

Save 50% on these books and videos – eBook, pBook, and MEAP. Enter meemut50 in the
Promotional Code box when you checkout. Only at manning.com.

Unit Testing Principles, Practices, and Patterns
by Vladimir Khorikov

ISBN 9781617296277
304 pages
$39.99

The Art of Unit Testing, Third Edition
by Roy Osherove

ISBN 9781617297489
325 pages
Spring 2021
$39.99

Licensed to Alexander Fedorov <mail@orderbynull.me>

http://manning.com
https://www.manning.com/books/unit-testing
https://www.manning.com/books/the-art-of-unit-testing-third-edition
https://www.manning.com/books/the-art-of-unit-testing-third-edition
https://www.manning.com/books/unit-testing

Exploring Mocks in Unit Testing
Chapters chosen by Vladimir Khorikov

Manning Author Picks

 Copyright 2020 Manning Publications
To pre-order or learn more about these books go to www.manning.com

Licensed to Alexander Fedorov <mail@orderbynull.me>

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: Candace Gillhoolley, corp-sales@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN: 9781617299377

Licensed to Alexander Fedorov <mail@orderbynull.me>

http://www.manning.com

iii

contents
introduction iv

Mocks and test fragility 2
Chapter 5 from Unit Testing Principles, Practices, and Patterns

Mocking best practices 30
Chapter 9 from Unit Testing Principles, Practices, and Patterns

Isolation (mocking) frameworks 44
Chapter 5 from The Art of Unit Testing

index 63

Licensed to Alexander Fedorov <mail@orderbynull.me>

iv

introduction
The use of mocks in unit testing has always been a somewhat controversial topic. A lot
of people go through a steep learning curve before they master how and, more impor-
tantly, when to use mocks. A typical progression I see among programmers is to first
mock almost every dependency, then transition to the “no-mocks” policy, and then set-
tle on “only mock external dependencies”. While mocking only external dependen-
cies is generally good advice, it is incomplete and lacks nuance.

 This sampler brings together chapters from two Manning books to enhance clarity
of the practice of using mocks. I’ve selected two chapters from my book Unit Testing
Principles, Practices, and Patterns. The first one, “Mocks and test fragility”, has a thor-
ough discussion of what a mock is and how it is different from stubs and other types of
test doubles, and answers the question of what types of dependencies you should use
them for. The second chapter, “Mocking best practices”, expands on the remaining
guidelines related to mocking that will help you maximize their value and minimize
maintenance costs. Finally, I’ve chosen a chapter from The Art of Unit Testing by Roy
Osherove for some practical demonstrations of mocking frameworks.

 The proper use of mocks is one of the most important topics in unit testing. This
collection of chapters will help you to understand mocking best practices with real-
-world illustrations and practical tips that will have you well on your way to writing bet-
ter code, increasing your productivity, and improving the quality of your software.
If you’re interested in a deeper exploration of this important topic, the complete ver-
sions of the books featured here are great places to start!

Licensed to Alexander Fedorov <mail@orderbynull.me>

The goal of this chapter is to give an overview of what a mock is and how it
is different from stubs and other test doubles. It also covers when you should use
mocks and when to choose the real dependencies in tests.

Chapter 5 from Unit Testing
Principles, Practices, and Patterns
by Vladimir Khorikov

Licensed to Alexander Fedorov <mail@orderbynull.me>

https://www.manning.com/books/unit-testing
https://www.manning.com/books/unit-testing

Mocks and test fragility
Chapter 4 introduced a frame of reference that you can use to analyze specific tests
and unit testing approaches. In this chapter, you’ll see that frame of reference in
action; we’ll use it to dissect the topic of mocks.

 The use of mocks in tests is a controversial subject. Some people argue that
mocks are a great tool and apply them in most of their tests. Others claim that mocks
lead to test fragility and try not to use them at all. As the saying goes, the truth lies
somewhere in between. In this chapter, I’ll show that, indeed, mocks often result in
fragile tests—tests that lack the metric of resistance to refactoring. But there are still
cases where mocking is applicable and even preferable.

This chapter covers
 Differentiating mocks from stubs

 Defining observable behavior and implementation
details

 Understanding the relationship between mocks
and test fragility

 Using mocks without compromising resistance 
to refactoring
2

Licensed to Alexander Fedorov <mail@orderbynull.me>

3Differentiating mocks from stubs
 This chapter draws heavily on the discussion about the London versus classical
schools of unit testing from chapter 2. In short, the disagreement between the schools
stems from their views on the test isolation issue. The London school advocates isolat-
ing pieces of code under test from each other and using test doubles for all but
immutable dependencies to perform such isolation.

 The classical school stands for isolating unit tests themselves so that they can be
run in parallel. This school uses test doubles only for dependencies that are shared
between tests.

 There’s a deep and almost inevitable connection between mocks and test fragility.
In the next several sections, I will gradually lay down the foundation for you to see why
that connection exists. You will also learn how to use mocks so that they don’t compro-
mise a test’s resistance to refactoring.

5.1 Differentiating mocks from stubs
In chapter 2, I briefly mentioned that a mock is a test double that allows you to exam-
ine interactions between the system under test (SUT) and its collaborators. There’s
another type of test double: a stub. Let’s take a closer look at what a mock is and how it
is different from a stub.

5.1.1 The types of test doubles

A test double is an overarching term that describes all kinds of non-production-ready,
fake dependencies in tests. The term comes from the notion of a stunt double in a
movie. The major use of test doubles is to facilitate testing; they are passed to the
system under test instead of real dependencies, which could be hard to set up or
maintain.

 According to Gerard Meszaros, there are five variations of test doubles: dummy,
stub, spy, mock, and fake.1 Such a variety can look intimidating, but in reality, they can all
be grouped together into just two types: mocks and stubs (figure 5.1).

Test double

Mock

(mock, spy)

Stub

(stub, dummy, fake)

Figure 5.1 All variations of test
doubles can be categorized into
two types: mocks and stubs.

1 See xUnit Test Patterns: Refactoring Test Code (Addison-Wesley, 2007).
Licensed to Alexander Fedorov <mail@orderbynull.me>

4 CHAPTER 5 Mocks and test fragility
The difference between these two types boils down to the following:

 Mocks help to emulate and examine outcoming interactions. These interactions
are calls the SUT makes to its dependencies to change their state.

 Stubs help to emulate incoming interactions. These interactions are calls the
SUT makes to its dependencies to get input data (figure 5.2).

All other differences between the five variations are insignificant implementation
details. For example, spies serve the same role as mocks. The distinction is that spies
are written manually, whereas mocks are created with the help of a mocking frame-
work. Sometimes people refer to spies as handwritten mocks.

 On the other hand, the difference between a stub, a dummy, and a fake is in how
intelligent they are. A dummy is a simple, hardcoded value such as a null value or a
made-up string. It’s used to satisfy the SUT’s method signature and doesn’t partici-
pate in producing the final outcome. A stub is more sophisticated. It’s a fully fledged
dependency that you configure to return different values for different scenarios.
Finally, a fake is the same as a stub for most purposes. The difference is in the ratio-
nale for its creation: a fake is usually implemented to replace a dependency that
doesn’t yet exist.

 Notice the difference between mocks and stubs (aside from outcoming versus
incoming interactions). Mocks help to emulate and examine interactions between the
SUT and its dependencies, while stubs only help to emulate those interactions. This is
an important distinction. You will see why shortly.

5.1.2 Mock (the tool) vs. mock (the test double)

The term mock is overloaded and can mean different things in different circum-
stances. I mentioned in chapter 2 that people often use this term to mean any test
double, whereas mocks are only a subset of test doubles. But there’s another meaning

System under test

SMTP serverSend an email

Retrieve data Database

Stub

Mock

Figure 5.2 Sending an email is 
an outcoming interaction: an inter-
action that results in a side effect
in the SMTP server. A test double
emulating such an interaction is 
a mock. Retrieving data from the
database is an incoming inter-
action; it doesn’t result in a 
side effect. The corresponding
test double is a stub.
Licensed to Alexander Fedorov <mail@orderbynull.me>

5Differentiating mocks from stubs
for the term mock. You can refer to the classes from mocking libraries as mocks, too.
These classes help you create actual mocks, but they themselves are not mocks per se.
The following listing shows an example.

[Fact]
public void Sending_a_greetings_email()
{
 var mock = new Mock<IEmailGateway>();
 var sut = new Controller(mock.Object);

 sut.GreetUser("user@email.com");

 mock.Verify(
 x => x.SendGreetingsEmail(
 "user@email.com"),
 Times.Once);
}

The test in listing 5.1 uses the Mock class from the mocking library of my choice
(Moq). This class is a tool that enables you to create a test double—a mock. In other
words, the class Mock (or Mock<IEmailGateway>) is a mock (the tool), while the instance
of that class, mock, is a mock (the test double). It’s important not to conflate a mock (the
tool) with a mock (the test double) because you can use a mock (the tool) to create
both types of test doubles: mocks and stubs.

 The test in the following listing also uses the Mock class, but the instance of that
class is not a mock, it’s a stub.

[Fact]
public void Creating_a_report()
{
 var stub = new Mock<IDatabase>();
 stub.Setup(x => x.GetNumberOfUsers())
 .Returns(10);
 var sut = new Controller(stub.Object);

 Report report = sut.CreateReport();

 Assert.Equal(10, report.NumberOfUsers);
}

This test double emulates an incoming interaction—a call that provides the SUT with
input data. On the other hand, in the previous example (listing 5.1), the call to Send-
GreetingsEmail() is an outcoming interaction. Its sole purpose is to incur a side
effect—send an email.

Listing 5.1 Using the Mock class from a mocking library to create a mock

Listing 5.2 Using the Mock class to create a stub

Uses a mock (the
tool) to create a mock
(the test double)

Examines the call
from the SUT to
the test double

Uses a mock
(the tool) to
create a stub

Sets up a
canned answer
Licensed to Alexander Fedorov <mail@orderbynull.me>

6 CHAPTER 5 Mocks and test fragility
5.1.3 Don’t assert interactions with stubs

As I mentioned in section 5.1.1, mocks help to emulate and examine outcoming interac-
tions between the SUT and its dependencies, while stubs only help to emulate incom-
ing interactions, not examine them. The difference between the two stems from the
guideline of never asserting interactions with stubs. A call from the SUT to a stub is not
part of the end result the SUT produces. Such a call is only a means to produce the
end result: a stub provides input from which the SUT then generates the output.

NOTE Asserting interactions with stubs is a common anti-pattern that leads to
fragile tests.

As you might remember from chapter 4, the only way to avoid false positives and thus
improve resistance to refactoring in tests is to make those tests verify the end result
(which, ideally, should be meaningful to a non-programmer), not implementation
details. In listing 5.1, the check

mock.Verify(x => x.SendGreetingsEmail("user@email.com"))

corresponds to an actual outcome, and that outcome is meaningful to a domain
expert: sending a greetings email is something business people would want the system
to do. At the same time, the call to GetNumberOfUsers() in listing 5.2 is not an out-
come at all. It’s an internal implementation detail regarding how the SUT gathers
data necessary for the report creation. Therefore, asserting this call would lead to test
fragility: it shouldn’t matter how the SUT generates the end result, as long as that
result is correct. The following listing shows an example of such a brittle test.

[Fact]
public void Creating_a_report()
{
 var stub = new Mock<IDatabase>();
 stub.Setup(x => x.GetNumberOfUsers()).Returns(10);
 var sut = new Controller(stub.Object);

 Report report = sut.CreateReport();

 Assert.Equal(10, report.NumberOfUsers);
 stub.Verify(
 x => x.GetNumberOfUsers(),
 Times.Once);
}

This practice of verifying things that aren’t part of the end result is also called over-
specification. Most commonly, overspecification takes place when examining interac-
tions. Checking for interactions with stubs is a flaw that’s quite easy to spot because
tests shouldn’t check for any interactions with stubs. Mocks are a more complicated sub-

Listing 5.3 Asserting an interaction with a stub

Asserts the
interaction
with the stub
Licensed to Alexander Fedorov <mail@orderbynull.me>

7Differentiating mocks from stubs
ject: not all uses of mocks lead to test fragility, but a lot of them do. You’ll see why later
in this chapter.

5.1.4 Using mocks and stubs together

Sometimes you need to create a test double that exhibits the properties of both a
mock and a stub. For example, here’s a test from chapter 2 that I used to illustrate the
London style of unit testing.

[Fact]
public void Purchase_fails_when_not_enough_inventory()
{
 var storeMock = new Mock<IStore>();
 storeMock
 .Setup(x => x.HasEnoughInventory(
 Product.Shampoo, 5))
 .Returns(false);
 var sut = new Customer();

 bool success = sut.Purchase(
 storeMock.Object, Product.Shampoo, 5);

 Assert.False(success);
 storeMock.Verify(
 x => x.RemoveInventory(Product.Shampoo, 5),
 Times.Never);
}

This test uses storeMock for two purposes: it returns a canned answer and verifies a
method call made by the SUT. Notice, though, that these are two different methods:
the test sets up the answer from HasEnoughInventory() but then verifies the call to
RemoveInventory(). Thus, the rule of not asserting interactions with stubs is not vio-
lated here.

 When a test double is both a mock and a stub, it’s still called a mock, not a stub.
That’s mostly the case because we need to pick one name, but also because being a
mock is a more important fact than being a stub.

5.1.5 How mocks and stubs relate to commands and queries

The notions of mocks and stubs tie to the command query separation (CQS) princi-
ple. The CQS principle states that every method should be either a command or a
query, but not both. As shown in figure 5.3, commands are methods that produce side
effects and don’t return any value (return void). Examples of side effects include
mutating an object’s state, changing a file in the file system, and so on. Queries are the
opposite of that—they are side-effect free and return a value.

 To follow this principle, be sure that if a method produces a side effect, that
method’s return type is void. And if the method returns a value, it must stay side-effect

Listing 5.4 storeMock: both a mock and a stub

Sets up a
canned
answer

Examines a call
from the SUT
Licensed to Alexander Fedorov <mail@orderbynull.me>

8 CHAPTER 5 Mocks and test fragility
free. In other words, asking a question should not change the answer. Code that main-
tains such a clear separation becomes easier to read. You can tell what a method does
just by looking at its signature, without diving into its implementation details.

 Of course, it’s not always possible to follow the CQS principle. There are always
methods for which it makes sense to both incur a side effect and return a value. A clas-
sical example is stack.Pop(). This method both removes a top element from the
stack and returns it to the caller. Still, it’s a good idea to adhere to the CQS principle
whenever you can.

