-
T e b din, lm "’“"a“w ‘ﬁf‘ﬂw H‘Eﬂ!

Asynchronous Android

Programming
Second Edition

Unlock the power of multi-core mobile devices to build responsive
and reactive Android applications

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Android
Programming

Second Edition

Unlock the power of multi-core mobile devices to build
responsive and reactive Android applications

Helder Vasconcelos

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Android Programming
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016
Production reference: 1260716

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-324-8

www . packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Helder Vasconcelos

Reviewer
Gavin Matthews

Commissioning Editor
Edward Gordon

Acquisition Editor
Indrajit Das

Content Development Editor
Siddhesh Salvi

Technical Editor
Danish Shaikh

Copy Editor
Vibha Shukla

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=cdac3ccf-d772-dca7-a1fe-53db7be15b5c
http://www.it-ebooks.info/

About the Author

Helder Vasconcelos is a Portuguese Software Engineer based on Dublin,
Ireland, with more than 10 years of experience designing and developing
real-time/multithreaded Java and C++ applications for the telecommunications
and aviation industries. Apart from his day-to-day job, he occupies his spare
time building native Android applications for Bearstouch Software and

other third-party companies.

He graduated with a degree in Electronic and Telecommunications Engineering
from the University of Aveiro in January 2006. During his career, he has worked
as a Software Engineer for companies such as PT Inovacao (Portugal), Airtel ATN
(Dublin, Ireland) and Axway (Dublin, Ireland). You can find Hélder on LinkedIn
at (https://ie.linkedin.com/in/heldervasc/en) or on his website at
(http://hvasconcelos.github.io).

I would like to sincerely thanks all technical reviewers, but especially
Gavin. I really appreciate your invaluable feedback and commit that
shaped the quality of the book. A special thanks to my awesome wife
Tania for encourage me when the lack of motivation was killing my
productivity. It would not have been possible without your precious
support. Thanks also to my parents and family for their awesome
effort in my education. Additionally, I would like to thank my
friends, colleagues, clients, and teachers for helping me to shape and
improve my skills and perspectives during my career.

www.it-ebooks.info

https://ie.linkedin.com/in/heldervasc/en
http://hvasconcelos.github.io
http://www.it-ebooks.info/

About the Reviewer

Gavin Matthews is a veteran software engineer specializing in enterprise scale
B2B, MFT and EFSS systems.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Table of Contents

Preface vii
Chapter 1: Asynchronous Programming in Android 1
Android software stack 2
Dalvik runtime 2
ART runtime 3
Memory sharing and Zygote 4
Android process model 5
Process ranks 5
Process sandboxing 6
Android thread model 6
The main thread 7
The Application Not Responding (ANR) dialog 9
Maintaining responsiveness 10
Concurrency in Android 12
Correctness issues in concurrent programs 14
Liveness issues in concurrent programs 16
Thread coordination 16
Concurrent package constructs 19
Executor framework 20
Android primary building blocks 21
Activity concurrent issues 21
Manipulating the user interface 23
Service concurrent issues 25
Started services issues 25
Bound services issues 26
Service in a separate process 27
Broadcast receiver concurrent issues 28
Android concurrency constructs 28
Summary 29

[il

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 2: Performing Work with Looper, Handler,

and HandlerThread 31
Understanding Looper 32
Understanding Handler 34
Sending work to a Looper 37
Scheduling work with post 39
Using Handler to defer work 40
Leaking implicit references 41
Leaking explicit references 43
Updating the Ul with Handler 45
Canceling a pending Runnable 46
Scheduling work with send 47
Cancelling pending messages 50
Composition versus inheritance 52
Multithreading with Handler and ThreadHandler 53
Looper message dispatching debugging 58
Sending messages versus posting runnables 59
Applications of Handler and HandlerThread 59
Summary 60
Chapter 3: Exploring the AsyncTask 61
Introducing AsyncTask 62
Declaring AsyncTask types 65
Executing AsyncTasks 67
Providing indeterministic progress feedback 69
Providing deterministic progress feedback 72
Canceling an AsyncTask 75
AsyncTask Execution State 78
Handling exceptions 79
Controlling the level of concurrency 81
Common AsyncTask issues 84
Fragmentation issues 84
Memory leaks 85
Activity lifecycle issues 85
Handling lifecycle issues with early cancellation 86
Handling lifecycle issues with retained headless fragments 87
Applications of AsyncTask 92
Summary 93
Chapter 4: Exploring the Loader 95
Introducing Loaders 96
Loader API 96
Loader 97

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Loader Manager 98
LoaderManager.LoaderCallbacks 99
Loader lifecycle 100
Loading data with Loader 101
Building responsive apps with AsyncTaskLoader 107
Building responsive apps with CursorLoader 116
Combining Loaders 119
Applications of Loader 125
Summary 125
Chapter 5: Interacting with Services 127
Introducing Service 128
Started service 131
Building responsive apps with IntentService 136
Handling results 139
Posting results with Pendingintent 139
Posting results as system notifications 142
Applications of IntentService 143
HTTP uploads with IntentService 144
Reporting progress 146
Bound Service 149
Communicating with a Local Service 150
Broadcasting results with intents 158
Detecting unhandled broadcasts 160
Applications of Services 163
Summary 164
Chapter 6: Scheduling Work with AlarmManager 165
Introducing AlarmManager 166
Scheduling alarms with AlarmManager 167
Setting alarms in recent Android versions 169
Testing your alarms in Doze Mode 172
Setting a Window alarm 173
Debugging AlarmManager alarms 173
Canceling alarms 175
Scheduling repeating alarms 176
Scheduling an alarm clock 178
Handling alarms 179
Handling alarms with Activities 180
Handling alarms with BroadcastReceiver 181
Working with BroadcastReceiver 183
Asynchronous work with goAsync 186

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Handling alarms with Services 187
Staying awake with WakeLocks 188
Resetting alarms after a system reboot 190
Applications of AlarmManager 192
Summary 192
Chapter 7: Exploring the JobScheduler API 195
Introduction to JobScheduler 196
Setting running criteria 197
Scheduling a job 200
Implementing the JobService 203
Listing pending jobs 208
Canceling a job 211
Scheduling a periodic job 211
Applications of the JobScheduler 212
Summary 213
Chapter 8: Interacting with the Network 215
Introducing Android HTTP clients 216
AndroidHttpClient 217
HttpURLConnection 218
Performing HTTP requests asynchronously 218
Retrieving a text response 225
Interacting with JSON web APIs 227
Converting Java objects to JSON 228
Interacting with XML web APIs 234
Converting Java objects to XML 235
Converting XML to Java objects 237
Customizing HTTP timeouts 241
Communicating securely over SSL sessions 243
Summary 251
Chapter 9: Asynchronous Work on the Native Layer 253
Introduction to JNI 254
Android NDK (Native Development Kit) 255
Calling C functions from Java code 256
Calling C++ functions from native code 260
Accessing Java objects from native code 262
Executing native background work on Java threads 265
Executing asynchronous work on a native thread 270
Attaching and detaching native threads from JVM 270
JNI references explained 276
Interacting with Ul from native threads 277

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Starting the native threads 279
Stopping the native threads 279
Handling Java exceptions in the native layer 280
Interacting with a Java monitor from native code 283
Wrapping native data objects 287
Summary 291
Chapter 10: Network Interactions with GCM 293
Introduction to GCM 294
Setting up and configuring GCM for your application 296
Registering the GCM Receiver 298
Setting up a registration service 298
InstancelD listener 300
Receiving downstream messages 302
Receiving messages from topic 306
Sending upstream messages 310
GcmListenerService delivery callbacks 314
Executing tasks with GCM Network Manager 315
Building a one shot task 316
Summary 320
Chapter 11: Exploring Bus-based Communications 321
Introduction to bus-based communication 322
EventBus library 323
Defining events 324
Submitting events 325
Registering sbscribers 326
Thread mode 327
Posting sticking events 334
Removing sticky events 338
Summary 339
Chapter 12: Asynchronous Programing with RxJava 341
Introduction to RxJava 342
Cold versus Hot Observable 344
RxJava setup 344
Creating Observables 344
Transforming Observables 347
Understanding Schedulers 349
Performing 10 operations with Schedulers 351
Canceling subscriptions 354
Composing Observables 354
Monitoring the event stream 356

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Combining Observables 359
Observing Ul Events with RxJava 362
Working with Subjects 366
Summary 369
Index 37

[vil

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Whether you are Android beginner developer or an Android seasoned programmer,
this book will explore how to achieve efficient and reliable multithreaded Android
applications.

We'll look at best asynchronous constructs and techniques, commonly used by
Android Developer community, to execute computation intensive or blocking tasks
off the main thread, keeping the Ul responsive, telling the user how things are going,
making sure we finish what we started, using those powerful multicore processors,
and doing it all without wasting the battery.

By using the right asynchronous construct, much of the complexity is abstracted
from the developer, making the application source code more readable and
maintainable and less error prone.

Using step-by-step guidelines and code examples, you will learn how manage
interactions between several threads and avoid concurrency and synchronization
problems that might occur when two or more threads access a shared resource to
complete a background job, to update the Ul or retrieve the latest application data.

At the end of this journey you will know how build well-behaved applications with
smooth, responsive user-interfaces that delight users with speedy results and data
that's always fresh.

What this book covers

Chapter 1, Asynchronous Programming in Android, gives an overview of the Android
process and thread model, and describes some of the challenges and benefits of
concurrency in general, before discussing issues specific to Android.

[vii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 2, Performing Work with Looper, Handler and HandlerThread details the
fundamental and related topics of Handler, HandlerThread, and Looper, and
illustrates how they can be used to schedule tasks on the main thread, and to
coordinate and communicate work between cooperating background threads.

Chapter 3, Exploring the AsyncTask, covers the most common concurrent construct of
programming in Android. We learn how AsyncTask works, how to use it correctly,
and how to avoid the common pitfalls that catch out even experienced developers.

Chapter 4, Exploring the Loader, introduces the Loader framework and tackles the
important task of loading data asynchronously to keep the user interface responsive
and glitch free.

Chapter 5, Interacting with Services, we explored the very powerful service Android
component, putting it to use to execute long-running background tasks with or
without a configurable level of concurrency. This component gives us the means to
perform background operations beyond the scope of a single Activity lifecycle and
to ensure that our work is completed even if the user leaves the application.

Chapter 6, Scheduling Work with AlarmManager, introduces to us a system API that
could be used to defer work or create periodic tasks. The scheduled task could wake
up the device to complete the work or alert users to new content.

Chapter 7, Exploring the JobScheduler API, covers a job scheduling system API
introduced with Android Lollipop that allows us to start background work
when a set of device conditions, such as energy or network, are fulfilled.

Chapter 8, Interacting with the Network, we cover in detail Ht tpUrlConnection
Android HTTP client. With the Ht tpUrlConnection HTTP client, we will create
an asynchronous toolkit that is able to fetch JSON documents, XML or text from a
remote server.

Chapter 9, Asynchronous Work on the Native layer, introduces the JNI interface, an
Java standard interface that will allow us to execute concurrent tasks on native
code (C/C++), interact with the Java code from the native layer or update the
UI from the native code.

Chapter 10, Network Interactions with GCM, we will learn how to use the Google GCM
to efficiently push and pull efficiently realtime messages from your server and how
to schedule work with Google Play Services framework.

Chapter 11, Exploring Bus-based Communications, we will introduce to the reader the
publish-subscribe messaging pattern and the Event Bus Library, a publish-subscribe
implementation that allow us to deliver asynchronous messages between Android
application components.

[viii]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 12, Asynchronous Programing with RxJava, we will introduce RxJava, a library
used to easily compose asynchronous and event-based tasks on Java by using
observable data streams.

What you need for this book

To follow along and experiment with the examples, you will need a development
computer with a Java 7 (or 8) SE Development Kit and the Android Software
Development Kit Version 9 or above (you will need at least Version 21 to try all of
the examples).

You will also need Android Studio IDE. The examples have been developed using
Google's new Android Studio IDE and use its integrated build system, Gradle.

While you can run the examples using the emulator provided by the Android SDK, it
is a poor substitute for the real thing. A physical Android device is a much faster and
more pleasurable way to develop and test Android applications!

Many of the examples will work on a device running any version of Android since
2.3, GingerBread. Some examples demonstrate newer APIs and as a result, require a
more recent Android version—up to Android 5, Lollipop.

Who this book is for

This book is for Android Developers who want to learn how to build multithreaded
and reliable Android applications using high level and advanced asynchronous
techniques and concepts.

They want to learn this technology because they want learn how to build efficient
applications that are able to interact orderly with internal /external services and
frameworks using Android standard constructs and APIs.

No prior knowledge of of concurrent and asynchronous programming is required.
This book is also targeted towards Java experts who are new to Android.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

[ix]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

[default]

exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail (ul00)
exten => g,102,Voicemail (b100)
exten => 1i,1,Voicemail (s0)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1]|30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => 1i,1,Voicemail (s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr mysql.conf.sample

/etc/asterisk/cdr _mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

%j%‘\ Warnings or important notes appear in a box like this.
(:;l Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

[x]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk N

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WinRAR / 7-Zip for Windows
* Zipeg / iZip / UnRarX for Mac
» 7-Zip / PeaZip for Linux

[xi]

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Asynchronous-Android-Programming. We also have other code
bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xii]

www.it-ebooks.info

https://github.com/PacktPublishing/Asynchronous-Android-Programming
https://github.com/PacktPublishing/Asynchronous-Android-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Asynchronous Programming
in Android

Asynchronous programming has become an important topic of discussion in the past
few years, especially when using the concurrent processing capabilities available on
the most recent mobile hardware.

In recent years, the number of independent processing units (cores) available on

the CPU have increased, so to benefit from this new processing power, a new
programming model called asynchronous programming has appeared to orchestrate
the work between the several independent hardware-processing units available on
the device. Asynchronous programming comes to the rescue to solve the problems
that could arise from this new processing paradigm.

Android applications, since they mostly run on devices with multiple units of
processing, should take advantage of asynchronous programming to scale and
improve the application performance when blocking operations, and when
CPU-intensive tasks are required.

Android is an open source operating system (OS) based on Linux kernel that was
devised in 2003 by Andy Rubin, Nick Sears, Chris White, and Rick Miner, and then
acquired by Google in July, 2005.

The Android OS, actually maintained by Google and the Open Handset Alliance,
was created to provide an open mobile-device platform for devices with limited
resources of computation, memory, and energy.

The platform has been incorporating advanced mobile devices standards, such as
NFC and Bluetooth LE, and its scope has grown from a pure smartphone platform to
a broader software platform for smart watches, TVs, tablets, and consoles.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

The maintainers have been regularly updating the platform with great features and
some improvements over minor and major releases since the first release.

The following diagram displays the Android versions over time:

v1.1
v2.2 va.1 vS.0
v1.6 v3.0
2009 2011 2013 2015
I | | L
2008 IL 2010 L 2012 IL 2014 [L
v1.5 v2.3 va.4 V6.0
v1.0
v4.0
v2.0

Android software stack

Android software stack (C libraries and Java frameworks), orchestrated by the

Android runtime (Dalvik VM, and most recently, ART) was created around the
Linux kernel to provide highly interactive user experiences over a well-proven

group of technologies.

In each new OS version, a well-defined application interface (API) is provided to
the developer in order to create applications around the new features and standards
introduced with the release.

The Android application compiled code (bytecode), typically a Java compiled code,
runs on a virtual machine based on Dalvik or ART.

Dalvik runtime

The Dalvik VM (DVM) runtime, created by Dan Borstein, was the first runtime for

the platform and is a register-based virtual machine that was created to run the Java

code efficiently in a constrained runtime with a limited amount of power processing,
RAM, and electric power.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Dalvik's creators claim that the DVM is, on an average, around 30% more efficient
than the standard Java VM (Oracle). According to Bornstein, it requires 30% less
instructions and 35 % less coding units.

Clearly, Google has gone to great lengths to squeeze every drop of performance out
of each mobile device to help developers build responsive applications.

The virtual machine, which runs the Java code compiled and transformed to the dex
format over the dx tool, runs on a Linux process with its own memory space and file
descriptors. It also manages its own group of threads.

In more advanced architectures, an Android application might run a service in a
separate process and communicate over the [IPC mechanism, but most of the time, it
runs on a single self-contained process.

The dex file and application resources are packed in an Android application
package (APK) by the AAPT and installed over Google Play in the end user devices.

The application store distribution model has become

extremely popular on the mobile platforms since the launch
"~ of the Apple iPhone in 2007.

Since Android 2.2 the DVM comes with a trace-based Just-In-Time (JIT) compilation
feature that actively optimizes every time the application runs some short segments
of frequently used bytecode called traces.

The generated machine code provides significant performance improvements in
the application execution and on the time spent on some intensive CPU tasks, and
thereafter, decreases the battery power used.

ART runtime

The ART runtime is a new version of the DVM and was introduced to improve the
runtime performance and memory consumption. The new runtime was introduced
in Android 4.4 KitKat as an experimental runtime, and since the Android 5.0
Lollipop, it has become the main Android runtime.

This new runtime, making use of the ahead-of-time (AOT) compilation, brings new
app-performance optimizations on startup time and application execution. The AOT,
as opposed to DVM JIT (Just in Time), compiles the dex files during the installation
time using the device dex2oat tool. The compiled code generated from the dex2oat
tool generates system-dependent code for the target device and removes the delay
introduced by the JIT compilation during each application execution.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

The AOT compiler also reduces the number of processor cycles used by the
application as it removes the time spent by the JIT compiler to convert the
code into machine code, and then uses less battery power to run the application.

One of the drawbacks of the AOT compilation is the larger memory footprint in
comparison with the JIT used by DVM.

With the new runtime, some improvements were also introduced in the memory
allocation and on Garbage Collection (GC), resulting in a more responsive Ul and
better application experience.

Memory sharing and Zygote

Basically, the platform runs an instance of DVM/ART for each application, but large
optimization of the platform is brought about by the way a new DVM instance is
created and managed.

A special process called the Zygote (first life cell in an animal's reproduction) —
the process that all the Android applications are based on—is launched when an
Android device initially boots.

The Zygote starts up a virtual machine, preloads the core libraries, and initializes
various shared structures. It then waits for instructions by listening on a socket.

When a new Android application is launched, the Zygote receives a command

to create a virtual machine to run the application on. It does this by forking its
pre-warmed VM process and creating a new child process that shares some
memory portions with the parent, using a technique called copy-on-write (COW).

The COW technique, available on most Unix systems, only allocates new memory
on the child process when the process tries to change the memory cloned from the
parent process.

This technique has some fantastic benefits, as listed in the following;:

* First, the virtual machine and core libraries are already loaded into the
memory. Not having to read this significant chunk of data from the filesystem
to initialize the virtual machine drastically reduces the startup overhead.

* Second, the memory in which these core libraries and common structures
reside is shared by the Zygote with all other applications, resulting in saving
a lot of memory when the user is running multiple apps.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Android process model

Android is a multiuser, multitasking system that can run multiple applications in
parallel, where all the applications attempt to acquire CPU time to execute its job.

Each application runs independently on an isolated Linux process cloned from
the Zygote process, and by default, all the Android components run within the
same process with the same name as the application package specified in Android
Application Manifest (AAM).

The Linux kernel will fairly allocate small amounts of CPU time for application
execution called CPU time slices. This time-slicing approach means that even

a single-processor device can appear to be actively working in more than one
application at the same time, when in fact, each application is taking very short
turns on the CPU.

Process ranks

The Android operating system tries to maintain the application running for as long
as possible, but when the available memory is low, it will try to free resources in the
system by killing the processes with lower importance first.

This is when process ranking comes into the picture; the Android processes are
ranked in the next five categories from the higher priority to the lower priorities:

* Foreground process: This is a process that hosts an activity or service that
the user is currently interacting with: a service started in the foreground or
service running its life cycle callbacks

* Visible process: This is a process that hosts a paused activity or service
bounded to a visible activity

* Service process: This is a process that hosts a service not bound to a
visible activity

* Background process: This is a process that hosts a non-visible activity; all
background processes are sorted over a Least-Recently-Used (LRU) list,
therefore, the most recently used processes are the last killed processes when
they have the same rank

* Empty process: This is a process used to cache inactive Android components
and to improve any component startup time

When the system reaches a point that it needs to release resources, the processes
available to be killed will be sorted, taking into account the process rank, last used
processes, and components running.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

Process sandboxing

The Android application always runs under a unique Linux user ID (UID) assigned
to the application during the application installation so that the process runs on a
sandboxed environment, which by default, isolates your data and code execution
from other apps.

In some cases, a user could explicitly be required to share the UID with another
application to have access to their data:

USER PID PPID VSIZE RSS PC NAME
root 319 1 1537236 31324 S zygote

u0_az221 5993 319 1731636 41504 S com.whatsapp
u0_ag6 3018 319 1640252 29540 S com.dropbox.android
u0_a255 4892 319 1583828 34552 S com.accuweather.android..

The preceding table that results from running the adb shell ps command in the
computer with Android SDK Table is a list of Android running processes.

The first column shows the user identifier (UID) assigned at the time of installation,
the second column is the process ID (PID), the third column shows the parent
process ID (PPID) that for Android applications is the Zygote process, and the last
column shows the application package.

From this list, we can assure that the WhatsApp application is running under the
user ID uo_a221 with the process ID 5993 and the parent process is the Zygote
process with the PID 319.

Android thread model

Within an Android process, there may be many threads of execution. Each thread
is a separate sequential flow of control within the overall program — it executes its
instructions in order, one after the other, and they also share allocated slices of CPU
time managed by the operating system task scheduler.

While the application process is started by the system and prevented from directly
interfering with data in the memory address space of other processes, the threads
may be started by an application code and can communicate and share data with
other threads within the same process. Apart from the shared data that all the
threads share in the same process, a thread can use its own memory cache to store its
data in its own memory space.

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The main thread

When the application process starts, apart from DVM housekeeping threads, the
system creates a thread of execution called main. This thread, as the name explains,
plays a crucial role in the application lifetime as it is the thread that interacts with the
Android UI components, updating the state and their look on the device screen.

