EXPERT INSIGHT

Max Kanat-Alexander

Understanding
Software

L] Packb

UNDERSTANDING
SOFTWARE

Max Kanat-Alexander on simplicity, coding,
and how to suck less as a programmer

Max Kanat-Alexander

Packh

BIRMINGHAM - MUMBAI

UNDERSTANDING SOFTWARE

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles
Of feviews.

Every effort has been made in the preparation of this book to
ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either
express or implied. Neither the author, nor Packt Publishing, and
its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book
by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

First published: September 2017

Production reference: 1270917

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78862-881-5

www . packtpub.com

www.packtpub.com

CREDITS

Author
Max Kanat-Alexander

Acquisition Editor
Dominic Shakeshaft

Content Development Editor
Dominic Shakeshaft

Editor

Amit Ramadas

Indexer
Pratik Shirodkar

Production Coordinator

Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

ABOUT THE AUTHOR

Legendary code guru Max Kanat-Alexander brings you his writings
and thoughts so that your code and your life as a developer can be

healthy, and embrace simplicity. Why make life hard when making
software can be simple?

WWW.PACKTPUB.COM

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade
to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercareepacktpub.com for more details.

At www.PacktPub.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters and
receive exclusive discounts and offers on Packt books and eBooks.

» Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives
you full access to all Packt books and video courses, as well as
industry-leading tools to help you plan your personal development
and advance your career.

Why subscribe?
¢ Fully searchable across every book published by
Packt

Copy and paste, print, and bookmark content

On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

CUSTOMER FEEDBACK

Thanks for purchasing this Packt book. At Packt, quality is at the
heart of our editorial process. To help us improve, please leave us
an honest review on this book's Amazon page at https://www.
amazon.com/dp/1788628810.

If you'd like to join our team of regular reviewers, you can e-mail
us at customerreviews@packtpub.com. We award our regular
reviewers with free eBooks and videos in exchange for their
valuable feedback. Help us be relentless in improving our products!

https://www.amazon.com/dp/1788628810
https://www.amazon.com/dp/1788628810

TABLE OF CONTENTS

Foreword e e e e e e e e e vii

Part One: Principles for Programmers

Chapter 1: Before You Begin... 3
If You're Going To Do It Then DoitWell 5

Chapter 2: The Engineer Attitude 7

Chapter 3: The Singular Secret of the

Rockstar Programmer 0., 11

Chapter 4: Software Design, in Two Sentences. 15

Part Two: Software Complexity and its Causes

Chapter 5: Clues to Complexity 19
Chapter 6: Ways To Create Complexity: Break Your API . . . 21
Chapter 7: When Is Backwards-Compatibility

NotWorthIt? 25
Chapter 8: Complexityisa Prison. 29

Part Three: Simplicity and Software Design

Chapter 9: Design from the Start 35
Starting the Right Way. 36

Chapter 10: The Accuracy of Future Predictions 37

Table of Contents

Chapter 11: Simplicity and Strictness

Chapter 12: Twois TooMany
Refactoring. o oo e

Chapter 13: Sane Software Design.

TheWrongWay,
TheRightWay,
We followed all the Laws Of Software Design

Part Four: Debugging

Chapter 14: WhatisaBug?
Hardware. o

Chapter 15: The Sourceof Bugs
Compounding Complexity

Chapter 16: Make It Never Come Back.
Make it Never Come Back—An Example
Down the RabbitHole.

Chapter 17: The Fundamental Philosophy of Debugging . . .
Clatify the Bug. oot e

LookattheSystem.
FindtheRealCause
FourSteps e

Part Five: Engineering in Teams

Chapter 18: Effective Engineering Productivity

The Solution i i i i it e e e e e e e e e e

Chapter 19: Measuring Developer Productivity

Page ii

Table of Contents

Chapter 20: How to Handle Code Complexity in a

Software Company. 107
Stepl—Problem Lists. 109
Step2—Meetingo 110
Step3—-BugReports 0oL m
Step 4 — Prioritization L0000 m
Step5—Assignment 0oL 113
Step6—Planning o0 113

Chapter 21: Refactoring is about Features 115
Being Effective. 0 0000 116
Refactoring Doesn't Waste Time, It Saves It. 120
Refactoring ToClarity 120
Summary.o e e 122

Chapter 22: Kindnessand Code. 123
Software is about People. 124

Chapter 23: Open Source Community, Simplified 129
Retaining Contributors 130
Removing the Barriers. 137
Getting People Interested 140
Summary. Lo e 142

Part Six: Understanding Software

Chapter 25: The Components of Software:
Structure, Action,and Results. 149

Page iii

Table of Contents

Chapter 26: Software Revisited: (I)SAR Clarified. 153
Structure 154
Action. L. e e e 155
Results e 156
ISAR in a Single Lineof Code 156
WrappingSARUp 157

Chapter 27: Software as Knowledge. 159

Chapter 28: The Purpose of Technology. 163
Are there Counter-Examples tothisRule? 164
Is the Advance of Technology "Good"? 165

Chapter 29: Privacy, Simplified 167
Privacyof Space 0oL 168
Privacy of Information 170
A Summaryof Privacy. L0000 174

Chapter 30: Simplicity and Security. 175

Chapter 31: Test-Driven Development and the

Cycle of Observation 179
Examplesof ODA. 180
Development Processes and Productivity 181

Chapter 32: The Philosophy of Testing. 185
TestValue 186
Test Assertions. e 187
Test Boundaries 187
Test Assumptions Lo 188
TestDesign. oo 188
EndtoEndTesting 189
Integration Testing 190

Page iv

Table of Contents

UnitTesting 192
Reality i e 193
Fakes e e 194
Determinism. L0000 s 196
Speed. e 197
Coverage i e e 198
Conclusion — The Overall Goal of Testing 198

Chapter 33: The Secret of Success: SuckLess 203
Why is it that thisworked?. 205
Chapter 34: How We Figured Out What Sucked. 209
Chapter 35: The Powerof No. 213
Recognizing BadIdeas 215
Having No BetterIdea 216
Clarification: Acceptance and Politeness 217
Chapter 36: Why ProgrammersSuck 219
WhattoStudy, 223

Chapter 37: The Secret of Fast Programming:

Stop Thinking, 227
Understanding 228
Drawing e 229
Starting 230
SkippingaStep. Lo oo 231
Physical Problems 231
Distractionsol o e e e e e e 232
Self-Doubt e 232

Pagev

Table of Contents

FalseIdeas i it 233
Caveat e 233
Chapter 38: Developer Hubris. 235

Chapter 39: "Consistency" Does Not Mean "Uniformity" . .239

Chapter 40: Users Have Problems,

Developers Have Solutions 241
Trust and Information. 0., 242
Problems Come from Users. 243

Chapter 41: Instant Gratification = Instant Failure. 245
Solving for thelong term 246
How to Ruin Your Software Company 247

Chapter 42: Success Comes from Execution,

NotInnovation. v i enene.. 249
Chapter 43: Excellent Software 251
1. Does exactly what the user toldittodo. 252
2. Behaves exactly like the user expects it to behave 253

3. Does not block the user from communicating
theirintention 255

Excellence is senior to (but is not in conflict with)
code simplicity. oo 257

Page vi

FOREWORD

I started Writing on www.codesimplicity.com in 2008 for
one reason only — I wanted to make the wortld of software
development a better place. I wasn't trying to be famous, or
get contracting jobs, or push some ideology on people. My
intention was purely to help people.

What I had observed was that there was a lot of opinion
in the field of software engineering, but not a lot of facts
or basic principles. Now, this might seem like a shocking
statement to some people, because surely software development
is a scientific field where we all know exactly what we're
doing — we work with highly technical machines and we use
a lot of complex systems to accomplish our jobs. There must
be a science to it, right?

Well, the problem is that in order to be a science you must
have /aws and a system of organized information based on
those laws. Usually, you also must demonstrate that your laws
and your system actually work without exception in the physical
universe. It's not sufficient to just have some information about
technology. You must have basic principles.

There are many ways to derive these basic principles.
The most popular and accepted way is through the scientific
method. There are other ways, too. The whole subject of
how you discover these things is covered by a study called
"epistemology," which is a word that means "the study of how
knowledge is known." For example, you know your name. How
do you know that that is your name? How do you know that's
true? If you wanted to understand how to build a house, what
would you do to gain that knowledge? And so on.

Foreword

I'm sort of over-simplifying it, and perhaps some philosophy
professors will come after me and write bad reviews because
I'm not really explaining epistemology or how I used it, but I
hope that what I've written here is enough for the common
reader to get that what I wanted was some method that would
lead to the development of basic principles. Various methods
of epistemology, including the scientific method, helped me
discover these.

My first book, Code Simplicity, is a description of those
basic principles of software development. But there's more to
know than just those basics. True, you could derive everything
there is to know about software design from those laws in Code
Simplicity, but since I've already derived a lot of stuff from
them, why not just share that with you now?

This book is a collection of my writings since Code
Simplicity, as well as some additional content that I wrote before
Code Simplicity but which didn't really fit in that book. Most
of the content in this book is also on my website, but in this
book it's been organized, curated, and edited for maximum
readability. Also, you get to read it in book format, which is
often easier to digest and understand.

There is one chapter in the book that is not on my website
and never will be — the one called "Excellent Software." 1
actually wrote it years ago as part of the first draft of Code
Simplicity, but could never bring myself to give it away for free.

Page viii

Foreword

The book doesn't have to be read in order. It's designed
so that it reads nicely if you go from page to page and read
each section in sequence, but you can also skip around and
read any of the sections you want if you think some part will
be more interesting than another.

To help both kinds of readers, I've split the book into a
few parts. That way, people reading in order get a consistent
flow, and people who want to skip around know what each
part covers.

The first three parts of the book cover some foundational
principles of being a programmer and then get into aspects
of software complexity and simplicity. After that comes
"Engineering in Teams," a whole new set of principles developed
since Code Simplicity based on my experience successfully
applying the principles of Code Simplicity across large engineering
organizations.

Then comes a section where I write about the philosophy
behind the principles of software design, "Understanding
Software." This includes the article "The Philosophy of
Testing," which is a more thorough coverage of the basic
principles of testing than was found in my first book.

Then comes the section "Suck Less," based on one of
my most popular blog articles of all time. It starts off
explaining why "Suck Less" wotks as a philosophy for product
management in software development, and then goes on to talk
about how you can make your software suck less and specific
ways to become a better programmer yourself.

Page ix

Foreword

Opverall, the whole point of the book is to help you be a better
software developer, and that is the on/y point. I would much
rather live in a world where software is simple, well-designed,
reliable, fast, and easy to make, wouldn't your In this book and
Code Simplicity, I've told you how to do it — all you have to do
is apply the data that I've given you.

Best of luck.

Max Kanat-Alexander

August 2017

Page x

— PART ONE—

PRINCIPLES FOR
PROGRAMMERS

" I o~

BEFORE YOU
BEGIN...

One of the major goals that I have with researching software
design is the hope that we can take people who are "bad
programmers" or mediocre programmers and, with some simple
education and only a little experience, bring them into being
good programmers or great programmers.

I want to know — what are the fundamental things you have
to teach somebody to make them into a great programmer?
What if somebody's been programming for years and hasn't
gotten any better — how can you help themr? What are they
missing? So I've written quite a bit about that in this book,
particularly in Part Seven - Suck Less.

However, before somebody can even start on the path of
becoming a better software developer, one thing has to be true:

In order to become an excellent
programmer, you must first want to
become an excellent programmer. No
amount of training will turn somebody
who does not want to be excellent into
an excellent programmer.

Chapter 1: Before You Begin...

Page 4

If you are a person who is passionate about software
development — or even just somebody who likes being good
at their job — it may be hard to understand the viewpoint
of somebody who simply doesn't want to get any better. To
fully grasp it, it can be helpful to imagine yourself trying to
learn about some area that you personally have no desire to
be great in.

For example, although 1 admire athletes, enjoy playing
soccer, and sometimes enjoy watching sports in general, I've
never had a desire to be a great athlete. There's no amount of
reading ot education that will ever turn me into a great athlete,
because I simply don't want to be one. I wouldn't even read
the books in the first place. If you forced me to take some
classes or go to some seminar, it would leave my mind as
soon as I took it in, because I would simply have no desire
to know the data.

Even if I was playing sports every day for a living, I'd
think, "Ah well, I don't have any passion for athletics, so this
information simply isn't important to me. Some day I will be
doing some other job, or some day I will retire and not have
to care, and until then I'm just going to do this because they
pay me and it's better than starving."

As hard as this can be to imagine, that is what happens
in the minds of many "bad" programmers when you tell
them how or why they should write better code. If they don't
sincerely want to be the best programmers that they can be, it
does not matter how much education you give them, how many
times you correct them, or how many seminars they go to,
they will not get better.

Chapter 1: Before You Begin...

If You're Going To Do It Then Do it Well

So what do you do? To be fair, I may not be the best person
to ask — if I'm going to do something, I feel that I should do
my best to excel in it. Perhaps the best thing you can do is
encourage people to follow that concept.

You could say to them something like: "If you're going to
be doing it anyway, why not do it well? Wouldn't it at least be
more enjoyable to be doing this if you were more skilled at
it? What if some other people were impressed with your work,
how would that feel? Would it be nice to go home at the end
of the day and feel that you had done something well? Would
your life be better than it is now, even if only a littler Would
your life get worse?"

However you do it, the bottom line is that people must be
interested in improving themselves before they can get better.
How you bring them up to that level of interest doesn't really
matter, as long as they get there before you waste a lot of time
giving them an education that they're just going to throw away
as soon as they hear it.

-Max

Page 5

" Z o~

THE ENGINEER
ATTITUDE

The attitude that every engineer should have, in every field of
engineering, is:

I can solve this problem the right way.

Whatever the problem is, there's always a right way to solve
it. The right way can be known, and it can be implemented. The
only valid reason ever to not implement something the right
way is lack of resources. However, you should always consider
that the right way does exist, you are abl to solve the problem
the right way, and that given enough resources, you would solve
the problem the right way.

The "right way" usually means "the way that accounts for
all reasonably possible future occurrences, even unknown and
unimaginable occurrences."

Chapter 2: The Engineer Attitude

A bridge that could stand up to any reasonably possible
environmental condition or any reasonably possible amount
of traffic without constant maintenance would be built the
"right way."

Software code that maintained its
simplicity while providing the flexibility
needed for reasonably possible future
enhancements would be designed the
"right way."

There are lots of invalid reasons for not solving a problem
the right way:

¢ I don't know the right way. Often this just requires
more understanding or study, to figure out the right
way. When I run into this situation, I walk away from
the problem for a while, and then often I'll come
up with the solution when I'm just out walking, or
the next day when I come back to it. I try not to
compromise on something that isn't the right way
just because I don't know what the right way is yet.

¢ The group cannot agree on what the right way
would be. Sometimes a group of people have argued
about what would be the "right way" and the subject
has gotten very confused. Groups are not very good
at making decisions. As we all know, you don't design
software by committee, and I suspect that "design by
committee" in other fields of engineering is just as

bad.

Page 8

Chapter 2: The Engineer Attitude

The solution here is to assign an experienced and
trusted engineer who understands the basic laws of
the subject you're working in to determine the right
way by himself or herself, probably after carefully
studying the existing arguments and collecting relevant
information, following standard, valid engineering
procedures.

I am too lazy/tired/hungry/discombobulated to
do this the right way, right now. This happens to
everybody from time to time. It's 1 in the morning,
you've been working on the project for 15 hours
straight, and you just need the damn thing to work,
right now! Give it a rest, though, and come back later.
The wortld isn't ending, and the problem will still be
here and solvable later.

Go to sleep, go eat something, take a walk — do
whatever it takes to get into a mental space where
you're willing to solve the problem the right way, and
then come back. If you're in a state where you can't
solve the problem the right way, then it's really time
to take a break.

You're not being delinquent in your duties if you do
so — you're actually correctly taking responsibility for
the success of the project by saying "this needs to be
done right, and the way to do it right, right now, is
to take a break and come back later".

Mostly, it all just takes the constant and continual
belief in yourself that you can solve the problem the
right way.

-Max

Page 9

-~ 3 -~

THE SINGULAR
SECRET OF THE
ROCKSTAR
PROGRAMMER

Before all the laws of software, before the purpose of software,
before the science of software design itself, there is a singular
fact that determines the success or failure of a software
developer:

The better you understand what you are
doing, the better you will do it.

"Rockstat" programmers understand what they are doing
far, far better than average or mediocre programmers. And
that is it.

Chapter 3: The Singular Secret of the Rockstar Programmer

This fact makes the difference between the senior
engineer who can seem to pick up new languages in a day
and the junior developer who struggles for ten years just to
get a paycheck, programming other people's designs and never
improving enough to get a promotion. It differentiates the
poor programmers from the good ones, the good programmers
from the great ones, and the great ones from the "rockstar"
programmers who have founded whole multi-billion dollar
empires on their skill.

As you can see, it isn't anything complicated, and it isn't
something that's hard to know. Nor is it something that you
can only do if you're born with a special talent or a "magical
ability to program well." There is nothing about the nature of
the individual that determines whether or not they will become
an excellent programmer or a poor one:

All you have to do in order to become an

excellent programmer is fully understand
what you are doing.

Some may say that they already understand everything.
The fest is whether or not they can apply it. Do they produce
beautifully architected systems that are a joy to maintain? Do
they plow through programming problems at a rate almost
unimaginable to the average programmer? Do they explain
everything clearly and in simple concepts when they are asked
for help? Then they are an excellent programmer, and they
understand things well.

Page 12

Chapter 3: The Singular Secret of the Rockstar Programmer

However, far more commonly than believing that they
"know it all", many programmers (including myself) often
feel as though they are locked in an epic battle with an
overwhelming sea of information. There is so much to know
that one could literally spend the rest of his life studying and
still come out with only 90% of all the data there is to know
about computers.

The secret weapon in the epic battle, the
Excalibur of computing knowledge, is
understanding.

The better that you understand the wost fundamental level
of your field, the easier it will be to learn the next level. The
better you understand #hat level, the easier the next one after
that will be, and so on. Then once you've gone from the most
fundamental simplicities to the highest complexities, you can
start all over again and find amazingly that there is so much
more to know at the very, very bottom.

It seems almost too simple to be true, but it is in fact the
case. The path to becoming an excellent programmer is simply
full and complete understanding, starting with a profound grasp
of the basics and working up to a solid control of the most
advanced data available.

I won't lie to you — it sometimes is a long path. But it
is worthwhile. And at the end of it, you may find yourself
suddenly the amazing senior engineer who everyone comes
to for advice. You may be the incredible programmer who
solves everything and is admired by all his peers. You might
even come out a "rockstar" with millions of dollars and a
fantastically successful product. Who knows?

Page 13

Chapter 3: The Singular Secret of the Rockstar Programmer

I can't tell you what to do or what to become. I can only
point out some information that I've found to be truthful and
valuable. What you do with it is up to you.

-Max

Page 14

SOFTWARE
DESIGN, IN TWO
SENTENCES

It is possible to reduce the primary principles of software
design into just two statements:

1. It is more important to reduce the Effort of
Maintenance than it is to reduce the Effort of
Implementation.

2. The Effort of Maintenance is proportional to the
complexity of the system.

And that is pretty much 7z

If all you knew about software design were those two
principles, you could evolve every other general principle of
software development.

-Max

— PART TWO —

SOFTWARE COMPLEXITY
AND ITS CAUSES

" 5 o~

CLUES TO
COMPLEXITY

Here are clues that tell you that your code may be too complex:

1. You have to add "hacks" to make things keep working.

2. Other developers keep asking you how some part of
the code works.

3. Other developers keep misusing your code, and
causing bugs.

4. Reading a line of code takes longer than an instant
for an experienced developer.

You feel scared to modify this part of the code.

6. Management seriously considers hiring more than one
developer to work on a single class or file.

7. It's hard to figure out how to add a feature.

Developers often argue about how things should be
implemented in this part of the code.

9. People make utterly nonsensical changes to this part
of the code very often, which you catch only during
code review, or only after the change has been checked
in.

-Max

" 6L/‘/D

WAYS TO CREATE
COMPLEXITY:
BREAK YOUR API

An API is a sort of a promise..."You can always interact with
our program this way, safely and exactly like we said." When
you release a new version of your product that doesn't support
the API from your old version, you're breaking that promise.

Above and beyond any vague philosophical
or moral considerations about this, the
technical problem here is that this creates
complexity.

Where once users of your API only had to call a simple
function, now they have to do a version check against your
application and call one of two different functions depending
on the result. They might have to pass their parameters a totally
different way now, doubling the complexity of their code if they
keep both the old way and the new way around. If you changed
a lot of functions, they might even have to re-work their whole
application just to fit with the way your new API works!

Chapter 6: Ways To Create Complexity: Break Your API

If you break your API several times, their code will just
get more and more and more complicated. Their only other
choice is to break fheir compatibility with old versions of your
product. That can make life extremely difficult for users and
system administrators trying to keep everything in sync. You
can imagine how quickly this could spiral out of control if
every piece of software on your system suddenly broke its API
for interacting with every other piece of software.

For yon, maintaining an old API can be painful, and getting
rid of it can make life so much simpler. But it's not complexity
for you that we're talking about particulatly here, it's complexity
tor other programmers.

The best way to avoid this problem altogether is don't release
bad APIs. Ot, even better (from the uset's perspective), create
some system where you promise to always maintain the old
APIs, but give access to more modern APIs in a different
way. For example, you can always access old versions of the
salesforce.com API merely by using a different URL to interact
with the APIL. Every time you interact with the Salesforce API,
you are in fact specifying exactly what version of the API you
expect to be using. This approach is a lot easier in centralized
applications (like salesforce.com) than in shipping applications,
because shipping applications have to care about code size and
other things. Maintaining old APIs is also very difficult if you
only have a small team of developers, because that maintenance
really takes a lot of time and attention.

Page 22

Chapter 6: Ways To Create Complexity: Break Your API

In any case, releasing an unstable or poor API is going to
cither complicate your life (because you'll then have to maintain
backwards compatibility forever) or the life of your API users
(because they'll have to modify all of their applications to work
with both the "good" and "bad" API versions).

If you choose to break your API and not provide
backwards-compatibility, remember that some API users will
never update their products to use your new API. Maybe they
just don't have the time or resources to update their code.
Maybe they are using a tool that interacts with your product,
but the maintainer of the tool no longer provides updates. In
any case, if the cost of fixing their code is greater than the
value of upgrading to new versions of your product, they could
choose to remain with an old version of your product forever.

That can have a lot of unforeseen consequences, too. First
they keep around an old version of your product. Then they
have to keep around old versions of certain system libraries so
that your product keeps working. Then they can't upgrade their
OS because the old version of your product doesn't work on
the new OS. Then what do they do if some unpatched security
flaw is exploited on their old OS, but they're still tied to your
old product and so can't upgrade their OS? Or some security
flaw in your old product is exploited? All of these situations
are things that you have to take responsibility for when you
choose to break your API.

And yet, having 7o API can lead to the same situation.
People create crazy "hacks" to interact with your system, and
then they can't upgrade because their hacks don't work on the
new version. This is not as bad as breaking your API, because
you never promised anything about the hacks. Nobody has the
right to expect their hacks to keep working.

Page 23

Chapter 6: Ways To Create Complexity: Break Your API

But still, if management orders them to integrate with your
product, those clever programmers will find any possible way
to make it work, even if it sticks them with one version of
your product forever.

So definitely make an API if you have the development
resources to do it. But put a lot of careful thought into
your API design before implementing it. Try actually using it
yourself. Survey your users carefully and find out exactly how
they want to use your API. Generally, do everything in your
power to make the API as stable as possible before it's ever
released. It's not a matter of spending years and yeats on it,
it's just a matter of taking some sensible steps to find out how
the API should really work before it's ever released.

And once it's released, please, please, if you can help it,
don't break the API.

-Max

Page 24

" ; -~

WHEN IS
BACKWARDS-
COMPATIBILITY
NOT WORTH IT?

This title might seem a bit like a contradiction to the previous
chapter...and of course, you really shouldn't break your API,
if you can help it. But sometimes, maintaining backwards
compatibility for any area of your application can lead to a
point of diminishing returns. This applies to everything about
a program, not just its APL

A great example of the backwards-compatibility problem
is Perl. If you read the summaries of the perl5-porters mailing
list, or if you're familiar with the history of the Perl internals
in general, you'll have some idea of what I mean.

Perl is full of support for strange syntaxes that
really, nobody should be using anymore. For example, in
Perl, you're supposed to call methods on an object like
$object->method (). But there's also a syntax called the
"indirect object syntax" where you can do method $object.
Not method ($object) though — only the case without the
parenthesis is the indirect object syntax.

Chapter 7: When Is Backwards-Compatibility Not Worth It?

Really, nobody should be using that syntax, and it's not
that hard to fix applications to call their methods the right way.
And yet that syntax is maintained and supported in the Perl
binary to keep backwards compatibility.

Perl is full of things like this that block forward progress
because of historical problems.

Now obviously, this is a balancing act. When there
are a huge number of people using something, and it would
be really difficult for them to change, you pretty much have
to maintain backwards compatibility. But if maintaining that
backwards-compatibility is really stopping forward progress, you
need to warn people that the "old cruft" is going away and
ditch it.

The alternative is infinite backwards-
compatibility and no forward progress,
which means total death for your product.

This also gives one good reason why you shouldn't just add
features willy-nilly to your program. One day you might have
to support backwards-compatibility for that feature that you added
"because it was easy to add even though it's not very useful."
This is an important thing to think about when adding new
features — are you going to have to support that feature forever,
now that it's in your system? The answer is: you probably are.

If you've never maintained a large system that's used by
lots of people, you might not have a good idea of:

1. How many people can be screwed over if you break
backwards-compatibility, and

2. How much you can screw yourself over by having to
maintain backwards-compatibility.

Page 26

Chapter 7: When Is Backwards-Compatibility Not Worth It?

The ideal solution there is: just don't add features if you
don't want to support them for many, many future versions to
come. Sometimes it takes a lot of programming experience to
make that sort of decision effectively, but you can also just look
at the feature and think, "Is it really so useful that I want to
spend at least 10 hours on it in the next three or four years?"
That's a good estimate of how much effort you're going to
put into backwards-compatibility, QA, and everything else for
even the smallest feature.

Once you've got a feature, then maintaining backwards-
compatibility is generally the thing to do. Bugzilla, a product
I worked on, could, in 2014, still upgrade from version 2.8
— which was released in 7999. But it can do that because
we wrote the upgrader in such a way that old upgrader
code doesn't require any maintenance — that is, we get that
backwards-compatibility for free. We only have to add new code
as time goes on for new versions of Bugzilla, we almost never
have to change old code. Free backwards-compatibility like that
should always be maintained.

The only time you should seriously
consider ditching backwards-compatibility
is when keeping it is preventing you from
adding obviously useful and important
new features.

But when that's the case, you've really got to ditch it.

-Max

Page 27

V/b 8 —

COMPLEXITY IS A
PRISON

Sometimes, I think, people are worried that if they make their
code too simple, then either:

a. Somehow they're not demonstrating how intelligent
they are, or how valuable they are, to their managers, or

b. The project will become so simple to work on that
anybody can just steal their job!

It's almost as though if they actually did their job right,
then they'd lose it. Now, stated that way, that's obviously a
nonsensical viewpoint. But, if you've ever worried about it,
here's something to think about:

What if your code is so complex that
you'll never be able to leave your job?

Chapter 8: Complexity is a Prison

What if you made something so complicated that nobody
else could understand it? Well, then you personally would be
tied to that project forever and ever. If you wanted to work on
some other project at your organization, your managers would
protest, "But who else will maintain this code?" Whoever was
assigned after you to work on your code would constantly be
walking into your new office, saying, "Hey, how does this part
work?"

Maybe you have no conscience, and you'll just leave the
code to some hopeless replacement and ditch the company.
However, I'm guessing that most people would feel tied to a
project if they were sure that nobody else could ever take it
over successfully. And really, even if you just take off and
leave, somebody's going to be calling you up and saying, "Um,
hey, you know that one piece of code where..." You'll get
emails from "the new guy": "Hey, I hear you wrote this code,
and I have this problem..." 1f you can't make somebody else
understand your code and have them truly take it over, then

you're going to be stuck with a piece of that job forever.

In the Bugzilla Project, I did the best I could to work
myself out of a job. I loved working on Bugzilla, but I don't
want to be tied to it every moment of my life. I wanted to go
on vacation sometimes. 1 wanted to write music!

You can still hear my music and songs here by the
way: http://youtube.com/user/imagineeighty and
http://soundcloud.com/mkanat.

Page 30

Chapter 8: Complexity is a Prison

I wanted to be able to leave my computer for a month,
and not have the whole world collapse. So I worked to
make Bugzilla simple enough and well-designed enough that
somebody else could 7ake over the parts 1 worked on, some
day. Maybe then I would go on and work on other things in
Bugzilla, 1 thought to myself, or some other programming
project that I had, or maybe I would go make an album! Who
knew!

I knew I didn't want to be imprisoned
by my own code.

