Android

Development
with Kotlin

By Marcin Moskala and Igor Wojda

Android Development with
Kotlin

Enhance your skills for Android development using Kotlin

Marcin Moskala
Igor Wojda

BIRMINGHAM - MUMBAI

Android Development with Kotlin
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 3081117

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78712-368-7

www.packtpub.com

http://www.packtpub.com

Authors
Marcin Moskala
Igor Wojda

Reviewers
Mikhail Glukhikh
Stepan Goncharov

Commissioning Editor
Aaron Lazar

Acquisition Editor
Chaitanya Nair

Content Development Editor
Rohit Kumar Singh

Technical Editor
Pavan Ramchandani

Credits

Copy Editor
Safis Editing

Project Coordinator
Vaidehi Sawant

Proofreader
Safis Editing

Indexer
Francy Puthiry

Graphics
Abhinash Sahu

Production Coordinator
Nilesh Mohite

About the Authors

Marcin Moskala is an experienced Android developer who is always looking for ways to
improve. He has been passionate about Kotlin since its early beta release. He writes articles
for trade press and speaks at programming conferences.

Marcin is quite active in the programming and open source community, and is also
passionate about cognitive and data science. You can visit his website (marcinmoskala.com),
or follow him on GitHub (MarcinMoskala) and on Twitter (emarcinmoskala).

I would like to thank my co-workers in Gamekit, Docplanner, and Apreel. I especially want
to thank my supervisors, who were not only supportive, but who are also a constant source
of knowledge and inspiration: Mateusz Mikulski, Krzyysztof Wolniak, Bartek Wilczynski,
and Rafal Trzeciak.

I would like to thank Marek Kaminski, Gleb Smirnov, Jacek Jablonski, and Maciej Gorski
for the corrections, and Dariusz Bacinski and James Shvarts for reviewing the code of the
example application.

I would like to thank my family and my girlfriend - Maja Markiewicz - for their support
and help. 1 especially want to thank them for making an environment that supports passion
and self-realization.

http://marcinmoskala.com

Igor Wojda is an experienced engineer with over 11 years of experience in software
development. His adventure with Android started a few years ago, and he is currently
working as a senior Android developer in the healthcare industry. Igor has been deeply
interested in Kotlin development since long before the 1.0 version was officially released,
and he is an active member of the Kotlin community. He enjoys sharing his passion for
coding with developers.

To learn more about him, you can visit him on Medium (€igorwojda) and follow him on
Twitter (@igorwojda).

[would like to thank the amazing team at Babylon, who are not only professionals but also
inspiring and very helpful people, especially Mikolaj Leszczynski, Sakis Kaliakoudas,
Simon Attard, Balachandar Kolathur Mani, Sergio Carabantes, Joao Alves, Tomas
Navickas, Mario Sanoguera, and Sebastien Rouif.

I offer thanks to all the reviewers, especially technical reviewer Stepan Goncharov, Mikhail
Glukhikh, and my colleagues who gave us feedback on the drafts, especially Michat
Jankowski.

I am also thankful to my family for all of their love and support. 1'd like to thank my
parents for allowing me to follow my ambitions throughout my childhood and for my
education.

Thanks also go to JetBrains for creating this awesome language and to the Kotlin
community for sharing knowledge and being helpful, open, and inspiring. This book could
not have been written without you!

I offer special thanks to my friends, especially Konrad Hamela, Marcin Sobolski, Maciej
Gierasimiuk, Rafal Cupial, Michal Mazur, and Edyta Skiba for their friendship,
inspiration, and continuous support. I value your advice immensely.

About the Reviewers

Mikhail Glukhikh graduated from Ioffe Physical Technical School in 1995 and from Saint
Petersburg State Polytechnical University in 2001 with a masters degree in information
technologies. During 2001-2004, he was PhD student in the same university, and then he
defended his PhD thesis in 2007. The title of his thesis is Synthesis method development of
special-purpose informational and control systems with structural redundancy.

Mikhail worked in Kodeks Software Development Center during 1999-2000, and in Efremov
Research Institute of Electrophysical Apparatus during 2001-2002. Since 2002, he has been a
lead developer at Digitek Labs, in the computer system and software engineering
department. He was a senior lecturer at the department from 2004 to 2007; from 2007 he has
been an associate professor. In 2013, he had one-year stay at Clausthal University of
Technology as an invited researcher. In 2014, he worked at SPb office of Intel corporation,
since March 2015, he participates in Kotlin language development at JetBrains.

Mikhail is one of Digitek Aegis defect detection tool authors. He is also one of the Digitek
RA tool's authors. Nowadays, his primary R&D areas include code analysis, code
verification, code refactoring, and code reliability estimation methods. Before he had also
interests in fault-tolerant system design and analysis, and also in high-productive digital
signal processing complex development.

Stepan Goncharov is currently working at Grab as the engineering lead of the Driver
Android app. He is an organizer of Kotlin User Group Singapore and has developed apps
and games for Android since 2008. He is a Kotlin and RxJava addict, and obsessed with
elegant and functional code. He mainly focus on mobile app architecture.

Stepan makes a difference by spending more and more time contributing to open source
projects. He is the reviewer of Learning RxJava, by Thomas Nield, published by Packt.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy.

Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

» Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787123685.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787123685

Table of Contents

Preface 1
Chapter 1: Beginning Your Kotlin Adventure 7
Say hello to Kotlin 8
Awesome Kotlin examples 10
Dealing with Kotlin code 16
Kotlin Playground 16
Android Studio 18
Configuring Kotlin for the project 18

Using Kaotlin in a new Android project 21

Java to Kotlin converter (J2K) 23
Alternative ways to run Kotlin code 24

Kotlin under the hood 25
The Kotlin standard library 26
More reasons to use Kotlin 26
Summary 28
Chapter 2: Laying a Foundation 29
Variables 30
Type inference 32
Strict null safety 36
Safe call 39
Elvis operator 40
Not-null assertion 41
The let function 42
Nullability and Java 43
Casts 45
Safe/unsafe cast operator 45
Smart casts 47
Type smart casts 48
Non-nullable smart cast 50
Primitive data types 51
Numbers 52
Char 54
Arrays 55
The Boolean type 56
Composite data types 57

Strings 57
String templates 57
Ranges 58
Collections 60
Statements versus expressions 60
Control flow 61
The if statement 62
The when expression 63
Loops 67
The for loop 67

The while loop 68

Other iterations 69

Break and continue 69
Exceptions 73
The try... catch block 75
Compile-time constants 76
Delegates 77
Summary 78
Chapter 3: Playing with Functions 79
Basic function declaration and usage 80
Parameters 81
Returning functions 83
Vararg parameter 85
Single-expression functions 86
Tail-recursive functions 89
Different ways of calling a function 91
Default argument values 91
Named arguments syntax 92
Top-level functions 93
Top-level functions under the hood 95
Local functions 97
Nothing return type 99
Summary 101
Chapter 4: Classes and Objects 102
Classes 103
Class declaration 103
Properties 103
Read-write versus read-only 107
Property access syntax between Kotlin and Java 108

[ii]

Increment and decrement operators 109

Custom getters/setters 112
The getter versus property default value 114
Late-initialized properties 115
Annotating properties 116
Inline properties 117
Constructors 118
Properties versus constructor parameters 120
Constructors with default arguments 121
Patterns 121
Inheritance 122
The JvmOverloads annotation 126
Interfaces 127
Data classes 131
The equals and hashCode methods 132
The toString method 134
The copy method 135
Destructing declarations 136
Operator overloading 138
Object declaration 141
Object expression 143
Companion objects 146
Companion object instantiation 148
Enum classes 151
Infix calls for named methods 154
Visibility modifiers 158
The internal modifier and Java bytecode 161
Sealed classes 163
Nested classes 165
Import aliases 166
Summary 168
Chapter 5: Functions as First-Class Citizens 169
Function types 170
What is function type under the hood? 171
Anonymous functions 172
Lambda expressions 174
The implicit name of a single parameter 177
Higher-order functions 178
Providing operations to functions 180

[iii]

Observer (Listener) pattern
A callback after a threaded operation

181
181

Combination of named arguments and lambda expressions 182
The last lambda in an argument convention 183
Named code surrounding 185
Processing data structures using LINQ style 187
Java SAM support in Kotlin 187
Named Kotlin function types 190
Named parameters in function types 190
Type alias 191
Underscore for unused variables 194
Destructuring in lambda expressions 195
Inline functions 197
The noinline modifier 200
Non-local returns 201
Labeled returns in lambda expressions 204
Crossinline modifier 207
Inline properties 209
Function references 210
Summary 213
Chapter 6: Generics Are Your Friends 214
Generics 215
The need for generics 215
Type parameters versus type arguments 216
Generic constraints 217
Nullability 218
Variance 220
Variance modifiers 222
Use-site variance versus declaration-site variance 224
Collection variance 225
Variance producer/consumer limitation 228
Invariant constructor 230
Type erasure 230
Reified type parameters 232
The startActivity method 234
Star-projections 234
Type parameter naming convention 236
Summary 237
Chapter 7: Extension Functions and Properties 238

[iv]

Extension functions 239
Extension functions under the hood 241

No method overriding 242

Access to receiver elements 243
Extensions are resolved statically 244
Companion object extensions 244
Operator overloading using extension functions 245
Where should top-level extension functions be used? 246
Extension properties 247
Where should extension properties be used? 249
Member extension functions and properties 251
Types of receivers 254
Member extension functions and properties under the hood 256
Generic extension functions 257
Collection processing 259
The Kotlin collection type hierarchy 261

The map, filter, and flatMap functions 265

The forEach and onEach functions 267

The withindex and indexed variants 267

The sum, count, min, max, and sorted functions 268

Other stream processing functions 272
Examples of stream collection processing 272
Sequence 275
Function literals with a receiver 277
Kotlin standard library functions 278
The let function 280

Using the apply function for initialization 282

The also function 282

The run and with functions 283

The to function 285
Domain-specific language 285
Anko 292
Summary 293
Chapter 8: Delegates 294
Class delegation 295
The Delegation pattern 295
Decorator pattern 301
Property delegation 304
What are delegated properties? 304
Predefined delegates 307
The lazy function 307

The notNull function 313

[v]

The observable delegate 315

The vetoable delegate 317
Property delegation to the Map type 319
Custom delegates 322
View binging 325
Preference binding 327
Providing a delegate 331
Summary 333
Chapter 9: Making Your Marvel Gallery Application 334
Marvel Gallery 335
How to use this chapter 336
Making an empty project 339
Character gallery 343
View implementation 344

Network definition 357
Business logic implementation 366

Putting it all together 382
Character search 385
Character profile display 397
Summary 414
Index 415

[vil

Preface

Nowadays, the Android application development process is quite extensive. Over the last
few years, we have seen how various tools have evolved to make our lives easier. However,
one core element of the Android application development process hasn't changed much
over time, Java. The Android platform adapts to newer versions of Java, but to be able to
use them, we need to wait for a very long time until new Android devices reach proper
market propagation. Also, developing applications in Java comes with its own set of
challenges since Java is an old language with many design issues that can't be simply
resolved due to backward compatibility constraints.

Kotlin, on the other hand, is a new but stable language that can run on all Android devices
and solve many issues that Java cannot. It brings lots of proven programming concepts to
the Android development table. It is a great language that makes a developer's life much
easier and allows them to produce more secure, expressive, and concise code.

This book is an easy-to-follow, practical guide that will help you to speed up and improve
the Android development process using Kotlin. We will present many shortcuts and
improvements over Java and new ways of solving common problems. By the end of this
book, you will be familiar with Kotlin features and tools, and you will be able to develop an
Android application entirely in Kotlin.

What this book covers

Chapter 1, Beginning Your Kotlin Adventure, discusses the Kotlin language, its features, and
reasons to use it. We'll introduce the reader to the Kotlin platform and show how Kotlin fits
into the Android development process.

Chapter 2, Laying a Foundation, is largely devoted to the building blocks of Kotlin. It
presents various constructs, data types, and features that make Kotlin an enjoyable
language to work with.

Chapter 3, Playing with Functions, explains various ways to define and call a function. We

will also discuss function modifiers and look at possible locations where function can be
defined.

Preface

Chapter 4, Classes and Objects, discusses Kotlin features related to object-oriented
programming. You will learn about different types of class. We will also see features that
improve readability: property operator overloading and infix calls.

Chapter 5, Functions as First-Class Citizens, covers Kotlin support for functional
programming and functions as first-class citizens. We will take a closer look at lambdas,
higher order functions, and function types.

Chapter 6, Generics Are Your Friends, explores the subjects of generic classes, interfaces, and
functions. We will take a closer look at the Kotlin generic type system.

Chapter 7, Extension Functions and Properties, demonstrates how to add new behavior to an
existing class without using inheritance. We will also discuss simpler ways to deal with
collections and stream processing.

Chapter 8, Delegates, shows how Kotlin simplifies class delegation due to built-in language
support. We will see how to use it both by using built-in property delegates and by defining
custom ones.

Chapter 9, Making Your Marvel Gallery Application, utilizes most of the features discussed in
the book and uses them to build a fully functional Android application in Kotlin.

What you need for this book

To test and use the code presented in this book, you need only Android Studio installed.
Chapter 1, Beginning Your Kotlin Adventure, explains how a new project can be started and
how the examples presented here can be checked. It also describes how most of the code
presented here can be tested without any programs installed.

Who this book is for

To use this book, you should be familiar with two areas:

¢ You need to know Java and object-oriented programming concepts, including
objects, classes, constructors, interfaces, methods, getters, setters, and generic
types. So if this area does not ring a bell, it will be difficult to fully understand the
rest of this book. Start instead with an introductory Java book and return to this
book afterward.

[2]

Preface

¢ Though not mandatory, understanding the Android platform is desirable because
it will help you to understand the presented examples in more detail, and you'll
have a deeper understanding of the problems that are solved by Kotlin. If you are
an Android developer with 6-12 months of experience, or you have created few
Android applications, you'll be fine. On the other hand, if you feel comfortable
with OOP concepts but your knowledge of the Android platform is limited, you
will probably still be OK for most of the book.

Being open-minded and eager to learn new technologies will be very helpful. If something
makes you curious or catches your attention, feel free to test it and play with it while you
are reading this book

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "Let's look
at the range data type, which allows us to define end-inclusive ranges."

A block of code is set as follows:

val capitol = "England" to "London"
println (capitol.first) // Prints: England
println(capitol.second) // Prints: London

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

ext.kotlin_version = '1.1.3"

repositories {
maven { url 'https://maven.google.com' }
jcenter ()

}

Any command-line input or output is written as follows:

sdk install kotlin

[3]

Preface

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Set name, package, and
location for the new project. Remember to tick the Include Kotlin support option."

0 Warnings or important notes appear like this.
9 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.

[4]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

4. Enter the name of the book in the Search box.

5. Select the book for which you're looking to download the code files.

6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip [/ PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Android-Development-with-Kotlin. We also have
other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http: //www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

[5]

https://github.com/PacktPublishing/Android-Development-with-Kotlin
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Preface

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[6]

Beginning Your Kotlin
Adventure

Kotlin is great language that makes Android development easier, faster, and much more
pleasant. In this chapter, we will discuss what Kotlin really is and look at many Kotlin
examples that will help us build even better Android applications. Welcome to the amazing
journey of Kotlin, that will change the way you think about writing code and solving
common programming problems.

In this chapter, we will cover the following topics:

e First steps with Kotlin

Practical Kotlin examples

Creating new Kotlin project in Android Studio

Migrating existing Java project to Kotlin
The Kotlin standard library (stdlib)
Why Kotlin is a good choice to learn

Beginning Your Kotlin Adventure

Say hello to Kotlin

Kotlin is a modern, statically typed, Android-compatible language that fixes many Java
problems, such as null pointer exceptions or excessive code verbosity. Kotlin is a language
inspired by Swift, Scala, Groovy, C#, and many other languages. Kotlin was designed by
JetBrains professionals, based on analysis of both developers experiences, best usage
guidelines (most important are clean code and effective Java), and data about this language's
usage. Deep analysis of other programming languages has been done. Kotlin tries hard to
not repeat the mistakes from other languages and take advantage of their most useful
features. When working with Kotlin, we can really feel that this is a mature and well-
designed language.

Kotlin takes application development to a whole new level by improving code quality and
safety and boosting developer performance. Official Kotlin support for the Android
platform was announced by Google in 2017, but the Kotlin language has been here for some
time. It has a very active community and Kotlin adoption on the Android platform is
already growing quickly. We can describe Kotlin as a safe, expressive, concise, versatile,
and tool-friendly language that has great interoperability with Java and JavaScript. Let's
discuss these features:

e Safety: Kotlin offers safety features in terms of nullability and immutability.
Kotlin is statically typed, so the type of every expression is known at compile
time. The compiler can verify that whatever property or method we are trying to
access of a particular class instance actually exists. This should be familiar from
Java which is also statically typed, but unlike Java, Kotlin type system is much
more strict (safe). We have to explicitly tell the compiler whether the given
variable can store null values. This allows making the program fail at compile
time instead of throwing a Nul1PointerException at runtime:

MyApplication has stopped

c Open app again

[8]

Beginning Your Kotlin Adventure

¢ Easy debugging: Bugs can be detected much faster during the development
phase, instead of crashing the application after it is released and thus damaging
the user experience. Kotlin offers a convenient way to work with immutable data.
For example, it can distinguish mutable (read-write) and immutable (read-only)
collections by providing convenient interfaces (under the hood collections are still
mutable).

¢ Conciseness: Most of the Java verbosity was eliminated. We need less code to
achieve common tasks and thus the amount of boilerplate code is greatly
reduced, even comparing Kotlin to Java 8. As a result, the code is also easier to
read and understand (expressive).

e Interoperability: Kotlin is designed to seamlessly work side by side with Java
(cross-language project). The existing ecosystem of Java libraries and frameworks
works with Kotlin without any performance penalties. Many Java libraries even
Kotlin-specific versions that allow more idiomatic usage with Kotlin. Kotlin
classes can also be directly instantiated and transparently referenced from Java
code without any special semantics and vice versa. This allows us to incorporate
Kotlin into existing Android projects and use Kotlin easily together with Java (if
we want to).

e Versatility: We can target many platforms, including mobile applications
(Android), server-side applications (backend), desktop applications, frontend
code running in the browser, and even build systems (Gradle).

Any programming language is only as good as its tool support. Kotlin has outstanding
support for modern IDEs such as Android Studio, Intelli] Idea, and Eclipse. Common tasks
such as code assistance or refactoring are handled properly. The Kotlin team works hard to
make the Kotlin plugin better with every single release. Most of the bugs are quickly fixed
and many of the features requested by the community are implemented.

Kotlin bug tracker: https://youtrack.jetbrains.com/issues/KT
Kotlin slack channel: http://slack.kotlinlang.org/

Android application development becomes much more efficient and pleasant with Kotlin.
Kotlin is compatible with JDK 6, so applications created in Kotlin run safely even on old
Android devices that precede Android 4.

Kotlin aims to bring you the best of both worlds by combining concepts and elements from
both procedural and functional programming. It follows many guidelines as described in
the book, Effective Java, 2nd Edition, by Joshua Bloch, which is considered a must-read book
for every Java developer.

[9]

https://youtrack.jetbrains.com/issues/KT
http://slack.kotlinlang.org/
http://slack.kotlinlang.org/
http://slack.kotlinlang.org/
http://slack.kotlinlang.org/
http://slack.kotlinlang.org/
http://slack.kotlinlang.org/
http://slack.kotlinlang.org/
http://slack.kotlinlang.org/
http://slack.kotlinlang.org/
http://slack.kotlinlang.org/

Beginning Your Kotlin Adventure

On top of that, Kotlin is open sourced, so we can check out the project and be actively
involved in any aspect of the Kotlin project such as Kotlin plugins, compilers,
documentation, or the Kotlin language itself.

Awesome Kotlin examples

Kotlin is really easy to learn for Android developers because the syntax is similar to Java
and Kotlin often feels like a natural Java evolution. At the beginning, a developer usually
writes Kotlin code by having in mind habits from Java, but after a while, it is very easy to
move to more idiomatic Kotlin solutions. Let's look at some cool Kotlin features and see
where Kotlin may provide benefits by solving common programming tasks in an easier,
more concise, and more flexible way. We have tried to keep examples simple and self-
explanatory, but they utilize content from various parts of this book, so it's fine if they are
not fully understood at this point. The goal of this section is to focus on the possibilities and
present what can be achieved by using Kotlin. This section does not necessarily need to
fully describe how to achieve it. Let's start with a variable declaration:

var name = "Igor" // Inferred type is String
name = "Marcin"

Notice that Kotlin does not require semicolons. You can still use them, but they are optional.
We also don't need to specify a variable type because it's inferred from the context. Each
time, the compiler can figure out the type from the context; we don't have to explicitly
specify it. Kotlin is a strongly typed language, so each variable has an adequate type:

var name = "Igor"
name = 2 // Error, because name type is String

The variable has an inferred st ring type, so assigning a different value (integer) will result
in a compilation error. Now, let's see how Kotlin improves the way to add multiple strings
using string templates:

val name = "Marcin"
println ("My name is $name") // Prints: My name is Marcin

We need no more joining strings using the + character. In Kotlin, we can easily incorporate
single variable or even whole expressions, into string literals:

val name = "Igor"
println ("My name is ${name.toUpperCase()}")
// Prints: My name is IGOR

[10]

Beginning Your Kotlin Adventure

In Java, any variable can store null values. In Kotlin, strict null safety forces us to explicitly
mark each variables, that can store nullable values:

var a: String = "abc"
a = null // compilation error

var b: String? = "abc"
b = null // It is correct

By adding a question mark to a data type (string versus string?), we say that the variable
can be nullable (can store null references). If we don't mark the variable as nullable, we will
not be able to assign a nullable reference to it. Kotlin also allows us to deal with nullable
variables in proper ways. We can use the safe call operator to safely call methods on
potentially nullable variables:

savedInstanceState?.doSomething

The method dosomething will be invoked only if savedInstanceState has a non-null
value, otherwise the method call will be ignored. This is Kotlin's safe way to avoid null
pointer exceptions that are so common in Java.

Kotlin also has several new data types. Let's look at the Range data type that allows us to
define end inclusive ranges:

for (1 in 1..10) {
print (i)
} // 12345678910

Kotlin introduces the Pair data type that, combined with infix notation, allows us to hold a
common pair of values:

val capitol = "England" to "London"
println(capitol.first) // Prints: England
println(capitol.second) // Prints: London

We can deconstruct it into separate variables using destructive declarations:

val (country, city) = capitol
println(country) // Prints: England
println(city) // Prints: London

[11]

Beginning Your Kotlin Adventure

We can even iterate through a list of pairs:

val capitols = 1listOf ("England" to "London", "Poland" to "Warsaw")
for ((country, city) in capitols) {
println ("Capitol of S$country is S$city")

// Prints:
// Capitol of England is London
// Capitol of Poland is Warsaw

Alternatively, we can use the forEach function:

val capitols = 1listOf ("England" to "London", "Poland" to "Warsaw")
capitols.forEach { (country, city) ->

println("Capitol of S$country is S$city")
}

Note that Kotlin distinguishes between mutable and immutable collections by providing a
set of interfaces and helper methods (List versus MutableList, Set versus Set versus
MutableSet, Map versus MutableMap, and so on):

val list = 1listOf(1, 2, 3, 4, 5, 6) // Inferred type is List
val mutablelList = mutableListOf (1, 2, 3, 4, 5, 6)
// Inferred type 1is MutableList

Immutable collection means that the collection state can't change after initialization (we
can't add/remove items). Mutable collection (quite obviously) means that the state can
change.

With lambda expressions, we can use the Android framework build in a very concise way:

view.setOnClickListener {
println("Click")
t

The Kotlin standard library (stdlib) contains many functions that allow us to perform
operations on collections in a simple and concise way. We can easily perform stream
processing on lists:

val text = capitols.map { (country, _) -> country.toUpperCase() }
.onEach { println(it) }
.filter { it.startsWith("P") }
.joinToString (prefix = "Countries prefix P:")
// Prints: ENGLAND POLAND
println(text) // Prints: Countries prefix P: POLAND
.joinToString (prefix = "Countries prefix P:")

[12]

Beginning Your Kotlin Adventure

Notice that we don't have to pass parameters to a lambda. We can also define our own
lambdas that will allow us to write code in a completely new way. This lambda will allow
us to run a particular piece of code only in Android Marshmallow or newer:

inline fun supportsMarshmallow(code: () —-> Unit) {
1if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M)
code ()

}

//usage

supportsMarshmallow {
println("This code will only run on Android Nougat and newer")

}

We can make asynchronous requests easily and display responses on the main thread using
the doAsync function:

doAsync {
var result = runLongTask () // runs on background thread

uiThread {
toast (result) // run on main thread

}
Smart casts allow us to write code without performing redundant casting;:

if (x is String) {
print (x.length) // x is automatically casted to String

}

x.length //error, x is not casted to a String outside if block

if (x 'is String)
return

x.length // x is automatically casted to String

The Kotlin compiler knows that the variable x is of the type String after performing a
check, so it will automatically cast it to the st ring type, allowing it to call all methods and
access all properties of the st ring class without any explicit casts.

Sometimes, we have a simple function that returns the value of a single expression. In this
case, we can use a function with an expression body to shorten the syntax:

fun sum(a: Int, b: Int) = a + b
println (sum(2 + 4)) // Prints: 6

[13]

Beginning Your Kotlin Adventure

Using default arqument syntax, we can define the default value for each function argument

and call it in various ways:

fun printMessage (product:
String = "Anonymous") {

name:

String, amount: Int = O,

println ("S$name has $amount S$product")

printMessage ("oranges")
printMessage ("oranges",
printMessage ("oranges",
// Prints: Johny has 10

// Prints: Anonymous has 0 oranges

10) // Prints: Anonymous has 10 oranges
10, "Johny")

oranges

The only limitation is that we need to supply all arguments without default values. We can
also use named argument syntax to specify function arguments:

printMessage ("oranges", name = "Bill")

This also increases readability when invoking the function with multiple parameters in the
function call.

The data classes give a very easy way to define and operate on classes from the data model.

To define a proper data class, we will use the data modifier before the class name:
data class Ball(var size:Int, val color:String)

val ball = Ball (12,
println(ball) // Prints:

llRedll)

Ball (size=12, color=Red)

Notice that we have a really nice, human readable string representation of the class instance
and we do not need the new keyword to instantiate the class. We can also easily create a
custom copy of the class:

val ball =
println (ball)
val smallBall =

Ball (12, "Red")
// prints: Ball(size=12,
ball.copy(size = 3)

color=Red)

println(smallBall) // prints: Ball(size=3, color=Red)
smallBall.size++
println(smallBall) // prints: Ball(size=4, color=Red)

println(ball) // prints: Ball(size=12, color=Red)

The preceding constructs make working with immutable objects very easy and convenient.

[14]

Beginning Your Kotlin Adventure

One of the best features in Kotlin are extensions. They allow us to add new behavior (a
method or property) to an existing class without changing its implementation. Sometimes
when you work with a library or framework, you would like to have an extra method or
property for a certain class. Extensions are a great way to add those missing members.
Extensions reduce code verbosity and remove the need to use utility functions known from
Java (for example, the St ringUtils class). We can easily define extensions for custom
classes, third-party libraries, or even Android framework classes. First of all, ImageView
does not have the ability to load images from a network, so we can add the 1oadImage
extension method to load images using the Picasso library (an image loading library for
Android):

fun ImageView.loadUrl (url: String) {
Picasso.with (context) .load(url) .into (this)

}

//usage
imageView.loadUrl ("www.test.com\\imagel.png")

We can also add a simple method displaying toasts to the Activity class:

fun Context.toast (text:String) {
Toast .makeText (this, text, Toast.LENGTH_SHORT) .show ()

}

//usage (inside Activity class)
toast ("Hello")

There are many places where usage of extensions will make our code simpler and more
concise. Using Kotlin, we can fully take advantage of lambdas to simplify Kotlin code even
more.

Interfaces in Kotlin can have default implementations as long as they don't hold any state:

interface BasicData {
val email:String
val name:String
get () = email.substringBefore ("Q")

[15]

Beginning Your Kotlin Adventure

In Android, there are many applications where we want to delay object initialization until it
is needed (used). To solve this problem, we can use delegates:

val retrofit by lazy {
Retrofit.Builder ()
.baseUrl ("https://www.github.com")
.addConverterFactory (MoshiConverterFactory.create ())
.build()
}

Retrofit (a popular Android networking framework) property initialization will be delayed
until the value is accessed for the first time. Lazy initialization may result in faster Android
application startup times, since loading is deferred to when the variable is accessed. This is
a great way to initialize multiple objects inside a class, especially when not all of them are
always needed (for certain class usage scenarios, we may need only specific objects) or
when not every one of them is needed instantly after class creation.

All the presented examples are only a glimpse of what can be accomplished with Kotlin. We
will learn how to utilize the power of Kotlin throughout this book.

Dealing with Kotlin code

There are multiple ways of managing and running Kotlin code. We will mainly focus on
Android Studio and Kotlin Playground.

Kotlin Playground

The fastest way to try Kotlin code without the need to install any software is Kotlin
Playground (https://try.kotlinlang.org). We can run Kotlin code there using JavaScript
or JVM Kotlin implementations and easily switch between different Kotlin versions. All the
code examples from the book that does not require Android framework dependencies and
can be executed using Kotlin Playground.

[16]

https://try.kotlinlang.org
https://try.kotlinlang.org
https://try.kotlinlang.org
https://try.kotlinlang.org
https://try.kotlinlang.org
https://try.kotlinlang.org
https://try.kotlinlang.org
https://try.kotlinlang.org
https://try.kotlinlang.org

Beginning Your Kotlin Adventure

i LEARN COMMUNITY
otiin

f 8’ y ' JB 2% Shortcuts Q} Convert from Java 7 Fullscreen

Examples) Hello, world!) Simplest version , Simplest version.kt
4 Examples - h H k4 N
P

VM - >

Run

Save as Arguments

4 Hello, world!

Simplest version 1]/

&] Simplest version.kt 2 * We declare a package-level function main which returns Unit and takes
: 3 * an Array of strings as a parameter. Note that semicolons are optional

4| */

5

6

7

8

Reading a name from t...

fun main(args: Array<String>) {
println("Hello, world!")

Reading many names f...
A multi-language Hello }

An object-oriented Hello

v

Basic syntax walk-through

-

Destructuring declarations ar

v

Delegated properties

-

Callable references

v

Longer examples

-

Problems

v

Canvas

-

Kotlin Koans 0/42

v

Kotlin in Action

» Advent of Code (log in)

» My programs (login) ¥

Project content loaded] on-the-fly type checking
{ Problems view | Console | Generated classfiles J This demo is running on Kotlin | v.1.1.2 ~ ‘

The main function is the entry point of every Kotlin application. This function is called
when any application starts, so we must place code from the book examples in the body of
this method. We can place code directly or just place a call to another function containing
more Kotlin code:

fun main(args: Array<String>) {
println("Hello, world!")

[17]

Beginning Your Kotlin Adventure

Android applications have multiple entry points. The main function is
called implicitly by the Android framework, so we can't use it to run
Kotlin code on the Android platform.

Android Studio

All Android Studio's existing tools work with Kotlin code. We can easily use debugging,
lint checks, have proper code assistance, refactoring, and more. Most of the things work the

same way as for Java, so the biggest noticeable change is the Kotlin language syntax. All we
need to do is to configure Kotlin in the project.

Android applications have multiple entry points (different intents can start different
components in the application) and require Android framework dependencies. To run the
book examples, we need to extend the Activity class and place code there.

Configuring Kotlin for the project

Starting from Android Studio 3.0, full tooling support for Kotlin was added. Installation of

the Kotlin plugin is not required and Kotlin is integrated even deeper into the Android
development process.

To use Kotlin with Android Studio 2.x, we must manually install the Kotlin plugin. To
install it, we need to go to Android Studio | File | Settings | Plugins | Install JetBrains
plugin... | Kotlin and press the Install button:

®

(Q j‘ Plugins

SppeaiancelsiEshayicy ® Browse JetBrains Plugins

Keymap) o
Editor Q- Kot) (%) lRepository: All Vl [Category: All ~
Version Control - Kotly 717 163 hk k&1 Kotlin

Build, Execution, Deployment LANEURAEES one month ago i (dhstall

Languages & Frameworks *kk ke 717163 downloads

Tools Updated 03.05.2017 v1.1.2-release-S|

OthegSettings Kotlin language support
Vendor
JetBrains s.r.o.
http://www jetbrains.com
Plugin homepage
http://kotlinlang.org

[18]

Beginning Your Kotlin Adventure

To be able to use Kotlin, we need to configure Kotlin in our project. For existing Java
projects, we need to run the Configure Kotlin in project action (the shortcut in Windows is
Ctrl+Shift+A, and in macOS, it is command + shift + A) or use the corresponding Tools |
Kotlin | Configure Kotlin in Project menu item:

Build Run [l VCS Window Help

L] & Tasks & Contexts » P! m
Save File as Template...

@)
&

java cation = '€ MainActivity

)) Generate JavaDoc...
pity_main.xm

IDE Scripting Console

package " Firebase L;
G2 App Links Assistant

~/import {§i Android »
. Kotlin 4 Configure Kotlin in Project
public Tl NEIInCcIvLIty Sax - - o .
Configure Kotlin (JavaScript) in Project

@override Configure Kotlin Plugin Updates
protected void onCreate (E Show Kotlin Bytecode
super.onCreate (savedI

i Decompile Kotlin To Java
setContentView (R.layc

Kotlin Internal Mode
) Create backup for debugging Kotlin incremental compilation
& Kotlin REPL

Then, select Android with Gradle:

” Choose Configurator||

Android with Gradle

Gradle

Finally, we need to select the required modules and the proper Kotlin version:

® Configure Kotlin in Project X

OAII modules

() single module: ‘app n
Kotlin compiler and runtime version: ‘ 1.1.2-4 n

[o IRTSREETTE

[19]

Beginning Your Kotlin Adventure

The preceding configuration scenario also applies to all existing Android projects that were
initially created in Java. Starting from Android Studio 3.0, we can also check the Include
Kotlin support checkbox while creating a new project:

@ Create New Project

i Create Android Project

" Android Studio

Configure your new project

Application name: ‘ My Application

Company domain: ‘ test.com

Package name: com.test.myapplication

D Include C++ support
PP

Include Kotlin support

In both scenarios, the Configure Kotlin in project command updates the root
build.gradle file and the build. gradle files corresponding to the module(s) by adding
Kotlin dependencies. It also adds the Kotlin plugin to the Android module. At the time of
writing this book release version of Android Studio 3 is not yet available, but we can review
the build script from the pre-release version:

//build.gradle file in project root folder
buildscript {
ext.kotlin_version = '1.1"

repositories {
google ()
jcenter ()
}
dependencies {
classpath 'com.android.tools.build:gradle:3.0.0-alpha9'
classpath "org.jetbrains.kotlin:kotlin-gradle-—
plugin:$kotlin_version"

[20]

Beginning Your Kotlin Adventure

//build.gradle file in the selected modules
apply plugin: 'com.android.application'
apply plugin: 'kotlin-android'

apply plugin: 'kotlin-android-extensions'

dependencies {

implementation 'com.android.support.constraint:constraint-
layout:1.0.2"

Prior to the Android plugin for Gradle 3.x (delivered with Android Studio
3.0), compile dependency configuration was used instead of implementation.

To update the Kotlin version (let us say in the future), we need to change the value of the
kotlin_version variable in the build.gradle file (project root folder). Changes in
Gradle files mean that the project must be synchronized, so Gradle can update its
configuration and download all the required dependencies:

| Gradle files have changed since last project sync. A project sync may be necessary for the IDE to work properly. Sync Now

Using Kotlin in a new Android project

For new Kotlin projects created in Android Studio 3.x, the main activity will be already
defined in Kotlin, so that we can start writing Kotlin code right away:

(¢ MainActivity.kt

package com.test.myapplication
import ...
class MainActivity : AppCompatActivity() {
OT override fun onCreate (savedInstanceState: Bundle?) {

super.onCreate (savedInstanceState)
setContentView (R.layout.activity main)

[21]

Beginning Your Kotlin Adventure

Adding a new Kotlin file is similar to adding a Java file. Simply right-click on a package and
select new | Kotlin File/Class:

& Android - © = - 1° | G MainActivitykt <

= app
manifests 1 package com.test.myapplication

ﬁAndroidManifest.xml 2

java +import ...

com.test.myapplication) . L - o
G& = MainARRNEW L& '€ Java Class

com.testmyz Link C++ Project with Gradle Kotlin File/Class

com.testmyz M cut Ctrl+X <> Android resource file

The reason why the IDE says Kotlin File/Class and not simply Kotlin class,
which is analogous to Java class, is that we can have more members
defined inside a single file. We will discuss this in more detail in chapter

2, Laying a Foundation.

Notice that Kotlin source files can be located inside the java source folder. We can create a
new source folder for Kotlin, but it is not required:

- MyApplication ' | app src test Jjava
i51 Android v

= app
manifests

com.test.myapplication

¢ = MainActivity

com.testmyapplication (androidTest)

s 1: Project ‘

com.test.myapplication (test)

(:Z: Structure

res

& Gradle Scripts

res

Running and debugging a project is exactly the same as in Java and does not require any
additional steps besides configuring Kotlin in the project:

[22]

Beginning Your Kotlin Adventure

Build Iools VCS Window Help

& ’ Run ‘app’ F10
Apply Changes: No active 'app’ launch

ey |

b 1 - 4% Debug ‘app’ Fo
i Run 'app' with Coverage i

P Run.. Alt+F10

1% Debug.. Alt+F9

Starting from Android Studio 3.0, various Android templates will also allow us to select a
language. This is the new Configure Activity wizard:

® New Android Activity

] Configure Activity

" Android Studio

Creates a new basic activity with an app bar.

Activity Name: ’ Basketltem
Layout Name: ‘ activity_basket_item
Title: ‘ Basketltem

(] Launcher Activity

D Use a Fragment

Hierarchical Parent: ‘

Package name: ‘ com.test.myapplication
Source Language: "Kotlin
Target Source Set: ‘ main

Java to Kotlin converter (J2K)

Migration of existing Java projects is also quite easy, because we can use Java and Kotlin
side by side in the same project. There are also ways to convert existing Java code into
Kotlin code by using the Java to Kotlin converter (J2K).

[23]

Beginning Your Kotlin Adventure

The first way is to convert whole Java files into Kotlin files using the convert Java File to
Kotlin command (the keyboard shortcut in Windows is Alt + Shift + Ctrl + K and in macOS
is option + shift + command + K), and this works very well. The second way is to paste Java
code into an existing Kotlin file and the code will also be converted (a dialog window will
appear with a conversion proposition). This may be very helpful when learning Kotlin.

If we don't know how to write a particular piece of code in Kotlin, we can write it in Java,
then simply copy to the clipboard and paste it into the Kotlin file. Converted code will not
be the most idiomatic version of Kotlin, but it will work. The IDE will display various
intentions to convert the code even more and improve its quality. Before conversion, we
need to make sure that the Java code is valid, because conversion tools are very sensitive
and the process will fail even if a single semicolon is missing. The J2K converter combined
with Java interoperability allows Kotlin be introduced gradually into the existing project
(for example, to convert a single class at a time).

Alternative ways to run Kotlin code

Android Studio offers an alternative way of running Kotlin code without the need to run
the Android application. This is useful when you want to quickly test some Kotlin code
separately from the long Android compilation and deployment process.

The way to run Kotlin code is to use the Kotlin Read Eval Print Loop (REPL). REPL is a
simple language shell that reads single user input, evaluates it, and prints the result:

I[d Run fEelIS VCS Window Help

& Tasks & Contexts P Testkt v | P £t 0 R
Save File as Template...

java lication = g Testkt
X Generate JavaDoc...
IDE Scripting Console
packa ” Firebase ion
G App Links Assistant
% Android »

fun mjeg Kotlin 4 Configure Kotlin in Project

) Configure Kotlin (JavaScript) in Proje|
Configure Kotlin Plugin Updates
Show Kotlin Bytecode

Kotlin Internal Mode

Create backup for debugging Kotlin

= Kotlin REPL

[24]

Beginning Your Kotlin Adventure

REPL looks like the command-line, but it will provide us with all the required code hints
and will give us access to various structures defined inside the project (classes, interfaces,
top-level functions, and so on):

Run eKotlin REPL (in module app)
cb "C:\Program Files\Android\Android Studio 3\jre\bin\java" ...
Welcome to Kotlin version 1.1.2-4 (JRE 1.8.0 1l12-release-736)
@ > Type :help for help, :quit for quit
5%
£z > val color = "Blue"
= println(color)
3
@ Blue
lﬁl
e |
u

g
5]
>
i
Nl
w

P4 Run “2TODO i 6: Logcat Android Profiler [Terminal = 0: Messages

The biggest advantage of REPL is its speed. We can test Kotlin code really quickly.

Kotlin under the hood

We will focus mainly on Android, but keep in mind that Kotlin can be compiled to multiple
platforms. Kotlin code can be compiled to Java bytecode and then to Dalvik bytecode. Here is
the simplified version of the Kotlin build process for the Android platform:

A file with a . java extension contains Java code
A file with a . kt extension contains Kotlin code

A file with a . class extension contains Java bytecode

A file with a . dex extension contains Dalvik bytecode
A file with a . apk extension contains the AndroidManifest file, resources, and
.dex file

[25]

Beginning Your Kotlin Adventure

For pure Kotlin projects, only the Kotlin compiler will be used, but Kotlin also supports
cross-language projects, where we can use Kotlin together with Java in the same Android
project. In such cases, both compilers are used to compile the Android application and the
result will be merged at the class level.

The Kotlin standard library

The Kotlin standard library (stdlib) is a very small library that is distributed together with
Kotlin. It is required to run applications written in Kotlin and it is added automatically to
our application during the build process.

In Kotlin 1.1, kot 1in-runt ime was required to run applications written
in Kotlin. In fact, in Kotlin 1.1 there were two artifacts (kot1in-runtime
and kot lin-stdlib) that shared a lot of Kotlin packages. To reduce the
amount of confusion, both the artifacts will be merged into a single artifact
(kotlin-stdlib) in the upcoming 1.2 version of Kotlin. Starting from
Kotlin 1.2, kot1in-stdlib is required to run applications written in
Kotlin.

The Kotlin standard library provides essential elements required for everyday work with
Kotlin. These include:

e Data types such as arrays, collections, lists, ranges, and so on
¢ Extensions

Higher-order functions

Various utilities for working with strings and char sequences

Extensions for JDK classes, making it convenient to work with files, 10, and
threading

More reasons to use Kotlin

Kotlin has strong commercial support from JetBrains, a company that delivers very popular
IDEs for many popular programming languages (Android Studio is based on JetBrains
Intelli] IDEA). JetBrains wanted to improve the quality of their code and team performance,
so they needed a language that would solve all the Java issues and provide seamless
interoperability with Java. None of the other JVM languages meet those requirements, so
JetBrains finally decided to create their own language and started the Kotlin project.
Nowadays, Kotlin is used in their flagship products. Some use Kotlin together with Java
while others are pure Kotlin products.

[26]

Beginning Your Kotlin Adventure

Kotlin is quite a mature language. In fact, its development started many years before
Google announced official Android support (the first commit dates back to 2010-11-08):

Start Open Released Official Android
Development sourced 1.01-1.07 suppot announced
m 2011 mm 2016 Q2-Q4 2017 1 2017 Q2
JetBrains unveiled Released 1.0 Released 1.1
Project Kotlin

The initial name of the language was Jet. At some point, the JetBrains team
decided to rename it to Kotlin. The name comes from Kotlin Island near St.
Petersburg and is analogous to Java, which was named after an
Indonesian island.

After the version 1.0 release in 2016, more and more companies started to support the
Kotlin project. Gradle added support for Kotlin into building scripts; Square, the biggest
creator of Android libraries posted that they strongly support Kotlin; and finally, Google
announced official Kotlin support for the Android platform. This means that every tool that
will be released by the Android team will be compatible not only with Java but also with
Kotlin. Google and JetBrains have begun a partnership to create a nonprofit foundation for
Kotlin, responsible for future language maintenance and development. All of this will
greatly increase the number of companies that use Kotlin in their projects.

Kotlin is also similar to Apple's Swift programming language. In fact, such is the
resemblance that some articles focus on differences, not similarities. Learning Kotlin will be
very helpful for developers eager to develop applications for Android and iOS. There are
also plans to port Kotlin to iOS (Kotlin/Native), so maybe we don't have to learn Swift after
all. Full stack development is also possible in Kotlin, so we can develop server-side
applications and frontend clients that share the same data model as mobile clients.

[27]

Beginning Your Kotlin Adventure

Summary

We've discussed how the Kotlin language fits into Android development and how we can
incorporate Kotlin into new and existing projects. We have seen useful examples where
Kotlin simplified the code and made it much safer. There are still many interesting things to
discover.

In the next chapter, we will learn about Kotlin building blocks and lay a foundation to
develop Android applications using Kotlin.

[28]

Laying a Foundation

This chapter is largely devoted to the fundamental building blocks that are core elements of
the Kotlin programming language. Each one may seem insignificant by itself, but combined
together, they create really powerful language constructs. We will discuss the Kotlin type
system that introduces strict null safety and smart casts. Also, we will see a few new
operators in the JVM world, and many improvements compared to Java. We will also
present new ways to handle application flows and deal with equality in a unified way.

In this chapter, we will cover the following topics:

e Variables, values, and constants
¢ Type inference

e Strict null safety

e Smart casts

Kotlin data types
Control structures

¢ Exceptions handling

Laying a Foundation

Variables

In Kotlin, we have two types of variables: var and val. The first one, var, is a mutable
reference (read-write) that can be updated after initialization. The var keyword is used to
define a variable in Kotlin. It is equivalent to a normal (non-final) Java variable. If our
variable needs to change at some point, we should declare it using the var keyword. Let's
look at an example of a variable declaration:

fun main(args: Array<String>) {
var fruit: String = T"orange" //1
fruit = "banana" //2

}

1. Create a fruit variable and initialize it with the vale of the orange variable.
2. Reinitialize the fruit variable with the value of the banana variable.

The second type of variable is a read-only reference. This type of variable cannot be
reassigned after initialization.

The val keyword can contain a custom getter, so technically it can return
different objects on each access. In other words, we can't guarantee that
the reference to the underlying object is immutable:

val random: Int
get () = Random () .nextInt ()

Custom getters will be discussed in more detail in chapter 4, Classes and
Objects.

The val keyword is the equivalent of a Java variable with the final modifier. Using
immutable variables is useful, because it makes sure that the variable will never be updated
by mistake. The concept of immutability is also helpful for working with multiple threads
without worrying about proper data synchronization. To declare immutable variables, we
will use the val keyword:

fun main(args: Array<String>) {
val fruit: String= "orange"//1
fruit = "banana" //2 Error

}

1. Create the fruit variable and initialize it with the value of the orange string.

2. The compiler will throw an error, because the fruit variable was already
initialized.

[30]

Laying a Foundation

Kotlin also allows us to define variables and functions at the level of the
file. We will discuss this further in chapter 3, Playing with Functions.

Notice that the type of the variable reference (var, val) relates to the reference itself, not the
properties of the referenced object. This means that when using a read-only reference (val),
we will not be able to change the reference that is pointing to a particular object instance
(we will not be able to reassign variable values), but we will still be able to modify
properties of referenced objects. Let's see it in action using an array:

val list = mutableListOf ("a","b","c") //1
list = mutableListOf ("d", "e") //2 Error
list.remove ("a") //3

1. Initialize a mutable list.

2. The compiler will throw an error, because a value reference cannot be changed
(reassigned).

3. The compiler will allow us to modify the content of the list.

The val keyword cannot guarantee that the underlying object is immutable.

If we really want to make sure that the object will not be modified, we must use an
immutable reference and an immutable object. Fortunately, Kotlin's standard library
contains an immutable equivalent of any collection interface (List versus MutableList,
Map versus MutableMap, and so on) and the same is true for helper functions that are used
to create instances of a particular collection:

Variable/value definition Reference can change | Object state can change
val = 1listOf(1,2,3) No No
val = mutablelListOf (1,2,3) |No Yes
var = 1istOf (1,2,3) Yes No
var = mutableListOf (1,2, 3) |Yes Yes

[31]

Laying a Foundation

Type inference

As we saw in previous examples, unlike Java, the Kotlin type is defined after the variable
name:

var title: String

At first glance, this may look strange to Java developers, but this construct is a building
block of a very important feature of Kotlin called type inference. Type inference means that
the compiler can infer type from context (the value of an expression assigned to a variable).
When variable declaration and initialization is performed together (single line), we can omit
the type declaration. Let's look at the following variable definition:

var title: String = "Kotlin"

The type of the title variable is String, but do we really need an implicit type
declaration to determine variable type? On the right side of the expression, we have a
string, Kot 1in and we are assigning it to a variable, t it 1e, defined on the left-hand side of
the expression.

We specified a variable type as St ring, but it was obvious, because this is the same type as
the type of assigned expression (Kot 1in). Fortunately, this fact is also obvious for the Kotlin
compiler, so we can omit type when declaring a variable, because the compiler will try to
determine the best type for the variable from the current context:

var title = "Kotlin"

Keep in mind that type declaration is omitted, but the type of variable is still implicitly set
to string, because Kotlin is a strongly typed language. That's why both of the preceding
declarations are the same, and Kotlin compiler will still be able to properly validate all
future usages of the variable. Here is an example:

var title = "Kotlin"
title = 12 // 1, Error

1. The inferred type was st ring and we are trying to assign Int.

If we want to assign Int (value 12) to the title variable then we need to specify title type to
one thatis a string and Int common type. The closest one, up in the type hierarchy, is
Any:

var title: Any = "Kotlin"
title = 12

[32]

Laying a Foundation

The Any type is an equivalent of the Java object type. It is the root of the
Kotlin type hierarchy. All classes in Kotlin explicitly inherit from type Any,
even primitive types such as String or Int.

Any

String Int

Any defines three methods: equals, toString, and hashCode. The
Kotlin standard library contains a few extensions for this type. We will
discuss extensions in chapter 7, Extension Functions and Properties.

As we can see, type inference is not limited to primitive values. Let's look at inferring types
directly from functions:

var total = sum (10, 20)

In the preceding example, the inferred type will be the same as the type returned by the
function. We may guess that it will be Int, but it may also be a Double, Float, or some
other type. If it's not obvious from the context what type will be inferred, we can use place
caret on the variable name and run the Android Studio expression type command (for
Windows, it is Shift + Ctrl + P, and for macOS, it is arrow key + control + P). This will display
the variable type in the tooltip, as follows:

L]

al total = sum (10, 20)

Type inference works also for generic types:

var persons = listOf (personlInstancel, personlnstance2)
// Inferred type: List<Person> ()

[33]

Laying a Foundation

Assuming that we pass only instances of the Person class, the inferred type will be
List<Person>. The 1ist0Of method is a helper function defined in the Kotlin standard
library that allow us to create collections. We will discuss this subject in chapter 7,
Extension Functions and Properties. Let's look at more advanced examples that uses the Kotlin
standard library type called Pair, which contains a pair composed of two values:

var pair = "Everest" to 8848 // Inferred type: Pair<String, Int>

In the preceding example, a pair instance is created using the infix function, which will be
discussed in chapter 4, Classes and Objects, but for now all we need to know is that those
two declarations return the same type of the Pair object:

var pair = "Everest" to 8848
// Create pair using to infix method
var pair2 = Pair("Everest", 8848)

// Create Pair using constructor

Type inference works also for more complex scenarios such as inferring type from an
inferred type. Let's use the Kotlin standard library's mapof function and infix the to
method of the Pair class to define map. The first item in the pair will be used to infer the
map key type; the second will be used to infer the value type:

var map = mapOf ("Mount Everest" to 8848, "K2" to 4017)
// Inferred type: Map<String, Int>

Generic type of Map<String, Int> isinferred from type of Pair<String, Int>, which
is inferred from type of parameters passed to the Pair constructor. We may wonder what
happens if inferred type of pairs used to create map differs? The first pair is Pair<String,
Int> and second is Pair<String, String>:

var map = mapOf ("Mount Everest" to 8848, "K2" to "4017")
// Inferred type: Map<String, Any>

In the preceding scenario, the Kotlin compiler will try to infer a common type for all pairs.
The first parameter in both pairs is String (Mount Everest, K2), so naturally String will
be inferred here. The second parameter of each pair differs (Int for the first pair, String
for the second pair), so Kotlin needs to find the closest common type. The Any type is
chosen, because this is the closest common type in the upstream type hierarchy:

[34]

Laying a Foundation

Any

String Int

As we can see, type inference does a great job in most cases, but we can still choose to
explicitly define a data type if we want, for example, if we want different variable types:

var age: Int = 18

When dealing with integers, the Int type is always the default choice, but we can still
explicitly define different types, for example, Short, to save some precious Android
memory:

var age: Short = 18

On the other hand, if we need to store larger values, we can define the type of the age
variable as Long. We can use explicit type declaration as previously, or use a literal constant:

var age: Long = 18 // Explicitly define variable type
var age = 18L
// Use literal constant to specify value type

Those two declarations are equal, and both of them will create a variable of type Long.

For now, we know that there are more cases in code where the type declaration can be
omitted to make code syntax more concise. There are, however, some situations where the
Kotlin compiler will not be able to infer type due to a lack of information in context. For
example, a simple declaration without assignment will make type inference impossible:

val title // Error

In the preceding example, the variable will be initialized later, so there is no way to
determine its type. That's why type must be explicitly specified. The general rule is that if
the type of expression is known for the compiler, then type can be inferred. Otherwise, it
must be explicitly specified. Kotlin plugin in Android Studio does a great job because it
knows exactly where type cannot be inferred and then it is highlighted as an error. This
allows us to display proper error messages instantly in the IDE when writing the code,
without the need to complete the application.

[35]

Laying a Foundation

Strict null safety

According to Agile Software Assessment (http://p3.snf.ch/Project-144126) research, a
missing null check is the most frequent pattern of bugs in Java systems. The biggest source
of errors in Java is NullPointerExceptions. It's so big that speaking at a conference in
2009, Sir Tony Hoare apologized for inventing the null reference, calling it a billion-dollar
nﬁsﬂmz(https://en.wikipedia.org/wiki/Tony_Hoare)

To avoid NullPointerException, we need to write defensive code that checks if an object
is null before using it. Many modern programming languages, including Kotlin, made steps
to convert runtime errors into compile time errors to improve programming language
safety. One of the ways to do it in Kotlin is by adding nullability safeness mechanisms to
language type systems. This is possible because the Kotlin type system distinguishes
between references that can hold null (nullable references) and those that cannot (non-
nullable references). This single feature of Kotlin allows us to detect many errors related to
NullPointerException at very early stages of development. The compiler, together with
the IDE, will prevent many NullPointerException. In many cases compilation will fail
instead of the application failing at runtime.

Strict null safety is part of the Kotlin type system. By default, regular types cannot be null

(can't store null references), unless they are explicitly allowed. To store null references, we
must mark the variable as nullable (allow it to store null references) by adding a question

mark suffix to the variable type declaration. Here is an example:

val age: Int = null //1, Error
val name: String? = null //2

1. The compiler will throw an error, because this type does not allow null.

2. The compiler will allow null assignment, because type is marked as nullable
using the question mark suffix.

We are not allowed to call a method on a potentially nullable object, unless a nullity check is
performed before a call:

val name: String? = null
VA
name.toUpperCase () // error, this reference may be null

[36]

http://p3.snf.ch/Project-144126
http://p3.snf.ch/Project-144126
http://p3.snf.ch/Project-144126
http://p3.snf.ch/Project-144126
http://p3.snf.ch/Project-144126
http://p3.snf.ch/Project-144126
http://p3.snf.ch/Project-144126
http://p3.snf.ch/Project-144126
http://p3.snf.ch/Project-144126
http://p3.snf.ch/Project-144126
http://p3.snf.ch/Project-144126
http://p3.snf.ch/Project-144126
http://p3.snf.ch/Project-144126
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare

Laying a Foundation

We will learn how to deal with this problem in the next section. Every non-nullable type in
Kotlin has its nullable type equivalent: Int has Int?, String has String?, and so on. The
same rule applies for all classes in the Android framework (View has View?), third-party
libraries (OkHttpClient has OkHttpClient?), and all custom classes defined by
developers (MyCustomClass has MyCustomClass?). This means that every non-generic
class can be used to define two kinds of type, nullable and non-nullable. A non-nullable
type is also a subtype of its nullable equivalent. For example, vehicle, as well as being a
subtype of Vehicle?, is also a subtype of Any:

Any » Any?
h r
Vehicle » Vehicle?
%. ! \
Car Truck Car? Truck?
\ —— /
A
Nothing

The Nothing type is an empty type (uninhabited type), which can't have an instance. We
will discuss it in more detail in chapter 3, Playing with Functions. This type hierarchy is the
reason why we can assign a non-null object (Vehicle) in a variable typed as nullable
(Vehicle?), but we cannot assign a nullable object (Vehicle?) in a non-null variable
(Vehicle):

var nullableVehicle: Vehicle?
var vehicle: Vehicle

nullableVehicle = vehicle // 1
vehicle = nullableVehicle // 2, Error

1. Assignment possible.
2. Error because nullableVehicle may be a null.

[371]

Laying a Foundation

We will discuss ways of dealing with nullable types in the following sections. Now let's get
back to type definitions. When defining generic types, there are multiple possibilities for
defining nullability, so let's examine various collection types by comparing different
declarations for a generic ArrayList containing items of type Int. Here is a table that
presents the key differences:

Type declaration List itself can be null | Element can be null
ArrayList<Int> No No
ArrayList<Int>? |Yes No
ArrayList<Int?> |No Yes
ArrayList<Int?>7?|Yes Yes

It's important to understand different ways to specify null type declarations, because the
Kotlin compiler enforces it to avoid NullPointerExceptions. This means that the
compiler enforces a nullity check before accessing any reference that potentially can be null.
Now let's examine a common Android/Java error in the Activity class's onCreate
method:

//Java

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
savedInstanceState.getBoolean ("locked");

}

In Java, this code will compile fine and accessing null objects will result in an application
crash at runtime throwing NullPointerException. Now let's examine the Kotlin version
of the same method:

override fun onCreate (savedInstanceState: Bundle?) { //1
super.onCreate (savedInstanceState)
savedInstanceState.getBoolean ("key") //2 Error

}

1. savedInstanceState defined as nullable Bundle?.
2. The compiler will throw an error.

[38]

Laying a Foundation

The savedInstanceState type is a platform type that can be interpreted by Kotlin as
nullable or non-nullable. We will discuss platform types in the following sections, but for
now we will define savedInstanceState as a nullable type. We are doing so because we
know that nul1l will be passed when an Activity is created for the first time. An instance of
Bundle will only be passed when an Activity is recreated using a saved instance state.

We will discuss functions in chapter 3, Playing with Functions, but for
now, we can already see that the syntax for declaring functions in Kotlin is
quite similar to Java.

The most obvious way to fix the preceding error in Kotlin is to check for nullity exactly the
same way as in Java:

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)

}

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)

val locked: Boolean
if (savedInstanceState != null)
locked = savedInstanceState.getBoolean ("locked")
else
locked = false
}

The preceding construct presents some boilerplate code, because null-checking is a pretty
common operation in Java development (especially in the Android framework, where most
elements are nullable). Fortunately, Kotlin allows a few simpler solutions to deal with
nullable variables. The first one is the safe call operator.

Safe call

The safe call operator is simply a question mark followed by a dot. It's important to
understand that the safe cast operator will always return a value. If the left-hand side of the
operator is null, then it will return null, otherwise it will return the result of the right-hand
side expression:

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
val locked: Boolean? = savedInstanceState?.getBoolean ("locked")

[39]

Laying a Foundation

If savedInstanceStateis null, then null will be returned, otherwise the result of
evaluating a savedInstanceState?.getBoolean ("locked") expression will be
returned. Keep in mind that a nullable reference call always returns nullable, so the result of
the whole expression is a nullable Boolean 2. If we want to make sure we will get non-
nullable Boolean, we can combine the safe call operator with the elvis operator discussed in
the next section.

Multiple calls to the save call operator can be chained together to avoid a nested i f
expression or complex conditions like this:

//Java idiomatic - multiple checks

val quiz: Quiz = Quiz()
YV
val correct: Boolean?
if (quiz.currentQuestion != null) {
if (quiz.currentQuestion.answer != null) |

//do something
}
}

//Kotlin idiomatic - multiple calls of save call operator

val quiz: Quiz = Quiz()
Y
val correct = quiz.currentQuestion?.answer?.correct

// Inferred type Boolean?

The preceding chain works like this: -correct will be accessed only if the answer value is
not null and answer is accessed only if the currentQuestion value is not null. As a result,
the expression will return the value returned by correct property or null if any object in
the safe call chain is null.

Elvis operator

The elvis operator is represented by a question mark followed by a colon (?:) and has a
syntax such as the following:

first operand ?: second operand

The elvis operator works as follows: if first operand is not null, then this operand will be
returned, otherwise second operand will be returned. The elvis operator allows us to
write very concise code.

[40]

Laying a Foundation

We can apply the elvis operator to our example to retrieve the variable 1ocked, which will
always be non-nullable:

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
val locked: Boolean = savedInstanceState?.getBoolean ("locked") ?: false

}

In the preceding example, the elvis operator will return a value of

the savedInstanceState?.getBoolean ("locked") expression if
savedInstanceState is not null, otherwise it will return false. This way we can make
sure that the 1ocked variable will always have a non-nullable value. Thanks to the elvis
operator, we can define a default value. Also, note that the right-hand side expression is
evaluated only if the left-hand side is null. It is then providing a default value that will be
used when the expression is nullable. Getting back to our quiz example from the previous
section, we can easily modify the code to always return a non-nullable value:

val correct = quiz.currentQuestion?.answer?.correct ?: false

As the result, the expression will return the value returned by the correct property or
false if any object in the safe call chain is null. This means that the value will always be
returned, so non-nullable Boolean type is inferred.

The operator name comes from the famous American singer-songwriter
Elvis Presley, because his hairstyle is similar to a question mark:

Source: http://dobsondev.com/2014/06/06/the-elvis-operator/

Not-null assertion

Another tool to deal with nullity is the not-null assertion operator. It is represented by a
double exclamation mark (! !). This operator explicitly casts nullable variables to non-
nullable variables. Here is a usage example:

var y: String? = "foo"
var size: Int = y!!.length

[41]

http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/
http://dobsondev.com/2014/06/06/the-elvis-operator/

Laying a Foundation

Normally, we would not be able to assign a value from a nullable property length to a
non-nullable variable size. However, as developers, we can assure the compiler that this
nullable variable will have a value here. If we are right, our application will work correctly,
but if we are wrong, and the variable has a null value, the application will throw
NullPointerException. Let's examine our activity method onCreate ()

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
val locked: Boolean = savedInstanceState!!.getBoolean ("locked")

}

The preceding code will compile, but will this code work correctly? As we said before,
when restoring an activity instance, savedInstanceState will be passed to the onCreate
method, so this code will work without exceptions. However, when creating an activity
instance, the savedInstancestate will be null (there is no previous instance to restore), so
NullPointerException will be thrown at runtime. This behavior is similar to Java, but
the main difference is that in Java accessing potentially nullable objects without a nullity
check is the default behavior, while in Kotlin we have to force it; otherwise, we will get a
compilation error.

There are only few correct applications of this operator, so when you use it or see it in code,
think about it as a potential danger or warning. It is suggested that not-null assertion
should be used rarely, and in most cases should be replaced with safe call or smart cast.

The article for combating non-null assertions presents a few useful
examples where the not-null assertion operator is replaced with other, safe
Kotlin constructs: http://bit.1ly/2xg5JXt.

In this case, there is no point in using the not-null assertion operator because we can solve
our problem in a safer way using the let function.

The let function

Another tool to deal with nullable variables is the 1et function. This is actually not an
operator, nor a language special construct. It is a function defined in the Kotlin standard
library. Let's see the syntax of 1et combined with the safe call operator:

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)

savedInstanceState?.let {
println(it.getBoolean ("isLocked")) // 1

[42]

http://bit.ly/2xg5JXt
http://bit.ly/2xg5JXt
http://bit.ly/2xg5JXt
http://bit.ly/2xg5JXt
http://bit.ly/2xg5JXt
http://bit.ly/2xg5JXt
http://bit.ly/2xg5JXt
http://bit.ly/2xg5JXt
http://bit.ly/2xg5JXt

Laying a Foundation

}

1. savedInstanceState inside the let function can be accessed using the it
variable.

As mentioned before, the right-hand expression of the safe call operator will be only
evaluated if the left-hand side is not null. In this case, the right-hand side is a 1et function
that takes another function (lambda) as a parameter. Code defined in the block after let
will be executed if savedInstanceState is not null. We will learn more about it and how
to define such functions in chapter 7, Extension Functions and Properties.

Nullability and Java

We know that Kotlin requires us to explicitly define references that can hold null values.
Java on the other hand is much more lenient about nullability, so we may wonder how
Kotlin handles types coming from Java (basically the whole Android SDK and libraries
written in Java). Whenever possible, the Kotlin compiler will determine type nullability
from the code and represent types as actual nullable or non-nullable types using nullability
annotations.

The Kotlin compiler supports several flavors of nullability annotations,
including:

e Android (com.android.annotations and
android.support.annotations)

e JetBrains (@Nullable and @NotNull from the
org.jetbrains.annotations package)

e JSR-305 (Javax.annotation)

We can find the full list in the Kotlin compiler source code (https://
github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.

Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt).

We have seen this previously in Activity's onCreate method, where the
savedInstanceState type was explicitly set to the nullable type Bundle?z:

override fun onCreate (savedInstanceState: Bundle?) {

}

[43]

https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt
https://github.com/JetBrains/kotlin/blob/master/core/descriptor.loader.Java/src/org/jetbrains/kotlin/load/Java/JvmAnnotationNames.kt

Laying a Foundation

There are, however, many situations where it is not possible to determine variable
nullability. All variables coming from Java can be null, except ones annotated as non-
nullable. We could treat all of them as nullable and check before each access, but this would
be impractical. As a solution to this problem, Kotlin introduced the concept of platform types.
These are types that comes from Java types with relaxed null checks, meaning that each
platform type may be null or not.

Although we cannot declare platform types by ourselves, this special syntax exists because
the compiler and Android Studio need to display them sometimes. We can spot platform
types in exception messages or the method parameters list. Platform type syntax is just a
single exclamation mark suffix in a variable type declaration:

View! // View defined as platform type

We could treat each platform type as nullable, but type nullability usually depends on
context, so sometimes we can treat them as non-nullable variables. This pseudo code shows
the possible meaning of platform type:

T! = T or T?

It's our responsibility as developers to decide how to treat such types, as nullable or non-
nullable. Let's consider the usage of the findviewById method:

val textView = findViewById(R.id.textView)

What will the findviewById method actually return? What is the inferred type of the
textView variable? Nullable type (TestView) or not nullable (TextVview?)? By default, the
Kotlin compiler knows nothing about the nullability of the value returned by the
findviewById method. This is why the inferred type for TextView has the platform type
View!.

This is the kind of developer responsibility that we are talking about. We, as developers,
must decide, because only we know if the layout will have textview defined in all
configurations (portrait, landscape, and so on) or only in some of them. If we define a
proper view inside the current layout, the findviewById method will return a reference to
this view, and otherwise it will return null:

val textView = findViewById(R.id.textView) as TextView // 1
val textView = findViewById(R.id.textView) as TextView? // 2

1. Assuming that textView is present in every layout for each
configuration, textView can be defined as non-nullable.

[44]

Laying a Foundation

2. Assuming that textView is not present in all layout configurations (for example,
it is present only in landscape), textView must be defined as nullable, otherwise
the application will throw a NullPointerException when trying to assign null
to a non-nullable variable (when the layout without textView is loaded).

Casts

The casting concept is supported by many programming languages. Basically, casting is a
way to convert an object of one particular type into another type. In Java, we need to cast an
object explicitly before accessing its member, or cast it and store it in the variable of the
casted type. Kotlin simplifies concept of casting and moves it to the next level by
introducing smart casts.

