and end of the chirp. amp is
amplitude.

Here is the function that evaluates the signal:

def evaluate(self, ts):
fregs = np.linspace(self.start, self.end, len(ts)-1)
return self._evaluate(ts, fregs)

40 | Chapter3: Non-periodic signals

www.it-ebooks.info

http://www.it-ebooks.info/

ts is the sequence of points in time where the signal should be evaluated; to keep this
function simple, I assume they are equally-spaced.

If the length of ts is n, you can think of it as a sequence of n — 1 intervals of time. To
compute the frequency during each interval, I use np.linspace, which returns a
NumPy array of n — 1 values between start and end.

_evaluate is a private method that does the rest of the math':

def _evaluate(self, ts, freqgs):
dts = np.diff(ts)
dphis = PI2 * freqs * dts
phases = np.cumsum(dphis)
phases = np.insert(phases, 0, 0)
ys = self.amp * np.cos(phases)
return ys

np.diff computes the difference between adjacent elements of ts, returning the
length of each interval in seconds. If the elements of ts are equally spaced, the dts are
all the same.

The next step is to figure out how much the phase changes during each interval. In
“Signal objects” on page 23 we saw that when frequency is constant, the phase, ¢,
increases linearly over time:

¢ =2nft

When frequency is a function of time, the change in phase during a short time inter-
val, At is:

A = 21 f(t)At

In Python, since freqs contains f(t) and dts contains the time intervals, we can write
dphis = PI2 * freqs * dts

Now, since dphis contains the changes in phase, we can get the total phase at each
timestep by adding up the changes:

phases = np.cumsum(dphis)
phases = np.insert(phases, 0, 0)

np.cumsum computes the cumulative sum, which is almost what we want, but it
doesn't start at 0. So I use np.insert to add a 0 at the beginning.

1 Beginning a method name with an underscore makes it “private”, indicating that it is not part of the API that
should be used outside the class definition.

Linearchirp | 41

www.it-ebooks.info

http://www.it-ebooks.info/

The result is a NumPy array where the ith element contains the sum of the first i
terms from dphtis; that is, the total phase at the end of the ith interval. Finally, np.cos
computes the amplitude of the wave as a function of phase (remember that phase is
expressed in radians).

If you know calculus, you might notice that the limit as At gets small is
d¢ = 2nf(t)dt

Dividing through by dt yields
o _
35 = 2nf()

In other words, frequency is the derivative of phase. Conversely, phase is the integral
of frequency. When we used cumsum to go from frequency to phase, we were approxi-
mating integration.

Exponential chirp

When you listen to this chirp, you might notice that the pitch rises quickly at first and
then slows down. The chirp spans two octaves, but it only takes 2/3 s to span the first
octave, and twice as long to span the second.

The reason is that our perception of pitch depends on the logarithm of frequency. As
a result, the interval we hear between two notes depends on the ratio of their fre-
quencies, not the difference. “Interval” is the musical term for the perceived differ-
ence between two pitches.

For example, an octave is an interval where the ratio of two pitches is 2. So the inter-
val from 220 to 440 is one octave and the interval from 440 to 880 is also one octave.
The difference in frequency is bigger, but the ratio is the same.

As a result, if frequency increases linearly, as in a linear chirp, the perceived pitch
increases logarithmically.

If you want the perceived pitch to increase linearly, the frequency has to increase
exponentially. A signal with that shape is called an exponential chirp.

Here’s the code that makes one:

class ExpoChirp(Chirp):

def evaluate(self, ts):
start, end = np.logl0(self.start), np.logl0(self.end)
fregqs = np.logspace(start, end, len(ts)-1)
return self._evaluate(ts, fregs)

42 | Chapter 3: Non-periodic signals

www.it-ebooks.info

http://www.it-ebooks.info/

Instead of np.linspace, this version of evaluate uses np.logspace, which creates a
series of frequencies whose logarithms are equally spaced, which means that they
increase exponentially.

That’s it; everything else is the same as Chirp. Here’s the code that makes one:

signal = thinkdsp.ExpoChirp(start=220, end=880)
wave = signal.make_wave(duration=1)

You can listen to these examples in chap03.1ipynb and compare the linear and expo-
nential chirps.

Spectrum of a chirp

450

400} 1

350} R

Amplitude

N N w
o U o
o o o
: : :
. . .

=
v
o
T
!

100} R

0 100 200 300 400 500 600 700
Frequency (Hz)

Figure 3-2. Spectrum of a one-second one-octave chirp.

What do you think happens if you compute the spectrum of a chirp? Here’s an exam-
ple that constructs a one-second, one-octave chirp and its spectrum:

signal = thinkdsp.Chirp(start=220, end=440)
wave = signal.make_wave(duration=1)
spectrum = wave.make_spectrum()

Spectrumofachirp | 43

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-2 shows the result. The spectrum has components at every frequency from
220 to 440 Hz, with variations that look a little like the Eye of Sauron (see http://
en.wikipedia.org/wiki/Sauron).

The spectrum is approximately flat between 220 and 440 Hz, which indicates that the
signal spends equal time at each frequency in this range. Based on that observation,
you should be able to guess what the spectrum of an exponential chirp looks like.

The spectrum gives hints about the structure of the signal, but it obscures the rela-
tionship between frequency and time. For example, we cannot tell by looking at this
spectrum whether the frequency went up or down, or both.

Spectrogram

700

600} R

500+ R

N
o
o
T
.

w
o
o
T
!

Frequency (Hz)

200+ R

100 1

0 I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Figure 3-3. Spectrogram of a one-second one-octave chirp.

To recover the relationship between frequency and time, we can break the chirp into
segments and plot the spectrum of each segment. The result is called a short-time
Fourier transform (STFT).

There are several ways to visualize a STFT, but the most common is a spectrogram,
which shows time on the x-axis and frequency on the y-axis. Each column in the

44 | Chapter 3: Non-periodic signals

www.it-ebooks.info

http://en.wikipedia.org/wiki/Sauron
http://en.wikipedia.org/wiki/Sauron
http://www.it-ebooks.info/

spectrogram shows the spectrum of a short segment, using color or grayscale to rep-
resent amplitude.

As an example, I'll compute the spectrogram of this chirp:

signal = thinkdsp.Chirp(start=220, end=440)
wave = signal.make_wave(duration=1, framerate=11025)

Wave provides make_spectrogram, which returns a Spectrogram object:

spectrogram = wave.make_spectrogram(seg_length=512)

spectrogram.plot(high=700)
seg_length is the number of samples in each segment. I chose 512 because FFT is
most efficient when the number of samples is a power of 2.

Figure 3-3 shows the result. The x-axis shows time from 0 to 1 seconds. The y-axis
shows frequency from 0 to 700 Hz. I cut off the top part of the spectrogram; the full
range goes to 5512.5 Hz, which is half of the framerate.