If job security is so important to you that you'd tie yourself
to a single job forever just to get it, then maybe you should
re-evaluate your priorities in life! Otherwise, when you'te
making decisions about your project, one thing to remember
is this:

Complexity is a prison; simplicity is
freedom.

-Max

Page 31

— PART THREE —

SIMPLICITY AND
SOFTWARE DESIGN

" 9 -~

DESIGN FROM
THE START

You really need to design from the start. You need to be working
on simplicity from the very beginning of your project.

My policy on projects that I control is
that we never add a feature unless the
design can support it simply.

This drives some people crazy, notably people who have no
concept of the future. They start to foam at the mouth and
say things like, "We can't wait! This feature is so importand" or
"Just put it in now and we'll just clean it up later!" They don't
realize that this is their #ormal attitude. They'te going to say the
same thing about the next feature.

If you don't think about the future, then
all of your code will be poorly designed
and much too complex.

It'l be Frankenstein's monster, jammed together out of
broken parts. And just like the friendly green giant, it'll be big,
ugly, unstable, and harmful to your health.

Chapter 9: Design from the Start

Now just adding a tiny little piece and refactoring it afterward
is fine. Landing a huge feature that the architecture can't
support and then trying to clean it up afterward is a terrible
task. Size matters.

Starting the Right Way

The worst situation is when you let people keep adding features
with no design for months or years, and then one day you wake
up and realize that something is not right. Now you have to
fix your whole codebase. This is a terrible task, because just like
adding a new feature, it can't be done all at once, unless you
want to re-write.

If you want to start doing things the right way, you have
to start doing things the rght way. And that means that you
have to fix the design piece by piece, in simple steps. That
usually requires months or years of effort — totally wasted
effort, because you should have just designed from the start. You
should have thought about the future.

If your project lacks a strict design,
and it continues to grow, then you will
eventually end up over your head in
complexity.

This doesn't mean you should be designing some huge
generic beast from the start that tries to anticipate all future
requirements and implement them now. It means that you
need to apply the principles of software design as discussed
in this book and Code Simplicity so that you get a system that
is understandable, simple, and maintainable from the start.

-Max

Page 36

S 10 s

THE ACCURACY
OF FUTURE
PREDICTIONS

One thing we know about software design is that the future
is important. However, we also know that the future is very
hard to predict.

I think that I have come up with a theory to explain exactly
how hard it is to predict the future of software.

The most basic version of this theory is:

The accuracy of future predictions
decreases relative to the complexity of
the system and the distance into the
future you are trying to predict.

Chapter 10: The Accuracy of Future Predictions

As your system becomes more and more complex, you
can predict smaller and smaller pieces of the future with any
accuracy. As it becomes simpler, you can predict further and
further into the future with accuracy.

For example, it's fairly easy to predict the behavior of
a "Hello, World" program quite far into the future. It will,
most likely, continue to print "Hello, World" when you run it.
Remember that this is a sliding scale — sort of a probability of
how much you can say about what the future holds. You could
be 99% sure that it will still work the same way two days from
now, but there is still that 1% chance that it won't.

However, after a certain point, even the behavior of "Hello
World" becomes unpredictable. For example, "Hello World" in
Python 2.0 in the year 2000:

print "Hello, World!"

But if you tried to run that in Python 3, it would be a
syntax error. In Python 3 it's:

print ("Hello, World!™")

You couldn't have predicted that in the year 2000, and
there isn't even anything you could have done about it if you
did predict it. With things like this, your only hope is keeping
your system simple enough that you can update it easily to use
the new syntax. Noz "flexible," not "generic," but simply easy o
understand and modify.

Page 38

Chapter 10: The Accuracy of Future Predictions

In reality, there's a more expanded logical sequence to the
rule above:

1. The difficulty of predicting the future increases
relative to the total amount of change that occurs in
the system and its environment across the future one
is attempting to predict. (Note that the effect of the
environment is inversely proportional to its logical
distance from the system. For example, if your system
is about cars, then changes about engines are likely to
affect it, while changes in apple trees are not likely
to affect it.)

2. The amount of change a system will undergo is
relative to the total complexity of that system.

3. Thus: the rate at which prediction becomes difficult
increases relative to the complexity of the system one
is attempting to predict the behavior of.

Now, despite this rule, I want to caution you against basing
design decisions around what you think will happen in the
future. Remember that all of these happenings are probabilities
and that any amount of prediction includes the ability to be
wrong,

When we look only at the present, the data that we have,
and the software system that we have now, we are much more
likely to make a correct decision than if we try to predict
where our software is going in the future. Most mistakes in
software design result from assuming that you will need to do
something (or never do something) in the future.

Page 39

Chapter 10: The Accuracy of Future Predictions

The time that this rule is useful is when you have some
piece of software that you can't easily change as the future goes
on. You can never completely avoid change, but if you simplify
your software down to the level of being stupid, dumb simple
then you're less likely to have to change it. It will probably
still degrade in quality and usefulness over time (because you
aren't changing it to cope with the demands of the changing
environment) but it will degrade more slowly than if it were
very complex.

It's true that ideally, we'd be able to update our software
whenever we like. This is one of the great promises of the web,
that we can update our web apps and websites instantaneously
without having to ask anybody to "upgrade." But this isn't
always true, for all platforms. Sometimes, we need to create
some piece of code (like an API) that will have to stick around
for a decade or more with very little change. In this case, we
can see that if we want it to still be useful far into the future,
our only hope is to simplify. Otherwise, we'te building in a future
unpleasant experience for our users, and dooming our systems
to obsolescence, failure, and chaos.

The funny part about all this is that writing simple software
usually takes /ess work than writing complex software does. It
sometimes requires a bit more thought, but usually less time
and effort overall. So let's take a win for ourselves, a win for
our users, and a win for the future, and keep it as simple as
we reasonably can.

-Max

Page 40

— 11 —

SIMPLICITY AND
STRICTNESS

As a general rule:

The stricter your application is, the
simpler it is to write.

For example, imagine a program that accepts on/y the
numbers 1 and 2 as input and rejects everything else. Even a
tiny variation in the input, like adding a space before or after
"1" would cause the program to throw an error. That would
be very "strict" and extremely simple to write. All you'd have
to do is check, "Did they enter exactly 1 or exactly 2? If not,
throw an error.”

In most situations, though, such a program would be so
strict as to be impractical. If the user doesn't know the exact
format you expect your input in, or if they accidentally hit
the spacebar or some other key when entering a number, the
program will frustrate the user by not "doing what they mean."

Chapter 11: Simplicity and Strictness

That's a case where there is a trade-off between simplicity
(strictness) and usability. Not all cases of strictness have that
trade-off, but many do. If I allow the user to type in 1, One,
or "1" as input, that allows for a lot more user mistakes and
makes life easier for them, but also adds code and complexity
to my program. Less-strict programs often take more code
than strict ones, which is really directly where the complexity
comes from.

By the way, if you're writing frameworks
or languages for programmers, one of
the best things you can do is make this
type of user interface '"'non-strictness' as
simple as possible, to eliminate the trade-
off between usability and complexity, and
let them have the best of both worlds.

Of course, on the other side of things, if I allowed the
user to type in Olnlel and still have that be accepted as "1",
that would just add needless complexity to my code. We have
to be more strict than that.

Strictness is mostly about what input you allow, like the
examples above. I suppose in some applications, you could
have output strictness as well: output that always conforms to
a particular, exact standard. But usually, it's about what input
you accept and what input causes an error.

Page 42

Chapter 11: Simplicity and Strictness

Probably the best-known strictness disaster is HTML. It
wasn't designed to be very strict in the beginning, and as it
grew over the years, processing it became a nightmare for
the designers of web browsers. Of course, it was eventually
standardized, but by that time most of the HTML out there
was pretty horrific, and still is. And because it wasn't strict from
the beginning, now nobody can break backwards compatibility
and make it strict.

Some people argue that HTML is commonly used because
it's not strict. That the non-strictness of its design makes it
popular. That if web browsers had always just thrown an error
instead of accepting invalid HTML, somehow people would
not have used HTML.

That is a patently ridiculous argument. Imagine a
restaurant whetre the waiter could never say, "Oh, we don't
have that" So I ask for a "fresh chicken salad", and I get a
live chicken, because that's "the closest they have." I would get
pretty frustrated with that restaurant. Similarly, if I tell the
web browser to do something, and instead of throwing an
error it tries to guess what I meant, I get frustrated with the
web browser. It can be pretty hard to figure out why my page
"doesn't look right," now.

So why didn't the browser just tell me I'd done something
wrong, and make life easy for me? Well, because HTML is so
un-strict that it's impossible for the web browser to know that
I have done something wrong! It just goes ahead and drops a
live chicken on my table without any lettuce.

Page 43

Chapter 11: Simplicity and Strictness

Granted, I know that at this point that you can't
make HTML strict without "breaking the web." My point is
that we got into that situation because HTML wasn't strict from
the beginning. I'm not saying that it should suddenly become
strict now, when it would be almost impossible. (Though
there's nothing wrong with slowly taking incremental steps in
that direction.)

In general, I am strongly of the opinion that computers
should never "guess" or "try to do their best" with input. That
leads to a nightmare of complexity that can easily spiral out
of control. The only good guessing is in things like Google's
spelling suggestions — where it gives you the ogption of doing
something, but doesn't just go ahead and do something for
you based on that guess. This is an important part of what I
mean by strictness — input is either right or wrong, it's never
a "maybe." If one input could possibly have two meanings,
then you should either present the user with a choice or throw
an errof.

The world of computers is full of things
that should have been strict from the
beginning, and became ridiculously
complex because they weren't.

Page 44

Chapter 11: Simplicity and Strictness

Now, some applications are forced to be non-strict. For
example, anything that takes voice commands has to be pretty
un-strict about how people talk, or it just won't work at all.
But those sorts of applications are the exception. Keyboards
are very accurate input devices, mice slightly less so but still
pretty good. You can require input from those to be in a
certain format, as long as you aren't making life too difficult
for the user.

Of course, it's still important to strive for usability — after
all, computers are here to help humans do things. But you
don't necessarily have to accept every input under the sun
just to be usable. All that does is get you into a maze of
complexity, and good luck finding your way out — they never
strictly standardized on any way to write maps for the maze.

-Max

Page 45

12 —

TWO IS TOO
MANY

Thete is a key rule that I personally operate by when I'm
doing incremental development and design, which I call "two
is too many."

This rule is how I implement the "be only as generic as
you need to be" rule from Code Simplicity.

Essentially, I know how generic my
code needs to be, by noticing that I'm
tempted to cut and paste some code, and
then instead of cutting and pasting it,
designing a generic solution that meets
just those two specific needs.

I do this as soon as I'm tempted to have two implementations
of something. For example, let's say I was designing an audio
decoder, and at first I only supported WAV files. Then 1 wanted
to add an MP3 parser to the code. There would definitely be
common parts to the WAV and MP3 parsing code, and instead
of copying and pasting any of it, I would immediately make a
superclass or utility library that did on/y what I needed for those
two implementations.

Chapter 12: Two is Too Many

The key aspect of this is that I did it right away — I didn't
allow there to be two competing implementations; I immediately
made one generic solution. Another important aspect of this
is that I didn't make it #0 generic — the solution only suppotts
WAV and MP3 and doesn't expect other formats in any way.

There's a further part of the "two is too many" rule that
goes exactly like this:

A developer should ideally never have
to modify one part of the code in a
similar or identical way to how they just
modified a different part of it.

That is, a developer should not have to "remember" to
update Class A when they update Class B. They should not
have to know that if Constant X changes, you have to update
File Y. In other words, it's not just two #uplementations that are
bad, but also two /locations. 1t isn't always possible to implement
systems this way, but it's something to strive for.

If you find yourself in a situation where you have to have
two locations for something, make sure that the system fails
loudly and visibly when they are not "in sync." Compilation
should fail, a test that always gets run should fail, etc. It should
be impossible to let them get out of sync.

And of course, the simplest part of the "two is too many"
rule is the classic principle: "Don't Repeat Yourself." So don't
have two constants that represent the same exact thing, don't
have two functions that do the same exact thing, etc.

Page 48

Chapter 12: Two is Too Many

There are likely other ways that this rule applies. The
general idea is that when you want to have two implementations
of a single concept, you should somehow make that into a
single implementation instead.

Refactoring

When refactoring, this rule helps find things that could be
improved and gives some guidance on how to go about it.
When you see duplicate logic in the system, you should attempt
to combine those two locations into one. Then if there is
another location, combine that one into the new generic system,
and proceed in that manner.

That is, if there are many different implementations that
need to be combined into one, you can do incremental
refactoring by combining two implementations at a time, as
long as combining them does actually make the system simpler
(easier to understand and maintain). Sometimes you have to
figure out the best order in which to combine them to make
this most efficient, but if you can't figure that out, don't worry
about it — just combine two at a time and usually you'll wind
up with a single good solution to all the problems.

It's also important #of to combine things when they
shouldn't be combined. There are times when combining two
implementations into one would cause more complexity for
the system as a whole or violate the Single Responsibility
Principle, which states that any given module, class, or function
should represent only ome concept in the system.

Page 49

Chapter 12: Two is Too Many

For example, if your system's representation of a Car
and a Person have some slightly similar code, don't solve this
"problem" by combining them into a single CatPerson class.
That's not likely to dectease complexity, because a CarPerson
is actually two different things and should be represented by two
separate classes.

"Two is Too Many" isn't a hard and fast law of the
universe — it's more of a strong guideline that I use for making
judgments about design as I develop incrementally. However,
it's quite useful in refactoring a legacy system, developing a new
system, and just generally improving code simplicity.

-Max

Page 50

— 13 —

SANE SOFTWARE
DESIGN

I have come up with an analogy that should make the basic
principles of software design understandable to everybody.
The great thing about this analogy is that it covers basically
everything there is to know about software design.

Imagine that you are building a structure out of lead bars.
The final structure will look like this:

You have to build the structure and put it up at a certain
location, so that people can use it for something.

Chapter 13: Sane Software Design

The lead bars represent the individual pieces of your
software. Putting it up at the location is like putting your
software into production (or sending it out to your users).
Everything else should be fairly clear as to how it translates
to software, if you think about it. You don't have to translate
everything to software in your mind as you read, though.
Everything should be quite clear if you just imagine that you
really are just building a structure out of lead bars.

The Wrong Way

Imagine that you were building this all by yourself, and that
you had to make the bars yourself out of raw metal. Here's
the wrong way to build it:

1. Make one tall lead bar, and lay it flat on the ground
in your workshop:

2. Cut a hole through the tall bar, and measure that hole.

3. Make a new bar that will fit through that hole:

Page 52

Chapter 13: Sane Software Design

4. Put that new bar through the hole and weld them
together permanently:

5. Cut two holes in the horizontal bar, measure them,
and make two new lead bars that will fit in those
individual holes:

6. Insert the two bars into the horizontal bar, and weld
them together permanently:

7. With a forklift, put this into a truck to move it to the
location where it's supposed to be. (It's too heavy to
move by yourself.)

8. With a pulley, make the construction stand upright
and put it into the ground.

Page 53

Chapter 13: Sane Software Design

10.

11.

12.
13.

14.

15.

Page 54

Discover that it won't stay up by itself, but if you put
some blocks next to it as an emergency solution, it
doesn't fall over:

Three days later, watch the structure fall over and
break because the blocks aren't actually a permanent
solution.

Unfortunately, part of the horizontal bar has snapped,
and you have to fix it. This is difficult because the
bars are all welded together, so you can't easily take
out the bar and replace it with another one. You either
have to build a whole new structure or weld together
the broken bar. Welding the broken halves together
creates a weak bond, but it's cheaper than building a
whole new structure, so you just weld them.

Put stronger blocks next to the structure to keep it up.

Next week, the weather breaks the welded bars. Weld
them back together again.

In six days, watch the structure fall over because
blocks are not a permanent solution.

Repeat the last few steps until you run out of money
or time.

Chapter 13: Sane Software Design

Analysis of The Wrong Way

So, what was good about the above process? Well, it did allow
one person to successfully complete a structure. In software
terms, that one person "made something that works." It also
created a lot of work for one person, which is good if that
one person wanted a lot of work.

What was bad about it?

¢ The bars all had to be custom made in sequence,
individually.

¢ Problems with the final structure (that it wouldn't stay
up) were only discovered after it was entirely built
and in place.

¢ When problems were discovered, they were just "quick
fixed" without planning for the future.

¢ It took enormous effort to move the completed
structure into place.

¢ If we ever had to change the configuration of the
bars, we couldn't, because they'te welded together.
We'd have to build a whole new structure.

¢ The completed structure requires frequent attention.

And I'm sute we could come up with other faults. This
whole analogy (including the parts below) could be analyzed
all day.

Page 55

Chapter 13: Sane Software Design

Bringing It To a Group

The biggest problem with the Wrong Way process is that it
wouldn't work a7 a/l if there were multiple people working on
the project (as there usually are in real-world software projects).
The main problem is that you had to measure all the holes
before you built a bar, so everything had to be done by one

person, in order.

2.

Page 56

There are, generally, two ways to solve this problem:

Write a specification for the sizes of all the individual
holes beforehand, and then spread out the work of
making all the different bars for each hole.

This is problematic because one person has to write
this specification, and if this were a large project
(imagine thousands of holes instead of just three or
four), it would take a lot of time. Nobody else on
the team can be working until the specification is
completed. The spec could be full of mistakes — there
are as many chances for mistakes as there are holes
specified, so if there are thousands of holes, that's a
lot of chances for errors to be made.

Just say, "All bar holes will always be the same size
and in the same places on the bars. Bars can be
screwed together." Then set everybody to making
bars with standardized holes (or go buy them from
the store).

That is simple, and it gets everybody working at once.
Because you've standardized your bars, you've lost a
little flexibility in dealing with any special cases that
come up (maybe a half-width hole would be more
useful in some part of the structure).

Chapter 13: Sane Software Design

However, you should be able to build a decent
structure entirely with standard holes, so that's not too
much of a problem. And when you have a standard,
you can make specific exceptions in some places more
easily than if things are not standardized.

Of course, with this method it is very important that
you do a little research to pick a good hole size and
good bars.

This doesn't solve all of the problems of the wrong way,
but it starts to put us on the track of solving the problem
the right way.

The Right Way

So, what would our process look like for many people all using
standardized bars that screw together? (This is the right way
to build something.)

1. Have your team all go build (or buy) standardized
individual bars. You can have as many people working
simultaneously as there are bars in the structure.

2. Have them test theit individual bars to make sure that
they won't break.

3. Have them carry their individual bars to the place
where the structure needs to be.

4. Put the first bar into the ground, standing upright:

Page 57

Chapter 13: Sane Software Design

10.

Page 58

Push on the first bar from all angles to see if it is
going to fall over.

Screw in a second bar to the first one:

Test the complete structure now, only to find that it's
not strong enough to stand by itself.

Attach unbreakable steel ropes to the sides of the
structure, like so:

/1IN
/1N

These ropes should be able to withstand anything
within reason, or even well beyond reason.

Test it again and find out that it now can stay up no
matter how hard you push on it.

Add a third bar, and put new ropes on so that it
looks like this:

/ 1\
/7 1A\
/71 A\

Chapter 13: Sane Software Design

11. Remove the lower ropes:
/1IN
/1A
/A

(Anybody who's been involved in a large refactoring
project can remember doing a lot of things that sound
Just like these last two steps.)

12. Test it again.

13. Continue these steps until you have a completed
structure:

/1A

14. When a pipe breaks in three months, figure out what
was wrong with that pipe, fix the problem, and replace
it with a new pipe that fits into the same holes. The
structure is just as strong as it was before.

15. Continue the above process until you no longer have

to pay attention to the structure and it just stays up
all by itself.

16. Adjust the structure as necessary for the changing
requirements of the users of the structure, which is
easy because the holes are all standardized.

Page 59

Chapter 13: Sane Software Design

We followed all the Laws Of
Software Design

¢ We thought about the future. We did that for the
entire process, but we particularly did it when we put
on unbreakable steel ropes that would last no matter
what happened in the future.

Also note that we didn't try to predict the future, we
just followed our principles so that no matter what
happened, our structure was going to stay together
and be easy to build.

¢ We allowed for change by screwing the bars together
instead of welding them. We also put standardized
holes in all the bars, even if we didn't need them, in
case we needed to add more bars in the future.

¢ In every step of creating the structure, we kept our
changes small and tested everything as we went.
Creating each individual bar was a small task, and we
put them together in small steps.

¢ And of course, the most important decision we
made was to keep it simple by making all the holes
consistent and standard, and keeping each piece small
and simple.

Whether you are one person or a thousand, whether your
project is 10 lines of code or 10 million, translate this process
and those principles into software development, and it will
work.

-Max

Page 60

— PART FOUR —

DEBUGGING

14 —
WHAT IS A BUG?

Okay, most programmers know the story — way back when,
somebody found an actual insect inside a computer that was
causing a problem. (Actually, apparently engineers have been
calling problems "bugs" since eatlier than that, but that story
is fun.)

But really, when we say "bug" what
exactly do we mean?

Here's the precise definition of what constitutes a bug:

1. The program did not behave according to the
programmer's intentions, or

2. The programmer's intentions did not fulfill common
and reasonable user expectations.

So usually, as long as the program is doing what the
programmer intended it to do, it's working correctly. Sometimes
what the programmer intended it to do is totally surprising to
a user and causes him some problem, so that's a bug,

Anything else is a new feature. That is, if the program does
exactly what was intended in exactly the expected fashion, but
it doesn't do enough, that means it needs a new "feature." That's
the difference between the definition of "feature" and "bug."

Chapter 14: What is a Bug?

Note that hardware can have bugs too. The programmer's
intention is rarely "the computer now explodes." So if the
programmer writes a program and the computer explodes,
that's probably a bug in the hardware. There can be other, less
dramatic bugs in the hardware, too.

Essentially, anything that causes the programmert's intentions
to not be fully carried out can be considered a bug, unless the
programmer is trying to make the computer do something it
wasn't designed to do.

For example, if the programmer tells the computer "take
over the world" and it wasn't designed to be able to take over
the wortld, then the computer would need a new "take over the
world" feature. That wouldn't be a bug.

Hardware

With hardware, you also have to think about the bardware
designer's intentions, and common and reasonable programmer
expectations. At that level, software programmers are actually
the main "users", and hardwate designers are the people whose
intentions we care about.

Of course, we also care about the normal uset's expectations,
especially for hardware that users interact with directly like
printers, monitors, keyboards, etc.

-Max

Page 64

Vﬂlsvm

THE SOURCE
OF BUGS

Where do bugs come from? Could we narrow down the cause
of all bugs to just one source or a few? As it turns out, we can.

Bugs most commonly come from
somebody's failure to reduce complexity.
Less commonly, they come from a
misunderstanding of something that was
actually simple.

Other than typos, I'm pretty sure that those two things
are the source of all bugs, though I haven't yet done extensive
research to prove it.

When something is complex, it's far too easy to misuse it.
If there's a black box with millions of unlabeled buttons on
it, and 16 of them blow up the wotld, somebody's going to
blow up the wotld. Similarly, in programming, if you can't easily
understand the documentation of a language, or the actual
language itself, you're going to misuse it somehow.

Chapter 15: The Source of Bugs

There's no right way to use a box with millions of unlabeled
buttons, really. You could never figure it out, and even if you
wanted to read the 1000-page manual, you probably couldn't
remember the whole thing well enough to use the box correctly.
Similarly, if you make anything complex enough, people are
more likely to use it wrongly than to use it correctly. If you
have 50, 100, or 1000 of these complex parts all put together,
they'll never work right, no matter how brilliant an engineer
puts them together.

So do you start to see here where bugs
come from? Every time you added some
complexity, somebody (and '"somebody"
could even be you, yourself) was more
likely to misuse your complex code.

Every time it wasn't ¢rystal clear exactly what should be
done and how your code should be used, somebody could
have made a mistake. Then you put your code together with
some other code, and there was another chance for mistakes
or misuse. Then we put more pieces together, etc.

Compounding Complexity

Often, this sort of situation happens: the hardware designer
made the hardware really complicated. So it had to have a
complicated assembly language. This made the programming
language and the compiler really complicated. By the time you
got on the scene, you had no hope of writing bug-free code
without ingenious testing and design. And if your design was
less than perfect, well...suddenly you have lots of bugs.

Page 66

Chapter 15: The Source of Bugs

This is also a matter of understanding the viewpoint of
other programmers. After all, something might be simple to
_you, but it might be complex to somebody who isn't you.

If you want to understand the viewpoint of somebody who
doesn't know anything about your code, find the documentation
of a library that you've never used, and read it.

Also, find some code you've never read, and read it. Try
to understand not just the individual lines, but what the whole
program is doing and how you would modify it if you had to.
That's the same experience people are having reading your code.
You might notice that the complexity doesn't have to get very
high before it becomes frustrating to read other people's code.

Now, once in a while, something is really simple, and the
programmer just misunderstood it. That's another thing to
watch for. If you catch a programmer explaining something to
you in a way that makes no sense, perhaps that programmer
misunderstood something somewhere along the line. Of course,
if the thing he was studying was extremely complex, he had
basically no hope of fully understanding it without a PhD in
that thing.

So these two things are very closely related. When you write
code, it's partially your responsibility that the programmer who
reads your code in the future understands it, and understands
it easily. Now, he could have some critical misunderstanding —
maybe he never understood what "if" meant. That's not your
responsibility.

Your responsibility is writing clear code, with the
expectation that the future programmer reading your code
understands the basics of programming and the language
you'te using.

Page 67

Chapter 15: The Source of Bugs

So, there are a couple of interesting rules that we can
conclude here:

1. The simpler your code is, the fewer bugs you will
have.

2. Always work to simplify everything about your
program.

-Max

Page 68

— 16 —

MAKE IT NEVER
COME BACK

When solving a problem in a codebase, you're not done
when the symptoms stop. You're done when the problem has
disappeared and will never come back.

It's very easy to stop solving a problem when it no longer
has any visible symptoms. You've fixed the bug, nobody is
complaining, and there seem to be other pressing issues. So
why continue to do wotk on it? It's fine for now, right? No.

Remember that what we catre about the
most in software is the future.

The way that software companies get into unmanageable
situations with their codebases is not really handling problems
until they are done.

Chapter 16: Make It Never Come Back

This also explains why some organizations cannot get their
tangled codebase back into a good state. They see one problem
in the code, they tackle it until nobody's complaining anymore,
and then they move on to tackling the next symptom they
see. They don't put a framework in place to make sure the
problem is never coming back. They don't trace the problem
to its source and then make it panish. Thus their codebase never
really becomes "healthy."

This pattern of failing to fully handle problems is very
common. As a result, many developers believe it is impossible
for large softwate projects to stay well-designed — they say, "All
software will eventually have to be thrown away and re-written."

This is not true. I have spent most of my career either
designing sustainable codebases from scratch or refactoring bad
codebases into good ones. No matter how bad a codebase is,
you can resolve its problems. However, you have to understand
software design, you need enough manpower, and you have to
handle problems until they will never come back.

In general, a good guideline for how resolved a problem
has to be is:

A problem is resolved to the degree that
no human being will ever have to pay
attention to it again.

Page 70

Chapter 16: Make It Never Come Back

Accomplishing this in an absolute sense is impossible — you
can't predict the entire future, and so on — but that's more of
a philosophical objection than a practical one. In most practical
circumstances you can effectively resolve a problem to the
degree that nobody has to pay attention to it now and there's
no immediately-apparent reason they'd have to pay attention
to it in the future either.

Make it Never Come Back — An Example

Let's say you have a web page and you write a "hit counter"
for the site that tracks how many people have visited it. You
discover a bug in the hit counter — it's counting 1.5 times as
many visits as it should be counting. You have a few options
for how you could solve this:

1. You could ignore the problem.

The rationale here would be that your site isn't very
popular and so it doesn't matter if your hit counter is
lying. Also, it's making your site look more successful
than it is, which might help you.

The reason this is a bad solution is that there are
many future scenarios in which this could again
become a problem — particularly if your site becomes
very successful. For example, a major news publication
publishes your hit numbers — but they are false. This
causes a scandal, your users lose trust in you (after
all, you knew about the problem and didn't solve it)
and your site becomes unpopular again. One could
easily imagine other ways this problem could come
back to haunt you.

Page 71

Chapter 16: Make It Never Come Back

Page 72

You could hack a quick solution.

When you display the hits, just divide them by 1.5
and the number is accurate. However, you didn't
investigate the underlying cause, which turns out to
be that it counts 3x as many hits from 8:00 to 11:00
in the morning. Later your traffic pattern changes and
your counter is completely wrong again. You might
not even notice for a while because the hack will make
it harder to debug.

Investigate and resolve the underlying cause.

You discover it's counting 3x hits from 8:00 to 11:00.
You discover this happens because your web server
deletes many old files from the disk during that time,
and that interferes with the hit counter for some
reason.

At this point you have another opportunity to hack
a solution — you could simply disable the deletion
process or make it run less frequently. But that's not
really tracing down the underlying cause. What you
want to know is, "Why does it miscount just because
something else is happening on the machine?"

Investigating further, you discover that if you interrupt
the program and then restart it, it will count the last
visit again. The deletion process was using so many
resources on the machine that it was interrupting the
counter two times for every visit between 8:00 and
11:00. So it counted every visit three times during
that period. But actually, the bug could have added
infinite (or at least unpredictable) counts depending
on the load on the machine.