In Kotlin, we can perform a few types of cast:

o Cast objects to different types explicitly (safe cast operator)

¢ Cast objects to different types, or nullable types to non-nullable types, implicitly
(smart cast mechanism)

Safe/unsafe cast operator

In strongly typed languages, such as Java or Kotlin, we need to convert values from one
type to another explicitly using the cast operator. A typical casting operation is taking an
object of one particular type and turning it into another object type that is its supertype
(upcasting), subtype (downcasting), or interface. Let's start with a small reminder of casting
that can be performed in Java:

Fragment fragment = new ProductFragment ();
ProductFragment productFragment = (ProductFragment) fragment;

In the preceding example, there is an instance of ProductFragment that is assigned to a
variable storing the Fragment data type. To be able to store this data in the
productFragment variable that can store only the ProductFragment data type, so we
need to perform an explicit cast. Unlike Java, Kotlin has a special as keyword representing
the unsafe cast operator to handle casting:

val fragment: Fragment = ProductFragment ()
val productFragment: ProductFragment = fragment as ProductFragment

[45]

Laying a Foundation

The ProductFragment variable is a subtype of Fragment, the preceding example will
work fine. The problem is that casting to an incompatible type will throw the exception
ClassCastException. That's why the as operator is called an unsafe cast operator:

val fragment : String = "ProductFragment"
val productFragment : ProductFragment = fragment as
ProductFragment

// Exception: ClassCastException

To fix this problem, we can use the safe cast operator as?. It is sometimes called the nullable
cast operator. This operator tries to cast a value to the specified type, and returns null if the
value cannot be cast. Here is an example:

val fragment: String = "ProductFragment"
val productFragment: ProductFragment? = fragment as?
ProductFragment

Notice that usage of the safe cast operator requires us to define the name variable as nullable
(ProductFragment ? instead of ProductFragment). As an alternative, we can use the
unsafe cast operator and nullable type ProductFragment ?, so we can see exactly the type
that we are casting to:

val fragment: String = "ProductFragment"
val productFragment: ProductFragment? = fragment as
ProductFragment?

If we would like to have a productFragment variable that is non-nullable, then we would
have to assign a default value using the elvis operator:

val fragment: String = "ProductFragment"
val productFragment: ProductFragment? = fragment as?
ProductFragment ?: ProductFragment ()

Now, the fragment as? ProductFragment expression will be evaluated without a single
error. If this expression returns a non-nullable value (the cast can be performed), then this
value will be assigned to the productFragment variable, otherwise a default value (the
new instance of ProductFragment) will be assigned to the productFragment variable.
Here is a comparison between these two operators:

e Unsafe cast (as): Throws ClassCastException when casting is impossible
e Safe cast (as?):Returns null when casting is impossible

[46]

Laying a Foundation

Now, when we understand the difference between the safe cast and unsafe cast operators, we
can safely retrieve a fragment from the fragment manager:

var productFragment: ProductFragment? = supportFragmentManager
.findFragmentById(R.id.fragment_product) as? ProductFragment

The safe cast and unsafe cast operators are used for casting complex objects. When working
with primitive types, we can simply use one of the Kotlin standard library conversion
methods. Most of the objects from the Kotlin standard library have standard methods used
to simplify common casting to other types. The convention is that this kind of function has a
prefix to, and the name of the class that we want to cast to. In the line in this example, the
Int type is cast to the String type using the toString method:

val name: String
val age: Int = 12
name = age.toString(); // Converts Int to String

We will discuss primitive types and their conversions in the primitive data types section.

Smart casts

Smart casting converts a variable of one type to another type, but as opposed to safe
casting, it is done implicitly (we don't need to use the as or as? cast operator). Smart casts
work only when the Kotlin compiler is absolutely sure that the variable will not be changed
after checking. This makes them perfectly safe for multithreaded applications. Generally,
smart casts are available for all immutable references (val) and for local mutable references
(var). We have two kinds of smart cast:

e Type smart casts cast an object of one type to an object of another type
e Nullity smart casts cast nullable references to non-nullable

[47]

Laying a Foundation

Type smart casts

Let's represent the Animal and Fish classes from the previous section:

Animal

Fish

isHungry(}

Let's assume we want to call the i sHungry method and we want to check if the animal is
an instance of Fish. In Java, we would have to do something like this:

//Java

if (animal instanceof Fish){
Fish fish = (Fish) animal;
fish.isHungry () ;
//or

((Fish) animal) .isHungry();

}

The problem with this code is its redundancy. We have to check if the animal instance is
Fish and then we have to explicitly cast animal to Fish after this check. Wouldn't it be
nice if the compiler could handle this for us? It turns out that the Kotlin compiler is really
smart when it comes to casts, so it will handle all those redundant casts for us, using the
smart casts mechanism. Here is an example of smart casting:

if (animal is Fish) {
animal.isHungry ()

}

Smart casting in Android Studio

Android Studio will display proper errors if smart casting is not possible,
so we will know exactly whether we can use it. Android Studio marks
variables with a green background when we access a member that
required a cast.

[48]

Laying a Foundation

if(animal is Fish) {

animal.isHungry ()

In Kotlin, we don't have to explicitly cast an animal instance to Fish, because after the type
check, the Kotlin compiler will be able to handle casts implicitly. Now inside the i f block,
the variable animal is cast to Fish. The result is then exactly the same as in the previous
Java example (the Java instance of the operator is called in Kotlin). This is why we can
safely call the i sHungry method without any explicit casting. Notice that in this case, the
scope of this smart cast is limited by the if block:

if (animal is Fish) {

animal.isHungry () //1
}

animal.isHungry() //2, Error

1. In this context, the animal instance is Fish, so we can call the i sHungry method.

2. In this context, the animal instance is still Animal, so we can't call the i sHungry
method.

There are, however, other cases where the smart cast scope is larger than a single block, as
in the following example:

val fish:Fish? = //
if (animal !is Fish) //1
return

animal.isHungry() //1

1. From this point, animal will be implicitly converted to a non-nullable Fish.

In the preceding example, the whole method would return from the function if animal is
not Fish, so the compiler knows that animal must be Fish across the rest of the code
block. Kotlin and Java conditional expressions are evaluated lazily.

This means that in the expression conditionl () && condition2 (), the method
condition2 will be called only when conditionl returns true. This is why we can use a
smart cast type on the right-hand side of the conditional expression:

if (animal is Fish && animal.isHungry()) A
println("Fish is hungry")
}

[49]

Laying a Foundation

Notice that if the animal was not Fish, the second part of the conditional expression
would not be evaluated at all. When it is evaluated, Kotlin knows that animal is Fish
(smart cast).

Non-nullable smart cast

Smart casts also handle other cases, including nullity checks. Let's assume that we have a
view variable that is marked as nullable, because we don't know whether or not
findViewById will return a view or null:

val view: View? = findViewById(R.layout.activity_shop)

We could use the safe call operator to access view methods and properties, but in some
cases we may want to perform more operations on the same object. In these situations,
smart casting may be a better solution:

val view: View?

if (view != null){
view.1isShown ()
// view 1is casted to non-nullable inside if code block

}

view.isShown () // error, outside if the block view is nullable

When performing null checks like this, the compiler automatically casts a nullable view
(View?) to non-nullable (View). This is why we can call the i sShown method inside the if
block, without using a safe call operator. Outside the i f block, the view is still nullable.

Each smart cast works only with read-only variables, because a read-write variable may
change between the time the check was performed and the time the variable is accessed.

Smart casts also work with a function's return statements. If we perform nullity checks
inside the function with a return statement, then the variable will also be cast to non-
nullable:

fun setView(view: View?) {
if (view == null)
return
//view is casted to non-nullable
view.isShown ()

[50]

Laying a Foundation

In this case, Kotlin is absolutely sure that the variable value will not be null, because the
function would call return otherwise. Functions will be discussed in more detail in
Chapter 3, Playing with Functions. We can make the preceding syntax even simpler by using
the Elvis operator and performing a nullity check in a single line:

fun verifyView(view: View?) {
view ?: return

//view is casted to non-nullable
view.isShown ()
/] ..

}

Instead of just returning from the function, we may want to be more explicit about the
existing problem and throw an exception. Then we can use the Elvis operator together with
the error throw:

fun setView(view: View?) {
view ?: throw RuntimeException ("View is empty")
//view 1s casted to non-nullable
view.isShown ()

}

As we can see, smart casts are a very powerful mechanism that allows us to decrease the
number of nullity checks. This is why they are heavily exploited by Kotlin. Remember the
general rule--smart casts work only if Kotlin is absolutely sure that the variable cannot be
changed after the cast, even by another thread.

Primitive data types

In Kotlin, everything is an object (reference type, not primitive type). We don't find
primitive types, like the ones we can use in Java. This reduces code complexity. We can call
methods and properties on any variable. For example, this is how we can convert the Int
variable to a Char:

var code: Int = 75
code.toChar ()

Usually (whenever it is possible), under the hood types such as Int, Long, or Char are
optimized (stored as primitive types) but we can still call methods on them as on any other
objects.

[51]

Laying a Foundation

By default, the Java platform stores numbers as JVM primitive types, but when a nullable
number reference (for example, Int ?), is needed or generics are involved, Java uses boxed
representation. Boxing means wrapping a primitive type into a corresponding boxed
primitive type. This means that the instance behaves as an object. Examples of Java boxed
representations of primitive types are int versus Integer or a long versus Long Since
Kotlin is compiled to JVM bytecode, the same is true here:

var weight: Int = 12 // 1
var weight: Int? = null // 2

1. The value is stored as a primitive type.
2. The value is stored as a boxed integer (composite type).

This means that each time we create a number (Byte, Short, Int, Long, Double,

and Float), or with Char, and Boolean, it will be stored as a primitive type unless we
declare it as a nullable type (Byte?, Char?, Array?, and so on); otherwise, it will be stored
as a boxed representation:

var a: Int =1 // 1
var b: Int? = null // 2
b=12 // 3

1. ais non-nullable, so it is stored as a primitive type.
2. bisnull so it is stored as a boxed representation.
3. bis still stored as a boxed representation although it has a value.

Generic types cannot be parameterized using primitive types, so boxing will be performed.
It's important to remember that using boxed representation (composite type) instead of
primary representation can have performance penalties, because it will always create
memory overhead compared to primitive type representation. This may be noticeable for
lists and arrays containing a huge number of elements, so using primary representation
may be crucial for application performance. On the other hand, we should not worry about
the type of representation when it comes to a single variable or even multiple variable
declarations, even in the Android world where memory is limited.

Now let's discuss the most important Kotlin primitive data types: numbers, characters,
Booleans, and arrays.

Numbers

Basic Kotlin data types used for numbers are equivalents of Java numeric primitives:

[52]

Laying a Foundation

Type Bit width
Double 64

Float

¥V}
(4]

=)
I

Long

Int

¥V}
(4]

Short 16

Byte 8

Kotlin, however, handles numbers a little bit differently than Java. The first difference is
that there are no implicit conversions for numbers--smaller types are not implicitly
converted to bigger types:

var weight : Int = 12
var truckWeight: Long = weight // Errorl

This means that we cannot assign a value of type Int to the Long variable without an
explicit conversion. As we said, in Kotlin everything is an object, so we can call the method
and explicitly convert the Int type to Long to fix the problem:

var weight:I nt = 12
var truckWeight: Long = weight.toLong/()

At first, this may seem like boilerplate code, but in practice this will allow us to avoid many
errors related to number conversion and save a lot of debugging time. This is actually a rare
example where Kotlin syntax has more code than Java. The Kotlin standard library supports
the following conversion methods for numbers:

e toByte():Byte

e toShort (): Short

e toInt (): Int

e toLong():Long

e toFloat ():Float

e toDouble ():Double
e toChar ():Char

We can, however, explicitly specify a number literal to change the inferred variable type:

val a: Int =1
val b = a + 1 // Inferred type is Int
val b = a + 1L // Inferred type is Long

[53]

Laying a Foundation

The second difference between Kotlin and Java with numbers is that number literals are
slightly different in some cases. There are the following kinds of literal constants for integral
values:

27 // Decimals by default

27L // Longs are tagged by a upper case L suffix
0x1B // Hexadecimals are tagged by Ox prefix
0b11011 // Binaries are tagged by 0b prefix

Octal literals are not supported. Kotlin also supports a conventional notation for floating-
point numbers:

27.5 // Inferred type is Double
27.5F // Inferred type is Float. Float are tagged by f or F

Char

Characters in Kotlin are stored in type Char. In many ways, characters are similar to strings,
so we will concentrate on the similarities and differences. To define Char, we must use
single quote, as opposed to a St ring where we are using double quotes:

val char = 'a' // 1
val string = "a" // 2
1. Defines a variable of type Char.
2. Defines a variable of type String.

In both characters and strings, special characters can be escaped using a backslash. The
following escape sequences are supported:

¢ \t: Tabulator

¢ \Db: Backspace

e \n: New line

e \r: Carriage-return

e \ ": Quote
e \": Double quote
e \\:Slash

¢ \s: Dollar character
¢ \u: Unicode escape sequence

[54]

Laying a Foundation

Let's define a Char containing the Yin Yang Unicode character (U+262F):

var yinYang = '\u262F'

Arrays

In Kotlin, arrays are represented by the Array class. To create an array in Kotlin, we can use
a number of Kotlin standard library functions. The simplest one is arrayOf ():

val array = arrayOf(1,2,3) // inferred type Array<Int>

By default, this function will create an array of boxed Int. If we want to have an array
containing Short or Long, then we have to specify the array type explicitly:

val array2: Array<Short> = arrayOf (1,2, 3)
val array3: Array<Long> = arrayOf(1,2,3)

As previously mentioned, using boxed representations may decrease application
performance. That's why Kotlin has a few specialized classes representing arrays of
primitive types to reduce boxing memory overhead: ShortArray, IntArray, LongArray,
and so on. These classes have no inheritance relation to the Array class, although they have
the same set of methods and properties. To create instances of this class, we have to use the
corresponding factory function:

val array = shortArrayOf (1, 2, 3)
val array = intArrayOf (1, 2, 3)
val array = longArrayOf (1, 2, 3)

It's important to notice and keep in mind this subtle difference, because those methods look
similar, but create different type representations:

val array = arrayOf(1,2,3) // 1

val array = longArrayOf (1, 2, 3) // 2
1. The generic array of boxed Long elements (inferred type: Array<Long>).
2. The array containing primitive Long elements (inferred type: LongArray).

Knowing the exact size of an array will often improve performance, so Kotlin has another
library function, arrayOfNulls, that creates an array of a given size filled with null
elements:

val array = arrayOfNulls(3) // Prints: [null, null, null]
println(array) // Prints: [null, null, null]

[551]

Laying a Foundation

We can also fill a predefined size array using a factory function that takes the array size as
the first parameter and a lambda that can return the initial value of each array element
given its index as the second parameter:

val array = Array (5) { it * 2 }
println(array) // Prints: [0, 2, 4, 8, 10]

We will discuss lambdas (anonymous functions) in more detail in chapter 5, Functions as
First Class Citizen. Accessing array elements in Kotlin is done the same way as in Java:

val array = arrayOf(1,2,3)
println(array([1l]) //Prints: 2

Element are also indexed the same way as in Java, meaning the first element has index 0,
the second has index 1, and so on. Not everything works the same and there are some
differences: the main one is that arrays in Kotlin, unlike in Java, are invariant. We will
discuss variance in chapter 6, Generics Are Your Friends.

The Boolean type

Boolean is a logic type that has two possible values: t rue and false. We can also use the
nullable Boolean type:

val isGrowing: Boolean = true
val isGrowing: Boolean? = null

The Boolean type also supports standard built-in operations that are generally available in
most modern programming languages:

e | |: Logical OR. Returns true when any of two predicates return t rue.
e ss: Logical AND. Returns t rue when both predicates return t rue.
¢ !: Negation operator. Returns t rue for false, and false for true.

Keep in mind that we can only use a not-null Boolean for any type of condition.

Like in Java, in | | and &s& predicates are evaluated lazily, and only when needed (lazy
conjunction).

[561]

Laying a Foundation

Composite data types

Let's discuss more complex types built into Kotlin. Some data types have major
improvements compared to Java, while others are totally new.

Strings
Strings in Kotlin behave in a similar way as in Java, but they have a few nice improvements.

To start to access characters at a specified index, we can use the indexing operator and access
characters the same way we access array elements:

val str = "abcd"
println (str([1]) // Prints: b

We also have access to various extensions defined in the Kotlin standard library, which
make working with strings easier:

val str = "abcd"

println(str.reversed()) // Prints: dcba
println(str.takelLast(2)) // Prints: cd

println ("john@test.com".substringBefore ("@")) // Prints: john
println("john@test.com".startsWith("@")) // Prints: false

This is exactly the same String class as in Java, so these methods are not part of String
class. They were defined as extensions. We will learn more about extensions in chapter 7,
Extension Functions and Properties.

Check the string class documentation for a full list of the methods
(https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/).

String templates

Building strings is an easy process, but in Java it usually requires long concatenation
expressions. Let's jump straight to an example. Here is a string built from multiple elements
implemented in Java:

//Java

String name = "Eva";

int age = 27;

String message = "My name is" + name + "and I am" + age + "years old";

[571

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/

Laying a Foundation

In Kotlin, we can greatly simplify the process of string creation by using string templates.
Instead of using concatenation, we can simply place a variable inside a string, using a dollar
character to create a placeholder. During interpolation, string placeholders will be replaced
with the actual value. Here is an example:

val name = "Eva"
val age = 27
val message = "My name is $name and I am $age years old"

println (message)
//Prints: My name is Eva and I am 27 years old

This is as efficient as concatenation, because under the hood the compiled code creates a
StringBuilder and put all the parts together. String templates are not limited to single
variables. They can also contain whole expressions between the ${, and } characters. It can
be a function call that returns the value or property access, as shown in the following
snippet:

val name = "Eva"
val message = "My name has ${name.length} characters"
println (message) //Prints: My name has 3 characters

This syntax allows us to create much cleaner code without the need to break the string each
time a value from a variable or expression is required to construct strings.

Ranges

A range is a way to define a sequence of values. It is denoted by the first and last value in
the sequence. We can use ranges to store weights, temperatures, time, and age. A range is
defined using double dot notation (under the hood, a range uses the rangeTo operator):

val intRange = 1..4 // 1
val charRange= 'b'..'g' // 2

1. Inferred type is IntRange (equivalentof i >= 1 s& i <= 4).
2. Inferred type is CharRange (equivalent of letters from 'b' to 'g').

Notice that we are using single quotes to define the character range.

[581]

Laying a Foundation

The Int, Long, and Char type ranges can be used to iterate over next values in the for. ..
each loop:

for (i in 1..5) print(i) // Prints: 1234
for (i in 'b'..'g') print (i) // Prints: bcdefg

Ranges can be used to check a value is bigger than a start value and smaller than an end
value:

val weight = 52
val healthy = 50..75

if (weight in healthy)
println("Sweight is in S$healthy range")
//Prints: 52 is in 50..75 range

It can be also used this way for other types of range, such as CharRange:

val ¢ = 'k' // Inferred type is Char
val alphabet = 'a'..'z'

if(c in alphabet)
println("$c is character") //Prints: k is a character

In Kotlin, ranges are closed (end inclusive). This means that the range ending value is
included in the range:

for (i in 1..1) print(i) // Prints: 123
Note that ranges in Kotlin are incremental by default (a step is equal to 1 by default):

for (i in 5..1) print (i) // Prints nothing

To iterate in reverse order, we must use a downTo function, which sets a step to -1, as in
this example:

for (i in 5 downTo 1) print(i) // Prints: 54321
We can also set different steps:
for (i in 3..6 step 2) print(i) // Prints: 35

Notice that in the 3. . 6 range, the last element was not printed. This is because the stepping
index moves two steps in each of the loop iterations. So in the first iteration, it has a value of
3, in the second iteration a value of 5, and finally in a third iteration the value would be 7,
so it is ignored, because it is outside the range.

[591]

Laying a Foundation

A step defined by the step function must be positive. If we want to define a negative step,
then we should use the downTo function together with the step function:

for (i in 9 downTo 1 step 3) print (i) // Prints: 963

Collections

A very important aspect of programming is working with collections. Kotlin offers multiple
kinds of collections and many improvements compared to Java. We will discuss this subject
in Chapter 7, Extension Functions and Properties.

Statements versus expressions

Kotlin utilizes expressions more widely than Java, so it is important to know the difference
between a statement and an expression. A program is basically a sequence of statements and
expressions. An expression produces a value, which can be used as part of another
expression, variable assignment, or function parameter. An expression is a sequence of one
or more operands (data that is manipulated) and zero or more operators (a token that
represents a specific operation) that can be evaluated to a single value:

Value of expression is

assigned to variable
Operands

var speed=currentSpeed + getAcceieration()

Operator

|
Expression

[60]

Laying a Foundation

Let's review some examples of expressions from Kotlin:

Expression (produces a value) Assigned value Expression of type
a = true true Boolean
a = "foo" + "bar" "foobar" String
a = min(2, 3) 2 Integer
a = computePosition() .getX() | Value returned by the getX |Integer
method

Statements, on the other hand, perform an action and cannot be assigned to a variable,
because they simply don't have a value. Statements can contain language keywords that are
used to define classes (class), interfaces (interface), variables (val, var), functions
(fun), loop logic (break, continue) and so on. Expressions can also be treated as a
statement when the value returned by the expression is ignored (do not assign a value to
the variable, do not return it from a function, do not use it as part of other expressions, and
so on).

Kotlin is an expression-oriented language. This means that many constructs that are
statements in Java are treated as expressions in Kotlin. The first major difference is the fact
that Java and Kotlin have different ways of treating control structures. In Java they are
treated as statements, while in Kotlin all control structures are treated as expressions, except
for loops. This means that in Kotlin we can write very concise syntax using control
structures. We will see examples in upcoming sections.

Control flow

Kotlin has many control flow elements known from Java, but they offer a little bit more
flexibility and in some cases their usage is simplified. Kotlin introduces a new control flow
construct known as when as a replacement for Java's switch... case.

[61]

Laying a Foundation

The if statement

At its core, Kotlin's 1 £ clause works the same way as in Java:

val x = 5

if(x > 10){
println ("greater")
} else {
println("smaller")

}

The version with the block body is also correct if the block contains single statements or
expressions:

val x = 5

if(x > 10)
println ("greater")
else
println("smaller")

Java, however, treats if as a statement while Kotlin treats i f as an expression. This is the
main difference, and this fact allows us to use more concise syntax. We can, for example,
pass the result of an i f expression directly as a function argument:

println(if(x > 10) "greater" else "smaller")

We can compress our code into single line, because the result of the if expression (of type
String) is evaluated and then passed to the print1n method. When the condition x > 10
is t rue, then the first branch (greater) will be returned by this expression; otherwise, the
second branch (smaller) will be returned by this expression. Let's examine another example:

val hour = 10
val greeting: String
if (hour < 18) {

greeting = "Good day"
} else {
greeting = "Good evening"

}

In the preceding example, we are using if as a statement. But as we know, if in Kotlin is
an expression and the result of the expression can be assigned to a variable. This way we
can assign the result of the i f expression to a greeting variable directly:

val greeting = if (hour < 18) "Good day" else "Good evening"

[62]

Laying a Foundation

But sometimes there is a need to place some other code inside the branch of the i £
statement. We can still use i f as an expression. Then, the last line of the matching i f
branch will be returned as a result:

val hour = 10
val greeting = if (hour < 18) {
//some code
"Good day"
} else {
//some code
"Good evening"

}
println(greeting) // Prints: "Good day"

If we are using if as an expression rather than a statement, the expression is required to
have an else branch. The Kotlin version is even better than Java. Since the greeting
variable is defined as non-nullable, the compiler will validate the whole i f expression and
it will check that all cases are covered with branch conditions. Since if is an expression, we
can use it inside a string template:

val age = 18
val message = "You are ${ if (age < 18) "young" else "of age" } person"
println (message) // Prints: You are of age person

Treating i f as an expression gives us a wide range of possibilities previously unavailable in
the Java world.

The when expression

The when expression in Kotlin is a multiway branch statement. The when expression is
designed as a more powerful replacement for the Java switch... case statement. The
when statement often provides a better alternative than a large seriesof if... else if
statements, as it provides more concise syntax. Let's look at an example:

when (x) {
1 -> print("x ==
2 => print ("x ==
else -> println ("

1“)
2“)
X is neither 1 nor 2")

}

The when expression matches its argument against all branches one after another until the
condition of some branch is satisfied. This behavior is similar to Java's switch... case,
but we do not have to write a redundant break statement after every branch.

[63]

Laying a Foundation

Similar to the if clause, we can use when either as a statement ignoring the returned value
or as an expression and assign its value to a variable. If when is used as an expression, the
value of the last line of the satisfied branch becomes the value of the overall expression. If it
is used as a statement, the value is simply ignored. As usual, the e1se branch is evaluated if
none of the previous branches satisfy the condition:

val vehicle = "Bike"

val message= when (vehicle) {
"Car" -> {
// Some code
"Four wheels"
}
"Bike" -> {
// Some code
"Two wheels"
}
else —> {
//some code
"Unknown number of wheels"

}
println (message) //Prints: Two wheels

Each time a branch has more than one instruction, we must place it inside the code block,
defined by two braces { ... }.If when is treated as an expression (the result of evaluating
when is assigned to a variable), the last line of each block is treated as the return value. We
have seen the same behavior with an if expression, so by now you have probably figured
out that this is common behavior across many Kotlin constructs, including lambdas, which
will be discussed further later in the book.

If when is used as an expression, the else branch is mandatory, unless the compiler can
prove that all possible cases are covered with branch conditions. We can also handle many
matching arguments in a single branch using commas to separate them:

val vehicle = "Car"

when (vehicle) |
"Car", "Bike" -> print ("Vehicle")
else -> print ("Unidentified funny object")

[64]

Laying a Foundation

Another nice feature of when is the ability to check variable type. We can easily validate that
avalue is or !is of a particular type. Smart casts become handy again, because we can

access the methods and properties of a matching type in a branch block without any extra
checks:

val name = when (person) {
is String -> person.toUpperCase ()
is User —-> person.name
//Code is smart casted to String, so we can
//call String class methods
/...
}

In a similar way, we can check which range or collection contains a particular value. This
time, we'll use the is and !is keywords:

val riskAssessment = 47

val risk = when (riskAssessment) {
in 1..20 -> "negligible risk"
'in 21..40 -> "minor risk"
'in 41..60 —-> "major risk"
else -> "undefined risk"

println(risk) // Prints: major risk
Actually, we can put any kind of expression on the right-hand side of the when branch. It

can be a method call or any other expression. Consider the following example where the
second when expression is used for the else statement:

val riskAssessment = 80
val handleStrategy = "Warn"
val risk = when (riskAssessment) {

in 1..20 -> print ("negligible risk")
'in 21..40 -> print ("minor risk")
'in 41..60 —-> print("major risk")
else -> when (handleStrategy) {
"Warn" -> "Risk assessment warning"
"Ignore" -> "Risk ignored"
else -> "Unknown risk!"

println(risk) // Prints: Risk assessment warning

[65]

Laying a Foundation

As we can see, when is a very powerful construct, allowing more control than

Java's switch, but it is even more powerful because it is not limited only to checking values
for equality. In a way, it can even be used as a replacement foran if... else if chain.If
no argument is supplied to the when expression, the branch conditions behave as Boolean
expressions, and a branch is executed when its condition is t rue:

private fun getPasswordErrorId(password: String) = when {
password.isEmpty () —-> R.string.error_field_required
passwordInvalid (password) —-> R.string.error_invalid_password
else -> null

}

All the presented examples require an else branch. Each time when all the possible cases
are covered, we can omit an else branch (exhaustive when). Let's look at the simplest
example with Boolean:

val large:Boolean = true
when (large) {
true -> println("Big")
false —-> println("Big")
}

The compiler can verify that all possible values are handled, so there is no need to specify
an else branch. The same logic applies to enums and sealed classes, which will be
discussed in chapter 4, Classes and Objects.

Checks are performed by the Kotlin compiler, so we have certainty that any case will not be
missed. This reduces the possibility of a common Java bug where the developer forgets to
handle all the cases inside the switch statement (although polymorphism is usually a
better solution).

[66]

Laying a Foundation

Loops

A loop is a control structure that repeats the same set of instructions until a termination
condition is met. In Kotlin, loops can iterate through anything that provides an iterator. An
iterator is an interface that has two methods: hasNext and next. It knows how to iterate
over a collection, range, string, or any entity that can be represented as a sequence of
elements.

To iterate through something, we have to supply an iterator () method.
As String doesn't have one, in Kotlin it is defined as an extension
function. Extensions will be covered in chapter 7, Extension Functions and
Properties.

Kotlin provides three kinds of loops for, while, and do. .. while. All of them work the
same as in other programming languages, so we will discuss them briefly.

The for loop

The classic Java for loop, where we need to define the iterator explicitly, is not present in
Kotlin. Here is an example of this kind of loop in Java:

//Java
String str = "Foo Bar";
for (int i=0; i<str.length(); i++)

System.out.println(str.charAt (i));

To iterate through a collection of items from start to finish, we can simply use the for loop
instead:

var array = arrayOf (1, 2, 3)

for (item in array) A
print (item)

}

It can also be defined without a block body:

for (item in array)
print (item)

[67]

Laying a Foundation

If a collection is a generic collection, then item will be smart cast to a type
corresponding to a generic collection type. In other words, if a collection contains elements
of type Int, the item will be smart cast to Int:

var array = arrayOf(l, 2, 3)

for (item in array)
print (item) // item is Int

We can also iterate through the collection using its index:

for (i in array.indices)
print (arrayl[i])

The array.indices param returns IntRange with all indexes. It is the equivalent of (1. .
array.length - 1). Thereis also an alternative withIndex library method that returns a
list of the Indexedvalue property, which contains an index and a value. This can be
deconstructed into these elements this way:

for ((index, wvalue) in array.withIndex()) {
println ("Element at $index is $value")

}

The construct (index, value) is known as a destructive declaration, and we will discuss
itin chapter 4, Classes and Objects.

The while loop

The while loop repeats a block, while its conditional expression returns true:

while (condition) A
//code
}

There is also a do. .. while loop that repeats blocks as long as a conditional expression is
returning true:

do {
//code
} while (condition)

[68]

Laying a Foundation

Kotlin, as opposed to Java, can use variables declared inside the do... whileloopasa
condition:
do {
var found = false
/]
} while (found)
The main difference between the while and do... while loopsis when a conditional
expression is evaluated. A while loop checks the condition before code execution and if it is
not true, the code won't be executed. On the other hand, a do. .. while loop first executes

the body of the loop, and then evaluates the conditional expression, so the body will always
execute at least once. If this expression is t rue, the loop will repeat. Otherwise, the loop
terminates.

Other iterations

There other ways to iterate over collections using built-in standard library functions, such
as forEach. We will cover them in chapter 7, Extension Functions and Properties.

Break and continue

All loops in Kotlin support classic break and continue statements. The continue
statement proceeds to the next iteration of that loop, while break stops the execution of the
most inner enclosing loop:

val range = 1..6
for(i in range) {

print ("$i ")
}

// prints: 1 2 3 4 5 6

[69]

Laying a Foundation

Now let's add a condition and break the iteration when this condition is t rue:
val range = 1..6

for(i in range) {

print ("$i ")
if (1 == 3)
break

}
// prints: 1 2 3

The break and continue statements are especially useful when dealing with nested loops.
They may simplify our control flow and significantly decrease the amount of work
performed to save priceless Android resources. Let's perform a nested iteration and break
the outer loop:

val intRange = 1..6
val charRange = 'A'..'B'

for (value in intRange) {
if (value == 3)
break

println ("Outer loop: $value ")

for (char in charRange) {
println ("\tInner loop: $char ")

// prints

Outer loop: 1
Inner loop: A
Inner loop: B

Outer loop: 2
Inner loop: A
Inner loop: B

[70]

Laying a Foundation

We used a break statement to terminate the outer loop at the beginning of the third
iteration, so the nested loop was also terminated. Notice the usage of the \t escaped
sequence, which adds indents on the console. We can also utilize the cont inue statement to
skip the current iteration of the loop:

val intRange = 1..5

for (value in intRange) {
if (value == 3)
continue

println ("Outer loop: Svalue ")

for (char in charRange) {
println ("\tInner loop: S$char ")

// prints

Outer loop: 1
Inner loop: A
Inner loop: B

Outer loop: 2
Inner loop: A
Inner loop: B

Outer loop: 4
Inner loop: A
Inner loop: B

Outer loop: 5
Inner loop: A
Inner loop: B

We skip the iteration of the outer loop when the current value equals 3.

Both continue and break statements perform corresponding operations on the enclosing
loop. There are, however, times when we want to terminate or skip the iteration of one loop
from within another; for example, to terminate an outer loop iteration from within an inner
loop:

for (value in intRange) {

for (char in charRange) {
// How can we break outer loop here?

[71]

Laying a Foundation

Fortunately, both cont inue and break statements have two forms--labeled and unlabeled.
We already saw unlabeled; now we will need labeled to solve our problem. Here is an
example of how a labeled break might be used:

val charRange = 'A'..'B'
val intRange = 1..6

outer@ for(value in intRange) {
println ("Outer loop: S$value ")

for (char in charRange) |
if (char == 'B"'")
break@outer

println ("\tInner loop: S$char ")

}

// prints
Outer loop: 1
Inner loop: A

The @outer is the label name. By convention, the label name always starts with @ followed
by the label name. The label is placed before the loop. Labeling the loop allows us to use a
qualified break (break@outer), which is a way to stop execution of a loop that is referenced
by this label. The preceding qualified break (a break with a label) jumps to the execution
point right after the loop marked with that label.

Placing the return statement will break all the loops and return from enclosing an
anonymous or named function:

fun doSth () {
val charRange = 'A'..'B'
val intRange = 1..6

for (value in intRange) {
println ("Outer loop: S$value ")

for (char in charRange) {
println ("\tInner loop: S$char ")
return

}

//usage
println ("Before method call")

[72]

Laying a Foundation

doSth ()
println ("After method call")

// prints
Outer loop: 1
Inner loop: A

After the method call:

Outer loop: 1
Inner loop: A

Exceptions

Most Java programming guidelines, including the book Effective Java, promote the concept
of validity checks. This means that we should always verify arguments or the state of the
object and throw an exception if a validity check fails. Java exception systems have two
kinds of exceptions: checked exceptions and unchecked exceptions.

An unchecked exception means that the developer is not forced to catch exceptions by using
atry... catchblock. By default, exceptions go all the way up the call stack, so we make
decisions where to catch them. If we forget to catch them, they will go all the way up the
call stack and stop thread execution with a proper message (thus they remind us):

Mathod wherns erar aocurmad

Method without an exceplion
nandler

Methad with an axceptian
handler

mgin

Exception wasnt

catehes, 5o
‘ thread exscution

hae stopped

[73]

Laying a Foundation

Java has a really strong exception system, which in many cases forces developers to
explicitly mark each function that may throw an exception and explicitly catch each
exception by surrounding them with try... catch blocks (checked exceptions). This
works great for very small projects, but in real large-scale applications, this very often leads
to the following verbose code:

// Java
try {
doSomething ()

} catch (IOException e) |
// Must be safe
}

Instead of passing the exception up in the call stack, it is ignored by providing an empty
catch block, so it won't be handled properly and it will vanish. This kind of code may mask
critical exceptions, give a false sense of security, and lead to unexpected problems and
difficult to find bugs.

Before we discuss how exception handling is done in Kotlin, let's compare both types of
exception:

Code Checked exceptions Unchecked exceptions

Function We have to specify what The function declaration does not

declaration exceptions can be thrown by contain information about all thrown
functions. exceptions.

Exception The function that throws an We can catch the exception and do

handling exception must to be something if we want, but we aren't
surrounded by a try. .. forced to do this. The exception goes
catch block. up in the call stack.

The biggest difference between the Kotlin and Java exception systems is that in Kotlin all
exceptions are unchecked. This means we never have to surround a method witha try. ..
catch block, even if this is a Java method that may throw a cached exception. We can still
do it, but we are not forced to:

fun foo () {
throw IOException ()
)3

fun bar() {
foo () //no need to surround method with try-catch block
)3

[74]

Laying a Foundation

This approach removes code verbosity and improves safety because we don't need to
introduce empty catch blocks.

The try... catch block

The Kotlin try. .. catch block is the equivalent of the Java try... catch block. Let's
look at a quick example:

fun sendFormData (user: User?, data: Data?) { // 1
user ?: throw NullPointerException ("User cannot be null")
// 2
data ?: throw NullPointerException ("Data cannot be null")
//do something

fun onSendDataClicked () {

try { // 3
sendFormData (user, data)

} catch (e: AssertionError) { // 4
// handle error

} finally { // 5
// optional finally block

}

1. Exceptions are not specified on function signature like in Java.

2. We check the validity of the data and throw NullPointerException (notice
that no new keyword is required when creating an object instance).

3. The try... catch block is similar construct to Java.
4. Handle only this specific exception (the AssertionError exception).
5. The finally block is always executed.

There may be zero or more catch blocks and the finally block may be omitted. However,
at least one catch or finally block should be present.

[75]

Laying a Foundation

In Kotlin exception handling, try is an expression, so it can return a value and we can
assign its value to a variable. The actual assigned value is the last expression of the executed
block. Let's check if a particular Android application is installed on the device:

val result = try { // 1
context.packageManager.getPackageInfo ("com.text.app", 0) //2

true
} catch (ex: PackageManager.NameNotFoundException) { // 3
false
}
1. The try... catch block is returning value that was returned by a single

expression function.

2. If an application is installed, the getPackageInfo method will return a value
(this value is ignored) and the next line containing the t rue expression will be
executed. This is the last operation performed by a t ry block, so its value will be
assigned to a variable (true).

If an app is not installed, getPackageInfo will throw
PackageManager.NameNotFoundException and the catch block will be executed. The
last line of the catch block contains a false expression, so its value will be assigned to a
variable.

Compile-time constants

Since the val variable is read-only, in most cases we could treat it as a constant. We need to
be aware that its initialization may be delayed, so this means that there are scenarios where
the val variable may not be initialized at compile time, for example, when assigning the
result of the method call to a value:

val fruit:String = getName ()

[76]

Laying a Foundation

This value will be assigned at runtime. There are, however, situations where we need to
know the value at compile time. The exact value is required when we want to pass
parameters to annotations. Annotations are processed by an annotation processor that runs
long before the application is started:

Lk ;L
AN Parse and Annotation Analyse and AN
[Enter Processing] e Generate 0101 >
1010

To make absolutely sure that the value is known at compile time (and thus can be processed
by an annotation processor), we need to mark it with a const modifier. Let's define a
custom annotation, MyLogger, with a single parameter defining maximum log entries and
annotate a Test class with it:

const val MAX_LOG_ENTRIES = 100
@MyLogger (MAX_LOG_ENTRIES)
// value available at compile time
class Test {}

There are couple of limitations regarding usage of const that we must be aware of. The
first limitation is that it must be initialized with values of primitive types or the string
type. The second limitation is that it must be declared at the top level or as a member of an
object. We will discuss objects in chapter 4, Classes and Objects. The third limitation is that it
cannot have a custom getter.

Delegates

Kotlin provides first-class support for delegation. It is a very useful improvement on Java.
In fact, there are many applications for delegates in Android development, so we have
decided to spare a whole chapter on this subject (Chapter 8, Delegates).

[77]

Laying a Foundation

Summary

In this chapter, we have discussed the differences between variables, values, and consts,
and discussed basic Kotlin data types, including ranges. We also looked into a Kotlin type
system that enforces strict null safety and ways to deal with nullable references using
various operators and smart casts. We now know that we can write more concise code by
taking advantage of using type inference and various control structures that in Kotlin are
treated as expressions. Finally, we discussed ways of exception handling.

In the next chapter, we will learn about functions and present different ways of defining
them. We will cover concepts such as single-expression functions, default arguments and
named argument syntax, and discuss various modifiers.

[78]

Playing with Functions

In previous chapters, we've seen Kotlin variables, type systems, and control structures. But
to create applications, we need building blocks that allow us to make structures. In Java, the
class is the building block of the code. Kotlin, on the other hand, supports functional
programming; therefore, it is possible to create whole programs or libraries without any
classes. The function is the most basic building block in Kotlin. This chapter introduces
functions in Kotlin, together with different function features and types.

In this chapter, we will cover the following topics:

Basic function usage in Kotlin
The Unit return type

The vararg parameter
Single-expression functions
Tail-recursive functions
Default argument values
Named argument syntax
Top-level functions

Local functions

The Nothing return type

Playing with Functions

Basic function declaration and usage

The most common first program that programmers write to test a programming language is
the Hello, World! program. Itis a full program that just displays Hello, World! as text
on the console. We are also going to start with this program, because in Kotlin it is based on
a function and only on a function (no class is needed). So the Kotlin Hello, World!
program looks as follows:

// SomeFile.kt
fun main(args: Array<String>) { // 1
println("Hello, World!") // 2, Prints: Hello, World!

}

1. A function defines a single parameter, args, which contains an array of all
arguments used to run the program (from the command line). It is defined as
non-nullable, because an empty array is passed to a method when the program is
started without any arguments.

2. The print1n function is a Kotlin function defined in the Kotlin standard library
that is equivalent to the Java function System.out.println.

This program tells us a lot about Kotlin. It shows what the function looks like and that we
can define a function without any classes. First, let's analyze the structure of the function. It
starts with the fun keyword, and then comes the name of the function, parameters in the
bracket, and the function body. Here is another example of a simple function, but this one is
returning a value:

fun double(i: Int): Int {
return 2 * i

}

Good to know frame

There is much confusion around the difference between methods and
functions. Common definitions are as follows:

* A function is a piece of code that is called by name. A method is
a function associated with an instance of a class (object).
Sometimes it is called member function.

e So in simpler words, functions inside classes are called
methods. In Java, there are officially only methods, but
academics often argue that static Java methods are in fact
functions. In Kotlin, we can define functions that are not
associated with any object.

[801]

Playing with Functions

The syntax to call a function is the same in Kotlin as in Java, and most modern
programming languages:

val a = double(5)

We call the double function and assign a value returned by it to a variable. Let's discuss the
details of the parameters and return types of Kotlin functions.

Parameters

Parameters in Kotlin functions are declared using Pascal notation, and the type of each
parameter must be explicitly specified. All parameters are defined as read-only variables.
There is no way to make parameters mutable, because such behavior is error-prone and in
Java it was often abused by programmers. If there is a need for that, then we can explicitly
shadow parameters by declaring local variables with the same name:

fun findDuplicates(list: List<Int>): Set<Int> {
var list = list.sorted()
Y

}

This is possible, but it is treated as bad practice, so a warning will be displayed. A better
approach is to name parameters by the data they provide and variables by the purpose they
serve. These names should then be different in most cases.

Parameters versus arguments

In the programming community, arguments and parameters are often
though to be the same thing. These words cannot be used interchangeably
because they have different meanings. An argument is an actual value that
is passed to a function when the function is called. A parameter refers to
the variables declared inside a function declaration. Consider the
following example:

fun printSum(al: Int, a2: Int) { // 1.
print (al + a2)

}

add (3, 5) // 2.

1 - al and a2 are parameters
2 - 3 and 5 are arguments

[81]

Playing with Functions

As with Java, functions in Kotlin can contain multiple parameters:

fun printSum(a: Int, b: Int) {
val sum = a + b
print (sum)

}

Arguments provided to functions can be subtypes of the type specified in the parameter
declaration. As we know, in Kotlin the supertype of all the non-nullable types is Any, so we

need to use it if we want to accept all types:

fun presentGently(v: Any) A
println("Hello. I would like to present you: $v")

presentGently ("Duck")

// Hello. I would like to present you: Duck
presentGently (42)

// Hello. I would like to present you: 42

To allow null in arguments, the type needs to be specified as nullable. Note that Any? is the
supertype of all nullable and non-nullable types, so we can pass objects of any type as
arguments:

fun presentGently (v: Any?) {
println("Hello. I would like to present you: $v")

presentGently (null)

// Prints: Hello. I would like to present you: null
presentGently (1)

// Prints: Hello. I would like to present you: 1
presentGently ("Str")

// Prints: Hello. I would like to present you: Str

[82]

Playing with Functions

Returning functions

So far, most of the functions were defined like procedures (functions that do not return any
values). But in fact, there are no procedures in Kotlin and all functions return some value.
When it is not specified, the default return value is the Unit instance. We can set it
explicitly for demonstration purposes:
fun printSum(a: Int, b: Int): Unit { // 1
val sum = a + b

print (sum)

}

1. Unlike in Java, we are defining the return type after the function name and
parameters.

The Unit object is the equivalent of Java's void, but it can be treated as any other object. So
we can store it in variable:

val p = printSum(l, 2)
println(p is Unit) // Prints: true

Of course, Kotlin coding conventions claim that when a function returns Unit, then the
type definition should be omitted. This way, code is more readable and simpler to
understand:

fun printSum(a: Int, b: Int) {

val sum = a + b
print (sum)

Good to know frame

Unit is a singleton, which means that there is only one instance of it. So all
three conditions are t rue:

println(p is Unit) // Print: true
println(p == Unit) // Print: true
println(p === Unit) // Print: true

The singleton pattern is highly supported in Kotlin and it will be more
thoroughly covered in chapter 4, Classes and Objects.

[83]

Playing with Functions

To return output from functions with the Unit return type, we can simply use a return
statement without any value:

fun printSum(a: Int, b: Int) { // 1
if(a <0 |] b < 0) {
return // 2
}
val sum = a + b
print (sum)

// 3

1. There is no return type specified, so the return type is implicitly set to Unit.
2. We can just use return without any value.

3. When a function returns Unit, then the return call is optional. We don't have to
use it.

We could also use return type, Unit, but it should not be used because that would be
misleading and less readable.

When we specify a return type other than Unit, then we always need to return the value
explicitly:

fun sumPositive(a: Int, b: Int): Int {
if(a > 0 && b > 0) {
return a + b

}
// Error, 1
}

1. The function will not compile it, because no return value was specified, as the i f
condition is not fulfilled.

The problem can be fixed by adding a second return statement:

fun sumPositive(a: Int, b: Int): Int {
if(a >= 0 && b >= 0) |
return a + b
}

return 0

[84]

Playing with Functions

Vararg parameter

Sometimes, the number of parameters is not known in advance. In such cases, we can add a
vararg modifier to a parameter. It allows the function to accept any number of arguments.
Here is an example, where the function is printing the sum of multiple integers:

fun printSum(vararg numbers: Int) {
val sum = numbers.sum()
print (sum)

printSum(1,2,3,4,5) // Prints: 15
printSum() // Prints: O

Arguments will be accessible inside the method as an array that holds all the provided
values. The type of the array will correspond to a vararg parameter type. Normally we
would expect it to be a generic array holding a specified type (Array<T>), but as we know,
Kotlin has an optimized type for arrays of Int called IntArray, so this type will be used.
Here, for example, is the type of the vararg parameter with the type String:

fun printAll (vararg texts: String) {

//Inferred type of texts is Array<String>
val allTexts = texts.joinToString(",")
println ("Texts are $allTexts")

printAll ("A", "B", "C") // Prints: Texts are A,B,C

Note that we are still able to specify more parameters before or after the vararg parameter,
as long as it is clear which argument is directed to which parameter:

fun printAll (prefix: String, postfix: String, vararg texts: String)
{

val allTexts = texts.joinToString(", ")

println ("Sprefix$allTextsS$Spostfix™)

printAll ("All texts: ", "!") // Prints: All texts: !
printAll ("All texts: ","!" , "Hello", "World")
// Prints: All texts: Hello, World!

[85]

Playing with Functions

Additionally, arguments provided to vararg parameters can be subtypes of the specified
type:

fun printAll (vararg texts: Any) {
val allTexts = texts.joinToString(",") // 1
println(allTexts)

}

// Usage
printAll ("A", 1, 'c') // Prints: A,1,c

1. The joinToString function can be invoked on lists. It joins elements into a
single string. On the first argument, there is a separator specified.

One limitation with vararg usage is that there is only one vararg parameter allowed per
function declaration.

When we call vararg parameters, we can pass argument values one by one, but we can
also pass an array of values. This can be done using the spread operator (* prefixing the
array), as in the following example:

val texts = arrayOf ("B", "C", "D")
printAll (*texts) // Prints: Texts are: B,C,D
printAll ("A", *texts, "E") // Prints: Texts are: A,B,C,D,E

Single-expression functions

In typical programming, many functions contain only one expression. Here is an example of
this kind of function:

fun square(x: Int): Int {
return x * x

}

Another one, which can be often found in Android projects, is a pattern used in Activity,
to define methods that just get text from some view or provide some other data from the
view to allow a presenter to get it:

fun getEmail () : String {
return emailView.text.toString/()

}

[86]

Playing with Functions

Both functions are defined to return the results of a single expression. In the first example, it
is the result of an x * x multiplication, and in the second one it is the result of the
expression emailView.text.toString (). These kinds of function are used all over
Android projects. Here are some common use cases:

¢ Extracting some small operations (like in the preceding square function)
e Using polymorphism to provide values specific to a class

Functions that only create some object

Functions that pass data between architecture layers (like in the preceding
example, where Activity is passing data from the view to the presenter)

Functional programming-style functions that are based on recurrence

Such functions are often used, so Kotlin has a notation for this kind. When a function
returns a single expression, then curly braces and the body of the function can be omitted.
We specify the expression directly using the equality character. Functions defined this way
are called single-expression functions. Let's update our square function, and define it as a
single-expression function:

Function declaration
with block body

fun square(x: Int): Int {
return x * x

}

Block
body

As we can see, single-expression functions have an expression body instead of a block body.
This notation is shorter, but the whole body needs to be just a single expression.

In single-expression functions, declaring the return type is optional, because it can be
inferred by the compiler from the type of expression. This is why we can simplify the
square function, and define it this way:

fun square(x: Int) = x * x

[871]

Playing with Functions

There are many places inside Android applications where we can utilize single-expression
functions. Let's consider the RecyclerView adapter that provides the layout ID and
creates ViewHolder:

class AddressAdapter : ItemAdapter<AddressAdapter.ViewHolder> () {
override fun getLayoutId() = R.layout.choose_address_view
override fun onCreateViewHolder (itemView: View) = ViewHolder (itemView)

// Rest of methods
}

In the following example, we achieve high readability thanks to a single-expression
function. Single expression functions are also very popular in the functional world. An
example will be described later, in the section about tail-recursive functions. Single
expression function notation also pairs well with the when structure. Here is an example of

their connection, used to get specific data from an object according to a key (a use case from
a big Kotlin project):

fun valueFromBooking(key: String, booking: Booking?) = when (key) {
// 1
"patient.nin" -> booking?.patient?.nin
"patient.email" -> booking?.patient?.email
"patient.phone" -> booking?.patient?.phone
"comment" -> booking?.comment
else -> null

1. We don't need a type, because it is inferred from the when expression.

Another common Android example is that we can combine when expressions with the
Activity method onOptionsItemSelected which handles top bar menu clicks:

override fun onOptionsItemSelected(item: Menultem): Boolean = when

{

item.itemId == android.R.id.home -> {
onBackPressed()
true

}

else —-> super.onOptionsItemSelected(item)

[881]

Playing with Functions

Another example where the syntax of the single-expression function is useful is when we
chain multiple operations on a single object:

fun textFormatted(text: String, name: String) = text
.trim()
.capitalize ()
.replace("{name}", name)

val formatted = textFormatted("hello, {name}", "Marcin")

println (formatted) // Hello, Marcin

As we can see, single expression functions can make our code more concise and improve
readability. Single-expression functions are commonly used in Kotlin Android projects and
they are really popular for functional programming.

Imperative versus declarative programming

Imperative programming: This programming paradigm describes the
exact sequence of steps required to perform an operation. It is most
intuitive for most programmers.

Declarative programming: This programming paradigm describes a
desired result, but not necessarily steps to achieve it (implementation of
behavior). This means that programming is done with expressions or
declarations instead of statements. Both functional and logic programming
are characterized as declarative programming styles. Declarative
programming is often shorter and more readable than imperative.

Tail-recursive functions

Recursive functions are functions that call themselves. Let's see an example of a recursive
function, getState:

fun getState(state: State, n: Int): State =
if (n <= 0) state // 1
else getState (nextState(state), n - 1)

[891]

Playing with Functions

They are an important part of the functional programming style, but the problem is that
each recursive function call needs to keep the return address of the previous function on the
stack. When an application recurses too deeply (there are too many functions on the stack),
StackOverflowError is thrown. This limitation presents a very serious problem for
recurrence usage.

A classic solution for this problem was to use iteration instead of recurrence, but this
approach is less expressive:

fun getState(state: State, n: Int): State {
var state state
for (i in .n) |
state state.nextState ()

=

}

return state

}

A proper solution for this problem is usage of the tail-recursive function supported by
modern languages such as Kotlin. A tail-recursive function is a special kind of recursive
function, where the function calls itself as the last operation it performs (in other words,
recursion takes place in the last operation of a function). This allows us to optimize
recursive calls by compiler and perform recursive operations in a more efficient way,
without worrying about a potential StackOverflowError. To make a function tail-
recursive, we need to mark it with a tailrec modifier:

tailrec fun getState(state: State, n: Int): State =
if (n <= 0) state
else getState(state.nextState(), n - 1)

To check out how it works, let's compile this code and decompile it to Java. Here is what
can be found then (code after simplification):

public static final State getState (@NotNull State state, int n)
{
while (true) {
if(n <= 0) {
return state;
}
state = state.nextState();
n=n-1;

[90]

Playing with Functions

Implementation is based on iteration, so there is no way that stack overflow error might
happen. To make the tailrec modifier work, there are some requirements to be met:

¢ The function must call itself only as the last operation it performs
e It cannot be used within try/catch/finally blocks
e At the time of writing, it was allowed only in Kotlin compiled to JVM

Different ways of calling a function

Sometimes we need to call a function and provide only selected arguments. In Java, we
could create multiple overloads of the same method, but this solution has some limitations.
The first problem is that the number of possible permutations of a given method is growing
very quickly (2"), making them very difficult to maintain. The second problem is that
overloads must be distinguishable from each other, so the compiler may know which
overload to call. So when a method defines a few parameters with the same type, we can't
define all possible overloads. That's why in Java we often need to pass multiple null values
to a method:

// Java
printvalue ("abc", null, null, "!");

Multiple null parameters provide boilerplate. Such a situation greatly decreases method
readability. In Kotlin, there is no such problem, because Kotlin has a feature called default
arguments and named argument syntax.

Default argument values

Default arguments are mostly known from C++, which is one of the oldest languages
supporting them. A default argument provides a value for a parameter in case it is not
provided during a method call. Each function parameter can have a default value. It might
be any value that matches a specified type, including null. This way we can simply define
functions that can be called in multiple ways. This is an example of a function with default
values:

fun printValue (value: String, inBracket: Boolean = true,
prefix: String = "", suffix: String = "") {
print (prefix)
if (inBracket) {
print (" (${value})")
} else {
print (value)

[91]

Playing with Functions

t
println (suffix)

}

We can use this function the same way as a normal function (a function without default
argument values) by providing values for each parameter (all arguments):

printvalue ("str", true, "","") // Prints: (str)

Thanks to the default argument values, we can call a function by providing arguments only
for parameters without default values:

printvValue ("str") // Prints: (str)

We can also provide all parameters without default values, and only some that have a
default value:

printValue ("str", false) // Prints: str

Named arguments syntax

Sometimes we want only to pass a value for the last argument. Let's suppose that we want
to define a value for a suffix, but not for a prefix and inBracket (which is defined before
the suffix). Normally, we would have to provide values for all previous parameters
including the default parameter values:

printvValue ("str", true, true, "!") // Prints: (str)

By using named argument syntax, we can pass specific arguments using the argument
name:

printvalue ("str", suffix = "!") // Prints: (str)!

This allows very flexible syntax, where we can supply only chosen arguments when calling
a function (that is, the first one and the second from the end). It is often used to specify what
this argument is because such a call is more readable:

printValue ("str", inBracket = true) // Prints: (str)

printvalue ("str", prefix = "Value is ") // Prints: Value is str
printValue ("str", prefix = "Value is ", suffix = "!! ")

// Prints: Value is str!!

We can set any parameters we want using named parameter syntax in any order, as long as
all parameters without default values are provided. The order of the arguments is relevant:

printValue ("str", inBracket= true, prefix = "Value is ")

[92]

Playing with Functions

// Prints: Value is (str)
printValue ("str", prefix = "Value is ", inBracket= true)
// Prints: Value is (str)

The order of arguments is different, but both preceding calls are equivalent.

We can also use named argument syntax together with a classic call. The only restriction is if
we start using named syntax, we cannot use a classic call for the next arguments we are
serving:

printvalue ("str", true, "")

printValue ("str", true, prefix = "")

printValue ("str", inBracket = true, prefix = "")

printvalue ("str", inBracket = true, "") // Error

printValue ("str", inBracket = true, prefix = "", "") // Error

This feature allows us to call methods in a very flexible way, without the need to define
multiple method overloads.

The named argument syntax imposes some extra responsibility for Kotlin programmers.
We need to keep in mind that when we change a parameter name, we may cause errors in
the project, because the parameter name may be used in other classes. Android Studio will
take care of it if we rename the parameter using built-in refactoring tools, but this will work
only inside our project. The Kotlin library creators should be very careful while using
named argument syntax. A change in the parameter name will break the APIL. Note that the
named argument syntax cannot be used when calling Java functions, because Java bytecode
does not always preserve names of function parameters.

Top-level functions

Another thing we can observe in a simple Hello, World! program is that the main
function is not located inside any class. In chapter 2, Laying a Foundation, we already
mentioned that Kotlin can define various entities at the top level. A function that is defined
at the top level is called a top-level function. Here is an example of one of them:

// Test.kt
package com.example

fun printTwo () {
print (2)
}

[93]

Playing with Functions

Top-level functions can be used all around the code (assuming that they are public, which is
the default visibility modifier). We can call them in the same way as functions from the local
context. To access a top-level function, we need to explicitly import it into a file by using the
import statement. Functions are available in the code hint list in Android Studio, so
imports are automatically added when a function is selected (used). As an example, let's see
a top-level function defined in Test .kt and use it inside the Main .kt file:

// Test.kt
package com.example

fun printTwo () {
print (2)

}

// Main.kt

import com.example.printTwo

fun main(args: Array<String>) {
printTwo ()
}

Top-level functions are often useful, but it is important to use them wisely. Keep in mind
that defining public top-level functions will increase the number of functions available in
the code hint list (by hint list I mean a list of methods suggested by the IDE as hints, when
we are writing code). This is because public top-level functions are suggested by the IDE in
every context (because they can be used everywhere). If the name of the top-level function
does not clearly state that this is a top-level function, then it may be confused with a method
from the local context and used accidentally. Here are some good examples of top-level
functions:

e factorial
e maxOf and minOf
e listOf

e println

[94]

Playing with Functions

Here are some examples of functions that may be poor candidates for top-level functions:

e sendUserData

e showPossiblePlayers

This rule is applicable only in Kotlin object-oriented programming projects. In function-
oriented programming projects, these are valid top-level names, but then we suppose that
nearly all functions are defined in the top level and not as methods.

Often, we define functions we want to use only in specific modules or specific classes. To
limit function visibility (the place where it can be used), we can use visibility modifiers. We
will discuss visibility modifiers in chapter 4, Classes and Objects.

Top-level functions under the hood

With Android projects, Kotlin is compiled to Java bytecode that runs on Dalvik Virtual
Machine (before Android 5.0) or Android Runtime (Android 5.0 and newer). Both virtual
machines can execute only the code that is defined inside a class. To solve this problem, the
Kotlin compiler generates classes for top-level functions. The class name is constructed from
the file name and the Kt suffix. Inside such a class, all functions and properties are static.
For example, let's suppose that we define a function within the Printer.kt file:

// Printer.kt
fun printTwo () {
print (2)

t

Kotlin code is compiled into Java bytecode. The generated bytecode will be analogical to the
code generated from the following Java class:

//Java
public final class PrinterKt { // 1
public static void printTwo() { // 2
System.out.print (2); // 3
}
}

1. PrinterKt is the name made from the name of the file and the kKt suffix.

[95]

Playing with Functions

2. All top-level functions and properties are compiled to static methods and
variables.

3. print is a Kotlin function, but since it is an inline function, its call is replaced by
its body during compilation time and its body includes only
System.out.println call.

Inline functions will be described in chapter 5, Functions as First-Class Citizens.

Kotlin classes at the Java bytecode level will contain more data (for example, the names of
parameters). We can also access Kotlin top-level functions from Java files by prefixing a
function call with the class name:

//Java file, call inside some method
PrinterKt.printTwo ()

This way, Kotlin top-level function calls from Java are fully supported. As we can see,
Kotlin is really interoperable with Java. To make Kotlin top-level function usage more
comfortable in Java, we can add an annotation that will change the name of a JVM
generated class. This comes in handy when making use of top-level Kotlin properties and
functions from Java classes. This annotation looks as follows:

@file:JvmName ("Printer")

We need to add the JvmName annotation at the top of the file (before the package name).
When this is applied, the name of the generated class will be changed to Printer. This
allows us to call the printTwo function in Java using Printer as the class name:

//Java
Printer.printTwo ()

Sometimes we are defining top-level functions, and we want to define them in separate
files, but we also want them in the same class after compilation to JVM. This is possible if
we use the following annotation at the top of the file:

@file:JvmMultifileClass

For example, let's assume that we are making a library with mathematical helpers that we
want to use from Java. We can define the following files:

// Max.kt

@file:JvmName ("Math")
@file:JvmMultifileClass
package com.example.math

fun max(nl: Int, n2: Int): Int = if(nl > n2) nl else n2

[96]

Playing with Functions

// Min.kt

@file:JvmName ("Math")
@file:JvmMultifileClass
package com.example.math

fun min(nl: Int, n2: Int): Int = if(nl < n2) nl else n2

And we can use them from Java classes this way:

Math.min (1, 2)
Math.max (1, 2)

Thanks to this, we can keep files short and simple, while keeping them all easy to use from
Java.

The JvmName annotation to change generated class names is especially useful when we
create libraries in Kotlin that are also directed to be used in Java classes. It can be useful in
the case of name conflicts too. Such a situation can occur when we create both an X. kt file
with some top-level functions or properties and an Xkt class in the same package. But this
is rare and should never take place since there is a convention that no classes should have
the Kt suffix.

Local functions

Kotlin allows defining functions in many contexts. We can define functions at the top level,
as members (inside class, interface, and so on), and inside other functions (local
function). Consider the following example of the definition of a local function:

fun printTwoThreeTimes () {
fun printThree() { // 1
print (3)

}

printThree () // 2

printThree () // 2
}

1. printThree is a local function, because it is located inside another function.

2. Local functions are not accessible from outside the function they were declared
in.

[97]

Playing with Functions

Elements accessible inside local functions don't have to be passed from enclosing functions
as arguments because they are accessible directly. For example:

fun loadUsers (ids: List<Int>) {
var downloaded: List<User> = emptyList ()

fun printLog(comment: String) {
Log.1i("loadUsers (with ids $ids): S$comment\nDownloaded:
Sdownloaded") // 1
}
for (id in ids) {
printLog ("Start downloading for id $id")
downloaded += loadUser (id)
printLog ("Finished downloading for id $id")

}

1. The local function can access the comment parameter and local variables
(downloaded and ids), defined inside an enclosing function.

If we would like to define printLog as a top-level function, then we would have to pass as
arguments both ids and downloaded:

fun loadUsers (ids: List<Int>) {
var downloaded: List<User> = emptyList ()

for (id in ids) {
printLog ("Start downloading for id $id", downloaded, ids)
downloaded += loadUser (id)
printLog ("Finished downloading for
id $id", downloaded, ids))

fun printLog(state: String, downloaded: List<User>, ids: List<Int>)
{

Log.1("loadUsers (with ids $ids):

Sstate\nDownloaded: downloaded")

[98]

Playing with Functions

This implementation is not only longer, but also harder to maintain. Changes in printLog
might demand different parameters, and a change in parameters demands changes in
arguments in this function call. Also, if we change the 1oadUsers parameter type that is
used in printLog, then we will need to also change the parameter of printLog. There
would be no such problems if printLog was a local function. This explains when local
functions should be used: when we are extracting functionality that is used only by a single
function, and that functionality is using the elements (variables, values, and parameters) of
this function. Also, local functions are allowed to modify local variables, as in this example:

fun makeStudentList (): List<Student> {

}

var students: List<Student> = emptyList ()
fun addStudent (name: String, state: Student.State =
Student.State.New) {
students += Student (name, state, courses = emptyList())
}
//
addStudent ("Adam Smith")
addStudent ("Donald Duck")
//

return students

This way, we can extract and reuse functionality that could not be extracted in Java. It is
good to remember about local functions, because they sometimes allow code extraction that

is hard to implement in other ways.

Nothing return type

Sometimes we need to define a function that is always throwing exceptions (never

terminating normally). Two real-life use cases are:

¢ Functions that simplify error throwing. This is especially useful in libraries where
the error system is important and there is a need to provide more data about
error occurrences. (As an example, look at the throwError function presented in

this section.)

¢ Functions used for throwing errors in unit tests. This is useful when we need to

test error handling in our code.

[991]

Playing with Functions

For these kinds of situation, there is a special class called Nothing. The Nothing class is an
empty type (uninhabited type), meaning it has no instances. A function that has Nothing
return type won't return anything and it will never reach the return statement. It can only
throw an exception. This is why when we see that a function is returning Nothing, then it is
designed to throw exceptions. This way we can distinguish functions that do not return a
value (such as Java's void, and Kotlin's Unit) from functions that never terminate

(return Nothing). Let us have a look at an example of functions that might be used to
simplify error throwing in unit tests:

fun fail(): Nothing = throw Error ()

Here is a function that construct complex error messages using elements available in the
context where it is defined (in the class or function):

fun processElement (element: Element) {
fun throwError (message: String): Nothing
= throw ProcessingError ("Error in element $element: Smessage")

//

if (element.kind != ElementKind.METHOD)
throwError ("Not a method")

//

}

This kind of function can be used, just like a throw statement, as an alternative that is does
not influence the function return type:

fun getFirstCharOrFail (str: String): Char
= if(str.isNotEmpty()) str[0] else fail()

val name: String = getName () ?: fail()

val enclosingElement = element.enclosingElement ?: throwError ("Lack of
enclosing element")

How is this possible? This is a special trait of the Nothing class, which is acting as if it is a
subtype of all the possible types, both nullable and not-nullable. This is why Nothing is
referred to as an empty type, which means that no value can have this type at runtime, and
it's also a subtype of every other class.

[100]

Playing with Functions

Type hierarchy

Int | | String I I List<T> | I Parent | Int? | | String? | IList<T>?| | Parent? |
A y

| MutableList<T> | [MutableList<T>? |

Child?

The concept of uninhabited type is new in the world of Java, and this is why it might be
confusing. The idea is actually pretty simple. The Nothing instance never exists, while
there is only an error that might be returned from functions that specify it as a return type.
And there is no need for Nothing to be added to something to influence its type.

Summary

In this chapter, we've seen how to define and use functions. We learned how functions can
be defined at the top-level or inside other functions. There was also a discussion on
different features connected to functions: vararg parameters, default names, and named
argument syntax. Finally, we saw some Kotlin special return types: Unit, which is the
equivalent of Java's void, and Nothing, which is a type that cannot be defined and means
that nothing can be returned (only exceptions).

In the next chapter, we are going to see how classes are defined in Kotlin. Classes are also
specially supported by the Kotlin language, and there are lots of improvements introduced
over Java definitions.

[101]

Classes and Objects

The Kotlin language provides full support for OOP. We will review powerful structures
that allow us to simplify data model definition and operate on it in an easy and flexible
way. We'll learn how Kotlin simplifies and improves implementations of many concepts
known from Java. We will take a look at different types of class, property, initializer block,
and constructor. We will learn about operator overloading and interface default
implementations.

In this chapter, we will cover the following topics:

o Class declaration

e Properties

e Property access syntax

o Constructors and initializers blocks
¢ Constructors

¢ Inheritance

¢ Interfaces

e Data classes

¢ Destructive declarations
e Operator overloading

¢ Object declaration

¢ Object expression

¢ Companion objects

¢ Enum classes

o Sealed classes

¢ Nested classes

Classes and Objects

Classes

Classes are a fundamental building block of OOP. In fact, Kotlin classes are very similar to
Java classes. Kotlin, however, allows more functionality together with simpler and much
more concise syntax.

Class declaration

Classes in Kotlin are defined using the class keyword. The following is the simplest class
declaration--an empty class named Person:

class Person

The definition of Person does not contain any body. Still, it can be instantiated using a
default constructor:

val person = Person()

Even such a simple task as class instantiation is simplified in Kotlin. Unlike Java, Kotlin
does not require the new keyword to create a class instance. Due to strong Kotlin
interoperability with Java, we can instantiate classes defined in Java and Kotlin exactly the
same way (without the new keyword). The syntax used to instantiate a class depends on the
actual language used to create class instance (Kotlin or Java), not the language the class was
declared in:

// Instantiate Kotlin class inside Java file

Person person = new Person()
// Instantiate class inside Kotlin file
var person = Person()

It is a rule of thumb to use the new keyword inside a Java file and never use the new
keyword inside a Kotlin file.

