B/

Quick answers to common problems

SoapUl Cookbook

Boost your SoapUl capabilities to test RESTful and SOAP APls
with over 65 hands-on recipes

Rupert Anderson [open source

BLITKIMG
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SoapUI Cookbook

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

SoapUI Cookbook
Credits
About the Author

Acknowledgments

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why Subscribe?

Free Access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Sections
Getting ready
How to do it...

How it works...

There’s more...

See also
Conventions

Reader feedback

Customer support

Downloading the example code

Errata

Piracy
Questions
1. Testing and Developing Web Service Stubs With SoapUI

Introduction

What you’ll learn

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll need

Generating a WSDL.-first web service using SoapUI tool integration
Getting ready

How to do it...

How it works...

There’s more...

See also
Developing a SOAP web service test-first

Getting ready

How to do it...

How it works...

There’s more...

See also

Updating a SOAP project using a WSDL
Getting ready

How to do it...

How it works...
There’s more...

Updating SOAP projects using WSDL refactoring (Pro)
Getting ready

How to do it...

There’s more...

Generating and developing a RESTful web service stub test-first

Getting ready

How to do it...

How it works...

There’s more...

Code-first REST services

See also

Generating SoapUI tests with REST discovery (Pro)

Getting ready

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

How it works...

There’s more...

See also
2. Data-driven Testing and Using External Datasources
Introduction
What you’ll learn

What you’ll need

Creating and checking data with the JDBC Request TestStep
Getting ready

How to do it...

How it works...

See also

Parameterizing SQL queries with the JDBC Request TestStep

How to do it...

How it works...

There’s more...
See also
Setting properties from an external file

Getting ready
How to do it...

How it work...

See also
Importing CSV file data into an in-memory H2 database with Groovy
Getting ready

How to do it...

How it works...

There’s more...

See also

Looping over CSV file data and driving tests with Groovy
Getting ready

www.it-ebooks.info

http://www.it-ebooks.info/

How to doit...

How it works...

There’s more...

See also

Querying MongoDB with Groovy
Getting ready

How to do it...

How it works...

There’s more...

See also

Publishing, browsing, and consuming ActiveMQ JMS messages via the REST API
Getting ready

How to do it...

How it works...

There’s more...

See also
3. Developing and Deploying Dynamic REST and SOAP Mocks
Introduction
What you’ll learn

What you’ll need

Selecting mock responses using Groovy

Getting ready

How to do it...

How it works...

There’s more...

See also

Developing dynamic database-driven SOAP mocks
Getting ready

How to do it...

How it works...

There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

See also

Developing dynamic database-driven REST mocks
Getting ready

How to do it...

How it works...

There’s more...

See also

Building mock responses dynamically

How to do it...

How it works...

There’s more...

Deploying mocks as WAR files
Getting ready

How to do it...

How it works...

There’s more..

See also
4. Web Service Test Scenarios

Introduction

What you’ll learn

What you’ll need

Testing WSDL and response WS-I compliance

Getting ready

How to do it...

How it works...

There’s more...

See also
Testing SOAP response schema compliance

Getting ready

How to do it...

How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

See also

Testing REST response XML schema compliance
Getting ready

How to do it...

How it works...

There’s more...

Testing response compliance using JSON schemas
Getting ready

How to do it...

How it works...

There’s more...

Need XML schema validation?

See also
Testing and mocking SOAP (MTOM+XOP) attachments
Getting ready
How to do it...
How it works...

There’s more...

See also

Testing HATEOAS links

Getting ready
How to do it...

How it works...

There’s more...

Testing polling style asynchronous REST services
Getting ready

How to do it...

How it works...

There’s more...

Testing asynchronous SOAP service callbacks

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

How to do it...

How it works...

There’s more...

See also

Testing for e-mails with Groovy
Getting ready

How to do it...

How it works...

There’s more...

See also

Testing files with Groovy
Getting ready

How to do it...

How it works...

There’s more...

See also
5. Automation and Scripting
Introduction
What you’ll learn

What you’ll need

Running mocks from the command line
Getting ready

How to do it...

How it works...

There’s more...

Running tests from the command line
Getting ready

How to do it...

How it works...

There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

Providing environment-specific properties

How to do it...

How it works...

See also

Generating mock WAR files from the command line
Getting ready

How to do it...

How it works...

Running mocks and tests using Maven
Getting ready

How to do it...

How it works...

There’s more...

See also

Running mocks and tests using Java and JUnit
Getting ready

How to do it...
How it works...

There’s more...

See also

Running mocks and tests using Groovy scripts

Getting ready

How to do it...

How it works...

See also

Running mocks and tests using Gradle

Getting ready...

How to do it...

How it works...

There’s more...

See also

www.it-ebooks.info

http://www.it-ebooks.info/

6. Reporting

Introduction

What you’ll learn

Generating reports from test runners
Getting ready

How to do it...

Standard reports
Summary reports
JUnit Reports
AlertSite Reports

How it works...

There’s more...

Pro test runner options
Publishing JUnit reports using Jenkins
Getting ready

How to do it...

How it works...
There’s more...
See also
Exporting custom reports using Groovy

Getting ready

How to do it...

How it works...

There’s more...

Analyzing test, HTTP, and mock coverage (Pro)
Getting Ready

How to do it...

How it works...

Contract coverage

Assertion coverage

There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

HTTP coverage reporting
Mock coverage reporting
REST coverage reporting

See also

7. Testing Secured Web Services
Introduction

What you’ll learn

Testing basic HTTP-authenticated RESTful web services

Getting ready
How to do it...

Smoke test

Tomcat HTTP Basic authentication setup
SoapUI HTTP Basic authentication testing

How it works...

There’s more...

See also

Testing HTTP Digest-authenticated RESTful web services

Getting ready
How to do it...

Tomcat HTTP Digest authentication setup

SoapUI HTTP Digest authentication

How it works...

There’s more...

See also
Testing HTTP form-authenticated RESTful web services

Getting ready
How to do it...

Setting up Tomcat form authentication

Adding the login pages to helloworld-webapp
Testing with SoapUI

How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and using X.509 certificates to test web services over HTTPS
Getting ready

How to do it...

Enabling HTTPS in Tomcat
Testing the service over HTTPS

How it works...

There’s more...

See also

Testing client certificate authenticated web services
Getting ready

How to do it...

Client certificate creation and keystore setup
Tomcat configuration
Enabling client certificate authentication in SoapUI

How it works...

There’s more...

Securing mock services using X.509 certificates
Getting ready

How to do it...

How it works...

Testing WS-Security UsernameToken, Timestamp, and TransportBinding

Getting ready
How to do it...

How it works...

There’s more...

See also

Scanning web service security vulnerabilities

Getting ready

How to do it...

How it works...

There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

8. Testing AWS and OAuth 2 Secured Cloud Services

Introduction
What you’ll learn

What you’ll need

Testing Dropbox using a pregenerated OAuth 2 Access Token
Getting ready

How to do it...

How it works...

There’s more...

See also

Testing Dropbox using OAuth 2 Authorization Code Grant flow
Getting ready

How to do it...

How it works...

There’s more...

See also

Testing Dropbox using OAuth 2 Implicit Grant flow
Getting ready

How to do it...

How it works...

There’s more...

Testing the Gmail API using OAuth2

Getting ready
How to do it...

How it works...

There’s more...

See also
Automating OAuth 2 authentication and consent

Getting ready
How to do it...

How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

Testing AWS services using Access Key authentication

Getting ready

How to do it...

How it works...

There’s more...

See also

9. Data-driven Load Testing With Custom Datasources

Introduction
What you’ll learn

What you’ll need

Load testing data-driven TestCases concurrently with separate Groovy datasources
Getting ready

How to do it...

How it works...

There’s more...

See also

Load testing data-driven TestCases concurrently with a shared Groovy datasource
Getting ready

How to do it...

How it works...

There’s more...

See also
Load testing data-driven TestCases concurrently with a shared distributed datasource

Getting ready

How to do it...

How it works...

There’s more...

See also

Running load tests using Maven, command line, Java, Groovy, and Gradle scripts
Getting ready

How to do it...

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

There’s more...

See also
10. Using Plugins
Introduction
What you’ll learn

Using old-style (open source) plugins
Why are they called old-style?

Getting ready

How to do it...

How it works...

There’s more...

See also

Sending e-mails with the Email TestStep plugin
Getting ready

How to do it...

How it works...
There’s more...
See also

Using plugins via the plugin manager (Pro)

How to do it...

How it works...

See also
Using the Groovy Console plugin to create and run a new TestStep

Getting ready

How to do it...

How it works...

See also
Packaging old-style plugins when running tests with Maven
Getting ready

How to do it...

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

There’s more...

11. Taking SoapUI Further

Introduction

What you’ll learn

Building, packaging, and running SoapUI from the source code
Getting ready

How to do it...

There’s more...

See also

Importing, building, running, and debugging SoapUI in Eclipse
Getting ready

How to do it...

How it works...

There’s more...

See also

Developing a Groovy plugin with custom Action using Gradle
Getting ready

How to do it...

How it works...

There’s more...

See also

Logging from extensions and scripts

Getting ready

How to do it...

How it works...

See also
Prompting for user input with the UISupport class

Getting ready

How to do it...

How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

See also

Creating a custom RequestFilter (Listener) plugin
Getting ready

How to do it...

How it works...

There’s more...

See also
Creating a custom TestStep (Factor lugin to check whether a file exists

Getting ready

How to do it...

How it works...

There’s more...

See also

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SoapUI Cookbook

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SoapUI Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015
Production reference: 1190215
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-421-9

www.packtpub.com

www.it-ebooks.info

http://www.packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author

Rupert Anderson
Reviewers

Wilkotek Damian
Shalabh Dixit

Mykola Makhin
Ambesh Thakur
Commissioning Editor
Kartikey Pandey
Acquisition Editor
Richard Brookes-Bland
Content Development Editor
Adrian Raposo
Technical Editor
Tanvi Bhatt

Copy Editors

Puja Lalwani

Nithya P.

Alfida Paiva

Project Coordinator
Sanchita Mandal
Proofreaders

Paul Hindle

Clyde Jenkins

Elinor Perry-Smith
Indexer

Mariammal Chettiyar
Graphics

Abhinash Sahu

Production Coordinator

www.it-ebooks.info

http://www.it-ebooks.info/

Melwyn D’sa
Cover Work
Melwyn D’sa

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Rupert Anderson holds an M.Maths (Hons) degree, and contributed his dissertation in
the field of computational fluid dynamics. He works as a freelance architect, software
engineer, and integrator with over 17 years of software development experience. He has
designed, developed, or tested RESTful and SOAP APIs during large and successful Agile
projects. He also specializes in designing and developing Java e-commerce solutions using
ATG, Hybris, and Spring technologies. He is an open source enthusiast and aims to
contribute more when he finds the time, energy, and drive after the demands of family life
are finished for the day!

If you would like to know more about him and what he is up to, take a look at
uk.linkedin.com/in/rupertanderson/.

www.it-ebooks.info

http://uk.linkedin.com/in/rupertanderson/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

Sincere and special thanks to the following people:

The editors Richard Brookes-Bland, Adrian Raposo, and Tanvi Bhatt. Richard for getting
me started, making me feel positive about the book, and showing me the way forward.
Adrian for his corrections, helping me develop my writing skills, giving me
encouragement when I needed it, and staying the distance. Lastly, to Tanvi for all her hard
work knocking my draft chapters into shape and her great attention to detail when editing
technical content.

The reviewers Ambesh, Mykola, and Damian and others,for all your helpful comments
and constructive criticism. Thanks for all your efforts; it was a major help and I am very
grateful for it.

My girlfriend, Nicola, for being there to balance my life and helping me make the head
space to write this book by doing such a great job of looking after our two lovely kids! I’d
better thank the kids too, Cole and Maisy, for giving me natural breaks in my work with
their chirpy but adorable ways!

My friend and colleague Ben Wilcock, for introducing me to Packt Publishing,
encouraging me to write this book, and all those pub lunches where I got to offload all my
ideas to someone passionate about modern integration techniques and API testing!

The SoapUI Creators, particularly Ole Lensmar, whom I have never met but have great
respect for. Without your skill, passion, and drive to make SoapUI so open and extensible,
this book would have been far less fun to write!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Wilkolek Damian gained all the experience while being a freelancer. After graduation, he
started to work on a polish eHealth project. He is enthusiastic about new technologies and
adrenaline.

He has also previously worked on a book about Spring framework by Packt Publishing.
I’d like to thank my dear love for providing me with beer and good words!

Shalabh Dixit (https://www.linkedin.com/profile/view?id=23517594) is a full stack
quality assurance engineer living in Hyderabad, India. He is currently associated with the
world’s third largest software testing company, Cigniti Technologies Ltd, and has the
designation of a Project Lead.

He has significant and diversified experience in various types of automation and
performance testing tools, such as UFT, LoadRunner, SoapUl, and so on.

He started his career as a test engineer at NIIT Technologies to explore new technologies,
and then moved to HCL Technologies as a senior test engineer.

He is passionate about technology and start-ups, and enjoys exploring new tools.

Apart from the professional pursuits, he is a team person and likes to help others. He also
loves to spend time with friends and family.

I dedicate all the success in my career so far to my parents and my wife, Pallavi, and also
thank them for their support.

Mykola Makhin is a Java programmer hailing from Lviv, Ukraine. A graduate of Lviv
Polytechnic University, Mykola is a Java- and JVM-based languages enthusiast, and has
almost a decade of experience in the field of Java EE solutions development.

Ambesh Thakur (https://www.linkedin.com/in/ambeshthakur) is a full stack quality
assurance engineer living in New Delhi, India. He is currently associated with one of the
most successful e-commerce companies in India, Snapdeal.com, as a quality assurance
engineer (individual contributor).

He has significant experience in providing end-to-end solutions to a few start-ups. He
started his career as a test engineer at Cropin Technologies (an Agro ERP start-up), and to

explore new technologies, moved to Xenon (an automotive start-up) as a quality assurance
lead.

He is passionate about technology and start-ups, and enjoys exploring new tools and
technology.

Apart from the professional pursuits, he is a team person and likes to help others. He also
loves to spend time with friends and family.

I would like to thank Packt Publishing for providing me with such a great opportunity.

www.it-ebooks.info

https://www.linkedin.com/profile/view?id=23517594
https://www.linkedin.com/in/ambeshthakur
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@ PACKT! i 1°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Why Subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

www.it-ebooks.info

http://www.it-ebooks.info/

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This cookbook aims to complement the online SoapUI documentation and the wealth of
excellent blogs out there. To do this, this book tries to put you in control of SoapUI by
building your skills and understanding, so that if a solution isn’t there already, you have
what it takes to add it. To support this journey are 70 recipes, which are often in the form
of hands-on worked examples, to build SoapUI framework knowledge, scripting skills,
integration of open source libraries, and understanding of the technologies at play. In
general, this book is not a beginner’s guide, and tries not to repeat commonly available
material or basic topics. Having said that, if you are new to SoapUI, but have basic Java
skills and web service knowledge, then you shouldn’t have too much trouble using this
book.

Another aim of this book is to demonstrate SoapUI’s API testing flexibility. To support
this, RESTful web services and related technologies are given plenty of coverage. Also,
with the plugin framework and scripting skills that you’ll gain, there’s no reason why
SoapUI can’t test most things!

As a cookbook, the way you read it is somewhat up to you and how experienced you are.
The recipe format potentially allows experienced users to dip in and out of chapters,
although some recipes are made easier by having completed others, which is normally
indicated in their introduction or the Getting ready section. If you are new to SoapUI, then
going through chapters 1 to 4 in order, may help give you a good foundation before
skipping to more specialized topics.

www.it-ebooks.info

http://www.it-ebooks.info/

What this book covers

Chapter 1, Testing and Developing Web Service Stubs With SoapUI, provides a view on
how to support early application development. The main theme here is how SoapUI can be
used to generate, develop, and test basic RESTful and SOAP web service stubs using
Apache CXF. Discovering, updating, and refactoring tests are also covered here. Apart
from the pro-only WSDL refactoring and REST discovery recipe, this chapter is fairly
basic in terms of SoapUI testing concepts. Although some readers may prefer not to start
with this chapter, for example, if they already have basic SoapUI skills or no interest in
developing Java web service stubs.

Chapter 2, Data-driven Testing and Using External Datasources, introduces the theme of
data-driven testing and Groovy scripting as a key enabler. This chapter also introduces the
building blocks of SoapUI properties, simple database handling, file handling, and how to
use open source libraries in Groovy TestSteps. This chapter is fairly fundamental going
forward, especially if you do not already know these concepts.

Chapter 3, Developing and Deploying Dynamic REST and SOAP Mocks, builds directly on
the Groovy scripting and database and property handling from the previous chapter to
show how to develop dynamic mock services. We also see how to deploy the mocks as
WAR files to potentially support early application development. Mock services will be
used to support recipe samples across several chapters.

Chapter 4, Web Service Test Scenarios, uses the fundamentals of the first three chapters to
demonstrate how SoapUI can be used to solve some more high-level, scenario-based
REST and SOAP web service testing problems. This is probably the most balanced
chapter in terms of general SoapUI testing, as the subsequent chapters are more
specialized.

Chapter 5, Automation and Scripting, is all about how SoapUI tests and mocks can be run
from scripts with a view to continuous integration. Examples include command-line,
Maven, Java, JUnit, Groovy, and Gradle scripts. Scripting of security and load tests will be
looked at in chapters 7 and 9 respectively.

Chapter 6, Reporting, looks at the reporting features that are available to the scripts of the
previous chapter, custom reporting with Groovy, and how Jenkins or similar CI tools can
run the scripts and publish test results as JUnit style reports. Pro version only coverage
reporting is also explored.

Chapter 7, Testing Secured Web Services, is all about using SoapUI to test APIs that
feature HTTP Basic, Digest and Form, transport layer security (TLS), client certificate,
and WSS security. A core learning is the X.509 certificate creation and handling within
SoapUI. The security-scanning functionality of SoapUI is also explored.

Chapter 8, Testing AWS and OAuth 2 Secured Cloud Services, mainly explores how OAuth
2 code and implicit grant flows work and how SoapUI supports them. Amazon AWS
Access Key Authentication is also explained and demonstrated using Groovy. All
examples use popular cloud service providers such as Dropbox, Google, Gmail, and AWS,

www.it-ebooks.info

http://www.it-ebooks.info/

and involve RESTful web services.

Chapter 9, Data-driven Load Testing With Custom Datasources, discusses how to
understand and deal with datasource concurrency issues when running multithreaded data-
driven load tests. Distributed datasources and scripting of load tests are also covered.

Chapter 10, Using Plugins, focuses on using, rather than developing, some of the example
plugins that are currently available for SoapUI. The basics of how plugins work is also
briefly covered, as well as how to provide them in scripts such as Gradle and Maven,
where a SoapUI installation is not normally present. While this chapter is near the end, it’s
actually quite easy to do, even though the understanding of how plugins work might seem
more advanced.

Chapter 11, Taking SoapUI Further, is mostly about using SoapUI from its source code
and how to develop SoapUI extensions and plugins using Groovy and Gradle. Even
though developing extensions is advanced and beyond many people’s needs, the examples
should be quite doable, especially if you’ve read the other chapters. Also, building SoapUI
from scratch is not hard at all and can be very useful, even in some of the earlier chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

What you need for this book

The main software requirements for all or most recipes are as follows:

SoapUI Open Source Version: Version 5.0 was used for this book. You can use the
latest version for example, which is built from the source code.

The secondary but important software requirements for several recipes are as follows:

SoapUI Pro Version: For the 4 pro only recipes and pro functionality tips recipes
marked with (pro), version 5.1.1 was used. SoapUI NG Pro should also work, but it
has not been officially tested.

Java JDK 1.6+: Version 1.7 was used for the recipes.

IDE (Optional): Eclipse, IntelliJ IDEA, or NetBeans

Apache CXF: Version 3+ was used

Apache Tomcat: Version 7 was used or you can use the latest version

Apache Maven: Version 3+ was used

Gradle: A Gradle wrapper was used in all examples, which indicates that Gradle
installation is unnecessary but can be done (version 2.2 was used).

Browsers: Any browser should work; the main testing was done using either Google
Chrome or Mozilla Firefox.

During many recipes, there will be a need to download and use various open source
libraries and dependencies, so download and version advice will be provided there.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Who this book is for

This book is aimed at developers and technical testers, who are looking for a quick way to
take their SoapUI skills and understanding to the next level. It is not designed as a SoapUI
beginner’s guide; rather, it can be used more to complement existing basic material found
in the online help. However, if you are new to SoapUI but have basic Java skills and a
reasonable grasp of RESTful and/or SOAP-based web service technologies, then you
should have no problem making use of this book. If you are not interested in coding small
amounts of Java and Groovy, or understanding more about the underlying technologies,
then you may still find this book useful, but might not get the most out of it.

In terms of SoapUI version, this book favors solutions for the open source version, but is
largely just as applicable to the current pro version and contains a few pro only recipes.
The Ready API! SoapUI NG Pro version is not directly covered, but much of the content
should still be relevant.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There’s more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any
software or any preliminary settings required for the recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

This section contains the steps required to follow the recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

This section provides helpful links to other useful information for the recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, SoapUI Projects, TestSuites, TestCases, TestSteps, Assertions, paths
to samples are shown as follows: “The Properties TestStep is parameterized to take its
file name from a project level property called propertiesFile.”

A block of code is set as follows:

import groovy.sql.Sql
import org.h2.Driver

com.eviware.soapui.support.GroovyUtils.registerJddbcDriver("org.h2.Driver")

def db = Sgl.newInstance("jdbc:h2:mem:test", "org.h2.Driver")

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

//Change this to the location of your CSV file.
def fileName = "/temp/invoices_with_headers.csv"

db.execute("create table if not exists invoices as select * from
csvread('$fileName')")

Any command-line input or output is written as follows:

maven clean build

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “Lets get started! Open
SoapUI and create a new REST project.”

Note

Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.it-ebooks.info

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

www.it-ebooks.info

mailto:questions@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1. Testing and Developing Web
Service Stubs With SoapUI

In this chapter, we will cover the following topics:

Generating a WSDL-first web service using SoapUI tool integration
Developing a SOAP web service test-first

Updating a SOAP project using a WSDL

Updating SOAP projects using WSDL refactoring (Pro)

Generating and developing a RESTful web service stub test-first
Generating SoapUI tests with REST discovery (Pro)

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Web service stubs (and mocks—see Chapter 3, Developing and Deploying Dynamic REST
and SOAP Mocks) are often developed in the early stages of a project, to quickly provide
limited functionality to the client application while the full web services are implemented.
This chapter shows how SoapUI can help you quickly test and develop simple Java REST
and SOAP web service stubs and generate tests by recording interactions with existing
web services. The web service stub implementations that you’ll develop will only involve
a few lines of Java code and can be run as Java executables. Apart from providing a quick
warm up on basic SoapUI testing, the service interfaces and implementation examples will
be reused as the basis for more advanced topics later in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll learn

You will learn the following topics:

e How SoapUI can help you test, update, refactor, and develop a simple stub SOAP
web service using its WSDL

e How SoapUI can help you test and develop a simple stub REST web service

e How SoapUlI’s discovery features can help you generate tests

e To use Apache CXF to generate, implement and run basic JAX-RS and JAX-WS web
service stubs

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll need

You will need the following software:

e A Java JDK: To compile and run the code samples (version 1.6 or above)

e Apache CXF: Apache CXF is used to build, and sometimes run, all the REST and
SOAP web services in this chapter

e An IDE (optional): Using an IDE such as Eclipse should make exploring, compiling,
and running the example code easier

Note
New to SoapUI?

While this chapter demonstrates how to set up basic SoapUI REST and SOAP projects,
tests, and assertions, it doesn’t cover the typical ‘getting started’ installation, setup, and
overview of SoapUI. So if you are completely new to SoapUI, it might also be worth
taking a look at the online SoapUI docs, for example, Getting started at

http://www.soapui.org/.

www.it-ebooks.info

http://www.soapui.org/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Generating a WSDL-first web service
using SoapUI tool integration

This recipe shows how to configure SoapUI (Apache CXF) tool integration to generate a
runnable Java web service with an empty implementation using its WSDL. This could be
useful if you need a quick menu-driven way to create a SOAP web service that can be

implemented and deployed separately to SoapUI.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The WSDL that we are going to use defines a simple invoice service. It has only one
operation to retrieve a basic invoice document using its invoice number:

e QOperation: getInvoice

e Request: invoiceNo : string

e Response: InvoiceDocument (invoiceNo : string, company : string, amount
: string)

e Location: http://localhost:9001/ws/invoice/v1

The WSDL can be found at soap/invoicevl/wsdl/invoice_vi.wsdl in this chapter’s
sample code.

We’ll need the Apache CXF web service framework to generate the web service stub
using SoapUI tooling. Download the latest version from

http://cxf.apache.org/download.html (I have used version 3.01).

Tip

Apache CXF Version

Despite the tool menu stating version 2.x, you can go for the latest version, which, at the

time of writing, is 3.01 (requires JDK 1.7+). Otherwise, choose version 2.7.x for JDK 1.6+
support, or version 2.6.x for JDK 1.5 support.

To build and run the service Java code, the minimum you will need is a suitable JDK. I
have used JDK 1.7.0_25. Optionally, you may also want to use an IDE like Eclipse to
make easy the work of exploring, building, and running the generated web service code.

Tip
Other SoapUI Tools

While you are free to choose any alternate framework supported by SoapUI tools (see
http://www.soapui.org/SOAP-and-WSDL/code-generation.html), note that although the
principles will stay the same, the command details and the resulting generated web service
artifacts will of course vary.

www.it-ebooks.info

http://cxf.apache.org/download.html
http://www.soapui.org/SOAP-and-WSDL/code-generation.html
http://www.it-ebooks.info/

How to do it...

First, we need to configure SoapUI to be able to generate and build the invoice web
service. Then, we can run it as a standard Java executable. Perform the following steps:

1. In SoapUl, go to Tools | Apache CXF, and when the Apache CXF Stubs window
appears, click on the Tools button to bring up the SoapUI Preferences window.
Here, browse to the location where you downloaded Apache CXEF, select the bin
directory, and then click on OK:

[==

XFire 1.X: Browse...
2 CXF 2.X: /soapui-cookbook/chapterl/apache-cxf-3.0.1/bin Browse...
E ANT 1.6+: Browse...
[+]

2. Next, we need to configure the generation options under the Basic tab. The main
points are:

o WSDL location: For example, <chapter1
samples>/soap/invoicevl/wsdl/invoice_v1.wsdl.

o QOutput directory: This is where the generated source code will end up; for
example; <chapterl samples>/soap/invoicevil/src/main/java.

o Package Structure: This is for the generated source code; for example,
ws.invoice.vl.

o Artifact Options: Only tick Server and Implementation. However, the client
and Ant build file options are also available. We will be using SoapUI as our
client and won’t require Ant.

3. To automatically compile our generated service code, under the Advanced tab, do the
following:

o Tick Compile.

o Supply a Class Folder value for the resulting Java class files, for example,
<chapterl samples>/soap/invoicevl/target/classes.

o Tick Validate WSDL (optional) under the advanced tab to check the structure
and get basic WS-I compliance checks on your WSDL. Note that the
invoice_vi.wsdl should not produce any output with this option.

o Leave all other fields and checkboxes unchanged.

4. Under the Custom Args tab, enter -wsd1lLocation invoice_vi.wsdl in Tool Args.
This tells the web service code where to look for the WSDL file at runtime. Setting
the value like this means that invoice_v1.wsdl is expected to be the root of the
classes directory. More on this in the next section.

5. Now, we are ready to click on Generate! If all goes well, you should see an output
similar to the following:

www.it-ebooks.info

http://www.it-ebooks.info/

8 00 Apache CXF wsdl2java

Running Apache CXF wsdl2java

directory: /soapui-cookbook /chapterl/apache-cxf-3.0.1/bin

command: [sh, -c, ./wsdl2java.sh -p ws.invoice.vl -d /soapui-cookbook/cha|
S libfexf-manifest.jar:

Loading FrontEnd jaxws ...

Loading DataBinding jaxb ...

wsdl2java -p ws.invoice.vl -d [soapui-cookbook chapterl/soap/invoicevl/s
wsdl2java - Apache CXF 3.0.1

Cance Close

You should also see the following generated Java source files in your output folder,
for example:

<chapterl samples>/soap/invoicevl/src/main/java/ws/invoice/v1/

InvoiceDocumentType. java
InvoicePortType_InvoicePort_Server.java
ObjectFactory.java InvoicePortImpl.java
InvoiceRefType.java package-info.java
InvoicePortType.java InvoiceServiceVl.java

The corresponding class files in your class folder, for example:

<chapterl samples>/soap/invoicevl/target/classes/ws/invoice/v1/

Note
Mac/Linux Issue

I suspect that there is a minor SoapUI bug here. If you get an error like sh:
./wsdl2java.sh: No such file or directory, then an easy fix is to open a shell
in <Apache CXF Home>/bin/ and copy wsdl2java to wsd1l2java.sh; for example, cp
wsdl2java wsdl2java.sh.

6. Before we run the server, we need to copy invoice_v1.wsdl into the classes folder
location, for example, into <chapter1 samples>/soap/invoicevl/target/classes.
Otherwise, when the server is run, you will see an error like [failed to localize]
cannot.load.wsdl(invoice_v1.wsdl).

7. Finally, we are ready to start the server:

www.it-ebooks.info

http://www.it-ebooks.info/

cd <chapterl samples>/soap/invoicevl/target/classes
java ws.invoice.vl.InvoicePortType_InvoicePort_Server
Starting Server

Server ready..

To confirm whether it’s actually working, open a browser and go to
http://localhost:9001/ws/invoice/v1?wsdl, and you should see the
(invoice_vi.wsdl) WSDL displayed. Our generated server is up and running.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

All that SoapUl is actually doing is building command-line parameters for the various web
service frameworks to do the generation. In this example, those happy with the command
line could just run <Apache CXF Home>/bin/wsdl2java directly.

Note

Apache CXF wsdl2java script

For more info on the wsd12java options, see http://cxf.apache.org/docs/wsdl-to-java.html.
Let’s take a quick look at the generated source files. The main points are as follows:

e Running the wsd12java option generates Java standard JAX-WS web service code
with types and methods derived from the WSDL.
e The Java JDK ships with an implementation of JAX-WS:

o There’s no need for any additional compile or runtime libraries, for example,
Apache CXF libs.

o No servlet container is required to publish the web service, for example, Tomcat
or Jetty. If you look in InvoicePortType_InvoicePort_Server.java, you can
see that the service is published using JDK’s default HTTP server provided by
the javax.xml.ws.Endpoint class. The static Endpoint.publish(...) binds our
generated service implementation (InvoicePortImpl.java) to the endpoint
address so that invoice requests are handled by our getInvoice(..) method.

e The service is very portable; that is, only a Java JRE is needed to run it.

e The WSDL file is required at runtime. The wsd1Location parameter supplied in step
4 sets an attribute of the @javax. jws.WebService annotation in the class
InvoicePortImpl. java.

e The server endpoint and timeout (the default value is 5 minutes) are easy to change.
Edit InvoicePortType_InvoicePort_Server.java:

o Endpoint: String address = "http://localhost:9001/ws/invoice/v1";
o Timeout: Thread.sleep(5 * 60 * 1000);
o Requires recompile

www.it-ebooks.info

http://cxf.apache.org/docs/wsdl-to-java.html
http://www.it-ebooks.info/

There’s more...

If the generated web service stub is to be used as the basis for on-going service
development, then managing the generation, build, and deploy cycle externally to SoapUI
using a build framework such as Ant, Maven, or Gradle will probably be a better option.
To help with this, Apache CXF has a good Maven plugin to provide similar code

generation; refer to http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-
java.html.

For those who want a quick and high-level way to generate a working web service for
testing purposes, I would expect SoapUI’s excellent mocking features to be a more
convenient option than code generation in many cases (See Chapter 3, Developing and
Deploying Dynamic REST and SOAP Mocks).

The SOAP web service stub journey will be continued in the next recipe when we add
simple SoapUI tests and a basic implementation to pass them.

www.it-ebooks.info

http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-java.html
http://www.it-ebooks.info/

See also

e To access the Java 1.6 JAX-WS tutorial, go to
http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html

www.it-ebooks.info

http://docs.oracle.com/javaee/6/tutorial/doc/bnayl.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a SOAP web service test-first

SoapUI is often used to retrofit tests around web services that are already at least partially
developed. To follow a test-first or test-driven development (TDD) approach requires
that we first set up failing tests and then provide a service implementation in order to pass
them. In this recipe, we’ll see how SoapUI can be used to facilitate test-first development
for the invoice web service generated in the previous recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We’ll need the WSDL from the previous recipe to set up our SoapUI project (<chapteri
samples>/soap/invoicevil/wsdl/invoice_v1.wsdl).

The Java code for the completed web service implementation can be found at <chapteri1
samples>/soap/invoicevl_impl.

The project can be found at <chapter1 samples>/invoice-soap-v1-soapui-
project.xml.

Tip
Eclipse setup

Optionally, it is very easy to set up an Eclipse project to make light work of the test, edit,
compile, and run cycle. First, import the sample code and then run the service as a
standard Java application.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Firstly, we’ll set up a couple of simple failing tests to assert what we expect back from the
getInvoice operation and then provide basic implementation to pass them. Next, we’ll
update the invoice WSDL definition to provide an additional createInvoice operation,
write new failing tests, and finally provide basic code to pass those. Perform the following
steps:

1.

To create the SoapUI project and generate the initial PortBinding, Test Suite,
TestCase, and Test Request TestStep, right-click on your Workspace and select
New SOAP Project. In the window, enter/select the following and click on OK:

o Project Name: InvoiceService
o Initial WSDL: chapter1l samples>/soap/invoicevl/wsdl/invoice_v1.wsdl
o Leave Create Requests ticked and also tick Create TestSuite

In the Generate TestSuite window, select the following options and click on OK:

o Leave Style as One TestCase for Each Operation
o Change Request Content to Use existing Requests in Interface

Accept the suggested TestSuite name as InvoicePortBinding TestSuite in the
pop up and click on OK. All expected SoapUI test artifacts should now be generated
in your project.

Now, we can write a simple failing test to assert what we expect a successful
getInvoice request to return. Under the first TestStep option, double-click on
getInvoice and you should see the SOAP request:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:inv="http://soapui.cookbook.samples/schema/invoice">
<soapenv:Header/>
<soapenv:Body>
<inv:getInvoice>
<inv:invoiceNo>?</inv:invoiceNo>
</inv:getInvoice>
</soapenv:Body>
</soapenv:Envelope>

Change the invoiceNo (?) value to something more memorable, for example, 12345.
Now, start the stub invoice service generated in the previous recipe and submit the
request by clicking on the green arrow. You should see a stubbed response, like the
one shown in the following code:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<InvoiceDocument
xmlns="http://soapui.cookbook.samples/schema/invoice">
<invoiceNo0>12345</invoiceNo>
<company/>
<amount>0.0</amount>
</InvoiceDocument>

www.it-ebooks.info

http://www.it-ebooks.info/

</S:Body>
</S:Envelope>
7. Next, let’s create some SoapUI Assertions to specify the invoice property values we
expect to see:

o invoiceNo = 12345
o company = Test Company
o amount = 100.0

Since we’re dealing with SOAP XML, let’s add 3 XPath Assertions to check these values
in the response. SoapUI Pro users will find this easy, thanks to the convenient XPath
builder. Open source users can either be ‘hardcore’ and write them from scratch or just
copy the details provided.

Tip
XPath Help

Even the Pro version’s XPath builder is of less use when you cannot directly retrieve a
response XML to build from, that is, when there is no service at all! As a workaround, you
can get SoapUI to generate a sample response XML by going to Add Step | SOAP Mock
Response TestStep from the TestCase, and then copy the response XML into a helpful
XPath tool to write the XPath expression, for example,
http://www.freeformatter.com/xpath-tester.html. Paid-for tools such as XML Spy will also
help a lot in these areas. You may also find

http://www.w3schools.com/XPath/xpath_syntax.asp helpful.
So let’s add 3 XxPath Assertions. Edit the REST Request TestStep, under the Assertions

tab and right-click on Add Assertion and add a new XPath Assertion to check the
response’s invoiceNo=12345, company=Test Company, and amount=100.0:

Response Assertion name XPath Expression

invoiceNo=12345[|InvoiceNoShouldBe12345 nsl='http://soapui.cookbook.samples/sc

declare namespace
//nsl:InvoiceDocument[1]/ns1:invoiceNc

declare namespace
Invoice12345ShouldHaveCompanyNameOfTestCompany|[nS1="http://soapui.cookbook.samples/sc
//nsl:InvoiceDocument[1]/ns1:company[1

company=Test
Company

declare namespace
amount=100.0 [||Invoice12345ShouldHaveAmount0f100.0 nsl='http://soapui.cookbook.samples/sc
//nsl:InvoiceDocument[1]/nsl:amount[1]

Have a look at the following screenshot for better clarity:

www.it-ebooks.info

http://www.freeformatter.com/xpath-tester.html
http://www.w3schools.com/XPath/xpath_syntax.asp
http://www.it-ebooks.info/

| @ getInvoice
B +.. H O 3 |http:,l',l'localhost:QElDl,l'ws,l'invoice,l'vl

9 XPath Match Configuration

oy p— - = Specify xpath expression and expected result

= |El <soapeny: Envelope xnlns:scapenwv="http: //schenad
<zoapenv:EBodys declare namespaces with declare nemespace <prefix®='<namespace>';

=]
= “inv:getInvoices

<inv:invoiceMo>-12345< /fdnw: invoicelo= XPath Expression

“/inv: getInvoices Declare

</ zoapenv:Bodys=

declare namespace nsl="http:{soapui.cookbook, samples/schemafinyvoice’;
Jins1:InvoiceDocument[1]/ns1 tinvoicehiof[1]

Auth Headers (0) Attachments (00 W3-4 WS-RM H
Expected Result H
+.' %; Kot Select from current Test [] Allow Wildcards ["] Ignore namespace prefixes [Ignore ¥ML Comments
@ InvoiceMoShouldBel12345 - UMKMOWH 17345 | |
@ Invoice123455houldHaveCompanyMameof TestCampany - LIMKMOWR
@ Invoice123455hauldHaveAmoUNtGF100,0 - LNKNOWN ®

{0 Assertions (31| Request Log (0)

Running the TestCase should now fail 2 of the assertions. Note that
InvoiceNoShouldBe12345 will work, thanks to Apache CXF passing through the request’s
invoiceNo to the response (see InvoicePortImpl.java)! It is still worth asserting the
invoiceNo value, as it is a requirement.

Tip
Server timed out?

If you instead see a connection refused error, then check whether your server hasn’t
exited after 5 minutes. It’s easy to change this timeout (see the previous recipe).

Now, we can add a very basic service implementation to pass this test. We just need to
implement the getInvoice(..) method in InvoicePortImpl.java. The simplest
implementation option is to just edit InvoicePortTypeImpl.java and hardcode the
expected values:

try {
java.lang.String companyValue = "Test Company";

company.value = companyValue;
java.lang.Double amountValue = 100.0d;
amount.value = amountValue;

} catch (java.lang.Exception ex) {
ex.printStackTrace();
throw new RuntimeException(ex);

}
Tip
TDD

Strictly speaking, we should first write a unit test before implementing the method, for
example, using JUnit.

Next, recompile this and restart the server:

cd <chapterl samples>/soap/invoicevil
javac src/main/java/ws/invoice/v1/*.java -d target/classes/

www.it-ebooks.info

http://www.it-ebooks.info/

And start it again:

cd <chapterl samples>/soap/invoicevl/target/classes
java ws.invoice.vl.InvoicePortType_InvoicePort_Server

Rerun TestCase, which should now pass!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

This recipe builds on all the same JAX-WS web service code explained in the previous
recipe. This time, we add a very simple stub implementation to return the minimum
necessary to pass the test. For those who haven’t seen JAX-WS before, the use of the
javax.xml.ws.Holder wrapper object means that we don’t have to explicitly set the
invoiceNo, as it is passed through the request (for more information, see

http://tomee.apache.org/examples-trunk/webservice-holder/README.html).

www.it-ebooks.info

http://tomee.apache.org/examples-trunk/webservice-holder/README.html
http://www.it-ebooks.info/

There’s more...

As mentioned in the previous recipe, SoapUI mocks (see Chapter 3, Developing and
Deploying Dynamic REST and SOAP Mocks) can often provide a convenient and often
quicker alternative if all you need is a disposable test version of your web service with
basic functionality. Also, if you want your web service stub to be the basis for ongoing
development, then you may want to consider using a build framework like Gradle or
Maven to manage the build, deploy, and test cycle. Chapter 5, Automation and Scripting,
looks at different ways to use build frameworks and scripts to run SoapUI tests (and
mocks) after your web service is built and deployed. If your stub implementations become
more complicated, you may also want unit tests.

The SOAP web service stub journey continues in the next recipe where we use SoapUI to
help us update the project, tests, and services to add a createInvoice operation.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For more information on Gradle, go to https://www.gradle.org/
e For more information on Maven, go to http://maven.apache.org/
¢ For more information on JUnit, go to http://junit.org/

www.it-ebooks.info

https://www.gradle.org/
http://maven.apache.org/
http://junit.org/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Updating a SOAP project using a WSDL

When a SOAP project’s WSDL changes, SoapUI can use the new definition to:

e Update the port binding
¢ Add new operations and requests
e Update endpoints in requests

This recipe builds on the previous example to show how SoapUI can help you do this
when a new web service operation is added. We then provide a basic test-driven
implementation to support the new operation.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The new WSDL defines a createInvoice operation and can be found in <chapter 1
samples>/soap/invoicev2_impl/wsdl/Invoice_v2.wsdl.

To save time coding the implementation, you can take either the full service code or just
the Java classes you need from <chapter 1 samples>/soap/invoicev2_impl.

The SoapUI project for this recipe can be found at <chapter 1 samples>/invoice-soap-
v2-soapui-project.xml.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

After updating our SOAP project using the new WSDL and SoapUI’s Update Definition
functionality, we need to add a new failing test for the new createInvoice operation.
Next, we generate an empty web service stub using the new WSDL and the approach
shown in the first recipe. Finally, with our failing test, we will provide a basic
implementation to pass the test.

1. To update our SoapUI project with the new WSDL, right-click on
InvoicePortBinding and select Update Definition. Enter the following in the
Update Definition window and click on OK:

o Definition URL: This is <chapter1
samples>/soap/invoicev2_impl/wsdl/invoice_v2.wsdl.

o Tick Recreate existing request with the new schema.

o Leave the rest of the checkboxes at their default values.

2. Click on Yes on the Update Definition with new endpoint popup (although this
didn’t actually update the endpoint for me!). This should result in
InvoicePortBinding now showing the createInvoice operation and request.

3. Next, let’s add a new TestCase option for createInvoice called TestCase - Create
Invoice. Also, change the order so that TestCase - Create Invoice is run before
getInvoice TestCase.

4. Add a new TestStep option under TestCase - Create Invoice called
createInvoice, and select InvoicePortBinding > createlnvoice in the operation
popup and just accept default value in the Add Request To TestCase popup.

Tip
Check Endpoints

Make sure both TestSteps are now pointing to the new endpoint
http://localhost:9002/ws/invoice/v2. Update Definition only seems to update
the request endpoints under the port binding.

5. Generate a new empty web service for invoice_v2.wsdl as per the previous recipe,
using Tools | Apache CXF:

o WSDL Location: invoice_v2.wsdl.

o Change v1 to v2 in all the paths, packages, and Custom Args.

o Copy invoice_v2.wsdl to the root of your classes’ folder, for example,
<chapterl samples>/soap/invoicev2/target/classes.

6. Start the generated invoice v2 server:

cd <chapterl samples>/soap/invoicev2/target/classes
java ws.invoice.v2.InvoicePortType_InvoicePort_Server

7. If you now run the tests:

o The createInvoice TestStep operation will succeed since it doesn’t have any

www.it-ebooks.info

http://www.it-ebooks.info/

10.

11.
12.

Assertions.
o The getInvoice TestStep operation will fail as expected because our previous
implementation is not part of the newly generated invoice v2 service code.

Next, let’s add Assertion to test the createInvoice operation. Insert the same
invoice values as we did in the getInvoice TestStep operation into the request of
the createInvoice TestStep operation and add XPath Assertion to check whether
the acknowledgment invoiceNo is 12345:

Name: AcknowledgementShouldContainInvoiceN012345

XPath:

declare namespace nsl='http://soapui.cookbook.samples/schema/invoice’';
//nsl:Acknowledgement[1]/nsl:invoiceNo[1]

Expected Value: 12345

If we now rerun TestCase:

o The createInvoice TestStep operation will still pass, again thanks to the
Apache CXF-generated code passing through the invoiceNo from the request to
the response.

o The getInvoice TestStep operation will now not pass as expected.

Providing a simple service implementation to pass the tests by storing invoice details
between requests and allowing them to be retrieved involves a little more coding than
in the previous recipe. So to stay more in the scope of SoapUI, we can take what we
need from a completed example service implementation in this chapter’s samples. If
you have generated the new empty web service stub in step 5, then all that you will
need to take are:

o InvoicePortImpl.java: This provides the main functionality.
o Invoice.java: This is a JavaBean to store invoice details.

More information on these is provided in the next section.

Next, recompile and restart the server.
Rerun the tests, and both should now pass!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The main learning of this recipe is how to use the Update Definition functionality, and
what it does and doesn’t update for you. Like in the previous recipe, we have only used a
very basic service implementation just to pass the tests. The main points of the service
implementation are as follows:

e When SoapUI makes a request to the createInvoice operation, the
InvoicePortImpl.createInvoice method extracts the invoice details from the
request and stores them (using Invoice.java) in a HashMap keyed on invoiceNo. The
invoiceNo value is then returned in the acknowledgment response.

e When SoapUI makes a request to the getInvoice operation, the
InvoicePortImpl.getInvoice method uses the invoiceNo value in the request to
retrieve the invoice details from the HashMap (held in Invoice. java) and return them
in the response to SoapUI.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Here, we have developed a very simple non-persistent dynamic web service stub. Chapter
3, Developing and Deploying Dynamic REST and SOAP Mocks, also shows how to use in-
memory H2 databases to provide a non-persistent, dynamic REST and SOAP mock
service functionality. If you would like to persist the request data, then Chapter 9, Data-
driven Load Testing With Custom Datasources, uses a SOAP service stub with a simple
H2 database backend to persist data.

For Pro version users, the next recipe continues the SOAP web service stub journey by
showing how SoapUI WSDL refactoring can help manage more complicated service
definition updates.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Updating SOAP projects using WSDL
refactoring (Pro)

Updating a SOAP project’s WSDL will often lead to changes to test endpoints, requests,
responses, and/or operations. In a simple example like that of the previous recipe, this isn’t
a big deal. For more complex WSDL changes that involve more tests, SoapUI Pro has a
nice graphical editor that manages the migration step by step.

SoapUI WSDL refactoring can help manage the following:

¢ Adding, removing, or renaming operations
e Adding, removing, or renaming request/response fields
e Resulting XPath (Assertion) updates

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We’ll work on the <chapterl samples>/invoice-soap-v2-soapui-project.xml project
from the previous recipe. I have also included the project <chapter1l samples>/Invoice-
soap-v3-soapui-project.xml, which is the end product after the refactoring.

The new WSDL can be found at <chapter1
samples>/soap/invoicev3/wsdl/invoice_v3.wsdl.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To illustrate the WSDL refactoring functionality, we’ll refactor invoice_v2.wsdl and the
tests from the previous recipe to use a new WSDL invoice_v3.wsdl. This will involve the
following changes:

The getInvoice operation gets renamed to retrieveInvoice

New operations such as updateInvoice and deleteInvoice are added
The invoiceNo field is renamed to id

A new field dueDate is added to the invoice document

The companyName field is removed in favor of a new customerRef field

These changes will result in a CRUD style interface, with some basic schema changes:

1. Firstly, open the project (the previous recipe’s project: InvoiceS0APv3) and right-
click on InvoiceServicePortBinding and select RefactorDefinition. Enter the path
to the new WSDL (invoice_v3.wsdl) and tick the options to create new requests and
a backup, and then click on Next.

2. In the Transfer Operations window, SoapUI correctly maps createInvoice and
leaves getInvoice in red to indicate that it has no mapping in the new WSDL.
Correct this by clicking and dragging getInvoice on top of retrieveInvoice in the
New Schema section, to end up with a result as shown in the following screenshot:

Refactor Definition

Transfer Operations {@:
Connect old and new operations.
Old Schema New Schema
Operations Operations

& ->< —== 2 createlnvoice
createlnvoice =2 retrievelnvoice

=
=

2 updatelnvoice
=+ deletelnvoice

Next = Cancel Finish [2]

3. Click on Next to proceed to the Refactor Schema window. Correct the getInvoice
request in a similar way as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

New Schema
[2] retrievelnvoice-Request

—=v [€] retrievelnvoice
[#] invoiceNo

¥ [€] getinvoice (not in schema)

[€] invoiceNo (not in schema)

Discard Set Value ™ Pretty Print

Refactor Definition
Refactor Schema
Map nodes in the old schema to the new schema.
I InvoicePortBinding Old Schema
¥ 2 getlnvoice [2] getinvoice-Request
v - v [el Body v [€] Body
i2 Request 1 v [&] getinvoice
getinvoice (Inve [e] invoiceNo
¥ & createlnvoice
¥ Reqguests
a¢ Reguest 1
createlnvoice { [| Filter [| Namespaces Connect Disconnect
Clear Erro

|| Edit Manually Save

4. Then, click on the red createInvoice operation. Here, map invoiceNo to id, but
company cannot be mapped (as we are removing it), so highlight it and click on
Discard. Things should look like what is shown in the following screenshot; when

ready, click on Next:

Refactor Definition
Refactor Schema 1%
Map nodes in the old schema to the new schema. ﬁ
I InvoicePortBinding Old Schema New Schema
[~ getinvoice [e] createlnvoice-Request [e] createlnvoice-Request
- o - v [l sody v [l sody
¥ [e] createlnvoice —=v [e] createlnvoice
[e] invoiceMo [e] id
[e] - [e] customerRef
[e] amount [e] amount
[e] dueDate
[I Filter [| Namespaces | Connect | Disconnec Discard
Clear E [| Edit Manually Save

5. On the Update XPath Expressions window, first click on Filter unchanged paths
to show only the problems. We can’t fix the XPath relating to companyName, so just
fix the invoiceNo XPath’s Assertion InvoiceNoShouldBe12345 by copying the Old
XPath value into the New Xpath box and changing invoiceNo to id (as shown in

the next screenshot), and then click on Finish:

www.it-ebooks.info

http://www.it-ebooks.info/

800 Refactor Definition

Update XPath Expressions
Review and update XPath expressions. Red/empty XPaths will be left unchanged. @

B InvoiceService [0ld XPath
¥ B InvoicePortBinding TestSuite \declare namespace nsl="'http://soapui.cookbook.samples/schema/invoice';
v o TestCase - Get Invoice |/ /ns 1l:nvoiceDocument[1]/ns1:invoiceNo[1]

v (&) getinvoice
v @ InvoiceNoShouldBe12345

v & Invoicel23455houldHaveCompanyNameQfTestCompany i s . New_xPath 3 o
. p | |declare namespace nsl='http://soapui.cookbook.samples/schema/invoice';
XPath for Invoice 123455houldHaveCompanyNameOfTestCompany | J/ns 1:InvoiceDocument[1]/ns 1:id[1]

[2] Filter unchanged paths

[< Back | Next > | Cancel | | Finish | @]

6. Click on Yes in the Update Definition pop up to update the requests with the new v3
endpoint. You should see the Update of interface successful message. This indicates
that the refactoring is complete!

On inspection of the refactored SoapUI project, all artifacts appeared to be in order, with
the following exceptions:

e The endpoints in the TestSteps need to be manually updated to the v3 endpoint.

e The automatic backup failed with an 10Exception (on MacOSX). As a workaround, I
recommend that you manually back up the SoapUI project XML file.

e The Assertion Invoice12345ShouldHaveCompanyNameOfTestCompany option needs
to be deleted manually.

Note
Passing The Tests

If you would like to see the tests pass again, you can generate a v3 invoice service as per
the previous recipes. Then, add a minimal implementation to satisfy the current assertions.
I have included a very basic implementation <chapter1

samples>/soap/invoicev3_impl, which can just be run in the same way as the first three
recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

The refactoring tool obviously doesn’t write the missing tests for the updateInvoice and
deleteInvoice operations or create Assertions for the new fields. These need to be
added manually to return to an acceptable level of test coverage.

In terms of possible uses for WSDL refactoring, three typical SOA patterns are:

e Contract Standardization (see

http://soapatterns.org/design_patterns/contract_denormalization)
e Decomposed Capability (see

http://soapatterns.org/design_patterns/decomposed_capability)

e Service Normalization (see
http://soapatterns.org/design_patterns/service_normalization)

Variations on the first pattern are perhaps the most common, that is, refactoring of a single
WSDL, as per our example. This is also the only pattern that can be covered in a single
pass of the WSDL refactoring feature.

www.it-ebooks.info

http://soapatterns.org/design_patterns/contract_denormalization
http://soapatterns.org/design_patterns/decomposed_capability
http://soapatterns.org/design_patterns/service_normalization
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Generating and developing a RESTful
web service stub test-first

This recipe shows how to generate and develop a simple RESTful web service stub test-
first using TDD. The main SoapUI learning will be how to test a simple RESTful web
service defined by a WADL that produces JSON responses. Basic JAX-RS web service
development skills using Apache CXF can also be learned here.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The example service is a REST version of the SOAP invoice service from the first recipe.
The service is defined by a WADL with the following main properties:

e WADL: invoice_vi1.wadl

e Service endpoint: http://localhost:9000/invoiceservice/vl
e Resource: GET /invoice/{id}

e Produces: application/json

Apache CXF will be used to generate, build, and run the stub web service. See the Getting
ready section in the first recipe if you need advice on how to download Apache CXF.

Tip
Eclipse users

If you are using Eclipse, you can set up Apache CXF as a runtime library that is by
navigating to Project | Add Library | CXF Runtime, and run the server class as a Java
application.

The invoice-vi-soapui-project.xml project for this recipe can be found in the this
chapter’s sample code files.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

First, we’ll create a REST project from the service’s WADL, and add a TestStep with
Assertions to check whether the response’s invoice values are what we expect. Then,
we’ll generate an empty runnable REST web service using Apache CXF, and finally add a
simple implementation to pass the test. Perform the following steps:

1.

Create a SoapUI project from invoice_vi.wadl. Go to File Menu | New REST
Project | Import WADL, browse to invoice_v1.wadl, and click on OK. This should
generate a project with a sample request to the invoice resource that takes an id path
parameter, that is, http://localhost:9000/invoiceservice/v1/invoice/ {id}.
Next, create a simple TestSuite, TestCase, and TestStep operations with
Assertion to specify what we expect back from a successful invoice resource
request. We can use the Generate TestSuite option to do this:

1. Right-click on invoice_v1 Endpoint and select Generate TestSuite.

2. Change the style to Single TestCase with one Request for each Method and

click on OK.

Accept the suggested name as invoice_v1 TestSuite.

4. The project should then contain TestSuite with one generated TestStep
operation for invoice/{id}.

w

Now, we’re ready to add some Assertions to the TestStep. Say we’re expecting a
JSON representation of an Invoice document that will look like the following:

{"Invoice": {

"id": 12345,
"companyName": "Test Company",
"amount": 100

3

Then, if you’ve got SoapUI Pro, we can use 3 JsonPath Match Assertions:

Name: IdShouldBel2345
JsonPath: $.Invoice.id
expectedvValue: 12345

Name: AmountShouldBel00
JsonPath: $.Invoice.amount
Expected Value: 100

Name: CompanyNameShouldBeTestCompany
JsonPath: $.Invoice.companyName
Expected Value: Test Company

For open source SoapUI, we can add 3 Contains Assertions:

Name: ShouldContainText12345
Contains Content: 12345

Name: ShouldContainTextTestCompany
Contains Content: Test Company

www.it-ebooks.info

http://www.it-ebooks.info/

Name: ShouldContainTextl100
Contains Content: 1060

. In both versions of SoapUI we can check whether the HTTP status is 200 OK by
adding a valid HTTP Status Codes Assertion:

Name: ShouldReturnHTTPStatus200
HTTP Status Code = 200

Tip
Want to also check JSONSchema Compliance?

See the Testing REST response JSON schema compliance recipe of Chapter 4, Web
Service Test Scenarios, for how to do it.

. Now that our tests are ready, we’re going to need to generate the actual service. We
can do this using Apache CXF’s wad1l2java script to generate the Java service types
and empty the implementation from the WADL.

Note
SoapUI’s WADL2Java menu option is not what it seems

Unfortunately, in the current version (5.0) of SoapUI, the WADL2Java functionality
(http://www.soapui.org/REST-Testing/rest-code-generation.html) is written to use
classic wadl2java (https://wadl.java.net/). This version of wad12java only generates
the client code from the WADL and not the service code like we need.

. Of course, generating web service code directly using Apache CXF is not part of
SoapUI. I have included these steps for completeness and in case you find them
useful. If you would rather skip this part, I have included the generated code in
<chapter 1 samples>/rest/invoicevil_gen. Otherwise, you can generate the web
service code for invoice_vi.wadl by running wadl2java. For example:

cd <apache-cxf-3.0.1 home>/

./bin/wadl2java -d <chapterl samples>/rest/invoicevl/src/main/java/ -p
rest.invoice.vl -impl -interface <chapteril
samples>/rest/invoicevl/wadl/invoice_v1.wadl

Tip
Classpath Issue on MacOSX/Linux

When running wad12java with Apache CXF 3.01, if you see this error: Could not
find or load main class org.apache.cxf.tools.wadlto.WADLToJava, then
manually setting the CLASSPATH variable with export CLASSPATH=apache-cxf-
3.0.1/1ib/* fixes the problem.

o You should see the following output:

Aug 18, 2014 8:57:07 PM org.apache.cxf.common. jaxb.JAXBUtils
logGeneratedClassNames

www.it-ebooks.info

http://www.soapui.org/REST-Testing/rest-code-generation.html
https://wadl.java.net/
http://www.it-ebooks.info/

10.

11.

12.

13.

INFO: Created classes: generated.Invoice, generated.ObjectFactory

o The following Java source files generated at the location set by the -d parameter
and -p gives the package structure:

rest/invoice/v1/InvoiceserviceVlResource
rest/invoice/vi/InvoiceserviceViResourceImpl
rest/invoice/v1/Invoice
rest/invoice/v1l/0bjectFactory
rest/invoice/v1/Service

Next, we need to compile the generated service. Note that Apache CXF’s libraries are
required on the classpath (the-cp parameter):

cd <chapterl samples>/rest/invoicevl/src/main/java/rest/invoice/v1/
javac -cp "<apache-cxf-3.0.1 home>/1lib/*" -d <chapteril
samples>/rest/invoicevl/target/classes/ *.java

Execute the following command to run the server:

cd <chapterl samples>/rest/invoicevl/target/classes/
java -cp "<apache-cxf-3.0.1 home>/1lib/*:." rest.invoice.vl.Server

INFO logging..
Server ready..

Give the server a quick test by browsing to
http://localhost:9000/invoiceservice/v1?_wadl, and you should see a WADL
that indicates that the server is running.

Now, it’s time to run TestCase that we created in step 2:

o Open the TestCase and edit the TestStep created in step 2.

o Add an invoice ID to the TestSteps's request, for example, 12345.

o Running the TestCase should result in all the TestStep's Assertions failing,
and a response with HTTP status 204 no content under the Raw tab. This is
expected since we have no implementation yet.

Now that we have a failing test, we are ready to implement the invoice resource:

o First implement InvoiceserviceViResourceImpl.java with the following
code:

package rest.invoice.vl;

public class InvoiceserviceV1ResourceImpl implements
InvoiceserviceVlResource {

public Invoice getInvoiceid(String id) {
ObjectFactory objectFactory = new ObjectFactory();
Invoice invoice = objectFactory.createInvoice();
if (id != null && id.equals("12345")) {
invoice.setId("12345");
invoice.setCompanyName("Test Company");
invoice.setAmount(100.0d);

www.it-ebooks.info

http://www.it-ebooks.info/

}

return invoice;

}

}
Note
Skip the dev?

A completed version of the code can be found at <chapter1
samples>/rest/invoicevl_impl.

o Next, add the annotation @xm1RootElement (name = "Invoice"); otherwise,
marshaling from the JavaBean to the response JSON doesn’t work:

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "invoice", propOrder = {
"id",
"companyName",
"amount"

1)

@XmlRootElement (name "Invoice")

public class Invoice {

o Add an import statement for the annotation to the top of Invoice.java:

import javax.xml.bind.annotation.XmlRootElement;

o Finally, delete the package-info.java class; otherwise, there will be a
namespace prefix on the JSON response.

14. Next, recompile and restart the server as described in steps 9 and 10. Then, rerunning
the TestCase should pass!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Let’s take a look at the main solution points:

1. The web service we create uses the JAX-RS standard, which is the official Java
standard for RESTful web services (see https://jax-rs-spec.java.net/). One key
difference with JAX-WS seen in the first recipe is that the JDK does not ship with a
JAX-RS implementation; only the JAX-RS interfaces and annotations are supplied.
So, we instead use the Apache CXF JAX-RS implementation; hence, we need to
supply the Apache CXF libraries at compile and runtime.

2. Apache CXF generated the following Java classes using the WADL definition:

o Invoice.java: This is a JavaBean representation of the invoice XML content.
This class has binding annotations to allow the Apache CXF JAX-RS
implementation to marshal invoice objects to XML content and unmarshal XML
content to invoice objects:

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "invoice", propOrder = {
n ld n ,
"companyName",
"amount"

)

@XmlRootElement(name = "Invoice")

Tip

To understand more about these binding annotations the technology to look at is
Java Architecture for XML Binding (JAXB)—see https://jaxb.java.net/tutorial/.

o ObjectFactory.java: This class can optionally be used to create instances of
the Invoice. java class by calling the createInvoice() factory method. There
is also a factory method JAXBElement<Invoice> createInvoice(Invoice
value) to create JAXB invoice XML bindings. These factory methods can be
useful to separate object creation code from your service methods when dealing
with more complicated schema examples, but they are not especially useful in
our case.

o InvoiceserviceViResource.java:This is a JAX-RS annotated Java interface to
represent the RESTful invoice service and its resource. In this example, we have
the following code:

@Path("/invoiceservice/v1/")
public interface InvoiceserviceV1Resource {

@GET

@Produces("application/json")
@Path("/invoice/{id}")

Invoice getInvoiceid(@PathParam("id") String id);

}
o The annotations are used by the Apache CXF JAX-RS implementation to map

www.it-ebooks.info

https://jax-rs-spec.java.net/
https://jaxb.java.net/tutorial/
http://www.it-ebooks.info/

HTTP requests to matching Java methods. In this case, implementations of this
interface that is InvoiceserviceViResourceImpl will invoke the
getInvoiceid(..) method passing in the {id} path parameter as the String id
variable if there is a HTTP GET request to the resource
/invoiceservice/vil/invoice/{id}. Other annotated service methods to
support POST, PUT and DELETE requests could also be added here and in the
implementation. See <chapter 1
samples>/rest/invoice_crud/src/main/java/rest/invoice/crud/v1/Invoic
for an example like this.

InvoiceserviceViResourceImpl.java: This is the implementation of the
preceding interface to provide the Java code to run when a matching request is
made. We added code to the Invoice getInvoiceId(String id) of this class
so that if the invoice (id) is 12345, then we a create a new Invoice object using
the objectFactory, populate it with the expected values, and return it in the
response. In the background, Apache CXF is able to marshal this into JSON
content before dispatching the response back to SoapUI. Unlike the JAX-WS
example in the first recipe, there was no holder object, so we were responsible
for creating the Invoice object ourselves.

Service. java: This is a server class that publishes our stub service’s
implementation. Like in the first recipe’s JAX-WS server code, the endpoint and
service timeout can be set here.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Apart from using WADLs to create SoapUI projects for RESTful web services, there are
also SoapUI plugins to use more modern alternatives such as RAML(http://raml.org/) and
Swagger (http://swagger.io/) definitions as well—see Chapter 10, Using Plugins for more
information.

Code-first REST services

RESTful web services will often be developed code-first and may not present a WADL or
a structured definition to generate your SoapUI project and tests from. In these cases, you?
can easily build your REST project by manually entering the service’s URI, resources,
methods, and parameters using their respective menu options, see
http://www.soapui.org/getting-started/rest-testing.html. Or if you’re a pro version user,
you can use SoapUI to generate your project and tests by recording your requests to the
service’s API (see the next recipe). If you’re an open source user, then you can also
generate tests in a similar way by using the HTTP Monitor (See

http://www.soapui.org/HTTP-Recording/concept.html).

www.it-ebooks.info

http://raml.org/
http://swagger.io/
http://www.soapui.org/getting-started/rest-testing.html
http://www.soapui.org/HTTP-Recording/concept.html
http://www.it-ebooks.info/

See also

e For more information on WADL, go to https://wadl.java.net/
e For more information on Apache CXF JAX-RS, go to http://cxf.apache.org/docs/jax-
rs.html

www.it-ebooks.info

https://wadl.java.net/
http://cxf.apache.org/docs/jax-rs.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Generating SoapUI tests with REST
discovery (Pro)

In this recipe, we take a look at how to generate tests for RESTful web services that
already exist. The pro version of SoapUI has the REST discovery functionality to allow
interactions with a RESTful API to be recorded and used to generate tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To provide an example of a RESTful web service, I have extended the previous recipe’s
invoice service to have full CRUD functionality. The interface now looks like this:

Resource: http://localhost:9000/invoiceservice/vl/invoice
Supported Methods:
POST invoice

GET invoice/{id}
PUT invoice/{id}
DELETE invoice/{id}

Create Invoice.
Get (Read) Invoice.
Update Invoice.
Delete Invoice.