 Test doubles that substitute commands become mocks. Similarly, test doubles that
substitute queries are stubs. Look at the two tests from listings 5.1 and 5.2 again (I’m
showing their relevant parts here):

var mock = new Mock<IEmailGateway>();
mock.Verify(x => x.SendGreetingsEmail("user@email.com"));

var stub = new Mock<IDatabase>();
stub.Setup(x => x.GetNumberOfUsers()).Returns(10);

SendGreetingsEmail() is a command whose side effect is sending an email. The test
double that substitutes this command is a mock. On the other hand, GetNumberOf-
Users() is a query that returns a value and doesn’t mutate the database state. The cor-
responding test double is a stub.

Methods

Commands

Incur side effects

No return value

Mocks

Queries

Side-effect free

Returns a value

Stubs

Figure 5.3 In the command query
separation (CQS) principle, commands
correspond to mocks, while queries are
consistent with stubs.
Licensed to Alexander Fedorov <mail@orderbynull.me>

9Observable behavior vs. implementation details
5.2 Observable behavior vs. implementation details
Section 5.1 showed what a mock is. The next step on the way to explaining the con-
nection between mocks and test fragility is diving into what causes such fragility.

 As you might remember from chapter 4, test fragility corresponds to the second
attribute of a good unit test: resistance to refactoring. (As a reminder, the four attri-
butes are protection against regressions, resistance to refactoring, fast feedback, and
maintainability.) The metric of resistance to refactoring is the most important
because whether a unit test possesses this metric is mostly a binary choice. Thus, it’s
good to max out this metric to the extent that the test still remains in the realm of unit
testing and doesn’t transition to the category of end-to-end testing. The latter, despite
being the best at resistance to refactoring, is generally much harder to maintain.

 In chapter 4, you also saw that the main reason tests deliver false positives (and thus
fail at resistance to refactoring) is because they couple to the code’s implementation
details. The only way to avoid such coupling is to verify the end result the code produces
(its observable behavior) and distance tests from implementation details as much as pos-
sible. In other words, tests must focus on the whats, not the hows. So, what exactly is an
implementation detail, and how is it different from an observable behavior?

5.2.1 Observable behavior is not the same as a public API

All production code can be categorized along two dimensions:

 Public API vs. private API (where API means application programming interface)
 Observable behavior vs. implementation details

The categories in these dimensions don’t overlap. A method can’t belong to both a pub-
lic and a private API; it’s either one or the other. Similarly, the code is either an internal
implementation detail or part of the system’s observable behavior, but not both.

 Most programming languages provide a simple mechanism to differentiate between
the code base’s public and private APIs. For example, in C#, you can mark any mem-
ber in a class with the private keyword, and that member will be hidden from the cli-
ent code, becoming part of the class’s private API. The same is true for classes: you can
easily make them private by using the private or internal keyword.

 The distinction between observable behavior and internal implementation details
is more nuanced. For a piece of code to be part of the system’s observable behavior, it
has to do one of the following things:

 Expose an operation that helps the client achieve one of its goals. An operation is
a method that performs a calculation or incurs a side effect or both.

 Expose a state that helps the client achieve one of its goals. State is the current
condition of the system.

Any code that does neither of these two things is an implementation detail.
 Notice that whether the code is observable behavior depends on who its client is

and what the goals of that client are. In order to be a part of observable behavior, the
Licensed to Alexander Fedorov <mail@orderbynull.me>

10 CHAPTER 5 Mocks and test fragility
code needs to have an immediate connection to at least one such goal. The word client
can refer to different things depending on where the code resides. The common
examples are client code from the same code base, an external application, or the
user interface.

 Ideally, the system’s public API surface should coincide with its observable behav-
ior, and all its implementation details should be hidden from the eyes of the clients.
Such a system has a well-designed API (figure 5.4).

Observable behaviorPublic API

Private APIImplementation detail

Figure 5.4 In a well-designed API, the
observable behavior coincides with the public
API, while all implementation details are
hidden behind the private API.

Often, though, the system’s public API extends beyond its observable behavior and
starts exposing implementation details. Such a system’s implementation details leak to
its public API surface (figure 5.5).

5.2.2 Leaking implementation details: An example with an operation

Let’s take a look at examples of code whose implementation details leak to the public
API. Listing 5.5 shows a User class with a public API that consists of two members: a
Name property and a NormalizeName() method. The class also has an invariant: users’
names must not exceed 50 characters and should be truncated otherwise.

public class User
{
 public string Name { get; set; }

Listing 5.5 User class with leaking implementation details

Observable behavior
Public API

Private API

Leaking implementation detail

Figure 5.5 A system leaks implementation
details when its public API extends beyond
the observable behavior.
Licensed to Alexander Fedorov <mail@orderbynull.me>

11Observable behavior vs. implementation details
 public string NormalizeName(string name)
 {
 string result = (name ?? "").Trim();

 if (result.Length > 50)
 return result.Substring(0, 50);

 return result;
 }
}

public class UserController
{
 public void RenameUser(int userId, string newName)
 {
 User user = GetUserFromDatabase(userId);

 string normalizedName = user.NormalizeName(newName);
 user.Name = normalizedName;

 SaveUserToDatabase(user);
 }
}

UserController is client code. It uses the User class in its RenameUser method. The
goal of this method, as you have probably guessed, is to change a user’s name.

 So, why isn’t User’s API well-designed? Look at its members once again: the Name
property and the NormalizeName method. Both of them are public. Therefore, in
order for the class’s API to be well-designed, these members should be part of the
observable behavior. This, in turn, requires them to do one of the following two things
(which I’m repeating here for convenience):

 Expose an operation that helps the client achieve one of its goals.
 Expose a state that helps the client achieve one of its goals.

Only the Name property meets this requirement. It exposes a setter, which is an opera-
tion that allows UserController to achieve its goal of changing a user’s name. The
NormalizeName method is also an operation, but it doesn’t have an immediate con-
nection to the client’s goal. The only reason UserController calls this method is to
satisfy the invariant of User. NormalizeName is therefore an implementation detail that
leaks to the class’s public API (figure 5.6).

 To fix the situation and make the class’s API well-designed, User needs to hide
NormalizeName() and call it internally as part of the property’s setter without relying
on the client code to do so. Listing 5.6 shows this approach.

Licensed to Alexander Fedorov <mail@orderbynull.me>

12 CHAPTER 5 Mocks and test fragility

public class User
{
 private string _name;
 public string Name
 {
 get => _name;
 set => _name = NormalizeName(value);
 }

 private string NormalizeName(string name)
 {
 string result = (name ?? "").Trim();

 if (result.Length > 50)
 return result.Substring(0, 50);

 return result;
 }
}

public class UserController
{
 public void RenameUser(int userId, string newName)
 {
 User user = GetUserFromDatabase(userId);
 user.Name = newName;
 SaveUserToDatabase(user);
 }
}

User’s API in listing 5.6 is well-designed: only the observable behavior (the Name prop-
erty) is made public, while the implementation details (the NormalizeName method)
are hidden behind the private API (figure 5.7).

Listing 5.6 A version of User with a well-designed API

Observable behavior
Public API

Normalize

name
Name

Leaking implementation detail

Figure 5.6 The API of User is not well-
designed: it exposes the NormalizeName
method, which is not part of the observable
behavior.
Licensed to Alexander Fedorov <mail@orderbynull.me>

13Observable behavior vs. implementation details
NOTE Strictly speaking, Name’s getter should also be made private, because
it’s not used by UserController. In reality, though, you almost always want to
read back changes you make. Therefore, in a real project, there will certainly be
another use case that requires seeing users’ current names via Name’s getter.

There’s a good rule of thumb that can help you determine whether a class leaks its
implementation details. If the number of operations the client has to invoke on the
class to achieve a single goal is greater than one, then that class is likely leaking imple-
mentation details. Ideally, any individual goal should be achieved with a single operation. In
listing 5.5, for example, UserController has to use two operations from User:

string normalizedName = user.NormalizeName(newName);
user.Name = normalizedName;

After the refactoring, the number of operations has been reduced to one:

user.Name = newName;

In my experience, this rule of thumb holds true for the vast majority of cases where
business logic is involved. There could very well be exceptions, though. Still, be sure
to examine each situation where your code violates this rule for a potential leak of
implementation details.

5.2.3 Well-designed API and encapsulation

Maintaining a well-designed API relates to the notion of encapsulation. As you might
recall from chapter 3, encapsulation is the act of protecting your code against inconsis-
tencies, also known as invariant violations. An invariant is a condition that should be
held true at all times. The User class from the previous example had one such invari-
ant: no user could have a name that exceeded 50 characters.

 Exposing implementation details goes hand in hand with invariant violations—the
former often leads to the latter. Not only did the original version of User leak its
implementation details, but it also didn’t maintain proper encapsulation. It allowed
the client to bypass the invariant and assign a new name to a user without normalizing
that name first.

Observable behaviorPublic API

Normalize

name
Name

Private APIImplementation detail

Figure 5.7 User with a well-designed API.
Only the observable behavior is public; the
implementation details are now private.
Licensed to Alexander Fedorov <mail@orderbynull.me>

14 CHAPTER 5 Mocks and test fragility
 Encapsulation is crucial for code base maintainability in the long run. The reason
why is complexity. Code complexity is one of the biggest challenges you’ll face in soft-
ware development. The more complex the code base becomes, the harder it is to work
with, which, in turn, results in slowing down development speed and increasing the
number of bugs.

 Without encapsulation, you have no practical way to cope with ever-increasing
code complexity. When the code’s API doesn’t guide you through what is and what
isn’t allowed to be done with that code, you have to keep a lot of information in mind
to make sure you don’t introduce inconsistencies with new code changes. This brings
an additional mental burden to the process of programming. Remove as much of that
burden from yourself as possible. You cannot trust yourself to do the right thing all the
time—so, eliminate the very possibility of doing the wrong thing. The best way to do so is to
maintain proper encapsulation so that your code base doesn’t even provide an option
for you to do anything incorrectly. Encapsulation ultimately serves the same goal as
unit testing: it enables sustainable growth of your software project.

 There’s a similar principle: tell-don’t-ask. It was coined by Martin Fowler (https://
martinfowler.com/bliki/TellDontAsk.html) and stands for bundling data with the
functions that operate on that data. You can view this principle as a corollary to the
practice of encapsulation. Code encapsulation is a goal, whereas bundling data and
functions together, as well as hiding implementation details, are the means to achieve
that goal:

 Hiding implementation details helps you remove the class’s internals from the eyes
of its clients, so there’s less risk of corrupting those internals.

 Bundling data and operations helps to make sure these operations don’t violate
the class’s invariants.

5.2.4 Leaking implementation details: An example with state

The example shown in listing 5.5 demonstrated an operation (the NormalizeName
method) that was an implementation detail leaking to the public API. Let’s also look
at an example with state. The following listing contains the MessageRenderer class you
saw in chapter 4. It uses a collection of sub-renderers to generate an HTML represen-
tation of a message containing a header, a body, and a footer.

public class MessageRenderer : IRenderer
{
 public IReadOnlyList<IRenderer> SubRenderers { get; }

 public MessageRenderer()
 {
 SubRenderers = new List<IRenderer>
 {
 new HeaderRenderer(),
 new BodyRenderer(),

Listing 5.7 State as an implementation detail
Licensed to Alexander Fedorov <mail@orderbynull.me>

https://martinfowler.com/bliki/TellDontAsk.html
https://martinfowler.com/bliki/TellDontAsk.html
https://martinfowler.com/bliki/TellDontAsk.html

15Observable behavior vs. implementation details
 new FooterRenderer()
 };
 }

 public string Render(Message message)
 {
 return SubRenderers
 .Select(x => x.Render(message))
 .Aggregate("", (str1, str2) => str1 + str2);
 }
}

The sub-renderers collection is public. But is it part of observable behavior? Assuming
that the client’s goal is to render an HTML message, the answer is no. The only class
member such a client would need is the Render method itself. Thus SubRenderers is
also a leaking implementation detail.

 I bring up this example again for a reason. As you may remember, I used it to illus-
trate a brittle test. That test was brittle precisely because it was tied to this implementa-
tion detail—it checked to see the collection’s composition. The brittleness was fixed by
re-targeting the test at the Render method. The new version of the test verified the result-
ing message—the only output the client code cared about, the observable behavior.

 As you can see, there’s an intrinsic connection between good unit tests and a well-
designed API. By making all implementation details private, you leave your tests no
choice other than to verify the code’s observable behavior, which automatically
improves their resistance to refactoring.

TIP Making the API well-designed automatically improves unit tests.

Another guideline flows from the definition of a well-designed API: you should expose
the absolute minimum number of operations and state. Only code that directly helps
clients achieve their goals should be made public. Everything else is implementation
details and thus must be hidden behind the private API.

 Note that there’s no such problem as leaking observable behavior, which would be
symmetric to the problem of leaking implementation details. While you can expose an
implementation detail (a method or a class that is not supposed to be used by the cli-
ent), you can’t hide an observable behavior. Such a method or class would no longer
have an immediate connection to the client goals, because the client wouldn’t be able
to directly use it anymore. Thus, by definition, this code would cease to be part of
observable behavior. Table 5.1 sums it all up.

Table 5.1 The relationship between the code’s publicity and purpose. Avoid making implementation
details public.

Observable behavior Implementation detail

Public Good Bad

Private N/A Good
Licensed to Alexander Fedorov <mail@orderbynull.me>

16 CHAPTER 5 Mocks and test fragility
5.3 The relationship between mocks and test fragility
The previous sections defined a mock and showed the difference between observable
behavior and an implementation detail. In this section, you will learn about hexago-
nal architecture, the difference between internal and external communications, and
(finally!) the relationship between mocks and test fragility.

5.3.1 Defining hexagonal architecture

A typical application consists of two layers, domain and application services, as
shown in figure 5.8. The domain layer resides in the middle of the diagram because
it’s the central part of your application. It contains the business logic: the essential
functionality your application is built for. The domain layer and its business logic
differentiate this application from others and provide a competitive advantage for
the organization.

The application services layer sits on top of the domain layer and orchestrates com-
munication between that layer and the external world. For example, if your applica-
tion is a RESTful API, all requests to this API hit the application services layer first.
This layer then coordinates the work between domain classes and out-of-process
dependencies. Here’s an example of such coordination for the application service. It
does the following:

 Queries the database and uses the data to materialize a domain class instance
 Invokes an operation on that instance
 Saves the results back to the database

The combination of the application services layer and the domain layer forms a hexa-
gon, which itself represents your application. It can interact with other applications,
which are represented with their own hexagons (see figure 5.9). These other applica-
tions could be an SMTP service, a third-party system, a message bus, and so on. A set
of interacting hexagons makes up a hexagonal architecture.