Properties

A property is just a combination of a backing field and its accessors. It could be a backing field
with both a getter and a setter or a backing field with only one of them. Properties can be
defined at the top level (directly inside the file) or as a member (for example, inside the class
or interface).

[103]

Classes and Objects

In general, it is advisable to define properties (private fields with getters/setters) instead of
accessing public fields directly (according to Effective Java, by Joshua Bloch, item 14: in public
classes, use accessor methods, not public fields).

Java getter and setter conventions for private fields

Getter: A parameterless method with a name that corresponds to the
property name and a get prefix (for a Boolean property there might be
an is prefix instead).

Setter: Single-argument methods with names starting with set: for
example, setResult (String resultCode).

Kotlin guards this principle by language design, because this approach provides various
encapsulation benefits:

¢ The ability to change the internal implementation without changing an external
API

e It enforces invariants (it calls methods that validate an object's state)

e The ability to perform additional actions when accessing a member (for example,
a log operation)

To define a top-level property, we simply define it in the Kotlin file:

//Test .kt
val name:String

Let's imagine that we need a class to store basic data regarding a person. This data may be
downloaded from an external API (backend) or retrieved from a local database. Our class
will have to define two (member) properties, name and age. Let's look at the Java
implementation first:

public class Person {

private int age;
private String name;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public int getAge () {
return age;

[104]

Classes and Objects

}

public void setAge (int age) {
this.age = age;

}

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;
t
t

This class contains only two properties. Since we can make the Java IDE generate accessor
code for us, at least we don't have to write the code by ourselves. However, the problem
with this approach is that we cannot get along without these automatically generated
chunks, and that makes the code very verbose. We (developers) spend most of our time just
reading code, not writing it, so reading redundant code wastes a lot of valuable time. Also,
a simple task such as refactoring the property name becomes a little bit trickier, because the
IDE might not update constructor parameter names.

Fortunately, boilerplate code can be decreased significantly by using Kotlin. Kotlin solves
this problem by introducing the concept of properties, which is built into the language. Let's
look at a Kotlin equivalent of the preceding Java class:

class Person {
var name: String
var age: Int

constructor (name: String, age: Int) {
this.name = name
this.age = age
}

This is an exact equivalent of the preceding Java class:

e The constructor method is equivalent to the Java constructor that is called
when an object instance is created
¢ Getters and setters are generated by the Kotlin compiler

We can still define custom implementations of getters and setters. We will discuss this in
more detail in the Custom getters/setters section.

[105]

Classes and Objects

All the constructors that we have already defined are called secondary constructors. Kotlin
also provides alternative, very concise syntax for defining constructors. We can define a
constructor (with all parameters) as part of the class header. This kind of constructor is
called a primary constructor. Let's move a property declaration from the secondary
constructor into the primary constructor to make our code a little bit shorter:

class Person constructor (name: String, age: Int) {
var name: String
var age: Int

init {
this.name = name
this.age = age

println ("Person instance created")

}

In Kotlin, the primary constructor, as opposed to the secondary constructor, can't contain
any code, so all initialization code must be placed inside the initializer block (init). An
initializer block will be executed during class creation, so we can assign constructor
parameters to fields inside it.

To simplify code, we can remove the initializer block and access constructor parameters
directly in property initializers. This allows us to assign constructor parameters to a field:

class Person constructor (name: String, age: Int) {
var name: String = name
var age: Int = age

}

We managed to make the code shorter, but it still contains a lot of boilerplate, because type
declarations and property names are duplicated (the constructor parameter, field
assignment, and field itself). When properties do not have any custom getters or setters, we
can define them directly inside primary constructor by adding a val or var modifier:

class Person constructor (var name: String, var age: Int)

Finally, if the primary constructor does not have any annotations (such as @Inject) or
visibility modifiers (such as public or private), then the constructor keyword can be
omitted:

class Person (var name: String, var age: Int)

[106]

Classes and Objects

When the constructor takes a few parameters, it is good practice to define each parameter in
a new line to improve code readability and decrease the chance of potential merge conflicts
(when merging branches from a source code repository):

class Person (
var name: String,
var age: Int

)

Summing up, the preceding example is equivalent to the Java class presented at the
beginning of this section--both properties are defined directly in the class's primary
constructor and the Kotlin compiler does all the work for us--it generates the appropriate
fields and accessors (getters/setters).

Note that this notation contains only the most important information about this data model
class--its name, parameter names, types, and mutability (val/var) information. The
implementation has nearly zero boilerplate. This makes the class very easy to read,
understand, and maintain.

Read-write versus read-only

All the properties in the previous examples were defined as read-write (a setter and a getter
are generated). To define read-only properties, we need to use the val keyword, so only
a getter will be generated. Let's look at a simple example:

class Person (
var name: String,
// Read-write property (generated getter and setter)

val age: Int // Read-only property (generated getter)
)
//usage
val person = Person("Eva", 25)
val name = person.name
person.name = "Kate"

val age = person.age
person.age = 28 //error: read-only property

[107]

Classes and Objects

Kotlin does not support write-only properties (properties of which only setter is generated).

Keyword Read | Write
var Yes |Yes
val Yes |No

(unsupported) |No | Yes

Property access syntax between Kotlin and Java

Another big improvement introduced by Kotlin is the way to access properties. In Java, we
access a property using the corresponding method (set Speed/get Speed). Kotlin promotes
property access syntax, which is a more expressive way of accessing properties. Let's compare
both approaches, assuming we have a simple Car class that has a single speed property:

class Car (var speed: Double)

//Java access properties using method access syntax
Car car = new Car(7.4)

car.setSpeed(9.2)

Double speed = car.getSpeed();

//Kotlin access properties using property access syntax

val car: Car = Car(7.4)
car.speed = 9.2
val speed = car.speed

As we can see, in Kotlin there is no need to add get or set prefixes and parentheses to
access or modify an object property. Using property access syntax permits the direct use of
the increment (++) and decrement (--) operators together with property access:

val car = Car(7.0)
println(car.speed) //prints 7.0
car.speed++

println(car.speed) //prints 8.0
car.speed—-—

car.speed—-—

println (car.speed) //prints: 6.0

[108]

Classes and Objects

Increment and decrement operators

There are two kinds of increment (++) and decrements (--) operator: pre-increment/pre-
decrement, where the operator is defined before the expression, and post-increment/post-
decrement, where the operator is defined after the expression:

++speed //pre increment
——-speed //pre decrement

speed++ //post increment
speed-- //post decrement

In the preceding example, using post- instead of pre-increment/decrement would change
nothing because those operations are executed in sequence. But this makes a huge
difference when the increment/decrement operator is combined with a function call.

In the pre-increment operator, speed is retrieved, incremented, and passed to a function as
an argument:

var speed = 1.0
println (++speed) // Prints: 2.0
println (speed) // Prints: 2.0

In post-increment operator, speed is retrieved, passed to a function as an argument, and
then it is incremented, so the old value is passed to a function:

var speed = 1.0
println (speed++) // Prints:

1.0
println(speed) // Prints: 2.0

This works in an analogical way for pre-decrement and post-decrement
operators.

Property access syntax is not limited to classes defined in Kotlin. Each method that follows
the Java conventions for getters and setters is represented as a property in Kotlin.

This means that we can define a class in Java and access its properties in Kotlin using
property access syntax. Let's define a Java Fish class with two properties, size and
isHungry, and let's instantiate this class in Kotlin and access the properties:

//Java class declaration

public class Fish {
private int size;
private boolean hungry;

[109]

Classes and Objects

public Fish(int size, boolean isHungry) {
this.size = size;
this.hungry = isHungry;

public int getSize() {
return size;

public void setSize(int size) {
this.size = size;

public boolean isHungry () {
return hungry;

public void setHungry (boolean hungry) {
this.hungry = hungry;

//Kotlin class usage

val fish = Fish (12, true)

fish.size = 7

println(fish.size) // Prints: 7
fish.isHungry = true
println(fish.isHungry) // Prints: true

This works both ways, so we can define the Fish class in Kotlin using very concise syntax
and access it in the usual Java way, because the Kotlin compiler will generate all the
required getters and setters:

//Kotlin class declaration
class Fish(var size: Int, var hungry: Boolean)

//class usage in Java

Fish fish = new Fish (12, true);
fish.setSize (7);
System.out.println(fish.getSize());
fish.setHungry (false);
System.out.println (fish.getHungry());

[110]

Classes and Objects

As we can see, the syntax used to access the class property depends on the actual language
that the class uses, not the language that the class was declared in. This allows for more
idiomatic usage of many classes defined in the Android framework. Let's see some
examples:

Java method access syntax Kotlin property access syntax
activity.getFragmentManager () activity.fragmentManager
view.setVisibility (Visibility.GONE) view.visibility = Visibility.GONE
context.getResources () .getDisplayMetrics () .density|context.resources.displayMetrics.density

Property access syntax results in more concise code that decreases the original Java
complexity. Notice that it is still possible to use method access syntax with Kotlin, although
property access syntax is often the better alternative.

There are some methods in the Android framework that use the is prefix for their name; in
these cases, Boolean properties also have the is prefix:

class MainActivity : AppCompatActivity () {

override fun onDestroy() { // 1
super.onDestroy ()

isFinishing() // method access syntax
isFinishing // property access syntax
finishing // error

}

1. Kotlin marks overridden members using the override modifier, not @Override
annotation like Java.

Although using finishing would be the most natural and consistent approach, it's
impossible to use it by default due to potential conflicts.

Another case where we can't use property access syntax is when the property defines a
setter without a getter, because Kotlin does not support write-only properties, as in this
example:

fragment.setHasOptionsMenu (true)
fragment .hasOptionsMenu = true // Error!

[111]

Classes and Objects

Custom getters/setters

Sometimes, we want to have more control over the use of properties. We may want to
perform other auxiliary operations when using a property, for example, verify a value
before it's assigned to a field, log the whole operation, or invalidate an instance state. We
can do this by specifying custom setters and/or getters. Let's add the ecoRat ing property
to our Fruit class. In most cases, we would add this property to the class declaration
header like this:

class Fruit (var weight: Double,
val fresh: Boolean,
val ecoRating: Int)

If we want to define custom getters and setters, we need to define a property in the class
body instead of the class declaration header. Let's move the ecoRat ing property into the
class body:

class Fruit (var weight: Double, wval fresh: Boolean, ecoRating: Int)

{

var ecoRating: Int = ecoRating

}

When the property is defined inside the body of a class, we have to initialize it with a value
(even nullable properties need to be initialized with a null value). We can provide the
default value instead of filling a property with the constructor argument:

class Fruit (var weight: Double, val fresh: Boolean) {
var ecoRating: Int = 3

}

We can also compute default values based on some other properties:

class Apple(var weight: Double, wval fresh: Boolean) {
var ecoRating: Int when (weight) {

in 0.5..2.0 -—> 5
in 0.4..0.5 —> 4
in 0.3..0.4 —> 3
in 0.2..0.3 —> 2
else —> 1

}

Different values will be set for different weight constructor arguments.

[112]

Classes and Objects

When a property is defined in a class body, the type declaration can be omitted, because it
can be inferred from the context:

class Fruit (var weight: Double) {
var ecoRating = 3
}

Let's define a custom getter and setter with the default behavior that will be the equivalent
of the preceding property:

class Fruit (var weight: Double) {

var ecoRating: Int = 3

get () |
println ("getter value retrieved")
return field

}

set (value) {
field = 1if (value < 0) 0 else value
println ("setter new value assigned $field")

}

// Usage

val fruit = Fruit (12.0)

val ecoRating = fruit.ecoRating

// Prints: getter value retrieved
fruit.ecoRating = 3;

// Prints: setter new value assigned 3
fruit.ecoRating = -5;

// Prints: setter new value assigned O

Inside the get and set block, we can have access a special variable called £ield, which
refers to the corresponding backing field of the property. Notice that the Kotlin property
declaration is closely positioned to a custom getter/setter. This is in contrast to Java and
solves the issue in which the field declaration is usually at the top of the file containing the
class and the corresponding getter/setter is at the bottom of this file, so we can't really see
them on a single screen, and thus code is more difficult to read. Apart from the location,
Kotlin property behavior is quite similar to Java. Each time we retrieve a value from the
ecoRating property, a get block will be executed, and each time we assign a new value to
the ecoRating property, a set block will be executed.

This is a read-write property (var), so it may contain both the corresponding getters and
setters. If we explicitly define only one of them, the default implementation will be used for
the other.

[113]

Classes and Objects

To compute a value each time a property value is retrieved, we need to explicitly define a
getter:

class Fruit (var weight: Double) {

val heavy // 1
get () = weight > 20

}

//usage

var fruit = Fruit (7.0)

println (fruit.heavy) //prints: false
fruit.weight = 30.5
println (fruit.heavy) //prints: true

1. Since Kotlin 1.1, the type can be omitted (it is to be inferred).

The getter versus property default value

In the preceding example, we used a getter, so the property value is calculated each time the
value is retrieved. By omitting the getter, we can create a default value for the property.
This value will be computed only once during class creation and it will never change
(changing the weight property will have no effect on the isHeavy property value):

class Fruit (var weight: Double) {
val isHeavy = weight > 20
}
var fruit = Fruit (7.0)
println (fruit.isHeavy) // Prints: false
fruit.weight = 30.5
println (fruit.isHeavy) // Prints: false

This type of property does have a backing field, because its value is always computed
during object creation. We can also create read-write properties without a backing field:

class Car {
var usable: Boolean = true
var inGoodState: Boolean = true

var crashed: Boolean
get () = 'usable && !inGoodState
set (value) |

usable = false

inGoodState = false

[114]

Classes and Objects

This type of property does not have a backing field, because its value is always computed
using another property.

Late-initialized properties

Sometimes, we know that a property won't be null, but it won't be initialized with the value
at declaration time. Let's look at a common Android example--retrieving a reference to a
layout element:

class MainActivity : AppCompatActivity () {
private var button: Button? = null

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
button = findViewById(R.id.button) as Button

}

The button variable can't be initialized at declaration time because the MainActivity
layout is not yet initialized. We can retrieve the reference to the button defined in the layout
inside the onCreate method, but to do this we need to declare a variable as nullable
(Button?).

Such an approach seems quite impractical because after the onCreate method is called, a
button instance is available all the time. However, the client still needs to use the safe call
operator or other nullity checks to access it.

To avoid nullity checks when accessing a property, we need a way to inform the Kotlin
compiler that this variable will be filled before it is used, but its initialization will be
delayed. To do this, we can use the lateinit modifier:

class MainActivity : AppCompatActivity () {
private lateinit wvar button: Button
override fun onCreate (savedInstanceState: Bundle?) {
button = findViewById(R.id.button) as Button

button.text = "Click Me"

}

Now, with the property marked as 1ateinit, we can access our application instance
without performing nullity checks.

[115]

Classes and Objects

The lateinit modifier tells the compiler that this property is non-nullable, but its
initialization is delayed. Naturally, when we try to access the property before it is
initialized, the application will throw UninitializedPropertyAccessException. Thisis
fine because we assume that this scenario should not happen.

Scenarios where a variable initialization is not possible at declaration time are quite
common, and they are not always related to views. Properties can be initialized through
Dependency Injection or via the setup method of a unit test. In such scenarios, we cannot
supply a non-nullable value in the constructor, but we still want to avoid nullity checks.

The lateinit property and frameworks

The lateinit property is also helpful when a property is injected by the
Dependency Injection framework. The popular Android Dependency
Injection framework, Dagger uses the @Inject annotation to mark
properties that need to be injected:

@Inject lateinit var locationManager: LocationManager

We know that the property will never be null (because it will be injected),
but the Kotlin compiler does not understand this annotation.

Similar scenarios happen with the popular framework Mockito:
@Mock lateinit wvar mockEventBus: EventBus

The variable will be mocked, but it will happen sometime later, after test
class creation.

Annotating properties

Kotlin generates multiple JVM bytecode elements from a single property (private field,
getter, and setter). Sometimes, the framework annotation processor or the reflection-based
library requires a particular element to be defined as a public field. A good example of this
behavior is the JUnit test framework. It requires rules to be provided through a test class
field or a getter method. We may encounter this problem when defining
ActivityTestRule or Mockito's (mocking framework for unit tests) Rule annotation:

@Rule
val activityRule = ActivityTestRule (MainActivity::class.Java)

[116]

Classes and Objects

The preceding code annotates the Kotlin property that JUnit won't recognize, so
ActivityTestRule can't be properly initialized. The JUnit annotation processor expects
the Rule annotation on the field or getter. There are a few ways to solve this problem. We
can expose the Kotlin property as a Java field by annotating it with the @ gvmField
annotation:

@JvmField @Rule
val activityRule = ActivityTestRule (MainActivity::class.Java)

The field will have the same visibility as the underlying property. There are a few
limitations regarding @JvmField annotation usage. We can annotate a property with
@JvmField if it has a backing field; it is not private; does not have open, override, or const
modifiers; and is not a delegated property.

We can also annotate a getter by adding an annotation directly to it:

val activityRule
QRule get () = ActivityTestRule (MainActivity::class.java)

If we don't want to define getter, we can still add an annotation to the getter using the use-
site target (get). By doing so, we simply specify which element generated by the Kotlin
compiler will be annotated:

@get:Rule
val activityRule = ActivityTestRule (MainActivity::class.Java)

Inline properties

We can optimize property calls by using the inline modifier. During compilation, each
property call will be optimized. Instead of really calling a property, the call will be replaced
with the property body:

inline val now: Long
get () {
println("Time retrieved")
return System.currentTimeMillis ()

}

With inline properties, we are using the inline modifier. The preceding code will be
compiled to the following:

println("Time retrieved")
System.currentTimeMillis ()

[117]

Classes and Objects

Inlining improves performance because there is no need to create additional objects. No
getter will be invoked because the body replaces the property usage. Inlining has only one
limitation--it can be applied to properties that do not have a backing field.

Constructors

Kotlin allows us to define classes without any constructors. We can also define a primary
constructor and one or more secondary constructors:

class Fruit(val weight: Int) {
constructor (weight: Int, fresh: Boolean) : this(weight) { }

}

//class instantiation
val fruitl = Fruit (10)
val fruit2 = Fruit (10, true)

Declaring properties is not allowed for secondary constructors. If we need a property that is
initialized by secondary constructors, we must declare it in the class body, and we can
initialize it in the secondary constructor body. Let's define the fresh property:

class Test (val weight: Int) |
var fresh: Boolean? = null
//define fresh property in class body

constructor (weight: Int, fresh: Boolean) : this(weight) {

this.fresh = fresh
//assign constructor parameter to fresh property

}

Notice that we defined our fresh property as nullable because when an instance of the
object is created using a primary constructor, the fresh property will be nul1:

val fruit = Fruit (10)
println(fruit.weight) // prints: 10
println (fruit.fresh) // prints: null

We can also assign the default value to the fresh property to make it non-nullable:

class Fruit(val weight: Int) {
var fresh: Boolean = true

constructor (weight: Int, fresh: Boolean) : this(weight) {
this.fresh = fresh

[118]

Classes and Objects

}

val fruit = Fruit (10)
println(fruit.weight) // prints: 10
println(fruit.fresh) // prints: true

When a primary constructor is defined, every secondary constructor must call the primary
constructor implicitly or explicitly. An implicit call means that we call the primary
constructor directly. An explicit call means that we call another secondary constructor that
calls the primary constructor. To call another constructor, we use the this keyword:

class Fruit(val weight: Int) {
constructor (weight: Int, fresh: Boolean) : this(weight) // 1

constructor (weight: Int, fresh: Boolean, color: String)
this (weight, fresh) // 2

1. The call to the primary constructor.
2. The call to the secondary constructor.

If the class has no primary constructor and the superclass has a non-empty constructor, then
each secondary constructor has to initialize the base class using the super keyword or call
another constructor that does that:

class ProductView : View {
constructor (ctx: Context) : super (ctx)
constructor (ctx: Context, attrs : AttributeSet)

super (ctx, attrs)

}

A view example can be greatly simplified by using the @ JvmOverloads annotation that will
be described in the @ JvmOverloads section.

By default, this generated constructor will be public. If we want to prevent the generation of
such an implicit public constructor, we have to declare an empty primary constructor with
aprivate or protected visibility modifier:

class Fruit private constructor ()

[119]

Classes and Objects

To change the constructor visibility, we need to explicitly use the constructor keyword in
the class definition header. The constructor keyword is also required when we want to
annotate a constructor. A common example is to annotate a class constructor using
Dagger's @Inject annotation:

class Fruit @Inject constructor ()

Both the visibility modifier and annotation can be applied at the same time:

class Fruit @Inject private constructor {
var weight: Int? = null

}

Properties versus constructor parameters

The important thing to notice is the fact that if we remove the var/val keyword from the
constructor property declaration, we'll end up with a constructor parameter declaration.
This means that the property will be changed to a constructor parameter, so no accessors
will be generated and we will not be able to access the property on the class instance:

class Fruit (var weight:Double, fresh:Boolean)

val fruit = Fruit(12.0, true)
println (fruit.weight)
println (fruit.fresh) // error

In the preceding example, we have an error because fresh is missing a val or var
keyword, so it is a constructor parameter, not a class property such as weight. The
following table summarizes the compiler accessor generation:

Class declaration Getter Setter Type
generated generated
class Fruit (name:String) No No Constructor
parameter
class Fruit (val Yes No Property

name:String)

class Fruit (var Yes Yes Property
name:String)

[120]

Classes and Objects

Sometimes, we may wonder when we should use a property and when we should use a
method. A good guideline to follow is to use a property instead of a method in the
following circumstances:

e It does not throw an exception
e It is cheap to calculate (or cached on the first run)
e It returns the same result over multiple invocations

Constructors with default arguments

Since the early days of Java, there has been a serious flaw with object creation. It is difficult
to create an object instance when an object requires multiple parameters and some of those
parameters are optional. There are a few ways to solve this problem, such as the
Telescoping constructor pattern, the JavaBeans pattern, and even the Builder pattern. Each
of them has their pros and cons.

Patterns

The patterns solve the issue of object creation. Each of them is explained as follows:

¢ Telescoping constructor pattern: A class with a list of constructors where each
constructor adds a new parameter. Nowadays it's considered an anti-pattern, but
Android still uses it in a few places; for example, the android.view.View class:

val viewl = View (context)
val viewl = View (context, attributeSet)
val viewl = View(context, attributeSet, defStyleAttr)

e JavaBeans pattern: A parameterless constructor plus one or more setters methods
to configure objects. The main problem with this pattern is that we can't say
whether or not all the required methods have been called on an object, so it may
be only partially constructed:

val animal = Animal ()
fruit.setWeight (10)
fruit.setSpeed(7.4)
fruit.setColor ("Gray")

[121]

Classes and Objects

¢ Builder pattern: This uses another object, a builder, that receives initialization
arguments step by step and then returns the resulting constructed object at once
when the build method is called. Examples
are android.app.Notification.Builder,
and android.app.AlertDialog.Builder:

Retrofit retrofit = new Retrofit.Builder ()
.baseUrl ("https://api.github.com/")
Jbuild();

For a long time, the builder pattern was most widely used, but a combination of default
arguments and named argument syntax is an even more concise option. Let's define a default
value:

class Fruit (weight: Int = 0, fresh: Boolean = true, color:
String = "Green")

By defining default parameter values, we can create objects in multiple ways, without
needing to pass all arguments:

val fruit = Fruit (7.4, false)
println (fruit.fresh) // prints: false

val fruit2 = Fruit (7.4)
println (fruit.fresh) // prints: true

Using argument syntax with default parameters gives us much more flexibility in object
creation. We can pass the required parameters only in any order that we want without
defining multiple methods and constructors, as in the following example:

val fruitl = Fruit (weight = 7.4, fresh = true, color = "Yellow")

val fruit2 = Fruit (color = "Yellow")

Inheritance

As we already know, a supertype of all Kotlin types is Any. It is the equivalent of the Java
Object type. Each Kotlin class explicitly or implicitly extends the Any class. If we do not
specify the parent class, Any will be implicitly set as the parent of the class:

class Plant // Implicitly extends Any
class Plant : Any // Explicitly extends Any

[122]

Classes and Objects

Kotlin, like Java, promotes single inheritance, so a class can have only one parent class, but
it can implement multiple interfaces.

In contrast to Java, every class and every method in Kotlin is final by default. This conforms
to the Item 17 in Effective Java, the Design and document for inheritance or else prohibit it rule.
This is used to prevent unexpected behavior from a subclass changing. Modification of a
base class can cause incorrect behavior of subclasses because the changed code of the base
class no longer matches the assumptions in its subclasses.

This means that a class cannot be extended and a method cannot be overridden until it's
explicitly declared as open using the open keyword. This is the exact opposite of the Java
final keyword.

Let's say we want to declare a base class called P1ant and subclass called Tree:

class Plant
class Tree : Plant() // Error

The preceding code will not compile because the class P1ant is final by default. Let's make
it open:

open class Plant
class Tree : Plant ()

Notice that we define inheritance in Kotlin simply by using the colon character (:). There are
no extends or implements keywords, in contrast Java.

Now let's add some methods and properties to our P1ant class, and try to override it in the
Tree class:

open class Plant {

var height: Int = 0

fun grow(height: Int) {}
}

class Tree : Plant () {
override fun grow(height: Int) { // Error
this.height += height
}

[123]

Classes and Objects

This code will also not compile. We have said already that all methods are closed by
default, so each method we want to override must be explicitly marked as open. Let's fix
the code by marking the grow method as open:

open class Plant {

var height: Int = 0

open fun grow(height: Int) {}
}

class Tree : Plant () {
override fun grow(height: Int) {
this.height += height
}
}

In a similar way, we could open and override the height property:

open class Plant {
open var height: Int = 0
open fun grow(height: Int) {}

}
class Tree : Plant () A
override var height: Int = super.height
get () = super.height

set (value) { field = value}

override fun grow(height: Int) {
this.height += height
}

To quickly override any member, go to a class where a member is
declared, add the open modifier, and then go to a class where we want to
override member, run the override members action (the shortcut for
Windows is Ctrl + O, and for macQOS it is Command + O), and select all the
members you want to override. This way, all the required code will be
generated by Android Studio.

[124]

Classes and Objects

Let's assume that all trees grow in the same way (the same computation of the growing
algorithm is applicable for all trees). We want to allow the creation of new subclasses of the
Tree class to have more control over trees, but at the same time we want to preserve our
growing algorithm--not allowing any subclasses of the Tree class to override this behavior.
To achieve this, we need to explicitly mark the grow method in the Tree class as final:

open class Plant {
var height: Int = 0

open fun grow(height: Int) {}
}

class Tree : Plant () {
final override fun grow(height: Int) {
this.height += height
}
}

class Oak : Tree() |
// 1
}

1. It's not possible to override grow method here because it's final.

Let's sum up all this open and final behavior. To make a method overridable in a subclass,
we needed to explicitly mark it as open in the superclass. To make sure that

overridden method will not be overridden again by any subclass, we need to mark it as
final.

In the preceding example, the grow method in the P1ant class does not really provide any
functionality (it has an empty body). This is a sign that maybe we don't want to instantiate
the Plant class at all, but treat it as a base class and only instantiate various classes, such as
Tree, which extends the Plant class. We should mark the P1ant class as abstract to
prohibit its instantiation:

abstract class Plant {
var height: Int = 0

abstract fun grow(height: Int)
}

class Tree : Plant () {
override fun grow(height: Int) {
this.height += height
}

[125]

Classes and Objects

val plant = Plant ()
// error: abstract class can't be instantiated
val tree = Tree()

Marking the class as abstract will also make the method class open by default, so we
don't have to explicitly mark each member as open. Notice that when we are defining the
grow method as abstract, we have to remove its body, because the abstract method can't
have a body.

The JvmOverloads annotation

Some classes in the Android platform use Telescoping constructors, which is considered an
anti-pattern. A good example of such a class is the android.view.View class. There may
be a case when only a single constructor is used (inflating the custom view from Kotlin
code), but it is much safer to override all three constructors when the

subclassing android.view.View, because the class will work correctly in all scenarios.
Normally, our Customview class would look like this:

class CustomView : View {
constructor (context: Context?) : this(context, null)

constructor (context: Context?, attrs: AttributeSet?)
this (context, attrs, 0)

constructor (context: Context?, attrs: AttributeSet?, defStyleAttr:
Int) : super (context, attrs, defStyleAttr) {
/...
}
}

This case introduces a lot of boilerplate code just for constructors that delegate calls to other
constructors. Kotlin's solution to this problem is to use the @ JvmOverload annotation:

class KotlinView @JvmOverloads constructor (
context: Context,
attrs: AttributeSet? = null,
defStyleAttr: Int = 0

) : View(context, attrs, defStyleAttr)

[126]

Classes and Objects

Annotating a constructor with the @ JvmOverload annotation informs the compiler to
generate in additional JVM bytecode constructor overload for every parameter with a
default value. In this case, all the required constructors will be generated:

public SampleView (Context context) {
super (context) ;

public SampleView (Context context, @Nullable AttributeSet attrs) {
super (context, attrs);

public SampleView (Context context, @Nullable AttributeSet attrs, int
defStyleAttr) {
super (context, attrs, defStyleAttr);

Interfaces

Kotlin interfaces are similar to Java 8 interfaces and different to interfaces in previous
version Java. An interface is defined using the interface keyword. Let's define an
EmailProvider interface:

interface EmailProvider {
fun validateEmail ()

}

To implement the preceding interface in Kotlin, use the same syntax as for extending
classes--a single colon character (:). There is no implements keyword, in contrast to Java:

class User:EmailProvider {
override fun validateEmail () {
//email validation

}

The question of how to extend a class may arise and implement an interface at the same
time. Simply place the class name after the colon, and use a comma to add one or more
interfaces. It's not required to place the superclass in the first position, although it's
considered good practice:

open class Person {

interface EmailProvider {
fun validateEmail ()

[127]

Classes and Objects

class User: Person(), EmailProvider {
override fun validateEmail () {
//email validation

}

As with Java, the Kotlin class can only extend one class, but it can implement one or more
interfaces. We can also declare properties in the interfaces:

interface EmailProvider {
val email: String
fun validateEmail ()

}
All methods and properties have to be overridden in a class implementing an interface:
class User() : EmailProvider {

override val email: String = "UserEmailProvider"

override fun validateEmail () |
//email validation

}

Also, properties defined in a primary constructor can be used to override parameters from
an interface:

class User (override val email: String) : EmailProvider {
override fun validateEmail () |
//email validation

}

All methods and properties defined in an interface that does not have a default
implementation are treated by default as abstract, so we don't have to explicitly define them
as abstract. All abstract methods and properties must be implemented (overridden) by a
concrete (non-abstract) class that implements an interface.

[128]

Classes and Objects

There is, however, another way to define methods and properties in the interface. Kotlin,
similar to Java 8, introduces major improvements to interfaces. An interface not only defines
behavior, but also implements it. This means that the default method of property
implementation can be provided by an interface. The only limitation is that an interface
cannot reference any backing fields or store a state (because there is no good place to store
it). This is a difference between an interface and an abstract class. Interfaces are stateless
(they can't have a state), while abstract classes are stateful (they can have a state). Let's see
an example:

interface EmailProvider {
fun validateEmail () : Boolean
val email: String

val nickname: String
get () = email.substringBefore ("@Q")
}
class User (override val email: String) : EmailProvider {
override fun validateEmail () |
//email validation
}
}

The EmailProvider interface provides the default implementation for the nickname
property, so we don't have to define it in the User class, and we can still use the property as
any other property defined in the class:

val user = User (" johnny.bravo@test.com")
print (user.nickname) //prints: johnny

The same applies to methods. Simply define a method with the body in the interface, so the
User class will take all the default implementation from the interface and will only have to
override only the email member--the member in the inference without a default
implementation:

interface EmailProvider {
val email: String

val nickname: String
get () = email.substringBefore ("Q@")

fun validateEmail () = nickname.isNotEmpty ()

[129]

Classes and Objects

class User (override val email: String) : EmailProvider
//usage

val user = User ("Jjoey@test.com")

print (user.validateEmail()) // Prints: true

print (user.nickname) // Prints: joey

There is one interesting case related to default implementations. A class can't inherit from
multiple classes, but it can implement multiple interfaces. We can have two interfaces
containing methods with the same signature and default implementations:

interface A {
fun foo() {
println ("A")
}
}

interface B {
fun foo() {
println ("B")
}
}

In such cases, conflicts must be resolved explicitly by overriding the foo method in a class

implementing the interfaces:

class Item : A, B {
override fun foo() |
println ("Item")
}
}

//usage
val item = Item()
item.foo () //prints: Item

We can still call both default interface implementations by qualifying super using angle
brackets and specifying the parent interface type name:
class Item : A, B {
override fun foo() |
val a = super<A>.foo()

val b = super.foo ()
print ("Item S$a S$Sb")

//usage

[130]

Classes and Objects

val item = Item()
item.foo ()

//Prints: A
B
ItemsAB

Data classes

Often, we create a class whose only purpose is to store data, such as, data retrieved from a
server or a local database. These classes are the building blocks of application data models:

class Product (var name: String?, var price: Double?) {

override fun hashCode(): Int {
var result = if (name != null) name!!.hashCode () else 0
result = 31 * result + if (price !'= null) price!!.hashCode()
else O

return result

override fun equals (other: Any?): Boolean = when {
this === other -> true
other == null || other !is Product -> false
if (name != null) name != other.name else other.name !=
null -> false
price '= null -> price == other.price
else —-> other.price == null
}
override fun toString(): String {

return "Product (name=S$name, price=S$price)"
t

In Java, we need to generate a lot of redundant getters and setters together with

the hashCode and equals methods. Android Studio can generate most of the code for us,
but maintaining this code is still an issue. In Kotlin, we can define a special kind of class
called the data class by adding the data keyword to a class declaration header:

class Product (var name: String, var price: Double)
// normal class

data class Product (var name: String, var price: Double)
// data class

[131]

Classes and Objects

A data class adds additional capabilities to a class in the form of methods generated by the
Kotlin compiler. Those methods are equals, hashCode, toString, copy, and multiple
componentN methods. The limitation is that data classes can't be marked as abstract,
inner, and sealed. Let's discuss methods added by a data modifier in more detail.

The equals and hashCode methods

When dealing with data classes, there is often a need to compare two instances for
structural equality (they contain the same data, but are not necessarily the same instance).
We many simply want to check whether one instance of the User class equals another User
instance or if two product instances represent the same product. A common pattern used to
check whether objects are equal is to use an equals method that uses the hashCode
method internally:

product.equals (product?2)

The general contract for overridden implementations of hashCode is that two equal objects
(according to the equals implementation) need to have the same hash code. The reason
behind this is that hashCode is often compared before equals, because of its performance--
it's much cheaper to compare hash code than every field in the object.

If hashCode is the same then the equals method checks whether the two objects are the
same instance, or the same type, and then verifies equality by comparing all significant
fields. If at least one of the fields of the first object is not equal to a corresponding field of a
second object then the objects are not considered equal. Another way to describe this is: two
objects are equal when they have the same hashCode and all significant (compared) fields
have the same value. Let's check an example of the Java Product class, which contains two
fields, name and price:

public class Product {

private String name;
private Double price;

public Product (String name, Double price) {
this.name = name;
this.price = price;

}

@Override
public int hashCode () {
int result = name != null ? name.hashCode() : 0;
result = 31 * result + (price !'= null ?

[132]

Classes and Objects

price.hashCode() : 0);
return result;
}
@Override
public boolean equals (Object o) {
if (this == o) {
return true;
}
if (o == null || getClass () != o.getClass()) {
return false;
}
Product product = (Product) o;
if (name != null ? !name.equals (product.name)
product.name != null) {
return false;
}
return price != null ? price.equals (product.price)
product.price == null;

public String getName () {
return name;

public void setName (String name) {
this.name = name;

public Double getPrice() {
return price;

public void setPrice (Double price) {
this.price = price;

}

This approach is widely used in Java and other OOP languages. In the early days,
programmers had to write this code manually for every class that needed to be compared
and maintained the code, making sure that it was correct and it compared every significant

value.

[133]

Classes and Objects

Nowadays, modern IDEs such as Android Studio can generate this code and update the
appropriate methods. We don't have to write the code, but we still have to maintain it by
making sure that all the required fields are compared by the equals method. Sometimes,
we don't know whether it is a standard code generated by the IDE or it is a tweaked
version. For each Kotlin data class, those methods are automatically generated by a
compiler, so this problem does not exist. Here is a definition of Product in Kotlin, that
contains all methods defined in the previous Java classes:

data class Product (var name: String, var price: Double)

The preceding class contains all methods defined in previous Java classes, but there is no
massive boilerplate code to maintain.

In chapter 2, Laying a Foundation, we mentioned that, in Kotlin, using the structural
equality operator (==) will always call the equals method under the hood, so it means that
we can easily and safely compare instances of our Product data class:

data class Product (var name:String, var price:Double)

val productA = Product ("Spoon", 30.2)
val productB = Product ("Spoon", 30.2)
val productC = Product ("Fork", 17.4)

print (productA
print (productA

(productA) // prints: true
(
print (productB
(
(

)
productB) // prints: true
productA) // prints: true
)
)

print (productA
print (productB

productC) // prints: false
productC) // prints: false

By default, the hashCode and equals methods are generated based on every property
declared in the primary constructor. In most scenarios this is enough, but if we need more
control we are still allowed to override these methods by ourselves in the data class. In this
case, the default implementation won't be generated by the compiler.

The toString method

Generated methods contain the names and values of all properties declared in the primary
constructor:

data class Product (var name:String, var price:Double)
val productA = Product ("Spoon", 30.2)
println (productd) // prints: Product (name=Spoon, price=30.2)

[134]

Classes and Objects

We can actually log meaningful data to a console or log file, instead of the class name and
memory address as in Java (Person@a4d2e77). This makes the debugging process much
simpler, because we have a proper, human-readable format.

The copy method

By default, the Kotlin compiler will also generate an appropriate copy method that will
allow us to easily create a copy of an object:

data class Product (var name: String, var price: Double)
val productA = Product ("Spoon", 30.2)

print (productdA) // prints: Product (name=Spoon, price=30.2)
val productB = productA.copy ()

print (productB) // prints: Product (name=Spoon, price=30.2)

Java does not have named argument syntax, so when calling the copy method in Java, we
need to pass all arguments (the order of the arguments corresponds to the order of
properties defined in the primary constructor). In Kotlin, this approach decreases the need
for copy constructors or copy factories:

¢ The copy constructor takes a single argument whose type is the class containing
the constructor, and it returns the newInstance of this class:

val productB = Product (productA)

¢ The copy factory is a static factory that takes a single argument whose type is the
class containing the factory, and returns a new instance of this class:

val productB = ProductFactory.newlInstance (productl)

The copy method takes arguments that correspond to all the properties declared in the
primary constructor. When combined with the default arguments syntax, we can provide
all or only some of the properties to create a modified instance copy:

data class Product (var name:String, var price:Double)

val productA = Product ("Spoon", 30.2)
print (productdA) // prints: Product (name=Spoon, price=30.2)

val productB = productA.copy (price = 24.0)
print (productB) // prints: Product (name=Spoon, price=24.0)

val productC = productA.copy(price = 24.0, name = "Knife")
print (productB) // prints: Product (name=Knife, price=24.0)

[135]

Classes and Objects

This is a very flexible way of creating a copy of the object in such as way that we can easily
say if, and how, the copy should differ from the original instances. On the other hand, the
programming approach promotes the concept of immutability, which can be easily
implemented with an argumentless call of the copy method:

//Mutable object - modify object state
data class Product (var name:String, var price:Double)

var productA = Product ("Spoon", 30.2)
productA.name = "Knife"

//immutable object - create new object instance
data class Product (val name:String, val price:Double)

var productA = Product ("Spoon", 30.2)
productA = productA.copy (name = "Knife")

Instead of defining mutable properties (var) and modifying the object state, we can define
immutable properties (val), make an object immutable, and operate on it by getting its
copy with the changed values. This approach reduces the need for data synchronization in
multithreading applications and the number of potential errors related with it because
immutable objects can be freely shared across threads.

Destructing declarations

Sometimes it makes sense to restructure objects into multiple variables. This syntax is called
a destructuring declaration:

data class Person(val firstName: String, val lastName: String,
val height: Int)

val person = Person("Igor", "Wojda", 180)
var (firstName, lastName, height) = person
println (firstName) // prints: "Igor"
println(lastName) // prints: "Wojda"
println(height) // prints: 180

A destructuring declaration allows us to create multiple variables at once. The preceding
code will create values of the firstName, lastName, and height variables. Under the
hood, the compiler will generate code like this:

val person = Person("Igor", "Wojda", 180)
var firstName = person.componentl ()

var lastName = person.component?2 ()

var height = person.component3 ()

[136]

Classes and Objects

For every property declared in the primary constructor of the data class, the Kotlin compiler
generates a single componentN method. The suffix of the component function corresponds
to the order of properties declared in the primary constructor, so firstName corresponds to
component1, lastName corresponds to component2, and height corresponds to
component 3. In fact, we could invoke those methods directly on the Person class to
retrieve a property value, but there is no point in doing so, because their names are
meaningless and the code would be very difficult to read and maintain. We should leave
those methods for the compiler to destructure the object and use property access syntax
such as person. firstName.

We can also omit one or more properties using an underscore:

val person = Person("Igor", "Wojda", 180)
var (firstName, _, height) = person
println (firstName) // prints: "Igor"
println(height) // prints: 180

In this case, we want only to create two variables, firstName and height; lastName is
ignored. The code generated by the compiler will look as follows:

val person = Person("Igor", "Wojda", 180)
var firstName= person.componentl ()
var height = person.component3 ()

We can also destructure simple types such as string:

val file = "MainActivity.kt"
val (name, extension) = file.split(".", limit = 2)

Destructive declarations can also be used with a for loop:

val authors = 1istOf (
Person ("Igor", "Wojda", 180),
Person ("Marcin", "Moskala", 180)

println ("Authors:")
for ((name, surname) in authors) {
println ("$name S$surname")

[137]

Classes and Objects

Operator overloading

Kotlin has a predefined set of operators with fixed symbolic representation (such as +,

and *) and fixed precedence. Most of the operators are translated directly into method calls;
some are translated into more complex expressions. The following table contains a list of all
the operators available in Kotlin:

Operator token Corresponding method/expression
a+b a.plus (b)

a->b a.minus (b)

a * b a.times (b)

a /b a.div (b)

a s b a.rem(b)

a..b a.rangeTo (b)

a +=b a.plusAssign (b)

a —-=>,b a.minusAssign (b)

a *= b a.timesAssign (b)

a /=>b a.divAssign (b)

a %=> a.remAssign (b)

a++ a.inc()

a—-— a.dec ()

a in b b.contains (a)

a !'in b 'b.contains (a)

ali] a.get (1)

ali, 7] a.get (i, 3J)

afi_1, ..., i_n] a.get(i_1, ..., i_n)
ali] = b a.set (i, b)

ali, j] = b a.set (i, J, b)
afi_1, ..., i_n] = bla.set(i_1, ..., i_n, Db)
a() a.invoke ()

[138]

Classes and Objects

a(i) a.invoke (1)

a(i, 7j) a.invoke (i, 7j)

a(i_1, ..., i_n) a.invoke(i_1, ..., 1i_n)

a == a?.equals(b) ?: (b === null)

a !=>b '(a?.equals(b) ?: (b === null))
a>>b a.compareTo(b) > 0

a<b a.compareTo(b) < O

a > b a.compareTo (b) >= 0

a <=b a.compareTo (b) <= 0

The Kotlin compiler translates tokens that represent specific operations (left column) to
corresponding methods or expressions that will be invoked (right column).

We can provide custom implementations for each operator by using them in operator
method corresponding with an operator token. Let's define a simple Point class
containing x and y properties together and plus and times:

data class Point (var x: Double, wvar y: Double) {

operator fun plus(point: Point) = Point(x + point.x, y+ point.y)
operator fun times (other: Int) = Point(x * other, y * other)

}

//usage

var pl = Point (2.9, 5.0)
var p2 = Point (2.0, 7.5)

println(pl + p2) // prints: Point (x=4
println(pl * 3) // prints: Point (x=8.

By defining the plus and t imes operators, we can perform addition and multiplication
operations on any Point instance. Each time the + or * operations are called, Kotlin calls
the corresponding operator method, plus or times. Under the hood, the compiler will
generate method calls:

pl.plus (p2)
pl.times (3)

[139]

Classes and Objects

In our example, we are passing the other Point instance to the plus operator method, but
this type is not mandatory. Operator methods do not actually override any methods from
the super class, so they have no fixed declaration with fixed parameters and fixed types. We
don't have to inherit from a particular Kotlin type to be able to overload operators. All we
need to have is a method with a proper signature marked as operator. The Kotlin
compiler will do the rest by running the method that corresponds to the operator. In fact,
we can define multiple operators with the same name and different parameter types:

data class Point (var x: Double, wvar y: Double) {

operator fun plus(point: Point) = Point(x + point.x, y +point.y)
operator fun plus(vector:Double) = Point(x + vector, y + vector)
}
var pl = Point (2.9, 5.0)

var p2 = Point (2.0, 7.5)

println(pl + p2) // prints: Point (x=4.9, y=12.5)
println(pl + 3.1) // prints: Point (x=6.0, y=10.1)

Both operators are working fine because the Kotlin compiler can select the proper overload
for the operator. Many basic operators have a corresponding compound assign operator
(plus has plusAssign, times has timesAssign, and so on), so when we define an
operator such as the + operator, Kotlin supports the + operation and += operation as well:

var pl = Point (2.9, 7.0)
var p2 = Point (2.0, 7.5)

pl += p2
println(pl) // prints: Point (x=4.9, y=14.5)

Notice the important difference that in some scenarios may be performance critical. A
compound assign operator (for example, the += operator) has the Unit return type, so it just
modifies the state of the existing object, while the basic operator (for example, the +
operator) always returns a new instance of an object:

var pl = Wallet(39.0, 14.5)
pl += p2 // update state of pl
val p3 = pl + p2 //creates new object p3

If we define both the plus and plusAssign operators with the same parameter types,
when we try to use the plusAssign (compound) operator, the compiler will throw an error
because it does not know which method should be invoked:

data class Point (var x: Double, var y: Double) {
init {

[140]

Classes and Objects

println ("Point created $x.Sy")
}

operator fun plus(point: Point) = Point(x + point.x, y + point.y)

operator fun plusAssign (point:Point) {
x += point.x
y += point.y

// usage

var pl Point (2.9, 7.0)

var p2 = Point (2.0, 7.5)

val p3 = pl + p2

pl += p2 // Error: Assignment operations ambiguity

Operator overloading also works for classes defined in Java. All we need is a method with
the proper signature and a name that corresponds to the operator method's name. The
Kotlin compiler will translate the operator's usage to this method. The operator modifier

is not present in Java, so it's not required in the Java class:

// Java
public class Point {
private final int x;
private final int y;
public Point (int x, int y) {
this.x = x;
this.y Vi

}
public int getX() {
return x;
}
public int getY () {
return y;
}
public Point plus(Point point) {
return new Point (point.getX () + x, point.getY () + vy);

}

//Main.kt

val pl = Point (1, 2)
val p2 = Point (3, 4)
val p3 = pl + p2;

println("s$x:{p3.x}, y:${p3.y}") //prints: x:4, y:6

[141]

Classes and Objects

Object declaration

There are a few ways to declare singletons in Java. Here is the most common way to define
a class that has a private constructor and retrieves instances via a static factory method:

public class Singleton {

private Singleton() {
}

private static Singleton instance;

public static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();

return instance;
}

The preceding code works fine for a single thread, but it's not thread-safe, so in some cases
two instances of Singleton can be created. There are a few ways to fix it. We can use the
synchronized block, presented as follows:

//synchronized
public class Singleton {

private static Singleton instance = null;

private Singleton () {
}

private synchronized static void createlInstance() {
if (instance == null) {
instance = new Singleton();
}
}
public static Singleton getInstance() {
if (instance == null) createlInstance();

return instance;

[142]

Classes and Objects

This solution, however, is very verbose. In Kotlin, there is a special language construct for
creating singletons called object declaration, so we can achieve the same result in a much
simpler way. Defining objects is similar to defining classes; the only difference is that we
use the object keyword instead of the class keyword:

object Singleton

We can add methods and properties to an object declaration exactly the same way as a class:

object SQLiteSingleton {
fun getAllUsers(): List<User> {
/]
t
t

This method is accessed the same way as any Java static method:

SQLiteSingleton.getAllUsers ()

Object declarations are initialized lazily and they can be nested inside other object
declarations or non-inner classes. Also, they cannot be assigned to a variable.

Object expression

An object expression is equivalent to Java's anonymous class. It is used to instantiate objects
that might inherit from some class or that implements an interface. A classic use case is
when we need to define objects that are implement an interface. This is how in Java we
could implement the ServiceConnection interface and assign it to a variable in Java:

ServiceConnection serviceConnection = new ServiceConnection () {
@Override
public void onServiceDisconnected (ComponentName name) {

}

@Override
public void onServiceConnected (ComponentName name,
IBinder service)

{

}

[143]

Classes and Objects

The closest Kotlin equivalent of the preceding implementation is the following;:

val serviceConnection = object: ServiceConnection {
override fun onServiceDisconnected(name: ComponentName?) { }

override fun onServiceConnected (name: ComponentName?,
service: IBinder?) { }

}

The preceding example uses an object expression, which creates instance of an anonymous
class that implements ServiceConnection interface. An object expression can also extend
classes. Here is how we can create an instance of the BroadcastReceiver:

val broadcastReceiver = object : BroadcastReceiver () {
override fun onReceive (context: Context, intent: Intent) {
println ("Got a broadcast ${intent.action}")

val intentFilter = IntentFilter ("SomeAction");
registerReceiver (broadcastReceiver, intentFilter)

While object expressions allow us to create objects of an anonymous type that can
implement an interface and extend a class, we can use them to easily solve interesting
problems related to the Adapter pattern.

The Adapter design pattern allows otherwise incompatible classes to work
together by converting the interface of one class into an interface expected
by the clients.

Let's say that we have a P1ayer interface and function that requires Player as a parameter:

interface Player {
fun play()

fun playWith(player: Player) {
print ("I play with")
player.play ()

[144]

Classes and Objects

Also, we have VideoPlayer class from a public library that has the play method defined,
but it is not implementing our Player interface:

open class VideoPlayer {
fun play () {
println("Play video")
}
}

The videoPlayer class meets all the interface requirements, but it cannot be passed as
Player because it is not implementing the interface. To use it as a player, we need to
make an Adapter. In this example, we will implement it as an object of an anonymous type
that implements the P1ayer interface:

val player = object: VideoPlayer (), Player { }
playWith (player)

We were able to solve our problem without defining the VideoPlayer subclass. We can
also define custom methods and properties in the object expression:

val data = object {
var size =1
fun update () {
/...
}
}

data.size = 2
data .update ()

This is a very easy way to define custom anonymous objects that are not present in Java. To
define similar types in Java, we need to define the custom interface. We can now add a
behavior to our VideoPlayer class to fully implement the Player interface:

open class VideoPlayer {
fun play () A
println ("Play video")
}
}

interface Player{
fun play()
fun stop/()

}

//usage
val player = object: VideoPlayer (), Player {

[145]

Classes and Objects

var duration:Double = 0.0

fun stop () A
println("Stop video")
}
}

player.play () // println("Play video")
player.stop() // println("Stop wvideo")
player.duration = 12.5

In the preceding code, we can call on anonymous object (player) methods defined in the
VideoPlayer class and the expression object.

Companion objects

Kotlin, as opposed to Java, lacks the ability to define static members, but instead it allows us
to define objects that are associated with a class. In other words, an object is initialized only
once; therefore, only one instance of an object exists, sharing its state across all instances of a
particular class. When a singleton object is associated with a class of the same name, it is
called the companion object of the class, and the class is called the companion class of the
object:

Car
. H

Car
[H

Car
I

Campanion object

The preceding diagram presents three instances of the Car class sharing a single instance of
an object.

[146]

Classes and Objects

Members, such as methods and properties, defined inside a companion object may be
accessed similarly to the way we access static fields and methods in Java. The main purpose
of a companion object is to have code that is related to a class, but not necessary to any
particular instance of this class. It is a good way to define members that would be defined
as static in Java, for example, factory, which creates a class instance method converting
units, activity request codes, shared preference keys, and so on. To define the simplest
companion object, we need to define a single block of code:

class ProductDetailsActivity {

companion object {
}
}

Now let's define a start method that will allow us to start an activity easily:

//ProductDetailsActivity.kt
class ProductDetailsActivity : AppCompatActivity () {
override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
val product = intent.getParcelableExtra<Product>
(KEY_PRODUCT) // 3
/]

companion object {
const val KEY_PRODUCT = "product" // 1

fun start (context: Context, product: Product) { // 2
val intent = Intent (context,
ProductDetailsActivity::class.java)
intent.putExtra (KEY_PRODUCT, product) // 3
context.startActivity (intent)

// Start activity
ViewProductActivity.start (context, productlId) // 2

1. Only a single instance of key exists.

2. The start method can be invoked without creating an object instance, just like
Java static methods.

3. Retreive the value after the instance is created.

[147]

Classes and Objects

Notice that we are able to call start prior to the creation of activity instance. Let's use the
companion object to track how many instances of the Car class were created. To achieve
this we need to define a count property with a private setter. It could also be defined as a
top-level property, but it is better to place it inside a companion object because we don't
want to allow counter modification outside of this class:

class Car {
init {
count++;

}

companion object {
var count:Int = 0
private set

}

The class can access all the methods and properties defined in the companion object, but the
companion object can't access any of the class's content. The companion object is assigned to
a specific class, but not to a particular instance:

println(Car.count) // Prints 0
Car ()
Car ()
println(Car.count) // Prints: 2

To access an instance of the companion object directly, we can use the class name.

We can also access the companion object by using more verbose
syntax, Car.Companion.count, but in most cases there is no point in
doing so, unless we want to access companion from Java code.

Companion object instantiation

A companion object is a singleton created by a companion class and kept in its static
property. The instantiation of a companion object is lazy. This means that companion
object will be instantiated when it is needed for the first time--when its members are
accessed, or an instance of a class containing the companion object is created. To mark
when the Car class instance and its corresponding companion object are created, we need
to add two initializer blocks--one for the Car class, another for the companion object.

[148]

Classes and Objects

The initializer block inside the companion object works exactly the same way as in the
class--it's executed when an instance is created:

class Car {
init {
count++;
println("Car created")

}

companion object {
var count: Int = 0
init {
println("Car companion object created")

}
}

While the class initialization block is equivalent to the Java constructor body, the
compilation object initialization block is equivalent to the Java static initialization block in
Kotlin. For now, the count property can be updated by any client, because it's accessible
from outside of the Car class. We will fix this issue later in this chapter in the Visibility
modifiers section. Now let's access the Car companion object class member:

Car.count // Prints: Car companion object created
Car() // Prints: Car created

By accessing the count property defined in the companion object, we trigger its creation,
but notice that an instance of Car class has not been created. Later, when we create a Car
class instance, the companion object has already created. Now, let's instantiate the Car class
before been accessing the companion object:

Car ()
//Prints: Car companion object created
//Prints: Car created

Car () //Prints: Car created
Car.count

The companion object is created together with first instance of the car class, so when we
create some other instances of the user class, the companion object for the class already
exists, so it's not created.

[149]

Classes and Objects

Keep in mind that the preceding instantiation describes two separate examples. Both could
not be true in a single program, because only a single instance of class companion object
can exist, and it is created the first time it is needed.

The companion objects can also contain functions, implement interfaces, and even extend
classes. We can define a companion object that will include a static constriction method
with the additional option to override the implementation for testing purposes:

abstract class Provider<T> { // 1

abstract fun creator(): T // 2

private var instance: T? = null // 3

var override: T? = null // 4

fun get(): T = override ?: instance ?: creator().also { instance = it
}y //5

}

Provider is a generic class.

The abstract function is used to the create an instance.

The field is used to keep the created instance.

The field is used in tests to provide an alternative implementation of the instance.

SIS .

The function that returns an override instance if it was set, an instance if it was
created, or creating instance using the create method and filling instance field
with it.

With this implementation, we can define the interface with a default static constructor:

interface MarvelRepository {

fun getAllCharacters (searchQuery: String?):
Single<List<MarvelCharacter>>

companion object : Provider<MarvelRepository> () {
override fun creator () = MarvelRepositoryImpl ()
}
}

To get the instance, we need to use the following code:

MarvelRepository.get ()

[150]

Classes and Objects

If we need to specify a different instance for testing purposes (for example, in Espresso
tests) then we can always specify them using an object expression:

MarvelRepository.override = object : MarvelRepository {
override fun getAllCharacters (searchQuery: String?):
Single<List<MarvelCharacter>> {

/...
}
}

Companion objects are really popular in the Kotlin Android world. They are mostly used to
define all the elements that were static in Java (constant fields, static creators, and so on),
but they also provide additional capabilities.

Enum classes

An enumerated type (enum) is a data type consisting of a set of named values. To define an
enum type, we need to add the enum keyword to the class declaration header:

enum class Color {
RED,
ORANGE,
BLUE,
GRAY,
VIOLET
}

val favouriteColor = Color.BLUE
To parse a string into enum, use the valueOf method (like in Java):

val selectedColor = Color.valueOf ("BLUE")
println(selectedColor == Color.BLUE) // prints: true

Or you can use the Kotlin helper method:

val selectedColor = enumValueOf<Color> ("BLUE")
println(selectedColor == Color.BLUE) // prints: true

To display all values in the Color enum, use the values function (like in Java):

for (color in Color.values()) {
println("name: ${it.name}, ordinal: ${it.ordinal}")

[151]

Classes and Objects

Or you can use the Kotlin enumeratevalues helper method:

for (color in enumValues<Color>()) {
println ("name: ${it.name}, ordinal: ${it.ordinal}")

}

// Prints:

name: RED, ordinal: 0
name: ORANGE, ordinal: 1
name: BLUE, ordinal: 2
name: GRAY, ordinal: 3
name: VIOLET, ordinal: 4

The enum type can also have its constructor, and there can be custom data associated with
each enum constant. Let's add properties with values of red, green, and blue color
components:

enum class Color(val r: Int, val g: Int, val b: Int) {
RED (255, 0, 0),
ORANGE (255, 165, 0),
BLUE (0, 0, 255),
GRAY (49, 79, 79),
VIOLET (238, 130, 238)

val color = Color.BLUE
val rValue =color.r
val gValue = color.g
val bValue color.b

With these values, we can define a function that will calculate an RGB value for each color.

Notice that the last constant (VIOLET) is followed by a semicolon. This is a rare situation
where a semicolon is actually required in Kotlin code. It separates the constant definitions
from the member definitions:

enum class Color(val r: Int, val g: Int, val b: Int) {
BLUE (0, 0, 255),
ORANGE (255, 165, 0),
GRAY (49, 79, 79),
RED (255, 0, 0),
VIOLET (238, 130, 238);

fun rgb() = r shl 16 + g shl 8 + b

fun printHex (num: Int) {

[152]

Classes and Objects

println (num.toString(16))

printHex (Color.BLUE.rgb()) // Prints: ff
printHex (Color.ORANGE.rgb()) // Prints: ££a500
printHex (Color.GRAY.rgb()) // Prints: 314f4f

The rgb () method accesses the r, g, and b variable data for a particular enum and
calculates the value for each enum element separately. We can also add a validation for the
enum constructor arguments using the init block and the Kotlin standard

library's require function:

enum class Color(val r: Int, val g: Int, val b: Int) {
BLUE (0, 0, 255),
ORANGE (255, 165, 0),
GRAY (49, 79, 79),
RED (255, 0, 0),
VIOLET (238, 130, 238);

init {
require(r in 0..255)

require(g in 0..255)
require (b in 0..255)

fun rgb() = r shl 16 + g shl 8 + b
}

Defining an incorrect enum will result in an exception:

GRAY (33, 33, 333) // IllegalArgumentException: Failed requirement.

There are cases where we want to associate fundamentally different behavior with each
constant. To do this, we can define an abstract method or property and override it in each
enum block. Let's define the Temperature enum and temperature property:

enum class Temperature { COLD, NEUTRAL, WARM }

enum class Color(val r: Int, val g: Int, val b: Int) {
RED (255, 0, 0) {
override val temperature

Temperature.WARM

by

ORANGE (255, 165, 0) {
override val temperature

Temperature.WARM
by
BLUE (0, 0, 255) {

override val temperature

Temperature.COLD

[153]

Classes and Objects

}I
GRAY (49, 79, 79) {
override val temperature = Temperature.NEUTRAL

s
VIOLET (238, 130, 238 {
override val temperature = Temperature.COLD
i
init {
require(r in 0..256)
require(g in 0..256)
require(b in 0..256)

fun rgb() = (r * 256 + g) * 256 + b

abstract val temperature: Temperature

println(Color.BLUE.temperature) //prints: COLD
println (Color.ORANGE.temperature) //prints: WARM
println(Color.GRAY.temperature) //prints: NEUTRAL

Now, each color contains not only RGB information, but also an additional enum describing
its temperature. We have added a property, but in an analogical way we could add custom
methods to each enum element.

Infix calls for named methods

Infix calls are features of Kotlin that allow us to create more fluid and readable code. They
allow us to write code that is closer to natural human language. We have already seen the
infix methods in Chapter 2, Laying a Foundation, which allowed us to easily create an
instance of a Pair class. Here is a quick reminder:

var pair = "Everest" to 8848

The Pair class represents a generic pair of two values. There is no meaning attached to
values in this class, so it can be used for any purpose. Pair is a data class, so it contains all
data class methods (equals, hashCode, component1, and so on). Here is a definition of the
Pair class from the Kotlin standard library:

public data class Pair<out A, out B>(// 1
public val first: A,
public val second: B

) : Serializable {

[154]

Classes and Objects

public override fun toString(): String = "($first, $second)"
// 2
}

1. The meaning of this out modifier when used behind a generic type will be
described in chapter 6, Generic Are Your Friends.

2. Pairs have a custom tostring method. This is implemented to make printed
syntax more readable because first and second names are not meaningful in most
usage contexts.

Before we dive deeper and learn how to define our own infix method, let's translate the
presented code into a more familiar form. Each infix method can be used like any other
method:

val mountain = "Everest";
var pair = mountain.to(8848)

In essence, the infix notation is simply the ability to call a method without using the dot
operator and call operator (parentheses). The infix notation only looks different, but it's still
a regular method call underneath. In the preceding examples, we simply called the to
method on the String class instance. The t o function is an extension function, and it will
be explained in chapter 7, Extension Functions and Properties, but we can imagine it is a
method of the st ring class, in this case, which is just returning an instance of Pair
containing itself and the passed argument. We can operate on the returned Pair like on any
data class object:

val mountain = "Everest";

var pair = mountain.to(8848)
println(pair.first) //prints: Everest
println(pair.second) //prints: 8848

In Kotlin, this method is allowed to be an infix only when it has a single parameter. Also, an
infix notation does not happen automatically--we need to explicitly mark the method as
infix. Let's define our Point class with the infix method:

data class Point (val x: Int, val y: Int) {
infix fun moveRight (shift: Int) = Point(x + shift, vy)
}

Here's an usage example:

val pointA = Point (1,4)
val pointB = pointA moveRight 2
println(pointB) //prints: Point (x=3, y=4)

[155]

Classes and Objects

Notice that we are creating a new Point instance, but we could also modify an existing one
(if the type was mutable). This decision is for the developer to make, but infix methods are
more often used with immutable types.

We can use infix methods combined with enums to achieve very fluent syntax. Let's
implement a natural syntax that will allow us to define cards from a classic playing card
deck. It includes 13 ranks of each of the four suits: clubs, diamonds, hearts, and spades:

4 2a |} a 1&&3&&2&&1%§3¢&34& 9
* & | sa|as |22 d2
Y el b el o et et bRy e
v [ive Svv |Svw lve Sew Jew
VYV [ve | vw
v v [ve ve | 20| v,
ataallantanloaaaanlan
3 a 2@@24424”51%4 o a laa
a o [an a8 343
VI vel vell vl v veive
50 [le o 5o e |fe e 30’0 90‘0 o o
. L R A K Wil
o ool oelo oo ol ele e o‘oﬁ

SOUICEforthefnecedhiginlage:https://mathematica.stackexchange.
com/questions/16108/standard-deck-of-52-playing-cards-in-
curated-data

The goal is to define the syntax that will allow us to define a card from its suit and rank it
this way:

val card = KING of HEARTS

First of all, we need two enums to represent all the ranks and suits:

enum class Suit {
HEARTS,
SPADES,
CLUBS,
DIAMONDS

}

enum class Rank {
TWO, THREE, FOUR, FIVE,

[156]

https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data
https://mathematica.stackexchange.com/questions/16108/standard-deck-of-52-playing-cards-in-curated-data

Classes and Objects

SIX, SEVEN, EIGHT, NINE,
TEN, JACK, QUEEN, KING, ACE;
}

Then we need a class that will represent a card composed of a particular rank and a
particular suite:

data class Card(val rank: Rank, wval suit: Suit)
Now we can instantiate a Card class like this:

val card = Card(Rank.KING, Suit.HEARTS)

To simplify the syntax, we introduce a new infix method into the Rank enum:

enum class Rank {
TWO, THREE, FOUR, FIVE,
SIX, SEVEN, EIGHT, NINE,
TEN, JACK, QUEEN, KING, ACE;

infix fun of (suit: Suit) = Card(this, suit)

}
This will allow us to create a Card call like this:

val card = Rank.KING.of (Suit.HEARTS)

Because the method is marked as infix, we can remove the dot call operator and
parentheses:

val card = Rank.KING of Suit.HEARTS

Using static imports will allow us to shorten the syntax even more and achieve our final
result:

import Rank.KING
import Suit.HEARTS

val card = KING of HEARTS

Besides being super simple, this code is also 100% type safe. We can only define cards using
the predefined enums of Rank and Suit, so we are unable to define a fictional card by
mistake.

[157]

Classes and Objects

Visibility modifiers

Kotlin supports four types of visibility modifier (access modifiers)--private, protected,
public, and internal. Kotlin does not support private Java modifiers. The main
difference between a Kotlin and Java modifier is that the default visibility modifier in Kotlin
is public, and it's not required to specify it explicitly, so it can be omitted for a particular

declaration. All of the modifiers can be applied to various elements divided into two main
groups based on their declaration site: top-level elements and nested members.

A quick reminder from chapter 3, Playing with Functions: top level
elements are elements declared directly inside the Kotlin file, as opposed
to elements nested inside a class, object, interface, or function. In Java, we
can only declare classes and interfaces at the top level, while Kotlin also
allows functions, objects, properties, and extensions there.

First, we have top-level element visibility modifiers:

¢ public (default): Element is visible everywhere.
e private: Element is visible inside the file containing the declaration.
e protected: Not available at the top level.

e internal: Element is visible everywhere in the same module. It is public for
elements in the same module.

What is a module in Java and Kotlin?

A module is just a set of Kotlin files compiled together, for example,
Intelli] IDEA module and Gradle project. The modular structure of
applications allows better distributed responsibilities and speeds up build
time, because only the changed modules are recompiled.

Let's look at an example:

//top.kt
public val version: String = "3.5.0" // 1

internal class UnitConveter // 3
private fun printSomething() {
println ("Something")

}

fun main(args: Array<String>) {
println (version) // 1, Prints: "3.5.0"

[158]

Classes and Objects

UnitConveter () // 2, Accessible
printSomething() // 3, Prints: Something
}

// branch.kt

fun main(args: Array<String>) {
println (version) // 1, Accessible
UnitConveter () // 2, Accessible
printSomething() // 3, Error

}

// main.kt in another module

fun main(args: Array<String>) {
println(version) // 1, Accessible
UnitConveter() // 2, Error
printSomething () // 3, Accessible

1. The version property is public, so it is accessible in all files.

2. UnitConveter is accessible in the branch.kt file, while it is in the same
module, but not in main .kt because it is located in another module.

3. The printSomething function is only accessible in the file where it is defined.

Note that the package in Kotlin does not give any extra visibility privileges.

The second group consists of members--elements declared inside a top level element. These
will be mainly methods, properties, constructors, sometimes objects, companion objects,
getters and setters, and occasionally nested classes and nested interfaces. Here are the
obligatory rules:

¢ public (default): Clients who see the declaring class see its public members.

e private: The element is only visible inside the class or interface containing the
member.

e protected: The element is visible inside the class containing the declaration and
subclasses. It is not applicable inside an object because an object cannot be
opened.

e internal: Any client inside this module who sees the declaring class sees its
internal members.