Chapter 16: Make It Never Come Back

You redesign the counter so that it counts reliably
even when interrupted, and the problem disappears.

-~

Obviously the right choice from that list is to investigate
the underlying cause and resolve it. That causes the problem
to vanish, and most developers would believe they are done
there. However, there's still more to do if you really want to
be sure the problem will never again require human attention.

First off, somebody could come along and change the
code of the hit counter, reverting it back to a broken state in
the future. Obviously the right solution for that is to add an
automated test that assures the correct functioning of the hit
counter even when it is interrupted. Then you make sure that
test runs continuously and alerts developers when it fails. Now
you're done, right?

Nope. Even at this point, there are some future risks that
have to be handled.

The next issue is that the test you've written has to be
easy to maintain. If the test is hard to maintain — it changes
a lot when developers change the code, the test code itself is
cryptic, it would be easy for it to return a false positive if the
code changes, etc. — then there's a good chance the test will
break or somebody will disable it in the future.

Page 73

Chapter 16: Make It Never Come Back

Then the problem could again require human attention.
So you have to assure that you've written a maintainable test,
(see Chapter 32, The Philosophy of Testing), and refactor the test
if it's not maintainable. This may lead you down another path
of investigation into the test framework or the system under
test, to figure out a refactoring that would make the test code
simpler.

After this you have concerns like the continuous integration
system (the test runner) — is it reliable? Could it fail in a way
that would make your test require human attention? This could
be another path of investigation.

All of these paths of investigation may turn up other
problems that then have to be traced down to zheir sources,
which may turn up more problems to trace down, and so on.
You may find that you can discover (and possibly resolve)
all the major issues of your codebase just by starting with a
few symptoms and being very determined about tracing down
underlying causes.

Does anybody really do this? Yes. It might seem difficult
at first, but as you resolve more and more of these underlying
issues, things really do start to get easier and you can move
faster and faster with fewer and fewer problems.

Page 74

Chapter 16: Make It Never Come Back

Down the Rabbit Hole

Beyond all of this, if you really want to get adventurous, there's
one more question you can ask: why did the developer write
buggy code in the first place? Why was it possible for a bug
to ever exist? Is it a problem with the developer's education?
Was it something about their process? Should they be writing
tests as they go? Was there some design problem in the system
that made it hard to modify? Is the programming language too
complex? Are the libraries they're using not well-written? Is the
operating system not behaving well? Was the documentation
unclear?

Once you get your answer, you can ask what the underlying
cause of #hat problem is, and continue asking that question until
you're satisfied. But beware: this can take you down a rabbit
hole and into a place that changes your whole view of software
development. In fact, theoretically this system is unlimited, and
would eventually result in resolving the underlying problems
of the entire software industry. How far you want to go is
up to you.

-Max

Page 75

Vm17vm

THE
FUNDAMENTAL
PHILOSOPHY OF
DEBUGGING

Sometimes people have a very hard time debugging. Mostly,
these are people who believe that in order to debug a system,
you have to think about it instead of /lwoking at it.

Let me give you an example of what I mean. Let's say you
have a web server that is silently failing to serve pages to users
5% of the time. What is your reaction to this question: "Why?"

Do you immediately try to come up with some answer?
Do you start guessing? If so, you are doing the wrong thing,
The right answer to that question is: "I don't know." And
this gives us the first step to successful debugging:

When you start debugging, realize that
you do not already know the answer.

Chapter 17: The Fundamental Philosophy of Debugging

It can be tempting to think that you already know the
answer. Sometimes you can guess and you're right. It doesn't
happen very often, but it happens often enough to trick
people into thinking that guessing the answer is a good method
of debugging.

However, most of the time, you will spend hours, days,
or weeks guessing the answer and trying different fixes with
no result other than complicating the code. In fact, some
codebases are full of "solutions" to "bugs" that are actually
just guesses — and these "solutions" are a significant source of
complexity in the codebase.

Actually, as a side note, I'll tell you an interesting principle.
Usually, if you've done a good job of fixing a bug, you've
actually caused some part of the system to go away, become
simpler, have better design, etc. as part of your fix. I'll probably
go into that more at some point, but for now, there it is. Very
often, the best fix for a bug is a fix that actually deletes code
or simplifies the system.

But getting back to the process of debugging itself, what
should you do? Guessing is a waste of time, imagining reasons
for the problem is a waste of time — basically most of the
activity that happens iz your mind when first presented with the
problem is a waste of time. The only things you have to do
with your mind are:

1. Remember what a working system behaves like.

2. Figure out what you need to look at in order to get
more data.

Page 78

Chapter 17: The Fundamental Philosophy of Debugging

Because you see, this brings us to the most important
principle of debugging:

Debugging is accomplished by gathering
data until you understand the cause of
the problem.

The way that you gather data is, almost always, by /oking
at something. In the case of the web server that's not serving
pages, perhaps you would look at its logs. Or you could try to
reproduce the problem so that you can look at what happens
with the server when the problem is happening. This is why
people often want a "reproduction case" (a series of steps that
allow you to reproduce the exact problem) — so that they can
look at what is happening when the bug occurs.

Clarify the Bug

Sometimes the first piece of data you need to gather is what
the bug actually is. Often users file bug reports that have
insufficient data. For example, let's say a user files the bug,
"When I load the page, the web server doesn't return anything."

That's not sufficient information. What page did they try
to load? What do they mean by "doesn't return anything?" Is
it just a white page? You might assame that's what the user
meant, but very often your assumptions will be incorrect. The
less experienced your user is as a programmer or computer
technician, the less well they will be able to express specifically
what happened without you questioning them. In these cases,
unless it's an emergency, the first thing that I do is just send
the user back specific requests to clarify their bug report, and
leave it at that until they respond. I don't look into it az all
until they clarify things.

Page 79

Chapter 17: The Fundamental Philosophy of Debugging

If T did go off and try to solve the problem before I
understood it fully, I could be wasting my time looking into
random corners of the system that have nothing to do with any
problem at all. It's better to go spend my time on something
productive while 1 wait for the user to respond, and then when
1 do have a complete bug report, to go research the cause of
the now-understood bug.

As a note on this, though, don't be rude or unfriendly to
users just because they have filed an incomplete bug report.
The fact that you know more about the system and they know
less about the system doesn't make you a superior being who
should look down upon all users with disdain from your high
castle on the shimmering peak of Smarter-Than-You Mountain.
Instead, ask your questions in a kind or straightforward manner
and just get the information. Bug filers are rarely intentionally
being stupid — rather, they simply don't know and it's part of
your job to help them provide the right information. If people
frequently don't provide the right information, you can even
include a little questionnaire or form on the bug-filing page
that makes them fill in the right information. The point is to
be helpful to them so that they can be helpful to you, and so
that you can easily resolve the issues that come in.

Look at the System

Once you've clarified the bug, you have to go and look at
various parts of the system. Which parts of the system to look
at is based on your knowledge of the system. Usually it's logs,
monitoring, error messages, core dumps, or some other output
of the system. If you don't have these things, you might have
to launch or release a new version of the system that provides
the information before you can fully debug the system.

Page 80

Chapter 17: The Fundamental Philosophy of Debugging

Although that might seem like a lot of work just to fix a
bug, in reality it often ends up being faster to release a new
version that provides sufficient information than to spend your
time hunting around the system and guessing what's going on
without information. This is also another good argument for
having fast, frequent releases — that way you can get out a
new version that provides new debugging information quickly.
Sometimes you can get a new build of your system out to just
the user who is experiencing the problem, too, as a shortcut
to get the information that you need.

Now, remember above that I mentioned that you have to
remember what a working system looks like? This is because
there is another principle of debugging:

Debugging is accomplished by comparing
the data that you have to what you know

the data from a working system should
look like.

When you see a message in a log, is that a normal message
ot is it actually an error? Maybe the log says, "Warning: all the
user data is missing." That looks like an error, but really your
web server prints that every single time it starts. You have to
know that a working web server does that. You're looking for
behavior or output that a working system does not display.

Also, you have to understand what these messages mean.
Maybe the web server optionally has some user database that
you aren't using, which is why you get that warning — because
you zntend for all the "user data" to be missing,

Page 81

Chapter 17: The Fundamental Philosophy of Debugging

Find the Real Cause

Eventually you will find something that a working system does
not do. You shouldn't immediately assume you've found the
cause of the problem when you see this, though. For example,
maybe it logs a message saying, "Error: insects are eating all
the cookies." One way that you could "fix" that behavior would
be to delete the log message. Now the behavior is like normal,
right? No, wrong — the actual bug is still happening.

That's a pretty stupid example, but people do less-stupid
versions of this that don't fix the bug. They don't get down
to the basic cause of the problem, as I explain in Chapter 16,
Make It Never Come Back. Instead they paper over the bug with
some workaround that lives in the codebase forever and causes
complexity for everybody who works on that area of the code
from then on.

It's not even sufficient to say "You will know that you have
found the real cause because fixing that fixes the bug." That's
pretty close to the truth, but a closer statement is:

"You will know that you have found a
real cause when you are confident that
fixing it will make the problem never
come back."

This isn't an absolute statement — there is a sort of scale
of how "fixed" a bug is. A bug can be more fixed or less
fixed, usually based on how "deep" you want to go with your
solution, and how much time you want to spend on it. Usually
you'll know when you've found a decent cause of the problem
and can now declare the bug fixed — it's pretty obvious. But I
wanted to warn you against papering over a bug by eliminating
the symptoms but not handling the cause.

Page 82

Chapter 17: The Fundamental Philosophy of Debugging

And of course, once you have the cause, you fix it. That's
actually the simplest step, if you've done everything else right.

Four Steps
So basically this gives us four primary steps to debugging:
1. Familiarity with what a working system does.

2. Accepting that you don't already know the cause of
the problem.

3. Looking at data until you know what causes the
problem.

4. Fixing the cause and not the symptoms.

This sounds pretty simple, but I see people violate this
formula all the time. In my experience, 7ost programmers, when
faced with a bug, want to sit around and think about it or talk
about what might be causing it — both forms of guessing.

It's okay to talk to other people who might have information
about the system or advice on where to look for data that
would help you debug. But sitting around and collectively guessing
what could cause the bug isn't really any better than sitting
around and doing it yourself, except perhaps that you get to
chat with your co-workers, which could be good if you like
them. Mostly though what you're doing in that case is wasting a
bunch of people's time instead of just wasting your own time.

So don't waste people's time, and don't
create more complexity than you need
to in your codebase. This debugging
method works. It works every time, on
every codebase, with every system.

Page 83

Chapter 17: The Fundamental Philosophy of Debugging

Sometimes the "data gathering" step is pretty hard,
particularly with bugs that you can't reproduce. But at the
worst, you can gather data by looking at the code and trying
to see if you can se¢ a bug in it, or draw a diagram of how the
system behaves and see if you can perceive a problem there.
I would only recommend that as a last resort, but if you have
to, it's still better than guessing what's wrong or assuming you
already know.

Sometimes, it's almost magical how a bug resolves just by
looking at the right data until you &now. Try it for yourself and
see. It can actually be fun, even.

-Max

Page 84

— PART FIVE —

ENGINEERING IN TEAMS

— 18 —

EFFECTIVE
ENGINEERING
PRODUCTIVITY

Often, people who work on engineering productivity either
come into conflict with the developers they are attempting to
help, or spend a long time working on some project that ends
up not mattering because nobody actually cares about it.

This comes about because the problem that you see that
a development team has is not necessarily the problem that
they know exists. For example, you could come into the team
and see that they have hopelessly complex code and so they can't
write good tests or maintain the system easily. However, the
developers aren't really aware that they have complex code ot
that this complexity is causing the trouble that they are having,
What they are aware of is something like, "we can only release
once a month and the whole team has to stay at work until
10:00 PM to get the release out on the day that we release.”

Chapter 18: Effective Engineering Productivity

When engineering productivity workers encounter this
situation, some of them just try to ignore the developers'
complaints and just go start refactoring code. This doesn't really
work, for several reasons. The first is that both management
and some other developers will resist you, making it more
difficult than it needs to be to get the job done.

But if just simple resistance were the problem, you could
overcome it. The real problem is that yox will become unreal
and irrelevant to the company, even if you're doing the best job
that anybody's ever seen. Your management will try to dissuade
you from doing your job, or even try to get rid of you. When
you're already tackling technical complexity, you don't need to
also be tackling a whole company that's opposed to you.

In time, many engineering productivity workers develop
an adversarial attitude toward the developers that they are
working with. They feel that if the engineers would "just use
the tool that I wrote" then surely all would be well. But the
developers aren't using the tool that you wrote, so why does
your tool even matter?

The problem here is that when you start off ignoring
developer complaints (or don't even find out what problems
developers think they have) that's a/ready inherently adversarial.
That is, it's not that everything started off great and then
somehow became this big conflict. It actually started off with
a conflict, by you thinking that there was one problem, and the
developers thinking there was a different problem.

And it's not just that the company will be resistive —
this situation is also highly demoralizing to the individual
engineering productivity worker. In general, people like to get
things done. They like for their work to have some result, to
have some ¢ffect.

Page 88

Chapter 18: Effective Engineering Productivity

If you do a bunch of refactoring but nobody maintains
the code's simplicity, or you write some tool/framework that
nobody uses, then ultimately you'te not really doing anything,
and that's disheartening.

So What Should You Do?

So what should you do? Well, we've established that if you simply
disagree with (or don't know) the problem that developers
think they have, then you'll most likely end up frustrated,
demoralized, and possibly even out of a job. So what's the
solution? Should you just do whatever the developers tell you
to do? After all, that would probably make them happy and
keep you employed and all that.

Well, yes, you will accomplish that (keeping your job and
making some people happy)...well, maybe for a little while.
You see, this approach is actually very shortsighted. If the
developers you are working with knew exactly how to resolve
the situation they are in, it's probable that they would never
have gotten themselves into it in the first place.

That isn't always true — sometimes you're working with a
new group of people who have taken over an old codebase,
but in that case then usually this new group is the "productivity
worker" that I'm talking about, or maybe you are one of these
new developers. Or some other situation. But even then, if
you only provide the solutions that are suggested to you, you'll
end up with the same problems that I describe in Chapter 40,
Users Have Problems, Developers Have Solutions. That is, when you
work in developer productivity, the developers are your users.

Page 89

Chapter 18: Effective Engineering Productivity

You can't just accept any suggestion they have for how you
should implement your solutions. It might make some people
happy for a little while, but you end up with a system that's
not only hard to maintain, it also only represents the needs
of the loudest users — who are probably not the majority of
your usets.

So then you have a pootly-designed system that doesn't
even have the features its actual users want, which once again
leads to you not getting promoted, being frustrated, etc. Also,
there's a particular problem that happens in this space with
developer productivity. If you only provide the solutions that
developers specify, you usually never get around to resolving
the actual underlying problems.

For example, if the developers think the release of their
10-million-lines-of-code monolithic binary is taking too long,
and you just spend all your time making the release tools faster,
you'te never going to get to a good state. You might get to a
better state (somewhat faster releases) but you'll never resolve the
real problem, which is that the binary is just too damn large.

The Solution

So what, then? Not doing what they say means failing, and
doing what they say means only mediocte success. Whete's the
middle ground here?

The correct solution here is similar to what I discuss in
Chapter 40, Users Have Problems, Developers Have Solutions, but
it has a few extra pieces. Using this method, I have not only
solved significant underlying problems in vast codebases, I
have actually changed the development culture of significant
engineering organizations. So it works pretty well, when done
correctly.

Page 90

Chapter 18: Effective Engineering Productivity

The first thing to do is to find out what problems the
developers think they have. Don't make any judgments. Go
around and talk to people. Don't just ask the managers or
the senior executives. They usually say something completely
different from what the real software engineers say.

Go around and talk to a lot of people who work directly
on the codebase. If you can't get everybody, get the technical
lead from each team. And then yes, also do talk to the
management, because they also have problems that you want
to address and you should understand what those are. But if
you want to solve develgper problems, you have to find out what
those problems are from developers.

There's a trick that I use here during this phase. In general,
developers aren't very good at saying where code complexity
lies if you just ask them directly. Like, if you just ask, "What
is too complex?" or "What do you find difficult?", they will
think for a bit and may or may not come up with anything.

But if you ask most developers for an emotional reaction to
the code that they work on or work with, they will almost alvays
have something. I ask questions like, "Is thete some part of
your job that you find really annoying?" "Is thete some piece
of code that's always been frustrating to work with?" "Is there
some part of the codebase that you're afraid to touch because
you think you'll break it?" And to managers, "Is there some part
of the codebase that developers are always complaining about?"

You can adjust these questions to your situation, and
remember that you want to be having a real conversation with
developers — not just robotically reading off a list of questions.
They are going to say things that you're going to want motre
specifics on. You'll probably want to take notes, and so forth.

Page 91

Chapter 18: Effective Engineering Productivity

After a while of doing this, you'll start to get the idea that
there is a common theme (or a few common themes) between
the complaints. If you've read my other book, Code Simplicity, ot
if you've worked in engineering productivity for a while, you'l
usually realize that the real underlying cause of the problems
is some sort of code complexity.

But that's not purely the theme we're looking for — we
could have figured that out without even talking to anybody.
We're looking for something a bit higher level, like "building the
binary is slow." Thete might be several themes that come up.

Now, you'll have a bunch of data, and there are a few
things you can do with it. Usually engineering management will
be interested in some of this information that you've collected,
and presenting it to them will make you real to the managers
and hopefully foster some agreement that something needs to
be done about the problem. That's not necessary to do as part
of this solution, but sometimes you'll want to do it, based on
your own judgment of the situation.

Credibility and Solving Problems

The first thing you should do with the data is find some
problem that developers £now they have, that you know you can
do something about in a short period of time (like a month
or two) and deliver that solution. This doesn't have to be life-
changing or completely alter the way that everybody works.
In fact, it really should 7oz do that. Because the point of this
change is to make your work credible.

When you work in engineering

productivity, you live or die by your
personal credibility.

Page 92

Chapter 18: Effective Engineering Productivity

You see, at some point you need to be able to get down
to the real problem. And the on/y way that you're going to be
able to do that is if the developers find you credible enough to
believe you and trust you when you want to make some change.
So you need to do something at first to become credible to
the team.

It's not some huge, all-out change. It's something that
you know you can do, even if it's a bit difficult. It helps if
it's something that other people have tried to do and failed,
because then you also demonstrate that in fact something can
be done about this mess that other people perhaps failed to
handle (and then everybody felt hopeless about the whole thing
and just decided they'd have to live with the mess forever, and
it can't be fixed and blah blah blah so on and so on).

Once you've established your basic credibility by handling
this initial problem, then you can start to look at what problem
the developers have and what you think the best solution to that
would be. Now, often, this is not something you can implement
all at once. And this is another important point — you can't
change everything about a team's culture or development
process all at once. You have to do it incrementally, deal with
the "fallout" of the change (people getting mad because you
changed something, or because it's all different now, or because
your first iteration of the change doesn't work well) and wait
for that to calm down before moving on to the next step.

If you tried to change everything all at once, you'd
essentially have a rebellion on your hands — a rebellion that
would result in the end of your credibility and the failure of
all your efforts. You'd be right back in the same pit that the
other two, non-working solutions from above end you up in —
being demoralized or ineffective. So you have to work in steps.
Some teams can accept larger steps, and some can only accept
smaller ones. Usually, the larger the team, the more slowly you
have to go.

Page 93

Chapter 18: Effective Engineering Productivity

The Blocker

Now, sometimes at this point you run into somebody who is
such a curmudgeon that you just can't seem to make forward
progress. Sometimes there is some person who is very senior
who is either very set in their ways or just kind of crazy. (You
can usually tell the latter because the crazy ones are frequently
insulting or rude.) How much progress you can make in this
case depends partly on your communication skills, partly on
your willingness to persist, but also partly in how you go about
resolving this situation.

In general, what you want to do is find your allies and
create a core support group for the efforts you are making,
Almost always, the majority of developers want sanity to
prevail, even if they aren't saying anything,

Just being publicly encouraging when somebody says they
want to improve something goes a long way. Don't demand
that everybody make the perfect change — you're gathering your
"team" and validating the idea that code cleanup, productivity
improvements, etc. are valuable. And you have something like
a volunteer culture or an open-source project — you have to
be very encouraging and kind in order to foster its growth.
That doesn't mean you should accept bad changes, but if
somebody wants to make things better, then you should at
least acknowledge them and say that's great.

Sometimes 9 out of 10 people all want to do the right
thing, but they are being overruled by the one loud person who
they feel they must bow down to or respect beyond rationality,
for some reason. So you basically do what you can with the
group of people who do support you, and make the progress
that you can make that way. Usually, it's actually even possible
to ignore the one loud person and just get on with making
things better anyway.

Page 94

Chapter 18: Effective Engineering Productivity

If you ultimately get totally stopped by some senior
person, then either (a) you didn't go about this the right way
(meaning that you didn't follow my recommendations above,
there's some communication difficulty, you're genuinely trying
to do something that would be bad for developers, etc.) or
(b) the person stopping you is outright insane, no matter how
"normal" they seem.

If you're blocked because you're doing the wrong thing,
then figure out what would help developers the most and do
that instead. Sometimes this is as simple as doing a better job
of communicating with the person who's blocking you.

Like, for example, stop being adversarial or argumentative,
but listen to what they person has to say and see if you can
work with them. Being kind, interested, and helpful goes a
long way. But if it's not that, and you're being stopped by a
crazy person, and you can't make any progress even with your
supporters, then you should probably find another team to
work with.

It's not worth your sanity and happiness to go up against
somebody who will never listen to reason and who is dead set
on stopping you at all costs. Go somewhere where you can
make a difference in the world rather than hitting your head
up against a brick wall forever.

That's not everything there is to know about handling
that sort of situation with a person who's blocking your work,
but it gives you the basics. Persist, be kind, form a group of
your supporters, don't do things that would cause you to lose
credibility, and find the things that you ca# do to help. Usually
the resistance will crumble slowly over time, or the people who
don't like things getting better will leave.

Page 95

Chapter 18: Effective Engineering Productivity

Moving Towards the Fundamental Problem

So let's say that you are making progress improving
productivity by incremental steps, and you are in some control
over any situations that might stop you. Where do you go
from there? Well, make sure that you're moving towards the
fundamental problem with your incremental steps.

At some point, you need to start changing the way that
people write software in order to solve the problem. There is
a lot to know about this, which I've either written up before
or I'll write up later. But at some point you're going to need
to get down to simplifying code. When do you get to do that?
Usually, when you've incrementally gotten to the point where
there is a problem that you can credibly indicate refactoring
as part of the solution to.

Don't promise the world, and don't say that you're going to
start making a graph of improved developer productivity from
the refactoring work that you are going to do. Managers (and
some developers) will want various things from you, sometimes
unreasonable demands born out of a lack of understanding of
what you do (or sometimes from the outright desire to block
you by placing unreasonable requirements on your work). No,
you have to have some problem whetre you can say "Hey, it
would be nice to refactor this piece of code so that we can
write feature X more easily," or something like that.

From there, you keep proposing refactorings where you
can. This doesn't mean that you stop working on tooling,
testing, process, etc. But your persistence on refactoring is what
changes the culture the most. What you want is for people
to think "we always clean up code when we work on things,"
or "code quality is important,” or whatever it takes to get the
culture that you want.

Page 96

Chapter 18: Effective Engineering Productivity

Once you have a culture where things are getting better
rather than getting worse, the problem will tend to eventually
fix itself over time, even if you don't work on it anymore. This
doesn't mean you should stop at this point, but at the worst,
once everybody cares about code quality, testing, productivity,
etc. you'll see things start to resolve themselves without you
having to be actively involved.

Remember, this whole process isn't about "building
consensus." You're not going for total agreement from
everybody in the group about how yox should do your job. It's
about finding out what people £&now is broken and giving them
solutions to that, solutions that they can accept and which
improve your credibility with the team, but also solutions
which incrementally work toward resolving the real underlying
problems of the codebase, not just pandering to whatever
developer need happens to be the loudest at the moment. If
you had to keep only one thing in mind, it's:

Solve the problems that people know
they have, not the problems you think
they have.

One last thing that I'll point out, is that I've talked a lot
about this as though you were personally responsible for the
engineering productivity of a whole company or a whole team.
That's not always the case — in fact, it's probably not the case
for most people who work in engineering productivity. Some
people work on a smaller part of a tool, a framework, a sub-
team, etc.

Page 97

Chapter 18: Effective Engineering Productivity

This point about solving the problems that are rea/ still
applies. Actually, probably most of what I wrote above can
be adapted to this particular case, but the mos# important thing
is that you not go off and solve the problem that you think
developers have, but that instead you solve a problem that (a)
you can prove exists and (b) that the developers know exists.

Many of the engineering productivity teams that I've
worked with have violated this so badly that they have spent
years writing tools or frameworks that developers didn't want,
never used, and which the developers actually worked to
delete when the person who designed them was gone. What a
pointless waste of time! So don't waste your time. Be effective.
And change the world.

-Max

Page 98

S 19 SN

MEASURING
DEVELOPER
PRODUCTIVITY

Almost as long as I have been working to make the lives of
software engineers better, people have been asking me how to
measure developer productivity. How do we tell where there are
productivity problems? How do we know if a team is doing
worse or better over time? How does a manager explain to
senior managers how productive the developers are? And so
on and so on.

In general, I tended to focus on code simplicity first,
and put a lower priority on measuring every single thing that
developers do. Almost all software problems can be traced
back to some failure to apply software engineering principles
and practices. So even without measurements, if you simply get
good software engineering practices applied across a company,
most productivity problems and development issues disappear.

Chapter 19: Measuring Developer Productivity

Now that said, there is tremendous value in measuring
things. It helps you pinpoint areas of difficulty, allows you to
reward those whose productivity improves, justifies spending
more time on developer productivity work where that is
necessary, and has many other advantages.

But programming is not like other professions. You can't
measure it like you would measure some manufacturing process,
where you could just count the number of correctly-made items
rolling off the assembly line. So how would you measure the
production of a programmer?

The Definition of "Productivity"

The secret is in appropriately defining the word "productivity."
Many people say that they want to "measure productivity," but
have never thought about what productivity actually 7s. How can
you measure something if you haven't even defined it?

The key to understanding what productivity is, is realizing
that it has to do with products. A person who is productive is
a person who regularly and efficiently produces products.

The way to measure the productivity of a
developer is to measure the product that
they produce.

That statement alone probably isn't enough to resolve the
problem, though. So let me give you some examples of things
you wouldn't measure, and then some things you would, to give
you a general idea.

Page 100

Chapter 19: Measuring Developer Productivity

Why Not "Lines of Code?"

Probably the most common metrics that the software industry
has attempted to develop have been centered around how
many lines of code (abbreviated LoC) a developer writes. 1
understand why people have tried to do this — it seems to be
something that you can measure, so why not keep track of it?
A coder who writes more code is more productive, right? Well,
no. Part of the trick here is:

"Computer programmer' is not
actually a job.

Wiait, what? But I see ads all over the place for "programmer”
as a job! Well, yes, but you also see ads for "carpentet” all
over the place. But what does "a carpentet” produce? Unless
you get mote specific, it's hard to say. You might say that a
carpenter makes "cut pieces of wood," but that's not a product
— nobody's going to hire you to pointlessly cut or shape pieces
of wood.

So what would be a job that "a carpentetr” could do? Well,
the job might be furniture repair, or building houses, or making
tables. In each case, the carpentet's product is different. If he's
a Furniture Repairman (a valid job) then you would measure
how much furniture he repaired well. If he was building houses,
you might measure how many rooms he completed that didn't
have any carpentry defects.

The point here is this:

"Computer programmer," like
"carpenter," is a skill, not a job.

Page 101

Chapter 19: Measuring Developer Productivity

You don't measure the practice of a skill if you want to
know how much a person is producing. You measure something
about the product that that skill produces. To take this to an
absurd level — just to illustrate the point — part of the skill
of computer programming these days involves typing on a
keyboard, but would you measutre a programmer's productivity
by how many keys they hit on the keyboard per day? Obviously
not.

Measuring lines of code is less absurd than measuring keys
hit on a keyboard, because it does seem like one of the things
a programmer produces — a line of code seems like a finished
thing that can be delivered, even if it's small.

But is it really a product, all by itself? If 1 estimated a job
as taking 1000 lines of code, and I was going to charge $1000
for it, would my client pay me $1 if 1 only delivered one line
of code? No, my client would pay me nothing, because I didn't
deliver any product at all.

So how would you apply this principle in the real world to
correctly measure the production of a programmer?

Determining a Valid Metric

The first thing to figure out is: what is the program producing
that is of value to its users? Usually this is answered by a fast
look at the chapter The Purpose of Software from Code Simplicity,
which talks about how the purpose of software is "to help
people." So the first step here would be to determine what
group of people you're helping do what with your software,
and then figure out how you would describe the result of that
help as a product.

Page 102

Chapter 19: Measuring Developer Productivity

For example, if you have accounting software that helps
individuals file their taxes, you might measure the total number
of tax returns fully and correctly filed by individuals using
your software. Yes, other people contribute to that too (such
as salespeople) but the programmer is primarily responsible for
how easily and successfully the actual work gets done.