Domain
(business logic)

Application
services

Figure 5.8 A typical application consists of a
domain layer and an application services layer.
The domain layer contains the application’s
business logic; application services tie that
logic to business use cases.
Licensed to Alexander Fedorov <mail@orderbynull.me>

17The relationship between mocks and test fragility
The term hexagonal architecture was introduced by Alistair Cockburn. Its purpose is to
emphasize three important guidelines:

 The separation of concerns between the domain and application services layers —Business
logic is the most important part of the application. Therefore, the domain layer
should be accountable only for that business logic and exempted from all other
responsibilities. Those responsibilities, such as communicating with external
applications and retrieving data from the database, must be attributed to appli-
cation services. Conversely, the application services shouldn’t contain any busi-
ness logic. Their responsibility is to adapt the domain layer by translating the
incoming requests into operations on domain classes and then persisting the
results or returning them back to the caller. You can view the domain layer as a
collection of the application’s domain knowledge (how-to’s) and the application
services layer as a set of business use cases (what-to’s).

 Communications inside your application —Hexagonal architecture prescribes a
one-way flow of dependencies: from the application services layer to the domain
layer. Classes inside the domain layer should only depend on each other; they
should not depend on classes from the application services layer. This guideline
flows from the previous one. The separation of concerns between the applica-
tion services layer and the domain layer means that the former knows about the
latter, but the opposite is not true. The domain layer should be fully isolated
from the external world.

 Communications between applications —External applications connect to your
application through a common interface maintained by the application services
layer. No one has a direct access to the domain layer. Each side in a hexagon
represents a connection into or out of the application. Note that although a

Domain
(business logic)

Application
services

Third-party

system

Message

bus

SMTP

service
Figure 5.9 A hexagonal
architecture is a set of
interacting applications—
hexagons.
Licensed to Alexander Fedorov <mail@orderbynull.me>

18 CHAPTER 5 Mocks and test fragility
hexagon has six sides, it doesn’t mean your application can only connect to six
other applications. The number of connections is arbitrary. The point is that
there can be many such connections.

Each layer of your application exhibits observable behavior and contains its own set of
implementation details. For example, observable behavior of the domain layer is the
sum of this layer’s operations and state that helps the application service layer achieve
at least one of its goals. The principles of a well-designed API have a fractal nature:
they apply equally to as much as a whole layer or as little as a single class.

 When you make each layer’s API well-designed (that is, hide its implementation
details), your tests also start to have a fractal structure; they verify behavior that helps
achieve the same goals but at different levels. A test covering an application service
checks to see how this service attains an overarching, coarse-grained goal posed by the
external client. At the same time, a test working with a domain class verifies a subgoal
that is part of that greater goal (figure 5.10).

Goal

(use case)

Subgoal Subgoal

Test 1

Test 2 Test 3

External client

Application service

Domain class 1 Domain class 2

Figure 5.10 Tests working with different layers have a fractal nature: they verify the
same behavior at different levels. A test of an application service checks to see how
the overall business use case is executed. A test working with a domain class verifies
an intermediate subgoal on the way to use-case completion.

You might remember from previous chapters how I mentioned that you should be
able to trace any test back to a particular business requirement. Each test should tell a
story that is meaningful to a domain expert, and if it doesn’t, that’s a strong indication
that the test couples to implementation details and therefore is brittle. I hope now you
can see why.

 Observable behavior flows inward from outer layers to the center. The overarching
goal posed by the external client gets translated into subgoals achieved by individual
Licensed to Alexander Fedorov <mail@orderbynull.me>

19The relationship between mocks and test fragility
domain classes. Each piece of observable behavior in the domain layer therefore pre-
serves the connection to a particular business use case. You can trace this connection
recursively from the innermost (domain) layer outward to the application services
layer and then to the needs of the external client. This traceability follows from the
definition of observable behavior. For a piece of code to be part of observable behav-
ior, it needs to help the client achieve one of its goals. For a domain class, the client is
an application service; for the application service, it’s the external client itself.

 Tests that verify a code base with a well-designed API also have a connection to
business requirements because those tests tie to the observable behavior only. A good
example is the User and UserController classes from listing 5.6 (I’m repeating the
code here for convenience).

public class User
{
 private string _name;
 public string Name
 {
 get => _name;
 set => _name = NormalizeName(value);
 }

 private string NormalizeName(string name)
 {
 /* Trim name down to 50 characters */
 }
}

public class UserController
{
 public void RenameUser(int userId, string newName)
 {
 User user = GetUserFromDatabase(userId);
 user.Name = newName;
 SaveUserToDatabase(user);
 }
}

UserController in this example is an application service. Assuming that the exter-
nal client doesn’t have a specific goal of normalizing user names, and all names are
normalized solely due to restrictions from the application itself, the NormalizeName
method in the User class can’t be traced to the client’s needs. Therefore, it’s an
implementation detail and should be made private (we already did that earlier in
this chapter). Moreover, tests shouldn’t check this method directly. They should ver-
ify it only as part of the class’s observable behavior—the Name property’s setter in
this example.

 This guideline of always tracing the code base’s public API to business require-
ments applies to the vast majority of domain classes and application services but less

Listing 5.8 A domain class with an application service
Licensed to Alexander Fedorov <mail@orderbynull.me>

20 CHAPTER 5 Mocks and test fragility
so to utility and infrastructure code. The individual problems such code solves are
often too low-level and fine-grained and can’t be traced to a specific business use case.

5.3.2 Intra-system vs. inter-system communications

There are two types of communications in a typical application: intra-system and inter-
system. Intra-system communications are communications between classes inside your
application. Inter-system communications are when your application talks to other appli-
cations (figure 5.11).

NOTE Intra-system communications are implementation details; inter-system
communications are not.

Intra-system communications are implementation details because the collaborations
your domain classes go through in order to perform an operation are not part of their
observable behavior. These collaborations don’t have an immediate connection to the
client’s goal. Thus, coupling to such collaborations leads to fragile tests.

 Inter-system communications are a different matter. Unlike collaborations between
classes inside your application, the way your system talks to the external world forms
the observable behavior of that system as a whole. It’s part of the contract your appli-
cation must hold at all times (figure 5.12).

 This attribute of inter-system communications stems from the way separate applica-
tions evolve together. One of the main principles of such an evolution is maintaining
backward compatibility. Regardless of the refactorings you perform inside your sys-
tem, the communication pattern it uses to talk to external applications should always
stay in place, so that external applications can understand it. For example, messages
your application emits on a bus should preserve their structure, the calls issued to an
SMTP service should have the same number and type of parameters, and so on.

Third-party

system

SMTP service
Intra-system

Inter-system

Inter-system

Figure 5.11 There are two types
of communications: intra-system
(between classes inside the
application) and inter-system
(between applications).
Licensed to Alexander Fedorov <mail@orderbynull.me>

21The relationship between mocks and test fragility
Third-party

system

SMTP service
Implementation detail

Observable behavior (contract)

Observable behavior (contract)

Figure 5.12 Inter-system communications form the observable
behavior of your application as a whole. Intra-system communications
are implementation details.

The use of mocks is beneficial when verifying the communication pattern between
your system and external applications. Conversely, using mocks to verify communica-
tions between classes inside your system results in tests that couple to implementation
details and therefore fall short of the resistance-to-refactoring metric.

5.3.3 Intra-system vs. inter-system communications: An example

To illustrate the difference between intra-system and inter-system communications, I’ll
expand on the example with the Customer and Store classes that I used in chapter 2
and earlier in this chapter. Imagine the following business use case:

 A customer tries to purchase a product from a store.
 If the amount of the product in the store is sufficient, then

– The inventory is removed from the store.
– An email receipt is sent to the customer.
– A confirmation is returned.

Let’s also assume that the application is an API with no user interface.
 In the following listing, the CustomerController class is an application service that

orchestrates the work between domain classes (Customer, Product, Store) and the
external application (EmailGateway, which is a proxy to an SMTP service).

public class CustomerController
{
 public bool Purchase(int customerId, int productId, int quantity)

Listing 5.9 Connecting the domain model with external applications
Licensed to Alexander Fedorov <mail@orderbynull.me>

22 CHAPTER 5 Mocks and test fragility
 {
 Customer customer = _customerRepository.GetById(customerId);
 Product product = _productRepository.GetById(productId);

 bool isSuccess = customer.Purchase(
 _mainStore, product, quantity);

 if (isSuccess)
 {
 _emailGateway.SendReceipt(
 customer.Email, product.Name, quantity);
 }

 return isSuccess;
 }
}

Validation of input parameters is omitted for brevity. In the Purchase method, the
customer checks to see if there’s enough inventory in the store and, if so, decreases
the product amount.

 The act of making a purchase is a business use case with both intra-system and
inter-system communications. The inter-system communications are those between
the CustomerController application service and the two external systems: the third-
party application (which is also the client initiating the use case) and the email gate-
way. The intra-system communication is between the Customer and the Store domain
classes (figure 5.13).

Third-party

system

(external

client)

SMTP service

SendReceipt()

Customer

RemoveInventory()

Store

isSuccess

Figure 5.13 The example in listing 5.9 represented using the hexagonal
architecture. The communications between the hexagons are inter-system
communications. The communication inside the hexagon is intra-system.

 In this example, the call to the SMTP service is a side effect that is visible to the
external world and thus forms the observable behavior of the application as a whole.
Licensed to Alexander Fedorov <mail@orderbynull.me>

23The relationship between mocks and test fragility
It also has a direct connection to the client’s goals. The client of the application is the
third-party system. This system’s goal is to make a purchase, and it expects the cus-
tomer to receive a confirmation email as part of the successful outcome.

 The call to the SMTP service is a legitimate reason to do mocking. It doesn’t lead
to test fragility because you want to make sure this type of communication stays in
place even after refactoring. The use of mocks helps you do exactly that.

 The next listing shows an example of a legitimate use of mocks.

[Fact]
public void Successful_purchase()
{
 var mock = new Mock<IEmailGateway>();
 var sut = new CustomerController(mock.Object);

 bool isSuccess = sut.Purchase(
 customerId: 1, productId: 2, quantity: 5);

 Assert.True(isSuccess);
 mock.Verify(
 x => x.SendReceipt(
 "customer@email.com", "Shampoo", 5),
 Times.Once);
}

Note that the isSuccess flag is also observable by the external client and also needs
verification. This flag doesn’t need mocking, though; a simple value comparison is
enough.

 Let’s now look at a test that mocks the communication between Customer and
Store.

[Fact]
public void Purchase_succeeds_when_enough_inventory()
{
 var storeMock = new Mock<IStore>();
 storeMock
 .Setup(x => x.HasEnoughInventory(Product.Shampoo, 5))
 .Returns(true);
 var customer = new Customer();

 bool success = customer.Purchase(
 storeMock.Object, Product.Shampoo, 5);

 Assert.True(success);
 storeMock.Verify(
 x => x.RemoveInventory(Product.Shampoo, 5),
 Times.Once);
}

Listing 5.10 Mocking that doesn’t lead to fragile tests

Listing 5.11 Mocking that leads to fragile tests

Verifies that the
system sent a receipt
about the purchase
Licensed to Alexander Fedorov <mail@orderbynull.me>

24 CHAPTER 5 Mocks and test fragility
Unlike the communication between CustomerController and the SMTP service, the
RemoveInventory() method call from Customer to Store doesn’t cross the applica-
tion boundary: both the caller and the recipient reside inside the application. Also,
this method is neither an operation nor a state that helps the client achieve its goals.
The client of these two domain classes is CustomerController with the goal of making
a purchase. The only two members that have an immediate connection to this goal are
customer.Purchase() and store.GetInventory(). The Purchase() method initiates
the purchase, and GetInventory() shows the state of the system after the purchase is
completed. The RemoveInventory() method call is an intermediate step on the way to
the client’s goal—an implementation detail.

5.4 The classical vs. London schools of unit testing,
revisited
As a reminder from chapter 2 (table 2.1), table 5.2 sums up the differences between
the classical and London schools of unit testing.

In chapter 2, I mentioned that I prefer the classical school of unit testing over the
London school. I hope now you can see why. The London school encourages the use
of mocks for all but immutable dependencies and doesn’t differentiate between intra-
system and inter-system communications. As a result, tests check communications
between classes just as much as they check communications between your application
and external systems.

 This indiscriminate use of mocks is why following the London school often results
in tests that couple to implementation details and thus lack resistance to refactoring.
As you may remember from chapter 4, the metric of resistance to refactoring (unlike
the other three) is mostly a binary choice: a test either has resistance to refactoring or
it doesn’t. Compromising on this metric renders the test nearly worthless.

 The classical school is much better at this issue because it advocates for substitut-
ing only dependencies that are shared between tests, which almost always translates
into out-of-process dependencies such as an SMTP service, a message bus, and so on.
But the classical school is not ideal in its treatment of inter-system communications,
either. This school also encourages excessive use of mocks, albeit not as much as the
London school.

Table 5.2 The differences between the London and classical schools of unit testing

Isolation of A unit is Uses test doubles for

London school Units A class All but immutable dependencies

Classical school Unit tests A class or a set of classes Shared dependencies
Licensed to Alexander Fedorov <mail@orderbynull.me>

25The classical vs. London schools of unit testing, revisited
5.4.1 Not all out-of-process dependencies should be mocked out

Before we discuss out-of-process dependencies and mocking, let me give you a quick
refresher on types of dependencies (refer to chapter 2 for more details):

 Shared dependency —A dependency shared by tests (not production code)
 Out-of-process dependency —A dependency hosted by a process other than the pro-

gram’s execution process (for example, a database, a message bus, or an SMTP
service)

 Private dependency —Any dependency that is not shared

The classical school recommends avoiding shared dependencies because they provide
the means for tests to interfere with each other’s execution context and thus prevent
those tests from running in parallel. The ability for tests to run in parallel, sequen-
tially, and in any order is called test isolation.

 If a shared dependency is not out-of-process, then it’s easy to avoid reusing it in
tests by providing a new instance of it on each test run. In cases where the shared
dependency is out-of-process, testing becomes more complicated. You can’t instanti-
ate a new database or provision a new message bus before each test execution; that
would drastically slow down the test suite. The usual approach is to replace such
dependencies with test doubles—mocks and stubs.

 Not all out-of-process dependencies should be mocked out, though. If an out-of-
process dependency is only accessible through your application, then communications with such a
dependency are not part of your system’s observable behavior. An out-of-process dependency
that can’t be observed externally, in effect, acts as part of your application (figure 5.14).

Third-party

system

(external

client)

SMTP service

Observable behavior (contract)

Application

database

(accessible

only by the

application)

Implementation details

Figure 5.14 Communications with an out-of-process dependency that can’t be
observed externally are implementation details. They don’t have to stay in place
after refactoring and therefore shouldn’t be verified with mocks.