Let's define a top level element. In this example, we will define class, but the same logic is
applied to any top level element that has nested members:

class Person {
public val name: String = "Igor"

[159]

Classes and Objects

protected var age:Int = 23
internal fun learn() {}
private fun speak() {}

}

When we create an instance of the Person class, we can only access the name property
marked with the public modifier and the 1earn method marked with internal modifier:

// main.kt inside the same package as Person definition
val person = Person()

println (person.name) // 1
person.speak () // 2, Error
person.age // 3, Error
person.learn () /7 4

Client who can access the Person instance can also access the name property.
The speak method is accessible only inside the Person class.
The age property is accessible inside the Person class and its subclasses.

Client inside the module that can access the Person class instance can also access
its public members.

L e

Inheritance accessibility is similar to external access accessibility, but the main difference is
that the member marked with the protected modifier is also visible inside the subclasses:

open class Person {
public val name: String = "Igor"
private fun speak () {}
protected var age: Int = 23
internal fun learn() {}

class Student () : Person() A
fun doSth () {
println (name)
learn ()
print (age)
// speak() // 1

}

1. In the Student subclass, we can access members marked with the public,
protected modifier, and internal, but not members marked with the private
modifier.

[160]

Classes and Objects

The internal modifier and Java bytecode

It is pretty obvious how the public, private, and protected modifiers are compiled to
Java, because they have direct analogs. But there is a problem with the internal modifier
because it has no direct analog in Java, so there is also no support in Java bytecode. This is
why the internal modifier is actually compiled to the public modifier, and to
communicate that it shouldn't be used in Java, its name is mashed (changed so that it is not
usable anymore). For example, here we have the Foo class:

open class Foo {
internal fun boo() { }

}
It could be possible to use it in Java like this:

public class Java {
void a() A
new Foo () .booS$production_sources_for_module_SmallTest ();

It is pretty controversial that internal visibility is guarded by Kotlin and it
can be bypassed using a Java adapter, but there is no other way to
implement it.

Besides defining visibility modifiers in a class, we are also able to override them while
overriding a member. This gives us the ability to weaken access restrictions in the
inheritance hierarchy:

open class Person {

protected open fun speak () {}

}

class Student () : Person () A
public override fun speak () {
}

}

val person = Person|()

//person.speak () // 1

val student = Student ()
student.speak () // 2

[161]

Classes and Objects

1. Error, the speak method is not accessible because it's protected.
2. The visibility of the speak method was changed to public so we can access it.

Defining modifiers for members and their visibility scope is quite straightforward, so let's
see how to define class and constructor visibility. As we know, the primary constructor
definition is in the class header, so two visibility modifiers are required in a single line:

internal class Fruit private constructor {
var weight: Double? = null

companion object {
fun create() = Fruit ()
}
}

Assuming the preceding class is defined at the top level, it will be visible inside the module,
but it can be only instantiated from within the file containing the class declaration:

var fruit: Fruit? = null // Accessible
fruit = Fruit () // Error
fruit = Fruit.create() // Accessible

Getter and setters by default have the same visibility modifier as the property, but we can
modify it. Kotlin allows us to place a visibility modifier before the get/set keyword:

class Car {
init {
count++;
println("Car created")

}

companion object {
init {
println ("Car companion object created")
}
var count: Int = 0
private set

}

In the preceding example, we have changed the getter's visibility. Notice that this approach
allows us to change the visibility modifier without changing its default implementation
(generated by the compiler). Now, our instance counter is safe, because it's read-only
external clients, but we can still modify the property value from inside the Car class.

[162]

Classes and Objects

Sealed classes

A sealed class is a class with a limited number of subclasses (sealed subtyping hierarchy).
Prior to Kotlin 1.1, these subclasses had to be defined inside a sealed class body. Kotlin 1.1
weakened this restriction and allowed us to define sealed class subclasses in the same file as
a sealed class declaration. All the classes are declared close to each other, so we can easily
see all possible subclasses by simply looking at one file:

//vehicle.kt

sealed class Vehicle()
class Car : Vehicle()
class Truck : Vehicle ()
class Bus : Vehicle()

To mark a class as sealed, simply add a sealed modifier to the class declaration header.
The preceding declaration means that the Vehicle class can be only extended by three
classes, Car, Truck, and Bus because they are declared inside the same file. We could add a
fourth class in our vehicle.kt file, but it would not be possible to define such a class in
another file.

The sealed subtyping restriction only applies to direct inheritors of the vehicle class. This
means that Vehicle can only be extended by classes defined in the same file (Car, Truck,
or Bus), but assuming that the Car, Truck, or Bus, classes are open, they could be extended
by a class declared inside any file:

//vehicle.kt
sealed class Vehicle()
open class Bus : Vehicle()

//data.kt
class SchoolBus:Bus ()

To prevent this behavior, we would need to also mark the Car, Truck, and Bus classes as
sealed:

//vehicle.kt
sealed class Vehicle()
sealed class Bus : Vehicle()

//data.kt
class SchoolBus:Bus() //Error cannot access Bus

[163]

Classes and Objects

The sealed classes work really well with the when expression. There is no need for an else
clause, because a compiler can verify that each subclass of a sealed class has a
corresponding clause inside the when block:

when (vehicle) {
is Car —-> println("Can transport 4 people")
is Truck -> println("Can transport furnitures ")
is Bus —-> println("Can transport 50 people ")

}

We can safely add a new subclass to the vehicle class, because if somewhere in the
application the corresponding clause of the when expression is missing, the application will
not compile. This fixes problems with the Java switch statement, where programmers
often forget to add proper capsules, which leads to program crashes at runtime or
undetected bugs.

Sealed classes are abstract by default, so an abstract modifier is redundant. Sealed classes
can never be open or £inal. We can also substitute a subclass with objects in case we need
to make sure that only a single instance exists:

sealed class Employee ()

class Programmer : Employee ()
class Manager : Employee()
object CEO : Employee ()

The preceding declaration not only protects the inheritance hierarchy, but also limits CEO to
a single instance. There are a few interesting applications of sealed classes that go beyond
the scope of this book, but it's good to be aware of them:

¢ Defining data types such as a linked list or a binary tree (https://en.wikipedia.
org/wiki/Algebraic_data_type)

¢ Protecting inheritance hierarchy when building an application module or library
by prohibiting clients from extending our class and still keeping the ability to
extend it ourselves

e State machines where some states contain data that makes no sense in other states
(https://en.wikipedia.org/wiki/Finite-state_machine)

¢ A list of possible token types for lexical analysis

[164]

https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine

Classes and Objects

Nested classes

A nested class is a class defined inside another class. Nesting small classes within top-level
classes places the code closer to where it is used, and allows a better way of grouping
classes. Typical examples are Tree/Leaf listeners or presenter states. Kotlin in a similar
way to Java, allows us to define a nested class, and there are two main ways to do this. We
can define a class as a member inside a class:

class Outer {
private val bar: Int = 1

class Nested {
fun foo() = 2
}
}

val demo = Quter.Nested().foo() // ==

The preceding example allows us to create an instance of the Nested class without creating
instances of the outer class. In this case, a class cannot refer directly to instance variables or
methods defined in its enclosing class (it can use them only through an object reference).
This is equivalent to a Java static nested class and, in general, static members.

To be able to access the members of an outer class, we must create a second kind of class by
marking a nested class as inner:

class Outer {
private val bar: Int = 1

inner class Inner {

fun foo() = bar
}
}
val outer = Outer /()
val demo = outer.Inner().foo() // ==

[165]

Classes and Objects

Now, to instantiate the inner class we must first instantiate the Outer class. In this case,
the Inner class can access all the methods and properties defined in the outer class and
share state with outer class. Only a single instance of the Inner class can exist per instance
of the outer class. Let's sum up the differences:

Behavior Class (member) | Inner class (member)
Behaves as a Java static member Yes No
Instances of this class can exist without an Yes No

instance of the enclosing class

Has a reference to the outer class No Yes

Shares state with the outer class (can access |No Yes

outer class members)

Number of instances Unlimited One per outer class
instance

When deciding whether we should define inner class or a top-level class we should think
about potential class usage. If the class is only useful for a single class instance, we should
declare it as inner. If an inner class at some point may be useful in another context than

serving its outer class, then we should declare it as a top-level class.

Import aliases

An alias is a way to introduce new names for types. If the type name is already used in the
file, is inappropriate, or is too long, you can introduce a different name and use it instead of
the original type name. An alias does not introduce a new type, and it is available only
before compile time (when writing code). The compiler replaces a class alias with an actual
class, so it does not exist at runtime.

[166]

Classes and Objects

Sometimes, we need to use a few classes with the same name in a single file. For example,
the InterstitialAd type is defined both in the Facebook and Google advertising libraries.
Let's suppose that we want to use them both in a single file. This situation is common in
projects where we need to implement both ad providers to allow a profit comparison
between them. The problem is that using both data types in a single file would mean that
we need to access one or both of them with a fully qualified class name (namespace and
class name):

import com.facebook.ads.InterstitialAd

val fbAd = InterstitialAd(context, "...")
val googleAd = com.google.android.gms.ads.InterstitialAd (context)

Qualified versus unqualified class name

An unqualified class name is simply the name of the class, for example,
Box. A qualified class name is a namespace combined with a class name,
for example, com.test .Box.

In these situations, people often say that the best fix is to rename one of the classes, but
sometimes this may not be possible (such as when the class is defined in an external library)
or desirable (such as when class name is consistent with the backend database). In this
situation, where both the classes are located in an external library, the solution to the class
naming conflict is to use an import alias. We can use it to rename

Google's InterstitialAd to GoogleAd, and Facebook's InterstitialAd to FbAd:

import com.facebook.ads.InterstitialAd as FbAd
import com.google.android.gms.ads.InterstitialAd as GoogleAd

And now we can use these aliases around the file as if they were actual types:

val fbAd = FbAd(context, "...")
val googleAd = GoogleAd (context)

Using the import alias, we can explicitly redefine the names of a class that are imported
into a file. In this situation, we didn't have to use two aliases, but this serves to improve
readability--it's better to have FbAd and GoogleAd than InterstitialAd and GoogleAd.
We don't have to use fully qualified class names any more, because we simply said to the
compiler, each time when you encounter the GoogleAad alias, translate it to
com.google.android.gms.ads.InterstitialAd during compilation and each time you
encounter the FbAd alias, translate it to com. facebook.ads.InterstitialAd. Import
alias work inside a files only where the alias is defined.

[167]

Classes and Objects

Summary

In this chapter, we have discussed constructors, which are the buildings blocks of OOP.
We've learned how to define interfaces and various classes and the differences between
inner, sealed, enum, and data classes. We've learned that all elements are public by
default and all classes/interfaces are final by default, so we need to explicitly open them to
allow inheritance and member overriding.

We've discussed how to define proper data models using very concise data classes
combined with even more powerful properties. We know how to properly operate on data
using various methods generated by the compiler and how to overload operators.

We learned how to create singletons by using object declarations and how to define objects
of an anonymous type that may extend a class and/or implement an interface using object
expressions. We've also presented the usage of the 1ateinit modifier, which allows us to
define non-nullable data types with delayed initialization.

In the next chapter, we will cover the more functional side of Kotlin by looking into
concepts related to functional programming (FP). We will discuss functional types,
lambdas, and higher-order functions.

[168]

Functions as First-Class
Citizens

In the previous chapter, we saw how Kotlin features relate to OOP. This chapter will
introduce advanced functional programming features that were previously not present in
standard Android development. Some of them were introduced in Java 8 (in Android
through the Retrolambda plugin), but Kotlin introduces many more functional
programming features.

This chapter is about high-level functions and functions as first-class citizens. Most of the
concepts are going to be familiar to readers who have used functional languages in the past.

In this chapter, we will cover the following topics:

Function types

Anonymous functions

Lambda expressions

The implicit name of a single parameter in a lambda expression
Higher-order functions

The last lambda in an argument convention

The Java Single Abstract Method (SAM) lambda interface
Using Java methods with Java SAM on parameter

Named parameters in function types

Type aliases

Inline functions

Function references

Functions as First-Class Citizens

Function types

Kotlin supports functional programming, and functions are first-class citizens in Kotlin. A
first-class citizen in a given programming language is a term that describes an entity that
supports all the operations generally available to other entities. These operations typically
include being passed as an argument, returned from a function, and assigned to a variable.
The sentence a function is a first-class citizen in Kotlin should then be understood as: it is
possible in Kotlin to pass functions as an argument, return them from functions, and assign them to
variables. While Kotlin is a statically typed language, there needs to be a function type
defined to allow these operations. In Kotlin, the notation used to define a function type is
the following:

(types of parameters)->return type
Here are some examples:

® (Int)->Int:A function that takes Int as an argument and returns Int
e () —>Int: A function that takes no arguments and returns Int

® (Int)->Unit: A function that takes Int and does not return anything (only
Unit, which does not need to be returned)

Here are some examples of properties that can hold functions:

lateinit var a: (Int) -> Int
lateinit var b: ()->Int
lateinit var c: (String)->Unit

The term function type is most often defined as the type of a variable or
parameter to which a function can be assigned, or the argument or result
type of a higher-order function taking or returning a function. In Kotlin,
the function type can be treated like an interface.

We will see later in this chapter that Kotlin functions can take other functions in arguments,
or even return them:

fun addCache (function: (Int) -> Int): (Int) -> Int {
// code
t
val fibonacciNumber: (Int)->Int = // function implementation
val fibonacciNumberWithCache = addCache (fibonacciNumber)

[170]

Functions as First-Class Citizens

If a function can take or return a function, then the function type also needs to be able to
define functions that take a function as an argument or return a function. This is done by
simply placing a function type notation as a parameter or a return type. Here are some
examples:

e (String)->(Int)->Int: A function that takes String and returns a function
that takes an Int type and returns Int.

® (()->Int)->String: A function that takes another function as an argument and
returns String type. A function in an argument takes no arguments and returns
Int.

Each property with a function type can be called like a function:

val 1 = a(10)
val j = b{()
c("Some String")

Functions can not only be stored in variables, they can also be used as a generic. For
example, we can keep functions in a list:

var todolList: List<() —-> Unit> = //
for (task in todolist) task ()

The preceding list can store functions with the () -> Unit signature.

What is function type under the hood?

Under the hood, function types are just a syntactic sugar for generic interfaces. Let's look at
some examples:

e The () ->Unit signature is an interface for Function0<Unit>. The expression is
FunctionO0, because it has zero parameters, and Unit because it is the return
type.

e The (Int)->Unit signature is interface for Functionl1<Int, Unit>.The
expression is Functionl because it has one parameter.

e The ()->(Int, Int)->String signature isan interface for
FunctionO<Function2<Int, Int, String>>.

[171]

Functions as First-Class Citizens

All of these interfaces have only one method, invoke, which is an operator. It allows an
object to be used like a function:

val a: (Int) -> Unit = //...
a(10) // 1
a.invoke (10) // 1

1. These two statements have the same meaning.

Function interfaces are not present in a standard library. They are synthetic compiler-
generated types (they are generated during compilation). Because of this, there is no
artificial limit to the number of function type arguments, and the standard library size does
not increase.

Anonymous functions

One way of defining a function as an object is by using anonymous functions. They work
the same way as normal functions, but they have no name between the fun keyword and
the parameter declaration, so by default they are treated as objects. Here are a few
examples:

val a: (Int) -> Int = fun(i: Int) =1 * 2 // 1
val b: ()->Int = fun(): Int { return 4 }
val c: (String)->Unit = fun(s: String){ println(s) }

1. This is an anonymous single-expression function. Note that, as in a normal single
expression function, the return type does not need to be specified when it is
inferred from the expression return type.

Consider the following usage:

// Usage

println(a(10)) // Prints: 20
println(b()) // Prints: 4

c("Kotlin rules") // Prints: Kotlin rules

In the previous examples, function types were defined explicitly, but while Kotlin has a
good type inference system, the function type can also be inferred from types defined by an
anonymous default function:

var a = fun(i: Int) = i * 2
var b = fun(): Int { return 4 }
var ¢ = fun(s: String){ println(s) }

[172]

Functions as First-Class Citizens

It also works in the opposite way. When we define the type of a property, we don't need to
set parameter types in anonymous functions explicitly, because they are inferred:

var a: (Int)->Int = fun(i) = 1 * 2
var c: (String)->Unit = fun(s){ println(s) }

If we check out the methods of function types, then we will see that there is only the
invoke method inside. The invoke method is an operator function, and it can be used in
the same way as function invocation. This is why the same result can be achieved by using
the invoke call inside brackets:

println(a.invoke (4)) // Prints: 8
println (b.invoke ()) // Prints: 4
c.invoke ("Hello, World!™") // Prints: Hello, World!

This knowledge can be helpful, for example, when we are keeping function in a nullable
variable. We can, for example, use the invoke method by using the safe call:

var a: ((Int) -> Int)? = null // 1
if (false) a = fun(i: Int) = 1 * 2
print (a?.invoke(4)) // Prints: null

1. Variable a is nullable; we are using invoke with a safe call.

Let's look at an Android example. We often want to define a single error handler that will
include multiple logging methods and pass it to different objects as an argument. Here is
how we can implement this using anonymous functions:

val TAG = "MainActivity"
val errorHandler = fun (error: Throwable) {

if (BuildConfig.DEBUG) {

Log.e (TAG, error.message, €rror)

}

toast (error.message)

// Other methods, like: Crashlytics.logException (error)
}

// Usage in project
val adController = AdController (errorHandler)

val presenter = MainPresenter (errorHandler)
// Usage
val error = Error ("ExampleError")

errorHandler (error) // Logs: MainActivity: ExampleError

[173]

Functions as First-Class Citizens

Anonymous functions are simple and useful. They are a simple way of defining functions
that can be used and passed as objects. But there is a simpler way of achieving similar
behavior,with lambda expressions.

Lambda expressions

The simplest way to define anonymous functions in Kotlin is by using a feature called
lambda expressions. They are similar to Java 8 lambda expressions, but the biggest
difference is that Kotlin lambdas are actually closures, so they allow us to change variables
from the creation context. This is not allowed in Java 8 lambdas. We will discuss this
difference later in this section. Let's start with some simple examples. Lambda expressions
in Kotlin have the following notation:

{ arguments -> function body }

Instead of return, the result of the last expression is returned. Here are some simple
lambda expression examples:

e { 1 }:Alambda expression that takes no arguments and returns 1. Its type is
() —>Int.

e { s: String -> println(s) }:A lambda expression that takes one
argument of type String, and prints it. It returns Unit. Its type is
(String)->Unit.

e { a: Int, b: Int -> a + b }:Alambda expression that takes two Int
arguments and returns the sum of them. Its type is (Int, Int)->Int.

The functions we defined in the previous chapter can be defined using lambda expressions:

var a: (Int) -> Int = { i: Int -—> 1 * 2 }
var b: ()-—>Int = { 4 }
var c: (String)->Unit = { s: String -> println(s) }

While the returned value is taken from the last statement in lambda expressions, return is
not allowed unless it has a return statement qualified by a label:

var a: (Int) -> Int = { i: Int -> return i * 2 }

// Error: Return is not allowed there
var 1l: (Int) -> Int = 1@ { i: Int -> return@l i * 2 }

Lambda expressions can be multiline:

val printAndReturn = { i: Int, j: Int ->
println ("I calculate $i + $3")

[174]

Functions as First-Class Citizens

i+3//1
}

1. This is the last statement, so the result of this expression will be a returned value.

Multiple statements can also be defined in a single line when they are separated by
semicolons:

val printAndReturn = {i: Int, j: Int -> println("I calculate $i + $3");
i+ 3}

A lambda expression does not need to only operate on values provided by arguments.
Lambda expressions in Kotlin can use all properties and functions from the context where
they are created:

val text = "Text"

var a: () —-> Unit = { println(text) }
a() // Prints: Text

a() // Prints: Text

This is the biggest difference between Kotlin and Java 8 lambda usage. Both Java
anonymous objects and Java 8 lambda expressions allow us to use fields from the context,
but Java does not allow us to assign different values to these variables (Java variables used
in lambda must be final):

import kotlin.jvm.functions.Function®;

public class JavaTest {
public static void main(String[] args) {
int counter = 0;
®f Function@<Void> func = () - {
counter++;
- wen \inid TVDEs
Variable used in lambda expression should be final or effectively final
'
}

Kotlin has gone a step further by allowing lambda expressions and anonymous functions to
modify these variables. Lambda expressions that enclose local variables and allow us to
change them inside the function body are called closures. Kotlin fully supports closure
definition. To avoid confusion between lambdas and closures, in this book we will always
call both of them lambdas. Let's look at an example:

var 1 =1
val a: () —> Int = { ++1i }

println (i) // Prints: 1
println (a()) // Prints: 2

[175]

Functions as First-Class Citizens

println (i) // Prints: 2
println (a()) // Prints: 3
println (i) // Prints: 3

Lambda expressions can use and modify variables from the local context. Here is an
example of counter, where the value is kept in a local variable:

fun setUpCounter () {

var value: Int = 0

val showValue = { counterView.text = "$value" }
counterIncView.setOnClickListener { value++; showValue() }
// 1

counterDecView.setOnClickListener { value——; showValue() }
// 1

}

1. Here is how the View onClickListener can be set in Kotlin using a lambda
expression. This will be described in the Java SAM support in Kotlin section.

Thanks to this feature, it is simpler to use lambda expressions. Note that, in the preceding
example, the showValue type was not specified. This is because, in Kotlin lambdas, typing
arguments is optional when the compiler can infer them from the context:

->1i*2 1} //1

val a: (Int) —-> Int = { 1
= { s -> println(s) } // 2

val c: (String)->Unit

1. The inferred type of i is Int, because the function type defines an Int parameter.

2. The inferred type of s is String, because the function type defines a String
parameter.

As we can see in the following example, we don't need to specify the type of parameter
because it is inferred from the type of the property. Type inference also works in another
way. We can define the type of a lambda expression's parameter to infer the property type:

val b = { 4 } // 1
val ¢ = { s: String -> println(s) } // 2
val a = { i: Int -> 1 * 2 } // 3

1. The inferred type is () —>Int, because 4 is Int and there is no parameter type.

2. The inferred type is (String)->Unit, because the parameter is typed as
String, and the return type of the print 1n method is Unit.

3. The inferred type is (Int)->Int, because i is typed as Int, and the return type
of the times operation from Int is also Int.

[176]

Functions as First-Class Citizens

This inference simplifies lambda expression definition. Often, when we are defining lambda
expressions as function parameters, we don't need to specify parameter types each time. But
there is also another benefit--while the parameter type can be inferred, a simpler notation
for single-parameter lambda expressions can be used. Let's discuss this in the next section.

The implicit name of a single parameter

We can omit lambda parameter definitions and access parameters using the it keyword
when two conditions are met:

¢ There is only one parameter
e Parameter type can be inferred from the context

As an example, let's define the properties a and c again, but this time using the implicit
name of a single parameter:

t * 2} // 1

val a: (Int) -> Int = { 1
= { println(it) } // 2

val c: (String)->Unit

1. Thesameas { i -> i * 2 }.
2. Thesameas { s —-> println(s) }.

This notation is really popular in Kotlin, mostly because it is shorter and it allows us to
avoid parameter type specification. It also improves the readability of processing defined in
LINQ style. This style needs components that have not yet been introduced, but just to
demonstrate the idea, let's look at an example:

strings.filter { it.length = 5 }.map { it.toUpperCase() }

Supposing that strings is List<String>, this expression filters strings with a length
equal to 5 and converts them to uppercase.

Note that in the body of lambda expressions, we can use methods of the St ring class. This
is because function type (such as (String)->Boolean for the filter) is inferred from the
method definition, which infers st ring from the iterable type (List<String>). Also, the
type of the returned list (List<String>) depends on what is returned by the lambda
(String).

LINQ style is popular in functional languages because it makes the syntax of collections or
string processing really simple and concise. It will be discussed in much more detail in
Chapter 7, Extension Functions and Properties.

[177]

Functions as First-Class Citizens

Higher-order functions

A higher-order function is a function that takes at least one function as an argument, or
returns a function as its result. It is fully supported in Kotlin, as functions are first-class
citizens. Let's look at it in an example. Let's suppose that we need two functions: a function
that will add all BigbDecimal numbers from a list, and a function that will get the product
(the result of multiplication between all the elements in this list) of all these numbers:

fun sum(numbers: List<BigDecimal>): BigDecimal {
var sum = BigDecimal.ZERO
for (num in numbers) {
sum += num
}
return sum

}

fun prod(numbers: List<BigDecimal>): BigDecimal {
var prod = BigDecimal.ONE
for (num in numbers) {
prod *= num
}
return prod

}

// Usage

val numbers = 1istOf(
BigDecimal.TEN,
BigDecimal.ONE,
BigDecimal.valueOf (2)

)

print (numbers) //110, 1, 2]
println (prod (numbers)) // 20
println (sum(numbers)) // 13

These are readable functions, but these functions are also nearly the same. The only
difference is name, accumulator (BigDecimal.ZERO or BigDecimal . ONE), and operation.
If we use the DRY (Don't Repeat Yourself) rule, then we shouldn't leave two pieces of
similar code in the project. While it is easy to define a function that will have similar
behavior and just differ in the objects used, it is harder to define a function that will differ in
the operation performed (here, functions differ by the operation used to accumulate). The
solution comes with the function type, because we can pass the operation as an argument.
In this example, it is possible to extract the common method this way:

fun sum(numbers: List<BigDecimal>) =
fold (numbers, BigDecimal.ZERO) { acc, num —-> acc + num }

[178]

Functions as First-Class Citizens

fun prod(numbers: List<BigDecimal>) =
fold (numbers, BigDecimal.ONE) { acc, num -> acc * num }

private fun fold(
numbers: List<BigDecimal>,
start: BigDecimal,

accumulator: (BigDecimal, BigDecimal) —-> BigDecimal
) : BigDecimal {
var acc = start
for (num in numbers) {
acc = accumulator (acc, num)

}

return acc

// Usage

fun BD(i: Long) = BigDecimal.valueOf (1)

val numbers = 1istOf(BD (1), BD(2), BD(3), BD(4))
println (sum (numbers)) // Prints: 10

println (prod(numbers)) // Prints: 24

The fold function iterates through numbers and updates acc using each element. Note that
the function parameter is defined like any other type, and it can be used like any other
function. For example, we can have the vararg function type parameter:

fun longOperation(vararg observers: ()->Unit) {
/.

for (o in observers) o{()

}

In longOperation, for is used to iterate over all the observers and invokes them one after
another. This function allows multiple functions to be provided as arguments. Here's an
example:

longOperation ({ notifyMainView() }, { notifyFooterView() })

Functions in Kotlin can also return functions. For example, we can define a function that
will create custom error handlers with the same error logging but different tags:

fun makeErrorHandler (tag: String) = fun (error: Throwable) {
if (BuildConfig.DEBUG) Log.e(tag, error.message, €rror)
toast (error.message)
// Other methods, like: Crashlytics.logException(error)

// Usage in project
val adController = AdController (makeErrorHandler ("Ad in MainActivity"))

[179]

Functions as First-Class Citizens

val presenter = MainPresenter (makeErrorHandler ("MainPresenter"))

// Usage

val exampleHandler = makeErrorHandler ("Example Handler")

exampleHandler (Error ("Some Error")) // Logs: Example Handler: Some
Error

The three most common cases when functions in arguments are used are:

¢ Providing operations to functions
¢ The Observer (Listener) pattern
e A callback after a threaded operation

Let's look at them in detail.

Providing operations to functions

As we saw in the previous section, sometimes we want to extract common functionality
from functions, but they differ in an operation they use. In such situations, we can still
extract this functionality, but we need to provide an argument with the operation that
distinguishes them. This way, any common pattern can be extracted and reused. For
example, we often only need elements of the list that match some predicate, such as when
we only want to show elements that are active. Classically, this would be implemented like
this:

var visibleTasks = emptyList<Task> ()
for (task in tasks) {

if (task.active)

visibleTasks += task

}

While it is a common operation, we can extract the functionality of only filtering some
elements according to the predicate to separate the function and use it more easily:

fun <T> filter(list: List<T>, predicate: (T)->Boolean) {
var visibleTasks = emptyList<T> ()
for (elem in 1list) {
if (predicate(elem))
visibleTasks += elem

}

var visibleTasks = filter (tasks, { it.active })

[180]

Functions as First-Class Citizens

This method of using higher-order functions is very important and it will be described a
number of times throughout the book, but this is not the only way that higher-order
functions are used.

Observer (Listener) pattern

We use the Observer (Listener) pattern when we want to perform operations when an event
occurs. In Android development, observers are often set to view elements. Common
examples are on-click listeners, on-touch listeners, or text watchers. In Kotlin, we can set
listeners with no boilerplate. For example, setting listener on button click looks as follows:

button.setOnClickListener ({ someOperation() })

Note that the setOnClickListener is a Java method from the Android library. Later, we
will see in detail why we can use it with lambda expressions. The creation of listeners is
very simple. Here is an example:

var listeners: List<()->Unit> = emptyList() // 1
fun addListener (listener: ()->Unit) {
listeners += listener // 2

}

fun invokeListeners () {
for(listener in listeners) listener() // 3

}

1. Here, we create an empty list to hold all listeners.
2. We can simply add a listener to the listeners list.
3. We can iterate through the listeners and invoke them one after another.

It is hard to imagine a simpler implementation of this pattern. There is another common use
case where parameters with function types are commonly used; a callback after a threaded
operation.

A callback after a threaded operation

If we need to do a long operation, and we don't want to make the user wait for it, then we
have to start it in another thread. To be able to use a callback after a long operation called in
a separate thread, we need to pass it as an argument. Here's an example function:

fun longOperationAsync (longOperation: ()->Unit, callback: ()->Unit) {
Thread({ // 1

[181]

Functions as First-Class Citizens

longOperation() // 2
callback() // 3
}).start () // 4
}

// Usage

longOperationAsync (
longOperation = { Thread.sleep(1000L) },
callback = { print ("After second") }
// 5, Prints: After second

)

println ("Now") // 6, Prints: Now

1. Here, we create Thread. We also pass a lambda expression that we would like to

execute on the constructor argument.

Here, we are executing a long operation.

Here, we start the callback operation provided in the argument.
start is a method that starts the defined thread.

This is printed after a one-second delay.

ISANES LI SR

This is printed immediately.

Actually, there are some popular alternatives to using callbacks, such as RxJava. Still, classic
callbacks are in common use, and in Kotlin they can be implemented with no boilerplate.

These are the most common use cases where higher-order functions are used. All of them
allow us to extract common behavior and decrease boilerplate. Kotlin allows a few more

improvements regarding higher-order functions.

Combination of named arguments and
lambda expressions

Using default named arguments and lambda expressions can be really useful in Android.
Let's look at some practical Android examples. Let's suppose we have a function that

downloads elements and shows them to the user. We will add a few parameters:

e onStart: This will be called before the network operation
e onFinish: This will be called after the network operation

[182]

Functions as First-Class Citizens

fun getAndFillList (onStart: () —-> Unit = {},
onFinish: () -> Unit = {}){
// code

}

Then, we can show and hide the loading spinner in onStart and onFinish:

getAndFillList (
onStart = { view.loadingProgress = true } ,
onFinish = { view.loadingProgress = false }

)
If we start it from swipeRefresh, then we just need to hide it when it finishes:

getAndFilllList (onFinish = { view.swipeRefresh.isRefreshing =
false })

If we want to make a quiet refresh, then we just call this:

getAndFillList ()

Named argument syntax and lambda expressions are a perfect match for multi-purpose
functions. This connects both the ability to choose the arguments we want to implement
and the operations that should be implemented. If a function contains more than one
function type parameter, then in most cases it should be used by named argument syntax.
This is because lambda expressions are rarely self-explanatory when more than one are
used as arguments.

The last lambda in an argument convention

In Kotlin, higher-order functions are really important, and so it is also important to make
their usage as easy as possible. This is why Kotlin introduced a special convention that
makes higher-order functions simpler and clearer. It works this way: if the last parameter is
a function, then we can define a lambda expression outside of the brackets. Let's see how it
looks if we use it with the 1longOperationAsync function, which is defined as follows:

fun longOperationAsync(a: Int, callback: ()->Unit) {
//
t

[183]

Functions as First-Class Citizens

The function type is in the last position in the arguments. This is why we can execute it this
way:
longOperationAsync (10) {

hideProgress ()
}

Thanks to the last lambda in an argument convention, we can locate the lambda after the
brackets. It looks as if it is outside the arguments.

As an example, let's see how the invocation of code in another thread can be done in Kotlin.
The standard way of starting a new thread in Kotlin is by using the thread function from
the Kotlin standard library. Its definition is as follows:

public fun thread(
start: Boolean = true,
isDaemon: Boolean = false,
contextClassLoader: ClassLoader? = null,
name: String? = null,
priority: Int = -1,
block: () -> Unit): Thread {
// implementation

}

As we can see, the block parameter, which takes operations that should be invoked
asynchronously, is in the last position. All other parameters have a default argument
defined. That is why we can use the thread function in this way:

thread { /* code */ }

The thread definition has lots of other arguments, and we can set them either by using
named argument syntax or just by providing them one after another:

thread (name = "SomeThread") { /*...*/ }
thread (false, false) { /*...*/ }

The last lambda in an argument convention is syntactic sugar, but it makes it much easier to
use higher-order functions. These are the two most common cases where this convention
really makes a difference:

¢ Named code surrounding
¢ Processing data structures using LINQ style

Let's look at them closely.

[184]

Functions as First-Class Citizens

Named code surrounding

Sometimes, we need to mark part of the code to be executed in a different way. The thread
function is this kind of situation. We need some code to be executed asynchronously, so we
surround it with brackets, starting from the thread function:

thread {
operationl ()
operation2 ()

}

From the outside, it looks as if it is a part of code that is surrounded by a block named
thread. Let's look at another example. Let's suppose that we want to log the execution time
of a certain code block. As a helper, we will define the addLogs function, which will print
logs together with the execution time. We will define it in the following way:

fun addLogs (tag: String, f: () —-> Unit) {

println("S$tag started")

val startTime = System.currentTimeMillis ()

£0

val endTime = System.currentTimeMillis ()

println("S$tag finished. It took " + (endTime - startTime))
}

The following is the usage of the function:

addLogs ("Some operations") {
// Operations we are measuring

}

Here's an example of its execution:

addLogs ("Sleeper") {
Thread.sleep (1000)
}

On executing the preceding code, the following output is presented:

Sleeper started
Sleeper finished. It took 1001

The exact number of printed milliseconds may differ a little bit.

[185]

Functions as First-Class Citizens

This pattern is really useful in Kotlin projects because some patterns are connected to blocks
of code. For example, it is common to check whether the version of the API is after Android
5.x Lollipop before the execution of features that need at least this version to work. To check
this, we used the following condition:

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
// Operations

}
But in Kotlin, we can just extract the function in the following way:

fun ifSupportsLolipop (f: ()->Unit) {
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP)

{
£0
}
}

//Usage
ifSupportsLollipop {
// Operation

}

This is not only easy, but also it also reduces redundancy in the code. This is often referred
to as very good practice. Also note that this convention allows us to define control
structures that work in a similar way to standard ones. We can, for example, define a simple
control structure that runs as long as the statement in the body does not return an error.
Here is the definition and usage:

fun repeatUntilError (code: ()->Unit): Throwable {
while (true) {
try {
code ()
} catch (t: Throwable) {
return t

}

}

// Usage
val tooMuchAttemptsError = repeatUntilError {

attemptLogin ()
}

[186]

Functions as First-Class Citizens

An additional advantage is that our custom data structure can return a value. The
impressive part is that is doesn't need any extra language support, and we can define nearly
any control structure we want.

Processing data structures using LINQ style

We've already mentioned that Kotlin allows LINQ-style processing. The last lambda in an
argument convention is another component that aids its readability. For example, look at
the following code:

strings.filter { it.length == 5 }.map { it.toUpperCase() }

It is more readable than notation that does not use the last lambda in an argument
convention:

strings. ({ s —> s.length == 5 }).map({ s —-> s.toUpperCase() })

Again, this processing will be discussed in detail later, in chapter 7, Extension Functions and
Properties, but for now, we have learned about two features that improve its readability (the
last lambda in an argument convention and the implicit name of a single parameter).

The last lambda in an argument convention is one of the Kotlin features that was
introduced to improve the use of lambda expressions. There are more such improvements,
and how they work together is important to make the use of higher-order functions simple,
readable, and efficient.

Java SAM support in Kotlin

It is really easy to use higher-order functions in Kotlin. The problem is that we often need to
interoperate with Java, which natively doesn't support it. It achieves substitution by using
interfaces with only one method. This kind of interface is called a Single Abstract Method
(SAM) or functional interface. The best example, of situation in which we need to set up a
function this way is when we use setOnClickListener ona View element. In Java (until
8), there was no simpler way than by using an anonymous inner class:

//Java
button.setOnClickListener (new OnClickListener () {
@Override public void onClick (View v) {
// Operation
}
)i

[187]

Functions as First-Class Citizens

In the preceding example, the OnClickListener method is the SAM, because it contains
only a single method, onClick. While SAMs are very often used as a replacement for
function definitions, Kotlin also generates a constructor for them that contains the function
type as a parameter. It is called a SAM constructor. A SAM constructor allows us to create
an instance of a Java SAM interface just by calling its name and passing a function literal.
Here's an example:

button.setOnClickListener (OnClickListener {

VAV
H)

A function literal is an expression that defines an unnamed function. In
Kotlin, there are two kinds of function literal:

1. Anonymous functions
2. Lambda expressions

Both Kotlin function literals have already been described:

val a = fun() {} // Anonymous function
val b {} // Lambda expression

Even better, for each Java method that takes a SAM, the Kotlin compiler generates a version
that instead takes a function as an argument. This is why we can set OnClickListener as
follows:

button.setOnClickListener {
// Operations
}

Remember that the Kotlin compiler generates SAM constructors and function methods only
for Java SAMs. It does not generate SAM constructors for Kotlin interfaces with a single
method. This is because the Kotlin community is pushing to use function types and not
SAMs in Kotlin code. When a function is written in Kotlin and includes a SAM, then we
cannot use it as in Java methods, with SAM on a parameter:

interface OnClick {
fun call()
}

fun setOnClick (onClick: OnClick) {
/]
}

[188]

Functions as First-Class Citizens

setOnClick { } // 1. Error

1. This does not work because the setOnC1ick function is written in Kotlin.

In Kotlin, interfaces shouldn't be used this way. The preferred way is to use function types
instead of SAMs:

fun setOnClick (onClick: ()—->Unit) {
/] ..

setOnClick { } // Works

The Kotlin compiler generates a SAM constructor for every SAM interface defined in Java.
This interface only includes the function type that can substitute a SAM. Look at the
following interface:

// Java, inside View class
public interface OnClickListener {
void onClick (View v);

}
We can use it in Kotlin this way:

val onClick = View.OnClickListener { toast ("Clicked") }

Or we can provide it as a function argument:

fun addOnClickListener (d: View.OnClickListener) {}
addOnClickListener(View.OnClickListener { v -> println(v) })

Here are more examples of the Java SAM lambda interface and methods from Android:

view.setOnLongClickListener { /* ... */; true }
view.onFocusChange { view, b -> /* ... */ }
val callback = Runnable { /* ... */ }

view.postDelayed(callback, 1000)
view.removeCallbacks (callback)

And here's some examples from RxJava:

observable.doOnNext { /* ... */ }
observable.doOnEach { /* ... */ }

Now, let's look at how a Kotlin alternative to SAM definition can be implemented.

[189]

Functions as First-Class Citizens

Named Kotlin function types

Kotlin does not support SAM conversions of types defined in Kotlin, because the preferred
way is to use function types instead. But SAM has some advantages over classic function
types: named function types and named parameters. It is good to have the function type
named when its definition is long or it is passed multiple times as an argument. It is also
good to have named parameters when it is not clear what each parameter means just by its

type.
In the upcoming sections, we are going to see that it is possible to name both the parameters
and the whole definition of a function type. This can be done with type aliases and named

parameters in the function type. This way, it is possible to have all the advantages of SAM
while sticking with function types.

Named parameters in function types

Until now, we've only seen definitions of function types where only the types were
specified, but not parameter names. Parameter names have been specified in function literals:

fun setOnItemClickListener (listener: (Int, View, View)->Unit) {
// code

}

setOnItemClickListener { position, view, parent -> /* ... */ }

The problem comes when the parameters are not self-explanatory, and the developer does
not know what the parameters mean. With SAMs there were suggestions, while in the
function type defined in the previous example, they are not really helpful:

fun setOnItemClickListener(listener: (Int, View, View)-=Unit) {

/ code

3
setOnItemClickListener {J}

i, view, view ->

i: Int, view: View, view: View ->

r setOnItemClickListener(listener: (Int, View, View) -> Un.. Unit
f setOnItemClickListener { Int, View, View -> ... } Unit
f = print(message: Boolean) Unit
f = print(message: Int) Unit
f = print(message: Any?) Unit
f = print(message: Byte) Unit
f = print(message: Char) Unit
f = print(message: Long) Unit
F nrintimanceann: Elnat) Ini+
Did you know that Quick Documentation View (Cirl+Q) works in completion lookups as well? >> T

[190]

Functions as First-Class Citizens

The solution is to define function types with named parameters. Here is what this looks
like:

(position: Int, view: View, parent: View)->Unit

The benefit of this notation is that the IDE suggests these names as the names of the
parameters in the function literal. Because of this, the programmer can avoid any confusion:

kun setUnCllckLlstener{“" ick: (position: Int, view: View, parent: View)->Unit) {

}

[fun main(args: Array<String>) {
- setOnClicklListener { | }

)

position: Int, view: View, parent: View ->

r = main(args: Array<String>) Unit

f = setOnClickListener(onClick: (Int, View, View) -> Unit) Unit

f = setOnClickListener { position, view, parent -> ... } Unit

f & tryFewTimes {...} Unit
try {...}

i & tryFewTimes (times: Int = ..., f: () -> Unit) Unit

r = main(args: Array<String>) Unit

f = addClassic (node: BinaryTree<T>?, elem: T) Unit

r addinada: RinaruTran-T=7 T BinaruTran-T-

Did you know that Quick Definition View {CtrL+Sh|ft+I} works in completion lookups as well? >> T

The problem occurs when the same function type is used multiple times, then it is not easy
to define those parameters for each definition. In that situation, a different Kotlin feature is
used--one we describe in the next section, type alias.

Type alias

Since version 1.1, Kotlin has had a feature called type alias, which allows us to provide
alternative names for existing types. Here is an example of a type alias definition where we
have made a list of Users:

data class User(val name: String, val surname: String)
typealias Users = List<User>

This way, we can add more meaningful names to existing data types:

Double
Int

typealias Weight
typealias Length

[191]

Functions as First-Class Citizens

Type aliases must be declared at the top level. A visibility modifier can be applied to a type
alias to adjust its scope, but they are public by default. This means that the type aliases
defined previously can be used without any limitations:

val users: Users = 1istOf(
User ("Marcin", "Moskala"),
User ("Igor", "Wojda")

fun calculatePrice (length: Length) {
//
}

calculatePrice (10)

val weight: Weight = 52.0
val length: Length 34

Keep in mind that aliases are used to improve code readability, and the original types can
still be used interchangably:

typealias Length = Int

var intLength: Int = 17

val length: Length = intLength
intLength = length

Another application of typealias is to shorten long generic types and give them more
meaningful names. This improves code readability and consistency when the same type is
used in multiple places in the code:

typealias Dictionary<V> = Map<String, V>
typealias Array2D<T> = Array<Array<T>>

Type aliases are often used to name function types:

typealias Action<T> = (T) -> Unit
typealias CustomHandler = (Int, String, Any) —-> Unit

We can use them together with function type parameter names:

typealias OnElementClicked = (position: Int, view: View, parent:
View)—>Unit

[192]

Functions as First-Class Citizens

And then we get parameter suggestions:

typealias OnElementClicked = (position: Int, view: View, parent: View)-=Unit

fun main(args: Array<String=) {
= setOnClickListener { }

}

position: Int, view: View, parent: View ->

r = main(args: Array<String=) Unit

f = setOnClickListener (onClick: OnElementClicked /* = (Int, .. Unit

f = setOnClickListener { position, view, parent -> ... } Unit

f & tryFewTimes {...} Unit
try {...}

i & tryFewTimes (times: Int = ..., f: () -> Unit) Unit

r = main(args: Array<String>) Unit

f = addClassic(node: BinaryTree<T>?, elem: T) Unit

addinada: RBinaruTransT-7 Alam. TH RinaruTran-T-

Use Ctrl+Shift+Enter to syntactically correct your code after completing (balance parentheses etc) >>1

Let's look at an example of how function types named by type alias can be implemented by
class. Parameter names from function types are also suggested as method parameter names
in this example:

typealias OnElementClicked = (position: Int, view: View, parent:
View)—->Unit

class MainActivity: Activity (), OnElementClicked {

override fun invoke (position: Int, view: View, parent: View) {
// code
}
}

These are the main reasons why we are using named function types:

¢ Names are often shorter and easier than whole function type definitions

e When we are passing functions, after changing their definitions, we don't have to
change them everywhere if we are using type aliases

e [t is easier to have defined parameter names when we use type aliases

[193]

Functions as First-Class Citizens

These two features (named parameters in function types and type aliases) combined are the
reasons why there is no need to define SAMs in Kotlin--all the advantages of SAMs over
function types (a name and named parameters) can be achieved with named parameters in
function type definitions and type aliases. This is another example of how Kotlin supports
functional programming.

Underscore for unused variables

In some cases, we define a lambda expression that does not use all its parameters. When we
leave them named, they might be distracting to a programmer who is reading the lambda
expression and trying to understand its purpose. Let's look at the function that filters every
second element. The second parameter is the element value, and it is unused in this
example:

o

list.filterIndexed { index, value -> index % 2 == 0 }

To prevent a misunderstanding, there are some conventions used, such as ignoring the
parameter names:

o

list.filterIndexed { index, ignored -> index % 2 == 0 }

Because these conventions were unclear and problematic, Kotlin introduced underscore
notation, which is used as a replacement for the names of parameters that are not used:

list.filterIndexed { index, _ -> index % 2 == 0 }

This notation is suggested, and there is a warning displayed when a lambda expression
parameter is unused:

listof(10, 10, 10).filterIndexed { index, e'k;m -> index % 2 =— 0 }

Parameter 'elem’ is never used, could be renamed to _

[194]

Functions as First-Class Citizens

Destructuring in lambda expressions

In chapter 4, Classes and Objects, we saw how objects can be destructured into multiple
properties using destructuring declarations:

data class User(val name: String, val surname: String, val phone: String)
val (name, surname, phone) = user

Since version 1.1, Kotlin can use destructuring declarations syntax for lambda parameters.
To use them, you should use parentheses that include all the parameters that we want to
destructure into:

val showUser: (User) -> Unit = { (name, surname, phone) ->
println ("$name $surname have phone number: S$phone")

}

val user = User ("Marcin", "Moskala", "+48 123 456 789")
showUser (user)
// Marcin Moskala have phone number: +48 123 456 789

Kotlin's destructing declaration is position-based, as opposed to the
property name-based destructuring declaration that can be found, for
example, in TypeScript. In position-based destructuring declarations, the
order of properties decides which property is assigned to which variable.
In property name-based destructuring, it is determined by the names of
variables:

//TypeScript

const obj = { first: 'Jane', last: 'Doe' };
const { last, first } = obj;
console.log(first); // Prints: Jane
console.log(last); // Prints: Doe

Both solutions have their pros and cons. Position-based destructing
declarations are secure for renaming a property, but they are not safe for
property reordering. Name-based destructuring declarations are safe for
property reordering but are vulnerable for property renaming.

[195]

Functions as First-Class Citizens

Destructuring declarations can be used multiple times in a single lambda expression, and
they can be used together with normal parameters:

val fl1: (Pair<Int, String>)->Unit = { (first, second) ->
/* code */ } // 1

val f2: (Int, Pair<Int, String>)->Unit = { index, (£, s)->
/* code */ } // 2

val £3: (Pair<Int, String>, User) ->Unit = { (f, s), (name,
surname, tel) ->/* code */ } // 3

1. The deconstruction of Pair.
2. The deconstruction of Pair and other element.
3. Multiple deconstructions in a single lambda expression.

Note that we can destructure a class into less than all its components:
val f: (User)->Unit = { (name, surname) -> /* code */ }

Underscore notation is allowed in destructuring declarations. It is most often used to get to
further components:

val f: (User)->Unit = { (name, _, phone) -> /* code */ }
val third: (List<Int>)->Int = { (_, _, third) -> third }

It is possible to specify the type of the destructured parameter:

val £ = { (name, surname): User -> /* code */ } //1
1. The type is inferred from the lambda expression.

Also, parameters can be defined by a destructuring declaration:

val £ = { (name: String, surname: String): User ->
/* code */}// 1
val f: (User)->Unit = { (name, surname) ->

/* code */ } // 2

1. The type is inferred from the lambda expression.

2. The type cannot be inferred because there is not enough information about types
inside the lambda expression.

This all makes destructuring in lambdas a really useful feature. Let's look at some of the
most common use cases in Android where deconstruction in lambdas is used. It is used to
process the elements of Map because they are of type Map . Ent ry, which can be destructured
to the key and value parameters:

[196]

Functions as First-Class Citizens

val map = mapOf (1l to 2, 2 to "A")
val text = map.map { (key, value) -> "Skey: Svalue" }
println (text) // Prints: [1: 2, 2: A]

Similarly, lists of pairs can be destructed:

val l1listOfPairs = 1listOf (1 to 2, 2 to "A")

val text = listOfPairs.map { (first, second) ->
"Sfirst and S$second" }

println (text) // Prints: [1 and 2, 2 and A]

Destructuring declarations are also used when we want to simplify data object processing:

fun setOnUserClickedListener (listener: (User)->Unit) {
listView.setOnItemClickListener { _, _, position, _ —->
listener (users[position])

setOnUserClickedListener { (name, surname) ->
toast ("Clicked to $name S$Ssurname")

}

This is especially useful in libraries that are used to asynchronously process elements (such
as RxJava). Their functions are designed to process single elements, and if we want multiple
elements to be processed, then we need to pack them in Pair, Triple, or some other data
class and use a destructuring declaration on each step:

getQuestionAndAnswer ()
.flatMap { (question, answer) ->
view.showCorrectAnswerAnimationObservable (question, answer)

}

.subscribe({ (question, answer) -> /* code */ })

Inline functions

Higher-order functions are very helpful and they can really improve the reusability of code.
However, one of the biggest concerns about using them is efficiency. Lambda expressions
are compiled to classes (often anonymous classes), and object creation in Java is a heavy
operation. We can still use higher-order functions in an effective way, while keeping all the
benefits, by making functions inline.

[197]

Functions as First-Class Citizens

The concept of inline functions is pretty old, and it is mostly related to C++ or C. When a
function is marked as inline, during code compilation the compiler will replace all the
function calls with the actual body of the function. Also, lambda expressions provided as
arguments are replaced with their actual body. They will not be treated as functions, but as
actual code. This makes bytecode longer, but runtime execution is much more efficient.
Later, we will see that nearly all higher-order functions from the standard library are
marked as inline. Let's look at the example. Suppose we marked the printExecutionTime
function with the inline modifier:

inline fun printExecutionTime(f: () -> Unit) {
val startTime = System.currentTimeMillis ()
()
val endTime = System.currentTimeMillis ()
println ("It took " + (endTime - startTime))

fun measureOperation() {
printExecutionTime {
longOperation ()

}
}

When we compile and decompile the measureOperation, we are going to find out that the
function call is replaced with its actual body, and the parameter function call is replaced by
the lambda expression's body:

fun measureOperation() {
val startTime = System.currentTimeMillis() // 1
longOperation() // 2
val endTime = System.currentTimeMillis ()
println ("It took " + (endTime - startTime))

}

1. Code from printExecutionTime was added to measureOperation function
body.

2. Code located inside the lambda was located on its call. If the function used it
multiple times, then the code would replace each call.

The body of printExecutionTime can still be found in the code. It was
skipped to make the example more readable. It is kept in the code because
it might be used after compilation, for example, if this code is added to a
project as a library. What is more, this function will still work as inline
when used by Kotlin.

[198]

Functions as First-Class Citizens

While there is no need to create classes for lambda expressions, inline functions can speed
up the execution of functions with function parameters. This difference is so important that
it is recommended to use the inline modifier for all short functions with at least one
function parameter. Unfortunately, using the inline modifier also has its bad sides. The first
we've already mentioned: the bytecode produced is longer. This is because function calls
are replaced by function bodies and because lambda calls inside this body are replaced with
the body of the function literal. Also, inline functions cannot be recursive and they cannot
use functions or classes that have a more restrictive visibility modifier than this lambda
expression. For example, public inline functions cannot use private functions. The reason is
that this could lead to the injection of code into functions that cannot use them. This would
lead to a compilation error. To prevent this, Kotlin does not permit the use of elements with
less restrictive modifiers than the lambda expression in which they are placed. Here's an
example:

internal fun someFun () {}

inline fun inlineFun () {
someFun () // ERROR

}

In fact, it is possible in Kotlin to use elements with more restrictive
visibility in inline functions if we suppress this warning, but this is bad
practice and it should never be used this way:

// Testerl.kt
fun main(args: Array<String>) { a() }

// Tester2.kt
inline fun a() { b() }
private fun b () { print ("B") }

How is this possible? For the internal modifier it is simpler, because the
internal modifier is public under the hood. For private functions, there is
an additional access$b function created, which has public visibility and
only invokes the b function:

public static final void accessS$b() { b(); }

This behavior is presented here just to explain why less restrictive
modifiers can sometimes be used inside inline functions (these situations
can be found in the Kotlin standard library in Kotlin 1.1). In the projects,
we should design elements in such a way that there is no need to use such
suppression.

[199]

Functions as First-Class Citizens

Another problem is less intuitive. While no lambda has been created, we cannot pass
parameters that are of the function type to another function. Here is an example:

fun boo(f: ()->Int) {
/] ...
}
inline fun foo(f: () -> Int) {

boo (f) // ERROR, 1
}

When a function is inline, then its function arguments cannot be passed to a function that
is not inline.

This doesn't work because no £ parameter has been created. It has just been defined to be
replaced by the function literal body. This is why it cannot be passed to another function as
an argument.

The simplest way to deal with it is by making the boo function inline as well. Then it will be
OK. In most cases, we cannot make too many functions inline. Here are a few reasons why:

e The inline functions should be used for smaller functions. If we make inline
function that use other inline functions, then it can lead to a large structure
being generated after compilation. This is a problem both because of compilation
time and because of the resulting code's size.

e While inline functions cannot use an element with visibility modifiers more
strict than the one they have, it would be a problem if we would like to use them

in libraries where as many functions as possible should be private to protect the
APL

The simplest way to deal with this problem is by making function parameters that we want
to pass to another function noinline.

The noinline modifier

The noinline modifier is for function type parameters. It makes a specific argument be
treated as a normal function type parameter (its calls are not replaced with the function
literal body). Let's look at a noinline example:

fun boo (f: ()—->Unit) {
/] ...
}

[200]

Functions as First-Class Citizens

inline fun foo(before: ()->Unit, noinline f: () -> Unit) { // 1
before() // 2
boo (f) // 3

}

1. The noinline annotation modifier is before parameter f.

2. The before function will be replaced by the body of the lambda expression used
as an argument.

3. fisnoinline so it can be passed to the boo function.

Two main reasons to use the noinline modifier are as follows:

e When we need to pass a specific lambda to another function

e When we are calling the lambda intensively and we don't want to bloat the code
too much

Note that when we make all function parameters the noinline, there will be almost no
performance improvement from making the functions inline. While it is unlikely that using
inline will be beneficial, the compiler will show a warning. This is why, in most cases,
noinline is only used when there are multiple function parameters and we only apply it to
some of them.

Non-local returns

Functions with function parameters might act similarly to native structures (such as loops).
We've already seen the i fSupportsLolipop function and the repeatUntilError
function. An even more common example is the forEach modifier. It is an alternative to the
for control structure, and it calls a parameter function with each element one after another.
This is how it could be implemented (there is a forEach modifier in the Kotlin standard
library, but we will look at it later because it includes elements that have not yet been
presented):

fun forEach(list: List<Int>, body: (Int) -> Unit) {
for (i in list) body (i)
}

// Usage
val list = 1listOf (1, 2, 3, 4, 5)
forEach (list) { print(it) } // Prints: 12345

[201]

Functions as First-Class Citizens

The big problem is that inside a forEach function defined this way, we cannot return from
an outer function. For example, this is how we could implement the maxBounded function

using a for loop:

fun maxBounded (list: List<Int>, upperBound: Int, lowerBound: Int):

Int {
var currentMax = lowerBound
for(i in 1list) {
when {
i > upperBound -> return upperBound
i > currentMax —-> currentMax = i

}
}
return currentMax

}

If we want to treat forEach as an alternative to a for loop, then a similar possibility should
be allowed there. The problem is that the same code, but with forEach used instead of

a for loop, would not compile:

var currentMax = lowerBound
forEach(list) { i —>
when {

i > upperBound —> return upperBound

i~ rurrantMayv -~ wantMasy -
[RETURN_NOT_ALLOWED] 'return’ is not allowed here
}

return currentMax

fun maxBounded(list: List<Int>, upperBound: Int, lowerBound: Int):

Int {

The reason is related to how the code is compiled. We have already discussed that lambda
expressions are compiled to a class of anonymous objects with a method that includes the
defined code, and over there we cannot return from the maxBounded function because we

are in a different context.

[202]

Functions as First-Class Citizens

We encounter a situation where the forEach function is marked as inline. As we have
already mentioned, the body of this function replaces its calls during compilation, and all of
the functions from the parameters are replaced with their body. So, there is no problem
with using the return modifier there. Then, if we make forEach inline, we can use
return inside the lambda expression:

inline fun forEach(list: List<Int>, body: (Int)->Unit) {
for(i in list) body (i)

fun maxBounded (list: List<Int>, upperBound: Int,
lowerBound: Int): Int |

var currentMax = lowerBound
forEach (list) { 1 -—>
when {
i > upperBound -> return upperBound
i > currentMax —> currentMax = i

}
return currentMax

}

This is how the maxBounded function has compiled in Kotlin, and the code looks like this
(after some cleanup and simplification) when it is decompiled to Java:

public static final int maxBounded (@NotNull List 1list,
int upperBound, int lowerBound) {
int currentMax = lowerBound;
Iterator iter = list.iterator();
while (iter.hasNext ()) {
int 1 = ((Number)iter.next ()).intValue();
if (i > upperBound) {
return upperBound; // 1

if (i > currentMax) {
currentMax = i;

return currentMax;

[203]

Functions as First-Class Citizens

In the preceding code, return is important--it was defined in the lambda expression, and it
is returned from the maxBounded function.

The return modifier used inside the lambda expression of the inline function is called a
non-local return.

Labeled returns in lambda expressions

Let's look at a case in which we need to return from a lambda expression and not from a
function. We can do this using labels. Here is an example of a return from a lambda
expression using labels:

inline fun <T> forEach(list: List<T>, body: (T) —-> Unit) { // 1
for (i in list) body (i)
}

fun printMessageButNotError (messages: List<String>) {
forEach (messages) messageProcessor@ { // 2

if (it == "ERROR") return@messageProcessor // 3
print (it)
}
}
// Usage
val list = 1listOf ("A", "ERROR", "B", "ERROR", "C")

processMessageButNotError (list) // Prints: ABC

1. This is a generic implementation of the forEach function, where a list with any
type can be processed.
2. We define a label for the lambda expression inside a forEach argument.

3. We return from a lambda expression specified by a label.

Another Kotlin feature is that lambda expressions that are defined as function arguments
have a default label whose name is the same as the function in which they are defined. This
label is called an implicit label. When we want to return from a lambda expression defined
in a forEach function, we can do so just by using return@forEach. Let's look at an
example:

inline fun <T> forEach(list: List<T>, body: (T) -> Unit) { // 1
for (i in list) body (i)
}

fun processMessageButNotError (messages: List<String>) {
forEach (messages) {

[204]

Functions as First-Class Citizens

if (it == "ERROR") return@forEach // 1
process (it)

// Usage
val list = 1listOf ("A", "ERROR", "B", "ERROR", "C")
processMessageButNotError (list) // Prints: ABC

1. The implicit label name is taken from the function name.

Note that while the forEach function is inline, we can also use a non-local return to return
from the processMessageButNotError function:

inline fun <T> forEach(list: List<T>, body: (T) -> Unit) {
for (i in list) body (i)

fun processMessageButNotError (messages: List<String>) {

forEach (messages) {
if (it == "ERROR") return
process (it)

// Usage
val list = listOf("A", "ERROR", "B", "ERROR", "C")
processMessageButNotError (list) // Prints: A

Let's move on to a more complex example of using non-local return labels. Let's suppose
that we have two forEach loops, one inside another. When we use an implicit label, it will

return from the deeper loop. In our example, we can use it to skip the processing of the
specific message:

inline fun <T> forEach(list: List<T>, body: (T) -> Unit) { // 1
for (i in list) body (i)

fun processMessageButNotError (conversations: List<List<String>>) {
forEach (conversations) { messages —->

forEach (messages) {
if (it == "ERROR") return@forEach // 1.

process (it)

[205]

Functions as First-Class Citizens

// Usage

val conversations = 1istOf (
1istOf ("A", "ERROR", "B"),
1istOf ("ERROR", "C"),
listOf ("D")

)

processMessageButNotError (conversations) // ABCD

1. This will return from the lambda defined in the forEach function that also takes
messages as an argument.

We cannot return from another lambda expression in the same context using an implicit
label, because it is shadowed by a deeper implicit label.

In these situations, we need to use a non-local implicit label return. It is only permissible
with inline function parameters. In our example, while forEach is inline, we can return
from a function literal this way:

inline fun <T> forEach(list: List<T>, body: (T) -> Unit) { // 1
for (i in list) body (i)

fun processMessageButNotError (conversations: List<List<String>>) {
forEach (conversations) conv@ { messages ->
forEach (messages) {

if (it == "ERROR") return@conv // 1.
print (it)
}
}
}
// Usage
val conversations = 1istOf (

1istOf ("A", "ERROR", "B"),
1istOf ("ERROR", "C"),
1istOf ("D")

)

processMessageButNotError (conversations) // AD

1. This will return from the lambda defined in forEach called on conversations.

[206]

Functions as First-Class Citizens

We can also just use a non-local return (a return without any labels) to finish the processing:

inline fun <T> forEach(list: List<T>, body: (T) -> Unit) { // 1
for (i in list) body (i)
}

fun processMessageButNotError (conversations: List<List<String>>) {
forEach (conversations) { messages —->
forEach (messages) {
if (it == "ERROR") return // 1.
process (it)

}

1. This will return from the processMessageButNotError function and finish the
processing.

Crossinline modifier

Sometimes we need to use function type parameters from inline functions not directly in the
function body, but in another execution context, such as a local object or a nested function.
But standard function type parameters of inline functions are not allowed to be used this
way because they allow non-local returns, which should not be allowed if this function
could be used inside another execution context. To inform the compiler that non-local
returns are not allowed, this parameter must be annotated as crossinline. Then it will act
like a substitution that we are expecting in an inline function, even when it is used inside
another lambda expression:

fun boo(f: () -> Unit) {
/]
}
inline fun foo(crossinline f: () —-> Unit) {

boo { println("A"); £() }
}

fun main(args: Array<String>) {
foo { println("B") }
}

[207]

Functions as First-Class Citizens

This will be compiled as follows:

fun main(args: Array<String>) {
boo { println("A"); println("B") }
}

While no property has been created with the function, it is not possible to pass the
crossinline parameter to another function as an argument:

inline fun foo({crossinline f: () -3 Unit) |

22 (3]

lllegal usage of inline-parameter 'f* in 'public inline fun foo(crossinline f:) -> Unit): Unit defined in demo’. Add 'noinline’ modifier to the parameter declaration

Let's look at a practical example. In Android, we don't need Context to execute an
operation on the main thread of the application because we can get a main loop using the
getMainLooper static function from the Looper class. Therefore, we can write a top-level
function that will allow a simple thread change into the main thread. To optimize it, we are
first check whether the current thread is not the main thread. When it is, the action is just
invoked. When it is not, we create a handler that operates on the main thread and a post
operation to invoke it from there. To make the execution of this function faster, we are
going to make the runOnUiThread function inline, but then to allow the action invocation
from another thread, we need to make it crossinline. Here is an implementation of this
described function:

inline fun runOnUiThread(crossinline action: () —-> Unit) {
val mainLooper = Looper.getMainLooper ()
if (Looper.myLooper () == mainLooper) {
action ()
} else {
Handler (mainLooper) .post { action() } // 1

}

1. We can run action inside a lambda expression thanks to the crossinline
modifier.

The crossinline annotation is useful because it allows to use function types in the context
of lambda expressions or local functions while maintaining the advantages of making the
function inline (there's no need for lambda creation in this context).

[208]

Functions as First-Class Citizens

Inline properties

Since Kotlin 1.1, the inline modifier can be used on properties that do not have a backing
field. It can be either applied to separate accessors, which will result in their body replacing
usage, or it can be used for a whole property, which will have the same result as making
both accessors inline. Let's make an inline property that will be used to check and change an
element's visibility. Here is an implementation where both accessors are inline:

var viewIsVisible: Boolean
inline get () = findViewById(R.id.view) .visibility == View.VISIBLE
inline set (value) {
findViewById(R.id.view) .visibility = if (value) View.VISIBLE
else View.GONE
}

We can achieve the same result if we annotate the whole property as inline:

inline var viewIsVisible: Boolean
get () = findViewById(R.id.view) .visibility == View.VISIBLE
set (value) {
indvViewById(R.id.view) .visibility = if (value) View.VISIBLE
else View.GONE

// Usage
if (!viewIsVisible)
viewIsVisible = true

The preceding code can be compiled as follows:

if (! (findViewById(R.id.view) .getVisibility () == View.VISIBLE))

{
findViewById(R.id.view) .setVisibility (true?View.VISIBLE:View.GONE) ;

}

This way, we have omitted the setter and getter function calls, and we should expect a
performance improvement at the cost of increased compiled code size. Still, for most
properties it should be profitable to use the inline modifier.

[209]

Functions as First-Class Citizens

Function references

Sometimes, functions that we want to pass as an argument are already defined as a separate
function. Then we can just define the lambda with its call:

fun 1s0Odd(i: Int) =1 % 2 == 1
list.filter { 1isOdd (it) }

But Kotlin also allows us to pass a function as a value. To be able to use a top-level function
as a value, we need to use a function reference, which is used as a double colon and the
function name (: : functionName). Here is an example of how it can be used to provide a
predicate to filter:

list.filter (::1s0dd)
Here is an example:

fun greet () {
print ("Hello! ")
}
fun salute () {
print ("Have a nice day ")

val todoList: List<() —-> Unit> = 1listOf (::greet, ::salute)
for (task in todolist) {

task ()
// Prints: Hello! Have a nice day

A function reference is example of reflection, and this is why the object returned by this
operation also contains information about the referred function:

fun 1s0dd(i: Int) =1 % 2 == 1
val annotations = ::1s0dd.annotations
val parameters = ::isOdd.parameters

println (annotations.size) // Prints: O
println (parameters.size) // Prints: 1

But this object also implements the function type, and it can be used this way:

val predicate: (Int)->Boolean = ::is0Odd

[210]

Functions as First-Class Citizens

It is also possible to reference to methods. To do this, we need to write the type name, two
colons, and the method name (Type: : functionName). Here is an example:

val isStringEmpty: (String)->Boolean = String::isEmpty

// Usage

val nonEmpty = listoOf("A", "", "B", "")
.filter (String::isNotEmpty)

print (nonEmpty) // Prints: ["A", "B"]

As in the preceding example, when we are referencing a non-static method, there needs to
be an instance of the class provided as an argument. The i sEmpty function is a String
method that takes no arguments. The reference to i sEmpty has a String parameter that
will be used as an object on which the function is invoked. The reference to the object is
always located as the first parameter. Here is another example, where the method has the
food already defined:

class User {

fun wantToEat (food: Food): Boolean {
//

val func: (User, Food) —-> Boolean = User::wantToEat

It is a different situation when we are referencing a Java static method, because it does not
need an instance of the class on which it is defined. This is similar to methods of objects or

companion objects, where the object is known in advance and does not need to be provided.
In these situations, there is a function created with the same parameters as the referenced

function and the same return type:

object MathHelpers {
fun isEven(i: Int) =1 % 2 == 0

class Math {
companion object |
fun isOdd(i: Int) =1 % 2 == 1

// Usage
val evenPredicate: (Int)->Boolean = MathHelpers::isEven
val oddPredicate: (Int)->Boolean = Math.Companion::isOdd

[211]

Functions as First-Class Citizens

val numbers = 1..10

val even = numbers.filter (evenPredicate)
val odd = numbers.filter (oddPredicate)
println(even) // Prints: [2, 4, 6, 8, 10]
println(odd) // Prints: [1, 3, 5, 7, 9]

In function reference usage, there are common use cases where we want to use function
references to provide method from a class we have a reference to. A common example is
when we want to extract some operations as methods of the same class, or when we want to
reference functions from reference member function of a class we have reference to. A
simple example is when we define what should be done after a network operation. This is
defined in a Presenter (such as MainPresenter), but it references all the View operations
that are defined by the view property (which is, for example, of type MainView):

getUsers () .smartSubscribe (
onStart = { view.showProgress() }, // 1
onNext = { user -> onUsersLoaded (user) }, // 2
onError = { view.displayError (it) }, // 1
onFinish = { view.hideProgress() } // 1

)

1. showProgress, displayError, and hideProgress are defined in MainView.