The invoice document is as follows:

{"Invoice": {

"id": 12345,
"companyName": "Test Company",
"amount": 100

3}

The service’s implementation is very basic. The create (P0ST) method is not idempotent,
and it will create new invoice objects on each successful request with IDs of the form
invN, where N is a sequence number that starts from 0, for example, inv0, invi, and so
on. The GET, UPDATE, and DELETE methods will all return HTTP status 404 if an invoice
with the specified ID has not previously been created. The invoices are stored in a Java
HashMap, so they will not persist when the server is restarted, and the HashMap is empty on
startup.

Note
Example Service Code

We are not developing a service in this recipe. Use the prebuilt service from <chapteri
samples>/rest/invoice_crud.

Start the service in the same manner as described in the previous recipe:

cd <chapterl samples>/chapterl/rest/invoice_crud/target/classes
java -cp "<apache-cxf-3.0.1 home>/1lib/*:." rest.invoice.crud.vl.Server

To test its running, open a browser and go to
http://localhost:9000/invoiceservice/v1?_wadl, and you should see a WADL
displayed with methods as described in the preceding code.

Tip
Port already in use

If you see this exception, then make sure that no other servers are running on port 9000,
for example, the servers from the previous recipes.

The Mozilla Firefox browser is used to illustrate this recipe. Please download this if you
don’t already have it. If this isn’t possible, other options will be described later.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Perform the following steps:

Note
Internal Browser or Proxy Mode?

SoapUI offers two options to discover RESTful web services. The first option is to use the
internal browser and the second one is to use the proxy mode. I would say that the internal
browser option is only useful if:

e You are only testing GET requests, as no other methods are possible.

¢ You are discovering services via web pages like in the Swagger example in the
SoapUI online help (http://www.soapui.org/REST-Discovery/api-with-internal-
browser.html).

e Or you need to test using HTTPS, which, at the time of writing, the proxy cannot
support.

Otherwise, once set up, the proxy mode is a far more versatile option for testing in a lot of
API scenarios including this recipe.

1. To start, go to File Menu | New Project and select options the Discover REST APIs
using and SoapUI internal proxy. Click on OK, and you should see the default
details of the SoapUI proxy:

Discover Using: Proxy HTTP
Recorded Requests: 0

Port: 8081

Status: Running

Host (Internal Clients): localhost

For this example, we are only concerned with the details for internal clients. Using
an external client involves pretty much the same steps, except that it may require
network setup that is beyond the scope of this book. The host (localhost) and the
port (8081) are the key values to note. These will be used by whatever REST client
we choose to use to do the actual service interactions.

Tip
REST Clients

There are many good and free options here. IDEs such as Eclipse and IntelliJ have a
good REST client plugin. Browser-based REST clients are also very good; for
Chrome, there is the Postman plugin, and for Firefox, the RESTClient add-on. When
choosing which to use, consider that you will need to amend the proxy settings, at
least temporarily, in order to route requests via SoapUI’s proxy. You could also go for
a command line option and use something like cURL
(http://curl.haxx.se/docs/manpage.html). Choose whichever option is most
convenient for you, but for this recipe I will illustrate the use of Firefox’s
RESTClient plugin.

www.it-ebooks.info

http://www.soapui.org/REST-Discovery/api-with-internal-browser.html
http://curl.haxx.se/docs/manpage.html
http://www.it-ebooks.info/

2. Download the RESTClient add-on in Firefox by going to Tools Menu | Add-ons,
search for RESTClient, and click on Add to Firefox. Restart Firefox, and
RESTClient should be available in the Tools menu. Click on the client to open it in a
new Firefox tab.

3. Next, we need to configure Firefox’s proxy settings to point to SoapUI’s proxy:

1. Open Preferences | Advanced | Network.

2. Under Connection, next to Configure how Firefox connects to the Internet,
click on Settings.

3. Select Manual proxy configuration and enter the SoapUI proxy details as
shown in the following screenshot.

4. Click on OK.

B B8 8 Advanced

Py

- W-W -5

General Tabs Content Applications Privacy Security Sync | Advanced

Configure Proxies to Access the Internet
Ce [_No proxy
Ca [__JAuto-detect proxy settings for this network
[_'Use system proxy settings
Ce 'Z_E," Manual proxy configuration:
HTTP Proxy: |localhost Port: 8081 |3

| Use this proxy server for all protocols

4. Now, we are ready to use the RESTClient via the SoapUI proxy. As a first test,
request the WADL like before, by selecting a method of GET, adding a URL of
http://localhost:9000/invoiceservice/v1?_wadl, and clicking on Send. You
should see the WADL in the RESTClient response body and see the SoapUI proxy
Recorded Requests incremented to 1.

Tip
Nothing happened?

Make sure the service is still running; otherwise, connection refused messages will
occur. The server exists after 10 minutes, which is easily adjustable in the source
code for the server class.

Note that other requests via the Firefox browser will also increment the recorded
requests. Any unwanted requests can be filtered out later.

5. Before we try posting or putting any invoice data, we need to change the request’s
content type to application/json; otherwise, status 415 Unsupported Media Type
messages will occur. To do this:

www.it-ebooks.info

http://www.it-ebooks.info/

1. Click on the RESTClient’s Headers menu and select Custom Header.
2. In the Request Header pop up, enter Name as Content-Type and Value as
application/json, and then click on OK.

3. You should see content-Type: application/json in the Headers section on
the next page.

6. Now, let’s do some actual requests! First, let’s create an invoice. Set the following
values:

o Method: POST

o URL: http://localhost:9000/invoiceservice/vl/invoice
o Body:

{"Invoice": {
"id": 12345,
"companyName": "Test Company",
"amount": 100

3}

You should see the Response Header status code 200 0K and a Response Body of:

{
"Invoice": {
llidll : Ilinvoll,
"companyName": "Test Company",
"amount": 100

¥
}

7. Next, update the invoice:

o Method: PUT

o URL: http://localhost:9000/invoiceservice/vl/invoice/inve
o Body:

{"Invoice": {
"id": 12345,
"companyName": "Real Company",
"amount": 200

1}
You should see the Response Header status code 200 0K and a Response Body of:

{
"Invoice": {
llidll : |linV0|I,
"companyName": "Real Company",
"amount": 200

b
}

8. Next, get the invoice, method GET, and URL

http://localhost:9000/invoiceservice/v1l/invoice/inve. You should see a
response of status code 200 0K and the same body as earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

10.

11.

Now, delete the invoice, method DELETE, and URL
http://localhost:9000/invoiceservice/v1l/invoice/inve. You should see a
response of 200 0K without any response body.

Lastly, try to get that invoice again and you should see a response of status code 404
Not Found.

Now, to generate the SoapUI test artefacts, perform the following steps:

1. Go back to SoapUI and click on Done. The window should change and present
you with a tree view of all the requests you submitted.

2. Next, click on Generate services and select Services + TestSuite. Then, enter a

name for the TestSuite, for example, TestSuite Rest Discovery.

Click on OK to create TestCase.

4. A Success pop up should be displayed; click on OK to close discovery, and you
should see all the generated requests, TestSuite, TestCase, and TestSteps for
each of the requests in a new project called Project 1. Finished!

w

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

SoapUI sets up its own proxy to listen to all HTTP traffic routed through it. When you
make a request through the REST client, SoapUI is able to extract the details and build up
a list of sample requests. Then, when you have finished recording, SoapUI uses the list of
requests to generate test artifacts in the same way it would if the requests had come from
another source, for example, a WADL.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

On inspection of the generated REST project, we can see that the REST discovery has
provided a useful means of harvesting sample requests from a readymade service. You still
need to create Assertions and perhaps organize the generated TestSteps. The REST
discovery functionality could be useful when it comes to retrofitting tests, perhaps around
a service that has been developed code-first, as in the above example. It could also be
especially useful for services that don’t present a WADL or similar definition and
therefore cannot have test requests generated by other SoapUI means.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For more information on HTTP Monitor SoapUI Docs (open source), go to
http://www.soapui.org/HTTP-Recording/concept.html

www.it-ebooks.info

http://www.soapui.org/HTTP-Recording/concept.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2. Data-driven Testing and Using
External Datasources

In this chapter, we will cover the following topics:

Creating and checking data with the JDBC Request TestStep

Parameterizing SQL queries with the JDBC Request TestStep

Setting properties from an external file

Importing CSV file data into an in-memory H2 database with Groovy

Looping over CSV file data and driving tests with Groovy

Querying MongoDB with Groovy

Publishing, browsing, and consuming ActiveMQ JMS messages via the REST API

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

This chapter explores how to access and use common types of external data that you are
likely to need in SoapUI test scenarios, for example, files, SQL databases, NoSQL
databases, and JMS. While there isn’t scope to cover every possible type or
implementation, the building blocks learned here can be adapted to different situations and
used as the basis for later recipes.

In terms of data-driven testing, we’ll see how to support the pattern shown in the
following image:

S
‘-a.._,__‘_‘_‘—._._.__,_,f‘ :
Read test Loop if
— Start—> data from >| Do some tests —> more test No >
somewhere.. data?

In terms of options for reading the test data, we’ll look only at those for the open source
version of SoapUI. The pro version’s data-driven features, for example, DataSource,
DataSink, and DataLoop TestSteps are designed to be straightforward to use and receive
adequate coverage in the online help (see http://www.soapui.org/Data-Driven-
Testing/functional-tests.html), whereas achieving similar results in the open source version
generally requires a little more initial setup, creativity, and often a higher level on
technical understanding and/or skills, but that’s the fun part, right? A key enabler is the
Groovy TestStep, which is an important part of this chapter and several others. Some
more advanced examples of testing with custom Groovy data sources can be found in
Chapter 9, Data-driven Load Testing With Custom Datasources.

www.it-ebooks.info

http://www.soapui.org/Data-Driven-Testing/functional-tests.html
http://www.it-ebooks.info/

What you’ll learn

You will learn the following topics:

e How to set up basic and parameterized SQL queries using the JDBC Request
TestStep

e How to use SoapUI properties for configuration and reference properties’ property
expansions

e How to do basic data-driven testing in SoapUI

e How to use Groovy TestSteps to access and manipulate custom data sources

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll need

Basic Groovy or Java skills, or at least being happy to try a bit of hands-on scripting
would be useful. If you’ve never used Groovy before, take a look at

http://groovy.codehaus.org/Beginners+Tutorial.

www.it-ebooks.info

http://groovy.codehaus.org/Beginners+Tutorial
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and checking data with the
JDBC Request TestStep

If you need a quick way to access and check external SQL-based data, the JDBC Request
TestStep is a good place to start. The pro version of the JDBC Request TestStep adds ease-
of-use functionality, which is useful for less technical users, but by no means essential if
you have a reasonable grasp of SQL and aren’t afraid to enter a JDBC connection string
(URL). We’ll concentrate on using the open source version here.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

As the example for this recipe, we’ll access a MySQL database, but any JDBC data source
would work, although the SQL syntax may vary. To use the JDBC Request TestStep, the
main things we’ll need are:

e The database or access to it: If you don’t already have MySQL, then download the
latest version from http://dev.mysqgl.com/downloads/mysql/. The installation
instructions for each platform are also provided there.

e The JDBC driver: Please download the MySQL connector from
http://dev.mysql.com/downloads/connector/j/ if you don’t already have it. You will
also need the driver class name; for MySQL, it is com.mysql.jdbc.Driver.

e The JDBC connection string (URL): JDBC connection strings are very easy to find
on Google, if you don’t have yours already. The simple form of the MySQL
connection string’s URL is jdbc:mysql://<hostname>:<port>/<db name>?user=
<username>&password=<password>.

Tip
Pro version configuration

The pro version of SoapUI simplifies the preceding two requirements. You still need
to obtain and add the JDBC driver yourself, but a Configuration section is provided
to select the driver class and build the connection string URL using parameters. See

http://www.soapui.org/JDBC/testing-jdbc-databases.html if you need more info.
Tip
Troubleshooting

If you experience connection issues, don’t forget to check the Request Log tab next to
Assertions at the bottom of the JDBC Request TestStep. It can sometimes provide extra
debugging, such as JDBC errors.

The project for this recipe can be found at <chapter 2 samples>/JDBCTestStep-soapui-
project.xml.

www.it-ebooks.info

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/connector/j/
http://www.soapui.org/JDBC/testing-jdbc-databases.html
http://www.it-ebooks.info/

How to do it...

We’ll start by creating an empty project, TestSuite and TestStep. Then, we’ll add the
MySQL JDBC driver and configure the JDBC Request TestStep to connect to the MySQL
database. Finally, we’ll create a MySQL test table, enter data in it, and use the JDBC
Request TestStep to query the test data and use an Assertion to check its values.
Perform the following steps:

1. First off, we’re going to need a SoapUI project. It doesn’t matter what type of
project; create a new Generic Project with TestSuite, TestCase, and JDBC Request
TestStep.

2. Assuming you’ve installed MySQL, add the MySQL JDBC connector JAR, that is,
mysqgl-connector-java-5.1.17-bin.jar, to <SoapUI
installation>/java/app/bin/ext/, and restart SoapUI.

Tip
SoapUlI Extensions

Libraries added to <SoapUI installation>/java/app/bin/ext are added to
SoapUTI’s classpath. You will need to restart SoapUI after adding a library JAR before
it will be accessible.

3. When restarted, open the JDBC Request TestStep window and configure the
following:

o Driver (class name): com.mysql.jdbc.Driver

o Connection String (URL): for example,
jdbc:mysqgl://localhost:3306/test?user=root&password=rooty

o Click on TestConnection, and you should see a pop up that contains The
Connection Successfully Tested

4. Now, we can set up a test table and some test data. The pro version has a full
graphical query builder to help build queries—for more information see
http://www.soapui.org/JDBC/testing-jdbc-databases.html.

Tip
MySQL Workbench

A free and very good graphical editor tool is MySQL Workbench
(http://dev.mysqgl.com/downloads/workbench/). Along with most DB-related tasks,
this can also generate queries for you.

For the open source version:

o Open a connection to your MySQL database using your preferred means; for
example, if using the MySQL command line:

./mysql --user=root --password=rooty test

o Create a test invoice table in your database, for example:

www.it-ebooks.info

http://www.soapui.org/JDBC/testing-jdbc-databases.html
http://dev.mysql.com/downloads/workbench/
http://www.it-ebooks.info/

CREATE TABLE test.invoice (
id int(11) NOT NULL,
company varchar(45) DEFAULT NULL,
amount double DEFAULT NULL,
due_date datetime DEFAULT NULL,
PRIMARY KEY (id),
UNIQUE KEY id_UNIQUE (id)

)

o Add two test invoice records:

INSERT INTO invoice (id,company,amount,due_date) VALUES
(1, 'compl',100, '2014-09-30 00:00:00");
INSERT INTO invoice (id,company,amount,due_date) VALUES
(2, 'comp2',200, '2014-12-01 00:00:00");

Tip
The JDBC Request TestStep can run any DDL and SQL statements

Depending on the privileges of the DB user you connect as, SoapUI’s JDBC
Request TestStep can also create data, for example, insert, delete, update, as
well as perform DDL statements such as create, drop tables. While this is
convenient here in this recipe, it’s not normally allowed, nor is it a good practice
in a professional environment to connect as the root user.

5. Next, we can add a simple SQL query to select all the test data and see it in the XML
view:

o Enter the following SQL statement in the SQL Query box:

select * from invoice

o Click on run (the green arrow), and you should see the invoice test data:

<Results>
<ResultSet fetchSize="0">
<Row rowNumber="1">
<INVOICE.ID>1</INVOICE.ID>
<INVOICE.COMPANY>compl</INVOICE.COMPANY>
<INVOICE.AMOUNT>100</INVOICE.AMOUNT>
<INVOICE.DUE_DATE>2014-09-30
00:00:00.0</INVOICE.DUE_DATE>
</Row>
<Row rowNumber="2">
<INVOICE.ID>2</INVOICE.ID>
<INVOICE.COMPANY>comp2</INVOICE.COMPANY>
<INVOICE.AMOUNT>200</INVOICE.AMOUNT>
<INVOICE.DUE_DATE>2014-12-01
00:00:00.0</INVOICE.DUE_DATE>
</Row>
</ResultSet>
</Results>

6. Lastly, we can check the query results using Assertions. Under the Assertions tab,
add a new XPath Match Assertion:

www.it-ebooks.info

http://www.it-ebooks.info/

XPath: //Results[1]/ResultSet[1]/Row[1]/INVOICE.COMPANY[1]
Expected Results: compl

7. This Assertion should pass, assuming the first result has COMPANY=comp?1.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The JDBC Request TestStep functionality is just the TestStep equivalent of a SQL
database client. Apart from being used in TestCase to check query results using
Assertions, it’s also potentially useful for test data set up and teardown, for example, for
test data in a web service or mock service backend database.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e There are also two JDBC Request TestStep specific Assertion types, JDBC Status
and JDBC Timeout Assertions—for more information see

http://www.soapui.org/JDBC/getting-started.html
e The next recipe, Parameterizing SQL queries with the JDBC Request TestStep

www.it-ebooks.info

http://www.soapui.org/JDBC/getting-started.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Parameterizing SQL queries with the
JDBC Request TestStep

This recipe builds directly on the last one to show how the JDBC Request TestStep can
be used to execute parameterized SQL queries based on property values from outside the
TestStep. This can be useful, as it allows the JDBC Request TestStep to query and check
data based on properties set from the results of other TestSteps, for example, executing a
query using an ID obtained from a web service response.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

First, we add a new parameter with a fixed value to the JDBC Request TestStep and use
it as the criteria for a simple select query. Then, we change the JDBC Request TestStep
parameter to take its value from the value of a TestCase property. Perform the following
steps:

1. Edit the JDBC Request TestStep from the previous recipe and add a new parameter
called invoiceIdParam with a value of 2.

2. Then, modify the SQL Query value to add a where clause to specify that the invoice
id field must be equal to the value of invoiceIdParam:

select * from invoice where id=:invoiceIdParam

Note
Placeholder syntax
Use : before the intended parameter name in the query.

3. Running the query should now return only the invoice number as 2:

<Results>
<ResultSet fetchSize="0">
<Row rowNumber="1">
<INVOICE.ID>2</INVOICE.ID>
<INVOICE.COMPANY>comp2</INVOICE.COMPANY>
<INVOICE.AMOUNT>200</INVOICE.AMOUNT>
<INVOICE.DUE_DATE>2014-12-01 00:00:00.0</INVOICE.DUE_DATE>
</Row>
</ResultSet>
</Results>

4. So it works, but big deal! To make this more useful, we can try and use a SoapUI
property expansion to get the parameter value from somewhere outside of the test
step.

Tip
Property expansions
SoapUI has an expression language in order to reference properties across many of

the objects in a project. For more info, see http://www.soapui.org/Scripting-
Properties/property-expansion.html.

As an example:

o Add an invoiceNo property to the TestCase that contains the JDBC Request
TestStep; that is, double-click on the TestCase, click on the Properties tab, and
add a new property with name as invoiceNo and value as 1.

o Open the JDBC Request TestStep and edit the invoiceIdParam property value
to contain:

${#TestCase#invoiceNo}

www.it-ebooks.info

http://www.soapui.org/Scripting-Properties/property-expansion.html
http://www.it-ebooks.info/

o Run the TestStep, and you should see an invoice with id=1!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

This recipe has been mostly explained as we did it. The key learnings are the syntax used
for query parameters in a JDBC Request TestStep and the property expansion expression
language. Property expansions are a very important concept in SoapUI, as they effectively
allow data to be passed between related objects like TestSteps. They can be used in many
other places to insert property values. Common examples would be setting the value of
variables in a Groovy script or setting properties in a web service request.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Another example would be to use property expansions with the JDBC Request TestStep
to insert data gathered by a previous step, for example, to store test results in a database
for an external reporting tool to use or to populate a mock service’s test data. To insert data
based on parameter values, you could use a query like the following one:

INSERT INTO test.invoice

(id, company, amount, due_date)

VALUES

(:invoiceIdParam, :invoiceCompanyParam, :invoiceAmountParam,
:invoiceDueDateParam);

Tip
Property scopes

When using property expansions, it can be important to consider the property’s scope,
especially if you update them. For example, a project or a globally scoped property that is
updated by multiple TestCases could lead to concurrency or thread-safety issues. In
general, try to keep the scope as narrow as possible for writeable properties and as broad
as possible for read-only properties.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For more information on property transfers, go to http://www.soapui.org/Functional-
Testing/property-transfers.html

www.it-ebooks.info

http://www.soapui.org/Functional-Testing/property-transfers.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Setting properties from an external file

It can be a good idea to maintain your properties externally to your SoapUI project. This
can help make your projects more flexible when switching between target environments,
especially when running SoapUI from scripts (see Chapter 5, Automation and Scripting).
In this recipe, we will see how to do this using the Properties TestStep.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

I have added a sample properties file called test-properties.txt, which contains the
following code:

environmentName=Dev Test
invoiceEndpoint=http://localhost:9000
userName=test

password=password

There is a completed sample project called PropertiesProject in the Chapter 2 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

First, we create a new empty project, TestSuite and TestCase. Then, we add a Property
TestStep to read the properties from the test-properties.txt file using a project
property to store the file’s path. Finally, we write a Groovy TestStep to use property
expansions to access the loaded property values from the Property TestStep, and we
then return and log the values. Perform the following steps:

1

2.

Create new Generic Project with empty TestSuite and TestCase.

Create a property on the project called propertiesFile with the value /soapui-
cookbook/chapter2/test-properties. txt.

Create new Property TestStep. You only need to populate the Load From box with
${#Project#propertiesFile}, which refers to the previous project’s property.
Create a new Groovy TestStep, which contains the following code:

def propertiesFile = context.expand('${#Project#propertiesFile}"')
def environmentName =
context.expand('${LoadProperties#environmentName}')

def invoiceEndpoint =
context.expand('${LoadProperties#invoiceEndpoint}"')

def userName = context.expand('${LoadProperties#userName}')

def password = context.expand('${LoadProperties#password}')

return "propertiesFile: ${propertiesFile} environmentName:
${environmentName} invoiceEndpoint=${invoiceEndpoint}
userName=${userName} password=${password}"

Now, run the TestCase, and you should see the property data from the file in the
TestCase log!

www.it-ebooks.info

http://www.it-ebooks.info/

How it work...

The Properties TestStep is parameterized to take its filename from a project-level
property called propertiesFile. This is done for easy switching; for example, you can
have several properties files, one for each test environment.

The Groovy TestStep is just there for demo purposes and to illustrate the use of property
expansions to access the properties loaded by the Property TestStep. This step can
easily be replaced by a web service request TestStep, taking the endpoint and credentials
as property expansions.

The main learning is that you can avoid hardcoding parameters, and to do this, it’s
important to have a grasp of the ways to use properties in SoapUI.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e To learn more about how to work with properties, go to
http://www.soapui.org/Functional-Testing/working-with-properties.html

www.it-ebooks.info

http://www.soapui.org/Functional-Testing/working-with-properties.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Importing CSV file data into an in-
memory H2 database with Groovy

There are times when you just need a quick database loaded with test data and don’t want
to persist, set up, or install anything. Well, this is where the in-memory mode of the H2
database engine can come in handy (http://www.h2database.com/)!

www.it-ebooks.info

http://www.h2database.com/
http://www.it-ebooks.info/

Getting ready

Before using the H2 database, we need to download its JAR and add it to SoapUI’s
classpath. You can get the latest H2 JAR from

http://mvnrepository.com/artifact/com.h2database/h2/ (I took version 1.4.181). Then, add
it to <SoapUI Installation Directory>/java/app/bin/ext/.
You’ll also need some headed CSV data. Amazingly, the script might be able to handle

any valid CSV structure (see http://www.h2database.com/html/functions.html#csvread).
We’ll use a simple invoice example invoices_with_headers.csv that can be found in the

chapter 2 samples.

I have provided a completed SoapUI project GroovyInMemoryDB-soapui-project.xml in
the Chapter2 samples.

www.it-ebooks.info

http://mvnrepository.com/artifact/com.h2database/h2/
http://www.h2database.com/html/functions.html#csvread
http://www.it-ebooks.info/

How to do it...

Assuming you have a project, TestSuite and TestCase, we’ll add a Groovy TestStep to
register the H2 JDBC driver, load the CSV test data into a new table, select the data from
the table, and log the results. Perform the following steps:

1. Create a Groovy TestStep and add the following code:

import groovy.sql.Sql
import org.h2.Driver

com.eviware.soapui.support.GroovyUtils.registerJddbcDriver("org.h2.Drive
rll)

def db = Sqgl.newInstance("jdbc:h2:mem:test", "org.h2.Driver")

//Change this to the location of your CSV file.
def fileName = "/temp/invoices_with_headers.csv"

db.execute('"create table if not exists invoices as select * from
csvread('$fileName')")

db.eachRow("select * from invoices"){invoice->
log.info invoice.toString()

}
Note
Before running, make sure that the fileName variable is set to the correct path.

2. Running the Groovy TestStep should show the CSV data output to the log:

Thu Aug 28 16:40:57 BST 2014:INFO:[ID:1, COMPANY:compl, AMOUNT:100.0,
DUE_DATE:2014-12-01 00:00:00]
Thu Aug 28 16:40:57 BST 2014:INFO:[ID:2, COMPANY:comp2, AMOUNT:200.0,
DUE_DATE:2014-12-01 00:00:00]
Thu Aug 28 16:40:57 BST 2014:INFO:[ID:3, COMPANY:comp3, AMOUNT:300.0,
DUE_DATE:2014-12-01 00:00:00]

That’s it!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

One of the key requirements for working with JDBC drivers in SoapUI Groovy TestStep
scripts is to register the driver using the GroovyUtils.registerJdbcDriver method. If
you don’t do this, you get a no suitable driver found error when trying to get a new
database connection on the next line.

The groovy.sql.Sql class provides a very convenient wrapper to hide all the usual Java
JDBC connectivity code and connection management.

Tip

Groovy SQL

It’s worth taking a better look at this if you want to do more Groovy scripting with JDBC
data sources. Apart from the driver details and SQL, the code here would be applicable to
other JDBC databases like MySQL. For more info, see

http://groovy.codehaus.org/api/groovy/sqgl/Sql.html.

Apart from specifying the driver’s class name as org.h2.Driver, the connection string
jdbc:h2:mem: test specifies that we want our H2 database to be called test and created
in memory (mem).

Note
The in-memory mode

One thing to say about the convenience of in-memory mode is that the H2 database
instance doesn’t stop running after your Groovy script has finished, and remains available
until SoapUI’s JVM is closed down. This is why I put the if not exists clause in the
create table statement. Otherwise, rerunning the script will cause a table already
exists error.

Next, we have a pretty compact and dynamic SQL statement:

create table if not exists invoices as select * from csvread('$fileName')

This not only creates the table if it doesn’t already exist, but also defines its structure
based on the CSV file and then loads it with the data—Pow!

The last statement is fairly standard Groovy just to select all the invoice records, then
iterate over them, and print each one to the log.

www.it-ebooks.info

http://groovy.codehaus.org/api/groovy/sql/Sql.html
http://www.it-ebooks.info/

There’s more...

The preceding example is very compact and can prove to be useful when setting up test

data. See Chapter 3, Developing and Deploying Dynamic REST and SOAP Mocks for an
example. If you need to tear down the data, you can either delete the records or drop the
table:

db.execute("delete from invoices")
db.execute("drop table invoices")

Tip
Parameterize file paths

To improve the example, rather than hardcoding the file path, it would be a better practice
to use a property:

def fileName = testRunner.testCase.getPropertyValue("invoiceFileName")

That’s assuming the invoiceFileName property was set on TestCase.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e The SoapUI online help has a useful page with lots of Groovy scripting examples at
http://www.soapui.org/Scripting-Properties/tips-a-tricks.html

www.it-ebooks.info

http://www.soapui.org/Scripting-Properties/tips-a-tricks.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Looping over CSV file data and driving
tests with Groovy

Whether it is for loading test data or writing reports, using external data files can be a key
part of automated testing. Typically, you might need to read test data from a file and loop
over some test steps until there is no more data. In this recipe, we see how this can be
achieved easily using several reusable Groovy TestSteps.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

For example, let’s say we have a small CSV file of invoice data that we want to use to
drive our tests:

1,compl,100.0,2014-12-01 00:00:00
2,comp2,200.0,2014-12-02 00:00:00
3,comp3,300.0,2014-12-03 00:00:00

You can find this data in <chapter2 samples>/invoice.csv.

We will read each line and extract the values into properties, for example, to do something
useful, for example, populating a web service request.

I have provided a completed SoapUI project GroovyFiles-soapui-project.xml in the
Chapter2 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

I’m going to break this down into three separate Groovy TestSteps: one to read the test
data, another to extract it, and another to loop until all rows are processed. Perform the
following steps:

1. First, create Groovy TestStep called LoadAllTestDataFromFile and add the
following code:

context["rows"]=[]

//Change this to the location of your CSV file.

File testDataFile = new File("/temp/invoices.csv")

testDataFile.eachLine {content, lineNumber ->
context["rows"] << content

}

//Initialise row counter
context["currentRowIndex"]=0

return "Loaded ${context["rows"].size()} rows."

Note

Before running this code, make sure that the testbataFile variable is set to the
correct path.

There’s no need to run this just yet. This step loads all the CSV rows into List and
initializes a row counter variable.

2. Next, create a Groovy TestStep called GetNextRowAndExractValues:

def currentRowIndex = context["currentRowIndex"]

//Get values from csv row

def rowItems = context["rows"][currentRowIndex].split(/,/)
def invoiceId = rowItems[O]

def invoiceCompany = rowItems[1]

def invoiceAmount = rowItems[2]

def invoiceDueDate = rowItems[3]

//Increment counter
context["currentRowIndex"] = currentRowIndex + 1

return "Row #$currentRowIndex processed."

3. In this step, we extract all the fields with a view to doing something useful with the
values and increment the row counter.

4. Lastly, create a Groovy TestStep called LoopIfMoreRows, and add the following
code:

def currentRowIndex = context["currentRowIndex"]

if (currentRowIndex < context["rows"].size)
testRunner.gotoStepByName("GetNextRowAndExractValues")

www.it-ebooks.info

http://www.it-ebooks.info/

5. Now, run the TestCase that contains the three Groovy TestSteps, and you should
see the following:

Step 1 [LoadAllTestDataFromFile] OK: took © ms
-> Script-result: Loaded 3 rows.

Step 2 [GetNextRowAndExractValues] OK: took O ms
-> Script-result: Row #0 processed.

Step 3 [LoopIfMoreRows] OK: took © ms

Step 4 [GetNextRowAndExractValues] OK: took O ms
-> Script-result: Row #1 processed.

Step 5 [LoopIfMoreRows] OK: took ©@ ms

Step 6 [GetNextRowAndExractValues] OK: took O ms
-> Script-result: Row #2 processed.

Step 7 [LoopIfMoreRows] OK: took ©@ ms

This example doesn’t actually use the test data, but this would be an easy next step for us.
Tip
Granular Groovy TestSteps

While the preceding 3 steps could be replaced with a single Groovy TestStep, it can help
in reuse and readability if the steps are kept separate and well named.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The first step exploits the Groovy File class to read in the invoices.csv file. The Groovy
File class is more convenient to use than the standard Java equivalent, and is imported
automatically by Groovy. The eachLine method allows us to append (using left shift <<)
each full line from the CSV file to a rows collection that is stored in the SoapUI context.

Tip
SoapUI (TestCase) context variable

This holds the state or context that is passed between TestSteps. It is a good place to
store properties that are required by subsequent TestSteps. Properties added to the
context object are lost when the tests finish. In basic terms, the context object is an
implementation of java.util.Map, but the actual implementation of the context object is
dependent on how you are running the TestStep:

wsd1lTestRunContext is used when the TestStep is run as part of a TestCase.
MockTestRunContext is used when you run a TestStep individually.

SecurityTestRunContext is used when the TestStep is run as part of a security scan—
see the Scanning web service security vulnerabilities recipe from Chapter 7, Testing
Secured Web Services.

There is also a mock context object of type Wsd1MockRunContext — see Chapter 3,
Developing and Deploying Dynamic REST and SOAP Mocks

We also add currentRowIndex to the context object to keep track of the current row as
we iterate through the TestSteps for each row.

The GetNextRowAndExractValues Groovy TestStep extracts the current row from the
context and splits the row string by a comma to get an array of field values. Finally
currentRowIndex is then incremented and the text Row #$currentRowIndex processed is
returned just to provide some debugging output in the TestCase window. It’s inside the
GetNextRowAndExractValues Groovy TestStep that we could use the invoice CSV values
(extracted to variables invoiceId, invoiceCompany, invoiceAmount and
invoiceDueDate) to test something or alternatively pass them to another TestStep, for
example, use them to populate a web service request (see below example).

Lastly, the LoopIfMoreRows TestStep checks whether there are any rows left, and if so,
uses the tesRunner.gotoStepByName () method to repeat the
GetNextRowAndExtractValues TestStep.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Building on the previous example, the invoice CSV values could be used in a request for a
test web service call. To do that, we would need to put the invoice values somewhere
where we can accesses them from a subsequent REST Test Request TestStep or (SOAP)
Test Request TestStep.

The context object is a good place to set and get TestStep properties and can be used to
pass the ‘state’ between TestSteps.

So, if we inserted the previous test steps around the last chapter’s invoice CRUD service’s
POST REST Test Request TestStep like the one shown in the following screenshot:

LoadAllTestDataFromFile

GetMextRowAndExractValues
B§) invoice/ - POST

LooplfMoreRows

Then, we can add the following lines of Groovy just after extracting the values in
GetNextRowAndExtractValues:

//Create these context properties for use as parameters in the subsequent
test steps

context["invoiceCompany"]=invoiceCompany
context["invoiceAmount"]=invoiceAmount

Then, we can access these context properties using the ${property} syntax in the request
body of the POST REST Test Request TestStep to create an invoice:
{"Invoice": {

"companyName": "${invoiceCompany}",

"amount": "${invoiceAmount}"

13
Tip
Context property scope

Unlike other SoapUI object properties for example project level properties, context object
properties do not require a #scope qualifier when referenced directly using the Property
Expansion syntax as in the above example. For examples of how to reference other types
of property in using the Property Expansion syntax see http://www.soapui.org/scripting—

properties/property-expansion.html.

Running these steps will then call the invoice CRUD service’s POST method for each row
of CSV invoice data. To see this working, start the service implementation (see the
Generating SoapUI tests with REST discovery recipe of Chapter 1, Testing and Developing
Web Service Stubs With SoapUI, for more info) and take a look at Invoice-CRUD-
Project-soapui-project.xml in the Chapter 2 samples.

If you need to work with JSON or XML file data, then take a look at the Groovy JSON

www.it-ebooks.info

http://www.soapui.org/scripting---properties/property-expansion.html
http://www.it-ebooks.info/

and XML Slurpers (see the following links). They are easy to use and should take care of
your parsing needs.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e Custom Groovy data sources used in Chapter 9, Data-driven Load Testing With
Custom Datasources
¢ For more information on Conditional Goto TestStep, visit

http://www.soapui.org/Functional-Testing/conditional-goto.html

e For more information on Groovy JSON Slurper, go to

http://groovy.codehaus.org/gapi/groovy/json/JsonSlurper.html

e For more information on Groovy XML Slurper, go to

http://groovy.codehaus.org/Reading+XMIL +using+Groovy’s+XmlSlurper

www.it-ebooks.info

http://www.soapui.org/Functional-Testing/conditional-goto.html
http://groovy.codehaus.org/gapi/groovy/json/JsonSlurper.html
http://groovy.codehaus.org/Reading+XML+using+Groovy's+XmlSlurper
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Querying MongoDB with Groovy

The simplicity and scalability of document-based or NoSQL databases has made them
very popular. One of the most popular NoSQL databases is MongoDB
(http://www.mongodb.org/). In this recipe, we learn how to query MongoDB by calling its
API using a Groovy TestStep.

Tip
MongoDB as a service backend

Since MongoDB stores data as documents using the (Binary JSON) or BSON format, it
can be convenient for use as a service or a mock backend when JSON data is required.

www.it-ebooks.info

http://www.mongodb.org/
http://www.it-ebooks.info/

Getting ready

If you don’t already have MongoDB, then install it using the instructions on the main

MongoDB site (http://docs.mongodb.org/manual/installation/). I am assuming that
MongoDb will be running on the usual localhost and port 27017. By default, no

authentication is required; this will be assumed in this recipe.

To access MongoDB from Groovy, you can use the MongoDB Java driver. However,
Groovy users have the option of GMongo, which simplifies the API nicely.

Note
GMongo

This is a convenient Groovy wrapper for the standard MongoDB driver. Note that the
standard driver is still required. See https://github.com/poiati/gmongo.

Before using GMongo, we need to download the JAR files, and add them to SoapUI. You
can find the JAR files at Maven Central:

http://mvnrepository.com/artifact/org.mongodb/mongo-java-driver/

http://mvnrepository.com/artifact/com.gmongo/gmongo

This recipe uses the latest versions (driver 2.12.3 and GMongo 1.3); add the JAR files to
the following location:

<SoapUI Installation>/java/app/bin/ext

The completed SoapUI project GroovyMongoDB-soapui-project.xml can be found in the
Chapter2 samples.

www.it-ebooks.info

http://docs.mongodb.org/manual/installation/
https://github.com/poiati/gmongo
http://mvnrepository.com/artifact/org.mongodb/mongo-java-driver/
http://mvnrepository.com/artifact/com.gmongo/gmongo
http://www.it-ebooks.info/

How to do it...

Again, we’ll use a Groovy TestStep to run our example queries using the GMongo API.
First, we’ll create some test documents in MongoDB. Then, we will insert a query, update,
and delete examples. Perform the following steps:

1. First, let’s create a couple of MongoDB documents in a database called test. Create
a Groovy TestStep and enter the following:

import com.gmongo.GMongo

def mongo = new GMongo()
def db = mongo.getDB('test')

db.invoices << [id: 'inv1l', company: 'test companyl',6 amount: '100.00']
db.invoices << [id: 'inv2', company: 'test company2',6 amount: '200.00']

Note
Running the preceding script should

Create a new GMongo instance connected to the local MongoDB install,
host=localhost and port=27017

Use a database called test if one exists, or create the database
Insert two new invoice documents into a new or existing collection called invoices

2. Next, we will see how to query the invoice documents. There are many ways to do
this:

o Create a new Groovy TestStep and add the same GMongo database connection
code (db) as in the preceding example.
o Then, try the following statement:

//Get a single invoice object
log.info db.invoices.findOne()

o This should give an output similar to the following code:

Thu Aug 28 11:42:02 BST 2014:INFO:{ "_id" : { "$oid" :
"53fefc8b036476c440b3da8c"} , "amount" : "100" , "company" : '"test
companyl1" , "id" : "inv1"}

3. Some other simple query examples are shown in the following code:

//Get a single invoice document with id=inv2
log.info db.invoices.findOne(id: 'inv2')

//Get a single invoice document, excluding the object id (_id)
db.invoices.findOne([:], [_1id: 0])

//To iterate over all invoice documents
db.invoices.find().each{invoice->
log.info invoice

}

www.it-ebooks.info

http://www.it-ebooks.info/

4. To update documents, use the following query:

//Update invoice object with id=inv2 setting amount=500
db.invoices.update([id: 'inv2'], [$set: [amount: '500']])

5. To delete documents, use the following query:

//Delete invoice ibject with id=invi1
db.invoices.remove([id: 'inv1'])

//Delete ALL invoices
db.invoices.remove([:])

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

These are only simple and limited examples of what is possible. The GMongo wrapper has
provided default connectivity details and allowed us to focus on querying mongo. There
was also very little to import and configure, and there was no need to manage the
connection explicitly, for example, close it after use. If we need to connect to a different
server and port, it’s easy to do this using the constructor:

def mongo = new GMongo('localhost:27017"'")

Using the mongo query language is quite fun, but powerful! We have already seen how it
will create a new database and collection data without any fuss just by referring to them
using queries.

Tip
GMongo syntax differences

MongoDB syntax vs GMongo syntax - When looking up MongoDB commands, it’s
worth being mindful of the Groovy language changes that GMongo or Groovy needs to
make to the standard MongoDB equivalent syntax. For example, the MongoDB command
syntax to exclude the Mongo object (_id) from the query output is
db.invoices.findone({}, {_id: 0}), but with GMongo you would need to write this as
db.invoices.findone([:],[_id: ©]). In other words, the MongoDB syntax uses curly
brackets{}, where GMongo would use square brackets []. Also, the MongoDB uses
empty curly brackets {} to represent an empty Map, whereas GMongo or Groovy requires
us to use the empty Map [:].syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

To practice the queries and understand more about the way Mongo stores data, it’s worth
having a go with the MongoDB shell. Open a shell/command prompt and try the following
code:

cd <mongo installation directory>

./bin/mongo (should connect you to the local instance)
show dbs (should contain you 'test' database)
use test (use database test for ongoing queries)

show collections (should contain your 'invoices' collection)
db.invoices.find() (should give the same results as before)

For more info, see http://docs.mongodb.org/manual/reference/mongo-shell/.
Note
Authentication

If you need authenticated access to MongoDB, consider using the GMongo client class
com.gmongo.GMongoClient to get your connection (see https://github.com/poiati/gmongo
for more details).

If you have a lot of test data that you would like to load into a collection separately to
SoapUI, then take a look at the Mongo shell command mongoimport in the installation bin

directory. See http://docs.mongodb.org/manual/reference/program/mongoimport/ for more
details.

www.it-ebooks.info

http://docs.mongodb.org/manual/reference/mongo-shell/
https://github.com/poiati/gmongo
http://docs.mongodb.org/manual/reference/program/mongoimport/
http://www.it-ebooks.info/

See also

e For more information on Mongo REST interfaces, go to
http://docs.mongodb.org/ecosystem/tools/http-interfaces/

www.it-ebooks.info

http://docs.mongodb.org/ecosystem/tools/http-interfaces/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing, browsing, and consuming
ActiveMQ JMS messages via the REST
API

For SOAP over JMS SoapUI uses HermesJMS to provide JMS integration to test multiple
broker implementations. While HermesJMS is a comprehensive option, it needs some
setup and may not be necessary in all test scenarios.

Note
HermesJMS issues
I have noticed the following issues with HermesJMS:

e Java version: This doesn’t seem to work with Java 1.7 (Swing UI class load issue),
at least not on MacOS (1.7.0_25). To work around this downgrade from JAVA_HOME to
version 1.6 (1.6.0_65), that is, export JAVA HOME=$(/usr/libexec/java_home -v
1.6) and start SoapUI in the same shell.

e ActiveMQ version: Above ActiveMQ version 5.4.3, Hermes seems to have a class-
load issue. Others have logged this issue with HermesJMS. As a possible
workaround, using Hermes with the ActiveMQ 5.4.3 core JAR seems successful
against the latest ActiveMQ version 5.10.

Often, you will just want to browse, consume, or publish test messages on a queue or
topic. This is where ActiveMQ provides a convenient REST API that can be used directly
from browsers, code, REST clients, and of course SoapUI tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

I am assuming that you’re reasonably familiar with the JMS concepts, if not ActiveMQ
itself. Here are some very brief sample setup instructions:

Download the latest ActiveMQ from http://activemg.apache.org/download.html (this
recipe used version 5.10) and unzip it somewhere convenient.

cd <activemq home>/bin
./activemq console (or use start & stop to run in headless mode)

When it starts, check whether it’s fine by browsing to the web console using the following
URL and credentials: http://localhost:8161/admin/; username/password:
admin/admin.

The web admin console should display.

Note
ActiveMQ setup

Obviously, this is just a very quick default ActiveMQ setup. See
http://activemg.apache.org/ for more detailed setup information.

Later versions of ActiveMQ (5.8 onwards) present a useful REST API (see
http://activemg.apache.org/rest.html). As you might expect for a given queue or topic
request, POST publishes messages, and GET (and DELETE) requests consume messages.
This sounds reasonable enough, but from a purely RESTful and HTTP perspective, using
GET to modify data like this is not correct, that is, it changes the state of the queue or
topic. To browse messages, there is an admin queueBrowse URI.

For this recipe, we’ll interact with the REST API using SoapUI, but you can of course use
any suitable HTTP client, for example, browsers, plugins, curl, wget, and so on.

The completed project ActiveMQRESTAPI-soapui-project.xml can be found in the
Chapter 2 samples.

www.it-ebooks.info

http://activemq.apache.org/download.html
http://activemq.apache.org/
http://activemq.apache.org/rest.html
http://www.it-ebooks.info/

How to do it...

With ActiveMQ already set up and running, we’ll first set up a new REST project to
interact with the Active MQ REST API. Then, we’ll use REST POST Request to create or
publish a JMS message. After that, we’ll use the ActiveMQ Console to browse the queues
and messages. Finally, we’ll use a REST GET Request to consume a message.

1. Let’s get started! Open SoapUI and create new REST project.

o When prompted for the URI, enter this
http://localhost:8161/api/message/testqueue?
type=queue&clientId=soapui&requestTimeout=1000.

o URI: 7api/message/<queue or topic name>.

o Parameters: (case sensitive).

o clientId=<string>: To avoid the need to maintain a request session, we can
use the clientId parameter. In the point-to-point model, JMS states that you
can only have one consumer per queue (see http://activemg.apache.org/multiple-
consumers-on-a-queue.html). This equates to one clientId per queue.
However, any number of producers can publish messages to the same queue.

o Type=queue — Can also be topic.

o readTimeout=1000 (milliseconds): Can be advisable to limit delays; for
example, attempt to consume from an empty queue delays the response.

o Click on OK. This should create a project, a resource called Testqueue, a GET
method, and a sample request.

o Rename the method to consume message.

o Right-click on the Testqueue resource and create a new method called publish
message with the method of POST.

2. The ActiveMQ REST API requires HTTP Basic authentication, unless you disable it.
To add the credentials to the requests, open the POST request, click on the Auth tab
at the bottom left, select Add New Authorization, and select Basic. Enter username
as admin and password as admin. Do the same for the GET request. Not doing this
correctly will result in an error (HTTP status 401 Unauthorized) in the response.
Refer to the Testing basic HTTP authenticated web services recipe of Chapter 7,
Testing Secured Web Services, for setting Basic Auth.

3. Next, we need to add a message to the POST request to publish to testqueue. The
JMS API defines five message types (Stream, Map, Text, Object, and Bytes), but
text will do in most cases, for example, XML/SOAP, key-value pairs, and JSON.
We’ll receive a message as follows:

<Invoice>
<invoiceNo>12345</invoiceNo>
<company>Test Company</company>
<amount>100</amount>

</Invoice>

4. Paste this invoice XML into the body of the POST request and select Media Type as
text/xml.

www.it-ebooks.info

http://activemq.apache.org/multiple-consumers-on-a-queue.html
http://www.it-ebooks.info/

. Now, click on the green arrow to submit, and you should get a raw response,
something like:

HTTP/1.1 200 OK

messageID: ID:bear-software-macpro.home-51228-1409661873402-3:1:1:1:2
Content-Length: 12

Server: Jetty(7.6.9.v20130131)

Message sent

. Queues and topics are created on the fly, so let’s take a look at the ActiveMQ Web
Console and see how it’s looking. In the console, click on queues or go to
http://localhost:8161/admin/queues.jsp, and you should see the details of
testqueue, for example, Number Of Pending Messages=1 and so on.

. To browse through the messages on the queue without consuming them, click on
testqueue, and you should see your message with the id from the POST response you
got. Click on the message id and you should see all the properties, options, and the
message body you posted.

. Next, try consuming the message using your GET request, and you should see:

HTTP/1.1 200 OK

Cache-Control: no-cache, no-store, must-revalidate

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT

Content-Type: application/xml;charset=I1S0-8859-1

destination: queue://testqueue

id: ID:bear-software-macpro.home-57501-1409656609482-3:3:1:1:1
readTimeout: 1000

Transfer-Encoding: chunked

Server: Jetty(7.6.9.v20130131)

<Invoice> <invoiceNo0>12345</invoiceNo> <company>Test Company</company>
<amount>100</amount> <Invoice>

. In the web console, you can also verify that testqueue is now empty.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

There isn’t a lot to say here except that ActiveMQ provides a REST API that acts as a
proxy to the message broker, decoupling clients from the actual JMS message operations.
This contrasts to using HermesJMS, which is a Java Swing user interface with Java
libraries that SoapUI uses to publish and consume JMS messages.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Moving on from the previous example, you can of course derive TestSteps and
Assertions depending on what kind of message format you expect to receive. In our
example, an XPath Assertions would do, for example, to test the company name
returned in the response:

XPath: //Invoice[1]/company[1]

Expected: Test Company

Perhaps an assertion to check the HTTP status code is as expected, for example, 200 for
success.

If you need to browse messages on the queue directly, there are services for this too. For
example, to get a list of all messages on testqueue go to
http://localhost:8161/admin/queueBrowse/testqueue.

This will return an XML list of the message IDs.

To get an individual message go to
http://localhost:8161/admin/queueBrowse/testqueue?msgId=<message id>.

This will give quite verbose data on the message. You can also get a list of queues with
http://localhost:8161/admin/xml/queues. jsp.

Apart from the REST API, there is some nice looking work going on to produce a Groovy
style JMS API (see http://groovy.codehaus.org/GroovyJMS). Another approach is to use
the ActiveMQConnectionFactory class directly; lots of examples of this can be found at
http://www.programcreek.com/java-api-examples/index.php?
api=org.apache.activemq.ActiveMQConnectionFactory.

www.it-ebooks.info

http://groovy.codehaus.org/GroovyJMS
http://www.programcreek.com/java-api-examples/index.php?api=org.apache.activemq.ActiveMQConnectionFactory
http://www.it-ebooks.info/

See also

¢ For more information on Groovy JMS, go to

http://groovy.codehaus.org/GroovyJMS+-+v0.1+Docs+and+Example

e For more information on SoapUI JMS docs, go to

http://www.soapui.org/JMS/getting-started.html

¢ For more information on SoapUI Groovy JMS example, go to

http://www.soapui.org/JMS/working-with-jms-messages.html

www.it-ebooks.info

http://groovy.codehaus.org/GroovyJMS+-+v0.1+Docs+and+Example
http://www.soapui.org/JMS/getting-started.html
http://www.soapui.org/JMS/working-with-jms-messages.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3. Developing and Deploying
Dynamic REST and SOAP Mocks

In this chapter, we will cover the following topics:

Selecting mock responses using Groovy
Developing dynamic database-driven SOAP mocks
Developing dynamic database-driven REST mocks
Building mock responses dynamically

Building and deploying mocks as WAR files

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

SoapUI has a very useful and easy-to-use REST and SOAP mock service functionality.
This chapter looks to build on standard static response mocks by using Groovy scripting
and database backends to provide dynamic responses that can also store and retrieve
request data.

In terms of web service mocking as a strategy, the SoapUI online docs (see
http://www.soapui.org/soap-mocking/service-mocking-overview.html) mention the pros
and cons of using mock services to decouple web service dependencies during application
development and testing cycles. As a counter point to the benefits of developing against
mocks early on, I would suggest that vertical slicing (see
http://en.wikipedia.org/wiki/Vertical_slice) should also be considered as an alternative
strategy.

It can help mitigate some of the risks that early mocking can hide, for example,
complexity in the form of data access and/or network connectivity issues. Also, using
service stubs (see Chapter 1, Testing and Developing Web Service Stubs With SoapUI)
could be a better choice than mocks if the stub services will eventually be developed into
the full production services. Mocks are the typical choice when you need a quick,
sometimes throwaway, means of simulating a web service dependency that will not be
deployed outside of a test environment. In the later chapters, we’ll use SoapUI mocks to
do a variety of tasks including:

Handling SOAP callbacks (see Chapter 4, Web Service Test Scenarios)
Handling SOAP attachments (see Chapter 4, Web Service Test Scenarios)
Being started and called from scripts (see Chapter 5, Automation and Scripting)
Handling secure HTTPS traffic and using client certificate authentication (see
Chapter 7, Securing Mock Services Using X.509 Certificates)

At the time of writing, SoapUI’s SOAP mock functionality is more mature than the REST
equivalent in some areas, but with a little extra effort and Groovy scripting, the issues can
easily be overcome. The online help docs are also currently far better for SOAP than they
are for REST, although the process for actually setting up REST mocks is very similar.

www.it-ebooks.info

http://www.soapui.org/soap-mocking/service-mocking-overview.html
http://en.wikipedia.org/wiki/Vertical_slice
http://www.it-ebooks.info/

What you’ll learn

You will learn the following topics:
e For REST and SOAP mocks:

How to query request properties using scripts
How to use mock variables in scripts

How to selectively dispatch responses

How to build responses dynamically

O O O o

e How to use Groovy SQL to store and retrieve mock request data from an H2 database
e How to build and deploy mock WAR files and how they work

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll need

You will need basic Groovy or Java Skills. Like the last chapter, this one builds on your
Groovy skills to make mocks dynamic.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting mock responses using Groovy

Moving on from basic single response mocks, it is often necessary to provide different
mock responses depending on the request data. SoapUI offers some simple ways to do
this; SOAP mocks offer dispatch types of RANDOM, SEQUENCE, XPATH,
QUERY_MATCH, and SCRIPT. REST mocks currently only have the SEQUENCE
and SCRIPT dispatch types. However, once mastered, SCRIPT is, by far, the most useful
and flexible dispatch type. For details on the other dispatch types, see

http://www.soapui.org/Service-Mocking/simulating-complex-behaviour.html.

To illustrate the use of the SCRIPT dispatch type, you’re going to learn how content
negotiation can be achieved in a REST mock. Often, RESTful web services provide what
is called content negotiation to optionally produce either JSON, XML, or potentially other
response formats depending on the request properties. This is very easy to do with SoapUI
REST mocks.

www.it-ebooks.info

http://www.soapui.org/Service-Mocking/simulating-complex-behaviour.html
http://www.it-ebooks.info/

Getting ready

The two main ways to do content negotiation are by using the Accept header property or
by adding a . json or .xml extension to the resource, for example, /invoice/1234. json.

The SoapUI project for this recipe is called RESTContentNegotiation-soapui-
project.xml and is available in the chapter 3 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

All we need to illustrate the two approaches is a REST project with one JSON
MockResponse and one XML MockResponse. Then, we can add a resource level Groovy
script to conditionally select the appropriate response for the request. Perform the
following steps:

1. Create a new REST project based on the http://localhost:8989/invoice/ URI
with a single GET method and a sample request. Add a new parameter to the request
called id with a type TEMPLATE.

2. Generate a REST mock for the service. Open the GET/invoice/resource and
add/edit two MockResponse documents. The first one is called JSON Response with
Content | Media Type as application/json and contains the following code:

{"invoice": {

"id": 123,
"companyName": "Test Company",
"amount": 555

3}

The second one is called XML Response, with Content | Media Type as
application/xml and contains the following code:

<invoice>
<invoiceNo>123</invoiceNo>
<company>Test Company</company>
<amount>555</amount>
</invoice>

3. Change Dispatch: from SEQUENCE to SCRIPT, and select the default response to
be JSON Response. Then, add the following script:

def requestPath = mockRequest.getPath()

def acceptHeader = mockRequest.getRequestHeaders().get("Accept")
log.info "Path: "+ requestPath

log.info "Accept Header: "+acceptHeader

if(requestPath.endswWith(".json") ||
acceptHeader?.contains("application/json"))

{
log.info "Matched JSON"

return "JSON Response"
}
else if (requestPath.endswith(".xml") ||
acceptHeader?.contains("application/xml")
| | acceptHeader?.contains("text/xml"))
{

log.info "Matched XML"
return "XML Response"
}

log.info "No match - returning default"

4. To test whether the content negotiation is working as expected, we can set up some

www.it-ebooks.info

http://www.it-ebooks.info/

REST Request TestSteps. All we need to do is:
o Test a variety of different requests types, for example:

/invoice/1234 (no header) -> Expect JSON Response
/invoice/1234 (application/xml) -> Expect XML Response
/invoice/1234 (text/xml) -> Expect XML Response
/invoice/1234 (text/plain) -> Expect (Default) JSON Response
/invoice/1234 (application/json) -> Expect JSON Response
/invoice/1234.json -> Expect JSON Response

/invoice/1234.xml -> Expect XML Response

Tip
Script assertions

We can check whether the Content-Type response header is as expected, by
using a Script Assertion, for example, if we expect XML use:

assert messageExchange.response.contentType=="application/xml"
Or if we expect JSON use:
assert messageExchange.response.contentType=="application/json"

o Here are the results of the sample TestSteps:

¥ i= Test Steps (7)
B RequestwithMoExtensionOrHeaderShould Produce) 50N
[T IRequestWithNoExtensionAndApplicationX MLHeaderShould Produce XML
B RequestwithMoExtensionAnd TextXMLHeaderShouldProduce XML
B RequestwithNoExtensionAnd TextPlainHeaderShould ProduceDefault) SONResponse
B RequestWithNoExtensionAndApplication)SONHeaderShouldProduce]SON
B Requestwith)SONExtensionShould Produce) SON
@ rReguestwithXMLExtensionShouldProduceXML

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

With a Groovy script added to the /invoice/ action, SoapUI allows us to override the
chosen response using the return value of the script. The script implementation is able to
access the path and request headers from the mockRequest object. Then, simple decisions
are made on which response to dispatch. This implementation of content negotiation is not
bomb-proof or tested for every possible request type, but it hopefully shows how Groovy
script in mocks can be used to select responses depending on the request content.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

This conditional response selection can be applied to many different scenarios. One
common application is to simulate happy and unhappy paths. For example, we could have
a mock HTTP status 404 response for the invoice number 555. To do this, create a new
MockResponse with the text/xml media type, status code as 404 and content as Invoice
555 not found.. Then, add the following Groovy to the script just before the other if
statements:

if (requestPath ==~
/\/invoice\/555|\/invoice\/555.xml|\/invoice\/555.json/) {
log.info "Matched invoice not found."
return "Response 404"

}
Tip
Regex alternative

If you’re not happy using regex’s, then testing using Groovy string methods, for example,
requestPath.endswith("555") for each ending would also work.

Now, if you request /invoice/555, /invoice/555.json or /invoice/555.xml, you
should see the 404 response. This approach also works well when you need to simulate
SOAP faults.

Building on selecting static responses, the next three recipes show various ways to make
the content dynamic.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For more information on Content Negotiation, please visit
http://en.wikipedia.org/wiki/Content negotiation

www.it-ebooks.info

http://en.wikipedia.org/wiki/Content_negotiation
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Developing dynamic database-driven
SOAP mocks

Moving on from mocks that perhaps return optional content from a fixed set of static
responses or use simple scripts to generate responses, there are database-driven mocks that
are capable of storing and retrieving data from requests or preloaded test data.

One of the core concerns when deciding on how best to mock a service is minimizing the
cost of its implementation, as the mock normally needs to be available quickly, and its
implementation will often be considered a throwaway. This recipe shows a low-cost way
to enable a SoapUI mock to use a light in-memory database to preload, store, and retrieve
the request data.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

This recipe requires the H2 database setup to be covered in the Importing CSV file data
into an in-memory H2 database with Groovy recipe of Chapter 2, Data-driven Testing and
Using External Datasources. Please follow the Getting ready section and review the
recipe for further information on using the H2 database with Groovy. There is also a
sample invoice test data file called invoices_with_headers.csv, which you will need
again in this recipe.

The worked example is going to focus on a SOAP mock. Obtain its WSDL from <chapter
1 samples>/soap/invoicev2_impl/wsdl/invoice_v2.wsdl.

The SoapUI project for this recipe is called SOAPMock-soapui-project.xml and is
available in the chapter 3 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Once the SoapUI project and service are created, we’ll tackle the Groovy scripting in three
main parts. The first script will set up the H2 database, create an invoices table, and load
the CSV test data when the mock starts. The second part will extract the invoiceNo value
from the request and use it to query invoice records in the invoices table. If found, the
matching invoice record will be retrieved and used to populate the response. Perform the
following steps:

1. Create a new SOAP project using WSDL invoice_v2.wsdl.

2. Create a new SOAP Mock for invoicePortBinding. Right-click on Generate SOAP
Mock Service. Accept defaults, unless you already have something running on the
suggested port.

3. Test the mock using getInvoice (Request 1). First, make sure that the mock is
started; then, get its URL, for example,
http://localhost:8088/mockInvoicePortBinding, update Request 1 to point to
this URL, and fire the request. You should see Response 1 from the getInvoice
mock operation (it will contain ? values).

4. Next, we’ll set up the H2 DB and load it with the CSV test data on start-up. Open the
mock and click on the Start Script tab and add the following Groovy script:

import groovy.sql.Sql
import org.h2.Driver

com.eviware.soapui.support.GroovyUtils.registerJdbcDriver("org.h2.Drive
rll)

def db = Sgl.newInstance("jdbc:h2:mem:test", "org.h2.Driver")
//Make sure you check this path is correct.
def fileName = "/temp/invoices_with_headers.csv"

db.execute('"create table if not exists invoices as select * from
csvread('$fileName')")

context["databaseConnection"]=db
We won’t run this now, but check whether:

o You have added the H2 database driver to SoapUI’s ext/ directory.

o The def fileName = "/temp/invoices_with_headers.csv" points to the
correct location.

o Optionally, extract this file path to a property (see Chapter 2, Data-driven
Testing and Using External Datasources, if you need any help with this).

5. Then, to allow the test data to be queried and update the response for each request,
edit the mocks’ getInvoice action and add the following Groovy script:

def db = context["databaseConnection"]

def requestXMLHolder = new

com.eviware.soapui.support.XmlHolder (mockRequest.requestContent)
requestXMLHolder .declareNamespace("inv", "http://soapui.cookbook.samples

www.it-ebooks.info

http://www.it-ebooks.info/

/schema/invoice")

def

requestInvoiceNo=requestXMLHolder .getNodeValue("//inv:getInvoice[1]/inv
rinvoiceNo[1]")

def invoice = db.firstRow("select * from invoices where id =
$requestInvoiceNo")

requestContext["responseInvoiceNo"]=invoice?.1id
requestContext["responseCompany"]=invoice?.company
requestContext["responseAmount'"]=invoice?.amount

. Lastly, amend the getInvoice response (Response 1) to include the queried
properties from the context:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:inv="http://soapui.cookbook.samples/schema/invoice">
<soapenv:Header/>
<soapenv:Body>
<inv:InvoiceDocument>
<inv:invoiceNo>${responseInvoiceNo}</inv:invoiceNo>
<inv:company>${responseCompany}</inv:company>
<inv:amount>${responseAmount}</inv:amount>
</inv:InvoiceDocument>
</soapenv:Body>
</soapenv:Envelope>

. Now, test Request 1 again with the invoiceNo values equal to 1, 2, and 3, and you
should see the CSV’s values returned in the response!

Tip
There’s no need to restart the mock after script changes—Groovy scripts are
dynamic!

Stage 2 is to implement the createInvoice operation to insert invoice values
extracted from the request into the invoices table.

. Edit the mock’s createInvoice action and add the following script:

def db = context["databaseConnection"]

def requestXMLHolder = new

com.eviware.soapul.support.XmlHolder (mockRequest.requestContent)
requestXMLHolder .declareNamespace("inv", "http://soapui.cookbook.samples
/schema/invoice")

def

requestInvoiceNo=requestXMLHolder .getNodeValue("//inv:createInvoice[1]/
inv:invoiceNo[1]")

def

requestCompany=requestXMLHolder .getNodevValue("//inv:createInvoice[1]/in
v:company[1]")

def

requestAmount=requestXMLHolder .getNodevValue("//inv:createInvoice[1]/inv:
amount[1]")

www.it-ebooks.info

http://www.it-ebooks.info/

def invoiceNo = db.execute("insert into invoices values
($requestInvoiceNo, $requestCompany, $requestAmount, null)")
requestContext|["responseInvoiceNo"]=requestInvoiceNo

9. Edit the createInvoice response (Response 1) and include the responseInvoiceNo
property into the response, that is, change <inv:invoiceNo>?</inv:invoiceNo> to
<inv:invoiceNo>${responseInvoiceNo}</inv:invoiceNo>.

10. Then, to test:

1. Edit the invoicePortBinding createInvoice request, (Request 1), replacing
the ? values with test values.

2. Correct the request URL to point to the mock, as per step 3, and then fire the
request.

3. You should see the invoiceNo value that you entered in the acknowledgment
response.

4. Finally, test whether you can use getInvoice to retrieve this invoice from the
mock’s DB, by repeating step 7 using your test invoiceNo.

5. You should see an invoice response that contains the test data you just entered!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

When you start the mock in SoapUlI, an embedded (Jetty) HTTP server is used to publish
the service and handle requests. SoapUI then manages the HTTP request/response cycle
and makes copies of the key objects; for example, mockRequest is made available to the
various Groovy script hooks. This allows us to change the response content to anything we
like. Note that in the case of a mock, the context object exists while the mock runs and
not just for the request cycle; that is, the context object’s properties are potentially shared
between all mock requests.

This makes it an appropriate place to store mock-wide properties, like the database
connection. In contrast, the requestContext object only lasts for the duration of each
request cycle, making it appropriate to store properties intended to be request-specific, for
example, the property values for its matching response.

Tip
Property scope choices and thread safety

When working with properties, always consider their scope. For example, in many cases,
you could get away with storing request-specific properties in the mock’s context object.
However, in the event of simultaneous mock requests, the chances of concurrency issues
increase, for example, contention regarding the response value properties between
separate requests!

Tip

Groovy SQL and parameterized queries

We have used Groovy SQL to build our parameterized query statements. This has the
benefit of converting our queries into prepared statements behind the scenes. This also
means that all field parameters are automatically escaped to avoid issues, for example,

apostrophes that break our statements and so on; for more info, see
http://groovy.codehaus.org/Tutorial+6+-+Groovy+SQL..

www.it-ebooks.info

http://groovy.codehaus.org/Tutorial+6+-+Groovy+SQL
http://www.it-ebooks.info/

There’s more...