 Remember, the requirement to always preserve the communication pattern
between your application and external systems stems from the necessity to maintain
backward compatibility. You have to maintain the way your application talks to external
Licensed to Alexander Fedorov <mail@orderbynull.me>

26 CHAPTER 5 Mocks and test fragility
systems. That’s because you can’t change those external systems simultaneously with
your application; they may follow a different deployment cycle, or you might simply
not have control over them.

 But when your application acts as a proxy to an external system, and no client can
access it directly, the backward-compatibility requirement vanishes. Now you can deploy
your application together with this external system, and it won’t affect the clients. The
communication pattern with such a system becomes an implementation detail.

 A good example here is an application database: a database that is used only by
your application. No external system has access to this database. Therefore, you can
modify the communication pattern between your system and the application database
in any way you like, as long as it doesn’t break existing functionality. Because that data-
base is completely hidden from the eyes of the clients, you can even replace it with an
entirely different storage mechanism, and no one will notice.

 The use of mocks for out-of-process dependencies that you have a full control over
also leads to brittle tests. You don’t want your tests to turn red every time you split a
table in the database or modify the type of one of the parameters in a stored proce-
dure. The database and your application must be treated as one system.

 This obviously poses an issue. How would you test the work with such a depen-
dency without compromising the feedback speed, the third attribute of a good unit
test? You’ll see this subject covered in depth in the following two chapters.

5.4.2 Using mocks to verify behavior

Mocks are often said to verify behavior. In the vast majority of cases, they don’t. The
way each individual class interacts with neighboring classes in order to achieve some
goal has nothing to do with observable behavior; it’s an implementation detail.

 Verifying communications between classes is akin to trying to derive a person’s
behavior by measuring the signals that neurons in the brain pass among each other.
Such a level of detail is too granular. What matters is the behavior that can be traced
back to the client goals. The client doesn’t care what neurons in your brain light up
when they ask you to help. The only thing that matters is the help itself—provided by
you in a reliable and professional fashion, of course. Mocks have something to do with
behavior only when they verify interactions that cross the application boundary and
only when the side effects of those interactions are visible to the external world.

Summary
 Test double is an overarching term that describes all kinds of non-production-

ready, fake dependencies in tests. There are five variations of test doubles—
dummy, stub, spy, mock, and fake—that can be grouped in just two types: mocks
and stubs. Spies are functionally the same as mocks; dummies and fakes serve
the same role as stubs.

 Mocks help emulate and examine outcoming interactions: calls from the SUT to
its dependencies that change the state of those dependencies. Stubs help
Licensed to Alexander Fedorov <mail@orderbynull.me>

27Summary
emulate incoming interactions: calls the SUT makes to its dependencies to get
input data.

 A mock (the tool) is a class from a mocking library that you can use to create a
mock (the test double) or a stub.

 Asserting interactions with stubs leads to fragile tests. Such an interaction doesn’t
correspond to the end result; it’s an intermediate step on the way to that result,
an implementation detail.

 The command query separation (CQS) principle states that every method
should be either a command or a query but not both. Test doubles that substi-
tute commands are mocks. Test doubles that substitute queries are stubs.

 All production code can be categorized along two dimensions: public API ver-
sus private API, and observable behavior versus implementation details. Code
publicity is controlled by access modifiers, such as private, public, and
internal keywords. Code is part of observable behavior when it meets one of
the following requirements (any other code is an implementation detail):
– It exposes an operation that helps the client achieve one of its goals. An oper-

ation is a method that performs a calculation or incurs a side effect.
– It exposes a state that helps the client achieve one of its goals. State is the cur-

rent condition of the system.
 Well-designed code is code whose observable behavior coincides with the public

API and whose implementation details are hidden behind the private API. A
code leaks implementation details when its public API extends beyond the
observable behavior.

 Encapsulation is the act of protecting your code against invariant violations.
Exposing implementation details often entails a breach in encapsulation
because clients can use implementation details to bypass the code’s invariants.

 Hexagonal architecture is a set of interacting applications represented as hexa-
gons. Each hexagon consists of two layers: domain and application services.

 Hexagonal architecture emphasizes three important aspects:
– Separation of concerns between the domain and application services layers.

The domain layer should be responsible for the business logic, while the
application services should orchestrate the work between the domain layer
and external applications.

– A one-way flow of dependencies from the application services layer to the
domain layer. Classes inside the domain layer should only depend on each
other; they should not depend on classes from the application services layer.

– External applications connect to your application through a common inter-
face maintained by the application services layer. No one has a direct access
to the domain layer.

 Each layer in a hexagon exhibits observable behavior and contains its own set of
implementation details.
Licensed to Alexander Fedorov <mail@orderbynull.me>

28 CHAPTER 5 Mocks and test fragility
 There are two types of communications in an application: intra-system and
inter-system. Intra-system communications are communications between classes
inside the application. Inter-system communication is when the application talks
to external applications.

 Intra-system communications are implementation details. Inter-system commu-
nications are part of observable behavior, with the exception of external systems
that are accessible only through your application. Interactions with such sys-
tems are implementation details too, because the resulting side effects are not
observed externally.

 Using mocks to assert intra-system communications leads to fragile tests. Mock-
ing is legitimate only when it’s used for inter-system communications—commu-
nications that cross the application boundary—and only when the side effects
of those communications are visible to the external world.
Licensed to Alexander Fedorov <mail@orderbynull.me>

This chapter introduces mocking best practices, such as mocking the types
at the edges of your system and only mocking the types that you own. You will
also learn when and how to write handwritten mocks (spies) instead of regular
mocks.

Chapter 9 from Unit Testing
Principles, Practices, and Patterns
by Vladimir Khorikov

Licensed to Alexander Fedorov <mail@orderbynull.me>

https://www.manning.com/books/unit-testing
https://www.manning.com/books/unit-testing

Mocking best practices
As you might remember from chapter 5, a mock is a test double that helps to emu-
late and examine interactions between the system under test and its dependencies.
As you might also remember from chapter 8, mocks should only be applied to
unmanaged dependencies (interactions with such dependencies are observable by
external applications). Using mocks for anything else results in brittle tests (tests that
lack the metric of resistance to refactoring). When it comes to mocks, adhering to
this one guideline will get you about two-thirds of the way to success.

 This chapter shows the remaining guidelines that will help you develop inte-
gration tests that have the greatest possible value by maxing out mocks’ resistance
to refactoring and protection against regressions. I’ll first show a typical use of
mocks, describe its drawbacks, and then demonstrate how you can overcome
those drawbacks.

This chapter covers
 Maximizing the value of mocks

 Replacing mocks with spies

 Mocking best practices
30

Licensed to Alexander Fedorov <mail@orderbynull.me>

31Maximizing mocks’ value
9.1 Maximizing mocks’ value
It’s important to limit the use of mocks to unmanaged dependencies, but that’s only
the first step on the way to maximizing the value of mocks. This topic is best explained
with an example, so I’ll continue using the CRM system from earlier chapters as a sam-
ple project. I’ll remind you of its functionality and show the integration test we ended
up with. After that, you’ll see how that test can be improved with regard to mocking.

 As you might recall, the CRM system currently supports only one use case: chang-
ing a user’s email. The following listing shows where we left off with the controller.

public class UserController
{
 private readonly Database _database;
 private readonly EventDispatcher _eventDispatcher;

 public UserController(
 Database database,
 IMessageBus messageBus,
 IDomainLogger domainLogger)
 {
 _database = database;
 _eventDispatcher = new EventDispatcher(
 messageBus, domainLogger);
 }

 public string ChangeEmail(int userId, string newEmail)
 {
 object[] userData = _database.GetUserById(userId);
 User user = UserFactory.Create(userData);

 string error = user.CanChangeEmail();
 if (error != null)
 return error;

 object[] companyData = _database.GetCompany();
 Company company = CompanyFactory.Create(companyData);

 user.ChangeEmail(newEmail, company);

 _database.SaveCompany(company);
 _database.SaveUser(user);
 _eventDispatcher.Dispatch(user.DomainEvents);

 return "OK";
 }
}

Note that there’s no longer any diagnostic logging, but support logging (the IDomain-
Logger interface) is still in place (see chapter 8 for more details). Also, listing 9.1
introduces a new class: the EventDispatcher. It converts domain events generated by

Listing 9.1 User controller
Licensed to Alexander Fedorov <mail@orderbynull.me>

32 CHAPTER 9 Mocking best practices
the domain model into calls to unmanaged dependencies (something that the control-
ler previously did by itself), as shown next.

public class EventDispatcher
{
 private readonly IMessageBus _messageBus;
 private readonly IDomainLogger _domainLogger;

 public EventDispatcher(
 IMessageBus messageBus,
 IDomainLogger domainLogger)
 {
 _domainLogger = domainLogger;
 _messageBus = messageBus;
 }

 public void Dispatch(List<IDomainEvent> events)
 {
 foreach (IDomainEvent ev in events)
 {
 Dispatch(ev);
 }
 }

 private void Dispatch(IDomainEvent ev)
 {
 switch (ev)
 {
 case EmailChangedEvent emailChangedEvent:
 _messageBus.SendEmailChangedMessage(
 emailChangedEvent.UserId,
 emailChangedEvent.NewEmail);
 break;

 case UserTypeChangedEvent userTypeChangedEvent:
 _domainLogger.UserTypeHasChanged(
 userTypeChangedEvent.UserId,
 userTypeChangedEvent.OldType,
 userTypeChangedEvent.NewType);
 break;
 }
 }
}

Finally, the following listing shows the integration test. This test goes through all out-
of-process dependencies (both managed and unmanaged).

[Fact]
public void Changing_email_from_corporate_to_non_corporate()
{

Listing 9.2 Event dispatcher

Listing 9.3 Integration test
Licensed to Alexander Fedorov <mail@orderbynull.me>

33Maximizing mocks’ value
 // Arrange
 var db = new Database(ConnectionString);
 User user = CreateUser("user@mycorp.com", UserType.Employee, db);
 CreateCompany("mycorp.com", 1, db);

 var messageBusMock = new Mock<IMessageBus>();
 var loggerMock = new Mock<IDomainLogger>();
 var sut = new UserController(
 db, messageBusMock.Object, loggerMock.Object);

 // Act
 string result = sut.ChangeEmail(user.UserId, "new@gmail.com");

 // Assert
 Assert.Equal("OK", result);

 object[] userData = db.GetUserById(user.UserId);
 User userFromDb = UserFactory.Create(userData);
 Assert.Equal("new@gmail.com", userFromDb.Email);
 Assert.Equal(UserType.Customer, userFromDb.Type);

 object[] companyData = db.GetCompany();
 Company companyFromDb = CompanyFactory.Create(companyData);
 Assert.Equal(0, companyFromDb.NumberOfEmployees);

 messageBusMock.Verify(
 x => x.SendEmailChangedMessage(
 user.UserId, "new@gmail.com"),
 Times.Once);
 loggerMock.Verify(
 x => x.UserTypeHasChanged(
 user.UserId,
 UserType.Employee,
 UserType.Customer),
 Times.Once);
}

This test mocks out two unmanaged dependencies: IMessageBus and IDomainLogger.
I’ll focus on IMessageBus first. We’ll discuss IDomainLogger later in this chapter.

9.1.1 Verifying interactions at the system edges

Let’s discuss why the mocks used by the integration test in listing 9.3 aren’t ideal in
terms of their protection against regressions and resistance to refactoring and how we
can fix that.

TIP When mocking, always adhere to the following guideline: verify interac-
tions with unmanaged dependencies at the very edges of your system.

The problem with messageBusMock in listing 9.3 is that the IMessageBus interface
doesn’t reside at the system’s edge. Look at that interface’s implementation.

Sets up the
mocks

Verifies the
interactions
with the mocks
Licensed to Alexander Fedorov <mail@orderbynull.me>

34 CHAPTER 9 Mocking best practices
public interface IMessageBus
{
 void SendEmailChangedMessage(int userId, string newEmail);
}

public class MessageBus : IMessageBus
{
 private readonly IBus _bus;

 public void SendEmailChangedMessage(
 int userId, string newEmail)
 {
 _bus.Send("Type: USER EMAIL CHANGED; " +
 $"Id: {userId}; " +
 $"NewEmail: {newEmail}");
 }
}

public interface IBus
{
 void Send(string message);
}

Both the IMessageBus and IBus interfaces (and the classes implementing them) belong
to our project’s code base. IBus is a wrapper on top of the message bus SDK library (pro-
vided by the company that develops that message bus). This wrapper encapsulates non-
essential technical details, such as connection credentials, and exposes a nice, clean
interface for sending arbitrary text messages to the bus. IMessageBus is a wrapper on
top of IBus; it defines messages specific to your domain. IMessageBus helps you keep all
such messages in one place and reuse them across the application.

 It’s possible to merge the IBus and IMessageBus interfaces together, but that
would be a suboptimal solution. These two responsibilities—hiding the external
library’s complexity and holding all application messages in one place—are best kept
separated. This is the same situation as with ILogger and IDomainLogger, which you
saw in chapter 8. IDomainLogger implements specific logging functionality required
by the business, and it does that by using the generic ILogger behind the scenes.

 Figure 9.1 shows where IBus and IMessageBus stand from a hexagonal architec-
ture perspective: IBus is the last link in the chain of types between the controller and
the message bus, while IMessageBus is only an intermediate step on the way.

 Mocking IBus instead of IMessageBus maximizes the mock’s protection against
regressions. As you might remember from chapter 4, protection against regressions is
a function of the amount of code that is executed during the test. Mocking the very
last type that communicates with the unmanaged dependency increases the number
of classes the integration test goes through and thus improves the protection. This
guideline is also the reason you don’t want to mock EventDispatcher. It resides even
further away from the edge of the system, compared to IMessageBus.

Listing 9.4 Message bus
Licensed to Alexander Fedorov <mail@orderbynull.me>

35Maximizing mocks’ value
External client

Message bus

IMessageBus

Controller

Domain model

IBus

Figure 9.1 IBus resides at the system’s edge; IMessageBus is only an intermediate
link in the chain of types between the controller and the message bus. Mocking IBus
instead of IMessageBus achieves the best protection against regressions.

Here’s the integration test after retargeting it from IMessageBus to IBus. I’m omitting
the parts that didn’t change from listing 9.3.