2. onUsersLoaded is a method defined in MainPresenter

To help in this kind of situation, in Version 1.1 Kotlin introduced a feature called bound
references, which provide references that are bound to a specific object. Thanks to that, this
object does not need to be provided by an argument. Using this notation, we can replace the
previous definition like this:

getUsers () .smartSubscribe (
onStart = view::showProgress,
onNext = this::onUsersLoaded,
onError = view::displayError,
onFinish = view::hideProgress

)

Another function that we might want to reference is a constructor. An example use case is
when we need to map from a data transfer object (DTO) to a class that is part of a model:

fun toUsers (usersDto: List<UserDto>) = usersDto.map { User(it) }

Here, User needs to have a constructor that defines how it is constructed from UserDto.

[212]

Functions as First-Class Citizens

A DTO is an object that carries data between processes. It is used because
classes used during communications between a system (in an API) are
different than actual classes used inside the system (a model).

In Kotlin, constructors are used and treated similarly to functions. We can also reference
them with a double colon and a class name:

val mapper: (UserDto)->User = ::User

This way, we can replace the lambda with a constructor call that has a constructor reference:

fun toUsers (usersDto: List<UserDto>) = usersDto.map (::User)

Using function references instead of lambda expressions gives us shorter and often more
readable notation. It is also especially useful when we are passing multiple functions as
parameters, or functions that are long and need to be extracted. In other cases, there is the
useful bound reference, which provides a reference that is bound to a specific object.

Summary

In this chapter, we've discussed using functions as first-class citizens. We've seen how
function types are used. We have seen how to define function literals (anonymous functions
and lambda expressions), and that any function can be used as an object thanks to function
references. We've also discussed higher-order functions and the different Kotlin features
that support them: the implicit name of a single parameter, the last lambda in an argument
convention, Java SAM support, using an underscore for unused variables, and
destructuring declarations in lambda expressions. These features provide great support for
higher-order functions, and they make functions even more than first-class citizens.

In the next chapter, we are going to see how generics work in Kotlin. This will allow us to
define much more powerful classes and functions. We will also see how well they can be
used when connected to higher-order functions.

[213]

Generics Are Your Friends

In the previous chapter, we discussed concepts related to functional programming and
functions as first-class citizens in Kotlin.

In this chapter, we will discuss the concepts of generic types and generic functions, known
as generics. We will learn why they exist and how to use them and also how to define
generic classes, interfaces, and functions. We will discuss how to deal with generics at
runtime, take a look at subtyping relations, and deal with generic nullability.

In this chapter, we will cover the following topics:

Generic classes

Generic interfaces

Generic functions

Generic constraints

Generic nullability

Variance

Use-site target versus declaration-site target
Declaration-site target

Type erasure

Reified and erased type parameters
Star-projection syntax

Variance

Generics Are Your Friends

Generics

Generics is a programming style where classes, functions, data structures, or algorithms are
written in such a way that the exact type can be specified later. In general, generics provide
type safety together with the ability to reuse a particular code structure for various data

types.

Generics are present in both Java and Kotlin. They work in a similar way, but Kotlin offers a
few improvements over the Java generic type system, such as use-site variance, start-
projection syntax, and reified type parameters. We will discuss them in this chapter.

The need for generics

Programmers often need a way to specify that a collection only contains elements of a
particular type, such as Int, Student, or Car. Without generics, we would need to separate
classes for each data type (IntList, StudentList, CarList, and so on). Those classes
would have a very similar internal implementation, which would only differ in the stored
data type. This means that we would need to write the same code (such as adding or
removing an item from a collection) multiple times and maintain each class separately. This
is a lot of work, so before generics were implemented, programmers usually operated on a
universal list. This forced them to cast elements each time they were accessed:

// Java

ArrayList list = new ArrayList();
list.add(1);
list.add(2);
int first = (int) list.get (0);
int second = (int) list.get(1);

Casting adds boilerplate, and there is no type validation when an element is added to a
collection. Generics are the solution for this problem, because a generic class defines and
uses a placeholder instead of a real type. This placeholder is called a type parameter. Let's
define our first generic class:

class SimpleList<T> // T is type parameter

The type parameter means that our class will use a certain type, but this type will be
specified during class creation. This way, our SimpleList class can be instantiated for a
variety of types. We can parametrize a generic class with various data types using type
arguments. This allows us to create multiple data types from a single class:

// Usage
var intList: SimpleList<Int>

[215]

Generics Are Your Friends

var studentList: SimpleList<Student>
var carlList:SimplelList<Car>

The simpleList class is parametrized with type arguments (Int, Student, and Car) that
define what kind of data can be stored in the given list.

Type parameters versus type arguments

Functions have parameters (variables declared inside a function declaration) and arguments
(the actual value that is passed to a function). Similar terminology applies to generics. A
type parameter is a blueprint or placeholder for a type declared in a generic, and a type
argument is an actual type used to parametrize a generic.

We can use a type parameter in a method signature. This way, we can make sure that we will
be able to add items of a certain type to our list and retrieve items of a certain type:

class SimpleList<T> {

fun add(item:T) { // 1
// code
3
fun get (intex: Int): T { // 2
// code
3
}

1. The generic type parameter T is used as the type for the item.
2. The type parameter is used as the return type.

The type of item that can be added to a list or retrieved from a list depends on the type
argument. Let's see an example:

class Student (val name: String)

val studentList = SimplelList<Student> ()
studentList.add (Student ("Ted"))
println(studentList.getItemAt (0) .name)

We can only add and get items of type Student from the list. The compiler will
automatically perform all necessary type checks. It is guaranteed that the collection will
only contain objects of a particular type. Passing an object of an incompatible type to the
add method will result in a compile-time error:

var studentList: SimpleList<Student>
studentList.add (Student ("Ted"))
studentList.add (true) // error

[216]

Generics Are Your Friends

We cannot add a Boolean, because the expected type is Student.

The Kotlin standard library defines various generic collections in the
kotlin.collections package, such as List, Set, and Map. We will
discuss them in chapter 7, Extension Functions and Properties.

In Kotlin, generics are often used in combination with higher-order functions (discussed in
Chapter 5, Functions as First Class Citizens) and extension functions (which we will discuss

in chapter 7, Extension Functions and Properties). Examples of such connections are the map,
filter, and takeUntil functions. We can perform common operations that will differ in

the details. For example, we can find matching elements in the collection using the filter
function and specifying how matching elements will be detected:

val fruits = 1istOf ("Babana", "Orange", "Apple", "Blueberry")
val bFruits = fruits.filter { it.startsWith("B") } //1
println (bFruits) // Prints: [Babana, Blueberry]

1. We can call the startswith method because the collection can contain only
Strings, so the lambda parameter (it) has the same type.

Generic constraints

By default, we can parametrize a generic class with any type of type argument. However, we
can limit the possible types that can be used as type arguments. To limit the possible values
of a type arqument, we need to define a type parameter bound. The most common type of
constraint is an upper bound. By default, all type parameters have Any? as an implicit upper
bound. This is why both the following declarations are equivalent:

class SimpleList<T>
class SimpleList<T: Any?>

The preceding bounds mean that we can use any type we want as a type argument for our
SimpleList class (including nullable types). This is possible because all nullable and non-

nullable types are subtypes of Any 2:

class SimpleList<T>
class Student

//usage

var intList = SimpleList<Int> ()

var studentList = SimpleList<Student> ()
var carlList = SimplelList<Boolean> ()

[217]

Generics Are Your Friends

In some situations, we want to limit the data types that can be used as type arquments. To
make it happen, we need to explicitly define a type parameter upper bound. Let's assume
that we only want to be able to use numeric types as type arguments for our SimpleList
class:

class SimpleList<T: Number>
//usage

var numberList = SimpleList<Number> ()

var intList = SimpleList<Int> ()

var doublelList = SimpleList<Double> ()

var stringList = Simplelist<String>() //error

The Number class is an abstract class, that is, a superclass of Kotlin numeric types (Byte,
Short, Int, Long, Float, and Double). We can use the Number class and all its subclasses
(Int, Double, and so on) as a type argument, but we can't use the St ring class, because it's
not a subclass of Number. Any attempt to add an incompatible type will be rejected by the
IDE and compiler. Type parameters also incorporate Kotlin type system nullability.

Nullability

When we define a class with an unbounded type parameter, we can use both non-nullable
and nullable types as type arguments. Occasionally, we need to make sure that a particular
generic type will not be parametrized with nullable type arguments. To block the ability to
use nullable types as type arquments, we need to explicitly define a non-nullable type
parameter upper bound:

class Action (val name:String)
class ActionGroup<T : Action>

// non-nullable type parameter upper bound

var actionGroupA: ActionGroup<Action>
var actionGroupB: ActionGroup<Action?> // Error

Now we can't pass a nullable type argument (Action?) to the ActionGroup class.

[218]

Generics Are Your Friends

Let's consider another example. Imagine that we want to retrieve the last Act ion
in ActionGroup. A simple definition of the 1ast method would look like this:

class ActionGroup<T : Action> (private val list: List<T>) {
fun last(): T = list.last ()
}

Let's analyze what will happen when we pass an empty list to the constructor:

val actionGroup = ActionGroup<Action> (listOf())

VA
val action = actionGroup.last
//error: NoSuchElementException: List is empty

println (action.name)

Our application crashes, because the 1ast method throws an error when there is no
element with such an index on the list. Instead of an exception, we might prefer a null value
when the list is empty. The Kotlin standard library already has a corresponding method
that will return a null value:

class ActionGroup<T : Action> (private val list: List<T>) {
fun lastOrNull(): T = list.lastOrNull() //error
}

The code will not compile because there is a possibility that the last method will return null
irrespective of type argument nullability (there may be no elements in the list to return). To
solve this problem, we need to enforce a nullable return type by adding a question mark to
the type parameter use-site (T?):

class ActionGroup<T : Action> (private val list: List<T>) { // 1
fun lastOrNull(): T? = list.lastOrNull() // 2
}

1. The type parameter declaration-site (place in the code where the type parameter is
declared).

2. The type parameter use-site (place in code where type parameter is used).

The T2 parameter means that the 1astOrNull method will always be nullable regardless of
potential type argument nullability. Notice that we restored the type parameter T bound as
the non-nullable Act ion type, because we want to store non-nullable types and deal with
nullability only in certain scenarios (such as a non-existing last element). Let's use our
updated ActionGroup class:

val actionGroup= ActionGroup<Action> (1listOf ())

[219]

Generics Are Your Friends

val actionGroup = actionGroup.lastOrNull ()
// Inferred type is Action?
println(actionGroup?.name) // Prints: null

Notice that the act ionGroup inferred type is nullable even if we parameterized the generic
with a non-nullable type arqument.

A nullable type at the use-site does not stop us from allowing non-null types in the
declaration-site:

open class Action
class ActionGroup<T : Action?>(private val list: List<T>) {

fun lastOrNull(): T? = list.lastOrNull ()
}
// Usage
val actionGroup = ActionGroup (listOf (Action(), null))
println(actionGroup.lastOrNull()) // Prints: null

Let's sum up the preceding solution. We specified a non-nullable bound for type parameter
to disallow parameterizing the Act ionGroup class with nullable types as type arguments.
We parameterized the ActionGroup class with the non-nullable type arqument Action.
Finally, we enforced type parameter nullability at the use-site (T ?) because the last property
can return null if there are no elements in the list.

Variance

Subtyping is a popular concept in the OOP paradigm. We define inheritance between two
classes by extending the class:

open class Animal (val name: String)
class Dog(name: String): Animal (name)

The Dog class extends the Animal class, so the Dog type is a subtype of Animal. This means
that we can use an expression of type Dog whenever an expression of type Animal is
required; for example, we can use it as a function argument or assign a variable of type Dog
to a variable of type Animal:

fun present (animal: Animal) {
println("This is ${ animal. name } ")

}
present (Dog("Pluto")) // Prints: This is Pluto

[220]

Generics Are Your Friends

Before we move on, we need to discuss the difference between class and type. Type is a
more general term--it can be defined by class or interface, or it can be built into the language
(primitive type). In Kotlin, for each class (for example, Dog), we have at least two possible
types--non-nullable (Dog) and nullable (Dog?). What's more, for each generic class (for
example, class Box<T>)we can define multiple data types (Box<Dog>, Box<Dog?>,
Box<Animal>, Box<Box<Dog>>, and so on).

The previous example applies only to simple types. Variance specifies how subtyping
between more complex types (for example, Box<Dog> and Box<Animal>) relates to
subtyping between their components (for example, Animal and Dog).

In Kotlin, generics are invariant by default. This means that there is no subtyping relation
between the Box<Dog> and Box<Animal> generic type. The Dog component is subtype of
Animal, but Box<Dog> is neither a subtype nor a supertype of Box<Animal>:

class Box<T>
open class Animal
class Dog : Animal ()

var animalBox = Box<Animal> ()
var dogBox = Box<Dog> ()

//one of the lines below line must be commented out,
//otherwise Android Studio will show only one error
animalBox = dogBox // 2, error
dogBox = animalBox // 1, error

1. Error type mismatch. Required Box<Animal>, found Box<Dog>.
2. Error type mismatch. Required Box<Dog>, found Box<Animal>.

The Box<Dog> type is neither a subtype nor a supertype of Box<Animal>, so we can't use
any of the assignments shown in the preceding code.

We can define subtyping relations between Box<Dog> and Box<Animal>. In Kotlin, a
subtyping relation of a generic type can be preserved (co-variant), reversed (contra-variant),
or ignored (invariant).

When a subtyping relation is co-variant, it means that subtyping is preserved. The generic
type will have the same relation as the type arguments. If Dog is a subtype of Animal, then
Box<Dog> is a subtype of Box<Animal>.

[221]

Generics Are Your Friends

Contra-variant is the exact opposite of co-variant, where subtyping is reversed. The generic
type will have a reversed relationship with respect to type arguments. If Dog is a subtype of
Animal, then Box<Animal> is a subtype of Box<Dog>. The following diagram presents all
types of variance:

Covariant Contravariant Invariant
Animal Box<Dog> Box<Animal> Box<Animal>
y y y
Dog Box<Animal> Box<Dog> Box<Dog>

To define co-variant or contra-variant behavior, we need to use variance modifiers.

Variance modifiers

Generics in Kotlin are invariant by default. This means that we need to use the type as the
type of declared variable or function parameter:

public class Box<T> { }

fun sum(list: Box<Number>) { /* ... */ }
// Usage

sum (Box<Any>()) // Error

sum (Box<Number>()) // Ok

sum (Box<Int>()) // Error

We can't use a generic type parametrized with Int, which is a subtype of Number, and Any,
which is a supertype of Number. We can relax this restriction and change the default
variance by using variance modifiers. In Java, there is the question mark (?) notation
(wildcard notation) used to represent an unknown type. Using it, we can define two types
of wildcard bounds--upper bound and lower bound. In Kotlin, we can achieve similar
behavior using in and out modifiers.

[222]

Generics Are Your Friends

In Java, the upper bound wildcard allows us to define a function that accepts any argument
that is a certain type of its subtype. In the following example, the sum function will accept
any List that was parametrized with the Number class or a subtype of the Number class
(Box<Integer>, Box<Double>, and so on):

//Java

public void sum(Box<? extends Number> list) { /* ... */ }
// Usage

sum (new Box<Any>()) // Error

sum (new Box<Number>()) // Ok

sum (new Box<Int>()) // Ok

We can now pass Box<Number> to our sum function and all the subtypes, for example,
Box<Int>. This Java behavior corresponds to the Kotlin out modifier. It represents
covariance, which restricts the type to be a specific type or a subtype of that type. This
means that we can safely pass instances of the Box class that are parametrized with any
direct or indirect subclass of Number:

class Box<T>

fun sum(list: Box<out Number>) { /* ... */ }
//usage

sum (Box<Any>()) // Error

sum (Box<Number>()) // Ok

sum (Box<Int>()) // Ok

In Java, the lower bound wildcard allows us to define a function that accepts any argument
that is a certain type or its supertype. In the following example, the sum function will accept
any List that was parametrized with the Number class or a supertype of the Number class
(Box<Number> and Box<Object>):

//Java

public void sum(Box<? super Number> list) { /* ... */ }
//usage

sum (new Box<Any>()) // Ok

sum (new Box<Number>()) // Ok

sum (new Box<Int>()) // Error

We can now pass Box<Any> to our sum function and all the subtypes, for example,
Box<Any>. This Java behavior corresponds to the Kotlin in modifier. It represents contra-
variance, which restricts the type to be a specific type or a supertype of that type:

class Box<T>
fun sum(list: Box<in Number>) { /* ... */ }

[223]

Generics Are Your Friends

//usage

sum (Box<Any>()) // Ok
sum (Box<Number>()) // Ok
sum (Box<Int>()) // Error

It's forbidden to use in and out modifiers together. We can define variance modifiers in
two different ways. Let's look at them in the upcoming section.

Use-site variance versus declaration-site variance

Use-site variance and declaration-site variance basically describes the place in the code (site)
where the variance modifier is specified. Let's consider a View and Presenter example:

interface BaseView
interface ProductView : BaseView
class Presenter<T>

// Usage

var preseter = Presenter<BaseView> ()

var productPresenter = Presenter<ProductView> ()
preseter = productPresenter

// Error: Type mismatch
// Required: Presenter<BaseView>
// Found: Presenter<ProductView>

The Presenter class is invariant on its parameterT type. To fix the problem, we can
explicitly define the subtyping relationship. We can do it in two ways (use-site and
declaration-site). First, let's define the variance at the use-site:

var preseter: Presenter<out BaseView> = Presenter<BaseView>() //1
var productPresenter = Presenter<ProductView> ()
preseter = productPresenter

1. The variance modifier is defined at the type argument use-site.

Now the preseter variable can store subtypes of Presenter<BaseView>, including
Presenter<ProductView>. Our solution works, but our implementation can be improved.
There are two problems with this approach. Now we need to specify this out variance
modifier each time we want to use a generic type, for example, use it in multiple variables
across different classes:

//Variable declared inside class A and class B

var preseter = Presenter<BaseView> ()

[224]

Generics Are Your Friends

var preseter: Presenter<out BaseView> = Presenter<ProductView> ()
preseter = productPresenter

Both classes & and B contain the preseter variable that has a variance modifier. We lose
the ability to use type inference, and this results in the code being more verbose. To
improve our code, we can specify a variance modifier at the type parameter declaration-site:

interface BaseView
interface ProductView: BaseView
class Presenter<out T> // 1

//usage
//Variable declared inside class A and B

var preseter = Presenter<BaseView> ()
var productPresenter = Presenter<ProductView> ()
preseter = productPresenter

1. The variance modifier is defined at the type parameter declaration-site.

We only need to define the variance modifier once inside Presenter class. In fact, both
preceding implementations are equivalent, although declaration-site variance is more concise
and can be more easily used by external clients of the class.

Collection variance

In Java, arrays are co-variant. By default, we can pass an array of String[] even if an array
of Object [] is expected:

public class Computer {

public Computer () {
String[] stringArray = new String[]{"a", "b", "c"};
printArray(stringArray); //Pass instance of Stringl]

void printArray (Object[] array) A
//Define parameter of type Object[]
System.out.print (array);

[225]

Generics Are Your Friends

This behavior was important in early versions of Java, because it allowed us to use different
types of array as arguments:

// Java

static void print (Object[] array) {
for (int i = 0; i <= array.length - 1; i++)
System.out.print (array[i] + " ");

System.out.println();

// Usage

String[] fruits = new String[] {"Pineapple","Apple", "Orange",
"Banana"};

print (fruits); // Prints: Pineapple Apple Orange Banana

Arrays.sort (fruits);

print (fruits); // Prints: Apple Banana Orange Pineapple

But this behavior also may lead to potential runtime errors:

public class Computer {
public Computer () A
Number[] numberArray = new Number[]{1l, 2, 3};
updateArray (numberArray) ;

t
void updateArray (Object[] array) |
array[0] = "abc";
// Error, java.lang.ArrayStoreException: Jjava.lang.String

}

The updateArray function accepts parameters of type Object [], and we are passing
String[]. We are calling the add method with a St ring parameter. We can do so because
array items are of type Object, so we can use the St ring, which is a new value. Finally,
we want to add String into the generic array that may only contain items of String type.
Due to default co-variant behavior, the compiler can't detect this problem, and this will lead
to an ArrayStoreException exception.

The corresponding code would not compile in Kotlin, because the Kotlin compiler treats
this behavior as potentially dangerous. This is the reason why arrays in Kotlin are
invariant.

public class Array<T> { /*...*/ }

[226]

Generics Are Your Friends

Therefore, passing a type other than Array<Number> when Array<Any> is required will
result in a compile-time error:

public class Array<T> { /*...*/ }
class Computer {
init {
val numberArray = arrayOf<Number> (1, 2, 3)
updateArray (numberArray)

}
internal fun updateArray(array: Array<Any>) {
array[0] = "abc"
//error, java.lang.ArrayStoreException: java.lang.String

}

Notice that a potential runtime exception may only occur when we can modify the object.
Variance is also applied to Kotlin collection interfaces. In the Kotlin standard library, we
have two list interfaces that are defined in different ways. The Kotlin List interface is
defined as co-variant because it is immutable (it does not contain any methods that would
allow us to change the inner state), while the Kotlin MutableList interface is invariant.
Here are the definitions of their type parameters:

interface List<out E> : Collection<E> { /*...*/ }
public interface MutablelList<E> : List<E>, MutableCollection<E> {
VA

}

Let's see the consequences of such definitions in action. It makes mutable lists safe from the
risks of covariance:

fun addElement (mutablelList: MutableList<Any>) {
mutableList.add ("Cat")

// Usage

val mutableIntList = mutableListOf (1, 2, 3, 4)

val mutableAnyList = mutableListOf<Any> (1, 'A'")
addElement (mutableIntList) // Error: Type mismatch
addElement (mutableAnyList)

The list is safe because it has no methods used to change its inner state, and its covariance
behavior allows more general usage of functions:

fun printElements (list: List<Any>) {
for(e in list) print (e)

[227]

Generics Are Your Friends

// Usage

val intList = 1istOf (1, 2, 3, 4)

val anyList = 1listOf<Any> (1, 'A")
printElements (intList) // Prints: 1234
printElements (anyList) // Prints: 1A

We can pass List<Any> or any of its subtypes to the printElements function because the
List interface is co-variant. We can only pass MutableList<Any> to the addElement
function because the MutableList interface is invariant.

Using in and out modifiers, we can manipulate variance behavior. We should also be
aware that variance has some limitations. Let's discuss them.

Variance producer/consumer limitation

By applying a variance modifier, we gain co-variant/contra-variant behavior for a certain
type parameter of the class/interface (declaration-site variance) or type argument (use-site
variance). However, there is a limitation that we need to be aware of. To make it safe, the
Kotlin compiler limits the positions where type parameters can be used.

With an invariant modifier (default no variance modifier on type parameter) we can use a
type parameter on both the in (the type of function parameter) and out (the function return
type) positions:

interface Stack<T> {
fun push(t:T) // Generic type at in position
fun pop():T // Generic type at out position
fun swap (t:T):T // Generic type at in and out positions
val last: T // Generic type at out position
var special: T // Generic type at out position

}

With a variance modifier, we are only limited to a single position. This means that we can
use a type parameter only as a type for method parameters (in) or the method return value
(out). Our class can be a producer or consumer, but never both. We can say that the class
takes in parameters or gives out parameters.

Let's look at how this restriction relates to variance modifiers specified at the declaration-
site. Here are all the correct and incorrect usages of the type parameters R and T:

class ConsumerProducer<in T, out R> {
fun consumelItemT (t: T): Unit { } // 1

fun consumeltemR(r: R): Unit { } // 2, error

[228]

Generics Are Your Friends

fun produceltemT(): T { // 3, error
// Return instance of type T

t

fun produceltemR(): R { // 4

//Return instance of type R
t
t

1. OK, type parameter T is in the in position.

2. Error, type parameter R is in the in position.
3. Error, type parameter T is in the out position.
4. OK, type parameter R is in the out position.

As we can see, the compiler will report an error if the configuration is prohibited. Notice
that we can add different modifiers for the type parameters R and T.

Position restriction applies only for methods accessible (visible) outside the class. This
means not only all public methods (public is the default modifier) as used previously,
but also methods marked with protected or internal. When we change method

visibility to private, then we can use our type parameters (R and T) on any position, just
like invariant type parameters:

class ConsumerProducer<in T, out R> {
private fun consumeItemT (t: T): Unit { }
private fun consumeItemR(r: R): Unit { }
private fun produceItemT(): T {
// Return instance of type T
}
private fun producelItemR(): R {
//Return instance of type R
}
}

Let's look at the following table, which presents all the allowed positions for type
parameters used as a type:

Visibility modifier Invariance | Covariance (out) | Contravariance (in)
public, protected, internal |in/out out in
private in/out in/out in/out

[229]

Generics Are Your Friends

Invariant constructor

There is one important exception for the in and out position rules described in the
previous section: constructor parameters are always invariant:

class Producer<out T>(t: T)

// Usage
val stringProducer = Producer ("A")
val anyProducer: Producer<Any> = stringProducer

The constructor is public, the type parameter T is declared as out, but we can still use it as
a constructor parameter type at the in position. The reason is that a const ructor method
can't be called after an instance is created, so it is always safe to call it.

As we discussed in Chapter 4, Classes and Objects, we can also define a property directly in
the class constructor using a val or var modifier. When covariance is specified, we can
only define a read-only property (val) in the constructor that has the co-variant type. It is
safe because only the getter will be generated, so the value of this property can't change
after class instantiation:

class Producer<out T>(val t: T) // Ok, safe

With var, both the getter and setter are generated by the compiler, so the property value
can potentially change at some point. That's why we can't declare a read-write (var)
property of the co-variant type in the constructor:

class Producer<out T>(var t: T) // Error, not safe

We have already said that variance restriction only applies for external clients, so we could
still define a co-variant read-write property by adding a private visibility modifier:

class Producer<out T> (private var t:T)

Another popular generic type restriction, known from Java, relates to type erasure.

Type erasure

Type erasure was introduced into JVM to make JVM bytecode backward compatible with
versions that predate the introduction of generics. On the Android platform, both Kotlin
and Java are compiled to JVM bytecode, so they both are vulnerable to type erasure.

[230]

Generics Are Your Friends

Type erasure is the process of removing a type arqument from a generic type so that the
generic type loses some of its type information (type argument) at runtime:

package test
class Box<T>

val intBox = Box<Int> ()
val stringBox = Box<String> ()

println (intBox.javaClass) // prints: test.Box
println(stringBox.javaClass) // prints: test.Box

The compiler can distinguish between these types and guarantee type safety. However,
during compilation, the parameterized types Box<Int> and Box<String> are translated
by the compiler to a Box (raw type). The generated Java bytecode does not contain any
information related to type arguments, so we can't distinguish betweengeneric types at
runtime.

Type erasure leads to a few problems. In JVM, we can't declare two overloads of the same
method with the same JVM signature:

/*
java.lang.ClassFormatError: Duplicate method name&signature...
*/
fun sum(ints: List<Int>) {
println("Ints")

fun sum(strings: List<String>) {
println("Ints")
s

When the type argument is removed, those two methods will have exactly the same
declaration:

/*
java.lang.ClassFormatError: Duplicate method name&signature...
*/
fun sum(ints: List) {
println("Ints")
}
fun sum(strings: List) {
println("Ints")

[231]

Generics Are Your Friends

We can also solve this problem by changing the JVM name of the generated function. We
can do it using JvmName annotation to change the name of one of the methods when the
code is compiled to JVM bytecode:

@JvmName ("intSum") fun sum(ints: List<Int>) {
println("Ints")

}

fun sum(strings: List<String>) {
println("Ints")

}

Nothing changed in this function usage from Kotlin, but since we changed the JVM name of
the first function, we need to use a new name to use it from Java:

// Java
TestKt.intSum(listOfInts);

Sometimes we want to preserve the type arqument at runtime, and this is where reified
type parameters are quite handy.

Reified type parameters

There are some cases where accessing the type parameter at runtime would be useful, but
they are not allowed because of type erasure:

fun <T> typeCheck(s: Any) {
if(s is T){
// Error: cannot check for instance of erased type: T
println ("The same types")
} else {
println ("Different types")
}
}

To overcome JVM limitation, Kotlin allows us to use a special modifier that can preserve a
type argument at runtime. We need to mark the type parameter with the reified modifier:

interface View
class ProfileView: View
class HomeView: View
inline fun <reified T> typeCheck(s: Any) { // 1
if(s is T){
println ("The same types")
} else {
println ("Different types")
}

[232]

Generics Are Your Friends

}

// Usage

typeCheck<ProfileView> (ProfileView()) // Prints: The same types
typeCheck<HomeView> (ProfileView()) // Prints: Different types
typeCheck<View> (ProfileView()) // Prints: The same types

1. Type parameter marked as refined and function marked as inline.

Now we can safely access the type argument type at runtime. Reified type parameters work
only with inline functions, because during compilation (inlining), the Kotlin compiler
replaces reified type argument class. This way, the type argument will not be removed by type
erasure.

We can also use reflection on a reified type to retrieve more information about the type:

inline fun <reified T> isOpen(): Boolean {
return T::class.isOpen

}

Occurrences of a reified type parameter are represented at the JVM bytecode level as an
actual type or a wrapper type for primitive types. That's why reified type parameters are
not affected by type erasure.

Using reified type parameters allows us to write methods in a whole new way. To start a
new Activity in Java, we need code like this:

//Java
startActivity (Intent (this, ProductActivity::class.java))

In Kotlin, we can define the startActivity method, which will allow us to navigate to
Activity in a much simpler way:

inline fun <reified T : Activity> startActivity(context: Context) {
context.startActivity (Intent (context, T::class.java))

}

// Usage
startActivity<UserDetailsActivity> (context)

We defined the startActivity method and we passed information about the Activity
we want to start (ProductActivity) by using a type argument. We also defined an explicit
reified type parameter bound to make sure that we can only use Activity (and its
subclasses) as the type arqument.

[233]

Generics Are Your Friends

The startActivity method

To make proper use of the startActivity method, we need a way to pass parameters to
the Activity being started (Bundle). It is possible to update the preceding implementation
to support arguments like this:

startActivity<ProductActivity> ("id" to 123, "extended" to true)

In the preceding example, arguments are filled using a key and value provided by pairs
(defined by the inline to function). This function implementation is, however, outside of the
scope of this book. We can, however, use an existing one. The Anko library (https://
github.com/Kotlin/anko) already implements the startActivity method with all the
required functionality. We just need to import the Appcompat -v7-commons dependency:

compile "org.jetbrains.anko:anko—-appcompat-v7-commons:$anko_version"

Anko defines extensions for the Context and Fragment classes so we can use this method
in any Activity or Fragment just like any other method defined in the class, without the
need to define the method in the class. We will discuss extensions in Chapter 7, Extension
Functions and Properties.

Be aware that reified type parameters have one main limitation: we can't create an instance
of a class from a reified type parameter (without using reflection). The reason behind this is
that a constructor is always only associated with a concrete instance (it is never inherited),
so there is no constructor that could be safely used for all possible type parameters.

Star-projections

Because of type erasure, incomplete type information is available at runtime. For example,
type parameters of generic types are not available:

val list = 1list0Of(1,2,3)
println(list.javaClass) // Prints: class java.util.Arrays$ArrayList

This leads to a few problems. We can't perform any checks to verify what types of
element List contains:

/*
Compile time error: cannot check instance of erased type:
List<String>

*/

if (collection is List<Int>) {

VA

[234]

https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko

Generics Are Your Friends

}

The problem occurs because a check is performed at runtime where information about type
parameters is not available. Kotlin, however, as opposed to Java, does not allow us to
declare a raw type (a generic type that is not parametrized with a type argument):

SimpleList<> // Java: ok
SimpleList<> // Kotlin: error

Kotlin allows us to use star-projection syntax instead, which is basically a way to say that
information about the type argument is missing or it is not important:

if (collection is List<*>) {
VA
}

By using star-projection syntax, we say that Box stores arguments of a certain type:

class Box<T>

val anyBox = Box<Any> ()
val intBox = Box<Int> ()
val stringBox = Box<String> ()
var unknownBox: Box<*>

unknownBox = anyBox // Ok
unknownBox = intBox // Ok
unknownBox = stringBox // Ok

Notice that there is a difference between Box<*> and Box<Any>. If we want to define a list
that contains items of Any we would use Box<Any>. However, if we want to define a list
that contains terms of a certain type, but this type is unknown (it may be Any, Int, String,
and so on. But we don’t have information about this type), while Box<aAny> means that list
contains items of the Any type. We will use Box<*>:

val anyBox: Box<Any> = Box<Int> // Error: Type mismatch

If a generic type is defined with multiple type parameters, we need to use a star (*) for each
missing the type argument:

class Container<T, T2>
val container: Container<*, *>

[235]

Generics Are Your Friends

Star-projection is also helpful when we want to perform an operation on the type, but
information about type argument is not important:

fun printSize(list: MutableList<*>) {
println(list.size)

}

//usage

val stringList = mutableListOf("5", "a", "2", "d")
val intList = mutableListOf (3, 7)

printSize (stringlList) // prints: 4

printSize (intList) // prints: 2

In the preceding example, information about the type arqument is not required to determine
the collection size. Using star-projection syntax reduces the need for variance modifiers as
long as we don't use any methods that depend on a type argument.

Type parameter naming convention

The official Java type parameter naming convention (https://docs.oracle.com/javase/
tutorial/java/generics/types.html) defines the following guidelines for parameter
naming;:

"By convention, type parameter names are single, uppercase letters. This stands in sharp contrast to
the variable naming conventions that you already know about, and with good reason. Without this

convention, it would be difficult to tell the difference between a type variable and an ordinary class or
interface name. The most commonly used type parameter names are:

o E: Element (used extensively by the Java Collections Framework)
e K: Key

N: Number

e T: Type

o V: Value

e S,U,V, and so on: 2nd, 3rd, 4th types”

Many classes in the Kotlin standard library follow this convention. It works fine for popular
kinds of classes such as common classes (List, Mat, Set, and so on) or classes that define a
simple type parameter (the Box<T> class). However, with custom classes and multiple type
parameters, we quickly realize that a single letter does not contain a sufficient amount of
information and sometimes it's hard to quickly tell what kind of data the type parameter
represents. There are a few solutions for this problem.

[236]

https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://docs.oracle.com/javase/tutorial/java/generics/types.html

Generics Are Your Friends

We could make sure that generics are properly documented and, yes, this would definitely
help, but we still wouldn't be able to determine the meaning of a type parameter just by
looking at the code. Documentation is important, but we should treat documentation as an
auxiliary source of information and strive for the highest possible code readability.

Over the years, programmers have started to migrate to more meaningful naming
conventions. The Google Java Style Guide (https://google.github.io/styleguide/
javaguide.html#s5.2.8-type-variable-name s) bl‘ieﬂy describes a mix of the official]ava
type parameter naming convention and custom naming conventions. They promote two
distinct styles. The first is to use a single capital letter, optionally followed by a single
numeral (as opposed to the s, U, and v names described by Java):

class Box<T, T2>

The second style is more descriptive because it adds a meaningful prefix to the type
parameter:

class Box<RequestT>

Unfortunately, there is no single standard for type parameter names. The most common
solution is the use of a single uppercase letter. Those are simplified examples, but keep in
mind that classes usually use generics in multiple places, so proper naming will improve
your code readability.

Summary

In this chapter, we have learned why generics exist and we have discussed various ways of
defining a generic class and interface, and declaring generic types. We know how to deal
with subtyping relations by using use-site and declaration-site variance modifiers. We
learned how to deal with type erasure and how to preserve generic types at runtime using
reified type parameters.

In the next chapter, we will discuss one of the most exciting Kotlin features, extensions. This
feature allows us to add new behavior to an existing class. We will learn how we can
implement new methods and properties for any given class, including final classes from the
Android framework and third-party libraries.

[237]

https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names
https://google.github.io/styleguide/javaguide.html#s5.2.8-type-variable-names

Extension Functions and
Properties

In previous chapters, most of the concepts we covered were familiar to Java developers. In
this chapter, we are introducing a feature that is not known in Java at all--extensions. It is
one of the best Kotlin features, and lots of Kotlin developers mention it as their favorite one.
Extensions provide big improvements in Android development.

In this chapter, we will cover the following topics:

Extension functions

Extension properties

Member extension functions

Generic extension functions

Collection processing

Function type with receiver and function literal with receiver
Kotlin generic extension functions for any object

Kotlin's domain-specific language

Extension Functions and Properties

Extension functions

All big Java projects have utility classes, such as StringUtils, ListUtils,

and AndroidUtils. They are so popular because util functions capture common patterns
and allow them to be tested and used in a simple way. The problem is that Java really
poorly supports the creation and usage of such functions because they have to be
implemented as static functions of some class. Let's discuss this problem with an example.
Every Java Android developer knows well following code which is used to show Toast:

Toast .makeText (context, text, Toast.LENGTH_SHORT) .show();

It is commonly used in Android projects to show errors or short messages, and often it is
presented at the beginning of most Android tutorials. Code that implements this
functionality is verbose because it uses a static function that is used like a builder. Probably
every Java Android developer has forgotten at least once to invoke the show method on a
returned object, which made him check all the surrounding conditions to find out why it is
not working. This all makes this simple functionality a perfect candidate to be packed as a
util function. But it is really rarely used this way. Why? To understand it, let's first look at
how it could be implemented in Java:

public class AndroidUtils {
public static void toast (Context context, String text) {
Toast .makeText (context, text, Toast.LENGTH_SHORT) .show();
}
}

// Usage
AndroidUtils.toast (context, "Some toast");

When a programmer wants to use the preceding function, they need to remember that there
is such a function, where the class is localized and what its name is. Therefore, its usage is
not simpler than it was previously. It is impossible to implement it as a method of Context
(a superclass of Activity) without changing the Android SDK implementation, but in
Kotlin, it is possible to create an extension function, which acts similarly to an actual
method defined inside a class. Here is how we can implement toast as an extension to
Context:

fun Context.toast (text: String) { // 1
Toast .makeText (this, text, LENGTH_LONG) .show() //2
}

// Usage
context.toast ("Some toast")

[239]

Extension Functions and Properties

1. Context is not in the argument list, but before the function name. This is how we
define what type we are extending.

2. Inside the function body, we can use the this keyword to reference the object on
which the extension function is invoked.

The only difference in the general structure between an extension function and a standard
function is that there is a receiver type specified before the function name. A less visible
change is inside the body--there, we can access the receiver object (the object on which an
extension is called) with the this keyword, or directly call its functions or properties. With
such a definition, the toast function acts like a method defined in Context:

context.toast ("Some toast")

Alternatively:
class MainActivity :Activity () {
override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
toast ("Some text")

}

This makes usage of the toast function much easier than the implementation of the whole
toast displaying code. We also get suggestions from the IDE that we can invoke this
function when we are inside Context (like inside Activity) or on an instance of Context:

class MainActivity : Activity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
EE:iiuntentview{R.laynut.activit}r_main}
to
* toast(text: 5tring) for Context in com.naxtlevelofandroiddevelopme.. Uni_
} Press Ctrl+Peried to choose the selected (or first) suggestion and insert a dot afterwards >»

context. tod,
toast(text: String) for Context in com.naxtlevelofandroiddevelopme.. Uni_

Press Ctrl+Period to choose the selected (or first) suggestion and insert a dot afterwards >>

[240]

Extension Functions and Properties

In the preceding example, Context is a receiver type of the toast function, and the this
instance is a reference to the receiver object. All functions and properties of the receiver
object can be accessed explicitly, so we can take the following definition:

fun Collection<Int>.dropPercent (percent: Double)
= this.drop(floor(this.size * percent)

We can then replace it with the following:

fun Collection<Int>.dropPercent (percent: Double)
= drop(floor(size * percent))

There are multiple use cases in which extension functions are useful. Similar extension
functions can be defined for View, List, String, other classes defined in the Android
framework or a third-party library, and custom classes defined by the developer. Extension
functions can be added to any accessible type, even to the Any object. Here is an extension
function that can be called on every object:

fun Any?.logError (error: Throwable, message: String = "error") {
Log.e(this?.javaClass?.simpleName ?: "null", message, error)

}

Here are some call examples:

user.logError (e, "NameError") // Logs: User: NameError ...
"String".logError(e) // String: error
logError(e) // 1, MainActivity: error

1. This supposes that we are invoking this in MainActivity.

We can simply add any method to any class we want. This is a great improvement for
Android development. With it, we have a way to add missing methods or properties to

types.

Extension functions under the hood

While Kotlin extension functions might look magical, they are really simple under the hood.
A top-level extension function is compiled to a static function with a receiver object on the
first argument. Let's look at the already presented toast function:

// ContextExt.kt
fun Context.toast (text: String) {

Toast .makeText (this, text, LENGTH_LONG) .show ()
}

[241]

Extension Functions and Properties

This function, after compilation and decompilation to Java, will look similar to the
following function:

//Java
public class ContextExtKt {
public static void toast (Context receiver, String text) {
Toast .makeText (receiver, text, Toast.LENGTH_SHORT) .show();
}
}

Kotlin top-level extension functions are compiled to static functions with a receiver object
on the first parameter. This is why we can still use extensions from Java:

// Java
ContextExtKt.toast (context, "Some toast")

Also, this means that from a JVM bytecode perspective, the method is not really added, but
during compilation all extension function usages are compiled to static function calls. While
extension functions are just functions, function modifiers can be applied to them in the
same way as they can be applied to any other function. For example, an extension function
can be marked as inline:

inline fun Context.isPermissionGranted (permission: String): Boolean =
ContextCompat.checkSelfPermission (this, permission) ==
PackageManager .PERMISSION_GRANTED

As with other inline functions, the function call will be replaced with an actual body
during application compilation. We can do with extension functions practically everything
we can do with other functions. They can be single expressions, have default arguments, be
used by named parameters, and so on. But there are also other less intuitive consequences
of such implementations. In the next sections, we are going to describe them.

No method overriding

When there is a member function and an extension function with the same name and
parameters, the member function always wins. Here is an example:

class A {
fun foo() {
println("foo from A")

fun A.foo () {
println("foo from Extension")

[242]

Extension Functions and Properties

}

A().foo() // Prints: foo from A

This is always true. Even methods from a superclass win with extension functions:

open class A {
fun foo() {
println("foo from A")
}
}

class B: A()

fun B.foo () {
println("foo from Extension")

}
A().foo() // foo from A

The point is that the extension function is not allowed to modify the behavior of a real
object. We can only add extra functionalities. This keeps us secure, because we know that
no one will change the behavior of objects that we are using, which might lead to errors that
are hard to track.

Access to receiver elements

An extension function is compiled to a static function with a receiver object on the first
parameter, so we have no extra access privilege. The private and protected elements are
not accessible, and elements with Java's default, Java's package, or Kotlin's internal
modifiers are accessed in the same way as if we just operate on a standard object.

Thanks to that, these elements are protected as they should be. Remember that extension
functions, while being really powerful and useful, are just syntactic sugar, and there is no
magic there.

[243]

Extension Functions and Properties

Extensions are resolved statically

Extension functions are just functions with a receiver as the first parameter, so their calls are
resolved at compile time by the type on which the function is invoked. For example, when
there are extension functions for both superclass and subclass, then the extension functions
that will be chosen during invocation depend on the type of property on which we are
operating. Here is an example:

abstract class A
class B: A()

fun A.foo () { println("foo(A)") 1}
fun B.foo () { println("foo(B)") 1}
val b B()

b.foo() // prints: foo (B)

(b as A) .foo() // 1, prints: foo(A)
val a: A =D

a.foo() // 1, prints: foo(A)

1. Here we would expect foo (B) while the object is, in fact, of type B, but while
extensions are resolved statically, it is using an extension function for A because
the variable is of type A and there is no information as to what object is there
during compilation.

This fact is sometimes problematic because when we define an extension function to the
type we are most often cast to, we should not implement extension functions to its
subclasses.

This is an important limitation, and should be kept in mind, especially during public library
implementation, because this way, some extension functions can block others and cause
unexpected behavior.

Companion object extensions

If a class has a companion object defined, then you can also define extension functions (and
properties) for this companion object. To distinguish between an extension to a class and an
extension to a companion object, . Companion needs to be added between the extension

type and function name:

class A {
companion object {}
}
fun A.Companion.foo() { print(2) }

[244]

Extension Functions and Properties

When it is defined, the foo method can be used as if it were defined inside the A companion
object:

A.foo ()

Note that we are calling this extension using the class type, not the class instance. To allow
the creation of an extension function for a companion object, a companion object needs to be
explicitly defined inside the class, even an empty one. Without it, it is impossible to define
an extension function:

class & [}

fun A.Companion.foo() { print(2Z) }

Unresolved reference: Companion

Operator overloading using extension functions

Operator overloading is a big Kotlin feature, but we often need to use Java libraries and
operators that are not defined there. For example, in RxJava, we use the
CompositeDisposable function to manage subscriptions. This collection uses the add
method to add new elements. This is an example subscription added to
CompositeDisposable:

val subscriptions = CompositeDisposable ()

subscriptions.add (repository
.getAllCharacters (qualifiedSearchQuery)
.subscribeOn (Schedulers.i0o())
.observeOn (AndroidSchedulers.mainThread())
.subscribe (this::charactersLoaded, view::showError))

The standard Kotlin way to add a new element to a mutable collection is by using the
plusAssign operator (+=). It is not only more universal, but also cleaner, because we can

omit brackets:

val list = mutableListOf (1,2,3)
list.add (1)

list +=1

[245]

Extension Functions and Properties

To apply it to our example, we can add the following extension:

operator fun CompositeDisposable.plusAssign (disposable: Disposable)
{

add (disposable)
}

And now we can use the plusAssign method on CompositeDisposable:

subscriptions += repository
.getAllCharacters (qualifiedSearchQuery)
.subscribeOn (Schedulers.io())
.0observeOn (AndroidSchedulers.mainThread())
.subscribe (this::charactersLoaded, view::showError)

Where should top-level extension functions be
used?

Extension functions are most often used when we feel that a class defined by other
programmers is missing a method. For example, if we think that view should contain
the show and the hide methods, usage for which would be easier than visibility field
setting, then we can just implement it ourselves:

fun View.show() { visibility = View.VISIBLE }
fun View.hide () { visibility = View.GONE }

There is no need to remember the names of classes that hold util functions. In the IDE, we
just put a dot after the object, and we can search through all the methods that are provided
together with this object extension function from the project and libraries. Invocation looks
good, while it looks like an original object member. This is the beauty of extension
functions, but it is also a danger. Right now, there are already tons of Kotlin libraries that
are just packs of extension functions. When we use lots of extension functions, we can make
our Android code unlike normal Android code. This has both pros and cons. Here are the
pros:

Code is short and more readable

Code presents more logic instead of Android boilerplate

Extension functions are most often tested, or at least used in multiple places, so it
is simpler to find out if they are working correctly

When we use extension functions, there is a smaller chance that we will make a
stupid error that will lead to hours of code debugging

[246]

Extension Functions and Properties

To illustrate the last two points, we will go back to the toast function. It is hard to make an
error when writing the following:

toast ("Some text")

But it is much easier to make an error in the following:

Toast .makeText (this, "Some text", Toast.LENGTH_LONG) .show ()

The biggest problem with strong extension usage in a project is that we are, in fact, making
our own API. We are naming and implementing functions and we decide what arguments
should be there. When a developer joins the team, they need to learn the entire API we've
created. The Android API has lots of shortcomings, but its strength is that it is universal and
it is known to all Android developers.

Does this mean we should resign from extensions? Absolutely not! This is a great feature
that is helping us to make code short and clean. The point is that we should use them in a
smart way:

¢ Avoid multiple extensions that do the same thing.

e Short and simple functionality often doesn't need to be an extension.

¢ Keep one coding style around the project. Talk to your team and specify some
standards.

e Be careful when you use public libraries with extensions. Keep them as code that
you cannot change and match your extensions to them to keep the API clear.

Extension properties

In this section, we will first understand what extension properties are, and then we will
move on to learn where these properties can be used. As we already know, properties in
Kotlin are defined by their accessors (getter and setter):

class User(val name: String, val surname: String) {
val fullName: String
get () = "$name S$surname"

[247]

Extension Functions and Properties

We can also define the extension property. The only limitation is that this property can't
have a backing field. The reason for this is that extension can't store state, so there is no
good place to store this field. Here is an example of an extension property definition for
TextView:

val TextView.trimmedText: String
get () = text.toString () .trim()

// Usage
textView.trimmedText

As with extension functions, the preceding implementation will be compiled as an accessor
function with a receiver on the first parameter. Here is the simplified result in Java:

public class AndroidUtilsKt {
String getTrimmedText (TextView receiver) |
return receiver.getText () .toString () .trim();
}
}

If it was a read-write property, then both the setter and getter would be implemented.
Remember that only properties that don't need a Java field are allowed to be defined as an
extension property. For example, this is illegal:

1]
-

val TextView. tagged = ﬂg&g

Extension property cannot be initialized because it has no backing field

get“ = mun
set (values) {

field = value

Unresolved reference: field

[248]

Extension Functions and Properties

Where should extension properties be used?

Extension properties can often be used interchangeably with extension functions. They are
both most often used as top-level utils. Extension properties are used when we would like
an object to have a property that was not developed natively. The decision as to whether we
should use an extension function or an extension property is nearly the same as the decision
as to whether we should use a function or property without a backing field inside a class.
Just to remind you, according to convention, you should choose a property over a function
when the underlying algorithm fulfills the following conditions:

¢ Does not throw errors

e Has O(1) complexity

e Is cheap to calculate (or cached on the first run)
¢ Returns the same result over invocations

Let's look at a simple problem. We often need to get some services in Android, but the code
used to get them is complicated:

PreferenceManager.getDefaultSharedPreferences (this)
getSystemService (Context .LAYOUT_INFLATER_SERVICE) as LayoutInflater
getSystemService (Context .ALARM_SERVICE) as AlarmManager

To use a service such as AlarmManager or LayoutInflater, the programmer has to
remember the following for each of them:

¢ The name of the function that is providing it (such as get SystemService) and
what class contains it (such as Context)

e The name of the field that is specifying this service (such as
Context .ALARM_SERVICE)

¢ The name of the class that the service should be cast to (such as AlarmManager)

This is complex, and this is the perfect place where we can optimize usage thanks to
extension properties. We can define extension properties like this:

val Context.preferences: SharedPreferences
get () = PreferenceManager
.getDefaultSharedPreferences (this)

val Context.inflater: LayoutInflater
get () = getSystemService (Context.LAYOUT_INFLATER_SERVICE)

as LayoutInflater

val Context.alarmManager: AlarmManager

[249]

Extension Functions and Properties

get () = getSystemService (Context.ALARM SERVICE)
as AlarmManager

And from now on, we can use preferences, inflater, and alarmManager as if they are
properties of Context:

context.preferences.contains ("Some Key")

context.inflater.inflate (R.layout.activity_main, root)

context.alarmManager.setRepeating (ELAPSED_REALTIME, triggerAt,
interval, pendingIntent)

These are perfect examples of good read-only extension function usage. Let's focus on the
inflater extension property. It is helping to get elements that are often needed, but hard
to get without extensions. It is helpful because the programmer just needs to remember that
what they need is an inflater and that they need Context to have it, and the programmer
does not need to remember the name of method that is providing system services
(getSystemService), the name of the key used to get the inflater property
(ALARM_SERVICE), where it is located (in Context), and what this service should be cast to
(AlarmManager). In other words, this extension is saving a lot of work and programmer
memory. Also, it is correct according to the guidelines, because of property getter execution
time is short and its complexity is O(1), it is not throwing any errors, and it always returns
the same inflater (in fact, it might be a different instance, but from a programmer's
perspective, its usage is always the same, and this is what is important).

We've seen read-only extension properties, but we have not seen read-write extension
properties. Here is a good example that is an alternative to the hide and show functions
that we saw in the Extension functions section:

var View.visible: Boolean
get () = visibility == View.VISIBLE
set (value) {
visibility = if (value) View.VISIBLE else View.GONE
}

We can change the visibility of the View element using this property:

button.visible = true // the same as show ()
button.visible false // the same as hide()

Also, we can check view element visibility:

if (button.visible) { /* ... */ }

[250]

Extension Functions and Properties

Once we define it, we can treat is as if it really were a View property. It is also important
that what we are setting is consistent with what we are getting. So, supposing that there is
no other thread that is changing element visibility, we can set a property value:

view.visible = true

Then the getter will always provide the same value:

println(view.visible) // Prints: true

Finally, there is no other logic inside the getter and setter--only a change in specific
properties. So, other conventions we've presented before are satisfied too.

Member extension functions and properties

We've seen top-level extension functions and properties, but it is also possible to define
them inside a class or object. Extensions defined there are called member extensions, and
they are most often used for different kinds of problem than top-level extensions.

Let's start from the simplest use case where member extensions are used. Let's suppose that
we need to drop every third element of a list of String. Here is the extension function that
allows us to drop every ith element:

fun List<String>.dropOneEvery (i: Int) =
filterIndexed { index, _ —> index % 1 == (i - 1) }

The problem with that function is that it should not be extracted as a util extension, because
of the following reason:

e It is not prepared for different types of list (such as a list of User or Int)

e It is a rarely used function, so it probably won't be used anywhere else in the
project

This is why we would want to keep it private, and it is a good idea to keep it inside the class
where we are using it as a member extension function:

class UsersItemAdapter : ItemAdapter () {
lateinit var usersNames: List<String>

fun processList () {

usersNames = getUsersList ()
.map { it.name }
.dropOneEvery (3)

[251]

Extension Functions and Properties

fun List<String>.dropOneEvery (i: Int)
filterIndexed { index, _ —-> index

de I
-
Il
Il

(1 - 1) 1}

//
}

This is the first reason we use member extension functions, to protect the accessibility of
functions. In this case, it could be done by defining a function at the top level, in the same
file, and with a private modifier. But member extension functions act differently to top-level
functions. The function used in the preceding code is public, but it can only be called on
List<String> and only in UsersItemAdapter. So, it can be used only inside the
UsersItemAdapter class and its subclasses or inside an extension function to
UsersItemAdapter:

fun UsersItemAdapter.updateUserList (newUsers: List<User>) {
usersNames = newUsers
.map { it.name }
.dropOneEvery (3)
t

Note that to use a member extension function, we need both the object in which it is
implemented and the object on which this extension functions will be called. It is this way
because we can use elements of both of these objects. This is important information about
member extensions: they can use both elements from receiver type and from member type
without a qualifier. Let's see how they might be used. Here is another example, which is
similar to the previous one, but it is using the private category property:

class UsersItemAdapter (
private val category: Category
) : ItemAdapter () {

lateinit var usersNames: List<String>
fun processList () {
usersNames = getUsersList ()

.fromSameCategory ()
.map { it.name }

fun List<User>.fromSameCategory () =
filter { u -> u.category.id == category.id }

private fun getUsersList () = emptyList<User> ()

[252]

Extension Functions and Properties

Inside the fromSameCategory member extension function, we are operating on an
extension receiver (List<User>), but we are also using the category property from
UsersItemAdapter. We see here that a function defined this way needs to be a method
and it can be used similarly to other methods. The advantage over the standard method is
that we can call a function on List, so we can keep clean stream processing, instead of non-
extension method usage:

// fromSameCategory defined as standard method
usersNames = fromSameCategory (newUsers)
.dropLast (3)

// fromSameCategory defined as member extension function
usersNames = newUsers

.fromSameCategory ()

.dropLast (3)

Another common usage is the member extension functions or properties can be used like
normal methods, but we are using the fact that inside member functions we can use receiver
properties and methods without naming them. This way we can have shorter syntax, and
that we are actually calling them on a receiver instead of calling them with the same type as
an argument. As an example, we can take the following method:

private fun setUpRecyclerView (recyclerView: RecyclerView) {
recyclerView. layoutManager
= LinearLayoutManager (recyclerView.context)
recyclerView.adapter
= MessagesAdapter (mutableListOf ())

// Usage
setUpRecyclerView (recyclerView)

Then we can replace it with the following member extension function:

private fun RecyclerView.setUp() {
layoutManager = LinearlLayoutManager (context)
adapter = MessagesAdapter (mutableListOf ())

// Usage
recyclerView.setUp ()

[253]

Extension Functions and Properties

Using member extension functions, we can achieve both a simpler call and a simpler
function body. The biggest problem with this attempt is that it is not clear which functions
we are using are members of RecyclerView, and which are members of the Activity and
RecyclerView extensions. This problem will be tackled in the next sections.

Types of receivers

When we have a member extension function, then it becomes more complicated to
administer the elements we are calling. Inside a member extension, we have implicit access
to the following;:

e Member functions and properties, both from this class and superclasses
¢ Receiver type functions and properties, both from the receiver type and its

supertypes
e Top-level functions and properties

So inside the setUp extension function, we can use both member and receiver methods and
properties:

class MainActivity: Activity () {

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
setContentView (R.layout.main_activity)
val buttonView = findViewById(R.id.button_view) as Button
buttonView.setUp ()

private fun Button.setUp() {
setText ("Click me!"™) // 1, 2
setOnClickListener { showText ("Hello") } // 2

private fun showText (text: String) {
toast (text)
}
}

1. setText is the Button class method.
2. We can use the Button class and MainActivity class members alternately.

[254]

Extension Functions and Properties

It might be tricky--most people probably wouldn't notice if there was an error and the
setText call was swapped with the showText call.

While we can use inside member extension elements from different receivers, to allow
distinction between them, all kinds of receiver were named. First of all, all objects that can
be used by the this keyword are called implicit receivers. They're members which can be
accessed without a qualifier. Inside setUp functions, there are two implicit receivers:

e Extension receiver: An instance of the class that the extension is defined for
(Button)

¢ Dispatch receiver: An instance of the class in which the extension is declared
(MainActivity)

Note that while members of both the extension receiver and dispatch receiver are implicit
receivers in the same body, it is possible to have a situation where we use members that
have the same signature in both of them. For example, if we change the previous class to
show text in textView instead of showing it in the toast function, and change the method
name to setText, then we are going to have dispatch and extension receiver methods with
the same signature (one defined in the Button class, the other defined in the
MainActivity class):

class MainActivity: Activity () {
override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
setContentView (R.layout.main_activity)
val buttonView = findViewById(R.id.button_view) as Button
buttonView.setUp ()
}

private fun Button.setUp() {
setText ("Click me!")
setOnClickListener { setText ("Hello") } // 1

}

private fun setText (text: String) {
textView.setText (text)

}

}

1. setText is the method of both the dispatch receiver and the extension receiver.
Which one will be called?

[255]

Extension Functions and Properties

As a result, the set Text function will be invoked from the extension receiver and a button
click will change the text of the clicked button! This is because the extension receiver always
takes precedence over the dispatch receiver. Still, it is possible to use a dispatch receiver in
this situation by using qualified this syntax (the this keyword with a label distinguishing
which receiver we want to reference):

private fun Button.setUp() {
setText ("Click me!")
setOnClickListener {
this@MainActivity.setText ("Hello")

}
}

This way, we can solve the problem of distinguishing between the dispatch and extension
receivers.

Member extension functions and properties
under the hood

Member extension functions and properties are compiled the same way as top-level
extension functions and properties, with the only difference being that they are inside a
class and they are not static. Here is a simple example of an extension function:

class A {
fun boo () {}

fun Int.foo () {
boo ()
}
}

This is what it is compiled to (after simplification):

public final class A {
public final void boo () {

}

public final void foo(int S$receiver) {
this.boo();
}

[256]

Extension Functions and Properties

Note that while they are just methods with a receiver as the first parameter, we can do with
them everything we can with other functions. Access modifiers work the same way, and if
we define the member extension function as open, then we can override it in its subclasses.

Generic extension functions

When we are writing utility functions, often we want them to be generic. The most common
examples are extensions for collections: List, Map, and Set. Here is an example of an
extension property for List:

val <T> List<T>.lastIndex: Int
get () = size - 1

The preceding example defines an extension property for a generic type. This kind of
extension is used for lots of different problems. As an example, starting another Activity
is a repetitive task that most often needs to be implemented in multiple places in the project.
The methods provided by the Android IDE for starting an Activity do not make it easy.
Here is the code used to start a new Activity called settingsActivity:

startActivity (Intent (this, SettingsActivity::class.java))

Note that this simple and repetitive task needs a lot of code that is not really clear. But we
can define extension functions that will make Intent creation and Activity without
arguments much simpler using a generic inline extension function with the reified type:

inline fun <reified T : Any> Context.getIntent ()
= Intent (this, T::class.java)

inline fun <reified T : Any> Context.startActivity()
= startActivity (getIntent<T>())

Now we can start Activity by simply using the following:
startActivity<SettingsActivity> ()
Or we can create intent like this:

val intent = getlIntent<SettingsActivity> ()

[257]

Extension Functions and Properties

This way, we can make this common task easier at a low cost. To go further, libraries such
as Anko (https://github.com/Kotlin/anko) provide extension functions that provide a
simple way to start an Act ivity with additional parameters or flags, as in this example:

startActivity<SettingsActivity> (userKey to user)

Internal implementation of the library is outside the scope of this book, but we can use this
extension simply by adding an Anko library dependency to our project. The point of this
example is that nearly all repetitive code can be replaced with simpler code using
extensions. There are also alternative ways to start an Activity, such as the
ACtiVityStarterlﬂHﬂIy(https://github.com/MarcinMoskala/ActivityStarter),MﬂﬁCh
is based on parameter injection and strongly supports Kotlin. It allows classic argument
injection:

class StudentDataActivity : BaseActivity () {

lateinit @Arg var student: Student

@Arg(optional = true) var lesson: Lesson = Lesson.default ()

}

Or, as an alternative, it allows lazy injection in Kotlin property delegates (which are
described in chapter 8, Delegates):

class StudentDataActivity : BaseActivity () {
Qget:Arg val student: Student by argExtra()
@get:Arg (optional = true)
var lesson: Lesson by argExtra(Lesson.default())

}
Activity with such arguments can be started using generated static functions:

StudentDataActivityStarter.start (context, student, lesson)
StudentDataActivityStarter.start (context, student)

Let's see another example. In Android, we often need to store objects in JSON format such
as, when we need to send them to an API or store them in a file. The most popular library
used for serializing and deserializing objects into JSON is Gson. Let's look at the standard
way of using the Gson library:

val user = User ("Marcin", "Moskala")
val json: String = globalGson.toJson (user)
val userFromJson = globalGson.fromJson (json, User::class.java)

[258]

https://github.com/Kotlin/anko
https://github.com/MarcinMoskala/ActivityStarter

Extension Functions and Properties

We can improve it in Kotlin thanks to extension functions with an inline modifier. Here is
an example of extension functions that use Gson to pack and unpack objects to String in
JSON format:

inline fun Any.todson() = globalGson.toJdson (this)!!

inline fun <reified T : Any> String.fromJson ()
= globalGson.fromJson (this, T::class.java)

// Usage

val user = User ("Marcin", "Moskala")

val json: String = user.toJdson ()

val userFromJson: User = json.fromJson<User> ()

The globalGson instance is a global instance of Gson. It is common practice because we
often define some serializers and deserializers, and it is a simpler and more effective way to
define them and build an instance of Gson once.

These examples shows what are possibilities of generic extension functions given to the
developer. They are the next level of code extraction:

e They are top-level, but also invoked on an object, so they are simple to manage
¢ They are generic, so are universal and can be applied to anything
e When inline, they allow us to define reified type parameters

This is why generic extension functions are commonly used in Kotlin. Also, the standard
library provides lots of generic extensions. In the next section, we will see some collection
extension functions. This section is important, not only because it provides knowledge
about generic extension function usage, but also because it ultimately describes how list
processing in Kotlin works and how it can be used.

Collection processing

Collection processing is one of the most common tasks in programming. This is why one of
the first things that developers learn is how to iterate over a collection to operate on
elements. Young developers asked to print all users from a list will most probably use a for
loop:
for (user 1in users) {
println (user)

[259]

Extension Functions and Properties

If we asked them to show only the users that are passing in school, then they would most
probably add an if condition inside this loop:

for (user in users) {
if (user.passing) |
println (user)

}

This is still a correct implementation, but the real problem starts when the task becomes
more complex. What if they were asked to print the three best students that are passing? It
is really complex to implement this in loops, but it is trivial to implement it using Kotlin
stream processing. Let's see it in an example. Here is example list of students:

data class Student (
val name: String,
val grade: Double,
val passing: Boolean

val students = 1listO

f
Student ("John", 4.2, true),
Student ("Bil1ll", 3.5, true),
Student ("John", 3.2, false),
Student ("Aron", 4.3, true),
(

14
Student ("Jimmy", 3.1, true)

)

Let's filter out students using an imperative approach from Java (using loops and a sorting
method):

val filteredList = ArrayList<Student> ()
for (student in students) {
if (student.passing) filteredList += student

Collections.sort (filteredList) { pl, p2 —>
if(pl.grade > p2.grade) -1 else 1

for (i in 0..2) {
val student = filteredList[1i]
println (student)

// Prints:
// Student (name=Aron, grade=4.3, passing=true)

[260]

Extension Functions and Properties

// Student (name=John, grade=4.2, passing=true)
// Student (name=Bill, grade=3.5, passing=true)

We can achieve the same result in a much simpler way using Kotlin stream processing;:

students.filter { it.passing } // 1
.sortedByDescending { it.grade } // 2
.take(3) // 3
.forEach (::println) // 4

1. Take only students who passed.

2. Sort students according to their grade (descending, so that students with better
grades are in a higher position).

3. Take only the first three of them.
4. Print each of them.

The key is that each stream processing function, such as sortedByDescending, take, and
forEach from the preceding example, is extracting a small functionality and the power
comes from the composition of them. The result is much simpler and more readable than
using the classic loops.

Stream processing is actually a pretty common language feature. It is known in C#,
JavaScript, Scala, and many other languages, including Java since version 8. Popular
reactive programming libraries, such as RxJava, also heavily utilize this concept to process
data. In this section, we are going to go deeper into Kotlin collection processing.

The Kotlin collection type hierarchy

The Kotlin type hierarchy is really well designed. Standard collections are actually
collections from a native language (such as Java) that are hidden behind interfaces. They are
created by standard top-level functions (1istOf, setOf, mutableListOf, and so on), so
they can be created and used in common modules (modules compiled to more than one
platform). Also, Kotlin interfaces can act like their equivalent interfaces from Java (such

as List, and Set), which makes Kotlin collections efficient and highly compatible with
external libraries. At the same time, the Kotlin collection interface hierarchy can be used in
common modules. This hierarchy is simple and it is useful to understand it:

[261]

Extension Functions and Properties

Iterable » Mutablelterable
A A
P Collection » MutableCollection
A A A
List » MutableList
Set > MutableSet

Kotlin collection interfaces hierarchy

The most general interface is Iterable. It represents a sequence of elements that can be
iterated over. Any object that implements iterable can be used in a for loop:

for (i in iterable) { /* ... */ }

Lots of different types implement an iterable interface: all collections, progressions (1. .10,
'a'..'z"),and even String. They all allow us to iterate over their elements:

for (char in "Text") { print (" (Schar)") } // Prints: (T) (e) (x) (t)

The Collection interface represents a collection of elements and extends Iterable. It
adds property size and the contains, containsAll, and isEmpty methods.

Two main interfaces that inherit from Collection are List and set. The difference
between them is that set is unordered and does not contain repetitive elements (according
to the equals method). Neither the List nor Set interface contain any methods that would
allow us to mutate the object state. This is why, by default, Kotlin collections are treated as
immutable. When we have an instance of List, then it is most often ArrayList in
Android. ArrayList is a mutable collection, but while it is hidden behind the List
interface, it is actually acting as if it was immutable because it is not exposing any methods
that would allow us to apply changes (unless it is downcast).