Moreover, by default, all the Android application components (Activity, Service,
ContentProvider, and BroadcastsReceiver) are also executed over the main
thread line of execution. The following image shows the lists of threads running
inside an application process with the main thread at the top of the list with a unique
thread ID (TID) assigned by the system:

% Threads 32 | (@ Heap | @ Allocatio... | % Network... File Expl... | @ Emulato... | Systeml..| . O
ID Tid Status utime| stime Name
1 30155 Runnable 4 8 main
&2 30161 Wait 0 0 Signal Catcher

*3 30162 Runnable 104 94 JDWP
*4 30166 Wait 0 FinalizerDaemon
*5 30165 Wait 0 ReferenceQueueDaemon

6 30164 Runnable 0 Binder_1

*7 30170 Monitor 0 GCDaemon

*8 30169 Wait 0 HeapTrimmerDaemon
9 30167 Runnable 2 Binder_2

*10 30168 Wait
11 30198 Runnable

0 FinalizerWatchdogDaemon
5 RenderThread

OO CCOCCOCOO

The main thread, also known as UI Thread, is also the thread where your Ul event
handling occurs, so to keep your application as responsible as possible, you should:

* Avoid any kind of long execution task, such as input/output (I/O) that could
block the processing for an indefinite amount of time

* Avoid CPU-intensive tasks that could make this thread occupied for a
long time

[71

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

The following diagram displays the main interactions and components involved in
the Looper line of execution thread:

Looper
Message Queue
’- Handler 1
T oo '
> : g o I Handler 2
: b- Handler N

The UI/Main thread, which has a Looper facility attached to it, holds a queue of
messages (MessageQueue) with some unit of work to be executed sequentially.

When a message is ready to be processed on the queue, the Looper Thread pops
the message from the queue and forwards it synchronously to the target handler
specified on the message.

When the target Handler finishes its work with the current message, the Looper
thread will be ready to process the next message available on the queue. Hence, if the
Handler spent a noticeable amount of time processing the message, it will prevent
Looper from processing other pending messages.

For example, when we write the code in an onCreate () method in the Activity

class, it will be executed on the main thread. Likewise, when we attach listeners to
user-interface components to handle taps and other user-input gestures, the listener
callback executes on the main thread.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

For apps that do little I/ O or processing, such as applications that don't do complex
math calculations, don't use the network to implement features, or don't use
filesystem resources, this single thread model is fine. However, if we need to perform
CPU-intensive calculations, read or write files from permanent storage, or talk to

a web service, any further events that arrive while we're doing this work will be
blocked until we're finished.

Since the Android 5.0 (Lollipop), a new important thread named
RenderThread was introduced to keep the Ul animations smooth
even when the main thread is occupied doing stuff.

The Application Not Responding (ANR) dialog

As you can imagine, if the main thread is busy with a heavy calculation or reading
data from a network socket, it cannot immediately respond to user input such as a
tap or swipe.

An application that doesn't respond quickly to user interaction will feel
unresponsive —anything more than a couple of hundred milliseconds delay is
noticeable. This is such a pernicious problem that the Android platform protects
users from applications that do too much on the main thread.

If an app does not respond to user input within five seconds, the
w user will see the Application Not Responding (ANR) dialog and
will be offered the option to quit the application.

The following screenshot shows a typical Android ANR dialog;:

com.packpublishing.asynchronousa
ndroid isn't responding.

Do you want to close it?

WAIT OK

Android works hard to synchronize the user interface redraws with the
hardware-refresh rate. This means that it aims to redraw at the rate of 60 frames per
second —that's just 16.67 ms per frame. If we do work on the main thread that takes
anywhere near 16 ms, we risk affecting the frame rate, resulting in jank — stuttering
animations, jerky scrolling, and so on.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

Ideally, of course, we don't want to drop a single frame. Jank, unresponsiveness,
and especially the ANR, offer a very poor user experience, which translates into
bad reviews and unpopular applications. A rule to live by when building Android
applications is: do not block the main thread!

Android provides a helpful strict mode setting in Developer Options
on each device, which will flash on the screen when applications
T~ perform long-running operations on the main thread.

Further protection was added to the platform in Honeycomb (API level 11) with the
introduction of a new Exception class, NetworkOnMainThreadException, a subclass
of RuntimeException that is thrown if the system detects network activity initiated
on the main thread.

Maintaining responsiveness

Ideally then, we may want to offload any long-running operations from the main
thread so that they can be handled in the background by another thread, and the
main thread can continue to process user-interface updates smoothly and respond in
a timely fashion to user interactions.

The typical time-consuming tasks that should be handled on a background thread
include the following:

* Network communications

* Input and output file operations on the local filesystem

* Image and video processing

* Complex math calculations

* Text processing

* Data encoding and decoding
For this to be useful, we must be able to coordinate the work and safely pass data
between cooperating threads — especially between background threads and the main

thread, and it is exactly to solve this problem that asynchronous programming
is used.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Let's get started with the synchronous versus asynchronous diagram:

Synchronous Processing Asynchronous Processing
Main Main Background
Thread Thread Thread

m .= @

= @

a a

® Further B

r_f Processing =

z

o a

@ =2 Result Data

o =

c c

@ ©

The preceding example graphically shows the main differences between the two
models of processing. On the left-hand side, the data download task occurs on

the main thread, keeping the thread busy until the download data is finished. So

if the user interacts with the Ul and generates an event such as a touch event, the
application will suffer a lag or will become unresponsive if the download task takes a
substantial amount of time to finish.

On the right-hand side, the asynchronous model will hand over the download data
task to another background thread, keeping the main thread available to process any
event coming from the Ul interaction. When the downloaded data is available, the
background task could post the result to the main thread if the data handling needs
to update any Ul state.

When we use an asynchronous model to program our application, the Android
OS will also take advantage of additional CPU cores available in the most recent
devices to execute multiple background threads at the same time and increase the
application's power efficiency.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

This simultaneous execution of separate code paths that potentially

interact with each other is known as concurrency.
Yo

The simultaneous execution of subunits of work in parallel to complete
one unit of work is known as parallelism.

Concurrency in Android

As explained before, in order to achieve a scalable application in a multicore device
environment, the Android developer should be capable of creating concurrent lines
of execution that combine and aggregate data from multiple resources.

The Android SDK, as it is based on a subset of Java SDK, derived from the Apache
Harmony project, provides access to low-level concurrency constructs such as
java.lang.Thread, java.lang.Runnable, and the synchronized and volatile

keywords.

These constructs are the most basic building blocks to achieve concurrency and
parallelism, and all the high-level asynchronous constructs are created around these
building blocks.

The most basic one, java.lang.Thread, is the class that is mostly used and is the
construct that creates a new independent line of execution in a Java program:

public class MyThread extends Thread {
public void run() {
Log.d("Generic", "My Android Thread is running ...");

}
}

In the preceding code, we subclassed java.lang.Thread to create our own
independent line of execution. When Thread is started, the run method will
be called automatically and it will print the message on the Android log:

MyThread myThread = new MyThread() ;
myTread.start () ;

At this time, we will create an instance of our MyThread, and when we start it
in the second line, the system creates a thread inside the process and executes the
run () method.

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Other helpful thread-related methods include the following;:

* Thread.currentThread (): This retrieves the current running instance

of the thread

* Thread.sleep (time): This pauses the current thread from execution for the
given period of time

* Thread.getName () and Thread.getId(): These get the name and TID,
respectively so that they can be useful for debugging purposes

* Thread.isAlive (): This checks whether the thread is currently running or it
has already finished its job

* Thread.join (): This blocks the current thread and waits until the accessed
thread finishes its execution or dies

The Runnable interface, which is another building block that comes from the Java
AP, is an interface defined to specify and encapsulate code that is intended to be
executed by a Java thread instance or any other class that handles this Runnable:

package java.lang;

public interface Runnable {
public abstract void run() ;

}

In the following code, we basically created the Runnable subclass so that it
implements the run () method and can be passed and executed by a thread:

public class MyRunnable implements Runnable

public void run()
Log.d("Generic", "Running in the Thread " +
Thread.currentThread () .getId()) ;
// Do your work here
}
}

Now our Runnable subclass can be passed to Thread and is executed independently
in the concurrent line of execution:

Thread thread = new Thread (new MyRunnable()) ;
thread.start () ;

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

While starting new threads is easy, concurrency is actually a very difficult thing

to do. Concurrent software faces many issues that fall into two broad categories:
correctness (producing consistent and correct results) and liveness (making progress
towards completion). Thread creation could also cause some performance overhead,
and too many threads can reduce the performance, as the OS will have switch
between these lines of execution.

Correctness issues in concurrent programs

A common example of a correctness problem occurs when two threads need to
modify the value of the same variable based on its current value. Let's consider that
we have a myInt integer variable with the current value of 2.

In order to increment myInt, we first need to read its current value and then add

1 to it. In a single-threaded world, the two increments would happen in a strict
sequence —we will read the initial value 2, add 1 to it, set the new value back to the
variable, and then repeat the sequence. After the two increments, myInt holds the
value 4.

In a multithreaded environment, we will run into potential timing issues. It is
possible that two threads trying to increment the variable would both read the same
initial value 2, add 1 to it, and set the result (in both cases, 3) back to the variable:

int myInt = 2;
public class MyThread extends Thread {

public void run() {
super.run() ;
myInt++;

}

Thread tl = new MyThread() ;
Thread t2 = new MyThread() ;
tl.start () ;
t2.start () ;

Both threads behaved correctly in their localized view of the world, but in terms of
the overall program, we will clearly have a correctness problem; 2 + 2 should not
equal 3! This kind of timing issue is known as a race condition.

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

A common solution to correctness problems, such as race conditions, is mutual
exclusion— preventing multiple threads from accessing certain resources at the same
time. Typically, this is achieved by ensuring that threads acquire an exclusive lock
before reading or updating shared data.

To achieve this correctness, we can make use of the synchronized construct to solve
the correctness issue on the following piece of code:

Object lock = new Object() ;
public class MyThread extends Thread {
public void run()
super.run() ;
synchronized (lock) ({
myInt++;

}
}

In the preceding code, we used the intrinsic lock available in each Java object to
create a mutually exclusive scope of code that will enforce that the increment
sentence will work properly and will not suffer from correctness issues as explained
previously. When one of the threads gets access to the protected scope, it is said that
the thread acquired the lock, and after the thread gets out of the protected scope, it
releases the lock that could be acquired by another thread.

Another way to create mutually exclusive scopes is to create a method with a
synchronized method:

int myInt = 2;
synchronized void increment () {

myInt++;

}

public class IncrementThread extends Thread (
public void run()
super.run() ;

increment () ;

}

The synchronized method will use the object-intrinsic lock, where myInt is defined
to create a mutually exclusive zone so IncrementThread, incrementing myInt
through the increment (), will prevent any thread interference and memory
consistency errors.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

Liveness issues in concurrent programs

Liveness can be thought of as the ability of the application to do useful work and
make progress towards goals. Liveness problems tend to be an unfortunate side
effect of the solution to the correctness problems.

Both properties should be achieved in a proper concurrent program,
notwithstanding the correctness is concerned with making progress in a program
preventing a deadlock, livelock, or starvation from happening, and the correctness is
concerned with making consistent and correct results.

Deadlock is a situation where two or more threads are unable to
proceed because each is waiting for the others to do something.

Q Livelock is a situation where two or more threads continuously
change their states in response to the changes in the other threads
without doing any useful work.

By locking access to data or system resources, it is possible to create bottlenecks
where many threads are contending to access a single lock, leading to potentially
significant delays.

Worse, where multiple locks are used, it is possible to create a situation where no
thread can make progress because each requires exclusive access to a lock that
another thread currently owns —a situation known as a deadlock.

Thread coordination

Thread coordination is an important topic in concurrent programming, especially
when we want to perform the following tasks:

* Synchronize access of threads to shared resources or shared memory:

o

Shared database, files, system services, instance/class variables,
or queues

* Coordinate work and execution within a group of threads:

° Parallel execution, pipeline executions, inter-dependent tasks,

and so on

When we want to coordinate thread efforts to achieve a goal, we should try to avoid
waiting or polling mechanisms that keep the CPU busy while we wait for an event in
another thread.

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The following example shows us a small loop where we will continuously occupy
the CPU while we wait for a certain state change to happen:

while (!readyToProcess) {
// do nothing .. busy waiting wastes processor time.

}

To overcome the coordination issue, and to implement our own constructs, we
should use some low-level signals or messaging mechanisms to communicate
between threads and coordinate the interaction.

In Java, every object has the wait (), notify (), and notifyAll () methods that
provide low-level mechanisms to send thread signals between a group of threads
and put a thread in a waiting state until a condition is met.

This mechanism, also known as monitor or guard, is a design pattern commonly used
in another languages and it ensures that only one thread can enter a given section of
code at any given time with an ability to wait until a condition happens.

This design pattern, in comparison with our previous example, delivers a better and
efficient CPU-cycle management while waiting for any particular situation to happen
on another thread, and is generally used in situations where we need to coordinate
work between different lines of execution.

In the following code example, we are going to explain how to use this construct to
create a basic multithreaded Logger with 10 threads that will wait in the monitor
section until a message is pushed (condition) by any other thread in the application.

The Logger, which is responsible for logging on to the output, has a queue with a
maximum of 20 positions to store the new logging text messages:

public class Logger
LinkedList<String> gqueue = new LinkedList<Strings>();
private final int MAX QUEUE SIZE = 20;
private final int MAX THREAD COUNT = 10;

In the next code, we will create a Runnable unit of work that runs indefinitely and
retrieves a message from the queue to print the message on the Android log.

After that, we will create and start 10 threads that are going to execute the Runnable
unit of work task:

public void start() {
// Creates the Loop as a Runnable
Runnable task = new Runnable() {
@Override

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

public void run()
while (true)
String message = pullMessage() ;
Log.d (Thread.currentThread () .
getName () ,message) ;
// Do another processing

}i
// Create a Group of Threads for processing
for(int i=0; i< MAX_ THREAD COUNT; i++){
new Thread (task) .start () ;

}

The pullMessage (), which is a synchorized method, runs a mutual exclusion
and puts the thread in the waiting state when it reaches the wait () method. All the
created threads will stay in this state until another thread calls notifyall ():

// Pulls a message from the queue

// Only returns when a new message is retrieves
// from the queue.

private synchronized String pullMessage () {

while (queue.isEmpty())
try {
wait () ;
} catch (InterruptedException e) { ... }

}

return queue.pop () ;

}

// Push a new message to the tail of the queue if
// the queue has available positions
public synchronized void pushMessage (String logMsg) {
if (queue.size()< MAX QUEUE SIZE)
queue.push (logMsg) ;
notifyAll () ;

}

When any thread is in the waiting state, it releases the lock temporarily and gives
a chance to another thread to enter the mutual exclusion to push new messages or
enter into the wait state.

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In the following snippet, we will first create the Logger instance and then we will
call the start method to start the working threads and we will push 10 messages into
a queue of work to be processed.

When the pushMessage () method is invoked, a new logging message is inserted at
the end of the queue and notifiyall () is invoked to notify all the available threads.

As the pullMessage () method runs in a mutual-exclusion (synchronized) zone, only
one thread will wake up and return from the pull method. Once pullMessage ()
returns, the logging message is printed:

Logger logger =new Logger () ;
logger.start () ;
for (int i=0; i< 10 ; i++) {

logger.pushMessage (date+" : "+"Log Message #"+1i) ;

}

In the following console output, we have an example of the output that this code
will generate and the logging messages are processed by any available threads in an
ordered manner:

D/Thread-108(23915) : <Date>: Log Message #0

D/Thread-109(23915): ...: Log Message #1
D/Thread-110(23915): ...: Log Message #2
D/Thread-111(23915): ...: Log Message #3

This kind of low-level construct can also be used to control shared resources (polling)
to manage background execution (parallelism) and control thread pools.

Concurrent package constructs

Other Java concurrent constructs provided by java.util.concurrent, which are
also available on Android SDK are as follows:

* Lock objects (java.util.concurrent): They implement locking behaviors
with a higher level idiom.

* Executors: These are high-level APIs to launch and manage a group of thread
executions (ThreadPool, and so on).

e Concurrent collections: These are the collections where the methods that
change the collection are protected from synchronization issues.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

* Synchronizers: These are high-level constructs that coordinate and control
thread execution (Semaphore, Cyclic Barrier, and so on).

* Atomic variables (java.util.concurrent.atomic): These are classes
that provide thread-safe operations on single variables. One example of
it is AtomicInteger that could be used in our example to solve the
correctness issue.

Some Android-specific constructs use these classes as basic building blocks to
implement their concurrent behavior, although they could be used by a developer
to build custom concurrent constructs to solve a specific use case.

Executor framework

The Executor framework is another framework available on java.util.
concurrent that provides an interface to submit Runnable tasks, decoupling
the task submission from the way the task will run:

public interface Executor ({
void execute (Runnable command) ;

}

Each Executor, which implements the interface that we defined earlier, can manage
the asynchronous resources, such as thread creation destruction and caching, and
task queueing in a variety of ways to achieve the perfect behavior to a specific

use case.

The java.util.concurrent comes with a group of implementations available out
of the box that cover most generic use cases, as follows:

* Executors.newCachedThreadPool (): This is a thread poll that could grow
and reuse previously created threads

* Executors.newFixedThreadPool (nThreads): This is a thread pool with a
fixed number of threads and a message queue for store work

* Executors.newSingleThreadPool (): This is similar to
newFixedThreadPool, but with only one working thread

To run a task on Executor, the developer has to invoke execute () by passing
Runnable as an argument:

public class MyRunnable implements Runnable
public void run()
Log.d("Generic", "Running From Thread " +
Thread.currentThread () .getId()) ;
// Your Long Running Computation Task

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

}
}

public void startWorking() {
Executor executor = Executors.newFixedThreadPool (5) ;
for (int i=0; i < 20; i++) {
executor.execute (new MyRunnable()) ;

}

In the preceding code, we created Threadpool over the factory methods with a fixed
number of five threads ready to process work.

After the ExecutorService instance creation, new Runnable tasks are posted for
asynchronous processing.

When a new unit of work is submitted, a thread that is free to work is chosen to
handle the task; but when all the threads are occupied, Runnable will wait in a local
queue until a thread is ready to work.

Android primary building blocks

A typical Android application is composed of the following four main building blocks:

® android.app.Activity
® android.app.Service
® android.content.BroadcastReceiver

® android.content.ContentProvider

The Activity, Service, and BroadcastReceiver are activated explicitly or implicitly
over an asynchronous message called Intent.

Each of these building blocks have their own life cycle, so they could be exposed to
different concurrency issues if an asynchronous architecture is used to offload work
from the main thread.

Activity concurrent issues

The Activity building block has a tight connection with a presentation layer because
it's the entity that manages the UI view over a defined tree of fragments and views
that display information and respond to user interactions.

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

Android applications are typically composed of one or more subclasses of android.
app.Activity. An Activity instance has a very well-defined lifecycle that the
system manages through the execution of lifecycle method callbacks, all of which are
executed on the main thread.

To keep the application responsive and reactive, and the activity transition smooth,
the developer should understand the nature of each Activity lifecycle callback.

The most important callbacks on the Activity lifecycle are as follows:

* onCreate (): At this state, Activity is not visible, but it is here where
all the private Activity resources (views and data) are created. The long
and intensive computations should be done asynchronously in order to
decrease the time when the users don't get a visual feedback during an
Activity transition.

e onstart (): This is the callback called when the Ul is visible, but not able to
interact on the screen. Any lag here could make the user angry as any touch
event generated at this stage is going to be missed by the system.

* onResume (): This is the callback called when Activity is going to be in the
foreground and at an interactable state.

* onPause (): This is a callback called when Activity is going to the
background and is not visible. Computations should end quickly as the next
Activity will not resume until this method ends.

* onStop (): This is a callback called when Activity is no longer visible, but can
be restarted.

* onbDestroy (): This is a callback called when the Activity instance is going to
be destroyed in the background. All the resources and references that belong
to this instance have to be released.

An Activity instance that is completed should be eligible for garbage collection, but
background threads that refer to Activity or part of its view hierarchy can prevent
garbage collection and create a memory leak.

Similarly, it is easy to waste CPU cycles (and battery life) by continuing to do
background work when the result can never be displayed as Activity is completed.

Finally, the Android platform is free at any time to kill processes that are not the
user's current focus. This means that if we have long-running operations to complete,
we need some way of letting the system know not to kill our process yet.

All of this complicates the do-not-block-the-main-thread rule as we need to worry
about canceling background work in a timely fashion or decoupling it from the
Activity lifecycle where appropriate.

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Manipulating the user interface

The other Android-specific problem lies not in what you can do with the UI thread,
but in what you cannot do.

You cannot manipulate the user interface from any thread
= other than the main thread.

This is because the user interface toolkit is not thread-safe, that is, accessing it
from multiple threads may cause correctness problems. In fact, the user interface
toolkit protects itself from potential problems by actively denying access to user
interface components from threads other than the one that originally created
these components.

If the system detects this, it will instantly notify the application by throwing
CalledFromWrongThreadException.

The final challenge then lies in safely synchronizing background threads with the
main thread so that the main thread can update the user interface with the results
of the background work.

If the developer has access to an Activity instance, the runOnUiThread instance
method can be used to update the UI from a background thread.

The method accepts a Runnable object like the one used to create an execution task
for a thread:

public final void runOnUiThread (Runnable)

In the following example, we are going to use this facility to publish the result from a
synonym search that was processed by a background thread.

To accomplish the goal during the oncreate activity callback, we will set up
onClickListener to run searchTask on a created thread:

// Get the Views references
Button search = (Button) findvViewById(R.id.searchBut) ;
final EditText word = (EditText) findViewById(R.id.wordEt) ;

// When the User clicks on the search button
// it searches for a synonym
search.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

// Runnable that Searchs for the synonym and
// and updates the UI.

Runnable searchTask = new Runnable () {
@Override
public void run() {

// Retrieves the synonym for the word

String result = searchSynomim (
word.getText () .toString()) ;

// Runs the Runnable SetSynonymResult

// to publish the result on the UI Thread

runOnUiThread (new SetSynonymResult (result)) ;

Vi

// Executes the search synonym an independent thread
Thread thread = new Thread (searchTask) ;
Thread.start () ;

3N

When the user clicks on the Search button, we will create a Runnable anonymous
class that searches for the word typed in R.id.wordEt EditText and starts the
thread to execute Runnable.