The mock essentially focuses on the happy path to load, create, and retrieve mock invoice
data; that is, there is no validation or fault handling. For example, to keep things brief, we
have just used the Groovy safe navigation operator (see
http://groovy.codehaus.org/Operators#Operators-SafeNavigationOperator(?.)) to prevent
NullPointerExceptions and return an empty invoice response when getInvoice is called
with an invoiceNo that is not found in the database (which results in invoice==null). A
more complete approach would be to return a SOAP fault response, perhaps using the
technique explained in the first recipe. If you do this, it will be a good practice to also
declare the SOAP fault for the getInvoice operation in the WSDL.

To extend the mock, you might want to provide delete and update operations. You could
use the following statements as the basis for that:

db.execute("delete from invoices where id=$requestInvoiceNo")
db.execute("update invoices set id=$requestInvoiceNo,
company=$requestCompany, amount=$requestAmount where id=$requestInvoiceNo")

If you need to tear down the test data, you can add the following:
db.execute("drop table invoices")

Go to the mock’s Stop Script, or insert this statement just before the create table
statement in the getInvoice mock operation script.

Tip
The H2 in-memory DB survives mock restarts

If you don’t drop the table or modify the database rows directly, then any data added will
remain, and updates to the CSV file will not be reflected even if you restart the mock.
Restarting SoapUI will refresh the table data from the CSV, as the in-memory H2 database
is run as part of SoapUI’s JVM.

www.it-ebooks.info

http://groovy.codehaus.org/Operators#Operators-SafeNavigationOperator(?.)
http://www.it-ebooks.info/

See also

e For more choices of mock data sources, see Chapter 2, Data-driven Testing and
Using External Datasources
e Refer to SoapUI’s online documentation at http://www.soapui.org/Service-

Mocking/creating-dynamic-mockservices.html
e Refer to the next recipe, Developing dynamic database driven REST mocks

www.it-ebooks.info

http://www.soapui.org/Service-Mocking/creating-dynamic-mockservices.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Developing dynamic database-driven
REST mocks

This recipe covers the changes required to make the H2 database implementation from the
previous recipe work with a RESTful web service mock. The main differences will be
when working with the request and response data, as the REST version will use JSON
invoice content.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

All H2 database-related setup from the previous recipe is required, as is the
invoices_with_headers.csv test data file.

In terms of the example RESTful web service to mock, we’ll use the invoice CRUD
service interface from Chapter 1, Testing and Developing Web Service Stubs With SoapUL.
The generated WADL definition for the service can be found at <chapter 3
samples/invoice_crud_v1.wadl.

The SoapUI project for this recipe is called RESTMock-soapui-project.xml, and can be
found in the chapter 3 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

REST mocks are very similar in structure to SOAP ones. As before, we first need a
SoapUI project. Then, we’ll create a REST mock and add code that is very similar to what
we used in the previous recipe. Perform the following steps:

1. To create the REST project, we are going to use invoice_crud_vi.wadl. Go to New
REST Project and then click on Import WADL.. This should create the project, an
endpoint called invoice_crud_vi, and a resource /invoice with four methods POST,
GET, PUT, and DELETE.

2. Next, generate the REST mock. Right-click on the endpoint and select Generate
New REST Mock Service. You should see a mock service with five actions:

oot finvoiceservice fvl/

Jinvoiceservice /vl /invoicef
pEL finvoiceservice vl finvoice
T finvoiceservice /vl Jinvoice
ot finvoiceservice /vl finvoice

Tip
Mocking a WADL request

If you want to mock WADL requests to return invoice_crud_vi.wadl, use a URI
such as /invoiceservice/v1/application.wadl instead of /invoiceservice/v1/?
_wadl, as the ? seems to confuse the SoapUI mock, and the request never gets
matched properly.

3. First, let’s mock the GET request. Double-click on the
/invoiceservice/vil/invoice/ action, change Dispatch from SEQUENCE to
SCRIPT, and set Default Response as Response 1. Then, to add MockResponse,
double-click on Response 1, change the Content | Media Type value to
application/json, and paste the following JSON code into the Editor box:
{"invoice": {

"id": 12345,
"companyName": "Test Company",
"amount": 100

i

4. To test whether this works, start the mock and make a GET request (Request 1) to
/invoiceservice/v1/invoice/ with any ID set as a parameter, and you should see
the JSON you just entered in the response pane.

5. Next, let’s get the H2 database scripts hooked up. Add the same Groovy database
setup script from step 4 of the previous recipe to the REST mock’s Start Script tab.
Then, double-click on the /invoiceservice/vi1/invoice/ action and add the
following Groovy script:

www.it-ebooks.info

http://www.it-ebooks.info/

def db = context["databaseConnection"]
def invoiceNo = mockRequest.getPath().split("/")[-1]

def invoice = db.firstRow("select * from invoices where id =
$invoiceNo")

requestContext["responseInvoiceNo"]=invoice?.1id
requestContext["responseCompany"]=invoice?.company
requestContext["responseAmount"]=invoice?.amount

. Then, edit the Response 1 content to include the queried properties, similar to what
we did in the previous recipe:
{"invoice": {

"id": ${responseInvoiceNo},

"companyName": ${responseCompany},
"amount": ${responseAmount}

1}

. Now, we’re ready to test this as we did in step 4 using the IDs 1, 2, and 3 (matching
those in the CSV file); this should return the matching CSV’s invoice data as a JSON
response!

. For the second part, we need to create new invoice records based on the request
details when the POST requests are made to /invoiceservice/v1/invoice/.

Note
Bug accessing REST mock request content SoapUI (fixed version 5.1)

This is more inconvenient for open source users, because at the time of writing, the
latest O/S version is 5.0, but pro is at 5.1.2. Open source users can work around this
by building and running SoapUI from Git, which might sound a bit full-on, but is
actually quite straightforward—see the Building, packaging, and running SoapUI
from the source code recipe from Chapter 11, Taking SoapUI Further. There are other
advantages to building from source; for one, the current SoapUI version is 5.2 (ahead
of pro) and includes many fixes.

. First, double-click on the mock POST method’s /invoiceservice/v1/invoice/
action, change Dispatch from SEQUENCE to SCRIPT, and set the Default
Response value to Response 1. Then, click on the Script tab and add the following
Groovy script:

import groovy.json.JsonSlurper
def db = context["databaseConnection"]

def slurper
def request

= new JsonSlurper()

= slurper.parseText(mockRequest.requestContent)
def requestInvoiceId = request?.invoice?.id

def requestCompanyName = request?.invoice?.companyName

def requestAmount = request?.invoice?.amount

www.it-ebooks.info

http://www.it-ebooks.info/

10.

11.

db.execute("insert into invoices values
($requestInvoiceld, $requestCompanyName, $requestAmount, null)")

requestContext["responseld"] = requestInvoiceld
requestContext["responseCompany"] = requestCompanyName
requestContext|["responseAmount"] = requestAmount

Then, to add the response, double-click on Response 1, change the Content | Media
Type value to application/json, and paste the following JSON code into the Editor
box:
{"invoice": {

"id": ${responseld},

"companyName": "${responseCompany}",
"amount": ${responseAmount}

1}

Now, we are ready to test this:

1. Edit invoice_crud_v1 | invoice/ | POST | Request 1 and add some test request

data:

{"invoice": {
"id": 7,
"companyName": "Test Company 7",
"amount": 555

1}

2. Then, correct the URL to point to the mock and then fire the request. You should
see the preceding document in the response pane.

3. Finally, test whether you can retrieve this invoice from the mock’s DB by
repeating the GET request, like in step 4, using your id=7. You should see an
invoice response that contains the test data you just entered!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The main differences to the previous SOAP mock recipe are having to get the invoice ID
from the URI instead of the request XML when performing a GET request:

def invoiceNo = mockRequest.getPath().split("/")[-1]

This is achieved with quite a nice Groovy feature that allows you to get the last element in
an array (split by /) using a negative index of -1, which, in the case of
http://localhost:8090/invoiceservice/vil/invoice/1234, is the invoice ID.

The other main difference is in using JSON Slurper to extract the invoice values from a
JSON request body when handling a POST request (for more info, see

http://groovy.codehaus.org/gapi/groovy/json/JsonSlurper.html):

def request = slurper.parseText(mockRequest.requestContent)
def requestInvoiceld = request?.invoice?.1id

Once parsed, we have convenient object-level access to the request properties. Note the
use of the Groovy safe navigation operator to prevent NullPointerExceptions.

www.it-ebooks.info

http://groovy.codehaus.org/gapi/groovy/json/JsonSlurper.html
http://www.it-ebooks.info/

There’s more...

Again, this mock implementation is very happy path, with no real checks or validation. If
you want to add some simple error-handling such as returning an HTTP status 404 when a
GET request is made for an invoice ID that does not exist, then you can conditionally return
a different mock response; for example, create a new mock response on the
/invoiceservice/v1l/invoice/ action (with the status as 404 and an error message), and
after performing the select query to look up the invoice record, add the following
statement:

if (invoice==null) return "Response 404"

This will override the default response (Response 1) in case no invoice record exists in the
database (see the sample project for a working example).

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e XML Slurper is an alternative to XPath when working with XML.:
http://groovy.codehaus.org/api/groovy/util/XmliSlurper.html.

www.it-ebooks.info

http://groovy.codehaus.org/api/groovy/util/XmlSlurper.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building mock responses dynamically

As an alternative to conditionally selecting fixed structure mock responses, it is also very
doable, but usually more effort, to construct responses dynamically. This can be useful
when you want to vary the response structure in a way that would be tedious to hardcode.
One example of this would be a mock implementation of a find/search resource; for
example, /invoices?size=3 could return a response that contains a collection of size
number of invoice documents. Then, the mockResponse object, available in the
MockResponse level script, could allow us to shape the response any way we want (see

MockResponse at http://www.soapui.org/apidocs/index.html).

www.it-ebooks.info

http://www.soapui.org/apidocs/index.html
http://www.it-ebooks.info/

How to do it...

To achieve the earlier mentioned example, we can use Groovy’s JSONBuilder class to
generate the collection of JSON invoice documents based on the size parameter. Then,
we’ll set this on the mockResponse object:

1.

We can add the new /invoices/size=2 resource on the RESTContentNegotiation-
soapui-project.xml project.

Then, add the new resource as Action to the mock.

Next, create new MockResponse (named Dynamic Response) for /invoices and add
the following to the Dynamic Response script tab:

def queryString = mockRequest.getRequest().getQueryString()
int size = queryString.split("=")[1].toInteger()
def invoices = []
size.times {

invoices << ["invoice":["id":"$it", "company":"test
$it", "amount":"10$it"]]
}

def invoicesMap=["invoices":invoices]
def builder = new groovy.json.JsonBuilder(invoicesMap)

mockResponse.responseContent=builder.toPrettyString()
mockResponse.responseHttpStatus=200

def headers = mockResponse.responseHeaders
headers["Content-Type"]=["application/json"]
mockResponse.responseHeaders=headers

Now, we can give it a test by requesting /invoices?size=1, 2, 3, and you should see
a response that contains an invoice’s JSON collection, which contains the size
number of JSON-generated invoice documents!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

First, we extract the size parameter from the query string.
Tip
URIBuilder

If you need to do more work with URLSs, then take a look at

http://groovy.codehaus.org/modules/http-
builder/apidocs/groovyx/net/http/URIBuilder.html.

Then, we use it to construct a nested Map structure that matches exactly with the JSON
collection we are looking to generate. Next, we convert invoicesMap to the JSON format
using JSONBuilder, and set mockResponse.responseContent to the resulting content.

Finally, we set the HTTP status code to 200 (success) and set the content type in the HTTP
header to application/json. Note that the response headers are of type
StringToStringsMap or Map<String, List<String>>.

www.it-ebooks.info

http://groovy.codehaus.org/modules/http-builder/apidocs/groovyx/net/http/URIBuilder.html
http://www.it-ebooks.info/

There’s more...

Apart from the JSON content generation part, the key thing to realize here is that we can
set the mockResponse object to anything we like by setting a few properties! For example,
if we wanted XML invoice content, then that’s just as easy using MarkupBuilder—see

http://groovy.codehaus.org/api/groovy/xml/MarkupBuilder.html.

www.it-ebooks.info

http://groovy.codehaus.org/api/groovy/xml/MarkupBuilder.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Deploying mocks as WAR files

One very useful feature of SoapUI mocks is that they can be deployed to servlet containers
like Jetty and Tomcat as WAR files. This greatly increases the scope of SoapUI mocks, as
it allows them to be deployed independently and potentially support environments that
don’t have access to the real services.

The deploy as war feature is available for both REST and SOAP mocks, although the
REST version is less mature than the SOAP version, and, at the time of writing, has a few
issues. One issue is that it only works post version 5.1, which makes it only directly
available to pro users and open source users that are happy to build SoapUI from the
source (see the Building, packaging, and running SoapUI from the source code recipe
from Chapter 11, Taking SoapUI Further). Another issue is that a REST mock WebUI
isn’t available, although this doesn’t affect the actual mock functionality. However, don’t
let this put you off as the issues are very fixable; we just don’t have the time to do it right
now!

In this recipe, we’ll learn how to deploy the SOAPMock-soapui-project.xml sample
project to an Apache Tomcat server and look at how this works. If you would rather do a
REST example, the RESTMock-soapui-project.xml or RESTContentNegotiation-
soapui-project.xml sample projects will work too.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To see the end product of this recipe, you will need Apache Tomcat or another servlet
container. Here, we use Tomcat 7.0.41; if you need help choosing a version, take a look at

http://tomcat.apache.org/whichversion.html.

Installation is very simple; that is, unzip it! Also, the installation only requires a

compatible JDK. Go to http://tomcat.apache.org/tomcat-8.0-doc/setup.html for installation

instructions (change the 8.0 to 7.0 in the link for the 7.x version).

Note
SoapUI mock memory issues

SoapUI mocks can take more memory than you might expect. I needed to increase my

MaxPermSize by creating a setEnv. sh script in <tomcat home>/bin/, which contains
export JAVA _OPTS="-Dfile.encoding=UTF-8 -Xms128m -Xmx1024m -XX:PermSize=64m

-XX:MaxPermSize=256m".

If you need any help with this, see http://www.mkyong.com/tomcat/tomcat-
javalangoutofmemoryerror-permgen-space/.

www.it-ebooks.info

http://tomcat.apache.org/whichversion.html
http://tomcat.apache.org/tomcat-8.0-doc/setup.html
http://www.mkyong.com/tomcat/tomcat-javalangoutofmemoryerror-permgen-space/
http://www.it-ebooks.info/

How to do it...

The process for deploying a mock as a war is the same for both REST and SOAP mocks.
Here, we’re going to generate a SOAP mock based on the SOAPMock -soapui-project.xml
project.

Right-click on the project and select Deploy As War. You should see the following pop
up with options:

Include Global Settings: Specify if global settings should be included
Settings: [Users /bearsoftwaresoapui-settings.xm

Include Actions: Specify if action extensions should be included
Include Listeners: Specify if listener extensions should be included

Include External Jar Files: (¥ Include jar files from ext folder
WebUI: M Check to enable WebUI

MockService Endpoint:

War File: fwork /soapui-cookbook/chapter3 /soap/dbsoap.war Browse...
War Directory: /work /soapui-cookbook /chapter3/soap/ Browse...
Tip

Pro only option

The pro version has an Include Script Library option to package any custom Groovy
scripts that you have added to the pro script library feature. For more on the pro script
library feature, see http://www.soapui.org/Scripting-Properties/scripting-and-the-script-

library.html.
The Include Global Settings option is important if you have set any mock-specific

preferences like SSL and any global properties. See Chapter 7, Testing Secured Web
Services for more information on mock SSL configuration.

The Include Actions and Include Listeners options do just that. See Chapter 11, Taking
SoapUI Further for more details on these two topics.

In this example, it’s important to tick the Include jar files from ext folder option, as our
project requires the H2 database driver to be included in the WAR file.

The WebUI user interface can be quite useful to monitor and debug the mock, as it has a
link to the WSDL, and shows request and Groovy logs. Not ticking the WebUI only
disables it and doesn’t reduce the size of the WAR.

The MockService Endpoint option is only important if you want the mock’s WSDL to
have a correct address location attribute, and is not relevant to REST mocks. For example,
leaving it empty results in:

www.it-ebooks.info

http://www.soapui.org/Scripting-Properties/scripting-and-the-script-library.html
http://www.it-ebooks.info/

<soap:address location="http://localhost:8088/mockInvoicePortBinding"/>

This is wrong in our case, since our Tomcat port is 8080 and the mock WAR name
(dbsoap) is required in the URI; that is, the correct address is
http://localhost:8080/dbsoap/mockInvoicePortBinding?WSDL.

The War File and War Directory options are self-explanatory, but have the following
catch:

Note
Potential Issue

If you want the packed WAR file to be produced, it’s important to repeat the path for both
the War File and War Directory as shown in the preceding screenshot!

1. Click on OK to generate the mock, and you should see the following generated
artifacts in the War Directory location:

dbsoap.war
header_logo.png
stylesheet.css
WEB-INF

The last three files are just the exploded WAR contents.

2. With Tomcat running, to deploy the mock, copy the dbsoap.war file into your
<Tomcat Home>/webapps directory. Then, you should be able to:

o Access the mock webUI at http://localhost:8080/dbsoap/

o Access the WSDL at
http://localhost:8080/dbsoap/mockInvoicePortBinding?WSDL

o Call getInvoice and createInvoice operations on the mock by firing SoapUI
requests at http://localhost:8080/dbsoap/mockInvoicePortBinding

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The Deploy As War functionality basically bundles up at least the SoapUI project file,
SoapUl itself (soapui-5.2.0-SNAPSHOT. jar), and all third-party libraries, and places
them under WEB- INF in the WAR file and/or the WAR folder. If you take a look in WEB-
INF/1ib, you’ll see what happened. This is why the WAR is actually quite big, at
approximately 47 MB! Some of the libraries under the 1ib folder will also be redundant in
terms of a mock’s needs.

It also creates a web . xm1l file that holds all the options you selected as parameters and
routes requests to MockAswarServlet to make the mock available.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

The same WAR generation functionality can also be done via a script located at <SoapUI
Home>/bin/wargenerator.sh (run the script to see parameters).

The script ultimately calls the same class as the UI does, that is,
com.eviware.soapui.tools.MockAsWar.

Apart from deploying mocks as WAR files, they can also be run using scripts: <SoapUI
Home>/bin/mockservicerunner.sh.

For several examples of how to do this, take a look at Chapter 5, Automation and
Scripting.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e SoapUI online documentation at http://www.soapui.org/Service-Mocking/deploying-
mock-services-as-war-files.html

www.it-ebooks.info

http://www.soapui.org/Service-Mocking/deploying-mock-services-as-war-files.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4. Web Service Test Scenarios

In this chapter, we will cover the following topics:

Testing WSDL and response WS-I compliance

Testing SOAP response schema compliance

Testing REST response XML schema compliance
Testing response compliance using JSON schemas
Testing and mocking SOAP (MTOM+XOP) attachments
Testing HATEOAS links

Testing polling style asynchronous REST services
Testing asynchronous SOAP service callbacks

Testing for e-mails with Groovy

Testing files with Groovy

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

This chapter provides a collection of scenario-based recipes to test RESTful and SOAP
web services with SoapUI. These are, by no means, the most common scenarios or
themes; instead, we’ll mostly look at slightly more advanced topics that will hopefully
complement basic material available elsewhere.

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll learn

You will learn the following topics:

How to test REST responses for XML and JSON schema compliance
How to mock and test SOAP attachments

How to mock and test HATEOAS links

How to mock and test RESTful and SOAP asynchronous services
How to use Groovy to check for files and e-mails using IMAP

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll need

You will need the following:

¢ Basic Groovy skills: The Groovy skills learned in the previous two chapters will be

put to good use here too

¢ SoapUI mock skills: Mocking is used extensively in the sample projects, so if you
haven’t covered Chapter 3, Developing and Deploying Dynamic REST and SOAP
Mocks, you may find it useful to refer to it

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing WSDL and response WS-I
compliance

We will not talk much about what WS-I compliance is or what its guidelines are; instead,
we will be giving an overview of how to check it using SoapUI. In brief, WS-I standards
are there to provide guidelines that promote interoperability when using all the web
service specifications, such as WSDL, SOAP, and UDDI. Broadly speaking, failing to
achieve compliance could narrow who is able to consume your service (for more
information, see http://www.ws-i.org/).

www.it-ebooks.info

http://www.ws-i.org/
http://www.it-ebooks.info/

Getting ready

As an example, we can check the compliance of invoice v2.wsdl from chapter 1.
Alternatively, you could also use any valid (but not necessarily compliant) WSDL of your

choosing.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We’ll first look at how SoapUI can check WSDL WS-I compliance. Then, we’ll briefly
look at how SoapUI can check response compliance and the current issues in doing this.

1. First, the WS-I tool needs to be configured in SoapUI. Go to Preferences | WS-I
Settings:

o [would suggest that you tick all the options to get more information.

o There is a bundled version of the WS-I compliance tool in <SoapuI
Install>/java/app/wsi-test-tools. Optionally, copy this folder somewhere
else and set the Tool Location property to this location.

o Then, select Output Folder. It’s not a big deal really, but if you want the links
to the various Assertions in the report to work, then the <wsi-test-
tools>/common directory needs to be two directories back relative to the report
file; for example, creating the report in <wsi-test-tools>/output/reports
would work.

2. Before you can check a WSDL using SoapUI, you’ll need to create a SOAP project
for it. So, if you don’t have any more exciting WSDLs handy, create a new SOAP
project using invoice_v2.wsdl.

3. Then, open the WSDL service window (double-click on InvoicePortBinding) and
open the WS-1 Compliance tab.

4. Click on the green arrow to create the report; then, a WSI Analyser window should
appear that contains the runtime output from the tool.

5. Once complete, close this and the report should be visible in the WSDL service
window! At the bottom of the window, you will see the Report (already displayed)
and Config tabs. The Config tab shows the WS-I tool config that was used to run the
report.

6. To check response compliance, just make a SOAP request and right-click on the
response XML view and select Check WS-I Compliance; if everything goes well,
you will see a report. Unfortunately, all is probably not well! In the current (5.x)
version of SoapUI, you’ll get an error that looks similar to the following:

Could not find status code in http headers: [[HTTP/1.1 200 OK]

At the time of writing, this has been reported as a bug. If you need to, it is still possible to
work around this issue by manually using the compliance analyzer and correcting the
issue. I’ll explain how in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

As you can see from the tool execution console log, SoapUI uses your preferences to
construct an XML config, which is then used to run <wsi-test-
tools>/java/bin/analyzer.sh. All the information that the tool needs to run is provided
in the XML config. You can obtain the XML config that SoapUI uses by copying the
location from the analyzer command invocation log entry, for example:

Analyzer.sh -config /var/folders/k2/khl17mqin74zfclwik8kkdpp40000gn/T/wsi-
analyzer-config4822832238659996042.xml -assertionDescription true

Then, you can copy the XML config to a convenient location and customize it if required.
For example, to fix the status code issue, all that is wrong is that the square brackets need
to be removed from [HTTP/1.1 200 0K] in the response XML (the file’s path is under
logFile in the config XML). Then, if you rerun the analyzer tool against the corrected
response log XML, the report should be generated successfully.

Tip
Report assertion code

The meaning of assertion code, for example, BP2123, can be looked up in the document
links at http://ws-i.org/. Make sure you match the SOAP version, for example, 1.2, to the
Basic Profile document version.

www.it-ebooks.info

http://ws-i.org/
http://www.it-ebooks.info/

There’s more...

Apache CXF also provides a wsdlvalidator tool to check WSDL WS-I compliance (refer
to the next link). Online compliance checkers also exist, although some have issues if
schemas aren’t defined inline; that is, as part of the WSDL, rather being imported or
included.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For more information on Apache CXF WSDL Validator, go to
http://cxf.apache.org/docs/wsdlvalidator.html

e To know more about an online WSDL Validator, refer to https://www.wsdl-

analyzer.com/
e For more information on WS-I, go to

http://en.wikipedia.org/wiki/Web_Services_Interoperability

www.it-ebooks.info

http://cxf.apache.org/docs/wsdlvalidator.html
https://www.wsdl-analyzer.com/
http://en.wikipedia.org/wiki/Web_Services_Interoperability
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing SOAP response schema
compliance

For SOAP responses, the schema compliance assertion is straightforward to use and can
be very useful. It works by validating the response XML against the schema types as
defined or imported in the WSDL. Depending on the strictness of your XSD, this allows
you to check the structure and content with one assertion. In this recipe, we’ll learn how to
test the schema compliance of the invoice v2 service introduced in Chapter 1, Testing and
Developing Web Service Stubs With SoapUL.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To explore a SOAP schema compliance example, we’ll need an initial project setup. To
speed things up, we’ll use a ready-made SOAP project based on the invoice v2 service.
The project can be found in the chapter 4 samples:

e WSDL: invoice_v2.wsdl

e SOAP Project: Invoice-v2-soapui-project.xml

e SOAP mock: InvoicePortBinding MockService in the project and four sample
responses to the getInvoice action.

o Test Setup: A TestSuite, TestCase, and TestRequest TestStep for getInvoice that
calls the mock.

How to do it...

1. The mock is set up in the SEQUENCE mode to cycle through four sample
responses:

Response OK: This indicates a valid response.

Response Element Missing: This indicates that the element amount is missing.
Response Wrong Type: This indicates that the type is set to OrderDocument.
Response Wrong Element Order: This indicates that the element order is
reversed.

O O O o

2. To see the responses, start the mock and run the getInvoice TestStep five times or so
to cycle through all of the mock’s responses.

3. Next, add the schema compliance assertion: TestStep Assertions tab | right-click on
Add Assertion | Compliance, Status and Standards | Schema Compliance and
click on OK to the definition popup that suggests invoice_v2.wsdl.

Now, if you run the getInvoice TestStep several times, you will notice the various issues
being reported against the last three responses.

How it works...

As you probably already know, SoapUI is able to capture the responses and validate them
against the schema definition of InvoiceDocumentType contained in the WSDL. If you
inspect the type definition, it is simple as type definitions go, but requires all the elements
to be present (the minOccurs attribute defaults to 1 if not specified); also, the type name
must match and the element order (xsd: sequence) is enforced.

There’s more...

You can obviously go a lot further with schema definition than this example shows, for
example, by using stricter data types for content validation, defining your own types, and
so on. If you would like to know more, one place to start is
http://www.w3schools.com/schema/.

See also

www.it-ebooks.info

http://www.w3schools.com/schema/
http://www.it-ebooks.info/

e For more information on SoapUI Assertions, go to http://www.soapui.org/Functional-
Testing/getting-started-with-assertions.html

www.it-ebooks.info

http://www.soapui.org/Functional-Testing/getting-started-with-assertions.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing REST response XML schema
compliance

The REST schema validation assertion is similar in usage to the SOAP version, but has a
few limitations. Firstly, it is driven by WADL definition, which potentially narrows its
scope since not all RESTful web services are defined by or even provide WADL
definitions. As the WADL standard can only define XML messages, not JSON, this
prevents the assertion from being able to check JSON responses. Lastly, the REST schema
compliance assertion only actually validates XML responses if the representation
‘element‘ attribute is present and correct in the WADL, which is not always the case, that
is, correct would mean like in the following example assuming there is a schema defined
with a type named invoice:

<method name="GET">
<request></request>
<response>
<representation mediaType="application/xml" element="tns:invoice" />
</response>
</method>

Otherwise, if there is no ‘element‘ attribute defined or even if there is, and the element in
the response XML doesn’t match exactly (including the namespace), then the assertion
always passes unless the response is empty! Sounds weird, but it’s easier to explain with
an example.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To explore the REST schema compliance assertion’s usage in the same way as the
previous recipe, we’ll use a ready-made test project, mock, and TestStep. Please take a
look at the project invoice-rest-xml-vi-soapui-project.xml in the chapter 4 samples.

We’ll also use a WADL called invoice_xml_vi.wadl, which can be found in the chapter
4 samples. It is similar to the previous invoice examples in chapter 1 samples. It defines
an invoice type:

<xs:element name="invoice" type="tns:InvoiceType" />
<xs:complexType name="InvoiceType">
<Xxs:sequence>
<xs:element name="id" type="xs:string" />
<xs:element name='"companyName" type='"xs:string" />
<xs:element name="amount" type="xs:double" />
</xs:sequence>
</xs:complexType>

The invoice type is then used in the representation ‘element attribute, as explained in
the introduction.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To test schema compliance, the mock is set up in the SEQUENCE mode and has four
sample responses to the GET /invoiceservice/vi/invoice/{id} resource. We’ll then run
the TestStep to test the responses and analyze the results. Perform the following steps:

1. There are four sample responses like before:

Response OK

Response Missing Amount Element

Response Wrong Element Order

Response Wrong Type, But Passes!: This incorrectly uses an order element
instead of an invoice one

O O O o

2. First, open up the invoice_rest_xml_vi project and start the mock (REST
MockService).

3. Then, you can use the GET invoice TestStep to fire requests at the mock and see the
sample responses. The schema compliance assertion has already been added, so you
should also see validation messages. The only difference with the REST version is
that you need to supply a WADL instead of a WSDL.

All the results should be similar to the previous SOAP example, apart from the last one,
that is, how could that pass? We’ll explain why in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

One key difference with the SOAP Schema Compliance Assertion is the Representations
tab shown under the response in the REST Request TestStep:

Type Media-Type Status Codes | QMame
RESPOMSE application,/xml [{http:/ /v1.invoice.restlinvoice

In short, the way the wadlvalidator class (see SoapUI source code) is written, it will only
attempt to validate the response if the representation’s QName is equal to the element’s
type (including namespace) in the response XML. In other words, if the response XML’s
element is not equal to the representation’s QName, then it can be anything (except
empty), and the Assertion will pass! Hence, why the last sample response with the wrong
type passed. Apart from this issue, the validation against the schema works as expected.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

So what if you’ve got a REST service, without a WADL, or one that uses JSON, and
you’d like to check its responses against a schema? Well, as usual, there’s always a DIY
(Groovy) option, as covered in the next recipe!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing response compliance using JSON
schemas

Do you have REST responses that you’d like to validate against a JSON schema? This
recipe shows a simple way to do this using a Groovy TestStep.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

First, we’re going to need a simple test project with a mock that produces some sample
JSON responses for us to validate. A ready-made project invoice-rest-json-schema-
soapui-project.xml has been provided to do this in the chapter 4 samples. It contains a
simple REST project with one resource GET /invoice/{id}, a mock with two sample
responses, and a test case with REST TestRequest and Groovy TestSteps. The invoice
document is the usual example; that is:
{"invoice": {

"id": 12345,

"companyName": "Test Company",

"amount": 100

3}

We’ll also need a JSON schema to validate this, invoice_schema.json has been provided
in the chapter 4 samples:

{
"$schema":"http://json-schema.org/draft-03/schema",
"required":true,
"type":"object",
"properties":{

"invoice":{
"required":true,
Iltypell : Ilobj eCt",
"properties":{

"amount": {
"required":true,
"type":"number"

X+

"companyName" : {
"required":true,
"type":"string"

Xt

llidll :{
"required":true,
"type":"number"

3

3
}
3
3

For the actual schema validation library, we’ll use Francis Galiegue’s json-schema-
validator project from GitHub (see https://github.com/fge/json-schema-validator). The
easiest way to use this within SoapUI is with the “full” JAR version json-schema-
validator-2.2.5-1ib.jar. You can get this from https://bintray.com/fge/maven/json-
schema-validator/view. This library needs to be added to the SoapUI classpath by placing
it in <SoapUI Install>/java/app/bin/ext and restarting.

www.it-ebooks.info

https://github.com/fge/json-schema-validator
https://bintray.com/fge/maven/json-schema-validator/view
http://www.it-ebooks.info/

How to do it...

After the REST Test Request TestStep is called, we can use a Groovy TestStep to:

¢ Get the response using a SoapUI property expansion

e [oad the invoice_schema.json schema from a file (check its location)
¢ Validate the invoice response against the schema using the library

¢ Fail the TestStep if the invoice response doesn’t pass validation.

Here is the Groovy script:

import com.fasterxml.jackson.databind.JsonNode

import com.fasterxml.jackson.databind.ObjectMapper

import com.github.fge.jsonschema.core.report.ProcessingReport
import com.github.fge.jsonschema.main.JsonSchema

import com.github.fge.jsonschema.main.JsonSchemaFactory

def response = context.expand('${GET invoice#Response}')

ObjectMapper mapper = new ObjectMapper()

JsonNode invoiceJSON = mapper.readTree(response)

JsonNode invoiceSchemalJSON = mapper.readTree(new File("/soapui-
cookbook/chapter4/invoice_schema.json"))

JsonSchemaFactory factory = JsonSchemaFactory.byDefault()

JsonSchema invoiceSchema = factory.getJsonSchema(invoiceSchemaJSON)

if (invoiceSchema.validInstance(invoiceJSON)) log.info("Response

Validated!")

else {
testRunner.fail(invoiceSchema.validate(invoiceJSON).toString())

}

Now, if you run the TestCase, it should alternate between passing and failing as the mock
returns Response OK or Response Amount Property Missing responses. The second
response gives the following validation failure:

TestCase failed
[com.github.fge.jsonschema.core.report.ListProcessingReport: failure ---
BEGIN MESSAGES --- error: object has missing required properties
(["amount"]) level: "error" schema:

{"loadingURI":"#",6 "pointer":"/properties/invoice"} instance:
{"pointer":"/invoice"} domain: "validation" keyword: "properties" required:
["amount", "companyName", "id"] missing: ["amount"] --- END MESSAGES ---],
time taken = 16

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In terms of the functionality provided by the sample JSON schema validation, apart from
checking that the response is a valid JSON, it only checks whether all the properties are
present and correct. You can obviously go further than this (see http://json-schema.org/ for
more options).

With this approach, all validation is achieved without SoapUI using custom code. Also,
the libraries used are Java based rather than Groovy ones, so there is a fair amount of
imports compared to other scripts seen so far. It is also necessary to use the Jackson JSON
mapper to get the response as a JsonNode for use with the schema validator. Jackson is a
very popular JSON parsing and generation library in the Java world; for more info, see

https://github.com/FasterXMI./Jackson.

Once a JsonSchema object is obtained from the factory, the two key methods are
validateInstance, which returns a Boolean result, and validate, which produces the
JSON-based report shown earlier.

This solution doesn’t directly handle empty responses or exceptions due to invalid JSON
structure, but these would be very easy enhancements.

www.it-ebooks.info

http://json-schema.org/
https://github.com/FasterXML/Jackson
http://www.it-ebooks.info/

There’s more...

As an alternative solution, the Groovy schema validator script could also be used inside a
Script Assertion. For example, to modify the above script to get the response JSON
content in a Script Assertion, instead of:

def response = context.expand('${GET invoice#Response}')
In the Script Assertion you can use:

def response = messageExchange.response.contentAsString

If you need help generating and testing JSON schemas, take a look at the links below, as
there are some good online tools.

Need XML schema validation?

What if you’ve got a REST service and want to check schema compliance for XML
responses and don’t have a WADL? Well, an XML schema version of this recipe is
probably about as easy to achieve. Just replace the JSON schema library details with the
XML equivalents. The Groovy site has an example that could easily be adapted; see

http://groovy.codehaus.org/Validating+XMI +with+a+W3C+XMI.+Schema.

www.it-ebooks.info

http://groovy.codehaus.org/Validating+XML+with+a+W3C+XML+Schema
http://www.it-ebooks.info/

See also

e For more information on the Online JSON schema generator, go to

http://www.jsonschema.net/
e The online version of the library used includes a JSON instance validator, which can

be found at http://json-schema-validator.herokuapp.com/index.jsp

www.it-ebooks.info

http://www.jsonschema.net/
http://json-schema-validator.herokuapp.com/index.jsp
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing and mocking SOAP
(MTOM+XOP) attachments

In this recipe, we’ll look at how to mock and test SOAP attachments using SoapUI.
Without going into too many details, there are several options for sending binary
attachments using SOAP:

¢ Inline Attachment: The attachment is encoded using Base64 and is represented as
XML inside the SOAP envelope.

e SOAP with attachments (SwA): The attachment is not encoded, and is represented
separately to the SOAP envelope as binary data using a mime attachment. The
attachment is then referenced from the SOAP message using href, for example,
<attachment href="cid:imgID"/>.

e Message Transmission Optimization Mechanism (MTOM) using XML-binary
Optimized Packaging (XOP): Like SwA, a separate mime attachment is used to
represent the binary data, but XOP allows the attachment data to be logically
included within the SOAP envelope using an XOP ref, for example, <attachment>
<xop:Include href="cid:imgID"
xmlns:xop="http://www.w3.0rg/2004/08/xop/include"/></attachment>.

This summary is very brief, so if you would like to understand more about the specific
differences, see the links at the end of this recipe. In short, method 1 (inline) is the least
efficient because the Base64 encoding can increase the size of binary data quite
significantly. Option 3 (MTOM) improves on option 2 (SwA) as the attachment details are
represented using an XML standard, that is, XOP. This helps to overcome some of the
usage and interoperability issues that SwA suffers from as a consequence including the
attachment separately to the SOAP message in a native, often binary data format—see
http://www.w3.org/TR/SOAP-attachments for more info on SwA.

SoapUI can handle all three options, but we’ll concentrate only on SOAP attachments
using MTOM and XOP here.

www.it-ebooks.info

http://www.w3.org/TR/SOAP-attachments
http://www.it-ebooks.info/

Getting ready

As an example, we’ll enable binary invoice file attachments on the invoice v2 service
from chapter 1 samples. The easiest option to explore SOAP attachments in SoapUI is to
set up a mock. To define the mock service, invoice_v2.wsdl has been enhanced to
support an attachment by including a file element in InvoiceDocumentType. The
resulting WSDL is called invoice_v2_1.wsdl. This WSDL and the mock service can be
found in the project Invoice-v2-1-Attachments-soapui-project.xml in the chapter 4
samples. Some sample PDF attachments (invoice1.pdf) can also be found there, but you
can use any PDF you like.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

First, we’ll mock the createInvoice operation to accept an invoice PDF attachment using
MTOM and XOP:

1.

First, create a new SOAP project based on invoice v2_1.wsdl, and generate a new
mock service based on the service. If you take a look at the createInvoice request,
you should see that SoapUI has understood that the WSDL requires an attachment
and added the cid (content ID) notation to the request, for example,
<inv:file>cid:813654200109</inv:file>. Let’s change this to something more
meaningful, like a filename, for example,
<inv:file>cid:invoicel.pdf</inv:file>.

Next, open the Attachments tab and upload invoice1.pdf (say No to the option to
cache if you want updates to the attachment to be reflected automatically). Click on
the part field and select a part of invoice1l.pdf.

Optionally, just to quickly illustrate inline attachments (option 1), start the mock and
fire the request at it. Click on the Raw request tab, and you should see a content type
of text/xml and the attachment inline to the file element <inv:file>JVBERio... Note
that the data has been truncated due to the size!

To get the request to attach the file using MTOM and XOP, in the Request
Properties, set Enable MTOM to true and submit the request. Now, flip open the
Raw request tab, and you should see a content type of multipart/related;
type="application/xop+xml"; the file element that contains an XOP reference to
the attachment:

<inv:file><inc:Include href="cid:invoicel.pdf"
xmlns:inc="http://www.w3.0rg/2004/08/xop/include"/></inv:file>

It also contains binary data in a mime section. A sample response should also be
returned. The Type in the Attachments tab should have become XOP.

For the second part, we’ll mock the getInvoice operation to return the same attachment
and a valid response that shows the XOP attachment reference:

1.

Open the getInvoice mock response, the suggested mock response SOAP is actually
wrong; correct the file element to contain an XOP reference as follows:

<file><xop:Include href="cid:invoicevl.pdf"
xmlns:xop="http://www.w3.0rg/2004/08/xop/include"/></file>

Next, set Enable MTOM to true in the MockResponse properties and add
invoicel.pdf as an attachment (say No to cache). Selecting the part doesn’t seem to
work! Luckily, the significant thing for correctness is that href in the response
matches the contentID of the attachment, although SoapUI won’t pick this up as an
error in a mock. The type of the attachment also remains unknown in the mock.

Now, point the getInvoice TestStep request at the mock and set its Request
Properties Enable MTOM to true. If you fire the request and take a look at the
Raw response, you’ll see that it’s not what we expected; that is, the attachment is as a

www.it-ebooks.info

http://www.it-ebooks.info/

mime (OK), but the content-type is text/xml and not application/xop+xml! Also,
under the Attachments tab, the Type is MIME and not XoP! To correct this, it is
necessary to set Force MTOM to true in MockResponse Properties. Do this and
resubmit the request, and everything should be correct!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

If you take a look at invoice_v2_1.wsdl, the only real changes are in the schema section:

<xsd:element name="file" type="xsd:base64Binary"
xmime:expectedContentTypes="application/octet-stream"></xsd:element>

Here, the xmime namespace is xmlns:xmime="http://www.w3.0rg/2005/05/xmlmime".

This doesn’t look like much, but indicates that the field will contain binary data using an
XML-linked mime attachment of type application/octet-stream. SoapUI recognizes
this and suggests a content ID (cid) entry for the attachment in the sample request. When
the request is submitted, SoapUI selects an attachment with a matching content ID
(uploaded in the Attachments tab) and includes the binary data in the HTTP request using
a mime attachment and a mutipart format.

There are multiple options for the mime content types, such as text/plain, */*,
image/gif. If you generate a Java web service implementation from this WSDL, for
example, using Apache CXF’s wsd12java, then a content type of application/octet-
stream gets mapped to a Java class javax.activation.DataHandler, which is good for
dealing with most binary data attachments. SoapUI handles all this behind the scenes
when dealing with the request.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

There’s quite a lot you could do inside the mock with Groovy scripting if you wanted to.
For example, you could extract the attachment in the createInvoice response; check its
properties and dump it on the file with the following script:

def attachments = mockRequest.requestAttachments

def attachmentName = attachments[0].name

log.info "Name: $attachmentName"

log.info "URL: ${attachments[0].url}"

log.info "Part: ${attachments[0].part}"

log.info "Encoding: ${attachments[0@].contentEncoding}"

def attachmentInputStream = attachments[0].inputStream
def file = new File('"/temp/$attachmentName")
file.append(attachmentInputStream)

Apart from mocking SOAP attachments, if you are new to them as a technology, then you
should probably experiment with the real thing. Apache CXF can generate for you a
working skeleton that is capable of handling MTOM with XOP attachments by using the
approach shown in Chapter 1, Testing and Developing Web Service Stubs With SoapUI. If
you’re interested, a working sample based on invoice_v2_1.wsdl is included in the /soap
folder of the chapter 4 samples. Apart from having to flesh out the getInvoice() method
to attach a file, and the createInvoice() method to print out some attachment properties
in InvoicePortImpl, the only other thing to change is to enable MTOM in
InvoicePortType_InvoicePort_Server:

Endpoint ep = Endpoint.publish(address, implementor);

Binding binding = ep.getBinding();

((SOAPBinding)binding) .setMTOMEnabled(true);

To build and run this example, it’s easy to import the code into Eclipse (or a similar IDE),
and run the server class as a standard Java application (which requires Apache CXF’s
runtime library). Alternatively, it can also be run as a Java executable from a command
prompt; refer to the first two Chapter 1, Testing and Developing Web Service Stubs With
SoapUI, recipes if you need more help on this.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

¢ For more information on testing SoapUI attachments, refer to
http://www.soapui.org/SOAP-and-WSDI./adding-headers-and-attachments.html

¢ To read the IBM Knowledge base article on MTOM, go to http:/www-
01.ibm.com/support/knowledgecenter/SSAW57_6.1.0/com.ibm.websphere.wsfep.mul
cp=SSAW57_6.1.0%2F7-1-6-3-2-2-2

e For more information on Apache CXF MTOM, go to
http://cxf.apache.org/docs/mtom.html

www.it-ebooks.info

http://www.soapui.org/SOAP-and-WSDL/adding-headers-and-attachments.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_6.1.0/com.ibm.websphere.wsfep.multiplatform.doc/info/ae/ae/cwbs_soapmtom.html?cp=SSAW57_6.1.0%2F7-1-6-3-2-2-2
http://cxf.apache.org/docs/mtom.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing HATEOAS links

In very simple terms, HATEOAS links are used to help make a RESTful API
understandable and navigable using the principles of Hypertext alone (see
http://en.wikipedia.org/wiki/HATEOAS for a more official definition!).

At the time of writing, the structure of HATEOAS links has no official standard. For

XML, the Atom (http://en.wikipedia.org/wiki/Atom_(standard)) structure is often reused.

For example, here is a quote document with HATEOAS links to itself (use of a self link
is common) and a link to a related customer resource:

<quote xmlns:atom="http://www.w3.0rg/2005/Atom">
<id>777</id>
<amount>100</amount>
<atom:1link rel="self" href="http://localhost:8080/quote/777"/>
<atom:link rel="customer" href="http://localhost:8080/customer/12345"/>
</quote>

For JSON, the Atom structure is sometimes replicated:

{
"quote": {
"id": 12345,
"amount": 100,
"links": [
{
"rel": "self",
"href": "http://localhost:8080/quote/777"
3
{
"rel": "customer",
"href": "http://localhost:8080/customer/12345"
}
]
3
}

As an alternative, the Hypertext Application Language (HAL) specification is also popular
for JSON HATEOAS links (refer to http://stateless.co/hal_specification.html).

In terms of testing, it can be necessary to check the existence and validity of HATEOAS
links. That’s what this recipe explores.

www.it-ebooks.info

http://en.wikipedia.org/wiki/HATEOAS
http://en.wikipedia.org/wiki/Atom_(standard)
http://stateless.co/hal_specification.html
http://www.it-ebooks.info/

Getting ready

A ready-made project HATEOAS-soapui-project.xml to demonstrate HATEOAS links has
been supplied in the chapter 4 samples. The sample project contains a mock with the
/quote/ and /customer/ resources. Both these mocked resources use the content
negotiation script from the Selecting mock responses using Groovy recipe of Chapter 3,
Developing and Deploying Dynamic REST and SOAP Mocks, to return either XML or
JSON, depending on the request criteria, which is the Accept header in this case. The
quote documents returned are those from this recipe’s introduction.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To see how to test HATEOAS links, we’ll use Assertions to verify that both JSON and
XML exist in responses. Then, we’ll see how to check whether a link is actually valid, that
is, can be used to access the link’s resource:

1. To test the existence of HATEOAS links, we can use XPath Assertions for XML:

XPath:

declare namespace atom='http://www.w3.0rg/2005/Atom';
//quote[1]/atom:1link[2]/@href

Expected Result:

http://localhost:8080/customer/12345

2. For JSON, SoapUI Pro users can use the JSONPath expression assertion, for example:

JSONPath:

$.quote.links[1].href

Expected Result:
http://localhost:8080/customer/12345

3. Open source SoapUI users can use a Script Assertion with JSONSlurper:
import groovy.json.JsonSlurper

def slurper = new JsonSlurper()
def response = slurper.parseText(messageExchange.responseContent)

def customerLink = response?.quote?.links[1].href

assert customerLink=="http://localhost:8080/customer/12345"

4. To test link validity, the simplest thing to do is to check whether a request to the
link’s href returns the HTTP status as 200 OK. To make the request, it’s more
convenient to use a standard HTTP Test Request TestStep rather than the REST Test
Request, because it gives you full control over the URL, which allows the
HATEOAS link to be substituted directly, whereas REST Test Request TestStep has
the construct of a resource to contend with.

Before we substitute the link href URL, we first need to extract it from the previous quote
response. To do this, following the initial request, we’ll add a Groovy TestStep to extract
the href URL and add it as a property to context. For XML, the script is as follows:

def customerLinkURL = context.expand('${Request XML
Quote#Response#declare namespace atom=\'http://www.w3.0rg/2005/Atom\";
//quote[1]/atom:1link[2]/@href}')
log.info customerLinkURL

context["customer-xml-link-url"]=customerLinkURL

For JSON (JsonPath for Pro users and JSONSlurper for open source), the script is as
follows:

www.it-ebooks.info

http://www.it-ebooks.info/

import groovy.json.JsonSlurper

//PRO users can use JSONPathto get the href directly..
//def customerLinkURL = context.expand('${Request JSON
quote#Response#$.quote.links[1].href}"')

def quoteJSONResponse = context.expand('${Request JSON quote#Response}')

def slurper = new JsonSlurper()
def response = slurper.parseText(quoteJSONResponse)

def customerLinkURL = response?.quote?.links[1].href

log.info customerLinkURL
context["customer-json-link-url"]=customerLinkURL

Then, in HTTP Test Request TestStep, we can just substitute the context link’s URL
properties directly in the Request URL field, for example, with ${customer-xml-1ink-
url} or ${customer-json-link-url}.

To see this in action, start the mock and run HATEAOS TestCase, and you should see all the
requests made and Assertions pass!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The HATEOAS TestCase is just a linked sequence of REST requests using the techniques
explained earlier to transfer the link URLs between steps:

LA JHATEDAS TestCase

¥ i= Test Steps (6)
£ Reguest XML Quote
Get Link From XML Response
B call XML Customer Link
Request J50N guote
Get Link From JSON Response
@ call JSON Customert Link

In terms of extracting and transferring the link URLs between steps, there are other
options. The approach in this recipe has the advantage of being consistent and granular
across JSON, XML, and SoapUI versions. Some might prefer to skip the separate Groovy
TestSteps and add the link URLSs to the context inside the Assertions. Another option is
to use Property Transfer TestSteps, but only the Pro version can use JSONPath in these.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Another common use of HATEOAS links is to provide pagination links for collection-
based resources; for example, say you have a REST resource /quotes/?criteria=.. to
find quotes using a search criteria; then, links are often used to help navigate the results:

<links>
<link
<link
<link
<link
<link

</links>

rel="self" href="/quotes?page=3"/>
rel="first" href="/quotes?page=1"/>
rel="prev" href="/quotes?page=2"/>
rel="next" href="/quotes?page=4"/>
rel="1last" href="/quotes?page=10"/>

With this usage, there are potentially more test requirements to consider. For example, to
assert that the prev link is not present when the current page (indicated by the self link) is
1 and that the next link is not displayed when on the last page.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing polling style asynchronous REST
services

When using RESTFul web services to orchestrate a long-running asynchronous process, a
popular approach is to use a polling style. This involves an initial resource call to start the
process and then another resource is called at intervals (polled) to obtain status updates
until the process is complete. At this point, a final resource is called to obtain the required
output. There are, of course, variants on this in terms of calls made and status codes used,
but the overall pattern remains similar.

In this recipe, we’ll see how to test this style of asynchronous service using a RESTFul
mock quote service as an example.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The example quote service has the following resources (produces and consumes XML):

® POST /quote/task/: This creates a quote task (starts the process)

® GET /quote/{id}: This gets a quote by its ID (once complete)

® GET /quote/task/{id}: This gets the task status updates by its ID (during
processing)

A standard RESTful call pattern is shown in the following diagram:

TestCase QuoteMock
: Service
| POST /quote/task/ " ‘u
<Products To Quote>
Create quote
______ status 203 - Accepted
i link to poll /quote/task/(id) i
[|
loop ; i
[status=PROCESSING] _ i
GET /quote/task/(id) e
Quote
processing...
______ status 200 OK L =
| quote status=PROCESSING |
[i
f GET /quote/task/(id) - .

uote complete
status 303 See Other Q P

—————— quote status=COMPLETE ------
Link to quote /quote/{id}

)\

GET /quote/{id}

Return quote

\

status 200 OK

<Quote Details> :

To illustrate the testing of this pattern, a ready-made sample SoapUI project Quote-REST-
Async-Polling-soapui-project.xml will be used and can be found in the chapter 4
samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Here is a walkthrough of the QuotePollingTestCase and mock interactions from the
sample project:

1. When the mock starts up, a Map to store quotes is created in the mock’s context and
is initialized (see the mock Start Script):

context["quotes"]=[:]

2. The TestCase starts with a POST to the /quote/task/ resource. On receiving the
POST, the mock runs the following resource-level script:

import groovy.time.TimeCategory

def quoteNo="Q${new Random().nextInt(1000000)}"
use (TimeCategory) {
context["quotes"][quoteNo]=10.seconds.from.now

}

requestContext["quoteNo"]=quoteNo

Note
This script

o Creates a new random quote number.

o Adds a quote entry to the quotes Map, keyed on quote number with a value that is
the quote completion time (10.seconds. from.now).

o Makes the quote number available to the response via requestContext.

3. It then dispatches the response (ReturnQuoteStatusLinkResponse):

<quote-task xmlns:atom="http://www.w3.0rg/2005/Atom">

<id>${quoteNo}</id>

<status>PROCESSING</status>

<atom:link rel="self"
href="http://localhost:8080/quote/task/${quoteNo}"/>
</quote-task>

4. The TestcCase then sends a GET request to the resource /quote/task/{id}
(effectively, the HATEOAS link from the previous response) to obtain a status update
on the quote’s progress. On receiving the request, the mock runs the following
resource-level script:

def quoteNo = mockRequest.getPath().split("/")[-1]

def quoteCompleteTime = context["quotes"][quoteNo]

if (quoteCompleteTime==null) return "QuoteNotFoundResponse"
requestContext["quoteNo"]=quoteNo

def nowTime=new Date()
if (nowTime>=quoteCompleteTime) return "CompleteStatusResponse"

www.it-ebooks.info

http://www.it-ebooks.info/

else return "ProcessingStatusResponse"

Note
This script

o This script extracts the quote number from the URI.

o This script gets the quote’s completion time from the quote’s Map.

o If the Map doesn’t hold an entry for the quote number, then a 404 response is
dispatched.

o This script makes the quote number available to the response via the
requestContext.

o if the quote’s completion time has been reached, then it returns a response with
the status as COMPLETE (CompleteStatusResponse); otherwise, this returns a
response with the status as PROCESSING (ProcessingStatusResponse).

o ProcessingStatusResponse:

<quote-task xmlns:atom="http://www.w3.0rg/2005/Atom">

<id>${quoteNo}</id>

<status>PROCESSING</status>

<atom:link rel="self"
href="http://localhost:8080/quote/task/${quoteNo}"/>
</quote-task>

o CompleteStatusResponse:

<quote-task xmlns:atom="http://www.w3.0rg/2005/Atom">
<id>${quoteNo}</id>
<status>COMPLETE</status>
<atom:link rel="self"
href="http://localhost:8080/quote/task/${quoteNo}"/>
<atom:1link rel="quote"
href="http://localhost:8080/quote/${quoteNo}"/>
</quote-task>

Note

SoapUI Status 3XX Issue: Unfortunately, SoapUI throws a NullPointerException
when it receives a response with the HTTP status 303. So a status 200 has been used
in this sample instead. Other HTTP clients do not have this problem.

. The TestcCase receives the response, delays for 5 seconds, and then decides whether
to loop for another status update or move on using a Conditional Goto TestStep that
checks for the previous response’s status:

//quote-task[1l]/status[1] = 'PROCESSING'

. If the status has changed to COMPLETED, then a GET request is made (effectively, using
the quote HATEOAS link from the previous response) to /quote/{id} to retrieve the
completed quote. On receiving the request, the mock runs the following resource-
level script:

def quoteNo = mockRequest.getPath().split("/")[-1]

www.it-ebooks.info

http://www.it-ebooks.info/

def quoteCompleteTime = context["quotes"][quoteNo]
if (quoteCompleteTime==null) return "QuoteNotFoundResponse"

requestContext["quoteNo"]=quoteNo

Assuming that the quote exists in the Map, the preceding script dispatches the following
quote response (QuoteResponse):

<quote xmlns:atom="http://www.w3.0rg/2005/Atom">

<id>${quoteNo}</id>

<amount>100</amount>

<atom:link rel="self" href="http://localhost:8080/quote/${quoteNo}"/>
</quote>

On running QuotePollingTestCase, you should see initial POST and the first status calls
happen almost immediately. Then, the conditional Goto TestStep should loop a couple
of times at 5-second intervals before the quote is finally retrieved.

Have a look at the following screenshot:

v & QuotePollingTestCase
¥ i= Test Steps (5)
E¥| POST createQuote
E¥| GET quoteStatus
Delay [5000]
=4 Conditional Goto
E¥| GET quote

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The overall pattern of testing is similar to those already used in other recipes; apart from
the Conditional Goto TestStep, most of the TestSteps are common examples. The tests
themselves don’t try to test any actual quote content, but this would be easy to add.

The mock only has a very basic implementation while still providing some dynamic
behavior. To enhance it, for example, to handle the quote content, the basic Map storage
can be replaced by a database, like in the Developing dynamic database driven REST
mocks recipe of Chapter 3, Developing and Deploying Dynamic REST and SOAP Mocks.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

There are variants on this RESTful polling approach in terms of the HTTP method of the
calls made and status codes used. For example, on the initial POST, some people return a
201 Created or use an initial GET request to start the process. In summary, there is no real
standard way. Most should be testable with this recipe’s approach, although the mocks
would obviously vary.

When dealing with longer processes, it can be useful to return hints as to when to next poll
for a status update. Percentage-completion messages can also be useful in the status
responses.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing asynchronous SOAP service
callbacks

When dealing with time-consuming requests, the use of an asynchronous message
exchange pattern (MEP) can be a good option. One style of asynchronous exchange,
sometimes called “decoupled endpoint,” involves an initial one-way request (no response)
from the client to start a long-running process, and then, on completion, the service makes
a one-way “callback” to the client that contains the result. The WS-Addressing policy’s
ReplyTo and MessageID properties are often used to allow the client to specify the
callback address and identify related messages over the asynchronous exchange.

To demonstrate how SoapUI can test and mock such an interaction, this recipe covers the
example of a quote service that provides a callback that contains dummy quote details
after a quote request is made for some dummy products.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To speed things up, we’ll walk through a ready-made project and describe the steps
involved. The project Quote-SO0AP-Async-soapui-project.xml can be found in the
chapter 4 samples. Here are some of its details:

e QuotePortBinding: This is a web service based on quote_v1.wsdl
e requestQuote: This is a one-way operation to request a quote for arbitrary products
e receiveQuote: This is a one-way operation to receive the completed quote’s details

This recipe makes use of SoapUI’s WS-Addressing features. See the SoapUI online docs at

http://www.soapui.org/SOAP-and-WSDL./using-ws-addressing.html if you need more

details.

www.it-ebooks.info

http://www.soapui.org/SOAP-and-WSDL/using-ws-addressing.html
http://www.it-ebooks.info/

How to do it...

Testing an asynchronous SOAP callback is relatively easy in SoapUl, thanks to the
MockRequest TestStep, which waits for a (callback) request before proceeding. The more
complicated part of the solution is mocking the callback.

The main parts of the solution are:

e Request Setup: This involves configuring WS-Addressing on the requestQuote
TestStep request’s properties. Set ReplyTo to the address of the MockResponse
TestStep, that is, http://localhost:8089/receiveQuote. Use default values for
wsa:Action and wsa:To. Add a messageId property to the TestCase and set its value
to anything. Then, use this property to provide the value for wsa:MessagelD, that is,
${#TestSuite#quoteMessageId}. We won’t use the Generate MessagelD this time
as it’s a bit harder to access later. We won’t use any Assertions either as we aren’t
expecting a response back.

e Mock Setup: The requestQuote operation is mocked, and a script is added to the
default response:

import com.eviware.soapui.support.types.StringToObjectMap
import com.eviware.soapui.impl.wsdl.teststeps.WsdlTestRequestStep

def requestXMLHolder = new

com.eviware.soapuil.support.XmlHolder (mockRequest.requestContent)
requestXMLHolder .declareNamespace("wsa", "http://www.w3.0rg/2005/08/addr
essing")

def
replyTo=requestXMLHolder.getNodeValue("//wsa:ReplyTo[1l]/wsa:Address[1]"

)
def

requestMessageId=requestXMLHolder .getNodeValue("//wsa:MessageID[1]")

def map = new StringToObjectMap()
map.put("messageID", requestMessageld)
map.put("quoteId", "12345")
map.put("amount", "777")

def testSuite =
context.mockService.project.getTestSuiteByName("TestSuite - Async Call
& Callback")

def callBackTestCase = testSuite.getTestCaseByName('"Callback TestCase")
def callBackRequest = (WsdlTestRequestStep)
callBackTestCase.getTestStepsOfType(WsdlTestRequestStep.class).get(0)
callBackRequest.testRequest.setEndpoint(replyTo)
callBackTestCase.run(map, true)

Note
Key script points

o Extracts the ReplyTo and MessageID from the request
o Adds MessageID plus arbitrary quote values to a map
o The callback request’s endpoint is set to the ReplyTo address

www.it-ebooks.info

http://www.it-ebooks.info/

o The callback TestCase is run asynchronously, passing the map of values

It’s important to note that the CallBack TestCase is run asynchronously. This is
because we want the CallBack TestCase to run in its own process after the (empty)
mock response is dispatched.

e Callback TestCase setup: There’s nothing particularly special here. The purpose of
this TestCase is just to fire the callback request at the MockResponse TestStep as
orchestrated by the previous mock script. The only thing to note is that the values put
into the map by the mock script (messageID, quoteID, and amount) are inserted into
the receiveQuote request using property expressions. To simulate the long-running
task, we have also added a 5-second Delay TestStep before the call to
receiveQuote.

e MockResponse TestStep Setup: The mock response is set up for the receiveQuote
operation. We have added two Assertions here: a wS-Addressing one that just
checks the presence of wsa:Action and wsa: To; the wsa:MessageID check seems to
pass, regardless of whether it is present or not! Just checking the existence of
was :MessagelD isn’t particularly useful in anyway, so we have added an XPath
assertion to check whether the wsa:MessageID in the callback request matches with
the original one from the TestSuite's messageId property. We have also added a
timeout to fail the test if no callback is made within 10 seconds.

To run the sample project, start the mock service and run the Main TestCase to watch the
steps occur!

Have a look at the following screenshot for better clarity:

¥ H TestSuite - Async Call & Callback
v & Main TestCase
¥ 1= Test Steps (2)
Call requestQuote
Wait For receiveQuote Call-back
Load Tests (0)
B security Tests (0)
v o Callback TestCase
¥ i= Test Steps (2)
Sleep 5 seconds [5000]
Call receiveQuote

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In terms of the solution, the trickiest bit is to replicate the timing that is required to make
the mock realistic. The following diagram shows the sequence of the key events:

Main TestCase Callback TestCase Mock
[] : :
SOAP ! :
TestStep i i
1 requestQuote — > MOCK
MockResponse ! 2 .
TestStep 3¢ run(asyno) -- .’ R
5 receiveQuote SOAP i
(Callback) _'_‘ TEStStE[J i

The following is the explanation of numbered steps shown in the preceding diagram:

e requestQuote is called on the mock.

e The mock invokes the callback TestCase asynchronously.

e The callback TestCase waits for 5 seconds (delay step), and the empty mock
response is dispatched, completing the initial requestQuote call and allowing the
main TestCase to continue.

e The MockResponse TestStep is started.

e After 5 seconds, the TestCase callback fires the receiveQuote callback to complete
the MockResponse TestStep.

As an alternative to the earlier mentioned steps, some approaches start the MockResponse
TestStep before the SOAP TestStep, and call the callback TestCase synchronously.
This certainly works and removes any need for the simulated delay step, but it could be
considered slightly less realistic since the callback would be made before the initial
requestQuote call completes. Of course, if we were testing a real asynchronous service,
none of these mock steps would matter; that is, there would be no need for the steps 2
(mock) or step 3 (callback TestStep).

Apart from this recipe, the ability to invoke a TestCase using scripts can be a useful
building block. This is often useful when you either need to spawn a concurrent process or
you need to reuse some functionality that isn’t easily available, for example, calling a
service from the Groovy script.

This recipe also illustrates a practical use of the Ws-Addressing policy. This is
documented in the WSDL using the following endpoint policy:

www.it-ebooks.info

http://www.it-ebooks.info/

<wsp:Policy>
<wsam:Addressing>
<wsp:Policy>
<wsam:AnonymousResponses/>
</wsp:Policy>
</wsam:Addressing>
</wsp:Policy>

Here, the standard namespaces are xmlns:wsp="http://www.w3.0rg/ns/ws-policy"

and xmlns:wsam="http://www.w3.0rg/2007/02/addressing/metadata".

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

A slightly more involved variation on this asynchronous MEP is to provide two-way
request and callbacks steps; that is, have actual responses for requestQuote and
receiveQuote. This is a more reliable strategy as it allows for acknowledgment checks at
both calls. The example here can easily be amended to follow this pattern, perhaps by
using Assertions to verify that the response MessageID is correct at every step.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For more information on SoapUI Asynchronous Doc, go to
http://www.soapui.org/SOAP-and-WSDL/testing-asynchronous-services.html
¢ For more information on WS-Addressing, go to http://en.wikipedia.org/wiki/WS-

Addressing

www.it-ebooks.info

http://www.soapui.org/SOAP-and-WSDL/testing-asynchronous-services.html
http://en.wikipedia.org/wiki/WS-Addressing
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing for e-mails with Groovy

Sometimes, it can be convenient to use SoapUI to test whether an e-mail has been
received, for example, testing for an order confirmation e-mail after calling a create order
service. In this recipe, we will learn how to check whether an e-mail has been received
using Groovy TestStep. To keep things simple, we’ll assume that the e-mail will have
some kind of a unique string in its subject, for example, an order ID. The example will use
Gmail, but other e-mail accounts can be used (the connection and security details will
vary).

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

If you haven’t got a Gmail account, you can consider signing up for one, or possibly use
another account if you’d prefer.

Note
Google Gmail strict security

Google has strict security requirements to access Gmail from what it calls “less secure
apps” (those not using OAuth 2 or accessing via an SSL tunnel). For example, by running
the script in this recipe, you will see the following error message:

javax.mail.AuthenticationFailedException: [ALERT] Please log in via your
web browser: http://support.google.com/mail/accounts/bin/answer.py?
answer=78754 (Failure) error at line: 47

Now, I’m not suggesting that you do this with an e-mail account that contains sensitive
information, but perhaps, if you have a test account, you can easily allow less secure apps
(and the script in this recipe) to access the account at

https://www.google.com/settings/security/lesssecureapps.