The spectrogram shows clearly that frequency increases linearly over time. Similarly,
in the spectrogram of an exponential chirp, we can see the shape of the exponential
curve.

However, notice that the peak in each column is blurred across 2-3 cells. This blur-
ring reflects the limited resolution of the spectrogram.

The Gabor limit

The time resolution of the spectrogram is the duration of the segments, which corre-
sponds to the width of the cells in the spectrogram. Since each segment is 512 frames,
and there are 11,025 frames per second, there are 0.046 seconds per segment.

The frequency resolution is the frequency range between elements in the spectrum,
which corresponds to the height of the cells. With 512 frames, we get 256 frequency
components over a range from 0 to 5512.5 Hz, so the range between components is
21.6 Hz.

More generally, if 7 is the segment length, the spectrum contains /2 components. If
the framerate is r, the maximum frequency in the spectrum is r/2. So the time resolu-
tion is n/r and the frequency resolution is

2
n/2
which is r/n.

Ideally we would like time resolution to be small, so we can see rapid changes in fre-
quency. And we would like frequency resolution to be small so we can see small

The Gabor limit | 45

www.it-ebooks.info

http://www.it-ebooks.info/

changes in frequency. But you can’'t have both. Notice that time resolution, n/r, is the
inverse of frequency resolution, r/n. So if one gets smaller, the other gets bigger.

For example, if you double the segment length, you cut frequency resolution in half
(which is good), but you double time resolution (which is bad). Even increasing the
framerate doesn’t help. You get more samples, but the range of frequencies increases
at the same time.

This tradeoft is called the Gabor limit and it is a fundamental limitation of this kind
of time-frequency analysis.

400 T T T T 350 T T T T 200
3501 300|
3001 1 150
2501 1
2501
200}
200} 100
150
150
100} 1
100} 1 501
s0l i 50F J 1
0 L—‘ 0 L L 0
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

Figure 3-4. Spectrum of a periodic segment of a sinusoid (left), a non-periodic segment
(middle), a windowed non-periodic segment (right).

In order to explain how make_spectrogram works, I have to explain windowing; and
in order to explain windowing, I have to show you the problem it is meant to address,
which is leakage.

The Discrete Fourier Transform (DFT), which we use to compute Spectrums, treats
waves as if they are periodic; that is, it assumes that the finite segment it operates on
is a complete period from an infinite signal that repeats over all time. In practice, this
assumption is often false, which creates problems.

One common problem is discontinuity at the beginning and end of the segment.
Because DFT assumes that the signal is periodic, it implicitly connects the end of the
segment back to the beginning to make a loop. If the end does not connect smoothly
to the beginning, the discontinuity creates additional frequency components in the
segment that are not in the signal.

46 | Chapter3: Non-periodic signals

www.it-ebooks.info

http://www.it-ebooks.info/

As an example, let’s start with a sine signal that contains only one frequency compo-
nent at 440 Hz.

signal = thinkdsp.SinSignal(freq=440)
If we select a segment that happens to be an integer multiple of the period, the end of

the segment connects smoothly with the beginning, and DFT behaves well.

duration = signal.period * 30
wave = signal.make_wave(duration)
spectrum = wave.make_spectrum()

Figure 3-4 (left) shows the result. As expected, there is a single peak at 440 Hz.

But if the duration is not a multiple of the period, bad things happen. With duration
= signal.period * 30.25, the signal starts at 0 and ends at 1.

Figure 3-4 (middle) shows the spectrum of this segment. Again, the peak is at 440 Hz,
but now there are additional components spread out from 240 to 640 Hz. This spread
is called spectral leakage, because some of the energy that is actually at the funda-
mental frequency leaks into other frequencies.

In this example, leakage happens because we are using DFT on a segment that
becomes discontinuous when we treat it as periodic.

Leakage | 47

www.it-ebooks.info

http://www.it-ebooks.info/

Windowing

1.0F

0.5 i

0.0f i

0.000 0.005 0.010 0.015 0.020

—0.5} R

—-1.0¢ s s ! \ 1
0.000 0.005 0.010 0.015 0.020

-1.0 ‘ ‘ ‘ s
0.000 0.005 0.010 0.015 0.020
Time (s)

Figure 3-5. Segment of a sinusoid (top), Hamming window (middle), product of the seg-
ment and the window (bottom).

We can reduce leakage by smoothing out the discontinuity between the beginning
and end of the segment, and one way to do that is windowing.

48 | Chapter 3: Non-periodic signals

www.it-ebooks.info

http://www.it-ebooks.info/

A “window” is a function designed to transform a non-periodic segment into some-
thing that can pass for periodic. Figure 3-5 (top) shows a segment where the end does
not connect smoothly to the beginning.

Figure 3-5 (middle) shows a “Hamming window”, one of the more common window
functions. No window function is perfect, but some can be shown to be optimal for
different applications, and Hamming is a good, all-purpose window.

Figure 3-5 (bottom) shows the result of multiplying the window by the original sig-
nal. Where the window is close to 1, the signal is unchanged. Where the window is
close to 0, the signal is attenuated. Because the window tapers at both ends, the end of
the segment connects smoothly to the beginning.

Figure 3-4 (right) shows the spectrum of the windowed signal. Windowing has
reduced leakage substantially, but not completely.

Here’s what the code looks like. Wave provides window, which applies a Hamming
window:

#class Wave:
def window(self, window):
self.ys *= window

And NumPy provides hamming, which computes a Hamming window with a given
length:

window = np.hamming(len(wave))

wave.window(window)
NumPy provides functions to compute other window functions, including bartlett,

blackman, hanning, and kaiser. One of the exercises at the end of this chapter asks
you to experiment with these other windows.

Windowing | 49

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing spectrograms

0.0

0 100 200 300 400 500 600 700 800
Time (s)

Figure 3-6. Overlapping Hamming windows.

Now that we understand windowing, we can understand the implementation of spec-
trogram. Here is the Wave method that computes spectrograms:

#class Wave:
def make_spectrogram(self, seg_length):
window = np.hamming(seg_length)
i, j = 0, seg_length
step = seg_length / 2

spec_map = {}

while j < len(self.ys):
segment = self.slice(i, j)
segment.window(window)

t = (segment.start + segment.end) / 2
spec_map[t] = segment.make_spectrum()

i += step
j += step

50 | Chapter3: Non-periodic signals

www.it-ebooks.info

http://www.it-ebooks.info/

return Spectrogram(spec_map, seg_length)
This is the longest function in the book, so if you can handle this, you can handle
anything.

The parameter, self, is a Wave object. seg_length is the number of samples in each
segment.

window is a Hamming window with the same length as the segments.