When the search completes, we will create an instance of Runnable SetSynonymResult
to publish the result back on the synonym Textview over the Ul thread:

class SetSynonymResult implements Runnable {
final String synonym;

SetSynonymResult (String synonym) {
this.synonym = synonym;

}

public void run() {
TextView tv = (TextView)findViewById(R.id.synonymTv) ;
tv.setText (this.synonym) ;

Vi

This technique is sometime not the most convenient one, especially when we don't
have access to an Activity instance; therefore, in the following chapters, we are
going to discuss simpler and cleaner techniques to update the Ul from a background
computing task.

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Service concurrent issues

These are the Android entities that run in the background, which usually perform
tasks in the name application that does not require any user interaction.

Service, by default, runs in the main thread of the application process. It does

not create its own thread, so if your service is going to do any blocking operation,
such as downloading an image, play a video, or access a network API, the user
should design a strategy to offload the time of the work from the main thread into
another thread.

As service could have its own concurrent strategy, it should also take into account
that, like Activity, it should update the UI over the main thread, so a strategy to post
back the results from the background into the main loop is imperative.

In the Android services domain, the way the service is started distinguishes the
nature of Service into the following two groups:

* Started services: This is the service that is started by startService () that
can run definitively even if the component that started it was destroyed. A
started service does not interact directly with the component that started it.

* Bound services: This service exists while at least one Android component is
bounded to it by calling bindService (). It provides a two-way (client-server)
communication channel for communication between components.

Started services issues

When we implement a started service, any application component is able to

start it when it invokes the startService (Intent) method. Once the system
receives startService (Intent) and the service is not yet started, the system calls
onCreate () and then onStartCommand () with the arguments encapsulated on an
Intent object. If the service already exists, only onStartCommand () is invoked.

The callbacks used by a started service are as follows:

// Called every time a component starts the Service
// The service arguments are passed over the intent
int onStartCommand (Intent intent, int flags, int startId)

// Used to initialize your Service resources

void onCreate ()

// Used to release your Service resources

void onDestroy ()

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

In the onstartCommand () callback, once a long computing task is required to handle
the service request, a handover to the background threads should be explicitly
implemented and coordinated in order to avoid an undesired ANR:

int onStartCommand (Intent intent, int flags, int startId){
// Hand over the request processing to your
// background tasks

When the service is done, and it needs to publish results to the Ul, a proper
technique to communicate with the main thread should be used.

Bound services issues

A bound service generally used when a strong interaction between an Android
component and a service is required.

When the service runs on the same process, the interaction between the Android
component (client) and the bound service (server) is always provided by a Binder
class returned on onBind (). With the Binder instance on hand, the client has access
to the service's public methods, so when any component invokes the bound service
public methods, the component should be aware of the following:

* When a long running operation is expected to take place during the method
invocation, the invocation must occur in a separate thread

* If the method is invoked in a separated thread, and the service wants to
update the U, the service must run the update over the main thread:

public class MyService extends Service {

// Binder given to clients
private final IBinder mBinder = new MyBinder() ;

public class MyBinder extends Binder ({
MyService getService() ({
// Return this instance of MyService
// so clients can call public methods
return MyService.this;

}

@Override

public IBinder onBind(Intent intent) {

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

return mBinder;

/** Method for clients */
public int myPublicMethod()
//
}

Service in a separate process

When an Android service runs on its own process, it runs in an independent process,
with its own address space, making the communication with the main process Ul
thread harder to implement the following;:

<service
android:name="SynonymService"
android:process=":my synonnym search proc"
android:icon="@drawable/icon"
android:label="@string/service name"
>

</service>

To implement a service in a different process, we need to use an inter-process
communication (IPC) technique to send messages between your application
and the service.

IPC is the activity of sharing data across multiple processes, usually

using a well-defined communication protocol. It typically has a

process that acts as the client and a process that acts as the server.

There are two technologies available on the Android SDK to implement this,
as follows:

* AIDL (Android Interface Definition Language): This allows you to define
an interface over a set of primitive types. It allows you create multithreaded
processing services, but it adds other levels of complexity to your
implementation. This is only recommended to advanced programmers.

* Messenger: This is a simple interface that creates a queue of work for you
in the service side. This executes all the tasks sequentially on single thread
managed by a Handler.

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programming in Android

We haven't given more details about these techniques yet; however, an example of
this construct is going to be presented later in a more advanced chapter where all the
concepts involved are more mature.

Broadcast receiver concurrent issues

This building block is a component that subscribes to system and application events
and is notified when these events occur on the system. The broadcast receivers

are defined statically in the application manifest or dynamically via the Context.
registerReceiver ().

The broadcast received is activated though the onrReceive () callback and this
method runs on the main thread, blocking another Android component from
running if we try to execute time-consuming tasks.

Once onReceive () finishes, the system considers the object inactive and can release
the resources attached to this instance and recycle the whole object. This behavior
has a tremendous impact on what we can do inside, because if we hand over some
processing to a concurrent thread, the resources that belong to BroadcastReceiver
might be recycled and are no longer available, or in an extreme case, the process
could be killed if there were no important components running on it.

M Android version 11 introduced the goAsync () method on the
Q broadcast receiver to keep the broadcast active after returning
from the onReceive () function.

Android concurrency constructs

The good news is that the Android platform provides specific constructs to
address the concurrency general issues and to solve the specific problems
presented by Android.

There are constructs that allow us to defer tasks to run later on the main thread,
communicate easily between cooperating threads, and issue work to the managed
pools of worker threads and reintegrate the results back in the main thread.

There are solutions to the constraints of the Activity lifecycle, both for medium-term
operations that closely involve the user interface and longer-term work that must be
completed even if the user leaves the application.

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

While some of these constructs were only introduced with newer releases of the
Android platform, they are available through the support libraries, and with a
few exceptions, the examples in this book target devices that run API level 8
(Android 2.2) and higher versions.

Summary

In this chapter, we took a detailed look at the available Android runtimes, Android
processes, and thread models.

We then introduced the concurrent issues that we would cope with when we try to
implement robust concurrent programs.

Finally, we listed the basic concurrent building blocks available on the SDK to design
concurrent programs.

In the next chapter, we'll take a look at some Android-specific low-level building
blocks on which the other concurrency mechanisms are built: Handler, Looper, and
LooperThread.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper,
Handler, and HandlerThread

In the previous chapter, you were introduced to the most basic concurrent issues
that a developer might face while developing a responsive and concurrent Android
application. As the most interactable items run on the main thread, it is crucial to
coordinate the backgrounds code to handle the work without any Ul stuttering that
compromises the user experience.

In this chapter, we will meet some of most fundamental constructs used on Android
systems to perform tasks and schedule on a main thread or an ordinary background
thread created by the developer to perform and schedule tasks long-running
operations.

We will cover the following topics:

Understanding Looper

Understanding Handler

Sending work to Looper

Scheduling work with post

Using Handler to defer work

Leaking implicit references

Leaking explicit references

Updating the UI with Handler

Canceling pending messages
Multithreading with Handler and HandlerThread
Applications of Handler and HandlerThread

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

Understanding Looper

Before we can understand Looper, we need to understand where it gets its name from.

% A loop is a group of instructions that are repeated
= continually until a termination condition is met.

Following this definition, Android's Looper executes on a thread that has a
MessageQueue, executes a continuous loop waiting for work, and blocks when there
is no work pending. When work is submitted to its queue, it dispatches it to the
target Handler defined explicitly on the Message object.

A message is a notification object containing a description and
s arbitrary data object that can be sent to a Handler.

The Looper on Android is an implementation of a common Ul programming

concept known as an event loop. Later, at the end of this processing sequence, the
Handler will process the Message and execute your domain logic in order to solve an
application user problem.

The Looper sequence on Android follows these steps:

1. Wait until a Message is retrieved from its MessageQueue
2. Iflogging is enabled, print dispatch information

3. Dispatch the message to the target Handler

4. Recycle the Message

5. Gotostepl

As mentioned on the previous chapter, the main thread implicitly creates its own
Looper to sequentially process all that is needed to keep the application running and
to manage the interaction between the application components.

To access the main thread's Looper you want access to the main thread's Looper
instance, use the static method getMainLooper ():

Looper mainLooper = Looper.getMainLooper () ;

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

To set up our own Looper thread, we need to invoke two static methods of Looper —
prepare and loop —from within the thread, and they will handle the continuous
loop. Here is a simple example:

class SimpleLooper extends Thread {

public void run() {

// Attach a Looper to the current Thread
Looper .prepare () ;

// Start the message processing
Looper.loop () ;

}

In the snippet, when the SimpleLopper object is created and started by invoking
the start () method, a new thread is created in the current application process,
and run () is automatically called inside the new thread. When the run () method is
called, we attach a Looper to the current thread when we invoke the static Looper.
prepare () method. Following that, we start processing messages when loop () is
called. The prepare () method is responsible for initializing the MessageQueue and
attaching the queue as a ThreadLocal parameter to the current thread.

When loop () is invoked, the run () method will block until the looper is interrupted
to process new messages be added to the queue.

Looper.prepare () must only be called once from within the
same thread; otherwise, a Runt imeException will to be thrown
T that says only one looper may be created per thread.

When we want to stop the continuous Looper execution, we can either invoke its
member function quit () to stop it without processing the remaining messages in its
queue or quitSafely () to process the remaining work on the queue and stop.

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

Understanding Handler

Together with Looper, the Handler class is fundamental to the infrastructure of
Android apps. It underpins everything that the main thread does —including the
invocation of the Activity lifecycle methods.

While Looper takes care of dispatching work on its message-loop thread, Handler
serves two purposes: providing an interface to submit messages to its Looper
queue, and implementing the callback for processing those messages when they are
dispatched by the Looper.

It is also import to know that each Handler is bound to a single Looper and, by
extension, to one thread and its looper MessageQueue.

To bind to the Looper of the current thread, we need to instantiate it over the default
Handler () constructor after we initialize the Looper by calling the prepare method.
Since we create our handler inside our SimpleLooper thread over the default
constructor Handler (), myHandler will be attached to the current thread's Looper
instead of the main thread's Looper:

public class SimpleLooper extends Thread{
private Handler myHandler;

@Override

public void run() {
Looper .prepare () ;
myHandler = new MyHandler () ;
Looper.loop () ;

}

public Handler getHandler () {
return myHandler;

}
}

Apart from providing an interface to submit work to Looper threads, Handler
also defines the code that process the messages submitted. In the following code,
the MyHandler class overrides the superclass' (Handler) handleMessage member
method to define our message-handling code:

public class MyHandler extends Handler {

@Override
public void handleMessage (Message msg)

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

// Add here your message handling
// processing

}

Once started, the Looper thread will wait inside Looper.loop () for messages to be
added to its queue.

When another thread adds a Message to the queue using the submit method, the
waiting thread will then dispatch the message to our target MyHandler by invoking
the handler's handleMessage () method.

With the Handler object reference in hand, we are able to able to send messages
to the Handler from any thread, and as a consequence, it is always dispatched to
the Looper thread and handled by the correct Handler, as shown in the following
diagram:

Thread 1 Looper Thread Thread 2

1 |

\' handler.sendMessage() wait()‘
| » |

handler.handleMessage()

wait() handler.sendMessage()

'i handler.handleMessage()

handler.sendMessage() wait()

Figure 2.1: Posting work to other Threads

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

We already saw that we can create our own Looper threads, but as detailed and
mentioned before, the main thread is in also a Looper thread. To make it more clear,
we are going to create a StackTraceHandler that prints the stack trace of the current
thread:

public class StackTraceHandler extends Handler {

@Override

public void handleMessage (Message msg)
// Prints the Stack Trace on the Android Log
Thread.currentThread () .dumpStack() ;

}

Since the activity's onCreate () function runs on the main thread, we will create an
instance of our handler that implicitly calls the handler's super constructor, which
binds the handler to the current thread's Looper.

_ If the current thread does not have a Looper and we try to create a
% handler over the super constructor, a runtime exception with the
" message Can't create handler inside thread that has not called
Looper.prepare() is thrown.

With the Handler instance created, we retrieve a message from its recycled messages
pool by calling the handler's obtainMessage, and we post an empty message to the
main thread's Looper. The messages obtained by obtainMessage are cached and
will also set the handler as the destination's Handler object:

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

Handler handler = new StackTraceHandler () ;
Message msg = handler.obtainMessage () ;
handler.sendMessage (msg) ;

}

As mentioned before, when our handleMessage () gets dispatched it prints active
stack frames at the time of the handleMessage () execution, as we can see in the
following stack trace:

..... StackTraceHandler.handleMessage (StackTraceHandler.java:18)
android.os.Handler.dispatchMessage (Handler.java:99)
android.os.Looper. loop (Looper.java:137)
android.app.ActivityThread.main (ActivityThread.java:4424)
java.lang.reflect.Method. invokeNative (Native Method)
java.lang.reflect.Method. invoke (Method.java:511)

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

That's right, handleMesage () is running in the dispatchMessage () call invoked by
the main Looper, and it is dispatched to the main thread's line of execution.

Sending work to a Looper

Previously, the stackTraceHandler was implicitly bound to the current main
thread's Looper, so to make it flexible, let's take the next step and make it attachable
to any Looper.

In the following code, we are going to override the default Handler constructor and
define a constructor that accepts the Looper that is going to the queue, and we will
then process and dispatch the message:

public class StackTraceHandler extends Handler {

StackTraceHandler (Looper looper) {
super (looper) ;

}

Our new constructor basically attaches the Handler to the Looper passed as an
argument, making the StackTraceHandler attachable to any Looper instead of the
current thread's Looper.

Our simpleLooper was also extended to provide a getter method to retrieve the
Looper object associated with its thread:

public class SimpleLooper extends Thread{
// start condition
boolean started = false;
Object startMonitor = new Object () ;
Looper threadLooper = null;

@Override
public void run() {
Looper.prepare () ;
threadLooper = Looper.myLooper() ;
synchronized (startMonitor){
started = true;
startMonitor.notifyAll () ;

}

Looper.loop () ;

Looper getLooper () {
return threadLooper;

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

}

// Threads could wait here for the Looper start
void waitforStart ()
synchronized (startMonitor) {
while (!started)
try {
startMonitor.wait (10) ;
} catch (InterruptedException e) {

}

Now, from the main thread, we start the SimpleLooper and its own thread,
and when it starts up, we get the Looper instance to bind our Handler to the
SimpleLooper thread and Looper:

SimpleLooper looper = new SimpleLooper() ;

looper.start () ;

looper.waitforStart () ;

Handler handler = new StackTraceHandler (looper.getLooper()) ;

Now, we are going to send the message, as we did in the previous example, from the
activity's onCreate () callback, which runs in the main thread:

Message msg = handler.obtainMessage () ;
handler.sendMessage (msg) ;

As we can see in the following stack trace, the thread stack frame at the bottom
points to SimpleLooper.run (), and at the top of the stack trace, we have our
Handler callback, StackTraceHandler.handleMessage

at...activity.StackTraceHandler.handleMessage (StackTraceHandler.
java:18)

at android.os.Handler.dispatchMessage (Handler.java:99)

at android.os.Looper.loop (Looper.java:137)

at ...activity.SimpleLooper.run (SimpleLooper.java:23)

The interesting thing to realize here is that we can send messages from the main
thread to the background thread managed by SimpleLooper (or even from the
background thread to the main thread) and, in doing so, hand over work from
background threads to the main thread —for example, to have it update the user
interface with the results of background processing.

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Scheduling work with post

As we discussed in the previous paragraph, we can submit work to the main or
background thread by passing a reference to a Looper instance into the Handler
constructor.

Exactly what we mean by work can be described by the subclasses of java.lang.
Runnable or instances of android.os.Message. We can post runnables to a Handler
instance or send messages to it, and it will add them to the MessageQueue belonging
to the associated Looper instance.

We can post work to a Handler quite easily, for example, by creating an anonymous
inner runnable:

final TextView myTextView = (TextView) findViewById(R.id.myTv) ;
// Get the main thread Looper by calling the Context

// function getMainLooper

Handler handler = new Handler (getMainLooper()) ;

handler.post (new Runnable () {
public void run()
String result = processSomething() ;
myTextView.setText (result) ;

}
I3

The Looper instance to which the Handler is bound works its way through the
queue, executing each Runnable as soon as possible. Posting with the post method
simply adds a new Runnable at the end of the queue.

If we want our runnable to take priority over anything currently in the queue, we
can post it to the front of the queue, ahead of existing work:

handler.postAtFrontOfQueue (new Runnable(){
public void run() {

}
3N

In a single-threaded app, it might seem as if there isn't a whole lot to be gained from
posting work to the main thread like this, but breaking things down into small tasks
that can be interleaved and potentially reordered is very useful for maintaining
responsiveness.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

Moreover, with the encapsulation of work into more fine-grained units of work, we
encourage the reuse of components, improve the testability of the code, and increase
the aptitude for work composition:

Runnable_A Runnable_B
Runnable_X Runnable_A
Runnable_Y Runnable_Z
Runnable_Z ' Runnable_Y Y

Figure 2.2: Runnable composition

Using Handler to defer work

When we use the normal post work function, the work is processed as soon as all
the previous units of work are processed on the Looper —but what happens if we
want to schedule some work in 10 seconds' time?

Using Thread. sleep to block the main thread for 10 seconds would mean that we
are holding up the main thread from doing other work, and we are guaranteed to get
an ANR dialog. The alternative is to use the handler functions that supply us with
deferring functionality:

public class MyRunnable implements Runnable

@Override
public void run()
// do some work

}
Vi
// Defer work in the main Thread
// by 10 seconds time

handler.postDelayed (new MyRunnable(), TimeUnit.SECONDS.
toMillis (10)) ;

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

We can still post additional work for execution in the meantime, and our delayed
Runnable instance will execute after the specified delay. Note that we're using the
TimeUnit class from the java.lang.concurrent package to convert seconds to
milliseconds.

A further scheduling option for posted work is postAtTime, which schedules
Runnable to execute at a particular time relative to the system uptime (how long it
has been since the system booted):

// Work to be run at a specific time
handler.postAtTime (new MyRunnable(),
SystemClock. uptimeMillis() +
TimeUnit.SECONDS.toMillis (10)) ;

Since postAtTime () is implemented in terms of an offset from the SystemClock
uptime, the scheduling could suffer from some delay issues, especially if the device
has recently fallen in some deep-sleep states. Taking this into account, and when
timing accuracy is required, it is usually better to use handler.postDelayed to
defer work.

Leaking implicit references

Deferring work with Handler and anonymous or nonstatic nested classes requires
care in order to avoid potential resource leakage. In these cases, the object submitted
to the handler usually creates a reference to the class where it was defined or
created. Since the Looper message queue will keep the Runnable object alive until
the scheduled time, an indirect reference to the original Android component could
prevent an entire component and its objects from being garbage-collected.

Let's look at this issue with the following examples:

public class MyActivity extends Activity {
// non-static inner class
public class MyRunnable implements Runnable {

@Override

public void run() {
// do some work

}

}

@Override
public void onCreate (Bundle savedInstanceState) {

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

// Post Inner class instance Runnable
handler.postDelayed (new MyRunnable (),
TimeUnit .MINUTES.toMillis (10)) ;

// Post an Anonymous class instance
handler.postDelayed (new Runnable()
@Override

public void run() {

// do some work

}

}, TimeUnit.MINUTES.toMillis(20));

}

Both objects, the MyRunnable object created over his default constructor and the
anonymous Runnable class created on the second handler.postDelayed, hold a
reference to the Activity object.

By declaring an anonymous inner Runnable inside an activity, we have made an
implicit reference to that containing Activity instance. We've then posted the
Runnable to a handler and told it to execute in 10 minutes' time.

If the activity finishes before the 10 minutes are up, it cannot yet be garbage-collected
because the implicit reference in our runnable means that the activity is still reachable
by live objects.

So, although it makes for a concise example, it is not a good idea in practice to

post non-static Runnables onto the main thread's Handler queue (especially with
postDelayed or postAtTime) unless we're very careful to clean up after ourselves all
the references to the inactive Activities.

If the MyActivity object is not garbage-collected in 10 minutes, a memory leak with
all the activity views and resources will increase your memory consumption until
you reach the maximum heap space per application available. Worse, if you create
several instances of this activity when the user navigates through the application, the
application will run out of memory in a snap.

The heap size limit available per application varies from device
to device. When an application reaches this limit, the system
’ will throw an OutOfMemoryError.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

One way to minimize this problem is to use static nested classes or top-level classes
in their own files (direct member of a package) to remove the reference to the original
Activity object when we create a deferred Runnable work task. This means that
references must be explicit, which makes them easier to spot and nullify:

public class MyActivity extends Activity {
// static inner class
public static class MyRunnable implements Runnable

Leaking explicit references

If we are to interact with the user interface, we'll at least need a reference to an
object in the view hierarchy, which we might pass into our static or top-level
runnable's constructor:

static class MyRunnable implements Runnable {
private View view;
public MyRunnable (View view) {
this.view = view;
}
public void run() {
// ... do something with the view.

}

However, by keeping a strong reference to the View, we are again subject to potential
memory leaks if our Runnable outlives the view; for example, if some other part of
our code removes this view from the display before our Runnable executes.

One solution to this is to use a weak reference and check for null before using the
referenced view:

static class MyRunnable implements Runnable {
private WeakReference<Views> view;

public MyRunnable (View view) {

this.view = new WeakReference<Views (view) ;
}
public void run() {

View v = view.get(); // might return null

if (v != null) {

// ... do something with the view.
}

}

}

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

If you haven't used weakReference before, what it gives us is a way to refer to an
object only for as long as some other live object has a stronger reference to it (for
example, a normal property reference).

When all strong references are garbage-collected, our WeakReference will
also lose its reference to the vView, get () will return null, and the view will
be garbage-collected.

This fixes the resource leakage problem, but we must always check for null before
using the returned object in order to avoid potential NullPointerException
instances.