One might want to pick metrics that focus closely on
things that only the programmer has control over, but don't
go overboard on that — the programmer doesn't have to be
the on/y person who could possibly influence a metric in order
for it to be a valid measurement of their personal production.

There could be multiple things to measure for one system,
too. Let's say you're working on a shopping website. A backend
developer of that website might measure something about the
number of data requests successfully filled, whereas a frontend
developer of a shopping cart for the site might measure how
many items are put into carts successfully, how many people
get through the checkout flow successfully every day, etc.

Of course, one would also make sure that any metric
proposed also aligns with the overall metric(s) of the whole
system. For example, if a backend developer is just measuring
"number of data requests received at the backend" but not
caring if they are correctly filled, how quickly they are filled,
or whatever, they could design a poor API that requires too
many calls and that actually harms the overall user experience.

So you have to make sure that any metric you're looking
at, you compare it to the reality of helping your actual users.
In this particular case, a better solution might be to count, say,
how many "submit payment" requests are processed correctly,
since that's the end result. (I wouldn't take that as the only
possible metric for the backend of a shopping website, by the
way — that's just one possible thought.)

Page 103

Chapter 19: Measuring Developer Productivity

What About When Your Product Is Code?

There are people who deliver code as their product. For
example, a library developer's product #s code. But it's rarely
a single line of code — it's more like an entire function, class,
ot set of classes. You might measure something like "Number
of fully-tested public API functions released for use by
programmers" for a library developer.

You'd probably have to do something to count new featutes
for existing functions in that case, too, like counting every new
feature for a function that improves its API as being a whole
new "function" delivered. Of course, since the original metric
says "fully tested," any new feature would have to be fully
tested as well, to count.

But however you choose to measure it, the point here is
that even for the small number of people whose product is
code, you're measuting the product.

What about People Who Work on Developer
Productivity?

That does leave one last category, which is people who work
on improving developer productivity. If it's your job to help
other developers move more quickly, how do you measure that?

Well, first off, most people who work on developer
productivity do have some specific product. Either they work
on a test framework (which you would measure in a similar
fashion to how you would measure a library) or they work
on some tool that developers use, in which case you would
measure something about the success or usage of that tool.

Page 104

Chapter 19: Measuring Developer Productivity

For example, one thing the developers of a bug tracking
system might want to measure is number of bugs successfully
and rapidly resolved. Of course, you would modify that to take
into account how the tool was being used in the company —
maybe some entries in the bug tracker are intended to live for
a long time, so you would measure those entries some other
way. In general, you'd ask: what is the product or result that we
bring about in the world by working on this tool? So that's
what you'd measure — the product.

But what if you don't work on some specific framework
or tool? In that case, perhaps your product has something to
do with software engineers themselves. Maybe you would measure
the number of times an engineer was assisted by your work. Or
the amount of engineering time saved by your changes, if you
can reliably measure that (which is rarely possible). In general,
though, this work can be much trickier to measure than other
types of programming,

One thing that I have proposed in the past (though have
not actually attempted to do yet) is, if you have a person who
helps particular teams with productivity, measure the aprovement
in productivity that those teams experience over time. Or
perhaps measure the rate at which the team's metrics improve.

For example, let's say that we are measuring a product
purely in terms of how much money it brings in. (Note: it
would be rare to measure a product purely by this metric — this
is an artificial example to demonstrate how this all works.)

Let's say in the first week the product brought in $100.
Next week $101, and next week $102. That's an increase, so
it's not that bad, but it's not that exciting. Then Mary comes
along and helps the team with productivity. The product makes
$150 that week, then $200, then $350 as Mary continues to
work on it.

Page 105

Chapter 19: Measuring Developer Productivity

It's gone from increasing at a rate of $1 a week to
increasing at a rate of $50, then $100, then $150 a week. That
seems like a valid thing to measure for Mary. Of course, there
could be other things that contribute to that metric improving,
so it's not petfect, but it's better than nothing if you really do
have a "pure" productivity developer.

Conclusion

There are lots of other things to know about how to measure
production of employees, teams, and companies in general.
The above points are only intended to discuss how to take
a programmer and figure out what general sort of thing you
should be measuring.

There's a lot more to know about the right way to do
measurements, how to interpret those measurements, and how
to choose metrics that don't suck.

Hopefully, though, the above should get you started on
solving the great mystery of how to measure the production
of individual programmers, teams, and whole software
organizations.

-Max

Page 106

S 20 s

HOW TO
HANDLE CODE
COMPLEXITY
IN A SOFTWARE
COMPANY

Here's an obvious statement that has some subtle consequences:

Only an individual programmer can
resolve code complexity.

That is, resolving code complexity requires the attention
of an individual person on that code. They can certainly use
appropriate tools to make the task easier, but ultimately it's
the application of human intelligence, attention, and work
that simplifies code. So what? Why does this matter? Well, to
be clearer:

Resolving code complexity usually
requires detailed work at the level of
the individual contributor.

Chapter 20: How to Handle Code Complexity in a Software Company

If a manager just says "simplify the code!" and leaves it at
that, usually nothing happens because,

a. they're not being specific enough,

b. they don't necessarily have the knowledge required
about each individual piece of code in order to be that
specific, and

c. part of understanding the problem is actually going
through the process of solving it, and the manager isn't
the person writing the solution.

The higher a manager's level in the company, the more true
this is. When a CTO, Vice President, or Engineering Director
gives an instruction like "improve code quality” but doesn't get
much more specific than that, what tends to happen is that a
lot of motion occurs in the company but the codebase doesn't
significantly improve.

It's very tempting, if you're a software engineering manager,
to propose broad, sweeping solutions to problems that affect
large areas. The problem with that approach to code complexity
is that the problem is usually composed of many different
small projects that require detailed work from individual
programmers.

So, if you try to handle everything with the same broad
solution, that solution won't fit most of the situations that
need to be handled. Your attempt at a broad solution will
actually backfire, with software engineers feeling like they did a
lot of work but didn't actually produce a maintainable, simple
codebase.

Page 108

Chapter 20: How to Handle Code Complexity in a Software Company

This is a common pattern in software
management, and it contributes to the
mistaken belief that code complexity
is inevitable and nothing can be done
about it.

So what can you do as a manager, if you have a complex
codebase and want to resolve it? Well, the trick is to get the
data from the individual contributors and then work with them
to help them resolve the issues. In this chapter we'll look in
detail at how this sequence unfolds usually in six steps.

Step 1 — Problem Lists

Ask each member of your team to write down a list of
what frustrates them about the code. The symptoms of
code complexity are things like emotional reactions to code,
confusions about code, feeling like a piece will break if you
touch it, difficulties optimizing, etc. So you want the answers
to questions like, "Is there a part of the system that makes
you nervous when you modify it?" or "Is there some part of
the codebase that frustrates you to work with?"

Each individual software engineer should write their own
list. I wouldn't recommend implementing some system for
collecting the lists — just have people write down the issues
for themselves in whatever way is easiest for them. Give them
a few days to write this list; they might think of other things
over time.

The list doesn't just have to be about your own codebase,
but can be about any code that the developer has to work with
or use. You're looking for symptoms at this point, not causes.
Developers can be as general or as specific as they want, for
this list.

Page 109

Chapter 20: How to Handle Code Complexity in a Software Company

Step 2 — Meeting

Call a meeting with your team and have each person bring their
list and a computer that they can use to access the codebase.
The ideal size for a team meeting like this is about six or seven
people, so you might want to break things down into sub-teams.

In this meeting you want to go over the lists and get the
name of a specific directory, file, class, method, or block
of code to associate with each symptom.

Even if somebody says something like,

"The whole codebase has no unit tests,"

then you might say,

"Tell me about a specific time that that
affected you,"

and use the response to that to narrow down what files it's
most important to write unit tests for right away.

You also want to be sure that you're really getting a
description of the probless, which might be something more like
"It's difficult to refactor the codebase because I don't know if
I'm breaking other people's modules." Then unit tests might
be the solution, but you first want to narrow down specifically
where the problem lies, as much as possible. (It's true that
almost all code should be unit tested, but if you don't have
any unit tests, you'll need to start off with some doable task
on the subject.)

Page 110

Chapter 20: How to Handle Code Complexity in a Software Company

In general, the idea here is that only code can actually be
fixed, so you have to know what piece of code is the problem.
It might be true that there's a broad problem, but that problem
can be broken down into specific problems with specific pieces
of code that are affected, one by one.

Step 3 — Bug Reports

Using the information from the meeting, file a bug describing
the problem (not the solution, just the problem!) for each
directory, file, class, etc. that was named. A bug could be
something as simple as "FrobberFactory is hard to understand."

If a solution was suggested during the meeting, you can
note that in the bug, but the bug itself should primarily be
about the problem.

Step 4 — Prioritization

Now it's time to prioritize. The first thing to do is to look at
which issues affect the largest number of developers the most
severely. Those are high priority issues. Usually this part of
prioritization is done by somebody who has a broad view over
developers in the team or company. Often, this is a manager.

That said, sometimes issues have an order that they should
be resolved in that is not directly related to their severity. For
example, Issue X has to be resolved before Issue Y can be
resolved, or resolving Issue A would make resolving Issue B
easier.

This means that Issue A and Issue X should be fixed first
even if they're not as severe as the issues that they block.
Often, thetre's a chain of issues like this and the trick is to
find the issue at the bottom of the stack.

Page 111

Chapter 20: How to Handle Code Complexity in a Software Company

Handling this part of prioritization incorrectly is one of
the most common and major mistakes in software design. It
may seem like a minor detail, but in fact it is critical to the
success of efforts to resolve complexity.

The essence of good software design in
all situations is taking the right actions
in the right sequence.

Forcing developers to tackle issues out
of sequence (without regard for which
problems underlie which other problems)
will cause code complexity.

This part of prioritization is a technical task that is usually
best done by the technical lead of the team. Sometimes this
is a manager, but other times it's a senior software engineer.

Sometimes you don't really know which issue to tackle
first until you're doing development on one piece of code and
you discover that it would be easier to fix a different piece of
code first. With that said, if you can determine the ordering
up front, it's good to do so. But if you find that you'd have
to get into actually figuring out solutions in order to determine
the ordering, just skip it for now.

Whether you do it up front or during development, it's
important that individual programmers do realize when there
is an underlying task to tackle before the one they have been
assigned. They must be empowered to switch from their current
task to the one that actually blocks them.

Page 112

Chapter 20: How to Handle Code Complexity in a Software Company

There is a limit to this (for example, rewriting the whole
system into another language just to fix one file is not a good
use of time) but generally, "finding the issue at the bottom of
the stack" is one of the most important tasks a developer has
when doing these sorts of cleanups.

Step 5 — Assignment

Now you assign each bug to an individual contributor. This
is a pretty standard managerial process, and while it definitely
involves some detailed work and communication, I would
imagine that most software engineering managers are already
familiar with how to do it.

One tricky piece here is that some of the bugs might be
about code that isn't maintained by your team. In that case
you'll have to work appropriately through the organization to
get the appropriate team to take responsibility for the issue. It
helps to have buy-in from a manager that you have in common
with the other team, higher up the chain, here.

In some organizations, if the other team's problem is not
too complex or detailed, it might also be possible for your
team to just make the changes themselves. This is a judgment
call that you can make based on what you think is best for
overall productivity.

Step 6 — Planning

Now that you have all of these bugs filed, you have to figure
out when to address them. Generally, the right thing to do is
to make sure that developers regularly fix some of the code
quality issues that you filed along with their feature work.

Page 113

Chapter 20: How to Handle Code Complexity in a Software Company

If your team makes plans for a period of time like a
quarter or six weeks, you should include some of the code
cleanups in every plan. The best way to do this is to have
developers first do cleanups that would make their specific
feature work easier, and then have them do that feature work.

Usually this doesn't even slow down their feature work
overall. (That is, if this is done correctly, developers can usually
accomplish the same amount of feature work in a quarter
that they could even if they weren't also doing code cleanups,
providing evidence that the code cleanups are already improving
productivity.)

Don't stop normal feature development entirely to just
work on code quality. Instead, make sure that enough code
quality work is being done continuously that the quality of the
codebase is always improving overal/ rather than getting worse
over time.

-~

If you do those things, that should get you well on the
road to an actually-improving codebase. Thete's actually quite
a bit to know about this process in general — perhaps enough
for another entire book. However, the above plus some
common sense and experience should be enough to make major
improvements in the quality of your codebase, and perhaps
even improve your life as a software engineer or manager, too.

-Max

Page 114

D1 —

REFACTORING IS
ABOUT FEATURES

When you clean up code, you are always doing it in the service
of the product. Refactoring is essentially an organizational
process (not the definition of "organizational" meaning "having
to do with a business" but the definition meaning "having to
do with putting things in ordet"). That is, you'tre putting in
order so that you can do something.

When you start refactoring for the sake of refactoring
alone, refactoring gets a bad name. People start to think that
you're wasting your time, you lose your credibility, and your
manager or peers will stop you from continuing your work.

When I say "refactoring for the sake of refactoring alone,"
what I mean is looking at a piece of code that has nothing to
do with what you'te actually working on, saying, "I don't like
the way that this is designed," and moving parts of the design
around without affecting the functionality of the system.

This is like watering the lawn when your house is on fire.
If your codebase is like most of the codebases I've seen, "your
house is on fire" is probably even an appropriate analogy. Even
so, if things aren't that bad, the point is that you're focusing
on something that doesn't need to be focused on.

Chapter 21: Refactoring is about Features

You might feel like you're doing a great job of reorganizing
the code, and probably you are, but the point of watering
your lawn is to have a nice lawn i front of your house. 1f your
refactoring has nothing to do with the current product or
feature goals of your system, you're not actually accomplishing
anything other than re-ordering something that nobody is using,
involved with, or cares about.

Being Effective

So what is it that you want to do? Well, usually, what you want
to do is pick a feature that you want to get implemented, and
figure out what you could refactor that would make it easier
to implement that. Or you find an area of the code that is
frequently being worked on and get some reorganization done
in that area. This will make people appreciate your work. It's
not just about that — it's really about the fact that they will
appreciate it because you are doing something effective. But
getting appreciation for the work that you've done — or at least
some form of polite acknowledgment — can help encourage you
to continue, can show you that other people are starting to care
about your work, and hopefully help spread good development
practices across your company.

Is there ever a time when you would tackle a refactoring
project that doesn't have something directly to do with the
work that you have to do? Well, sometimes you would refactor
something that has to do zndirectly with the goal that you have.

Sometimes when you start looking at a particularly complex
problem, it's like trying to pick up rocks on the beach to get
down to the sand at the bottom. You try to move a rock, and
figure out that first, you have to move some other rock. Then
you discover that that rock is up against a large boulder, and
there are rocks all around #hat boulder that prevent it from
being moved, and so forth.

Page 116

Chapter 21: Refactoring is about Features

So within reason, you have to handle the issues that are
blocking you from doing refactoring. If these problems get
large enough, you will need a dedicated engineer whose job it
is to resolve these problems — in particular the problems that
block refactoring itself. (For example, maybe the dependencies
of your code or its build system are so complex that nobody
can move any code anywhere, and if that's a big enough
problem, it could be months of work for one person.)

Of course, ideally you'd never get into a situation where
your problems are so big that they can't be moved by an
individual doing their normal job. The way that you accomplish
that is by following the principles of incremental development
and design as discussed in Code Simplicity. Essentially, this means
you should always make the system look like it was designed
to do the job that it's doing now.

But assuming that you are like most of the software
projects in the world who didn't do that, you're now in some
sort of bad situation and need to be dug out of the pile of
rocks that your system has buried itself under. I wouldn't feel
bad about this, mostly because feeling bad about it doesn't
really accomplish anything,

Instead of feeling bad about it or feeling confused about
it, what you need to do is to have some sort of system that
will let you attack the problem incrementally and get to a better
state from where you are. This is a lot more complex than
keeping the system well-designed as you go, but it can be done.

The key principle to cleaning up a

complex codebase is to always refactor
in the service of a feature.

Page 117

Chapter 21: Refactoring is about Features

See, the problem is that you have this mountain of "rocks."
You have something like a house on fire, except that the house
is the size of several mountains and it's all on fire all the
time. You need to figure out which part of the "mountain"
or "house" that you actually need right now, and get that into
good shape so that it can be "used," on a series of small steps.

This isn't a perfect analogy, since a fire is temporary,
dangerous, and life-threatening. It will also destroy things faster
than you can clean them up. But sometimes a codebase is
actually in that state — it's getting worse faster than it's getting
better. That's another principle:

Your first goal is to get the system into a
place where it's getting better over time,
instead of getting worse.

These are practically the same principle, even though they
sound completely different. How can that be? Because the
way that you get the codebase to get better over time instead
of getting worse is that you get people to refactor the code
that they are about to add features to right before they add
features to it.

You look at a piece of code. Let's say that it's a piece of
code that generates a list of employee names at your company.
You have to add a new feature to sort the list by the date they
were hired. You're reading the code, and you can't figure out
what the variable names mean.

So the first thing you'd do, before adding the new feature,
is to make a separate, self-contained change that improves the
variable names. After you do that, you still can't understand the
code, because it's all in one function that contains 1000 lines
of code. So you split it up into several functions.

Page 118

Chapter 21: Refactoring is about Features

Maybe now it's good enough, and you feel like it would
be pretty simple to add the new sorting feature. Maybe you
want to change those functions into well-designed objects
before you continue, though, if you're in an object-oriented
language. It's all sort of up to you — the basic point is that
you should be making things betfer and they should be getting
better faster than they're getting worse. It's a judgment point
as to how far you go.

You have to balance the fact that you do need to make
forward progress on your feature goals, and that you can't just
refactor your code forever.

Setting Refactoring Boundaries

In general, I set some boundary around my code, like "I'm not
going to refactor anything outside of my project to get this
feature done," or "I'm not going to wait for a change to the
programming language itself before I can release this feature."

But within my boundary, I try to do a good job. And I try
to set the boundary as wide as possible without getting into a
situation where I won't be able to actually develop my feature.
Usually that's a time boundary as well as a "scope of codebase"
(like, how far outside of my codebase) boundary — the time
part is often the most important, like "I'm not going to do a
three-month project to develop a two-day feature."

But even with that I balance things on the side of spending
time on the refactoring, especially when I first start doing this
in a codebase and it's a new thing and the whole thing is very
messy.

Page 119

Chapter 21: Refactoring is about Features

Refactoring Doesn't Waste Time, It Saves It

And that brings us to another point — even though you might
think that it's going to take more time to tefactor and then
develop your feature, in my experience it usually takes less time
or the same amount of time overall. "Overall" here includes all
the time that you would spend debugging, rolling back releases,
sending out bug fixes, writing tests for complex systems, etc.

It might seem faster to write a feature in your complex
system without refactoring, and sometimes it is, but most of
the time you'll spend less time overal/ if you do a good job of
putting the system in order first before you start adding new
feature. This isn't just theoretical — I've demonstrated it to be
the case many times.

I've actually had my team finish projects faster than teams
who were working on newer codebases with better tools when
we did this. (That is, the other team should have been able to
out-develop us, but we refactored continuously in the service
of the product, and always got our releases out faster and
were actually ahead in terms of features, with roughly the
same number of developers on both projects working on very
similar features.)

Refactoring To Clarity

There's another point that I use to decide when I'm "done"
with refactoring a particular piece of code, which is that I think
that other people will be able to clearly see the pattern I've
designed and will maintain the code 7 that pattern from then on.

Page 120

Chapter 21: Refactoring is about Features

Sometimes I have to write a little piece of documentation
that describes the intended design of the system, so that people
will follow it, but in general my theory (and this one really is
just a theory — I don't have enough evidence for it yet) is that
if T design a piece of code well enough, it shouldn't need a
piece of documentation describing how it's supposed to be
designed. It should probably be visible just from reading the
code how it's designed, and it should be so obvious how you'd
add a new feature within that design that nobody would ever
do it otherwise. Obviously, perfectly achieving that goal would
be impossible, but that's a general truth in software design:

There is no perfect design, there is only
a better design.

So that's another way that you know that you're
"bikeshedding" or over-engineering or spending too much time
on figuring out how to refactor something — that you're trying
to make it "perfect." It's not going to be "perfect," because
there is no "perfect." There's "does a good job for the purpose
that it has." That is, you can't even really judge whether or
not a design z good without understanding the purpose the
code is being designed for. One design would be good for one
purpose, another design would be good for another purpose.

Yes, there are generic libraries, but even that is a
purpose. And the best generic libraries are designed by actual
experimentation with real codebases where you can verify that
they serve specific purposes very well.

When you're refactoring, the idea is to
change the design from one that doesn't
currently suit the purpose well to a
design that fits the current purpose that
piece of code has.

Page 121

Chapter 21: Refactoring is about Features

That's not all there is to know about refactoring, but it's
a pretty good basic principle to start with.

Summary

So, in brief, refactoring is an organizational process that you
go through in order to make production possible. If you aren't
going toward production when you refactor, you're going to run
into Jots of different kinds of trouble. I can't even tell you all
of the things that are going to go wrong, but they're going to
happen. On the other hand, if you just try to produce a system
and you never reorganize it, you're going to get yourself into
such a mess that production becomes difficult or impossible.

So both of these things have to be done — you must
produce a product, and you must organize the system in such
a way that the product can be produced quickly, reliably, simply,
and well. If you leave out organization, you won't get the
product that you want, and if you leave out production, then
there's literally no reason to even be doing the refactoring in
the first place.

Yes, it's nice to water the lawn, but let's put out some
fires, first.

-Max

Page 122

P

KINDNESS
AND CODE

It is very easy to think of software development as being an
entirely technical activity, where humans don't really matter
and everything is about the computer. However, the opposite
is actually true.

Software engineering is fundamentally a
human discipline.

Many of the mistakes made over the years in trying to fix
software development have been made by focusing purely on
the technical aspects of the system without thinking about the
fact that it is human beings who write the code. When you see
somebody who cares about optimization more than readability
of code; when you see somebody who won't write a comment
but will spend all day tweaking their shell scripts to be fewer
lines, when you have somebody who can't communicate but
worships small binaries: then you're seeing various symptoms
of this problem.

Chapter 22: Kindness and Code

Software is about People

In reality, software systems are written by people. They are read
by people, modified by people, understood or not by people.
They represent the mind of the developers that wrote them.
They are the closest thing to a raw representation of thought
that we have on Earth. They are not themselves human, alive,
intelligent, emotional, evil, or good.

It's people that have those qualities. Software is used
entirely and only to serve people. Software is the product
of people, and it is usually the product of a group of those
people who had to work together, communicate, understand
each other, and collaborate effectively. As such, there's an
important point to be made about working with a group of
software engineers:

There is no value to being cruel to other
people in the development community.

It doesn't help to be rude to the people that you work
with. It doesn't help to angrily tell them that they are wrong
and that they shouldn't be doing what they are doing. It does
help to make sure that the laws of software design are applied,
and that people follow a good path in terms of making systems
that can be easily read, understood, and maintained. It doesn't
require that you be cruel to do this, though. Sometimes you
do have to tell people that they haven't done the right thing.
But you can just be matter of fact about it — you don't have
to get up in their face or attack them personally for it.

Page 124

Chapter 22: Kindness and Code

An Example of Kindness

Let's say, for example, that somebody has written a bad piece
of code. You have two ways you could comment on this:

"I can't believe you think this is a good idea. Have youn ever read
a book on software design? Obvionsly you don't do this."

That's the rude way — it's an attack on the person
themselves. Another way you could tell them what's wrong
is this:

"This line of code is hard to understand, and this looks like code
duplication. Can you refactor this so that it's clearer?”

In some ways, the key point here is that
you're commenting on the code, and not
on the developer.

But also, the key point is that you'te not being a jerk. I
mean, come on. The first response is obviously rude. Does it
make the person want to work with you, want to contribute
more code, or want to get better? No. The second response,
on the other hand, lets the person know that they're taking a
bad path and that you'te not going to let that bad code into
the codebase.

The whole reason that you're preventing that programmer
from submitting bad code has to do with people in the first
place. Either it's about your users or it's about the other
developers who will have to read the system. Usually, it's
about both, since making a more maintainable system is done
entirely so that you can keep on helping users effectively. But
one way or another, your work as a software engineer has to
do with people.

Page 125

Chapter 22: Kindness and Code

Yes, a lot of people are going to read the code and use
the program, and the person whose code you're reviewing is
just one person. So it's possible to think that you can sacrifice
some kindness in the name of making this system good for
everybody...to look after the many? Maybe you're right. But
why be rude or cruel when you don't have to be? Why create
that environment on your team that makes people scared of
doing the wrong thing, instead of making them happy for
doing the right thing?

This extends beyond just code reviews, too. Other software
engineers have things to say. You should listen to them, whether
you agree or not. Acknowledge their statements politely.
Communicate your ideas to them in some constructive fashion.

And look, sometimes people do get angry. Be understanding.
Sometimes you're going to get angry too, and you'd probably
like your teammates to be understanding when you do.

Be Kind, and Make Better Software

This might all sound kind of airy-fairy, like some sort of
unimportant psychobabble. But look. I'm not saying, "Everybody
is always right! You should agree with everybody all the time!
Don't ever tell anybody that they are wrong! Nobody ever does
anything bad
many bad things in the world, and in software engineering, that

I" No, people are frequently wrong, and there are

you have to say no to.

The wotld is not a good place, always. It's full of stupid
people. Some of those stupid people are your co-workers.
But even so, you're not going to be doing anything effective
by being rude to those stupid people. They don't need your
hatred — they need your compassion and your assistance.

Page 126

Chapter 22: Kindness and Code

And most of your co-workers are probably not stupid
people. They are probably intelligent, well-meaning individuals
who sometimes make mistakes, just like you do. Give them
the benefit of the doubt. Work with them, be kind, and make
better software as a result.

-Max

Page 127

S 23 s

OPEN SOURCE
COMMUNITY,
SIMPLIFIED

Growing and maintaining an open-source community depends
essentially on three things:

1. Getting people interested in contributing

2. Removing the barriers to entering the project and
contributing

3. Retaining contributors so that they keep contributing

If you can get people interested, then have them actually
contribute, and then have them stick around, you have a
community. Otherwise, you don't.

If you are just starting a project or need to improve the
community of an existing project, you should address these
points in reverse order. If you get people interested in a project
before you do the later two steps, then people won't be able
to enter and won't stick around when they do enter. You won't
actually expand your community.

Chapter 23: Open Source Community, Simplified

So first, we want to be sure that we can retain both existing
and new contributors. Once we've done that, then we want
to remove the barriers to entry, so that interested people can
actually start contributing. Only #hen do we start worrying about
getting people interested.

So let's talk about how you accomplish each step in reverse
order.

Retaining Contributors

For the Bugzilla Project (https://www.bugzilla.org/),
where I helped organize the open-source community, this was
our biggest challenge. Once somebody started contributing,
what made them keep contributing? How did we keep people
around?

Well, we had an interesting advantage in answering these
questions, in that we were one of the older open-source
projects in existence, having been around since late 1998. So
we had a tremendous wealth of actual data to work with.

We mined this data in two ways: First, we did a survey of
all our past developers who had left the project, asking them
why they had left. This was just a free-form survey, allowing
people to answer any way they wanted. Then, we created a
graph of the number of contributors over time, for the whole
ten years of the project, and correlated the rise and fall of the
graphs to various actions we took or didn't take over time.

Once all this was done, I sent an email that out to the
developers Bugzilla Project, describing the results of the
research. You can read the whole email if you'd like, but I'll
summarize the findings here.

Page 130

https://www.bugzilla.org/

Chapter 23: Open Source Community, Simplified

Don't freeze the trunk for long periods

The Bugzilla Project has a fairly-standard system of having
stable branches that receive little change (for example, the "3.4"
branch where we commit bug fixes and do minor releases like
3.4.1, 3.4.2, etc.), and a main-line "trunk" repository where all
new features go, and which eventually becomes our next major
release.

In the past, before a major release, we would "freeze" the
trunk. This meant that no new features could be developed
for several weeks or months until we felt that trunk was stable
enough to call a "release candidate." Then we would create a
new stable branch from the trunk and re-open the main-line
trunk for features. However, while trunk was frozen, there
was no feature development happening anywhere in the Bugzilla
Project.

Graph analysis showed wvery clearly that every time we
would freeze, the community would shrink drastically and it
would take several months after we un-froze for the size of the
community to recover. It happened uniformly, every single time
we would freeze, over many years and many releases.

Traditional wisdom in open-source is that people like to
work on features and don't like to fix bugs. I wouldn't say that
that's exactly true, but I would say that if you only let people
fix bugs, then most of them won't stay around.

We addressed this issue by never freezing the trunk.
Instead, we branch immediately at the point that we normally
would have "frozen" the trunk. The trunk always stays open
for new feature development.

Page 131

Chapter 23: Open Source Community, Simplified

Yes, this means that for a while, our attention becomes
split between the trunk and the latest branch. We'te committing
the same bug fixes to the branch and the trunk. We are also
doing feature development on the trunk simultaneously with
those bug fixes. However, we've found that not only does the
community expand more rapidly this way, but we also actually
get our releases out more quickly than we used to. So it's a win-
win situation.