[262]

Extension Functions and Properties

In Java, collections are mutable, but Kotlin collection interfaces only provide immutable
behavior by default (not methods that change the state of collections, such as, add and
removeAt):

val list = listOf('a', 'b', 'c")
println(list[0]) // Prints: a
println(list.size) // Prints: 3
list.add('d') // Error
list.removeAt (0) // Error

All immutable interfaces (such as Collection, and List) have their mutable equivalents
(such as MutableCollection, and MutableList) that inherit from corresponding
immutable interfaces. Mutable means that the actual object can be modified. These are the
interfaces that represent mutable collections from the standard library:

e MutableIterable allows iteration with changes applied
® MutableCollection includes methods for adding and removing elements
e MutableList and MutableSet are mutable equivalents of List and Set

Now we can fix our previous example and change the collection using the add and remove
methods:

val list = mutableListOf('a', 'b', 'c')
println(list[0]) // Prints: a
println(list.size) // Prints: 3
list.add('d")

println(list) // Prints: [a, b, c, d]
list.removeAt (0)

println(list) // Prints: [b, ¢, d]

[263]

Extension Functions and Properties

Both immutable and mutable interfaces only provide a few methods, but the Kotlin
standard library provides many useful extensions for them:

users.
A reduceRight (opsration: (User, User) —-> User) User
A reduce (operation: (User, User) -> User) User
A reduce { acc, User -> ... } User
A reduceRight { User, acc -> ... } User
A reduceRightIndexed (operation: (Int, User, Usesr) -> User) User
A reduceRightIndexed { index, User, acc —-> ... } User
A single () User
A singleOrNull () User?
A single {...} User
A slice (indices: IntRange) List<User>
A slice (indices: Iterable<Int> List<User>
A takeLast (n: Int) List<User>
A takes (n: Int) List<User>
A takeLastWhile {...} List<User>
A sortedBy {...} List<User>
A filter {...} List<User>
V indices IntRange
A times (other: Iterable<L>) List<Pair<User, L>>
A powerset () Set<Set<User>>
A all {...} Boolean
A any () Boolean
A any {...} Boolean
A aslterable () Iterable<User>
A asSequence () Sequence<User>
A associate {...} Map<E, V>
A assoclateBy {...} Map<E, User>
C-t‘rI+Down and CtrI+U—FL: wril-l move 1caret down a}{é up i;1 the editor 2 - i - D

[264]

Extension Functions and Properties

This makes dealing with collections a much easier task than in Java.

Kotlin implements collection processing methods using extensions. This approach has
many advantages; for example, if we want to implement a custom collection (such as List),
we only need to implement an iterable interface containing a few methods. We can still
use all the extensions that are provided for the iterable interface.

Another reason is how flexibly these functions can be used when they are extensions for
interfaces. For example, most of these collection processing functions are actually extensions
for Iterable, which is implemented by many more types than Collection, for example,
by string or Range. Therefore, it is possible to use all extension functions for Iterable on
IntRange as well. Here is an example:

(1..5).map { it * 2 }.forEach(::print) // Prints: 246810

This makes all these extensions really universal. There is also a downside to the fact that
collection stream processing methods are implemented as extension functions. While
extensions are resolved statically, it is incorrect to override an extension function for a
specific type because its behavior will be different when it is behind an interface than when
it is accessed directly.

Let's analyze some extension functions used for collection processing.

The map, filter, and flatMap functions

We have already briefly presented map, filter, and flatMap, because they are the most
basic stream processing functions. The map function returns a list with elements changed
according to the function from the argument:

val list = 1ist0Of(1,2,3) .map { it * 2 }
println(list) // Prints: [2, 4, 6]

The filter function allows only the elements that match the provided predicate:

val list = 1ist0f(1,2,3,4,5) .map { it > 2 }
println(list) // Prints: [3, 4, 5]

The f1atMap function returns a single list of all elements yielded by the transform
function, which is invoked on each element of the original collection:

val list = 1istOf (10, 20).flatMap { listOf (it, it+1, it + 2) }
println(list) // Prints: [10, 11, 12, 20, 21, 22]

[265]

Extension Functions and Properties

It is most often used to flatten lists of collections:

shops.flatMap { it.products }
schools.flatMap { it.students }

Let's look at simplified implementations of these extension functions:

inline fun <T, R> Iterable<T>.map (transform: (T) -> R): List<R> { //1
val destination = ArrayList<R> ()
for (item in this) destination.add(transform(item)) // 2
return destination

inline fun <T> Iterable<T>.filter (predicate: (T) -> Boolean): List<T> { //
1
val destination = ArrayList<T> ()
for (item in this) if (predicate(item)) destination.add(item) // 2
return destination

inline fun <T, R> Iterable<T>.flatMap (transform: (T) -> Collection<R>):
List<R> {
// 1

val destination = ArrayList<R> ()

for (item in this) destination.addAll (transform(item)) // 2

return destination

1. All these functions are inline.

2. All these functions use a for loop internally, and return a new list containing
proper elements.

Most Kotlin standard library extension functions with a function type are inline because it
makes lambda expression usage efficient. As a result, whole collection stream processing is
actually mostly compiled at runtime into nested loops. As an example, here is this simple
processing:

students.filter { it.passing }
.map { "${it.name} ${it.surname}" }

After compilation and decompilation to Java, it looks like the following (cleaned up):

Collection destinationl = new ArrayList();
Iterator it = students.iterator();
while (it .hasNext ()) {
Student student = (Student) it.next();
if (student.getPassing()) {

[266]

Extension Functions and Properties

destinationl.add(student);

}
}

Collection destination2 = new ArrayList (destinationl.size());
it = destination2.iterator();
while (it.hasNext ()) A
Student student = (Student) it.next();
String var = student.getName() + " " + student.getSurname();

destination2.add(var);

The forEach and onEach functions

The forEach function was discussed in the chapter about functions. It is an alternative to a
for loop, so it performs an action on each element of the list:

listOf ("A", "B", "C").forEach { print(it) } // prints: ABC

Since Kotlin 1.1, there is a similar function, onEach, that also invokes an action on each
element. It returns an extension receiver so we can invoke an action on each element in the
middle of stream processing. This is commonly used for logging purposes. Here is an
example:

(1..10) .filter { it % 3 == 0 }
.onEach (::print) // Prints: 369
.map { it / 3 }
.forEach(::print) // Prints: 123

The withindex and indexed variants

Sometimes, the element processing method depends on its index in the list. The most
universal way to solve this problem is by using the withIndex function, which returns a
list of values with indexes:
1istO£(9,8,7,6) .withIndex () // 1
.filter { (i, _) -> i $2==01} // 2

.forEach { (i, v) -> print("$v at $i,") }
// Prints: 9 at 0, 7 at 2,

1. The withIndex function packs each element into Indexedvalue, which
contains both the elements and its index.

[267]

Extension Functions and Properties

2. In alambda, Indexedvalue is deconstructed into index and value, but while the
value is unused, an underscore is placed instead. It might be omitted, but this
code is more readable. This line only filters elements with an even index.

Also, there are variants for different stream processing methods that provide an index:

val listl = 1istOf (2, 2, 3, 3)
.filterIndexed { index, _ -> index % 2 == 0 }
println(listl) // Prints: [2, 3]

val list2 = 1istOf (10, 10, 10)
.mapIndexed { index, i -> index * 1 }
println(list2) // Prints: [0, 10, 20]

val 1list3 = 1listOf (1, 4, 9)
.forEachIndexed { index, i -> print("$index: $i,") }
println(list3) // Prints: 0: 1, 1: 4, 2: 9

The sum, count, min, max, and sorted functions

The sum function counts the sum of all elements in a list. It can be invoked on List<Int>,
List<Long>, List<Short>, List<Double>, List<Float>, and List<Byte>:

val sum = 1istOf(1,2,3,4).sum()
println(sum) // Prints: 10

Often we need to sum some properties of elements, such as summing points of all users. It
might be handled by mapping the list of users to the list of points and then counting the
sum:

class User(val points: Int)
val users = 1listOf (User(10), User (1_000), User (10_000))

val points = users.map { it.points }. sum()
println(points) // Prints: 11010

But we unnecessarily create an intermediate collection by calling the map function, and it
would be more efficient to directly sum points. To do this, we can use sumBy with an
appropriate selector:

val points = users.sumBy { it.points }
println(points) // Prints: 11010

[268]

Extension Functions and Properties

sumBy is expecting Int to be returned from the selector, and it is returning Int with the
sum of all elements. If values are not Int but Double, then we can use sumByDouble,
which returns Double:

class User (val points: Double)
val users = 1istOf (User (10.0), User(1_000.0), User(10_000.0))

val points = users.sumByDouble { it.points }
println(points) // Prints: 11010.0

A similar functionality is provided by the count function, which is used when we need to
count elements that match a predicate:

val evens = (1..5).count { it % 2 == 1 }
val odds = (1..5).count { it % 2 == 0 }
println(evens) // Prints: 3

println(odds) // Prints: 2

Using the count function without a predicate returns the size of the collection or iterable:

val nums = (1..4) .count ()
println (nums) // Prints: 4

The next important functions are min and max, which are functions that return the minimal
and maximal elements in a list. They can be used on a list of elements that have natural
ordering (they implement Comparable<T> interface). Here is an example:

val list = 1listOf (4, 2, 5, 1)

println(list.min()) // Prints: 1
println(list.max()) // Prints: 5
println(listOf ("kok", "ada", "bal", "mal").min()) // Prints: ada

The sorted function is similarly used. It returns a sorted list, but it needs to be invoked on
collections of elements that implement the Comparable<T> interface. Here is an example of
how sorted can be used to get a list of strings sorted alphanumerically:

val strs = 1listOf ("kok", "ada", "bal", "mal") .sorted()
println(strs) // Prints: [ada, bal, kok, mall

What if items are not comparable? There are two ways to sort them. The first way is to sort
according to a comparable member. We've already seen an example when we were sorting
students according to their grades:

students.filter { it.passing }
.sortedByDescending { it.grade }
.take (3)
.forEach (::println)

[269]

Extension Functions and Properties

In the preceding example, we sort students using the comparable grade property. There,
sortedByDescending is used, which works like sortedBy, the only difference being that
the order is descending (from biggest to smallest). The selector inside the function can
return any value that is comparable to itself. Here is an example, where st ring is used to
specify the order:

val list = 1listOf (14, 31, 2)
print (list.sortedBy { "$it" }) // Prints: [14, 2, 31]

Similar functions can be used to find the minimal and maximal elements according to the
selector:

val minByLen = 1listOf ("ppp", "z", "as")
.minBy { it.length }

println (minByLen) // Prints: "z"

val maxByLen = 1listOf ("ppp", "z", "as")

.maxBy { it.length }
println(maxByLen) // Prints: "ppp"

The second way to specify the sorting order is to define a Comparator that will determine
how elements should be compared. Function variants that accept comparators should have
a Wwith suffix. Comparators can be defined by an adapter function that converts a lambda to
the SAM type:

val comparator = Comparator<String> { el, e2 ->
e2.length - el.length

}

val minByLen = 1listOf ("ppp", "z", "as")
.sortedWith (comparator)

println(minByLen) // Prints: [ppp, as, z]

Kotlin also includes standard library top-level functions (compareBy,
and compareByDescending) used to simplify Comparator creation. Here is how we can
create a comparator to sort students alphanumerically by surname and name:

data class User(val name: String, val surname: String) {

override fun toString() = "S$name S$surname"
}
val users = 1listOf (
USer("A", IIAII) ,
USer("B", IIAII) ,
USer("B", IIBII) ,
USer("A", IIBII)

[270]

Extension Functions and Properties

val sortedUsers = users
.sortedWith (compareBy ({ it.surname }, { it.name }))

print (sortedUsers) // [A A, B A, A B, B B]

Note that we can use property references instead of lambda expressions:

val sortedUsers = users
.sortedWith (compareBy (User: :surname, User::name))
print (sortedUsers) // [A A, B A, A B, B B]

Another important function is groupBy, which groups elements according to the selector.
groupBy returns Map, which maps from the chosen key to a list of elements that are selected
to map to the following key:

val grouped = listOf("ala", "alan", "mulan", "malan")
.groupBy { it.first () }
println(grouped) // Prints: {'a': ["ala", "alan"], "m": ["mulan",
"malan"]}

Let's look at a more complex example. We need to get a list of the best students from each
class. Here is how we can get them from the list of students:

class Student (val name: String, wval classCode: String, val meanGrade:
Float)

val students = 1istOf (

Student ("Homer", "1", 1.1F),
Student ("Carl", "2", 1.5F),
Student ("Donald", "2", 3.5F),

Student ("Alex", "3", 4.5F),
Student ("Marcin", "3", 5.0F),
Student ("Max", "1", 3.2F)

val bestInClass = students
.groupBy { it.classCode }
.map { (_, students) -> students.maxBy { it.meanGrade }!! }
.map { it.name }

print (bestInClass) // Prints: [Max, Donald, Marcin]

[271]

Extension Functions and Properties

Other stream processing functions

There are lots of different stream processing functions, and there is no need to describe
them all here, while Kotlin contains great documentation on its website. The names of most
of the extension functions are self-explanatory and there is no need to really read the
documentation to guess what they are doing. In Android Studio, we can check the real
implementation by pressing Ctrl (the command key on Mac) and clicking the function whose
implementation we want to read.

The important difference in collection processing comes when you are operating on
mutable collections because while they can use additional extensions defined for mutable
types (MutableIterable, and MutableCollection), the important distinction is that
functions that change objects are formulated in present imperative form (for example,
sort), while functions that returns a new collection with changed values are most often
formulated in the past form of a verb (for example, sorted). Here is an example:

e sort: The function that is sorts a mutable object. It returns Unit.

¢ sorted: The function that is returns a sorted collection. It does not change the
collection on which it is invoked.

val list = mutableListOf(3,2,4,1)
val list2 = list.sorted()
println(list) // [3,2,4,1]
println(list2) // [1,2,3,4]
list.sort ()

println(list) // [1,2,3,4]

Examples of stream collection processing

We've already seen a few stream processing functions, but it needs some skill and creativity
to use them for complex use cases. This is why in this section, we are going to discuss some
complex stream processing examples.

Let's suppose that we again need to find the best three students who are passing, according
to their grade. The key difference is that, in this case, the final order of students must be the
same as it was in the beginning. Note that during a sorting by grade operation, this order is
lost. But we can preserve it if we keep the value and index together. Thanks to that, we can
later sort elements according to this preserved index. Here is how to implement this
processing:

data class Student (
val name: String,
val grade: Double,

[272]

Extension Functions and Properties

val passing: Boolean

)

val students = 1istOf(
Student ("John", 4.2, true),
Student ("Bill", 3.5, true),
Student ("John", 3.2, false),
Student ("Aron", 4.3, true),
Student ("Jimmy", 3.1, true)

)

val bestStudents = students.filter { it.passing } // 1
.withIndex () // 2
.sortedBy { it.value.grade } // 3
.take(3) // 4
.sortedBy { it.index } // 5
.map { it.value } // 6

// Print list of names
println (bestStudents.map { it.name }) // [John, Bill, Jimmy]

Filter to only keep students that are passing.

Add indexes to elements to reproduce the element order.
Sort students according to their grade.

Take only the best 10 students.

Reproduce the order by sorting according to indexes.

A

Map values with indexes to just values.

Note that this implementation is concise and each operation performed on the collection is
easy to read line by line.

The big advantage of collection stream processing is that it is easy to
manage the complexity of this process. We know that the complexity of
most operations, such as map or filter, is O(n) and the complexity of
sorting operations is O(n*log(n)). The complexity of stream operations is
the maximal complexity of each of the steps, so the complexity of the
previous processing is O(n*log(n)) because sortedBy is the step with the
most complexity.

[273]

Extension Functions and Properties

As the next example, let's suppose that we have a list containing the results of players in
different categories:

class Result (
val player: Player,
val category: Category,
val result: Double
)
class Player (val name: String)
enum class Category { SWIMMING, RUNNING, CYCLING }

And we have some example data:

val results = 1istOf (
Result ("Alex", Category.SWIMMING, 23.4),

Result ("Alex", Category.RUNNING, 43.2),
Result ("Alex", Category.CYCLING, 15.3),
Result ("Max", Category.SWIMMING, 17.3),
Result ("Max", Category.RUNNING, 33.3),
Result ("Bob", Category.SWIMMING, 29.9),
Result ("Bob", Category.CYCLING, 18.0)

)

Here is how we can find the best player in each category:

val bestInCategory = results.groupBy { it.category } // 1
.mapValues { it.value.maxBy { it.result }?.player } // 2

print (bestInCategory)

// Prints: {SWIMMING=Bob, RUNNING=Alex, CYCLING=Bob}

1. We group results into categories. The return types are Map<Category> and
List<Result>.
2. We are mapping values of the map function. Inside, we find the best result in this

category and we take the player who is associated with this result. The return of
the mapvalues function is Map<Category, Player?>.

[274]

Extension Functions and Properties

The preceding example shows how complex problems related to collections can be easily
solved in Kotlin thanks to collection processing functions. After working with Kotlin for a
while, most of those functions are well known to programmers, and then collection
processing problems are quite easy to solve. Of course, functions as complicated as
presented previously are rare, but simple processing with a few step is quite common in
everyday programming.

Sequence

Sequence is an interface that is also used to refer to a collection of elements. It is an
alternative for Iterable. For Sequence, there are separate implementations of most
collection processing functions (map, flatMap, filter, sorted, and so on). The key
difference is that all these functions are constructed in such a way that they return a
sequence that is packaged over the previous sequence. Due to this, the following points
become true:

e The size of the sequence does not need to be known in advance

» Sequence processing is more efficient, especially for large collections where we
want to perform several transformations (details will be described later)

In Android, sequences are used for processing very big collections or for processing
elements whose size is not known in advance (such as reading lines of a potentially long
document). There are different ways to create sequences, but the easiest is the asSequence
function called on Iterable or by using the sequence0Of top-level function to make a
sequence in a similar way to a list.

Sequence size does not need to be known in advance, because values are calculated just
when they are needed. Here is an example:

val = generateSequence(l) { it + 1 } // 1. Instance of
GeneratorSequence
.map { it * 2 } // 2. Instance of TransformingSequence
.take (10) // 3. Instance of TakeSequence
.toList () // 4. Instance of List

println (numbers) // Prints: [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

1. The generatesequence function is a method of sequence generation. This
sequence contains the next numbers from 1 to infinity.

[275]

Extension Functions and Properties

2. The map function packs a sequence into another that takes the value from the first
sequence and then calculates the value after transformation.

3. The take (10) function will also pack a sequence into another one that finishes
on the 10th element. Without this line execution, processing time would be
infinite while we are operating on an infinite sequence.

4. Finally, the toList function processes each value and returns the final list.

It is important to stress that elements are processed one after another in the last step (in
terminal operation). Let's look at another example, where every operation also prints values
for logging purposes. Let's start with the following code:

val seq = generateSequence(l) { println("Generated ${it+1}"); it + 1 }
.filter { println("Processing of filter: $it"); it % 2 == 1 }
.map { println("Processing map: $it"); it * 2 }
.take (2)

What would be printed in the console? Absolutely nothing. No values were calculated. The
reason is that all those intermediate operations are lazy. To retrieve a result, we need to use
a terminal operation, such as toList. Let's use the following;:

seqg.tolList ()

Then we will see the following in the console:

Processing of filter: 1
Processing map: 1
Generated 2

Processing of filter: 2
Generated 3

Processing of filter: 3
Processing map: 3

Notice that elements are fully processed one after another. In standard list processing, the
order of operation would be totally different:

(1..4) .onEach { println("Generated $it") }
.filter { println("Processing filter: $it"); it % 2 == 1 }
.map { println("Processing map: $it"); it * 2 }

The preceding code prints the following:

Generated 1
Generated 2
Generated 3
Generated 4
Processing filter: 1

[276]

Extension Functions and Properties

Processing filter: 2
Processing filter:
Processing filter: 4
Processing map: 1
Processing map: 3

w

This explains why sequences are more efficient than classic collection processing--there is
no need to create collections in intermediate steps. Values are processed one by one on
demand.

Function literals with a receiver

Just as functions have a function type, that allows them to be kept as an object, extension
functions have a type that allows them to be kept this way. It is called function type with a
receiver. It looks like a simple function type, but the receiver type is located before
arguments (like in an extension definition):

var power: Int. (Int) —-> Int

The introduction of a function type with receiver makes full cohesion between functions
and types possible, because all functions can now be represented as objects. It can be
defined using a lambda expression with a receiver or with an anonymous function with the
receiver.

In a lambda expression with a receiver definition, the only difference is that we can refer to
a receiver with this, and we can explicitly use receiver elements. For lambda expressions,
the type must be specified in a parameter, because there is no syntax to specify receiver
type. Here is power defined as a lambda expression with a receiver:

power = { n -> (l1..n).fold(1) { acc, _ -> this * acc } }

An anonymous function also allows us to define the receiver, and its type is placed before
the function name. In such a function, we can use this inside the body to refer to the
extension receiver object. Note that anonymous extension functions specify the receiver
type, so the property type can be inferred. Here is power defined as an anonymous
extension function:

power = fun Int.(n: Int) = (1..n).fold(1) { acc, _ —-> this * acc }
A function type with a receiver can be used as if it is a method of a receiver type:

val result = 10.power (3)
println(result) // Prints: 1000

[277]

Extension Functions and Properties

A function type is most often used as a function parameter. Here is an example in which a
parameter function is used to configure an element after its creation:

fun ViewGroup.addTextView (configure: TextView. ()->Unit) {
val view = TextView (context)
view.configure ()
addView (view)

}

// Usage
val linearLayout = findViewById(R.id.contentPanel) as LinearLayout

linearLayout.addTextView { // 1
text = "Marcin" // 2
textSize = 12F // 2

}

1. Here we are using a lambda expression as an argument.
2. Inside the lambda expression, we can directly invoke receiver methods.

Kotlin standard library functions

The Kotlin standard library provide a set of extension functions (1let, apply, also, with,
run, and to) with generic non-restricted receivers (generic types have no restrictions). They
are small and handy extensions, and it is very profitable to understand them, because they
are very useful across all Kotlin projects. One of these functions, 1et, was briefly
introduced in chapter 2, Laying a Foundation, where we saw how it can be used as an
alternative to a nullity check:

savedInstanceState?.let{ state —>
println (state.getBoolean ("isLocked"))

}

All that 1et does is call the specified function and return its result. While in the preceding
example it is used together with a safe call operator, it will be called only when the
savedInstanceState property is not null. The let function is actually just a generic

extension function with a parameter function:

inline fun <T, R> T.let (block: (T) -> R): R = block(this)

[278]

Extension Functions and Properties

In standard library, there are more functions similar to 1et. These functions are apply,
also, with, and run. They are similar, so we are going to describe them together. Here are
definitions of the rest of the functions:

inline fun <T> T.apply(block: T. () —-> Unit): T {
block ();
return this
}
inline fun <T> T.also(block: (T) —> Unit): T {
block (this);
return this
}
inline fun <T, R> T.run(block: T.() -> R): R = block()
inline fun <T, R> with(receiver: T, block: T.() -> R): R = receiver.block()

Let's see usage examples:

val mutablelList = mutableListOf (1)
val mutablelList = mutableListOf (1)
val letResult = mutablelist.let {
it.add(2)
listof("a", "B", "C")
}
println (letResult) // Prints: [A, B, C]
val applyResult = mutablelist.apply {
add (3)
listof("a", "B", "C")
}
println(applyResult) // Prints: [1, 2, 3]
val alsoResult = mutablelList.also {
it.add (4)
listOof ("a", "B", "C")
}
println (alsoResult) // Prints: [1, 2, 3, 4]
val runResult = mutablelList.run {
add (5)
listOof ("a", "B", "C")
}
println (runResult) // Prints: [A, B, C]
val withResult = with (mutableList) {
add (6)
listOof ("a", "B", "C")
}
println (withResult) // Prints: [A, B, C]
println (mutablelList) // Prints: [1, 2, 3, 4, 5, 6]

[279]

Extension Functions and Properties

The differences are summarized in the following table:

Returned object/parameter function |Function literal with Function literal

type receiver (receiver object
(receiver object represented as it)
represented as this)

Receiver object apply also

Result of function literal run/with let

While those functions are similar and, in many cases, it is possible to use them
interchangeably, there are conventions that define which functions are preferred for certain
use cases.

The let function

The let function is preferred when we want to use standard functions as if they are
extension functions in stream processing:

val newNumber = number.plus (2.0)
.let { pow(it, 2.0) }
.times (2)

Like other extensions, it can be combined with a save call operator:

val newNumber = number?.plus(2.0)
?.let { pow(it, 2.0) }

The let function is also preferred which we just want to unpack a nullable read-write

property. In this situation, it is not possible to smart cast this property and we need to
shadow it, like in this solution:

var name: String? = null

fun Context.toastName () |
val name = name
if (name != null) {
toast (name)

}

[280]

Extension Functions and Properties

The name variable is the shadowing property name, what is necessary if name is a read-
write property, because smart casting is only allowed on a mutable or local variable.

We can replace the preceding code with let and a safe call operator:
name?.let { setNewName (it) }

Note that by using Elvis operator, we can easily add a return or throw an exception when
name is null:

name?.let { setNewName (it) } ?: throw Error ("No name setten")
Similarly, 1et can be used as a replacement for the following statement:

val comment = if(field == null) getComment (field) else "No comment
An implementation that uses the 1et function would look like the following;:

val comment = field?.let { getComment (it) } ?: "No comment"
The let function used this way is preferred in method chains that transform the receiver:

val text = "hello {name}"

fun correctStyle(text: String) = text
.replace("hello", "hello,")

fun greet (name: String) |
text.replace ("{name}", name)
.let { correctStyle(it) }
.capitalize ()
.let { print(it) }

// Usage
greet ("reader") // Prints: Hello, reader

We can also use simpler syntax by passing a function reference as an argument:

text.replace("{name}", name)
.let (::correctStyle)
.capitalize()
.let (::print)

[281]

Extension Functions and Properties

Using the apply function for initialization

Sometimes we need to create and initialize an object by calling some methods or modifying
some properties, such as when we are creating a Button:

val button = Button (context)
button.text = "Click me"
button.isVisible = true
button.setOnClickListener { /* ... */ }
this.button = button

We can reduce code verbosity by using the apply extension function. We can call all these
methods from the context where button is the receiver object:

button = Button (context) .apply {
text = "Click me"
isVisible = true
setOnClickListener { /* ... */ }

The also function

The also function is similar to apply, with the only difference being that the parameter
function accepts an argument as an parameter rather than as an receiver. It is preferable
when we want to do some operations on an object that are not initializations:

abstract class Provider<T> {

var original: T? = null

var override: T? = null

abstract fun create(): T

fun get(): T = override ?: original ?: create().also { original = it

[282]

Extension Functions and Properties

The also function is also preferable when we need to do an operation in the middle of
processing, for example, during object construction using the Builder pattern:

fun makeHttpClient (vararg interceptors: Interceptor) =
OkHttpClient .Builder ()
.connectTimeout (60, TimeUnit.SECONDS)
.readTimeout (60, TimeUnit.SECONDS)
.also { it.interceptors () .addAll (interceptors) 1}
.build ()

Another situation where also is preferable is when we are already in an extension function
and we don't want to add another extension receiver:

class Snail {
var name: String = ""
var type: String = ""
fun greet () {
println("Hello, I am $name")

class Forest {

var members = 1listOf<Sneil> ()
fun Sneil.reproduce(): Sneil = Sneil () .also {
it.name = name

it.type = type
members += it

The run and with functions

The run and with functions are both accepts a lambda literal with a receiver as an
argument and return its result. The difference between them is that run accepts a receiver,
while the with function is not an extension function and it takes the object we are operating
in as a parameter. Both functions can be used as an alternative to the apply function when
we are setting up an object:

val button = findViewById(R.id.button) as Button

button.apply {
text = "Click me"
isVisible = true
setOnClickListener { /* ... */ }

[283]

Extension Functions and Properties

button.run {
text = "Click me"
isVisible = true
setOnClickListener { /* ... */ }

with (button) {
text = "Click me"
isVisible = true
setOnClickListener { /* ... */ }
t

The difference between apply, run, and with is that apply returns a receiver object, while
run and with returns the result of a function literal. However, when we need any of these,
we should choose the function that is returning it. It is debatable which should be used
when we do not need a returned value. Most often, it is recommended to use the run or
with function rather than apply, because also is often used in situations when a returned
value is needed.

Regarding the differences between the run and with functions, the run function is used
instead of the with function when a value is nullable because then we can use a safe call or
a not-null assertion:

val button = findViewById(R.id.button) as? Button

button?.run {
text = "Click me"
isVisible = true
setOnClickListener { /* ... */ }
t

The with function is preferable to run, when an expression is short:

val button = findViewById(R.id.button) as Button

with (button) {
text = "Click me"
isVisible = true
setOnClickListener { /* ... */ }

[284]

Extension Functions and Properties

On the other hand, run is preferable to with when an expression is long:

itemAdapter.holder.button.run {
text = "Click me"
isVisible = true
setOnClickListener { /* ... */ }

The to function

Infix functions were introduced in chapter 4, Classes and Objects, but they can be defined
not only as member classes, but also as extension functions. This makes it possible to create
an infix extension function to any object. One of this kinds of extension functions is to,
which was briefly described in chapter 2, Laying a Foundation. Now we have the
knowledge needed to understand its implementation. This is how to is defined:

infix fun <A, B> A.to(that: B): Pair<A, B> = Pair(this, that)

This makes it possible to place t o between any two objects and make this way Pair with
them:

println(1 to 2 == Pair(l, 2)) // Prints: true

Note that the fact that we can make infix extension functions allows us to define infix
functions as an extension to any type. Here is an example:

infix fun <T> List<T>.intersection (other: List<T>)
= filter { it in other }

listOf (1, 2, 3) intersection 1listOf (2, 3, 4) // [2,3]

Domain-specific language

Features such as a lambda literal with a receiver and member extension functions make it
possible to define type-safe builders, which are used in Groovy. The most well-known
Android example is the Gradle configuration build.gradle, which is currently written in
Groovy. These kinds of builder are a good alternative to XML, HTML, or configuration files.
The advantage of using Kotlin is that we can make such configurations fully type-safe and
provide a better IDE. Such builders are one example of a Kotlin domain-specific language
(DSL).

[285]

Extension Functions and Properties

The most popular Kotlin DSL pattern in Android is the implementation of optional callback
classes. They are used to solve a problem with a lack of functional support to callback
interfaces with multiple methods. Classically, the implementation would require using an
object-expression, as shown in the following example:

searchView.addTextChangedListener (object : TextWatcher {
override fun beforeTextChanged(s: CharSequence, start: Int, count: Int,
after: Int) {}

override fun onTextChanged(s: CharSequence, start: Int, before: Int,
count: Int) |
presenter.onSearchChanged(s.toString())

override fun afterTextChanged(s: Editable) {}
})

The main problems with such implementations are as follows:

e We need to implement all methods present in the interface
¢ The function structure needs to be implemented for each method
e We need to use object expressions

Let's define the following class, which keeps callbacks as mutable properties:

class TextWatcherConfig : TextWatcher {

private var beforeTextChangedCallback: (BeforeTextChangedFunction)? =
null // 1

private var onTextChangedCallback: (OnTextChangedFunction)? = null // 1

private var afterTextChangedCallback: (AfterTextChangedFunction)? = null
// 1

fun beforeTextChanged (callback: BeforeTextChangedFunction){ // 2

beforeTextChangedCallback = callback

fun onTextChanged (callback: OnTextChangedFunction) { // 2
onTextChangedCallback = callback

fun afterTextChanged (callback: AfterTextChangedFunction) { // 2
afterTextChangedCallback = callback

override fun beforeTextChanged (s: CharSequence?, start: Int, count: Int,
after: Int) { // 3

[286]

Extension Functions and Properties

beforeTextChangedCallback?.invoke (s?.toString(), start, count, after)

// 4
}

override fun onTextChanged(s: CharSequence?, start: Int, before:

Int, count: Int) { // 3
onTextChangedCallback?.invoke (s?.toString (), start, before, count) // 4

override fun afterTextChanged(s: Editable?) { // 3
afterTextChangedCallback?.invoke (s)

private typealias BeforeTextChangedFunction =

(text: String?, start: Int, count: Int, after: Int)->Unit
private typealias OnTextChangedFunction =

(text: String?, start: Int, before: Int, count: Int)->Unit

private typealias AfterTextChangedFunction =
(s: Editable?)->Unit

1. Callbacks that are used when any of the overridden functions are called.

2. Functions are used to set new callbacks. Their names correspond to handler
function names, but they include callback as a parameter.

3. Each event handler function invokes a callback if it exists.

4. To simplify usage, we also changed types, CharSequence in the original
methods was changed to String.

Now all we need is an extension function that will simplify callback configuration. Its name
cannot be the same as any name of TextView, but all we need to make a small

modification:

fun TextView.addOnTextChangedListener (config: TextWatcherConfig. ()->Unit) {
val textWatcher = TextWatcherConfig()
textWatcher.config()
addTextChangedListener (textWatcher)

}
With such definitions, we can define the callbacks we need like this:
searchView.addOnTextChangedListener {

onTextChanged { text, start, before, count ->
presenter.onSearchChanged (text)

[287]

Extension Functions and Properties

We use underscore to hide unused parameters, to improve our implementation:

searchView.addOnTextChangedListener {
onTextChanged { text, _, _, _ —>
presenter.onSearchChanged (text)

}

Now two other callbacks, beforeTextChanged and afterTextChanged, are ignored, but
we can still add other implementations:

searchView.addOnTextChangedListener {
beforeTextChanged { _, _, _, _ —>
Log.1(TAG, "beforeTextChanged invoked")

}
onTextChanged { text, _, _, _ —>
presenter.onSearchChanged (text)

}
afterTextChanged {
Log.1(TAG, "beforeTextChanged invoked")

}
A listener defined this way has the following properties:

e It is shorter than an object expression implementation
e It includes default function implementations
e It allows us to hide unused parameters

While in Android SDK there are multiple listeners with more than one handler, DSL
implementation of optional callback classes is really popular in Android projects. Similar
implementations can be also found in libraries such as the already-mentioned Anko.

Another example is DSL, which will be used to define the layout structure without using
XML layout files. We will define a function to add and configure LinearLayout and
TextView, and use it to define a simple view:

fun Context.linearLayout (init: LinearLayout. () —-> Unit): LinearLayout {
val layout = LinearLayout (this)
layout.layoutParams = LayoutParams (WRAP_CONTENT, WRAP_CONTENT)
layout.init ()
return layout

fun ViewGroup.linearLayout (init: LinearLayout. () —-> Unit): LinearLayout

[288]

Extension Functions and Properties

val layout = LinearLayout (context)

layout.layoutParams = LayoutParams (WRAP_CONTENT, WRAP_CONTENT)
layout.init ()

addView (layout)

return layout

fun ViewGroup.textView(init: TextView. () —-> Unit): TextView {
val layout = TextView (context)
layout.layoutParams = LayoutParams (WRAP_CONTENT, WRAP_CONTENT)
layout.init ()
addView (layout)
return layout

// Usage
class MainActivity : AppCompatActivity () {

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
val view = linearLayout {
orientation = LinearLayout.VERTICAL
linearLayout {
orientation = LinearLayout.HORIZONTAL
textView { text = "A" }
textView { text = "B" }
}
linearLayout {
orientation = LinearLayout.HORIZONTAL
textView { text = "C" }
textView { text = "D" }

}

setContentView (view)

}

We can also define our custom DSL from scratch. Let's make a simple DSL that defines a list
of articles. We know that each article should be defined in a different category, and that
each has its name, URL, and tags. What we would like to achieve is the following definition:

category ("Kotlin") {

post {
name = "Awesome delegates”
url = "SomeUrl.com"

}

post {
name = "Awesome extensions"

[289]

Extension Functions and Properties

url = "SomeUrl.com"

}
category ("Android") {

post {
name = "Awesome app"
url = "SomeUrl.com"

tags = 1listOf ("Kotlin", "Google Login")
t

The simplest object here is the Post class. It holds a post's properties and allows them to be
changed:

class Post {

var name: String = ""

var url: String = ""

var tags: List<String> = 1listOf ()
}

Next, we need to define a class that will hold the category. It needs to store a list of posts
and it also needs to contain its name. There must also be a defined function that will allow
simple post addition. This function needs to contain a function parameter in which Post is
the receiver type. Here is the definition:

class PostCategory(val name: String) {
var posts: List<Post> = 1listOf ()

fun post(init: Post. ()->Unit) {
val post = Post ()
post.init ()
posts += post

}
Also, we need a class that will hold a list of categories and allow simple category definition:
class PostList {
var categories: List<PostCategory> = 1istOf ()
fun category(name: String, init: PostCategory. ()->Unit) {
val category = PostCategory (name)

category.init ()
categories += category

[290]

Extension Functions and Properties

All we need now is the definePosts function, the definition of which might be the
following;:

fun definePosts (init: PostList. ()—->Unit): PostList {
val postList = PostList ()
postList.init ()
return postList

}

And that's all we need. Now we can define the object structure with a simple, type-safe
builder:

val postList = definePosts {
category ("Kotlin") {

post |
name = "Awesome delegates"
url = "SomeUrl.com"

}

post |
name = "Awesome extensions"
url = "SomeUrl.com"

}
}
category ("Android") |

post |
name = "Awesome app"
url = "SomeUrl.com"

tags = 1istOf ("Kotlin", "Google Login")

}

A DSL is a really powerful concept that is being used is more and more around the Kotlin
community. It is already possible, thanks to libraries, to use the Kotlin DSL to fully replace
the following:

Android layout files (Anko)
Gradle configuration files
HTML files (kot1inx.html)
JSON files (Kotson)

And lots of other configuration files. Let's look at an example library that defines a Kotlin
DSL to provide type-safe builders.

[291]

Extension Functions and Properties

Anko

Anko is a library that provides a DSL to define Android views without any XML layouts.
This is pretty similar to examples we've already seen, but Anko made it possible to fully
remove XML layout files from a project. Here is an example view written in the Anko DSL:

verticallayout {
val name = editText ()
button ("Say Hello") {
onClick { toast ("Hello, S${name.text}!"™) }
t
t

And here is the result:

Say Hello

Source: https://github.com/Kotlin/anko

It is also possible to define much more complex layouts using the Anko DSL. These views
can be placed either on a custom class that serves as a view or even directly inside the
onCreate method:

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)

verticalLayout {
padding = dip (30)
editText {
hint = "Name"
textSize = 24f
}
editText |
hint = "Password"
textSize = 24f
}
button ("Login") {
textSize = 26f
}

[292]

https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko
https://github.com/Kotlin/anko

Extension Functions and Properties

To learn more about this example, you can visit the Anko wiki at https://
github.com/Kotlin/anko/wiki/Anko-Layouts.

It is still debatable if DSL layout definitions are going to replace XML definitions. At the
time of writing, it is not very popular to define views this way because of a lack of support
from Google, but Google have announced that they are going to support Kotlin, so it is
possible that this idea will become more popular and DSL-based layouts will be better
supported and maybe even be universal someday.

Summary

In this chapter, we discussed Kotlin extension functions and properties, both defined at the
top level and as type member. We've seen how Kotlin standard library extension functions
can be used to simplify collection processing and perform various operations. We have also
described function types with a receiver together with function literals with a receiver. Also,
we've seen a few important generic functions from the standard library that use extensions:
let, apply, also, with, run, and to. Finally, we've seen how a DSL can be defined in
Kotlin, and where it is useful.

In the next chapter, we will explore another feature that is not present in Java, but that
provides a lot of functionality in Kotlin: class and property delegates.

[293]

https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts
https://github.com/Kotlin/anko/wiki/Anko-Layouts

Delegates

Kotlin takes design patterns pretty seriously. Previously, we've seen how the usage of the
Singleton pattern can be simplified using object declarations, and how usage of the
Observator pattern can be trivialized using higher-order functions and functional types.
Kotlin also simplifies the usage of most functional patterns, thanks to lambda expressions
and functional types. In this chapter, we will see how the use of the Delegation and
Decorator patterns can be simplified thanks to class delegation. We will also look at a
feature that is pretty new in the programming world--property delegation--and how it is
used to make Kotlin properties much more powerful.

In this chapter, we will cover the following topics:

e The Delegation pattern

Class delegation

The Decorator pattern

Property delegation

Property delegates from the standard library

The creation of a custom property delegate

Delegates

Class delegation

Kotlin has a feature called class delegation. It is a really inconspicuous feature that has
many practical applications. It is worth noticing, that it is strongly connected with two
design patterns: the Delegation pattern and the Decorator patterns. We will discuss those
patterns in more detail in upcoming sections. Delegation and Decorator pattern have been
around for many years, but in Java their implementation required a lot of boilerplate code.
Kotlin was one of the first languages to provide native support for those patterns, reducing
boilerplate code to a minimum.

The Delegation pattern

In object-oriented programming, the Delegation pattern is a design pattern that is an
alternative to inheritance. Delegation means that the object handles a request by delegating
it to another object (delegate), instead of extending the class.

To support the polymorphic behavior known from Java, both objects should implement the
same interface which holds all the delegated methods and properties. A simple example of
the Delegation pattern is the following;:

interface Player { // 1
fun playGame ()
}

class RpgGamePlayer (val enemy: String) : Player {
override fun playGame () {
println("Killing $enemy")
}
}

class WitcherPlayer (enemy: String) : Player {
val player = RpgGamePlayer (enemy) // 2
override fun playGame () {

player.playGame () // 3
}
}

// Usage
RpgGamePlayer ("monsters") .playGame () // Prints: Killing monsters
WitcherPlayer ("monsters") .playGame () // Prints: Killing monsters

[295]

Delegates

1. When we are talking about class delegation, there needs to be an interface that
defines which methods are delegated.

2. The object that we are delegating to (delegate).

3. All methods inside the WwitcherPlayer class should call corresponding methods
on the delegate object (player).

This is called delegation because the WitcherPlayer class is delegating methods defined
in the Player interface to an instance of type RogGamePlayer (player). A similar result
could be achieved by using inheritance instead of delegation. This would look as follows:

class WitcherPlayer () : RpgGamePlayer ()

At first glance, these two approaches might look similar, but delegation and inheritance
have a lot of differences. On one hand, inheritance is much more popular and more widely
used. It is often used in Java, and is connected to multiple OOP patterns. On the other hand,
there are sources that strongly support delegation. For example, the influential book Design
Patterns, by the Gang of Four, contains the principle favor object composition over class
inheritance. The popular book Effective Java also includes the rule: favor composition over
inheritance (Item 6). Both of them strongly support the Delegation pattern. Here are some
basic arguments that stand behind the usage of the Delegation pattern instead of
inheritance:

¢ Often, classes are not designed for inheritance. When we override methods, we
are not aware of underlying assumptions about the internal behavior of a (when
methods are called, how those calls affect the objects, states, and so on). For
example, when we override a method, we might not be aware that it is used by
other methods, so overridden methods may be called unexpectedly by a
superclass. Even if we check when the method is called, this behavior could
change in a new version of the class (for example, if we extend a class from an
external library), and thus break our subclass's behavior. A very small number of
classes are properly designed and documented for inheritance, but nearly all non-
abstract classes are designed for usage (this includes delegation).

e In Java, it is possible to delegate a class to multiple classes, but inherit only from
one.

e By interface, we are specifying which methods and properties we want to
delegate. This is compatible with the interface segregation principle (from SOLID)--
we shouldn't expose unnecessary methods to the client.

[296]

Delegates

e Some classes are final, so we can only delegate to them. In fact, all classes that are
not designed for inheritance should be final. Kotlin designers were aware of this,
and they made all classes in Kotlin final by default.

e Making a class final and providing a proper interface is good practice for public
libraries. We can change the implementation of a class without worrying that it
will affect library users (as long as the behavior will be the same from an interface
point of view). It makes them impossible to inherit from, but they are still great
candidates to delegate to.

More information on how classes should be designed to support
inheritance and when delegation should be used can be found in the book
Effective Java, in Item 16: Favor composition over inheritance.

Of course, there are also disadvantages to using delegation instead of inheritance. Here are
the main problems:

e We need to create interfaces that specify which methods should be delegated
e We don't have access to protected methods and properties

In Java, there is one more strong argument for using inheritance: it is much easier to
implement. Even when comparing code from our WitcherPlayer example, we can see that
delegation needed a lot of extra code:

class WitcherPlayer (enemy: String) : Player {
val player = RpgGamePlayer (enemy)
override fun playGame () {

player.playGame ()
}
}

class WitcherPlayer () : RpgGamePlayer ()

[297]

Delegates

This is especially problematic when we are dealing with interfaces with multiple methods.
Fortunately, modern languages value the use of the Delegation pattern, and many of them
have native class delegation support. There is strong support for the Delegation pattern in
Swift and Groovy, and there is also support through other mechanisms in Ruby, Python,
JavaScript, and Smalltalk. Kotlin also strongly supports class delegation, and makes using
this pattern really simple, using almost zero boilerplate code. The WitcherPlayer class
from the example could be implemented in this way in Kotlin:

class WitcherPlayer (enemy: String) : Player by RpgGamePlayer (enemy) {}

Using the by keyword, we inform the compiler to delegate all methods defined in the
Player interface from WitcherPlayer to RpgGamePlayer. An instance of
RpgGamePlayer is created during the WitcherPlayer construction. In simpler
words WitcherPlayer delegates methods defined in the Player interface to a new
RpgGamePlayer object.

What is really happening here is that during compilation, the Kotlin compiler generates
unimplemented methods from Player in WitcherPlayer and fills them with calls to an
RpgGamePlayer instance (the same way that we implemented them in the first example). A
big improvement is that we don't need to implement those methods ourselves. Also, note
that if a signature of a delegated method changes, then we don't need to change all objects
that are delegated to it, so the class is easier to maintain.

There is another way to create and hold an instance of the delegate. It can be provided by a
constructor, as in this example:

class WitcherPlayer (player: Player) : Player by player
We can also delegate to a property defined in the constructor:

class WitcherPlayer (val player: Player) : Player by player
Finally, we can delegate to any property accessible during class declaration:

val d = RpgGamePlayer (10)
class WitcherPlayer(a: Player) : Player by d

[298]

Delegates

In addition, one object can have multiple different delegates:

interface Player {
fun playGame ()

interface GameMaker { // 1
fun developGame ()

class WitcherPlayer (val enemy: String) : Player {
override fun playGame () A
print ("Killin $enemy! ")

class WitcherCreator (val gameName: String) : GameMaker{
override fun developGame () {
println("Makin $gameName! ")

class WitcherPassionate
Player by WitcherPlayer ("monsters"),
GameMaker by WitcherCreator ("Witcher 3") {

fun fulfillYourDestiny () {
playGame ()
developGame ()

// Usage
WitcherPassionate () .fulfillYourDestiny () // Killin monsters! Makin
Witcher 3!

1. The WwitcherPlayer class delegates the Player interface to a new
RpgGamePlayer object, GameMaker to a new WitcherCreator object, and also
includes the fulfillYourDestiny function which uses functions from both
delegates. Note that neither WitcherPlayer nor WitcherCreator are neither

tagged as open, and without this, they cannot be extended. They can be
delegated, though.

[299]

Delegates

With such language support, the Delegation pattern is much more attractive than
inheritance. While this pattern has both advantages and disadvantages, it is good to know
when it should be used. The main cases where delegates should be used are as follows:

e When your subclass violates the Liskov substitution principle; for example, when
we are dealing with situations where inheritance was implemented only to reuse
code of the superclass, but it does not really acts like it.

e When the subclass uses only a portion of the methods of the superclass. In this
case, it is only a matter of time before someone calls a superclass method that
they were not supposed to call. Using delegation, we reuse only methods we
choose (defined in the interface).

e When we cannot, or we should not, inherit because:
¢ The class is final

e It is not accessible and is used from behind the interface
e Itisjust not designed for inheritance

Note that while classes in Kotlin are final by default, most of them will be left final. If those
classes are placed in a library, then most likely we won't be able to change or open the class.
Delegation will be the only option, to make a class with different behavior.

The Liskov substitution principle is a concept in OOP stating that all
subclasses should act like their superclasses. In simpler words, if unit tests
pass for some class, they should be passing for its subclasses too. This
principle has been popularized by Robert C. Martin, who placed it in his
set of the most important OOP rules and described it in the popular book
Clean Code.

The book Effective Java states that "inheritance is appropriate only in circumstances where a
subclass really is a subtype of the superclass." In other words, class B should extend a class only
if an is-a relationship exists between the two classes. If you are tempted to have class B
extend class 2, ask yourself Is every B really an A? In the next sections, the book suggests that
in every other case, composition should be used (which most common implementation is
delegation).

It is also worth noting that Cocoa (the UI framework from Apple for building software
programs to run on iOS) very often uses delegates instead of inheritance. This pattern is
becoming more and more popular, and in Kotlin it is highly supported.

[300]

Delegates

Decorator pattern

Another common case where Kotlin class delegation is really useful is when we are
implementing a Decorator pattern. A Decorator pattern (also known as a Wrapper pattern)
is a design pattern that makes it possible to add a behavior to an existing class without
using inheritance. In contrast to extensions, where we can add a new behavior without
modifying an object, we create a concrete object with a different behavior. A Decorator
pattern uses delegation, but in a very specific way--a delegate is provided from outside of
the class. The classic structure is presented in the following UML diagram:

Component

+ operation()

[

ConcreteComponent Decorator
- component Se——

+ operation()

+ operation()

[

ConcreteDecorator

+ operation()

UML diagram of a classic implementation of the Decorator pattern. Source: http :// up load.wikimedia.o rg

[301]

http://upload.wikimedia.org
http://upload.wikimedia.org
http://upload.wikimedia.org
http://upload.wikimedia.org
http://upload.wikimedia.org
http://upload.wikimedia.org
http://upload.wikimedia.org
http://upload.wikimedia.org
http://upload.wikimedia.org

Delegates

The Decorator contains the objects that it is decorating while it is implementing the same
interface.

The most popular example of decorator usage from the Java world is Input St ream. There
are different kinds of types that extend InputStream, and a lot of decorators that can be
used to add functionalities to them. This decorator can be used to add buffering, get the
contents of a zipped file, or convert file content into a Java object. Let's look at the example
where multiple decorators are used to read a zipped Java object:

// Java

FileInputStream fis = new FileInputStream("/someFile.gz"); // 1
BufferedInputStream bis = new BufferedInputStream(fis); // 2
GzipInputStream gis = new GzipInputStream(bis); // 3
ObjectInputStream ois = new ObjectInputStream(gis); // 4
SomeObject someObject = (SomeObject) ois.readObject(); // 5

1. Create a simple stream to read a file.

2. Make a new stream that contains buffering.

3. Make a new stream that contains functionality to read compressed data in the
GZIP file format.

4. Make a new stream that adds functionality that deserializes primitive data and
objects previously written using an ObjectOutputStream.

5. A stream is used in the readObject method of Object InputStream, but all
objects in this example implement InputStream (which is what makes it possible
to pack it this way) and can be read by the methods specified by this interface.

Note that this pattern is also similar to inheritance, but we can decide which decorators we
want to use and in what order. This is much more flexible and offers more possibilities
during usage. Some people argue that Input St ream usage would be better if designers
make one big class with all the designed functionalities, and then use methods to turn some
of them on or off. This approach would violate the single-responsibility principle and lead to
much more complicated and much less expandable code.

[302]

Delegates

While the Decorator pattern is considered one of the best in practical use, it is rarely used in
Java projects. This is because the implementation is not simple. Interfaces often contain
multiple methods and creating a delegation to them in each decorator generates lots of
boilerplate code. There is a different situation in Kotlin--we've already seen that in Kotlin
class delegation is actually trivial. Let's look at some classic examples of practical class
delegation usage in the Decorator pattern. Let's suppose that we want to add the first
position as the zero element to several different ListAdapters. This extra position has
some special properties. We couldn't implement this using inheritance, because these
ListAdapters for different lists are of different types (which is the standard situation). In
this case, we can either change the behaviors of each class (DRY rule) or we can create a
decorator. Here is the short code for this decorator:

class ZeroElementListDecorator (val arrayAdapter: ListAdapter)
ListAdapter by arrayAdapter {

override fun getCount (): Int = arrayAdapter.count + 1
override fun getItem(position: Int): Any? = when {
position == 0 -> null
else -> arrayAdapter.getltem(position - 1)

override fun getView (position: Int, convertView: View?,parent:

ViewGroup) : View = when {
position == 0 -> parent.context.inflator
.inflate (R.layout.null_element_layout, parent, false)
else -> arrayAdapter.getView(position - 1, convertView, parent)
}
}
override fun getItemId(position: Int): Long = when {
position == 0 -> 0

else -> arrayAdapter.getItemId(position - 1)
}

We used an inflator extension property of Context here, which is often included in Kotlin
Android projects and should be familiar from chapter 7, Extension Functions and Properties:

val Context.inflater: LayoutInflater
get () = LayoutInflater.from(this)

[303]

Delegates

The zZeroElementListDecorator class defined this way always adds a first element with
a static view. Here, we can see a simple example of its use:

val arrayList = findViewById(R.id.list) as ListView

val list = listOf("a", "B", "C")

val arrayAdapter = ArrayAdapter (this,
android.R.layout.simple_list_item_1, list)

arraylList.adapter = ZeroElementListDecorator (arrayAdapter)

In ZeroElementListDecorator, it might look complicated that we needed to override
four methods, but in fact there are eight more of them and we didn't have to override them,
thanks to Kotlin's class delegation. We can see that Kotlin class delegation is making the
implementation of the Decorator pattern much easier.

The Decorator pattern is really simple to implement and is pretty intuitive. It can be used in
lots of different cases to extend a class with extra functionality. It is really safe and often
referred to as a good practice. These examples are just some of the possibilities provided by
class delegation. I am sure that the reader will find more use cases with the presented
patterns and use class delegation to make the project more clean, safe, and concise.

Property delegation

Kotlin allows not only class delegation, but also property delegation. In this section, we are
going to find out what delegated properties are, review property delegates from the Kotlin
standard library, and learn how to create and use custom property delegates.

What are delegated properties?

Let's start with an explanation of what property delegates are. Here is an example of the use
of property delegation:

class User(val name: String, val surname: String)

var user: User by UserDelegate() // 1

println (user.name)
user = User ("Marcin", "Moskala")

1. We are delegating the user property to an instance of UserDelegate (which is
created by the constructor).

[304]

Delegates

Property delegation is similar to class delegation. We delegate to an object using the same
keyword (by). Each call to a property (set/get) will be delegated to another object
(UserDelegate). This way, we can reuse the same behavior for multiple properties, for
example, setting a property value only when some criteria are met, or adding a log entry
when a property is accessed/updated.

We know that a property doesn't really need a backing field. It might be defined just by a
getter (read-only) or a getter/setter (read-write). Under the hood, property delegates are just
translated to corresponding method calls (setvValue/getValue). The preceding example
would be compiled with the following code:

var pS$delegate = UserDelegate ()
var user: User

get () = pSdelegate.getValue (this, ::user)
set (value) {
pSdelegate.setValue (this, ::user, value)

}

The example shows that by using the by keyword, we are delegating the setter and getter
calls to a delegate. That is why any object that has the getvValue and setvalue functions
with the correct parameters (this will be explained later) can be used as a delegate (for read-
only properties, getValue is enough, because only the getter is needed). It is important that
all that class needs to be able to serve as a property delegate is to have these two methods.
No interface is needed. Here is an example implementation of UserDelegate:

class UserDelegate {
operator fun getValue (thisRef: Any?, property: KProperty<*>):
User = readUserFromFile ()
operator fun setValue(thisRef: Any?, property: KProperty<*>,
user:User) A
saveUserToFile (user)
}
/...
}

The setValue and getValue methods are used to set and get the value of a property (the
property setter call is delegated to a setvValue method, and the property getter delegates
the value to the getvalue method). Both functions need to be marked with the operator
keyword. They have a special set of parameters that determine where and to which
property the delegate can serve. If a property is read-only, then an object only needs to have
a getValue method to be able to serve as its delegate:

class UserDelegate {

operator fun getValue (thisRef: Any?, property: KProperty<*>):

[305]

Delegates

User = readUserFromFile ()

}

The type returned by the getvalue method and the type of property that the user defined
in the setvalue method determines the type of the delegated property.

The type of the first parameter of both the getvValue and setValue functions (thisRef) is
contains a reference to the context in which a delegate is used. It can be used to restrict the
types that a delegate can be used for. For example, we can define delegate that might be
used only inside an Activity class in the following way:

class UserDelegate {
operator fun getValue (thisRef: Activity, property: KProperty<*>):
User = thisRef.intent
.getParcelableExtra ("com.example.UserKey")

}

As you can see, there will be a reference to this provided in all the contexts where it is
available. Only inside an extension function or on extension property, null is placed instead.
Reference to this is used to get some data from context. If we would type it to Activity,
then we would be able to use this delegate only inside Activity (in any context where
this is of the type Activity).

Also, if we want to force the delegate to be used only on the top-level, we can then specify
the first parameter (thisRef) type as Nothing?, because the only possible value of this
type is null.

Another parameter in these methods is property. It contains a reference to a delegated
property, which contains its metadata (property name, type, and so on).

Property delegation can be used for properties defined in any context (top-level properties,
member properties, local variables, and so on):

var a by SomeDelegate() // 1

fun someTopLevelFun () {
var b by SomeDelegate() // 2
}

class SomeClass () {
var c by SomeDelegate() // 3

fun someMethod () {
val d by SomeDelegate() // 4
}

[306]

Delegates

1. At top-level property with a delegate.

2. Alocal variable (inside a top-level function) with a delegate.
3. A member property with a delegate.

4. Alocal variable (inside a method) with delegate.

In the next few sections, we will describe delegates from the Kotlin standard library. They
are important not only because they are often useful, but also because they are good
examples of how property delegation can be used.

Predefined delegates

The Kotlin standard library contains some property delegates that are very handy. Let's
discuss how they can be used in real-life projects.

The lazy function

Sometimes we need to initialize an object, but we want to make sure that the object will be
initialized only once, when it is used for the first time. In Java, we could solve this problem
in the following way:

private var _someProperty: SomeType? = null
private val somePropertyLock = Any ()
val someProperty: SomeType
get () {
synchronized (somePropertyLock) {
if (_someProperty == null) {
_someProperty = SomeType ()

}

return _someProperty!!
}

This construction is a popular pattern in Java development. Kotlin allows us to solve this
problem in a much simpler way by providing the 1azy delegate. It is the most commonly
used delegate. It works only with read-only properties (val) and its usage is as follows:

val someProperty by lazy { SomeType () }
The lazy function in the standard library function that is providing delegate:

public fun <T> lazy(initializer: () -> T):
Lazy<T> = SynchronizedLazyImpl (initializer)

[307]

Delegates

Formally, in this example object of SynchronizedLazyImpl, itis used as a property
delegate, although most often it is called a lazy delegate from its corresponding function
name, the same way other delegates are named from the names of the functions that
provide them.

A lazy delegate also has a thread safety mechanism. By default, delegates
are fully thread-safe, but we can change this behavior to make this
function more efficient in situations where we know that there never will
be more than one thread using it at the same time. To fully turn off thread-
safety mechanisms, we need to place the enum type value
LazyThreadSafetyMode .NONE as a first argument of the 1azy function:

val someProperty by lazy(LazyThreadSafetyMode.NONE) {
SomeType () }

Thanks to the lazy delegate, the initialization, of the property is delayed until the value is
needed. Usage of the lazy delegate provides several benefits:

e Faster class initialization leading to faster application startup time, because value
initialization is delayed until they are used for the first time

e Some values may never be used for certain flows, so they will never be
initialized--we save resources (memory, processor time, and battery)

Another benefit is that some objects need to be created later, after their class instance has
been created. For example, in Act ivity we cannot access the resources before the layout is
set using the setContentView method, which is typically called inside the onCreate
method. This will be presented it in this example. Let's look at the Java class with view
reference elements filled in the classic Java way:

//Java
public class MainActivity extends Activity {

TextView questionLabelView
EditText answerLabelView
Button confirmButtonView

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);

questionLabelView = findViewById<TextView>
(R.id.main_question_label);
answerLabelView = findViewById<EditText>

[308]

Delegates

(R.id.main_answer_label);
confirmButtonView = findViewById<Button>
(R.id.main_button_confirm);

}
If we translate this into Kotlin one to one, it will look as follows:

class MainActivity : Activity () {

var questionlLabelView: TextView? = null
var answerLabelView: TextView? = null
var confirmButtonView: Button? = null

override fun onCreate (savedInstanceState: Bundle) {
super.onCreate (savedInstanceState)
setContentView (R.layout.main_activity)

questionLabelView = findViewById<TextView>
(R.id.main_question_label)

answerLabelView = findViewById<TextView>
(R.id.main_answer_label)

confirmButtonView = findViewById<Button>
(R.id.main_button_confirm)

}

Using the lazy delegate, we can implement this behavior in a simpler way:

class MainActivity : Activity () |

val questionlLabelView: TextView by lazy

{ findViewById(R.id.main_question_label) as TextView }
val answerLabelView: TextView by lazy

{ findViewById(R.id.main_answer_label) as TextView }
val confirmButtonView: Button by lazy

{ findViewById(R.id.main_button_confirm) as Button }

override fun onCreate (savedInstanceState: Bundle) {
super.onCreate (savedInstanceState)
setContentView (R.layout.main_activity)

[309]

Delegates

The benefits of this approach are as follows:

e The property is declared and initialized in a single place, so the code is more
concise.

e The properties are non-nullable instead of nullable. This prevents lots of useless
nullability checks.

e The properties are read-only so, thanks to that, we have all the benefits, such as
thread synchronization and smart casts.

e The lambda passed to the lazy delegate (containing findviewById) will be
executed only when the property is accessed for the first time.

¢ Values will be taken later than during class creation. This will speed up the
startup. If we won't use some of these views, their values won't be taken at all
(findviewById is not really an efficient operation when the view is complex).

¢ Any unused property will be marked by the compiler. In the Java

implementation they won't, because a set value would be recognized by the
compiler as usage.

We can improve the preceding implementation by extracting the common behavior and
converting it into an extension function:

fun <T: View> Activity.bindView(viewId: Int) = lazy { findViewById(viewId)
as T }

Then, we can define the view bindings in simpler, more concise code:
class MainActivity : Activity () {
var questionLabelView: TextView by bindView (R.id.main_question_label) //

var answerLabelView: TextView by bindView (R.id.main_answer_label) // 1
var confirmButtonView: Button by bindView (R.id.main_button_confirm) // 1

override fun onCreate (savedInstanceState: Bundle) {
super.onCreate (savedInstanceState)
setContentView (R.layout.main_activity)

}

1. We don't need to set the type provided to the bindview function because it is
inferred from the property type.

Now we have a single delegate that calls findviewById under the hood, when we access a
particular view for the first time. This is a very concise solution.

[310]

Delegates

There is another way of dealing with this problem. The current popular
one is the Kotlin Android Extension plugin, which generates auto-binding to
views in Activities and Fragments. We will discuss the practical
applications in chapter 9, Making Your Marvel Gallery Application.

Even with such support, there are still benefits to be had from staying with bindings. One is
explicit knowledge of which elements of the view we are using, and another is the
separation between the name of element ID and the name of the variable in which we hold
this element. Also compilation time is faster.

The same mechanism can be applied to solve other Android related problems, for example,
when we pass an argument to Act ivity. The standard Java implementation looks as

follows:

//Java
class SettingsActivity extends Activity {

final Doctor DOCTOR_KEY = "doctorKey"
final String TITLE_KEY = "titleKey"

Doctor doctor
Address address
String title

public static void start (Context context, Doctor doctor,
String title)
Intent intent = new Intent (context, SettingsActivity.class)

intent.putExtra (DOCTOR_KEY, doctor)
intent.putExtra (TITLE_KEY, title)
context.startActivity (intent)

}

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);

doctor = getExtras () .getParcelable (DOCTOR_KEY)
title = getExtras().getString (TITLE_KEY)

ToastHelper.toast (this, doctor.id)
ToastHelper.toast (this, title)

[311]

Delegates

We could write the same implementation in Kotlin, but we can also retrieve parameter
values (getString/getParcelable) together with the variable declaration. To do this, we
need the following extension functions:

fun <T : Parcelable> Activity.extra(key: String) = lazy
{ intent.extras.getParcelable<T> (key) }

fun Activity.extraString(key: String) = lazy
{ intent.extras.getString(key) }

Then we can get extra parameters by using the extra and extraString delegates:

class SettingsActivity : Activity () A

private val doctor by extra<Doctor> (DOCTOR_KEY) // 1
private val title by extraString(TITLE_KEY) // 1

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
setContentView (R.layout.settings_activity)
toast (doctor.id) // 2
toast (title) // 2

companion object { // 3
const val DOCTOR_KEY = "doctorKey"
const val TITLE_KEY = "titleKey"

fun start (context: Context, doctor: Doctor, title: String) { // 3
ontext.startActivity (getIntent<SettingsActivity> () .apply { // 4
putExtra (DOCTOR_KEY, doctor) // 5
putExtra (TITLE_KEY, title) // 5
})

1. We are defining properties for which values should be retrieved from Activity
arguments using the corresponding keys.

2. Here, we access properties from arguments within the onCreate method. When
we ask for the property (use getter), the lazy delegate will get its value from
extras and store it for later use.

3. To make a static method to start the activity, we need to use a companion object.

[312]

Delegates

4. SettingsActivity::class.java is analous of the Java class reference
SettingsActivity.class.

5. We are using methods defined in chapter 7, Extension Functions and Properties.

We can also make functions to retrieve other types, which can be held by Bundle (for
example, Long, and Serializable). This is a pretty nice alternative to argument injection
libraries such as ActivityStarter, when we want to maintain a really fast compilation
time. We can use similar functions to bind strings, colors, services, repositories, and other
parts of the model and logic:

fun <T> Activity.bindString(€IdRes id: Int): Lazy<T>
lazy { getString(id) }

fun <T> Activity.bindColour (@IdRes id: Int): Lazy<T>
lazy { getColour (id) }

In Activity, everything that is heavy or depends on arguments should be declared using a
lazy delegate (or provided asynchronously). Also, we should define as lazy all the elements
that depend on elements that need to be initialized lazily. For example, presenter
definition, which depends on the doctor property:

val presenter by lazy { MainPresenter (this, doctor) 1}

Otherwise, the attempt to construct a MainPresenter object will take place during class
creation, when we cannot yet read values from the intent and it wouldn't be able to fill the
doctor property, so the application would crash.

These examples are enough to convince us that the lazy delegate is really useful in Android
projects. It is also a good property delegate to start with, as it is simple and elegant.

The notNull function
The notNull delegate is the simplest standard library delegate:

var someProperty: SomeType by notNull ()

The functions that provide most standard library delegates (including the
notNull function) are defined in Delegates. To use them, we need to
either refer to this object (Delegates.notNull ()) or import it (import
kotlin.properties.Delegates.notNull). We will assume in
examples that this object has been imported, so we will omit a reference to
it.

[313]

Delegates

The notNull delegate allows us to define a variable as non-nullable, which is initialized at
a later time and not during object construction. We can define a variable as non-nullable
without providing a default value. This is an alternative to lateinit:

lateinit var someProperty: SomeType

The notNull delegate provides almost the same effect as 1ateinit (only the error message
is different). In the case of trying to use this property before setting the value first, it will
throw an I1legalStateException and will terminate an Android application. Therefore,
it should be used only when we know that a value will be set before the first attempted use
of it.

The difference between lateinit and the notNull delegate is pretty simple. lateinit is
faster than the notNull delegate so it should be used instead of the notNull delegate as
often as possible. But it has restrictions; 1ateinit cannot be used for primitives or for top-
level properties, so in these cases, notNull is used instead.

Let's look at notNull delegate implementation:

public fun <T: Any> notNull(): ReadWriteProperty<Any?, T> =
NotNullVar ()

As we can see, notNull is actually a function returning an object that is an instance of our
actual delegate hidden behind a ReadWriteProperty interface. Let's look at an actual
delegate definition:

private class NotNullVar<T: Any>() : ReadWriteProperty<Any?, T> { // 1
private var value: T? = null

public override fun getValue (thisRef: Any?,
property: KProperty<*>): T {
return value ?: throw IllegalStateException ("Property
${property.name} should be initialized before get.") // 2
}

public override fun setValue (thisRef: Any?,
property: KProperty<*>, value: T) {
this.value = value

}

1. The class is private. It is possible because it is provided by the notNull function,
which returns it as ReadWriteProperty<aAny?, T>, which is a public interface.

[314]

Delegates

2. Here, we see how a return value is provided. If it is null during usage, then value
was not set and the method will throw an error. Otherwise, it is returning the
value.

This delegate should be pretty simple to understand. The setValue function sets the value
to a nullable field and getVvalue returns the value of this field if it is not null, and throws
an exception if it is. Here is an example of such an error:

var name: String by.notNull ()
println (name)
// Error: Property name should be initialized before get.

This is a really simple example of the use of delegated properties, but also a good
introduction to how property delegates work. Delegated properties are very powerful
constructs that have multiple applications.