If we're sending messages to our Handler and expecting it to update the user
interface, it will also need a reference to the view hierarchy. A nice way to manage
this is to attach and detach the Handler from onResume and onpPause:

private static class MyHandler extends Handler {

private TextView view;

public void attach(TextView view) {
this.view = view;

}

public void detach() {
view = null;

}

@Override

public void handleMessage (Message msg)

// handle message

@Override

protected void onResume () {
super .onResume () ;
myHandler.attach (myTextView) ;

}

@Override
protected void onPause()
super.onPause () ;
myHandler.detach() ;

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Updating the Ul with Handler

Since we instantiated our handler in the main thread, all work submitted to it executes
on the main thread. This means that we must not submit long-running operations to
this particular handler, but we can safely interact with the user interface:

handler.post (new Runnable () {
public void run()
TextView text = (TextView) findViewById(R.id.text) ;

text.setText ("updated on the UI thread");

}
I3

This applies regardless of which thread posts the Runnable, which makes Handler
an ideal way to send the results of work performed by other threads to the main
thread:

public void onCreate (Bundle savedInstanceState) {

// Handler bound to the main Thread
final Handler handler = new Handler() ;

// Creates an assync line of execution
Thread thread = new Thread() {
public void run() {
final String result = searchSynomym("build") ;

handler.post (new Runnable() {
public void run()
TextView text = (TextView)

findviewById(R.1d.text) ;
text.setText (result) ;

3N
i

// Start the background thread with a lower priority
thread.setPriority (Thread.MIN PRIORITY) ;
thread.start () ;

. Ifyou start your own threads for background work, make sure to set
% the priority to Thread .MIN_PRIORITY to avoid starving the main
L thread of CPU time. The system CPU scheduler will give more CPU

cycle times to threads with higher priority.

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

Handler is so fundamental that its API is integrated right into the view class's
member functions:

® View.post (Runnable).

® View.postDelayed(action,delayMillis).

So, we can rewrite the previous example as follows:

final TextView text = (TextView) findvViewById(R.id.text) ;
Thread thread = new Thread() {
public void run() {
final String result = searchSynonym("build") ;
// Using the view post capabilities
text.post (new Runnable(){
public void run() {
text.setText (result) ;
}
I
}
}i
thread.setPriority (Thread.MIN PRIORITY) ;
thread.start () ;

When writing code in an Activity class, there is an alternative way to submit a
Runnable on the main thread using the runonUiThread (Runnable) method of
Activity, as explained in the previous chapter. If the current thread is the Ul thread,
then the action is executed immediately. If the current thread is not the UI thread, the
action is posted to the event queue of the main Ul thread.

Canceling a pending Runnable

During your application execution, you could have a situation where you want

to cancel a posted Runnable, for instance, when you submit a deferred task on

your activity's onCreate () and you want to cancel it when you are executing
onDestroy () because the activity is going to be destroyed. The Handler function
removeCallbacks () can cancel a pending operation by removing a posted Runnable
task from the queue of work:

final Runnable runnable = new Runnable () {
public void run()
// ... do some work

}
Vi
handler.postDelayed (runnable, TimeUnit.SECONDS.toMillis(10)) ;
Button cancel = (Button) findvViewById(R.id.cancel) ;

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

cancel.setOnClickListener (new OnClickListener () {
public void onClick (View v)
handler.removeCallbacks (runnable) ;

}
3N

Notice that in order to be able to specify what to remove, we must keep a reference
to the Runnable instance, and that cancelation applies only to pending tasks —it does
not attempt to stop a Runnable that is already mid-execution.

Keep in mind that if you post the same object more than one time,
removeCallbacks () will remove all the non-running entries that
' reference that object.

Scheduling work with send

When we post a Runnable, we can—as seen in the previous examples — define the
work at the local or member scope with an anonymous Runnable. As such, the
Handler does not know in advance what kind of work it might be asked to perform.

If we often need to perform the same work from different scopes, we could define
a static or top-level Runnable class that we can instantiate from anywhere in our
application's lifecycle.

Alternatively, we can turn the approach on its head by sending messages to a
Handler and defining the Handler to react appropriately to different messages.

Taking a simple example, let's say we want our Handler to display hello or
goodbye, depending on the type of message it receives. To do that, we'll extend
Handler and override its handleMessage () method:

public static class SpeakHandler extends Handler ({

public static final int SAY HELLO = 0;
public static final int SAY BYE = 1;

@Override
public void handleMessage (Message msg) {
switch (msg.what)
case SAY HELLO:
sayWord ("hello") ;
break;
case SAY BYE:
sayWord ("goodbye") ;

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

break;
default:
super .handleMessage (msg) ;

}

private void sayWord(String word)
// Say word

}

Here, we've implemented the handleMessage () method to expect messages with
two different what values and react accordingly. Apart from the what property,
which is used to identify what the message is about, the message object provides
three extra integer fields, arg, arg2, and ob3j, which can be used to identify and
specify your message.

. If youlook carefully at the Speak handler class example explained
% earlier, you'll notice that we defined it as a static class. Subclasses
s of Handler should always be declared as top-level or static inner
classes to avoid inadvertent memory leaks!

To bind an instance of our Handler to the main thread, we simply instantiate it

from any method that runs on the main thread, such as the Activity onCreate ()
callback:

private Handler handler;

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
handler = new SpeakHandler() ;

}

Remember that we can send messages to this Handler from any thread, and they will
be processed by the main thread. We send messages to our Handler, as shown here:

handler.sendEmptyMessage (SpeakHandler.SAY HELLO) ;

handler.sendEmptyMessage (SpeakHandler.SAY BYE) ;

When we post a message over the previous method, the Handler will create a
message for us, fill in the message's what property with the integer passed in, and
post the message to the handler's Looper queue. This construct could be extremely
useful when we need to send basic commands to a handler, although when we need
more complex messages, we need to use other message properties, such as arg1,
arg2, and obj, to carry more information about our request.

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

As messages may carry an object payload as the context for the execution of a
message, let's extend our example to allow our Handler to say any word that the
message sender wants:

public static class SpeakHandler extends Handler {
public static final int SAY HELLO = O;
public static final int SAY BYE = 1;
public static final int SAY WORD = 2;
@Override
public void handleMessage (Message msg)
switch (msg.what) {
case SAY HELLO:
sayWord ("hello"); break;
case SAY BYE:
sayWord ("goodbye") ; break;
case SAY WORD:
// Get an Object
sayWord ((String)msg.obj); break;
default:
super.handleMessage (msg) ;

}

private void sayWord(String word) { ... }

}

Within our handleMessage method, we can access the payload of the message
directly by accessing the public obj property. The Message payload can be set easily
via alternative static obtain methods:

Message msg = Message.obtain (handler,
SpeakHandler.SAY WORD, "Welcome!");
handler.sendMessage (msg) ;

In the previous example, we basically create a message that the what property is
saY_worD and the obj property is Welcome!.

While it should be quite clear what this code is doing, you might be wondering why
we didn't create a new instance of Message by invoking its constructor and instead
invoked its static method, obtain.

The reason is efficiency. Messages are used only briefly —we instantiate, dispatch,
handle, and then discard them. So, if we create new instances each time, we are
creating work for the garbage collector.

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

Garbage collection is expensive, and the Android platform goes out of its way to
minimize object allocation whenever it can. While we can instantiate a new Message
object if we wish, the recommended approach is to obtain one that reuses Message
instances from a pool and cuts down on garbage collection overhead. By reducing
the memory footprint, fewer objects are recycled, leading to faster and less frequent
garbage collection.

In cases where you can build your messages over low-cost integer
% arguments, you should use them instead of complex arguments such
e as obj or data, which always create extra work for the GC.

Just as we can schedule runnables with variants of the post method, we can schedule
messages with variants of send:

handler.sendMessageAtFrontOfQueue (msg) ;
handler.sendMessageAtTime (msg, time) ;
handler.sendMessageDelayed (msg, delay) ;

There are also empty-message variants for convenience, when we don't have a
payload:

handler.sendEmptyMessageAtTime (what, time) ;
handler.sendEmptyMessageDelayed (what, delay) ;

Cancelling pending messages

Canceling sent messages is also possible and actually easier than canceling posted
runnables because we don't have to keep a reference to the messages that we might
want to cancel —instead, we can just cancel messages by their what values or by the
what value and object reference:

String myWord = "Do it now!";
handler.removeMessages (SpeakHandler.SAY BYE) ;
handler.removeMessages (SpeakHandler.SAY WORD, myWord) ;

Note that just as with posted runnables, message cancellation only removes pending
operations from the queue — it does not attempt to stop an operation already being
executed.

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Besides the canceling functionality, the handler also provides functions to verify
whether there are any pending messages in the queue. With the handler object in
hand, we can query the handler by the message's what value, hasMessages (what),
and by the hasMethods (what, object) message object value. Let's put some
examples together with our previous examples:

handler.hasMessages (SpeakHandler.SAY BYE)
handler.hasMessages (SpeakHandler.SAY WORD, myWord)

The first example will verify whether there is any message whose what code is
say_BYE, and the second will verify whether there is any message whose what
code is SAY_wORD and whose object points to the same reference as myword.

It is really important to remember that the removeMessages and hasMessages
methods with an object argument will search the queue, comparing the object by the
== reference comparison and not a comparison of object values such as (equals()).
Here is a simple example to explain the situation:

String stringRefl = new String("Welcome!");

String stringRef2 = new String("Welcome Home!") ;
Message msgl = Message.obtain (handler,

SpeakHandler.SAY WORD, stringRefl) ;
Message msg2 = Message.obtain (handler,

SpeakHandler.SAY WORD, stringRef2);

// Enqueue the messages to be processed later
handler.sendMessageDelayed (msgl, 600000) ;
handler.sendMessageDelayed (msg2,600000) ;

// try to remove the messages
handler.removeMessages (SpeakHandler.SAY WORD,
stringRefl) ;
handler.removeMessages (SpeakHandler.SAY WORD,
new String("Welcome Home!")) ;
// Create a Print Writer to Process StandardOutput
PrintWriterPrinter out =

new PrintWriterPrinter (new PrintWriter (System.out, true)) ;

// Dump the Looper State
handler.getLooper () .dump (out, ">> Looper Dump ") ;

As explained before, the second remove invocation will not remove the message
added previously, because the stringRef1 reference is different from the new
reference passed in, despite the string content being the same.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

Here is the output from the looper dump, with the message that was not canceled
successfully:

>> Looper Dump Looper (main, tid 1) {al5844a}
>> Looper Dump Message 0: { when=+10m0sOms

what=2

obj=Welcome Home! target=...SpeakHandler }
>> Looper Dump (Total messages: 1,

polling=false, quitting=false)

Composition versus inheritance

So far, we've subclassed Handler to override its handleMessage method, but that
isn't our only option. We can favor composition over inheritance by passing an
instance of Handler.Callback during handler construction:

boolean handleMessage (Message msg)

Let's suppose we want to extend our speaker without changing the original Handler,
and we want to add new actions over a Handler.Callback class:

public class Speaker implements Handler.Callback

public static final int SAY WELCOME = 2;
public static final int SAY YES = 3;
public static final int SAY NO = 4;

@Override
public boolean handleMessage (Message msg)
switch (msg.what) {
case SAY WELCOME:

sayWord ("welcome") ; break;
case SAY YES:

sayWord ("yes") ; break;
case SAY NO:

sayWord ("no") ; break;
default:

return false;

}

return true;

}

private void sayWord(String word) { }

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Notice that the signature of handleMessage is slightly different here —we must
return a boolean value indicating whether or not the Message was handled. To
create a Handler that uses our extension, we simply pass the Handler.Callback
implementation during handler construction:

Handler handler = new SpeakHandler (new Speaker());

If we return false from the handleMessage method of our callback, the Handler
will invoke its own handleMessage method, so we could choose to use a
combination of inheritance and composition to implement the default behavior in
a Handler subclass and then mix in special behavior by passing in an instance of
Handler.Callback.

In the aforementioned code, we use the composition to process the SAY HELLO
message and the inheritance to process the SAY YES message:

// will be handled by SpeakHandler Handler
handler.sendEmptyMessage (SAY HELLO) ;

// will be handled by Speaker Handler.Callback
handler.sendEmptyMessage (SAY YES) ;

Inheritance should only be used when the relationship between a

subclass and the superclass is permanent and strong and can't be
e decoupled. On the other hand, composition offers more flexibility

for enhancements and testing.

Multithreading with Handler and
ThreadHandler

In a typical Android asynchronous application, the Ul thread hands over long
computing operations to a background thread, which in turn executes the task and
posts back the results to the main thread.

So far, we have just used the Handler to send messages to the main thread, so the
next natural step is to design a multithreaded scenario where the interthread
communication is managed by the Handler construct.

Let's extend our previous examples and create a weather forecast retriever.

Imagine this scenario: when we click on a UI button, the main thread will ask for our
background thread to retrieve the weather forecast and, when the weather forecast
response is received, the background thread will ask the main thread to present the
weather forecast received.

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

We will start by creating the weatherRetriever that is responsible for receiving the
weather forecast requests and then retrieve the forecast sentence and post back the
result to the mainHandler object.

During the scenario assembly, the WeatherRetriever handler is attached to a
background Looper over the first constructor argument in order to execute in
a separate line of execution away from the main thread. The second constructor
argument is used to set the handler to post the results.

On the handleMessage method, the handler is able to process the current day's
forecast message requests (GET_TODAY_FORECAST) or the next day's requests
(GET_TOMORROW_FORECAST), eventually calling the long-computing getForecast ()
operation.

The long-computing getForecast () could block the thread execution for a long
time, but this is not a problem anymore, since we are going to run it in a background
thread with lower priority, which does not block the UI from being rendered in time,
and hence prevents an ANR error from occurring and makes the application more
responsive to user interactions:

public class WeatherRetriever extends Handler {
private final Handler mainHandler;
public static final int GET TODAY FORECAST = 1;

public WeatherRetriever (Looper looper,Handler mainHandler) {
super (looper) ;
this.mainHandler = mainHandler;

}

// Long Computing Operation

String getForecast (){ ... }

@Override
public void handleMessage (Message msg)
switch (msg.what) {
case GET_TODAY FORECAST:

final String sentence = getForecast();
Message resultMsg =
mainHandler.obtainMessage (
WeatherPresenter.TODAY FORECAST, sentence) ;

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

this.mainHandler.sendMessage (resultMsg) ;
break;

}i

Secondly, we will build the WweatherpPresenter, which will handle the forecast
results coming from the background operation, presenting it to the user on the
main thread:

public class WeatherPresenter extends Handler
public static final int TODAY FORECAST = 1;

@Override
public void handleMessage (Message msg) {
switch (msg.what) {
case TODAY FORECAST:
readTodayWeather ((String) msg.obj); break;

}
}

private void readTodayWeather (String word) ({
// Present the weather forecast on the UI

1
Vi

We described one way of setting up a Looper thread with the SimpleLooper class,
detailed earlier in this chapter, but there's an easier way, using a class provided by
the SDK for exactly this purpose: android.os.HandlerThread.

When we create a HandlerThread, we specify two things: a name for the thread,
which can be helpful when debugging, and its priority, which must be selected from
the set of static values in the android.os.Process class:

HandlerThread thread = new HandlerThread ("background", Process.
THREAD PRIORITY BACKGROUND) ;

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

Thread priorities in Android are mapped into Linux nice levels, which

govern how often a thread gets to run. A niceness of —-20 is the highest

priority, and 19 is the lowest priority. The default nice level is 0. In

addition to prioritization, Android limits CPU resources using Linux
M cgroups. Threads that are of background priority are moved into

the bg_non_interactive cgroup, which is limited to 5 percent of

available CPU if threads in other groups are busy.

Adding THREAD PRIORITY MORE_ FAVORABLE to THREAD

PRIORITY BACKGROUND when configuring your HandlerThread
moves the thread into the default cgroup, but always consider whether
it is really necessary — it often isn't!

In the the next table, the mapping from Android thread priority to Linux nice levels
is detailed; however, the use of nice levels lower than -2 in regular applications is not
recommended:

Java priority Thread priority Nice level
THREAD_PRIORITY_URGENT_AUDIO -19
THREAD_PRIORITY_AUDIO -16

MAX_PRIORITY THREAD_PRIORITY_URGENT_DISPLAY -8
THREAD_PRIORITY_DISPLAY -4
THREAD_PRIORITY_FOREGROUND -2

NORM_PRIORITY | THREAD_PRIORITY_DEFAULT 0
THREAD_PRIORITY_BACKGROUND 10

MIN_PRIORITY THREAD_PRIORITY_LOWEST 19

HandlerThread extends java.lang.Thread, and we must start it with start ()
before it actually begins processing its queue:

thread.start () ;

Now, from an Activity callback, we are going to detail how to lift up our scenario,
building all the instances and objects required to submit and process requests:

// Background Thread
private HandlerThread thread;

protected void onCreate (Bundle savedInstanceState) {

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

WeatherPresenter presHandler = new WeatherPresenter() ;

// Creates a Thread with a looper attached
handlerThread = new HandlerThread ("background",

Process.THREAD PRIORITY BACKGROUND) ;
// start The Thread and waits for work
handlerThread.start () ;

// Creates the Handler to submit requests
final WeatherRetriever retHandler =
new WeatherRetriever (handlerThread.getLooper () ,presHandler) ;

As we saw previously, the retriever handler is using the HandlerThread's
Looper instead of the main thread's Looper, so it processes the forecast requests
on a background thread, allowing us to run long-computing operations on the
WeatherRetriever.

With a WweatherRetriever object (retHandler) reference in our hands, we are able
to enqueue a new forecast request to the background thread by sending a message

with the weatherRetriever handler. In the next example, we listen for taps on the
Ul's today button in order to initiate a forecast request:

todayBut.setOnClickListener (new View.OnClickListener () ({
@Override
public void onClick (View v)
retHandler.sendEmptyMessage (WeatherRetriever.
GET_TODAY FORECAST) ;

}

When the forecast is processed by the background thread on the WweatherRetriever
callback, a message is dispatched to the main Looper through the
WeatherPresenter reference, and readTodayWeather (String) is invoked on the
main thread in order to present the forecast to the user.

As you can see in the following trace output, the forecast retriever runs on the low-
priority background thread with TID 120, and the forecast result is presented on the
main Ul thread, which has a TID of 1:

I/MTHandler (17666) : Retrieving Today Forecast at
Thread [background, 120]

I/MTHandler (17666) : Presenting Today Forecast at Thread[main, 1]

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

If we create a HandlerThread to do background work for a specific Activity, we
will want to tie the HandlerThread instance's life cycle closely to that of the activity's
to prevent resource leaks.

A HandlerThread can be shut down by invoking quit (), which will stop the
HandlerThread from processing any more work from its queue. A quitSafely
method was added at API level 18, which causes the HandlerThread to process all
remaining tasks before shutting down. Once a HandlerThread has been told to shut
down, it will not accept any further tasks:

protected void onPause()
super.onPause () ;
if ((handlerThread != null) && (isFinishing()))
handlerThread.quit () ;

Looper message dispatching debugging

When you want to follow the dispatching and processing of your messages, it could
be handy to print a message in the Android logs when any of your messages get
routed by the Looper and when the handler finishes the processing. The Looper
object supplies us with a method to set a printer facility for the message-dispatching
debugging, so, from our HandlerThread, we are able to set it and enable the extra
logging required to follow our requests:

// Creates a Print writer to standard output

PrintWriterPrinter out= new PrintWriterPrinter (
new PrintWriter (System.out, true)

)i

handlerThread.getLooper () .setMessageLogging (out) ;

regHandler.sendEmptyMessageDelayed (
WeatherRetriever.GET_ TODAY_ FORECAST,
10000

)i

Here is an example of debugging messages printed when our forecast request gets
processed by the Looper:

>>>>> Dispatching to Handler (..WeatherRetriever) {al5844a} null: 1
<<<<< Finished to Handler (...WeatherRetriever) {al5844a} null

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The format for the dispatching debug message is (<Target_Handlers) {Callback_
Obj} : <whats.

In our simple example, we print the messages for the process's standard output
stream (java.io.OutputStream), but in more advanced cases, we can print to any
kind of outputStream subclass (file, network, and so on).

Sending messages versus posting runnables

It is worth spending a few moments to consider the difference between posting
runnables and sending messages.

The runtime difference mostly comes down to efficiency. Creating new instances of
Runnable each time we want our handler to do something adds garbage-collection
overhead, while sending messages reuses Message instances, which are sourced
from an application-wide pool.

For prototyping and small one-offs, posting runnables is quick and easy, while the
advantages of sending messages tend to grow with the size of the application.

It should be said that message-sending is more the Android way and is used
throughout the platform to keep garbage to a minimum and apps running smoothly.

Applications of Handler and HandlerThread

The Handler class is incredibly versatile, which makes its range of applications
very broad.

So far, we've looked at Handler and HandlerThread in the context of the Activity
lifecycle, which constrains the sort of applications where this construct might be
used —ideally, we do not want to perform long-running operations (more than a
second or so) at all in this context.

With that constraint in mind, good candidate uses include performing calculations,
string processing, reading and writing small files on the file system, and reading or
writing to local databases using a background HandlerThread.

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Performing Work with Looper, Handler, and HandlerThread

Summary

In this chapter, we learned how to use Handler to queue work for the main thread
and how to use Looper to build up a queueing infrastructure for our own Thread.

We saw the different ways in which we can define work with Handler: arbitrary
work defined at the call site with Runnable or predefined work implemented in the
Handler itself and triggered by message-sending.

In the meantime, we learned how to defer work properly without leaking memory
on the way.

We learned how to use Handler in a multithreaded application to pass work and
results back and forth between cooperating threads, performing blocking operations
on an ordinary background thread and communicating the results back to the main
thread to update the user interface.

In the next chapter, we'll start to build responsive applications by applying the
AsyncTask instance to execute work in the background using pools of threads
and returning progress updates and results to the main thread.

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

In Chapter 2, Performing Work with Looper, Handler and HandlerThread, we familiarized
ourselves with the most basic asynchronous and concurrency constructs available on
the Android platform: Handler and Looper. Those constructs underpin most of the
evented and sequential processing used by the main thread to render the UI and to
run the Android components life cycle.

In this chapter, we are going to explore android.os.AsyncTask, a higher level
construct that provides us with a neat and lean interface to perform background
work and publish results back to the main thread without having to manage the
thread creation and the handler manipulation.

In this chapter we will cover the following topics:

Introducing AsyncTask

Declaring AsyncTask types

Executing AsyncTasks

Providing indeterministic progress feedback
Providing deterministic progress feedback
Canceling an AsyncTask

Handling exceptions

Controlling the level of concurrency
Common AsyncTask issues

Applications of AsyncTask

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

Introducing AsyncTask

AsyncTask was introduced on the Android platform with Android Cupcake (API
Level 3), with the express purpose of helping developers to avoid blocking the main
thread. The Async part of the name of this class comes from the word asynchronous,
which literally means that the blocking task is not occurring at the same time we

call it.

The AsyncTask encloses the creation of the background thread, the synchronization
with the main thread, and the publishing of the progress of the execution in a single
construct.