Alternatively, to access a Gmail account using (secure) OAuth 2, refer to Chapter 8,
Testing AWS and OAuth 2 Secured Cloud Services.

The sample project Invoice-check-for-email-soapui-project.xml for this recipe can
be found in the chapter 4 samples.

www.it-ebooks.info

https://www.google.com/settings/security/lesssecureapps
http://www.it-ebooks.info/

How to do it...

To access the Gmail (or any other) account, we’re going to need a Groovy TestStep. The
following Groovy script accesses a Gmail account and searches for an e-mail with a
subject that contains the text in orderId, for example, 012345:

import java.util.Properties

import javax.mail.Folder

import javax.mail.Session

import javax.mail.Store

import javax.mail.search.SubjectTerm

//Consider moving these to properties

def host = "imap.gmail.com"
def username = '"<account>@gmail.com"
def password = '"<password>"

def orderId = "012345"

//Consider moving these to a properties file

Properties props = new Properties();

props.setProperty("mail.imap.host", host)
props.setProperty("mail.imap.socketFactory.port",6 "993")
props.setProperty("mail.imap.socketFactory.class", "javax.net.ssl.SSLSocketF
actory")

props.setProperty("mail.imap.ssl.enable", "true")
props.setProperty("mail.imap.auth","true")
props.setProperty("mail.imap.port",6 "993")

Session session = Session.getInstance(props)
Store store = session.getStore("imap")
store.connect(host, username, password)

Folder inbox = store.getFolder("inbox")
inbox.open(Folder.READ_ONLY)

log.info("Total messages in inbox: " + inbox.messageCount)
def foundMessages = inbox.search(new SubjectTerm(orderId));

if (foundMessages.size==0)
testRunner.fail("No order email found for order($orderId).")

foundMessages.each{
log.info "Found matching order email(s): ${it.subject}"
}

inbox.close(true)
store.close()

Before running the Groovy TestStep, we first need to set valid Gmail account details:

def username "<account>@gmail.com"
def password "<password>"
def orderId = "012345"

www.it-ebooks.info

http://www.it-ebooks.info/

Then, run it. If an e-mail with a subject that contains the order1d text is found in your
Gmail inbox, then you should see a message like this:

Tue Sep 30 14:23:13 BST 2014:INFO:Found matching order email(s): Order
012345 has been dispatched.

Otherwise, if it isn’t found, the TestStep will fail with the following message:

Tue Sep 30 14:23:05 BST 2014:ERROR:Failed with reason [No order email found
for order(01234d5).]

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The script uses the JavaMail API and the IMAP e-mail protocol to access the Gmail
account. The precise details of these topics are beyond the scope of this recipe. See the
JavaMail and IMAP links at the end of this recipe for more detailed information on them.

After the mail properties are configured, the script authenticates using the provided
credentials and the host, and it then gets the inbox folder. This step is a likely point of
failure if the host, username, or password is wrong for your e-mail account.

One of the most useful options in the script is the use of a SearchTerm class, in this case,
SubjectTerm. There are many SearchTerm classes to choose from; for more information,
see the Search Terms link at the end of the recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Another option for using JavaMail is the SMTP protocol. The process is the same, but the
properties all need to change to begin with mail. smtp, and the port changes from 993 to
465. You can also use TLS security instead of SSL. This also requires some property
changes and ports for both IMAP and SMTP protocols. Check out the JavaMail
documentation for the settings.

If you need to test the mail content or other properties, this can be done. To see all the
options, take a look at javax.mail.Message in the JavaMail API documentation at

https://javamail.java.net/nonav/docs/api/.

www.it-ebooks.info

https://javamail.java.net/nonav/docs/api/
http://www.it-ebooks.info/

See also

¢ For more information on JavaMail, go to

https://java.net/projects/javamail/pages/Home

e For more information on IMAP, go to

http://en.wikipedia.org/wiki/Internet Message_Access_Protocol

e For more information on Search Terms, go to

http://docs.oracle.com/javaee/6/api/javax/mail/search/package-summary.html
e Chapter 8, Testing AWS and OAuth 2 Secured Cloud Services

www.it-ebooks.info

https://java.net/projects/javamail/pages/Home
http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
http://docs.oracle.com/javaee/6/api/javax/mail/search/package-summary.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing files with Groovy

Sometimes, we’ll need to test whether a web service has created a file or certain file
content, for example, a log message. This recipe looks at a few ways to test file existence
and content using Groovy. The examples are fairly simple, but hopefully effective enough
for most needs!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

I have provided a sample project FileTests in the chapter 4 workspace.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Let’s start with checking whether a file exists at a given path:

def fileName "/temp/new_invoices. txt"

def testFile new File(fileName)

if (!testFile.exists()) testRunner.fail("File $fileName does not exist.")
else log.info "File $fileName exists."

To check whether a file contains a given text string, use the following code:

def fileName = "/temp/catalina.2013-08-23.log"
def searchString = "012345"

def testFile = new File(fileName)
def found = false
testFile.eachLine{line ->
if (line.contains(searchString)) {
log.info "Found in line: $line"
found = true
}
}
if (!found)
testRunner.fail("The search string ($searchString) was not found in file
($testFile).")

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

There’s not much to say about the first example. If the file doesn’t exist, the test fails, and
if it does exist, a message is logged!

The second example is actually quite fast and easy to use. The specified file is processed
line-by-line, and the String .contains method is used to look for searchstring. If the
string is found, a message is logged and the search continues. If, after all lines are
processed, and searchString is not found, then the test fails.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

In the file content search example, there are many options for the actual test condition that
can be placed inside the eachLine closure. You can consider using a regex for more
precise matching, for example:

If (line=~searchString) {..} //Where searchString is now a regex.

For more on Groovy regex, go to http://groovy.codehaus.org/Regular+Expressions.
If you prefer the simplicity of the string operators, such as .endswith() and
.startswith(), then go to http://groovy.codehaus.org/JN1525-Strings.

If you need to parse JSON content, consider using JSONSurpler, as shown in the recipe
Dynamic database driven REST mocks in Chapter 3, Developing and Deploying Dynamic
REST and SOAP Mocks. To parse XML content, XML Surper is really good too (refer to

http://groovy.codehaus.org/api/groovy/util/XmlSlurper.html).

To access (or create) PDF files, consider the iText library (http://itextpdf.com/). If you
search, you will find Groovy examples that use this library.

If you need to work with Microsoft Office files, take a look at
http://groovy.codehaus.org/Groovy+for+the+Office for a list of useful links.

www.it-ebooks.info

http://groovy.codehaus.org/Regular+Expressions
http://groovy.codehaus.org/JN1525-Strings
http://groovy.codehaus.org/api/groovy/util/XmlSlurper.html
http://itextpdf.com/
http://groovy.codehaus.org/Groovy+for+the+Office
http://www.it-ebooks.info/

See also

e The Creating a custom TestStep (Factory) plugin to check whether a file exists recipe
of Chapter 11, Taking SoapUI Further

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5. Automation and Scripting

In this chapter, we will cover the following topics:

Running mocks from the command line

Running tests from the command line

Providing environment-specific properties
Generating mock WAR files from the command line
Running mocks and tests using Maven

Running tests using Java and JUnit

Running mocks and tests using Groovy scripts
Running mocks and tests using Gradle

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

This chapter covers some popular ways to run SoapUI mocks and functional tests to
provide the scripting building blocks for continuous integration tools such as Bamboo,
Hudson, Jenkins, and TeamCity, to run integration tests.

In all approaches, it’s worth understanding that the same SoapUI framework runner
classes are used:

I
| AbstractSoapUIRunner

f

SoapUMockAsWarGenerator SoapUlToolRunner

AbstractSoaplUiTestRunner

F Y

SoapUiMockServiceRunner

SoapUlLoadTestRunner SoapUTestCaseRunner

.

SoapUiSecurityTestRunner

The AbstractSoapUIRunner class implements the CmdLineRunner interface, so all
subclasses can be run using the command-line runner scripts. Optionally, you may find it
helpful if you take a look at the SoapUI source code for these classes, which can be found
at

https://github.com/SmartBear/soapui/tree/next/soapui/src/main/java/com/eviware/soapui/ta

Load and security tests can also be scripted similarly to functional tests and mocks, but
how to do this will be covered in later chapters. The SoapuIToolRunner class (and script)
are not covered here, as most people would probably prefer to use the actual tools directly
as part of their build scripts, for example, using the Apache CXF Maven plugin
(http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-java.html). If you do find
yourself wanting to use the SoapUIToolRunner class, then the main options are the
command-line toolrunner script (and its derived approaches) and the Maven plugin.

www.it-ebooks.info

https://github.com/SmartBear/soapui/tree/next/soapui/src/main/java/com/eviware/soapui/tools
http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-java.html
http://www.it-ebooks.info/

What you’ll learn

You will learn the following topics:

e The concept of SoapUI runner classes and how they can be used directly in code and
scripts to run SoapUI tests and mocks

e How SoapUI mocks can be generated using a script

e How to provide local SoapUI library dependencies to your scripts

e How Maven, Groovy Grape, and Gradle can use dependency management to allow
your scripts to run without a local SoapUI installation

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll need

You’ll need the following:

e Simple scripting skill, such as running shell scripts and supplying parameters
e Basic Java and Groovy skills, such as creating classes and understanding classpath
requirements

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Running mocks from the command line

SoapUI mocks can easily be run from the command line using the bundled <Soapu1

Home>/java/app/bin/mockservicerunner.sh script. This recipe covers running both a
REST and SOAP mock in this way.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The only real prerequisites are a SoapUI install and a project with a mock that you’d like
to run. In this recipe, we’ll try out the mocks in the RESTMock - soapui-project.xml and
SOAPMock-soapui-project.xml projects from the chapter 3 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

If you run mockservicerunner without any parameters, you will see the help options, as
shown in the following screenshot:

usage: mockserwicerunner [options] <soapui-project-files
Feport in br (with the -z option)

1
L)

by th name=

r everrFides projecht pro

the project

e wrFl path te: listen on

off blocking read for termination

the ouiput fTeolder to e ults tao

he output to includ L reparts
ified the name of the M b g fo FuR

the leocal ¥

1
c

-F
-3

Note
Pro version reporting options are -g, -o, and -f.

The only parameter that is actually mandatory is <project file>, because if you don’t
specify a mock with -m, then all the mocks in the project are run. See Chapter 6, Reporting
for more information on the Pro reporting options.

To run the SOAPDBMock project, the following is the simplest command:

./bin/mockservicerunner.sh /soapui-cookbook/chapter3/S0OAPMock-soapuil-
project.xml

And for the RESTDBMock project the simplest command is:

./bin/mockservicerunner.sh /soapui-cookbook/chapter3/RESTMock-soapui-
project.xml

In both cases, you should see the INFO messages (for DBRESTMock port 8090 and path /)
similar to the ones shown in the following code:

22:46:47,274 INFO [SoapUIMockServiceRunner] MockService started on port
8088 at path [/mockInvoicePortBinding]

22:46:47,280 INFO [SoapUIMockServiceRunner] Started 1 runner

Press any key to terminate..

Tip
Running the mock on a new server

If you’ve installed SoapUI on a new server to host the mock, then remember to add any
libraries that the mock requires to the /java/app/bin/ext directory. These dependencies
are added when the mock script starts up:

16:18:59,756 INFO [SoapUI] Adding [/work/soapui-cookbook/soap-ui-
51/soapui/soapui-installer/target/assemblies/SoapUI-5.2.0-SNAPSHOT-

www.it-ebooks.info

http://www.it-ebooks.info/

dist/bin/ext/h2-1.4.181.jar] to extensions classpath

The need to run on a different URL and/or port is a common requirement. The -p port
option works exactly as you’d expect it to, that is, -p 9001 will start the mock listening on
this port. The -a URL option is a little different for SOAP and REST. For SOAP, it
replaces the whole URI. For REST, it effectively sets the context before the resource URI.
So, in the case of the DBRESTMock mock, starting with -a /mock would mean that to get
invoice number 1, you would now need to call
http://localhost:8090/mock/invoiceservice/v1l/invoice/1.

My making of the -b parameter is that it doesn’t work, that is, the mock service terminates
immediately after starting. Yes, the script hasn’t blocked, but this isn’t useful to run the
mock in sequence with tests. On Linux/MacOS, to run the mock in the background, all
that’s needed is nohup, for example:

nohup ./bin/mockservicerunner.sh <chapter 3 samples>/RESTMock-soapui-
project.xml &

appending output to nohup.out

Running like this means you’ll need to stop the mock by terminating its process, that is, by
using kill -9 <process id>, where the process ID can be obtained by running ps -ef |
grep SoapUI for example:

ps -ef | grep java
501 1352 0 10:04am ttys002 0:07.47 /usr/bin/java -Xms128m -

cookbook/chapter3/RESTMock-soapui-project.xml
kill -9 1352

Tip
Running mocks in sequence with tests

The non-command-line options to run mocks, that is, Maven, Java, and Groovy, do not
have this problem with blocking; that is, a script/class can start the mock service (in the
background) and can run tests, and the mock terminates when the main script/class ends.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The mockservicerunner script builds up the Java classpath to include the SoapUI JAR
file (for example, in <SoapUI Home>/java/app/bin/soapui-pro-5.1.1.jar) and all the
required libraries (from <SoapUI Home>/java/app/lib) and then calls either of the
com.eviware.soapui.tools.SoapUIMockServiceRunner class or the
com.eviware.soapui.SoapUIProMockServiceRunner class (for the Pro version).

Without going into too much detail, this class validates any parameters and starts a new
instance of the SoapUI core to run the selected mock(s). While the same runner class is
used to run both REST and SOAP mocks, the actual mock implementations are of course
different.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Running mocks from the command-line script is fine, but having to install SoapUI (or
packaging all the libraries) on test servers in order to run the mocks may not always be
desirable. See the Generating mock WAR files from the command line recipe if you would
rather use a script to generate your mocks as independently deployable WAR files
(although they will actually still contain SoapUI libs!). Alternatively, take a look at either
the Maven or Groovy recipes to see how dependency management can make your scripts
more portable by enabling them to download all the SoapUI libraries when and where
needed.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Running tests from the command line

SoapUI tests can be run from the command line in a similar way to mocks using the
<SoapUI Home>/java/app/bin/testrunner.sh script. This recipe builds on the previous
one, in that it shows how to run the tests in the SOAPMock -soapui-project.xml project
against it’s mock.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Like before, we just need to install SoapUI and access the SOAPMock-soapui-project.xml
project from the chapter 3 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

If you run testrunner without any parameters, you should see the help options, as shown
in the following screenshot:
ze: testrunner [options] <soapui-project-file®
-t format. ! Yalid options FDF, XL5, HTHML., ETF,
; ted)
results us1né_fﬂlder5 instead of long

name=value

tom HTTP Header to = outgoing requests [(hame=value],
cified multiple t

them
format

=

aftter running the tests
g of all results

endpoint
output folder to e
output to include

ng UI for scripts
output to include JUnit X
5 an a Fed Soapll] Pre L6 cen

e for each
ed report(s) in a browser

rd
11 summary report

A = = et B =

Tip
Pro version options are E, -F, -g, -0, —R, and -1.

Like with the mock command-line script, the only mandatory parameter is <soapui
project file>, which makes this the simplest command to run all test cases in a project,
for example:

./testrunner.sh /soapui-cookbook/chapter3/SOAPMock-soapui-project.xml

To run this, either start the mock in a separate shell using the command line (explained in
the previous recipe), or just open SoapUI and start the mock from there. You should see an
output that indicates that the GetInvoiceTestCase has been run and that the assertions are
valid:

12:23:49,086 INFO [SoapUITestCaseRunner] Assertion
[InvoicelShouldHaveCompanycompl] has status VALID

12:23:49,087 INFO [SoapUITestCaseRunner] Assertion
[InvoicelShouldHaveAmount100] has status VALID

12:23:49,087 INFO [SoapUITestCaseRunner] Finished running SoapUI testcase

www.it-ebooks.info

http://www.it-ebooks.info/

[GetInvoiceTestCase], time taken: 493ms, status: FINISHED

To see what happens when there is an assertion failure, in SoapU], edit the request for
getInvoice TestStep and change invoiceNo from 1 to 2, save the project, and rerun it;
you should see the same assertions fail:

12:33:27,100 ERROR [SoapUITestCaseRunner] ASSERTION FAILED -> XPathContains
comparison failed for path [declare namespace
inv="'http://soapui.cookbook.samples/schema/invoice';
//inv:InvoiceDocument[1]/inv:company[1]], expecting [compl], actual was
[comp2]

12:33:27,100 INFO [SoapUITestCaseRunner] Assertion
[InvoicelShouldHaveAmount100] has status FAILED

12:33:27,100 ERROR [SoapUITestCaseRunner] ASSERTION FAILED -> XPathContains
comparison failed for path [declare namespace
inv="'http://soapui.cookbook.samples/schema/invoice';
//inv:InvoiceDocument[1]/inv:amount[1]], expecting [100.0], actual was
[23330.0]

12:33:27,100 ERROR [SoapUITestCaseRunner] getInvoice failed, exporting to
[/work/soapui-cookbook/soap-ui-51/soapui/soapui-
installer/target/assemblies/SoapUI-5.2.0-SNAPSHOT-
dist/bin/GetInvoiceTestSuite-GetInvoiceTestCase-getInvoice-0-FAILED. txt]
12:33:27,108 INFO [SoapUITestCaseRunner] Finished running SoapUI testcase
[GetInvoiceTestCase], time taken: 619ms, status: FAILED

This will be followed by some quite verbose request and response details!

The reporting features will be covered in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Similar to the mock command-line runner in the previous recipe, the testrunner script
starts a headless SoapUI core by running either SoapUITestCaseRunner (open source) or
SoapUIProTestCaseRunner (pro). Again, the SoapUI JAR and all the required Java
libraries are added to the classpath by the script before running.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Use of the command-line test runner is very popular due to its simplicity and ease of use
from scripts (for example, shell scripts and ant) and directly via build tools; for example,
Jenkins. Its standard usage is intended to be via a SoapUI install, but it can be easily
amended. Like the mock script, all it really depends on are the SoapUI JAR and libraries,
which can be packaged and supplied separately.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Providing environment-specific properties

A common requirement when running SoapUTI tests from scripts is to be able to provide
different hostnames, ports, and file paths for different test environments. This recipe
shows some easy ways to do this.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We’ll look at two different ways to set the endpoint for Test Request TestStep in
SOAPMock-soapui-project.xml. For the examples, assume that there is a mock service
that is running http://localhost:9001/mockInvoicePortBinding. Perform the
following steps:

1. Perhaps, the simplest way is to use the -e endpoint parameter to override the Test
Request TestSteps endpoint, for example:

./testrunner.sh -e http://localhost:9001/mockInvoicePortBinding
<chapter3 samples>/SOAPMock-soapui-project.xml

2. Another more flexible way is to set the endpoint using a property, for example:

o Add a project-level property:

Mame WValue
endpoint http:/ /localhost: 8088 /mocklnvoice PortBinding

o Use a property expansion to set the TestSteps endpoint:

P il [@ O ® | ${#Project#endpoint}

o Provide the value for the property using -Pname=value:

./testrunner.sh -
Pendpoint=http://localhost:9001/mockInvoicePortBinding <chapter3
samples>/S0APMock-soapui-project.xml

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

SoapUI runners can be passed properties (or have properties set in later recipes) in various
ways. The second approach mentioned earlier is the most flexible in that you can use it to
provide any type of property, for example, file paths and e-mail addresses, or use it to set
part of something (a hostname or port). If you need to set a lot of properties, then take a
look at the first link in the See also section of this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

¢ You can also pass in entire property files; see http://www.soapui.org/Scripting-

Properties/working-with-properties.html
e For more information on property expansions, see Chapter 2, Data-driven Testing
and Using External Datasources

www.it-ebooks.info

http://www.soapui.org/Scripting-Properties/working-with-properties.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Generating mock WAR files from the

command line

As you may have seen from the Deploying mocks as WAR files recipe in Chapter 3,
Developing and Deploying Dynamic REST and SOAP Mocks, SoapUI has the useful
ability to package mock services as WAR files using a wizard. As part of your build
process, you may find it more useful to generate your mock service WAR file directly
from the SoapUI project file using a script. Like with mocks and tests, this recipe shows
how to use the <SoapUI Home>/java/app/bin/wargenerator.sh command-line script to
do this. You can then use a variety of means, for example, Shell, Maven, or Gradle, to
generate and deploy the mock service WAR file to a servlet container or application server
of your choice.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Like before, we just need to install SoapUI and access the SOAPMock-soapui-project.xml
project from the chapter 3 samples.

You may find it helpful to refer back to the Deploying mocks as WAR files recipe from
Chapter 3, Developing and Deploying Dynamic REST and SOAP Mocks. Note that the
wargenerator script only uses the same Java classes under the hood as the SoapUI war
generation wizard does, so any version-specific issues (like those mentioned about REST
mock WAR generation in the Chapter 3 recipe) will also affect the script.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

If you run wargenerator without any parameters, you should see the following help:

Tl
Moo

1
(=8

1
m

fy the name of the at e
T liste uld be included

RERIEGE rd for ptiaon if project is encrypted

2 if web UI should be enabled

Specify it libraries in ext folder should be included

e
= T o~

Tip
The Pro version extra option is -c.

While the simplest syntax is to just specify the <project file> parameter, this is not very
useful, as you will probably at least want to specify where the WAR file has to be
generated (using -d). A more realistic example would be to replicate the parameters we
used back in Chapter 3, Developing and Deploying Dynamic REST and SOAP Mocks,
when generating a WAR file for SOAPMock -soapui-project.xml:

./wargenerator.sh -f <chapter5 samples>/soap/dbsoap.war" -d "<chapter5
samples>/soap/" -w true -x true <chapter5 samples>/SOAPMock-soapuil-
project.xml

If you run this, you should see the following output:

14:54:49,299 INFO [JarPackager] Creating archive <chapter5
samples>/soap/dbsoap.war]

14:54:50,255 INFO [JarPackager] Adding WEB-INF/l1ib/h2-1.4.181.jar

14:54:52,776 INFO [SoapUIMockAsWarGenerator] WAR Generation complete

The h2-1.4.181. jar file is the H2 driver that is added as a consequence of the -w
parameter to include external libraries.

If you deploy the resulting dbsoap.war file to a servlet container of your choice, for
example, the webapps folder on Apache Tomcat (see the Deploying mocks as WAR files
Chapter 3, Developing and Deploying Dynamic REST and SOAP Mocks for help on
setting up and using Tomcat), then you should be able to access the mock service’s web Ul
as before.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

As with the other runners, the script first builds up the Java classpath and then runs either
SoapUIMockAsWarGenerator (open source) or SoapUIProMockAswWarGenerator (pro).
SoapUIMockAsWarGenerator then calls the MockAswar class in the same way as described
in the Deploying mocks as WAR files Chapter 3, Developing and Deploying Dynamic
REST and SOAP Mocks.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Running mocks and tests using Maven

I’m sure you probably already know that Apache Maven is an immensely popular build
framework, and unsurprisingly, also a popular way to run SoapUI tests. SoapUI also
comes with a ready-made Maven plugin. In this recipe, we’ll use the bundled SoapUI
Maven plugin to run the mock and the tests in the chapter 3 sample’s SOAPMock -soapui-
project.xml project.

This recipe assumes that you can install Maven and get some idea about how it works,
without being an expert in it. If you are new to Maven or could do with a quick refresh, a

good place to start is http://maven.apache.org/guides/getting-started/maven-in-five-

minutes.html.

www.it-ebooks.info

http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://www.it-ebooks.info/

Getting ready

If you don’t already have Maven installed, then download and install it following the
resources provided at http://maven.apache.org/download.cgi (Maven version 3.2.1 is used
here, but the SoapUI Maven Plugin should support any Maven 3 version).

You’ll need SOAPMock-soapui-project.xml from the chapter 3 samples. The Maven
scripts developed in this chapter are included in the chapter 5 samples under the folder
/maven/simple-test/.

www.it-ebooks.info

http://maven.apache.org/download.cgi
http://www.it-ebooks.info/

How to do it...

We are going to start from scratch; that is, generate a new Maven project , add the SoapUI
plugin configuration to rung the tests, run with a failing test, then add the configuration to
run the mock, and run with a passing test.

First, we are going to use Maven to create a starter project structure using the quickstart
Maven archetype. To do this, run the following Maven command:

mvn archetype:generate -DgroupId=soapui.cookbook.chapter5 -
DartifactId=simple-test -DarchetypeArtifactId=maven-archetype-quickstart -
DinteractiveMode=false

This should result in a Maven output that indicates build success, similar to the following
key parts:

[INFO] ------mmm e e e e e d e mecmecmecmecce—mee———-
[INFO] Using following parameters for creating project from 0ld (1.x)
Archetype: maven-archetype-quickstart:1.0

[INFO] ------mmm e e e e e e e mmecmececccecmecmee——n-
[INFO] Parameter: groupId, Value: soapui.cookbook.chapter5

[INFO] Parameter: packageName, Value: soapul.cookbook.chapter5

[INFO] Parameter: package, Value: soapuil.cookbook.chapter5

[INFO] Parameter: artifactId, Value: simple-test

[INFO] Parameter: basedir, Value: /soapui-cookbook/chapter5/maven
[INFO] Parameter: version, Value: 1.0-SNAPSHOT

[INFO] project created from 0ld (1.x) Archetype in dir: /soapui-
cookbook/chapter5/maven/simple-test

[INFO] ------mmmmmm e e e e e meceeccecceccccceceeec—ee——a-
[INFO] BUILD SUCCESS

[INFO] ----mmmmmmm e e e e e e e e ceceeceececccccccccmcoaoas

And the below directory structure:

Simple-test/
pom.xml
src/
main/java/soapui/cookbook/chapter5/App.java
test/java/soapui/cookbook/chapter5/AppTest. java

The key part for us is the pom.xm1 file; delete the sample Java class and test.

Maven projects should have everything they need within their structure (or managed as
external dependencies). The SoapUI project file will be required by the plugin. Following
the Maven directory convention, let’s create a new directory simple-
test/src/test/resources, and copy the project file (<chapter3 samples>/SOAPMock -
soapui-project.xml) there.

Now, let’s add the SoapUI plugin to simple-test/pom.xml. Open the pom.xml file in a
text editor and add the highlighted code as shown here:

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

www.it-ebooks.info

http://www.it-ebooks.info/

<modelVersion>4.0.0</modelVersion>
<groupId>soapui.cookbook.chapter5</groupId>
<artifactId>simple-test</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>simple-test</name>
<url>http://maven.apache.org</url>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
<pluginRepositories>
<pluginRepository>
<id>SmartBearPluginRepository</id>
<url>http://www.soapui.org/repository/maven2/</url>
</pluginRepository>
</pluginRepositories>
<build>
<plugins>
<plugin>
<groupId>com.smartbear.soapui</groupId>
<artifactId>soapui-maven-plugin</artifactId>
<version>5.0.0</version>

<executions>
<execution>
<phase>test</phase>
<goals>
<goal>test</goal>
</goals>
<configuration>
<projectFile>src/test/resources/SO0APMock-soapui-project.xml</projectFile>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
Tip
Using Pro?

Change the artifactId value to <artifactId>soapui-pro-maven-plugin</artifactId>
and check http://www.soapui.org/repository/maven2/com/smartbear/soapui/soapui-pro-
maven-plugin/ for available versions.

Note
Things to note

The configuration is very basic; it will try to run all tests in the specified project file.

www.it-ebooks.info

http://www.soapui.org/repository/maven2/com/smartbear/soapui/soapui-pro-maven-plugin/
http://www.it-ebooks.info/

Now, we run the test with the following command:

mvn integration-test

After some amount of initial downloading (which could take a few minutes), you should
see it fail (Connection Refused)! Why? Because unless you started the project’s
MockService somewhere else first, the test cannot call the endpoint—failing test, good!
Ok, let’s fix this up by adding the mock goal to start the mock before running the test
goal. Add the highlighted goal to pom.xm1l to the goals element:

<goals>
<goal>mock</goal>
<goal>test</goal>
</goals>

This should start the project’s mock and make it to run before the test is run.

If you try running it again now, the mock will attempt to start, but will still fail (as it was
unable to resolve class org.h2.Driver for the mock, and then Connection Refused for

the test) because it is not able to find org.h2.Driver; SoapUI tried to warn us about this
when starting:

16:28:15,343 WARN [SoapUI] Missing folder [/soapui-
cookbook/chapter5/simple-test/ext] for external libraries

As a quick fix, we could just copy the H2 driver to this location, but this wouldn’t be
consistent with the Maven directory convention. Instead, it would be more proper to copy
h2-1.4.181.jar to simple-test/src/test/resources and then tell SoapUI to look there
for the driver using a system parameter when running, that is, run with:

mvn integration-test "-Dsoapui.ext.libraries=src/test/resources"

Now, you should see the mock start up with the H2 driver added:

12:45:13,498 INFO [SoapUI] Adding [/soapui-cookbook/chapter5/maven/simple-
test/src/test/resources/h2-1.4.181.jar] to extensions classpath

Better. But wait a moment! It’s asking us to select the option Press any key to
terminate..!

By default, the mock blocks the script’s process until a key is pressed (similar to the
command line example discussed in the first recipe). This is ok sometimes, like if we just
wanted to run the mock on its own or are happy to run separate scripts for mock and tests,
but not so great in this case. Fortunately, it’s easy enough to fix by adding
<noBlock>true</noBlock> to <configuration>..</configuration>, which allows the
mock to run for the duration of the plugin without waiting for input. Now, if you run the
script, the mock should start successfully and continue, and the test should run and pass!

If you wish to see the test fail, then edit the project in simple-test/src/test/resources,
changing invoiceNo from 1 to 2 in the request for getInvoice TestStep, save the project,
and rerun; then, you should see the same assertions fail like with the command-line
runner.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Unlike the command-line runner scripts, Maven doesn’t need direct access to the SoapUI
installation. Instead, the plugin has a dependency configured in it’s pom file to download
the required version of SoapUI (5.0.0) from the remote SoapUI Maven repository, as
shown in the following code when the script is first run:

Downloaded:
http://www.soapui.org/repository/maven2/com/smartbear/soapui/soapui/5.0.0/s
oapui-5.0.0.jar (11250 KB at 225.6 KB/sec)

If you are new to Maven, it’s worth noting that once downloaded, the dependency pom and
jar files are cached in your local Maven repository. The default location of the local
repository is ${user .home}/.m2/repository/.

To understand more about how the SoapUI Maven plugin works, the short answer is that it
ultimately runs the same SoapUIMockServiceRunner and SoapUITestCaseRunner Java
classes that the command-line scripts use with the parameters supplied in the pom file. For
a more detailed understanding, Maven plugins use mojo (Maven plain Old Java Object)
classes to define each Maven goal, for example, mock and test. If you wish to inspect the
SoapUI plugin mojos, then take a look at

https://github.com/SmartBear/soapui/tree/next/soapui-maven-
plugin/src/main/java/com/eviware/soapui/maven?.

www.it-ebooks.info

https://github.com/SmartBear/soapui/tree/next/soapui-maven-plugin/src/main/java/com/eviware/soapui/maven2
http://www.it-ebooks.info/

There’s more...

The SoapUI Maven Plugin also has goals to run load tests (see the Running load tests
using Maven, command line, Java, Groovy, and Gradle scripts recipe in Chapter 9, Data-
driven Load Testing With Custom Datasources), security tests, and tools. For more details
on the configuration, refer to the online SoapUI documentation at
http://www.soapui.org/Test-Automation/maven-2x.html.

The options for reporting will be covered in the next chapter.

Maven is an excellent choice for building, deploying, and testing web services and any
other code with or without SoapUI. Third-party SoapUI Maven plugins are also available,
and some claim to solve issues reported with the standard one. One popular alternative

plugin can be found at https://github.com/redfish4ktc/maven-soapui-extension-plugin.

Of course, there’s nothing to stop you writing your own too!

www.it-ebooks.info

http://www.soapui.org/Test-Automation/maven-2x.html
https://github.com/redfish4ktc/maven-soapui-extension-plugin
http://www.it-ebooks.info/

See also

e For more information, go to the official Maven site at http://maven.apache.org/
e For more information on Maven repositories, go to

http://maven.apache.org/guides/introduction/introduction-to-repositories.html

e For more information on Maven plugin development, go to

http://maven.apache.org/plugin-developers/

www.it-ebooks.info

http://maven.apache.org/
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://maven.apache.org/plugin-developers/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Running mocks and tests using Java and
JUnit

Running SoapUI mocks and tests from Java and JUnit is relatively easy to do, as we
essentially run the same Java classes that the command line and Maven plugins use. In the
first part of this recipe, we will look at running the SoapuIMockServiceRunner and
SoapUITestCaseRunner files directly. Then, we will look at doing the same via a JUnit
runner.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

In both cases, we’ll run the SOAPMock -soapui-project.xml project as before. All the code
is contained in the chapter 5 samples’ /java/ folder.

The samples are easy to run from Eclipse (or a similar IDE) and also from the command
line. The minimum you need is a SoapUI and a JDK (this recipe uses JDK 1.7.x).

Unless you’re using an IDE, which bundles JUnit, you might need to download the JUnit
library (junit-4.11.jar is also included in the /java/ chapter 5 samples folder).

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

First, let’s look at how to start the mock and run tests against it using Java. Then, we can
run the same code using JUnit. The code to run a mock and tests for a project is as
follows:

import com.eviware.soapui.tools.SoapUIMockServiceRunner;
import com.eviware.soapui.tools.SoapUITestCaseRunner;

public class RunMockAndTest {
public static void main(String[] args) throws Exception {

SoapUIMockServiceRunner mockRunner = new SoapUIMockServiceRunner();
mockRunner.setProjectFile(args[0]);
mockRunner.run();

System.out.println ("Mock running..");

SoapUITestCaseRunner testRunner = new SoapUITestCaseRunner();
testRunner.setProjectFile(args[0]);
testRunner.run();

System.exit(0);
}
}

The code is fairly basic, and there is no Java package. Create a file called
RunMockAndTest . java at a convenient location.

Before we compile or run the code, to make the commands neater, we can export a
SOAPUI_HOME environment variable, for example:

export SOAPUI_HOME=<SoapUI Home>

Then, to compile the code, we need all the SoapUI JAR and libraries in the classpath:

javac -cp "$SOAPUI_HOME/1lib/*:$SOAPUI_HOME/bin/soapui-5.2.0-SNAPSHOT.jar"
RunMockAndTest. java

Running this should create RunMockAndTest .class in the current directory.

To run the compiled class, we also need to include the SoapUI JAR, libraries, and the class
itself in the classpath. The code also expects the SoapUI project file to be supplied as a
runtime parameter. Also, for this project, we need to provide the location of the external
libraries folder that contains the H2 DB driver for the mock:

java -cp "$SOAPUI_HOME/1lib/*:$SOAPUI_HOME/bin/soapui-5.2.0-SNAPSHOT.jar:."
-Dsoapui.ext.libraries=$SOAPUI_HOME/bin/ext RunMockAndTest /soapui-
cookbook/chapter3/SOAPMock-soapui-project.xml

Running this command should show the same kind of output as with the other recipes, that
is:

e The H2 driver is added to the classpath

www.it-ebooks.info

http://www.it-ebooks.info/

e The mock starts
e The test runs and passes
e The program exits

If you would like to check how the test fails, you can edit the project and change the
invoiceNo value in the test request from 1 to 2, as done in the command-line test and
Maven recipes.

Now, let’s move on to JUnit. The basic code for a JUnit 4 test is:
import org.junit.Test;

public class TestMock {
@Test
public void test() {

}
}

To this skeleton test, we can insert the code from the previous example, replacing the
project file argument (args[0]) with a hardcoded project file, which is more normal, as it
is part of the fixed test criteria. We can also remove System.exit(0) (JUnit takes care of
ending the process), and add the imports for the runners and a throws clause to take care
of any runner exceptions, which results in the following code:

import org.junit.Test;
import com.eviware.soapui.tools.SoapUIMockServiceRunner;
import com.eviware.soapui.tools.SoapUITestCaseRunner;

public class TestRunMockAndTest {

@Test
public void test() throws Exception {
String project = "/soapui-cookbook/chapter3/SOAPMock-soapui-
project.xml";

SoapUIMockServiceRunner mockRunner = new SoapUIMockServiceRunner();
mockRunner .setProjectFile(project);
mockRunner.run();

System.out.println ("Mock running..");

SoapUITestCaseRunner testRunner = new SoapUITestCaseRunner();
testRunner.setProjectFile(project);
testRunner.run();

b
}

To compile this, we need to include the JUnit 4 library:

javac -cp "$SOAPUI_HOME/1lib/*:$SOAPUI_HOME/bin/soapui-5.2.0-
SNAPSHOT. jar:junit-4.11.jar" TestRunMockAndTest.java

Then, to run the test, in addition to supplying the JUnit library (make sure this is in the
same folder as the test class, or adjust the following path), we actually need to run the
JUnit test runner org.junit.runner.JUnitCore:

www.it-ebooks.info

http://www.it-ebooks.info/

java -cp "$SOAPUI_HOME/1lib/*:$SOAPUI_HOME/bin/soapui-5.2.0-
SNAPSHOT. jar:junit-4.11.jar:." -Dsoapui.ext.libraries=$SOAPUI_HOME/bin/ext
org.junit.runner.JUnitCore TestRunMockAndTest

After running this command, we realize that the only real differences in output are at the
beginning and end:

Junit version 4.11
Time: 5.393
OK (1 test)

Or in the case of a failing test:

FAILURES!!!
Tests run: 1, Failures: 1

If you set the code up in Eclipse or a similar IDE, you can get the standard JUnit view:

{% Package Explorer gu JUnit &3 - =
o BE|Q 7w B T
Finished after 6.011 seconds
Runs: 11 B Errors: 0 B Failures: 0
¥ git] TestRunMockAndTest [Runner: JUnit 4] (5.957 s}

EEitest (5.957 s)

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In the case of the Java class, I think you can see what is happening; we run
SoapUIMockServiceRunner and SoapUITestCaseRunner, supplying all the libraries via the
Java classpath. Then, you can see the SoapUI core, mock, and test starting up in the
console output.

In terms of the unit test, there is only a little more to it in this example. Those familiar
with Java unit testing will notice that in this example, no Assert statements are used, and
that test failures are expressed by the runner that is throwing the exceptions, making them
Errors in Eclipse rather than Failures. A simple way to change Errors to Failures is by
catching the exception and using Assert.fail(), for example:

try {
testRunner.run();

} catch (Exception e) {
Assert.fail();

}

You can also run individual TestCases in each JUnit test, which makes the output more
granular and clearer, as individual failures show more nicely in the Eclipse JUnit view.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

It might be worth pointing out that any options you can set using the command line or
Maven can of course also be set using the Java approach. Take a look at the SoapUI
source code in Git, or the API docs, if you need more information. For more info on the
SoapUI source code, see the Building, packaging, and running SoapUI from source code
recipe in Chapter 11, Taking SoapUI Further.

While we have focused on JUnit, the runner code will clearly work in any java-based test
framework, for example, JBehave or Cucumber. Build frameworks such as Maven and
Gradle can of course also run the tests easily.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e The Publishing JUnit reports using Jenkins recipe in Chapter 6, Reporting

e Junit Official Site: http:/junit.org/

e SoapUI JUnit documentation: http://www.soapui.org/Test-Automation/integrating-
with-junit.html

www.it-ebooks.info

http://junit.org/
http://www.soapui.org/Test-Automation/integrating-with-junit.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Running mocks and tests using Groovy
scripts

As you might imagine, running SoapUI mocks and tests in Groovy is quite similar to
running the same in Java, but is arguably more elegant in terms of syntax and usage, and
can also leverage Grape (The Groovy Adaptable Packaging Engine or Groovy Advanced
Packaging Engine) dependency management to allow scripts to download their
dependencies when run—see http://groovy.codehaus.org/Grape for more info. This recipe
starts with a simple Groovy equivalent of the java RunMockAndTest class from the
previous recipe and then shows how Grape can be used to supply all its library
dependencies. This recipe is similar in concept at the beginning, and probably a little
briefer in places than the Java and JUnit one. So if you are starting here and need more
details, then it might be helpful to refer to it.

www.it-ebooks.info

http://groovy.codehaus.org/Grape
http://www.it-ebooks.info/

Getting ready

If you don’t already have it, you will need to download and install the latest version of

Groovy;—if you need help with this, see http://groovy.codehaus.org/Installing+Groovy

(this recipe uses version 2.21).

If you need any help running Groovy, see http://groovy.codehaus.org/Running.

The SOAPDBMock is used, and all Groovy code can be found in the chapter 5 samples
/groovy/ folder.

www.it-ebooks.info

http://groovy.codehaus.org/Installing+Groovy
http://groovy.codehaus.org/Running
http://www.it-ebooks.info/

How to do it...

First, let’s take a look at a simple Groovy script to do the same as we did in the last recipe.
You can find this script in the chapter 5 samples /groovy/runmockandtest.groovy:

import com.eviware.soapui.tools.SoapUIMockServiceRunner
import com.eviware.soapui.tools.SoapUITestCaseRunner

SoapUIMockServiceRunner mockRunner = new SoapUIMockServiceRunner ()
mockRunner .projectFile = args[0]
mockRunner.run()

println "Mock running.."

SoapUITestCaseRunner testRunner = new SoapUITestCaseRunner ()
testRunner.setProjectFile(args[0])
testRunner.run()

Before running the script, open a shell and set SOAPUI_HOME=<SoapUI Home> to help make
the actual run command neater:

export SOAPUI_HOME=<SoapUI Home>

Then, to run the script, as with Java, we need to supply the SoapUI JAR and libraries via
the classpath (-cp) and the location of soapui.ext.libraries (which contains the H2 DB
Driver for the mock), and finally, we need to pass the SoapUI project file location as the
script’s parameter (args[0]):

groovy -cp "$SOAPUI_HOME/lib/*:$SOAPUI_HOME/bin/soapui-5.2.0-SNAPSHOT.jar"
-Dsoapui.ext.libraries=$SOAPUI_HOME/bin/ext runmockandtest.groovy /soapui-
cook/chapter3/SOAPMock-soapui-project.xml

You should now see the mock start and the test pass, just like in the previous recipe,
except that there is no need to compile!

Now, that was a bit neater than the java example, and there wasn’t didn’t any need to
compile it; next, let’s see how Grape can help us ditch having to directly supply all those
libraries.

Take a look at this script (/groovy/runmockandtest-grape.groovy):

@GrabResolver (name="'soapui',
root="http://www.soapui.org/repository/maven2"')
@Grab(group='com.smartbear.soapui', module='soapui', version='5.1.2-m-
SNAPSHOT')

@GrabExclude('jtidy:jtidy"')

@GrabExclude('gnu.cajo:cajo')

import com.eviware.soapui.tools.SoapUIMockServiceRunner

import com.eviware.soapui.tools.SoapUITestCaseRunner

SoapUIMockServiceRunner mockRunner = new SoapUIMockServiceRunner ()
mockRunner .projectFile = args[0]
mockRunner.run()

println "Mock running.."

www.it-ebooks.info

http://www.it-ebooks.info/

SoapUITestCaseRunner testRunner = new SoapUITestCaseRunner ()
testRunner.setProjectFile(args[0])
testRunner.run()

I’ll explain about the Grape annotations in the next section; for now, let’s just run it; the
command is as follows:

groovy -cp "$SOAPUI_HOME/bin/ext/*" -Dgroovy.grape.report.downloads=true
runmockandtest-grape.groovy /soapui-cookbook/chapter3/SOAPMock-soapui-
project.xml

After waiting for a few minutes and after a lot of dependency downloading, you should
see the script run exactly as before; luckily, the next time you run it, there will be no real
delay, as the bucket-load of dependencies will have already been downloaded!

Two final things: when you’re happy with the Grape stuff, you can remove -
Dgroovy.grape.report.downloads=true, which was added initially to provide some
output so that you wouldn’t assume that the script had hung and quit!

The last thing is that the Groovy class loader needs the external libraries (the H2 DB
Driver for the mock) to be supplied on its classpath rather than allowing SoapUI to add it
(which doesn’t work).

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The first Groovy example is hopefully similar enough to the previous recipe’s Java
example to be understandable on its own or by reviewing the previous recipe.

Regarding the second example, the obvious difference lies in all those @Grab* annotations
at the beginning; the rest is unchanged. The @GrabResolver annotation is used to supply
any additional Maven repositories (maven central is included by default); in this case, we
specify the soapui repository. The @Grab annotation is used to get the SoapUI distribution
and all related libraries, version 5.1.2 in this case. Finally, the @GrabExclude annotations
are used to ignore a couple of broken dependencies that the Maven Plugin seems to
ignore, but if not excluded, it breaks the Grape (And Gradle) dependency resolution!

Due to the extent of the SoapUI dependency tree, this is a relatively complex example of
Grape dependency management. In many other scripts, only the @Grab annotation is
required. Hopefully, these simple examples show a little more of the power of Groovy
scripting and Grape dependency management.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e The Running load tests using Maven, Command Line, Java, Groovy, and Gradle
scripts recipe in Chapter 9, Data-driven Load Testing With Custom Datasources

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Running mocks and tests using Gradle

Like Maven, the Gradle build framework harnesses the power of dependency management
and also some Maven usage conventions, but replaces Maven’s XML syntax with a
lightweight Groovy-based syntax or Domain Specific Language (DSL). Gradle is newer
than Maven, and its use with SoapUI is less evolved in that there is no official SoapUI
plugin yet. Nevertheless, the appeal of Gradle’s strengths as a build framework and its
growing popularity make it a very viable option to script SoapUI.

This recipe uses Gradle to run and provide dependencies for the runmockandtest.groovy
script from the previous recipe, which runs the mock and test from the DBSOAPMock project
from the chapter 3 samples.

This recipe assumes that you know a little about what Gradle is and are comfortable with
the Groovy or Java syntax for scripting, but you certainly don’t need to be a Gradle expert.
If you’re new to Gradle or need a refresher, then it might help to take a look at

https://www.gradle.org/get-started .

www.it-ebooks.info

https://www.gradle.org/get-started
http://www.it-ebooks.info/

Getting ready...

If you don’t already have Gradle, you don’t need to download it, as we’ll use a Gradle
wrapper for the sample. If you’re not familiar with Gradle wrappers, it’s a wrapper script
that automatically downloads the specified version of Gradle if it doesn’t already exist
locally. If you look in the chapter 5 samples /gradle/, you should see the following
directories and files:

gradlew: The *nix/MacOS Gradle wrapper.

gradlew.bat: The Microsoft Windows Gradle wrapper.
gradle/wrapper/gradle-wrapper.jar: The Gradle wrapper lib.
gradle/wrapper/gradle-wrapper.properties: The Gradle wrapper configuration.
build.gradle: The Gradle script that we are going to run and look at.
src/main/groovy/runmockandtest.groovy: The Groovy script to be run.

ext: The folder that contains the H2 DB Driver.

1ib: The folder that contains a JAR that I could not provide using dependency
management; more on this later.

The first four files, the wrapper files, were generated by running the Gradle wrapper task:
gradle wrapper

To use the wrapper instead of the gradle <task> command, just type the following:
./gradlew <task>

If you would prefer to not use the wrapper, you can always download Gradle. If you need
any help with this, follow the instructions at

http://www.gradle.org/docs/current/userguide/installation.html.

www.it-ebooks.info

http://www.gradle.org/docs/current/userguide/installation.html
http://www.it-ebooks.info/

How to do it...

Basically, we need a Gradle build script that takes care of getting all the SoapUI-related
dependencies required to compile and run runmockandtest.groovy. Then, we need a task
to actually run the script. By convention, all Gradle build scripts are called build.gradle.

Let’s take a look at the sample build.gradle:

apply plugin: 'groovy'

task wrapper(type: Wrapper) {
gradleversion = '2.1'

}

repositories {
mavenCentral()
maven { url "http://www.soapui.org/repository/maven2" }

}

dependencies {
compile(group: 'com.smartbear.soapui', name: 'soapui', version:'5.1.2-m-
SNAPSHOT') {
exclude(module: 'jms')
exclude(module: 'jtidy')
exclude(module: 'cajo')

}
compile files('/soapui-cookbook/chapter5/gradle/lib/jms-1.1.jar')

}

task runMockAndTest (dependsOn: 'classes', type: JavaExec) {
main = 'runmockandtest'
args = ['/soapui-cookbook/chapter3/SOAPMock-soapui-project.xml']
classpath = sourceSets.main.runtimeClasspath

}

We’ll talk more about how the script works in the next section; for now, let’s just run it
and see what happens. Go to the directory that contains the sample and run:

./gradlew runMockAndTest

The first thing you should see is a lot of downloading as Gradle takes care of all the
dependencies. When all the dependencies have downloaded, you should see Gradle run
through its tasks:

:compileJava UP-TO-DATE
:compileGroovy
:processResources UP-TO-DATE
:classes

:runScript

Then, the runmockandtest.groovy script starts to run, and you should see the same output
as before when the mock has started and when the test runs and passes. Finally, you
should see something like this:

BUILD SUCCESSFUL

Total time: 14.178 secs

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The build.gradle script uses the Groovy plugin (plugin apply plugin: 'groovy'),
which, by convention, compiles Groovy files found in src/main/groovy, that is,
runmockandtest.groovy. The resulting class file can be found in the build folder.

The next part configures the wrapper task. While this is important for specifying wrapper
properties, like which version of Gradle the wrapper should use, it plays no part in the
execution of the runMockAndTest task.

In the next section, we will specify the repositories, that is, where to get all the
dependencies, as we did in the previous recipe’s Grape example:

mavenCentral()
maven { url "http://www.soapui.org/repository/maven2" }

Tip
Grape is included in the Maven Central repository by default.
The next section configures the dependencies:

dependencies {
compile(group: 'com.smartbear.soapui', name: 'soapui', version:'5.1.2-m-
SNAPSHOT') {
exclude(module: 'jms')
exclude(module: 'jtidy')
exclude(module: 'cajo')

}
compile files('/soapui-cookbook/chapter5/gradle/lib/jms-1.1.jar"')

}

There are a few problems with Gradle and SoapUI’s dependency tree here, hence all the
exclusions! Grape seems to be able to resolve them a bit more easily, except for also
having problems with jtidy and cajo. The main problem here is javax.jms:jms:1.1,
which, despite adding its specific repository, doesn’t get resolved! If it is not present,
SoapUI won’t work. So, as a workaround, the dependency is included from a local folder,
that is, 1ib/jms-1.1.jar. Note that we can include all the dependencies this way if we
need to, but then they won’t be downloaded automatically.

Finally, we define a custom task runMockAndTest of type JavaExec to run the compiled
runmockandtest.class, passing the project as a runtime argument. It’s important to note
that the class path, including all the gathered dependencies, is also supplied to the script
using classpath = sourceSets.main.runtimeClasspath.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

One possible addition to this recipe’s Gradle script would be to develop a similar logic
within a custom Gradle plugin. While this functionality would be fundamentally similar,
there would be potential advantages in terms of a neater DSL-based syntax and also the
ability to share the plugin with others more easily.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For more information on Gradle Wrapper, refer to

http://www.gradle.org/docs/current/userguide/gradle wrapper.html

e For more information on Gradle Tasks, refer to

http://www.gradle.org/docs/current/userguide/more_about_tasks.html

e For more information on Gradle JavaExec Task, refer to

http://www.gradle.org/docs/current/dsl/org.gradle.api.tasks.JavaExec.html

e For more information on Gradle Plugin Development, refer to

http://www.gradle.org/docs/current/userguide/custom_plugins.html

e The Running load tests using Maven, command line, Java, Groovy, and Gradle
scripts recipe in Chapter 9, Data-driven Load Testing With Custom Datasources

www.it-ebooks.info

http://www.gradle.org/docs/current/userguide/gradle_wrapper.html
http://www.gradle.org/docs/current/userguide/more_about_tasks.html
http://www.gradle.org/docs/current/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/current/userguide/custom_plugins.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6. Reporting

In this chapter, we will cover the following topics:

Generating reports using test runners
Publishing JUnit reports using Jenkins
Exporting custom reports using Groovy
Analyzing test, HTTP, and mock coverage (pro)

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

This chapter naturally builds on the automation and scripting themes covered in the
previous chapter. It mostly looks at how to generate, export, and publish report data in the
context of continuous integration.

The pro-only Ul-based report builder functionality has not been covered. Refer to the
SoapUI online help if you need more information on this:

http://www.soapui.org/Reporting/getting-started-with-reporting.html.

www.it-ebooks.info

http://www.soapui.org/Reporting/getting-started-with-reporting.html
http://www.it-ebooks.info/

What you’ll learn

You will learn the following topics:

e How to use and understand the types of test reports that SoapUI can generate using
scripts

e How to use Jenkins (or other popular CI tools) to orchestrate tests and publish JUnit
style results as reports

e How to create custom test reports by using Groovy to access SoapUI test framework
objects

e How SoapUI coverage reporting works and its uses

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Generating reports from test runners

As you might have seen in the previous chapter, when running the SoapUI test runner by
whatever means, there are open source and pro options to generate reports. In this recipe,
we’ll mainly look at the reporting options that are common to both versions.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

This recipe uses the SOAPDBMock -Reporting-soapui-project.xml project, which is a
version of the chapter 3 sample’s SOAPMock-soapui-project.xml project, with a few
additional tests and assertions that make the results a bit more interesting. You can find
this project in the chapter 6 samples.

In this recipe, we’ll explore the reporting options in the Launch TestRunner Ul option
and command-line testrunner script, but you can also script any equivalent TestRunner
means, including Java, Maven, or Gradle. See the previous chapter if you need any help.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

First, let’s take a look at the array of reporting options that are available to us, and see how
the Launch TestRunner Ul feature presents them (pro version):

| Basic | Owverrides REEGLGIEE umper.ties Custom Args |
Print Report: Prints a summary report to the console
Export JUnit Results: Exports results to a JUnit-Style report
Export All: Exports all results (not only errors)
Root Folder: Browse...
Coverage Report: Generate WSDL Coverage report (SoapUl Pro only)
Open Report: Opens generated report(s) in browser (SoapUl Pro only)
Select Report Type: | TastSuite Report |+
:) TestSuite Report
Report Format(s): |y, i¢_Style HTML Report
Data Export

Note that all the pro features in the bottom half of the window are grayed out in the open
source version. For more information about the pro features, refer to the previous section
and the Analyzing test, HTTP, and mock coverage (pro) recipe.

The top portion of the launcher window effectively provides a less extensive equivalent of
the command line’s testrunner script options:

e -r: This prints a small (summary) report

e -j: This sets the output to include (JUnit) XML reports
e -a: This turns on the exporting of (all) results

e -f: This sets the output (root) folder to export results to

The following options are not in Launch TestRunner UI_:
e -A: This turns on the option to export all results using folders
instead of long filenames
e -M: This creates a Test Run Log Report in an XML format

Ok, let’s work through the options. The first one to set in all cases is usually where you
want any report files to go (-f). So set this and run either the Launch TestRunner or the
command line (run from <SoapUI Home>/java/app/bin):

./testrunner.sh -f"./reports" SOAPDBMock-Reporting-soapui-project.xml
Tip

With the Launch Test Runner Ul feature, you need to save any changes to the project

www.it-ebooks.info

http://www.it-ebooks.info/

before running it. The reason being that the launcher works by running the command
line’s testrunner script (refer to the previous chapter) that references the project file
rather than the state of the tests in the UI’s memory.

Standard reports

If there are no failing tests, then only console INFO logging is shown, and no file is
produced. However, if we enable GetInvoiceTestCaseFail and rerun, then you will see
lengthy Messages, Properties, Request, and Response logging in the console along with
a file that contains the same failure information:

./reports/GetInvoiceTestSuite-GetInvoiceTestCaseFail-getInvoice2-0-
FAILED. txt

To get the similar files to pass tests, pass or fail, rerun using the (-a) command-line option
or the Export All Launcher option, and you should then see the files:

GetInvoiceTestSuite-GetInvoiceTestCasePass-getInvoicel-0-0K. txt
GetInvoiceTestSuite-GetInvoiceTestCasePass-getInvoice3-0-0K. txt

If we add the command-line only option (-A), interestingly, it not only converts the long
filename to folders, but it also produces the report files that are related to the passed tests:

GetInvoiceTestSuite/
GetInvoiceTestCaseFail/getInvoice2-0-FAILED. txt
GetInvoiceTestCasePass/getInvoicel-0-0K. txt

/getInvoice3-0-0K. txt

Summary reports

The (-r) command line or the Print Report Launcher option provides the following type
of summary log data, but only if there are no failures:

SoapUI 5.0.0 TestCaseRunner Summary

Time Taken: 1643ms

Total TestSuites: 1

Total TestCases: 1 (0 failed)
Total TestSteps: 2

Total Request Assertions: 4
Total Failed Assertions: 0
Total Exported Results: O

JUnit Reports

The (-j) command line or the Export JUnit Results Launcher option is probably the
most useful. It produces a standard JUnit format report file that can be processed by other
tools such as Hudson and Jenkins (see the next recipe for more information). Here is a
partial example of the format produced (TEST-GetInvoiceTestSuite.xml):

<?xml version="1.0" encoding="UTF-8"7?>
<testsuite name="SOAPDBMock-Reporting.GetInvoiceTestSuite" tests="2"
failures="1" errors="0" time="0.88">

<properties>

www.it-ebooks.info

http://www.it-ebooks.info/

</properties>

<testcase name="GetInvoiceTestCasePass" time="0.859"/>

<testcase name="GetInvoiceTestCaseFail" time="0.021">

<failure type="Cancelling due to failed test step"

message="Cancelling due to failed test step"><![CDATA[<h3>getInvoice2
Failed</h3><pre>[Invoice2ShouldHaveAmount200] XPathContains comparison
failed for path [declare namespace
inv='http://soapui.cookbook.samples/schema/invoice';
//inv:InvoiceDocument[1]/inv:amount[1]], expecting [200.0], actual was
[23330.0]
</pre><hr/>]]></failure>

</testcase>
</testsuite>

AlertSite Reports

Lastly, let’s try the (-M) command line’s only option that produces what appears to be an
AlertSite (http://alertsite.com/) report in the file test_case_run_log_report.xml. There
is no real documentation on this option to confirm its usage, only what can be seen in the
SoapUI source code, but the file seems complete enough!

www.it-ebooks.info

http://alertsite.com/
http://www.it-ebooks.info/

How it works...

The only real way to understand how the reports are triggered and generated is to take a
look at the source code. The SoapUITestCaseRunner orchestrates all the reporting formats
depending on the options supplied. The standard reports are generated by the
afterStep(...) method. The summary report comes from the printReport(...)
method. The JUnit and AlertSite reports are a little more complicated and involve delegate
classes from the package com.eviware.soapui.report, take a look at the SoapUI source
code:

JunitReport

JunitReportCollector

JunitSecurityReportCollector (See chapter 7 security)
TestCaseRunLogReport (AlertSite Report)

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

The classes and methods in the previous section are readily extendable if you have
sufficient Java skills and are happy to build SoapUI from the source code (see the
Building, packaging, and running SoapUI from the source code recipe from Chapter 11,
Taking SoapUI Further). So, if you find any of the report formats lacking, then they can
be customized. For example, you can find an interesting blog article that shows how to

improve SoapUI’s JUnit reports at http://blog.infostretch.com/customizing-soapui-reports.

Extended reporting functionality can also be obtained or developed via a SoapUI plugin;
see Chapter 10, Using Plugins and Chapter 11, Taking SoapUI Further for help on both
options.

In addition to customizing the framework classes, you can also go your own way and
provide additional reporting functionality from within SoapUI using Groovy scripting.
The Exporting custom reports using Groovy recipe illustrates a simple example of this.

Pro test runner options

The pro version of SoapUI comes with a Ul-based reports builder; see the official

documentation at http://www.soapui.org/Reporting/getting-started-with-reporting.html if
you need more on this.

In terms of the command line’s testrunner script, these are the pro reporting options:

e -F: This sets the required report format. This is used with -R. The valid options are
PDF, XLS, HTML, RTF, CSV, TXT, and XML (comma-separated).

e -o: This opens the generated report(s) in a browser.

e -R: This generates a report.

e -g: This sets the output to include coverage HTML reports.

There are additional report formats available (-F) and the ability to open (HTML) reports
in your browser (-o0). The rather vague description of the (-R) option is just a way of
specifying the Report Type value from the dropdown shown in the Launcher screenshot:

-R"Data Export", -R"TestSuite Report" or -R"JUnit-Style HTML Report"

www.it-ebooks.info

http://blog.infostretch.com/customizing-soapui-reports
http://www.soapui.org/Reporting/getting-started-with-reporting.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing JUnit reports using Jenkins

As part of continuous integration, it can be useful to display SoapUI test reports following
the build and integration test cycle. This recipe shows how use Jenkins to run tests,
generate a report, and publish the report under the Jenkins Job’s Test Result page.

Tip
Other CI tools can be used too

In addition to Jenkins, any CI tool, for example, TeamCity and Bamboo, capable of
processing JUnit style results could be used in its place. Refer to the links at the end of the
recipe for some options.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To follow along with this recipe, you will need to download and run Jenkins. Go to

https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins if you need more help with

this. In this recipe, we can just download Jenkins.war and run it from the command
prompt with the following:
Java -jar Jenkins.war

Jenkins may take a minute or two to set up, and it should then be accessible from
http://localhost:8080/.

The SOAPDBMock-Reporting-soapui-project.xml project from the chapter 6 samples
will be used to illustrate this recipe. The test needs the mock to be running to pass, so
please remember to start the mock service in SoapUI before running the Jenkins job.

www.it-ebooks.info

https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
http://www.it-ebooks.info/

How to do it...

First, we need to create a new Jenkins job with a Build step of type Execute Shell to run
the tests and generate a report for the SOAPDBMock-Reporting-soapui-project.xml
project using the testrunner script, and then add a Post-build Action of type Publish
JUnit test result report. We can then run the job and check out the published test report.
Perform the following steps:

1. First, let’s create the Jenkins job. Go to the Jenkins dashboard (it is by default at
http://localhost:8080/) and click on New Item. Enter an Item name for the job,
for example, RunSOAPDBTests, and select a project type of Freestyle project.

2. Next, add Build step. Ignore all the other options and click on Add build step and
select Execute shell. For the command, the key things to remember are:

o Provide the location of the testrunner script, for example, used cd to <SoapUI
Home>/bin or alternatively set up the SOAPUI_HOME environment variable with
the same path instead.

Run the testrunner script.

You need the -j option to get the report in the JUnit format.

The -r (summary) and -a (all results) options are optional.

Set the report output folder (-f) to Workspace for the Jenkins Job.

Provide the project file.

O O O O O

3. For example, on MacOS/Linux, this script could be as follows:

Execute shell .ﬁ.

Command cd fwork/socapui-coockbook/soap-ui-51/scapui/soapui-installer/target/assemblies

/S8oapUI=5.2.0=8NAPSHOT=dist /bin/
./testrunner.sh -r -a -j -f/Users/bearsoftware/.jenkins/workspace/RunSOAFDBTests
fsoapui-cookbook/chaptert /S0APDBMock-Reporting-scapui-project.xml

See the list of available environment variables

Tip
Adjust the paths for SoapUI’s bin folder and the project location, and Windows users

will need to use testrunner.bat.

4. Next, add the post-build action to publish the report. Click on Add post-build
action and select Publish JUnit test result report. By default, this action will look
in the workspace folder for the job for report files, so just enter *.xml in the Test
report XMLs field. For example:

www.it-ebooks.info

http://www.it-ebooks.info/

Publish JUnit test result report (7))

Test report XMLs P

Fileset ‘includes’ setting that specifies the generated raw XML report files, such as 'myprojecttargetest-repans
f*xml'. Basedir of the fileset is the workepace root.

Retain long standard output/error ®
Health report amplification factor 1 5@

1% failing tests scores as 99% health. 5% failing tests scores as 95% health

Delete

5. Now, save the job configuration and run it. Click on Save and then click on Build
Now. You should see the build appear in Build History:

@% Build History trend =

#1o Oct 27, 2014 3:48:44 PM
e |

@ #11 DOct 27 2014 3:45:57 PM
@ #10 Oct 27, 2014 3:43:36 PM

6. If all is well, the job will complete and will appear as a blue sphere in the Build
History; if yes, move on to step 6. Otherwise, you’ll see a red sphere. To check what
went wrong, click on the dated job link in the build history, and take a look in the
Console Output window to look for more details on the problem. Then, go back to
the Job’s page and click on Configure to fix any issues with the job setup, and when
you think you’ve fixed the problem, try to build again.