2. Turnover is inevitable

The survey found that the number one reason that contributors
leave is that they no longer have time to contribute, or that
they were contributing as part of their job and now they have
changed jobs. Essentially, it is inevitable that most contributors
eventually leave.

So if it community members are definitely going to be
leaving, the only way to consistently expand the community
is to figure out how to retain new contributors. If you don't
get new members to stick around, then the community will
continuously shrink as old contributors leave, no matter what
else you do.

So while retaining existing contributors is important — after
all, you want people to stick around and contribute for as long
as reasonably possible — what matters the most is retaining new
contributors. How do you do that? Well, that's a lot of what
the rest of these points are about.

Page 132

3.

Chapter 23: Open Source Community, Simplified

Respond to contributions immediately

The Bugzilla Project has a system of code reviews that requires
that all new contributions be reviewed by an experienced
developer before they can become part of Bugzilla. There have
been various complaints about the system over the years, but
analyzing the survey data showed that people leave the project
because getting a review takes 70 /long, not because the reviews
are too hard. In fact, the reviews can be as hard as you want
as long as they happen almost instantly after somebody submits
a contribution.

People don't (usually) mind having to revise a contribution.
They even generally don't mind revising it several times. But
they do mind if they post a patch, don't get a review for three
months, and #hen they have to revise it, only to wait another
three months to be told that they have to revise it again. It's
the delay that matters, not the level of quality control.

There are other ways of responding rapidly to contributions,
too. For example, immediately thanking somebody for posting
a patch can go a long way toward retaining new contributors
and "converting" them into long-term developets.

Be extremely kind and visibly appreciative

For nearly every person who responded to our survey, the
factors involved in not staying — beyond "my job changed" ot
"I didn't have time" — were surprisingly personal.

Page 133

Chapter 23: Open Source Community, Simplified

I know that we all work with computers, and perhaps we'd
like to think that engineering should be a totally cold scientific
profession where we all do our jobs correctly according to
the requirements of the machine, and not worry about our
emotional or personal involvements. However, nothing could
be further from the truth — the personal interactions that
people have with community members, the amount they feel
appreciated, and the amount they feel assaulted, are actually the
most important aspects of retaining community members.

When people contribute on a volunteer basis, they aren't
getting paid in money, they are getting paid in admiration,
appreciation, the sense of a job well done, and the knowledge
that they are helping create a product that affects millions of
people. When somebody has contributed a patch, you need to
thank them. It doesn't matter if the patch is total crap and
has to be re-written entirely, you need to thank them. They
have put some work into this, and if you don't appreciate that,
they will leave before they even start.

After all, most people get little enough appreciation at their
workplace — they stay there because they get paid in money!
They don't need to work for free with some other organization
if it also doesn't appreciate their work, or even worse, assaults
every aspect of their contribution before even thanking them
for it.

Of course, you still need to correct people on the faults
in their contributions. "Kindness" does not include putting bad
code into your system. That isn't kind to anybody, including
the contributor whose skills probably need to improve, and
who may go on believing that something they did in error
was in fact correct. You have to still be careful reviewers and
very good coders.

Page 134

Chapter 23: Open Source Community, Simplified

What this does mean is that in addition to telling people
what's wrong with their contribution, it's important to appreciate
what's 7ght about their contribution, even if it's simply the fact
that they took the time to contribute. And you have to actually
tell the contributor that you appreciate the contribution.
The more frequently and genuinely that you do this, the more
likely you are to retain the contributor.

5. Avoid personal negativity

One thing that drives people away from a project with lightning
speed is when they get personally attacked for attempting to
do something positive. A "personal attack" can be as little
as an unpleasant joke about their code, instead of just a
straightforward technical description of what is wrong. Saying
something like, "What is wrong with your" instead of actually
leaving some helpful comment. Disguising personal criticism
as "an attempt to help them code better" or "help them get
along with others." No matter how well-justified these actions
may seem to be, they are all personal attacks that are extremely
dangerous to your community.

Now truthfully, coding and working on a collaborative
project with people who have different viewpoints can get really
frustrating sometimes, and I've been an offender in this area
just as much as anybody has been. But we all have to learn that
it's not okay to insult other developers as people just because
we're personally frustrated with them.

The solution isn't just to say "everybody, now bottle up
your frustrations until you explode," though. There ate lots of
practical solutions. One of the best is to set up some specific
system for handling problematic contributors. If there's some
contributor that Bob just can't live with, there needs to be
somebody in the community who Bob can go to help work
things out.

Page 135

Chapter 23: Open Source Community, Simplified

We'll call this go-to person the "community moderator."
So Bob tells the moderator about the problem, and maybe the
moderator sees that other contributor really was being a terrible
person or bad codet, and so this "community moderatot" gently
corrects that contributor. But it's also possible that there was
some communication problem between Bob and the other
contributor that the moderator just needs to help resolve.

This "moderator" system isn't the only way to deal with
the problem. You can resolve the problem in numerous ways
— the most important thing is that you 4o resolve it. Without
some channel or method for dealing with personal frustrations,
individual contributors will take these frustrations out on each
other. You will in fact foster an environment wherte it's okay
for one contributor to personally attack another contributor,
because that's the only avenue they have to resolve their
problems, and nobody's stopping them.

-~

Basically, those last two points can be summed up as: be
really, abnormally, really, really kind, and don't be mean.

We applied all of these principles in the Bugzilla Project for
the past several months, and we saw an increase in the number
of retained contributors almost immediately after we started
applying them. It finally started to feel like the community was
growing again, after shrinking almost continuously from 2005 to
2010 due to violations of all of the above points.

Page 136

Chapter 23: Open Source Community, Simplified

Removing the Barriers

The next step is to remove the barriers to entry. What prevents
people from getting started on the project?

Usually, the biggest barrier is a lack of documentation and
direction. When people already want to contribute, their next
step is figuring out Aow to contribute. They will go to your
project's website and look around. They will wonder, "Who
do I talk to about this? How do I start contributing? What do
you guys want me to work onr"

For the Bugzilla Project, we solved this problem in several
ways:

1. Alist of easy starting projects

Whenever we see a bug or feature request that looks like it
would be easy for a newcomer to solve, we tag it as a "good
intro bug" in our bug tracker. This gives us a list of good
introductory projects that anybody can come and look at

without having to ask us "where do I get started?”

2. Create and document communication channels

People will almost immediately want to fz/& to somebody else
about the project. You should have email lists and also some
method of instantaneous communication like an IRC channel.
For example, we have an email list for Bugzilla developers and
also an IRC channel where almost all our contributors hang out.

Page 137

Chapter 23: Open Source Community, Simplified

In fact, we don't just have a normal IRC channel — we
also have a web page that people can use to chat in that IRC
channel. That way, people don't have to install an IRC client
just to come talk to us. Setting up that web page enormously
increased the number of new people coming into the channel
and communicating with us. (And the increase was entirely
positive — 1 can't think of a single person who used the web
gateway to cause us trouble.)

Then once you have these channels, they need to be
documented! People have to know how to get into them, they
need to know that they exist. We have a wiki page that explains
how to talk to us if you want to contribute:

https://wiki.mozilla.org/Bugzilla:Communicate

that explains how to talk to us if you want to contribute.
(Note that this is separate from our support page that describes
how to get support for the project.)

Also, as a final but perhaps obvious point, the existing
community has to #se the communication channels. If the main
contributors do all their work in an office and just talk to the
people next to then and you don't use the mailing lists or IRC
channels, then the community members aren't going to want
to use those communication systems either. After all, the new
contributors aren't there to talk to each other — they're there
to talk to you!

Page 138

https://wiki.mozilla.org/Bugzilla:Communicate

Chapter 23: Open Source Community, Simplified

3. Excellent, complete, and simple
documentation, describing exactly how a
contribution should be done

Fully document every step of your development process, and
put that documentation onto a public web site. Don't invent a
new process, just document out what the existing actual process
is. How do people get the code? How can they submit patches
or other contributions to you? How do those contributions
become an official part of the system?

We have a very simple page that describes the basic steps
of our whole process, and links to documents that describe
each step in more detail:

https://wiki.mozilla.org/Bugzilla:Developers

The page also specifically encourages people to get into
communication with us, so that we know that they are there
and want to help.

4. Make all this documentation easy to find

This is a simple final step, but sometimes projects forget it!
You can have all the wonderful developer documentation in
the world, but if new contributors can't find it super-easily, then
you're not actually removing any barriers to entry!l We have a
big "Contribute!" button on the homepage of bugzilla.org that
describes all the different ways that people can contribute (not
just codel) and links to more information about each of those.

-~

Page 139

https://wiki.mozilla.org/Bugzilla:Developers

Chapter 23: Open Source Community, Simplified

We saw a definite upswing in the number and quality of
contributions once we completed all these steps. Also, having
everything documented and clearly stated on a public website
meant that we no longer had to personally explain it all, every
time, to every new contributor.

Direction and documentation aren't the on/y things you
can do though. Ask yourself, "What is stopping people from
contributing?" and remove all the barriers there that you
reasonably can.

Getting People Interested

How do you make people think, "Gee, I want to contribute
to this project?” That's the first step they have to take before
they can become contributors. Well, traditional wisdom states
that people contribute to open-source projects because:

¢ They like helping

¢ They enjoy being part of a community
¢ They want to give back
¢

They think that something is wrong and they need/
want to fix it

So you may want to make it apparent that help is needed,
that an enjoyable community is there, that giving back is
appropriate and appreciated, and that there are problems that
need solving.

Now, to be fair, this is an area that I don't have fully
mapped out or figured out for the Bugzilla Project, yet. So 1
don't have a lot of personal experience to draw on. But if we
analyze other projects, we can see that some good ways of
getting contributors...

Page 140

Chapter 23: Open Source Community, Simplified

Be a super-popular product

This may seem obvious, but it is indeed the primary way of
getting new contributors. If a zillion people use your product,
it's statistically likely that many of them will want to contribute.
The Linux Kernel and WordPress are good examples of this
— they have millions of usets, so thete's just bound to be a
lot of contributors, provided that the "barriers to entry" and

the "retaining contributors" aspects of the project have also
been handled.

One way to become a supet-popular product — even if you're
just starting out — is to be heavily needed. The Linux Kernel was
very much needed when it was first written, which is probably
one of the reasons that it became popular as quickly as it did.
It desperately needed to exist and didn't exist yet.

Be written in a popular programming language
Generally, people are more likely to contribute to a project if
it's written in a language that they already know. WordPress has
a buge contributor community, and it's in PHP. Say what you
will about PHP, it is extremely populat. There's a large number
of people who already know the language, which increases the
likelihood that some of them will start supplying patches for
your code.

This not the only reason you should choose a particular
programming language, but it's certainly a major motivator if
you're going to have an open-source project. I may think that
Eiffel (https://www.eiffel.org/) is a remarkable language,
but if I wrote an open-source project in it, I would have a very
hard time getting contributors.

Page 141

https://www.eiffel.org/

Chapter 23: Open Source Community, Simplified

Beyond those points, there are lots of clever ways of
getting people interested in contributing to your projects,
including speaking at conferences, publishing blogs, encouraging
people on a one-to-one basis, and other methods that basically
add up to "contact and encourage."

I'd love to hear some of your ideas in this area, though.
How do you get new people interested in contributing to your
project? Has anything been particularly successful?

Summary

An open-source community is somewhat of a fluid thing —
there are always going to be people coming and going for one
reason or another. What's important is that the rate of people
entering and staying is greater than the rate of people leaving,
All of these points help assure that, and hopefully they also
make our communities productive and enjoyable places to be
for everybody, even ourselves!

-Max

Page 142

— PART SIX——

UNDERSTANDING
SOFTWARE

— D4 —

WHAT IS A
COMPUTER?

In order to understand software, the first thing we need to
understand is what a computer really is.

Now, you'd think that would be a fairly simple question.
After all, I'm using one to type this up, I ought to know what
it is, right? I mean obviously, it's a...computer! I mean, it's got
a keyboard, and a monitor, and there's that box down there...

But what is it that makes all that stuff a computers Why do
we look at it and go, "Oh yeah, that's a computer,”" as opposed
to, say, "Oh, that's just a TV," or "That's where I keep the
leprechauns at night."?

Some people try to define the word "computer" just by
saying "it's got such and such parts and they all work this
way," but that's like saying "airplanes have two wings and jet
engines." It's true, but I could build an airplane that didn't have
two wings or jet engines. The way something works is not a
definition for that thing,

Others try to define it mathematically, but that can also be
somewhat limiting, because then only the devices that fit into
your mathematical scheme are computers, and there are multiple
mathematical models that could be considered "computers."”

Chapter 24: What is a Computer?

So I turned to the dictionary. That was fun for me — I'm a
dictionary fanatic. I've got lots of great dictionaries, and there
are even more online. The Compact Oxford English Dictionary had
a definition that was almost good enough:

computer
noun

an electronic device capable of storing and processing
information in accordance with a predetermined set
of instructions.

1 was very happy with the definition at first, but when 1
started to think about it, it didn't quite work. For example, it
calls computers "an electronic device," but computers could be
built without electronics. After all, Charles Babbage designed
the first device we might consider a computer in the 1800s,
and it wasn't electronic at all.

So I worked to come up with a definition of my own.
Strangely enough, the key question that it boiled down to
was "Why is a player piano mot a computer?” It "processes
information" by playing notes from its roll. If you gave it an
etching machine, it could "store information" back on to the
roll. But despite all that, it's cleatly not a computer. What is a
computer doing that is fundamentally different from a player
piano, that a player piano could never do?

After about two years, I finally came up with an answer
that was both simple and all-encompassing:

A computer is any piece of matter
which can carry out a series of symbolic
instructions and compare data in
assistance of a human goal.

Page 146

Chapter 24: What is a Computer?

And that, my friends, is really it. Note several important
things about this definition:

¢ A computer can compare data. This is what separates
a computer from other machines that take input from
people.

¢ The computer doesn't just take one instruction, but
a series of them. A simple calculator can only carry
out one instruction, which is what differentiates it
from a computer.

¢ A mouse click is a "symbolic instruction," as is pressing
a key on a keyboard. However, as programmers, the
primary symbolic instructions we use in our craft are
programming languages. Thus we as programmers,
when we talk about how to improve the quality of
our work, care mostly about how our programs are
structured.

This is perhaps an obvious statement, but it provides the
logical basis for why I'm about to talk so much about the
philosophy behind how software is organized, in the next few
chapters.

-Max

Page 147

VAZS s

THE
COMPONENTS
OF SOFTWARE:

STRUCTURE,
ACTION, AND
RESULTS

There's a very popular model for designing software
that we've all heard of if we'te web developers, and probably
most desktop developers have heard of too: our old friend
Model-View-Controller.

This works well because it reflects the basic nature of a
computer program: a series of actions taken on a structure of data
to produce a result. Programs also take input, and so you could
possibly argue that input was a fourth part of a program, but
usually I just think of a computer program as the first three
parts: Structure, Action, and Results.

Chapter 25: The Components of Software: Structure, Action, and Results

In the MVC sense, the Model is the Structure, the
Controller is what does the Actions, and the View is the
Result. I think the analogy (and the words) Structure, Action,
and Results are more widely and accurately applicable to the
operation of every program in existence, though, more so than
MVC, although MVC is a perfectly good way of looking at it
for GUI applications.

Structure, Action, and Results probably

describes almost any machine in
existence.

A machine has some parts that don't move, a
framework — that's the structure. Some parts move and do
something — that motion is the action. And of course the
machine produces something (otherwise we wouldn't care much
about it) so that's the result.

Computer programs are unusual machines in that they
can modify their own structure. However, it's important that
some patt of the program be stable, that they "not move" in a
logical sense. The way that object classes relate to each other,
the names of methods and variables — these are all parts of
the structure that usually don't change while you're running.

Of course, sometimes you make new classes, methods, or
variables while you're running, but they usually follow some
pre-set plan, so there's still a lot of "not moving" involved.

When I'm writing software, I usually
build the Structure first, then I work
on the Actions, and then I work on the
displaying of the Result.

Page 150

Chapter 25: The Components of Software: Structure, Action, and Results

Some people work backwards from the Results, that's fine
too. Probably the only inadvisable thing to do is to start with
the Actions, since it's kind of confusing to be performing
Actions without a Structure and with no defined Result.

There's so much to this concept that I could probably
write a whole book just on this one topic, but I think this is
a decent introduction, and I'm sure that given this, you can
think of lots of other useful applications of it.

-Max

Page 151

S 26 s

SOFTWARE
REVISITED: (I)SAR
CLARIFIED

In the last chapter, I said that there are three major parts to
any computer program: Structure, Action, and Results.

Now also, a program has Input, which could be considered
a fourth part of the program, although usually it's not the
programmer who's creating the input, but the user. So we can
either abbreviate this as SAR or ISAR, depending on whether
or not we want to include "Input."

Now, some people misunderstood me and said, "Oh, SAR
is just another name for MVC." No, I used MVC as an example
of SAR, but SAR is a much, much broader concept than MVC
— they are not comparable theories.

MVC is a pattern for designing software,
whereas SAR (or ISAR) is a statement of
the three (or four) components that are
present in all software.

Chapter 26: Software Revisited: (I)SAR Clarified

The fascinating thing about SAR is that it applies not only
to a whole program, but also to any piece of that program. A
whole program has a Structure, just as a function or single line
of code has a Structure. Same for Action and Results.

Here's a little more about each of these pieces, and some
examples to help explain.

Structure

Here are some examples of things that would be considered
"Structure" for the whole program:

4 The directory layout of your code.
4 All of the classes and how they relate to each other.
¢ The structure (schema) of the database, if your

program uses a database.

Note here that the actual data in the database isn't part
of the Structure, though. If your program is producing the data
and then sticking it into the database, then that's part of the
Result. 1f the data is sitting in the database and your program
is supposed to process it, then that data is part of the Input.

Then an individual class (and I mean a "class" in the
object-oriented sense) would also have a Structure:

¢ The names of methods in the class and the types/
names of parameters that they take.

¢ The names and types of variables (member variables)
in the class.

Page 154

Chapter 26: Software Revisited: ()SAR Clarified

Whether or not a function (or variable) is private or public
would also be part of the Structure, because Structure describes
what something /s (as opposed to what it does or produces), and
"private" or "public" are words that describe what something s.

A Structure is sort of "the components of the program"
or "the pieces you make the program out of." Function names
and types, variable names and types, classes — these things are
all Structure.

Structure just "sits there." It doesn't do anything unless
there's some part of your program that uses it. For example, a
method doesn't call ##seff, it just sits there waiting to be called.
A variable doesn't put data into itself, it just sits there waiting
for you to do something with it.

Action

The Action of a whole program is very easy to understand. A
tax program "does taxes." A calculator program "does math."

An Action is always a verb of some sort. "Calculates."
"Fixes." "Adds." "Removes." Those are actions. Usually they're
a little more descriptive and specific, though, like, "Calculates
how much rainfall there will be in Africa next year," or "Fixes
broken hard drives."

Inside of a class, the Action is the code inside of the
methods. That's all some sort of action — something going on,
something happening, In many programming languages, you can
also have code outside of any class or function — code that
just runs when you start the program. That's Action.

Page 155

Chapter 26: Software Revisited: (I)SAR Clarified

Results

Every program, every function, and every line of code has
some effect. It produces some result.

A Result can always be talked about in the past tense — it's
something that has been done or created. "Calculated rainfall,"
or "Fixed hard drives." In a tax program, we'd call the Result
cither filed taxes or filled-out tax forms. As you can see, it sounds
a lot like the Action, just completed.

You don't have to describe a Result in the past tense,
though. I'm just saying it always can be described that way. For
example, in a calculator program, normally we'd call the Result
of addition "the sum," (not past-tense, just a noun) but you
could also say that the Result is "added numbers" (which is
past-tense). Same thing, just a different way of describing it.

Individual pieces of your program have Results, too. When
you call a method or function, it has a very specific Result. It
gives you back some data, or it causes some data to be changed.

Whatever your program (or any part of your program)
produces, that's the Result.

ISAR in a Single Line of Code
So, I said that SAR applies to a single line of code, but I didn't

give you any examples. So here's a single line of code:
X=y+z

y and z in that line are part of the Structure. They're
variables that hold some data. To make an analogy: A jug is a
structure that holds water. A variable is a structure that holds
data.

Page 156

Chapter 26: Software Revisited: ()SAR Clarified

The numbers that are stored inside y and z are the Input.
That's the data that we'te doing something with.

+ is an Action: "Add these two numbers."
= is also an Action: "Store the result in x."

And, of course, the Result is the sum of y and z that
gets stored in x. If y is 1 and z is 2, then the Result is the
number 3, which gets stored in x. (Also note that x is itself a
variable and thus also part of the Structure, but that's getting
pretty technical.)

Wrapping SAR Up

SAR is a concept that applies to any kind of programming,
whether you'te building a big application or just writing a
single-line script. It's not something that you have to think
about in-depth every time you write a piece of code, but it can
help us analyze and understand a program — particularly when
we're looking at how we can improve its design.

-Max

Page 157

Vn27 s

SOFTWARE AS
KNOWLEDGE

I don't often dive deep into the philosophical underpinnings
of my writings, but I've been realizing more and more that
there are a few philosophical principles behind my ideas that it
would be valuable to share. So that's what this chapter is about.

Also, some of these philosophies weren't fully formed
until I sat with the work for a long time, applied it in a lot of
situations, and talked about it with many people. This particular
idea — a theory that I have developed over time about how
software can be thought of and worked with in the mind — has
sort of been percolating with me for quite a while now. It's
time to get at least part of it out on paper. So here you go.

Software is, fundamentally, a solid object
that is made of knowledge. It follows
all the rules and laws of knowledge. It
behaves exactly as knowledge behaves in
just about any given situation, except that
it's in concrete form.

Chapter 27: Software as Knowledge

For example, when software is complex it tends to be mis-
used. When software is wrong (i.e., has a bug), it tends to cause
harm or problems. When people don't understand some code,
they tend to alter it incorrectly. One could say these things of
knowledge just as one could say them of software. Bad data
causes people to misbehave; bad code causes computers to
misbehave. I'm not saying that computers and people can be
compared — I'm saying that software and knowledge can be.

One wishes to have knowledge in a sensible and logical
form. Similarly, one should also desire to have software —
particularly the code — in a sensible and logical form. Because
code is knowledge, it should translate to knowledge in one's
mind almost immediately upon viewing it. If it doesn't, then
some part of it is too complex — perhaps the underlying
programming language or systems, but more likely the structure
of the code as created by its designer.

When we desire knowledge, there are numerous ways to
acquire it. One could read about it, think about it, perform
observations, do experiments, talk about it, etc. In general, we
could divide these methods into acquiring the data for ourselves
(via observation, experiment, thought, etc.) or getting data from
somebody else (reading, talking, etc.).

There are some situations in which we wust get data for
ourselves, particularly when it applies to us in some unique
way that we couldn't rely on others to work out cortrectly.
As an extreme example, walking on my own legs likely took
tremendous amounts of personal experimentation when my
body was much smaller. I probably had some assistance, but
that knowledge 4ad to be developed by me.

Page 160

Chapter 27: Software as Knowledge

There are far more situations, however, in which we must
rely on secondhand data. If one wants to do a good job at
living, there's a lot to know — one simply could not acquire
so much information on their own. This is where the help of
others comes in: the data they know, the lessons they've learned
and can teach us.

It seems likely that these same principles describe when
one should write code themselves or use existing code. You
pretty much couldn't write all the code yourself down to the
hardware level and come up with some of the most useful
software we have today.

For sure, there are some things that only we are uniquely
qualified to write — usually the specific logic of the product
that we're working on. But there are many more things that
we must rely on existing code for, just like we must rely on
existing secondhand knowledge to survive as individuals.

It's also possible we could use this principle somewhat for
deciding how to divide up work between developers. Would
it be faster for somebody to create a piece of code out of
their firsthand knowledge, or would it be faster for a group of
people to look at the existing system (secondhand knowledge)
and start to contribute their own parts (which will, in time,
essentially become their firsthand knowledge)?

The answer depends on the situation, obviously, and though
the basic idea here may not be too novel (some programmers
already know the system better than others and so they're
faster) the way we came to the idea is what matters. We first
theorize that software is knowledge, and then suddenly we can
see a clear logical line down to some existing principle that is
already known to be generally true. Pretty handy, and indicates
we could likely derive other, more useful information from
this principle.

Page 161

Chapter 27: Software as Knowledge

Of course, this is not, by itself, a science or a scientific
system. It's just an idea, one that seems to work well for
deriving principles about development. I would say it is one
of the broadest philosophical theories that I've been able to
develop about software, in fact.

It seems to cover all aspects and explain all behaviors. I
could actually sit here and theorize about this idea for a long
time, but my goal in this chapter is to give you a brief summary
and then let you explore what you see when you look into the
matter of software: knowledge.

-Max

Page 162

S 28 s

THE PURPOSE OF
TECHNOLOGY

In general:

When technology attempts to solve
problems of matter, energy, space, or
time, it is successful. When it attempts
to solve human problems of the mind,
communication, ability, etc. it fails or
backfires dangerously.

For example, the Internet handled a great problem of space
— it allowed us to communicate with anybody in the world,
instantly. However, it did not make us better communicators.
In fact, it took many poor communicators and gave them a
massive platform on which they could spread hatred and fear.

Chapter 28: The Purpose of Technology

This isn't me saying that the Internet is all bad — I'm
actually quite fond of it, personally. I'm just giving an example
to demonstrate what types of problems technology does and
does not solve successfully.

The reason this principle, or rule, is
useful is that it tells us in advance what
kind of software purposes or startup
ideas are more likely to be successful.

Companies that focus on solving human problems with
technology are likely to fail. Companies that focus on resolving
problems that can be expressed in terms of material things at
least have the possibility of success.

Are there Counter-Examples to this Rule?

There can be some seeming counter-examples to this rule.
For example, isn't the purpose of Facebook to connect
people? That sounds like a human problem, and Facebook
is very successful. But connecting people is not actually what
Facebook does. It provides a medium through which people
can communicate, but it doesn't actually create ot cause human
connection. In fact, most people I know seem to have a sort
of uncomfortable feeling of addiction surrounding Facebook
— the sense that they are spending more time there than is
valuable for them as people.

So I'd say that Facebook is exacerbating certain human
problems (like a craving for connection) wherever it focuses
on solving those problems. But it's achieving other purposes
(removing space and time from broad communication)
excellently.

Page 164

Chapter 28: The Purpose of Technology

Once again, this isn't an attack on Facebook, which I
think is a well-intentioned company; it's an attempt to make
an objective analysis of what aspects of its purpose are
successful using the principle that technology only solves
physical problems.

Is the Advance of Technology "Good"?

This rule is also useful in clarifying whether or not the advance
of technology is "good." I've had mixed feelings at times
about the advance of technology — was it really giving us a
better world, or was it making us all slaves to machines? The
answer is that technology is neither inherently good nor bad,
but it does fend towards evil when it attempts to solve human
problems, and it does tend toward good when it focuses on
solving problems of the material universe.

Ultimately, our current civilization could not exist without
technology, which includes things like public sanitation systems,
central heating, running water, electrical grids, and the very
computer that I am writing this essay on. Technology is in
fact a vital force that is necessary to our existence, but we
should remember that it is not the answer to everything — it's
not going to make us better people. But it can make us live
in a better world.

-Max

Page 165

S 29 SN

PRIVACY,
SIMPLIFIED

So, there's a lot of talk on the Internet about privacy. Some
people say that privacy is only desired by those who have
something to hide. Some people insist that privacy is a human
right that should never be violated without consent.

There's only one problem with this whole debate: what is
privacy, and why would anybody want it? This is rarely defined
— most people just seem to assume that "everybody knows"
what privacy is, so why would it have to be explained?

Well, I'm not a big fan of "everybody knows." And in fact,
it turns out that privacy actually means two different things,
which many people use interchangeably without specifying what
they're actually talking about. So to help clear up some of the
debate online, and to hopefully shed some light on how it can
all be resolved, here are some clear definitions and discussions
of what privacy is, and why people would want it.

Chapter 29: Privacy, Simplified

Privacy of Space

The first type of privacy is "privacy of space". This is the
ability to control who does and does not enter a particular
physical space, probably because you're in the space and you
don't want certain others in that space. "Enter the space" in
that definition includes any method of being able to perceive
the space — so, for example, if somebody stands outside the
door with their ear pressed to it, they're violating your privacy.
If somebody installs a camera in your room without your
consent, they're violating your privacy.

This form of privacy is not metaphorical. It does not apply
to anything other than physical space. It literally means, "I do
or do not want you to be perceiving this physical location, and
I have the choice and ability to control that."

The most common reason that we want this form of
privacy is that we want to protect somebody or something from
harm, most commonly ourselves. This harm can be minor (we
don't want to be annoyed by people walking through our house
all the time), it can be purely social (we close the door when
we go to the bathroom because we know others don't want
to perceive us going to the bathroom, and we may also not
want to be perceived in such a state), or it can be extreme (a
man with a mask and a chainsaw should not be in my closet).