In contrast to the Handler and Looper constructs, the AsyncTask exempts the
developer from the management of low level components, thread creation, and
synchronization.

AsyncTask is an abstract class, and as such, must be subclassed for use. At
the minimum, our subclass must provide an implementation for the abstract
doInBackground method, which defines the work that we want to get done
off the main thread.

protected Result doInBackground(Params... params)

The doInBackground is going to be executed in the current process in a parallel
thread with the priority THREAD PRIORITY BACKGROUND (Nice level 10) and with the
name following the next form AsyncTask #<N>.

Apart from the method doInBackground the construct offers distinct methods which
the developer might implement in the subclass to set up the task, publish progress,
and post the final result into the main thread.

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

There are five other methods of AsyncTask which we may choose to override:

protected void onPreExecute ()

protected void onProgressUpdate (Progress... values)
protected void onPostExecute (Result result)
protected void onCancelled(Result result)
protected void onCancelled()

Although we could override one or more of these five methods, we will not invoke
them directly from our own code. These are callback methods, meaning that

they will be invoked for us (called back) at the appropriate time throughout the
AsyncTask lifecycle.

The key difference between doInBackground () and the other four methods is the
thread on which they execute.

Before any background work begins, onpreExecute () will be invoked and will
run synchronously to completion on the main thread when we call the execute
(Params...) method.

In the onPreExecute() method, we could set up the task or any progress dialog on
the Ul to indicate to the user that your task has just begun.

Once onpPreExecute () completes, doInBackground () will be scheduled and will
start work on a background thread.

During the background work, the developer can publish progress updates from
doInBackground (), which trigger the main thread to execute onProgressUpdate
with the progress values we provide. Internally, the AsyncTask makes use of a
Handler bound to the main Thread Looper to publish results on the main Thread as
explained in Chapter 2, Performing Work with Looper, Handler and HandlerThread.

By invoking this on the main thread, AsyncTask makes it easy for us to update the
user interface to show progress (remember that we can only update the user interface
from the main thread).

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

When the background work completes successfully, doInBackground () may return
a result. This result is passed to onPostExecute (), which is invoked for us on the
main thread. With the result received on the onPostExecute (), we can update the
user interface with the results of our background processing:

This pattern of passing data from one thread to another is very
important, because it allows us to run intensive and long tasks
away from the crucial main thread. This construct simplifies the
» communication in the main thread and provides a high level API for
% executing asynchronous work on background threads.
/ Our AsyncTask could manipulate fields of the enclosing Activity

class, but then we would have to take extra precautions, such as
adding synchronization to prevent race conditions and ensure

visibility of updates.
Main Thread Background Thread
onPreExecute()
publishProgress()
onProgressUpdate() E:l
‘ publishProgress()

onProgressUpdate()

dolnBackground()

onPostExecute()

v v

Figure 3.1: AsyncTask callback execution function

The preceding figure displays a sequence of method calls executed by AsyncTask,
illustrating which methods run on the main thread versus the AsyncTask
background thread.

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Since onPreExecute (), onProgressUpdate (),

onPostExecute (), and onCancelled () methods are invoked
/— on the main thread, we must not perform long-running/blocking
operations in these methods.

With the AsyncTask reference invoking the cancel method before
doInBackground () completes, onPostExecute () will not be called. Instead, the
alternative onCancelled () callback method is invoked on the Ul thread so that we
can implement different behavior for a successful versus cancelled completion:

Main Thread

onPreExecute()
dolnBackground()

cancel()

>

onCancelled()

v v

Figure 3.2: AsyncTask cancelled task execution sequence

The preceding figure displays the sequence of method calls when a task is cancelled
before the doInBackground () finishes. Like we have shown in the previous figure,
the cancel () might be called by the main thread or from any other thread with
access to the AsyncTask object reference.

Declaring AsyncTask types

AsyncTask is a generically typed class that exposes three generic type parameters:

abstract class AsyncTask<Params, Progress, Result>

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

In order to use a generic type, we must provide one type argument per type
parameter that was declared for the generic type.

The generic type class provides a way to re-use the same generic

algorithms for different input types. A generic type could have

one or more type parameters.

When we declare an AsyncTask subclass, we'll specify the types for Params,
Progress, and Result; for example, if we want to pass a String parameter to
doInBackground, report progress as a Float, and return a Boolean result, we would
declare our AsyncTask subclass as follows:

public class MyTask extends AsyncTask<String, Float, Boolean>

If we don't need to pass any parameters, or don't want to report progress, a good
type to use for those parameters is java.lang.Void, which signals our intent clearly,
because void is an uninstantiable class representing the void keyword.

Only reference types can be used as type arguments of a generic type. This includes
classes, interfaces, enum types, nested and inner types, and array types. Primitive
types are not allowed to be used as a type argument. The next declaration is
considered illegal on a generic type class definition:

// Error
public class MyTask extends AsyncTask<String, float, booleans

Let's take a look at our first example, performing an expensive image download in
the background and reporting the result into the current Ul:

public class DownloadImageTask
extends AsyncTask<URL, Integer, Bitmap> {

// Weak reference to the UI View to update
private final WeakReference<ImageView> imageViewRef;

public DownloadImageTask (ImageView imageView) {
this.imageViewRef = new WeakReference<ImageViews> (imageView) ;

}

// Retrieves the image from a URL
private Bitmap downloadBitmap (URL url) {
// elided for brevity

@Override

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

protected Bitmap doInBackground (URL... params)
URL url = params[0];
// The IO operation invoked will take a significant ammount
// to complete
return downloadBitmap (url) ;

@Override
protected void onPostExecute (Bitmap bitmap)
ImageView imageView = this.imageViewRef.get () ;
if (imageview != null) {
imageView.setImageBitmap (bitmap) ;

}

Here, DownloadImageTask extends AsyncTask, specifying the Params type as a URL
so that we can retrieve an image based on its url, Progress as Integer, and the Result
type as Bitmap.

We pass ImageView to the constructor so that DownloadImageTask hasa weak
reference to the user interface that it should update upon completion.

We've implemented doInBackground to download the image in the background,
where url is a URL parameter with the image resource location.

In onPostExecute, when the view weak reference is not null, we simply load the
bitmap into the view that we stored in the constructor.

The weakreference does not prevent the view from being garbage collected when
the activity where the view was created is no longer active.

Executing AsyncTasks

Having implemented doInBackground and onPostExecute, we want to get our task
running. There are two methods we can use for this, each offering different levels of

control over the degree of concurrency with which our tasks are executed. Let's look

at the simpler of the two methods first:

public final AsyncTask<Params, Progress, Results> execute (Params...
params)

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

The return type is the type of our AsyncTask subclass, which is simply for
convenience so that we can use method chaining to instantiate and start a task in a
single line and still record a reference to the instance:

class MyTask implements AsyncTask<String,Void,String>{ ... }
MyTask task = new MyTask() .execute("hello");

The params. .. params argument is the same Params type we used in our class
declaration, because the values we supply to the execute method are later passed to
our doInBackground method as its Params... params arguments. Notice that it is a
varargs (variable number of parameters) parameter, meaning that we can pass any
number of parameters of that type (including none).

Each instance of AsyncTask is a single-use object—once we have

- started an AsyncTask, it can never be started again, even if we
% cancel it or wait for it to complete first.
s

This is a safety feature, designed to protect us from concurrency
issues such as the race condition.

Executing DownloadImageTask is straightforward —we need Activity, which
constructs an instance of DownloadImageTask with a view to update, and then we
invoke the execute method with a suitable value for the URL:

public class ShowMyPuppyActivity extends Activity {
@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView (R.layout.show my puppy) ;

// Get the show button reference

Button showBut = (Button) findViewById(R.id.showImageBut) ;
showBut .setOnClickListener (new View.OnClickListener () {
@Override

public void onClick (View v) {

// My Puppie Image URL
URL url = new URL("http://img.allw.mn/" +
"content/www/2009/03/aprill.jpg") ;
// Get the Reference to Photo UI Image View
ImageView iv = (ImageView) findViewById(R.id.photo) ;
// Download the Image in background and

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

// load the image on the view
new DownloadImageTask (iv) .execute (url) ;

3N
}

Once we click on the Ul show button, a new DownloadAsyncTask is created and
attached to an imageview and we call the execute () method to start the async task
in the background. When we call the execute () method on the task, this will result
in a call to the onpPreExecute () method followed by a call to the doInBackground ()
method.

Like we explained before, once the download is finished, the onPostExecute () is
called to load the image downloaded (Bitmap) on the image view.

You can download the example code files for all Packt Publishing
M books you have purchased from your account at http://www.
Q packtpub. com. If you purchased this book elsewhere, you can
visithttp://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Providing indeterministic progress
feedback

Having started what we know to be a potentially long-running task, we probably want
to let the user know that something is happening. There are a lot of ways of doing this,
but a common approach is to present a dialog displaying a relevant message.

A good place to present our dialog is from the onPreExecute () method of AsyncTask
which executes on the main thread so it is allowed to interact with the user interface.

The modified DownloadImageTask will need a reference to a Context, so that it can
prepare a ProgressDialog, which it will show and dismiss in onPreExecute () and
onPostExecute () respectively. As doInBackground () has not changed, it is not
shown in the following code, for brevity:

public class DownloadImageTask
extends AsyncTask<URL, Integer, Bitmap> {

private final WeakReference<Context> ctx;

[69]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Exploring the AsyncTask

private ProgressDialog progress;

public DownloadImageTask (Context ctx, ImageView imageView) {
this.imageView = new WeakReference<ImageViews (imageView) ;
this.ctx = new WeakReference<Contexts> (ctx) ;

@Override
protected void onPreExecute() {
if (ctx !=null && ctx.get()!= null) {
progress = new ProgressDialog(ctx.get()):;
progress.setTitle (R.string.downloading image) ;
progress.setIndeterminate (true) ;

progress.setCancelable(false) ;
progress.show() ;

}
}
// ... doInBackground elided for brevity
@Override

protected void onPostExecute (Bitmap bitmap)

if (progress != null) { progress.dismiss(); }

All that remains is to pass a Context to the constructor of our modified
DownloadImageTask. As Activity is a subclass of Context, we can simply
pass a reference to the host Activity:

showBut .setOnClickListener (new View.OnClickListener () {

@Override
public void onClick (View v) {

// Pass in the Context and the image view to load
// the image
new DownloadImageTask (

ShowMyPuppyActivity.this, iv).execute (url);

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Downloading Image

O

Figure 3.3 : Indeterministic Progress Dialog

Once the async task is started, the onPreExecute () callback will create an
indeterministic progress dialog and display it as shown in Figure 3.3. The
non-cancelable dialog will be placed over the Ul screen in an opaque layer with
the title defined. By indeterministic, we mean that beforehand, we can't estimate
how much longer we have to wait for the task to complete.

Until the download finishes, and the dialog gets dismissed on onPostExecute (),
the user is not able to interact with the application and the dialog will remain in the
foreground.

. When any long computation is required before you are able to
present your content in your application Ul, you must present an
L indication that something is happening in the background while
the user is waiting.

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

Providing deterministic progress
feedback

Knowing that something is happening is a great relief to our users, but they might
be getting impatient and wondering how much longer they need to wait. Let's show
them how we're getting on by adding a progress bar to our dialog.

Remember that we aren't allowed to update the user interface directly from
doInBackground (), because we aren't on the main thread. How, then, can
we tell the main thread to make these updates for us?

AsyncTask comes with a handy callback method for this, whose signature we saw at
the beginning of the chapter:

protected void onProgressUpdate (Progress... values)

We can override onProgressUpdate () to update the user interface from the main
thread, but when does it get called and where does it get its Progress... values
from? The glue between doInBackground () and onProgressUpdate () is another
of AsyncTask's methods:

protected final void publishProgress (Progress... values)

To update the user interface with our progress, we simply publish progress

updates from the background thread by invoking publishProgress () from within
doInBackground (). Each time we call publishProgress (), the main thread will be
scheduled to invoke onProgressupdate () for us with these progress values.

The modifications to our running example to show a deterministic progress bar

are quite simple. Since we have already defined the DownloadImageTask Progress
type as Integer, now, we must change the setting progress values in the range 0
(setProgress) to 100 (setMax) and set the style and the bounds of the progress bar.
We can do that with the following additions to onPreExecute ():

@Override
protected void onPreExecute()

// Sets the progress bar style
progress.setProgressStyle (

ProgressDialog.STYLE HORIZONTAL) ;
progress.setIndeterminate (false) ;
progress.setProgress (0) ;
progress.setMax (100) ;
progress.setCancelable (false) ;
progress.show () ;

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We also need to implement the onProgressUpdate callback to update the progress
bar from the main thread:

@Override
protected void onProgressUpdate (Integer... values)
progress.setProgress (values [0]) ;

}

The final modification is to calculate the progress at each iteration of the for
loop, and invoke publishProgress () so that the main thread knows to call back
onProgressUpdate ():

private Bitmap downloadBitmap (URL url) {
InputStream is = null;

// Before Download starts

publishProgress (0) ;

downloadedBytes = 0;

// Creates a Connection to the image URL

HttpURLConnection conn = (HttpURLConnection) url.
openConnection () ;

// Retrieves the image total length
totalBytes = conn.getContentLength() ;

BufferedInputStream bif = new BufferedInputStream(is) {
int progress = 0;

public int read(byte[] buffer, int byteOffset,
int byteCount) throws IOException {
// The number of bytes read in each stream read
int readBytes = super.read(buffer, byteOffset,
byteCount) ;

// Actual number of bytes read from the file
downloadedBytes += readBytes;
// Percent of work done
int percent = (int) ((downloadedBytes * 100f) /
totalBytes) ;
// Publish the progress to the main thread
if (percent > progress) {
publishProgress (percent) ;
progress = percent;

}

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

It is important to understand that invoking publishProgress () does not directly
invoke the main thread, but adds a task to the main thread's queue, which will be
processed at some time in the near future by the main thread.

Notice that we're being careful to publish progress only when the percentage
actually changes, avoiding any unnecessary overhead:

. Isimportant to know that every time you invoke
% publishProgress () on the background thread, in
e—" downloadBitmat (), a new Handler message is sent automatically
internally to push the progress to the main thread.

Downloading Image

Figure 3.4: Deterministic Progress Dialog showing the task progress

As can be seen in Figure 3.4, the deterministic dialog created in onPreExecute () is
updated continuously in doInBackground () with the current progress of the task.
The progress is calculated as a ratio, as in the following division:

The delay between publishing the progress and seeing the user interface update
will be extremely short for this example and for any application that doesn't have
too much UI work to process. The progress bar will update smoothly following
the golden rule of not blocking the main thread for any of our code, since we only
dispatch a progress update when the percentage changes.

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Canceling an AsyncTask

Another nice usability touch we can provide for our users is the ability to cancel
a task before it completes — for example, if after starting the execution, the user
is no longer interested in the operation result. AsyncTask provides support for
cancellation with the cancel method.

public final boolean cancel (boolean mayInterruptIfRunning)

The mayInterruptIfRunning parameter allows us to specify whether an AsyncTask
thread that is in an interruptible state, may actually be interrupted —for example, if
our doInBackground code is performing a blocking interruptible function, such as
Object.wait (). When we set the mayInterruptIfRunning as false, the AsyncTask
won't interrupt the current interruptible blocking operation and the AsyncTask
background processing will only finish once the blocking operation terminates.

In well behaved interruptible blocking functions, such as Thread.
. sleep(), Thread.join(), or Object.wait (), the execution is
% stopped immediately when the thread is interrupted with Thread.
S interrupt () and it throws an InterruptedException
The InterruptedException should be properly handled and
swallowed only if you know the background thread is about to exit.

Simply invoking cancel is not sufficient to cause our task to finish early. We need
to actively support cancellation by periodically checking the value returned from
isCancelled and reacting appropriately in doInBackground.

First, let's set up our ProgressDialog to trigger the AsyncTask's cancel method by
adding a few lines to onPreExecute:

@Override
protected void onPreExecute()

progress.setCancelable(true) ;
progress.setOnCancelListener (
new DialogInterface.OnCancelListener () {
public void onCancel (DialogInterface dialog) {
DownloadImageTask.this.cancel (false) ;

}
B

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

Now we can trigger cancel by touching outside the progress dialog, or pressing the
device's back button while the dialog is visible.

We'll invoke cancel with false, as we don't want to immediately suspend the
current IO operation during a network read or check the return value of the
Thread. interrupted () function. We still need to check for the cancellation in
doInBackground, so we will modify it as follows:

private Bitmap downloadBitmap (URL url) {
Bitmap bitmap = null;
BufferedInputStream bif = new BufferedInputStream(is)

public int read(bytel[] buffer, int byteOffset,
int byteCount) throws IOException {

// Read the bytes from the Connection
int readBytes = super.read(buffer, byteOffset, byteCount);

// Verify if the download was cancelled
if (isCancelled()) {
// Returning -1 means that there is
// no more data and the stream has just ended

return -1;

}

// If the download is cancelled the Bitmap is null
if (!isCancelled()) {
bitmap = BitmapFactory.decodeStream(bif) ;

}

return bitmap;

}

In the code above, in our Anonymous subclass of Buf ferInputStream we are able to
intercept each read that happens on the connection. When that is in place, and once
we cancel the AsyncTask, we are able to stop the data stream by simple returning a
-1(End of stream) as the result of the read invoke. As soon as the BitmapFactory.
decodeStream receives the end of the stream, it returns immediately and we return
null as the result of the downloadBitmap invoke.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The cancelled asyncTask does not receive the onPostExecute callback. Instead, we
have the opportunity to implement different behavior for a cancelled execution by
implementing oncancelled. There are two variants of this callback method:

protected void onCancelled(Result result);
protected void onCancelled() ;

The default implementation of the parameterized onCancelled(Result result)
method delegates to the oncancelled () method after it finishes.

If AsyncTask cannot provide either a partial result (such as a partial image data) or
nothing, then we will probably want to override the zero argument onCancelled ()
method.

On the other hand, if we are performing an incremental computation in syncTask,
we might choose to override the onCancelled (Result result) version when the
partial result has some meaning to your application.

In both cases, since onPostExecute () does not get called on a canceled AsyncTask,
we will want to make sure that our oncancelled () callbacks update the user
interface appropriately —in our example, this entails dismissing the progress dialog
we opened in onPreExecute (), and updating the image view with a default image
available as drawable on the application package.

In our example, when the task is cancelled, the result from doInBackground () is a
null object so we will override the no-argument oncancelled () function to add the
behavior described previously:

@Override
protected void onCancelled() {
if (imageView !=null && imageView.get () != null &&
ctx !=null && ctx.get() != null) {

// Load the Bitmap from the application resources
Bitmap bitmap = BitmapFactory.decodeResource (
ctx.get () .getResources(),
R.drawable.default photo
) ;
// Set the image bitmap on the image view
this.imageView.get () .setImageBitmap (bitmap) ;
}
// Remove the dialog from the screen
progress.dismiss() ;

}

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

Another situation to be aware of occurs when we cancel an AsyncTask that has not
yet begun its doInBackground () method. If this happens, doInBackground () will
never be invoked, though oncancelled () will still be called on the main thread.

AsyncTask Execution State

The execute () method, could finish in a cancelled state or in a completed state,
however if the user tries to call execute () a second time, the task will fail and
throw an IllegalStateException exception saying:

Cannot execute task, a task can be executed only once/the task is already running

With a reference to an AsyncTask object in hand, we can ascertain the status of your
task over the getsStatus () method, and react according to the status result. Let's
take a look at the next snippet:

// Create a download task object
DownloadImageTask task = new DownloadImageTask (
ShowMyPuppyActivity.this, iv);

if (task.getStatus() == AsyncTask.Status.PENDING)
// DownloadImageTask has not started yet so
// we can can invoke execute ()
} else if (task.getStatus() == AsyncTask.Status.RUNNING) ({
// DownloadImageTask is currently running in
// doInBackground ()

} else if (task.getStatus() == AsyncTask.Status.FINISHED
&& task.isCancelled())
// DownloadImageTask is done OnCancelled was called
} else {

// DownloadImageTask is done onPostExecute was called

}

Using the getstatus () instance method provided by AsyncTask we can keep up
with the execution of the background task and know exactly what the current status
of your background work is.

If you want to repeat your background you have to instantiate a
s new task and call the execute () method again.

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Handling exceptions

The callback methods defined by AsyncTask dictate that we cannot throw

checked exceptions, so we must wrap any code that throws checked exceptions with
try/catch blocks. Unchecked exceptions that propagate out of AsyncTask's methods
will crash our application, so we must test carefully and handle these if necessary.

For the callback methods that run on the main thread — onPreExecute (),
onProgressUpdate (), onPostExecute (), and onCancelled () —we can catch
exceptions in the method and directly update the user interface to alert the user.

Of course, exceptions are likely to arise in our doInBackground () method too, as
this is where the bulk of the work of AsyncTask is done, but unfortunately, we
can't update the user interface from doInBackground (). A simple solution is to
have doInBackground () return an object that may contain either the result or an
exception. First we are going to create a generic class for storing the result of an
operation and a member to store an exception:

public class Result<T> {
public T result;
public Throwable error;

}

In the next step we will create a new download AsyncTask, called
SafeDownloadImageTask, that takes care of the exception handling and has a result
of type Result<Bitmap> instead of the Bitmap:

public class SafeDownloadImageTask extends
AsyncTask<URL, Integer, Result<Bitmaps>> {

// Method executed on the Background Thread
protected Result<Bitmap> doInBackground (URL... params) {
Result<Bitmap> result = new Result<Bitmap>();

try {
// elided for brevity ...

result.result = bitmap;
} catch (Throwable e) {
result.error = e;
}
}

return result;

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

Now we can check in onPostExecute for the presence of an Exception in the
Result object. If there is one, we can deal with it, perhaps by alerting the user;
otherwise, we just use the actual result as normal and use the bitmap from the result:

@Override
protected final void onPostExecute (Result<Bitmap> result) {

if (result.error!= null) {
// ... alert the user

Log.e ("SafeDownloadImageTask",
"Failed to download image ",result.exception);
loadDefaultImage (imageView) ;
} else {
// ... success, continue as normal
imageView.setImageBitmap (result.actual) ;

}

With a safe implementation like the one above, any error thrown on the background
thread is safely forwarded to the main thread and does not affect the normal lifecycle
of the AsyncTask. Let's try to retrieve an image that does not exist and see if the
exception is handled properly:

URL url = new URL("http://img.allw.mn" +

"/content/www/2009/03/notfound. jpg") ;
new SafeDownloadImageTask (ShowMyPuppyActivity.this, iv)
.execute (url) ;

As expected, the error was caught, wrapped in a Result object, and printed in
the Android log with a stack trace pointing to the SafeDownloadImageTask.
doInBrackground method:

.. .downloadBitmap (SafeDownloadImageTask.java:85)
. . .doInBackground (SafeDownloadImageTask.java:60)

84: if (responseCode != HttpURLConnection.HTTP_ OK) {
85: throw new Exception(...);
86: }

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Controlling the level of concurrency

So far, we've carefully avoided being too specific about what exactly happens when
we invoke the AsyncTask execute method. We know that doInBackground () will
execute off the main thread, but what exactly does that mean?