7. If all goes well, click on the successful job link in the Build History and take a look
at the Test Result page. You should be able to see something like this:

Test Result
0 failures (+0)
1 tests (+0)
Took 1.5 sec.
Madd description
All Tests
Package Duration Fail (ditfy Skip (dify Pass (diffy Total {aiff)
SOAPDBMock-Reporting 1.5 sec 0 0 1 1

8. Optionally, to see failure details, you can edit SOAPDBMock-Reporting-soapui-
project.xml in SoapUI, and enable GetInvoiceTestCaseFail TestCase and rerun
the Jenkins job. You should then see the details of the failed tests under the Test
Result page:

www.it-ebooks.info

http://www.it-ebooks.info/

All Failed Tests

Test Name Duration Age

= SOAPDBMock-Reporting. Getinvoice TestSuite. Getlnvoice TestCaseFail
= Error Details

Cancelling due to failed test step
= Stack Trace

<h3>getInvoice2 Failed</h3><pre>[Invoice2ShouldHaveimount200]
¥PathContains comparison failed for path [declare namespace
inv="http://scapui.cookbook.samples/schema/invoice’;
//inv:InvoiceDocument[l]/inv:amount[1]], expecting [200.0], actual was [23330.0)
</pre><hr/>

22 ms

1

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Jenkins is a build job runner and scheduler with many additional features. When Jenkins
runs our configured testrunner command line, it generates a report file in the <user
Home>/.jenkins/workspace/RunSOAPDBTests folder. Then, when the build step (our
command) has finished, the out-of-the-box post-build action looks for JUnit format XML
report files in the same folder, parses them, and publishes the report under the Job’s Test
Result page.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Apart from the out-of-the-box JUnit reporting features of Jenkins, there are many
excellent plugins that have been written to provide the bolt-on report processing
functionality. For example, the XUnit plugin (https://wiki.jenkins-
ci.org/display/JENKINS/xUnit+Plugin) is able to transform the results from other testing
frameworks or custom reports into a JUnit format using XSL style sheets before
publishing the results.

www.it-ebooks.info

https://wiki.jenkins-ci.org/display/JENKINS/xUnit+Plugin
http://www.it-ebooks.info/

See also

e For more information on Jenkins Plugins, go to https://wiki.jenkins-

ci.org/display/JENKINS/Plugins
¢ For more information on TeamCity XML (and JUnit style) Reports, go to

https://confluence.jetbrains.com/display/TCD8/XML+Report+Processing

e For more information on Bamboo JUnit Style Reporting, go to

https://confluence.atlassian.com/display/BAMBOQO/JUnit+parsing+in+Bamboo

www.it-ebooks.info

https://wiki.jenkins-ci.org/display/JENKINS/Plugins
https://confluence.jetbrains.com/display/TCD8/XML+Report+Processing
https://confluence.atlassian.com/display/BAMBOO/JUnit+parsing+in+Bamboo
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting custom reports using Groovy

Another option to create reports is to use a Groovy TestStep. Consider these situations:

¢ You need to include extra information that is not available via one of the standard
reports, for example, by accessing test framework objects or other test data.

¢ You would like to produce a custom report format, for example, HTML or PDF.

¢ You would like to use the report later in TestCase; for example, use the Email
TestStep (see the Sending e-mails with the Email TestStep plugin recipe of Chapter
10, Using Plugins) to e-mail the results somewhere.

In this recipe, we’ll see how to extract test results from the SoapUI framework classes and
export the data to a custom XML report file using Groovy.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The SOAPDBMock-Reporting-soapui-project.xml project from the chapter 6 samples
will be used to illustrate this recipe. You can find the Groovy script under the TearDown
Script tab on GetInvoiceTestSuite (the file creation is commented out to save you from
any path-related issues when running the tests in the previous recipes).

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

The basic approach here will be to run TestSuite and its related TestCase and TestStep.

Add a Groovy script to do the following:

e When TestSuite has completed, we want to iterate over each TestCase object from
the runner variable of TestSuite and report its status and the status of each related
TestStep object. If TestStep fails, then we will want to report the reason.

e We want to build the report as we iterate using simple Groovy report objects.

e Finally, when we have built all the report objects, we want to serialize them to XML

and export the XML to a file.

Since we want to run our Groovy script following the TestSuite execution, it is
convenient to add it as a TearDown script. With that, add the following Groovy script to

the GetInvoiceTestSuite TearDown Script tab:

import groovy.transform.TupleConstructor
import com.thoughtworks.xstream.XStream

@TupleConstructor

class TestSuite {
String name
List<TestCase> testCases

}

@TupleConstructor

class TestCase {
String name
String status
List<TestStep> testSteps

}

@TupleConstructor

class TestStep {
String name
String status
List<Message> messages

}

@TupleConstructor

class Message {
String text

b

def xstream = new XStream()
xstream.useAttributeFor(TestSuite, "name")
xstream.useAttributeFor (TestCase, '"name")
xstream.useAttributeFor (TestCase, '"status")
xstream.useAttributeFor (TestStep, "name")
xstream.useAttributeFor (TestStep, "status")

xstream.aliasField('TestCases', TestSuite, 'testCases')
xstream.aliasField('TestSteps', TestCase, 'testSteps')
xstream.aliasField('Messages', TestStep, 'messages')

www.it-ebooks.info

http://www.it-ebooks.info/

def testSuiteObj = new TestSuite(testSuite.name,[])
for (testCaseResult in runner.results)

{
def testCaseObj = new TestCase(testCaseResult.testCase.name,
testCaseResult.status.toString(), [])

for (testStepResult in testCaseResult.getResults())
{
def testStepObj = new TestStep(testStepResult.testStep.name,
testStepResult.status.toString(), [])

testStepResult.messages.each() { message ->
testStepObj.messages.add(new Message(message))
}

testCaseObj.testSteps.add(testStepObj)

3
testSuiteObj.testCases.add(testCaseObj)

}

def xmlTestSuite = xstream.toXML(testSuiteObj)
log.info xmlTestSuite
new File('/temp/custom-report.xml').write(xmlTestSuite)

Before running the preceding script, check whether the file path on the last line is ok for
you. Also, if you would like to see some failure details, make sure that
GetInvoiceTestCaseFail is enabled. When ready, run GetInvoiceTestSuite, and you
should see an XML document log message and a report file created (/temp/custom-
report.xml):

<TestSuite name="GetInvoiceTestSuite">
<TestCases>
<TestCase name="GetInvoiceTestCasePass" status="FINISHED">
<TestSteps>
<TestStep name="getInvoicel" status="OK">
<Messages/>
</TestStep>
<TestStep name="getInvoice3" status="OK">
<Messages/>
</TestStep>
</TestSteps>
</TestCase>
<TestCase name="GetInvoiceTestCaseFail" status="FAILED">
<TestSteps>
<TestStep name='"getInvoice2" status="FAILED">
<Messages>
<Message>
<text>[Invoice2ShouldHaveAmount200] XPathContains comparison
failed for path [declare namespace
inv='http://soapui.cookbook.samples/schema/invoice' ;
//inv:InvoiceDocument[1]/inv:amount[1]], expecting [200.0], actual was
[23330.0]</text>
</Message>
</Messages>

www.it-ebooks.info

http://www.it-ebooks.info/

</TestStep>
</TestSteps>
</TestCase>
</TestCases>
</TestSuite>

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The first part of the script imports the classes we need; note how the XStream library
(discussed shortly) is conveniently included in <SoapUI home>/1ib already, so there is no
need to add it manually as an external (/ext) library.

Next, we set up some standard Groovy domain classes to represent our report structure.
Tip

The @TupleConstructor annotation is used to allow a slightly more convenient way to
construct the report domain classes (for more information, see

http://groovy.codehaus.org/gapi/groovy/transform/TupleConstructor.html).

We then instantiate an XStream object to allow us to serialize the report domain classes
into XML later on (for more information on the XStream library, see
http://xstream.codehaus.org/). Next, we tell XStream to use attributes instead of elements
to represent the name and status. Then, to tweak the case of testCases, and for the
testSteps and messages element names to begin with upper case letters, we set up some
Xstream field aliases.

Now, let’s move on to the key part of extracting the test results and building the report
objects. At the TestSuite level, the runner variable (an implementation of the
TestSuiteRunner interface) provides access to all the TestCaseRunner objects via the
List<TestCaseRunner> getResults() method. For each TestCaseRunner object, we can
get the status and also get the related TestStep objects from the List<TestStepResult>
getResults() method. Each TestStepResult object gives us the status, and in the case of
a failure, gives us the reason from the String[] getMessages() method.

Finally, we can use XStream to serialize the report domain objects to XML and write the
XML to a file!

www.it-ebooks.info

http://groovy.codehaus.org/gapi/groovy/transform/TupleConstructor.html
http://xstream.codehaus.org/
http://www.it-ebooks.info/

There’s more...

The key thing to realize here is that once you know how to extract the results, the export
format can easily be whatever you need, and therefore, the options for consuming the
report become completely open. Also, this approach is likely to be easier than extending
the SoapUI reporting framework class directly, as was discussed briefly in the first recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing test, HT'TP, and mock coverage
(Pro)

SoapUI pro comes with the coverage reporting functionality for test, HTTP traffic, and
mocks. In all cases, the coverage is calculated relative to the service’s contract. This recipe
focuses on SOAP test coverage reporting, on how the coverage scoring works, and how to
improve the scores. The other forms of coverage reporting are discussed but not explored
in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Ready

There are two sample projects used for this recipe. The first is the SOAPDBMock -
Reporting-soapui-project.xml project that is used for the initial coverage run, and the
SOAPDBMock-Coverage-soapui-project.xml project, which is a copy of the previous one,
but which contains all changes made during the recipe to improve the coverage scores.
Both are in the chapter 6 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Test coverage reporting is available at the Project, TestSuite, and TestCase levels, but
the functionality is essentially the same, just with different scopes; that is, project
coverage reporting considers all test artifacts in the project whereas TestCase coverage
reporting just looks at the TestSteps of the particular TestCase. Here, we’ll focus on
TestSuite level coverage reporting.

To start with, let’s run the coverage report against the SOAPDBMock -Reporting project to
get our initial view of coverage. To do this, open the GetInvoiceTestSuite, click on the
Coverage tab, check Enable Coverage, and run TestSuite to see something like this:

[TestCases
™ Enable Cover... O ¢ ©
Element Contract Coverage | isoapenv:Envelope xmlns: soapenv="h't,t',p:.-".-"s =
v B SOAPDBMock-Reporting sox a7 T ||| somenvineader/ 2
v X InvoicePortBinding 50% (17%) . Y 0] ; eDo a
¥ & createlnvoice 0% (0%) Y — :.,
v i Request 0% (0%) [2
Body 0 M 2
v £ Response I 0 e H
Body 0% (0%) (- T— =
v & getinvoice 100% (33%) N 65 | o
v & Request 100% (0%) [7 — &
Body 100% (0%) L 22] o
v & Response 0% so%) NG -
Body 100% (50%) [[g
v @ GetlnvoiceTestSuite 50% (17%) T T 0 | =
v & GetlnvoiceTestCasePass S50% (17%) _
v [@ getinvoicel 100% (33%) B oc 2 |
v Message 1o0% G0 BB
Reguest 1002 (0%)
@ Invoice1ShouldHaveCompanycom 0% (25%) [R
@ Invoice1ShouldHaveAmount100 0% (25%) [titas
» (@ getinvoice3 100% (33%) N 65 | =]
TestSuite TestCase TestStep Assertion Cowverage |ETZ=F'
GetlnvoiceTestSuite GetlnvoiceTestCaseFPass getinvoicel Invoice 15houldHaveCompanyco... (25%) [
GetlnvoiceTestSuite GetlnvoiceTestCasePass getinvoicel Invoice 1ShouldHaveAmount100 (25%) [
Assertion Resultsj

The report view contains the following main parts:

¢ Project Tree View: This shows all the elements of the project and their associated
scores. The scores are probably best understood by examining the tree yourself, but
basically, the scores are aggregated at the artifact level. More information on this will
be provided shortly.

e Contract Coverage: This is shown as the left-hand percentage figure and as the light
green part of the colored bar next to each item in the project view. It is also shown as
light green in the Message Coverage tab.

e Assertion Coverage: This is shown as the right-hand percentage and as the dark
green part of the colored bar next to each item in the project view. It is also shown as
dark green in the Message Content tab and as dark green in the Assertion Results
tab.

e Message Coverage Tab: This takes effect when you click on the Request,
Response, or Assertion elements. It shows a close-up view of contract and assertion

www.it-ebooks.info

http://www.it-ebooks.info/

coverage, as shown in the preceding screenshot.

e Message Content Tab: This works a bit like the Message Coverage tab, but shows
less information; that is, just the message content.

e Assertion Results Tab: This works at the TestSuite level and below, and shows the
Assertions how much of the actual message content they cover.

You can also tweak the coverage scoring to exclude elements and to count empty values
and question mark values in the Coverage Options window.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

So, how do the scores work and what can we do to improve them? Well really it just
comes down to working on the following two areas.

Contract coverage

From the preceding screenshot, we can see at the project level a score of 6/12 being the
aggregate or sum of createInvoice 0/6 (no contract coverage) and getInvoice 6/6 (full
contract coverage). Why out of 6? In the case of createInvoice, this is the sum of
Request (4) and Response (2). Why 4 and 2? It ‘s how SoapUI considers the elements in
the contract’s (WSDL) request and response. So, in this case, the createInvoice
operation’s request has 4 elements: the createInvoice, invoiceNo, company, and amount
elements. The response only has two elements, the getInvoice and invoiceNo elements.
For the getInvoice operation, the request and response are effectively reversed; hence,
the numbers are Request (2) and Response (4) respectively.

So, the contract coverage score is OK for the getInvoice operation, but completely
lacking for the createInvoice operation. Well, that’ll be because the
GetInvoiceTestSuite doesn’t test it! An easy fix is to just create a new
CreateInvoiceTestCase without any Assertions and rerun the coverage report, and we
should be up to 12/12 and a nice light green bar for contract coverage!

Assertion coverage

Basically, the scores for Assertions are relative to the same contract element totals
discussed previously, that is, how well the Assertions cover the contract. To explain this
in more detail, let’s consider the Response assertion coverage for the getInvoicel
TestStep. We are currently scoring 50 percent (as shown in the screenshot). This is
because the two Assertions for this TestStep cover only the company and amount
response elements (2/4 or 50 percent). To improve this score to 100 percent, the easiest
way is to add XPath Assertion for the entire InvoiceDocument element, that is:

XPath Expression:
declare namespace inv='http://soapui.cookbook.samples/schema/invoice’;
//inv:InvoiceDocument[1]

Expected Result:

<inv:InvoiceDocument

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:inv="http://soapui.cookbook.samples/schema/invoice">
<inv:invoiceNo>1</inv:invoiceNo>
<inv:company>compl</inv:company>
<inv:amount>100.0</inv:amount>

</inv:InvoiceDocument>

Do this, and you should get 100 percent assertion coverage for this TestStep!
Tip

Only xPath Assertions are considered by coverage reporting.

www.it-ebooks.info

http://www.it-ebooks.info/

At the time of writing, one slightly annoying quirk of the assertion coverage scoring seems
to be that requests are also considered. Yet, there is no way to test requests with a standard
XPath Assertion, SO you can never score above 0 percent!

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

As mentioned in the first recipe and in the previous chapter, test coverage reports can also
be generated when using test runners, for example, via the command line, Maven, Java,
Groovy, and others. For example, the command line testrunner script uses the -g option:

./testrunner.sh -sGetInvoiceTestSuite -a -f/soapui-
cookbook/chapter6/reports -o -g -R"TestSuite Report" -FHTML -EDefault
/soapui-cookbook/chapter6/SOAPDBMock-Coverage-soapui-project.xml

This runs the tests in the GetInvoiceTestSuite and generates an HTML coverage report
in the folder specified by the -f option, and opens the report in a browser (-0).

HTTP coverage reporting

HTTP coverage reporting is an extension to the HTTP recording functionality that can be
used to produce coverage reports in terms of recorded traffic (requests made) versus a
target service’s contract elements. If you start to launch the HTTP monitor (to act as a
global proxy), it automatically configures a proxy within SoapUI so that all requests made
are proxied through the monitor. If you enable coverage reporting and start making test
requests, you should see coverage scores generated for the service and its operations in a
similar way to what is seen in this recipe.

Mock coverage reporting

Like HTTP coverage reporting, the mock version’s scores are an expression of web
service operation usage versus total contract elements; for example, in the case of the
SOAPDBMock -Reporting project, if we only call the mock’s getInvoice operation, the
overall score will be 6/12, half red (the createInvoice operation is not called), and half
light green (the getInvoice operation was called).

Like a test runner, the mock runner can also generate mock coverage reports. For example,
you can use the -g and -f options to generate HTML coverage reports, and -o is used to
automatically open them in a browser.

REST coverage reporting

How coverage reporting interprets the contract for a RESTful web service when scoring is
naturally different from that of a SOAP web service; for example, it looks at the coverage
of methods, parameters, representations, and status codes. While coverage functionality
runs fine and provides scoring for a RESTful web service, it’s not clear as to what do you
have to do to improve the assertion coverage scores as no amount of added Assertions
seems to make any difference! Also, there is no coverage reporting for REST mocks. My
impression is that at the time of writing (SoapUI Pro 5.1.2), the functionality isn’t
completely finished.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For more information on SoapUI Coverage Docs, go to
http://www.soapui.org/Coverage/getting-started.html

www.it-ebooks.info

http://www.soapui.org/Coverage/getting-started.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7. Testing Secured Web Services

In this chapter, we will cover the following topics:

Testing basic HTTP-authenticated RESTful web services

Testing HTTP Digest-authenticated RESTful web services

Testing HTTP form-authenticated RESTful web services

Creating and using X.509 certificates to test web services over HTTPS
Testing client certificate authenticated web services

Securing mock services using X.509 certificates

Testing WS-Security UsernameToken, Timestamp, and TransportBinding
Scanning web service security vulnerabilities

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

The topic of web service security can be challenging to understand and test. To be able to
test secured web services effectively, it is naturally advisable to at least understand the
basics of the security schemes involved. Building on this, it can also be advantageous to
understand some of the common types of attacks for the security schemes involved. Since
we cannot cover all this in a single chapter, we will try to understand at least the basics of
the schemes involved, so that we can better understand how SoapUI can be used to test
them. Fortunately, apart from any security-related complexity or setup work, the recipes
here can actually be quite simple to do!

In the next chapter, we will build on some of the security concepts and testing skills
learned here, while taking an in-depth look at OAuth 2 and AWS Access Key
authentication in order to test cloud-based services.

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll learn

You will learn the following topics:

How HTTP-based authentication schemes work and can be tested

How X.509 certificate schemes work in basic terms and can be tested

How to create and use self-signed X.509 certificates and Java keystores within
SoapUI to test and mock secured services

The basics of WS-Security schemes and how they can be tested within SoapUI
How SoapUTI’s security scanning functionality can be used and customized to check
for security vulnerabilities

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing basic HTTP-authenticated
RESTful web services

A good place to start with security testing is HTTP Basic authentication. As far as
authentication approaches go, it is very simple and widely used for both RESTful and
SOAP web services. In this recipe, we’ll see how to set up and test a REST resource that
requires HTTP Basic authentication. If you’ve not seen HTTP Basic authentication before,
you can, of course, read up on it first, although this should not be necessary in order to
follow this recipe, and we will look at how it works shortly.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Most of the actual legwork in this recipe involves setting up the test service. You can
always skip these parts and use any other available web service that requires HTTP Basic
authentication instead, if you prefer.

To create our test service, we’re going to deploy the helloworld-webapp Jersey sample
WAR file to Apache Tomcat, and also configure HTTP Basic authentication via Tomcat. I
have included a prebuilt helloworld-webapp.war and jersey-samples-1.0.zip files in
the chapter 7 samples. If you want to, you can always build the sample yourself using
Maven; just use mvn install in the /helloworld-webapp project folder and then find the
WAR file in the target folder. See the Maven recipe in Chapter 5, Automation and
Scripting, if you need any more info on how to use Maven or the online Apache Maven

docs (http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html).
Tip

This example uses Tomcat to provide HTTP Basic authentication, so you can use any
other test service WAR file if you prefer!

The other thing we’ll need to do is install Apache Tomcat. This recipe uses version 7.0.41.
See the Building and deploying mocks as WAR files recipe in Chapter 3, Developing and
Deploying Dynamic REST and SOAP Mocks, if you need any help in installing Tomcat, or
again, you can refer to the online Apache Tomcat docs

(http://wiki.apache.org/tomcat/GettingStarted).

Lastly, the RESTDBMock-soapui-project.xml project that includes the
BasicHTTPAuthTestCase for this recipe can be found in the chapter 7 samples.

www.it-ebooks.info

http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://wiki.apache.org/tomcat/GettingStarted
http://www.it-ebooks.info/

How to do it...

There are three parts to this recipe. Firstly, a smoke test is needed to make sure
helloworld-webapp.war is deployed and working on your Tomcat. Next, we set up HTTP
Basic authentication in Tomcat. Lastly, we set up and run SoapUI tests to verify that the
HTTP Basic authentication is working as expected.

Smoke test

There are many ways to do this, but all we need to do is deploy helloworld-webapp.war,
that is, copy the WAR file into <Tomcat Home>/conf/webapps and then start Tomcat:

cd <Tomcat Home>/bin
./catalina.sh run

You should then see a similar console output:

INFO: Deploying web application archive /ApplicationServers/apache-tomcat -
7.0.41/webapps/helloworld-webapp.war

INFO: Starting ProtocolHandler ["http-bio-8080"]

Nov 10, 2014 3:32:59 PM org.apache.coyote.AbstractProtocol start
INFO: Starting ProtocolHandler ["ajp-bio-8009"]

Nov 10, 2014 3:32:59 PM org.apache.catalina.startup.Catalina start
INFO: Server startup in 1667 ms

Finally, browse to http://localhost:8080/helloworld-webapp/helloworld, and you
should see Hello World.

Tomcat HT'TP Basic authentication setup

First, let’s create a new role and user to provide the credentials for the authentication. Edit
<Tomcat Home>/conf/tomcat-users.xml and add the following at the bottom:

<role rolename="role_restuser"/>
<user username='"restuser" password="password" roles="role_restuser"/>

This creates a user called restuser with the password as password, and assigns it a new
role of role_restuser.

We can then use the new user and role to set up what’s called security-constraint,
login-config, and security-role in Tomcat. To do this, add the following XML code to
<Tomcat Home>/conf/web.xml:

<security-constraint>
<web-resource-collection>
<web-resource-name>REST HTTP Basic Auth</web-resource-name>
<url-pattern>/helloworld</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>role_restuser</role-name>
</auth-constraint>
</security-constraint>
<login-config>
<auth-method>BASIC</auth-method>

www.it-ebooks.info

http://www.it-ebooks.info/

</login-config>

<security-role>
<role-name>role_restuser</role-name>

</security-role>

More on this later, but the highlighted parts indicate that to access the configured ur1l-
pattern (/helloworld), you'll need a user with the role role_restuser to authenticate
using HTTP Basic authentication.

Now, restart Tomcat and browse to http://localhost:8080/helloworld-
webapp/helloworld, and you should be challenged with an Authentication required
pop-up window. Enter the configured username and password, and you can proceed to the
resource; enter the wrong details and you should get a status 401 page.

SoapUI HTTP Basic authentication testing

Now, we’ll use SoapUI to test whether the HTTP Basic authentication is working as
expected. Perform the following steps:

1. This is the easy part really; just set up your REST or HI'TP Test Request TestStep
option to call http://localhost:8080/helloworld-webapp/helloworld.

2. Optionally, call the resource without authentication and verify that a status code 401
(unauthorized) is returned.

3. To make an authenticated request, click on the Auth tab, select Add New
Authorization, and select Basic. You should then see the following fields appear
where you can enter the username and password (ignore the other fields for now):

Authorization: Basic =
Username: restuser
Password: ssssanss
Domain:
Pre—emptive auth: 'ZEZ' Use global preference
() Authenticate pre-emptively
Lﬂ Auth (Eagic]IHEadErﬁ (G]lAttachments fG]lRepresentatiun:i (D]lJMS HeaderleMS I\LJ

4. Now, make a request to the resource, and you should see the Hello World message
and status 200 OK!

The effect of Authenticate pre-emptively isn’t obvious at first. If you select this, then the
authentication details are sent without waiting for the status 401 challenge (that SoapUI
automatically deals with). To see this, compare an ordinary authenticated request with a
preemptive one in the HTTP log. You should see a status 401 response followed by a
status 200 response and only a status 200 for the preemptive request.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Assuming you’re not preemptively supplying the authorization details, if you attempt to
access a URI protected by HTTP Basic authentication, then you get a status 401
Authorization Required response, which contains the scheme details as a HTTP header:

WWW-Authenticate: Basic realm="Authentication required"

The realm name is configurable, but the Basic scheme requires the authentication details
to be supplied as an Authorization header; in the previous example, the subsequent
authenticated request supplies the following header in the HTTP log:

Authorization: Basic cmVzdHVzZXI6cGFzc3dvcmQ=

Here, the cmvzdHVzZX16cGFzc3dvemQ= hash is the Base64 encoding of the string
username:password. If you want to see for yourself, try encoding the string at

http://webnet77.com/cgi-bin/helpers/base-64.pl.

SoapUl is able to calculate the hash code from the credentials you entered and add the
authorization header automatically to the request when challenged or preemptively.

www.it-ebooks.info

http://webnet77.com/cgi-bin/helpers/base-64.pl
http://www.it-ebooks.info/

There’s more...
Tip
Authorization header is required for every request

This isn’t always apparent when testing with browsers because they tend to cache the
details. Even in SoapUl, if you select Delete current or No Authorization under the
Authorization dropdown, the request will still authenticate!

Also, from a security perspective, you might already be aware that HTTP Basic
authentication is relatively weak when used without transport-level encryption for
example, SSL/TLS. For example, the hash code offers no protection to the credentials, as
Base64 is reversible unlike message digest algorithms such as MD5. Fortunately,
transport-level encryption is easy to provide and test, as we can see in the Testing web
services over HTTPS recipe later on.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For more information on Tomcat security, go to http://tomcat.apache.org/tomcat-7.0-
doc/realm-howto.html

www.it-ebooks.info

http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing HI'TP Digest-authenticated
RESTful web services

HTTP Digest authentication is a step up from Basic authentication, both in the level of the
protection it offers and its complexity. Strangely, it is apparently available in SoapUl,
despite not being obviously stated as supported in either the documentation or via the user
interface! This recipe builds on the previous one to show how to set up and test an HTTP
Digest-authenticated RESTful web service hosted on Tomcat.

As HTTP Digest authentication is lengthier to explain than HTTP Basic authentication, we
will not cover its implementation in detail. So if you would like to understand more, then
perhaps do some background reading. Wikipedia is a good place to start

(http://en.wikipedia.org/wiki/Digest_access_authentication).

www.it-ebooks.info

http://en.wikipedia.org/wiki/Digest_access_authentication
http://www.it-ebooks.info/

Getting ready

Similar to the previous recipe, Tomcat will be used to provide the HTTP Digest
authentication, and the helloworld-webapp Jersey sample will again be used to test
against. So follow the advice mentioned in the Getting ready section if you want more
details on how to set up Tomcat. The Tomcat HTTP Basic authentication configuration

will also be reused and tweaked in this recipe.

The RESTDBMock-soapui-project.xml project that includes the DigestHTTPAuthTestCase
for this recipe can be found in the chapter 7 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

First, we’ll configure Tomcat to use Digest authentication rather than Basic authentication,
and then we’ll set up a SoapUI test to authenticate a request to helloworld-webapp.

Tomcat HT'TP Digest authentication setup

We only need to edit <login-config/> and restart Tomcat to provide Digest
authentication. Perform the following steps:

1. Edit <Tomcat Home>/conf/web.xml and make the following change in <login-
config>:

<login-config>

<auth-method>DIGEST</auth-method>

<realm-name>digest realm</realm-name>
</login-config>

2. Restart Tomcat and browse to http://localhost:8080/helloworld-

webapp/helloworld, and you should see a similar Authentication Required
challenge. However, the digest realm should be apparent; for example, in Firefox, the
site says “digest realm”. Enter the same username and password as before
(restuser/password), and you should be authenticated and see the Hello World
message again.

SoapUI HTTP Digest authentication

To test whether the digest authentication provided by Tomcat is working as expected, we
first create a REST Test Request TestStep and make an unauthenticated request to verify
that we are challenged to supply digest authentication. Then, we configure the
authentication to allow us to successfully access the REST resource. Perform the
following steps:

1. Let’s add an HTTP or REST test request to http://localhost:8080/helloworld-
webapp/helloworld. Make a request, and you should get a challenge response with
the status 401, and which contains the digest www-Authenticate header:

WWW-Authenticate: Digest realm="digest realm", qop="auth",
nonce="1415713971682:2ffba5083baf438b90d2986¢cc77ae793",
opaque="C4DAF43F253COAFAS5FO06908F5595C8F"

2. The necessary authentication details are exactly the same as for HTTP Basic
authentication in the previous recipe; that is, click on the Auth tab, select Add New
Authorization, and select Basic. Then, enter the username and password.

Tip
Make sure Authenticate pre-emptively is not used with digest authentication. There is no

way to preemptively supply the necessary details without the initial challenge of first
obtaining the server-generated parts needed to form the Authorization header (more on

www.it-ebooks.info

http://www.it-ebooks.info/

that later). Also, it will attempt to use the Basic scheme—in short, you’ll get a status 401
response even though your credentials may be valid.

Now, with the authentication details added, make another request, and you should get a
successful status 200 response that contains the text Hello World!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

We won’t look at all of what HTTP Digest authentication is or can be, but we can try to
explain some of the key differences with the HTTP Basic authentication so that you can
understand enough to test it. Let’s start with the extra parameters that appear in the
challenge response’s www-Authenticate header:

Digest: This is the authentication scheme

realm: This is configurable on the server, for example, <realm-name/> on Tomcat
gop (Quality of Protection): This indicates the required digest calculation

nonce: A (cryptographic) nonce is a server-generated number, and is generated only
once

e opaque: This is harder to explain quickly (see the following links for more), but is
not part of the digest calculation, and should be returned unchanged.

The short explanation is that these parameters are used by the client, SoapUl, to calculate
the digest for the subsequent request’s Authorization header; that is, in the HTTP log you
will see:

Authorization: Digest username="restuser", realm="digest realm",
nonce="1415716491557 :de6af453ecd19abca5d55334e8146831", uri="/helloworld-
webapp/helloworld", response="2b9d6d028c50cdd5fca231ddOcbhc2ffe", gop=auth,
nc=00000001, cnonce="f494e7c6145efa8651123920df2b3a2d",
opaque="C4DAF43F253COAFAS5FO006908F5595C8F"

There are even more parameters here! The extra parameters (nc, cnonce, and change to the
nonce value) are dependent on the qop approach. They are all present to help prevent
various types of attacks, such as chosen-plaintext attacks
(http://en.wikipedia.org/wiki/Chosen-plaintext_attack). The main parameter is response.
This is the result of calculating an MD5 message digest of the credentials along with
several of the parameters you have seen. However, it is unlike Basic authentication, in the
following ways:

e The response (digest) value is calculated using the parameters from the challenge
response’s Www-Authenticate header. Make the initial request and challenge
response essential before you can authenticate.

e Generally, all qop approaches use MD5 as the message Digest algorithm, which is a
one-way hash; that is, it cannot be reversed like Base64.

Note

Want to know more? An easier first read is
http://en.wikipedia.org/wiki/Digest_access_authentication. However, if you need to really
understand it, take a look at the actual RFCs for qop="auth" at
https://www.ietf.org/rfc/rfc2617.txt.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Chosen-plaintext_attack
http://en.wikipedia.org/wiki/Digest_access_authentication
https://www.ietf.org/rfc/rfc2617.txt
http://www.it-ebooks.info/

There’s more...

The digest scheme might look relatively complicated, but it is quite doable using a Groovy
script to calculate the digest and other parameters (see the preceding links for the
calculations). From a testing point of view, you can obviously go a lot further than we did.
For example, the basic idea of the nonce value is to prevent replay attacks; that is,
someone captures the authorization request and attempts to reuse it to gain access (this can
be done with Basic authentication). Since the nonce value should be guaranteed to be used
once only by the server, any attempt to reuse the same value should be rejected. This could
be tested in SoapUI by constructing a request with a previously used Authorization
header.

While Digest authentication is stronger than Basic authentication on its own, it is not as
strong as public key (SSL/TLS and client certificate) type approaches that are explored
later on.

On an advanced and somewhat related note, Amazon Web Services (AWS) use a form of
digest (not the HTTP digest) to help secure a lot of their RESTful web services. For more
information, see the Testing AWS using access key authentication recipe in Chapter 8,
Testing AWS and OAuth 2 Secured Cloud Services.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For more information on Nonce, go to
http://en.wikipedia.org/wiki/Cryptographic_nonce.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Cryptographic_nonce
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing HT'TP form-authenticated
RESTful web services

A simple but widely used approach to authentication is to use a login form to prevent
access unless valid credentials are entered. After successful authentication, HTTP session
management is used to enable the authentication of subsequent requests. In this recipe, we
will see how SoapUI can access a form-authenticated RESTful web service.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Similar to the previous two recipes, Tomcat will be used to provide the HTTP form
authentication, and the helloworld-webapp Jersey sample will again be used to test
against. So please follow the Getting ready advice there if you need more details. The
Tomcat HTTP Basic or Digest authentication configuration can also be reused and
tweaked in this recipe.

The RESTDBMock-soapui-project.xml project that includes the FormBasedAuthTestCase
test case for this recipe can be found in the chapter 7 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Like in the previous two recipes, this section is split into three parts so that you can easily
skip the Tomcat and helloworld-webapp parts if you already have a service to test. The
first part shows how to alter the previous recipe’s configuration to enable form-based
login, the second part shows how to add the login pages to the helloworld-webapp, and
the third part shows how to test the form authentication with SoapUI.

Setting up Tomcat form authentication

This is quite easy. Simply edit <Tomcat Home>/conf/web.xml (from either of the previous
recipes) and replace the <login-config/> element with the following code:

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.html</form-login-page>
<form-error-page>/error.html</form-error-page>
</form-login-config>
</login-config>
This configures Tomcat to use form-based authentication and redirects unauthenticated
requests from <url-pattern>/helloworld</url-pattern>to /login.html. If there is a
problem with the login, that is, the use of wrong credentials, then the client will be
redirected to /error.html. We’ll add these pages to helloworld-webapp in the next
section.

Adding the login pages to helloworld-webapp

To enable Tomcat form login, the 1ogin.html and error.html pages obviously need to be
available.

Note

If you want to skip this part, I have added a readymade helloworld-webapp-form.war
form to the chapter 7 samples. The pages login.html and error.html are also there. So,
you can just deploy the WAR to Tomcat and move on if you prefer.

There are two quick things we have to do:

1. Add the pages to the root of the webapp.

2. Change the /WEB-INF/web.xml servlet mapping to allow access to the pages; that is,
change <url-pattern>/*</url-pattern>to <url-pattern>/helloworld</url-
pattern>.

3. The “quick n dirty” way to accomplish this is by simply copying the pages directly
into the exploded WAR file in the <Tomcat Home>/webapps/helloworld-webapp/
folder and edit the WEB-INF/web. xml file there. This will work, but will get
overwritten if you need to redeploy the WAR file.

4. A more appropriate way would be to make these changes under the source /jersey-
samples-1.0/helloworld-webapp/src/main/webapp folder and rebuild the WAR
file with mvn clean install. Then, redeploy the generated WAR file.

www.it-ebooks.info

http://www.it-ebooks.info/

Whichever route you take, let’s just make sure it works! A Tomcat restart is necessary, not
for the WAR changes, but to pick up the previous form’s login configuration. Once this is
done, go to http://localhost:8080/helloworld-webapp-form/helloworld, and you
should be redirected to the login page. Enter the valid login details, and you should gain
access to the helloworld resource and see the text Hello World displayed. If you get the
login details wrong, you should be redirected to the error page (the Login failed message
is displayed).

Testing with SoapUI

You might think that testing the login form is just a matter of sending HTTP POST of the
/login.html form fields, that is, j_username and j_password, directly to the
/helloworld resource, /login.html, or a form action URI that is j_security_check.
Well, there’s a little more to it than that. As Tomcat will redirect any /helloworld request
to /login.html, and /login.html isn’t a servlet, it won’t accept the directly posted form
values anyway. OK, so should we post to the actual Tomcat servlet (j_security_check)
used in the form action? Unfortunately no, since Tomcat requires that the client be
redirected from the resource first! If you try this or even try to log in manually without
being first redirected, you’ll get a status 408 error response.

So, what we’re actually looking for is two requests as part of the same HTTP session: one
GET request to the /helloworld resource that will get redirected, and one POST request
with the username and password to j_security_ check to actually log in. Then, you can
make any additional requests as part of the same session without having to log in again.
Fortunately, this is easy enough to achieve at the TestCase level in SoapUI. Perform the
following steps:

1. First, create a TestCase and check Maintain HT'TP session in the TestCase options:

800 TestCase Options

TestCase Options]
Specify general options for this TestCase &

W5-RM | AMF |

Search Properties: IE‘I Search preceding TestSteps for property values

Session: ™ Maintain HTTP session

2. Then, create an initial HTTP Test Request TestStep with the method GET to
http://localhost:8080/helloworld-webapp-form/helloworld. Optionally, add
assertions to verify that the redirect to the login page was successful.

3. Finally, create another HTTP Test Request TestStep with the method POST to
http://localhost:8080/helloworld-webapp-form/j_security check, adding
QUERY-style parameters for the form fields:

www.it-ebooks.info

http://www.it-ebooks.info/

4.

S.

Parameters: . E_iwRglag g (7))

Mame Walue Style
j_username restuser QUERY
j_password password QUERY

Optionally, you can check Post QueryString if you prefer, and add assertions to
verify that the redirect to the /helloworld resource was successful.

Optionally, add another HTTP Test Request to the /helloworld resource without
credentials to verify that you can now access the resource without logging in as part
of the TestCase session.

Now, run the TestCase and you should be able to see either from your passing
assertions and/or by inspection of the HTTP log that the redirects and login were
successful!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Apart from what has already been explained en route, the key evidence of how it is
working is apparent from the HTTP log when running the TestCase and how the login
POST TestStep will fail if run in isolation. Let’s take a look at the HTTP log for the
TestCase; the truncated details are shown here:

GET /helloworld-webapp-form/helloworld HTTP/1.1

HTTP/1.1 200 OK

Set-Cookie: JSESSIONID=884B481FBC14F736E64EA8B78774DA71; Path=/helloworld-
webapp-form/; HttpOnly

<login.html HTML content in response>

POST /helloworld-webapp-form/j_security_check?
j_username=restuser&j_password=password HTTP/1.1

Cookie: JSESSIONID=884B481FBC14F736E64EA8B78774DA71...

HTTP/1.1 302 Found

Location: http://localhost:8080/helloworld-webapp-form/helloworld..
GET /helloworld-webapp-form/helloworld HTTP/1.1

Cookie: JSESSIONID=884B481FBC14F736E64EA8B78774DA71

HTTP/1.1 200 OK

Hello World

Here you can clearly see the initial TestStep request display the login page. Then, the
second TestStep's POST to j_security_check is redirected (status 302) to the
/helloworld resource.

The key lesson here is how to manage requests as part of the same HTTP session. This
technique should be applicable to many HTTP login authentications to access or test web
applications as well as services!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and using X.509 certificates to
test web services over HI'TPS

The use of transport layer security (HTTPS) is a major part of modern web security. The
current TLS protocol, often referred to by its predecessor’s name, SSL, uses X.509
certificates and, therefore, public key cryptography to keep HTTP traffic private. Many
other security schemes, including those from the previous three recipes, can and are often
used in conjunction with transport layer security (HTTPS).

In this recipe, we’ll focus on testing a RESTful web service over HTTPS hosted on
Tomcat. There is nothing really to do in SoapUI to enable HTTPS access, but from a
testing perspective, you may still find it necessary to understand what’s going on and be
able to make assertions about the validity of the certificate details, which SoapUI doesn’t
provide out of the box.

To really follow what’s involved in this recipe, some knowledge of the concepts of public
key cryptography and how Java supports them (Java Secure Socket Extension JSSE) is
necessary. This is too involved to fully explain here. However, the actual steps are
probably not that hard to perform and use without this knowledge.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Similar to the previous three recipes, Tomcat will be used to provide the HTTPS transport
layer security, and the helloworld-webapp Jersey sample will again be used to test
against. So follow the advice mentioned in the Getting ready section if you want more
details on how to set up Tomcat. For simplicity, we will not use any additional
authentication. So comment out or delete the <security-constraint>, <login-config>,
and <security-role> sections from <Tomcat Home>/conf/web.xml, or instead, just
provide the authentication details as required.

The RESTDBMock-soapui-project.xml project that includes TLSEncryptedTestCase for
this recipe can be found in the chapter 7 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Again, this section is split into two parts, so you can skip any setup you don’t require. The
first part deals with enabling HTTPS transport layer security in Tomcat. The second part
deals with the actual SoapUI testing.

Enabling HTTPS in Tomcat

Firstly, we’re going to need private and public keys to allow the server (Tomcat) to
provide encrypted HTTP traffic (HTTPS) using the private key, and the client (SoapUI) to
decrypt the traffic using the matching public key. We can generate these using the JDK’s
keytool using the following shell command:

Tip
$JAVA_HOME/bin needs to be on the PATH for the keytool to work.

keytool -genkeypair -alias serverkey -keyalg RSA -keysize 2048 -dname
"CN=localhost, OU=SoapUI Cookbook,O0=Chapter7, L=Town, S=County, C=UK" -keypass
password -storepass password -keystore server.jks

The result is a Java keystore (server.jks) that contains the key pair.
Tip

Checking the keystore contents

You can use the following command:

keytool -list -v -keystore server.jks -storepass password

If you try this in the preceding keystore, it is not obvious that there are two keys in there.
The public key is stored together with the private key as part of what’s called a certificate
chain, and appears as a single entry in the keystore.

Tip
Self-signed certificates

The certificates that we have created are what’s known as self signed. In this case, these
are signed by us rather than an approved Certificate Authority (CA) such as Thawte or
VerySign; for more information, see http://en.wikipedia.org/wiki/Self-signed_certificate.

Next, we need to configure Tomcat to use this keystore to provide the private key to
allow secure (encrypted) HTTPS traffic over port 8443. To do this, edit <Tomcat
Home>/conf/server.xml and add the following <Connector/> element:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="/ApplicationServers/apache-tomcat-7.0.41/keystore/server.jks"
keystorePass="password" />

Make sure you set the keystoreFile attribute to the location of your keystore.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Self-signed_certificate
http://www.it-ebooks.info/

Now, restart Tomcat, and, assuming you have helloworld-webapp.war deployed, we can
test it by going to https://localhost:8443/helloworld-webapp-form/helloworld.

You will, most likely, see a browser-specific certificate trust/security warning message.
This is because unlike most production certificates that are backed by a recognized
certification authority, our certificate is what’s known as self-signed. So be content with
the fact that it was indeed you who provided this certificate by comparing its details to
those mentioned earlier, and then disregard the warning; you should see the Hello World
message again. Luckily, SoapUI is completely trusting of any certificate (as will be
explained later). So let’s get on with the testing!

Testing the service over HT'TPS

So, let’s create a REST Test Request TestStep for https://localhost:8443/helloworld-
webapp-form/helloworld and run it. Well, it should just work, giving you the usual Hello
World response without any trust issues, along with our certificate details in the SSL Info

(1 certs) tab!

Tip
SoapUI will trust any server certificate

To understand why, a custom SSLSocketFactory (SoapUISSLSocketFactory) has been
written to override the checkServerTrusted methods to do nothing. This is fine and labor-
saving for a testing tool, but not fine for a production client and a browser! For more
background on Java Secure Socket Extension (JSSE), refer to

https://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html.

Is that it? Well, going a bit further, it can be useful to assert that a service is actually being
accessed over HTTPS or verify details about the server certificate, which is not available
as a standard Assertion. To do this, we can use Script Assertion.

We can make Assertions about the certificate by inspecting SSLInfo and its properties.
For example, we can assert what the certificate principle is and who is it from:

assert
messageExchange.response.SSLInfo.peerPrincipal.name=="CN=localhost, OU=SoapU
I Cookbook,0=Chapter7,L=Town, ST=County, C=UK"

You can also check what cipher suite was used:

assert
messageExchange.response.SSLInfo.cipherSuite=="TLS_ECDHE_RSA_WITH_AES_128_C
BC_SHA"

Also, you can check whether the certificate is unverified:
assert messageExchange.response.SSLInfo.isPeerUnverified()==false

This could be serious; for more information, read about the exception at the root cause, at
https://docs.oracle.com/javase/7/docs/api/javax/net/ssl/SSL.PeerUnverifiedException.html.

www.it-ebooks.info

https://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/7/docs/api/javax/net/ssl/SSLPeerUnverifiedException.html
http://www.it-ebooks.info/

How it works...

The main part of how it works is related to public key cryptography and the certificate
handling. In short, when SoapUI accesses the resource over HTTPS, the server (Tomcat)
encrypts the data using its private key. To be able to decrypt the data, SoapUI needs to
request the server’s matching public key, which it trusts, regardless of its properties, for
reasons explained earlier. Once obtained, SoapUlI is able to use the public key to decrypt
the HTTPS traffic and display the response data as normal. Since HTTPS is a transport
layer security technology, you can only see the encryption in action by intercepting the
actual network traffic.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Accessing web services over HTTPS provides protection in the form of encrypted traffic;
that is, people should find it very hard to understand the HTTP request and response data
sent over the network. However, it provides no guarantee to the service of who the client
is. In the next recipe, we will build on these concepts to provide this guarantee of identity
using client certificate authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For more information on JSSE, refer to:

https://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.ht

¢ For more information on Keytool, refer to:
https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

www.it-ebooks.info

https://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing client certificate authenticated
web services

This recipe builds on the concepts of the previous one to show how we can test web
services over an HTTPS connection that also requires a client X.509 certificate to be
provided as a guarantee of the caller identity. The actual work required to provide the
client certificate in SoapUI is very short. So if you are happy enough with the concepts,
certificates, and java Keystore handling, then you can just skip to this part. The entire
recipe covers creating the required client and server key pairs and configuring Tomcat to
insist that SoapUI provides a valid client certificate before allowing access to a simple
RESTful resource.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

This recipe builds directly on the previous one. Everything covered and done there will be
needed again here, that is, Tomcat, the helloworld-webapp REST sample, the SSL
Connector configuration, and the server . jks keystore. Of course, if you have your own
working HTTPS service and client certificate ready, you can always skip straight to the
SoapUI part.

The RESTDBMock-soapui-project.xml project that includes the
ClientCertificateAuthTestCase for this recipe can be found in the chapter 7 samples.
The keystores (client.jks and server. jks) that we will create in this recipe are also
present.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Again, to help people who want to skip the setup, this section is split into three parts. The
first explains how to generate the required key pairs (certificates) and the Java keystore
correctly. The second part is Tomcat-specific and deals with configuring Tomcat to require
the client certificate before allowing HTTPS access. The final section shows how to
enable SoapUI to provide the client certificate.

Client certificate creation and keystore setup

This time, there are going to be two keystores involved in the certificate handshake, one
for the client (SoapUI) and one for the server (Tomcat). We already have the server’s key
pair generated from the previous recipe in the server. jks keystore. So we only need to
create the client key-pair and keystore now:

keytool -genkeypair -alias clientkey -keyalg RSA -keysize 2048 -dname
"CN=localhost, OU=SoapUI Cookbook,O0=Chapter7, L=Town, S=County, C=UK" -keypass
password -storepass password -keystore client.jks

In order to allow the server to trust the client’s private key when it asks to see it, we also
need to copy the client’s public key into the server’s keystore:

keytool -exportcert -keystore client.jks -storepass password -file client-
pk.cer -alias clientkey

keytool -importcert -keystore server.jks -storepass password -file client-
pk.cer -alias clientcert -noprompt

Note

If you don’t do this and try to use the client. jks keystore without copying the client’s

public key into server. jks, you will see an error like
javax.net.ssl.SSLHandshakeException: Received fatal alert:

certificate_unknown.

Tomcat configuration

To configure Tomcat to require a valid client certificate, replace the previous HTTPS
connector details with the following in <Tomcat Home>/conf/server.xml:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
clientAuth="true" sslProtocol="TLS"
keystoreFile="/ApplicationServers/apache-tomcat-
7.0.41/keystore/server.jks" keystoreType="JKS" keystorePass='"password"
truststoreFile="/ApplicationServers/apache-tomcat-
7.0.41/keystore/server.jks" truststoreType="JKS"
truststorePass="password"/>

The new parts are highlighted (clientAuth and the trust store details).

Enabling client certificate authentication in SoapUI

This is the easy part. First, let’s check whether the certificate is indeed required by calling
the service without it. Create a REST Test Request TestStep and set the endpoint to

www.it-ebooks.info

http://www.it-ebooks.info/

https://localhost:8443/helloworld-webapp/helloworld.

If you run this, you should see the error javax.net.ssl.SSLHandshakeException:
Received fatal alert: bad_certificate; in other words, there is no certificate! Let’s

provide it. Go to SeapUI Preferences | SSL Settings and enter the location and password
for the client.jks keystore:

SoapUl Preferences
Set global SoapUl settings

(%21

en KeyStore: cationServers (apache-tomcat-7.0.41/keystore/client.jks
E KeyStore Password: sasssnss

=5

Tip

To make sure you have entered the keystore password correctly, you can verify that the
SoapUI log has no error:

Thu Nov 13 12:54:57 GMT 2014:INFO:Updating keyStore..
Thu Nov 13 12:54:57 GMT 2014:INFO:Initializing KeyStore

Now, if you rerun the request, you should see the Hello World response!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The actual client certificate handshake details can seem quite complicated. A good
diagram that shows the exchange can be found at

http://commons.wikimedia.org/wiki/File:Ssl_handshake with_two_way_authentication_w!

In grossly simplified terms, when SoapUI connects to the server over HTTPS, the server
requests that the client sends its certificate details and also the same certificate details
encrypted with the client’s private key. As the server has the client’s public key in its key
store, it is able to decrypt the encrypted certificate and compare it to the unencrypted one
and know that only the client with the matching private key could have sent it.

Tip
Debugging SSL

If you need to see the exact details of the exchange, then add the Java option—
Djavax.net.debug=ssl:handshake when starting Tomcat and/or SoapUI. This can be
useful when debugging certificate issues.

In the preceding Test Request, SoapUI also provides details of the local (client) and peer
(server) certificate under the SSL Info (1 certs) tab. Note that it says (1 certs) because it
is actually one certificate chain that includes the certificates involved.

Note
SoapUI certificate trust

Normally, with other web service clients, it would also have been necessary to have
copied the server’s public key into the client’s (SoapUI’s) keystore in order to allow the
client to trust the server before it even sends its certificate’s details. In the case of SoapUI,
this is not necessary for reasons discussed in the previous recipe; that is, it doesn’t check
certificate trust!

www.it-ebooks.info

http://commons.wikimedia.org/wiki/File:Ssl_handshake_with_two_way_authentication_with_certificates.png
http://www.it-ebooks.info/

There’s more...

Like before, while there wasn’t much to do from a SoapUI perspective, we could also
perform some Script Assertions to verify the client certificate details. The important
thing is to understand what’s going on and how to use the certificates and keystores. Client
certificate authentication is also used in the next two recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Securing mock services using X.509
certificates

Mock services in SoapUI can also support the HTTPS transport layer security, including
the client certificate authentication seen in the previous recipe. This recipe builds on the
previous two, showing how to enable the HTTPS transport layer security and client
certificate authentication with SOAPDB MockService from chapter 3.

The actual steps should be pretty easy if you have followed the previous two recipes or are
already comfortable using X.509 certificates.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We’ll use the server. jks and client. jks keystores from the previous recipe and their
passwords.

In terms of securing the mock service, we’ll use a modified version of the SOAPMock -
soapui-project.xml project from the chapter 3 sample called SOAPDBMock-Reporting-
soapui-project.xml (SOAPDBMock-Security). You can find this in the chapter 7
samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

The sample mock service is already setup to provide mock requests over HTTP on port
9001. First, we’ll enable HTTPS traffic to the mock over port 9002. No change to the
actual mock is necessary. We can do this via SoapUI Preferences | SSL Settings, adding
the following details:

w B

Es KeyStore: |

E KeyStore Password:

O

E Enable Mock 55L: [E‘I enable 551 for Mock Services
Mock Port: 9002

Wl

(=] 5

£ | | Mock KeyStore: -ationServers /apache-tomcat-7.0.41/keystore/server.jks

T

2| | Mock Password: ssssssss

s

=]

& | | Mock Key Password: SesEeREe

».| | Mock TrustStore:

Mock TrustStore Password:

ol

Fal

:,i Client Authentication: reguires client authentication

Note that Mock Key Password refers to the -keypass parameter (a private key password)
provided to the keytool that also has a value of password.

If we restart the mock and setup a new Test Request TestStep for
https://localhost:9002/mockInvoicePortBinding, we should get the usual invoice
document response along with the details of the server (mock) certificate in the SSL Info
(1 cert) tab!

Next, we’ll enable client certificate authentication on the mock. In SoapUI preferences, set
the location of server. jks to Mock TrustStore and the password to Mock TrustStore
Password, and check requires client authentication. For now, don’t set the KeyStore
and KeyStore password properties, and let’s do a little negative test to make sure the
client certificate is indeed required; that is, run the previous TestStep, and if it’s working,
you should get an error message of Exception in request:
javax.net.ssl.SSLHandshakeException: Received fatal alert: bad_certificate.

Tip
If you don’t get SSLHandshakeException; that is, there is no client certificate check

happening, then you might need to restart SoapUI to clear its cache—I did!

Finally, set KeyStore to the location of client.jks and KeyStore password to password,
restart the mock, and rerun the TestRequest, and you should see the invoice document

www.it-ebooks.info

http://www.it-ebooks.info/

and extra certificate details under the SSL Info (1 cert) tab!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

SoapUI uses the Jetty servlet container, and just as Tomcat used in the previous recipes, it
also uses Java keystores to provide HTTPS transport layer security and client certificate
authentication. All we really did was repeat the previous recipe concepts instead of using a
SoapUI mock!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing WS-Security UsernameToken,
Timestamp, and TransportBinding

WS-Security is able to support equivalents of the security measures that we have seen so
far via wS-SecurityPolicy. In this recipe, we will see how to test a web service that
requires client certificate authenticated transport layer security (TransportBinding), a
username and password (UsernameToken), and a valid timestamp (Timestamp element).
More about these policies will be covered later.

Most of the apparent complexity is in the service implementation provided by an Apache
CXF sample. You should not have to deal with this complexity directly, although it may
help your overall understanding if you do take a look at the code. You will need to be
happy with certificate handling and java keystores though, so please refer to the HTTPS
and client certificate recipes again if you need any help with these topics.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The web service under test is the ut_policy Apache CXF (3.01) ws_security sample.

This sample is included in the Apache CXF 3+ samples. Download Apache CXF if you
have not already done so in Chapter 1, Testing and Developing Web Service Stubs With
SoapUL.

You will also need Apache Maven to run the sample. Download and install this if you
have not already done for the first 3 recipes.

You should find the ut_policy sample at <Apache CXF Home>
/samples/ws_security/ut_policy. To give it a smoke test, open a command shell and go
to this folder. To build it, run the following code:

mvh install
To start the server, run the following code:
mvn -Pserver

Once the server has started (the Server ready.. message is shown), then open another
command shell to the same ut_policy folder, and run the client:

mvn -Pclient

You should see the inbound (request) and outbound (response) XML output as the client
calls https://localhost:9001/SoapContext/SoapPort and the message in the server’s
shell window:

Server responded with: Hello <Your Username>
Tip
Server timeout annoying?

The server is written to exit after 5 minutes. If during testing, the connection refused
errors, and the restarts become annoying, you can easily change this in
demo.wssec.server.Server by editing Thread.sleep(5 * 60 * 1000); to something
larger and rebuilding (mvn clean install).

Quite a lot is going on behind the scenes; more on that later, but the client’s role in this
sample is what we are going to replicate using SoapUI.

The wSSecurityUsernameTimestamp-soapui-project.xml project for this recipe can be
found in the chapter 7 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Before being able to actually call the service and provide the UsernameToken and
Timestamp WS-SecurityPolicy elements, we first need to satisfy the transport layer’s
security requirements, that is, set up the keystore. Once that’s working, and we start
getting SOAP responses, we’ll work on supplying and verifying the username and
timestamp requirements.

Before doing any of that, let’s create a new SOAP project using the sample’s WSDL.
You’ll find it at <Apache
CXF>/samples/ws_security/ut_policy/src/main/config/hello_world.wsdl.

Then, open or create TestRequest for the greetMe operation. If you call this now without
setting up the keystore, you’ll see a java.net.SocketException: Connection reset
erTor.

No problem; that’s because we haven’t setup the sample’s client keystore
(src/main/config/clientKeystore. jks) by going to SoapUI Preferences | SSL
Settings... well almost... right idea, but unfortunately, there’s an issue for SoapUI with
that keystore!

Tip
In SoapUl, the private key and keystore password must match

If you use the sample’s clientKeystore. jks, the certificate handshake breaks down with
javax.net.ssl.SSLHandshakeException: null cert chain. This is because SoapUI
cannot recover the client private key during the handshake as the private key has been
setup with a password (ckpass) that is different to that of the keystore (cspass)—see
KeyREADME . txt. Unlike the sample (in ClientConfig.xml <sec:keyManagers
keyPassword="ckpass">), SoapUI has no way of providing a different key password; that
is, the key password needs to be the same as the keystore password provided. SoapUI also

tells us this when we add the clientKeystore. jks keystore, that is, An error occurred
[Probably bad JKS-Key password: java.security.UnrecoverableKeyException:

Cannot recover key], see error log for details. This problem is worth being
aware of since many keystores do have different passwords for the private key.

Fortunately, there are several solutions. We could swap the keystores for the ones we
created in the earlier recipes, but then, we’d have to reconfigure clientConfig.xml and
ServercConfig.xml to match their details. A quick solution for now is just to make the key
and keystore passwords match; that is, change the keystore password to ckpass using the
following:

keytool -storepasswd -keystore clientKeystore.jks

Now, add clientKeystore.jks under SoapUI Preferences | SSL Settings with the
password ckpass, and you should see no errors in the SoapUI log.

Tip

www.it-ebooks.info

http://www.it-ebooks.info/

Certificate handshake troubleshooting

If you find yourself having problems with certificate issues, remember that you can get
verbose debugging on the actual handshake by starting the java client and server
application with the -Djavax.net.debug=ssl:handshake parameter.

OK, now try another request, and you should now get a SOAP fault:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<soap:Fault>
<faultcode>soap:Server</faultcode>
<faultstring>These policy alternatives can not be satisfied:
{http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702}TransportBinding: Received Timestamp does not match
the requirements
{http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702}IncludeTimestamp
{http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702}UsernameToken:
The received token does not match the token inclusion
requirement</faultstring>
</soap:Fault>
</soap:Body>
</soap:Envelope>

Good! This means the certificates have worked: SLL Info (1 certs) tab, and we are getting

to the UsernameToken and Timestamp policy requirements since the service is reporting
that they are missing.

To provide these, we need to add a new Outgoing WS-Security Configuration under the
Project window | WS-Security Configurations tab. To do this (I’ve called it
outgoing_config), ignore Default Username/Alias, Default Password, and Actor, but
tick Must Understand. Then, add a new WSS entry of type Username with Username
(Alice) and Password (ecilA), tick Add Nonce and Add Created, and select Password
Type (PasswordTest), resulting in something similar to what is shown in the following
screenshot:

cl=eo] Incoming WS-Security Configurations | Keystores | Truststores |

| Outgoing WS-Security Config

by

MName Default Username/Alias Default Password Actor Must Understand
outgoing_config ™

L%

i s e

—.‘
Username * Username: Alice

Timestamp

Password: YY)
Add Nonce: [E‘]' Adds a nonce

Add Created: E‘T Adds a created

Password Type: PasswordText »

Next, add a new WSS entry of type Timestamp with Time To Live as, say, 10000 (10
seconds), and tick Millisecond Precision.

www.it-ebooks.info

http://www.it-ebooks.info/

To use this WSS outgoing config with the Test Request, under the Auth tab, add a new
authorization of type Basic and leave all other options blank, apart from selecting
Outgoing WSS to be outgoing_config.

Tip
Newly created outgoing/incoming WSS not appearing in the dropdown?
I’ve noticed that you need to close and reopen TestStep to get them to appear!

Now, repeat the request and you should see the following code:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
<wsse:Security soap:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-
wssecurity-utility-1.0.xsd">
<wsu:Timestamp wsu:Id="TS-1ed68392-20al1-4306-b9a6-5cdla52c3add">
<wsu:Created>2014-11-15T12:17:31.825Z</wsu:Created>
<wsu:Expires>2014-11-15T12:22:31.825Z</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</SOAP-ENV:Header>
<soap:Body>
<greetMeResponse
xmlns="http://apache.org/hello_world_soap_http/types">
<responseType>Hello ?</responseType>
</greetMeResponse>
</soap:Body>
</soap:Envelope>

Success!

Finally, let’s add a ws-Security Status assertion to validate the WSS headers and
timestamp in the response. You might be surprised to see the assertion fail, and may also
have noticed that the WSS results tab under the response is still grayed out. To me, this
seems like a bug. To fix this, we need to provide an incoming WS-Security
Configuration even though we don’t actually need decryption or signature verification in
this case! To do this, go to the Project window and select Incoming WSS-Security
Configuration and add a new one (I called mine incoming_config). You also need to
select a keystore for nothing in this case (otherwise, if you use incoming_config empty,
there is a code that throws an exception An error occurred [Missing cryptos], see
error log for details). Under the Keystore tab, add the clientKeystore.jks by
entering just the Password (ckpass), and then, you can select this keystore in the
incoming_config Decrypt Keystore or Signature Keystore dropdown.

Right! Now, set WSS Incoming to incoming_config under the Auth tab and fire the
request. You should at last see the wS-Security Status assertion passing and the
Timestamp token being validated under the WSS results tab:

{1d=TS-1c0b8117-0321-4bcd-bffc-fae02724bd77, timestamp=2014-11-

www.it-ebooks.info

http://www.it-ebooks.info/

15T12:41:53.77222014-11-15T12:46:53.772Z, action=32, token-element=
[wsu:Timestamp: null], validated-token=true}

That’s it!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

We won’t go too deep into the WS-SecurityPolicy aspects here. Just to say that in this
example, the WSDL contains the policy details and is used by the Apache CXF sample
service to configure its policy requirements.

Tip
WSDL or code-first policy attachment

In this example, the WSDL provided the ws-Policy settings to configure the web service
code provide the security measures. This can also be done code-first; that is, the ws-
Policy is configured by the web service code, and no policy is present in the WSDL.
However, the code-first style can still be tested in the same way in SoapUI. Refer to the
WSS4]J link if you would like more technical details on this.

The TransportBinding requirements enforced by the service’s interpretation of ws-
SecurityPolicy are satisfied in the usual way by SoapUI. The other requirements of
UsernameToken and Timsestamp are provided by SoapUI, which constructs the ws-
SecurityPolicy headers from the WSS Outgoing configuration and attaches them when
the request is dispatched. The service is then able to check the headers and add its own to
its response in a similar way. As we saw, SoapUI needs a WSS Incoming configuration in
order to evaluate the response WS-SecurityPolicy headers and run the wS-Security
Status Assertion on them. The java WS-Security libraries used by both SoapUI and
Apache CXF are those of WSS4J. For more information on WSS4J, see

http://ws.apache.org/wss4j/.

www.it-ebooks.info

http://ws.apache.org/wss4j/
http://www.it-ebooks.info/

There’s more...

In terms of further testing, we can easily check whether UsernameToken is being validated
by supplying the wrong credentials and using a SOAP fault assertion. The Timestamp
token is designed to protect against replay attacks, that is, people capturing the request
details and resending them to gain access. To test the timestamp, if you capture the request
details yourself from the Raw tab (these include the security headers), then you can do a
Test Request TestStep to replay the same request and assert the resulting SOAP fault
from the server. Just make sure you don’t select a WSS Outgoing configuration;
otherwise, it will overwrite your test request (expired) timestamp header details with valid
ones!

Testing of the UsernameToken nonce is also designed to protect against replay attacks.
However, the service needs to be configured to keep track of what nonce values have been
issued already so that reuse attempts can be detected. This can be done using the WSS4J
configuration in the sample.

This is a relatively gentle introduction to the world of wS-SecurityPolicy. SoapUI also
supports testing of the more complicated areas of XML signature and encryption.
However, in recent tests, I have found SoapUI’s support of XML signature to work
correctly in both directions, and XML encryption to work outbound but with issues
inbound, that is, not decrypting responses (a null response is received).

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e For more information on Apache CXF WS-Security, go to

http://cxf.apache.org/docs/ws-security.html

e For more information on XML Signature, go to

http://en.wikipedia.org/wiki/XML._Signature

¢ For more information on XML Encryption, go to

http://en.wikipedia.org/wiki/XML_Encryption
e For more information on SoapUI Docs, go to http://www.soapui.org/SOAP-and-

WSDI /applying-ws-security.html

www.it-ebooks.info

http://cxf.apache.org/docs/ws-security.html
http://en.wikipedia.org/wiki/XML_Signature
http://en.wikipedia.org/wiki/XML_Encryption
http://www.soapui.org/SOAP-and-WSDL/applying-ws-security.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning web service security
vulnerabilities

Both the open source and pro versions of SoapUI have the security scanning functionality
to analyze and report on potential security flaws. The functionality is more developed and
easier to use, and has reporting options in pro, but basic scanning is still possible in the
open source version. The pro version will be used in this recipe, but open source users
should still be able to follow most steps.

In terms of recipe topics, this is one where we’ll only really see a tour of the tools, as you
can easily devote a chapter or even a book to the specifics of every particular security risk,
how to detect it, and how to protect against it. Out-of-the-box SoapUI is really only
providing a nice customizable framework with some common security tests already
configured. It is not a case of “The scan’s green. All good!, well, not unless you’re
confident that your services are invulnerable.

So what are we going to actual do? In this recipe, we see how to use the security scanning
functionality against the mock in the SOAPDBMock-Reporting-soapui-project.xml
project. This way, we can easily change the mock to expose a known vulnerability and see
how it shows in scans.

Tip
SoapUI security scanning

As background reading to this recipe, in case you haven’t seen it, the online SoapUI help

on Security Testing is quite good (http://www.soapui.org/Security/getting-started.html).
This might provide you with initial information on the various types of scans and

examples of service-implementation risks.

www.it-ebooks.info

http://www.soapui.org/Security/getting-started.html
http://www.it-ebooks.info/

Getting ready

In terms of setup, the only thing you should need in this recipe is the SOAPDBMock -
Reporting-soapui-project.xml project, and the SecurityScanInvoiceTestCase can be
found in the chapter 7 samples.

Tip
Memory usage

The security scanning can be potentially memory-hungry. You might find it necessary to
increase your -Xmx2024m -XX:MaxPermSize=256m JVM args. For help on this, see

http://www.soapui.org/Working-with-soapUl/improving-memory-usage.html. You can
also check SoapUI memory usage under the memory log tab.