Page 168

Chapter 29: Privacy, Simplified

One interesting thing about this form of privacy is that we
don't usually consider animals, plants, or material objects to be
capable of violating it, even if they enter a space without our
permission. It might be annoying if the cat comes in the room
when you don't want it to, but you're not going to complain
that the cat is "violating your privacy”, right?

So, when it comes to computer programs,
this is not the form of privacy we're
talking about, since we don't consider
that a computer program being in the
same room with us is a violation of our
privacy of space.

My word processor is not violating my physical privacy of
space, even though it's "in the room" with me, because it does
not, itself, perceive. The only exception would be a computer
program that was transmitting perceptions (sound or sight) to
some location that we didn't want to send it to — that would
be a privacy violation, because someone could perceive our
space through it when we didn't want them to.

When it comes to that sort of privacy, violations are
pretty cut-and-dry. If a computer program sends perceptions
of my space anywhere without my permission, it is absolutely
violating my privacy, it's not useful to me, and it should stop
immediately. But on the Internet, that's not usually the type of
privacy we're talking about.

Page 169

Chapter 29: Privacy, Simplified

Privacy of Information

The second type of privacy is "privacy of information." This
is the ability to control who Anows certain things. When we talk
about computer programs and the Internet, #his is the most
common type of privacy we're talking about.

So why would somebody want privacy of information? Is
it just because they're doing something that they want to hide
from others? Is it just for committing crimes or for hiding
harmful acts? Well, sometimes it is, yes. There are many people
who use the concept of "privacy" to protect themselves from
the law or the moral rejection of others. It is probably because
of these individuals that the concept of privacy is a muddy
subject — as long as it's unclear quite what "privacy" is, it's
much easier for those who have committed harmful acts to
invoke "privacy" as a defense.

But is that the on/y reason that somebody would want
privacy of information? What about a normal person, who
isn't doing anything harmful — would they ever want to keep
certain information private?

Well, there is absolutely a rational reason that people would
want privacy of information, and interestingly, it's the same
reason that people want privacy of space:

An individual or group desires privacy
of information because they believe that
other people knowing that information
could or would be more harmful than
them not knowing it.

Page 170

Chapter 29: Privacy, Simplified

Here's a very straightforward example: I consider that a
criminal knowing my credit card number would be harmful —
far more harmful than them not knowing it.

In certain countries, the fact that I read a certain website
or talked to certain people on the Internet could get me killed
or put in jail. So, in that situation, other people knowing my
browser history could be very harmful, no question about it.

Of course, if one kept everything private, one could not
live. If you pay for a piece of candy with a quarter, the person
receiving that quarter now knows that you had a quarter. They
may know that you kept it in a wallet, or that you pulled it
out of your pants. They probably know what you look like,
if you're not wearing a mask. They most likely also know that
you have five fingers, and that you were in their store at a
certain time.

In short, no matter what you do, in order
to live, you must exchange information
with other people. The more things you
do, the more information you will have
to exchange.

In fact, usually, the more information that others know
about you, the more helpful they can be. The bank knows all
the transactions that I made, so they can help me by creating
an online system that shows me my transactions and lets me
search them. That information can be seen by bank employees,
but I don't consider that to be potentially harmful enough to
outweigh the obvious benefits of the bank having it.

Page 171

Chapter 29: Privacy, Simplified

The web browsers that I use know my passwords to certain
sites, so they can help me by putting those passwords into
the box, saving me some typing. Potentially, somebody could
steal that information from my computer, but the chance of
that happening is small enough, and the benefit is significant
enough, so I consider it acceptable to save my passwords in
the browser.

The examples like this go on and on — the appropriate use
of information is extremely beneficial. The inappropriate use is
what's harmful.

So who decides what what's an appropriate use and what's
an inappropriate use? What information should be sent and
stored, and what information should be kept private? Well,
these are the fundamental questions being asked when people
debate privacy issues — who gets to choose whether my
knowledge becomes somebody else's knowledge? Should I be
asked before my information is sent, or should I just be given
the option to opt-out and delete the information? Is there some
information that should never be sent? What information is
more important to keep private than other information?

Though this is all far less cut-and-dry than "privacy of
space” issues, these questions can generally be answered by the
"help vs harm" equation.

The basic sort of questions one might want to ask
would be:

¢ Will sending and storing this information harm
any users, immediately or potentially? (Remember,
"potentially" is pretty broad — what happens if
somebody with bad intentions steals that information
from you? What happens if somebody buys your
company and decides to use that information in a way
that you think is bad?)

Page 172

Chapter 29: Privacy, Simplified

¢ Would it help your users more than harm them to
take this information?

¢ Taking all the above into account, should sending this
information be optional? (This is largely determined
by how broadly it cou/d be harmful to collect the
information.)

¢ If sending the information is optional, should it be
opt-out or opt-in? (That is, should it automatically be
on, and people have to turn it off if they don't want
to send the info, or should it be off and people have
to choose to turn it on?)

¢ If it's opt-in, will the feature still be helpful to enough
of your users to justify implementing it?

There are some people who will claim that no information
should ever be sent or stored about the user, that all privacy
options should always be opt-in, and that all information is so
potentially harmful that no debate about this can be accepted.
That is, frankly, a ridiculous proposition. It's so obviously
untrue that there's almost no way to argue with it, because it's
such a shocking irrationality. Just like the fact that somehow,
liquids could harm somebody (so you can't bring liquids on
an airplane in the USA). It's true that there are situations in
which almost any piece of information could be dangerous.
That doesn't mean that all information is dangerous, though.

My martial artist friends have frequently joked that they
shouldn't be allowed to bring any object on an airplane, because
they could kill somebody with any of them. Similarly, given
almost any piece of information, somebody could do something
harmful with it, somewhere, at some point. If I know you have
a quarter in your pocket, I'm sure there's some situation in
which I could use that information to get you in some serious
trouble. But that doesn't make that information realistically
harmful, even potentially.

Page 173

Chapter 29: Privacy, Simplified

Even the idea of "every single piece of information
should be opt-in" is ridiculous. Do you want the web browser
to ask you, "May I send this page your IP address?" every
time you load a web page? Well, if you'te a spy in a hostile
country, maybe you do. But if you're like most people, that
would probably just annoy you — you'd stop using that web
browser and switch to another one. And if you are a spy or a
resistance fighter, then you probably know how to use Tor to
avoid being tracked.

A Summary of Privacy

So when we're talking about ptivacy, it's really not an issue of
"in some incredibly unlikely situation, this information could
be very harmful" it's an issue of balancing help versus harm
in real-world situations.

Real-world situations can be pretty strange and unexpected,
but they at least are rea/, and can be balanced and talked about.
Doing so, you can make good decisions about how to protect
your users' privacy — how much information to take, how you
inform them about the information you'te taking, and what
you do with that information when you have it.

So no, this is not a casual issue or something that we
should just brush-off, ignoring the dangerous implications that
come with it. And yet neither is this an extreme or unsolvable
situation, where we have to decide to keep everything private,
just because we can't make up our minds about it.

Privacy is simply something that we should be able to
analyze factually, based on real-world situations and data, and
come to some practical and useful decision about.

-Max

Page 174

— 30 —

SIMPLICITY AND
SECURITY

A big part of writing secure software (probably the biggest
part) is simplicity.

When we think about software security, the first question
that we ask is, "How many different ways could this program
possibly be attacked?" That is, how many "ways in" are there?
It's a bit like asking "How many doors and windows are there
on this building?" If your building has 1 extetior doot, it's very
easy to protect that door. If it has 1000, it will be impossible
to keep the building secure, no matter how good the doors
are or how many security guards you have.

So we need to limit the "ways in" to our software to
some reasonable number, or it won't ever be secure. That's
accomplished by making the overall system relatively simple,
or breaking it down into very simple and totally separate
component parts.

Chapter 30: Simplicity and Security

Then, once we've limited the ways in, we need to start
thinking about:

"How many different possible attacks are
there against each way in?"

We limit that by making the "ways in" themselves very simple.
Like a door with only one unique key, instead of a door that
can take five different keys, all of which individually will open
the door.

Once that's done, we limit how much damage any attack
could do if it got through. For example, in a building, we'd
make any given door only allow access to one room.

All of this explains, for example, why earlier versions of
Windows were fundamentally flawed and would #ever be secure,
and why UNIX-based systems have a better reputation for
security.

Standard UNIX has a very small number of system calls
that are used to implement the vast majority of all UNIX
programs out there. (Even the extended list is only about
140 system calls, though most of those are never used by the
average program.) Hach system call is extremely specific and
does one very limited thing.

Windows, on the other hand, has a ridiculous set of system
calls that are confusing, take too many arguments, and do too
much.

Page 176

Chapter 30: Simplicity and Security

Going up to a higher level in the system, the Windows
API is massive and complex. It's a strange beast that controls
both the OS and the GUI. Thete's really no equivalent thing
in UNIX (because the OS and the GUI are separate), but we
can at least compare parts of it. For instance if we compare
the Windows Logging API and the Linux Logging API, there's
no comparison at all — it's like a joke. There are so many "ways
in" to any part of Windows that it will never be fundamentally
secure.

You might say, "Well, I haven't had a virus on my Windows
machine in a long time." That's not what I'm talking about —
I'm talking about fundamental security. In order to have a secure
Windows machine, you have to have a firewall that asks you
every time a program wants to make an outbound connection.
You have to have a spyware scanner. You have to have antivirus
software that slows down your computer by as much as 2000%.
If Windows was secure, you wouldn't need those things.

When we design our own systems, keeping them simple is
the only real guarantee of security. We keep each "way in" to
the system as simple as possible, and we never add more "ways
in" than we absolutely need. These are compatible things, too,
because the simpler each "way in" is, the fewer we'll actually
need. That may not make sense until you think about it this
way: If all actions on the system can be reduced to, say, 13
fundamental function calls, then the user can do everything with
those 13 calls, even if they'te not very powerful individually. If
instead we only let them do 100 different specific tasks, and
don't allow them to use the 13 fundamental calls, we have to
add a new function for every specific task.

Page 177

Chapter 30: Simplicity and Security

There are lots of other "ways in" to a program than just
its public API, too. How the user interface interacts with the
backend — that involves various "ways in". Can we access
this program's internal structure from another program? That
would be another "way in." There ate /ofs of ways to apply this
principle. Any way you slice it, though:

The best way to get real security in
things is simplicity.

We shouldn't have to put a small army in front of our
software just to keep it secure. It should just fundamentally
have so few "ways in" that it doesn't need the protection,
and those "ways in" should be so streamlined and simple that
they're impossible to exploit.

-Max

Page 178

VA31 s

TEST-DRIVEN

DEVELOPMENT
AND THE CYCLE
OF OBSERVATION

I recently watched an interesting discussion between several
well-known programmers on the nature and use of TDD (Test-
Driven Development), a development system where one writes
tests first and then writes code.

Each participant in the conversation had different personal
preferences for how they write code, which makes sense.
However, from each participant's personal preference you could
extract an identical principle: "I need to observe something
before I can make a decision." Some wanted to observe the
results of the tests while they were writing code, while others
wanted to write code and look at #bat to decide how to write
tfurther code. Even when they talked about exceptions to their
own rules, they always talked about having something to look at as
a fundamental part of their development process.

Chapter 31: Test-Driven Development and the Cycle of Observation

It's possible to minimize this point and say it's only relevant
to debugging or testing. It's true that it's useful in those areas,
but when you talk to many senior developers you find that this
idea is actually a fundamental basis of their whole development
workflow. They want to see something that will help them make
decisions about their code. It's not something that only happens
when code is complete or when there's a bug — it's something
that happens at every moment of the software lifecycle.

This is such a broad principle that you could say the cycle
of all software development is:

Obsetrvation — Decision — Action —

Observation — Decision — Action —
etc.

If you want a term for this, you could call it the "Cycle
of Observation" or "ODA."

Examples of ODA

What do I mean by all of this? Well, let's take some examples
to make it clearer. When doing TDD, the cycle looks like this:

1. See a problem (observation).

2. Decide to solve the problem (decision).
3. Write a test (action).
4

Look at the test and see if the API looks good
(observation).

5. If it doesn't look good, decide how to fix it (decision),
change the test (action), and repeat Observation —
Decision — Action until you like what the API looks
like.

Page 180

Chapter 31: Test-Driven Development and the Cycle of Observation

6. Now that the API looks good, run the test and see
that it fails (observation).

7. Decide how you're going to make the test pass
(decision).

8. Write some code (action).
9. Run the test and see that it passes or fails (observation).

10. If it fails, decide how to fix it (decision) and write
some code (action) until the test passes (observation).

11. Decide what to work on next, based on principles
of software design, knowledge of the problem, or
the data you gained while writing the previous code
(decision).

12. And so on.

There are many valid processes of course. For example,
another valid way to go here about this would be to write the
code first. The difference from the above sequence is that Step
3 would be "write some code" rather than "write a test." Then
you observe the code ##se/f to make further decisions, or you
write tests after the code and observe those.

Development Processes and Productivity

What's interesting is that, as far as I know, every valid
development process follows this cycle as its primary guiding
principle. Even large-scale processes like Agile that cover a
whole team have this built into them. In fact, Agile is to some
degree an attempt to have shorter Observation-Decision-Action
cycles (every few weeks) for a team than previous broken
models (Waterfall, aka "Big Design Up Front") which took
months or years to get through a single cycle.

Page 181

Chapter 31: Test-Driven Development and the Cycle of Observation

So, shorter cycles seem to be better than longer cycles.
In fact, it's possible that most of the goal of developer
productivity could be accomplished simply by shortening the
ODA cycle down to the smallest reasonable time period for
the developer, the team, or the organization.

Usually you can accomplish these shorter cycles just by
focusing on the Observation step. Once you've done that, the
other two parts of the cycle tend to speed up on their own. (If
they don't, there are other remedies, but that's another story.)

There are three key factors to address in Observation:

¢ The speed with which information can be delivered
to developers. (For example, having fast tests.)

¢ The completeness of information delivered to
the developers. (For example, having enough test
coverage.)

¢ The accuracy of information delivered to developers.
(For example, having reliable tests.)

This helps us understand the reasons behind the success
of certain development tools in recent decades. Continuous
Integration, production monitoring systems, profilers, debuggers,
better error messages in compilers, IDEs that highlight bad
code — almost everything that's "worked" has done so because
it made Observation faster, more accurate, or more complete.

There is one catch — you have to deliver the information
in such a way that it can actually be received by people. If you
dump a huge sea of information on people without making
it easy for them to find the specific data they care about, the
data becomes useless. If nobody ever receives a production
alert, then it doesn't matter.

If a developer is never sure of the accuracy of information
received, then they may start to ignore it. You must successfully
communicate the information, not just gemerate it.

Page 182

Chapter 31: Test-Driven Development and the Cycle of Observation

The First ODA

There is a "big ODA cycle" that represents the whole process
of software development — seeing a problem, deciding on a
solution, and delivering it as software. Within that big cycle
there are many smaller ones (see the need for a feature,
decide on how the feature should work, and then write the
feature). There are even smaller cycles within that (observe the
requirements for a single change, decide on an implementation,
write some code), and so on.

The trickiest part is the first ODA cycle in any of these
sequences, because you have to make an observation with no
previous decision or action.

For the "big" cycle, it may seem like you start off with
nothing to observe. There's no code or computetr output to see
yet! But in reality, you start off with at least yourself to observe.
You have your environment around you. You have other people
to talk to, a world to explore. Your first observations are often
not of code, but of something to solve in the real world that
will help people somehow.

You can even view the process of Observation, itself, as
its own little ODA cycle: look at the world, decide to put
your attention on something, put your attention on that thing,
observe it, decide based on that to observe something else, etc.

There ate likely infinite ways to use this principle; I've just
presented just a few examples here for you.

-Max

Page 183

3D —

THE PHILOSOPHY
OF TESTING

Much like we gain knowledge about the behavior of the
physical universe via the scientific method, we gain knowledge
about the behavior of our software via a system of assertion,
observation, and experimentation called "testing"

There are many things one could desire to know about a
software system. It seems that most often we want to know
if it actually behaves like we intended it to behave. That is, we
wrote some code with a particular intention in mind, does it
actually do that when we run it?

In a sense, testing software is the reverse
of the traditional scientific method,
where you test the universe and then use
the results of that experiment to refine
your hypothesis.

Instead, with software, if our "experiments" (tests) don't
prove out our hypothesis (the assertions the test is making),
we change the system we are testing.

Chapter 32: The Philosophy of Testing

That is, if a test fails, it hopefully means that our software
needs to be changed, not that our test needs to be changed.
Sometimes we do also need to change our tests in order to
propetly reflect the current state of our software, though.

It can seem like a frustrating and useless waste of time to
do such test adjustment, but in reality it's a natural part of this
two-way scientific method — sometimes we're learning that our
tests are wrong, and sometimes our tests are telling us that our
system is out of whack and needs to be repaired.

This can help us think about our testing — by examining
the value, the assertions, the boundaries, the assumptions and
the design of our tests. Let's look at these five aspects now.

Test Value

The purpose of a test is to deliver us knowledge about the
system, and knowledge has different levels of value. For
example, testing that 1 + 1 still equals two no matter what
time of day it is doesn't give us valuable knowledge. However,
knowing that my code still works despite possible breaking
changes in APIs I depend on could be very useful, depending
on the context. So in general:

One must know what knowledge one

desires before one can create an effective
and useful test.

One must then judge the value of that information

appropriately, to understand where to put time and effort into
testing,

Page 186

Chapter 32: The Philosophy of Testing

Test Assertions

Given that we want to Anow something in order for a test to
be a test, it must be asserting something and then informing
us about that assertion. Human testers can make qualitative
assertions, such as whether or not a color is attractive. But
automated tests must make assertions that computers can
reliably make, which usually means asserting that some specific
quantitative statement is true or false.

A test without an assertion is not a test.

We are trying to /learn something about the system by
running the test: whether the assertion is true or false is the
knowledge we are gaining.

Test Boundaries

Every test has certain boundaries as an inherent part of its
definition. In much the same way that you couldn't design a
single experiment to prove all the theories and laws of physics,
it would be prohibitively difficult to design a single test that
actually validated all the behaviors of any complex software
system at once.

So when designing a test, you should

know what it is actually testing, and what
it is not testing.

If it seems that you have made such a test, most likely

you've combined many tests into one and those tests should
be split apart.

Page 187

Chapter 32: The Philosophy of Testing

Test Assumptions

Every test has a set of assumptions built into it, which it relies
on in order to be effective within its boundaries. For example,
if you are testing something that relies on access to a database,
your test might make the assumption that the database is up
and running (because some other test has already checked that
that part of the code works).

If the database is 7of up and running, then the test neither
passes nor fails — it instead provides you no knowledge at all.
This tells us that:

All tests have at least three results — pass,
fail, and unknown.

Tests with an "unknown" result must 7o say that they
failed — otherwise they are claiming to give us knowledge when
in fact they are not.

Test Design

Because of the boundaries and assumptions that we've just
been looking at, we need to design our suite of tests so that:

The full set of our tests, when combined,
actually gives us all the knowledge we
want to gain.

Each individual test only gives us knowledge within its
boundaries and assumptions; so how do we overlap those
boundaries, so that they reliably inform us about the real
behavior of the entire system? The answer to this question
may also affect the design of the software system being tested,
because some designs are harder to completely test than others.

Page 188

Chapter 32: The Philosophy of Testing

The question of test design leads us into the many methods
of testing being practiced today, so let's here examine end to
end testing, integration testing, and unit testing.

End to End Testing

"End to end" testing is where you make an assertion that
involves one complete "path" through the logic of the system.
That is, you start up the whole system, perform some action
at the entry point of user input, and check the result that the
system produces. You don't care how things work internally to
accomplish this goal, you just care about the input and result.
That is generally true for all tests, but here we're testing at the
outermost point of input into the system and checking the
outermost result that it produces, only.

An example end to end test for creating a user account in
a typical web application would be to start up a web server,
a database, and a web browser, and use the web browser to
actually load the account creation web page, fill it in, and
submit it. Then you would assert that the resulting page
somehow tells us the account was created successfully.

The idea behind end to end testing is that we gain fully
accurate knowledge about our assertions because we are testing
a system that is as close to "real" and "complete" as possible.
All of its interactions and all of its complexity along the path
we are testing are covered by the test.

The problem of using on/y end to end testing is that it
makes it very difficult to actually get a// of the knowledge
about the system that we might desire. In any complex
software system, the number of interacting components and
the combinatorial explosion of paths through the code make it
difficult or impossible to actually cover 4/ the paths and make
all the assertions we want to make.

Page 189

Chapter 32: The Philosophy of Testing

It can also be difficult to maintain end to end tests, as
small changes in the system's internals lead to many changes
in the tests.

End to end tests are valuable, particularly as an initial
stopgap for a system that entirely lacks tests. They are also
good as sanity checks that your whole system behaves properly
when put together. They have an important place in a test suite,
but they are not, by themselves, a good long-term solution for
gaining full knowledge of a complex system.

If a system is designed in such a way
that it can only be tested via end-to-end
tests, then that is a symptom of broad
architectural problems in the code.

These issues should be addressed through refactoring until
one of the other testing methods can be used.

Integration Testing

This is whete you take two or more full "components" of
a system and specifically test how they behave when "put
together." A component could be a code module, a library
that your system depends on, a remote service that provides
you data — essentially any part of the system that can be
conceptually isolated from the rest of the system.

Page 190

Chapter 32: The Philosophy of Testing

For example, in a web application where creating an
account sends the new user an email, one might have a test
that runs the account creation code (without going through
a web page, just exercising the code directly) and checks that
an email was sent. Or one might have a test that checks that
account creation succeeds when one is using a real database —
that "integrates" account creation and the database. Basically
this is any test that is explicitly checking that two or more
components behave properly when used together.

Compared to end to end testing, integration testing involves
a bit more isolation of components as opposed to just running
a test on the whole system as a "black box."

Integration testing doesn't suffer as badly from the
combinatorial explosion of test paths that end to end testing
faces, particularly when the components being tested are simple
and thus their interactions are simple. If two components
are hard to integration test due to the complexity of their
interactions, this indicates that perhaps one or both of them
should be refactored for simplicity.

Integration testing is also usually not a sufficient testing
methodology on its own, as doing an analysis of an entire
system purely through the znteractions of components means that
one must test a very large number of interactions in order to
have a full picture of the system's behavior.

There is also a maintenance burden with integration testing
similar to end to end testing, though not as bad — when one
makes a small change in one component's behavior, one might
have to then update the tests for all the other components that
interact with it.

Page 191

Chapter 32: The Philosophy of Testing

Unit Testing

This is where you take one component alone and test that it
behaves propetly. In our account creation example, we could
have a series of unit tests for the account creation code, a
separate series of unit tests for the email sending code, a
separate series of unit tests for the web page where users fill
in their account information, and so on.

Unit testing is most valuable when you have a component
that presents strong guarantees to the world outside of itself
and you want to validate those guarantees. For example, a
function's documentation says that it will return the number
"1" if passed the parameter "0." A unit test would pass this
function the parameter "0" and assert that it returned the
number "1." It would not check how the code inside of the
component behaved — it would only check that the function's
guarantees were met.

Usually, a unit test is testing one behavior of one function
in one class/module. One creates a set of unit tests for a
class/module that, when you run them all, cover all behavior
that you want to verify in that module. However, this almost
always means testing only the public API of the system; unit
tests should be testing the bebavior of the component, not its
implementation.

Theoretically, if all components of the system fully define
their behavior in documentation, then by testing that each
component is living up to its documented behavior, you are in
fact testing all possible behaviors of the entire system. When
you change the behavior of one component, you only have to
update a minimal set of tests around that component.

Page 192

Chapter 32: The Philosophy of Testing

Obviously, unit testing works best when the system's
components are reasonably separate and are simple enough
that it's possible to fully define their behavior.

It is often true that if you cannot fully unit test a system,
but instead bave to do integration testing or end to end testing
to verify behavior, some design change to the system is needed.
(For example, components of the system may be too entangled
and may need more isolation from each other.) Theoretically, if
a system were well-isolated and had guarantees for all of the
behavior of every function in the system, then no integration
testing or end to end testing would be necessary. Reality is
often a little different, though.

Reality

In reality, there is a scale of testing that has infinite stages
between unit testing and end to end testing, Sometimes you're
a bit between unit testing and integration testing, Sometimes
your test falls somewhere between an integration test and an
end to end test. Real systems usually require all sorts of tests
along this scale in order to understand their behavior reliably.

For example, sometimes you're testing only one part of the
system but its internals depend on other parts of the system,
so you're implicitly testing those too. This doesn't make your
test an Integration Test, it just makes it a unit test that is also
testing other internal components implicitly — slightly larger
than a unit test, and slightly smaller than an integration test. In
fact, this is the sort of testing that is often the most effective.

Page 193

Chapter 32: The Philosophy of Testing

Fakes

Some people believe that in order to do true "unit testing" you
must write code in your tests that isolates the component you
are testing from every other component in the system — even that
component's internal dependencies. Some even believe that this
"true unit testing” is the holy grail that all testing should aspire
to. This approach is often misguided, for the following reasons.

'

1. An advantage of having tests for individual
components is that when the system changes, you have
to update fewer unit tests than you have to update
with integration tests or end to end tests. If you
make your tests more complex in order to isolate the
component under test, that complexity could defeat
this advantage, because you're adding more test code
that has to be kept up to date anyway.

For example, imagine you want to test an email
sending module that takes an object representing a
user of the system, and sends an email to that user.
You could invent a "fake" user object — a completely
separate class — just for your test, out of the belief
that you should be "just testing the email sending
code and not the user code." But then when the rea/
User class changes its behavior, you have to update
the behavior of the fake User class — and a developer
might even forget to do this, making your email
sending test now invalid because its assumptions (the
behavior of the User object) are invalid.

Page 194

Chapter 32: The Philosophy of Testing

The relationships between a component and its
internal dependencies are often complex, and if you're
not testing its real dependencies, you might not be
testing its real behavior. This sometimes happens when
developers fail to keep "fake" objects in sync with real
objects, but it can also happen via failing to make a
"fake" object as genuinely complex and full-featured
as the "real" object.

For example, in our email sending example above,
what if real users could have seven different formats
of username but the fake object only had one format,
and this affected the way email sending worked?
(Ot worse, what if this didn't affect email sending
behavior when the test was originally written, but it did
affect email sending behavior a year later and nobody
noticed that they had to update the test?) Sure, you
could update the fake object to have equal complexity,
but then you're adding even more of a maintenance
burden for the fake object.

Having to add too many "fake" objects to a test
indicates that there is a design problem with the
system that should be addressed in the code of the
system instead of being "worked around"” in the tests.

For example, it could be that components are too
entangled — the rules of "what is allowed to depend
on what" or "what are the layers of the system" might
not be well-defined enough.

-~

Page 195

Chapter 32: The Philosophy of Testing

In general, it is not bad to have "overlap" between tests.
That is, you have a test for the public APIs of the User code,
and you have a test for the public APIs of the email sending
code. The email sending code uses real User objects and thus
also does a small bit of implicit "testing" on the User objects,
but that ovetlap is okay. It's better to have overlap than to miss
areas that you want to test.

Isolation via "fakes" Zs sometimes useful, though. One has
to make a judgment call and be aware of the trade-offs above,
attempting to mitigate them as much as possible via the design
of your "fake" instances. In particular, fakes are worthwhile to
add two properties to a test — determinism and speed.

Determinism

If nothing about the system or its environment changes, then
the result of a test should not change. If a test is passing on
my system today but failing tomorrow even though I haven't
changed the system, then that test is unreliable. In fact, it is
invalid as a test because its "failures" are not really failures —
they're an "unknown" result disguised as knowledge. We say
that such tests are "flaky" or "non-deterministic."

Some aspects of a system are genuinely non-deterministic.
For example, you might generate a random string based on the
time of day, and then show that string on a web page. In order
to test this reliably, you would need two tests:

1. A test that uses the random-string generation code
over and over to make sure that it properly generates
random strings.

2. A test for the web page that uses a fake random-string
generator that always returns the same string, so that
the web page test is deterministic.

Page 196

Chapter 32: The Philosophy of Testing

Of course, you would only need the fake in that second
test if verifying the exact string in the web page was an
important assertion. It's not that everything about a test needs
to be deterministic — it's that the asserfions it is making need
to always be true or always be false if the system itself hasn't
changed. If you weren't asserting anything about the string, the
size of the web page, etc. then you would not need to make
the string generation deterministic.

Speed

One of the most important uses of tests is that developers
run them while they are editing code, to see if the new code
they've written is actually working. As tests become slower, they
become less and less useful for this purpose. Or developers
continue to use them but start writing code more and more
slowly because they keep having to wait for the tests to finish.

In general, a test suite should not take so long that a
developer becomes distracted from their work and loses focus
while they wait for it to complete. Existing research indicates
this takes somewhere between 2 and 30 seconds for most
developers. Thus, a test suite used by developers during code
editing should take roughly that length of time to run. It might
be okay for it to take a few minutes, but that wouldn't be ideal.
It would definitely not be okay for it to take ten minutes, under
most circumstances.