The original goal of AsyncTask was created to help developers avoid blocking the
main thread. In its initial form at API level 3, AsyncTasks were queued and executed
serially (that is, one after the other) on a single background thread, guaranteeing that
they would complete in the order they were started.

This changed in API level 4 to use a pool of up to 128 threads to execute multiple
AsyncTasks concurrently with each other —a level of concurrency of up to 128. At
first glance, this seems like a good thing, since a common use case for AsyncTask
is to perform blocking I/O, where the thread spends much of its time idly waiting
for data.

However, as we saw in Chapter 1, Building Responsive Android Applications, there

are many issues that commonly arise in concurrent programming, and indeed, the
Android team realized that by executing AsyncTasks concurrently by default, they
were exposing developers to potential programming problems (for example, when
executed concurrently, there are no guarantees that AsyncTasks will complete in the
same order they were started).

As aresult, a further change was made at API level 11, switching back to serial
execution by default, and introducing a new method that gives concurrency control
back to the app developer:

public final AsyncTask<Params, Progress, Results>
executeOnExecutor (Executor exec, Params... params)

From API level 11 onwards, we can start AsyncTasks with executeOnExecutor,
and in doing so, choose the level of concurrency for ourselves by supplying an
Executor object.

Executor is an interface from the java.util.concurrent package of the JDK,

as described in more detail in Chapter 1, Building Responsive Android Applications.
Its purpose is to present a way to submit tasks for execution without spelling

out precisely how or when the execution will be carried out. Implementations of
Executor may run tasks sequentially using a single thread, use a limited pool of
threads to control the level of concurrency, or even directly create a new thread for
each task.

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

The AsyncTask class provides two Executor instances that allow you to choose
between the concurrency levels described earlier in this section:

SERIAL_EXECUTOR: This Executor queues tasks and makes sure that the tasks
are executed by the AsyncTask ThreadPool sequentially, in the order they
were submitted.

THREAD_POOL_EXECUTOR: This Executor runs tasks using a pool of threads
for efficiency (starting a new thread comes with some overhead cost that

can be avoided through pooling and reuse). THREAD POOL_EXECUTOR is an
instance of the JDK class ThreadPoolExecutor, which uses a pool of threads
that grows and shrinks with demand. In the case of AsyncTask, the pool is
configured to maintain at least five threads, and expands up to 128 threads.
In Android Lollipop 5.0 (API Level 21), the maximum number of threads
was reduced to the number of CPU cores * 2 + 1 and the ThreadPool global
enqueuing capacity was increased.

To execute AsyncTask using a specific executor, we invoke the executeOnExecutor
method, supplying a reference to the executor we want to use, for example:

task.executeOnExecutor (AsyncTask.THREAD POOL_EXECUTOR,

params) ;

As the default behavior of execute since API level 11 is to run AsyncTasks serially on
a single background thread, the following two statements are equivalent:

task.execute (params) ;
task.executeOnExecutor (AsyncTask.SERIAL EXECUTOR, params) ;

In the next image we will show the differences between the serial executor and
thread pool when either executors process a group of AsyncTask that were enqueued
sequentially:

new SleepAsyncTask (1) .execute(1000) ;

new SleepAsyncTask (4) .execute (1000) ;

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

w

erial Executor
Thread Name

Async Task #1

Async Task #2

Thread Name Thread Pool Executor
Async Task #1

Async Task #2

As shown in the preceding image, the serial executor uses the threads available in the
AsyncTask Thread Pool, however they will only process the next AsyncTask when
the previous AsyncTask finishes. Alternatively, ThreadPoolExecutor will start
processing the next task as soon as it has a thread available to do the job without
guaranteeing that they would complete in the order they were started:

It is important to mention that all the AsyncTasks from the system
will share the same static executor AsyncTask . THREAD POOL
% EXECUTOR. For the SerialExecutor the situation is worse because
T if an AsyncTask is occupying the single executor for a long period of
time the next tasks will wait on a queue to get processed.

Besides the default executors provided by AsyncTask and the ones that are available
on the java.util.concurrent, we can choose to create our own. For example, we
might want to allow some concurrency by operating off a small pool of threads, and
allow many tasks to be queued if all threads are currently busy.

This is easily achieved by configuring our own instance of ThreadPoolExecutor as
a static member of one of our own classes — for example, our Activity class. Here's
how we might configure an executor with a pool of four to eight threads and an
effectively infinite queue:

private static final Queue<Runnable> QUEUE =
new LinkedBlockingQueue<Runnables () ;
public static final Executor MY EXECUTOR =
new ThreadPoolExecutor (4, 8, 1, TimeUnit.MINUTES, QUEUE) ;

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

The parameters to the constructor indicate the core pool size (4), the maximum pool
size (8), the time for which idle additional threads may live in the pool before being
removed (1), the unit of time (minutes), and the queue to append work when the
pool threads are occupied.

Using our own Executor is then as simple as invoking our AsyncTask as follows:

task.executeOnExecutor (MY EXECUTOR, params) ;

Common AsyncTask issues

As with any powerful programming abstraction, AsyncTask is not entirely free from
issues and compromises. In the next sections we are going to list some of the pitfalls
that we could face when we want to make use of this construct in our applications.

Fragmentation issues

In the Controlling the level of concurrency section, we saw how AsyncTask has
evolved with new releases of the Android platform, resulting in behavior that varies
with the platform of the device running the task, which is a part of the wider issue of
fragmentation.

The simple fact is that if we target a broad range of API levels, the execution
characteristics of our AsyncTasks —and therefore, the behavior of our apps— can
vary considerably on different devices. So what can we do to reduce the likelihood of
encountering AsyncTask issues due to fragmentation?

The most obvious approach is to deliberately target devices running at least
Honeycomb, by setting a minSdkversion of 11 in the Android Manifest file. This
neatly puts us in the category of devices, which, by default, execute AsyncTasks
serially, and therefore, much more predictably.

At the time of writing in October 2015, only 4% of Android devices run a version of
Android in the danger zone between API Levels 4 and 10, and therefore targeting
your application to Level 11 would not reduce your market reach significantly.

When the ThreadPoolExecutor is used as the executor, the changes introduced in
Lollipop (API Level 21) could also bring behavior drifts in relation to older versions
(API Level >10). The modern AsyncTask's ThreadPoolExecutor is limited to the
device's CPU cores * 2 + 1 concurrent threads, with an additional queue of 128 tasks
to queue up work.

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

A second option is to design our code carefully and test exhaustively on a range of
devices —always commendable practices of course, but as we've seen, concurrent
programming is hard enough without the added complexity of fragmentation, and
invariably, subtle bugs will remain.

A third solution that has been suggested by the Android development community is
to reimplement AsyncTask in a package within your own project, then extend your
own AsyncTask class instead of the SDK version. In this way, you are no longer at
the mercy of the user's device platform, and can regain control of your AsyncTasks.
Since the source code for AsyncTask is readily available, this is not difficult to do.

Memory leaks

In cases where we keep a reference to an Activity or a View, we could prevent an
entire tree of objects from being garbage collected when the activity is destroyed. The
developer needs to make sure that it cancels the task and removes the reference to
the destroyed activity or view.

Activity lifecycle issues

Having deliberately moved any long-running tasks off the main thread, we've
made our applications nice and responsive — the main thread is free to respond
very quickly to any user interaction.

Unfortunately, we have also created a potential problem for ourselves, because the
main thread is able to finish the Activity before our background tasks complete. The
Activity might finish for many reasons, including configuration changes caused by
the user rotating the device (the Activity is destroyed and created again with a new
address in the memory), the user connecting the device to a docking station, or any
other kind of context change.

If we continue processing a background task after the Activity has finished, we are
probably doing unnecessary work, and therefore wasting CPU and other resources
(including battery life), which could be put to better use.

On occasions after a device rotation, the AsyncTask continues to be meaningful and
has valid content to deliver, however, it has reference to an activity or a view that
was destroyed and therefore is no longer able to update the UI and finish its work
and deliver its result.

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

Also, any object references held by the AsyncTask will not be eligible for garbage
collection until the task explicitly nulls those references or completes and is itself
eligible for GC (garbage collection). Since our AsyncTask probably references the
Activity or parts of the View hierarchy, we can easily leak a significant amount of
memory in this way.

A common usage of AsyncTask is to declare it as an anonymous inner class of the
host Activity, which creates an implicit reference to the Activity and an even bigger
memory leak.

There are two approaches for preventing these resource wastage problems.

Handling lifecycle issues with early cancellation

First and foremost, we can synchronize our AsyncTask lifecycle with that of the
Activity by canceling running tasks when our Activity is finishing.

When an Activity finishes, its lifecycle callback methods are invoked on the main
thread. We can check to see why the lifecycle method is being called, and if the
Activity is finishing, cancel the background tasks. The most appropriate Activity
lifecycle method for this is onPause, which is guaranteed to be called before the
Activity finishes:

protected void onPause() {
super.onPause () ;
if ((task != null) && (isFinishing()))
task.cancel (false) ;

}

If the Activity is not finishing —say, because it has started another Activity and is
still on the back stack —we might simply allow our background task to continue to
completion.

This solution is straightforward and clean but far from ideal because you might
waste precious resources by starting over the background work again unaware that
you might already have a valid result or that your AsyncTask is still running.

Beyond that, when you start multiple AsyncTasks and start them again when the
device rotation happens, the waste grows substantially since we have to cancel and
fire up the same number of tasks again.

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Handling lifecycle issues with retained headless
fragments

If the Activity is finishing because of a configuration change, it may still be useful
to use the results of the background task and display them in the restarted Activity.
One pattern for achieving this is through the use of retained Fragments.

Fragments were introduced to Android at API level 11, but are available through a
support library to applications targeting earlier API Levels. All of the downloadable
examples use the support library, and target API Levels 7 through 23. To use
Fragment, our Activity must extend the FragmentActivity class.

The Fragment lifecycle is closely bound to that of the host Activity, and a fragment
will normally be disposed when the activity restarts. However, we can explicitly
prevent this by invoking setRetainInstance (true) on our Fragment so that it
survives across Activity restarts.

Typically, a Fragment will be responsible for creating and managing at least a
portion of the user interface of an Activity, but this is not mandatory. A Fragment
that does not manage a view of its own is known as a headless Fragment. Since they
do not have a Ul related to them, they do not have to be destroyed and recreated
again when the user rotates the device, for example.

Isolating our AsyncTask in a retained headless Fragment makes it less likely that we
will accidentally leak references to objects such as the view hierarchy, because the
AsyncTask will no longer directly interact with the user interface. To demonstrate
this, we'll start by defining an interface that our Activity will implement:

public interface AsyncListener {
void onPreExecute () ;
void onProgressUpdate (Integer... progress) ;
void onPostExecute (Bitmap result) ;
void onCancelled (Bitmap result) ;

}

Next, we'll create a retained headless Fragment, which wraps our AsyncTask.
For brevity, doInBackground is omitted, as it is unchanged from the previous
examples —see the downloadable samples for the complete code.

public class DownloadImageHeadlessFragment extends Fragment {
// Reference to the activity that receives the

// async task callbacks
private AsyncListener listener;

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

private DownloadImageTask task;

// Function to create new instances

public static DownloadImageHeadlessFragment
newInstance (String url)
DownloadImageHeadlessFragment myFragment = new

DownloadImageHeadlessFragment () ;

Bundle args = new Bundle() ;
args.putString ("url", url);
myFragment . setArguments (args) ;
return myFragment;

}

// Called to do initial creation of fragment

public void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;
setRetainInstance (true) ;
task = new DownloadImageTask() ;
url = new URL(getArguments () .getString("url")) ;
task.execute (url) ;

}

// Called when an activity is attached

public void onAttach(Activity activity) {
super.onAttach (activity) ;

listener = (AsyncListener)activity;

public void onDetach() {
super.onDetach () ;
listener = null;
}
// Cancel the download
public void cancel() {
if (task != null) {
task.cancel (false) ;

private class DownloadImageTask extends AsyncTask<URL,
Bitmap> {

// ... doInBackground elided for brevity

Integer,

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

As you might know, a fragment has its lifecycle tied to its own Activity, and
therefore the callbacks are invoked in an orderly fashion following the current
activity lifecycle events. For example, when the activity is stopped, all the fragments
attached to it will be detached and notified of the Activity state change.

In our example, we're using the Fragment lifecycle methods (onAttach and onDetach)
to save or remove the current Activity reference in our retained fragment.

When the Activity gets attached to our fragment, the onCreate method is invoked
to create the private DownloadImageTask object and thereafter, the execute method is
invoked to start the download in the background.

The newInstance static method is used to initialize and setup a new fragment,
without having to call its constructor and a URL setter. As soon as we create the
fragment object instance, we save the image URL in the bundle object stored by the
fragment arguments member, using the setArguments function. If the Android
system restores our fragment, it calls the default constructor with no arguments, and
moreover it could make use of the old bundle to recreate the fragment.

Whenever the activity gets destroyed and recreated during a configuration change,
the setRetainInstance (true) forces the fragment to survive during the activity
recycling transition. As you can perceive, this technique could be extremely useful in
situations where we don't want to reconstruct objects that are expensive to recreate
again or objects that have an independent lifecycle when an Activity is destroyed
through a configuration change.

. Itisimportant to know that the retainInstance () can only be
% used with fragments that are not in the back stack. On retained
— fragments, onCreate () and onDestroy () are not called when
the activity is re-attached to a new Activity.

Next, our Fragment has to manage and execute a DownloadImageTask, that proxies
progress updates and results back to the Activity via the AsyncListener interface:

private class DownloadImageTask extends AsyncTask<URL, Integer,

Bitmap> {
protected void onPreExecute()
if (listener != null)

listener.onPreExecute () ;
}
protected void onProgressUpdate (Integer... values) {
if (listener != null)
listener.onProgressUpdate (values) ;

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

}
protected void onPostExecute (Bitmap result)
if (listener != null)
listener.onPostExecute (result) ;
}
protected void onCancelled(Bitmap result)
if (listener != null)
listener.onCancelled (result) ;

}

As described previously, the AsyncListener, is the entity that is responsible for
updating the UI with the result that will come from our background task.

Now, all we need is the host Activity that implements AsyncListener and uses
DownloadImageHeadlessFragment to implement its long-running task. The full
source code is available to download from the Packt Publishing website, so we'll
just take a look at the highlights:

public class ShowMyPuppyHeadlessActivity
extends FragmentActivity implements
DownloadImageHeadlessFragment .AsyncListener

private static final String DOWNLOAD PHOTO_ FRAG =
"download photo_as fragment";

@Override

protected void onCreate (Bundle savedInstanceState) {

FragmentManager fm = getSupportFragmentManager () ;
downloadFragment = (DownloadImageHeadlessFragment)
fm. findFragmentByTag (DOWNLOAD PHOTO_FRAG) ;

// If the Fragment is non-null, then it is currently being

// retained across a configuration change.

if (downloadFragment == null)

downloadFragment = DownloadImageHeadlessFragment.

newInstance ("http://img.allw.mn/content" +
"/www/2009/03/aprill.jpg") ;
fm.beginTransaction() .add (downloadFragment,
DOWNLOAD PHOTO_FRAG) .
commit () ;

}

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

First, when the activity is created in the onCreate callback, we check if the fragment
already exists in FragmentManager, and we only create the instance if it is missing.

When the fragment is created, we build a fragment instance over the newInstance
method and then we push the fragment to FragmentManager, the entity that will
store and make the transition.

If our Activity has been restarted, it will need to re-display the progress dialog
when a progress update callback is received, so we check and show it if necessary,
before updating the progress bar:

@Override
public void onProgressUpdate (Integer... value) {
if (progress == null)

prepareProgressDialog() ;

progress.setProgress (value[0]) ;

}

Finally, Activity will need to implement the onPostExecute and onCancelled
callbacks defined by AsyncListener. The onPostExecute will update the
resultView as in the previous examples, and both will do a little cleanup —
dismissing the dialog and removing Fragment as its work is now done:

@Override
public void onPostExecute (Bitmap result)
if (result != null) {
ImageView iv = (ImageView) findviewById (

R.1id.downloadedImage) ;
iv.setImageBitmap (result) ;

}

cleanUp () ;

// When the task is cancelled the dialog is dimissed
@Override
public void onCancelled(Bitmap result)

cleanUp () ;

// Dismiss the progress dialog and remove the
// the fragment from the fragment manager
private void cleanUp() {

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the AsyncTask

if (progress != null) {
progress.dismiss () ;
progress = null;
}
FragmentManager fm = getSupportFragmentManager () ;
Fragment frag = fm.findFragmentByTag (DOWNLOAD PHOTO FRAG) ;
fm.beginTransaction () .remove (frag) .commit () ;

}

This technique, well known in the Android development community as a headless
Fragment, is simple and consistent, since it attaches the recreated activity to the
headless Fragment each time a configuration change happens. An activity reference
is maintained, on the fragment, and updated when the fragment gets attached
(Activity creation) and gets detached (Activity destroyed).

Taking advantage of this pattern, the AsyncTask never has to follow the
unpredictable occurrence of configuration changes or worry about UI updates
when it finishes its work because it forwards the lifecycle callbacks to the current
Activity.

Applications of AsyncTask

Now that we have seen how to use AsyncTask, we might ask ourselves when we
should use it.

Good candidate applications for AsyncTask tend to be relatively short-lived
operations (at most, for a second or two), which pertain directly to a specific
Fragment Or Activity and need to update its user interface.

AsyncTask is ideal for running short, CPU-intensive tasks, such as number
crunching or searching for words in large text strings, moving them off the main
thread so that it can remain responsive to input and maintain high frame rates.

Blocking I/ O operations such as reading and writing text files, or loading images
from local files with BitmapFactory are also good use cases for AsyncTask.

Of course, there are use cases for which AsyncTask is not ideally suited. For anything
that requires more than a second or two, we should weigh the cost of performing
this operation repeatedly if the user rotates the device, or switches between apps or
activities, or whatever else may be going on that we cannot control.

Taking these things into account, and the rate at which complexity increases as we
try to deal with them (for example, retained headless fragments!), AsyncTask starts
to lose its shine for longer operations.

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

AsyncTask is often used to fetch data from remote web servers, but this can fall foul
of the Activity lifecycle issues we looked at earlier. End users may be working with
a flaky 3G or HSDPA connection, where network latencies and bandwidth can vary
widely, and a complete HTTP request-response cycle can easily span many seconds.
This is especially important when we are uploading a significant amount of data,
such as an image, as the available bandwidth is often asymmetric.

While we must perform network I/O off the main thread, AsyncTask is not
necessarily the ideal option —as we'll see later; there are more appropriate constructs
available for offloading this kind of work from the main thread.

When we want to compose or chain background processing over AsyncTasks, we
could end up in situation where it is extremely difficult to manage the callbacks and
coordinate the work so AsyncTask will not help you here.

Other techniques will be introduced and detailed in the next chapters for handling
these kinds of problems in a clear way.

Summary

In this chapter, we've taken a detailed look at AsyncTask and how to use it to write
responsive applications that perform operations without blocking the main thread.

We saw how to keep users informed of the progress, and even allow them to cancel
operations early. We also learned how to deal with issues that can arise when the
Activity lifecycle conspires against our background tasks.

Finally, we considered when to use AsyncTask, and when it might not be appropriate.

In the next chapter we'll learn about Loader —a construct designed to streamline the
asynchronous loading of data on the Android platform.

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

In the previous chapter we familiarized ourselves with the simplest and high

level, Android-specific, asynchronous construct; the android.os.AsyncTask.

The AsyncTask is a lean construct used to create background work that offers a
simple interface to publish results and send progress to the main thread. In this
chapter we are going to move our focus to android.content .Loader, a high

level Android-specific pattern used to load content asynchronously from content
providers or data sources over a worker thread with content change capabilities and
component lifecycle awareness.

In this chapter we will cover the the following topics:

Introducing loaders

Loader API

Loader lifecycle

Loading data with Loader

Building responsive apps with AsyncTaskLoader
Building responsive apps with CursorLoader
Combining loaders

Applications of loaders

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

Introducing Loaders

As the name suggests, the job of Loader is to load data on behalf of other parts of the
application, and to make that data available across activities and fragments within
the same process. The Loaders framework was created to solve a couple of issues
related to asynchronous loading in Activities and Fragments:

* Background processing: The heavy lifting is automatically performed on a
background thread, and the results are safely introduced to the main thread
on completion.

* Result caching: Loaded data can be cached and redelivered on repeat calls
for speed and efficiency.

* Lifecycle awareness: The framework gives us control over when a Loader
instance is destroyed, and allows Loaders to live outside the Activity
lifecycle, making their data available across the application and across
Activity restarts.

* Data change management: Loaders monitor their underlying data source,
and reload their data in the background when necessary. The framework
includes lifecycle callbacks that allow us to properly dispose of any
expensive resources held by our Loaders.

Loader API

The Loader API was introduced to the Android platform at API level 11, but are
available for backwards compatibility through the support libraries. The examples in
this chapter use the support library to target API levels 7 through 23.

The framework defines interfaces, abstract classes, and loader implementations to
create first class Android data loaders for your application.

The Loaders are able to monitor the content and deliver new changes, and will survive
across an Activity transition or across a replaced Activity triggered by a configuration
change. The API classes and interfaces delivered by this framework are:

* android.content.Loader<DataType>: Nonfunctional (abstract) base class
that defines the base methods
* android.app.LoaderManager: Manages loaders in Activities and Fragments

* android.app.LoaderManager.LoaderCallbacks: Callbacks used to listen
for Loader events

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

* android.content.AsyncTaskLoader<DataTypes>: Loader subclass that
executes the loading over an AsyncTask

* android.content.CursorLoader: Loader implementation used to deal with
Android internal databases and content providers' data sources

The last two classes are non-abstract subclasses that we will go into detail with
examples in the next sections of this chapter.