The observable delegate

The observable is the most useful standard library delegate for mutable properties. Every
time a value is set (the setvalue method is called), the lambda function from the
declaration is invoked. A simple example of the observable delegate is as follows:

var name: String by Delegates.observable ("Empty") {
property, oldvValue, newValue -> // 1
println("$Soldvalue -> $newValue") // 2

}

// Usage

name = "Martin" // 3
Prints: Empty —-> Martin
name = "Igor" // 3
Prints: Martin -> Igor
name = "Igor" // 3, 4

Prints: Igor —> Igor

1. The arguments of the lambda function are as follows:
e property: A reference to the delegated property. Here, it is a reference
to the name. This is the same as the property from setvalue and
getValue, which was described earlier. It is of the KProperty type. In

this case (and in most cases), we can put the underscore ("_" sign)
instead when it is not used.

[315]

Delegates

e oldvalue: The previous value of the property (before the change).
¢ newValue: The new value of the property (after the change).

2. The lambda function will be invoked each time a new value is set to the property.

3. When we set the new value, then the value is updated, but at the same time the
lambda method declared in the delegate is called.

4. Note that lambda is invoked each time setter is used and it doesn't matter if a
new value is equal to the previous one.

It is particularly important to remember that the lambda is called each time a new value is
set, and not when an object's inner state is changed. For example:

var list: MutableList<Int> by observable (mutableListOf ())
{ _, old, new —->

println("List changed from $old to S$new")
}

// Usage
list.add (1) // 1
list = mutableListOf (2, 3)

// 2, prints: List changed from [1] to [2, 3]

1. This does not print anything, because we don't change the property (the setter is
not used). We only change the property defined inside the list, but not the object
itself.

2. Here, we change the value of the list, so the lambda function from the observable
delegate is called and text is printed.

The observable delegate is very useful for immutable types, as opposed to mutable ones.
Fortunately, all basic types in Kotlin are immutable by default (List, Map, Set, Int,
and String). Let's look at a practical Android example:

class SomeActivity : Activity () |
var list: List<String> by Delegates.observable (emptyList ()) A
prop, old, new —> if(old != new) updatelistView (new)
t
//

[316]

Delegates

Every time we change the list, the view is updated. Note that, while List is immutable, we
need to use the setter when we want to apply any changes, so we can be sure the after this
operation the list will be updated. It is much easier than remembering to call the
updatelistView method every time the list changes. This pattern can be used widely in
the project to declare properties that edit views. It changes the way the update view
mechanism can work.

Another problem that can be solved using an observable delegate is that in ListAdapters
there was always the problem that notifyDataSetChanged had to be called each time
elements on the list were changed. In Java, the classic solution was to encapsulate the list,
and call notifyDataSetChanged in each function that modifies it. In Kotlin, we can
simplify this using an observable property delegate:

var list: List<LocalDate> by observable(list) { _, old, new -> // 1
if (new != old) notifyDataSetChanged()
}

1. Note that here, the list is immutable, so there is no way to change its elements
without using not i fyDataSetChanged.

The observable delegate is used to define behavior that should happen upon the property
value change. It is most frequently used when we have operations that should be done
every time we change a property, or when we want to bind a property value with a view or
some other values. But inside the function, we cannot decide whether a new value will be
set or not. For this, the vetoable delegate is used instead.

The vetoable delegate

The vetoable function is a standard library property delegate that works in a similar way
to the observable delegate, but with two main differences:

¢ The lambda from an argument is called before a new value is set

e It allows the lambda function from a declaration to decide if a new value should
be accepted or rejected

For example, if we have an assumption that the list must always contain a larger number of
items than the old one, then we will define the following vetoable delegate:

var list: List<String> by Delegates.vetoable (emptyList ())
{ _, old, new —->
new.size > old.size

}

[317]

Delegates

If a new list does not contain a larger number of items than the old one, then the value will
not change. So, we can treat vetoable like observable, which also deciding if the value
should be changed or not. Let's suppose that we want to have a list bounded to view, but it
needs to have three elements at least. We don't allow any change that will make it possible
to have fewer elements. The implementation would look as follows:

var list: List<String> by Delegates.vetoable (emptyList ())
{ prop, old, new —>
if (new.size < 3) return@vetoable false // 1
updatelistView (new)
true // 2

1. If a new list size is smaller than 3, then we do not accept it, and return false
from lambda. This false value returned by return statement with label (that is
used to the return from the lambda expression) is the information that the new
value shouldn't be accepted.

2. This lambda function needs to return a value. This value is taken either from
return with a label or by the last line of the lambda body. Here, the value t rue
informs us that a new value should be accepted.

Here is a simple example of its usage:

listVetoable = 1listOf("A", "B", "C") // Update A, B, C
println(listVetoable) // Prints: [A, B, C]
listVetoable = 1istOf ("A") // Nothing happens
println(listVetoable) // Prints: [A, B, C]
listVetoable = listoOf("a", "B", "C", "D", "E")

// Update A, B, C, D, E

println(listVetoable) // Prints: [A, B, C, D, E]

We could also make it unchangeable for some other reasons, for example, we might still be
loading the data. Also, the vetoable property delegate can be used in validators, for
example:

var name: String by Delegates.vetoable("") { prop, old, new ->
if (isvalid(new)) {
showNewData (new)
true
} else {
showNameError ()
false

[318]

Delegates

This property can be changed only to a value that is correct according to the predicate

isValid (new).

Property delegation to the Map type

The standard library contains extensions for Map and Mut ableMap with the String key
type that provides the getValue and setValue functions. Thanks to them, map can also be

used as a property delegate:

class User (map: Map<String, Any>) { // 1
val name: String by map
val kotlinProgrammer: Boolean by map

}

// Usage
val map: Map<String, Any> = mapOf(// 2
"name" to "Marcin",
"kotlinProgrammer" to true
)
val user = User (map) // 3
println (user.name) // Prints: Marcin
println (user.kotlinProgrammer) // Prints: true

1. The map key type needs to be st ring, while the value type is not restricted. It is
often Any or Any?.
2. This creates Map, which contains all the values.

3. Provides a map to an object.

This can be useful when we are keeping data in Map:

e When we want to simplify access to these values

e When we define a structure that tells us what kind of keys we should expect in
this map

e When we ask for a property that is delegated to Map, its value will be taken from
this map value for a key equal to the property name

How is it implemented? Here is the simplified code from the standard library:

operator fun <V, V1: V> Map<String, V>.getValue(// 1

thisRef: Any?, // 2

property: KProperty<*>): V1 { // 3
val key = property.name // 4
val value = get (key)

[319]

Delegates

if (value == null && !containsKey (key)) {
throw NoSuchElementException ("Key ${property.name}
is missing in the map.")
} else {
return value as V1 // 3
}
}

1. vis a type of value on the list.

2. thisRef is of type Any?, so Map can be used as a property delegate in any
context.

3. V1 is areturn type. This is often inferred from a property, but it must be a
subtype of type v.

4. The name of the property is used as key on map.

Keep in mind that this is just an extension function. All that an object needs to be a delegate
is to contain the getvValue method (and setVvalue, for read-write properties). We can even
create a delegate from an object of an anonymous class using the object declaration:

val someProperty by object { // 1
operator fun getValue(thisRef: Any?,
property: KProperty<*>) = "Something"
}
println(someProperty) // prints: Something

1. The object does not implement an interface. It just contains the get Value method

with a proper signature. This is enough to make it work as a read-only property
delegate.

Note that in map, there needs to be an entry with such a name when we are asking for value

of a property, otherwise an error will be thrown (making the property nullable does not
change this).

Delegating fields to a map, can be useful, for example, when we have an object from an API
with dynamic fields. We would like to treat the provided data as an object to have easier
access to its fields, but we also need to keep it as a map to be able to list all the fields given
by an API (even ones that we were not expecting).

In the previous example, we used Map, which is immutable; therefore, the object properties
were read-only (val). If we want to make an object that can be changed, then we should use
MutableMap, and then the properties can be defined as mutable (var). Here is an example:

class User(val map: MutableMap<String, Any>) {
var name: String by map

[320]

Delegates

var kotlinProgrammer: Boolean by map

override fun toString(): String = "Name: S$name,
Kotlin programmer: S$kotlinProgrammer"

}

// Usage
val map = mutableMapOf(// 1
"name" to "Marcin",
"kotlinProgrammer" to true
)
val user = User (map)
println(user) // prints: Name: Marcin, Kotlin programmer: true

user.map.put ("name", "Igor") // 1
println (user) // prints: Name: Igor, Kotlin programmer: true
user.name = "Michal" // 2

println(user) // prints: Name: Michal, Kotlin programmer: true

1. The property value can be changed by just changing the value of the map.

2. The property value can also be changed as in any other property. What is really
happening there is that the value change is delegated to setvalue, which
changing map.

While properties here are mutable, the setvValue function must also be provided. It is
implemented as an extension function for MutableMap. Here is the simplified code:

operator fun <V> MutableMap<String, V>.setValue (
thisRef: Any?,
property: KProperty<*>,
value: V

put (property.name, value)

}

Note how even such simple functions can allow innovative ways of using common objects.
This shows the possibilities property delegates offer.

Kotlin allows us to define custom delegates. Right now, we can find many libraries that
provide new property delegates that can be used for different purposes in Android. There
are various ways in which property delegation can be used in Android. In the next section,
we will see some examples of custom property delegates, and we will take a look at cases
where this feature can be really helpful.

[321]

Delegates

Custom delegates

All previous delegates came from the standard library, but we can easily implement our
own property delegates. We've seen that in order to allow a class to be a delegate, we need
to provide the getvValue and setValue functions. They must have a concrete signature,
but there is no need to extend a class or implement the interface. To use an object as a
delegate, we don't even need to change its internal implementation, because we can define
getValue and setValue as extension functions. However, when we are creating custom
classes to be delegates, then an interface may be useful:

e [t defines a function's structure, so we can generate proper methods in Android
Studio.

e If we are creating libraries, then we might want to make delegate classes private
or internal to prevent inappropriate use of them. We've seen this situation in the
notNull section, where the NotNullvar class was private and served as a
ReadWriteProperty<Any?, T>, which is an interface.

Interfaces that provide full functionality to allow a class to be a delegate are
ReadOnlyProperty (for read-only properties) and ReadWriteProperty (for read-write
properties). These interfaces are really useful, so let's look at their definitions:

public interface ReadOnlyProperty<in R, out T> {
public operator fun getValue (thisRef: R,
property: KProperty<*>): T
}

public interface ReadWriteProperty<in R, T> {
public operator fun getValue (thisRef: R,
property: KProperty<*>): T
public operator fun setValue(thisRef: R,
property: KProperty<*>, value: T)
}

The values of parameters have already been explained, but let's look at them again:

e thisRef: A reference to an object where the delegate is used. Its type defines the
context in which the delegate can be used.

e property: A reference that contains data about a delegated property. It contains
all the information about this property, such as its name or type.
e value: A new value to set.

[322]

Delegates

The parameters thisRef and property are not used in the following
delegates: lazy, observable and vetoable. The Map, MutableMap, and
notNull delegates use property to obtain the name of the property. But
these parameters can be used in different cases.

Let's look at some short, but useful, examples of custom property delegates. We've seen the
lazy property delegate for read-only properties; however, sometimes we need a lazy
property that is mutable. If it is asked for the value before initialization, then it should fill its
value from the initializer and return it. In other cases, it should act like a normal mutable

property:

fun <T> mutablelazy(initializer: () -> T): ReadWriteProperty<Any?, T> =
MutableLazy<T> (initializer) //1

private class MutablelLazy<T>(val initializer: () -> T)
ReadWriteProperty<Any?, T> { //2

private var value: T? = null //3
private var initialized = false

override fun getValue (thisRef: Any?, property: KProperty<*>): T {//4
synchronized(this) { //5
if (!'initialized) {
value = initializer ()
}

return value as T //6

}

override fun setValue (thisRef: Any?,
property: KProperty<*>, value: T) { //4
synchronized (this) {
this.value = value
initialized = true

1. The delegate is hidden behind the interface and served by a function, and as such
allows us to change the implementation of MutableLazy without worrying
whether it will affect the code that is using it.

[323]

Delegates

2.

We are implementing ReadWriteProperty. It is optional, but really useful
because it imposess the correct structure of a read-write property. Its first type is
Any?, meaning that we are allowed to use this property delegate in any context,
including at the top level. Its second type is generic. Note that there are no
restrictions on this type, so it might be nullable too.

The value of the property is stored in the value property, and its existence is
stored in an initialized property. We need to do it this way because we want
to allow T to be a nullable type. Then, null in the value could mean either that it
has not yet been initialized or that it is just equal to null.

We don't need to use the operator modifier, because it has already been used in
the interface.

If getvalue is called before any value is set, then the value is filled using the
initializer.

We need to cast the value to T because it might be not-null, and we initialized the
value as nullable with null as an initial value.

This property delegate might be useful in different use cases in Android development; for
example, when a default value of a property is stored in a file and we need to read it (which
is a heavy operation):

var gameMode : GameMode by mutablelazy {
getDefaultGameMode ()
}

var mapConfiguration : MapConfiguration by mutablelLazy {
getSavedMapConfiguration ()
}

var screenResolution : ScreenResolution by mutablelazy {
getOptimalScreenResolutionForDevice ()

}

This way, if a user sets a custom value for this property before its used, we won't have to
calculate it ourselves. The second custom property delegate will allow us to define the
property getter:

val a: Int get() =1
val b: String get () = "KOKO"
val c: Int get() =1 + 100

[324]

Delegates

Before Kotlin 1.1, we always had to define the type of a property. To avoid this, we can
define the following extension function to a functional type:

inline operator fun <R> (() -> R).getValue/(
thisRef: Any?,
property: KProperty<*>

y: R = invoke ()

Then, we can define the properties with similar behavior in this way:

val a by { 1 }
val b by { "KOKO" }
val ¢ by { 1 + 100 }

This way is not preferred because of its decreased efficiency, but it is a nice example of the
possibilities that delegated properties provide us. Such a small extension function is makes
a functional type be a property delegate. This is the simplified code in Kotlin after
compilation (note that the extension function is marked as inline, so its calls were replaced
with its body):

private val “a$delegate = { 1 }

val a: Int get() = “aSdelegate’ ()
private val “b$delegate’ = { "KOKO" }
val b: String get () = "bS$Sdelegate’ ()
private val “c$delegate’ = { 1 + 100 }
val c: Int get() = “cSdelegate’ ()

In the next section, we are going to look at some custom delegates created for real projects.
They will be presented together with the problems that they solve.

View binging

When we use Model-View-Presenter (MVP) in the project, then we need to make all the
changes in View using the Presenter. Thus, we are forced to create multiple functions on the
View, such as:

override fun getName (): String {
return nameView.text.toString/()

}

override fun setName (name: String) {
nameView.text = name

}

[325]

Delegates

We also have to define the functions in the following interface:

interface MainView {
fun getName () : String
fun setName (name: String)

}

We may simplify the preceding code and reduce the need for setter/getter methods by using
property binding. We can bind the property to view element. This is the result we would
like to achieve:

override var name: String by bindToTex (R.id.textView)
And here is interface:

interface MainView {
var name: String

}

The preceding example is more concise and easier to maintain. Note that we provide the
element ID as argument. A simple class that will give us the expected result is as follows:

fun Activity.bindToText (
@IdRes viewId: Int) = object
ReadWriteProperty<Any?, String> {
val textView by lazy { findViewById<TextView> (viewId) }

override fun getValue (thisRef: Any?,
property: KProperty<*>): String {
return textView.text.toString/()

override fun setValue (thisRef: Any?,
property: KProperty<*>, value: String) {
textView.text = value

}

We could create a similar binding for different view properties and different contexts
(Fragment, Service). Another really useful tool is binding to visibility, which is binding a
logical property (with the type Boolean) to the visibility of a view element:

fun Activity.bindToVisibility(

@IdRes viewId: Int) = object
ReadWriteProperty<Any?, Boolean> {

val view by lazy { findViewById(viewId) }

[326]

Delegates

override fun getValue (thisRef: Any?,
property: KProperty<*>): Boolean {
return view.visibility == View.VISIBLE

override fun setValue (thisRef: Any?,
property: KProperty<*>, value: Boolean) {
view.visibility = if (value) View.VISIBLE else View.GONE

}

These implementations provide possibilities that would be really hard to achieve in Java.
Similar bindings might be created for other vView elements to make using MVP shorter and
simpler. The snippets that were just presented are only simple examples, but better
implementations can be found in the Kot 1inAndroidvViewBindings library (https://
github.com/MarcinMoskala/KotlinAndroidviewBindings).

Preference binding

To show more complex examples, we will present one that helps

with sharedPreferences usage. There are better Kotlin approaches to this problem, but
this examples is nice to analyze, and it is a reasonable example of property delegate usage
on the extension property. As a result, we want to be able to treat the values saved in
SharedPreferences as if they were properties of a SharedPreferences object. Here is
an example usage:

preferences.canEatPie = true

if (preferences.canEatPie) {
// Code

}

Here are the examples for extension property definitions:

var SharedPreferences.canEatPie:

Boolean by bindToPreferenceField(true) // 1

var SharedPreferences.allPieInTheWorld:

Long by bindToPreferenceField (0, "AllPieKey") //2

1. The property of type Boolean. When a property is non-nullable, default values
have to be provided in the first argument of the function.

[327]

https://github.com/MarcinMoskala/KotlinAndroidViewBindings
https://github.com/MarcinMoskala/KotlinAndroidViewBindings
https://github.com/MarcinMoskala/KotlinAndroidViewBindings
https://github.com/MarcinMoskala/KotlinAndroidViewBindings
https://github.com/MarcinMoskala/KotlinAndroidViewBindings
https://github.com/MarcinMoskala/KotlinAndroidViewBindings
https://github.com/MarcinMoskala/KotlinAndroidViewBindings
https://github.com/MarcinMoskala/KotlinAndroidViewBindings
https://github.com/MarcinMoskala/KotlinAndroidViewBindings
https://github.com/MarcinMoskala/KotlinAndroidViewBindings

Delegates

2. The property can have a custom key provided. It is useful in real-life projects,
where we must have control over this key (for example, to not change it
unintentionally during property renaming).

Let's analyze how it works through a deep investigation of the not-null property. First, let's
look at the provider functions. Note that the type of the property determines the way the
value is taken from SharedPreferences (because there are different functions, such as
getString, getInt, and so on). To obtain it, we need this class type to be provided as the
reified type of the inline function, or through the parameter. This is what a delegate
provider function looks like:

inline fun <reified T : Any> bindToPreferenceField(
default: T?,
key: String? = null
) : ReadWriteProperty<SharedPreferences, T> // 1
= bindToPreferenceField(T::class, default, key)

fun <T : Any> bindToPreferenceField(// 2
clazz: KClass<T>,
default: T?,
key: String? = null
) : ReadWriteProperty<SharedPreferences, T>
= PreferenceFieldBinder (clazz, default, key) // 1

1. Both functions returns an object behind the interface
ReadWriteProperty<SharedPreferences, T>.Note that context here is set to
SharedPreferences, so it can be used only there or in SharedPreferences
extensions. This function is defined because the type parameter cannot be
redefined, and we need to provide type as a normal parameter.

2. Note that the bindToPreferenceField function cannot be private or internal,
because inline functions can use only functions with the same or less restricted
modifiers.

Finally, let's look at the PreferenceFieldDelegate class, which is our delegate:

internal open class PreferenceFieldDelegate<T : Any>(
private val clazz: KClass<T>,
private val default: T?,
private wval key: String?

) : ReadWriteProperty<SharedPreferences, T> {

override operator fun getValue (thisRef: SharedPreferences,
property: KProperty<*>): T
= thisRef.getLong(getValue<T> (clazz, default, getKey (property))

[328]

Delegates

override fun setValue (thisRef: SharedPreferences,
property: KProperty<*>, value: T) {
thisRef.edit () .apply
{ putValue (clazz, value, getKey(property)) }.apply()

private fun getKey (property: KProperty<*>) =
key ?: "${property.name}Key"
}

Now we know how the thisRef parameter is used. It is of the type SharedPreferences,
and we can use it to get and set all the values. Here are definitions of the functions used to
get and set values depending on the property type:

internal fun SharedPreferences.Editor.putValue(clazz: KClass<*>, value:
Any, key: String) {
when (clazz.simpleName) |
"Long" -> putlLong(key, value as Long)
"Int" -> putInt (key, value as Int)
"String" -> putString(key, value as String?)
"Boolean" -> putBoolean (key, value as Boolean)
"Float" —-> putFloat (key, value as Float)
else -> putString(key, value.todson())

internal fun <T: Any> SharedPreferences.getValue (clazz: KClass<*>, default:
T?, key: String): T = when (clazz.simpleName) {

"Long" -> getlLong(key, default as Long)

"Int" -> getlInt (key, default as Int)

"String" -> getString(key, default as? String)

"Boolean" -> getBoolean (key, default as Boolean)

"Float" —-> getFloat (key, default as Float)

else -> getString(key, default?.todson()).fromJson(clazz)
} as T

We also need toJson and fromJson defined:

var preferencesGson: Gson = GsonBuilder () .create()
internal fun Any.toJdson() = preferencesGson.toJdson(this)!!
internal fun <T : Any> String.fromJson(clazz: KClass<T>) =
preferencesGson.fromJson (this, clazz.java)

[329]

Delegates

With such definitions, we can define additional extension properties
for SharedPreferences:

var SharedPreferences.canEatPie: Boolean by bindToPreferenceField (true)

As we've already seen in chapter 7, Extension Functions and Properties, we cannot really add
anything to a class without modifying it. Under the hood, the extension property is
compiled to getter and setter functions, and they delegates calls to a created delegate:

val 'canEatPie$delegate' = bindToPreferenceField(Boolean::class, true)

fun SharedPreferences.getCanEatPie(): Boolean {
return 'canEatPieS$delegate'.getValue (this,
SharedPreferences: :canEatPie)

fun SharedPreferences.setCanEatPie (value: Boolean) {

'canEatPieS$delegate'.setValue (this, SharedPreferences::canEatPie,
value)

}

Also remember that extension functions are, in fact, just static functions with an extension
on the first parameter:

val 'canEatPie$delegate' = bindToPreferenceField(Boolean::class, true)

fun getCanEatPie (receiver: SharedPreferences): Boolean {
return 'canEatPie$delegate'.getValue (receiver,
SharedPreferences: :canEatPie)

fun setCanEatPie (receiver: SharedPreferences, value: Boolean) {
'canEatPie$delegate'.setValue (receiver,
SharedPreferences: :canEatPie, value)

}

The examples presented here should be enough to understand how property delegates are
working and how they can be used. Property delegates are used intensively in Kotlin open
source libraries. They are used for fast and simple Dependency Injection (for example,
Kodein, Injekt, and TornadoFX), binding to views (for example
KotlinAndroidViewBindings), SharedPreferences (for example PreferenceHolder,
KotlinPreference), binding to Activity arguments (for example ActivityStarter),
to define property keys on configuration definition (for example, Konfig), or even to define
a database column structure (for example, Kwery). Still, there is a broad field of usages that
are waiting to be discovered.

[330]

Delegates

Providing a delegate

Since Kotlin 1.1, there is an operator, provideDelegate, that is used to provide a delegate
during class initialization. The main motivation behind provideDelegate was that it
allows us to provide a customized delegate depending on traits of property (name, type,
annotations, and so on).

The provideDelegate operator returns a delegate, and types that have this operator do
not need to be delegates themselves in order to be used as a delegate. Here is an example:

class A(val i: Int) {

operator fun provideDelegate (
thisRef: Any?,
prop: KProperty<*>
) = object: ReadOnlyProperty<Any?, Int> {

override fun getValue (
thisRef: Any?,
property: KProperty<*>
) =1

}
val a by A(1)

In this example, 2 is used as a delegate, while it implements neither the getvalue nor
the setvalue function. This is possible because it defines a provideDelegate operator,
which returns the delegate that will be used instead of A. Property delegation is compiled
into the following code:

private val a$delegate = A() .provideDelegate (this, this::prop)
val a: Int
get () = alSdelegate.getValue (this, this::prop)

A practical example can be found in the Kotlin supporting part of the ActivityStarter
library (https://github.com/MarcinMoskala/ActivityStarter). Activity arguments are
defined using annotations, but we can use property delegation to simplify usage from
Kotlin and allow property definition to be defined as read-only and not lateinit:

@Qget:Arg(optional = true) val name: String by argExtra (defaultName)
@Qget:Arg(optional = true) val id: Int by argExtra(defaultId)
@Qget:Arg val grade: Char by argExtra()

Qget:Arg val passing: Boolean by argExtral()

[331]

https://github.com/MarcinMoskala/ActivityStarter
https://github.com/MarcinMoskala/ActivityStarter
https://github.com/MarcinMoskala/ActivityStarter
https://github.com/MarcinMoskala/ActivityStarter
https://github.com/MarcinMoskala/ActivityStarter
https://github.com/MarcinMoskala/ActivityStarter
https://github.com/MarcinMoskala/ActivityStarter
https://github.com/MarcinMoskala/ActivityStarter
https://github.com/MarcinMoskala/ActivityStarter
https://github.com/MarcinMoskala/ActivityStarter
https://github.com/MarcinMoskala/ActivityStarter

Delegates

But there are some requirements:

e When argExtra is used, the property getter has to be annotated

e We need to specify a default value if an argument is optional and the type is not
nullable.

To check these requirements, we need a reference to a property to get a getter annotation.
We cannot have such references in the argExt ra function, but we can implement them

inside provideDevegate:

fun <T> Activity.argExtra(default: T? = null) =

ArgValueDelegateProvider (default)

fun <T> Fragment.argExtra(default: T? = null) =

ArgValueDelegateProvider (default)

fun <T> android.support.véd.app.Fragment.argExtra(default: T? = null) =
ValueDelegateProvider (default)

class ArgValueDelegateProvider<T> (val default: T? = null) {
operator fun provideDelegate (
thisRef: Any?,
prop: KProperty<*>
) : ReadWriteProperty<Any, T> {
val annotation = prop.getter.findAnnotation<Arg> ()
when {
annotation == null ->
throw Error (ErrorMessages.noAnnotation)
annotation.optional && !prop.returnType.isMarkedNullable &&
default == null —->
throw Error (ErrorMessages.optionalValueNeeded)

}
return ArgValueDelegate (default)

internal object ErrorMessages {
const val noAnnotation =
"Element getter must be annotated with Arg"
const val optionalValueNeeded =
"Arguments that are optional and have not-
nullable type must have defaut value specified"

[332]

Delegates

A delegate like this throws an appropriate error when a condition is not fulfilled:

val a: A? by ArgValueDelegateProvider ()
// Throws error during initialization: Element getter must be
// annotated with Arg

@get:Arg(optional = true) val a: A by ArgValueDelegateProvider ()
// Throws error during initialization: Arguments that are optional
// and have not-nullable type must have default value specified.

This way, unacceptable argument definitions throw appropriate errors during object
initialization instead of breaking an application in unexpected situations.

Summary

In this chapter, we described class delegates, property delegates, and how they can be used
to remove redundancy in code. We defined a delegate as an object to which calls from other
objects or properties are delegated. We learned design patterns that class delegation is
strongly connected to: the Delegate pattern and the Decorator pattern.

The delegation pattern was mentioned as an alternative to inheritance, and the Decorator
pattern is a way to add functionality to different kinds of classes that implements the same
interface.

We've seen how property delegation works, the Kotlin standard library property
delegates notNull, lazy, observable, and vetoable, and the use of Map as a delegate.
We learned how they work and when they should be used. We've also seen how to make a
custom property delegate, together with examples of real-life usage.

Knowledge about different features and their usage is not enough--there is also a need to
understand how they can be used together to build great applications. In the next chapter,
we will write a demo application and explain how the various Kotlin features described
throughout this book can be combined together.

[333]

Making Your Marvel Gallery
Application

We've already seen the most important Kotlin features that allow us to make Android
development easier and more productive, but it is hard to understand the whole picture just
by looking at the individual pieces. This is why, in this chapter, we will build a whole
Android application written in Kotlin.

It was a tough decision to choose which application should be implemented in this chapter.
It needed to be short and simple, but at the same time utilize as many Kotlin features as
possible. We also wanted to minimize the number of libraries used, because this is a book
about Android development in Kotlin, not about Android libraries. We wanted to make it
look as good as possible, but to avoid the implementation of custom graphical elements,
because they are usually complex and they are not simplified so much when we move from
Java to Kotlin.

We finally decided to make a Marvel Gallery application--a small app which we can use to
find our favorite Marvel characters and display their details. All data is provided from the
Marvel website by their APL

Making Your Marvel Gallery Application

Marvel Gallery

Let's implement our Marvel Gallery application. This application should allow the
following use cases:

o After starting the application, the user sees a gallery of characters.
e After starting the application, the user can search for a character by their name.
e When the user clicks on a character picture, there is a profile displayed. The

character profile contains the character name, photo, description, and their
occurrences.

These are three use cases that describe the main functionalities of the application. In the
following sections, we are going to implement them one after another. If you get lost during
this chapter, remember that you can always take a look at the complete application on
GitHub (https://github.com/MarcinMoskala/MarvelGallery).

To better understand what we want to build, let's look at some screenshots from the final
version of our application:

] % 02 [}

Marvel Gallery Marvel Gallery

Wolverine

Angel L |
(Warren 3
wigrthington Wolperine | "
?S.fmu) % ;T-: 4 { e Bec) Born with super-human senses
"'_,.-;ﬁ_ A - and the power to heal from
' almost any wound, Wolverine was
captured by a secret Canadian
. organization and given an
lalv Elrir];g unbreakable skeleton and claws.
(Ultimate) Treated like an animal, it took
(@ | years for him to control himself
Mow, he's a premiere member of
both the X-Men and the Avengers

u/

An giel?f_iﬁ.tdrif
Odjpsdaftiy

https://github.com/MarcinMoskala/MarvelGallery

Making Your Marvel Gallery Application

How to use this chapter

This chapter shows all the steps and code necessary to build an application. Its purpose is to
show the step-by-step process of application development. As you read this chapter,
concentrate on the development process and try to understand what the purpose of the
presented code is. You don't need to fully understand layouts and you don't have to
understand unit test definitions, as long as you understand what they are doing.
Concentrate on application structure and Kotlin solutions, which make the final code
simpler. Most solutions have already been described in previous chapters, so they have
only a brief description. The value in this chapter is that their usage is presented in the
context of a concrete application.

You can download the application code from GitHub
(https://github.com/MarcinMoskala/MarvelGallery}

On GitHub, you can see the final code, download it, or clone it to your computer using Git:
git clone git@github.com:MarcinMoskala/MarvelGallery.git

The application also includes UI tests written in Espresso, but they are not
presented in this chapter to make it simpler for readers who are not
proficient in Espresso usage.

[3361]

https://github.com/MarcinMoskala/MarvelGallery

Making Your Marvel Gallery Application

Each section of this chapter has a corresponding Git branch on this project, so if you want to
see how the code looks at the end of the section, then you can just switch to the
corresponding branch:

| Branch: master = New pull request

Switch branches/tags

Branches Tags

-

Character_Gallery_Business_logic_implement

ation

Character_Gallery_Metwork_definition
Character_Gallery_Putting_it_all_together
Character_Gallery_View_implementation

Character_Profile

= o o = O O M =

Character_search
Emply_project Ir
With_ActivityStarter In

+ master Iy

[337]

Making Your Marvel Gallery Application

Also, locally, after you clone the repository, you can check out the corresponding branch
using the following Git command:

git checkout Character_search

If you have an electronic version of this book and you want to make the whole application
by copying and pasting parts of the code, then you can do so, but remember to place files in
the folders corresponding to the package. That way, you will keep a clean structure in the
project.

Note that if you place code from the book in another folder, there will be a warning
displayed:

|package com.sample.marvelgallery. view|

You can intentionally place a file in any folder, because the second fix proposition is to
move the file into the path corresponding to the defined package:

package com.sample.marvelgallery.view

. Change file's package to 'com.sample.marvelgallery.view.common' »

® Move file to '‘com/sample/marvelgallery/view'

% Change package L

You can use this to move your file in the correct location.

[338]

Making Your Marvel Gallery Application

Making an empty project

Before we can start implementing functionalities, we need to create an empty Kotlin
Android project with a single activity, MainActivty. This process was described in
Chapter 1, Beginning Your Kotlin Adventure. Therefore, we don't need to described in depth,
but we will show what the steps are in Android Studio 3.0:

1. Set a name, package, and location for the new project. Remember to tick
the Include Kotlin support option:

Create New Project b4

H Create Android Project

Application name

| MarvelGallery |

Company domain

| sample.com |

Project location

lJ’homefmarcim’AndroidProjectsiMarvelGallery|]D

Package name

com.sample.marvelgallery Edit

[Include C++ support
Include Kotlin support

Previous Next I Cancel H Finish l

[339]

Making Your Marvel Gallery Application

2. We can choose other minimal Android versions, but in this example, we are
going to set API 16:

7* Target Android Devices

Select the form factors and minimum SDK

Some devices require additional SDKs. Low API levels target more devices, but offer fewer APl features.
Phone and Tablet
API16: Android 4.1 (Jelly Bean) [+ |

By targeting APl 16 and later, your app will run on approximately 99.2% of devices.
] Wear

AP1 21: Android 5.0 (Lollipop)
OTv

AP 21: Android 5.0 (Lollipop) n
] Android Auto
["] Android Things

AP 24: Android 7.0 (Nougat) [+ |

Previous I Cancel H Finish l

[340]

Making Your Marvel Gallery Application

3. Choose a template. We don't need any of these templates, so we should start
with Empty Activity:

A Add an Activity to Mobile

Add No Activity

Basic Activity Bottom MNavigation Activity Empty Activity

B (e[

[341]

Making Your Marvel Gallery Application

4. Name the newly created activity. We can keep the name MainActivity:

H Configure Activity

Creates a new empty activity

Activity Name

 MainActivity

Generate Layout File

Layout Name

| activity_main

Backwards Compatibility (AppCompat)

Previous I Cancel ll Finish l

For Android Studio prior to 3.x, we need to follow slightly different steps:
1. Create a project using the template with empty Activity.

2.Configure Kotlin in the project (for example, Ctrl/Cmd + Shift + A and
Configure Kotlin in project).

3. Convert all Java classes to Kotlin (for example, in MainActivity
Ctrl/Cmd + Shift + A and Convert Java file to Kotlin file).

[342]

Making Your Marvel Gallery Application

After these steps, we will have a Kotlin Android application with an empty activity created:

MarvelGallery

Hello World!

Character gallery

In this section, we will implement a single use case.

After starting the application, the user can see a gallery of characters.

[343]

Making Your Marvel Gallery Application

This is a pretty complex use case, because it requires a view to be presented, a network
connection with the API, and business rules implementation. Therefore, we will split it into
the following tasks:

e View implementation

e Communication with this API

e Business logic implementation of the character display
e Putting it all together

Such tasks are much easier to implement. Let's implement them one after another.

View implementation

Let's start with the view implementation. Here, we are going to define what the list of
characters will look like. For testing purposes, we are also going to define a few characters
and display them.

Let's start with the MainActivity layout implementation. We will use RecyclerView to
show a list of elements. The RecyclerView layout is distributed in a separate dependency,
which we have to add to the app module build.gradle file:

implementation "com.android.support:recyclerview-
v7:$android_support_version"

The android_support_version instance is a variable that is not yet defined. The reason
for this is that the version should be the same for all Android support libraries, and when
we extract this version number as a separator variable, then it is easier to manage. This is
why we should replace the hardcoded version for each of the Android support libraries
with a reference to android_support_version:

implementation "com.android.support:appcompat—
v7:$android_support_version"

implementation "com.android.support:design:$android_support_version"

implementation "com.android.support:support—
v4:$android_support_version"

implementation "com.android.support:recyclerview-
v7:$android_support_version"

And we have to set a support library version value. It is good practice to define it in the
project build.gradle file inside buildscript, after the kot 1in_version definition:

ext.kotlin_version = '1.1.4-2"
ext.android_support_version = "26.0.1"

[344]

Making Your Marvel Gallery Application

Now we can start the implementation of the MainActivity layout. This is the effect that
we want to achieve:

MarvelGallery

Aaron Stack
IMAGE

NOT
FOUND

Abomination
¥'e Ultimate

Blonds? 'A(‘g .)

Data provided by Marvel. © 2017 MARVEL

[345]

Making Your Marvel Gallery Application

We will keep character elements on RecyclerView packed into SwipeRefreshLayout to
allow swipe-refresh. Also, to comply with Marvel copyright, a label to be

presented informing that the data is provided by Marvel. The layout activity_main
(res/layout/activity_main.xml) should be replaced with the following definition:

<?xml version="1.0" encoding="utf-8"7?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/charactersview"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="Q@android:color/white"
android:fitsSystemWindows="true">

<android.support.v4d.widget.SwipeRefreshLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="Q@+id/swipeRefreshview"
android:layout_width="match_parent"
android:layout_height="match_parent">

<android.support.v7.widget.RecyclerView
android:id="Q@+id/recyclerView"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:scrollbars="vertical" />

</android.support.vd.widget.SwipeRefreshLayout>

<TextView

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:background="Q@android:color/white"
android:gravity="center"
android:text="@string/marvel_copyright_notice" />

</RelativeLayout>

We need to add a copyright notice to strings (res/values/strings.xml):

<string name="marvel_copyright_notice">
Data provided by Marvel. © 2017 MARVEL
</string>

[346]

Making Your Marvel Gallery Application

Here is a preview:

MarvelGallery

Itermn 0
Itermn 1
Item 2
Item 3
Iterm 4
Iitermn 5
Iterm &
Itern 7
itern 8
Iterm 9

Data provided by Marvel. © 2017 MARVEL

The next step is to define the item view. We would like each element to always be square.
To do this, we need to define a view that will preserve the square shape (place it in
view/views):

package com.sample.marvelgallery.view.views

import android.util.AttributeSet
import android.widget.Framelayout
import android.content.Context

class SquareFramelayout @JvmOverloads constructor(// 1
context: Context,
attrs: AttributeSet? = null,

[347]

Making Your Marvel Gallery Application

defStyleAttr: Int = 0
) : FrameLayout (context, attrs, defStyleAttr) {

override fun onMeasure (widthMeasureSpec: Int,
heightMeasureSpec: Int) {
super.onMeasure (widthMeasureSpec, widthMeasureSpec) // 2

}

1. Using JvmOverloads annotation, we've avoided telescoping constructors that
are normally used to define a custom view in Android. This was described in
Chapter 4, Classes and Objects.

2. We are forcing the element to always have the same height as width.

With squareFrameLayout, we can define the layout of gallery items. This is what we want
it to look like:

We need to define ImageView to display the character image, and TextView to display the
character name. While SquareFrameLayout is actually FrameLayout with a fixed height,
its children elements (image and text) are, by default, placed one above another. Let's add
layout to the item_character.xml filein res/layout:

// ./res/layout/item_character.xml

<com.sample.marvelgallery.view.views.SquareFrameLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"

[348]

Making Your Marvel Gallery Application

android:layout_height="wrap_content"
android:gravity="center_horizontal"
android:orientation="horizontal"
android:padding="Q@dimen/element_padding">

<ImageView
android:id="Q@+id/imageView"
android:layout_width="match_parent"
android:layout_height="match_parent"/>

<TextView

android:id="@+id/textView"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center"
android:paddingLeft="10dp"
android:paddingRight="10dp"
android:shadowColor="4#111"
android:shadowDx="5"
android:shadowDy="5"
android:shadowRadius="0.01"
android:textColor="@android:color/white"
android:textSize="@dimen/standard_text_size"
tools:text="Some name" />

</com.sample.marvelgallery.view.views.SquareFrameLayout>

Note that we are also using values such as element_padding, defined in dimens. Let's add
them to the dimen.xml file in res/values:

<?xml version="1.0" encoding="utf-8"?>

<resources>
<dimen name="character_header_height">240dp</dimen>
<dimen name="standard_text_size">20sp</dimen>
<dimen name="character_description_padding">10dp</dimen>
<dimen name="element_padding">10dp</dimen>

</resources>

As we can see, each element needs to display the name of the character and their image.
Therefore, the model of a character needs to contain these two properties. Let's define a
simple model for a character:

package com.sample.marvelgallery.model

data class MarvelCharacter (
val name: String,
val imageUrl: String

[349]

Making Your Marvel Gallery Application

To display a list of elements using RecyclerView, we need to implement both a
RecyclerView list and an item adapter. A list adapter is used to manage all elements in a
list, while an item adapter is an adapter for a single item type. Here, we need only one item
adapter, because we display a single type of items. It is, however, good practice to assume
that in future there might be other kinds of elements on this list, for example, comics or ads.
The same with the list adapter--we need only one in this example, but in most projects there
is more than a single list, and it is better to extract common behavior into a single abstract
class.

While this example is designed to present how Kotlin can be used in larger projects, we will
define an abstract list adapter, which we will name RecyclerListAdapter, and an
abstract item adapter, which we will name ItemAdapter. Here is the ItemAdapter
definition:

package com.sample.marvelgallery.view.common

import android.support.v7.widget.RecyclerView
import android.support.annotation.LayoutRes
import android.view.View

abstract class ItemAdapter<T : RecyclerView.ViewHolder>
(@LayoutRes open val layoutId: Int) { // 1

abstract fun onCreateViewHolder (itemView: View): T // 2

@Suppress ("UNCHECKED_CAST") // 1

fun bindViewHolder (holder: RecyclerView.ViewHolder) |
(holder as T).onBindViewHolder() // 1

}

abstract fun T.onBindViewHolder () // 1, 3

1. We need to pass a holder as a type parameter to allow direct operations on its
fields. The holder is created in onCreateviewHolder, so we know that its type
will always be type parameter T. Therefore, we can cast the holder to T on
bindViewHolder and use it as a receiver object for onBindvViewHolder.
Suppression @Suppress ("UNCHECKED_CAST") is there just to hide the warning
while we know that we can securely cast in this situation.

2. A function is used to create a view holder. In most cases, it will be a single
expression function that calls a constructor.

3. In the onBin+dviewHolder function, we will set all the values on item view.

[350]

Making Your Marvel Gallery Application

Here is the definition of RecyclerListAdapter:
package com.sample.marvelgallery.view.common

import android.support.v7.widget.RecyclerView
import android.view.LayoutInflater
import android.view.ViewGroup

open class RecyclerListAdapter(// 1
var items List<AnyItemAdapter> = 1istOf ()
) : RecyclerView.Adapter<RecyclerView.ViewHolder> () {

override final fun getItemCount () = items.size // 4

override final fun getItemViewType (position: Int) =
items[position].layoutId // 3, 4

override final fun onCreateViewHolder (parent: ViewGroup,
layoutId: Int): RecyclerView.ViewHolder { // 4

val itemView = LayoutInflater.from(parent.context)
.inflate (layoutId, parent, false)
return items.first

{ it.layoutId == layoutId }.onCreateViewHolder (itemView) // 3

override final fun onBindViewHolder
(holder: RecyclerView.ViewHolder, position: Int) { // 4
items|[position] .bindViewHolder (holder)

typealias AnyItemAdapter = ItemAdapter
<out RecyclerView.ViewHolder> // 5

1. The class is open instead of abstract because it can be initialized and used
without any children. We define children to allow us to define custom methods
for different lists.

2. We keep items in a list.

3. We use layout to distinguish between item types. Because of this, we cannot use
two item adapters with the same layout on the same list, but this solution
simplifies a lot.

[351]

Making Your Marvel Gallery Application

4. The methods are overriding methods of RecyclerView.Adapter, but they also
use final modifier to restrict their override in children. All list adapters that
extend RecyclerListAdapter should operate on items.

5. We define the type alias to simplify the definition of any ItemAdapter.

Using the preceding definitions, we can define MainListAdapter (the adapter for the
character list) and CharacterItemAdapter (the adapter for items on the list). Here is the
definition of MainListAdapter:

package com.sample.marvelgallery.view.main

import com.sample.marvelgallery.view.common.AnyItemAdapter
import com.sample.marvelgallery.view.common.RecyclerListAdapter

class MainListAdapter (items: List<AnyItemAdapter>)
RecyclerListAdapter (items)

In this project, we do not need any special methods defined in MainListAdapter, but to
show how easy it is to define them, here is MainListAdapter with additional methods to
add and delete:

class MainListAdapter (items: List<AnyItemAdapter>)
RecyclerListAdapter (items) {

fun add(itemAdapter: AnyItemAdapter) {
items += itemAdapter)
val index = items.indexOf (itemAdapter)
if (index == -1) return
notifyItemInserted (index)

fun delete(itemAdapter: AnyItemAdapter) {

val index = items.indexOf (itemAdapter)
if (index == -1) return
items —= itemAdapter

notifyItemRemoved (index)

[352]

Making Your Marvel Gallery Application

Here is the definition of CharacterItemAdapter:

package com.sample.marvelgallery.view.main

import android.support.v7.widget.RecyclerView

import android.view.View

import android.widget.ImageView

import android.widget.TextView

import com.sample.marvelgallery.R

import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.view.common.ItemAdapter
import com.sample.marvelgallery.view.common.bindView
import com.sample.marvelgallery.view.common.loadImage

class CharacterItemAdapter (

)

val character: MarvelCharacter // 1
ItemAdapter<CharacterItemAdapter.ViewHolder> (R.layout.item_character) {

override fun onCreateViewHolder (itemView: View) = ViewHolder (itemView)
override fun ViewHolder.onBindViewHolder () { // 2
textView.text = character.name

imageView.loadImage (character.imageUrl) // 3

class ViewHolder (itemView: View) : RecyclerView.ViewHolder (itemView)

val textView by bindView<TextView> (R.id.textView) // 4
val imageView by bindView<ImageView> (R.id.imageView) // 4

. MarvelCharacter is passed by the constructor.

2. The onBindViewHolder method is used to set up views. It was defined as an

abstract member extension function in ItemAdapter and, thanks to that, we can
now use textView and imageView explicitly inside its body.

. The loadImage function is not defined yet. We will define it as an extension
function a bit later.

. In the view holder, we are binding properties to view elements using the
bindview function that will soon be defined.

[353]

Making Your Marvel Gallery Application

Inside, we use the functions 1oadImage and bindview, which are not yet defined.
bindView is a top-level extension function to RecyclerView.ViewHolder, which is
providing a lazy delegate that is providing a view found by its ID:

// ViewExt .kt
package com.sample.marvelgallery.view.common

import android.support.v7.widget.RecyclerView
import android.view.View

fun <T : View> RecyclerView.ViewHolder.bindView (viewId: Int)
= lazy { itemView.findViewById<T> (viewId) }

We also need to define the 1oadImage extension function that will help us to download an
image from the URL and place it in ImageView. Two libraries typically used for such
purpose are Picasso and Glide. We will use Glide, and to do so, we need to add a
dependency in build.gradle:

implementation "com.android.support:recyclerview-
v7:$%$android_support_version"
implementation "com.github.bumptech.glide:glide:$glide_version"

Specify the version in the build.gradle project:

ext.android_support_version = "26.0.0"
ext.glide_version = "3.8.0"

Add permission to use the internet in AndroidManifest:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.sample.marvelgallery">
<uses-permission android:name="android.permission.INTERNET" />
<application

And we can finally define the 1oadImage extension function for the Imaveview class:

// ViewExt .kt
package com.sample.marvelgallery.view.common

import android.support.v7.widget.RecyclerView
import android.view.View

import android.widget.ImageView

import com.bumptech.glide.Glide

fun <T : View> RecyclerView.ViewHolder.bindView (viewId: Int)
= lazy { itemView.findViewById<T> (viewId) }

[354]

Making Your Marvel Gallery Application

fun ImageView.loadImage (photoUrl: String) {
Glide.with (context)
.load (photoUrl)
.into(this)
t

It is time to define the activity that will display this list. We will use one more element, the
Kotlin Android extensions plugin, which is used to simplify access to view elements from
code. Its usage is simple--we add the kot 1in-android-extensions pluginin

the build.gradle module:

apply plugin: 'com.android.application'
apply plugin: 'kotlin-android'
apply plugin: 'kotlin-android-extensions'

And we have a view defined in the layout:

<TextView
android:id="Q@+id/nameView"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

Then we can import a reference to this view inside Activity:

import kotlinx.android.synthetic.main.activity_main.*

And we can access a View element directly using its name without using the
findviewById method or defining annotations:

nameView.text = "Some name"

We will use Kotlin Android extensions in all activities in the project. Now let's define
MainActivity to display a list of characters with images:

package com.sample.marvelgallery.view.main

import android.os.Bundle

import android.support.v7.app.AppCompatActivity
import android.support.v7.widget.GridLayoutManager
import android.view.Window

import com.sample.marvelgallery.R

import com.sample.marvelgallery.model.MarvelCharacter
import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity () {

private val characters = listOf(// 1
MarvelCharacter (name = "3-D Man", imageUrl =

[355]

Making Your Marvel Gallery Application

"http://i.annihil.us/u/prod/marvel/i/mg/c/e0/535fecbbb9784. jpg"),
MarvelCharacter (name = "Abomination (Emil Blonsky)", imageUrl =
"http://i.annihil.us/u/prod/marvel/i/mg/9/50/4cel8691cbf04.jpg")
)

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
requestWindowFeature (Window.FEATURE_NO_TITLE) // 2
setContentView (R.layout.activity_main)
recyclerView.layoutManager = GridLayoutManager (this, 2) // 3
val categoryltemAdapters = characters
.map (::CharacterItemAdapter) // 4
recyclerView.adapter = MainListAdapter (categoryItemAdapters)

1. Here, we define a temporary list of characters to display.
2. We use this window feature because we don't want to display a title.

3. We use GridLayoutManager as the RecyclervView layout manager to achieve a
grid effect.

4. We are creating item adapters from characters using the
CharacterItemAdapter constructor reference.

Now we can compile the project and we will see the following screen:

N " @ 6:37

MarvelGallery

Data provided by Marvel. ©® 2017 MARVEL

[356]

Making Your Marvel Gallery Application

Network definition

Until now, the presented data has been hardcoded inside the application, but we want to
use data from the Marvel API instead. To do this, we need to define some network
mechanisms that will retrieve the data from the server. We are going to use Retrofit, a
popular Android library used to simplify network operations, together with RxJava, a
popular library used for reactive programming. For both libraries, we will use only basic
functionalities to make their usage as simple as possible. To use them, we need to add the
following dependencies in the build.gradle module:

dependencies {
implementation "org.jetbrains.kotlin:kotlin-stdlib-jre7:
Skotlin_version"
implementation "com.android.support:appcompat-v7:
$android_support_version"
implementation "com.android.support:recyclerview-v7:
$android_support_version"
implementation "com.github.bumptech.glide:glide:$glide_version"

// RxJava
implementation "io.reactivex.rxjava2:rxjava:S$rxjava_version"

// RxAndroid
implementation "io.reactivex.rxjava2:rxandroid:$rxandroid_version"

// Retrofit

implementation (["com.squareup.retrofit2:retrofit:$retrofit_version",
"com.squareup.retrofit2:adapter—
rxjava2:Sretrofit_version",
"com.squareup.retrofit2:converter-
gson:S$retrofit_version",
"com.squareup.okhttp3:okhttp:$okhttp_version",
"com.squareup.okhttp3:logging—
interceptor: $okhttp_version"])

testImplementation 'junit:junit:4.12"'
androidTestImplementation
'com.android.support.test:runner:1.0.0"
androidTestImplementation
'com.android.support.test.espresso:espresso-core:3.0.0"'

}

And version definitions in the build.gradle project:

ext.kotlin version = '1.1.3-2"
ext.android_support_version = "26.0.0"
ext.glide_version = "3.8.0"

[357]

Making Your Marvel Gallery Application

ext.retrofit_version = '2.2.0'
ext.okhttp_version = '3.6.0'
ext.rxjava_version = "2.1.2"
ext.rxandroid_version = '2.0.1"

We already have internet permission defined on AndroidManifest, so we don't need to
add it. A simple Retrofit definition might look like the following:

val retrofit by lazy { makeRetrofit() } // 1

private fun makeRetrofit (): Retrofit = Retrofit.Builder ()
.baseUrl ("http://gateway.marvel.com/vl/public/") // 2
.build()

1. We can keep the retrofit instance as a lazy top-level property.
2. Here, we define the baseUrl.

But there are some additional requirements on Retrofit that need to be matched. We need to
add converters to use Retrofit together with RxJava, and to send objects serialized as JSON.
We also need interceptors which will be used to provide headers and extra queries needed
by the Marvel APL This is a small application, so we can define all the required elements as
top-level functions. The full Retrofit definition will be the following;:

// Retrofit.kt
package com.sample.marvelgallery.data.network.provider

import com.google.gson.Gson

import okhttp3.0kHttpClient

import retrofit2.Retrofit

import retrofit2.adapter.rxjava2.RxJava2CallAdapterFactory
import retrofit2.converter.gson.GsonConverterFactory
import java.util.concurrent.TimeUnit

val retrofit by lazy { makeRetrofit () }
private fun makeRetrofit (): Retrofit = Retrofit.Builder ()

.baseUrl ("http://gateway.marvel.com/vl/public/")
.client (makeHttpClient ())

.addConverterFactory (GsonConverterFactory.create (Gson())) // 1
.addCallAdapterFactory (RxJava2CallAdapterFactory.create()) // 2
Lbuild()

private fun makeHttpClient () = OkHttpClient.Builder ()

.connectTimeout (60, TimeUnit.SECONDS) // 3
.readTimeout (60, TimeUnit.SECONDS) // 4

.addInterceptor (makeHeadersInterceptor()) // 5
.addInterceptor (makeAddSecurityQueryInterceptor()) // 6

[358]

Making Your Marvel Gallery Application

.addInterceptor (makeLoggingInterceptor()) // 7
Jouild()

1. Add a converter that allows object JSON serialization and deserialization using
the GSON library.

2. Add a converter that will allow RxJava2 types (Observable, Single) as observables
for returned values from network requests.

3. We add custom interceptors and we need to define all of them.

Let's define the necessary interceptors. makeHeadersInterceptor is used to add standard
headers for each request:

// HeadersInterceptor.kt
package com.sample.marvelgallery.data.network.provider

import okhttp3.Interceptor

fun makeHeadersInterceptor () = Interceptor { chain -> // 1
chain.proceed(chain.request () .newBuilder ()
.addHeader ("Accept", "application/json")
.addHeader ("Accept-Language", "en")
.addHeader ("Content-Type", "application/json")
.build())

1. The interceptor is SAM, so we can define it using a SAM constructor.

The makeLoggingInterceptor function is used to display logs on the console when we
are running the application in debug mode:

// LoggingInterceptor.kt
package com.sample.marvelgallery.data.network.provider

import com.sample.marvelgallery.BuildConfig
import okhttp3.logging.HttpLoggingInterceptor

fun makeLoggingInterceptor () = HttpLoggingInterceptor () .apply {
level = if (BuildConfig.DEBUG) HttpLoggingInterceptor.Level.BODY
else HttpLoggingInterceptor.Level.NONE

[3591]

Making Your Marvel Gallery Application

The makeAddRequiredQueryInterceptor function is more complex, because it is used to
provide query parameters used by the Marvel API to verify the user. These parameters
need a hash calculated using the MD5 algorithm. They also need a public and private key
from the Marvel API. Everyone can generate their own keys at https://developer.marvel.
com/. Once you have generated keys, we need to place them in the gradle.properties
file:

org.gradle. jvmargs=-Xmx1536m
marvelPublicKey=REPLEACE_WITH_YOUR_PUBLIC_MARVEL_KEY
marvelPrivateKey=REPLEACE_WITH_YOUR_PRIVATE_MARVEL_KEY

Also, add the following definitions in the build.gradle module in Android in the
defaultConfig section:

defaultConfig {
applicationId "com.sample.marvelgallery"
minSdkVersion 16
targetSdkVersion 26
versionCode 1
versionName "1.0"
testInstrumentationRunner
"android.support.test.runner.AndroidJUnitRunner"
buildConfigField ("String", "PUBLIC_KEY", "\"${marvelPublicKey}\"")
buildConfigField ("String", "PRIVATE_KEY", "\"${marvelPrivateKey}\"")
}

After a project rebuild, you will be able to access these values
using BuildConfig.PUBLIC_KEY and BuildConfig.PRIVATE_KEY. Using these keys, we
can generate the query parameters that are required by the Marvel API:

// QueryInterceptor.kt
package com.sample.marvelgallery.data.network.provider

import com.sample.marvelgallery.BuildConfig
import okhttp3.Interceptor

fun makeAddSecurityQueryInterceptor () = Interceptor { chain ->
val originalRequest = chain.request ()
val timeStamp = System.currentTimeMillis ()

// Url customization: add query parameters
val url = originalRequest.url () .newBuilder ()
.addQueryParameter ("apikey", BuildConfig.PUBLIC_KEY) // 1
.addQueryParameter ("ts", "S$timeStamp") // 1
.addQueryParameter ("hash", calculatedMd5 (timeStamp.toString() +
BuildConfig.PRIVATE_KEY + BuildConfig.PUBLIC_KEY)) // 1
.build()

[360]

https://developer.marvel.com/
https://developer.marvel.com/
https://developer.marvel.com/
https://developer.marvel.com/
https://developer.marvel.com/
https://developer.marvel.com/
https://developer.marvel.com/
https://developer.marvel.com/
https://developer.marvel.com/

Making Your Marvel Gallery Application

// Request customization: set custom url
val request = originalRequest
.newBuilder ()
.url (url)
.build()

chain.proceed (request)

1. We need to provide three additional queries:
e apikey: This just includes our public key.
e ts: This just contains the device time in milliseconds. It is used to
improve the security of the hash provided in the next query.
e hash: This is calculated as an MD5 hash from the t imeSt amp,
private, and public keys, one after another in a single String.

Here is the definition of the function used to calculate the MD5 hash:

// MD5.kt
package com.sample.marvelgallery.data.network.provider

import java.math.BigInteger
import java.security.MessageDigest

/**

* Calculate MD5 hash for text

* @param timeStamp Current timeStamp

* @return MD5 hash string

*/

fun calculatedMd5 (text: String): String {
val messageDigest = getMd5Digest (text)
val md5 = BigInteger (1, messageDigest) .toString(16)
return "O" * (32 - md5.length) + md5 // 1

private fun getMd5Digest (str: String): ByteArray =
MessageDigest.getInstance ("MD5") .digest (str.toByteArray())

private operator fun String.times(i: Int) = (1..1i).fold("") { acc, _ —-> acc
+ this }

1. We use the t imes extension operator to fill the hash with zeros if it is shorter
than 32.

[361]

Making Your Marvel Gallery Application

We have interceptors defined, so we can define actual API methods. The Marvel API
contains a lot of data models that represent characters, lists, and so on. We need to define
them as separate classes. Such classes are called data transfer objects (DTOs). We will
define the objects we will need:

package com.sample.marvelgallery.data.network.dto
class DataContainer<T> {

var results: T? = null
package com.sample.marvelgallery.data.network.dto
class DataWrapper<T> {

var data: DataContainer<T>? = null
package com.sample.marvelgallery.data.network.dto
class ImageDto {

lateinit var path: String // 1
lateinit var extension: String // 1

val completeImagePath: String
get () = "$path.S$Sextension"
package com.sample.marvelgallery.data.network.dto
class CharacterMarvelDto {
lateinit var name: String // 1
lateinit var thumbnail: ImageDto // 1
val imageUrl: String

get () = thumbnail.completeImagePath

1. For values that might not be provided, we should set a default value. Values that
are mandatory might be prefixed with 1ateinit instead.

Retrofit uses reflection to create an HTTP request based on the interface definition. This is
how we can implement an interface that defines an HTTP request:

package com.sample.marvelgallery.data.network

import com.sample.marvelgallery.data.network.dto.CharacterMarvelDto

[362]

Making Your Marvel Gallery Application

import com.sample.marvelgallery.data.network.dto.DataWrapper
import io.reactivex.Single

import retrofit2.http.GET

import retrofit2.http.Query

interface MarvelApi {

Q@GET ("characters")
fun getCharacters(
@Query ("offset") offset: Int?,
@Query ("limit") limit: Int?
) ¢ Single<DataWrapper<List<CharacterMarvelDto>>>

}

With such definitions, we can finally get a list of characters:

retrofit.create (MarvelApi::class.java) // 1
.getCharacters (0, 100) // 2
.subscribe ({ /* code */ }) // 3

1. We use a retrofit instance to create an object that will make HTTP requests
according to the MarvelApi interface definition.

2. We create an observable ready to send a call to the API.

3. Using subscribe, we send an HTTP request and we start listening for a

response. The first argument is the callback that is invoked when we successfully
receive a response.

Such a network definition could be sufficient, but we could implement it better. The biggest
problem is that we now need to operate on DTO objects instead of on our own data model
objects. For mapping, we should define an additional layer. The repository pattern is used
for this purpose. This pattern is also really helpful when we are implementing unit tests
because we can mock the repository instead of the whole API definition. This is the
definition of repository that we would like to have:

package com.sample.marvelgallery.data

import com.sample.marvelgallery.model.MarvelCharacter
import io.reactivex.Single

interface MarvelRepository {

fun getAllCharacters(): Single<List<MarvelCharacter>>

[363 1]

Making Your Marvel Gallery Application

And here is the implementation of MarvelRepository:

package com.sample.marvelgallery.data

import com.sample.marvelgallery.data.network.MarvelApi

import com.sample.marvelgallery.data.network.provider.retrofit
import com.sample.marvelgallery.model.MarvelCharacter

import io.reactivex.Single

class MarvelRepositoryImpl : MarvelRepository {

val api = retrofit.create (MarvelApi::class.java)
override fun getAllCharacters(): Single<List<MarvelCharacter>> =
api.getCharacters (
offset = 0,
limit = elementsOnListLimit
) .map |

it.data?.results.orEmpty () .map (::MarvelCharacter) // 1

companion object {
const val elementsOnListLimit = 50

1. We get a list of DTO elements and map it into MarvelCharacter using a
constructor reference.

To make it work, we need to define an additional constructor in MarvelCharacter, which
takes CharacterMarvelDto as an argument:

package com.sample.marvelgallery.model

import com.sample.marvelgallery.data.network.dto.CharacterMarvelDto

class MarvelCharacter (
val name: String,
val imageUrl: String

constructor (dto: CharacterMarvelDto) : this(
name = dto.name,
imageUrl = dto.imageUrl

[364]

Making Your Marvel Gallery Application

There are different ways to provide an instance of MarvelRepository. In the most
common implementations, a concrete instance of MarvelRepository is passed to
Presenter as a constructor argument. But what about UI testing (such as Espresso tests)?
We don't want to test the Marvel API and we don't want to make a Ul test depending on it.
The solution is to make a mechanism that will generate a standard implementation during
normal runtime, but it will also allow us to set a different implementation for testing
purposes. We will make the following generic implementation of such a mechanism:

package com.sample.marvelgallery.data

abstract class Provider<T> {

abstract fun creator(): T

private val instance: T by lazy { creator() }
var testingInstance: T? = null

fun get(): T = testinglInstance ?: instance

Instead of defining our own Provider, we might use some Dependency
Injection libraries, such as Dagger or Kodein. The use of Dagger for such
purposes is really common in Android development, but we've decided
that we won't include it in this example to avoid additional complexity for
developers who are not experienced with this library.

We can make the MarvelRepository companion object provider extending
the preceding class:

package com.sample.marvelgallery.data

import com.sample.marvelgallery.model.MarvelCharacter
import io.reactivex.Single

interface MarvelRepository {
fun getAllCharacters(): Single<List<MarvelCharacter>>

companion object : Provider<MarvelRepository> () |
override fun creator () = MarvelRepositoryImpl ()

[365]

Making Your Marvel Gallery Application

Thanks to the preceding definition, we can use the MarvelRepository companion object
to get an instance of MarvelRepository:

val marvelRepository = MarvelRepository.get ()

It will be a lazy instance of MarvelRepositoryImpl, until somebody sets a non-null value
of the testingInstance property:

MarvelRepository.get () // Returns instance of MarvelRepositoryImpl

MarvelRepository.testingInstance= object: MarvelRepository {
override fun getAllCharacters(): Single<List<MarvelCharacter>>
= Single.just (emptyList ())
}

MarvelRepository.get () // returns an instance of an anonymous class in
which the returned list is always empty.

Such a construction is useful to allow Ul tests using Espresso. Its usage for element
overrides is present in the project and can be found in GitHub. It is not presented in this
section to keep it easy to understand for developers who are not proficient in testing. If you
are would like to see it, then you can find it at https://github.com/MarcinMoskala/
MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/
MainActivityTest.kt.

Let's finally connect this repository to the view by implementing the business logic of the
character gallery display.

Business logic implementation

We have both the view and repository parts implemented and it is time to finally
implement the business logic. On this point, we need only to get the character list and
display it on the list when the user enters the screen or when they refresh it. We will extract
these business logic rules from the view implementation by using an architectural pattern
known as Model-View-Presenter (MVP). Here are the simplified rules:

e Model: This is the layer responsible for managing data. The Model's
responsibilities include using APIs, caching data, managing databases, and so on.

e Presenter: The Presenter is the middle man between Model and View, and it
should include all your presentation logic. The Presenter is responsible for
reacting to user interactions using and updating the Model and the View.

¢ View: This is responsible for presenting data and forwarding user interaction
events to the Presenter.

[366]

https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt
https://github.com/MarcinMoskala/MarvelGallery/blob/master/app/src/androidTest/java/com/sample/marvelgallery/MainActivityTest.kt

Making Your Marvel Gallery Application

In our implementation of this pattern, we will treat Activity as a View, and for each view
we need to create a Presenter. It is good practice to write unit tests to check whether
business logic rules are implemented correctly. To make it simple, we need to hide Activity
behind an easy-to-mock interface that represents all possible Presenter interactions with
View (Activity). Also, we are going to create all the dependencies (such as
MarvelRepository)in Activity and deliver them to the Presenter via the constructor as
objects hidden behind interfaces (for example, pass MarvelRepositoryImpl as
MarvelRepository).

In the Presenter, we need to implement the following behaviors:

e When the Presenter is waiting for a response, the loading animation is displayed
o After the View has been created, a list of characters is loaded and displayed

o After the refresh method is called, a list of characters is loaded

e When the API returns a list of characters, it is displayed on the View

e When the API returns an error, it is displayed on the View

As we can see, the Presenter needs to get both View and MarvelRepository using

constructor, and it should specify the methods that will be called when the View is created
or the user request list is refreshed:

package com.sample.marvelgallery.presenter

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.view.main.MainView

class MainPresenter (val view: MainView, val repository: MarvelRepository) {

fun onViewCreated () {

3
fun onRefresh () {

}
}

The View needs to specify the methods used to show the list of characters, show errors, and
show the progress bar when the View is refreshing (define it in view/main and move
MainActivity to view/main):

package com.sample.marvelgallery.view.main.main
import com.sample.marvelgallery.model.MarvelCharacter

interface MainView {

[367]

Making Your Marvel Gallery Application

var refresh: Boolean
fun show(items: List<MarvelCharacter>)
fun showError (error: Throwable)

}
Before adding logic to the Presenter, let's define the first two unit tests:

// test source set
package com.sample.marvelgallery

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.presenter.MainPresenter
import com.sample.marvelgallery.view.main.MainView
import io.reactivex.Single

import org.junit.Assert.assertEquals

import org.junit.Assert.fail

import org.junit.Test

@Suppress ("Illegalldentifier") // 1
class MainPresenterTest {

@Test
fun "After view was created, list of characters is loaded and
displayed® () {
assertOnAction { onViewCreated() }.therelIsSamelListDisplayed()

@Test
fun "New list 1s shown after view was refreshed () {
assertOnAction { onRefresh() }.therelIsSamelListDisplayed()

private fun assertOnAction (action: MainPresenter. () —-> Unit)
= PresenterActionAssertion (action)

private class PresenterActionAssertion
(val actionOnPresenter: MainPresenter. () —-> Unit) {

fun thereIsSamelListDisplayed() {
// Given
val exampleCharacterList = 1istOf(// 2
MarvelCharacter ("ExampleName", "ExampleImageUrl"),
MarvelCharacter ("Namel", "ImageUrll"),
MarvelCharacter ("Name2", "ImageUrl2")

var displayedList: List<MarvelCharacter>? = null

[368]

Making Your Marvel Gallery Application

© NSO ®DN

val view = object : MainView { //3
override var refresh: Boolean = false

override fun show(items: List<MarvelCharacter>) {
displayedList = items // 4

override fun showError (error: Throwable) {
fail() //5

}
val marvelRepository = object : MarvelRepository { // 3
override fun getAllCharacters():
Single<List<MarvelCharacter>>
= Single.just (exampleCharacterList) // 6

val mainPresenter = MainPresenter (view, marvelRepository)
// 3

// When

mainPresenter.actionOnPresenter () // 7

// Then

assertEquals (exampleCharacterList, displayedList) // 8

Descriptive names are allowed in Kotlin unit tests, but a warning will be
displayed. Suppression is needed to hide this warning.