There are other reasons to have fast tests beyond just the
developet's code editing cycle. At the extreme, slow tests can
become completely useless if they only deliver their result after
it is needed. For example, imagine a test that took so long, you
only got the result after you had already released the product
to users. Slow tests affect lots of processes in a software
engineering organization — it's simplest for them just to be fast.

Page 197

Chapter 32: The Philosophy of Testing

Sometimes there is some behavior that is inherently slow
in a test. For example, reading a large file off of a disk. It
can be okay to make a test "fake" out this slow behavior — for
example, by having the large file in memory instead of on the
disk. Like with all fakes, it is important to understand how this
affects the validity of your test and how you will maintain this
fake behavior propetly over time.

It is sometimes also useful to have an extra suite of "slow"
tests that aren't run by developers while they edit code, but atre
run by an automated system after code has been checked in to
the version control system, or run by a developer right before
they check in their code. That way you get the advantage of a
fast test suite that developers can use while editing, but also the
more-complete testing of real system behavior even if testing
that behavior is slow.

Coverage

There are tools that run a test suite and then tell you which
lines of system code actually got run by the tests. They say that
this tells you the "test coverage" of the system. These can be
useful tools, but it is important to remember that they don't tell
you if those lines were actually tested, they only tell you that
those lines of code were run. If there is no assertion about
the behavior of that code, then it was never actually tested.

Conclusion — The Overall Goal of Testing

There are many ways to gain knowledge about a system, and
testing is just one of them. We could also read its code, look
at its documentation, talk to its developers, etc., and each of
these would give us a belief about how the system behaves.
However, testing validates our beliefs, and thus is particularly
important out of all of these methods.

Page 198

Chapter 32: The Philosophy of Testing

The overall goal of testing is then to gain
valid knowledge about the system.

This goal overrides all other principles of testing — any
testing method is valid as long as it produces that result.

However, some testing methods are more efficient than
others: they can make it easier to create and maintain tests
which produce 4/ the information we desire. These methods
should be understood and used appropriately — as your
judgment dictates, and as they apply to the specific system
you're testing,

-Max

Page 199

— PART SEVEN —

SUCK LESS

33—

THE SECRET
OF SUCCESS:
SUCK LESS

When I started Working on Bugzﬂla (http://www.bugzilla.org)
in 2004, it was a difficult time for the whole project. There
were tremendous problems with the code, we hadn't gotten a
major release out in two years, and a lot of the main developers
had left to go do paid work.

But eventually, thanks to a bunch of new members in the
Bugzilla community, we released Bugzilla 2.18. Hooray! Bells
rang, birds sang, and there was much rejoicing.

However, in the space between Bugzilla 2.16 (which was
before my time) and Bugzilla 2.18 (which was the first release
that I helped get out), something very strange happened — we
developed serious competition.

All of the sudden there were a bunch
of new and competing bug-tracking
systems, some of them open-source and
some of them not, that people were
actually using.

http://www.bugzilla.org

Chapter 33: The Secret of Success: Suck Less

At first it wasn't too worrisome. Bugzilla was pretty
dominant in its field, and it's hard to lose that kind of position.
But as time went on, there was more and more competition,
and some people were predicting doom and gloom for Bugzilla.
We were a tiny group of completely unpaid volunteers,
and some of these competing products were being made
by companies whose marketing and development resources
absolutely dwarfed us.

And yet, with every release, our download numbers kept
going up. And always significantly: 30-50% more than the
previous release, every time.

And then we hit Bugzilla 3.0, and our download numbers
nearly doubled. And they kept going up with every release from
there, the whole time I was involved with the project. In 2009
we got over 10 times the number of downloads per release
than we did in 2004. So how did we pull this off? Well, as
far as I can tell:

All you have to do to succeed in software

is to consistently suck less with every
release.

Nobody would say that Bugzilla 2.18 was awesome, but
everybody would say that it sucked less than Bugzilla 2.16 did.
Bugrzilla 2.20 wasn't perfect, but without a doubt, it sucked less
than Bugzilla 2.18. And then Bugzilla 3.0 fixed a whole lot of
sucking in Bugzilla, and it got a whole lot more downloads.

Page 204

Chapter 33: The Secret of Success: Suck Less

Why is it that this worked?

Well, when people are deciding a7 first what software to use,
they have varying criteria. Sometimes they just use what's
presented to them by default on the computer. Sometimes they
have a whole list of requirements and they do lots of research
and pick the software that has all the features they need. But
once they've picked a program, they will stick with it unless
there is some compelling reason to leave. It's not like people
constantly are looking for new software to replace yours — they
only start looking when your software just won't stop sucking.

As long as you consistently suck less
with every release, you will retain most
of your users.

You're fixing the things that bother them, so there's no
reason for them to switch away. Even if you didn't fix everything
in this release, if you sucked less, your users will have faith that
eventually, the things that bother them will be fixed. New users
will find your software, and they'll stick with it too. And in this
way, your user count will increase steadily over time.

You have to get out releases frequently enough that people
believe that you really wil/ suck less, of course. If your new
release never comes out, then effectively, your current release
never stops sucking,

Page 205

Chapter 33: The Secret of Success: Suck Less

But what happens if you do release frequently, but instead
of fixing the things in your software that suck, you just add
new features that don't fix the sucking? Well, eventually the
patience of the individual user is going to run out. They're not
going to wait forever for your software to stop sucking,

I remember a particular piece of software that I used
every day for years. It had a lot of great features and a nice
user interface, but it would crash two or three times a week.
I really liked the software in general, but man, the crashing
sucked. 1 reported a bug about it, and the bug was ignored. 1
kept using it through 70 new releases, and it still crashed. The
upgrades brought lots of new features, but I didn't care about
them. Remember, the feature set only mattered to me when
1 first picked the software. Now I just needed it to suck less.

But it never did.

So eventually, I went and looked for another piece of
software that did the same thing, switched over, and I was
happy with that one for a while.

But guess what? It had a bug that really sucked. It didn't
happen very often, but when it did, boy was it a problem. But
it sucked /Jess than my old software, so I kept using it. Until
one day, my patience ran out (after maybe 7 upgrades of the
software), and I switched again.

Now I'm using a program that has half the feature set of
cither of the previous two programs. But, as a user, I'm the
happiest I've ever been with this type of software. Because
you know what? My new program sucks bardly at all. 1 mean,
there are little things about it that suck, but supposedly a new
release is coming out soon that will fix some of that sucking,
and so I'm okay with it for now.

Page 206

Chapter 33: The Secret of Success: Suck Less

Would I have guessed this secret of success before I started
working on Bugzilla? No. I would have told you the traditional
wisdom — that a product succeeds or fails based on its feature
set and user interface. But after 5 years on this project,
managing our releases and watching our download count, I can
tell you from my factual experience this strange thing:

All you have to do to succeed as a

software project is to suck less with
every release.

It doesn't matter how much competition you have, or
how many buzzword-friendly features you can cram into your
interface. Just suck less, and you'll succeed.

-Max

Page 207

— 34 —

HOW WE
FIGURED OUT
WHAT SUCKED

So, if you've just read the previous chapter, you may well be
asking, "Okay, but how do you figure out what sucks?"

Well, some of it's really obvious. You press a button
and the program takes 10 minutes to respond. That sucks
pretty bad. You get 100 complaints a week about the Ul of a
particular page — okay, so that sucks.

Usually there are one or two HUGE things that really suck,
and they're really obvious — those are the things to focus on
first, even if they require a tremendous amount of work. For
example, before Bugzilla 3.0, Bugzilla had to compile every
single library and the entire script it was about to run, every
time you loaded a page. This added several seconds to each
page load, on slower machines, and at least 1 second on faster
machines. So performance was one big obvious thing that sucked
about Bugzilla. But even more importantly, the code of Bugzilla
sucked. It was being read by everybody — because people were
frequently customizing Bugzilla at their company — and it was
an unreadable, garbled mess.

Chapter 34: How We Figured Out What Sucked

Thankfully, both of those problems had the same solution.
The performance problem was solved by allowing people to
run Bugzilla in a way that would pre-compile all the code
when the web server started, instead of every time somebody
loaded a page. And to enable that pre-compiling, we had to
do enormous amounts of refactoring. So, we actually ended
up handling our performance problem /y handling our code
problem.

However, it took four major releases (Bugzilla 2.18, 2.20, 2.22,
and finally 3.0) to get all this done! We fixed a lot of little
issues for each release along the way, too, so each release really
did suck less than the previous one. But handling the major
issues was a tremendous effort — it wasn't just something we
could code up in one night and have it be done with.

Sometimes the big issues in a software
project don't get handled because they
do require that much work to fix. This
doesn't mean you can ignore them, it just
means that you have to plan for a long
project, and figure out how you can keep
getting releases out in the meantime.

After all that was fixed, then we could turn our attention
elsewhere, and wow! It turned out that elsewhere, there were
still a bunch of things that sucked! All of the sudden, there
were a new batch of "totally obvious" things to fix — things
that had been there all the time, but were just overshadowed
by the previous set of "totally obvious" things.

Page 210

Chapter 34: How We Figured Out What Sucked

Now, we could have just gone on like this forever — fixing
one set of "totally obvious" problems and then going on to
the next set of "totally obvious" problems. But we ran into
an issue — what happens when suddenly, you get to the point
where there are fiffy "totally obvious" things that need fixing,
and you can't get them all done for one release? Well, that's
when you suddenly need some method of prioritizing what
you'rte going to fix.

For the Bugzilla Project, there were two things that we did
that really helped us prioritize:

1. The Bugzilla Survey: https://wiki.mozilla.org/
Bugzilla:Survey

2. The Bugzilla Usability Study: https://wiki.
mozilla.org/Bugzilla:CMU_HCI_ Research 2008

With the survey, the most important part was allowing
people to respond in free-form text, to questions asked to
them personally. That is, I sent the questions from me personally
to Bugzilla administrators personally, often customizing the
message for their exact situation. And there were no multiple-
choice questions, only questions that prompted them to tell us
what was bothering them and what they wanted to see. They
were actually really happy to get my emails — lots of them
thanked me for just doing the survey.

Once they had all responded, 1 read everything and
compiled a list of major issues that were reported — overall
a surprisingly small list! We're focusing on those issues pretty
heavily nowadays, and I think it's making people happier with
Bugzilla in general.

Page 211

https://wiki.mozilla.org/Bugzilla:Survey
https://wiki.mozilla.org/Bugzilla:Survey
https://wiki.mozilla.org/Bugzilla:CMU_HCI_Research_2008
https://wiki.mozilla.org/Bugzilla:CMU_HCI_Research_2008

Chapter 34: How We Figured Out What Sucked

With the usability study, surprisingly the most helpful part
was when the researchers (who were usability experts) just sat
down in front of Bugzilla and pointed out things that violated
usability principles. That is, even more valuable than the actual
research they did was just zheir observations as experts, using the
standard principles of usability engineering. The fact that they
were fresh eyes — people who'd never worked on Bugzilla and
thus didn't just think "well that's the way it is" — also was
important, I think.

So we took all this data, and it really helped us prioritize.
However, it's important that we did the survey and research
when we did them and not earlier. Back before we fixed the top
few major issues, the usability and survey results would have
just been overwhelming to us — they would have pointed out a
million things we already knew, or a lot of things that we just
didn't have the time to work on at that point, and we would
have had to re-do the survey and research again later, making
it all a bunch of wasted time. So we had to wait until we were
at the point of asking ourselves, "Okay, what's most important
now?", and that was when gathering data became tremendously
important and incredibly useful.

So overall, I'd say that when you're
trying to make things suck less, first
go with what you know are the top few
big obvious issues, and handle those, no
matter what it takes.

Then things will calm down a little, and you'll have a huge
pile of stuff that all needs fixing. That's when you go and

gather data from your users, and work to fix whatever they tell
you actually sucks.

-Max

Page 212

VABS s

THE POWER
OF NO

How many times have you used a piece of software that was
full of incredibly convoluted features, strange decisions, and
unusable interfaces? Have you ever wanted to physically or
verbally abuse a computer because it just wouldn't do things
right, or you couldn't figure out how to make it function
properly? And how often have you thought, "How could any
programmer think this was a sane idea?"

Well if you've ever experienced any of those things,
your next thought might have been something like "**** this
computet" or "*¥** the silly programmer who made it behave
this way". After all, aren't programmers and hardware designers
to blame for the crazy behavior of the system? Well, yes, to
some extent they are. But after being intimately involved in
software design for many years, I now have another reaction to
poortly-implemented features. Instead of becoming angry with
the programmer who implemented the system, I ask myself,
"Who was the software designer who authorized this feature?"
Who stood by silently and let this feature happen when they
had the power to stop it?

Chapter 35: The Power of No

Granted, sometimes there is no software designer at all,
in which case you're practically guaranteed to have a broken
system. But when there is a software designer, they are
ultimately responsible for how the system is put together.
Now, quite a bit of this job involves designing the structure
of features before they go into the system. But there's also
another part of the job of a software designer — preventing
bad ideas from being implemented. In fact, if there's any lesson
I've learned from my years in the software industry, it's this:

The most important word in a software
designer's vocabulary is "no".

The problem is that if you give a group of humans total
freedom to implement any random idea that comes into their
mind, then nearly every time they will implement bad ideas.
This isn't a criticism of developers, it's more of a fact of life.
I have great faith in the intelligence and capability of individual
developers. I admire developers' struggles and achievements in
software development. It's just an unfortunate fact of existence
that without some central guidance, people in a group tend to
evolve complex systems that don't help their users as well as
they could.

An individual designer, however, is usually capable of
creating a consistent and enjoyable experience for the users and
developers both. But if that individual designer never steps up
and say "no" when another developer starts to do something
the wrong way, then the system will collapse on itself and
become a chaotic mess of bad ideas. So it is very important to
have a software designer who has the power to say "no", and
then it's important for that designer to actually use that power
whenever it is appropriate.

Page 214

Chapter 35: The Power of No

It is truly amazing how much you can improve your
¥ g ¥ ¥y
product just by saying "no" to any idea that really deserves a

"1‘10".

Recognizing Bad Ideas

Before you can apply this principle, there is one thing that you
have to know: how to recognize bad ideas. Thankfully, there
are a lot of software design principles that help clue you in
on what is a bad idea, and lead you to saying "no" when it's
truly needed. For example:

¢ If the implementation of the feature violates the laws
of software design (for example, it's too complex, it
can't be maintained, it won't be easily changeable, etc.)
then that implementation is a bad idea.

If the feature doesn't help the users, it's a bad idea.
If the proposal is obviously stupid, it's a bad idea.

If some change doesn't fix a proven problem, it's a

bad idea.

¢ If you aren't certain that it's a good idea, it's a bad
idea.

Also, one tends to learn over time what is and isn't a
good idea, particularly if you use the above as guidelines and
understand the laws of software design.

Page 215

Chapter 35: The Power of No

Having No Better Idea

Now, sometimes a designer can recognize a bad idea, but they
still implement it because they can't think of a better idea right
now. This is a mistake. If you can think up only one solution
to a problem but it is obviously stupid, then you szl need to
say no to it.

At first this may seem counter-intuitive — don't problems
need to be solved? Shouldn't we solve this problem in any
way we canr

Well, here's the problem: if you implement a "bad
idea", your "solution" will rapidly become a worse disaster
than the original problem ever was. When you implement
something terrible, it "works", but the users complain, the other
programmers all sigh, the system is broken, and the popularity
of your software starts to decrease. Eventually, the "solution"
becomes such a problem that it requires ozher bad "solutions"
to "fix" it. These "fixes" then become enormous problems in
themselves. Continue down this path, and eventually you end
up with a system that is bloated, confused, and difficult to
maintain, just like many existing software systems today.

If you often find yourself in a situation where you feel
forced to accept bad ideas, it's likely that you're actually near
the end of this chain of events — that is, you're actually building
on a series of pre-existing bad ideas from the system's past. In
that case, the solution is not to keep "patching" over the bad
ideas, but to instead find the most fundamental, underlying bad
ideas of the system and redesign them to be good, over time.

Page 216

Chapter 35: The Power of No

Now ideally, when you reject a bad idea, you should
provide an alternate, good idea in its place — that way you're
being constructive and moving the project forward, instead of
being viewed as a roadblock on the path of development. But
even if you can't come up with a better idea right now, it's
still important to say no to bad ideas. A good idea will come
eventually. Maybe it will take some study, or perhaps it will
suddenly come to you while you're standing in the shower one
day. I have no idea where the idea will come from or what
it will be. But don't worry too much about it. Just trust that
there is a/ways some good way to solve every problem, and
keep looking for it until you find it. Don't give up and accept
bad ideas.

Clarification: Acceptance and Politeness

So it's important to say "no", but there are a few clarifications
required on what I really mean, there. I'm not saying that every
suggestion is wrong. In fact, developers are usually very bright
people, and sometimes they really do nail it. Many developers
make perfect suggestions and do excellent implementations.
And even the worst solutions can have good parts, despite not
being excellent as a whole.

So many times, instead of actually saying
"no", what you'll be saying is something
more like, "Wow, there's a part of this
idea that is really good, but the rest of
it is not so great.

Page 217

Chapter 35: The Power of No

We should take the best parts of this idea and build them
up into something awesome by doing more work on them."
You do have say no to the parts of an idea that are bad, though.
Just because one part of the idea is good doesn't mean that
the whole idea is good. Take what's intelligent about the idea,
refine it, and build good ideas around it until the solution
you've designed really is great.

Also, it is still critically important that you communicate we//
with the rest of your team — having the responsibility of saying
"no" doesn't give you the right to be rude or inconsiderate. If
you continuously say "no" without any hint of kindness, you
are going to fracture your team, cause upsets, and ultimately
end up wasting hours of your time in argument with the people
you've upset.

So when you have to say "no", it's best to find a polite
way to communicate it — a way that expresses appreciation for
the input, positive suggestions of how to improve things, and
lets the person down easily. I understand how frustrating it can
be to have to slow down and explain things — and even more
frustrating to repeat the explanation over and over to somebody
who doesn't get it the first time — but if that's what it takes
to have an effective development team while still saying "no"
to bad features, then that's what you have to do.

-Max

Page 218

— 36 —

WHY
PROGRAMMERS
SUCK

A long time ago, I wrote an essay called "Why Computers
Suck" (it was given the title "Computers" and "What's Wrong
With Computers" in two later revisions, and the original title
never saw the light of day). The article was fairly long, but it
basically came down to the idea that computers suck because
programmers create crazy complicated stuff that nobody else
can understand, and complexity builds on complexity until every
aspect of a program becomes unmanageable.

What I didn't know at the time was why programmers did
this. It was obvious that they did do it, but why would the
software development industry produce so many crazy, complex
masses of unreadable code? Why did it keep happening, even
when developers should have learned their lesson after their
first bad experience?

What was it that made programmers not

just make bad code, but keep on making
bad code?

Chapter 36: Why Programmers Suck

Well, this was a mystery, but I didn't worry too much about
it at first. Just the revelation that "bad programs are caused
entirely by bad programmers", as simple and obvious as it may
seem, was enough to fuel an entire investigation and study into
the field of programming, one which had some pretty good
results. The problem had been defined (bad programmers who
create complexity), and the problem seemed to have a solution
(describe laws of software design that would prevent this); so
that was enough for me.

But it still baffled me that the world's universities, technical
schools, and training programs could turn out such terrible
programmers, even with all of the decades of advancement in
software development techniques. Sure, a lot of the principles
of software design hadn't been codified, but a lot of good
advice was floating around, a lot of it very common. Even
if people hadn't gone to school, didn't they read any of this
advice?

Well, the truth was beyond my imagination, and it took
almost five years of working on the Bugzilla Project with a
vast number of separate contributors until one day I suddenly
realized an appalling fact:

The vast majority (90% or more) of
programmers have absolutely no idea
what they are doing.

Page 220

Chapter 36: Why Programmers Suck

It's not that these programmers haven't read about
software design (though they likely haven't). It's not that the
programming languages are too complex (though they are). It's
that the vast majority of programmers don't have the first clue
what they are really doing. They are just mimicking the mistakes
of other programmers — copying code and typing more-or-less
meaningless incantations at the machine, in the hope that it
would behave like they wanted. All of this without any real
understanding of the mechanics of the computer, the principles
of software design, or the meanings of each individual word
and symbol they were typing into the computer.

That is a bold, shocking, and offensive statement, but it
has held up in my experience. I have personally reviewed and
given feedback on the code of scores of programmers. I have
read the code of many others. I have talked to many, many
programmers about software development, and I've read the
writings of hundreds of developers.

The number of programmers who really
understand what they are doing comprise
only about 10% of all the programmers
I've ever talked to, worked with, or heard
about.

In open source, we get the cream of the crop — people
who want to program in their spare time. And even then, I'd
say only about 20% of open source programmers have a really
good handle on what they are doing

So why is this? What's the problem? How could there be
so many people working in this field who have absolutely no
clue what they're doing?

Page 221

Chapter 36: Why Programmers Suck

Well, that sounds a bit like they're somehow "stupid." But
what zs stupidity? People are not stupid simply for #ot knowing
something. There's a lot of stuff that everybody doesn't know.
That doesn't make them stupid. That may make them dgnorant
about certain things, but it doesn't make them stupid.

No, stupidity, real stupidity, is #ot knowing that you don't know.
Stupid people think they know something when they don't, or they
have no idea that there is something more to know.

This sort of stupidity is something that
can be found in nearly every field, and
software development is no exception.

Many programmers simply don't know that thete cowld be
laws or general guidelines for software development, and so they
don't even go looking for them. At many software companies,
there's no attempt to improve developers' understanding of the
programming language they're using — perhaps simply because
they think that the programmers must "already know it if they
were hired to do it".

Unfortunately, it's particularly harmful to have this sort of
mindset in software development, because there is so much to
know if you really want to be good. Anybody who thinks they
already know everything (or who has a "blind spot" where
they can't see that there's more to learn) is having their ability
to produce excellent code crippled by a lack of knowledge —
knowledge they don't even know exists and that they don't even
know they lack.

Page 222

Chapter 36: Why Programmers Suck

No matter how much you know, there is almost always
more to know about any field, and computer programming is no
exception. So it's always wrong to think you know everything.

What to Study

Sometimes it's hard to figure out what one should be learning
about, though. There's so much data, where does one start?
Well, to help you out, I've come up with a few questions you
can ask yourself or others to help figure out what areas might
need more study:

¢ Do you know as much as possible about every single
word and symbol on every page of code you're
writing?

¢ Did you read and completely understand the
documentation of every single function you're using?

¢ Do you have an excellent grasp of the fundamental
principles of software development — such a good
grasp that you could explain them flawlessly to novice
programmers at your organization?

¢ Do you understand how each component of the
computer functions, and how they all work together?

¢ Do you understand the history of computers, and
where they're going in the future, so that you can
understand how your code will function on the
computers that will be built in the future?

¢ Do you know the history of programming languages,
so that you can understand how the language you're
using evolved and why it works like it does?

Page 223

Chapter 36: Why Programmers Suck

¢ Do you understand other programming languages,
other methods of programming, and other types of
computers than the one you're using, so that you
know what the actual best tool for each job is?

From top to bottom, those are the most
important things for any programmer to
know about the code they're writing. If
you can truthfully answer "yes'" to all
those questions, then you are an excellent
programmer.

It may seem like an overwhelming study list to you.
"Wow, the documentation for every single function? Reading that
is going to take too long!" Well, you know what else takes a
long timer? Becoming a good programmer if you don't read the
documentation. You know how long it takes? Forever, because
it never happens.

You will #ever become a good programmer simply by
copying other people's code and praying that it works right for
you. But even more importantly, investing time into learning is
what it takes to become good. Taking the time #ow will make
you a much faster programmer later. If you spend a lot of
time reading up on stuff for the first three months that you're
learning a new technology, you'll probably be 10 times faster
with it for the next 10 years than if you'd just dived into it
and then never read anything at all.

Page 224

Chapter 36: Why Programmers Suck

I do want to put a certain limiter on that, though — you
can't just read for three months and expect to become a good
programmer. First of all, that's just too boring — nobody
wants to just study theory for three months and not get any
actual practice in. Very few people would keep up with that
for long enough to become programmers at all, let alone good
programmers. So I want to point out that understanding comes
also from practice, not just from study. But without the study,
understanding may zever come. So it's important to balance
both the study and the practice of programming.

This is not an attack on any programmer that I've worked
with personally, or even an attack on any individual programmer
at all. I admire almost every programmer I've ever known,
as a person, and I expect I'd admire the rest were I to meet
them, as well.

Instead, this is an open invitation to a// programmers to
open your mind to the thought that there might always be more
to know, that both knowledge and practice are the key to skill,
and that it's not shameful at all to not know something — as
long as you know that you don't know it, and take the time to
learn it when necessary.

-Max

Page 225

Vm37 s

THE SECRET
OF FAST
PROGRAMMING:
STOP THINKING

When I talk to developers about code complexity, they often
say that they want to write simple code, but deadline pressure
or underlying issues mean that they just don't have the time
or knowledge necessary to both complete the task and refine
it to simplicity.

Well, it's certainly true that putting time pressure on
developers tends to lead to them writing complex code.
However, deadlines don't have to lead to complexity. Instead of
saying "This deadline prevents me from writing simple code,"
one could equally say, "I am not a fast-enough programmer to
make this simple." That is, the faster you are as a programmer,
the less your code quality has to be affected by deadlines.

Chapter 37: The Secret of Fast Programming: Stop Thinking

Now, that's nice to say, but how does one actually become
faster? Is it a magic skill that people are born with? Do you
become fast by being somehow "smarter" than other people?

No, it's not magic or in-born at all. In fact, there is just
one simple rule that, if followed, will eventually solve the
problem entirely:

Any time you find yourself stopping to
think, something is wrong.

Perhaps that sounds incredible, but it works remarkably
well. Think about it — when you'te sitting in front of your
editor but not coding very quickly, is it because you'te a slow
typer? I doubt it — "having to type too much" is rarely a
developet's productivity problem.

Instead, the pauses where you're no# typing are what make
it slow. And what are developers usually doing during those
pauses? Stopping to think — perhaps about the problem,
perhaps about the tools, perhaps about email, whatever. But
any time this happens, it indicates a problem.

The thinking is not the problem itself — it is a sjgn of some
other problem. It could be one of the many different issues
that we're going to look at now.

Understanding

Just the other day it was taking me hours to write what should
have been a really simple service. I kept stopping to think
about it, trying to work out how it should behave. Finally, I
realized that I didn't understand one of the input variables to
the primary function. I knew the name of its type, but 1 had
never gone and read the definition of the type — I didn't really
understand what that variable (a word or symbol) meant.

Page 228

Chapter 37: The Secret of Fast Programming: Stop Thinking

The most common reason developers stop to think is that
they did not fully understand some word or symbol.

As soon as I looked up the type's code and docs, everything
became clear and 1 wrote that service like a demon (pun partially
intended).

This can happen in almost infinite ways. Many people dive
into a programming language without learning what (,), [, 1,
{, }, +, *, and % really mean in that language. Some developers
don't understand how the computer really works.

When you truly understand, you don't have to stop to
think. That was also a major motivation behind my first
book, Code Simplicity — when you understand that there are
unshakable laws to software design, that can eliminate a lot of
the "stopping to think" moments.

So if you find that you are stopping to think, don't try to
solve the problem in your mind — search outside of yourself
for what you didn't understand. Then go /ok at something that
will help you understand it.

This even applies to questions like "Will a user ever read
this text?" You might not have a User Experience Research
Department to really answer that question, but you can at least
make a drawing, show it to somebody, and ask their opinion.
Don't just sit thete and think — do something. Only action leads
to understanding.

Drawing

Sometimes developers stop to think because they can't hold
enough concepts in their mind at once — lots of things are
relating to each other in a complex way and they have to think
through it. In this case, it's almost always more efficient to write
or draw something than it is to think about it.

Page 229

Chapter 37: The Secret of Fast Programming: Stop Thinking

What you want is something you can /ok at, or somehow
perceive outside of yourself. This is a form of understanding,
but it's special enough that I wanted to call it out on its own.

Starting

Sometimes the problem is "I have no idea what code to start
writing." The simplest solution here is to just start writing
whatever code you know that you can write right now. Pick
the part of the problem that you understand completely, and
write the solution for that — even if it's just one function, or
an unimportant class.

Often, the simplest piece of code to start
with is the "core" of the application.

For example, if 1 was going to write a YouTube app, I
would start with the video player. Think of it as an exercise
in continuous delivery — write the code that would actually
make a product first, no matter how silly or small that product
is. A video player without any other Ul is a product that
does something useful (play video), even if it's not a complete
product yet.

If you're not sure how to write even that
core code yet, then just start with the
code you are sure about.

Generally I find that once a piece of the problem becomes
solved, it's much easier to solve the rest of it. Sometimes the
problem unfolds in steps — you solve one part, which makes the
solution of the next part obvious, and so forth. Whichever part
doesn't require much thinking to create, write that part now.

Page 230

Chapter 37: The Secret of Fast Programming: Stop Thinking

Skipping a Step

Another specialized understanding problem is when you've
skipped some step in the proper sequence of development.
For example, let's say our Bike object depends on the Wheels,
Pedals, and Frame objects. If you try to write the whole Bike
object without writing the Wheels, Pedals, or Frame objects,
you're going to have to think a lot about those non-existent
classes. On the other hand, if you write the Wheels class when
there is no Bike class at all, you might have to think a lot about
how the Wheels class is going to be used by the Bike class.