Loader

Loader is a generic type class that, by itself, does not implement any asynchronous
behavior and exposes one generic type argument:

public class Loader<DataType>

The <DataType> generic type defines the result type that your Loader is going to
deliver and should be defined by any subclass that implements a domain specific
Loader.

When you create your own loader there are five methods of Loader which we must
implement to create a fully functional Loader:

protected void onStartLoading()
protected void onStopLoading ()
protected void onForceLoad ()
protected void onReset ()
protected void onCancelLoad ()

The onStartLoading () method is the method that subclass must implement to start
loading data, the onStopLoading () is a method used to implement behavior when a
loader stop was requested because the activity or fragment associated is stopped. At
this state, the Loader may carry on processing but shouldn't deliver updates to the
Activity until onStartLoading () is invoked again.

The onForceLoad () is a method that you should implement to ignore a previously
loaded data set and load a new one, like clearing a cache, and the onreset () method
is a method called for you automatically by LoaderManager to free any loader's
resources if your loader is not invoked again.

The oncancelLoad () is a method invoked on the main thread used to implement
behavior when the load is canceled after invoking the Loader.cancelLoad ().

Although we can extend Loader directly, it is more common to use one of the two
provided subclasses, AsyncTaskLoader or CursorLoader, depending on our
requirements.

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

AsyncTaskLoader is a general-purpose Loader, which we can subclass when we
want to load just about any kind of data from just about any kind of source, and do
so off the main thread.

CursorLoader extends AsyncTaskLoader, specializing it to efficiently source data
from a local database and manage the associated database cursor correctly.

Loader Manager

When we use Loaders, we will not do so in isolation, because they form part

of a small framework. Loaders are managed objects, and are looked after by a
LoaderManager, which takes care of coordinating Loader lifecycle events with

the Fragment and Activity lifecycles, and makes the Loader instances available

to the client code throughout an application. The LoaderManager abstract class
defined in android. support.v4.content . LoaderManager and android.app.
LoaderManager is accessible in all the Activities and Fragments through the member
function getLoaderManager:

LoaderManager getLoaderManager ()
// android.support.v4
LoaderManager getSupportLoaderManager () ;

The LoaderManager provides an API that could be used by the client (Activity or
Fragment) to set up, initialize, restart, and destroy loaders without being bound to
the client lifecycle. The Loader Manager's most relevant methods that are accessible
when you retrieve the client-managed LoaderManager instance are:

Loader<D> initLoader (int id, Bundle args,
LoaderManager.LoaderCallbacks<D> callback)

Loader<D> restartLoader (int id,Bundle args,

LoaderManager .LoaderCallbacks<D> callback)
Loader<D> getLoader (int id) ;
void destroyLoader (int id) ;

The id argument in all the methods defined by the LoaderManager identifies the
Loader on the client context, and moreover, is used in all the LoaderManager APIs
to trigger any action in a specific Loader.

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The initLoader method is used to initialize a certain loader but it does not create a
new Loader if a Loader with the same ID already exists on the LoaderManager.

The restartLoader method starts or restarts a loader, however if a Loader
associated with the ID passed in already exists, the old loader will be destroyed
when it completes its work.

The destroyLoader method stops and removes the Loader with the ID specified by
the argument id explicitly from the LoaderManager.

LoaderManager.LoaderCallbacks

To interact with the LoaderManager, the client needs to implement the
LoaderCallbacks<D> interface and receive events to create a new Loader for a given
ID, to receive the Loader results, or reset a Loader respectively:

Loader<D> onCreateLoader (int id, Bundle args)
void onLoadFinished (Loader<D> loader, D data)
void onLoaderReset (Loader<D> loader)

Like we detailed before, the D generic type specifies the data type that the Loader
returns and these callbacks are called by the LoaderManager when a particular state
is reached on the Loader lifecycle:

* onCreateLoader: This is a creational method that bootstraps a Loader for
a specified ID and with a given Bundle object. The Bundle object is used to
pass arguments for the Loader creation. This method gets invoked when the
client calls initLoader and no Loader with that ID exists on LoaderManager.

* onLoadFinished: This is the method called when the Loader gets its results;
the callback is called with the results and with a reference for the loader that
retrieved the result. When the Loader detects a content change on the data
requested it will report back the new results, therefore this method could be
called several times. This method is typically used to update the UI with the
loaded data.

* onLoaderReset: This is the method invoked when the Loader for a given ID
is going to be destroyed. This is the best place to release some resources and
references attached to one specified ID.

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

Loader lifecycle

Any Loader object managed by a LoaderManager can be in six different flags that
defines the Loader state:

Reset: This is the flag that sets your loader when you create a Loaders
instance. The flag would end up here if the reset () method is invoked. The
onReset () is called when the reset is moving to this state, and the developer
must use this method to release the resources allocated on the Loader and to
reset any cache result.

Started: This is the flag set when your loader startLoading () is invoked.
After your loader enters into this state, the onStartLoading method gets
invoked to setup your loading resources. If the Loader has already delivered
results you can call the forceLoad () to restart a new loading. Your loader
should only deliver results when this flag is on.

Stopped: This is the flag set when the loader is stopped and is not able to
deliver new results or delivery of content changes. In this state, the loader
could store results to deliver when the loader is restarted. To implement
behavior when the loader has this on, the developer must implement the
onStopLoading and release any resources allocated to load the results.

Abandoned: This is an optional intermediate flag used to pinpoint whether
the Loader was abandoned. Like the other methods, subclasses must
implement the onaAbandon () to implement behavior when the client is no
longer interested in new data updates from the loader. At this state, prior to
Reset, the Loader must not report any fresh updates but it can keep results to
deliver when the loader is restarted.

ContentChanged: This is a flag used to notify that the Loader content has
changed. The onContentChanged is callback invoked when a content change
is detected on the Load.

ProcessingChange: This is a flag used to notify that the Loader

content is processing a change on its content. The following

functions takeContentChanged (), commitContentChanged (), and
rollbackContentChanged () are used to manage the data content changes
and its processing state.

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Loader Lifecycle
v reset
reset() - - - L A
- N startLoading()
reset()
abandon() v
abandoned started
stopLoading() A
startLoading()
\ 4
stopped

Figure 4.1: Loader Lifecycle

Loading data with Loader

So far, we have only described theoretical entities and the classes available on the
API so now is the right time to show these concepts with a simple example.

In our example we will show you how to use LoaderManager, LoaderCallback, and
a Loader to present an Activity that lists the name of users that are currently online

for a chat application.

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

First, we are going to create an Activity that will act as a client to the LoaderManager
and will have three buttons, INIT, RESTART, and DESTROY; to initialize the
loader, to restart, and to destroy the loader respectively. The Activity will receive
the Loadercallbacks callback directly since it implements that interface as
member functions:

public class WhoIsOnlineActivity extends FragmentActivity
implements LoaderCallbacks<List<Strings>> {
public static final int WHO IS ONLINE LOADER ID = 1;

@Override
protected void onCreate (Bundle savedInstanceState) {

final LoaderManager lm = getSupportLoaderManager () ;
final Bundle bundle =new Bundle() ;
bundle.putString ("chatRoom", "Developers") ;
initButton.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {
lm.initLoader (WHO IS ONLINE LOADER ID, bundle,
WhoIsOnlineActivity.this);
}
P
restartButton.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {
lm.restartLoader (WHO IS ONLINE LOADER ID, bundle,
WhoIsOnlineActivity.this);
}
I
destroyButton.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {
lm.destroyLoader (WHO IS ONLINE LOADER 1ID) ;
}
I

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Clicking on the INIT button will initialize the Loader with the ID specified and with
a bundle object that we use to pass arguments to the Loader, and as said before the
RESTART button will destroy a previous loader if it already exists and create a new
one and the DESTROY button will destroy the loader with the given ID if it already
exists in the LoaderManager. These buttons are used here only to help us to explain
the interaction and flow between the LoaderManager and the Loaders.

In this specific use case we are going to load the list of online users for the chat
room developers.

Now let's take a look at the Loadercallback functions and implement the interface
on our Activity.

Starting with onCreateLoader, this Loadercallback callback gets called only
if the loader does not previously exist or when the loader is restarted by calling
LoaderManager.restartLoader ().

When we initialize WhosOnlineLoader via the LoaderManager initLoader method,
it will either return an existing Loader with the given ID (LOADER_1ID) or, if it doesn't
yet have a Loader with that ID, it will invoke the first of the Loadercallbacks
methods —onCreateLoader

This means this method will not be called on for a configuration change because a
previous loader with this ID is already available and initialized.

@Override
public Loader<List<String>> onCreatelLoader (int id, Bundle args) {
Loader res = null;
switch (id) {
case WHO IS ONLINE LOADER ID:
res = new WhosOnlineLoader (this,
args.getString("chatRoom")) ;
break;

}

return res;

}

This method creates the Loader instance calling the WhosonlineLoader constructor
and passing the chat group name that we are trying to load.

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

The next Loadercallback function callback implemented is onLoadFinished; this
callback gets called when the loader gets new results, when the data changes, or
could be called when a configuration changes a Loader that already exists in the
LoaderManager

@Override
public void onLoadFinished (Loader<List<String>> loader,
List<String> users) {

switch (loader.getId()) {
case WHO IS ONLINE LOADER ID:
ListView listView = (ListView) findvViewById(R.id.list);

ArrayAdapter<String> adapter = new ArrayAdapter<Strings>(this,
android.R.layout.simple_list_item 1,
android.R.id.textl,
users) ;

listView.setAdapter (adapter) ;

break;

}

In our example, when the onLoadFinished gets called, we update the ListView
adapter with the list of users received from the loader.

The onLoaderReset, our last LoaderCallback function callback, gets called when
the loader is destroyed, and in our example it simply cleans up the list view data in
its adapter:

@Override
public void onLoaderReset (Loader<List<String>> loader) {

ListView listView = (ListView)findViewById(R.id.list);
listView.setAdapter (null) ;

}

The loader reset is called when the LoaderManager.destroyLoader (id) is called or
when the Activity gets destroyed. The Loader reset, as described earlier, will not
destroy the loader but tell the Loader not to publish further updates. Hence, it can
span multiple Activities.

The last piece of this cake is our custom Loader, the whosOnlineLoader, used to
retrieve the list of online users. Our WhosOnlineLoader is not going to load any
asynchronous results, since a Loader subclass does not manage a background thread
to load the results. Hence, this Loader should only be used for example purposes and
to explain the LoaderManager and custom Loader interaction idiosyncrasies.

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

For debugging purposes, the methods onStartLoading, onStopLoading, onReset,
and onForceLoad have a log message printed every time they enter on a function.
The deliverResult (), the Loader function that delivers the result of the load to the
registered listener, will also print a message to the Android Log with the users online.

public class WhosOnlineLoader extends Loader<List<Strings>> {

private final String mChatRoom;
private List<String> mResult = null;

public WhosOnlineLoader (Context context, String chatRoom) {
super (context) ;
this.mChatRoom = chatRoom;

}

@Override

protected void onStartLoading() {

Log.i ("WhoIsOnlineLoader", "onStarting WhoIsOnlineLoader ["
+ Integer.toHexString (hashCode()) + "1");
forceLoad () ;

}

// Elided for brevity
@Override
public void deliverResult (List<String> data)
Log.1i("WhoIsOnlineLoader", "DeliverResult WhoIsOnlineLoader ["
+ Integer.toHexString (hashCode()) + "1");

super.deliverResult (data) ;

}

@Override
protected void onReset () {
Log.i ("WhoIsOnlineLoader", "onReset WhoIsOnlineLoader ["
+ Integer.toHexString (hashCode()) + "1");
onStopLoading () ;

}

The whosOnlineLoader code is partially omitted on purpose, although the
WhosOnlineLoader source code is available to download from the Packt
Publishing website.

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

With everything in place, if we start the Activity, the user online list
@’@‘\ will be empty, although clicking on the INIT button will result in a

LoaderManager.init call.

Since we have some trace messages at the beginning of each Loader lifecycle, we can
follow the loader callback calls:

LoaderManager.init [1]
LoaderCallbacks.onCreatelLoader [1]
Loader .new[ee07113]
Loader.onStarting[ee07113]
Loader.onForceload[ee07113]
Loader.deliverResult [ee07113]
LoaderCallbacks.onLoadFinished[1]

H H H H H H H

As shown in the log output, a new Loader object instance with the hashCode
ee07113 is created when we invoke the LoaderManager. init function and the
onCreateLoader gets called in the meantime. Afterwards, the loader is started and
the results are loaded on the onLoadFinished callback, delivering the list of users.

Since the Loader with the ID now exists on the LoaderManager, lets check what
happens when we click on the restart button:

LoaderManager.restart [1]

LoaderCallbacks.onCreateLoader [1]

Loader.new[fb61£50]

Loader.onStarting[fb61£50]

Loader.onForceload[fb61£50]

Loader.deliverResult [fb61£50]

LoaderCallbacks.onLoadFinished[1]

Loader.onReset [ee07113]

H H H H H H H H H

Loader.onStopping[ee07113]

Since the Loader ee07113 was created previously, it will be stopped and reset, and
a new loader instance will be created and started like it did on the init.

Now we are going to click on the DESTROY button and check the results:

LoaderManager.destroy [1]
LoaderCallbacks.onLoaderReset [1]
Loader.onAbandon [fb61£50]
Loader.onReset [fb61£50]

H H H H H

Loader.onStopping [fb61£50]

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

As expected, the LoaderManager . destroy gets called, and after that the onabandon,
onReset, and the onStopping Loader member methods were called to stop
delivering results, release the loader resources, and to stop loading data. When the
Loader is stopped we must cancel any loading but it can still monitor the data source
for changes.

Another situation that is really important to explain is the configuration change.
In this situation, the LoaderManager will continue to receive the results and keep
them in a local cache. Once the new activity becomes visible, the cache results are
delivered over the method LoaderCallbacks.onLoadFinished.

In a typical Activity transition where there is no configuration change involved,
LoaderManager automatically resets the Loader resulting in calls to the loader stop
and reset functions.

Given that now we understand how to use the LoaderManager to manage the
loaders in activities, now we can focus our attention on how to use the subclasses
AsyncTaskLoader and LoaderCursor to create asynchronous Loaders.

Building responsive apps with
AsyncTaskLoader

AsyncTaskLoader is a Loader implementation that uses AsyncTasks to perform its
background work, though this is largely hidden from us when we implement our
own subclasses.

We don't need to trouble ourselves with the AsyncTasks —they are completely
hidden by AsyncTaskLoader —but with what we learned earlier about AsyncTask,
it is interesting to note that tasks are, by default, executed using AsyncTask.
executeOnExecutor (AsyncTask.THREAD POOL_EXECUTOR) to ensure a high degree
of concurrency when multiple Loaders are in use.

The AsyncTaskLoader in the compatibility package (android.
. support.v4.content) does not rely on the public AsyncTask
% in the platform. Instead, the compatibility package uses an
L internal ModernAsyncTask implementation to avoid Android
fragmentation. The ModernAsyncTask creates threads with the
name ModernAsyncTask #<N>.

In the next section we will use AsyncTaskLoader to load in the background, a
currency to Bitcoin exchange rate, and display an updated exchange rate in our
BitcoinExchangeRateActivity making use of the LoaderManager.

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

The exchange rate will be refreshed continuously using the oncontentChanged ()
Loader method, used in this case to force a new exchange rate update in background.

Loader is generically typed so when we implement it, we need to specify the type of
object that it will load —in our case Double:

public class BitcoinExchangeRateLoader extends
AsyncTaskLoader<Double> {
//

}

The Loader abstract class requires a Context passed to its constructor, so we must
pass a Context up the chain. We'll also need to know which currency exchange rate
to retrieve, and the refresh time interval, so we'll also pass a string to identify the
currency and an integer for the interval (milliseconds):

private Double mExchangeRate = null;
private final long mRefreshinterval;
private final String mCurrency;

BitcoinExchangeRateLoader (Context ctx,
String currency,
int refreshinterval) ({
super (ctx) ;
this.mRefreshinterval = refreshinterval;
this.mCurrency = currency;

}

We don't need to keep our own reference to the context object—Loader exposes
a getContext () method which we can call from anywhere in our class where we
might need a Context.

We can safely pass a reference to an Activity instance as the Context
parameter, but we should not expect getContext () to return the same
% object! Loaders potentially live much longer than a single Activity, so the
g Loader superclass only keeps a reference to the application Context, a
context tied to an application, to prevent memory leaks.

There are several methods we will need to override which we'll work through
one at a time. The most important is 1oadInBackground —the workhorse of our
AsyncTaskLoader, and the only method which does not run on the main thread:

@Override
public Double loadInBackground () {
/). ..

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The asyncTaskLoader is a Loader subclass based on AsyncTask. Under the hood, it
calls the loadInBackground function in an AsyncTask's background thread.

We're going to fetch the real-time bitcoin exchange rate from Internet, more precisely
from the blockchain.info website, to delays to establish the connection, to transmit
the data between the device and the remote endpoint and to some latency exposed
by the access network. Since the delays can range from milliseconds to seconds, this
task is a good candidate to perform off the main thread.

The following diagram displays the Loader lifecycle, showing callbacks invoked by
LoaderManager and a typical AsyncTaskLoader implementation:

FRAMEWORK CALLBACKS TYPICAL AsyncTaskLoader IMPLEMENTATION
LoaderCallbacks.
onCreateloader
Y "
CREATED LoaderCallbacks. |
onLoadFinished N
v has cah | deliverResult |«
startLoading haxoahed gata —
v P onStartLoading
STARTED no cahed data —my forceLoad loadinBackground
¥ BACKGROUND THREAD
Activity/Fragment Activity/Fragment [}
starts stops onCanceled '«
4 v
stoploading
r # onStoplLoading B cancelload
v :
STOPPED
Wl Thread
Activity/Fragment
finishes [sackground Thread
or destroyLoader called
explicitly > LoaderCallbacks.
v onlLoaderReset
reset
J B onReset
¥
RESET

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

Given that loading the exchange rate from the network entails some delay due

to blocking I/ O reading from the network, and it is also possible that the remote
website does not yet have enough resources to send the response back, we, as
conscious developers who don't want to generate annoying Android ANRs, have
to transfer these kinds of operations to the AsyncTaskLoader.loadInBackground
method that is executed by the background thread in the system.

After we receive the response with the exchange rate, we need to decode the JSON
response that comes in the HTTP response so this is also an operation we definitely
want to perform off the main thread!

public Double loadInBackground () {
Double result = null;
StringBuilder builder = new StringBuilder () ;
URL url = new URL("https://blockchain.info/ticker");

// Create a Connection to the remote Website
HttpURLConnection conn = (HttpURLConnection)
url.openConnection() ;

conn.setRequestMethod ("GET") ;

conn.setDoInput (true) ;

conn.connect () ;

// ! Read the response with the exchange rate to a String

// Decode the Response Received by Blockchain Website
JSONObject obj = new JSONObject (builder.toString()) ;
result = obj.getJSONObject (mCurrency)

.getDouble ("last") ;
return result;

}

In the preceding code, we execute the blocking operations suggested previously and as
a result we return the exchange rate for the currency specified in the Loader construct.

We'll want to cache a reference to the Double object that we're delivering, so that any
future calls can just return the same Double immediately. We'll do this by overriding
deliverResult invoked on the main thread:

@Override

public void deliverResult (Double result)
this.mExchangeRate = result;
super.deliverResult (result) ;

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

To make our Loader actually work, we still need to override a handful of
lifecycle methods that are defined by the Loader base class. First and foremost is
onStartLoading:

@Override
protected void onStartLoading() {
if (mExchangeRate != null) ({

// If we currently have a result available, deliver it
// immediately.
deliverResult (mExchangeRate) ;
}
if (takeContentChanged() || mExchangeRate == null) ({
// If the exchange rate has changed since the last time
// it was loaded or is not currently available, start a load.
forceLoad () ;

}

Here, we check our cache (mExchangeRate) to see if we have a previously loaded
result that we can deliver immediately via deliverResult. If the content data has
changed recently, contentChanged flag is true, and we don't have a cached result,
we force a background load to occur —we must do this otherwise our Loader won't
ever load anything. As described before this callback runs on the main thread

and the load will fire off a new load throughout 1oadInBackground () on the
background thread.

We now have a minimal working Loader implementation, but there is some
housekeeping required if we want our Loader to play well with the framework.

First of all, we need to make sure that we clean up the exchange rate when our Loader
is discarded. Loader provides a callback intended for that exact purpose —onReset.

@Override

protected void onReset () {
// Ensure the loader is stopped
onStopLoading () ;
mExchangeRate = null;

}

The framework will ensure that onreset is called when Loader is being discarded,
which will happen when the app exits or when the Loader instance is explicitly
discarded via LoaderManager.

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

There are two more lifecycle methods, which are important to implement correctly
if we want our app to be as responsive as possible: onStopLoading and onCanceled
(be careful of the spelling of onCanceled here versus onCancelled in most places).

The framework will tell us when it doesn't want us to waste cycles loading data by
invoking the onStopLoading callback. It may still need the data we have already
loaded though, and it may tell us to start loading again, so we should not clean up
resources yet. In AsyncTaskLoader we'll want to cancel the background work if
possible, so we'll just call the superclass cancelLoad method:

@Override

protected void onStopLoading () {
// Attempt to cancel the current load task.
cancelLoad () ;

}

When the Loader is cancelled we don't stop the current rate loading; in spite

of this, in other kinds of use cases, we might have a cancelling behavior on the
loadInBackground () to stop the current loading by checking the isaAbandoned ()
member function.

Finally, we need to implement onCancelled to clean up any data that might be
loaded in the background after a cancellation has been issued:

@Override

public void onCanceled(Double data)
// For our data there is nothing to release, at this method
// we should release the resources associated with 'data'.

}

Depending on the kind of data Loader produces, we may not need to worry about
cleaning up the result of canceled work —ordinary Java objects will be cleaned up by
the garbage collector when they are no longer referenced.

So far, we have implemented the asynchronous exchange rate loading, now we have
to implement the refresh feature to continuously fetch the value from the blockchain.
info website. To load a new value for the current exchange rate we shall coerce the
loader to run the 1oadInBackground again and retrieve the current value for the
exchange rate. The Loader abstract class offers us the method onContentChanged (),
that will force a new load if the Loader is at the started state.