Since the mock service in SOAPDBMock -Reporting-soapui-project.xml uses an in-
memory H2 DB, all the scanning creates rather a lot of records, and thus, results in
memory being swallowed! So a stop script has been added to the mock to drop the
invoices table:

def db = context["databaseConnection"]
db.execute("drop table invoices")

This can be used to clean down the DB between scans when the mock is restarted—so
remember to stop/start the mock occasionally if you have any memory issues!

www.it-ebooks.info

http://www.soapui.org/Working-with-soapUI/improving-memory-usage.html
http://www.it-ebooks.info/

How to do it...

First, we’ll test the mock getInvoice operation as is. Then, we’ll deliberately compromise
its implementation from a security perspective to see what the scan shows!

OK, let’s setup a new security test; under TestCase (SecurityScanInvoiceTestCase),
right-click on the Security Tests grouping and select New SecurityTest. On the pro
version, you’ll have three options:

Setup Options (s) Empty Test
- no preconfigured security scans

[Automatic
- generates default set of security scans

| Full Control
- select which security scans to set up

The Automatic option creates every type of scan configured and even sets up parameters
and assertions for you; we’ll come back to this as it can swamp you with data at first! Full
Control is between Automatic and Empty Test, giving you a wizard to pick and choose
from the possible scans. Let’s start with something small first; select Empty Test. This
should display the Security TestCase runner window with the TestCase’s TestSteps added
(GetInvoiceNo20).

Next, we’ll add a SQL injection test. Right-click on TestStep and select Add
SecurityScan; select SQL Injection from the list; and you should get the SQL injection
window. Here, add the invoiceNo parameter:

e Label: invoiceNo
e Name: Request
e XPath:

declare namespace inv='http://soapui.cookbook.samples/schema/invoice’;
//inv:getInvoice[1l]/inv:invoiceNo[1]

Also, add an assertion of type Security | Sensitive Information Exposure.

Then, click on OK and run the scan. You should get a nice clean No Alerts, green
Security Log and TestCase Log!

Now, edit the mock’s getInvoice operation Groovy script like this; that is, comment out
the ok placeholder query and uncomment the insecure one:

//0k placeholder usage
//def invoice = db.firstRow("select * from invoices where id =
$requestInvoiceNo")

//Insecure placeholder usage:
def invoice = db.firstRow("select * from invoices where id =
"+requestInvoiceNo)

Then, rerun the scan; you should see a bunch of issues as all the test SQL injection

www.it-ebooks.info

http://www.it-ebooks.info/

attempts now work!

Done | N
ot e Oy Expanded Collapsed
=] @ GetlnvoiceMNo20 (1 scan) ——Done—— [JEEH

“# SQL Injection -~ Alerts 4
Description PmpenieslSetup ScriptlTearDc:wn Scrith
Oz @
@ SecurityScan 1 [SOL Injection] Alerts, took = 248
[SOL Injection] Request 1 - FAILED - [invoiceNo='or '1'="1]: took 21 ms
- [Stacktrace] Can give hackers information about which software or language you are using - Token [(7
{' Security Lug[@ TestCase chJ ;

Going back to the Automatic option, create another security TestCase and select the
Automatic. If you run all the resulting scans, even with the original safer mock DB select
statement, it’s total carnage! Every scan that could run has failed! (the Boundary Scan
and Malicious Attachment scan are not applicable for this service, so they were skipped.)
Although, sifting through the wreckage, many of the errors are related to the underlying
web service (mock) framework code, for example, XML parsing errors, rather than the
Groovy script. Still, this blanket scan can be a useful first sweep especially when
customized.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The security scan TestCase can be thought of as a test creation wizard and data-driven test
runner. For most types of scans, under the Advanced tab, you’ll find a customizable list of
potentially problematic test data designs to cause the service under test to reveal sensitive
information about its implementation through exceptions and other abnormal responses.
The security assertions are also configurable. The general Sensitive Information
Exposure Assertion can have its data-check properties configured under SoapUI
Preferences | Global Sensitive Information Tokens, and the specialized Cross Site
Scripting Detection Assertion can also be customized to check the response for URLSs
supplied in a custom Groovy script.

In general, a lot of the scans are not necessarily looking to gain unauthorized access or
damage the service; rather, it is to expose error information so that hackers might then be
able to use that information as the basis for attack. While the service might still be
regarded as secure following failed scans, this type of information might provide to be a
useful feedback for the developers to take steps to conceal anything remotely sensitive
during exception handling.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

You can also create your own Custom Scans using Groovy, generate data exports and
reports, and run the security scan TestCase using the securitytestrunner script:

./securitytestrunner.sh SOAPDBMock-Reporting-soapui-project.xml

An important part of security scanning is to invest in your knowledge of the common
types of attacks and how they actually work. This way, you should be able to make the
best of customizing the SoapUI scanning framework and use the results it gives you!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8. Testing AWS and OAuth 2
Secured Cloud Services

In this chapter, we will cover:

Testing Dropbox using a pregenerated OAuth 2 Access Token
Testing Dropbox using OAuth 2 Authorization Code Grant flow
Testing Dropbox using OAuth 2 Implicit Grant flow

Testing the Gmail API using OAuth2

Automating OAuth 2 authentication and consent

Testing AWS services using Access Key authentication

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Building on some of the concepts and skills from the previous chapter, this chapter
explores how to test some popular cloud-based services and in particular how to deal with
their authentication requirements using SoapUI.

There is an obvious emphasis on OAuth 2 due to its popularity, not only with Cloud
Service Providers (CSPs), but also with web services in general. This also means all the
examples are REST-related. This is again in part due to the popularity and the particular
CSPs in the recipes, that is, Dropbox, Google, and AWS. While not covered here,
Microsoft Azure also uses REST for its APIs and signed shared key authentication that
could be handled in a similar way to the AWS recipe.

If you need to see a good example of using signed SOAP requests, the AWS Product
Advertising API
(http://docs.aws.amazon.com/AWSECommerceService/latest/DG/Welcome.html) and
Mechanical Turk (http://aws.amazon.com/documentation/mturk/) web services are good
places to look. SoapUI has good WS-Security functionality to sign SOAP requests, as

covered in the SoapUI docs (http://www.soapui.org/SOAP-and-WSDI./applying-ws-
security.html) and their AWS SOAP example (http://www.soapui.org/REST-

Testing/amazon-sample-project.html).

www.it-ebooks.info

http://docs.aws.amazon.com/AWSECommerceService/latest/DG/Welcome.html
http://aws.amazon.com/documentation/mturk/
http://www.soapui.org/SOAP-and-WSDL/applying-ws-security.html
http://www.soapui.org/REST-Testing/amazon-sample-project.html
http://www.it-ebooks.info/

What you’ll learn

You will learn the following topics:

e The basics of how OAuth 2 code and implicit flows work
e How to use SoapUI to test common types of OAuth 2 secured web services

e How AWS Request Key Authentication works and uses Groovy to calculate a signed
request

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll need

Cloud Service Signup: One consequence of doing cloud-based recipes is the need to
register with various CSPs. While this might seem a pain if you don’t actually want these
services going forward, all of the services in these recipes are free to use at the time of
writing and you may have some of them already, or hopefully find them useful if you
don’t!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Dropbox using a pregenerated
OAuth 2 Access Token

This is a nice easy example of how to use SoapUI’s OAuth 2 support to access Dropbox.
It’s easier because we’ll start from the point of having an OAuth 2 Access Token already
generated via the Dropbox UI, which cuts out most of the full flows seen in the next two
recipes. The example shows how to use an Access Token to make authenticated calls to
the Dropbox API, and test whether a particular file is present.

To perform the steps of this recipe, you will either need to have a Dropbox account or sign
up for a free one.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Before we get going, it is important to understand what parts of the OAuth 2 process are
going to happen here. If we consider the full OAuth 2 Authorization Code Grant flow
as follows:

[Client (SoapUl) | | OAuth 2 Authorization Server] | AP
() i Authorization Code request »— (Authorization URI)
| i browser shows username, |
| === i—-passwurd & authorization prompt --
/\ i
I e credentials & authonzation submitted ---->

Users supplies
credentials & authorization

== Authorization Code -------- -
Access Token request i

(AUTH CODE,—
CLIENT ID & SECRET)

s {Access Token URI)

P Access Token retumvia |

(Redirect URI) redirect URL]

; APl request with Ac;pcss Token >
E{ ---------------------------- responsei --------------------------- ~‘

Then, for this example, we are only going to use SoapUI to make the API request using a
pregenerated Access Token (the final exchange in the preceding diagram). The Access
Token will be generated using the Dropbox UlI, as we’ll see in a minute.

Ok, now that’s straight, we’re going to need a Dropbox account and test App to call using
the Dropbox API. If you don’t already have a Dropbox account, please sign up to a free
account at www.dropbox.com. Don’t be put off by needing to trial the business version
first, you can easily cancel hassle-free, and retain the very useable basic account.

Once you have an account, we need to create a Dropbox App to allow us API access. To do
this, log in and go to Developer Home | Apps
(https://www.dropbox.com/developers/apps):

1. Click on Create app, then the following options:

Select Dropbox API app as the app type

Select Files and datastores for the data type that your app needs to store
Say No to the option to limit the app to only files that it creates

Select allow access to All file types

Add a name for your app, for example, TestAppSoapUI

O O O O O

2. Next, click on the newly created app and in the OAuth 2 section click on Generate
under the Generate access token section, as shown in the following screenshot:

www.it-ebooks.info

http://www.dropbox.com
https://www.dropbox.com/developers/apps
http://www.it-ebooks.info/

Generated access token €

dYXswvqEQbYAAAAAAAAAFCIKKITAKMLWZ5kuTg EStINnZFdFOPXG-ZhbFsl4c
This access token can be used to access your account |G 2 the API.

Do not share your access token with anyone.

Tip
Access Token security

Just a reminder that the Access Token should be kept secret to avoid unauthorized access
to your Dropbox account via the REST API. You will see that all API calls use HTTPS to
prevent people easily reading the request data and token during API calls, and so it’s also
important to protect the token at source. I’ll leave this up to you to decide how important
this really is. For production accounts, you could consider encrypting/password protecting

the SoapUI project—see http://www.soapui.org/Working-With-Projects/concept.html#1-8-
project-encryption.

As the Dropbox info tooltip explains, this has generated you an Access Token without
having to go through any of the OAuth 2 authentication and authorization flow shown in
the earlier diagram. The token is tied only to your (account) user; other app users cannot
use pregenerated Access Tokens and they would need to follow the full OAuth 2 flow
shown in the three next recipes.

Right, now we can use the token to make some authenticated Dropbox API calls! I have
included the recipe’s SoapUI project Dropbox0Auth2 in the chapter 8 samples.

www.it-ebooks.info

http://www.soapui.org/Working-With-Projects/concept.html#1-8-project-encryption
http://www.it-ebooks.info/

How to do it...

First, we create a REST project from a Dropbox API URL. Then, we can add OAuth
authorization details and run some test API requests. Perform the following steps:

1. Create New REST project from the Dropbox Core API URL of
https://api.dropbox.com/1/.

2. Add New Resource of /metadata/auto/.

3. Add New Parameter:

Name: path

Value: <your File>, for example, you can use the file Getting Started.pdf
Style: TEMPLATE

Level: RESOURCE

4. Now for the OAuth 2 Access Token, click on the Auth tab and then:

o Add New Authorization
o Type: OAuth 2
o Profile name: DropboxProfile

O O O o

5. Then, paste the Access Token value as follows:

a4k

Authorization: DropboxProfile

S dYXswvgEQbYAAAAAAAAAEROFQZVTa2N4pv0Lirx5zQut0| + S:;:LE:“ il

Enter existing access token, or use "Get Token" below.
w* Cet Token

Advanced... |

6. Now, if you run this request, you should get a similar JSON response to:

{
"rev'": "12c39c52e",

"thumb_exists": false,

"path": "/Getting Started.pdf",

"is_dir": false,

"client_mtime": "Tue, 28 Oct 2014 09:52:03 +0000",
"icon": "page_white_acrobat",

"bytes": 249159,

"modified": "Tue, 28 Oct 2014 09:52:02 +0000",
"size": "243.3 KB",

"root": "dropbox",

"mime_type": "application/pdf",

"revision": 1

That’s it! A SoapUI request to get Dropbox file metadata has been authenticated using an

www.it-ebooks.info

https://api.dropbox.com/1/
http://www.it-ebooks.info/

OAuth 2 Access Token.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

As we already covered, we generated an Access Token enabling us to make authenticated
calls to the Dropbox API using SoapUI’s OAuth 2 support. If we hadn’t supplied the
DropboxProfile when making a request to the Dropbox API, then we would get the
following error message—HTTP Status 401 Unauthorized:

{"error": "No auth method found."}

Or, if the Access Token supplied was invalid:

{"error": "The given OAuth 2 access token doesn't exist or has expired."}
Tip

Revoke Access Token

If you become concerned that the security of the Access Token has been compromised
and you want to revoke it, you can call the
https://api.dropbox.com/1/disable_access_token resource using the same OAuth 2 profile
(DropboxProfile), that is, the profile containing the token you want revoked. This will
mean that for future access you need to generate another Access Token via the dropbox
App UI, and any attempt to use the revoked token will result in the second error message.

www.it-ebooks.info

https://api.dropbox.com/1/disable_access_token
http://www.it-ebooks.info/

There’s more...

This way of using a pregenerated Access Token is quick and easy, but can only be used
where the provider is able or willing to allow the token to be generated directly. In the
next three recipes, we will see how to follow the full authorization flow using SoapUI,
which is the more common way of using OAuth 2 authenticated APIs.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e [ETF OAuth 2 Spec: https://tools.ietf.org/html/rfc6749
e Dropbox API Docs: https://www.dropbox.com/developers/core

www.it-ebooks.info

https://tools.ietf.org/html/rfc6749
https://www.dropbox.com/developers/core
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Dropbox using OAuth 2
Authorization Code Grant flow

In this recipe, we build on the previous one by learning how SoapUI supports the full
OAuth 2 Authorization Code Grant flow. The actual example used is going to be the
same Dropbox one from the previous recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To follow along, you’ll ideally have completed the previous recipe or at least have a
Dropbox account with an App setup to receive REST requests.

If you are new to OAuth 2 or need a refresher, you may find it helpful to do some
background reading on the OAuth’s Authorization Code Grant flow. I find oauthlib a
safe choice for this:

http://oauthlib.readthedocs.org/en/latest/oauth?/grants/authcode.html

I will cover how things work in the context of Dropbox and SoapUI, shortly.

The SoapUI project bropbox0Auth2 for this recipe is included in the chapter 8 samples.

www.it-ebooks.info

http://oauthlib.readthedocs.org/en/latest/oauth2/grants/authcode.html
http://www.it-ebooks.info/

How to do it...

For now, I’ll assume you are happy to do the steps enabling OAuth 2’s Authorization
Code Grant flow in SoapUI and then we’ll discuss how they work in more detail during
the next section. Perform the following steps:

1. First, we need the OAuth 2 Client ID and Client Secret from our Dropbox test app.
If you go to the same page where you previously generated the Access Token, you
should see App Key and App Secret properties:

v73bybsplEl8gsu
blksuddob518idx

2. Next, we’ll set up Redirect URI. Set it as follows on the same Dropbox admin page
(leave the Allow Implicit Grant option, this is discussed later):

Redirect URIs

http://localhost:B089/receivetoken

https:// (http allowed for localhost) Add

Allow implicit grant

Allow

3. Now, let’s configure SoapUI to be able to use these details to obtain the Access
Token from the Dropbox. Under the Auth tab for REST Test Request, click on the
Get Token link to bring up the Get Access Token from the authorization server
window. Fill in the details as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Get Access Token from the authorization server [¢)]

OAuth 2 Flow: Authorization Code Grant =

Client Identification: |y736ybsp08I&gsu

Client Secret: bOksu4do6518i4x

Authorization URI: https://www.dropbox.com/ 1 /oauth2/authorize
Access Token URI: https://api.dropbox.com/1/oauth2 /token
Redirect URI: http:/ /localhost: 8089/ receivetoken

Scope:

Cet Access Token

Automation...

4. (Optional) Now, at this point we could just proceed to click on Get Access Token. It
will work, but you’ll see an error in the SoapUI log and error log regarding
ERROR:An error occurred [WRITER]. To fix this and provide a little more visibility
of what is going on, we need to set up a quick mock to listen on the Redirect URI
for the incoming Access Token. Nothing fancy, just a REST mock with the following
details:

Host: localhost

Port: 8089

Action: /receivetoken

Response: Edit default response to anything you like

5. Also in SoapUI Preferences | HTTP Settings, click on Enable Mock HTTP Log—
and start the mock to quickly test Redirect URL in a browser.
6. OK, now click on Get Access Token and:

O O O o

o See a pop-up browser window with Dropbox asking for your account, username,
and password. Enter these.

o Then, click on Allow to grant SoapUI permission to access your Dropbox
account.

o Then, the browser window should close and you should see the Access Token is
now ready for use in the Auth tab (as per step 5 in the previous recipe).

7. Finally, you can use this Access Token to make an authenticated request to the
Dropbox API, for example, fire a request to
https://api.dropbox.com/1/metadata/auto/Getting Started.pdf!

www.it-ebooks.info

https://api.dropbox.com/1/metadata/auto/Getting%20Started.pdf
http://www.it-ebooks.info/

How it works...

OK, this might seem like a long way round to getting the same result as in the previous
recipe, but this is the more complete way that clients and tests will typically use OAuth 2.

To understand more of what’s going on in the background, refer back to the diagram in the
previous recipe and we’ll compare how the general steps in the diagram match in the
context of Dropbox and SoapUI. Here is a slightly simplified view of the steps:

1. The client (SoapUI) requests an Authorization Code using the Authorization
Server (Dropbox’s/authorize endpoint).

2. The resource owner’s user agent (SoapUI’s pop-up browser window) is redirected to
the Dropbox’s Authorisation Server page to:

o Authenticate the resource owner you using your Dropbox credentials
o Then, ask your permission for the client (SoapUI) to access your Dropbox
account

3. If this is OK, then a temporary authorization code is returned via Redirect URI. If
you’ve set up the mock, you can see an incoming request to the mock in the jetty log:

GET /receivetoken?code=dYXswv(qEQbYAAAAAAAAAJG65htHsH51Jph64Clx0eUfw

4. Using Authorization Code, Redirect URI, Client Identifier, and Client
Secret; the client (SoapUI) authenticates and requests an Access Token from the
Authorization Server (using Dropbox’s/token endpoint). The POST request can be
seen in HTTP log:

POST /1/o0auth2/token
client_secret=b0ksud4do6518i4x&grant_type=authorization_code&redirect_ur
i=http%3A%2F%2Flocalhost%3A8089%2Freceivetoken&code=dYXswvqEQbYAAAAAAAA
AJ65htHsH51Jph64C1x0eUfw&client_id=v736ybsp0818qsu

5. If authentication succeeds, the Authorization Server returns the Access Token to
the client (SoapUI) via Redirect URI. The response can also be seen in the HTTP
log:

{"access_token":
"dYXswvqEQbYAAAAAAAAAKEprzMta_vwQiaBmaFtG4UGWS2ysDgbjybQ030lwo89X",
"token_type": "bearer", "uid": "352225807"}

Where I say simplified steps, I mean:

e This is the happy path, for example, no authentication failures/permission declined

e SoapUI will filter the requests to extract the OAuth 2 parameters that it needs,
regardless of whether the mock is present

¢ Not all the requests or responses made by SoapUI can be seen, for example, initial
authentication request to /auth

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

The authorization code grant flow supports the concept of a Refresh Token. SoapUI
stores the Refresh Token and uses it to obtain a new Access Token when it expires. The
Access Token expiry time can be configured under the OAuth 2 Advanced options
window, accessed by clicking on Advanced under the OAuth 2 profile (Auth tab).

There are other grant types that can be used with OAuth 2 and custom ones can also be
created. An explanation of the main types can be found here:

http://oauthlib.readthedocs.org/en/latest/oauth?/grants/grants.html.

However, the only other OAuth 2 grant type that SoapUI supports is Implicit Grant.
That’s what’s coming up in the next recipe!

www.it-ebooks.info

http://oauthlib.readthedocs.org/en/latest/oauth2/grants/grants.html
http://www.it-ebooks.info/

See also
e QOauthlib site: http://oauthlib.readthedocs.org/en/latest/oauth2/oauth2.html

www.it-ebooks.info

http://oauthlib.readthedocs.org/en/latest/oauth2/oauth2.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Dropbox using OAuth 2 Implicit
Grant flow

In this recipe, we again build directly on the previous one by learning how SoapUI
supports the full OAuth 2 Implicit Grant flow. This flow is slightly less complicated
than the Authorization Code Grant flow, less secure as it lacks client authentication, and
is normally used by browser-based clients.

The example used is exactly the same Dropbox one featured in the previous two recipes.
However, the steps here are very short as in the previous recipe’s setup, and the concepts
will be reused. Meaning that there is far more to understand here than to do!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The SoapUI project bropbox0Auth2 for this recipe is included in the chapter 8 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Given the previous Dropbox test app OAuth 2 config and DropboxProfile under the Auth
tab, all we need to do is to use the Implicit Grant flow:

1. Under the REST Test Request option’s Auth tab, click on the Get Token link to
bring up the Get Access Token from the authorization server window.

2. Select Implicit Grant from the OAuth 2 Flow dropdown and you should be left
with the following details:

Get Access Token from the authorization server [¢l

OAuth 2 Flow: Implicit Grant =

Client Identification: |y736ybsp08I8gsu

Authorization URI: https:/ /www.dropbox.com/ 1/oauth2 /authorize
Redirect URL: http:/ /localhost:B089/ receivetoken
Scope:

Cet Access Token

Automation...

3. (Optionally) Again, you can just hit the Get Access Token and ignore the error in the
SoapUI log and error log, or you can start the mock described in step 4 of the
previous recipe to see some extra output.

4. OK, click on the Get Access Token and you should get the SoapUI browser window
popup. Enter your Dropbox credentials like before and click on Allow to grant
SoapUI permission to access your Dropbox account.

Tip
SoapUI Browser Disabled?

Certain distributions of SoapUI seem to have the SoapUI browser (used by the Oauth
2 functionality) disabled by default. To enable it:

Edit <soapui home>/java/app/bin/soapui.sh (or soapui.bat on Windows)

Add JAVA_OPTS="$JAVA_OPTS -Dsoapui.jxbrowser.disable=false" where all the
other JAVA_OPTS are added and restart SoapUI

5. When the SoapUI browser window popup closes, you should have a new Access
Token like before.

www.it-ebooks.info

http://www.it-ebooks.info/

6. Feel free to use it to make an authenticated request to the Dropbox API, for example,
fire a request to https://api.dropbox.com/1/metadata/auto/Getting Started.pdf.

www.it-ebooks.info

https://api.dropbox.com/1/metadata/auto/Getting%20Started.pdf
http://www.it-ebooks.info/

How it works...

As already mentioned, the main difference with the Authorization Code Grant is that
the Implicit Grant flow makes no client authentication call. The only authentication and
authorization is via the Resource Owner (you in this case!). Hence, there is no Client
Secret or Access Token URI required in step 2.

With the mock running, you can also see another difference in that the incoming HTTP
GET request to /receivetoken?code=<Authorization Code> in the jetty log is now:

GET /receivetoken

Referrer: https://www.dropbox.com/1/oauth2/authorize?
response_type=token&redirect_uri=http%3A%2F%2Flocalhost%3A8089%2Freceivetok
en&client_id=v736ybsp0818qsu

Plus some encoded characters (I can’t paste them here) just below the request. This
request is the Authorization Server (Dropbox’s/authorize) redirecting the Access
Token directly back (via Redirect URI) to the client (SoapUI) and the token is these
encoded characters! The Access Token looks like this because it has been sent as a URL
hash fragment and they don’t get sent as part of the HTTP request. Behind the scenes,
SoapUI extracts the Access Token and allows us to use it directly. To see how this last
part differs slightly to the typical browser client’s handling, it’s worth taking a look at

http://oauthlib.readthedocs.org/en/latest/oauth?/grants/implicit.html.

www.it-ebooks.info

http://oauthlib.readthedocs.org/en/latest/oauth2/grants/implicit.html
http://www.it-ebooks.info/

There’s more...

Apart from the lack of client authentication with the Implicit Grant flow, there is also
no support for Refresh Tokens. Although SoapUI still attempts to refresh Implicit
Grant acquired Access Token anyway, and will succeed if Client Secret and Access
Token URI have been previously entered!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the Gmail API using OAuth?2

This applies what we have learnt about OAuth 2 authentication to the Google Gmail API,
and in doing so shows how to use scopes to grant authorization. It also indirectly builds on
the Testing for e-mails with Groovy recipe Chapter 4, Web Service Test Scenarios, by
providing a secure way of authenticating that was a reported Google issue when using
IMAP to access a Gmail account.

To perform the steps of this recipe, you will need a Google account with a developer
console and a Gmail account.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

If you haven’t already got a Google account set up, please register for one at
https://accounts.google.com/Signup. This also gets you a Gmail account.

You will also need access to the Developers console to create new projects, enable APIs,
and create OAuth 2 credentials. For all information about Developer accounts, see

https://developers.google.com/console/help/new/. It should be completely free when used

in the context of this recipe, that is, Gmail API access, but other APIs and services can
potentially incur usage-based charges.

This recipe’s SoapUI project GoogleOAuth2 is included in the chapter 8 samples.

www.it-ebooks.info

https://accounts.google.com/Signup
https://developers.google.com/console/help/new/
http://www.it-ebooks.info/

How to do it...

First, we’ll create a new project in the Google developer’s console. Then, we’ll create a
new Client Id for the project, which includes all OAuth 2 details. After this, we’ll enable
the Gmail API. We’ll then be ready to authenticate and search for a particular e-mail using
SoapUI as follows:.

1.

OK, let’s get the project created. Go to https://console.developers.google.com/project
and click on Create Project. Enter what you like for PROJECT NAME and

PROJECT ID or just accept the defaults, you can always delete the project later.
Then, to create the Client Id/OAuth2 details. Under <Your Project> APIs & Auth
| Credentials, under OAuth click on Create new Client ID and in the Create Client
ID window select/enter the following:

APPLICATION TYPE: Web application

AUTHORIZED JAVASCRIPT ORIGINS: https://localhost
AUTHORIZED REDIRECT URIS: https://localhost/oauth2callback
Click on Create Client ID

O O O o

This should generate credentials similar to the following:

Client ID for web application

CLIENT ID 816217843371-u1 52n41nn1a0lr25a1 ft3t2tdulnf50a.apps.googleusercontent.com
EMAIL ADDRESS 816217843371-u1 52nd1 nn1a0lr25al ft3t2tdulnfS0a@ developer.gserviceaccount.com
CLIENT SECRET ghMAr8ud8pzEhemK-vRLY9s4_E

REDIRECT URIS https://localhost/oauth2callback

JAVASCRIPT ORIGINS https://localhost

Edit settings Reset secret Download JSON Delete

Lastly, enable the Gmail API. Under <Your Project> | APIs & Auth | APIs find
Gmail API and change the STATUS to ON.

Now, we should be ready to access the API from SoapUI. Create New REST Project
from the URI https://www.googleapis.com and add a New Resource option as
/gmail/vl/<your Gmail address>/messages. For the request Parameters, add:

o Name: q
o Value: subject:012345

This sets up a test REST request to the Gmail API to search for an e-mail for <your
Gmail address, for example, test.account@gmail.com> with the subject

www.it-ebooks.info

https://console.developers.google.com/project
https://www.googleapis.com
http://www.it-ebooks.info/

containing 012345.

. (Optionally) Try firing the request and you should get a status 401 Login Required.
This is of course because we haven’t provided the OAuth 2 profile, on to that next.

. Next, for the SoapUI OAuth 2 Auth tab profile to authenticate and authorize the
request to your Gmail account. Create a new OAuth 2 profile, like in the last two
recipe’s, containing the following values under Get Token:

o OAuth 2 Flow: Authorization Code Grant

o Client Identification: 816217843371-
ul52n4innla@lr25al1ft3t2tduOnf50a.apps.googleusercontent.com
Client Secret: gMAr8udspzEhemK-vRL9s4_E

Authorization URI: https://accounts.google.com/o/oauth2/auth
Access Token URI: https://accounts.google.com/o/oauth2/token
Redirect URI: https://localhost:9001/0auth2callback

Scope: https://www.googleapis.com/auth/gmail.readonly

O O O O O

. Then, click on Get Access Token to:

(e]

Bring up the SoapUI browser window

Provide your Google account credentials

Click on Accept to grant SoapUI permission to have offline access to your
Gmail account

You should then get a new Access Token

(e]

(e]

(e]

. Assuming you haven’t already sent yourself an e-mail with a subject containing
012345, then firing the request should give response content as follows:

{"resultSizeEstimate": 0}

. Finally, send yourself an e-mail with a subject containing 012345, or change the q
search parameter to match an e-mail that does exist in your inbox, and you should get
a response containing;:

{
"messages": [
{
"id": "148c67blacb7eboa",
"threadId": "148c67blacb7eboa"

b
1,

"resultSizeEstimate": 1

}

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

All user/account-based Google APIs use OAuth 2 authentication and scopes to grant
authorization. So in OAuth2 terms, the main difference, compared to the previous two
recipes is the idea of scope. Google makes good use of scopes to grant authorization
across it’s wealth of APIs. Basically, following authentication you have to have any scopes
you need to be granted before using any related API calls. For example, in this recipe we
have only used the gmail.readonly scope. Therefore, any attempt to update an e-mail
rather than just read or query them will result in an invalid scope error response.

One subtle difference in this OAuth 2 flow that you may have noticed, is that no mock is
required to stage the redirect URL https://localhost:9001/0auth2callback and even if
you provide this, it will not be called! This is because here the redirect URL is HTTPS. If
you change the redirect URL to HTTP instead (not recommended for production), then
you will see similar Jetty requests to those explained in the Dropbox recipes.

A great way to explore the Gmail API, its scopes, and all the other Google APIs is to have
a go with their excellent OAuth Playground at
https://developers.google.com/oauthplayground/.

If you would like to know more about how the Gmail API searching works, then take a

look at https://support.google.com/mail/answer/7190?hl=en for a full explanation of the
query syntax.

www.it-ebooks.info

https://developers.google.com/oauthplayground/
https://support.google.com/mail/answer/7190?hl=en
http://www.it-ebooks.info/

There’s more...

Another way to access Gmail is to use IMAP or SMTP authentication via SASL
XOAUTH. For more on this, see https://developers.google.com/gmail/oauth_overview.

Apart from Gmail, this recipe’s example can easily be configured to use any of the other
OAuth 2 authenticated Google APIs. For a list of all the Google APIs, see

https://developers.google.com/apis-explorer/#p/.

www.it-ebooks.info

https://developers.google.com/gmail/oauth_overview
https://developers.google.com/apis-explorer/#p/
http://www.it-ebooks.info/

See also

e Google Web Server OAuth 2:
https://developers.google.com/accounts/docs/O Auth?WebServer

www.it-ebooks.info

https://developers.google.com/accounts/docs/OAuth2WebServer
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Automating OAuth 2 authentication and
consent

The Get Token OAuth 2 functionality in SoapUI has the ability to run JavaScript to
automatically authenticate and grant permissions (consent) during the browser-based
interaction with the Authorization Server. Assuming you’re happy to provide your
credentials to the script, this could be useful if unattended authentication is required for
your tests. This recipe briefly shows how to do this for the previous Gmail example.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

This recipe assumes you’ve completed the previous recipe. In any case, you can find the
completed SoapUI project GoogleOAuth2 in the chapter 8 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

We just need to add the automation JavaScript to input credentials and submit on the first

screen (login screen). Then, when the second screen (consent) is displayed, click on
Accept:

1. Under the Auth tab, open the Get Token window and click on Automation. Then,

enter the following scripts, as shown in the screenshot:

800 Automation scripts for OAuth 2 profile
' -|_:: .><:: |§j|
Page 1 (e.g. login screen)
if (document.getElementById| 'Email'})){
document .getElementById{ 'Email’).value="<your gmail account>';
document.getElementById| 'Passwd').value='<your password>|;
document.getElementById| 'gaia loginform').submit();
}
Page 2 (e.g. consent screen)
setTimecut (| function() {document.getElementById('submit approve access').click()}}, 3000};
How to automate the process of getting an access token 4

2. Edit your Gmail account and password into the first script.

3. Click on the play button and you should see the browser window open first with the

Google login screen, which should get filled out and submitted. Then, the consent

screen should open and after a small pause, the Accept button should be clicked.
That’s it!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

SoapUI has the ability to execute scripts using, (javax.swing.JFrame) embedded browser.
It’s really just a case of providing suitable JavaScript to fill in the username, password,
and click buttons on our behalf!

I would say a fair amount of trial and error is involved in creating the scripts. For example,
here it is necessary to cover the situation when you are already authenticated and just need
to click on Accept on the consent screen. That’s why the if statement in the first script is
there, to check whether the first screen is actually the login page before trying to supply
credentials. Also, the setTimeout is necessary to wait for 3 seconds before trying to click
on the Accept button, otherwise it tends to click too early!

Tip

Trouble getting element Ids?

When writing the automation, you may find it useful to call the OAuth 2 screens via a
normal browser so that you can inspect the HTML elements, for example, using firebug or

similar plugin. You can call the /auth endpoint from a standard browser to get access to

the screens, for example, https://accounts.google.com/o/oauth2/auth?scope =
https://www.googleapis.com/auth/gmail.readonly&response_type=code&redirect_u

= https://localhost:9001/0auth2callback&client_id=<your client id>.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing AWS services using Access Key
authentication

Amazon Web Services (AWS) offer a fantastic range of established cloud-based services.
Being one of the most mature CSPs, they offer various ways to authenticate and access
their web services. The main ways being:

e Access Keys: Used to sign requests for REST, Query API, and AWS SDK
e X.509 Certificates: Used to sign SOAP requests

However, these days AWS seem to be consolidating around the Access Key approach and
are deprecating SOAP usage across most of the estate, for example, SimpleDB did in
September 2011. EC2 (Elastic Compute Cloud) deprecated SOAP access after December
2014 (http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-soap-api.html). In
this recipe, we take a look at how we use Access keys to make a signed REST request to
the Identity and Access Management (IAM) API to list all users. While this isn’t the most
exciting API to pick, there is less setup involved than with, for example, a SimpleDB
query and the same approach can be applied to most of the other APIs anyway.

Unlike OAuth 2, there is no direct support for the AWS signature process in SoapUI. As a
result, there is a reasonable amount of Groovy coding to be done in this recipe. This is the
most technical part of making AWS REST or Query API requests without the AWS SDK,
which takes care of the signature process. Unfortunately, if you try to use the Java AWS
SDK from within SoapUl, it has classpath issues around some required library versions
that it has in common with SoapUI. On the plus side, calculating the signature explicitly
with Groovy explains a lot and is a well-documented approach!

You will need an AWS account to perform the steps in this recipe. Fortunately, at time of
writing (and for quite a while) Amazon offer a 12-month free tier trial usage that you can
sign up to at http://aws.amazon.com/free/.

www.it-ebooks.info

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-soap-api.html
http://aws.amazon.com/free/
http://www.it-ebooks.info/

Getting ready

The first thing to do if you haven’t got an AWS account already, is to sign up to the free
trial at the address above.

It is good practice not to use the root account user to access APIs. So unless you’re happy
to risk it, it’s easy enough to create a test user via the IAM console:

1.

2.

3.

Under Services | IAM | Users, click on Create New Users:

o Enter a user name, for example, testuser
o Leave Generate an access key for each user checked.

When you click on Create, you’ll go to a screen where you are given the opportunity
to display and/or download the Access Key. Please do this now.
Next, we need to give the new user some privileges to allow API access:

o Click on the users and click on Attach User Policy

o Then, select Read-Only Access

o On the next page (Set Permissions) you will see a generated Policy Document.
Click on Apply Policy

This should have generated you a new test user with read-only access to all services.
Under the Access Credentials section, you should also see the Access Key you
downloaded earlier, but no secret key. Remember to come back to this page if, for
example, you need any write permissions or want to change/revoke the Access Key.
That’s it, we should be good to go!

This recipe’s SoapUI project AWS-IAM-REST-QUERY is included in the chapter 8 samples.
This time, it should save a lot of typing!

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

There are various ways of making the API call and a lot of potential background
information that you could read first. However, in the interests of making progress, let’s
just pick probably the simplest way (a GET request with authentication details in the Query
String), and look more at how it works later.

Right, let’s start by defining exactly what we want to do here and then explaining how we
can do it. The API request we are looking to create is going to be something like this:

https://iam.amazonaws.com?Action=ListUsers

&Version=2010-05-08

&X-Amz-Algorithm=AWS4-HMAC-SHA256
&X-Amz-Credential=AKIAJLQ5UDKLRHLYLH6A%2F20141125%2Fus-east -
1%2Fiam%2Faws4_request

&X-Amz-Date=20141125T112613Z

&X-Amz-Expires=30

&X-Amz-SignedHeaders=host

&X-Amz -
Signature=320f3175dcea2dbed4eaee3da096634f71b4fdf810e8380a6el7c160a950b94dc
This may look rather complicated, especially at first glance! But apart from all these

authentication parameters, we just need to make a HTTP GET request to
https://iam.amazonaws.com?Action=ListUsers.

I have highlighted the parameters that need to be dynamically calculated. This can be done
using a Groovy TestStep before passing the parameter values into an HTTP Test Request
TestStep to make the actual API request, as follows:

Note
Why all the parameters?

Apart from the version parameter that indicates what API version to call, all the others
provide a signed request and timestamp. The timestamp is important to protect against
replay attacks. Signing the request (with our secret key) proves the request came from our
test user, and makes it difficult for anyone to just forge the timestamp! Also, the request is
made over HTTPS to protect sensitive account-based information.

1. OK, first let’s create a new TestCase and add a HTTP Test Request TestStep.
Fortunately, if we take the above request and paste it into the Endpoint field and
click on Extract Params then SoapUI nicely builds up all the parameters we need.

2. Optionally, run this now and you should get a status 403 forbidden
—SignatureDoesNotMatch. This is because the signature’s timestamp is older than
15 minutes and is seen by AWS as a possible replay attack!

3. Now for the Groovy script to calculate the dynamic parameters. Create a new Groovy
TestStep before the HTTP Test Request and paste in the following code:

import java.security.MessageDigest
import javax.crypto.Mac

import javax.crypto.spec.SecretKeySpec
import java.net.URLEncoder

www.it-ebooks.info

https://iam.amazonaws.com?Action=ListUsers
http://www.it-ebooks.info/

//You could easily put these into SoapUI properties
def method = 'GET'

def service = 'iam'

def host = 'iam.amazonaws.com'

def action = 'ListUsers'

def version = '2010-05-08'

def region = 'us-east-1'

def endpoint = 'https://iam.amazonaws.com'

def access_key
def secret_key

'AKIAJLQ5UDKLRHLYLHG6A'
'm0zrOhvusTcVyMRz/kWgbPnJo5tavOoudjY1P/y5c'

//Compute HMAC using key - Taken from
http://docs.aws.amazon.com/general/latest/gr/signature-v4-
examples.html#signature-v4-common-coding-mistakes
static byte[] HmacSHA256(String data, byte[] key) throws Exception
String algorithm="HmacSHA256"
Mac mac = Mac.getInstance(algorithm);
mac.init(new SecretKeySpec(key, algorithm))
return mac.doFinal(data.getBytes("UTF8"))
3
//Compute Signature Key - Taken from
http://docs.aws.amazon.com/general/latest/gr/signature-v4-
examples.html#signature-v4-common-coding-mistakes
static byte[] getSignatureKey(String key, String dateStamp, String
regionName, String serviceName) throws Exception {
byte[] kSecret = ("AWS4" + key).getBytes("UTF8")
byte[] kDate HmacSHA256 (dateStamp, kSecret)
byte[] kRegion HmacSHA256 (regionName, kDate)
byte[] kService HmacSHA256 (serviceName, kRegion)
byte[] kSigning HmacSHA256 ("aws4_request", kService)
return kSigning
3
//Compute the SHA-256 Hash
static byte[] hash(String text) {
MessageDigest md = MessageDigest.getInstance("SHA-256")
md.update(text.getBytes("UTF8"))
return md.digest()

¥
//Taken from Java AWS SDK - Convert byte arrary to Hex string

static String toHex(byte[] data) {
StringBuilder sb = new StringBuilder(data.length * 2)
for (int 1 = 0; i < data.length; i++) {
String hex = Integer.toHexString(data[i])
if (hex.length() == 1) {
// Append leading zero.
sb.append("0")
} else if (hex.length() == 8) {
// Remove ff prefix from negative numbers.
hex = hex.substring(6)

¥
sb.append(hex)

}
return sb.toString().toLowerCase(Locale.getDefault())

www.it-ebooks.info

{

http://www.it-ebooks.info/

//Create a date for headers and the credential string
TimeZone.setDefault(TimeZone.getTimeZone('UTC'))

def now = new Date()

def amz_date = now.format("yyyyMMdd'T'HHmmss'Z'")

def datestamp = now.format("yyyyMMdd")

/[*FFEEEEEEEEEE TASK 1: CREATE A CANONICAL REQUEST ******kkiiixx
// http://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-
request.html

// Because almost all information is being passed in the query string,
the order of these steps is slightly different than the examples that
use an authorization header.

// Step 1: Define the verb (GET, POST, etc.)--already done.

// Step 2: Create canonical URI--the part of the URI from domain to
guerystring (use '/' if no path)

def canonical_uri = '/'

// Step 3: Create the canonical headers and signed headers. Header
names and values must be trimmed and in lowercase, and sorted in ASCII
order. Note trailing \n in canonical_headers. Signed_headers is the
list of headers that are being included as part of the signing process.
For requests that use query strings, only "host" is included in the
signed headers.

def canonical_headers = 'host:' + host + '\n'

def signed_headers = 'host'

// Match the algorithm to the hashing algorithm you use, either SHA-1
or SHA-256 (recommended)

def algorithm = 'AWS4-HMAC-SHA256'

def credential_scope = datestamp + '/' + region + '/' + service + '/' +
'aws4_request'

// Step 4: Create the canonical query string. In this example, request
parameters are in the query string. Query string values must be URL-
encoded (space=%20). The parameters must be sorted by name.

def canonical_querystring = 'Action='+action+'&Version="'+version
canonical_querystring += '&X-Amz-Algorithm=AWS4-HMAC-SHA256'
canonical_querystring += '&X-Amz-Credential=' +
URLEncoder.encode(access_key + '/' + credential_scope, "UTF-8")
canonical_querystring += '&X-Amz-Date=' + amz_date
canonical_querystring += '&X-Amz-Expires=30'

canonical_querystring += '&X-Amz-SignedHeaders=' + signed_headers

log.info "Canonical Querystring: "+canonical_querystring

// Step 5: Create payload hash. For GET requests, the payload is an
empty string ("").

def payload_hash = toHex(hash('"))

log.info "Payload Hash="+payload_hash

// Step 6: Combine elements to create create canonical request
def canonical_request = method + '\n' + canonical_uri + '\n' +
canonical_querystring + '\n' + canonical_headers + '\n' +
signed_headers + '\n' + payload_hash

www.it-ebooks.info

http://www.it-ebooks.info/

/[*xxxxxxwsskkk TASK 2: CREATE THE STRING TO SIGN*** i kkkkx
def string_to_sign = algorithm + '\n' + amz_date + '\n' +
credential_scope + '\n' + toHex(hash(canonical_request))
log.info "String To Sign: "+string_to_sign

[/ FrFERxExxAxFEx TASK 3: CALCULATE THE SIGNATURE *****x*xxkxsx
// Create the signing key

def signing_key = getSignatureKey(secret_key, datestamp, region,
service)

log.info "Signing Key: "+signing_key

// Sign the string_to_sign using the signing_key

def signature = toHex(HmacSHA256(string_to_sign, signing_key))
log.info "Signature: "+signature

[/ FrERFxAxEFxAxx TASK 4: ADD SIGNING INFORMATION TO THE REQUEST

kkkkkkhkhkhkkkk*k*

// The auth information can be either in a query string

// value or in a header named Authorization. This code shows how to put
everything into a query string.

canonical_querystring += '&X-Amz-Signature=' + signature

def request_url = endpoint + "?" + canonical_querystring

//Use CURL for testing:
log.info "curl -GET '"+request_url+"'"

//Add dynamic parameter values to the context
context["credential"]=access_key + '/' + credential_scope
context["timestamp'"]=amz_date
context["signature'"]=signature

. The only parts of this script that should need to change for you are the values of
access_key and secret_key (parameter section near the top). Replace their values
with the values you downloaded when you created your test user.

Tip
Quick test

This script should run on independently and produce quite a lot of logging. For
testing purposes, it also produces a curl (http://curl.haxx.se/) statement to make the
actual request. Assuming you have curl installed (if not, just paste the URL into a
browser), paste the resulting statement into a shell window and if it works, that is,
you get a status 200 response and output like in step 6 described next, then you
should be in good shape!

. Lastly, we just need to use the dynamic parameters that are added to the context at
the end of the script (credential, timestamp, and signature) and insert them into
the matching HTTP Test Request parameters, as shown in the following screenshot:

www.it-ebooks.info

http://curl.haxx.se/
http://www.it-ebooks.info/

Method | GET +| : Reguest URL: https://iam.amazonaws.com
L S P
Mame Walue
Action ListUsers
Version 2010-05-08
X-Amz-Algorithm AWSE-HMAC-5HAZ56
¥-Amz-Credential S{credential}
X-Amz-Date S{timestamp}
X-Amz-Expires 30

__ |X-Amz-5ignedHeaders host

\,j X-Amz-5Signature S{signature}

=

6. Now, run the TestCase and if all’s well, you should get a response like this:

<ListUsersResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">
<ListUsersResult>
<Users>
<member>
<UserId>AIDAIYV6F67LECWY2KWS2</UserId>
<Path>/</Path>
<UserName>testuseri</UserName>
<Arn>arn:aws:iam: :515462158215:user/testuseri</Arn>
<CreateDate>2014-11-25T11:03:15Z</CreateDate>
</member>
</Users>
<IsTruncated>false</IsTruncated>
</ListUsersResult>
<ResponseMetadata>
<RequestId>1654d980-74a6-11e4-86fc-714775cab52b</RequestId>
</ResponseMetadata>
</ListUsersResponse>

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

We won’t cover every aspect of this process in detail, but we can give an overview and
explain where to get other information you might need to dig deeper. The most
complicated part is obviously the script:

It’s based on an excellent Python example, see

http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-
examples.html#sig-v4-examples-get-query-string

It also uses the java signing key example from
http://docs.aws.amazon.com/general/latest/gr/signature-v4-examples.html#signature-

v4-examples-java
It requires no external libraries, unlike the AWS SDK.

It could be made more Groovy-like and refined, for example, it could create
properties for all the parameters, but I wanted to leave it relatively raw and close to
the original examples to hopefully help people understand the translation.

For more information on all aspects of signing requests, see

http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

The main steps in the script are as follows:

1.

First, we define the request variables. These variables could easily be replaced by
SoapUI properties to make the script more configurable.

Next, we define helper methods HmacSHA256 and getSignatureKey that are used to
calculate the HMAC signature. Apart from the Amazon docs, for more information
on the Java MAC class and an interesting comparison of Basic, Digest, and HMAC
authentication, see the links described next.

Two more helper methods hash and toHex are then defined. The first is used to
compute SHA-256 Hash (see links) of the canonical request URL. The second method
is used to convert the resulting Byte Array to Hex String so that it can be
concatenated as part of the String we need to sign.

Next, we calculated the timestamps and the canonical request querystring, which is
a major part of the approach and the string must be built exactly like this, otherwise
the request will be rejected.

Finally, we build the String to sign (includes all aspects of the request) and compute
the HMAC signature of this String to be used to authenticate the request.

Tip

Since the whole request (including the timestamp) is signed, any attempt to modify
the request after dispatch will mean that the signature will be invalid and the request
will be rejected. The AWS API ensures this, because when it receives the request, it

recalculates the request’s signature using the same approach and compares it to the
signature String in the request.

The script actually has to do more than we need, that is, it builds the entire request, not
just the dynamic parameters we need to pass. So the script could also be written to fire the

www.it-ebooks.info

http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html#sig-v4-examples-get-query-string
http://docs.aws.amazon.com/general/latest/gr/signature-v4-examples.html#signature-v4-examples-java
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
http://www.it-ebooks.info/

request itself if required. However, it is convenient to use the HTTP Test Request
TestStep instead so that we can use Assertions to test the response. It would also be easy
to parameterize the entire request including the endpoint, using the values from the script
if required.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

The script can easily be adapted to make requests against the other AWS APIs, for
example, we could check database content in SimpleDB or DynamicDB after calling a cloud-
based web service to update it. Also, besides using a GET request with the authentication
information in the Query String, you can also do a GET with the authentication
information in the HTTP Header and also a POST request — see the other Python examples

at http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html.

www.it-ebooks.info

http://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
http://www.it-ebooks.info/

See also

Other AWS Services: http://aws.amazon.com/documentation/

Java MAC: https://docs.oracle.com/javase/7/docs/api/javax/crypto/Mac.html
SHA-256: http://en.wikipedia.org/wiki/SHA-2
Good comparison of Basic, Digest, and HMAC Authentication:

http://www.javacodegeeks.com/2012/10/what-is-hmac-authentication-and-why-
is.html

www.it-ebooks.info

http://aws.amazon.com/documentation/
https://docs.oracle.com/javase/7/docs/api/javax/crypto/Mac.html
http://en.wikipedia.org/wiki/SHA-2
http://www.javacodegeeks.com/2012/10/what-is-hmac-authentication-and-why-is.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9. Data-driven Load Testing With
Custom Datasources

In this chapter, we will cover:

Load testing data-driven TestCases concurrently with separate Groovy datasources
Load testing data-driven TestCases concurrently with a shared Groovy datasource
Load testing data-driven TestCases concurrently with a shared distributed datasource
Running load tests using Maven, command line, Java, Groovy, and Gradle scripts

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

This chapter aims to build on basic load testing topics in the open source version of
SoapUI. The main themes explored here are data-driven load testing, understanding
concurrency issues when sharing a datasource between multiple threads, and running load
tests from scripts.

This chapter focuses on the open source version of SoapUI. The related pro features of
Datasource TestSteps and reporting are not covered here; for more on these topics
please see the SoapUI online help at http://www.soapui.org/Data-Driven-

Testing/loadtests.html and http://www.soapui.org/l.oad-Testing/exporting-data-and-

statistics.html.

As you are probably aware, SoapUI has a related product, LoadUI, which takes load
testing to another level. Unfortunately, as of July 2014 it is no longer open source, but its
documentation is quite good and may give you ideas on how to solve load testing
problems beyond those that SoapUI can manage out-of-the-box. Visit
http://www.loadui.org/ for more information.

www.it-ebooks.info

http://www.soapui.org/Data-Driven-Testing/loadtests.html
http://www.soapui.org/Load-Testing/exporting-data-and-statistics.html
http://www.loadui.org/
http://www.it-ebooks.info/

What you’ll learn

You will learn how to:

e Understand load test concurrency (thread-safety) issues around separate and shared
test datasources, some of their signs, and how to deal with them

e Design and create thread-safe separate, shared, and distributed datasources in the
open source version of SoapUI

¢ Run load tests on multiple instances of SoapUI simultaneously, that is, basic
distributed load testing

e Script load tests; Maven scripting has been covered in detail, but Java, JUnit, Groovy,
and Gradle approaches have also been explained

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll need

You will need the following:

e Basic SoapUI load testing skills: If you don’t have these, the online SoapUI Load
Testing pages are quite good. Take a look at all pages, for example,

http://www.soapui.org/Getting-Started/load-testing.html and you should be good to
go!

e Knowledge of chapters 1, 2, and 5: If you haven’t done these chapters, no problem,;
but concepts, skills, and example codes have been built on in some cases. Chapter 6,
Reporting, could also be useful in terms of creating custom load test reports and
using Jenkins to run a load test; this has not been covered here directly.

www.it-ebooks.info

http://www.soapui.org/Getting-Started/load-testing.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Load testing data-driven TestCases
concurrently with separate Groovy
datasources

This recipe is partly a warm-up on simple threaded load testing, but also lays the
groundwork for better understanding how a data driven test case behaves when tested
concurrently, that is, by using multiple threads. The example test case builds on Chapter 2,
Data-driven Testing and Using External Datasources, Groovy data driven recipes. This is
what it does when called:

Reset row
counter
to beginning of
test data
H
Yes
v
Get next row fo— tcnl’:i” _
——> ofCSVtest [—> . fla ol SN 5
file? using the test
data i

The service under test is a partially implemented version of invoicev3 from chapter 1
samples. So that we can study the results of our load testing, the createInvoice operation
has been implemented to write invoice request data to an H2 database, which we can
query afterwards.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The example, invoicev3 web service WSDL (/invoicev3/wsdl/Invoice_v3.wsdl), and
source code can be found in the chapter 9 samples. The service requires a Java JDK and
was generated using Apache CXF following the techniques mentioned in Chapter 1,
Testing and Developing Web Service Stubs With SoapUI. It’s easy to build and run from
the command line, although using an IDE like Eclipse is probably a better option if you
want to tweak, build, and run it often. Here are the key details:

e Endpoint: http://localhost:9003/ws/invoice/v3?wsdl
e To run:

cd <chapter 9 samples>/invoicev3/target/classes
java -cp ../../src/lib/h2-1.4.181.jar:.
ws.invoice.v3.InvoicePortType_InvoicePort_Server

e To build:

cd <chapter 9 samples>/invoicev3/
Javac -cp src/lib/h2-1.4.181.jar src/main/java/ws/invoice/v3/*.java -d
target/classes
Ok, so let’s start it up. Open a shell/command prompt, change directory to <chapter 9
samples>/invoicev3/target/classes and run the preceding Java command:

Starting InvoiceV3 Server

You can access the database remotely now, using the URL,
http://localhost:9081/./invoicev3-testdb (user: '', password: ''). This is the
output:

invoices table created..
Server ready, will close automatically in 30 minutes..

As a quick test:

1. Open a browser and test the WSDL using the above endpoint details.
2. In another browser tab test the H2 Web Client:

Go to http://localhost:9081/; the Login page should be displayed
Generic H2 (Server)

JDBC URL: jdbc:h2: http://localhost:9081/../../invoicev3-testdb
Username and Password: leave empty

Enter the details and click on Test Connection; you should see:

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

Saved Setlings! | Generic H2 (Server) =l
Setting Name: Generic H2 (Server) Save Remove
Driver Class: org.h2.Driver

JDBC URL: jdbc:h2:http:/Mocalhost:9081/. .. finvoicev3-testdb

User MName:

Password:

Connect Test Connection

Test successiu

o Then click Connect and enter the client. Click the INVOICES table on the left and
a SELECT statement will be generated for you in the editor window. Click on
Run and you should see no rows returned, as follows:

M| & | MAutocommit 0 ‘D | Max rows: | 1000 Q@ 0 | | Auto complete | off 207

[1 jdbc:hZ:httpilocalhost:9081/./.1 Run| | Run Selected | | Auto complete| | Clear| SQL statement:

El INVOICES

SELECT * FROM INVOICES
] INFORMATION_SCHEMA
EEE Sequences
{§} Users SELECT * FROM INVOICES;
() H2 1.4.181 (2014-08-06) ID |INVOICENO |CUSTOMERREF |AMOUNT |DUEDATE |LASTUPATED

(no rows, 8 ms)

OK, now we should be ready to call the service and create some invoice data! If you need
to change the service or H2 database settings, here are some pointers:

e Classpath dependency: Requires only the H2 database driver (src/1ib/h2-
1.4.181.jar) on the classpath when running and building
e Edit service class InvoicePortType_InvoicePort_Server for:

o Service Endpoint: Default as earlier
o Service Timeout: The service exists after 30 minutes

e Edit service port implementation InvoicePortImpl for:

o Database File Location: Default (./invoicev3-testdb)
o Database Web Client Protocol/Host/Port: Default (http://localhost:9081/)

www.it-ebooks.info

http://www.it-ebooks.info/

This recipe’s SoapUI project, InvoiceVv3LoadTest, and
SeperateGroovyDatasourceTestCase TestCase can also be found in the chapter 9
samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

After setting up a new SOAP Project, TestSuite, and TestCase, we’ll add TestSteps to
make TestCase work like the one in the preceding diagram. Then we’ll set up a new Load
Test with 5 threads and a limit of 500 Total Runs. Next, we’ll run the Load Test and check
the invoice records in the H2 database. Finally we’ll run the Load Test with 5 threads and
a limit of 100 Runs per Thread and see if there are any differences. Perform the following
steps:

1.

2.

Set up a New SOAP Project using the InvoiceV3 WSDL; create a new TestSuite
and new TestCase.

Next, add a Groovy TestStep to get the next row of test data, add the values to the
context, and increment/reset the TestCase’s rowCounter property:

def rowCount =
Integer.parseInt(context.expand('${#TestCase#rowCounter}'))

//Get test data rows from load test context

assert context.LoadTestContext!=null, "No Test Data - This TestCase must
be run from the load test."

def testDataRows = context.LoadTestContext["testDataRows"]

//Get next row of csv test data and split it into values
def rowItems = testDataRows[rowCount].split(/,/)

//Add the values to TestCase context for use in requests
context["invoiceId"]=rowItems[0Q]

context["customerRef"]=rowItems[1]+"-
(ThreadIndex="+context["ThreadIndex"]+" RunCount:
"+context["RunCount"]+")"

context["amount"]=rowItems[2]

def date=Date.parse("dd/MM/yyyy",rowItems[3]);
context["dueDate"]=date.format("yyyy-MM-dd'zZ'") //parse to xsd:date
format

//Pre increment rowCount and check if rowcount is > last row, if so
reset it.
if (++rowCount==testDataRows.size()) rowCount=0

//Update roCounter property on TestCase
testRunner.testCase.setPropertyValue("rowCounter",
String.valueOf(rowCount))

Now, add a new Test Request TestStep to call the createInvoice operation. Edit the
request and insert references to the test data values stored in the context, as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

4.

S.

createlnvoice InvoiceDocumentType

id *: ${invoiceld} & | (xsd:string)
customerRef *: | ${customerRef} & | (xsd:string)

amount *: ${amount} & | (xsd:double)

dueDate *: f{dueDate} & (xsd:date)

On TestCase, create a new property called rowCounter=0 to keep track of its row
position in the test data when being run by a Load Test thread.
Next, create a new Load Test option for TestCase with the following parameters:

Threads: 5

Strategy: Simple

TestDelay = 6 and Random = 0
Limit: 50 (Total Runs)

O O O o

Under the load test’s Setup Script tab, we need to load the test data from the CSV
file and store it in Load Test context so that TestCases can access the rows they
need. Open the Setup Script tab and add:

log.info "Load test setup script:"
log.info "Loading test file data into load test context.."

context["testDataRows"]=[]

File testDataFile = new File('"/temp/invoices.csv")
testDataFile.eachLine {content ->
context["testDataRows'"] << content

}

Tip

Groovy << (left shift) operator

If you haven’t seen it before, Groovy Collections overload the .leftShift operator
(<<) to append objects to a collection. For example, the line above could also be
written as context["testDataRows"].add(content)—See

http://groovy.codehaus.org/Operator+Overloading,
http://groovy.codehaus.org/groovy-jdk/java/util/Collection.html.

Note
Test data file location
Please remember to change the path to match the file location on your system.

Now, if the invoicev3 service isn’t already running, start it up and run the Load
Test! Let’s take a look at the results:

o Go into the H2 web client

www.it-ebooks.info

http://groovy.codehaus.org/Operator+Overloading
http://groovy.codehaus.org/groovy-jdk/java/util/Collection.html
http://www.it-ebooks.info/

o Take a quick look at the invoice data; for example, SELECT * FROM INVOICES—
50 invoice records should have been created

o To consolidate the data, run SELECT INVOICENO, COUNT(*) FROM INVOICES
GROUP BY INVOICENO. ; you should see something like this:

INVOICENO |COUNT(*)
52
51
50
50
50
50
50
50
49
48

W @~ || & W | ==

-
(=]

Note
Observations

o Strangely, the distribution of invoice totals isn’t completely regular; there are
slightly more low number invoices (1s and 2s) than high number ones (9s and
10s).

o If you inspect the individual invoice rows over different run limits, it seems that
certain threads are busier than others! The threads with lower ThreadIndex
(shown in the customerRef field) seem to finish first, and start again at the
beginning of the test data.

Note

Conclusion: When using a limit type of Total Runs (with more than 1 thread and
separate datasources), the test data usage pattern and number of TestCase executions
by each particular thread cannot be guaranteed. This may or may not be an issue for
your tests, but is worth being aware of.

. Of course, one way to control this is to change the limit type to Runs per Thread,
that is:

o Set Limit: 50 (Runs per Thread)

o Clear down the previous data by running query, TRUNCATE TABLE INVOICES

o Rerun the load test and requery the data to see an even distribution of the
invoice numbers in the database, which appears as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

INVOICENO |COUNT(*)
50
50
50
50
50
50
50
50
50
50

W @~ || & W | ==

-
(=]

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Apart from the effects of the different limits on the way the threads behave, the main thing
to be aware of is the way the threads actually run TestcCase, and how different types of
properties can be used in a thread-safe way:

Load Test
CSV
2 testDataRows
TESt Data T .Setup Scnpt NPT > {Shared)
| |
Thread O Threlad 1 Thre]ad 2
l
TestCase TestCase TestCase
rowCounter rowCounter rowCounter
(separate) (separate) (separate)
Note

The key points are

e The shared testDataRows property is updated only once by the load test setup script,
before the Load Test runs.

e FEach thread creates a clone of TestCase and has separate state from other threads; the
rowCounter property can be safely updated from within its TestcCase.

e The Load Test’s context (contains testDataRows) is shared and can be safely read,
but not updated, by the scripts in a different thread’s TestCases.

e The initial state of TestCase is unchanged after Load Test; the rowCounter property
that we added is still = 0 after the test. This means that all updates during the test
were made against a separate cloned property for each thread. The cloned TestCase
instances die after the load test.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Of course, there will be times when you want to share the test data between threaded
TestCases in a load test rather than separate usages of it. The main thing to be careful
about is allowing separate threads to update shared properties, otherwise you risk
unpredictable results. As an experiment you could change TestCase's Groovy TestStep
to use a rowCounter held in LoadTest's context, which is shared between threads. I have
added the lines to do this into the setup script and Groovy TestStep (commented out).

Basically, in setup script you add:

//Not thread safe:

context["rowCounter"]=0

And in the Groovy TestStep, use this property instead of the TestCase property by
replacing:

//def rowCount =
Integer.parseInt(context.expand('${#TestCase#rowCounter}'))

With:

//Non thread safe example (dont use unless experimenting)
def rowCount = context.LoadTestContext["rowCounter"]

And update it instead of the TestCase version by adding:

//Non thread safe example (dont use unless experimenting)
context.LoadTestContext["rowCounter"]=rowCount

Now if you run the load test even over a small number of runs with more than one thread,
you can expect irregular results; for example:

Threads: 5

Test Delay: Value is 0 (adding any kind of delay will mean there’s less chance of
threads clashing!)

Limit: 20 Runs per Thread (should give even numbers like before)

Try it, and oh boy! Different results every time! For example:

INVOICENO |COUNT(*)
1 10
2 13
3 12
4 10
& 10
& g8
7 g8
B g8
g8 g8
10 8

www.it-ebooks.info

http://www.it-ebooks.info/

Well, the count is 100 as expected, but rowCounter gets thrown all over the place as
different threads try to read and increment it at the same time! Bigger run counts and
thread numbers will naturally aggravate this situation.

If you’d rather not have this kind of unpredictable behavior, then the next two recipes
explain how datasources can be shared reliably between multi-threaded TestCases.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

¢ Java Concurrency:
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

www.it-ebooks.info

http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Load testing data-driven TestCases
concurrently with a shared Groovy
datasource

This recipe builds on the first one to show a simple way to use the same test data shared
between TestCases run by multiple threads. We might want to do this in case we want
each row of the test data to be used only once. For example, it isn’t always great to have
multiple invoices created with the same details, as it creates duplicate invoice test data.
The service under test is the same invoice v3 service as in the previous recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

This recipe can be done as part of the same project that was used in the last recipe. So if
you haven’t already done the first recipe, you can find its completed Project and
TestSuite from the chapter 9 samples. You may also want to look over the last recipe’s
Getting ready section to see how to use the invoice v3 test service, and also the H2
database. This recipe’s SoapUI project InvoiceV3LoadTest and
SharedGroovyDatasourceTestCase can also be found in the chapter 9 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

The main problem with sharing a data source between multiple threads is providing
thread-safe access to any properties that can be updated concurrently. So, what needs to
change from the first recipe? Well, this time we need a simple mechanism whereby:

e FEach thread’s TestCase gets a different row of test data from the other thread’s
TestCases, that is, the ability to ensure each row of test data is used only once in the
Load Test (assuming we don’t loop back to the beginning of the test data)

e TestCases have access to a shared rowCounter property to indicate the next row of
test data to use

e No other thread’s TestCase should read or increment the rowCounter property when
a TestCase gets the next rowCounter value and increments it

Well, we could store the shared rowCounter property in the LoadTest context that is
shared between all threaded TestcCase clones; all the TestCase clones could access the
counter, but wouldn’t that be risky if multiple threads update the same property
simultaneously? Yes, it could be chaos as load intensity increases! That’s why we need a
way to synchronize access to the rowCounter property. More on that soon.

Given that we’ve got a thread-safe shared rowCounter property to iterate through the rows
of test data, all we’d need to do is get the next row of test data and use it to call the
createInvoice operation on the invoice v3 web service, like last time.