1 and j are the slice indices that select segments from the wave. step is the offset
between segments. Since step is half of seg_length, the segments overlap by half.
Figure 3-6 shows what these overlapping windows look like.

spec_map is a dictionary that maps from a timestamp to a Spectrum.

Inside the while loop, we select a slice from the wave and apply the window; then we
construct a Spectrum object and add it to spec_map. The nominal time of each seg-
ment, t, is the midpoint.

Then we advance 1 and j, and continue as long as j doesn’t go past the end of the
Wave.

Finally, the method constructs and returns a Spectrogram. Here is the definition of
Spectrogram:
class Spectrogram(object):
def __init__(self, spec_map, seg_length):

self.spec_map = spec_map
self.seg_length = seg_length

Like many init methods, this one just stores the parameters as attributes.

Spectrogram provides plot, which generates a pseudocolor plot with time along the
x-axis and frequency along the y-axis.

And that’s how Spectrograms are implemented.

Exercises

Solutions to these exercises are in chap@3soln.ipynb.

Example 3-1.

Run and listen to the examples in chap03.ipynb, which is in the repository for this
book, and also available at http://tinyurl.com/thinkdsp03.

Exercises | 51

www.it-ebooks.info

http://tinyurl.com/thinkdsp03
http://www.it-ebooks.info/

In the leakage example, try replacing the Hamming window with one of the other
windows provided by NumPy, and see what effect they have on leakage. See http://
docs.scipy.org/doc/numpy/reference/routines.window.html

Example 3-2.

Write a class called SawtoothChirp that extends Chirp and overrides evaluate to
generate a sawtooth waveform with frequency that increases (or decreases) linearly.

Hint: combine the evaluate functions from Chirp and SawtoothSignal.

Draw a sketch of what you think the spectrogram of this signal looks like, and then
plot it. The effect of aliasing should be visually apparent, and if you listen carefully,
you can hear it.

Example 3-3.

Make a sawtooth chirp that sweeps from 2500 to 3000 Hz, then use it to make a wave
with duration 1 s and framerate 20 kHz. Draw a sketch of what you think the spec-
trum will look like. Then plot the spectrum and see if you got it right.

Example 3-4.

In musical terminology, a “glissando” is a note that slides from one pitch to another,
so it is similar to a chirp.

Find or make a recording of a glissando and plot a spectrogram of the first few sec-
onds. One suggestion: George Gershwin’s Rhapsody in Blue starts with a famous clari-
net glissando, which you can download from http://archive.org/details/rhapbluel1924.

Example 3-5.

A trombone player can play a glissando by extending the trombone slide while blow-
ing continuously. As the slide extends, the total length of the tube gets longer, and the
resulting pitch is inversely proportional to length.

Assuming that the player moves the slide at a constant speed, how does frequency

vary with time?

Write a class called TromboneGliss that extends Chirp and provides evaluate. Make
a wave that simulates a trombone glissando from C3 up to F3 and back down to C3.
C3is 262 Hz; F3 is 349 Hz.

Plot a spectrogram of the resulting wave. Is a trombone glissando more like a linear
or exponential chirp?

52 | Chapter3: Non-periodic signals

www.it-ebooks.info

http://docs.scipy.org/doc/numpy/reference/routines.window.html
http://docs.scipy.org/doc/numpy/reference/routines.window.html
http://archive.org/details/rhapblue11924
http://www.it-ebooks.info/

Example 3-6.

Make or find a recording of a series of vowel sounds and look at the spectrogram.
Can you identify different vowels?

Exercises | 53

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4
Noise

In English, “noise” means an unwanted or unpleasant sound. In the context of signal
processing, it has two different senses:

1. Asin English, it can mean an unwanted signal of any kind. If two signals interfere
with each other, each signal would consider the other to be noise.

2. “Noise” also refers to a signal that contains components at many frequencies, so it
lacks the harmonic structure of the periodic signals we saw in previous chapters.

This chapter is about the second kind.

The code for this chapter is in chap@4. ipynb, which is in the repository for this book
(see “Using the code” on page xii). You can also view it at http://tinyurl.com/
thinkdsp04.

55

www.it-ebooks.info

http://tinyurl.com/thinkdsp04
http://tinyurl.com/thinkdsp04
http://www.it-ebooks.info/

Uncorrelated noise

0.00 0.02 0.04 0.06 0.08 0.10

Time (s)

Figure 4-1. Waveform of uncorrelated uniform noise.

The simplest way to understand noise is to generate it, and the simplest kind to gen-
erate is uncorrelated uniform noise (UU noise). “Uniform” means the signal contains
random values from a uniform distribution; that is, every value in the range is equally
likely. “Uncorrelated” means that the values are independent; that is, knowing one
value provides no information about the others.

Here’s a class that represents UU noise:

class UncorrelatedUniformNoise(_Noise):

def evaluate(self, ts):
ys = np.random.uniform(-self.amp, self.amp, len(ts))
return ys

UncorrelatedUniformNoise inherits from _Noise, which inherits from Signal.

As usual, the evaluate function takes ts, the times when the signal should be evalu-
ated. It uses np.random.uniform, which generates values from a uniform distribution.
In this example, the values are in the range between -amp to amp.

56 | Chapter4:Noise

www.it-ebooks.info

http://www.it-ebooks.info/

The following example generates UU noise with duration 0.5 seconds at 11,025 sam-
ples per second.

signal = thinkdsp.UncorrelatedUniformNoise()

wave = signal.make_wave(duration=0.5, framerate=11025)
If you play this wave, it sounds like the static you hear if you tune a radio between
channels. Figure 4-1 shows what the waveform looks like. As expected, it looks pretty
random.

16000

140001 R

12000} R

10000} R

8000

Power

6000

4000‘

2000

UJUJ bt bbb il s bl ksl b s m

1000 2000 3000 4000 5000
Frequency (Hz)

Figure 4-2. Power spectrum of uncorrelated uniform noise.

Now let’s take a look at the spectrum:

spectrum = wave.make_spectrum()
spectrum.plot_power()

Spectrum.plot_power is similar to Spectrum.plot, except that it plots power instead
of amplitude. Power is the square of amplitude. I am switching from amplitude to
power in this chapter because it is more conventional in the context of noise.

Figure 4-2 shows the result. Like the signal, the spectrum looks pretty random. In
fact, it is random, but we have to be more precise about the word “random”. There are
at least three things we might like to know about a noise signal or its spectrum:

Uncorrelated noise | 57

www.it-ebooks.info

http://www.it-ebooks.info/

Distribution: The distribution of a random signal is the set of possible values and
their probabilities. For example, in the uniform noise signal, the set of values is
the range from -1 to 1, and all values have the same probability. An alternative is
Gaussian noise, where the set of values is the range from negative to positive
infinity, but values near 0 are the most likely, with probability that drops off
according to the Gaussian or “bell” curve.