Don't jump over steps in the development
of your system and expect that you'll be
productive.

The right approach in the example above, would be to
implement enough of the Bike class to get to the point where
you need Wheels. Then write enough of the Wheels class to
satisfy your immediate need in the Bike class. Then go back to
the Bike class, and work on that until the next time you need
one of the underlying pieces. So just as I suggested earlier, find
the part of the problem that you can solve without thinking,
and solve that immediately.

Physical Problems

If T haven't eaten enough, I tend to get distracted and start
to think because I'm hungry. It might not be thoughts about
my stomach, but I wouldn't be thinking if I were full — I'd be
focused. This can also happen with sleep, illness, or any sort
of body problem.

Page 231

Chapter 37: The Secret of Fast Programming: Stop Thinking

It's not as common as the "understanding" problem from
above, so first always look for something you didn't fully
understand. If you're really sure you understood everything, then
physical problems could be a candidate.

Distractions

When a developer becomes distracted by something external,
such as noise, it can take some thinking to remember where
they were in their solution. The answer here is relatively simple
— before you start to develop, make sure that you are in an
environment that will not distract you, or make it impossible
for distractions to interrupt you.

Some people close the door to their office, some people put
on headphones, some people put up a "do not disturb" sign
— whatever it takes. You might have to work together with
your manager or co-workers to create a truly distraction-free
environment for development.

Self-Doubt

Sometimes a developer sits and thinks because they feel unsure
about themselves or their decisions. The solution to this is
similar to the solution in the "Understanding" section — whatever
you are uncertain about, learn more about it until you become
certain enough to write code.

If you just feel generally uncertain as a programmer, it
might be that there are many things to learn more about, such
as the study fundamentals that I listed in Chapter 36, Why
Programmers Suck. Go through each piece you need to study
until you really understand it, then move on to the next piece,
and so on.

Page 232

Chapter 37: The Secret of Fast Programming: Stop Thinking

There will always be learning involved in the process of
programming, but as you know more and more about it, you
will become faster and faster and have to think less and less.

False Ideas

Many people have been told that thinking is what smart
people do, thus, they stop to think in order to make intelligent
decisions. However, this is a false idea. If thinking alone made
you a genius, then everybody would be Einstein.

Truly smart people learn, observe, decide, and act. They
gain knowledge and then use that knowledge to address the
problems in front of them. If you really want to be smart, use
your intelligence to cause action in the physical universe — don't
use it just to think great thoughts to yourself.

Caveat

All of the above is the secret to being a fast programmer when
you are sitting and writing code. 1f you are caught up all day in
reading email and going to meetings, then no programming
happens whatsoever — that's a different problem.

Still, there are some analogous solutions you could try.
Perhaps the organization does not fully understand you or
your role, which is why they'te sending you so much email and
putting you in so many meetings. Perhaps there's something
about the organization that you don't fully understand, such as
how to go to fewer meetings and get less email. Maybe even
some organizational difficulties can be resolved by adapting
the solutions in this post to groups of people instead of
individuals.

-Max

Page 233

— 38 —

DEVELOPER
HUBRIS

Your program is not important to me. I don't care about its
user interface. I don't care what its name is. I don't care that
you made it, or what version it is.

The only thing I care about is that your program helps me
accomplish my purpose. That's a truly remarkable feat, and if
your program does it, you should be proud. There's no need to
make your program take up more of my attention just because
you think it's important.

Now of course, your program is important to you! When
you wotk on code for a long time, it's easy to become attached
to it. It was so hard to write. Your cleverness is unbounded,
shadowing lesser mortals in the mountain of your intellect.
You have overcome some of the greatest mental obstacles man
has ever faced. Truly, you must shout this from the tops of
every tower, through the streets of every city, and even unto
the caves of the Earth. But don't.

Chapter 38: Developer Hubris

Because your users do not care. Your fellow developers might
be interested, but your users are zot.

When you're truly clever, what will show
up for users is that your program is
awesome. It's so awesome, the user
hardly notices it's there. That is true
brilliance.

The worst offenders against this ideal are programs that
pop up a window every time my computer starts. I know your
software is there. I installed it. You really don't need to remind
me. If my purpose is to start up my computer so I can use it,
how is your pop up window helping me accomplish that? It's
not, so get rid of it

There are smaller ways to cause problems, too, that all
revolve around asking for too much time or attention from
the user:

¢ "Users will definitely be okay with clicking through
three screens of forms before they can use my
product.”

¢ "I'm sure that users will want to learn all the icons 1
invented for this program, so taking away the text labels
for those icons is fine!"

¢ "I'm sure it's okay to stop the user from working by
popping up these dialog boxes."

¢ "Users will totally want to search through this huge
page for a tiny little piece of text so they can click
on it."

¢ "Why should we make this simpler? That would be
a lot of work, and it's already pretty easy...for me."

And so on.

Page 236

Chapter 38: Developer Hubris

The true humility required of a developer
is the willingness to remove their identity
from the user's world.

Stop telling the user the program is there. Don't think that
the user cares about your program, wants to spend time using
its interface, or wants to learn about it. It's not your program
that they cate about — it's their purpose. Help them accomplish
that perfectly, and you will have created the perfect program
for them.

-Max

Page 237

S 39 s

"CONSISTENCY"
DOES NOT MEAN
"UNIFORMITY"

In a user interface, similar things should look the same. But
different things should look different.

Why did over 75% of Facebook's users think that the May
2009 Facebook UI redesign was bad? Because it made different
things look similar to each other. Nobody could tell if they
were updating their status or writing on somebody else's wall,
because even though the text was slightly different in the box
depending on what you were doing, the box itself /loked the
same. Similarly, the new Chat Ul (introduced a few days later)
made idle users look basically identical to active users, except
for a tiny icon difference. (It's also important that different
things are different enongh, not just a little different, because
people often won't notice little differences.)

This is an easy pitfall for developers
to fall into because developers love
consistency.

Chapter 39: "Consistency” Does Not Mean “Uniformity”

Everything should be based on a single framework, in
the backend of an application. But that doesn't mean that
everything has to be displayed the same in the UL

This fact — that different things should look different —
is actually true with code, too, but people rarely think about
it, because developers are actually pretty good about it. For
example, accessing a value of an object should look different
than calling a method on it, and in most programs, it does.

For example, in Bugzilla's code, accessing a value on an
object looks like $object->value whereas calling a method
on the object looks like $object->method (). It's not all zhar
different, but the () at the end is enough difference for the
average programmer to notice "Oh, that's a method call that
does something — it's not just accessing a value in the object."

All in all, consistency is really important in both the
backend and the frontend of an application. But that doesn't
mean that every single thing should look exactly the same. If
we took that to extremes, we'd just have a solid white page,
and that doesn't seem all that usable (frontend) or readable
(backend), does it?

-Max

Page 240

S 40 s

USERS HAVE
PROBLEMS,
DEVELOPERS HAVE
SOLUTIONS

In the world of software, it is the job of software developers
to solve the problems of users. Users present a problem, and
the developers solve it. Whenever these roles are reversed,
trouble ensues.

If you ever want to see a bloated, useless, complex piece
of software, find one where the developers implemented every
solution that any user ever suggested. It's true that the users are
the people who know what the problem is, and that sometimes,
they have novel ideas for solutions. But the people making the
final decision on how a problem is to be solved should always
be the developers of the system, not its users.

Chapter 40: Users Have Problems, Developers Have Solutions

This problem can be particularly bad when you're
writing software for a small number of users internally at an
organization. The users who you are writing for often have
inordinate power over you, by virtue of being executives or
being close to executives. They can, quite literally, tell you what
to do. However, if they want a solution that is actually good for
them, they should try to refrain from this practice.

Trust and Information

If you trust a team enough to have them write software for
you, then you should also trust them enough to make decisions
about that software. If you don't trust them, why are they
working at your organization?

A group of people who distrust each other is usually a
highly inefficient group — perhaps not even really a "group"
at all, but merely a collection of individuals all trying to
defend themselves from each other. That's no way to run an
organization or to have anybody in it lead a happy life.

If a user wants to influence a developet's decision, the best
thing they can do is offer dafa. Developers need information
in order to make good decisions for their users, and that
information often comes from the users themselves.

If you as a user think that a piece of software is going the
wrong direction, provide information about the problem that
you would like solved, and explain why the current software
doesn't solve it. Get information about how many other people
have this problem. The best is if you can show numbers, but
sometimes even anecdotes can be helpful when a developer
is trying to make a decision. Developers should judge data
appropriately (hard data about lots of users is obviously better
than an anecdote from a single user) but they usually appreciate
all the information given to them when it's offered as data and
not as a demand for a specific solution.

Page 242

Chapter 40: Users Have Problems, Developers Have Solutions

Problems Come from Userts

Developers, on the other hand, often have the opposite
problem. If you want to see a piece of software that users
hate, find one where the developers simply #wagined that the
users had a problem, and then started developing a solution
for that problem.

Problems come from users, not from
developers.

Sometimes the developers of a piece of software are
also users of it, and they can see obvious problems that
they themselves are experiencing. That's fine, but they should
offer that up as data, from the viewpoint of a user, and make
sure that it's something that other people are also actually
experiencing. Developers should treat their own opinions as
somewhat more valuable than the average user's (because they
see lots of user feedback and they work with their program
day in and day out) but still as an opinion that came from a user.

When you solve the developers' problems
instead of the users' problems, you're
putting lots of effort into something that
isn't going to help people in the best
possible way.

It may be enjoyable to assert one's opinion, be the smartest
person in the room, and cause the team to solve your problem,
but it feels terrible to release software that ends up not helping
people.

Page 243

Chapter 40: Users Have Problems, Developers Have Solutions

Also, I usually find that solving the developers' problems
leads to a lot more complexity than solving the users' problems.
So it would actually have been easier to find out from the user
what was wrong and fix that, rather than imagine a problem
and grind away at it.

Now, I'm not saying that no developer has ever come up
with a valid problem, and that no user has ever come up with
a valid solution. Sometimes these things do happen. But the
Judgment about these things should lie on the appropriate sides
of the equation.

Only users (and preferably, a large number of them, or data
about a large number of them) can truly tell you what problem
they are experiencing, and only somebody on the development
side (preferably, an individual who is tasked with making this
decision after understanding the problem and possibly getting
feedback from his peers) can correctly decide which solution
should be implemented.

-Max

Page 244

— 41 —

INSTANT
GRATIFICATION =
INSTANT FAILURE

The broadest problem that I see in the software industry is that
companies are unwilling to engage in strategies that only show
results in the long term. Or, more specifically, that organizations
are unaware that there is any such thing as a long-term strategy.

In the US, it's probably a symptom of a general cultural
problem — if an American can't see an instant result from
something, they think it doesn't work. This leads to fast food,
french fries, and obesity. The healthy way to eat (protein and
vegetables) has a delayed effect on the body (you don't get the
energy for over an hour), and the bad way to eat (endless
carbohydrates without nutritional value) has an instant result
— immediate energy.

Software is always a long-term process.

Chapter 41: Instant Gratification = Instant Failure

I wrote the first version of VCI (https://metacpan.
org/pod/VCI), in about three weeks, and that was insanely fast.
Any actual application (VCI is just a library for interacting
with version-control systems), takes months or years of
person-hours, even if you keep it small. So you'd think that
organizations would be far-sighted about their development
strategies, right?

Unfortunately, it just doesn't happen. Competitor X comes
out with "Shiny New Feature" and The Company says "We
must have Shiny New Feature RIGHT NOW!"

That's not a long-term winning strategy, that's just
short-sighted panic. If you have users, they're not all going
to get up and go away in the next five minutes just because
somebody else has one feature that you don't. You should be
looking at #rends of how many users you're gaining or losing,
not just responding mindlessly to the immediate environment.

Solving for the long term

So what's a good long-term strategy? Well, refactoring your
code so that you will still be able to add features in the future,
that's a good one. Or spending some extra time putting some
polish on your features and Ul so that when the product is
released, users are actually happy with it. Noz adding features
that you don't want to maintain, if they'te not important
enough — that's another one.

Remember that Mozilla (http://www.mozilla.org) did
poortly for years, only to finally start gaining dominance in a
market that Netscape had lost, because they had a lng-term plan.
Granted, Mozilla made some decisions ecarly on that caused
some things to take longer than they should have, but they
still won out in the long term, despite failing in the short term.

Page 246

Chapter 41: Instant Gratification = Instant Failure

Of course, it can be hard to convince people that
your long-term plan is right, sometimes, because it takes so
long to show results] When 1 started refactoring Bugzilla
(https://www.bugzilla.org/) in 2004 there was pretty
constant resistance, particularly when I would review patches
and say, "You need to wait for the new architecture before
this can go in," or "This needs to be fixed to not be spaghetti
code."

But once the refactoring really got rolling (after about two
and a half years), it suddenly became way easier to add new
features and nearly all the developers became big supporters
of refactoring,

How to Ruin Your Software Company

I've read a lot of so-called advice on "how to run your software
business" that just focuses on instant gratification — what you
can get done right now. Add features! Get millions of dollars
instantly from VCs! Unfortunately, the way the universe seems
to work is that you can destroy something in an instant, but
it takes time to create something.

So in reality, the closer you get to "instant gratification", the
closer you get to destruction of your product, your business,
and your future.

So here's a key lesson for the software industry:

If you want a good plan, pick one that

admits that creation takes time. It doesn't
have to take forever, but it's never instant.

-Max

Page 247

4" —

SUCCESS COMES
FROM EXECUTION,
NOT INNOVATION

There's a strange sort of social disease going around in

technology circles today, which centers around this word
"innovation."

Everybody wants to "innovate." The news talks about
"who's being the most innovative." Marketing for companies
insists that they are "innovating."

Except actually, it's not innovation that
leads to success. It's execution.

It doesn't matter how good or how new my idea is. It
matters how well I carry it out in the real world.

Chapter 42: Success Comes from Execution, Not Innovation

Now, our history books worship the inventors, not the
executors. We are taught all about the people who invent new
things, come up with new ideas, and plough new trails. But look
around you in present time and in the recent past, and you'll
see that the most successful people are the ones who carried ont
the idea really well, not the people who came up with the idea.

Elvis didn't invent rock and roll. Ford didn't invent the
automobile or the assembly line. Apple didn't invent the GUIL
Webster didn't invent dictionaries. Maytag didn't invent the
washing machine. Google didn't invent web searching. 1 could
go on and on and on.

Granted, sometimes the innovator also is an excellent
executot, but usually that's not the case. Most inventors don't
turn out to be the most successful people in their field (or
even successful at all).

So stop worrying about "coming up with something new."
You don't have to do that. You just have to execute an a/ready
existing idea really, really well. You can add your own flair to
it, maybe, or fix it up a little, but you don't have to have
something brand new:.

There are so many examples that prove this that it's hard
not to see one if you move your eyes anywhere. Just look, you'll
see.

Now, I'm not saying that people shouldn't innovate. You
should! It's fun, and it advances the whole human race a tiny
step every time you do. But it's not the path to long-term
success for you or for any group you belong to. That's all in
execution.

-Max

Page 250

— 43 —

EXCELLENT
SOFTWARE

Note: This is one of the first articles that I ever wrote. Some of the
other data in this book and in my book and my blog, Code Simplicity,
are in fact based on some of the principles in this chapter. However, it
has never been published anywhere before now. Enjoy.

A truly excellent program carries out the user's intention
exactly as they intended it.

If you want to break it down a bit more, this means that
an excellent program:

1. Does exactly what the user told it to do.
2. Behaves exactly like the user expects it to behave.
3. Does not block the user from communicating their

intention.

To be truly excellent, software must do all of those things.
Think of any piece of software that average users truly enjoy
using, and you'll find it satisfies those three criteria.

Chapter 43: Excellent Software

There is an odd feeling of satisfaction that comes from
the computer carrying out your intentions perfectly. And this
is one of the joys of programming — when the computer does
exactly what you intended, it's very satisfying. So let's now
examine these three aspects in turn.

Does exactly what the user told it to do

Obviously, this is the primary key to carrying out the uset's
intention. They told us to do something, so we do it.

A program shouldn't do surprising things. When you tell
a program to send an email, the program should just send the
email. It shouldn't also clean your socks, remind you to turn
off the oven, and pay your taxes.

Also, if at any time you don't do exactly what the user
told you to do, you must inform them. You should minimize
these occurrences, because azy time a program doesn't do what
the user told it to do (even for reasons outside the control
of the program), that detracts from the uset's opinion of the
excellence of the software. In our above example, the program
shouldn't fail to send the email without informing the user that
it failed. Failing is not what the user told it to do, and so the
user needs to know.

The email example seems obvious, but there are many less
obvious examples in the world of computing,

Programmers often debate whether or not
a program should report an error, or if
it should do other things, when the user
has only told it to do one thing. The
answer is the answer to the question:
what did the user tell us to do?

Page 252

Chapter 43: Excellent Software

Remember, if the user has set some preferences, that's also
an instruction to the program. So preferences are a perfectly
valid way of deciding "what did the user tell us to do." Adding
lots of preferences to a program increases complexity, though,
so it's not the best solution to most problems.

Behaves exactly like the user expects it to
behave

The uset's intention is expressed through things like mouse
clicks and keyboard input. This isn't the most perfect method
of communication, so sometimes we have to do a little
guessing,.

This particular rule means that your
program should respond to the user's
input in the way the user expects it to
respond. Which means that it acts like
other things the user has used in the past,
or it acts exactly like the documentation
says it acts.

Note that I didn't say "other programs the user has used
in the past." I said, "other things." Users have used doors in
real life, so if your program has a door in it, users expect it to
open and close when they push on it or turn the handle. They
expect that when the door is open, things can go "through" it,
and when the door is closed, things can't go through it.

Page 253

Chapter 43: Excellent Software

It is also true for "other programs,”" though. Users know
what a "scrollbar" is because other programs have scrollbars.
Users know what a keyboard is because every computer has
one, and because they learned all the letters of their alphabet
somewhere. (But if you make a keyboard with a button
called "Qfwfq" then you'd better have some easy-to-read
documentation explaining the "Qfwfq" button.)

Generally, the most excellent software avoids making the
user ever read the documentation. They know everything about
this program because it behaves just like other programs,
behaves like other things they've experienced in real life, or
there's text right inside the program itself that explains things.
(Beware that many users don't read text, but that's starting
to get into a whole other subject called "Human-Computer
Interaction" and this is not a book on Human-Computer
Interaction.)

This can, once in a while, conflict with "do exactly what
the user told us to do." Sometimes the user expects a program
to do something they didn't say to do. For example, I usually
expect an email program to save my sent messages somewhere,
even if I haven't told it to.

If there is a conflict between this rule and "do exactly what
the user told us to do," and you're in doubt about which way
to go, always just do what the user told us to do. You should
only violate the "do what the user told us" rule when you're
sure the user has some expectation that violates the rule.

The best software behaves exactly like you expect it to
behave, and never does anything you didn't tell it to do.

Page 254

Chapter 43: Excellent Software

Does not block the user from
communicating their intention

If the user is unable to communicate their intention to your
program, your program has failed the most basic requirement
for carrying out the uset's intention — the user actually being
able to communicate that intention. Primarily, this requirement
can be translated into "The program should be simple to use."

You should make it easy as humanly
possible for the user to communicate
their intention to your program.

The simpler your program is to use, the more likely it is
that the user will be able to determine how to communicate
their intention. If you have made it too difficult for a user to
communicate their intention, then you have blocked them. Any
time the user fails to communicate their intention, it is most
likely because it was too difficult for them to communicate it.

I know for a fact that people with an IQ of 75 can use
Notepad. That is simple enough. So we should never be saying
"My users are stupid." We should be saying "I haven't yet
figured out how to make my program simple enough for my
users to use."

"Simple," in the context of interacting with a program,
means "allows the user to easily and quickly do what they want,
with the way of doing it presented in an obvious manner".

Page 255

Chapter 43: Excellent Software

The "obvious" part is usually more important than the
"easily and quickly" part. If somebody has to go through
three steps to do something, but they're three steps that are
made very clear and obvious by the program, that's simple,
from the user's perspective. However, the ideal of "simple" is
"happens instantly, in one step, with one obvious command to
the computer." On most computers, the simplest operation is
turning them on. (Some computers manage to make even that
complex, though.)

Ideally, most actions on a computer should be as simple
as the power button is.

If the user can't figure out how to do something, your
program might as well just not do it at all. If it's harder to
use a program than to do a task manually, then people will do
the task manually instead of using the program.

There is a lot of software that specific people (like
programmers) enjoy using but others don't. This is because to
the advanced user, that program is simple to use, but to other
people, it isn't. So obviously, how "simple" you need to be is
relative to who your users are going to be. But the simpler
you make the program, the more people will find it excellent.

Even programmers can use simple programs, if that
program does exactly what they need to do, exactly how they
need to do it. Most complex programs that only advanced
users use are zz use because nobody has thought up a way to
make them simple yet.

However, remember that simplicity doesn't involve doing
lots of things the user didn't tell you to do! One button that
does ten things simultaneously might not be simple and might
not be excellent software.

Page 256

Chapter 43: Excellent Software

Excellence is senior to (but is not in conflict
with) code simplicity

Nothing I have ever written excuses you from writing excellent
software. If you have to add some tiny bit of complexity to
the internals of your program in order to make it excellent,
you should do that. Adding complexity to the user interface
almost never makes your program excellent, though. (That
violates "simple to use.")

I'd say that 99.9% of the time, simplicity and following the
principles of software design will lead to excellent software,
and you should only violate a software design rule when you're
certain that's the only way to deliver excellence.

-Max

Page 257

A

action 155

B

backwards-compatibility 25, 27
bad ideas
recognizing 215
barriers
removing 137, 139
bug
clarifying 79-84
compound complexity 66
defining 63, 64
source 65, 66
Bugzilla
issues, handling 210, 212
issues, identifying 210
limitations 204
limitations, fixing 205, 206
URL 130, 203
Bugzilla Survey
reference link 211
Bugzilla Usability Study
reference link 211

C

codebase
issues, solving 71-74
code complexity
about 30
clues 19
handling, in software
company 108-114

INDEX

complexity

about 87, 88, 90, 92

accepting 89, 90

changing 94, 95

creating 21-24

credibility 92, 93

productivity, improving 96-98
compound complexity 67
computer 145, 147
consistency

about 239

maintaining 240
contributors

obtaining 140, 142

retaining, ways 130-136
counter-examples 164
Cycle of Observation

accuracy 182

completeness 182

speed 182

D

design
beginning 35, 36
determinism 196
developer hubris
overcoming 235, 236

E

Eiffel

URL 142
end to end testing 189, 190
engineer

issues, solving 8

Page 259

excellent software

about 251

behaving, as user expects 253

complexity, adding 257

user friendly 255

user intention, communicating 256

users intention,

carrying out 252, 253

execution

carrying out, in real world 249, 250

F

fakes 194, 195

fast programming
keys 227,228

future predictions
accuracy 38, 40

I

information

providing, to developers 242
instant gratification

avoiding 245, 247
integration testing 190
ISAR

in single line of code 156

K

keys, to fast programming
caveat, for writing code 233
distractions 232
drawing 229, 230
false ideas 233
physical problems 231
self-doubt 232
starting 230
step, skipping 231
understanding 228

Page 260

M

Mozilla
URL 246

Q)

ODA cycle 183

P

power of no
about 213-216
bad ideas, recognizing 215
clarifications 217, 218
privacy
about 167,174
privacy of information 170-174
privacy of space 168, 169
productivity 88
programmer
about 5
reasons, for creating
complexity 219-224
programming
developer productivity,
measuring 106
developer productivity, working 104
lines of code 101, 102
measured 100
product is code 104
productivity, defining 100
software engineers 105
valid metric, determining 102, 103

R

rabbit hole 75
real systems
testing 193

refactoring
about 116, 118
determining 120, 121
results 156
right way 57-59
rockstar programmer
about 11
secret 12,13

S

security
about 175
ways in, limiting 176
software
about 150, 151
as knowledge 160-162
software design
about 15
laws 60
software systems
about 124
code, reviewing 126
example 125
implementing 126
strictness 41-45
structure 153, 154

T

TDD cycle
about 180

development processes 181

productivity 181
technology
advance of technology,
importance 165

testing
about 185
assumptions 188
boundaries 187
conclusion 198
coverage 198
determinism 196

end to end testing 189, 190

fakes 194, 196

integration testing 190

reality 193

speed 197

unit testing 192
testing software 185
trust

providing, to developers 242

Two is Too Many rule

refactoring, scenario 49, 50

U

unit testing 192
users

issues, arising from 243, 244

\Y

VCI
URL 246

A\

wrong way
about 52-54
analysis 55
group, bringing 56

Page 261

	Cover
	Copyright
	Credits
	About the Author
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Foreword
	Part One: Principles for Programmers
	Chapter 1: Before You Begin…
	If You're Going To Do It Then Do it Well

	Chapter 2: The Engineer Attitude
	Chapter 3: The Singular Secret of the Rockstar Programmer
	Chapter 4: Software Design, in Two Sentences

	Part Two: Software Complexity and its Causes
	Chapter 5: Clues to Complexity
	Chapter 6: Ways To Create Complexity: Break Your API
	Chapter 7: When Is Backwards-Compatibility Not Worth It?
	Chapter 8: Complexity is a Prison

	Part Three: Simplicity and Software Design
	Chapter 9: Design from the Start
	Starting the Right Way

	Chapter 10: The Accuracy of Future Predictions
	Chapter 11: Simplicity and Strictness
	Chapter 12: Two is Too Many
	Refactoring

	Chapter 13: Sane Software Design
	The Wrong Way
	The Right Way
	We followed all the Laws Of
Software Design

	Part Four: Debugging
	Chapter 14: What is a Bug?
	Hardware

	Chapter 15: The Source
of Bugs
	Compounding Complexity

	Chapter 16: Make It Never Come Back
	Make it Never Come Back – An Example
	Down the Rabbit Hole

	Chapter 17: The Fundamental Philosophy of Debugging
	Clarify the Bug
	Look at the System
	Find the Real Cause
	Four Steps

	Part Five: Engineering in Teams
	Chapter 18: Effective Engineering Productivity
	The Solution

	Chapter 19: Measuring Developer Productivity
	Chapter 20: How to Handle Code Complexity in a Software Company
	Step 1 – Problem Lists
	Step 2 – Meeting
	Step 3 – Bug Reports
	Step 4 – Prioritization
	Step 5 – Assignment
	Step 6 – Planning

	Chapter 21: Refactoring is about Features
	Being Effective
	Refactoring Doesn't Waste Time, It Saves It
	Refactoring To Clarity
	Summary

	Chapter 22: Kindness
and Code
	Software is about People

	Chapter 23: Open Source Community, Simplified
	Retaining Contributors
	Removing the Barriers
	Getting People Interested
	Summary

	Part Six: Understanding Software
	Chapter 24: What is a Computer?
	Chapter 25: The Components of Software: Structure, Action, and Results
	Chapter 26: Software Revisited: (I)SAR Clarified
	Structure
	Action
	Results
	ISAR in a Single Line of Code
	Wrapping SAR Up

	Chapter 27: Software as Knowledge
	Chapter 28: The Purpose of Technology
	Are there Counter-Examples to this Rule?
	Is the Advance of Technology "Good"?

	Chapter 29: Privacy, Simplified
	Privacy of Space
	Privacy of Information
	A Summary of Privacy

	Chapter 30: Simplicity and Security
	Chapter 31: Test-Driven Development and the Cycle of Observation
	Examples of ODA
	Development Processes and Productivity

	Chapter 32: The Philosophy of Testing
	Test Value
	Test Assertions
	Test Boundaries
	Test Assumptions
	Test Design
	End to End Testing
	Integration Testing
	Unit Testing
	Reality
	Fakes
	Determinism
	Speed
	Coverage
	Conclusion – The Overall Goal of Testing

	Part Seven: Suck Less
	Chapter 33: The Secret
of Success:
Suck Less
	Why is it that this worked?

	Chapter 34: How We Figured Out What Sucked
	Chapter 35: The Power
of No
	Recognizing Bad Ideas
	Having No Better Idea
	Clarification: Acceptance and Politeness

	Chapter 36: Why Programmers Suck
	What to Study

	Chapter 37: The Secret of Fast Programming: Stop Thinking
	Understanding
	Drawing
	Starting
	Skipping a Step
	Physical Problems
	Distractions
	Self-Doubt
	False Ideas
	Caveat

	Chapter 38: Developer Hubris
	Chapter 39: "Consistency" Does Not Mean "Uniformity"
	Chapter 40: Users Have Problems, Developers Have Solutions
	Trust and Information
	Problems Come from Users

	Chapter 41: Instant Gratification = Instant Failure
	Solving for the long term
	How to Ruin Your Software Company

	Chapter 42: Success Comes from Execution, Not Innovation
	Chapter 43: Excellent Software
	1. Does exactly what the user told it to do
	2. �Behaves exactly like the user expects it to behave
	3. �Does not block the user from communicating their intention
	Excellence is senior to (but is not in conflict with) code simplicity

	Index