Let’s do it! Perform the following steps:

1. First, let’s add that synchronized rowCounter property mechanism to the LoadTest’s
context in the Setup script tab. The first part of the script to load the test data file
will be the same as before; the new part is shown highlighted in the following code.
Open the Setup Script tab and add:

log.info "Load test setup script:"
log.info "Loading test file data into load test context.."

context["testDataRows"]=[]

File testDataFile = new File('"/temp/invoices.csv")

testDataFile.eachLine {content, lineNumber ->
context["testDataRows"] << content

}

class RowCounter{
int testDataSize = 0
int rowCounter = -1

RowCounter(int testDataSize){

this.testDataSize=testDataSize
}

def synchronized getNext(){
if (++rowCounter==testDataSize) rowCounter=0
return rowCounter

www.it-ebooks.info

http://www.it-ebooks.info/

}
}

context["rowCounter"]=new RowCounter (context["testDataRows"].size())

. Next, use the shared rowCounter to retrieve the next row of test data from the
LoadTest context. This script is more or less the same as before; the new part is
highlighted. In TestCase add the following code to the Groovy TestStep:

//Access shared rowCounter property
def rowCount = context.LoadTestContext["rowCounter"].next

//Get test data rows from load test context

assert context.LoadTestContext!=null, "No Test Data - This TestCase must
be run from the load test."

def testDataRows = context.LoadTestContext["testDataRows"]

//Get next row of csv test data and split it into values
def rowItems = testDataRows[rowCount].split(/,/)

//Add the values to TestCase context for use in requests
context["invoiceId"]=rowItems[0]
context["customerRef"]=rowItems[1]+"-
(ThreadIndex="+context["ThreadIndex"]+" RunCount:
"+context["RunCount"]+")"

context["amount"]=rowItems[2]

def date=Date.parse("dd/MM/yyyy",rowItems[3]);

context["dueDate"]=date.format("yyyy-MM-dd'zZ'") //parse to xsd:date
format

. The Test Request TestStep to call createInvoice using the test data values from the
context is exactly as before (see step 3).

. Now to give it a spin! Start up the invoice v3 service and let’s configure the load test
to something reasonably full-on from a concurrency perspective; that is, lots of
threads with no delay between tests over a fairly large run. Set the load test to the
following values:

Threads: 100

Strategy: Simple

TestDelay: Value is © and Random value is 0 (no delay is more demanding!)
Limit: 10000 (Total Runs)

O O O o

Note
What we are expecting

Of course, you may have more or less computing power at your disposal. Feel free to
choose different values. The main thing is to test the results of heavy concurrent
access to produce the invoice records we expect, that is, no errors, no lost threads, no
missing requests, even numbers of invoices for each invoice number in the file. If
you crank it up too high, you may start to stress the service out resulting in socket
timeouts, missing responses, or failed assertions. This is okay as long as the test
performs as expected—the service is just an example.

www.it-ebooks.info

http://www.it-ebooks.info/

5. Now, run the test and this is what we should expect to see:

Test Step min | max avg last cnt tps bytes bps Brr
CetNextTestDat... 1 a7 0 0 10000 316.43 0 0
Createlnvoice 3 3321 279.64 201 10000 316.43 2291000 72495
TestCase: 4 3368 279.65 201 10000 316.43 2291000 72495

=]

6. All cnt values should be 10000, that is, no lost threads. Note that there could be

legitimate errors due to service stress; for example, failed assertions due to
missing/slow responses:

INVOICENO |COUNT(*)
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

W @~ || & W R =

=
=]

7. And nice even numbers of test invoices created in the services database!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

This time the setup is as follows:

|_ Load Test |
Test Data PGl rowCounter (Shared & Synchronized)
[
Threlad 0 Threlad 1 Thread 2

TestCase TestCase TestCase

The key things to understand are:
1. The rowCounter itself is stored as a local variable of the class, RowCounter:

o It is initialized only upon setup before the test.
o Is never updated directly by test cases during the test.

2. To get the next rowCounter value, threaded TestCase clones must get access via the
synchronized method, getNext ().

3. Synchronized methods lock access to the method until the current thread has finished
processing it, that is, only one thread at a time can access getNext (). Therefore, the
local variable, rowCounter, is never updated concurrently; threads must wait.

Tip
Synchronization should be used carefully

There is, of course, potential for thread blocking around synchronized methods leading to
bottlenecks. So it can be a good idea not to overuse them. Luckily, the RowCounter class is
very simple and getNext () should be very quick to execute. Generally, bottlenecks would
be more likely around more time-consuming synchronized methods.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...
Tip
Setting Test Delay = 0 is much more intensive!

Having a delay between tests can sometimes actually hide thread concurrency issues in
unsafe code, that is, it can reduce the likelihood of more than one threaded TestcCase clone
hitting any shared resource simultaneously.

The functionality in this recipe can also be achieved using the pro version of SoapUI’s
Datasource TestStep in shared mode. If you’re interested and you have SoapUI pro, I
have recreated this recipe using Datasource TestStep (see TestSuite-Shared Pro
Datasource). Interestingly, I found that it gave much slower response averages than the
open source version in this recipe! However, some may prefer the way it hides the
complexity of what’s actually going on.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

o Brief Thread-Safety example: http://www.programcreek.com/2014/02/how-to-make-
a-method-thread-safe-in-java/
e Java Synchronization:

https://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html

www.it-ebooks.info

http://www.programcreek.com/2014/02/how-to-make-a-method-thread-safe-in-java/
https://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Load testing data-driven TestCases
concurrently with a shared distributed
datasource

This recipe builds on the last two recipes to provide a distributed web service based shared
data source that is both reliable under load and being service based, can also be shared
across load tests running simultaneously on multiple SoapUI instances.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The approach is actually quite simple, but does require another service to publish the test
invoice data in a thread-safe way. For this, we’ll use an adapted version of the invoice v1
REST example from the Generating and developing a RESTFul web service stub test-first
recipe of Chapter 1, Testing and Developing Web Service Stubs With SoapUI. The new
implementation has the following main features:

Test Data REST Service

Endpoint: http://localhost:9000/test-data-service/invoice

Expects Parameter: Test data file location, for example, /temp/invoices2.csv
Dependencies: Apache CXF (see Chapter 1, Testing and Developing Web Service
Stubs With SoapUI, for download instructions); following build & run command
assume apache-cxf-3.0.1 is in the root of the chapter 9 samples folder

e To run:

cd <chapter 9 samples>/testdataservice/target/classes

Java -cp "../../../apache-cxf-3.0.1/1ib/*:." rest.invoice.vl.Server
../../../invoices2.csv
e To build:

Cd <chapter 9 samples>/testdataservice/
javac -cp "../apache-cxf-3.0.1/1lib/*"
src/main/java/rest/invoice/v1/*.java -d target/classes

e Dependencies: Apache CXF (see Chapter 1, Testing and Developing Web Service
Stubs With SoapUI, for download instructions)

What the service does:

1. When started, the service loads the test invoice data using the file details passed as a
parameter.
2. When called, the service returns the next invoice test row:

<ns2:invoice>

<id>5</id>
<companyName>comp5</companyName>
<amount>500.0</amount>
</ns2:invoice>

3. The service implementation is thread-safe and guarantees that each request gets a
different test data row.
4. When the last row has been served, the service starts again at the beginning.

OK, so let’s start it up. Open a shell/command prompt, change directory to <chapter 9
samples>/testdataservice/target/classes, and run the service. You should see the
output as follows:

Loaded 10 rows of test data from ../../../invoices2.csv

.. lots of Apache CXF INFO logging..
Server ready, will exit automatically after 30 minutes..

www.it-ebooks.info

http://www.it-ebooks.info/

Then, call the endpoint either using a browser or SoapUI and you should be able to cycle
through all 10 of the invoice test data records. That’s it for the test data service!

This recipe’s SoapUI projects, InvoiceVv3LoadTest and
SharedDistributedDatasourceTestCase TestCase, can also be found in the chapter 9
samples, along with the invoices2.csv test data.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

The execution of this approach is actually relatively simple. We need a TestCase with an
HTTP Test Request TestStep and a Test Request TestStep to use its response data to
call the createInvoice operation on the Invoicev3 web service like before. Lastly, we’ll
create a similar load test to those in the previous recipes and see how the approach
performs. Perform the following steps:

1. Create a new SOAP Project based on invoice_v3.wsdl with a new TestSuite and
TestCase.

2. Next, create an HTTP Test Request TestStep to call the test data service endpoint.

There are no parameters; we just need the Endpoint set to

http://localhost:9000/test-data-service/invoice and a method of GET.

Then, create a new Test Request TestStep for the createInvoice operation.

4. Use property expansions for invoiceNo, companyRef, and amount from the HTTP
Test Request response to populate the request for the createInvoice Test Request
TestStep; that is:

w

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:inv="http://soapui.cookbook.samples/schema/invoice">
<soapenv:Header/>
<soapenv:Body>
<inv:createInvoice>
<inv:id>${GetNextInvoiceTestData#Response#declare namespace
ns2='http://vl.invoice.rest'; //ns2:invoice[1]/id[1]}</inv:id>
<inv:customerRef>${GetNextInvoiceTestData#Response#declare namespace
ns2="'http://vi.invoice.rest'; //ns2:invoice[1]/companyName[1]}
</inv:customerRef>
<inv:amount>${GetNextInvoiceTestData#Response#declare
namespace ns2='http://vi.invoice.rest'; //ns2:invoice[1]/amount[1]}
</inv:amount>
<inv:dueDate>2014-12-07Z</inv:dueDate>
</inv:createInvoice>
</soapenv:Body>
</soapenv:Envelope>

5. Add assertions like in recipe one to ensure a successful response:

Name: ExpectSOAPResponse

‘Type: SOAP Response

Name: ResponseAcknowldegmentShouldContainInvoiceNo
‘Type: XPath

Expression:

O O O O O

declare namespace
nsil="http://soapui.cookbook.samples/schema/invoice';
//nsl:Acknowledgement[1]/ns1:invoiceNo[1]

o Expected Result:

${CreateInvoice#Request#declare namespace

www.it-ebooks.info

http://www.it-ebooks.info/

inv='http://soapui.cookbook.samples/schema/invoice’;
//inv:createInvoice[1]/inv:id[1]}

6. TestCase is now complete. Start the services and give TestCase a few test runs if
you like.

7. Now onto the load test. Create a new Load Test with the following settings or
whatever settings you feel your machine can reasonably cope with in a timely
manner:

Threads: 100

Strategy: Simple

TestDelay = 6 and Random = 0
Limit: 10000 (Total Runs)

O O O o

8. OK, hit the button! When it finished these are the figures I got:

Test Step min max avg last cnt tps A | bytes bps err rat

GetNextinvoice TestData 2 3265 109.25 11 10000 93.37 1813000 16929 0 0
Createlnvoice 5 4289 953.38 402 10000 93.37 2291000 21392 0 0
TestCase: 8 7554 1,062.64 413 10000 93.37 4104000 38321 0 0

9. So, all counts are showing 1000, without errors; clean bill of health there!
10. Also, query the invoicev3 service database as in the first recipe: SELECT
INVOICENO, COUNT(*) FROM INVOICES GROUP BY INVOICENO:

INVOICENO |COUNT(*)
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

W @ |~ || & W A=

=
=]

11. All the invoices have been created in nice, equal numbers!

Tip
Fewer threads can be faster

If you rerun the above load test with 10 threads instead of 100, you may find you get
quicker throughput. I found that 10 threads halved the overall run time and led to
TestCase averages that were more than 10 times quicker than with 100 threads! This is
probably a sign of contention between threads as more are added.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The main part to explain here is how the test data service works and why it is thread-safe.
Fortunately, this is quite easy to show. Take a look at the TestDataResourceImpl class:

private List<String> testDataRows;
int rowCounter = -1;

//Synchronized accessor to get next row counter

private synchronized int getRowCounter(){

//Reset counter to beginning if at end of file i.e. loop datasource
if (++rowCounter==testDataRows.size()) rowCounter=0;
return rowCounter;

}

public TestDataResourceImpl(String filePath) throws FileNotFoundException{

//Load CSV test data once on startup

Scanner testDataFile = new Scanner(new File(filePath));

testDataRows = new ArrayList<String>();

while (testDataFile.hasNext()){
testDataRows.add(testDataFile.next());

}

testDataFile.close();
System.out.println("Loaded "+testDataRows.size()+" rows of test data
from "+filePath);

}

public Invoice getInvoice() {
ObjectFactory objectFactory = new ObjectFactory();
Invoice invoice = objectFactory.createInvoice();

int row = getRowCounter();
String nextRow = testDataRows.get(row);

invoice.setId(nextRow.split(",")[0]);
invoice.setCompanyName(nextRow.split(",")[1]);
invoice.setAmount(Double.parseDouble(nextRow.split(",")[2]));
return invoice;
b

The key part is the synchronized keyword on the getRowCounter () method. When a
request thread hits the test data web service, the getInvoice()method is called (see
chapter 1 to understand why), which builds up the invoice response data. To do this, it
needs to get the next row of test data from the List<String> testDataRows that was
populated on service startup by the TestbataResourceImpl constructor. To get the next
row counter, getInvoice() needs to call getRowCounter (), which will only allow one
thread to call it at a time, because it’s synchronized. Of course, there is a potential trade-
off here, as requests to getInvoice() may have to wait under heavy load, leading to
slower response times, but at least the test data will be distributed reliably between
threads.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Apart from providing thread-safe test data access to a single load test, this approach also
has the advantage of being shareable between more than one SoapUI load test instance.

Note
Machine resource constraints and distributed load testing

Sometimes, machine resource constraints become an issue for heavy load testing; for
example, memory, threads, and processor limitations. So being able to distribute your load
tests between separate SoapUIs (JVMs) and/or machines can be the only way to scale your
load tests. Of course, using a single shared test data resource could then also become a
bottleneck for multiple load tests running simultaneously.

If you do want to distribute your load tests across multiple machines and run them
simultaneously, you may want to want to run them using orchestrated scripts. The next
recipe may help with the first step: running load tests as scripts. Orchestrating them can be
done using a variety of means; for example, perhaps using a build script like Maven or
Gradle, and run using Jenkins (see Chapter 6, Reporting, for an example of how to run
SoapUI using Jenkins).

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e [oadUI’s Documentation on Distributed Testing: http://www.loadui.org/distributed-
testing/what-is—.html

www.it-ebooks.info

http://www.loadui.org/distributed-testing/what-is--.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Running load tests using Maven,
command line, Java, Groovy, and Gradle
scripts

Running load tests from scripts is something you may well want to do in the context of
continuous integration, probably following successful functional tests. This recipe builds
mainly on the Running mocks and tests using Maven recipe of Chapter 5, Automation and
Scripting, to show how to run load tests using the SoapUI Maven plugin.

The instructions assume you’re comfortable with Maven or have at least completed the
chapter 5 Maven recipe.

When applied to load tests, Maven is possibly the most different of the various scripting
approaches covered in Chapter 5, Automation and Scripting. That’s why it’s covered in
full detail here. Brief details on how to run load tests using the command line, Java,
Groovy, and Gradle are provided in the There’s more... section at the end.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The load test example we’re going to use here is the one from the first recipe. You’ll also
need the invoicev3 service to be running during the load test. Please see that recipe in case
you need more details.

The full working Maven project for this recipe is available under the /maven folder in the
chapter 9 samples. The Groovy load test runner script (loadtest-runner.groovy) is in
the /groovy folder.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

After creating a new Maven project, we’ll need to configure the SoapUI Maven plugin to
run the SeperateGroovyDatasourceLoadTest. Then we’ll run the Maven script and take a
quick look at the console output. Perform the following steps:

1. First, use the following Maven archetype command to generate a new Maven
project:

mvn archetype:generate -DgroupId=soapui.cookbook.chapter9 -
DartifactId=load-test -DarchetypeArtifactId=maven-archetype-quickstart
-DinteractiveMode=false

2. This should create the following directory structure:

load-test/
pom.xml
src/
main/java/soapui/cookbook/chapter9/App.java
test/java/soapui/cookbook/chapter9/AppTest. java

3. Next, create a local load-test/src/test/resources folder and add the
InvoiceV3LoadTest-soapui-project.xml project file to it.

4. Create a load-test/reports folder to store generated report files.

5. Edit pom.xml and configure the SoapUI plugin like this:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>soapui.cookbook.chapter9</groupId>
<artifactId>load-test</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>load-test</name>
<url>http://maven.apache.org</url>
<pluginRepositories>
<pluginRepository>
<id>SmartBearPluginRepository</id>
<url>http://www.soapui.org/repository/maven2/</url>
</pluginRepository>
</pluginRepositories>
<build>
<plugins>
<plugin>
<groupId>com.smartbear.soapui</groupId>
<artifactId>soapui-maven-plugin</artifactId>
<version>5.0.0</version>
<configuration>
<projectFile>${basedir}/src/test/resources/InvoiceV3LoadTest-soapui-
project.xml</projectFile>
<testSuite>TestSuite-Seperate Data Per Thread</testSuite>
<testCase>CreateInvoiceTestCase-Seperate</testCase>
<loadTest>SeperateDataPerThreadLoadTest</loadTest>

www.it-ebooks.info

http://www.it-ebooks.info/

<limit>100</limit>
<printReport>true</printReport>
<outputFolder>${basedir}/reports</outputFolder>

</configuration>
<executions>
<execution>
<phase>test</phase>
<goals>
<goal>loadtest</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
Note

Plugin configuration notes

We’ve used the loadtest goal

We’ve specified the Project, TestSuite, TestCase, and LoadTest to run
We’ve overridden the 1imit to 100

We’ve configured reports to be generated in ${basedir}/reports

O O O o

. Now, let’s run the load test goal with mvn soapui:loadtest to give a similar output
to the following truncated example:

[INFO] Scanning for projects..

[INFO]

[INFO] Using the builder
org.apache.maven.lifecycle.internal.builder.singlethreaded.SingleThread
edBuilder with a thread count of 1

[INFO]

[INFO] =--------ecmceeceiceeceeccccccecc-cccececcaoaaa-

[INFO] Building load-test 1.0-SNAPSHOT

[INFO] =--------ecmeceiceiceiceiceiceicecc-cccccccceccec—aana-

[INFO]

[INFO] --- soapui-maven-plugin:5.0.0:loadtest (default-cli) @ load-test
SoapUI 5.0.0 Maven2 LoadTest Runner

14:06:53,811 WARN [SoapUI] Missing folder [/soapui-
cookbook/chapter9/maven/load-test/ext] for external libraries
14:06:54,267 INFO [DefaultSoapUICore] initialized soapui-settings from
[/Users/bearsoftware/soapui-settings.xml]

14:06:54,357 INFO [HttpClientSupport$Helper] Initializing KeyStore
14:06:56,398 INFO [WsdlProject] Loaded project from [file:/soapui-
cookbook/chapter9/maven/load-test/src/test/resources/InvoiceV3LoadTest -
soapui-project.xml]

14:06:57,900 INFO [SoapUILoadTestRunner] Running LoadTest
[SeperateDataPerThreadLoadTest]

14:06:57,902 INFO [SoapUILoadTestRunner] Overriding limit [10000] with
specified [100]

Progress: 1 - Creating Virtual User 1

www.it-ebooks.info

http://www.it-ebooks.info/

[INFO] ----- - e mmm e e e e e e eedcmcecccec e em -
[INFO] BUILD SUCCESS

[INFO] ----- - mmmmmmm e e e e e eecceceecccccecccmmas
[INFO] Total time: 11.435 s

[INFO] Finished at: 2014-12-03T14:07:02+00:00

[INFO] Final Memory: 20M/49M

[INFO] ----- e mmmmm e e e e e e e m s

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The output is fairly similar to that seen when using the Maven SoapUI plugin to run tests
and mocks in Chapter 5, Automation and Scripting. We can see from the console output
that the limit has been successfully overridden from 10000 to 100 in this example:

14:06:57,902 INFO [SoapUILoadTestRunner] Overriding limit [10000] with
specified [100]

Also, if we take a look in the load-test/reports folder we can see the load test summary
reports exported as:

SeperateDataPerThreadLoadTest-1log. txt
SeperateDataPerThreadLoadTest-statistics. txt

Details of failed tests will also end up here; for example, files like those for failed tests:

SeperateDataPerThreadLoadTest-error-<Run Count>-entry.txt

There’s a warning about the external library folder being missing. If you need to provide
any external libraries, remember to supply the location of the external library folder:

mvn soapui:loadtest mvn "-Dsoapui.ext.libraries=src/test/resources"

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

In terms of other ways to script load tests, using the command line to run load tests is
fairly well covered in the SoapUI online docs (visit http://www.soapui.org/l.oad-

Testing/command-line-execution.html.for more details.)

For example, to get a similar output to the preceding Maven script:

./loadtestrunner.sh -s"TestSuite-Shared Distributed Datasource" -
cDistributedDatasourceTestCase

-lLoadTest-DistributedSharedDatasource -r -f/soapui-
cookbook/chapter9/reports /soapui-cookbook/chapter9/InvoiceV3LoadTest-
soapui-project.xml

To run load tests using Java, Groovy, or Gradle the approach is almost identical to the
following recipes from Chapter 5, Automation and Scripting:

e Running tests using Java and JUnit
e Running mocks and tests using Groovy scripts
e Running mocks and tests using Gradle

This time though, we’ll be dealing with the SoapuILoadTestRunner class (see API docs at
http://www.soapui.org/apidocs/index.html).

For example, a simple Groovy script to repeat the above test would be:

@GrabResolver (name="'soapui',
root="http://www.soapui.org/repository/maven2')
@Grab(group="'com.smartbear.soapui', module='soapui', version='5.1.2-m-
SNAPSHOT ")

@GrabExclude('jtidy:jtidy"')

@GrabExclude('gnu.cajo:cajo')

import com.eviware.soapui.tools.SoapUILoadTestRunner

SoapUILoadTestRunner loadTestRunner = new SoapUILoadTestRunner()
loadTestRunner.projectFile="../InvoiceV3LoadTest-soapui-project.xml"
loadTestRunner.testSuite="TestSuite-Seperate Data Per Thread"
loadTestRunner.testCase="CreateInvoiceTestCase-Seperate"
loadTestRunner.loadTest="SeperateDataPerThreadLoadTest"
loadTestRunner.limit=100

loadTestRunner.printReport=true
loadTestRunner.outputFolder="../reports"

loadTestRunner.run()

To run this, execute the following command:

cd <chapter 9 samples>/groovy
groovy loadtest-runner.groovy

That’s it! After a bit of a pause (long one if those @Grab dependencies haven’t downloaded
yet), you should see very similar output to the Maven and command line examples.

The Groovy example is by far the most elegant of all the approaches and takes care of all
its dependencies, using those Grape @Grab annotations.

www.it-ebooks.info

http://www.soapui.org/Load-Testing/command-line-execution.html
http://www.soapui.org/apidocs/index.html
http://www.it-ebooks.info/

To get the Java and Junit versions, you could work back from the Groovy script and add
the equivalent setX setter methods to the example in the Running tests using Java and
JUnit recipe of Chapter 5, Automation and Scripting.

To get the Gradle version, in the recipe example’s build.xml from Chapter 5, Automation
and Scripting, you would just need to substitute in the preceding Groovy script in place of
runmockandtest.groovy, as:

task runMockAndTest (dependsOn: 'classes', type: JavakExec) {

main = 'loadtest-runner'
classpath = sourceSets.main.runtimeClasspath

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e SoapUI Maven Plugin Load Test Settings: http://www.soapui.org/Test-
Automation/maven-2x.html#5-2-loadtest-settings

www.it-ebooks.info

http://www.soapui.org/Test-Automation/maven-2x.html#5-2-loadtest-settings
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10. Using Plugins

In this chapter, we will cover the following topics:

Using old-style (open source) plugins

Sending e-mails with the Email TestStep plugin

Using plugins via the plugin manager (Pro)

Using the Groovy Console plugin to create and run a new TestStep
Packaging old-style plugins when running tests with Maven

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

If you’ve not seen plugins before, they provide a mechanism for adding new and extended
SoapUI functionalities. You can either download ready-made SoapUI plugins or develop
your own. This chapter introduces both open source (old-style) and pro plugins. It focuses
mainly on how to use plugins and provide them to TestRunner scripts when needed, and
explains briefly how they work. The next chapter builds on the ideas and skills introduced
here and explains how to develop your own plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll learn

You will learn the following topics:

How open source (old-style) plugins are installed and how they work
How pro plugins are installed and how they work

The differences between old-style and pro plugins

How to package plugin dependencies when running projects with Maven

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using old-style (open source) plugins
To start off, let’s take a look at old-style plugins. So what are they?

e They are a way of adding extensions or functionality to open-source SoapUI.

e They typically create/configure new SoapUI framework elements, for example,
Models, Actions, Events, Listeners, and Factories (more on those later).

e They are written in Java or compiled in Groovy.

e They are packaged and deployed as JAR files.

e There are currently six example plugins available for download, for example, Email
TestStep, Groovy Console, Programmable Web, RAML, Runscope, and Swagger
plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

Why are they called old-style?

The following are the reasons:

e SoapUI pro/SoapUI NG has a newer plugin framework (see the Plugin Manager
recipe for more information)

e The new pro plugins are not backward compatible, and old-style plugins cannot be
used with the pro plugin manager

However, old-style does not mean obsolete, since if you are an open source user, the old-
style plugins are in fact current and work perfectly well!

In this recipe, we’ll take a look at where to get plugins and how to install them, and briefly
see how they work. As a simple example, we’ll install the Email TestStep plugin, and in
the next recipe, use it to send a test e-mail. We’ll also take a brief look at some of the other
plugins that are currently available for download.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready
All you’ll need for this recipe is SoapUI and the Email TestStep plugin:

¢ Plugin (JAR): soapui-emailteststep-plugin-1.0-plugin.jar
e Download: http://sourceforge.net/projects/soapui-plugins/files/soapui-emailteststep-
plugin/
¢ Source Code (Git): https://github.com/olensmar/soapui-emailtestsstep-plugin
The plugin soapui-emailteststep-plugin-1.0-plugin.jar file is included in the
chapter 10 samples (/plugins folder) as well as in the EmailTestStepProject project
for this recipe.

www.it-ebooks.info

http://sourceforge.net/projects/soapui-plugins/files/soapui-emailteststep-plugin/
https://github.com/olensmar/soapui-emailtestsstep-plugin
http://www.it-ebooks.info/

How to do it...

Basically, we’ll just install the Email TestStep plugin and check its availability. To do this,
perform the following steps:

1. Installing old-style plugins is easy. Just copy soapui-emailteststep-plugin-1.0-
plugin.jar to <SoapUI install>/java/app/bin/plugins (you might need to create
the plugins folder) and restart SoapUI.

2. Create an empty project and a TestSuite and TestCase; then, either edit TestCase or
right-click and add a new TestStep, and you should see the Email TestStep option:

i+ SOAP Mock Response
1= Manual TestStep
71 EMail Test5tep

3. You will also see the e-mail icon in the TestCase editor window:

20 RE HT A ao ey
AF =T TF MF EC ——

|+

e 1P 9@ 2ED

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Note

In terms of using plugins, it’s that simple really!

It’s worth pointing out that apart from step 1 mentioned earlier, you don’t need to know
much to successfully use ready-made plugins; you only need to be aware of any details
about the actual functionality the plugin adds! However, if you’d like to understand a little
more of how they work or perhaps build your own, please read on.

To explain how SoapUI installs old-style plugins, we need to take a look at some SoapUI
source code. If you take a look at com.eviware.soapui.DefaultSoapUICore (see the next
chapter for more on this), the key method parts are as follows:

1. The init() method calls loadPlugins() to check the /plugin folder for plugin files.
2. For each plugin file, loadoldStylePluginFrom (pluginFile) is called to:

e}

Add the plugin file to SoapUIExtensionClassLoader, that is, the same place
that the /ext library is added to on startup, so any plugin Java classes can be
called.

Register any SoapUI Factories found in META-INF/factories.xml of the
plugin JAR file.

Register any SoapUI Listeners found in META-INF/ listeners.xml of the
plugin jar file.

Register any SoapUI Actions found in META-INF/ actions.xml of the plugin
jar file.

Add any plugin images to the resource class loader, for example, the little
TestCase editor email icon seen in step 2.

Note

Actions, factories, and listeners

If you haven’t seen them before, they will be covered in more detail in the next
chapter. Let’s define them in simple terms for now:

e}

e}

Actions: These are things that do something, for example, menu items
Factories: These are things that create the SoapUI Framework (Model) objects,
for example, Projects, TestSteps

Listeners: These are things that run code when certain Events are fired, for
example, TestRunListener

I also had to mention Models and Events (for example, request sent), which are
covered in the next chapter!

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

If you’d like to know more about the Email TestStep plugin or any of the other old-style
plugins, a great place to start is Ole Lensmar’s (plugin creator and co-creator of SoapUI)

blog: http://olensmar.blogspot.se/p/soapui-plugins.html.

Here, you can see:
1. For each plugin, there are links to:
o Download the plugin’s JAR from SourceForge.
Tip
Open source plugins

I have downloaded all the plugins to the chapter 16 samples’ /plugins—ijust
in case they should become unavailable for any reason!

o Access the plugin’s source code in GitHub.
Tip
Source code version

At the time of writing, I noticed some of the GitHub links go to the pro versions
of the source code. The code will be similar in essence, but will feature pro
plugin annotations instead of XML configs.

o Access the blog article for the plugin!
2. All the plugins he’s created. Special mentions are:

o RAML plugin: RAML is an excellent new way to model RESTful web services
(http://raml.org/). The plugin can import RAML definitions and generate
SoapUI REST service, resources, methods, and so on.

o Swagger plugin: Swagger is also an excellent new way to describe RESTful
APIs (http://swagger.io/). You can use this plugin to not only import Swagger
definitions to create SoapUI REST service artifacts, but also to export Swagger
definitions for RESTful web services defined in SoapUI!

Tip

Remember to supply any project plugin dependencies!

This can be easy to forget, but if your project requires any plugins for its tests, then
remember to supply these with your project or as part of any TestRunner scripts. This
normally only applies to plugins related to TestCase, for example, the TestStep and

Assertion plugins. To deal with scripts, see the recipe Packaging old-style plugins when
scripting projects using Maven.

www.it-ebooks.info

http://olensmar.blogspot.se/p/soapui-plugins.html
http://raml.org/
http://swagger.io/
http://www.it-ebooks.info/

See also

e The Using the Groovy Console plugin to create a new TestStep from a script recipe

e SoapUI Extensions Doc at http://www.soapui.org/Developers-Corner/extending-

soapui.html
e The Creating a custom TestStep (Factory) plugin to check whether a file exists recipe

in Chapter 11, Taking SoapUI Further

www.it-ebooks.info

http://www.soapui.org/Developers-Corner/extending-soapui.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Sending e-mails with the Email TestStep
plugin

This recipe is a quick follow-on example to show how to use the Email TestStep plugin to
send an e-mail.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

If you’ve got access to an SMTP mail server, all you’ll need for this recipe is SoapUI and
the Email TestStep plugin. Otherwise, you can use a dummy SMTP server. A nice Java-
based one is FakeSMTP (fakeSMTP-1.12.jar in the chapter 10 samples):

Download FakeSMTP from https://nilhcem.github.io/FakeSMTP/, and run with java -
jar fakeSMTP-1.12.jar.

Tip
Linux/Mac OS

You will need to start this with the root permissions if you want to bind to port 25, for
example, sudo java -jar fakeSMTP-1.12.jar.

www.it-ebooks.info

https://nilhcem.github.io/FakeSMTP/
http://www.it-ebooks.info/

How to do it...

First, we’ll add a new Email TestStep to a TestCase and configure it to send a test email to
a FakeSMTP server that is running locally. Then, run TestCase and see the e-mail received.
Perform the following steps:

1. Either grab EmailTestStepProject from the chapter 10 samples or follow the steps
from the previous recipe to get your initial Project, TestSuite, TestCase, and Email
TestStep plugin installed.

2. Create a new Email TestStep and test the e-mail details:

800 L1 EMail TestStep
EMail Subject |hello

Message content
test message

Lt

Server: |127.0.0.1

| Tor testi@soapui-cookbook.com

From: email.teststepi@soapui.com

Tip
SMTP server

The Server property should be set to the address of your SMTP server. However, if
you don’t have one, or yours runs on another port to 25 or requires credentials, then
it’s easier to just test with the dummy SMTP server; that is, the Email TestStep has no
other configuration properties.

3. If using a FakeSMTP server, start FakeSMTP with Listening port as 25.
4. Now, run Email TestStep, and you should get an e-mail:

8006 Fake SMTP Server

Listening port: 25 [Stop server

Save message(s) to: received-emails

Message(s) received: 1

SMTP log | Last message |

Received From To Subject
12:13:51 PM email.teststep@soapui.com test@soapui-cookbook.com hello

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In terms of how the Email TestStep plugin works, here are the main points. On loading the
plugin SoapUI:

1. It registers an action for the Add/Insert Email TestStep menu items.
2. It registers two custom factories:

o EMailTestStepFactory: This creates new EMailTestStep objects.
o EMailTestStepPanelBuilderFactory: This creates new
EMailTestStepDesktopPanel objects.

3. EMailTestStep: This contains the actual TestStep implementation to send the email
using SMTP.

4. EMailTestStepDesktopPanel: This provides the Ul elements , that is, the popup
window to configure TestStep.

5. This contains the email.png image used in the SoapUI TestStep menus and
TestCase editor window.

6. This contains a Maven pom. xml file to build and manage dependencies and package
the plugin as the JAR file. This can be used to rebuild the plugin, for example, if you
need to modify it.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

For more details on the Email TestStep plugin, check out the source code and blog links
from the previous recipe. If you would also like to see how to check for emails on Gmail,
take a look at the related recipe links in the following See also section.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e The Testing for e-mails with Groovy recipe in Chapter 4, Web Service Test Scenarios
e The Testing the Gmail API using OAuth2 recipe in Chapter 8, Testing AWS and
OAuth 2 Secured Cloud Services

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using plugins via the plugin manager
(Pro)

The commercial versions of SoapUI (pro and SoapUI NG) feature an enhanced plugin
framework with the following features:

¢ Plugin Manager: This is a Ul to install, update, and uninstall plugins.

e Plugin Repository: This is where users can add their own plugins to share them.

e Plugin Java Anneotations: This is used to replace the old-style XML way to register
Actions, Factories, and Listeners.

e Maven Archetype: This is used to allow easier generation of Maven plugin projects.

e Improved Plugin ClassLoader: The new ClassLoader is now separated from
SoapUls. This indicates that any plugin libraries won’t clash with SoapUIs.

In my opinion, the improved ClassLoader is the most tangible benefit, as classpath
clashes do occur sometimes since SoapUI includes many popular libraries in its own
classpath. The other features can be more easily worked around, but are still welcome!

In this recipe, we’ll use Plugin Manager to install the Groovy Console plugin and explain
some of the differences with old-style plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Pro features are designed to be easy to use, so this recipe should be fairly easy going. As
an example, we’ll use Plugin Manager to install the Groovy Console plugin and then run
a test script. Perform the following steps:

1. First, open the Plugin Manager under the File menu and click on Browse Plugin
Repository. You should see all the currently available plugins in the repository:

[808 Plugin Browser

Plugin Browser @
Browse Available SoapUl Plugins

Available Plugins
Mame Version Installed Description Web page
Swagger Plugin 2.0 Provides Swagger import/export ... Read more...
RAML Plugin 1.2 Provides RAML importjexport fu... Read more...
[tem Search 1.0 Provides an item search within So... Read more...
SSL Workaround Plugin 1.0 Make REST Discovery stop compl... Read more...
API Blueprint Plugin 1.0 Provides APl Blueprint importjex... Read more...
Full Text Search Plugin 1.0 Provides the ability to search for ... Read more...
Generate Retrofit Interface Plugin - 1.0.1 Use the generated interface with ... Read more...
Import From 3scale 1.0 Access a 3scale developer portal... Read more...

(@] | Install/Upgrade Plugin | | OK |

2. Select Groovy Console Plugin, click on Install/Upgrade Plugin, and then click on
Yes in the prompt to download the plugin. You should get a prompt that states that
the plugin has been installed successfully, and Groovy Console Plugin should appear
in the Plugin Manager’s list of installed plugins. That’s it! You’re ready to use the
plugin (see the next recipe for how).

Note
Load plugin from a file

Simply browse to your plugin’s jar file and select it. Note that the old-style plugins for
the open source version aren’t supported; you’ll get MissingPluginClassException.

Note
Upgrade/uninstall plugin

Following these operations, a restart of SoapUI is advised.

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

In terms of the Plugin Manager, I cannot reasonably talk too much about its internals
beyond what has been explained so far, since the pro version is not open source. The main
difference in terms of plugin code is the use of Java annotations for all configurations. For
example, pro plugins will have the following file PluginConfig. java:

@PluginConfiguration(groupId = "com.smartbear.soapui.plugins", name =
"Groovy Console Plugin", version = "1.1",
autoDetect = true, description = "Adds an interactive Groovy

Console to Soapur",
infoUrl = "https://github.com/olensmar/soapui-groovy-plugin")
public class PluginConfig extends PluginAdapter {

}

You’ll recognize the annotation values from the Plugin Browser. To configure a custom
SoapUI Action, you’ll need an annotation like this:

@ActionConfiguration(actionGroup = "EnabledWsdlProjectActions")
public class ProjectGroovyConsoleAction extends
AbstractSoapUIAction<WsdlProject> {

Tip
Remember to supply any pro plugin dependencies for your projects!

Like open source plugins, pro plugins for test-related objects such as custom TestStep
and Assertion plugins could become dependencies for your project if you distribute it.
One key difference with open source plugins is the location where the installed pro plugin
jar files are stored:

{user.home}/.soapui/plugins

If you use a test runner method that does not require a local SoapUI pro installation, for
example, Maven, then consider adding the plugin jar files manually to the earlier
mentioned location on the machine where the script will be run. Otherwise, your project’s
plugin-related parts won’t work!

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e SoapUI Plugin Manager docs: http://www.soapui.org/Extension-Plugins/plugin-
manager.html

www.it-ebooks.info

http://www.soapui.org/Extension-Plugins/plugin-manager.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Groovy Console plugin to create
and run a new TestStep

This recipe is another quick follow-on to show a little of what you can do with the Groovy
Console plugin. The Groovy Console plugin currently has the same functionality in both
pro and open source plugin versions, varying only in its installation. As a quick example,
we use it to dynamically create a new Groovy TestStep that contains a simple script, and
run its TestCase using a couple of Groovy statements!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

All you’ll need for this recipe is SoapUI pro and the Groovy Console plugin installed.
Follow the previous recipe or just use its GroovyConsoleProject project from the chapter
10 samples.

Note
Open source Groovy Console plugin

Download this from SourceForge at http://sourceforge.net/projects/soapui-

plugins/files/soapui-groovy-console-plugin/ or get it from the chapter 10 sample’s
/plugins folder.

www.it-ebooks.info

http://sourceforge.net/projects/soapui-plugins/files/soapui-groovy-console-plugin/
http://www.it-ebooks.info/

How to do it...

To use the Groovy Console plugin, you will notice a Groovy Console option at the bottom
of the menu when you right-click on the Workspace, Project, TestSuite, and TestCase
option. Each will open (after a short pause) the standard Groovy Console; all look
identical, but with the following differences:

Workspace Console: This has a workspace variable available for scripting
Project Console: This has a project variable available for scripting
TestSuite Console: This has a testSuite variable available for scripting
TestCase Console: This has a testCase variable available for scripting

So what good is the Groovy Console? Well, it’s got the usual Groovy console scripting
functionality; in addition to it, it has access to the SoapUI framework objects on its
classpath. Therefore, the possibilities are rather open, and you can do all kinds of
whacky stuff with it! You can run, query, create, and modify most objects in the SoapUI
framework using Groovy statements.

1. For example, create or use a new empty Project, TestSuite, and TestCase, and
open Groovy Console against TestCase. Then, enter the following script:

testCase.addTestStep('"groovy", "HelloGroovy").setScript("log.info
'"Hello!'")
testCase.run(null, false)

2. Then, run it, and it should create a new Groovy TestStep called HelloGroovy that
contains the script log.info 'Hello!'. It then runs TestCase that contains
HelloGroovy to output Hello! in the Script log.

Note
Working out method and property names

Unfortunately, Groovy Console has no IntelliSense/code-completion, so if you need
help working out method names and properties, then do the following:

o Take a look at the API docs (http://www.soapui.org/apidocs/index.html).

o Take a look at the source code (https://github.com/SmartBear/soapui).

o Another way is to use the Groovy MetaClass to list methods dynamically; for
example, println testCase.metaClass.methods*.name.sort().unique()
will give you all the TestCase methods. Similarly, for TestCase properties,
println testCase.metaClass.properties*.name.sort().unique().

In terms of practical use, I have occasionally found the Groovy Console useful to inspect
objects while debugging. However, its scope is wide open; for example, you could use it
to generate entire SoapUI projects using Groovy scripts!

www.it-ebooks.info

http://www.soapui.org/apidocs/index.html
https://github.com/SmartBear/soapui
http://www.it-ebooks.info/

How it works...

As you may already be aware, the standard Groovy download includes the same Java
Swing-based Groovy console as the plugin uses (see the next link). In very simple terms,
the plugin allows SoapUI to launch the Groovy console in the context of whatever it is
launched from, that is, with the particular SoapUI context (for example, testCase) added
to the console’s classpath.

Note

Pro version source code

This can be found in GitHub at https://github.com/olensmar/soapui-groovy-console-
plugin/tree/master/src/main/java/com/smartbear/soapui/groovy.

In terms of console functionality, the main class to look at is
GroovyConsoleActionHelper .java—; since the Ul of SoapUI is also built using Java
Swing, integration of the Groovy Console seems surprisingly straightforward!

For further details on the plugin, a good place to start is Ole Lensmar’s blog (the plugin

creator and co-founder of SoapUI) at http://olensmar.blogspot.se/2013/02/a-groovy-
console-for-soapui.html.

www.it-ebooks.info

https://github.com/olensmar/soapui-groovy-console-plugin/tree/master/src/main/java/com/smartbear/soapui/groovy
http://olensmar.blogspot.se/2013/02/a-groovy-console-for-soapui.html
http://www.it-ebooks.info/

See also

e For more information on Groovy Console, go to http://beta.groovy-
lang.org/groovyconsole.html

www.it-ebooks.info

http://beta.groovy-lang.org/groovyconsole.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Packaging old-style plugins when running
tests with Maven

Certain types of plugins, for example, custom TestSteps and Assertions, can become
dependencies for the successful running of your projects. For example, if you use the
Email TestStep plugin in your project, then you must provide this plugin if your project
is used elsewhere; for example, if other users want to use the project, then they must also
install the plugin in their /plugins folder before it will work.

A more complicated but common case would be if your project runs as part of continuous
integration (CI) using Maven to run tests. In this case, there may not be an install of
SoapUI to manually deploy the plugin jar file to. In this recipe, we will deal with this case
by running the project from the first recipe using a Maven script.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To follow this recipe, you will need the following:
1. Maven (version 2+) installed, and basic Maven skills to do the following:

o Create Maven projects
o Configure the SoapUI Maven plugin
o Run Maven scripts

Note
Full Maven instructions will be given

However, if you are new to Maven, then taking a look at the Running mocks and tests
using Maven recipe in Chapter 5, Automation and Scripting, might help. The Running
load tests using Maven, command line, Java, Groovy, and Gradle scripts recipe in
Chapter 9, Data-driven Load Testing With Custom Datasources, also has a Maven
example.

2. The project EmailTestStepProject (see the first recipe)

The Email TestStep plugin’s jar file (see the first recipe)

4. Access to the SMTP server configured in Email TestStep or FakeSMTP (see the first
recipe)

w

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

First, we’ll create a Maven project to run the EmailTestStepProject project using the
SoapUI Maven plugin. Then, we’ll run the project and see why no e-mail is sent, and then
provide the Email TestStep plugin’s jar file to fix the problem. Perform the following
steps:

1. To create the Maven project, we’ll use an archetype as in the previous Maven recipes.
Open a shell where you want the Maven project folder created and enter the
following:

mvn archetype:generate -DgroupId=soapui.cookbook.chapter10 -
DartifactId=email-test -DarchetypeArtifactId=maven-archetype-quickstart
-DinteractiveMode=false

2. This should create the following folder structure:

email-test/
pom.xml
src/
main/java/soapui/cookbook/chapter10/App.java
test/java/soapui/cookbook/chapter10/AppTest. java

w0

Delete App.java and AppTest. java, as we won’t need them.
4. Next, we’ll add the SoapUI Maven plugin to the generated pom. xm1:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>soapui.cookbook.chapterl0</groupId>
<artifactId>email-test</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>email-test</name>
<url>http://maven.apache.org</url>
<pluginRepositories>
<pluginRepository>
<id>SmartBearPluginRepository</id>
<url>http://www.soapui.org/repository/maven2/</url>
</pluginRepository>
</pluginRepositories>
<build>
<plugins>
<plugin>
<groupId>com.smartbear.soapui</groupId>
<artifactId>soapui-maven-plugin</artifactId>
<version>5.0.0</version>
<configuration>
<projectFile>${basedir}/src/test/resources/EmailTestStepProject-
soapui-project.xml</projectFile>
</configuration>
<executions>
<execution>

www.it-ebooks.info

http://www.it-ebooks.info/

10.

<phase>test</phase>
<goals>
<goal>test</goal>

</goals>

</execution>

</executions>
</plugin>
</plugins>
</build>
</project>

Then, if you don’t have direct access to an SMTP server, start the FakeSMTP server to
receive e-mails (as in the first recipe).

Now, we will run the Maven project (from the pom.xml directory) without supplying
the Email TestStep plugin:

mvn clean test

Then, we should see Maven’s BUILD SUCCESS message along with the SoapUI
eITor message:

ERROR [WsdlTestCase] Failed to create test step for [EmailTestStep]

There is no e-mail received in the FakeSMTP server.

Note
Plugins folder location

By default, SoapUI’s TestRunner expects any plugins to be located at
{soapui.home}/plugins, where soapui.home, in this case, defaults to where we are
running Maven from. It would be better if we could supply the location from where
to find the plugin, for example, src/test/resources/plugins. Unfortunately, unlike
the library extension folder /ext, we don’t have direct control over the location of the
/plugins folder due to the way the loadPlugins() method is written in SoapUI’s
code, that is, in DefaultSoapUICore. java:

File pluginDirectory = new File(System.getProperty("soapui.home"),
"plugins");

So, to supply the plugin, create a new plugins folder in the Maven project’s base
directory, and copy the Email TestStep jar file to it: email-
test/plugins/soapui-emailteststep-plugin-1.0-plugin.jar.

Finally, rerun the Maven project, that is, mvn clean test, and you should see the
following log messages as well as receive an e-mail:

INFO [DefaultSoapUICore] Adding plugin from [/soapui-
cookbook/chapterl10/maven/email-test/plugins/soapui-emailteststep-
plugin-1.0-plugin.jar]

INFO [DefaultSoapUICore] Adding factory [class
soapui.demo.teststeps.email.EMailTestStepFactory]

INFO [DefaultSoapUICore] Adding factory [class
soapui.demo.teststeps.email.EMailTestStepPanelBuilderFactory]

www.it-ebooks.info

http://www.it-ebooks.info/

INFO [SoapUITestCaseRunner] Running SoapUI tests in project
[EmailTestStepProject]

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

As explained in the first recipe, when running projects with plugin dependencies related to
TestCase, SoapUI instances require access to plugin jar files in order to add them to the
classpath. We can see from the final step’s log messages that SoapUI’s TestRunner scripts,
for example, Maven, loads the plugin successfully if it is supplied in a plugins folder
located in the same directory as where the script is run. Otherwise, the TestRunner scripts,
as well as the tests may still pass, but any plugin-related TestSteps would not work.

This would also apply to load and security test scripts (both types of TestRunner),
assuming that the TestCase(s) they run might have plugin dependencies. Potentially,
running mocks as war files could also be an issue if a plugin is used to enhance mock
functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

In terms of script types, the ideas in this recipe also apply to the other methods of running
TestRunner scripts, seen in the chapter 5 samples:

¢ Gradle (assuming dependency management is used)

e Groovy (assuming the Grapes dependency management or packaged SoapUI
libraries are used)

e Java/Junit (assuming SoapUI libraries are packaged)

Running via the command line would normally be fine, assuming you haven’t modified
the standard script to run separately to SoapUI, for example, using a packaged 1ib folder!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11. Taking SoapUI Further

In this chapter, we will cover:

Building, packaging, and running SoapUI from source code

Importing, building, running, and debugging SoapUI in Eclipse
Developing a Groovy plugin with custom Action using Gradle

Logging from extensions and scripts

Prompting for user input with the UISupport class

Creating a custom RequestFilter (Listener) plugin

Creating a custom TestStep (Factory) plugin to check whether a file exists

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Well here we are! It’s the final chapter, and having mastered many areas in SoapU], it’s
time to look at how to add new functionality! This chapter focuses mainly on
understanding and extending SoapUI functionality either directly (via source code) or by

developing plugins.

www.it-ebooks.info

http://www.it-ebooks.info/

What you’ll learn

You will learn the following topics:

e The SoapUlI framework: By studying and building SoapUI from its source code you
have the ultimate access to how it works, how to use it, and how to extend it!

¢ Key SoapUI extension objects: You’ll learn about custom Actions, Factories, and
Listeners and how to use them to provide additional functionality.

e How to build, package, deploy, and share your extensions as plugins: Once you
know how to extend SoapUI, you’ll learn how to develop plugins to package and
share your great new functionality!

This chapter concentrates on developing open source (old-style) extensions and plugins.
For more information on developing new style (pro) plugins please see:

e http://www.soapui.org/Extension-Plugins/developing-soapui-plugins.html
e http://olensmar.blogspot.se/2014/07/getting-started-with-new-soapui-plugin.html

www.it-ebooks.info

http://www.soapui.org/Extension-Plugins/developing-soapui-plugins.html
http://olensmar.blogspot.se/2014/07/getting-started-with-new-soapui-plugin.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building, packaging, and running SoapUI
from the source code

Depending on your background, the idea of building SoapUI from source code might
sound a bit hard-core and possibly unnecessary, but the truth is that it’s actually relatively
straightforward and can be very useful! It also gives you access to the latest fixes and
features that may take time to be officially released. We’ll also see how to package
SoapUI so that you can run it in its more familiar form, that is, as a normal installation!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The source code itself is available from GitHub and can be found at
https://github.com/SmartBear/soapui/.

Tip

GitHub

If you’ve not seen it before, it’s well worth quickly browsing through the SoapUI projects
and source code.

To clone and build the code you will need:

e JDK (1.6+): Download from

http://www.oracle.com/technetwork/java/javase/downloads/index.html (I used
v1.7.0_71).

e Git (v1.8+): There are various options, for example, command line and GUI
versions. This recipe uses the command line version (1.9.3). Download your favored

option from http://git-scm.com/.
Tip
Prefer a ZIP file instead of using Git?

No problem, just go to the main SoapUI GitHub page and click Download Zip; you
will get a zipped snapshot of all the source code in a folder named soapui-next.zip.

e Maven (3+): We’ll need to run a few Maven commands to build and run SoapUI. For
download and installation instructions, see http://maven.apache.org/download.cgi
(this recipe used v3.2.1). If you are new to Maven or need a quick refresher, take a
look at http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html.

www.it-ebooks.info

https://github.com/SmartBear/soapui/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://git-scm.com/
http://maven.apache.org/download.cgi
http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://www.it-ebooks.info/

How to do it...

First we’ll get (clone) the latest SoapUI project source code from Git. Then we’ll build it
with Maven and start it up. Finally we’ll take a look at how to package SoapUI. Perform
the following steps:

1. To get the source code, open a shell window and type the following Git command:

git clone https://github.com/SmartBear/soapui.git
2. You should see this output:

Cloning into 'soapui'...

remote: Counting objects: 111892, done.

remote: Compressing objects: 100% (23/23), done.

remote: Total 111892 (delta 4), reused 0 (delta 0)

Receiving objects: 100% (111892/111892), 72.58 MiB | 4.15 MiB/s, done.
Resolving deltas: 100% (71726/71726), done.

Checking connectivity.. done.

3. This may take a minute depending on your network connection. A soapui/ folder
should have been created containing:

soapui -Main SoapUI project.
soapui-maven-plugin -SoapUI Maven plugin project.
soapui-maven-plugin-tester -Plugin tests.
soapui-installer -SoapUI installer project.
soapui-system-test -SoapUI integration tests.
pom.xml -Maven build file.

README .md

RELEASENOTES. txt
intellij-codestyle. jar

4. Now, to build it:

cd <SoapUI clone dir>/soapui/
mvn clean install

5. This may take a few minutes—mainly due to the tests—and should result in lots of
console output followed by Maven’s BUILD SUCCESS message.

Tip

Want to skip tests?

Use mvn clean install -DskipTests instead.

Tip

Maven out of memory?

Use MAVEN_OPTS to increase it before building: export MAVEN_OPTS="-Xmx512m".
6. To run SoapUlI using Maven:

cd <SoapUI clone dir>/soapui/soapui/

mvn exec:java

www.it-ebooks.info

http://www.it-ebooks.info/

7. You should see familiar console output as SoapUI starts up.
Tip
Extensions and plugins folders

When running SoapUI this way, the ext/ and plugins/ folders would be created in
this folder (actions/ and listeners/ folders are already created here in the Git
project).

8. Finally, to package the different distributions of SoapUI:

cd <SoapUI clone dir>/soapui/soapui-installer/
mvn clean package assembly:single

9. Once the Maven script finishes successfully, you will find the various platform
distributions under soapui-installer/target/assemblies/:

SoapUI-5.2.0-SNAPSHOT-dist
SoapUI-5.2.0-SNAPSHOT-dist-standalone
SoapUI-5.2.0-SNAPSHOT-1linux-bin.tar.gz
SoapUI-5.2.0-SNAPSHOT-win32-standalone-bin.zip
SoapUI-5.2.0-SNAPSHOT-mac-bin.zip
SoapUI-5.2.0-SNAPSHOT-windows-bin.zip

10. To run one, pick a particular distribution and go to the /bin folder; for example:

cd SoapUI-5.2.0-SNAPSHOT-dist/bin
./soapui.sh (or soapui.bat for windows)

Tip
Runner scripts

You will also find all the usual mock and test runner scripts under /bin in the packaged
distributions — the folder structure and contents structure should be like the one the official
install4j installer creates.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Now that you can build, package, and run SoapUI from its source code, you may want to
explore and/or change parts of it. If so, you may want to import the Maven project into an
IDE. See the next recipe for an example of how to do this with Eclipse.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e Maven Exec plugin: http://mojo.codehaus.org/exec-maven-plugin/
e Maven Assembly plugin: http://maven.apache.org/plugins/maven-assembly-plugin/

www.it-ebooks.info

http://mojo.codehaus.org/exec-maven-plugin/
http://maven.apache.org/plugins/maven-assembly-plugin/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Importing, building, running, and
debugging SoapUlI in Eclipse

Importing the SoapUI source code into an IDE is highly recommended if you want to
explore, change, and/or debug the application. Again, it’s not complicated to do and
should be quite quick assuming you have Eclipse installed and are reasonably comfortable

with it.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The main part of this recipe assumes that you have already downloaded the SoapUI source
code. If you haven’t, please see the previous recipe for details.

You’ll need a version of Eclipse to follow this recipe. There are various flavors of Eclipse;
most Java-related versions should be fine, for example, Eclipse IDE for Java Developers

from http://www.eclipse.org/downloads/. (I used Eclipse STS 3.5.1, which is a bit old but
works fine!)

www.it-ebooks.info

http://www.eclipse.org/downloads/
http://www.it-ebooks.info/

How to do it...

First, we’ll import the SoapUI source code into Eclipse. Then we’ll run, debug, and
optionally build it. Perform the following steps:

1. (Optional) If necessary, create yourself a new Eclipse workspace. Go to File | Switch
Workspace | Other... and type in the Workspace path and name you’d like. Eclipse
will restart to switch to your new workspace.

2. Import the SoapUI project folders as a Maven project:

o Go to File | Import...

Maven | Existing Maven Projects

¥ = Maven
T:j‘ChECk out Maven Projects from SCM

o Existing Maven Projects

o Click on NEXT
o Then click on Browse... and select the folder containing your SoapUI source
code, as enlisted in the following screenshot:

Root Directory: fwork/soapui-cookbook/soapui/soapui v| | Browse...
Projects:

@ ¥ ipom.xml| com.smartbear.scapui:scapui-project:5.2.0-SNAPSHOT:pom I_i—lect A-I-I |
@] soapuifpom.xml com.smartbear.scapui:soapui:5.2.0-5NAPSHOT jar e
@ soapui-maven-plugin/pom.xml com.smartbear.socapui:soapui-maven-plugin:5.2.0-5NAPSHOT:maven-plugin lml
@ soapui-installer/pom.xml com.smartbear.soapuisoapui-installer:5.2.0-5NAPSHOT jar e e
@ soapui-maven-plugin-tester/pom.xml| com.smartbear.scapui:soapui-maven-plugin-tester:5.2.0-SMNAPSHOT:pom

= soapui-system-test/pom.xml com.smartbear.soapui:soapui-system-test:5.2.0-SNAPSHOT jar Select Tree

o Select all the Maven projects
o Click Finish and all the projects should be imported and built (this can take a
few a minutes...)

3. When all the projects have been imported and have finished building, use either
Project Explorer or Navigator to go to com.eviware.soapui.SoapUI.java under
src/main/java:

£ Package Explor &2 | ©=. Navigator - =

==, =

P = 5ervers
‘F:_—‘é- > spapui [scapui next]
¥ (S src/main/java
‘FJ':-B CoMm.eviware.soapui
> DE, DefaultSoapUlCore.java
[EE, RecentltemsListener.java

| DE, SoapUICore. java

www.it-ebooks.info

http://www.it-ebooks.info/

4. From this class:

o Run SeapUI: Right-click on SeapUI | Run As | 2 Java Application. You
should see the usual SoapUI log output in the Console tab and then be presented
with the SoapUTI application.

o Debug SoapUI: Right-click on SeapUI | Debug As | 2 Java Application.
Eclipse should switch from the Java to Debug perspective and start SoapUI in
debug mode.

5. If you need to build SoapUI from within Eclipse:

o Find soupui/pom.xml in Project Explorer

o Right-click on it and select Run As | 2 Maven Build...

o In the Edit Configuration window, enter the Maven Goals you need—for
example, clean install -DskipTests—and click Run to build

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Again, there’s not much I can add here, as it’s really about how Eclipse works. This recipe
is fairly brief and is only intended to be a quick start to importing the SoapUI source code,
optionally building it, then running and debugging it as a Java application. You may find
the Eclipse documentation helpful as further reading, which can be found at

https://eclipse.org/documentation/.

www.it-ebooks.info

https://eclipse.org/documentation/
http://www.it-ebooks.info/

There’s more...

If you prefer to use another IDE instead of Eclipse, all we have done is import SoapUI as a
Maven project, which should be fairly standard. Hopefully the following links will help
you to do this with two popular alternatives to Eclipse.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e IntelliJ IDEA setup: For brief IntelliJ SoapUI setup instructions, see Getting started

using Intellij IDEA (version 13) at https://github.com/SmartBear/soapui.
e NetBeans IDE setup: See

http://wiki.netbeans.org/MavenBestPractices#Open_existing_project.

www.it-ebooks.info

https://github.com/SmartBear/soapui
http://wiki.netbeans.org/MavenBestPractices#Open_existing_project
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Developing a Groovy plugin with custom
Action using Gradle

If you want to extend SoapUI functionality you have three main choices:

e Modify the source code: This is appropriate for adding core framework functionality
and bug fixes. It is not a good choice if all you want to do is add some optional bolt-
on functionality and possibly share it with others.

¢ Traditional extensions (Actions, Factories, and Listeners): These types of
extensions can still be added. This is a more granular and fragmented option in that
large extensions might involve several separate files to deploy (although you could
combine them with another ZIP). If all you want to do is add a new listener then this
might still be a good option.

¢ Plugins: This is the newest and most comprehensive way of packaging extensions,
that is, in a single JAR file. This is probably the best option for most extensions.

Many of the plugins you will see have been written in Java and built using Maven. To
offer you another, perhaps more modern alternative, we’ll learn how to build a template
for SoapUI plugin with a simple custom Groovy Action using Gradle. It isn’t very
complicated to build a plugin; it’s just a jar file with a certain structure. You could even
build one using command line Java or Groovy and manually create the JAR file. However,
as things grow the strengths of a build tool with dependency management like Gradle or
Maven should pay off. Where you take it from there is up to you and your skills!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To complete this recipe you will need:

¢ Gradle (latest version): As explained in the Running mocks and tests using Gradle
recipe of Chapter 5, Automation and Scripting, a Gradle wrapper has been added to
the sample code that will take care of downloading Gradle if you don’t already have
it. If you would like to download and install Gradle anyway, take a look at
https://www.gradle.org/get-started.

e IDE (optional): You could optionally use an IDE like Eclipse, perhaps with a Gradle
plugin, but there isn’t much coding to do yet.

The source code for the recipe’s plugin can be found in the /plugins/soapui-sample-
plugin folder in the chapter 11 samples.

www.it-ebooks.info

https://www.gradle.org/get-started
http://www.it-ebooks.info/

How to do it...

First, let’s look at what a SoapUI plugin JAR file contains.
Note
Plugin naming convention

Up to version 5.0.0, for plugins to be loaded from the /plugins folder the plugin JAR files
must end with plugin.jar. However, I have noticed that this requirement has been
removed in the latest source code from GitHub, so future releases may be different.

There are no other strict structural requirements on the JAR file. However, a typical plugin
would contain some or all of the following:

<package structure>/
ClassFile.class

META-INF/

actions.xml

factories.xml

listeners.xml
image.png
There will normally be a package structure containing one or more compiled Groovy or
Java classes. The naming and location of actions.xml, factories.xml, and
listerners.xml is strict, as it is hard coded in the source code. Sometimes image files are
also present, for example, for TestStep icons.

To build something like this, consider the sample Gradle plugin project:

¥ | | soapui-sample-plugin
* |l bin
» [build
» [gradle
M gradlew
= gradlew.bat
¥ |l src
¥ [main
v [groovy
¥ [] sample
¥ [actions
* sampleProjectAction.groowvy
» [factories
> [listeners
¥ | resources
¥ || META-INF
% actions.xml

-

» [test

With Gradle build file build.gradle:

www.it-ebooks.info

http://www.it-ebooks.info/

apply plugin: 'groovy'
version = '1.0'

task wrapper(type: Wrapper) {

gradlevVersion = '2.2'
}
jar {
classifier = 'plugin'

manifest {
attributes 'Implementation-Title': 'SoapUI Plugin Template',
"Implementation-Version': version

¥
}

repositories {
mavenCentral()
maven { url "http://www.soapui.org/repository/maven2" }

}

dependencies {
compile(group: 'com.smartbear.soapui', name: 'soapui', version:'5.1.2-m-
SNAPSHOT') {
exclude(module: 'jms')
exclude(module: 'jtidy')
exclude(module: 'cajo')

}
}

This project contains a custom Action written in Groovy to add a menu item called
Sample Groovy Project Action to the Project menu, with tip “Doesn’t do anything!”
when you hover over it:

package sample.actions

import com.eviware.soapui.impl.wsdl.WsdlProject
import com.eviware.soapui.support.action.support.AbstractSoapUIAction

public class SampleProjectAction extends AbstractSoapUIAction<WsdlProject>{

public SampleProjectAction() {
super("Sample Groovy Project Action", "Doesn't do anything!")

}

@Override
public void perform(WsdlProject project, Object param) {

b
}

There is also an Action configuration file to add this class to the SoapUI Action registry,
as follows:

<?xml version="1.0" encoding="UTF-8"7?>
<tns:soapui-actions xmlns:tns="http://eviware.com/soapui/config">

www.it-ebooks.info

http://www.it-ebooks.info/

<tns:action id="SampleAction"
actionClass="sample.actions.SampleProjectAction"/>

<tns:actionGroup id="EnabledWsdlProjectActions">
<tns:actionMapping actionId="SampleAction"/>

</tns:actionGroup>

</tns:soapui-actions>

Now, let’s build and deploy the plugin JAR file with the following steps:

1. First, open a shell and build the project using the Gradle wrapper as follows:

cd soapui-sample-plugin
./gradlew clean build

Note
Lots of downloading

The first time you run this, there will be possibly Gradle and definitely lots of
SoapUI dependencies to download (like with the Maven, Gradle, and Groovy Grapes
recipes in Chapter 5, Automation and Scripting). This may take a few minutes.

2. After the build has finished the console will show BUILD SUCCESSFUL and the plugin
JAR file will have been created: soapui-sample-plugin/build/1libs/soapui-
sample-plugin-1.0-plugin.jar.

3. To deploy the plugin, copy this plugin file to <SoapUI Home>/bin/plugins and if
necessary, restart SoapUI.

Tip
The plugins folder is not created by default; please create it if it doesn’t exist.

4. 1f you look in the SoeapUI log tab then you should see the following:

INFO:Adding plugin from [/Applications/SoapUI-
5.0.0.app/Contents/java/app/bin/plugins/soapui-sample-plugin-1.0-
plugin.jar]

5. And if you right-click on Project the custom (Action) menu item is displayed.

Online Help F1
Sample Groovy Project Action

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

There are two main parts to how it works: the Gradle script and the custom Action. In
terms of the Gradle script, a lot of things with Gradle are done by convention over
configuration. Firstly, because we are using the Groovy plugin, Gradle expects to find any
Groovy classes under src/main/groovy, that is, it finds and compiles our custom action’s
SampleProjectAction.groovy file. Also, the jar task expects to include the contents of
classes/ and resources/ from the build/ folder. We have only overridden the manifest
and classifier to add plugin to the end of the JAR file name to conform to the plugin
naming requirement.

You may recognize the wrapper, repositories, and dependencies tasks from the Running
mocks and tests using Gradle recipe of Chapter 5, Automation and Scripting. Please see
this recipe for more details on these tasks, but basically these tasks make all the SoapUI
classes available for us to import and extend in our plugin classes.