Correlation: Is each value in the signal independent of the others, or are there
dependencies between them? In UU noise, the values are independent. An alter-
native is Brownian noise, where each value is the sum of the previous value and
a random “step”. So if the value of the signal is high at a particular point in time,
we expect it to stay high, and if it is low, we expect it to stay low.

Relationship between power and frequency: In the spectrum of UU noise, the
power at all frequencies is drawn from the same distribution; that is, the average
power is the same for all frequencies. An alternative is pink noise, where power
is inversely related to frequency; that is, the power at frequency fis drawn from a
distribution whose mean is proportional to 1/ f.

Integrated spectrum

For UU noise we can see the relationship between power and frequency more clearly
by looking at the integrated spectrum, which is a function of frequency, f, that shows
the cumulative power in the spectrum up to f.

58

Chapter 4: Noise

www.it-ebooks.info

http://www.it-ebooks.info/

1.0

o o o
S ()] [e0]

Cumulative fraction of total power

o
N
\

s

0.0

0 1000 2000 3000 4000 5000
Frequency (Hz)

Figure 4-3. Integrated spectrum of uncorrelated uniform noise.

Spectrum provides a method that computes the IntegratedSpectrum:

def make_1integrated_spectrum(self):
cs = np.cumsum(self.power)
cs /= cs[-1]
return IntegratedSpectrum(cs, self.fs)
self.power is a NumPy array containing power for each frequency. np.cumsum com-
putes the cumulative sum of the powers. Dividing through by the last element nor-
malizes the integrated spectrum so it runs from 0 to 1.

The result is an IntegratedSpectrum. Here is the class definition:

class IntegratedSpectrum(object):
def __init__(self, cs, fs):
self.cs = cs
self.fs = fs

Like Spectrum, IntegratedSpectrum provides plot_power, so we can compute and
plot the integrated spectrum like this:

integ = spectrum.make_integrated_spectrum()
integ.plot_power()

Integrated spectrum | 59

www.it-ebooks.info

http://www.it-ebooks.info/

The result, shown in Figure 4-3, is a straight line, which indicates that power at all
frequencies is constant, on average. Noise with equal power at all frequencies is called
white noise by analogy with light, because an equal mixture of light at all visible fre-
quencies is white.

Brownian noise

—0.5} R

—-1.0} g
0.00 0.02 0.04 0.06 0.08 0.10
Time (s)

Figure 4-4. Waveform of Brownian noise.

UU noise is uncorrelated, which means that each value does not depend on the oth-
ers. An alternative is Brownian noise, in which each value is the sum of the previous
value and a random “step”.

It is called “Brownian” by analogy with Brownian motion, in which a particle sus-
pended in a fluid moves apparently at random, due to unseen interactions with the
fluid. Brownian motion is often described using a random walk, which is a mathe-
matical model of a path where the distance between steps is characterized by a ran-
dom distribution.

In a one-dimensional random walk, the particle moves up or down by a random
amount at each time step. The location of the particle at any point in time is the sum
of all previous steps.

60 | Chapter4: Noise

www.it-ebooks.info

http://www.it-ebooks.info/

This observation suggests a way to generate Brownian noise: generate uncorrelated
random steps and then add them up. Here is a class definition that implements this
algorithm:

class BrownianNoise(_Noise):

def evaluate(self, ts):
dys = np.random.uniform(-1, 1, len(ts))
ys = np.cumsum(dys)
ys = normalize(unbias(ys), self.amp)
return ys

evaluate uses np.random.uniform to generate an uncorrelated signal and np.cumsum
to compute their cumulative sum.

Since the sum is likely to escape the range from -1 to 1, we have to use unbias to shift
the mean to 0, and normalize to get the desired maximum amplitude.

Here’s the code that generates a BrownianNoise object and plots the waveform.

signal = thinkdsp.BrownianNoise()
wave = signal.make_wave(duration=0.5, framerate=11025)
wave.plot()

Figure 4-4 shows the result. The waveform wanders up and down, but there is a clear
correlation between successive values. When the amplitude is high, it tends to stay
high, and vice versa.

Brownian noise | 61

www.it-ebooks.info

http://www.it-ebooks.info/

Power

102 10°
Frequency (Hz)

10!

Figure 4-5. Spectrum of Brownian noise on a log-log scale.

If you plot the spectrum of Brownian noise, it doesn’t look like much. Nearly all of the
power is at the lowest frequencies; on a linear scale, the higher frequency components
are not visible.

To see the shape of the spectrum more clearly, we can plot power and frequency on a
log-log scale. Here's the code:

spectrum = wave.make_spectrum()

spectrum.plot_power(linewidth=1, alpha=0.5)

thinkplot.config(xscale="'log', yscale='log')
The result is in Figure 4-5. The relationship between power and frequency is noisy,
but roughly linear.

Spectrum provides estimate_slope, which uses SciPy to compute a least squares fit
to the power spectrum:

#class Spectrum

def estimate_slope(self):
x = np.log(self.fs[1:])
y = np.log(self.power[1:])

62 | Chapter4: Noise

www.it-ebooks.info

http://www.it-ebooks.info/

t = scipy.stats.linregress(x,y)
return t

It discards the first component of the spectrum because this component corresponds
to f = 0, and log 0 is undefined.

estimate_slope returns the result from scipy.stats.linregress which is an object
that contains the estimated slope and intercept, coefficient of determination (R?), p-
value, and standard error. For our purposes, we only need the slope.

For Brownian noise, the slope of the power spectrum is -2 (well see why in ?2?), so we
can write this relationship:

logP=k-2log f

where P is power, fis frequency, and k is the intercept of the line, which is not impor-
tant for our purposes. Exponentiating both sides yields:

P=K/f*

where K is e, but still not important. More relevant is that power is proportional to
1/ fz, which is characteristic of Brownian noise.

Brownian noise is also called red noise, for the same reason that white noise is called
“white”. If you combine visible light with power proportional to 1/f% most of the
power would be at the low-frequency end of the spectrum, which is red. Brownian
noise is also sometimes called “brown noise”, but I think that’s confusing, so I won't
use it.

Browniannoise | 63

www.it-ebooks.info

http://www.it-ebooks.info/

Pink Noise

0.5 R

0.0 i

—0.5}

_1.0, i
0.00 0.02 0.04 0.06 0.08 0.10
Time (s)

Figure 4-6. Waveform of pink noise with 3 = 1.
For red noise, the relationship between frequency and power is
P=K/f*

There is nothing special about the exponent 2. More generally, we can synthesize
noise with any exponent, f3.