[Fact]
public void Changing_email_from_corporate_to_non_corporate()
{
 var busMock = new Mock<IBus>();
 var messageBus = new MessageBus(busMock.Object);
 var loggerMock = new Mock<IDomainLogger>();
 var sut = new UserController(db, messageBus, loggerMock.Object);

 /* ... */

 busMock.Verify(
 x => x.Send(
 "Type: USER EMAIL CHANGED; " +
 $"Id: {user.UserId}; " +
 "NewEmail: new@gmail.com"),
 Times.Once);
}

Listing 9.5 Integration test targeting IBus

Uses a concrete
class instead of
the interface

Verifies the actual
message sent to
the bus
Licensed to Alexander Fedorov <mail@orderbynull.me>

36 CHAPTER 9 Mocking best practices
Notice how the test now uses the concrete MessageBus class and not the correspond-
ing IMessageBus interface. IMessageBus is an interface with a single implementation,
and, as you’ll remember from chapter 8, mocking is the only legitimate reason to have
such interfaces. Because we no longer mock IMessageBus, this interface can be
deleted and its usages replaced with MessageBus.

 Also notice how the test in listing 9.5 checks the text message sent to the bus. Com-
pare it to the previous version:

messageBusMock.Verify(
 x => x.SendEmailChangedMessage(user.UserId, "new@gmail.com"),
 Times.Once);

There’s a huge difference between verifying a call to a custom class that you wrote and
the actual text sent to external systems. External systems expect text messages from your
application, not calls to classes like MessageBus. In fact, text messages are the only side
effect observable externally; classes that participate in producing those messages are
mere implementation details. Thus, in addition to the increased protection against
regressions, verifying interactions at the very edges of your system also improves resis-
tance to refactoring. The resulting tests are less exposed to potential false positives; no
matter what refactorings take place, such tests won’t turn red as long as the message’s
structure is preserved.

 The same mechanism is at play here as the one that gives integration and end-to-end
tests additional resistance to refactoring compared to unit tests. They are more detached
from the code base and, therefore, aren’t affected as much during low-level refactorings.

TIP A call to an unmanaged dependency goes through several stages before
it leaves your application. Pick the last such stage. It is the best way to ensure
backward compatibility with external systems, which is the goal that mocks
help you achieve.

9.1.2 Replacing mocks with spies

As you may remember from chapter 5, a spy is a variation of a test double that serves
the same purpose as a mock. The only difference is that spies are written manually,
whereas mocks are created with the help of a mocking framework. Indeed, spies are
often called handwritten mocks.

 It turns out that, when it comes to classes residing at the system edges, spies are supe-
rior to mocks. Spies help you reuse code in the assertion phase, thereby reducing the
test’s size and improving readability. The next listing shows an example of a spy that
works on top of IBus.

public interface IBus
{
 void Send(string message);
}

Listing 9.6 A spy (also known as a handwritten mock)
Licensed to Alexander Fedorov <mail@orderbynull.me>

37Maximizing mocks’ value
public class BusSpy : IBus
{
 private List<string> _sentMessages =
 new List<string>();

 public void Send(string message)
 {
 _sentMessages.Add(message);
 }

 public BusSpy ShouldSendNumberOfMessages(int number)
 {
 Assert.Equal(number, _sentMessages.Count);
 return this;
 }

 public BusSpy WithEmailChangedMessage(int userId, string newEmail)
 {
 string message = "Type: USER EMAIL CHANGED; " +
 $"Id: {userId}; " +
 $"NewEmail: {newEmail}";
 Assert.Contains(
 _sentMessages, x => x == message);

 return this;
 }
}

The following listing is a new version of the integration test. Again, I’m showing only
the relevant parts.

[Fact]
public void Changing_email_from_corporate_to_non_corporate()
{
 var busSpy = new BusSpy();
 var messageBus = new MessageBus(busSpy);
 var loggerMock = new Mock<IDomainLogger>();
 var sut = new UserController(db, messageBus, loggerMock.Object);

 /* ... */

 busSpy.ShouldSendNumberOfMessages(1)
 .WithEmailChangedMessage(user.UserId, "new@gmail.com");
}

Verifying the interactions with the message bus is now succinct and expressive, thanks
to the fluent interface that BusSpy provides. With that fluent interface, you can chain
together several assertions, thus forming cohesive, almost plain-English sentences.

TIP You can rename BusSpy into BusMock. As I mentioned earlier, the differ-
ence between a mock and a spy is an implementation detail. Most programmers

Listing 9.7 Using the spy from listing 6.43

Stores all sent
messages
locally

Asserts that the
message has been sent
Licensed to Alexander Fedorov <mail@orderbynull.me>

38 CHAPTER 9 Mocking best practices
aren’t familiar with the term spy, though, so renaming the spy as BusMock can
save your colleagues unnecessary confusion.

There’s a reasonable question to be asked here: didn’t we just make a full circle and
come back to where we started? The version of the test in listing 9.7 looks a lot like the
earlier version that mocked IMessageBus:

messageBusMock.Verify(
 x => x.SendEmailChangedMessage(
 user.UserId, "new@gmail.com"),
 Times.Once); Same as

ShouldSendNumberOfMessages(1)

These assertions are similar because both BusSpy and MessageBus are wrappers on
top of IBus. But there’s a crucial difference between the two: BusSpy is part of the test
code, whereas MessageBus belongs to the production code. This difference is import-
ant because you shouldn’t rely on the production code when making assertions in tests.

 Think of your tests as auditors. A good auditor wouldn’t just take the auditee’s
words at face value; they would double-check everything. The same is true with the
spy: it provides an independent checkpoint that raises an alarm when the message
structure is changed. On the other hand, a mock on IMessageBus puts too much trust
in the production code.

9.1.3 What about IDomainLogger?

The mock that previously verified interactions with IMessageBus is now targeted at
IBus, which resides at the system’s edge. Here are the current mock assertions in the
integration test.

busSpy.ShouldSendNumberOfMessages(1) Checks
interactions
with IBus

 .WithEmailChangedMessage(
 user.UserId, "new@gmail.com");

loggerMock.Verify(
 x => x.UserTypeHasChanged(
 user.UserId,
 UserType.Employee,
 UserType.Customer),
 Times.Once);

Note that just as MessageBus is a wrapper on top of IBus, DomainLogger is a wrapper
on top of ILogger (see chapter 8 for more details). Shouldn’t the test be retargeted at
ILogger, too, because this interface also resides at the application boundary?

 In most projects, such retargeting isn’t necessary. While the logger and the mes-
sage bus are unmanaged dependencies and, therefore, both require maintaining
backward compatibility, the accuracy of that compatibility doesn’t have to be the
same. With the message bus, it’s important not to allow any changes to the structure of

Listing 9.8 Mock assertions

Same as WithEmailChanged-
Message(user.UserId,
"new@gmail.com")

Checks
interactions with
IDomainLogger
Licensed to Alexander Fedorov <mail@orderbynull.me>

39Mocking best practices
the messages, because you never know how external systems will react to such
changes. But the exact structure of text logs is not that important for the intended
audience (support staff and system administrators). What’s important is the existence
of those logs and the information they carry. Thus, mocking IDomainLogger alone
provides the necessary level of protection.

9.2 Mocking best practices
You’ve learned two major mocking best practices so far:

 Applying mocks to unmanaged dependencies only
 Verifying the interactions with those dependencies at the very edges of your

system

In this section, I explain the remaining best practices:

 Using mocks in integration tests only, not in unit tests
 Always verifying the number of calls made to the mock
 Mocking only types that you own

9.2.1 Mocks are for integration tests only

The guideline saying that mocks are for integration tests only, and that you shouldn’t
use mocks in unit tests, stems from the foundational principle described in chapter 7:
the separation of business logic and orchestration. Your code should either communi-
cate with out-of-process dependencies or be complex, but never both. This principle
naturally leads to the formation of two distinct layers: the domain model (that handles
complexity) and controllers (that handle the communication).

 Tests on the domain model fall into the category of unit tests; tests covering con-
trollers are integration tests. Because mocks are for unmanaged dependencies only,
and because controllers are the only code working with such dependencies, you
should only apply mocking when testing controllers—in integration tests.

9.2.2 Not just one mock per test

You might sometimes hear the guideline of having only one mock per test. According
to this guideline, if you have more than one mock, you are likely testing several things
at a time.

 This is a misconception that follows from a more foundational misunderstanding
covered in chapter 2: that a unit in a unit test refers to a unit of code, and all such units
must be tested in isolation from each other. On the contrary: the term unit means
a unit of behavior, not a unit of code. The amount of code it takes to implement such a
unit of behavior is irrelevant. It could span across multiple classes, a single class, or
take up just a tiny method.

 With mocks, the same principle is at play: it’s irrelevant how many mocks it takes to ver-
ify a unit of behavior. Earlier in this chapter, it took us two mocks to check the scenario
of changing the user email from corporate to non-corporate: one for the logger and
Licensed to Alexander Fedorov <mail@orderbynull.me>

40 CHAPTER 9 Mocking best practices
the other for the message bus. That number could have been larger. In fact, you don’t
have control over how many mocks to use in an integration test. The number of
mocks depends solely on the number of unmanaged dependencies participating in
the operation.

9.2.3 Verifying the number of calls

When it comes to communications with unmanaged dependencies, it’s important to
ensure both of the following:

 The existence of expected calls
 The absence of unexpected calls

This requirement, once again, stems from the need to maintain backward compatibil-
ity with unmanaged dependencies. The compatibility must go both ways: your appli-
cation shouldn’t omit messages that external systems expect, and it also shouldn’t
produce unexpected messages. It’s not enough to check that the system under test
sends a message like this:

messageBusMock.Verify(
 x => x.SendEmailChangedMessage(user.UserId, "new@gmail.com"));

You also need to ensure that this message is sent exactly once:

messageBusMock.Verify(
 x => x.SendEmailChangedMessage(user.UserId, "new@gmail.com"),
 Times.Once);

Ensures that the method
is called only once

With most mocking libraries, you can also explicitly verify that no other calls are
made on the mock. In Moq (the mocking library of my choice), this verification
looks as follows:

messageBusMock.Verify(
 x => x.SendEmailChangedMessage(user.UserId, "new@gmail.com"),
 Times.Once);
messageBusMock.VerifyNoOtherCalls(); The additional

check

BusSpy implements this functionality, too:

busSpy
 .ShouldSendNumberOfMessages(1)
 .WithEmailChangedMessage(user.UserId, "new@gmail.com");

The spy’s check ShouldSendNumberOfMessages(1) encompasses both Times.Once and
VerifyNoOtherCalls() verifications from the mock.
Licensed to Alexander Fedorov <mail@orderbynull.me>

41Summary
9.2.4 Only mock types that you own

The last guideline I’d like to talk about is mocking only types that you own. It was first
introduced by Steve Freeman and Nat Pryce.2 The guideline states that you should
always write your own adapters on top of third-party libraries and mock those adapters
instead of the underlying types. A few of their arguments are as follows:

 You often don’t have a deep understanding of how the third-party code works.
 Even if that code already provides built-in interfaces, it’s risky to mock those

interfaces, because you have to be sure the behavior you mock matches what
the external library actually does.

 Adapters abstract non-essential technical details of the third-party code and
define the relationship with the library in your application’s terms.

I fully agree with this analysis. Adapters, in effect, act as an anti-corruption layer
between your code and the external world.3 These help you to

 Abstract the underlying library’s complexity
 Only expose features you need from the library
 Do that using your project’s domain language

The IBus interface in our sample CRM project serves exactly that purpose. Even if the
underlying message bus’s library provides as nice and clean an interface as IBus, you
are still better off introducing your own wrapper on top of it. You never know how the
third-party code will change when you upgrade the library. Such an upgrade could
cause a ripple effect across the whole code base! The additional abstraction layer
restricts that ripple effect to just one class: the adapter itself.

 Note that the “mock your own types” guideline doesn’t apply to in-process depen-
dencies. As I explained previously, mocks are for unmanaged dependencies only.
Thus, there’s no need to abstract in-memory or managed dependencies. For instance,
if a library provides a date and time API, you can use that API as-is, because it doesn’t
reach out to unmanaged dependencies. Similarly, there’s no need to abstract an ORM
as long as it’s used for accessing a database that isn’t visible to external applications.
Of course, you can introduce your own wrapper on top of any library, but it’s rarely
worth the effort for anything other than unmanaged dependencies.

Summary
 Verify interactions with an unmanaged dependency at the very edges of your

system. Mock the last type in the chain of types between the controller and the
unmanaged dependency. This helps you increase both protection against
regressions (due to more code being validated by the integration test) and

2 See page 69 in Growing Object-Oriented Software, Guided by Tests by Steve Freeman and Nat Pryce (Addison-Wesley
Professional, 2009).

3 See Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans (Addison-Wesley, 2003).
Licensed to Alexander Fedorov <mail@orderbynull.me>

42 CHAPTER 9 Mocking best practices
resistance to refactoring (due to detaching the mock from the code’s imple-
mentation details).

 Spies are handwritten mocks. When it comes to classes residing at the system’s
edges, spies are superior to mocks. They help you reuse code in the assertion
phase, thereby reducing the test’s size and improving readability.

 Don’t rely on production code when making assertions. Use a separate set of lit-
erals and constants in tests. Duplicate those literals and constants from the pro-
duction code if necessary. Tests should provide a checkpoint independent of
the production code. Otherwise, you risk producing tautology tests (tests that
don’t verify anything and contain semantically meaningless assertions).

 Not all unmanaged dependencies require the same level of backward compati-
bility. If the exact structure of the message isn’t important, and you only want to
verify the existence of that message and the information it carries, you can
ignore the guideline of verifying interactions with unmanaged dependencies at
the very edges of your system. The typical example is logging.

 Because mocks are for unmanaged dependencies only, and because controllers
are the only code working with such dependencies, you should only apply mock-
ing when testing controllers—in integration tests. Don’t use mocks in unit tests.

 The number of mocks used in a test is irrelevant. That number depends solely
on the number of unmanaged dependencies participating in the operation.

 Ensure both the existence of expected calls and the absence of unexpected calls
to mocks.

 Only mock types that you own. Write your own adapters on top of third-party
libraries that provide access to unmanaged dependencies. Mock those adapters
instead of the underlying types.
Licensed to Alexander Fedorov <mail@orderbynull.me>

This chapter contains some practical tips for using mocking frameworks,
with examples in JavaScript. It provides some practical tips for picking the right
framework based on its abilities.

Chapter 5 from The Art of Unit Testing
by Roy Osherove

Licensed to Alexander Fedorov <mail@orderbynull.me>

https://www.manning.com/books/the-art-of-unit-testing-second-edition

Isolation
 (mocking) frameworks
In the previous chapter, we looked at writing mocks and stubs manually and saw the
challenges involved. In this chapter, we’ll look at some elegant solutions for these
problems in the form of an isolation framework—a reusable library that can create
and configure fake objects at runtime. These objects are referred to as dynamic stubs
and dynamic mocks.