Define a list of example characters to display.

Define a view and repository and create a Presenter using them.
When a list of elements is shown, we should set it as a displayed list.
The test is failing when showError is called.

The getAllCharacters method just returns an example list.

We call a defined action on the Presenter.

We check whether the list returned by the repository is the same as the displayed
list.

[369 1]

Making Your Marvel Gallery Application

To simplify the preceding definitions, we could extract BaseMarvelRepository and
BaseMainView, and keep example data in a separate class:

// test source set
package com.sample.marvelgallery.helpers

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.model.MarvelCharacter
import io.reactivex.Single
class BaseMarvelRepository (
val onGetCharacters: () -> Single<List<MarvelCharacter>>

) : MarvelRepository {

override fun getAllCharacters () = onGetCharacters()
// test source set

package com.sample.marvelgallery.helpers

import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.view.main.MainView

class BaseMainView (

var onShow: (items: List<MarvelCharacter>) -> Unit = {},
val onShowError: (error: Throwable) -> Unit = {},
override var refresh: Boolean = false

) : MainView {
override fun show(items: List<MarvelCharacter>) {

onShow (items)

override fun showError (error: Throwable) {
onShowError (error)

// test source set
package com.sample.marvelgallery.helpers

import com.sample.marvelgallery.model.MarvelCharacter

object Example {
val exampleCharacter = MarvelCharacter

("ExampleName", "ExampleImageUrl")
val exampleCharacterList = 1istOf (
exampleCharacter,

[370]

Making Your Marvel Gallery Application

}

MarvelCharacter ("Namel", "ImageUrll"),
MarvelCharacter ("Name2", "ImageUrl2")

Now we can simplify the definition of PresenterActionAssertion:

package com.sample.marvelgallery

import
import
import
import
import
import
import
import
import

com.sample.marvelgallery.helpers.BaseMainView
com.sample.marvelgallery.helpers.BaseMarvelRepository
com.sample.marvelgallery.helpers.Example
com.sample.marvelgallery.model.MarvelCharacter
com.sample.marvelgallery.presenter.MainPresenter
io.reactivex.Single

org.junit.Assert.assertEquals

org.junit.Assert.fail

org.junit.Test

@Suppress ("Illegalldentifier")

class MainPresenterTest {

@Test
fun ‘After view was created, list of characters is loaded and
displayed” () |

assertOnAction { onViewCreated() }.therelIsSameListDisplayed()

3

@Test

fun "'New list is shown after view was refreshed () {
assertOnAction { onRefresh() }.therelIsSameListDisplayed()

3

private fun assertOnAction(action: MainPresenter. () —-> Unit)

= PresenterActionAssertion (action)

private class PresenterActionAssertion
(val actionOnPresenter: MainPresenter. () —-> Unit) {

fun therelIsSamelListDisplayed() {

// Given
var displayedList: List<MarvelCharacter>? = null
val view = BaseMainView (
onShow = { items -> displayedList = items },
onShowError = { fail() }

[371]

Making Your Marvel Gallery Application

val marvelRepository = BaseMarvelRepository (

onGetCharacters =
{ Single.just (Example.exampleCharacterList) }
)
val mainPresenter = MainPresenter (view, marvelRepository)
// When

mainPresenter.actionOnPresenter ()

// Then

assertEquals (Example.exampleCharacterList, displayedList)
}

We start the tests:

P P T PN N R E N e i

Run 'MainPresenterTest
1t Debug 'MainPresenterTest'

' Tir - ist of characters is loaded
I Run MainPresenterTest with Coverage =4 () § thereIsSameListDis

b

3

We will see that they do not pass:

0 E AlL 2 tests failed - 89ms
» @ MainPresenterTest (com.sample.marvelgall Expected :[MarvelCharacter(name=ExampleName, imageUrl=ExampleImageUrl), MarvelCharacter(name=Namel, imageUrl=ImageUrll), MarvelCha
5 ® New list is shown after view was refrest a7ns ACtual = :null

® After view was created, list of characters 2. <CLick to see difference

= <1 internal calls>
at org.junit.Assert.failNotEquals(Assert.java:834) <2 internal calls>
at com.sample.marvelgallery.MainPresenterTest$PresenterActionAssertion.thereIsSamelListDisplayed(MainPresenterTest.kt:50
at com.sample.marvelgallery.MainPresenterTest.After view was created, list of characters is loaded and displayed(MainPresenter

Process finished with exit code 255

The reason is that functionalities have not been implemented yet in MainPresenter. The
simplest code that is satisfactory to pass this unit test is the following:

package com.sample.marvelgallery.presenter

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.view.main.MainView

class MainPresenter (val view: MainView, val repository: MarvelRepository) {

fun onViewCreated() {

[372]

Making Your Marvel Gallery Application

loadCharacters ()

}

fun onRefresh () {
loadCharacters ()

}

private fun loadCharacters () {
repository.getAllCharacters()
.subscribe ({ items ->
view.show (items)

b
}

Now our tests pass:

2 R £ = O E «

¥ M MainPresenterTest (com.androiddevelopmen 111ms

ai New list is shown after view was refreshe 111ms
ai After view was created, list of characters is Oms

oK

But there are two issues with this implementation:

e It won't work in Android, because getAllCharacters uses a network operation
and it cannot run on the main thread as in this example

¢ We will have a memory leak if the user leaves the application before loading have
finished

To resolve the first issue, we need to specify on which threads operations should run. The
network request should run on the I/O thread, and we should observe on the Android main
thread (because we are changing the view in the callback):

repository.getAllCharacters ()
.subscribeOn (Schedulers.io()) // 1
.observeOn (AndroidSchedulers.mainThread()) // 2
.subscribe ({ items -> view.show(items) })

1. We specify that the network request should run in the IO thread.
2. We specify that callbacks should be started on the main thread.

[373]

Making Your Marvel Gallery Application

While these are common schedulers to show, we can extract them in a top-level extension
function:

// RxExt.kt
package com.sample.marvelgallery.data

import io.reactivex.Single
import io.reactivex.android.schedulers.AndroidSchedulers
import io.reactivex.schedulers.Schedulers

fun <T> Single<T>.applySchedulers(): Single<T> = this
.subscribeOn (Schedulers.io())
.observeOn (AndroidSchedulers.mainThread())

And use it in MainPresenter:

repository.getAllCharacters()
.applySchedulers ()
.subscribe ({ items -> view.show(items) })

Tests are not allowed to access the Android main thread. Therefore, our tests will not pass.
Also, operations running on a new thread are not what we want in unit tests, because we
would have problems with assertions synchronization. To resolve these problems, we need
override schedulers before unit tests to make everything run on the same thread (add them
in the MainPresenterTest class):

package com.sample.marvelgallery

import com.sample.marvelgallery.helpers.BaseMainView
import com.sample.marvelgallery.helpers.BaseMarvelRepository
import com.sample.marvelgallery.helpers.Example

import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.presenter.MainPresenter
import io.reactivex.Single

import io.reactivex.android.plugins.RxAndroidPlugins
import io.reactivex.plugins.RxJavaPlugins

import io.reactivex.schedulers.Schedulers

import org.junit.Assert.assertEquals

import org.junit.Assert.fail

import org.junit.Before

import org.junit.Test

@Suppress ("Illegalldentifier")
class MainPresenterTest {

@Before

[374]

Making Your Marvel Gallery Application

fun setUp () {
RxAndroidPlugins.setInitMainThreadSchedulerHandler {

Schedulers.trampoline () }
RxJavaPlugins.setIoSchedulerHandler { Schedulers.trampoline() }
RxJavaPlugins.setComputationSchedulerHandler {

Schedulers.trampoline () }
RxJavaPlugins.setNewThreadSchedulerHandler {

Schedulers.trampoline () }

@Test
fun ‘After view was created, list of characters is loaded and

displayed” () {
assertOnAction { onViewCreated() }.therelIsSamelListDisplayed()

@Test
fun "New list is shown after view was refreshed’ () {
assertOnAction { onRefresh() }.thereIsSamelListDisplayed()

}

Now unit tests pass again:

= = O E &

v @ MainPresenterTest (com.androiddevelopmen 111ms

@ New list is shown after view was refreshe 111ms
@ After view was created, list of charactersis Oms

-1
-

Another problem is memory leak if the user leaves the application before we get a server
response. A common solution is to keep all subscriptions in composite and dispose of them
all when the user leaves the application:

private var subscriptions = CompositeDisposable ()

fun onViewDestroyed () |
subscriptions.dispose ()

[375]

Making Your Marvel Gallery Application

In bigger applications, most presenters have some subscriptions. So, the functionality of
collecting subscriptions and of disposing them when the user destroys the view can be
treated as common behavior and extracted in BasePresenter. Also, to simplify the
process, we can make a BaseActivityWithPresenter class that will hold the presenter
behind the Presenter interface and call the onvViewDestroyed method when the view is

destroyed. Let's define this mechanism in our application. Here is the definition of
Presenter:

package com.sample.marvelgallery.presenter
interface Presenter {
fun onViewDestroyed()
}
Here is the definition of BasePresenter:
package com.sample.marvelgallery.presenter
import io.reactivex.disposables.CompositeDisposable
abstract class BasePresenter : Presenter {

protected var subscriptions = CompositeDisposable ()

override fun onViewDestroyed() {
subscriptions.dispose ()

}
Here is the definition of BaseActivityWithPresenter:
package com.sample.marvelgallery.view.common

import android.support.v7.app.AppCompatActivity
import com.sample.marvelgallery.presenter.Presenter

abstract class BaseActivityWithPresenter : AppCompatActivity () {
abstract val presenter: Presenter
override fun onDestroy () {

super.onDestroy ()
presenter.onViewDestroyed()

[376]

Making Your Marvel Gallery Application

To simplify how a new subscription is added to subscriptions, we can define a plus assign
operator:

// RxExt.ext
package com.sample.marvelgallery.data

import io.reactivex.Single

import io.reactivex.android.schedulers.AndroidSchedulers
import io.reactivex.disposables.CompositeDisposable
import io.reactivex.disposables.Disposable

import io.reactivex.schedulers.Schedulers

fun <T> Single<T>.applySchedulers(): Single<T> = this
.subscribeOn (Schedulers.io())
.observeOn (AndroidSchedulers.mainThread())

operator fun CompositeDisposable.plusAssign(disposable: Disposable) {
add (disposable)
}

And we can use both solutions to make MainPresenter secure:
package com.sample.marvelgallery.presenter

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.data.applySchedulers
import com.sample.marvelgallery.data.plusAssign
import com.sample.marvelgallery.view.main.MainView

class MainPresenter (

val view: MainView,

val repository: MarvelRepository
) : BasePresenter () {

fun onViewCreated () {
loadCharacters ()

fun onRefresh () {
loadCharacters ()

private fun loadCharacters() {
subscriptions += repository.getAllCharacters ()
.applySchedulers ()
.subscribe ({ items ->
view.show (items)

b

[377]

Making Your Marvel Gallery Application

}

The first two MainPresenter behaviors have been implemented. It is time to move on to
the next one--when the API returns an error, it is displayed on the view. We can add this
requirement as a test in MainPresenterTest:

@Test
fun "New list is shown after view was refreshed () {
assertOnAction { onRefresh() }.thereIsSamelListDisplayed()
}
@Test
fun "When API returns error, it is displayed on view' () {
// Given
val someError = Error ()
var errorDisplayed: Throwable? = null
val view = BaseMainView (
onShow = { _ -> fail() 1},
onShowError = { errorDisplayed = it }

)
val marvelRepository = BaseMarvelRepository
{ Single.error (someError) }

val mainPresenter = MainPresenter (view, marvelRepository)
// When
mainPresenter.onViewCreated()
// Then
assertEquals (someError, errorDisplayed)
}
private fun assertOnAction(action: MainPresenter. () -> Unit)

= PresenterActionAssertion (action)

A simple change that will make this test pass is the error handler specification in the
subscribe method in MainPresenter:

subscriptions += repository.getAllCharacters|()
.applySchedulers ()
.subscribe ({ items -> // onNext
view.show (items)
}, { // onError
view.showError (it)

b

[378]

Making Your Marvel Gallery Application

While subscribe is a Java method, we cannot use the named argument convention. Such
an invocation is not really descriptive. This is why we are going to define it in the RxExt . kt
custom subscribe method named subscribeBy:

// Ext.kt

fun <T> Single<T>.applySchedulers(): Single<T> = this
.subscribeOn (Schedulers.io())
.observeOn (AndroidSchedulers.mainThread())

fun <T> Single<T>.subscribeBy (

onError: ((Throwable) -> Unit)? = null,
onSuccess: (T) —-> Unit
) : Disposable = subscribe (onSuccess, { onError?.invoke (it) })

And we will use it instead of subscribe:

subscriptions += repository.getAllCharacters|()

.applySchedulers ()

.subscribeBy (
onSuccess = view: :show,
onError = view::showError

subscribeBy in the full version defined for different RxJava types (such
as Observable, Flowable, and so on), together with lots of other useful
Kotlin extensions to RxJava, can be found in the RxKotlin library (https:/
/github.com/ReactiveX/RxKotlin).

To show and hide list loading, we will define additional listeners to events that always
occur before and after processing;:

subscriptions += repository.getAllCharacters ()

.applySchedulers ()
.doOnSubscribe { view.refresh = true },}
onSuccess = view: :show,
.doFinally { view.refresh = false }
.subscribeBy (
onSuccess = view::show,
onError = view::showError,
onFinish = { view.refresh = false }

[379]

https://github.com/ReactiveX/RxKotlin
https://github.com/ReactiveX/RxKotlin
https://github.com/ReactiveX/RxKotlin
https://github.com/ReactiveX/RxKotlin
https://github.com/ReactiveX/RxKotlin
https://github.com/ReactiveX/RxKotlin
https://github.com/ReactiveX/RxKotlin
https://github.com/ReactiveX/RxKotlin
https://github.com/ReactiveX/RxKotlin
https://github.com/ReactiveX/RxKotlin

Making Your Marvel Gallery Application

And our tests are pass again:

ok

BIE EF O E %

@ MainPresenterTest (com.androiddevelopment
= When API returns error, it is displayed on v 74ms
an New list is shown after view was refreshec 24ms
a0 After view was created, list of characters is 0ms

The subscribe method is becoming less and less readable, but we will resolve this
problem together with another business rule, whose definition is the following: when the
Presenter is waiting for a response, refresh is displayed. Define its unit test in
MainPresenterTest:

package com.sample.marvelgallery

import com.sample.marvelgallery.helpers.BaseMainView
import com.sample.marvelgallery.helpers.BaseMarvelRepository
import com.sample.marvelgallery.helpers.Example

import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.presenter.MainPresenter
import io.reactivex.Single

import io.reactivex.android.plugins.RxAndroidPlugins
import io.reactivex.plugins.RxJavaPlugins

import io.reactivex.schedulers.Schedulers

import org.junit.Assert.*

import org.junit.Before

import org.junit.Test

@Suppress ("IllegalIdentifier")
class MainPresenterTest {

@Test
fun "When presenter is waiting for response, refresh is displayed’ ()
{
// Given
val view = BaseMainView (refresh = false)
val marvelRepository = BaseMarvelRepository (
onGetCharacters = {
Single.fromCallable {
// Then
assertTrue (view.refresh) // 1
Example.exampleCharacterList

[380]

Making Your Marvel Gallery Application

val mainPresenter = MainPresenter (view, marvelRepository)
view.onShow = { _ —>
// Then

assertTrue (view.refresh) // 1
3
// When
mainPresenter.onViewCreated ()
// Then
assertFalse (view.refresh) // 1

1. We expect refresh to be displayed during network requests and when elements
are shown, but not once processing had finished.

In the presented version on RxJava2, assertions inside callbacks do not
break the test it but display an error on the execution report instead. In
future versions, it will probably be possible to add a handler that allows a
test to fail from inside a callback.

To show and hide list loading, we will define additional listeners to events that always
occur before and after processing;:

subscriptions += repository.getAllCharacters|()
.applySchedulers ()
.doOnSubscribe { view.refresh = true }
.doFinally { view.refresh = false }
.subscribeBy (
onSuccess = view::show,
onError = view::showError

)

After these changes, all tests pass again:

B E = O & & (———————————— All 4 tests passed - 122ms

@ MainPresenterTest (com.androiddevelopmentwithkotlin.marvelgallery) 122ms /jre/bin/java ...

@ When AP returns error, it is displayed on v 57ms
@ When presenter is waiting for response, re 23ms
@ New list is shown after view was refreshed 1ms

Process finished with exit code @

@ After view was created, list of characters is 1ms

Now we have a fully functional Presenter, network, and View. Time to connect it all and
finish the implementation of the first use case.

[381]

Making Your Marvel Gallery Application

Putting

We have Ma

it all together

inPresenter ready to be used in the project. Now we need to use it in

MainActivity:

package com.sample.marvelgallery.view.main

import
import
import
import
import
import
import
import
import
import
import

android.os.Bundle
android.support.v7.widget.GridLayoutManager
android.view.Window

com.sample.marvelgallery.R
com.sample.marvelgallery.data.MarvelRepository
com.sample.marvelgallery.model.MarvelCharacter
com.sample.marvelgallery.presenter.MainPresenter
com.sample.marvelgallery.view.common.BaseActivityWithPresenter
com.sample.marvelgallery.view.common.bindToSwipeRefresh
com.sample.marvelgallery.view.common.toast
kotlinx.android.synthetic.main.activity_main.*

class MainActivity : BaseActivityWithPresenter (), MainView { // 1

override var refresh by bindToSwipeRefresh(R.id.swipeRefreshView)

/]2

override val presenter by lazy
{ MainPresenter (this, MarvelRepository.get()) } // 3

override fun onCreate (savedInstanceState: Bundle?) {

super.onCreate (savedInstanceState)

requestWindowFeature (Window.FEATURE_NO_TITLE)
setContentView (R.layout.activity_main)
recyclerView.layoutManager = GridLayoutManager (this, 2)
swipeRefreshView.setOnRefreshListener

{ presenter.onRefresh() } // 4
presenter.onViewCreated() // 4

override fun show(items: List<MarvelCharacter>) {

val categoryltemAdapters = items.map (::CharacterItemAdapter)
recyclerView.adapter = MainListAdapter (categoryIltemAdapters)

override fun showError (error: Throwable) {

toast ("Error: ${error.message}") // 2
error.printStackTrace ()

[382]

Making Your Marvel Gallery Application

1. Activity should extend BaseActivityWithPresenter and implement
MainView.

2. bindToSwipeRefresh and toast are not yet implemented.

3. We make the Presenter lazily. The first argument is a reference to the activity
behind the Mainview interface.

4. We need to pass events to the presenter using its methods.

In the preceding code, we used two functions that have already been described in the book,
toast, used to display toast on the screen, and bindToSwipeRefresh, used to bind a
property with the visibility of swipe refresh:

// ViewExt .kt
package com.sample.marvelgallery.view.common

import android.app.Activity

import android.content.Context

import android.support.annotation.IdRes
import android.support.v4.widget.SwipeRefreshLayout
import android.support.v7.widget.RecyclerView
import android.view.View

import android.widget.ImageView

import android.widget.Toast

import com.bumptech.glide.Glide

import kotlin.properties.ReadWriteProperty
import kotlin.reflect.KProperty

fun <T : View> RecyclerView.ViewHolder.bindView (viewId: Int)
= lazy { itemView.findViewById<T> (viewId) }

fun ImageView.loadImage (photoUrl: String) {
Glide.with (context)
.load (photoUrl)
.into(this)

fun Context.toast (text: String, length: Int = Toast.LENGTH_LONG) {
Toast .makeText (this, text, length) .show()

fun Activity.bindToSwipeRefresh (@IdRes swipeRefreshlLayoutId: Int):
ReadWriteProperty<Any?, Boolean>

= SwipeRefreshBinding(lazy {
findViewById<SwipeRefreshLayout> (swipeRefreshLayoutId) })

private class SwipeRefreshBinding(lazyViewProvider:
Lazy<SwipeRefreshLayout>) : ReadWriteProperty<Any?, Boolean> {

[383]

Making Your Marvel Gallery Application

val view by lazyViewProvider

override fun getValue (thisRef: Any?,
property: KProperty<*>): Boolean {
return view.isRefreshing

}

override fun setValue (thisRef: Any?,
property: KProperty<*>, value: Boolean) {
view.isRefreshing = value
}
}

Now our application should correctly show a list of characters:

Marvel Gallery

-

Data‘providéd by Marvel. © 2017 MARVEL

Our first use case has been implemented. We can move on to the next one.

[384]

Making Your Marvel Gallery Application

Character search

Another behavior we need to implement is character search. Here is the use case definition:
after starting the application, the user can search for a character by their name.

To add it, we are going to add EditText to the activity_main layout:

<?xml version="1.0" encoding="utf-8"7?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="Q@+id/charactersvView"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="Q@android:color/white"
android:fitsSystemWindows="true">

<!—— Dummy item to prevent EditText from receiving
focus on initial load -->
<LinearLayout

android:layout_width="0px"
android:layout_height="0px"
android: focusable="true"

android: focusableInTouchMode="true"
tools:ignore="UselessLeaf" />

<android.support.design.widget.TextInputLayout
android:id="Q@+id/searchViewLayout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="@dimen/element_padding">

<EditText
android:id="@+id/searchView"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:hint="@string/search_hint" />
</android.support.design.widget.TextInputLayout>

<android.support.v4.widget.SwipeRefreshLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="Q@+id/swipeRefreshView"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_below="@+id/searchViewLayout"
app:layout_behavior="@string/appbar_scrolling_view_behavior">

[385]

Making Your Marvel Gallery Application

<android.support.v7.widget.RecyclerView
android:id="Q@+id/recyclerView"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:scrollbars="vertical" />

</android.support.vd.widget.SwipeRefreshLayout>

<TextView

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:background="Q@android:color/white"
android:gravity="center"
android:text="@string/marvel_copyright_notice" />

</RelativeLayout>

We need to add the Android Support Design library dependency to allow
TextInputLayout usage:

implementation "com.android.support:appcompat-v7:$android_support_version"
implementation "com.android.support:design:$android_support_version"
implementation "com.android.support:recyclerview-
v7:$android_support_version"

And the search_hint string definition in the strings.xml file:

<resources>
<string name="app_name">MarvelGallery</string>
<string name="search_hint">Search for character</string>
<string name="marvel_copyright_notice">
Data provided by Marvel. © 2017 MARVEL
</string>
</resources>

Also, to keep the label with the information about Marvel's copyright when the keyboard is
opened, we also need to adjustResize to windowSoftInputMode in the activity
definition in AndroidManifest:

<activity
android:name="com.sample.marvelgallery.view.main.MainActivity"
android:windowSoftInputMode="adjustResize">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

[386]

Making Your Marvel Gallery Application

We should see the following preview:

Marvel Gallery

Item O
Iterm 1
Item 2
Itern 3
Itern 4
Itern 5
Item &
Item 7
Item 8
Item 9

Data provided by Marvel. ©® 2017 MARVEL

[387]

Making Your Marvel Gallery Application

Now we have a search field added in MainActivity:

N @114 [@114

MarvelGallery MarvelGallery

Search for character aa

asdfgh | kI

4 z xcvbnm€@€

. ®

Data provided by Marvel. © 2017 MARVEL

The behavior we are expecting is that whenever the user changes the text in the search field,
a new list will be loaded. We need a new method in MainPresenter, which will be used to
inform the presenter that the text has been changed. We will call it onSearchChanged:

fun onRefresh () {
loadCharacters ()

fun onSearchChanged (text: String) {
// TODO
}

private fun loadCharacters() {
subscriptions += repository.getAllCharacters/()
.applySchedulers ()
.doOnSubscribe { view.refresh = true }
.doFinally { view.refresh = false }
.subscribeBy (
onSuccess = view::show,
onError = view::showError

[388]

Making Your Marvel Gallery Application

We need to change the MarvelRepository definition to accept a search query as
a getAllCharacters parameter (remember to also update also BaseMarvelRepository):

interface MarvelRepository {

fun getAllCharacters (searchQuery: String?):
Single<List<MarvelCharacter>>

companion object : Provider<MarvelRepository> () |
override fun creator () = MarvelRepositoryImpl ()

}

As a result, we have to update the implementation:
class MarvelRepositoryImpl : MarvelRepository {
val api = retrofit.create (MarvelApi::class.java)

override fun getAllCharacters (searchQuery: String?):
Single<List<MarvelCharacter>> = api.getCharacters(

offset = 0,
searchQuery = searchQuery,
limit = elementsOnListLimit

) .map { it.data?.results.orEmpty () .map (::MarvelCharacter) 2:
emptyList () }

companion object {
const val elementsOnListLimit = 50

}

We also update the network request definition:

interface MarvelApi {

@GET ("characters")

fun getCharacters(
@Query ("offset") offset: Int?,
@Query ("nameStartsWith") searchQuery: String?,
@Query ("1limit") limit: Int?

) : Single<DataWrapper<List<CharacterMarvelDto>>>

}

And to allow code compilation, we need to provide null asa getAllCharacters
argument in MainPresenter:

private fun loadCharacters() {

[389]

Making Your Marvel Gallery Application

subscriptions += repository.getAllCharacters (null)
.applySchedulers ()
.doOnSubscribe { view.refresh = true }
.doFinally { view.refresh = false }
.subscribeBy (
onSuccess = view: :show,
onError = view::showError

}
And we need to update BaseMarvelRepository:
package com.sample.marvelgallery.helpers

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.model.MarvelCharacter
import io.reactivex.Single

class BaseMarvelRepository (
val onGetCharacters: (String?) -> Single<List<MarvelCharacter>>
) : MarvelRepository {

override fun getAllCharacters (searchQuery: String?)
= onGetCharacters (searchQuery)

}

Now our network implementation returns a list of characters that starts from a query, or a
fill list if we don't specify a query. Time to implement the presenter. Let's define the
following tests:

@file:Suppress("IllegalIdentifier")
package com.sample.marvelgallery

import com.sample.marvelgallery.helpers.BaseMainView

import com.sample.marvelgallery.helpers.BaseMarvelRepository
import com.sample.marvelgallery.presenter.MainPresenter
import io.reactivex.Single

import org.junit.Assert.*

import org.junit.Test

class MainPresenterSearchTest {
@Test
fun "When view is created, then search query is null’ () {
assertOnAction { onViewCreated() } searchQueryIsEqualTo null

[390]

Making Your Marvel Gallery Application

@Test
fun "When text is changed, then we are searching for new query () {
for (text in 1istOf ("KKO", "HJ HJ", "And so what?"))
assertOnAction { onSearchChanged (text) }
searchQueryIsEqualTo text

private fun assertOnAction(action: MainPresenter. () —-> Unit)
= PresenterActionAssertion (action)

private class PresenterActionAssertion(val actionOnPresenter:
MainPresenter. () —> Unit) {

infix fun searchQueryIsEqualTo (expectedQuery: String?) {

var checkApplied = false

val view = BaseMainView (onShowError = { fail() })

val marvelRepository = BaseMarvelRepository { searchQuery ->
assertEquals (expectedQuery, searchQuery)
checkApplied = true
Single.never ()

}

val mainPresenter = MainPresenter (view, marvelRepository)

mainPresenter.actionOnPresenter ()

assertTrue (checkApplied)

}

To make the following test pass, we need to add a search query as a parameter with default
argument to the loadCharacters method of MainPresenter:

fun onSearchChanged (text: String) {
loadCharacters (text)

private fun loadCharacters (searchQuery: String? = null) {
subscriptions += repository.getAllCharacters (searchQuery)
.applySchedulers ()
.doOnSubscribe { view.refresh = true }
.doFinally { view.refresh = false }
.subscribeBy (
onSuccess = view::show,
onError = view::showError

[391]

Making Your Marvel Gallery Application

But the tricky part is that the Marvel API does not allow only whitespaces as a search query.
There should be a null sent instead. Therefore, if the user deletes the last character, or if
they try to search with only spaces in the search field, then the application will crash. We
should prevent such situations. Here is a test that checks whether the presenter changes a
query with only whitespaces into null:

@Test
fun "When text is changed, then we are searching for new query () {
for (text in 1istOf ("KKO", "HJ HJ", "And so what?"))
assertOnAction { onSearchChanged(text) }
searchQueryIsEqualTo text

@Test
fun "For blank text, there is request with null query () {
for (emptyText in listOf("", " " "))
assertOnAction { onSearchChanged (emptyText) }
searchQueryIsEqualTo null
}
private fun assertOnAction (action: MainPresenter. () —-> Unit)

= PresenterActionAssertion (action)
We can implement a security mechanism in the loadCharacters method:

private fun loadCharacters (searchQuery: String? = null) {
val gqualifiedSearchQuery = if (searchQuery.isNullOrBlank()) null
else searchQuery
subscriptions += repository
.getAllCharacters (qualifiedSearchQuery)

.applySchedulers ()
.smartSubscribe (
onStart = { view.refresh = true },
onSuccess = view: :show,
onError = view::showError,
onFinish = { view.refresh = false }

[392]

Making Your Marvel Gallery Application

Now all tests pass again:

DEIEREEE O E
v @ marvelgallery (com.androiddevelopmentwit/ 115ms
= MainPresenterSearchTest 104ms

@ For blank text, there is request with nul 82ms
@0 After start, there is request for with null Oms
& When text is changed, then we are seai 21ms
im0 MainPresenterTest 11ms
@ When API returns error, it is displayed o 7ms
@ When presenter is waiting for response, 2ms
= New list is shown after view was refresl 2ms
=0 After view was created, list of character Oms

We still need to implement an Activity functionality that will call the presenter when text
has been changed. We will do this using the optional callback class defined in chapter 7,
Extension Functions and Properties:

// TextChangedListener.kt
package com.sample.marvelgallery.view.common

import android.text.Editable
import android.text.TextWatcher
import android.widget.TextView

fun TextView.addOnTextChangedListener (config: TextWatcherConfiguration. ()
-> Unit) {
addTextChangedListener (TextWatcherConfiguration () .apply { config() }
addTextChangedListener (textWatcher)
}

class TextWatcherConfiguration : TextWatcher {

private var beforeTextChangedCallback:
(BeforeTextChangedFunction)? = null
private var onTextChangedCallback:
(OnTextChangedFunction)? = null
private var afterTextChangedCallback:
(AfterTextChangedFunction)? = null

[393]

Making Your Marvel Gallery Application

fun beforeTextChanged(callback: BeforeTextChangedFunction) {
beforeTextChangedCallback = callback

fun onTextChanged (callback: OnTextChangedFunction) {
onTextChangedCallback = callback

fun afterTextChanged(callback: AfterTextChangedFunction) {
afterTextChangedCallback = callback

override fun beforeTextChanged(s: CharSequence,

start: Int, count: Int, after: Int) {
beforeTextChangedCallback?.invoke (s.toString(),
start, count, after)

override fun onTextChanged(s: CharSequence, start: Int,
before: Int, count: Int) {
onTextChangedCallback?.invoke (s.toString(),
start, before, count)

override fun afterTextChanged(s: Editable) {
afterTextChangedCallback?.invoke (s)

private typealias BeforeTextChangedFunction =

(text: String, start: Int, count: Int, after: Int) -> Unit
private typealias OnTextChangedFunction =

(text: String, start: Int, before: Int, count: Int) -> Unit
private typealias AfterTextChangedFunction =

(s: Editable) —> Unit

And use it in the onCreate method of MainActivity:

package com.sample.marvelgallery.view.main

import android.os.Bundle

import android.support.v7.widget.GridLayoutManager

import android.view.Window

import com.sample.marvelgallery.R

import com.sample.marvelgallery.data.MarvelRepository

import com.sample.marvelgallery.model.MarvelCharacter

import com.sample.marvelgallery.presenter.MainPresenter

import com.sample.marvelgallery.view.common.BaseActivityWithPresenter

[394]

Making Your Marvel Gallery Application

import com.sample.marvelgallery.view.common.addOnTextChangedListener
import com.sample.marvelgallery.view.common.bindToSwipeRefresh
import com.sample.marvelgallery.view.common.toast

import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : BaseActivityWithPresenter (), MainView {

override var refresh by bindToSwipeRefresh(R.id.swipeRefreshView)
override val presenter by lazy
{ MainPresenter (this, MarvelRepository.get()) }

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
requestWindowFeature (Window.FEATURE_NO_TITLE)
setContentView (R.layout.activity_main)
recyclerView.layoutManager = GridLayoutManager (this, 2)
swipeRefreshView.setOnRefreshlListener { presenter.onRefresh() }
searchView.addOnTextChangedListener {

onTextChanged { text, _, _, —>

presenter.onSearchChanged (text)

}

presenter.onViewCreated()

override fun show(items: List<MarvelCharacter>) {
val categoryltemAdapters = items.map (::CharacterItemAdapter)
recyclerView.adapter = MainListAdapter (categoryIltemAdapters)

override fun showError (error: Throwable) {
toast ("Error: ${error.message}")
error.printStackTrace ()

[395]

Making Your Marvel Gallery Application

That is all we need to define the functionality of the character search. Now we can build the
application and use it to find our favorite character:

6N

MarvelGallery

Search for character

wolveri|

Wolkrine §

)

A v@
——

fiinimmi
Ultimat
('lmae)

Data p‘rorvided by Marvel. © 2017 MARVEL

With a correctly working application, we can move on to the next use case.

[396]

Making Your Marvel Gallery Application

Character profile display

Searching through characters is not enough. To make the app functional, we should add a
character description display. Here is the use case we've defined: "when the user clicks on a
character picture, there is a profile displayed. The character profile contains a character
name, photo, description, and their occurrences."

To implement this use case, we need to create a new activity and layout that will define
what this Activity looks like. To do this, create a new Activity called
CharacterProfileActivity in the package

the com.sample.marvelgallery.view.character package:

New Android Activity x

\ Configure Activity

Android Studio

Creates a new empty activity

Activity Name

| CharacterProfileActivity

Generate Layout File

Layout Name

| activity_character_profile

[Launcher Activity

Backwards Compatibility (AppCompat)

Package name

Imm.sample.marvelqallery.view.(hara(ter| n

Source Language

| Kotlin ‘

‘ Previous ‘ | Next | I Cancel |

[397]

Making Your Marvel Gallery Application

We will start its implementation from changes in the layout (in
activity_character_profile.xml). Here is the final result we would like to achieve:

Born with super-human senses
and the power to heal from
almost any wound, Wolverine was
captured by a secret Canadian
organization and given an
unbreakable skeleton and claws.
Treated like an animal, it took
years for him to control himself.
Now, he's a premiere member of
both the X-Men and the Avengers.

" Data provided by Marvel. ® 2017 MARVEL

The base element is CoordinatorLayout, with AppBar and CollapsingToolbarLayout
both used to achieve a collapsing effect known from material design:

hés a i
both the X-Men and the Avengers.

= & Ranin

® 3 KOnin

Collapsing effect step by step

[398]

Making Your Marvel Gallery Application

We also need TextView for the description and occurrences, that will be filled with data in
the next use case. Here is the full activity_character_profile layout definition:

<?xml version="1.0" encoding="utf-8"7?>

<android.support.design.widget.CoordinatorLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="Q@+id/character_detail_layout"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@android:color/white">

<android.support.design.widget.AppBarLayout
android:id="Q@+id/appBarLayout"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:theme="@style/ThemeOverlay.AppCompat .ActionBar">

<android.support.design.widget.CollapsingToolbarLayout
android:id="Q@+id/toolbarLayout"
android:layout_width="match_parent"
android:layout_height="match_parent"
app:contentScrim="?attr/colorPrimary"
app:expandedTitleTextAppearance="@style/ItemTitleName"
app:layout_scrollFlags="scroll|exitUntilCollapsed">

<android.support.v7.widget .AppCompatImageView
android:id="@+id/headerView"
android:layout_width="match_parent"
android:layout_height="@dimen/character_header_height"
android:background="@color/colorPrimaryDark"
app:layout_collapseMode="parallax" />

<android.support.v7.widget.Toolbar
android:id="Q@+id/toolbar"
android:layout_width="match_parent"
android:layout_height="?attr/actionBarSize"
android:background="@android:color/transparent"
app:layout_collapseMode="pin"
app:popupTheme="@style/ThemeOverlay.AppCompat .Light" />

</android.support.design.widget.CollapsingToolbarLayout>
</android.support.design.widget .AppBarLayout>

<android.support.v4.widget .NestedScrollView
android:layout_width="match_parent"
android:layout_height="match_parent"

[399]

Making Your Marvel Gallery Application

android:overScrollMode="never"
app:layout_behavior="@string/appbar_scrolling_view_behavior">

<LinearLayout
android:id="@+id/details_content_frame"
android:layout_width="match_parent"
android:layout_height="match_parent"
android: focusableInTouchMode="true"
android:orientation="vertical">

<TextView
android:id="@+id/descriptionvView"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center"
android:padding="Q@dimen/character_description_padding"
android:textSize="@dimen/standard_text_size"
tools:text="This is some long text that will be visible as
an character description." />

<TextView
android:id="Q@+id/occurrencesView"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="Q@dimen/character_description_padding"
android:textSize="@dimen/standard_text_size"
tools:text="He was in following comics:\n* KOKOKO \n* KOKOKO
\n* KOKOKO \n* KOKOKO \n* KOKOKO \n* KOKOKO \n* KOKOKO \n* KOKOKO \n*
KOKOKO \n* KOKOKO \n* KOKOKO " />
</LinearLayout>

</android.support.vd.widget .NestedScrollView>

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="bottom"
android:background="Q@android:color/white"
android:gravity="bottom|center"
android:text="@string/marvel_copyright_notice" />

<ProgressBar
android:id="Q@+id/progressView"
style="?android:attr/progressBarStyleLarge"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:visibility="gone" />

[400]

Making Your Marvel Gallery Application

</android.support.design.widget.CoordinatorLayout>

We also need to add the following styles in styles.xml:

<resources>

<!-- Base application theme. —-—>
<style name="AppTheme"
parent="Theme.AppCompat.Light .DarkActionBar">
<!-— Customize your theme here. —-—>
<item name="colorPrimary">Q@color/colorPrimary</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>
</style>
<style name="AppFullScreenTheme"
parent="Theme.AppCompat.Light .NoActionBar">
<item name="android:windowNoTitle">true</item>
<item name="android:windowActionBar">false</item>
<item name="android:windowFullscreen">true</item>
<item name="android:windowContentOverlay">@null</item>
</style>

<style name="ItemTitleName"
parent="TextAppearance.AppCompat .Headline">
<item name="android:textColor">@android:color/white</item>
<item name="android:shadowColor">@color/colorPrimaryDark</item>
<item name="android:shadowRadius">3.0</item>
</style>
<style name="ItemDetailTitle"
parent="@style/TextAppearance.AppCompat.Small">
<item name="android:textColor">QRcolor/colorAccent</item>
</style>

</resources>

[401]

Making Your Marvel Gallery Application

And we need to define AppFullScreenTheme as the theme for
CharacterProfileActivity in AndroidManifest

<activity android:name=".view.CharacterProfileActivity"
android:theme="@style/AppFullScreenTheme" />

Here is a preview of the defined layout:

Marvel Gallery

This is some long text that will be visible
as an character description.

He was in following comics:
* KOKOKO
* KOKOKO
* KOKOKO
* KOKOKO
* KOKOKO
* KOKOKO
* KOKOKO
* KOKOKO

L ASANIALL A

Data provided by Marvel. ©® 2017 MARVEL

[402]

Making Your Marvel Gallery Application

This view will be used to display data about the character, but first we need to open it from
MainActivity. We need to set onClickListener in CharacterItemAdapter, which is
calling the clicked callback provided by the constructor:

package com.sample.marvelgallery.view.main

import android.support.v7.widget.RecyclerView

import android.view.View

import android.widget.ImageView

import android.widget.TextView

import com.sample.marvelgallery.R

import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.view.common.ItemAdapter
import com.sample.marvelgallery.view.common.bindView
import com.sample.marvelgallery.view.common.loadImage

class CharacterItemAdapter (
val character: MarvelCharacter,
val clicked: (MarvelCharacter) —-> Unit
) : ItemAdapter<CharacterItemAdapter.ViewHolder> (R.layout.item_character) {

override fun onCreateViewHolder (itemView: View) =
ViewHolder (itemView)

override fun ViewHolder.onBindViewHolder () {
textView.text = character.name
imageView.loadImage (character.imageUrl)
itemView.setOnClickListener { clicked(character) }

class ViewHolder (itemView: View)

RecyclerView.ViewHolder (itemView) {
val textView by bindView<TextView> (R.id.textView)
val imageView by bindView<ImageView> (R.id.imageView)

}
And we need to update MainActivity:
package com.sample.marvelgallery.view.main

import android.os.Bundle

import android.support.v7.widget.GridLayoutManager
import android.view.Window

import com.sample.marvelgallery.R

import com.sample.marvelgallery.data.MarvelRepository
import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.presenter.MainPresenter

[403]

Making Your Marvel Gallery Application

import com.sample.marvelgallery.view.character.CharacterProfileActivity
import com.sample.marvelgallery.view.common.BaseActivityWithPresenter
import com.sample.marvelgallery.view.common.addOnTextChangedListener
import com.sample.marvelgallery.view.common.bindToSwipeRefresh

import com.sample.marvelgallery.view.common.toast

import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : BaseActivityWithPresenter (), MainView {

override var refresh by bindToSwipeRefresh(R.id.swipeRefreshView)
override val presenter by lazy
{ MainPresenter (this, MarvelRepository.get()) }

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
requestWindowFeature (Window.FEATURE_NO_TITLE)
setContentView (R.layout.activity_main)
recyclerView.layoutManager = GridLayoutManager (this, 2)
swipeRefreshView.setOnRefreshListener { presenter.onRefresh() }
searchView.addOnTextChangedListener {

onTextChanged { text, _, _, —>

presenter.onSearchChanged (text)

}

presenter.onViewCreated()

override fun show(items: List<MarvelCharacter>) {
val categoryltemAdapters =
items.map (this::createCategoryItemAdapter)
recyclerView.adapter = MainListAdapter (categoryIltemAdapters)

override fun showError (error: Throwable) {
toast ("Error: ${error.message}")
error.printStackTrace ()

private fun createCategoryItemAdapter (character: MarvelCharacter)
= CharacterItemAdapter (character,
{ showHeroProfile (character) })

private fun showHeroProfile (character: MarvelCharacter) {
CharacterProfileActivity.start (this, character)

[404]

Making Your Marvel Gallery Application

In the preceding implementation, we are using a method from the
CharacterProfileActivity companion object to start CharacterProfileActivity.
We need to pass the MarvelCharacter object to this method. The most efficient way to
pass a MarvelCharacter object is to pass it as parcelable. To allow this, MarvelCharacter
must implement the Parcelable interface. This is why a useful solution is to use

an annotation processing library such as Parceler, PaperParcel, or Smuggler that generates
the necessary elements. We will use the solution from Kotlin Android Extensions we
already have in the project. At the time of writing, it was still experimental, so the following
definitions needs to be added in the build.gradle module:

androidExtensions {
experimental = true

}

All we need to do is to add the Parcelize annotation before the class, and we need to
make this class implement Parcelable. We will also add error suppression to hide the
default Android warning:

package com.sample.marvelgallery.model

import android.annotation.SuppressLint
import android.os.Parcelable
import com.sample.marvelgallery.data.network.dto.CharacterMarvelDto

import kotlinx.android.parcel.Parcelize
@SuppressLint ("ParcelCreator")
@Parcelize

constructor (dto: CharacterMarvelDto) : this(
name = dto.name,
imageUrl = dto.imageUrl

}

Now we can implement the start function and field character, which will get the
argument value from Intent using the property delegate:

package com.sample.marvelgallery.view.character

import android.content.Context

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

import android.view.Menultem

import com.sample.marvelgallery.R

import com.sample.marvelgallery.model.MarvelCharacter
import com.sample.marvelgallery.view.common.extra

[405]

Making Your Marvel Gallery Application

import com.sample.marvelgallery.view.common.getIntent
import com.sample.marvelgallery.view.common.loadImage
import kotlinx.android.synthetic.main.activity_character_profile.*

class CharacterProfileActivity : AppCompatActivity () {
val character: MarvelCharacter by extra (CHARACTER_ARG) // 1

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
setContentView (R.layout.activity_character_profile)
setUpToolbar ()
supportActionBar?.title = character.name
headerView.loadImage (character.imageUrl, centerCropped = true) // 1

override fun onOptionsItemSelected(item: Menultem): Boolean = when {
item.itemId == android.R.id.home -> onBackPressed().let { true }
else —-> super.onOptionsItemSelected(item)

private fun setUpToolbar () {
setSupportActionBar (toolbar)
supportActionBar?.setDisplayHomeAsUpEnabled (true)

companion object {

private const val CHARACTER_ARG =
"com.sample.marvelgallery.view.character.CharacterProfileActivity.Character
ArgKey"

fun start (context: Context, character: MarvelCharacter) {
val intent = context
.getIntent<CharacterProfileActivity>() // 1
.apply { putExtra (CHARACTER_ARG, character) }
context.startActivity (intent)

1. The extra and get Intent extension functions were already been presented in
the book, but they have not been implemented yet in this project. Also,
loadImage will display an error because it needs to be changed.

[406]

Making Your Marvel Gallery Application

We need to update 1oadImage, and define extra and get Intent as top-level functions:

// ViewExt .kt
package com.sample.marvelgallery.view.common

import android.app.Activity

import android.content.Context

import android.content.Intent

import android.os.Parcelable

import android.support.annotation.IdRes
import android.support.v4.widget.SwipeRefreshLayout
import android.widget.ImageView

import android.widget.Toast

import com.bumptech.glide.Glide

import kotlin.properties.ReadWriteProperty
import kotlin.reflect.KProperty

import android.support.v7.widget.RecyclerView
import android.view.View

fun <T : View> RecyclerView.ViewHolder.bindView (viewId: Int)
= lazy { itemView.findViewById<T> (viewId) }

fun ImageView.loadImage (photoUrl: String, centerCropped: Boolean = false) {
Glide.with (context)
.load (photoUrl)
.apply { if (centerCropped) centerCrop() }
.into(this)

}
fun <T : Parcelable> Activity.extra(key: String, default: T? = null):
Lazy<T>

= lazy { intent?.extras?.getParcelable<T>(key) ?: default ?: throw
Error ("No value $key in extras") }
inline fun <reified T : Activity> Context.getIntent () = Intent (this,

T::class.java)

/7

[407]

Making Your Marvel Gallery Application

Instead of defining functions to start the Activity, we might use a library
that generates these methods. For example, we might use the
ActivityStarter library. This is what CharacterProfileActivity
would look like:

class CharacterProfileActivity : AppCompatActivity () A
@get:Arg val character: MarvelCharacter by argExtra ()

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
setContentView (R.layout.activity_character_profile)
setUpToolbar ()
supportActionBar?.title = character.name
headerView.loadImage (character.imageUrl, centerCropped = true) // 1

override fun onOptionsItemSelected(item: Menultem): Boolean = when {
item.itemId == android.R.id.home -> onBackPressed().let { true }
else -> super.onOptionsItemSelected(item)

private fun setUpToolbar () {
setSupportActionBar (toolbar)
supportActionBar?.setDisplayHomeAsUpEnabled (true)

}

We should start it or get its intent using the static methods of the generated class
CharacterProfileActivityStarter:

CharacterProfileActivityStarter.start (context, character)
val intent = CharacterProfileActivityStarter.getIntent (context, character)

To allow it, we need the kapt plugin in the build.gradle module (used to support
annotation processing in Kotlin):

apply plugin: 'kotlin-kapt'

[408]

Making Your Marvel Gallery Application

Add the ActivityStarter dependencies in the build.gradle module:

implementation
'com.github.marcinmoskala.activitystarter:activitystarter:1.00"'
implementation 'com.github.marcinmoskala.activitystarter:activitystarter-

kotlin:1.00"
kapt 'com.github.marcinmoskala.activitystarter:activitystarter—
compiler:1.00"

After these changes, when we click into a character in MainActivity, then
CharacterProfileActivity will be started:

Data provided by Marvel. © 2017 MARVEL

[409]

Making Your Marvel Gallery Application

We display the name and show the character photo. The next step is to display the
description and list of occurrences. The necessary data can be found in the Marvel API and
we only need to extend DTO models to get it. We need to add ListWrapper, which is used
to hold a list:

package com.sample.marvelgallery.data.network.dto
class ListWrapper<T> {

var items: List<T> = 1listOf ()
}

We need to define ComicDto, which holds the data we need about occurrences:
package com.sample.marvelgallery.data.network.dto
class ComicDto {

lateinit var name: String
}

And we need to update CharacterMarvelDto:
package com.sample.marvelgallery.data.network.dto
class CharacterMarvelDto {

lateinit var name: String

lateinit var description: String
lateinit var thumbnail: ImageDto

var comics: ListWrapper<ComicDto> = ListWrapper ()
var series: ListWrapper<ComicDto> = ListWrapper ()
var stories: ListWrapper<ComicDto> = ListWrapper ()
var events: ListWrapper<ComicDto> = ListWrapper ()

val imageUrl: String
get () = thumbnail.completeImagePath
}

Data is now read from the API and kept in DTO objects, but to use it in the project, we also
need to change the MarvelCharacter class definition, and add a new constructor:

@SuppressLint ("ParcelCreator")
@Parcelize

class MarvelCharacter (
val name: String,
val imageUrl: String,
val description: String,
val comics: List<String>,

[410]

Making Your Marvel Gallery Application

val series: List<String>,
val stories: List<String>,
val events: List<String>

) : Parcelable {

constructor (dto: CharacterMarvelDto) : this(
name = dto.name,
imageUrl = dto.imageUrl,
description = dto.description,

comics = dto.comics.items.map { it.name },
series = dto.series.items.map { it.name },
stories = dto.stories.items.map { it.name },
events = dto.events.items.map { it.name }

}

Now we can update CharacterProfileActivity to display the description and list of
occurrences:

class CharacterProfileActivity : AppCompatActivity () {

val character: MarvelCharacter by extra (CHARACTER_ARG)
override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
setContentView (R.layout.activity_character_profile)

setUpToolbar ()

supportActionBar?.title = character.name
descriptionView.text = character.description
occurrencesView.text = makeOccurrencesText () // 1

headerView.loadImage (character.imageUrl, centerCropped = true)

override fun onOptionsItemSelected(item: Menultem): Boolean = when {
item.itemId == android.R.id.home -> onBackPressed().let { true }
else -> super.onOptionsItemSelected (item)

private fun setUpToolbar () {
setSupportActionBar (toolbar)
supportActionBar?.setDisplayHomeAsUpEnabled (true)

private fun makeOccurrencesText (): String = "" // 1, 2
.addList (R.string.occurrences_comics_list_introduction,
character.comics)
.addList (R.string.occurrences_series_list_introduction,
character.series)
.addList (R.string.occurrences_stories_list_introduction,

[411]

Making Your Marvel Gallery Application

character.stories)
.addList (R.string.occurrences_events_list_introduction,
character.events)

private fun String.addList (introductionTextId: Int, list: List<String>):
String { // 3
if (list.isEmpty()) return this
val introductionText = getString(introductionTextId)
val listText = list.joinToString(transform =
{ " Sbullet $it" }, separator = "\n")
return this + "$introductionText\n$listText\n\n"

companion object {
private const val bullet = '\u2022' // 4
private const val CHARACTER_ARG =
"com.naxtlevelofandroiddevelopment .marvelgallery.presentation.heroprofile.C
haracterArgKey"

fun start (context: Context, character: MarvelCharacter) {
val intent = context
.getIntent<CharacterProfileActivity> ()
.apply { putExtra (CHARACTER_ARG, character) }
context.startActivity (intent)

1. The composition of the list of occurrences is quite a complex task, so we extract it
to the function makeOccurrencesText. There, for each occurrence type (comic,
series, and so on), we want to show the introduction text and list only if there are
some occurrences of this type. We also want to prefix each item with a bullet.

2. makeOccurrencesText is a single expression function that uses addList to
append an initially empty string with the next lists that we want to display.

3. addList is a member extension function. It returns a string unchanged if the
provided list is empty, or it returns a string appended with the introduction text
and the list of elements with bullets.

4. This is the character that is used as a list bullet.

[412]

Making Your Marvel Gallery Application

We also need to define strings in st rings.xml:

<resources>
<string name="app_name">Marvel Gallery</string>
<string name="marvel_copyright_notice">
Data provided by Marvel. © 2017 MARVEL</string>
<string name="search_hint">Search for character</string>
<string name="occurrences_comics_list_introduction">Comics:</string>
<string name="occurrences_series_list_introduction">Series:</string>
<string name="occurrences_stories_list_introduction">Stories:</string>
<string name="occurrences_events_list_introduction">Events:</string>
</resources>

Now we can see the whole character profile--character name, image, description, and lists of
their occurrences in comics, series, events, and stories:

&« Wolverine « Wolverine

FOQID 1UI THITT W LU T, L LR LR R TR T LT

Now, he's a premiere member of [(1964 - 2009)
both the X-Men and the Avengers. | - Amazing Spider Man Vol. 10:
New Avengers (2005)

Comics: + Amazing X-Men (2013 - Present)
» 5 Ronin (Hardcover) * Anita Blake: The Laughing
» 5 Ronin (Hardcover) Corpse - Necromancer (2009)
* 5 Ronin (2010) #1 « Annihilators: Earthfall (2011)
] * 5 Ronin (2010) #1 (AJA Cover) « Astonishing Spider-Man/
Born with super-human senses - A+X (2012) #1 Wolverine (2010 -2011)
and the power to heal from - A+X (2012) #4 + Astonishing Spider-Man/
almost any wound, Wolverine was [. A+X (2012) #6 Wolverine (2010 - Present)
captured by a secret Canadian « A+X (2012) #9
organization and given an - ACTS OF VENGEANCE Stories:
unbreakable skeleton and claws. CROSSOVERS OMNIBUS . COVE‘I’I#477
Treated like an animal, it took
- Hardcover - X-
years for him to control himself. (ACTS OF EI’ENGEANCE i émgﬁ#(gggd} #164
Now, he'sa premiere member of CROSSOVERS OMNIBUS (DM « %-MEN [2004} #159
both the X-Men and the Avengers. Only) (Hardcover) - XMEN (2004) #157
+ Age of X: Alpha (2010) #1 - X-MEN (2004) #158
Data provided by Marvel. © 2017 MARVEL Data provided by Marvel. 2017 MARVEL Data prD'-'-IdEd by Marvel. ® 2017 MARVEL

[413]

Making Your Marvel Gallery Application

Summary

The application is complete, but there are still lots of functionalities that can be added. In
this application, we've seen some examples of how Kotlin can be used to simplify Android
development. But there are still a lot of solutions to discover. Kotlin simplifies Android
development at any level--from common operations such as listener set or view element
reference, to high-level functionalities such as functional programming or collection
processing.

This book cannot cover absolutely everything about Android development with Kotlin, but
it has been designed to show enough to allow everyone to start their own adventure with
bags of ideas and feature understanding. The next step is to open Android Studio, create
your own project, and start having fun with Kotlin. A big adventure is in front of you.

[414]

A

ActivityStarter library
reference link 258
Agile Software Assessment
about 36
reference link 36
aliases
about 166
importing 166
Android Studio
Java to Kotlin converter (J2K) 23
Kotlin code, executing 24, 25
Kotlin, configuring for project 18, 20, 21
Kotlin, using in Android project 21, 23
Android Support Design library 386
Anko library
about 234, 258,292, 312
reference link 234, 258,292
anonymous functions 172, 174
argument convention
named code, surrounding with 185
arrays 55

B

Boolean type 56
boxing 52
Bundle 313

C

callbacks

using, for threaded operations 181
casts

about 45

safe cast operator 45

smart cast 47

unsafe cast operator 45

Index

Char 54
character gallery
about 343, 344
business logic, implementation 366, 367, 372,
374, 376, 380
implementing 382, 384
network 357, 361, 362, 365, 366
View implementation 344, 345, 346, 349, 352,
355
character profile
displaying 397, 398, 399, 403, 406, 408, 410,
412
character search
implementing 385, 386, 391, 396
class delegation
about 295
Decorator pattern 301, 304
Delegation pattern 295, 300
classes
about 103
declaration 103
closures 175
collection processing
about 259
count function 268
filter function 265
flatMap function 265
forEach function 267
Kotlin collection, type hierarchy 261
map function 265
max function 268
min function 268
onEach function 267
sequence 275
sorted function 268
stream collection processing, example 272, 274,
275,276

stream processing functions 272
sum function 268
collection variance 225, 228
collections 60
companion object extensions 244
companion object
about 146
instantiation 148
compile-time constants 76
composite data types
about 57
collections 60
ranges 58
strings 57
constructor, with default argument 121
control flow
about 61
if 62,63
loops 67
when 63, 66
copy method 135
crossinline modifier 207
custom delegates
about 322, 325
delegate, providing 331
preference binding 327
view binging 325
custom getters
versus property default value 114
custom setters 112

D

Dagger 365
Dagger framework 116
data classes
about 131
copy method 135
destructive declarations 136
equals method 132
hashCode method 132
toString method 134
data structures
processing, LINQ style used 187
data transfer object (DTO) 212, 362
data types

[416]

reference link 164
declaration-site variance

versus use-site variance 224
declarative programming

about 89

versus imperative programming 89
Decorator pattern

reference link 302
default arguments values 91
delegates 77
destructive declarations 136
destructuring declaration 136
domain-specific language (DSL)

about 285,287,291

Anko library 292
DRY (Don't Repeat Yourself) 178

E

elvis operator 40

empty type 100

enum classes 151, 154

equals method 132

Espresso 336

exceptions
about 73
try... catch block 75

expressions
versus statements 60

extension functions
about 239
companion object extensions 244
compiling, to static function 241
method override, avoiding 242
receiver elements, accessing 243
resolving statically 244
used, for operator overloading 245
using 246

extension properties
about 247,248
using 249, 251

extensions 15

F

forEach function
about 267

indexed variants 267

withIndex variant 267
function literals

with receiver 277
function reference 210
function type

about 170

examples 171

named Kotlin function types 190
function, calling

about 91

default arguments values 91

named arguments, syntax 92
function

declaration 80

operations, providing 180

parameters 81

returning 83

usages 80

G

generic constraints
about 217
nullability 218
generic extension functions
about 257
collection processing 259
generics
about 214, 215
need for 215
type parameters, versus type arguments 216
getter method 104
Glide library 354
Google Java Style Guide
reference link 237

H

hashCode method 132
higher-order function
about 178, 180
callback, using for threaded operations 181
Observer (listener) pattern 181
operations, providing to functions 180

imperative programming
about 89
implicit label 204
implicit name
using, for single parameter 177
implicit receivers
about 255
dispatch receiver 255
extension receiver 255
infix calls
for named methods 154
inheritance
about 122
JvmOverloads annotation 126
inline functions
about 197
crossinline modifier 207
lambda expressions, labeled return 204
noinline modifier 200
non-local returns 201
properties 209
interfaces 130
internal modifier 161
invariant constructor 230

J

Java bytecode 161
Java method access syntax
versus Kotlin property access syntax 111
Java SAM
support, in Kotlin 187
Java to Kotlin converter (J2K) 23
Java
nullability 43
JvmOverloads annotation 126

K

kapt plugin 408
keys
URL, for generating from Marvel APl 360
Kodein 365
Kotlin Android extensions 355
Kotlin bug tracker

[417]

reference link 9
Kotlin code
about 16
Android Studio 18
Kotlin Playground 16
Kotlin collection
interfaces hierarchy 262
type hierarchy 261
Kotlin Playground
about 16
reference link 16
Kotlin slack channel
reference link 9
Kotlin standard library (stdlib) 26
Kotlin standard library functions
about 278, 279
also function 282
apply function, using for initialization 282
let function 280, 281
run function 283
to function 285
with function 283
Kotlin
about 8
anonymous function 188
compiling 25
examples 10, 11,13, 15,16
features 8
Java SAM, supporting 187
lambda expressions 188
nullability 43
property delegation 304
usage 26
KotlinAndroidViewBindings library
reference link 327

L

lambda expressions
about 174,177
destructuring 195
labeled return 204
single parameter, implicit name using 177
last lambda in argument convention
about 183
data structures, processing LINQ style used 187

[418]

thread function, using 185
late-initialized properties 115
lateinit property 116
lazy delegate 308
LINQ style

used, for processing data structures 187
local functions 97, 99
loops

about 67

break operator 69, 72

continue operator 69, 72

iterations 69

while loop 68

Marvel Gallery application
character gallery 343
character profile, displaying 397, 398, 399, 403,
406, 408,410,412
character search, implementing 385, 386, 391,
396
empty project creating 339, 340, 341, 342, 343
implementing 335
reference link 335, 336
member extension functions
about 251
compiling 256
receiver, types 254
member extension properties
about 251
compiling 256
receiver, types 254
Mockito framework 116
Model-View-Presenter (MVP)
about 325, 366
rules 366
module
injava 158
in Kotlin 158

N

named arguments
syntax 92

named Kotlin function types
about 190

named parameters 190 notNull function 313

type alias 191 observable delegate 315
named methods vetoable delegate 317
infix calls 154 primary constructor 118
nested class 165 primitive data types
noinline modifier about 51
about 200 arrays 55
using 201 Boolean type 56
non-local returns 201 char 54
not-null assertion operator 41 numbers 52
nothing return type 99, 101 producer/consumer limitation
null pointer exception (NPE) 8 of variance 228
nullability properties
about 218 about 104
Java 43 annotation 116
nullable cast operator 46 custom setters 112
numbers 52 inline properties 117
late-initialized properties 115
O versus constructor parameter 120
object declaration 142, 143 property access syntax
object expression 143 about 108
Observer (listener) pattern 181 decrement operators 109
onEach function increment operators 109
about 267 property delegation
indexed variant 267 about 304
withindex variant 267 custom delegates 322
operations delegated properties 304
providing, to functions 180 predefined delegates 307
operator overloading 102, 138, 141 to Map type 319
P Q
PaperParcel library 405 qualified class name
parameters versus unqualified class name 167
about 81
versus arguments 81 R
Parceler 405 ranges 58
Pascal notation 32 Read Eval Print Loop (REPL) 24
patterns read-only property
about 121 versus read-write property 107
builder pattern 122 receiver
JavaBeans pattern 121 about 277
telescoping constructor pattern 121 DSL 285,287,291
Picasso library 354 function literals 277
predefined delegates Kotlin standard library functions 278, 279
lazy function 307, 312 types 254

[419]

reified type parameters compiling 95

about 232 toString method 134
startActivity method 234 try... catch block 76
Retrofit library 357 type alias 191
type erasure
S about 230
safe call operator 39 reified type parameters 232
safe cast operator 45 type inference 32, 35
SAM constructor 188 type parameter upper bound 218
sealed classes 163 type parameter
secondary constructor 118 about 215
sequence 275, 276 naming convention, reference link 236
setter method 104 naming conventions 236
Single Abstract Method (SAM) 169, 187
single parameters U
implicit name, using 177 Ul tests, using espresso
single-expression functions 86, 87 reference link 366
smart cast underscore
about 47 for unused variables 194
in Android Studio 48 unsafe cast operator 45
non-nullable smart cast 50, 51 unused variables
type smart cast 48, 50 underscore 194
Smuggler library 405 use-site variance
star-projections 234 versus declaration-site variance 224
state machine
reference link 164 V
statements . vararg parameter 85
Versus expressions 60 variables 30, 31
strict null safety variance modifiers 222
about 36, 39 variance
elvis operator 40 about 220
let function 42 collection variance 225
not-null assertion operator 41 contra-variant 222
safe call operator 39 covariant 221
string templates 57 invariant 222
strings invariant constructor 230
about 57 producer/consumer limitation 228
reference link 57 use-site variance, versus declaration-site
variance 224
T visibility modifiers
tail-recursive functions 89 about 158
top-level function internal modifier 161

about 95 Java bytecode 161

	Cover
	Copyrights
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Beginning Your Kotlin Adventure
	Say hello to Kotlin
	Awesome Kotlin examples
	Dealing with Kotlin code
	Kotlin Playground
	Android Studio
	Configuring Kotlin for the project
	Using Kotlin in a new Android project
	Java to Kotlin converter (J2K)
	Alternative ways to run Kotlin code

	Kotlin under the hood
	The Kotlin standard library

	More reasons to use Kotlin
	Summary

	Chapter 2: Laying a Foundation
	Variables
	Type inference
	Strict null safety
	Safe call
	Elvis operator
	Not-null assertion
	The let function

	Nullability and Java
	Casts
	Safe/unsafe cast operator
	Smart casts
	Type smart casts
	Non-nullable smart cast

	Primitive data types
	Numbers
	Char
	Arrays
	The Boolean type

	Composite data types
	Strings
	String templates

	Ranges
	Collections

	Statements versus expressions
	Control flow
	The if statement
	The when expression
	Loops
	The for loop
	The while loop
	Other iterations
	Break and continue

	Exceptions
	The try... catch block

	Compile-time constants
	Delegates
	Summary

	Chapter 3: Playing with Functions
	Basic function declaration and usage
	Parameters
	Returning functions

	Vararg parameter
	Single-expression functions
	Tail-recursive functions
	Different ways of calling a function
	Default argument values
	Named arguments syntax

	Top-level functions
	Top-level functions under the hood
	Local functions
	Nothing return type
	Summary

	Chapter 4: Classes and Objects
	Classes
	Class declaration

	Properties
	Read-write versus read-only
	Property access syntax between Kotlin and Java
	Increment and decrement operators

	Custom getters/setters
	The getter versus property default value

	Late-initialized properties
	Annotating properties
	Inline properties

	Constructors
	Properties versus constructor parameters
	Constructors with default arguments
	Patterns

	Inheritance
	The JvmOverloads annotation

	Interfaces
	Data classes
	The equals and hashCode methods
	The toString method
	The copy method
	Destructing declarations

	Operator overloading
	Object declaration
	Object expression
	Companion objects
	Companion object instantiation

	Enum classes
	Infix calls for named methods
	Visibility modifiers
	The internal modifier and Java bytecode

	Sealed classes
	Nested classes
	Import aliases
	Summary

	Chapter 5: Functions as First-Class Citizens
	Function types
	What is function type under the hood?

	Anonymous functions
	Lambda expressions
	The implicit name of a single parameter

	Higher-order functions
	Providing operations to functions
	Observer (Listener) pattern
	A callback after a threaded operation

	Combination of named arguments and lambda expressions
	The last lambda in an argument convention
	Named code surrounding
	Processing data structures using LINQ style

	Java SAM support in Kotlin
	Named Kotlin function types
	Named parameters in function types
	Type alias

	Underscore for unused variables
	Destructuring in lambda expressions
	Inline functions
	The noinline modifier
	Non-local returns
	Labeled returns in lambda expressions
	Crossinline modifier
	Inline properties

	Function references
	Summary

	Chapter 6: Generics Are Your Friends
	Generics
	The need for generics
	Type parameters versus type arguments

	Generic constraints
	Nullability

	Variance
	Variance modifiers
	Use-site variance versus declaration-site variance
	Collection variance
	Variance producer/consumer limitation
	Invariant constructor

	Type erasure
	Reified type parameters
	The startActivity method

	Star-projections
	Type parameter naming convention
	Summary

	Chapter 7: Extension Functions and Properties
	Extension functions
	Extension functions under the hood
	No method overriding
	Access to receiver elements
	Extensions are resolved statically

	Companion object extensions
	Operator overloading using extension functions
	Where should top-level extension functions be used?

	Extension properties
	Where should extension properties be used?

	Member extension functions and properties
	Types of receivers
	Member extension functions and properties under the hood

	Generic extension functions
	Collection processing
	The Kotlin collection type hierarchy
	The map, filter, and flatMap functions
	The forEach and onEach functions
	The withIndex and indexed variants
	The sum, count, min, max, and sorted functions
	Other stream processing functions
	Examples of stream collection processing
	Sequence

	Function literals with a receiver
	Kotlin standard library functions
	The let function
	Using the apply function for initialization
	The also function
	The run and with functions
	The to function

	Domain-specific language
	Anko

	Summary

	Chapter 8: Delegates
	Class delegation
	The Delegation pattern
	Decorator pattern

	Property delegation
	What are delegated properties?
	Predefined delegates
	The lazy function
	The notNull function
	The observable delegate
	The vetoable delegate
	Property delegation to the Map type

	Custom delegates
	View binging
	Preference binding
	Providing a delegate

	Summary

	Chapter 9: Making Your Marvel Gallery Application
	Marvel Gallery
	How to use this chapter
	Making an empty project
	Character gallery
	View implementation
	Network definition
	Business logic implementation
	Putting it all together

	Character search
	Character profile display

	Summary

	Index