P=K/fP

When f3 = 0, power is constant at all frequencies, so the result is white noise. When
B = 2 the result is red noise.

When f is between 0 and 2, the result is between white and red noise, so it is called
pink noise.

64 | Chapter4: Noise

www.it-ebooks.info

http://www.it-ebooks.info/

There are several ways to generate pink noise. The simplest is to generate white noise
and then apply a low-pass filter with the desired exponent. thinkdsp provides a class
that represents a pink noise signal:

class PinkNoise(_Noise):

def __init__(self, amp=1.0, beta=1.0):
self.amp = amp
self.beta = beta

amp is the desired amplitude of the signal. beta is the desired exponent. PinkNoise
provides make_wave, which generates a Wave.
def make_wave(self, duration=1, start=0, framerate=11025):
signal = UncorrelatedUniformNoise()

wave = signal.make_wave(duration, start, framerate)
spectrum = wave.make_spectrum()

spectrum.pink_filter(beta=self.beta)

wave2 = spectrum.make_wave()
wave2.unbias()
wave2.normalize(self.amp)
return wave2

duration is the length of the wave in seconds. start is the start time of the wave; it is
included so that make_wave has the same interface for all types of signal, but for ran-

dom noise, start time is irrelevant. And framerate is the number of samples per sec-
ond.

Pink Noise | 65

www.it-ebooks.info

http://www.it-ebooks.info/

10°

white
10* — pink ||
— red

Iy

Power
=
o
D,
T

103 ‘ ‘
10° 10* 102
Frequency (Hz)

Figure 4-7. Spectrum of white, pink, and red noise on a log-log scale.

make_wave creates a white noise wave, computes its spectrum, applies a filter with the
desired exponent, and then converts the filtered spectrum back to a wave. Then it
unbiases and normalizes the wave.

Spectrum provides pink_filter:

def pink_filter(self, beta=1.0):
denom = self.fs ** (beta/2.0)
denom[0] = 1
self.hs /= denom

pink_filter divides each element of the spectrum by fﬁ /2 Since power is the square
of amplitude, this operation divides the power at each component by f*. It treats the
component at f = 0 as a special case, partly to avoid dividing by 0, and partly because
this element represents the bias of the signal, which we are going to set to 0 anyway.

Figure 4-6 shows the resulting waveform. Like Brownian noise, it wanders up and
down in a way that suggests correlation between successive values, but at least visu-
ally, it looks more random. In the next chapter we will come back to this observation
and I will be more precise about what I mean by “correlation” and “more random”.

66 | Chapter4: Noise

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, Figure 4-7 shows a spectrum for white, pink, and red noise on the same log-
log scale. The relationship between the exponent, f, and the slope of the spectrum is
apparent in this figure.

Gaussian noise

200 200!
100+ 4 100+
o
°
2
3 0 0
€
<
—100} 4 —100-
—200} model|| _5q0l model | |
— real = imag
. n n n n
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
Normal sample Normal sample

Figure 4-8. Normal probability plot for the real and imaginary parts of the spectrum of
Gaussian noise.

We started with uncorrelated uniform (UU) noise and showed that, because its spec-
trum has equal power at all frequencies, on average, UU noise is white.

But when people talk about “white noise”, they don’t always mean UU noise. In fact,
more often they mean uncorrelated Gaussian (UG) noise.

thinkdsp provides an implementation of UG noise:

class UncorrelatedGaussianNoise(_Noise):

def evaluate(self, ts):
ys = np.random.normal(®, self.amp, len(ts))
return ys
np.random.normal returns a NumPy array of values from a Gaussian distribution, in
this case with mean 0 and standard deviation self.amp. In theory the range of values
is from negative to positive infinity, but we expect about 99% of the values to be
between -3 and 3.

UG noise is similar in many ways to UU noise. The spectrum has equal power at all
frequencies, on average, so UG is also white. And it has one other interesting prop-

Gaussiannoise | 67

www.it-ebooks.info

http://www.it-ebooks.info/

erty: the spectrum of UG noise is also UG noise. More precisely, the real and imagi-
nary parts of the spectrum are uncorrelated Gaussian values.

To test that claim, we can generate the spectrum of UG noise and then generate a
“normal probability plot”, which is a graphical way to test whether a distribution is
Gaussian.

signal = thinkdsp.UncorrelatedGaussianNoise()
wave = signal.make_wave(duration=0.5, framerate=11025)
spectrum = wave.make_spectrum()

thinkstats2.NormalProbabilityPlot(spectrum.real)
thinkstats2.NormalProbabilityPlot(spectrum.imag)

NormalProbabilityPlot is provided by thinkstats2, which is included in the repos-
itory for this book. If you are not familiar with normal probability plots, you can read
about them in Chapter 5 of Think Stats at http://thinkstats2.com.

Figure 4-8 shows the results. The gray lines show a linear model fit to the data; the
dark lines show the data.

A straight line on a normal probability plot indicates that the data come from a Gaus-
sian distribution. Except for some random variation at the extremes, these lines are
straight, which indicates that the spectrum of UG noise is UG noise.

The spectrum of UU noise is also UG noise, at least approximately. In fact, by the
Central Limit Theorem, the spectrum of almost any uncorrelated noise is approxi-
mately Gaussian, as long as the distribution has finite mean and standard deviation,
and the number of samples is large.

Exercises

Solutions to these exercises are in chap@4soln.ipynb.

Example 4-1.

“A Soft Murmur” is a web site that plays a mixture of natural noise sources, including
rain, waves, wind, etc. At http://asoftmurmur.com/about/ you can find their list of
recordings, most of which are at http://freesound.org.

Download a few of these files and compute the spectrum of each signal. Does the
power spectrum look like white noise, pink noise, or Brownian noise? How does the
spectrum vary over time?

68 | Chapter4: Noise

www.it-ebooks.info

http://thinkstats2.com
http://asoftmurmur.com/about/
http://freesound.org
http://www.it-ebooks.info/

Example 4-2.

In a noise signal, the mixture of frequencies changes over time. In the long run, we
expect the power at all frequencies to be equal, but in any sample, the power at each
frequency is random.

To estimate the long-term average power at each frequency, we can break a long sig-
nal into segments, compute the power spectrum for each segment, and then compute
the average across the segments. You can read more about this algorithm at http://
en.wikipedia.org/wiki/Bartletts_method.

Implement Bartlett’s method and use it to estimate the power spectrum for a noise
wave. Hint: look at the implementation of make_spectrogram.

Example 4-3.

At http://www.coindesk.com you can download the daily price of a BitCoin as a CSV
file. Read this file and compute the spectrum of BitCoin prices as a function of time.
Does it resemble white, pink, or Brownian noise?

Example 4-4.