 We’ll begin with an overview of isolation frameworks (or mocking frameworks—
the word mock is too overloaded already) and what they can do. I call them isolation
frameworks because they allow you to isolate the unit of work from its dependen-
cies. We’ll take a closer look at one specific framework: NSubstitute. You’ll see how
you can use it to test various things and to create stubs, mocks, and other interest-
ing things.

This chapter covers
 Understanding isolation frameworks

 Using NSubstitute to create stubs and mocks

 Exploring advanced use cases for mocks 
and stubs

 Avoiding common misuses of isolation
frameworks
44

Licensed to Alexander Fedorov <mail@orderbynull.me>

45Why use isolation frameworks?
 But NSubstitute (NSub for short) isn’t the point here. While using NSub, you’ll see
the specific values that its API promotes in your tests (readability, maintainability,
robust long-lasting tests, and more) and find out what makes an isolation framework
good and, alternatively, what can make it a drawback for your tests.

 For that reason, later in this chapter, I’ll contrast NSub with other frameworks
available to .NET developers, compare their API decisions and how they affect test
readability, maintainability, and robustness, and finish with a list of things you should
watch out for when using such frameworks in your tests.

 Let’s start at the beginning: what are isolation frameworks?

5.1 Why use isolation frameworks?
I’ll start with a basic definition that may sound a bit bland, but it needs to be generic
in order to include the various isolation frameworks out there.

DEFINITION An isolation framework is a set of programmable APIs that makes cre-
ating fake objects much simpler, faster, and shorter than hand-coding them.

Isolation frameworks, when designed well, can save the developer from the
need to write repetitive code to assert or simulate object interactions, and
if they’re designed very well, they can make tests last many years without
making the developer come back to fix them on every little production
code change.

Isolation frameworks exist for most languages that have a unit testing framework asso-
ciated with them. For example, C++ has mockpp and other frameworks, and Java has
jMock and PowerMock, among others. .NET has several well-known ones including
Moq, FakeItEasy, NSubstitute, Typemock Isolator, and JustMock. There are also sev-
eral other isolation frameworks that I don’t use or teach anymore because they’re
either too old or too cumbersome, or they lack many features that the new frame-
works have introduced. These include Rhino Mocks, NMock, EasyMock, NUnit.Mocks,
and Moles. In Visual Studio 2012, Moles is included and named Microsoft Fakes—and
I’d still stay away from it. More on these other tools in the appendix.

 Using isolation frameworks instead of writing mocks and stubs manually, as in pre-
vious chapters, has several advantages that make developing more elegant and com-
plex tests easier, faster, and less error prone.

 The best way to understand the value of an isolation framework is to see a problem
and its solution. One problem that might occur when using handwritten mocks and
stubs is repetitive code.

 Assume you have an interface a little more complicated than the ones shown so far:

public interface IComplicatedInterface
 {
 void Method1(string a, string b, bool c, int x, object o);
 void Method2(string b, bool c, int x, object o);
 void Method3(bool c, int x, object o);
 }
Licensed to Alexander Fedorov <mail@orderbynull.me>

46 CHAPTER 5 Isolation (mocking) frameworks
Creating a handwritten stub or mock for this interface may be time consuming, because
you’d need to remember the parameters on a per-method basis, as this listing shows.

class MytestableComplicatedInterface:IComplicatedInterface
 {
 public string meth1_a;
 public string meth1_b,meth2_b;
 public bool meth1_c,meth2_c,meth3_c;
 public int meth1_x,meth2_x,meth3_x;
 public int meth1_0,meth2_0,meth3_0;

Manual
cumbersome
statements

 public void Method1(string a,
 string b, bool c,
 int x, object o)
 {
 meth1_a = a;
 meth1_b = b;
 meth1_c = c;
 meth1_x = x;
 meth1_0 = 0;
 }

 public void Method2(string b, bool c, int x, object o)
 {
 meth2_b = b;
 meth2_c = c;
 meth2_x = x;
 meth2_0 = 0;
 }

 public void Method3(bool c, int x, object o)
 {
 meth3_c = c;
 meth3_x = x;
 meth3_0 = 0;
 }
 }

Not only is this handwritten fake time consuming and cumbersome to write, what
happens if you want to test that a method is called many times? (Remember in chap-
ter 4, I introduced the word fake as anything that looks like a real thing but is not.
Based on how it is used, it will be a mock or a stub.) Or what if you want it to return
a specific value based on the parameters it receives or to remember all the values for
all the method calls on the same method (the parameter history)? The code gets
ugly fast.

 Using an isolation framework, the code for doing this becomes trivial, readable,
and much shorter, as you’ll see when you create your first dynamic mock object.

Listing 5.1 Implementing complicated interfaces with handwritten stubs
Licensed to Alexander Fedorov <mail@orderbynull.me>

47Dynamically creating a fake object
5.2 Dynamically creating a fake object
Let’s define dynamic fake objects and how they’re different from regular, handwritten fakes.

DEFINITION A dynamic fake object is any stub or mock that’s created at run-
time without needing to use a handwritten (hardcoded) implementation of
that object.

Using dynamic fakes removes the need to hand-code classes that implement interfaces
or derive from other classes, because the needed classes can be generated for the
developer at runtime, in memory, and with a few simple lines of code.

 Next, we’ll look at NSubstitute and see how it can help you overcome some of the
problems just discussed.

5.2.1 Introducing NSubstitute into your tests

In this chapter, I’ll use NSubstitute (http://nsubstitute.github.com/), an isolation
framework that’s open source, freely downloadable, and installable through NuGet
(available at http://nuget.org). I had a hard time deciding whether to use NSubstitute
or FakeItEasy. They’re both great, so you should look at both of them before choosing
which one to go with. You’ll see a comparison of frameworks in the next chapter and
in the appendix, but I chose NSubstitute because it has better documentation and sup-
ports most of the values a good isolation framework should support. These values are
listed in the next chapter.

 In the interest of brevity (and ease of typing), I’ll refer to NSubstitute from now
on as NSub. NSub is simple and quick to use, with little overhead in learning how to
use the API. I’ll walk you through a few examples, and you can see how using a
framework simplifies your life as a developer (sometimes). In the next chapter I go
even deeper into some “meta” subjects concerning isolation frameworks, under-
standing how they work and figuring out why some frameworks can do things others
can’t. But first, back to work.

 To start experimenting, create a class library that will act as your unit tests project,
and add a reference to NSub by installing it via NuGet (choose Tools > Package Man-
ager > Package Manager console > Install-Package NSubstitute).

 NSub supports the arrange-act-assert model, which is consistent with the way you’ve
been writing and asserting tests so far. The idea is to create the fakes and configure
them in the arrange part of the test, act against the product under test, and verify that a
fake was called in the assert part at the end.

 NSub has a class called Substitute, which you’ll use to generate fakes at runtime.
This class has one method with a generic and nongeneric flavor, called For(type),
and it’s the main way to introduce a fake object into your application when using
NSub. You call this method with the type that you’d like to create a fake instance of.

 This method then dynamically creates and returns a fake object that adheres to
that type or interface at runtime. You don’t need to implement that new object in
real code.
Licensed to Alexander Fedorov <mail@orderbynull.me>

http://nsubstitute.github.com/
http://nsubstitute.github.com/
http://nsubstitute.github.com/
http://nsubstitute.github.com/
http://nuget.org
http://nsubstitute.github.com/help/argument-matchers/

48 CHAPTER 5 Isolation (mocking) frameworks
 Because NSub is a constrained framework, it works best with interfaces. For real
classes, it will only work with nonsealed classes, and for those, it will only be able to
fake virtual methods.

5.2.2 Replacing a handwritten fake object with a dynamic one

Let’s look at a handwritten fake object used to check whether a call to the log was per-
formed correctly. The following listing shows the test class and the handwritten fake
you’d create if you weren’t using an isolation framework.

[TestFixture]
class LogAnalyzerTests
{
 [Test]
 public void Analyze_TooShortFileName_CallLogger()
 {
 FakeLogger logger = new FakeLogger();

Creating
the fake

 LogAnalyzer analyzer = new LogAnalyzer(logger);

 analyzer.MinNameLength= 6;
 analyzer.Analyze("a.txt");

 StringAssert.Contains("too short",logger.LastError);
 }
}

class FakeLogger: ILogger
{
 public string LastError;

 public void LogError(string message)
 {
 LastError = message;
 }
}

The parts of the code in bold are the parts that will change when you start using
dynamic mocks and stubs.

 You’ll now create a dynamic mock object and eventually replace the earlier test. The
next listing shows how simple it is to fake ILogger and verify that it was called with a string.

[Test]
public void Analyze_TooShortFileName_CallLogger()
{
 ILogger logger = Substitute.For<ILogger>();
 LogAnalyzer analyzer = new LogAnalyzer(logger);

 analyzer.MinNameLength = 6;
 analyzer.Analyze("a.txt");

 logger.Received().LogError("Filename too short: a.txt");
}

Listing 5.2 Asserting against a handwritten fake object

Listing 5.3 Faking an object using NSub

Using the
fake as a
mock object
by asserting
on it

Creates a mock object that
you’ll assert against at the
end of the test

 b

Sets expectation
using NSub’s API

 c
Licensed to Alexander Fedorov <mail@orderbynull.me>

49Dynamically creating a fake object
A couple of lines rid you of the need to use a handwritten stub or mock, because they
generate one dynamically B. The fake ILogger object instance is a dynamically gener-
ated object that implements the ILogger interface, but there’s no implementation
inside any of the ILogger methods.

 From this moment until the last line of the test, all calls on that fake object are auto-
matically recorded, or saved for later use, as in the last line of the test c.

 In that last line, instead of a traditional assert call, you use a special API—an extension
method that’s provided by NSub’s namespace. ILogger doesn’t have any such method on
its interface called Received(). This method is your way of asserting that a method call
was invoked on your fake object (thus making it a mock object, conceptually).

 The way Received() works seems almost like magic. It returns the same type of the
object it was invoked on, but it really is used to state what will be asserted on.

 If you’d just written in the last line of the test

logger.LogError("Filename too short: a.txt");

your fake object would treat that method call as one that was done during a produc-
tion code run and would simply not do anything unless it was configured to do a spe-
cial action for the method named LogError.

 By calling Received() just before LogError(), you’re letting NSub know that you
really are asking its fake object whether or not that method got called. If it wasn’t
called, you expect an exception to be thrown from the last line of this test. As a read-
ability hint, you’re telling the reader of the test a fact: “Something received a method
call, or this test would have failed.”

 If the LogError method wasn’t called, you can expect an error with a message that
looks close to the following in your failed test log:

NSubstitute.Exceptions.ReceivedCallsException : Expected to receive a call
matching:

 LogError("Filename too short: a.txt")
Actually received no matching calls.

Arrange-act-assert
Notice how the way you use the isolation framework matches nicely with the structure
of arrange-act-assert. You start by arranging a fake object, you act on the thing you’re
testing, and then you assert on something at the end of the test.

It wasn’t always this easy, though.

In the olden days (around 2006) most of the open source isolation frameworks
didn’t support the idea of arrange-act-assert and instead used a concept called
record-replay.

Record-replay was a nasty mechanism where you’d have to tell the isolation API that
its fake object was in record mode, and then you’d have to call the methods on that
object as you expected them to be called from production code.
Licensed to Alexander Fedorov <mail@orderbynull.me>

50 CHAPTER 5 Isolation (mocking) frameworks
Now that you’ve seen how to use fakes as mocks, let’s see how to use them as stubs,
which simulate values in the system under test.

5.3 Simulating fake values
The next listing shows how you can return a value from a fake object when the inter-
face method has a nonvoid return value. For this example, you’ll add an IFileName-
Rules interface into the system (see NSubBasics.cs in the book’s source code repository).

[Test]
 public void Returns_ByDefault_WorksForHardCodedArgument()
 {
 IFileNameRules fakeRules = Substitute.For<IFileNameRules>();

 fakeRules.IsValidLogFileName("strict.txt").Returns(true);

Forces
method call
to return
fake value

 Assert.IsTrue(fakeRules.IsValidLogFileName("strict.txt"));
 }

What if you didn’t care about the argument? It would certainly be a better maintain-
ability tactic if you always returned a fake value no matter what, because then you
don’t care about internal production code changes, and your test would still pass,
even if production code calls the method multiple times. It would also help readabil-
ity, because currently the reader of the test doesn’t know if the name of the file is

(continued)
Then you’d have to tell the isolation API to switch into replay mode, and only then
could you send your fake object into the heart of your production code.

An example can be seen on the Google testing blog: http://googletesting.blog-
spot.no/2009/01/tott-use-easymock.html.

Asserts, when using these tests, usually involved a simple call to a verify() or
verifyAll() method on the isolation API, with the poor test reader having to go back
and figure out what was really expected.

Compared to today’s abilities to write tests that use the far more readable arrange-
act-assert model, this tragedy cost many developers millions of combined hours in
painstaking test reading, to figure out exactly where the test failed.

If you have the first edition of this book, you can see an example of record-replay
when I showed Rhino Mocks in this chapter. Ah, good times! Now I stay away from
Rhino Mocks, both because its API isn’t as good as the new frameworks, and
because its maintenance is in question by Oren Eini (http://Ayende.com). It seems
Oren, who is known for being a supercoder in many ways, got a life and got married,
and so he finally had to start choosing his battles. Rhino Mocks seems to be one of
the battles he chose not to fight.

Listing 5.4 Returning a value from a fake object
Licensed to Alexander Fedorov <mail@orderbynull.me>

http://googletesting.blogspot.no/2009/01/tott-use-easymock.html
http://Ayende.com
http://Ayende.com
http://Ayende.com

51Simulating fake values
important. If you can improve their day by removing required information from their
reading, they’ll have an easier time with your code.

 So let’s use argument matchers:

[Test]
public void Returns_ByDefault_WorksForHardCodedArgument()
{
 IFileNameRules fakeRules = Substitute.For<IFileNameRules>();

 fakeRules.IsValidLogFileName(Arg.Any<String>())
 .Returns(true);

 Assert.IsTrue(fakeRules.IsValidLogFileName("anything.txt"));
}

Notice how you’re using the Arg class to indicate that you don’t care about the input
that’s required to make this fake value return. This is called an argument matcher,
and it’s widely used with isolation frameworks to control how arguments are treated,
one by one.