In terms of the custom Action class, it needs to:

Extend AbstractSoapUIAction

Add a constructor to configure our action’s name and tip

Override the perform(..) method—this is where we would add our custom code to
run when the menu item is clicked

The actions.xml configuration file will perform the following functions:

It will assign an id of SampleAction to reference our custom Action class.

It will provide actionGroup details to indicate where we would like our Action to be
added in the menu hierarchy. In this case we have put EnabledwsdlProjectActions
to indicate the Project menu.

Tip
SoapUI actions

When SoapUI starts it first loads its standard actions from
soapui/src/main/resources/com/eviware/soapui/resources/conf/soapui-

actions.xml before adding any custom actions. Look in this file for help with setting
the actionGroup tag for your custom Actions.

By default, it will be added at the bottom of the menu.
Tip
Action menu position

You can control the relative menu position of the custom Action by providing

AFTER/BEFORE and positionRef attributes in the actionMapping; for example,
<tns:actionMapping actionId="SampleAction" position="AFTER"

positionRef="AddwadlAction"/>.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

We can obviously go further with our Gradle script. For example, we could add a task to
copy our plugin JAR file to SoapUI’s plugins/ folder as follows:

task deployPlugin(type: Copy) {
from 'build/libs'
into '<SoapUI Home>/bin/plugins/'
}

Then, to run it, use this command: ./gradlew clean build deploy.
Tip
Plugin external library runtime dependencies

If you have any libraries that are needed by the plugin at runtime, for example, db drivers,
then you’ll need to copy them to the ext/ folder before deploying the plugin. The RAML
plugin has an example of this.

Rather use Java than Groovy?

No problem, just:

Change apply plugin: 'groovy' of the Gradle file, build.xml, to apply plugin:
'java'. (Note that the Groovy plugin also compiles any Java it finds.)

Rename the folder, src/main/groovy to src/main/java. Or just keep the groovy
plugin and add a Java folder to support both languages.

Tip
Troubleshooting plugins

Unfortunately, if something goes wrong while loading your plugin in the current release
(5.0.0) all you will see is this warning: WARN [DefaultSoapUICore] Could not load
plugin from file /plugins/SoapUIPlugin-1.0-plugin.jar]. To improve on this,
consider adding an extra debug code to the SoapUI source and rebuilding. See
com.eviware.soapui.DefaultSoapUICore and method load0ldStylePluginFrom() to
get started.

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e Maven SoapUI Plugin Template: https://github.com/olensmar/soapui-plugin-template
e Action Extensions: http://www.soapui.org/Developers-Corner/extending-soapui.html

www.it-ebooks.info

https://github.com/olensmar/soapui-plugin-template
http://www.soapui.org/Developers-Corner/extending-soapui.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Logging from extensions and scripts

In your extensions you will often need to log messages for info, debug and errors. This
recipe provides a brief overview on how log messages to the soapui.log file, soapui log
tab and groovy log tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

To illustrate the logging approaches we’ll add examples to a custom Action plugin based
on the soapui-sample-plugin Gradle project from the previous recipe. You can find this
in the plugins/soapui-logging-plugin folder of the chapter 11 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

Let’s take a look at an example of each of the logging types. Here is the custom Action
that will do the logging for us:

import org.apache.log4j.Logger

import com.eviware.soapui.SoapUI

import com.eviware.soapui.impl.wsdl.WsdlProject

import com.eviware.soapui.support.action.support.AbstractSoapUIAction

public class LoggingProjectAction extends AbstractSoapUIAction<WsdlProject>

{

protected final Logger soapuilLogFileLogger = Logger.getLogger(getClass())
protected final Logger scriptLogger = Logger.getLogger('"groovy.log")

public LoggingProjectAction() {
super("Logging Project Action", "Logs some stuff!")
}

@Override

public void perform(WsdlProject project, Object param) {
//Example 1-Log something to the soapui.log
soapuiLogFilelLogger.info "Hello from logging plugin!"

//Example 2-Log something to the script log tab
scriptLogger.info "Hello scriptlog from logging plugin!"

//Example 3-Log message to soapui log tab
SoapUI.log "Hello from soapui log SoapUI.log"

//Example 4-Log error to soapul log tab
//and stacktrace in error log tab
SoapUI.logError new Exception('"Something went wrong!!")
¥

}
If you:

e Buildit: ./gradlew clean build

e Deploy it: Copy soapui-logging-plugin-1.0-plugin.jar to the <SoapuI
Home>/bin/plugins folder

e Run it: Restart SoapUI, right-click on a project and select Logging Project Action
from the Project menu

Then you should see:

e Example 1 (soapui.log): -> INFO [LoggingProjectAction] Hello from logging
Action plugin!

e Example 2 (script log—if activated, also soapui.log): -> INFO:Hello script log
from logging Action plugin!

e Example 3 (soapui log tab): -> Hello from soapui log SoapUI.log

e Example 4 (soapui log tab and stacktrace in error log tab): -> ERROR:An error

www.it-ebooks.info

http://www.it-ebooks.info/

occurred [Something went wrong!!], see error log for details

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

All the logging types use standard Apache Log4j Loggers and custom log monitors to
drive the SoapUI log tabs. For example, the soapui log tab listens only for log messages
from classes in the package, com.eviware.soapui — see SoapUI.initLogMonitor(..),
that’s why we needed to use the SoapUI.log(..) and SoapUI.logError(..) methods to get
our messages to show up there. Similarly, the script log tab has a listener setup to listen to
groovy.log —see SoapUI.ensureGroovyLog(..). If you would like to know more, all of
the setup has been done and can be found in com.eviware.soapui.SoapUI.

www.it-ebooks.info

http://www.it-ebooks.info/

See also
e Apache Log4j: http://logging.apache.org/log4j/2.x/

www.it-ebooks.info

http://logging.apache.org/log4j/2.x/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Prompting for user input with the
UISupport class

When developing extensions, plugins, and scripts, you may need to display alerts,
prompts, and confirmations. The UISupport class can help with this! It’s a rather large
class with a lot of capabilities in addition to those mentioned. In this recipe, we’ll look at a
few examples to get you started. It’s quick and easy to use!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

The UISupportExamplesProject project containing the Groovy examples from this recipe
can be found in the chapter 11 samples.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

As a quick demonstration, we’ll just use a Groovy TestStep to run a few examples. The
examples will also work in plugin extensions.

The first thing we need to do is import the class:

import com.eviware.soapui.support.UISupport

To display an info popup, enter and run:

UISupport.showInfoMessage('"Hello from UISupport!")

To display a question prompt with default value and capture the answer as a String:

String answer = UISupport.prompt("Question","Title", "default value")

For a prompt to click on Yes or Yes to All or No and capture the response as an int:

int result = UISupport.yesYesToAllOrNo("Question", "Title")
To display an error message popup:

UISupport.showErrorMessage("Something went wrong!")

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

The UISupport class does many things, but a lot, including these examples, is related to

the convenient provision of Java Swing components. As you may be aware, the SoapUI

user interface is built using Java Swing and the UISupport class provides a quick way to
build its common parts. If you need any Ul related functionality, then it’s worth taking a
look at its source code to see all the other methods.

www.it-ebooks.info

http://www.it-ebooks.info/

See also
e UlSupport in API Docs: http://www.soapui.org/apidocs/index.html

www.it-ebooks.info

http://www.soapui.org/apidocs/index.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a custom RequestFilter
(Listener) plugin

Custom event listeners allow for extensions that run when things (events) happen in the
SoapUI framework. There are certain situations where this can be a nice way to add
functionality. Typical examples would be cross cutting concerns; for instance, additional
custom logging after a test has run (TestRunListenerAdapter) or modifying a request
before a request is dispatched (RequestFilter). In this recipe, we’ll first take a quick look
at the various types of Listener interfaces, then code a simple plugin to use a
RequestFilter to intercept a REST request; and log its URI and add a new parameter to it
before the request is dispatched.

All Listeners extend the SoapUIListener interface. The current list is shown here:

SoapUIListener - com.eviware.soapui.model.iface
?@JSGapUIListener
bﬁ'_,EnvianmentListener
bi}_,lnterfaceListener
> 'ﬂ' LoadTestRunListener
bﬁJMDckRunListener
bﬁJMnnitanistener
> ﬂ'_, Projectlistener
> 'ﬂ'_, ProjectRunListener
bﬁ'_,RequestFilter
b'ﬂ'_,Securit',rTestRunListener
bﬁ_,SuhmitListener
VG_,TestRunListener
v @‘ﬁ AbstractSoapUlTestRunner
@' SoapUlLoadTestRunner
L 3 @JS:DapLIITestCaseRunner
@_,AMFI’estRunListener
h@_,]UnitRepDrtCDllectDr
I@'_,TestRunListenerAdapter
@_,WsrmTestRunListener
bﬂ_,TestSuiteRunListener
> GJWDFKSpJCELiStEHEF

Under the interfaces you will find one or more sub interfaces and/or implementations that
listen for the particular type of event. For example, you can see above that the
SoapUITestCaseRunner (used to script SoapUI tests, see Chapter 5, Automation and
Scripting) implements the TestRunListener to provide custom reporting output.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

This recipe builds on the soapui-sample-plugin Gradle project, so you might find it
helpful to take a look at the recipe, Developing a Groovy plugin with custom Action using
Gradle, if you haven’t already done so.

The source code for this recipe’s plugin can be found in the /plugins/soapui-listener-
plugin folder in the chapter 11 samples. The SoapUI project,
RequestFilterListenerPluginProject, can also be found there.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To change requests before they are dispatched we can use RequestFilterListener, which
will be called when a request (event) is triggered, that is, when someone fires a test
request. RequestFilter will give us access to the request so that we can log and change
the request’s URI by adding a dummy parameter; for example, param=value. We’ll then
test the plugin by making a simple REST request to a mock (you can use
RequestFilterListenerPluginProject from the samples for this). To do this, perform
the following steps:

1. To create the RequestFilter plugin, make a copy of the soapui-sample-plugin
Gradle project (with a name such as soapui-listener-plugin).

2. Create a new Groovy class called RequestFilterListener.groovy in
src/main/groovy/sample/listeners with the following code:

package sample.listeners

import org.apache.log4j.Logger

import
com.eviware.soapul.impl.wsdl.submit.filters.AbstractRequestFilter
import com.eviware.soapui.model.iface.Request

import com.eviware.soapui.model.iface.SubmitContext

class RequestFilterListener extends AbstractRequestFilter {
protected final Logger scriptlLogger = Logger.getLogger('groovy.log")

@Override
public void filterRequest(SubmitContext context, Request request) {

//Add a dummy parameter to the uri
String uri = context.httpMethod.URI.toString()
uri+="?param=value"
scriptLogger.info "uri: "+uri
context.httpMethod.URI = URI.create(uri)
¥
}

3. Next, create a listeners.xml configuration file in resources/META-INF/ containing
the following:

<?xml version="1.0" encoding="UTF-8"7?>

<tns:soapui-listeners xmlns:tns="http://eviware.com/soapui/config">
<tns:listener id="RequestFilterListener"

listenerClass="sample.listeners.RequestFilterListener"

listenerInterface="com.eviware.soapui.impl.wsdl.submit.RequestFilter"

/>

</tns:soapui-listeners>

4. (Optionally) Delete the sample Action groovy class and actions.xml.

Now build the plugin like you did earlier; open a shell in soapui-listener-plugin/
and run ./gradlew clean build.

6. When built, deploy (copy) the plugin jar file (soapui-listener-plugin-1.0-

v

www.it-ebooks.info

http://www.it-ebooks.info/

plugin.jar) to your <SoapUI Home>/bin/plugins/ folder and restart SoapUI if
necessary. When started, the soapui log tab should contain:

INFO:Adding plugin from ../plugins/soapui-listener-plugin-1.0-
plugin.jar]

INFO:Adding listener [class sample.listeners.RequestFilterListener]

. To test the plugin, import/access the RequestFilterListenerPluginProject project
from the chapter 11 samples. The project has a simple mock helloworld REST
service:

o Endpoint: http://localhost:8080/helloworld-webapp/helloworld
o Response: <xml>hello!<xml/>

. If you make a request to the above endpoint using SoapUl, for example, by using the
sample request or a REST Test Request TestStep, the http log tab, jetty log tab,
and Raw test request tab should all show the request URI with the param=value
parameter added by our Listener:

GET http://localhost:8080/helloworld-webapp/helloworld?param=value

. Also, the soapui.log file and script log tab (if activated) should contain the
following message:

INFO [log] uri: http://localhost:8080/helloworld-webapp/

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

When SoapUI loads our plugin, it reads the listeners.xml file and registers our
RequestFilterListener with the SoapUIListenerRegistry. When the SoapUlI
framework fires a request event message, our custom RequestFilterListener is called
with the context and request variables, giving us the opportunity to update the URI

property.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

Whilst this is just a simple plugin example of a custom Listener, the possibilities are quite
advanced. For example, a more advanced application of a RequestFilter could include
calculating and adding security information to a request, like the AWS signature
parameters seen in the recipe, Testing AWS services using Access Key authentication, in
Chapter 8, Testing AWS and OAuth 2 Secured Cloud Services. Another example is the

Runscope plugin (visit http://olensmar.blogspot.se/2013/06/a-soapui-plugin-for-
runscope.html for further details).

www.it-ebooks.info

http://olensmar.blogspot.se/2013/06/a-soapui-plugin-for-runscope.html
http://www.it-ebooks.info/

See also
e SoapUI Listener Example: http://www.soapui.org/Developers-Corner/extending-

soapui.html#2-event-listeners-in-soapui

e SoapUI Pro Custom Events: http://www.soapui.org/Scripting-Properties/custom-

event-handlers.html

www.it-ebooks.info

http://www.soapui.org/Developers-Corner/extending-soapui.html#2-event-listeners-in-soapui
http://www.soapui.org/Scripting-Properties/custom-event-handlers.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a custom TestStep (Factory)
plugin to check whether a file exists

In this recipe we will put our plugin skills to work to create a custom TestStep to check
whether a file exists. The file check TestStep will accept a property with the path to a file
and then pass or fail depending on whether the file actually exists in that location.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

This recipe builds on the Developing a Groovy plugin with custom Action using Gradle
recipe, so if you haven’t done it, then you might find it a helpful reference.

The code for this recipe can be found in the plugins/soapui-file-check-plugin/ folder
in the chapter 11 samples. The FileCheckPluginProject project can also be found

there.

www.it-ebooks.info

http://www.it-ebooks.info/

How to do it...

To do this we’re going to start from the soapui-sample-plugin Gradle project:

1. Add a new custom TestStep (FileCheckTestStep.groovy)

2. Add a new custom Factory to create the item for FileCheckTestStep Model

(FileCheckTestStep.groovy)

Add a new factories.xml configuration file for our custom Factory.

Add a new icon (filecheck.png) to for our file check TestStep.

5. (Optionally) Remove SampleAction.groovy and actions.xml as we don’t need
them.

W

This will give us the following plugin project structure:

¥ [=src
¥ = main
¥ = groovy
¥ = sample
== actions
¥ = factories
|£] FileCheckTestStepFactory.groovy
== listeners
¥ = teststeps
@ FileCheckTestStep.groovy
¥ (= resources
¥ = META-INF
¥| factories.xmil
%& filecheck.png

We’ll then build the plugin, deploy it, and create a SoapUI project to give it a test run.

1. For the custom TestStep, create a new Groovy class,
src/main/groovy/sample/teststeps/FileCheckTestStep.groovy, containing the
following code:

package sample.teststeps

import org.apache.log4j.Logger

import com.eviware.soapui.SoapUI

import com.eviware.soapui.config.TestStepConfig

import com.eviware.soapui.impl.wsdl.testcase.WsdlTestCase

import com.eviware.soapui.impl.wsdl.teststeps.WsdlTestStepResult
import
com.eviware.soapuli.impl.wsdl.teststeps.WsdlTestStepwWithProperties
import com.eviware.soapui.model.testsuite.TestCaseRunContext
import com.eviware.soapui.model.testsuite.TestCaseRunner

import com.eviware.soapui.model.testsuite.TestStepResult

import com.eviware.soapui.model.testsuite.TestStepResult.TestStepStatus
import com.eviware.soapui.support.UISupport

class FileCheckTestStep extends WsdlTestStepwWithProperties{

www.it-ebooks.info

http://www.it-ebooks.info/

protected final Logger groovylLogger = Logger.getLogger("groovy.log")

protected FileCheckTestStep(WsdlTestCase testCase, TestStepConfig
config, boolean forLoadTest) {
super(testCase, config, true, forLoadTest);

if(!forLoadTest) {
setIcon(UISupport.createImageIcon("filecheck.png"))

by
¥

@Ooverride
public TestStepResult run(TestCaseRunner testRunner,
TestCaseRunContext context) {
WsdlTestStepResult result = new WsdlTestStepResult(this)
result.startTimer ()

//1f fileToCheckFor property is not in the context, try to get it
from the TestCase

def fileToCheckForProperty = context.getProperty("fileToCheckFor")

if (fileToCheckForProperty==null) fileToCheckForProperty =
context.expand('${#TestCase#fileToCheckFor}"')

groovyLogger.info "Property fileToCheckFor="+fileToCheckForProperty

if (fileToCheckForProperty.isEmpty()) {
SoapUI.logError new Exception("Property fileToCheckFor must be
supplied!")
result.setStatus(TestStepStatus.FAILED)
result.stopTimer()
return result

}

def filePath = new File(fileToCheckForProperty)
if (filePath.exists()) result.setStatus(TestStepStatus.OK) else
result.setStatus(TestStepStatus.FAILED)

result.stopTimer()
return result

}
}
. For the custom TestStep, create a new Groovy class,
src/main/groovy/sample/factories/FileCheckTestStepFactory.groovy,
containing the following code:

package sample.factories

import sample.teststeps.FileCheckTestStep

import com.eviware.soapui.config.TestStepConfig

import com.eviware.soapui.impl.wsdl.testcase.WsdlTestCase

import com.eviware.soapui.impl.wsdl.teststeps.WsdlTestStep

import
com.eviware.soapui.impl.wsdl.teststeps.registry.WsdlTestStepFactory

class FileCheckTestStepFactory extends WsdlTestStepFactory {

www.it-ebooks.info

http://www.it-ebooks.info/

private static final String FILECHECK_STEP_ID = "fileCheck"

public FileCheckTestStepFactory() {
super (FILECHECK_STEP_ID, "File Check TestStep", "Checks if a file
exists", "filecheck.png")

}

public WsdlTestStep buildTestStep(WsdlTestCase testCase,
TestStepConfig config, boolean forLoadTest) {
return new FileCheckTestStep(testCase, config, forLoadTest)
}

public TestStepConfig createNewTestStep(WsdlTestCase testCase, String
name) {
TestStepConfig testStepConfig =
TestStepConfig.Factory.newInstance()
testStepConfig.setType(FILECHECK_STEP_ID)
testStepConfig.setName(name)
return testStepConfig

}

public boolean canCreate() {
return true

}
}

. For the custom Factory configuration, create a new XML file,
src/main/resources/META-INF/factories.xml, containing:

<?xml version="1.0" encoding="UTF-8"?>
<tns:soapui-factories xmlns:tns="http://eviware.com/soapui/config">
<tns:factory id="FileCheckTestStep"
factoryType="com.eviware.soapui.impl.wsdl.teststeps.registry.WsdlTestSt
epFactory"
factoryClass="sample.factories.FileCheckTestStepFactory"/>
</tns:soapui-factories>

. For the image, we need one that is 16x16 pixels (filecheck.png). Copy this or a
similar image to src/main/resources.

. The Gradle build file doesn’t need any changes. So, run it to create the plugin jar as
before, that is, . /gradlew clean build.

. When built, deploy (copy) the plugin jar file (soapui-file-check-plugin-1.0-
plugin.jar) to your <SoapUI Home>/bin/plugins/ folder.

. Now, to use the plugin in SoapUlI, restart SoapU], if necessary, to load the plugin.
You should see the following in the SoapUI log tab:

INFO:Adding plugin from [/Applications/SoapUI-
5.0.0.app/Contents/java/app/bin/plugins/soapui-file-check-plugin-1.0-
plugin.jar]

INFO:Adding factory [class sample.factories.FileCheckTestStepFactory]
. Create an empty Project, TestSuite, and TestCase. In the TestCase window you

should our new file check TestStep at the end:

www.it-ebooks.info

http://www.it-ebooks.info/

10.

11.

12.

20 RE HT A ao e
AF =T TF MF EC —_—

|+

e Fe 1l A9 0 2 E

And at the bottom of the TestStep menu (including tip) you should see an icon—
Wow! Nice icon!

[&] File Check Testtep

Checks if a file exists [T

From the preceding FileCheckTestStep.groovy listing, we can see that a property
called fileToCheckFor is expected from either context or TestCase. If we add the
file check, TestStep, and run it without this property, we should see the following
error in the SoapUI log tab:

ERROR:An error occurred [Property fileToCheckFor must be supplied!],
see error log for details

You should also see an INFO log message in the script log tab:
INFO:Property fileToCheckFor=

So, either add Groovy TestStep before FileCheckTestStep to set the property on
context, for example, context["fileToCheckFor"]="/temp/invoices.csv"; or add
a new TestCase level property, for example, fileToCheckFor=/temp/invoices.csv,
and run TestCase—if this file exists, TestCase should pass, or fail if it doesn’t!

www.it-ebooks.info

http://www.it-ebooks.info/

How it works...

Let’s start with the custom TestStep, FileCheckTestStep.groovy:

1.

2.

We extend Wsd1TestStepwithProperties. In this case, we don’t override any
standard TestStep code except the run(..) method.

In our constructor, if the TestStep isn’t being created for a load test, then set up the
filecheck.png icon image. In the case of a load test, where multiple threads may
clone our TestStep, there is no need for an image.

The public TestStepResult run(..) method is called when TestStep is executed
by TestCase. Here, we:

o Create a result object. This is necessary to communicate the status of TestStep
and timing back to the TestCase runner.

o The next chunk of code gets the fileToCheckForProperty either from the
TestCase context or if this is null, from the TestCase using a property
expansion.

o Log an error if the fileToCheckForProperty property is empty and return a
TestStep result with status FAILED.

o Check if the file with path, fileToCheckForProperty, exists; if so, we return
result status oK, and if not, FAILED.

Next, let’s look at the custom factory, FileCheckTestStepFactory.groovy:

1.

2.

It needs to extend Wsd1TestStepFactory. On Factory creation, the constructor
configures the ID, name, tip, and image of TestStep.

Note

Factory: Factories are responsible for configuring and creating Model items when
SoapUI needs them—in this case, a file check TestStep Model item.

Model items: These are used to represent almost all object types in SoapUI; for
example, Project Models, TestCase Models, and TestStep Models.

When a new (file check) TestStep is created for TestCase:

o The createNewTestStep(..) method creates the configuration
(TestStepConfig) using the TestStep‘s name.
o The buildTestStep(..) method creates the new Model item.

The cancreate () method can be used to block the TestStep’s creation if it isn’t
ready; for instance, if it has a dependency that isn’t ready.

Lastly, the factories.xml file configures the factory id, maps its class
(FileCheckTestStepFactory), and sets its factoryType. The factories.xml file is used
to add the factory to SoapUIFactoryRegistry when the plugin is loaded.

Note

www.it-ebooks.info

http://www.it-ebooks.info/

TestStep discovery

By registering the factory, SoapUI can discover all factory types on startup; for example,
our file check TestStep can be automatically added to menus and the TestCase window
toolbar.

www.it-ebooks.info

http://www.it-ebooks.info/

There’s more...

As far as custom TestSteps go this was probably as simple as it gets! If you want to
develop others you may want to provide some Ul element such as inputs, options, and
buttons. To do this you will normally need to do some Java Swing coding. You may be
able to get by reusing some of the code from other examples. The e-mail TestStep plugin
(see Chapter 10, Using Plugins) is a good place to start as it provides a simple Java Swing
PanelBuilder (UI) with property handling code. Also, if you’re happy learning from
code, you can use standard TestSteps from SoapUI itself as examples by looking in the
source code. Take a look at the package, com.eviware.soapui.impl.wsdl.teststeps,
and fill your boots!

www.it-ebooks.info

http://www.it-ebooks.info/

See also

e Custom Factories SoapUI Doc: http://www.soapui.org/Developers-Corner/custom-
factories.html

e Object Model SoapUI Doc: http://www.soapui.org/Scripting-Properties/the-soapui-
object-model.html

www.it-ebooks.info

http://www.soapui.org/Developers-Corner/custom-factories.html
http://www.soapui.org/Scripting-Properties/the-soapui-object-model.html
http://www.it-ebooks.info/

Index

A

AbstractSoapUIRunner class
o about / Introduction
Access Key authentication
o used, for testing Amazon Web Services (AWS) / Testing AWS services using
Access Key authentication, How to do it..., How it works...
Action Extensions
o URL/ See also
ActiveMQ
o URL / Getting ready
o setup, URL / Getting ready
ActiveMQConnectionFactory class
o URL / There’s more...
ActiveMQ JMS messages

o publishing, via REST API / Publishing, browsing, and consuming ActiveMQ
JMS messages via the REST API, How to do it...
o browsing, via REST API / Publishing, browsing, and consuming ActiveMQ
JMS messages via the REST API, How to do it..., How it works..., See also
o consuming, via REST API / Publishing, browsmg, and consuming ActlveMQ
JMS messages via the REST API, How to do it..., How it works..., See also
AlertSite
o URL / AlertSite Reports
Amazon
o URL / Testing AWS services using Access Key authentication
Amazon Web Services (AWS)
o about / Testing AWS services using Access Key authentication
o testing, Access Key authentication used / Testing AWS services using Access
Key authentication, How to do it..., How it works...
o URL, for signing requests / How it works...
o URL, for Python examples / There’s more...
o URL, for documentation / See also
Apache CXF
o URL, for downloading / Getting ready
o version / Getting ready
o URL, for wsdl2java script / How it works...
o URL, for Maven plugin / There’s more...
Apache CXF, Java classes
Invoice.java / How it works...
ObjectFactory.java / How it works...
InvoiceserviceV1Resource.java / How it works...
InvoiceserviceV1Resourcelmpl.java / How it works...

o
o
o
o

www.it-ebooks.info

http://www.it-ebooks.info/

o Service.java / How it works...
Apache CXF JAX-RS
o URL/ See also
Apache CXF MTOM
o URL / See also
Apache CXF WS-Security
o URL / See also
Apache CXF WSDL Validator
o URL / See also
Apache Log4j
o URL / See also
Apache Tomcat
o URL / Getting ready
API docs, SoapUI
o URL / There’s more...
asynchronous SOAP service callbacks
o testing / Testing asynchronous SOAP service callbacks, How to do it..., How it
works..., There’s more...
authorization header / There’s more...
AWS Product Advertising API
o URL / Introduction
AWS SOAP example
o URL / Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

B

e Bamboo JUnit Style Reporting
o URL/ See also
e Base64 encoding
o URL / How it works...
e basic HTTP-authenticated RESTful web services
o testing / Testing basic HTTP-authenticated RESTful web services, How to do
it..., Tomcat HTTP Basic authentication setup, How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

chosen-plaintext attacks
o URL / How it works...
CI tools

o using / Publishing JUnit reports using Jenkins
client certificate

o creating / Client certificate creation and keystore setup
client certificate authenticated web services
o testing / Testing client certificate authenticated web services, How to do it...,
Enabling client certificate authentication in SoapUI, How it works...
client certificate authentication
o enabling, in SoapUI / Enabling client certificate authentication in SoapUI
client certificate handshake
o reference link / How it works...
Cloud Service Providers (CSPs)
o about / Introduction
o signing up / What you’ll need
code-first RESTweb services
o developing / Code-first REST services
command line
o mocks, running / Running mocks from the command line, How to do it..., How
it works...
o tests, running / Running tests from the command line, How to do it..., How it
works..., There’s more...
o mock WAR files, generating / Generating mock WAR files from the command
line, Getting ready, How to do it...
o used, for running load tests / Running load tests using Maven, command line,
Java, Groovy, and Gradle scripts, How it works..., There’s more...
Conditional Goto TestStep
o URL / See also
Content Negotiation
o URL / See also
continuous integration (CI)
o about / Packaging old-style plugins when running tests with Maven
Contract Standardization
o URL / There’s more...
coverage reports
o analyzing, for tests / Analyzing test, HTTP, and mock coverage (Pro), How to do
it...
o analyzing, for HTTP / Analyzing test, HTTP, and mock coverage (Pro), How to
do it...
o analyzing, for mocks / Analyzing test, HTTP, and mock coverage (Pro), How to
do it...

www.it-ebooks.info

http://www.it-ebooks.info/

o contract coverage / Contract coverage
o assertion coverage / Assertion coverage
CSV data
o URL / Getting ready
CSV file data
o importing, into in-memory H2 database / Importing CSV file data into an in-
memory H2 database with Groovy
o importing, in in-memory H2 database / How to do it..., How it works..., There’s
more...
o looping over / Looping over CSV file data and driving tests with Groovy, How
to do it..., How it works..., There’s more...
curl
o URL/How to doiit...
cURL
o URL/How to doit...
custom Action
o Groovy plugin developing, Gradle used / Developing a Groovy plugin with
custom Action using Gradle, How to do it..., How it works..., There’s more...
Custom Factories SoapUlI
o URL/ See also
custom reports
o exporting, Groovy used / Exporting custom reports using Groovy, Getting ready,
How to doit..., How it works...
custom RequestFilter (Listener) plugin
o creating / Creating a custom RequestFilter (Listener) plugin, How to do it...,
There’s more...
custom TestStep (Factory) plugin
o creating, for file existence / Creating a custom TestStep (Factory) plugin to
check whether a file exists, How to do it..., There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

e data
o checking, JDBC Request TestStep used / Creating and checking data with the
JDBC Request TestStep, Getting ready, How to do it..., How it works...
o creating, JDBC Request TestStep used / Creating and checking data with the
JDBC Request TestStep, How to do it..., How it works...
e data-driven TestCases
o load testing, with separate Groovy datasources / Load testing data-driven
TestCases concurrently with separate Groovy datasources, Getting ready, How
to do it..., How it works..., There’s more...
o load testing, with shared distributed datasource / Load testing data-driven
TestCases concurrently with a shared distributed datasource , Getting ready,
How to do it..., How it works..., There’s more...
e Decomposed Capability
o URL / There’s more...
e distributed load testing
o about / There’s more...
e Domain Specific Language (DSL)
o about / Running mocks and tests using Gradle
e Dropbox
o testing, pregenerated OAuth 2 Access Token used / Testing Dropbox using a

pregenerated OAuth 2 Access Token, Getting ready, How to do it..., How it
works...

o URL / Getting ready
o URL, for app creation / Getting ready
o testing, OAuth 2 Authorization Code Grant flow used / Getting ready, How to
do it..., How it works...
o testing, OAuth 2 Implicit Grant flow used / Testing Dropbox using OAuth 2
Implicit Grant flow, How to do it..., How it works...
e Dropbox API
o URL/How to doit...
o URL, for documentation / See also
¢ dynamic database-driven REST mocks
o developing / Developing dynamic database-driven REST mocks, How to do
it..., How it works...
¢ dynamic database-driven SOAP mocks

o developing / Developing dynamic database-driven SOAP mocks, Getting ready,
How to do it..., How it works..., There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

E

e e-mails

e}

testing, with Groovy / Testing for e-mails with Groovy, Getting ready, How to
doit..., How it works...

e Eclipse

e}

e}

e}

e}

setting up / Getting ready
SoapUl, importing / Importing, building, running, and debugging SoapUI in
Eclipse, Getting ready, How to do it..., There’s more...

SoapUl, debugging / Importing, building, running, and debugging SoapUI in
Eclipse, Getting ready, How to do it..., How it works...

SoapUl, building / Importing, building, running, and debugging SoapUI in
Eclipse, Getting ready, How to do it..., How it works...

SoapUl, running / Importing, building, running, and debugging SoapUI in
Eclipse, Getting ready, How to do it..., How it works...

URL, for downloading / Getting ready

URL, for documentation / How it works...

e FElastic Compute Cloud (EC2)

e}

URL / Testing AWS services using Access Key authentication

e Email TestStep plugin

e}

e}

reference link / Getting ready, There’s more...

e-mails, sending with / Sending e-mails with the Email TestStep plugin, How to
do it..., How it works...

e external file

e}

properties, setting from / Setting properties from an external file, How it work...

www.it-ebooks.info

http://www.it-ebooks.info/

Factories
o about / How it works...

FakeSMTP
o URL, for downloading / Getting ready
files

o testing, with Groovy / Testing files with Groovy, Getting ready, There’s more...
form-authenticated RESTful web services

o testing / Getting ready, Setting up Tomcat form authentication, Testing with
SoapUI, How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

Git (v1.8+)
o URL / Getting ready
Gmail
o URL, for accessing / There’s more...
Gmail account
o URL, for accessing / Getting ready
Gmail API
o testing, OAuth2 used / Testing the Gmail API using OAuth?, How to do it...,
How it works...
Google account
o URL / Getting ready
Google APIs
o URL / There’s more...
Google Developer accounts

o URL / Getting ready
Google Gmail

o security / Getting ready
Google Web Server OAuth 2
o URL/ See also
Gradle

o URL / See also, Running mocks and tests using Gradle, Getting ready

o used, for running mocks / Running mocks and tests using Gradle, Getting

ready..., How to do it..., How it works...

o used, for running tests / Runnlng mocks and tests using Gradle, Getting ready...
How to doit..., How it works...

o URL, for downloading / Getting ready...

o used, for developing Groovy plugin with custom Action / Developing a Groovy
plugin with custom Action using Gradle, How to do it..., How it works...,
There’s more...

Gradle JavaExec Task
o URL/ See also

Gradle Plugin Development
o URL/ See also

Gradle scripts

o used, for running load tests / Running load tests using Maven, command line,
Java, Groovy, and Gradle scripts, Getting ready, How it works..., There’s
more...

Gradle Tasks

o URL/ See also
Gradle Wrapper

o URL/ See also
Grape

www.it-ebooks.info

http://www.it-ebooks.info/

o about / Running mocks and tests using Groovy scripts

o URL / Running mocks and tests using Groovy scripts
e Groovy

o URL / What you’ll need

o used, for driving tests / Looping over CSV file data and driving tests with
Groovy, How to do it..., How it works..., There’s more...

o used, for querying MongoDB / Querying MongoDB with Groovy, How to do
it..., How it works..., See also

o used, for selecting mock responses / Selecting mock responses using Groovy,
How to doit..., There’s more...

o used, for testing e-mails / Testing for e-mails with Groovy, Getting ready, How
to doit..., How it works...

o used, for testing files / Testing files with Groovy, How to do it..., There’s
more. ..

o URL, for installing / Getting ready

o used, for exporting custom reports / Exporting custom reports using Groovy,
Getting ready, How to do it..., How it works...

o used, for running load tests / Running load tests using Maven, command line,
Java, Groovy, and Gradle scripts, How it works..., There’s more...
e Groovy Console plugin

o used, for creating new TestStep / Using the Groovy Console plugin to create and
run a new TestStep, Getting ready, How to do it...

o used, for running new TestStep / Using the Groovy Console plugin to create and
run a new TestStep, Getting ready, How to do it..., How it works...

o URL, for downloading / Getting ready
o URL, for source code / How to do it..., How it works...
o URL/ See also
Groovy datasources
o data-driven TestCases, load testing / Load testing data-driven TestCases
concurrently with separate Groovy datasources, Getting ready, How to do it...,
There’s more...
Groovy JSON Slurper
o URL/ See also
Groovy plugin
o developing with custom Action, Gradle used / Developing a Groovy plugin with
custom Action using Gradle, How to do it..., How it works..., There’s more...
Groovy scripts
o used, for running mocks / Running mocks and tests using Groovy scripts, How

to doit...
o used, for running tests / Running mocks and tests using Groovy scripts, How to
do it...
e Groovy SQL

o URL /How it works..., How it works...
o using / How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

e Groovy style JMS API

o URL/ There’s more...
e Groovy XML Slurper

o URL/ See also

www.it-ebooks.info

http://www.it-ebooks.info/

H2 database

o URL / Importing CSV file data into an in-memory H2 database with Groovy
H?2 in-memory DB

o features / There’s more...

H2 JAR
o URL / Getting ready
HAL

o URL / Testing HATEOAS links
HATEOAS links

o testing / Testing HATEOAS links, Getting ready, How to do it..., There’s
more...
o about / Testing HATEOAS links
o reference link / Testing HATEOAS links
helloworld-webapp
o login pages, adding to / Adding the login pages to helloworld-webapp
HermesJMS
o issues / Publishing, browsing, and consuming ActiveMQ JMS messages via the
REST API
HTTP
o coverage reports, analyzing / Getting Ready, How to do it..., How it works...
HTTP coverage reports

o analyzing / HTTP coverage reporting
HTTP Digest authenticated RESTful web services

o testing / Testing HTTP Digest-authenticated RESTful web services, How to do
it..., How it works...
HTTP Digest authentication
o URL / Testing HTTP Digest-authenticated RESTful web services
HTTP Monitor
o URL / Code-first REST services, See also
HTTPS
o enabling, in Tomcat / Enabling HTTPS in Tomcat
o service, testing over / Testing the service over HTTPS

www.it-ebooks.info

http://www.it-ebooks.info/

IETF OAuth 2 Spec
o URL/ See also
IMAP
o reference link / See also
in-memory H2 database
o CSV file data, importing / Importing CSV file data into an in-memory H2
database with Groovy, How it works..., There’s more...
IntelliJ IDEA
o URL, for setup / See also
iText library
o URL / There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

Jackson
o about / How it works...
o URL / How it works...
Java

o used, for running tests / Running mocks and tests using Java and JUnit, How to
doit..., How it works...

o used, for running mocks / Running mocks and tests using Java and JUnit, How
to do it..., How it works...

o used, for running load tests / Running load tests using Maven, command line,
Java, Groovy, and Gradle scripts, How it works..., There’s more...
Java 1.6 JAX-WS tutorial
o URL/ See also
Java Architecture for XML Binding (JAXB)
o URL / How it works...
Java Concurrency
o URL / See also
Java MAC
o URL/ See also
JavaMail
o URL, for documentation / See also
JavaMail API
o URL, for documentation / There’s more...
Java Secure Socket Extension (JSSE)
o URL / Testing the service over HTTPS, See also
Java synchronization
o reference link / See also
javax.xml.ws.Holder wrapper object
o URL / How it works...
JAX-RS
o URL / How it works...
JDBC connection string

o URL / Getting ready
JDBC driver

o URL / Getting ready
JDBC Request TestStep

o used, for creating data / Creating and checking data with the JDBC Request
TestStep, How to do it..., See also

o used, for checking data / Creating and checking data with the JDBC Request
TestStep, Getting ready, How to do it..., See also

o URL/How to doit...

o used, for parameterising SQL queries / Parameterizing SQL queries with the
JDBC Request TestStep, How to do it..., There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

JDK (1.6+)
o URL / Getting ready
Jenkins
o used, for publishing JUnit reports / Publishing JUnit reports using Jenkins, How
to do it..., There’s more...
o URL, for downloading / Getting ready
Jenkins Plugins
o URL/ See also
JSON schemas
o used, for testing response compliance / Testing response compliance using
JSON schemas, Getting ready, How to do it..., How it works...
o URL, for validation library / Getting ready
o URL / How it works...
o reference link / See also
JSON Slurper
o using / How it works...
o URL / How it works...
JUnit
o URL/ See also

o used, for running tests / Running mocks and tests using Java and JUnit, How to
doit..., How it works...

o used, for running mocks / Running mocks and tests using Java and JUnit, How
to do it..., How it works...
Junit
o URL/ See also
JUnit, SoapUI
o URL/ See also
JUnit reports
o reference link / There’s more...
o publishing, Jenkins used / Publishing JUnit reports using Jenkins, How to do
it..., There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

K

e keystore

o setting up / Client certificate creation and keystore setup
e Keytool

o URL/ See also

www.it-ebooks.info

http://www.it-ebooks.info/

L

¢ load testing

e}

e}

e}

e}

e}

e}

e}

e}

e}

URL, for example / What you’ll need

data-driven TestCases, with separate Groovy datasources / Load testing data-
driven TestCases concurrently with separate Groovy datasources, Getting ready,
How to doit..., There’s more...

data-driven TestCases, with shared Groovy datasource / Load testing data-driven
TestCases concurrently with a shared Groovy datasource , How to do it..., How
it works..., There’s more...

data-driven TestCases, with shared distributed datasource / Load testing data-
driven TestCases concurrently with a shared distributed datasource , Getting
ready, How to do it..., How it works..., There’s more...

running, Maven used / Running load tests using Maven, command line, Java,
Groovy, and Gradle scripts, Getting ready, How to do it..., How it works...,
There’s more...

running, command line used / Running load tests using Maven, command line,
Java, Groovy, and Gradle scripts, Getting ready, How to do it..., How it
works..., There’s more...

running, Java used / Running load tests using Maven, command line, Java,
Groovy, and Gradle scripts, Getting ready, How to do it..., How it works...,
There’s more...

running, Groovy used / Running load tests using Maven, command line, Java,
Groovy, and Gradle scripts, Getting ready, How to do it..., How it works...,
There’s more...

running, Gradle scripts used / Running load tests using Maven, command line,
Java, Groovy, and Gradle scripts, Getting ready, How it works..., There’s
more. ..

load tests

reference link / There’s more...

LoadUI

about / Introduction
URL / Introduction
URL, for documentation / See also

logging

from extensions / Logging from extensions and scripts, How to do it..., How it
works...
from scripts / Logging from extensions and scripts, How it works...

login pages

adding, to hello-world-webapp / Adding the login pages to helloworld-webapp

www.it-ebooks.info

http://www.it-ebooks.info/

M

MarkupBuilder
o URL / There’s more...
Maven

o URL / See also, Running mocks and tests using Maven, See also
o used, for running tests / Running mocks and tests using Maven, Getting ready,

How to doit... , How it works...
o used, for running mocks / Running mocks and tests using Maven, Getting ready,
How to doit... , How it works...

o URL, for downloading / Getting ready
o reference link / Getting ready

o used, for running load tests / Running load tests using Maven, command line,
Java, Groovy, and Gradle scripts, Getting ready, How it works..., There’s

more...
Maven (3+)

o URL, for downloading / Getting ready
Maven Assembly plugin

o URL/ See also
Maven Central
o URL / Getting ready
Maven Exec plugin
o URL/ See also
Maven SoapUI Plugin Template
o URL/ See also
Mechanical Turk
o URL / Introduction
MockResponse
o URL / Building mock responses dynamically
mock responses
o selecting, Groovy used / Selecting mock responses using Groovy, How to do
it..., There’s more...
o building, dynamically / Building mock responses dynamically, How it works...
mocks
o about / Introduction
o SOAP mocks / Introduction
o REST mocks / Introduction
o deploying, as WAR files / Deploying mocks as WAR files, How to do it...,
There’s more...
memory issues / Getting ready
o running, from command line / Running mocks from the command line, How to
do it..., How it works...
o running, on new server / How to do it...
o running, in sequence with tests / How to do it...

(¢]

www.it-ebooks.info

http://www.it-ebooks.info/

o running, Maven used / Running mocks and tests using Maven, Getting ready,
How to doit... , How it works...

o running, Java and JUnit used / Running mocks and tests using Java and JUnit,
How to doit..., How it works...

o running, Groovy scripts used / Running mocks and tests using Groovy scripts,
How to do it...
o running, Gradle used / Running mocks and tests using Gradle, How to do it...,
How it works...
o coverage reports, analyzing / Analyzing test, HTTP, and mock coverage (Pro),
How to doit..., How it works...
mocks coverage reports
o analyzing / Mock coverage reporting
mock services
o securing, X.509 certificates used / Securing mock services using X.509
certificates, How it works...
mock WAR files
o generating, from command line / Generating mock WAR files from the
command line, Getting ready, How to do it...
Model items
o about / How it works...
mojo (Maven plain Old Java Object)
o about / How it works...
o URL / How it works...
MongoDB
o querying, Groovy used / Querying MongoDB with Groovy, How to do it...,
There’s more..., See also
o URL / Querying MongoDB with Groovy, Getting ready, There’s more...
mongoimport
o URL / There’s more...
MySQL
o URL / Getting ready
MySQL Workbench
o URL/How todoit...

www.it-ebooks.info

http://www.it-ebooks.info/

N

e NetBeans IDE

o URL, for setup / See also
e Nonce

o URL, for wiki / See also

www.it-ebooks.info

http://www.it-ebooks.info/

O

e OAuth?

o pregenerated Access Token, used for testing Dropbox / Testing Dropbox using a
pregenerated OAuth 2 Access Token, Getting ready, How to do it..., How it
works...

o Access Token, security / Getting ready

o Access Token, revoking / How it works...

o Authorization Code Grant flow, used for testing Dropbox / Getting ready, How
to do it..., How it works...

o Refresh Token / There’s more...

o Implicit Grant flow, used for testing Dropbox / Testing Dropbox using OAuth 2
Implicit Grant flow, How to do it..., How it works...

o URL, for Implicit Grant flow / How it works...

o authentication, automating / Automating OAuth 2 authentication and consent,
How to doit..., How it works...

o consent, automating / Automating OAuth 2 authentication and consent, How to
doit..., How it works...
e OAuth2
o used, for testing Gmail API / Testing the Gmail API using OAuth2, How to do
it..., How it works...
e oauthlib
o URL / Getting ready, See also
e OAuth Playground
o URL / How it works...
e Object Model SoapUI
o URL / See also
¢ old-style (open source) plugins
o using / Using old-style (open source) plugins, How to do it..., How it works...,
There’s more...
o packaging, for running Maven tests / Packaging old-style plugins when running
tests with Maven, How to do it..., There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

plugins
o old-style (open source) plugins / Using old-style (open source) plugins
o Email TestStep plugin, used for sending e-mails / Getting ready, How to do it...,
How it works...
o using, via the plugin manager (pro) / Using plugins via the plugin manager
(Pro), How to do it..., How it works...
o Groovy Console plugin / Using the Groovy Console plugin to create and run a
new TestStep
plugins, features
o Plugin Manager / Using plugins via the plugin manager (Pro)
o Plugin Repository / Using plugins via the plugin manager (Pro)
o Plugin Java Annotations / Using plugins via the plugin manager (Pro)
o Maven Archetype / Using plugins via the plugin manager (Pro)
Improved Plugin ClassLoader / Using plugins via the plugin manager (Pro)

plugins, Maven
o URL /There’s more...
polling style asynchronous REST services

o testing / Testing polling style asynchronous REST services, Getting ready, How
to do it..., There’s more...

(¢]

properties
o setting, from external file / Setting properties from an external file, How it
work...

o working with, URL / See also
o scope considerations / How it works...
o reference link / See also
Property Expansion syntax
o URL / There’s more...
property transfers
o URL/ See also

www.it-ebooks.info

http://www.it-ebooks.info/

RAML
o about / There’s more...
o URL / There’s more...
RAML plugin

o URL / There’s more...

o about / There’s more...

regex, Groovy

o URL / There’s more...

reporting, SoapUI

o URL / Introduction, Pro test runner options

reports

o generating, from test runners / Generating reports from test runners, How to do

it..., How it works...

standard reports, generating / Standard reports
summary reports, generating / Summary reports
JUnit reports, generating / JUnit Reports
AlertSite reports, generating / AlertSite Reports
report view

Project Tree View / How to do it...

Contract Coverage / How to do it...

Assertion Coverage / How to do it...

Message Coverage Tab / How to do it...
Message Content Tab / How to do it...
Assertion Results Tab / How to do it...
repositories, Maven

o URL/ See also

response compliance

o testing, JSON schemas used / Testing response compliance using JSON
schemas, Getting ready, How to do it..., How it works...

response WS-I compliance

o testing / Testing WSDL and response WS-I compliance, How to do it..., There’s
more...

REST API

o ActiveMQ JMS messages, publishing via / Publishing, browsing, and
consuming ActiveMQ JMS messages via the REST API, How to do it..., How it
works..., There’s more...

o ActiveMQ JMS messages, browsing via / Publishing, browsing, and consuming
ActiveMQ JMS messages via the REST API, How to do it..., How it works...,
There’s more...

o ActiveMQ JMS messages, consuming via / Publishing, browsing, and
consuming ActiveMQ JMS messages via the REST API, How to do it..., How it
works..., There’s more...

O O O O

O O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

REST clients
o about / How to do it...
REST coverage reports
o analyzing / REST coverage reporting
REST discovery (Pro)
o used, for generating SoapUI tests / Generating SoapUI tests with REST
discovery (Pro), Getting ready, How to do it..., How it works...
RESTful web service stub test-first
o developing / Generating and developing a RESTful web service stub test-first,
How to do it..., How it works..., There’s more...
REST mocks
o about / Introduction
o dynamic database-driven REST mocks, developing / Developing dynamic
database-driven REST mocks, How to do it..., How it works...
REST response XML schema compliance
o testing / Testing REST response XML schema compliance, Getting ready, How
it works...
RFCs
o URL /How it works...
runner classes
o about / Introduction
o URL / Introduction
Runscope plugin
o URL /There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

safe navigation operator, Groovy
o about / There’s more...
o URL / There’s more...
self-signed certificates

o about / Enabling HTTPS in Tomcat

o URL / Enabling HTTPS in Tomcat
service

o testing, over HTTPS / Testing the service over HT'TPS
Service Normalization
o URL / There’s more...
shared distributed datasource
o data-driven TestCases, load testing / Load testing data-driven TestCases
concurrently with a shared distributed datasource , Getting ready, How to do
it..., How it works..., There’s more...
shared Groovy datasource
o data-driven TestCases, load testing / Load testing data-driven TestCases
concurrently with a shared Groovy datasource , How to do it..., How it
works..., There’s more...
smoke test
o about / Smoke test
SOAP (MTOM+XQOP) attachments
o testing / Testing and mocking SOAP (MTOM+XOP) attachments, Getting
ready, How to do it..., There’s more...
o mocking / Testing and mocking SOAP (MTOM+XOP) attachments, Getting
ready, How to do it..., There’s more...
SOAP mocks
o about / Introduction
o URL, for dispatch types / Selecting mock responses using Groovy
o dynamic database-driven SOAP mocks, developing / Developing dynamic
database-driven SOAP mocks, Getting ready, How to do it..., How it works...,
There’s more...
SOAP project
o updating, WSDL used / Updating a SOAP project using a WSDL, How to do
it..., There’s more...
o updating, WSDL refactoring (Pro) used / Updating SOAP projects using WSDL
refactoring (Pro), How to do it...
SOAP response schema compliance
o testing / Testing SOAP response schema compliance, Getting ready, There’s
more...
SoapUI
o URL / What you’ll need, Introduction, See also, How to do it..., See also
o pro version, URL / Getting ready

www.it-ebooks.info

http://www.it-ebooks.info/

o URL, for documentation / See also, See also

o testing with / Testing with SoapUI, How it works...

client certificate authentication, enabling in / Enabling client certificate
authentication in SoapUI

URL, for security scanning / Scanning web service security vulnerabilities
URL, for improving memory usage / Getting ready

URL, for setting Maven Plugin Load Test / See also

building, from source code / Building, packaging, and running SoapUI from the
source code, How to doit..., There’s more...

o packaging / Building, packaging, and running SoapUI from the source code,
How to doit..., There’s more...

o running / Building, packaging, and running SoapUI from the source code, How
to do it..., There’s more...

o importing, in Eclipse / Importing, building, running, and debugging SoapUI in
Eclipse, Getting ready, How to do it..., There’s more...

o running, in Eclipse / Importing, building, running, and debugging SoapUI in
Eclipse, Getting ready, How to do it..., There’s more...

o building, in Eclipse / Importing, building, running, and debugging SoapUI in
Eclipse, Getting ready, How to do it..., There’s more...

o debugging, in Eclipse / Importing, building, running, and debugging SoapUI in
Eclipse, How to do it..., There’s more...

SoapUI Assertions

o URL/ See also
SoapUI Asynchronous Doc

o URL/ See also
SoapUI certificate trust / How it works...
SoapUI Coverage Docs

o URL/ See also
SoapUI Docs

o URL/ See also
SoapUI extensions

o source code, modifying / Developing a Groovy plugin with custom Action using
Gradle
Actions / Developing a Groovy plugin with custom Action using Gradle
Factories / Developing a Groovy plugin with custom Action using Gradle
Listeners / Developing a Groovy plugin with custom Action using Gradle
plugins / Developing a Groovy plugin with custom Action using Gradle
SoapUI Extensions Doc

o URL/ See also
SoapUlI Groovy JMS

o URL/ See also
SoapUI HTTP Basic authentication

o testing / SoapUIl HTTP Basic authentication testing
SoapUI HTTP Basic authentication testing

(¢]

O O O O

O O O

(¢]

www.it-ebooks.info

http://www.it-ebooks.info/

o steps / SoapUI HTTP Basic authentication testing
SoapUI HTTP Digest authentication

o testing / SoapUI HTTP Digest authentication

o steps / SoapUI HTTP Digest authentication
SoapUI JMS docs

o URL/ See also
SoapUI Listener Example
o URL/ See also
SoapUI Plugin Manager
o URL, for documentation / See also
SoapUI Pro Custom Events
o URL / See also
SoapUI project
o URL / Getting ready
SoapUI tests
o generating, with REST discovery (Pro) / Generating SoapUI tests with REST
discovery (Pro), Getting ready, How to do it..., How it works...
SoapUI tool integration
o used, for generating WSDL-first web service / Generating a WSDL.-first web
service using SoapUI tool integration, Getting ready, How to do it..., How it
works..., There’s more...
SoapUI tools

o URL / Getting ready
SOAP web service test-first

o developing / Developing a SOAP web service test-first, How to do it..., How it
works...
software requisites, web service stubs
o Java JDK / What you’ll need
o Apache CXF / What you’ll need
o IDE / What you’ll need
source code
o used, for building SoapUI / Building, packaging, and running SoapUI from the
source code, How to doit..., There’s more...
o URL / Getting ready
SQL queries
o parameterising, JDBC Request TestStep used / Parameterizing SQL queries with
the JDBC Request TestStep, How to do it..., There’s more...
string operators, Groovy
o URL / There’s more...
Swagger
o about / There’s more...
o URL / There’s more...
Swagger plugin
o about / There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

o URL / There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

T

@TupleConstructor annotation
o about / How it works...
o URL /How it works...
TeamCity XML Reports
o URL / See also
test-driven development (TDD)
o about / Developing a SOAP web service test-first
test runners

o reports, generating / Generating reports from test runners, How to do it..., How

it works...
o pro test runner options / Pro test runner options
tests

o driving, with Groovy / Looping over CSV file data and driving tests with

Groovy
o running, from command line / Running tests from the command line, How to do

it..., How it works..., There’s more...
o environment-specific properties, providing / Providing environment-specific
properties, How it works...

o running, Maven used / Running mocks and tests using Maven, Getting ready,
How to doit... , How it works...

o running, Java and JUnit used / Running mocks and tests using Java and JUnit,
How to doit..., How it works...

o running, Groovy scripts used / Running mocks and tests using Groovy scripts,
How to do it...
o running, Gradle used / Running mocks and tests using Gradle, Getting ready...,

How to doit..., How it works...
o coverage reports, analyzing / Analyzing test, HT'TP, and mock coverage (Pro),
How to doit..., How it works...
Thread-Safety example, Java
o reference link / See also
Timestamp
o testing / Testing WS-Security UsernameToken, Timestamp, and
TransportBinding, Getting ready, How to do it..., How it works...
Tomcat
o HTTPS, enabling in / Enabling HTTPS in Tomcat
o configuring / Tomcat configuration
Tomcat 7.0.41
o URL / Getting ready
o URL, for installation / Getting ready
Tomcat form authentication
o setting up / Setting up Tomcat form authentication
Tomcat HTTP Basic authentication

www.it-ebooks.info

http://www.it-ebooks.info/

o setting up / Tomcat HTTP Basic authentication setup
Tomcat HTTP Basic authentication setup

o about / Tomcat HTTP Basic authentication setup
Tomcat HTTP Digest authentication

o setting up / Tomcat HTTP Digest authentication setup
Tomcat security

o URL/ See also
TransportBinding

o testing / Testing WS-Security UsernameToken, Timestamp, and

TransportBinding, Getting ready, How to do it..., How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

U

e UlISupport class
o user input, prompting / Prompting for user input with the UISupport class, How
it works...
o URL/ See also
e URIBuilder
o URL / How it works...
e user input

o prompting, with UISupport class / Prompting for user input with the UISupport
class, How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

\Y

e vertical slicing
o URL / Introduction
o about / Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

WADL
o URL/ See also
wadl2java
o URL/How to doit...
o about / How to do it...

WAR files
o mocks, deploying as / Deploying mocks as WAR files, How to do it..., There’s
more...

web service mocking
o URL / Introduction
web service security vulnerabilities
o scanning / Scanning web service security vulnerabilities, Getting ready, How to
doit..., There’s more...
web service stubs
o developing / Introduction
o software requisites / What you’ll need
WS-Addressing
o URL, for documentation / Getting ready
o reference link / See also
WS-I
o URL / Testing WSDL and response WS-I compliance, How it works...
o reference link / There’s more...
WS-Security UsernameToken
o testing / Testing WS-Security UsernameToken, Timestamp, and
TransportBinding, Getting ready, How to do it..., How it works...
WSDL
o used, for updating SOAP project / Updating a SOAP project using a WSDL,
How to doit..., There’s more...
o testing / Testing WSDL and response WS-I compliance, How to do it..., There’s
more...
WSDL-first web service
o generating, SoapUI tool integration used / Generating a WSDL-first web service
using SoapUI tool integration, Getting ready, How to do it..., How it works...,
There’s more...
WSDL refactoring (Pro)
o used, for updating SOAP project / Updating SOAP projects using WSDL
refactoring (Pro), How to do it...
WSDL Validator
o URL / See also
WWW-Authenticate header, parameter
o Digest / How it works...
o realm / How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

o qop / How it works...
o nonce / How it works...
o opaque / How it works...

www.it-ebooks.info

http://www.it-ebooks.info/

X.509 certificates
o creating / Creating and using X.509 certificates to test web services over
HTTPS, How to doit..., Enabling HTTPS in Tomcat, How it works...
o used, for testing web services over HTTPS / Creating and using X.509
certificates to test web services over HTTPS, How to do it..., Enabling HTTPS
in Tomcat, How it works...
o used, for securing mock services / Securing mock services using X.509
certificates, How it works...
XML Encryption
o URL / See also
XML schema compliance
o testing / Need XML schema validation?
XML Signature
o URL / See also
XML Slurper
o about / See also
o URL / See also
XMLSurper
o reference link / There’s more...
XPath
o about / How to do it...
o URL/How todoit...
XStream library
o URL / How it works...
XUnit plugin
o URL / There’s more...

www.it-ebooks.info

http://www.it-ebooks.info/

	SoapUI Cookbook
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Testing and Developing Web Service Stubs With SoapUI
	Introduction
	What you'll learn
	What you'll need
	Generating a WSDL-first web service using SoapUI tool integration
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Developing a SOAP web service test-first
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Updating a SOAP project using a WSDL
	Getting ready
	How to do it...
	How it works...
	There's more...
	Updating SOAP projects using WSDL refactoring (Pro)
	Getting ready
	How to do it...
	There's more...
	Generating and developing a RESTful web service stub test-first
	Getting ready
	How to do it...
	How it works...
	There's more...
	Code-first REST services
	See also
	Generating SoapUI tests with REST discovery (Pro)
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	2. Data-driven Testing and Using External Datasources
	Introduction
	What you'll learn
	What you'll need
	Creating and checking data with the JDBC Request TestStep
	Getting ready
	How to do it...
	How it works...
	See also
	Parameterizing SQL queries with the JDBC Request TestStep
	How to do it...
	How it works...
	There's more...
	See also
	Setting properties from an external file
	Getting ready
	How to do it...
	How it work...
	See also
	Importing CSV file data into an in-memory H2 database with Groovy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Looping over CSV file data and driving tests with Groovy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Querying MongoDB with Groovy
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also
	Publishing, browsing, and consuming ActiveMQ JMS messages via the REST API
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	3. Developing and Deploying Dynamic REST and SOAP Mocks
	Introduction
	What you'll learn
	What you'll need
	Selecting mock responses using Groovy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Developing dynamic database-driven SOAP mocks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Developing dynamic database-driven REST mocks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Building mock responses dynamically
	How to do it...
	How it works...
	There's more...
	Deploying mocks as WAR files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	4. Web Service Test Scenarios
	Introduction
	What you'll learn
	What you'll need
	Testing WSDL and response WS-I compliance
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing SOAP response schema compliance
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing REST response XML schema compliance
	Getting ready
	How to do it...
	How it works...
	There's more...
	Testing response compliance using JSON schemas
	Getting ready
	How to do it...
	How it works...
	There's more...
	Need XML schema validation?
	See also
	Testing and mocking SOAP (MTOM+XOP) attachments
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing HATEOAS links
	Getting ready
	How to do it...
	How it works...
	There's more...
	Testing polling style asynchronous REST services
	Getting ready
	How to do it...
	How it works...
	There's more...
	Testing asynchronous SOAP service callbacks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing for e-mails with Groovy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing files with Groovy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	5. Automation and Scripting
	Introduction
	What you'll learn
	What you'll need
	Running mocks from the command line
	Getting ready
	How to do it...
	How it works...
	There's more...
	Running tests from the command line
	Getting ready
	How to do it…
	How it works...
	There's more...
	Providing environment-specific properties
	How to do it...
	How it works...
	See also
	Generating mock WAR files from the command line
	Getting ready
	How to do it...
	How it works...
	Running mocks and tests using Maven
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Running mocks and tests using Java and JUnit
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Running mocks and tests using Groovy scripts
	Getting ready
	How to do it...
	How it works...
	See also
	Running mocks and tests using Gradle
	Getting ready...
	How to do it...
	How it works...
	There's more...
	See also
	6. Reporting
	Introduction
	What you'll learn
	Generating reports from test runners
	Getting ready
	How to do it...
	Standard reports
	Summary reports
	JUnit Reports
	AlertSite Reports
	How it works...
	There's more...
	Pro test runner options
	Publishing JUnit reports using Jenkins
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Exporting custom reports using Groovy
	Getting ready
	How to do it…
	How it works...
	There's more...
	Analyzing test, HTTP, and mock coverage (Pro)
	Getting Ready
	How to do it...
	How it works...
	Contract coverage
	Assertion coverage
	There's more…
	HTTP coverage reporting
	Mock coverage reporting
	REST coverage reporting
	See also
	7. Testing Secured Web Services
	Introduction
	What you'll learn
	Testing basic HTTP-authenticated RESTful web services
	Getting ready
	How to do it...
	Smoke test
	Tomcat HTTP Basic authentication setup
	SoapUI HTTP Basic authentication testing
	How it works...
	There's more...
	See also
	Testing HTTP Digest-authenticated RESTful web services
	Getting ready
	How to do it...
	Tomcat HTTP Digest authentication setup
	SoapUI HTTP Digest authentication
	How it works...
	There's more...
	See also
	Testing HTTP form-authenticated RESTful web services
	Getting ready
	How to do it...
	Setting up Tomcat form authentication
	Adding the login pages to helloworld-webapp
	Testing with SoapUI
	How it works...
	Creating and using X.509 certificates to test web services over HTTPS
	Getting ready
	How to do it...
	Enabling HTTPS in Tomcat
	Testing the service over HTTPS
	How it works...
	There's more...
	See also
	Testing client certificate authenticated web services
	Getting ready
	How to do it...
	Client certificate creation and keystore setup
	Tomcat configuration
	Enabling client certificate authentication in SoapUI
	How it works...
	There's more...
	Securing mock services using X.509 certificates
	Getting ready
	How to do it...
	How it works...
	Testing WS-Security UsernameToken, Timestamp, and TransportBinding
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Scanning web service security vulnerabilities
	Getting ready
	How to do it...
	How it works...
	There's more...
	8. Testing AWS and OAuth 2 Secured Cloud Services
	Introduction
	What you'll learn
	What you'll need
	Testing Dropbox using a pregenerated OAuth 2 Access Token
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing Dropbox using OAuth 2 Authorization Code Grant flow
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Testing Dropbox using OAuth 2 Implicit Grant flow
	Getting ready
	How to do it...
	How it works...
	There's more...
	Testing the Gmail API using OAuth2
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Automating OAuth 2 authentication and consent
	Getting ready
	How to do it...
	How it works...
	Testing AWS services using Access Key authentication
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	9. Data-driven Load Testing With Custom Datasources
	Introduction
	What you'll learn
	What you'll need
	Load testing data-driven TestCases concurrently with separate Groovy datasources
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Load testing data-driven TestCases concurrently with a shared Groovy datasource
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Load testing data-driven TestCases concurrently with a shared distributed datasource
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Running load tests using Maven, command line, Java, Groovy, and Gradle scripts
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	10. Using Plugins
	Introduction
	What you'll learn
	Using old-style (open source) plugins
	Why are they called old-style?
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Sending e-mails with the Email TestStep plugin
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Using plugins via the plugin manager (Pro)
	How to do it...
	How it works...
	See also
	Using the Groovy Console plugin to create and run a new TestStep
	Getting ready
	How to do it...
	How it works...
	See also
	Packaging old-style plugins when running tests with Maven
	Getting ready
	How to do it...
	How it works...
	There's more...
	11. Taking SoapUI Further
	Introduction
	What you'll learn
	Building, packaging, and running SoapUI from the source code
	Getting ready
	How to do it...
	There's more...
	See also
	Importing, building, running, and debugging SoapUI in Eclipse
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Developing a Groovy plugin with custom Action using Gradle
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Logging from extensions and scripts
	Getting ready
	How to do it...
	How it works...
	See also
	Prompting for user input with the UISupport class
	Getting ready
	How to do it...
	How it works...
	See also
	Creating a custom RequestFilter (Listener) plugin
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating a custom TestStep (Factory) plugin to check whether a file exists
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Index