A Geiger counter is a device that detects radiation. When an ionizing particle strikes
the detector, it outputs a surge of current. The total output at a point in time can be
modeled as uncorrelated Poisson (UP) noise, where each sample is a random quantity
from a Poisson distribution, which corresponds to the number of particles detected
during an interval.

Write a class called UncorrelatedPoissonNoise that inherits from thinkdsp. Noise
and provides evaluate. It should use np.random.poisson to generate random values
from a Poisson distribution. The parameter of this function, lam, is the average num-
ber of particles during each interval. You can use the attribute amp to specify lam. For
example, if the framerate is 10 kHz and amp is 0.001, we expect about 10 “clicks” per
second.

Generate about a second of UP noise and listen to it. For low values of amp, like 0.001,
it should sound like a Geiger counter. For higher values it should sound like white
noise. Compute and plot the power spectrum to see whether it looks like white noise.

Example 4-5.

The algorithm in this chapter for generating pink noise is conceptually simple but
computationally expensive. There are more efficient alternatives, like the Voss-
McCartney algorithm. Research this method, implement it, compute the spectrum of

Exercises | 69

www.it-ebooks.info

http://en.wikipedia.org/wiki/Bartlett’s_method
http://en.wikipedia.org/wiki/Bartlett’s_method
http://www.coindesk.com
http://www.it-ebooks.info/

the result, and confirm that it has the desired relationship between power and fre-
quency.

70 | Chapter4: Noise

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5
Autocorrelation

In the previous chapter I characterized white noise as “uncorrelated”, which means
that each value is independent of the others, and Brownian noise as “correlated”,
because each value depends on the preceding value. In this chapter I define these
terms more precisely and present the autocorrelation function, which is a useful tool
for signal analysis.

The code for this chapter is in chap@5. ipynb, which is in the repository for this book
(see “Using the code” on page xii). You can also view it at http://tinyurl.com/
thinkdsp05.

Correlation

In general, correlation between variables means that if you know the value of one,
you have some information about the other. There are several ways to quantify corre-
lation, but the most common is the Pearson product-moment correlation coefficient,
usually denoted p. For two variables, x and y, that each contain N values:

Zi(xi—#x)()’i_”y>

Noxay

p:

Where p, and p, are the means of x and y, and 0, and 0, are their standard deviations.

Pearson’s correlation is always between -1 and +1 (including both). If p is positive, we
say that the correlation is positive, which means that when one variable is high, the
other tends to be high. If p is negative, the correlation is negative, so when one vari-
able is high, the other tends to be low.

n

www.it-ebooks.info

http://tinyurl.com/thinkdsp05
http://tinyurl.com/thinkdsp05
http://www.it-ebooks.info/

The magnitude of p indicates the strength of the correlation. If p is 1 or -1, the vari-
ables are perfectly correlated, which means that if you know one, you can make a per-
fect prediction about the other. If p is near zero, the correlation is probably weak, so if
you know one, it doesn't tell you much about the others,

I say “probably weak” because it is also possible that there is a nonlinear relationship
that is not captured by the coefficient of correlation. Nonlinear relationships are often
important in statistics, but less often relevant for signal processing, so I won’t say
more about them here.

Python provides several ways to compute correlations. np.corrcoef takes any num-
ber of variables and computes a correlation matrix that includes correlations
between each pair of variables.

1.0 g
- wavel
= Wwave2 \

0.5 g

0.0 i

-0.5 g
_1'0 L L L L]
0.000 0.002 0.004 0.006 0.008 0.010
Time (s)

Figure 5-1. Two sine waves that differ by a phase offset of 1 radian; their coefficient of
correlation is 0.54.

I'll present an example with only two variables. First, I define a function that con-
structs sine waves with different phase offsets:

def make_sine(offset):
signal = thinkdsp.SinSignal(freq=440, offset=offset)

72 | Chapter5: Autocorrelation

www.it-ebooks.info

http://www.it-ebooks.info/

wave = signal.make_wave(duration=0.5, framerate=10000)
return wave

Next I instantiate two waves with different offsets:

wavel = make_sine(offset=0)

wave2 = make_sine(offset=1)
Figure 5-1 shows what the first few periods of these waves look like. When one wave
is high, the other is usually high, so we expect them to be correlated.

>>> corr_matrix = np.corrcoef(wavel.ys, wave2.ys, ddof=0)
[[1. 0.54]
[0.54 1. 1]
The option ddof=0 indicates that corrcoef should divide by N, as in the equation
above, rather than use the default, N — 1.

The result is a correlation matrix: the first element is the correlation of wavel with
itself, which is always 1. Similarly, the last element is the correlation of wave2 with
itself.

Correlation

0 1 2 3 4 5 6
Offset (radians)

Figure 5-2. The correlation of two sine waves as a function of the phase offset between
them. The result is a cosine.

Correlation | 73

www.it-ebooks.info

http://www.it-ebooks.info/

The off-diagonal elements contain the value were interested in, the correlation of
wavel and wave2. The value 0.54 indicates that the strength of the correlation is mod-
erate.

As the phase offset increases, this correlation decreases until the waves are 180
degrees out of phase, which yields correlation -1. Then it increases until the offset dif-
fers by 360 degrees. At that point we have come full circle and the correlation is 1.

Figure 5-2 shows the relationship between correlation and phase offset for a sine
wave. The shape of that curve should look familiar; it is a cosine.

thinkdsp provides a simple interface for computing the correlation between waves:

>>> wavel.corr(wave2)
0.54

Serial correlation

Signals often represent measurements of quantities that vary in time. For example,
the sound signals we've worked with represent measurements of voltage (or current),
which correspond to the changes in air pressure we perceive as sound.

Measurements like this almost always have serial correlation, which is the correlation
between each element and the next (or the previous). To compute serial correlation,
we can shift a signal and then compute the correlation of the shifted version with the
original.
def serial_corr(wave, lag=1):

n = len(wave)

y1l = wave.ys[lag:]

y2 = wave.ys[:n-lag]

corr = np.corrcoef(yl, y2, ddof=0)[0, 1]

return corr

serial_corr takes a Wave object and lag, which is the integer number of places to
shift the wave. It computes the correlation of the wave with a shifted version of itself.

We can test this function with the noise signals from the previous chapter. We expect
UU noise to be uncorrelated, based on the way its generated (not to mention the
name):

signal = thinkdsp.UncorrelatedGaussianNoise()
wave = signal.make_wave(duration=0.5, framerate=11025)
serial_corr(wave)

When I ran this example, I got 0.006, which indicates a very small serial correlation.
You might get a different value when you run it, but it should be comparably small.

In a Brownian noise signal, each value is the sum of the previous value and a random
“step’, so we expect a strong serial correlation:

74 | Chapter5: Autocorrelation

www.it-ebooks.info

http://www.it-ebooks.info/

signal = thinkdsp.BrownianNoise()
wave = signal.make_wave(duration=0.5, framerate=11025)
serial_corr(wave)

Sure enough, the result I got is greater than 0.999.