 What if you wanted to simulate an exception? Here’s how to do that with NSub:

[Test]
 public void Returns_ArgAny_Throws()
 {
 IFileNameRules fakeRules = Substitute.For<IFileNameRules>();

 fakeRules.When(x =>
 x.IsValidLogFileName(Arg.Any<string>()))
 .Do(context =>
 { throw new Exception("fake exception"); });

 Assert.Throws<Exception>(() =>
 fakeRules.IsValidLogFileName("anything"));

 }

Notice how you use Assert.Throws to check that an exception is actually thrown.
 I’m not crazy about the syntax hoops NSub is forcing you to use here. (This would be

easier to do in FakeItEasy, in fact, but NSub has more docs, so I chose to use it here.)
 Notice that you have to use a lambda expression here. In the When method call, the

x argument signifies the fake object you’re changing the behavior of. In the Do call,
notice the CallInfo context argument. At runtime context will hold argument values
and allow you to do wonderful things, but you don’t need it for this example.

 Now that you know how to simulate things, let’s make things a bit more realistic
and see what we come up with.

5.3.1 A mock, a stub, and a priest walk into a test

Let’s combine two types of fake objects in the same scenario. One will be used as a
stub and the other as a mock.

 You’ll use Analyzer2 in the book source code under chapter 5. It’s a similar exam-
ple to listing 4.2 in chapter 4, where I talked about LogAnalyzer using a MailSender

Ignore the
argument
value

A lambda
expression is
needed here
Licensed to Alexander Fedorov <mail@orderbynull.me>

52 CHAPTER 5 Isolation (mocking) frameworks
class and a WebService class, but this time the requirement is that if the logger throws
an exception, the web service is notified. This is shown in figure 5.1.

LogAnalyzer2

FakeWebService

FakeLogger

Write(msg)

FakeException

LogError(error)

Figure 5.1 The logger will be stubbed out to
simulate an exception, and a fake web service
will be used as a mock to see if it was called
correctly. The whole test will be about how
LogAnalyzer2 interacts with other objects.

 You want to make sure that if the logger throws an exception, LogAnalyzer2 will
notify WebService of the problem.

 The next listing shows what the logic looks like with all the tests passing.

 [Test]
 public void Analyze_LoggerThrows_CallsWebService()
 {
 FakeWebService mockWebService = new FakeWebService();

 FakeLogger2 stubLogger = new FakeLogger2();
 stubLogger.WillThrow = new Exception("fake exception");

 var analyzer2 =
 new LogAnalyzer2(stubLogger, mockWebService);
 analyzer2.MinNameLength = 8;

 string tooShortFileName="abc.ext";
 analyzer2.Analyze(tooShortFileName);

 Assert.That(mockWebService.MessageToWebService,
 Is.StringContaining("fake exception"));
 }
}

public class FakeWebService:IWebService
{
 public string MessageToWebService;

 public void Write(string message)
 {
 MessageToWebService = message;
 }
}

public class FakeLogger2:ILogger
{
 public Exception WillThrow = null;
 public string LoggerGotMessage = null;

Listing 5.5 The method under test and a test that uses handwritten mocks and stubs

The test

The fake web service
you’ll use as a mock

The fake logger you’ll
use as a stub
Licensed to Alexander Fedorov <mail@orderbynull.me>

53Simulating fake values
 public void LogError(string message)
 {
 LoggerGotMessage = message;
 if (WillThrow != null)
 {
 throw WillThrow;
 }
 }
}

//---------- PRODUCTION CODE
public class LogAnalyzer2
{
 private ILogger _logger;
 private IWebService _webService;

 public LogAnalyzer2(ILogger logger,IWebService webService)
 {
 _logger = logger;
 _webService = webService;
 }

 public int MinNameLength { get; set; }

 public void Analyze(string filename)
 {
 if (filename.Length<MinNameLength)
 {
 try
 {
 _logger.LogError(
 string.Format("Filename too short: {0}",filename));
 }
 catch (Exception e)
 {
 _webService.Write("Error From Logger: " + e);
 }
 }
 }
}

public interface IWebService
{
 void Write(string message);
}

The next listing shows what the test might look like if you’d used NSubstitute.

[Test]
public void Analyze_LoggerThrows_CallsWebService()
{
 var mockWebService = Substitute.For<IWebService>();
 var stubLogger = Substitute.For<ILogger>();
 stubLogger.When(

Listing 5.6 Converting the previous test into one that uses NSubstitute

The class
under test

Simulates
exception on
any input
Licensed to Alexander Fedorov <mail@orderbynull.me>

54 CHAPTER 5 Isolation (mocking) frameworks

e
x

 logger => logger.LogError(Arg.Any<string>()))
 .Do(info => { throw new Exception("fake exception");});

 var analyzer =
 new LogAnalyzer2(stubLogger, mockWebService);

 analyzer.MinNameLength = 10;
 analyzer.Analyze("Short.txt");

 mockWebService.Received()
 .Write(Arg.Is<string>(s => s.Contains("fake exception")));
}

The nice thing about this test is that it requires no handwritten fakes, but notice how
it’s already starting to take a toll on the readability for the test reader. Those lambdas
aren’t very friendly, to my taste, but they’re one of the small evils you need to learn to
live with in C#, because those are what allow you to avoid using strings for method
names. That makes your tests easier to refactor if a method name changes later on.

 Notice that argument-matching constraints can be used both in the simulation
part, where you configure the stub, and during the assert part, where you check to see
if the mock was called.

 There several possible argument-matching constraints in NSubstitute, and the website
has a nice overview of them. Because this book isn’t meant as a guide to NSub (that’s
why God created online documentation, after all), if you’re interested in finding out
more about this API, go to http://nsubstitute.github.com/help/argument-matchers/.

COMPARING OBJECTS AND PROPERTIES AGAINST EACH OTHER

What happens when you expect an object with certain properties to be sent as an
argument? For example, what if you’d sent in an ErrorInfo object with severity and
message properties, as a call to the webservice.Write?

[Test]
public void
Analyze_LoggerThrows_CallsWebServiceWithNSubObject()
{
 var mockWebService = Substitute.For<IWebService>();
 var stubLogger = Substitute.For<ILogger>();
 stubLogger.When(
 logger => logger.LogError(Arg.Any<string>()))
 .Do(info => { throw new Exception("fake exception");});

 var analyzer =
 new LogAnalyzer3(stubLogger, mockWebService);

 analyzer.MinNameLength = 10;
 analyzer.Analyze("Short.txt");

 mockWebService.Received()
 .Write(Arg.Is<ErrorInfo>(info => info.Severity == 1000
 && info.Message.Contains("fake exception")));
}

Notice how you can simply use plain-vanilla C# to create compound matchers on the
same argument. You want the info being sent in as an argument to have a specific
severity and a specific message.

Checks that the
mock web service
was called with a
string containing
“fake exception”

Strongly typed
argument
matcher to the
object type you
expect

Simple C#
“and” to creat
a more comple
expectation on
your object
Licensed to Alexander Fedorov <mail@orderbynull.me>

http://nsubstitute.github.com/help/argument-matchers/

55Simulating fake values

)

 Also notice how this impacts readability. As a general rule of thumb, I notice
that the more I use isolation frameworks, the less readable the test code turns out,
but sometimes it’s acceptable enough to use them. This would be a borderline
case. For example, if I reach a case where I have more than a single lambda
expression in an assert, I question whether using a handwritten fake would have
been more readable.

 But if you’re going to test things in the simplest way, you could compare two
objects and simply test the readability. You could create and compare an expected
object with all the expected properties against the actual object being sent in, as
shown here.

[Test]
public void
Analyze_LoggerThrows_CallsWebServiceWithNSubObjectCompare()
{
 var mockWebService = Substitute.For<IWebService>();
 var stubLogger = Substitute.For<ILogger>();
 stubLogger.When(
 logger => logger.LogError(Arg.Any<string>()))
 .Do(info => { throw new Exception("fake exception");});

 var analyzer =
 new LogAnalyzer3(stubLogger, mockWebService);

 analyzer.MinNameLength = 10;
 analyzer.Analyze("Short.txt");

 var expected = new ErrorInfo(1000, "fake exception");
 mockWebService.Received().Write(expected);
}

Testing full objects only works when the following are true:

 It’s easy to create the object with the expected properties.
 You want to test all the properties of the object in question.
 You know the exact values of each property, fully.
 The Equals() method is implemented correctly on the two objects being com-

pared. (It’s usually bad practice to rely on the out-of-the-box implementation of
object.Equals(). If Equals() is not implemented, then this test will always fail,
because by default Equals() will return false.)

Also, a note about robustness of the test: Because you won’t be able to use argument
matchers to ask if a string contains some value in one of the properties when using
this technique, your tests are just a little less robust for future changes.

 Also, every time a string in an expected property changes in the future, even if it
is just one extra whitespace at the beginning or end, your test will fail and you’ll
have to change it to match the new string. The art here is deciding how much read-
ability you want to give up for robustness over time. For me, perhaps not comparing

Listing 5.7 Comparing full objects

Create the
object you
expect to
receive

Assert that you
got exactly the
same object
(essentially
assert.equals()
Licensed to Alexander Fedorov <mail@orderbynull.me>

56 CHAPTER 5 Isolation (mocking) frameworks
a full object but testing a few properties on it with argument matchers could be bor-
derline acceptable, for the added robustness over time. I hate changing tests for the
wrong reasons.

5.4 Testing for event-related activities
Events are a two-way street, and you can test them in two different directions:

 Testing that someone is listening to an event
 Testing that someone is triggering an event

5.4.1 Testing an event listener

The first scenario we’ll tackle is one that I see many developers implement poorly as a
test: checking if an object registered to an event of another object.

 Many developers choose the less-maintainable and more-overspecified way of check-
ing whether an object’s internal state registered to receive an event from another object.

 This implementation isn’t something I’d recommend doing in real tests. Register-
ing to an event is an internal private code behavior. It doesn’t do anything as an end
result, except change state in the system so it behaves differently.

 It’s better to implement this check by seeing the listener object doing something in
response to the event being raised. If the listener wasn’t registered to the event, then
no visible public behavior will be taken, as shown in the following listing.

class Presenter
{
 private readonly IView _view;

 public Presenter(IView view)
 {
 _view = view;
 this._view.Loaded += OnLoaded;

 }

 private void OnLoaded()
 {
 _view.Render("Hello World");
 }
}

public interface IView
{
 event Action Loaded;
 void Render(string text);
}

//------ TESTS
[TestFixture]
public class EventRelatedTests

Listing 5.8 Event-related code and how to trigger it
Licensed to Alexander Fedorov <mail@orderbynull.me>

57Testing for event-related activities
{
 [Test]
 public void ctor_WhenViewIsLoaded_CallsViewRender()
 {
 var mockView = Substitute.For<IView>();

 Presenter p = new Presenter(mockView);
 mockView.Loaded += Raise.Event<Action>();

Trigger the event
with NSubstitute

 mockView.Received()
 .Render(Arg.Is<string>(s => s.Contains("Hello World")));
 }

}

Notice the following:

 The mock is also a stub (you simulate an event).
 To trigger an event, you have to awkwardly register to it in the test. This is only

to satisfy the compiler, because event-related properties are treated differently
and are heavily guarded by the compiler. Events can only be directly invoked by
their declaring class/struct.

Here’s another scenario, where you have two dependencies: a logger and a view. The
following listing shows a test that makes sure Presenter writes to a log upon getting
an error event from your stub.

[Test]
public void ctor_WhenViewhasError_CallsLogger()
{
 var stubView = Substitute.For<IView>();
 var mockLogger = Substitute.For<ILogger>();

 Presenter p = new Presenter(stubView, mockLogger);
 stubView.ErrorOccured +=
 Raise.Event<Action<string>>("fake error");

Simulate
the error

 b

 mockLogger.Received()
 .LogError(Arg.Is<string>(s => s.Contains("fake error")));
}

Notice that you use a stub B to trigger the event and a mock c to check that the ser-
vice was written to.

 Now, let’s take a look at the opposite end of the testing scenario. Instead of testing
the listener, you’d like to make sure that the event source triggers the event at the
right time. The next section shows how you can do that.

5.4.2 Testing whether an event was triggered

A simple way to test the event is by manually registering to it inside the test method
using an anonymous delegate. The next listing shows a simple example.

Listing 5.9 Simulating an event along with a separate mock

Check that
the view
was called

Uses mock
to check
log call

 c
Licensed to Alexander Fedorov <mail@orderbynull.me>

58 CHAPTER 5 Isolation (mocking) frameworks
[Test]
public void EventFiringManual()
{
 bool loadFired = false;
 SomeView view = new SomeView();
 view.Load+=delegate
 {
 loadFired = true;
 };

 view.DoSomethingThatEventuallyFiresThisEvent();

 Assert.IsTrue(loadFired);
}

The delegate simply records whether or not the event was fired. I chose to use a
delegate and not a lambda because I think it’s more readable. You could also have
parameters in the delegate to record the values, and they could later be asserted
as well.

 Next, we’ll take a look at isolation frameworks for .NET.

5.5 Current isolation frameworks for .NET
NSub is certainly not the only isolation framework around. In an informal poll held in
August 2012, I asked my blog readers, “Which isolation framework do you use?” See
figure 5.2 for the results.

 Moq, which in the previous edition of this book was a newcomer in a poll I did
then, is now the leader, with Rhino Mocks trailing a bit and losing ground (basically
because it’s no longer being actively developed). Also changed from the first edition,
note that there are many contenders—double the amount, actually. This tells you
something about the maturity of the community in terms of recognizing the need for
testing and isolation, and I think this is great to see.

 FakeItEasy, which may have not even been a blink in its creator’s eyes when the
first edition of this book came out, is a strong contender for the things that I like in
NSubstitute, and I highly recommend that you try it. Those areas (values, really) are
listed in the next chapter, when we dive even deeper into the makings of isolation
frameworks.

 I personally don’t use Moq, because of bad error messages and “mock” is used too
much in the API. It is confusing since you use mocks also to create stubs.

 It’s usually a good idea to pick one and stick with it as much as possible, for the
sake of readability and to lower the learning curve for team members.

 In the book’s appendix, I cover each of these frameworks in more depth and
explain why I like or dislike it. Go there for a reference list on these tools.

 Let’s recap the advantages of using isolation frameworks over handwritten mocks.
Then we’ll discuss things to watch for when using isolation frameworks.

Listing 5.10 Using an anonymous delegate to register to an event
Licensed to Alexander Fedorov <mail@orderbynull.me>

59Current isolation frameworks for .NET
Why method strings are bad inside tests
In many frameworks outside the .NET world, it’s common to use strings to describe
which methods you’re about to change the behavior of. Why is this not great?

If you were to change the name of a method in production, any tests using the
method in a string would still compile and would only break at runtime, throwing an
exception indicating that a method could not be found.

With strongly typed method names (thanks to lambda expressions and delegates),
changing the name of a method wouldn’t be a problem, because the method is used
directly in the test. Any method changes would keep the test from compiling, and
you’d know immediately that there was a problem with the test.