1.0p

0.8}

Serial correlation

0.4}

0.2}

0.0 0.5 1.0 1.5 2.0
Pink noise parameter,

Figure 5-3. Serial correlation for pink noise with a range of parameters.

Since pink noise is in some sense between Brownian noise and UU noise, we might
expect an intermediate correlation:

signal = thinkdsp.PinkNoise(beta=1)

wave = signal.make_wave(duration=0.5, framerate=11025)

serial_corr(wave)
With parameter 8 = 1, I got a serial correlation of 0.851. As we vary the parameter
from f3 = 0, which is uncorrelated noise, to § = 2, which is Brownian, serial correla-
tion ranges from 0 to almost 1, as shown in Figure 5-3.

Autocorrelation

In the previous section we computed the correlation between each value and the next,
so we shifted the elements of the array by 1. But we can easily compute serial correla-
tions with different lags.

Autocorrelation | 75

www.it-ebooks.info

http://www.it-ebooks.info/

1.0

0.8

Correlation
o
(o)}

©
iN

0.2

0.0

0 200 400 600 800 1000

Lag

Figure 5-4. Autocorrelation functions for pink noise with a range of parameters.

You can think of serial_corr as a function that maps from each value of lag to the
corresponding correlation, and we can evaluate that function by looping through val-
ues of lag:

def autocorr(wave):
lags = range(len(wave.ys)//2)
corrs = [serial_corr(wave, lag) for lag in lags]
return lags, corrs

autocorr takes a Wave object and returns the autocorrelation function as a pair of
sequences: lags is a sequence of integers from 0 to half the length of the wave; corrs
is the sequence of serial correlations for each lag.

Figure 5-4 shows autocorrelation functions for pink noise with three values of 8. For
low values of f3, the signal is less correlated, and the autocorrelation function drops
off to zero quickly. For larger values, serial correlation is stronger and drops off more
slowly. With § = 1.7 serial correlation is strong even for long lags; this phenomenon
is called long-range dependence, because it indicates that each value in the signal
depends on many preceding values.

76 | Chapter5: Autocorrelation

www.it-ebooks.info

http://www.it-ebooks.info/

Autocorrelation of periodic signals

The autocorrelation of pink noise has interesting mathematical properties, but limi-
ted applications. The autocorrelation of periodic signals is more useful.

4000}]

3500} R

3000} 1

2500} 1

2000} S

Frequency (Hz)

1500 S

10001 S

500 | =—— i

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

Figure 5-5. Spectrogram of a vocal chirp.

As an example, I downloaded from freesound.org a recording of someone singing a
chirp; the repository for this book includes the file: 28042__bcjordan__voicedown
bew.wav. You can use the IPython notebook for this chapter, chap05.ipynb, to play it.

Figure 5-5 shows the spectrogram of this wave. The fundamental frequency and some
of the harmonics show up clearly. The chirp starts near 500 Hz and drops down to
about 300 Hz, roughly from C5 to E4.

Autocorrelation of periodicsignals | 77

www.it-ebooks.info

http://www.it-ebooks.info/

60

Amplitude

0 ! ! ! ! ! ! ! !
0 100 200 300 400 500 600 700 800 900
Frequency (Hz)

Figure 5-6. Spectrum of a segment from a vocal chirp.

To estimate pitch at a particular point in time, we could use the spectrum, but it
doesn't work very well. To see why not, I'll take a short segment from the wave and
plot its spectrum:

duration = 0.01

segment = wave.segment(start=0.2, duration=duration)

spectrum = segment.make_spectrum()

spectrum.plot(high=1000)
This segment starts at 0.2 seconds and lasts 0.01 seconds. Figure 5-6 shows its spec-
trum. There is a clear peak near 400 Hz, but it is hard to identify the pitch precisely.
The length of the segment is 441 samples at a framerate of 44100 Hz, so the frequency
resolution is 100 Hz (see “The Gabor limit” on page 45). That means the estimated
pitch might be off by 50 Hz; in musical terms, the range from 350 Hz to 450 Hz is
about 5 semitones, which is a big difference!

We could get better frequency resolution by taking a longer segment, but since the
pitch is changing over time, we would also get “motion blur”; that is, the peak would
spread between the start and end pitch of the segment, as we saw in “Spectrum of a
chirp” on page 43.

78 | Chapter5: Autocorrelation

www.it-ebooks.info

http://www.it-ebooks.info/

We can estimate pitch more precisely using autocorrelation. If a signal is periodic, we
expect the autocorrelation to spike when the lag equals the period.

1.0

0.5f j

0.0 i

—0.5F R

p=0.99

_10 1 1 1 !
0.200 0.202 0.204 0.206 0.208 0.210
Time (s)

Figure 5-7. Two segments from a chirp, one starting 0.0023 seconds after the other.

To show why that works, I'll plot two segments from the same recording.

def plot_shifted(wave, offset=0.001, start=0.2):
thinkplot.preplot(2)
segmentl = wave.segment(start=start, duration=0.01)
segmentl.plot(linewidth=2, alpha=0.8)

segment2 = wave.segment(start=start-offset, duration=0.01)
segment2.shift(offset)
segment2.plot(linewidth=2, alpha=0.4)

corr = segmentl.corr(segment2)

text = r'$\rho =$ %.2g' % corr
thinkplot.text(segmentl.start+0.0005, -0.8, text)
thinkplot.config(xlabel="'Time (s)')

One segment starts at 0.2 seconds; the other starts 0.0023 seconds later. Figure 5-7
shows the result. The segments are similar, and their correlation is 0.99. This result

suggests that the period is near 0.0023 seconds, which corresponds to a frequency of
435 Hz.

Autocorrelation of periodicsignals | 79

www.it-ebooks.info

http://www.it-ebooks.info/

1.0
0.5} |
C
o
©
o 0.0F E
5
o
—0.5} R
_10 I 1 1 I
0 50 100 150 200
Lag (index)

Figure 5-8. Autocorrelation function for a segment from a chirp.

For this example, I estimated the period by trial and error. To automate the process,
we can use the autocorrelation function.

lags, corrs = autocorr(segment)

thinkplot.plot(lags, corrs)
Figure 5-8 shows the autocorrelation function for the segment starting at t = 0. 2 sec-
onds. The first peak occurs at lag=101. We can compute the frequency that corre-
sponds to that period like this:

period = lag / segment.framerate

frequency = 1 / period
The estimated fundamental frequency is 437 Hz. To evaluate the precision of the esti-
mate, we can run the same computation with lags 100 and 102, which correspond to
frequencies 432 and 441 Hz. The frequency precision using autocorrelation is less
than 10 Hz, compared with 100 Hz using the spectrum. In musical terms, the
expected error is about 30 cents (a third of a semitone).