With automated refactoring tools like those in Visual Studio, renaming a method is
easier, but most refactorings will still ignore strings in the source code. (ReSharper
for .NET is an exception. It also corrects strings, but that’s only a partial solution that
may prove problematic in some scenarios.)

COUNT

Moq

Rhino Mocks

None; just handwritten fakes,
mocks, and stubs

FakeltEasy

NSubstitute

Typemock Isolator

None; not sure what those things
are anyway

Moles

MS into VS 11)fakes/moles (built

JustMock

Other

398

202

61

51

43

32

21

20

20

12

10

Figure 5.2 Isolation framework usage among my blog readers
Licensed to Alexander Fedorov <mail@orderbynull.me>

60 CHAPTER 5 Isolation (mocking) frameworks
5.6 Advantages and traps of isolation frameworks
From what we’ve covered in this chapter, you can see distinct advantages to using iso-
lation frameworks:

 Easier parameter verification—Using handwritten mocks to test that a method was
given the correct parameter values can be a tedious process, requiring time and
patience. Most isolation frameworks make checking the values of parameters
passed into methods a trivial process even if there are many parameters.

 Easier verification of multiple method calls—With manually written mocks, it can be
difficult to check that multiple method calls on the same method were made
correctly with each having appropriate different parameter values. As you’ll see
later, this is a trivial process with isolation frameworks.

 Easier fakes creation—Isolation frameworks can be used for creating both mocks
and stubs more easily.

5.6.1 Traps to avoid when using isolation frameworks

Although there are many advantages to using isolation frameworks, there are possible
dangers, such as overusing an isolation framework when a manual mock object would
suffice, making tests unreadable because of overusing mocks in a test, or not separat-
ing tests well enough.

 Here’s a list of things to watch out for:

 Unreadable test code
 Verifying the wrong things
 Having more than one mock per test
 Overspecifying the tests

Let’s look at each of these in depth.

5.6.2 Unreadable test code

Using a mock in a test already makes the test a little less readable, but still readable
enough that an outsider can look at it and understand what’s going on. Having many
mocks, or many expectations, in a single test can ruin the readability of the test so it’s
hard to maintain or even to understand what’s being tested.

 If you find that your test becomes unreadable or hard to follow, consider removing
some mocks or some mock expectations or separating the test into several smaller
tests that are more readable.

5.6.3 Verifying the wrong things

Mock objects allow you to verify that methods were called on your interfaces, but that
doesn’t necessarily mean that you’re testing the right thing. Testing that an object sub-
scribed to an event doesn’t tell you anything about the functionality of that object.
Testing that when the event is raised something meaningful happens is a better way to
test that object.
Licensed to Alexander Fedorov <mail@orderbynull.me>

61Summary
5.6.4 Having more than one mock per test

It’s considered good practice to test only one concern per test. Testing more than one
concern can lead to confusion and problems maintaining the test. Having two mocks
in a test is the same as testing several end results of the same unit of work. If you can’t
name your test because it does too many things, it’s time to separate it into more than
one test.

5.6.5 Overspecifying the tests

Avoid mock objects if you can. Tests will always be more readable and maintainable
when you don’t assert that an object was called. Yes, there are times when you can use
only mock objects, but that shouldn’t happen often.

 If more than 5% of your tests have mock objects (not stubs), you might be overspe-
cifying things, instead of testing state changes or value results. In those 5% that use
mock objects, you can still overdo it.

 If your test has too many expectations (x.received().X() and X.received().Y()
and so on), it may become very fragile, breaking on the slightest of production code
changes, even though the overall functionality still works.

 Testing interactions is a double-edged sword: test it too much, and you start to lose
sight of the big picture—the overall functionality; test it too little, and you’ll miss the
important interactions between objects.

 Here are some ways to balance this effect:

 Use nonstrict mocks when you can (strict and nonstrict mocks are explained in the next
chapter). The test will break less often because of unexpected method calls. This
helps when the private methods in the production code keep changing.

 Use stubs instead of mocks when you can. If you have more than 5% of your tests
with mock objects, you might be overdoing it. Stubs can be everywhere. Mocks,
not so much. You only need to test one scenario at a time. The more mocks
you have, the more verifications will take place at the end of the test, but usu-
ally only one will be the important one. The rest will be noise against the cur-
rent test scenario.

 Avoid using stubs as mocks if humanly possible. Use a stub only for faking return val-
ues into the program under test or to throw exceptions. Don’t verify that meth-
ods were called on stubs. Use a mock only for verifying that some method was
called on it, but don’t use it to return values into your program under test. Most
of the time, you can avoid a mock that’s also a stub but not always (as you saw
earlier in this chapter, regarding events).

5.7 Summary
Isolation frameworks are pretty cool, and you should learn to use them at will. But it’s
important to lean toward return-value or state-based testing (as opposed to interac-
tion testing) whenever you can, so that your tests assume as little as possible about
internal implementation details. Mocks should be used only when there’s no other
Licensed to Alexander Fedorov <mail@orderbynull.me>

62 CHAPTER 5 Isolation (mocking) frameworks
way to test the implementation, because they eventually lead to tests that are harder to
maintain if you’re not careful.

 If more than 5% of your tests have mock objects (not stubs), you might be overspe-
cifying things.

 Learn how to use the advanced features of an isolation framework such as NSub,
and you can pretty much make sure that anything happens or doesn’t happen in your
tests. All you need is for your code to be testable.

 You can also shoot yourself in the foot by creating overspecified tests that aren’t
readable or will likely break. The art lies in knowing when to use dynamic versus hand-
written mocks. My guideline is that when the code using the isolation framework starts
to look ugly, it’s a sign that you may want to simplify things. Use a handwritten mock,
or test a different result that proves your point but is easier to test.

 When all else fails and your code is hard to test, you have three choices: use a super
framework like Typemock Isolator (explained in the next chapter), change the design,
or quit your job.

 Isolation frameworks can help make your testing life much easier and your tests
more readable and maintainable. But it’s also important to know when they might
hinder your development more than they help. In legacy situations, for example, you
might want to consider using a different framework based on its abilities. It’s all about
picking the right tool for the job, so be sure to look at the big picture when consider-
ing how to approach a specific problem in testing.

 In the next chapter, we’ll dig deeper into isolation frameworks and see how their
design and underlying implementation affect their abilities.
Licensed to Alexander Fedorov <mail@orderbynull.me>

index

A

adapters 41
API (application programming interface) 14,

21, 41
public vs. private 9
well-designed 10–11, 15, 18

Arg class 51
arrange-act-assert 47, 49–50

B

brittle tests 26, 30
bugs 14
business logic 16–17

C

classical school of unit testing
mocks 24–26

mocking out out-of-process
dependencies 25–26

using mocks to verify behavior 26
code, avoiding unreadable 60
code complexity 14
command query separation. See CQS principle
commands 7
communications

between applications 17, 20
between classes in application 20, 26

context argument 51
controllers 39
CQS principle 7–8

D

data, bundling 14
dependencies, types of 25
domain layers 16–17, 19
domain model 39

connecting with external applications 21
dummy test double 3–4
dynamic fake objects 47
dynamic mock objects

creating 49–50
defined 47
using NSubstitute 47–48
using stubs with 51–56

dynamic stubs 44

E

EasyMock 45
end-to-end tests 36
Equals() method 55
ErrorInfo object 54
events

testing if triggered 57–58
testing listener 56–57

F

fake dependencies 3
fake test double 3–4
fakes

creating 60
overview 50–51
using mock and stub 51–56

false positives 6, 9
63

Licensed to Alexander Fedorov <mail@orderbynull.me>

64 INDEX
fast feedback 9
Forces method 50
fragile tests 6, 23
frameworks

.NET 58
advantages of 60
avoiding misuse of

more than one mock per test 61
overspecifying tests 61–62
unreadable test code 60
verifying wrong things 60

dynamic mock objects
creating 49–50
defined 47
using NSubstitute 47–48

events
testing if triggered 57–58
testing listener 56–57

overview 44–45
purpose of 45–46
simulating fake values

overview 50–51
using mock and stub 51–56

H

handwritten mocks 4, 36
hexagonal architecture 16–17

defining 16–20
purpose of 17

hexagons 16, 18

I

IFileNameRules interface 50
ILogger interface 48–49
implementation details 9–15
incoming interactions 4–5
internal keyword 9
invariant violations 13
invariants 10, 13
isolation frameworks

advantages of 60
avoiding misuse of

more than one mock per test 61
overspecifying tests 61–62
unreadable test code 60
verifying wrong things 60

dynamic mock objects
creating 49–50
defined 47
using NSubstitute 47–48

events
testing if triggered 57–58
testing listener 56–57

for .NET 58
overview 44–45
purpose of 45–46
simulating fake values

overview 50–51
using mock and stub 51–56

isSuccess flag 23

J

JustMock 45

L

LogError() method 49
London school of unit testing

mocks 24–26
mocking out out-of-process

dependencies 25–26
using mocks to verify behavior 26

M

MailSender class 52
maintainability 9
message bus 34, 38
methods, verifying 60
mock objects

creating 49–50
defined 47
using NSubstitute 47–48
using one per test 61
using stubs with 51–56

mocking frameworks
.NET 58
advantages of 60
avoiding misuse of

more than one mock per test 61
overspecifying tests 61–62
unreadable test code 60
verifying wrong things 60

dynamic mock objects
creating 49–50
defined 47
using NSubstitute 47–48

events
testing if triggered 57–58
testing listener 56–57

overview 44–45
Licensed to Alexander Fedorov <mail@orderbynull.me>

65INDEX
purpose of 45–46
simulating fake values

overview 50–51
using mock and stub 51–56

mocks
best practices 39–41

for integration tests only 39
not just one mock per test 39–40
only mock types that you own 41
verifying number of calls 40

London school vs. classical school 24–26
mocking out out-of-process

dependencies 25–26
using mocks to verify behavior 26

maximizing value of 31–39
IDomainLogger 38–39
replacing mocks with spies 36–38
verifying interactions at system edges 33–36

observable behavior vs. implementation
details 9–15

leaking implementation details 10–15
observable behavior vs. public API 9–10
well-designed API and encapsulation 13–14

stubs 3–8
asserting interactions with stubs 6–7
commands and queries 7–8
mock (tool) vs. mock (test double) 4–5
types of test doubles 3–4
using mocks and stubs together 7

test fragility 16–24
defining hexagonal architecture 16–20
intra-system vs. inter-system

communications 20–24
Moles 45
Moq 5, 40, 45, 58

N

.NET, isolation frameworks for 58
NMock 45
nonstrict mocks 61
NSubstitute, overview 47–48
NuGet 47
NUnit.Mocks 45

O

object-relational mapping (ORM) 41
observable behavior 9, 15, 18, 25

leaking implementation details 10–15

public API 9–10
well-designed API and encapsulation 13–14

operations 9, 14
ORM (object-relational mapping) 41
outcoming interactions 4–5
out-of-process dependencies 25
overspecification 6
overspecification, avoiding, in tests 61–62

P

parameter verification 60
private APIs 9
private dependencies 25
private keyword 9
protection against regressions 9
Public API 9, 19

Q

queries 7

R

Received() method 49
ReSharper 59
resistance to refactoring 2–3, 9
Rhino Mocks 45, 58

S

shared dependencies 25
simulating fake values

overview 50–51
using mock and stub 51–56

SMTP service 20, 22–25
spies 4, 36–38
spy test double 3
state 9, 11
strict mocks 61
stubs, using mock objects with 51–56
stubs, mocks 3–8

asserting interactions with stubs 6–7
commands and queries 7–8
mock (tool) vs. mock (test double) 4–5
types of test doubles 3–4
using mocks and stubs together 7

sub-renderers collection 15
Substitute class 47
SUT (system under test) 3–4, 6–7
system leaks 10
Licensed to Alexander Fedorov <mail@orderbynull.me>

66 INDEX
T

tell-don’t-ask principle 14
test doubles 3–4, 8
test fragility, mocks and 16–24

defining hexagonal architecture 16–20
intra-system vs. inter-system

communications 20–24
test isolation 25
third-party applications 22
Typemock Isolator 45

U

unit of behavior 39

units of code 39
unmanaged dependencies 30, 32, 34, 36, 40

V

values, fake
overview 50–51
using mock and stub 51–56

verifyAll() method 50
void type 7

W

WebService class 52
Write() method 54
Licensed to Alexander Fedorov <mail@orderbynull.me>

	contents
	introduction
	Mocks and test fragility
	5.1 Differentiating mocks from stubs
	5.1.1 The types of test doubles
	5.1.2 Mock (the tool) vs. mock (the test double)
	5.1.3 Don’t assert interactions with stubs
	5.1.4 Using mocks and stubs together
	5.1.5 How mocks and stubs relate to commands and queries
	5.2 Observable behavior vs. implementation details
	5.2.1 Observable behavior is not the same as a public API
	5.2.2 Leaking implementation details: An example with an operation
	5.2.3 Well-designed API and encapsulation
	5.2.4 Leaking implementation details: An example with state
	5.3 The relationship between mocks and test fragility
	5.3.1 Defining hexagonal architecture
	5.3.2 Intra-system vs. inter-system communications
	5.3.3 Intra-system vs. inter-system communications: An example
	5.4 The classical vs. London schools of unit testing, revisited
	5.4.1 Not all out-of-process dependencies should be mocked out
	5.4.2 Using mocks to verify behavior
	Summary

	Mocking best practices
	9.1 Maximizing mocks’ value
	9.1.1 Verifying interactions at the system edges
	9.1.2 Replacing mocks with spies
	9.1.3 What about IDomainLogger?
	9.2 Mocking best practices
	9.2.1 Mocks are for integration tests only
	9.2.2 Not just one mock per test
	9.2.3 Verifying the number of calls
	9.2.4 Only mock types that you own
	Summary

	Isolation (mocking) frameworks
	5.1 Why use isolation frameworks?
	5.2 Dynamically creating a fake object
	5.2.1 Introducing NSubstitute into your tests
	5.2.2 Replacing a handwritten fake object with a dynamic one
	5.3 Simulating fake values
	5.3.1 A mock, a stub, and a priest walk into a test
	5.4 Testing for event-related activities
	5.4.1 Testing an event listener
	5.4.2 Testing whether an event was triggered
	5.5 Current isolation frameworks for .NET
	5.6 Advantages and traps of isolation frameworks
	5.6.1 Traps to avoid when using isolation frameworks
	5.6.2 Unreadable test code
	5.6.3 Verifying the wrong things
	5.6.4 Having more than one mock per test
	5.6.5 Overspecifying the tests
	5.7 Summary

	index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Promo
	Unit Testing Principles, Practices, and Patterns
	The Art of Unit Testing, Third Edition