80 | Chapter5: Autocorrelation

www.it-ebooks.info

http://www.it-ebooks.info/

Correlation as dot product

I started the chapter with this definition of Pearson’s correlation coefficient:

Z,(x; _“x)()’i_ /‘y)
Noxay

P:

Then I used p to define serial correlation and autocorrelation. That’s consistent with
how these terms are used in statistics, but in the context of signal processing, the defi-
nitions are a little different.

In signal processing, we are often working with unbiased signals, where the mean is
0, and normalized signals, where the standard deviation is 1. In that case, the defini-
tion of p simplifies to:

1
p= Ngw i
And it is common to simplify even further:
r= 22Xy
1

This definition of correlation is not “standardized’, so it doesn't generally fall between
-1 and 1. But it has other useful properties.

If you think of x and y as vectors, you might recognize this formula as the dot prod-
uct, x - y. See http://en.wikipedia.org/wiki/Dot_product.

The dot product indicates the degree to which the signals are similar. If they are nor-
malized so their standard deviations are 1,

x-y= cosf

where 0 is the angle between the vectors. And that explains why Figure 5-2 is a cosine
curve.

Correlation as dot product | 81

www.it-ebooks.info

http://en.wikipedia.org/wiki/Dot_product
http://www.it-ebooks.info/

Using NumPy

40

Correlation

-30

—200 —-100 0 100 200

Figure 5-9. Autocorrelation function computed with np.correlate.

NumPy provides a function, correlate, that computes the correlation of two func-
tions or the autocorrelation of one function. We can use it to compute the autocorre-
lation of the segment from the previous section:

corrs2 = np.correlate(segment.ys, segment.ys, mode='same')

The option mode tells correlate what range of lag to use. With the value ’same’, the
range is from —N/2 to N/2, where N is the length of the wave array.

Figure 5-9 shows the result. It is symmetric because the two signals are identical, so a
negative lag on one has the same effect as a positive lag on the other. To compare with
the results from autocorr, we can select the second half:

N = len(corrs2)

half = corrs2[N//2:]
If you compare Figure 5-9 to Figure 5-8, you’ll notice that the correlations computed
by np.correlate get smaller as the lags increase. That’s because np.correlate uses
the unstandardized definition of correlation; as the lag gets bigger, the overlap
between the two signals gets smaller, so the magnitude of the correlations decreases.

82 | Chapter5: Autocorrelation

www.it-ebooks.info

http://www.it-ebooks.info/

We can correct that by dividing through by the lengths:

lengths = range(N, N//2, -1)
half /= lengths

Finally, we can standardize the results so the correlation with lag=0 is 1.
half /= half[0]

With these adjustments, the results computed by autocorr and np.correlate are
nearly the same. They still differ by 1-2%. The reason is not important, but if you are
curious: autocorr standardizes the correlations independently for each lag; for
np.correlate, we standardized them all at the end.

More importantly, now you know what autocorrelation is, how to use it to estimate
the fundamental period of a signal, and two ways to compute it.

Exercises

Solutions to these exercises are in chap@5soln.ipynb.

Example 5-1.

The IPython notebook for this chapter, chap05.1ipynb, includes an interaction that
lets you compute autocorrelations for different lags. Use this interaction to estimate
the pitch of the vocal chirp for a few different start times.

Example 5-2.

The example code in chap@5.ipynb shows how to use autocorrelation to estimate the
fundamental frequency of a periodic signal. Encapsulate this code in a function called
estimate_fundamental, and use it to track the pitch of a recorded sound.

To see how well it works, try superimposing your pitch estimates on a spectrogram of
the recording.

Example 5-3.

If you did the exercises in the previous Autocorrelation, you downloaded the histori-
cal price of BitCoins and estimated the power spectrum of the price changes. Using
the same data, compute the autocorrelation of BitCoin prices. Does the autocorrela-
tion function drop off quickly? Is there evidence of periodic behavior?

Exercises | 83

www.it-ebooks.info

http://www.it-ebooks.info/

Example 5-4.

In the repository for this book you will find an IPython notebook called saxo
phone.ipynb that explores autocorrelation, pitch perception, and a phenomenon
called the missing fundamental. Read through this notebook and run the examples.
Try selecting a different segment of the recording and running the examples again.

Vi Hart has an excellent video called “What is up with Noises? (The Science and
Mathematics of Sound, Frequency, and Pitch)”; it demonstrates the missing funda-
mental phenomenon and explains how pitch perception works (at least, to the degree
that we know). Watch it at https://www.youtube.com/watch?v=i_0DXxNeaQO.

84 | Chapter5: Autocorrelation

www.it-ebooks.info

https://www.youtube.com/watch?v=i_0DXxNeaQ0
http://www.it-ebooks.info/

CHAPTER 6
Discrete cosine transform

Chapter to Come

85

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7
Discrete Fourier Transform

Chapter to Come

87

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8
Filtering and Convolution

Chapter to Come

89

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER9
Signals and systems

Chapter to Come

91

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10
Modulation and sampling

Chapter to Come

93

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A

Anaconda, xii

C

clone, xii
contributors, xiii

F

fork, xii

G
Git, xii
GitHub, xii

installation, xiii

Index

IPython, xiii

M

matplotlib, xii

N

NumPy, xii

R

repository, xii

S

SciPy, xii

95

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Table of Contents
	Copyright
	Table of Contents
	About the Author
	Preface
	Who is this book for?
	Using the code
	Contributor List

	Chapter 1. Sounds and signals
	Periodic signals
	Spectral decomposition
	Signals
	Reading and writing Waves
	Spectrums
	Wave objects
	Signal objects
	Exercises

	Chapter 2. Harmonics
	Triangle waves
	Square waves
	Aliasing
	Computing the spectrum
	Exercises

	Chapter 3. Non-periodic signals
	Linear chirp
	Exponential chirp
	Spectrum of a chirp
	Spectrogram
	The Gabor limit
	Leakage
	Windowing
	Implementing spectrograms
	Exercises

	Chapter 4. Noise
	Uncorrelated noise
	Integrated spectrum
	Brownian noise
	Pink Noise
	Gaussian noise
	Exercises

	Chapter 5. Autocorrelation
	Correlation
	Serial correlation
	Autocorrelation
	Autocorrelation of periodic signals
	Correlation as dot product
	Using NumPy
	Exercises

	Chapter 6. Discrete cosine transform
	Chapter 7. Discrete Fourier Transform
	Chapter 8. Filtering and Convolution
	Chapter 9. Signals and systems
	Chapter 10. Modulation and sampling
	Index