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

In our example, once the loader is started with startLoading (), we must
continuously call onContentChanged to mimic a value change and force a new load.
We will achieve this by using a handler and by posting a Runnable that simply calls
the onContentChange on our Loader.

1. First we are going to create the Runnable and create the handler in our
loader:

public class BitcoinExchangeRateLoader extends
AsyncTaskLoader<Doubles> {

private Handler mHandler;

// Use to force a exchange rate value change

private final Runnable refreshRunnable = new Runnable()
@Override
public void run() { onContentChanged(); }

Vi

BitcoinExchangeRateLoader (Context ctx,
String currency,
int refreshinterval) ({

this.mHandler = new Handler() ;

}

2. Second, we need to submit a delayed task to force the next reload, each time
the forceLoad () is called. When the Loader is reset we don't submit the
next reload:

@Override
protected void onForceLoad() {
mHandler.removeCallbacks (refreshRunnable) ;

if (!isReset())
mHandler.postDelayed (refreshRunnable, mRefreshinterval) ;

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

3.

Third, to force a new reload when the loader is cancelled and the task is
restarted afterwards, onCanceled () sets the ContentChange flag on by
calling onContentChanged ():

@Override
public void onCanceled (Double data) {

onContentChanged () ;
}

To finish, we must cancel the next reload if the loader is stopped or cancelled:

@Override
protected void onReset () {

mHandler.removeCallbacks (refreshRunnable) ;

}

So far so good —we have a Loader. Now we need to connect it to a client Activity or
Fragment. Since in our previous example we attached our Loader to an Activity, this
time we are going to use a different LoaderManager client and connect the loader to
a Fragment object.

Our Fragment, loaded by BitcoinExchangeRateActivity, is going to initialize our
Loader and display the loader result on the fragment UL Let's get these easy bits out
of the way first:

public class BitcoinExchangeRateFragment extends Fragment
implements LoaderManager.LoaderCallbacks<Doubles> {

@Override

public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated (savedInstanceState) ;
LoaderManager lm = getActivity () .getSupportLoaderManager () ;
Bundle bundle = new Bundle() ;
bundle.putString (CURRENNCY KEY, "EUR") ;
bundle.putInt (REFRESH INTERNAL, 5000) ;
Im.initLoader (BITCOIN EXRATE LOADER ID, bundle,

BitcoinExchangeRateFragment.this) ;

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

In the preceding code, we mainly load the Ul layout used to present the

exchange rate on the screen and we implement our loader initialization on the
onActivityCreated member function. The onActivityCreated member class
callback is either called when the activity has been created or when the Activity is
recreated, after a configuration change.

As we explained in previous sections, we call the initLoader passing an int
identifier as the first argument, a Bundle of values— the second parameter —to
configure the currency exchange rate that we want present on the screen, and
a refresh rate interval between onContextChange calls. The third parameter

is an object that implements Loadercallbacks, which, in this case, is our
BitcoinExchangeRateFragment instance, where we implement the loader
callbacks directly on the fragment.

The oncreateLoader callback method that we implement on our Fragment is similar
to the method that we create on the previous whoIsOnlineActivity Loader, so it
basically creates a new BitcoinExchangeRateLoader instance using the arguments
passed on to the Bundle object.

public Loader<Double> onCreatelLoader (int id, Bundle args)
Loader res = null;
switch (id) {
case BITCOIN EXRATE LOADER ID:
res = new BitcoinExchangeRateLoader (getActivity (),
args.getString (CURRENNCY KEY),
argS.getInt(REFRESH_INTERNAL));
break;

}

return res;

}

The implementation of onLoadFdinished must take the loaded exchange rate and
display it in the TextView:

@Override
public void onLoadFinished (Loader<Double> loader, Double data) {

switch (loader.getId()) {
case BITCOIN EXRATE LOADER ID:
TextView tv = (TextView) getView() .

findviewById(R.id.temperature) ;
tv.setText (data.toString()) ;
break;

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

For brevity, we omitted the Loadercallbacks.onLoaderReset since the method
body is empty. This method should be used to release any resources used that are
directly bound to the Loader lifecycle.

NG The full source code, with the Activity and android.xml
layout is available on the Packt Publishing website.

When compared with AsyncTask, things here are more complicated —we've had to
write more code and deal with more classes, but the payoff is that the data is cached
for use across Activity restarts and can be used from other Fragments or Activities.

In our BitcoinExchangeRateLoader, the successive exchange rate updates are
controlled by our refresh rate internal; however, in other kinds of AsyncTaskLoaders
the rate where a content change happens could result in lots of onLoadFinished
invocations, and hence potentially dominate the Ul thread execution with UI updates
and degrade the Ul responsiveness.

To overcome this issue, the AsyncTaskLoader supplies a member function, called
setUpdateThrottle, to control the minimum internal between successive data
deliveries and as a result adjusts the interval between consecutive onLoadFinished
invocations:

public void setUpdateThrottle (long delayMsS)

This method must be called when you feel that your loader content change-rate
might overload the UI and affect your application smoothness. If a higher update
frequency is not required in your data, the developer can make use of this function to
reduce the Loader content change deliver frequency.

In the next section we will get a detailed overview on the last Loader subclass type
that comes out of box with Android SDK, the cursorLoader.

Building responsive apps with
CursorLoader

CursorLoader is a specialized subclass of AsyncTaskLoader that uses its lifecycle
methods to correctly manage the resources associated with a database cursor.

A database cursor is a little like an Iterator, in that it allows you to scroll through a
dataset without having to worry where exactly the dataset is coming from or what
data structure it is a part of.

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

We're going to use CursorLoader to query the Android device for a list of music
albums available. Because CursorLoader is already implemented to correctly handle
all of the details of working with a cursor, we don't need to subclass it. We can
simply instantiate it, passing in the information it needs in order to open the Cursor
it should manage for us. We can do this in the onCreateLoader callback:

@Override
public Loader<Cursor> onCreatelLoader (int id, Bundle args) {
String[] columns = new Stringl] {
MediaStore.Audio.Albums. ID,
MediaStore.Audio.Albums.ARTIST,
MediaStore.Audio.Albums.ALBUM
}i
return new CursorLoader (this,
MediaStore.Audio.Albums.EXTERNAL CONTENT URI,
columns, // projection
null, // selection
null, // selectionArgs
null // sortOrder
) ;
}

Just as with the previous example, we'll implement the callbacks in our Activity
subclass. We're going to use Gridview to display our album list, so we'll implement
an Adapter interface to supply views for its cells, and we'll connect the Adapter to
the cursor created by our Loader:

public class AlbumListActivitySimple extends FragmentActivity
implements LoaderCallbacks<Cursors> {

public static final int ALBUM LIST LOADER = "album list".
hashCode () ;
private SimpleCursorAdapter mAdapter;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.phone list layout) ;
Gridview grid = (Gridview) findvViewById(R.id.album grid) ;
mAdapter = new AlbumCursorAdapter (getApplicationContext ()) ;
grid.setAdapter (mAdapter) ;

// Prepare the loader.
// Either re-connect with an existing one, or start a new one.

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

getSupportLoaderManager () .
initLoader (ALBUM LIST LOADER,
null,
AlbumListActivitySimple.this) ;

@Override

public void onLoadFinished (Loader<Cursor> loader, Cursor data) {
// Swap the new cursor in. (The framework will take
// care of closing the old cursor once we return.)
mAdapter.changeCursor (data) ;

}

@Override

public void onLoaderReset (Loader<Cursor> loader) {
// This is called when the last Cursor provided to
// onLoadFinished () above is about to be closed.
// We need to make sure we are no longer using it.
mAdapter.changeCursor (null) ;

}

Have a look at the parts in bold in the preceding code. We create an
AlbumCursorAdapter, and pass it to the Gridview, we then initialize our
CursorLoader. When loading is completed, we pass the loaded Cursor to the
Adapter, and we're done.

The remaining piece to implement is AlbumCursorAdapter, which is going to start
out as a very simple class. The job of our Cursoradapter is simply to map rows of
data from the cursor to each view in the individual row view.

The Android SDK provides the very handy SimpleCursoraAdapter class, which does
just what we need; mapping a database data row into an Album Item View. So for
now we'll just subclass it and instruct it via constructor parameters which layout the
inflation for each cell and the cursor fields to map to each view within that layout:

public static class AlbumCursorAdapter extends SimpleCursorAdapter {
private static String[] FIELDS = new Stringl[] {
MediaStore.Audio.Albums.ARTIST,
MediaStore.Audio.Albums.ALBUM
i

private static int[] VIEWS = new int[] {

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

R.id.album artist, R.id.album name

}i

public AlbumCursorAdapter (Context context)
super (context, R.layout.album item,
null, FIELDS, VIEWS, O0);
}
}

The layout files and source code are available on the accompanying website. When
you run this Activity, you'll see a grid list where each cell contains album artwork,
the album artist, and the album name for each album.

Scroll to somewhere in the middle of the list and rotate your device, and you'll
notice that the Activity restarts and redisplays the grid immediately, without losing
its place — this is because the CursorLoader survived the restart, and still holds the
Cursor object with the same rows loaded.

This is technically all very interesting, but it isn't much to look at. In the next section
we'll combine our two Loaders to implement a scrollable grid displaying the album
art for each album.

Combining Loaders

In the preceding sections we developed a CursorLoader that loads a list of

all available music albums on the system and an AsynTaskLoader that does a
blocking 1O operation in the background. Now we are going to use our previous
CursorLoader together with AsyncTaskLoader which loads a thumbnail from the
album ID to create an application that tiles the artwork of all the music albums on
the device in a scrollable grid, performing all loading in the background.

Thanks to our CursorLoader, we already have access to the IDs of the albums we
need to load —we're displaying only the album name and album artist—so we just
need to pass those IDs to our AlbumArtworkLoader for it to asynchronously load the
image for us.

Our 2AlbumArtworkLoader could receive the album ID either on the constructor or
later, to load an image for a particular albumId:

public class AlbumArtworkLoader extends AsyncTaskLoader<Bitmap> {

private int mAlbumId = -1; // The album Identifier

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

Bitmap mData = null;

public AlbumArtworkLoader (Context context, int albumId) {
super (context) ;
this.mAlbumId = albumId;

}

We'll enable AlbumArtworkLoader to load a new image instead of its current
one, by setting a new albumId. Since the bitmap is cached (mpata), just setting
a new ID won't suffice —we also need to trigger a reload by using the Loader.
onContentChanged:

public void setAlbumId(int newAlbumId)

if (isDifferentMedia (newAlbumId) || mData == null) {

// Album Id change will force the artwork reload
this.mAlbumId = newAlbumId;
onContentChanged () ;

} else if (!isDifferentMedia (newAlbumId))
// we already have the Bitmap for this album
deliverResult (mData) ;

}

The onContentChanged, as explained before, is a method of the abstract Loader
superclass which will force a background load to occur if our Loader is currently in
the started state. If we're currently stopped, a flag will be set and a background load
will be triggered next time the Loader is started. Either way, when the background
load completes, onLoadFinished will be triggered with the new data.

We need to implement the onStartLoading method to correctly handle the case
where we were stopped when onContentChanged was invoked. Let's remind
ourselves of what it used to look like:

@Override
protected void onStartLoading()
if (mData != null) {

deliverResult (mData) ;

}

if (takeContentChanged() || mData == null) ({
forceLoad () ;

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The onstartLoading method again delivers its data immediately —if it has any.

It then calls takeContentChanged to see if we need to discard our cached Bitmap
and load a new one. If takeContentChanged returns true, we invoke forceLoad to
trigger a background load and redelivery.

Now we can cause our AlbumArtworkLoader to load and cache a different image,
but a single AlbumArtworkLoader can only load and cache one image at a time, so
we're going to need more than one active instance.

Let's walk through the process of modifying AlbumCursorAdapter to initialize a
AlbumCursorAdapter for each cell in the Gridview, and to use those Loaders to
asynchronously load the album artwork and display them:

public class AlbumCursorAdapter extends CursorAdapter

Context ctx;

private LayoutInflater inf;
private LoaderManager mgr;
private List<Integer> ids;
private int count;

public AlbumCursorAdapter (Context ctx, LoaderManager mgr) {
super (ctx.getApplicationContext (), null, true);
this.ctx = ctx;
this.mgr = mgr;
inf = (LayoutInflater) ctx.
getSystemService (Context .LAYOUT INFLATER_SERVICE) ;
ids = new ArrayList<Integers() ;

@Override
public View newView (Context context, Cursor cursor, ViewGroup
parent) {

@Override
public void bindView (View view, Context context, Cursor cursor) {

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

We have two methods to implement —newview and bindview. Gridview will
invoke newview until it has enough View objects to fill all of its visible cells, and from
then on it will recycle these same View objects by passing them to bindview to be
repopulated with data for a different cell as the grid scrolls. As a view scrolls out of
sight, it becomes available for rebinding.

What this means for us is that we have a convenient method in which to initialize
our AlbumArtworkLoaders —newView, and another convenient method in which to
retask Loader to load a new thumbnail —bindview.

newVieuw first inflates the album item layout for the row and gives to the parent view,
a unique ID based on the ID generated by the adapter class hashcode () method and
based on the current number of Loaders.

Later, the unique ID and the imageView is passed to a ArtworkLoaderCallbacks
class, which we'll meet in a moment. ArtworkLoaderCallbacks is in turn used to
initialize a new Loader, which shares the ID of the parent View. In this way we are
initializing a new Loader for each visible row in the grid:

@Override
public View newView (Context context, Cursor cursor,
ViewGroup parent) {

View view = (View) inf.inflate(R.layout.album item,
parent, false);
ImageView imageView = (ImageView) view.
findviewById(R.id.album art) ;

int viewId = AlbumCursorAdapter.class.hashCode () + count++;
view.setId (viewId) ;
mgr.initLoader (viewId, null,

new ArtworkLoaderCallbacks (ctx, imageView)) ;
ids.add (viewId) ;
return view;

}

In bindview, we are recycling each existing view to update the image, album name,
and album artist that are being displayed by that view. So the first thing we do is
clear out the old Bitmap.

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Next we look up the correct Loader by ID, extract the ID of the next image
to load from the cursor, and load it by passing the ID to the method of
AlbumArtworkLoader —setAlbumId:

@Override
public void bindView (View view, Context context, Cursor cursor) {
ImageView imageView = (ImageView) view.
findviewById(R.id.album_art) ;
imageView.setImageBitmap (null) ;

Loader<?> loader = mgr.getLoader (view.getId()) ;
AlbumArtworkLoader artworkLoader = (AlbumArtworkLoader) loader;
int albumId = cursor.getInt (

cursor.getColumnIndex (MediaStore.Audio.Albums. ID)) ;

// Sets the album id bound to this imageView,
// this could force the loader to retrieve a new image
artworkLoader.setAlbumId (albumId) ;

}

We need to add one more method to our Adapter so that we can clean up
AlbumArtworkLoaders when we no longer need them. We'll call these ourselves when
we no longer need these Loaders —for example, when our Activity is finishing:

public void destroyLoaders ()
for (Integer id : ids)
mgr .destroyLoader (id) ;

}
}

That's our completed Adapter. Next, let's look at ArtworkLoaderCallbacks which,
as you probably guessed, is just an implementation of LoaderCallbacks:

public static class ArtworkLoaderCallbacks implements
LoaderManager.LoaderCallbacks<Bitmap> {

private Context context;
private ImageView image;

public ArtworkLoaderCallbacks (Context context,
ImageView image) {

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the Loader

this.context = context.getApplicationContext () ;

this.image = image;

@Override
public Loader<Bitmap> onCreatelLoader (int i, Bundle bundle) {
return new AlbumArtworkLoader (context) ;

@Override
public void onLoadFinished (Loader<Bitmap> loader, Bitmap b)
image.setImageBitmap (b) ;

@Override
public void onLoaderReset (Loader<Bitmap> loader) {}

}

The only interesting thing ArtworkLoaderCallbacks does is create an instance of
AlbumArtworkLoader, and set a loaded Bitmap to its ImageView.

Our Activity is almost unchanged —we need to pass an extra parameter when
instantiating AlbumCursorAdapter and, to avoid leaking the Loaders it creates, we
need to invoke the destroyLoaders method of AlbumCursorAdapter in onPause or
onStop, if the Activity is finishing:

@Override
protected void onStop() {
super.onStop () ;
if (isFinishing()) {
// Destroy the main album list Loader
getSupportLoaderManager () .destroyLoader (ALBUM_LIST LOADER) ;
// Destroy album artwork loaders
mAdapter.destroyLoaders () ;

}

The full source code is available from the Packt Publishing website. Take a look at
the complete source code to appreciate how little there actually is, and run it on a
device to get a feel for just how much functionality Loaders give you for relatively
little effort!

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Applications of Loader

The obvious applications include reading any kind of data from files or databases
local to the device, or Android content providers, as we've done in the examples in
this chapter.

One strong advantage of Loaders over direct use of AsyncTask is that their lifecycle
is very flexible with respect to the Activity and Fragment lifecycles. Without any
extra effort we can handle configuration changes such as an orientation change.

We can even start loading in one Activity, navigate through the app, and collect the
result in a completely separate Activity, if that makes sense for our app.

In some ways, this decoupling from the Activity lifecycle makes Loader a better
candidate than AsyncTask to perform network transfers such as HITP downloads;
however, they require more code and still aren't a perfect fit.

The framework is very powerful for managing asynchronous data loading; however,
it does not provide a mechanism to show the loading progress, as we have on the
AsyncTask framework and there is no error handling callback function to manage
loading errors or exceptions.

To overcome these issues, the developer must extend the basic Loader framework
classes and implement these patterns to match his needs.

Summary

The Loader framework in Android does a wonderful job of making it easy to load
data in the background and deliver it to the main thread when it is ready.

In this chapter we learned about the essential characteristics of all Loaders —
background loading, caching of loaded data, and a managed lifecycle.

We took a detailed look at AsyncTaskLoader as a means to perform arbitrary
background loading, and CursorLoader for asynchronous loading from local
database Cursors.

We saw that Loader can free us from some of the constraints imposed by the
Activity lifecycle, and took advantage of that to continue to work in the
background even across Activity restarts.

In the next chapter we'll free ourselves completely from the constraints of the
Activity lifecycle and perform background operations with Service, even when
our app is no longer in the foreground.

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

In the previous chapters we focused our attention on the basic, high-level,
Android-specific constructs to load data asynchronously on an independent
line of execution (background thread); android.os.AsyncTask and
android.content.Loader

What if we want to provide a common set of operations that implement any kind

of business logic over a centralized single entity that could be re-used by different
clients and has a lifecycle that is not bound to the client lifecycle? By clients, in
Android, we mean any kind of Ul entity, such as an Activity or Fragment object, a
BroadcastReceiver, or any kind of object that wants to exercise business logic.

The solution for this pattern in Android is available in the form of android.app.
Service.

In Android, the Service programming pattern, well-known in enterprise
architectures, does not necessarily mean background work, so to avoid any kind of
responsiveness degradation in the UI we should try keep the main Thread execution
of the Service as lean as possible.

Therefore, we have to use asynchronous techniques to coordinate the service work
between the main thread and other threads that help to accomplish the service
goal, to either keep the responsiveness at quite a decent level and provide results to
the Service request.

In this chapter we will cover the following topics:

* Introducing Service

* Started Service

* Building responsive apps with IntentService
* Posting results with pending intents

* Reporting progress on the notification drawer

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

* Applications of IntentService

* Bound service

* Communicating with a local service
* Broadcasting results with intents

* Applications of services

Introducing Service

A service in Android, as referred to before, is an entity that runs without a
user interface that could be used to execute any kind of business logic which the
application requires during the execution.

If the basic unit of a visible application is Activity, its equivalent unit for
non-visible components is Service. Just like activities, services must be declared
in the AndroidManifest file so that the system is aware of them and can manage
them for us:

<service android:name=".MyService"/>

Service has lifecycle callback methods, similar to those of Activity, that are always
invoked on the application's main thread. Here are the most important callbacks that
the user must define when it creates a service by extending the Service base class:

void onCreate() ;

void onDestroy ()

void onStartCommand (Intent intent, int flags, int startId)
IBinder onBind (Intent intent)

boolean onUnbind (Intent intent)

The oncreate () is the lifecycle callback that is called once when the service is
created that might be used to allocate Service resources.

The onDestroy () is the lifecycle callback called when the service is going to be
destroyed and might be used to free Service resources.

The onStartCommand () is the lifecycle callback invoked when a started Service is
explicitly started with the startservice () command.

onBind () is the lifecycle callback called when the service is bound to a Service client
- bindService().

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The onUnbind () is the callback called when the service is unbound from a client -
unbindService():

Also, just like Activity, Service does not automatically entail a separate

Started Service

onCreate()

v
onStartCornmand()

v
Running

v
onDestroy()

v

Stopped

Bound Service

onCreate()

v
onBind()

v

Running

v
onUnbind()

v
onDestroy()

4

Stopped

background thread or process, and as a result, performing intensive or blocking
operations in a Service callback method can lead to the annoying ANR dialog.

However, there are several ways in which services are different to activities, those
ways are listed as follows:

A Service does not provide a user interface.

There can be many services active at the same time within an application.

A Service can remain active even if the application hosting it is not the
current foreground application, which means that there can be many services
of many apps are active at the same time.

Because the system is aware of services running within a process, it can avoid
killing those processes unless absolutely necessary, allowing the background
work to continue. Services have a higher priority than inactive or invisible

activities.

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

Services in Android can be classified based on how the clients interact with it, taking
the next forms:

Started Service: This is a kind of service that is explicitly started when any
object on the system invokes startService () and it will continue to run
until it stops itself by calling stopself () or it is explicitly destroyed with
stopService ().

Bound Service: This is a kind of service that is started when the first client
binds to it and runs until it has clients are connected. Service clients attach to
a Service by calling bindservice (), and the service will be destroyed when
all the clients unbind, calling unbindService ().

Hybrid Service: This Service is started when an object on the system calls
startService () and might have clients connected to it during its lifecycle,
by calling bindservice (). Like the started Service, it runs indefinitely until
the service is stopped, stops itself, or is killed by the system.

STARTED BOUND HYBRID
— - - 1 4 e
startService() bindService() startService()
< <
bindService()
s w Y | bindService()
5 2 -
< b= <
unbindService() <+
unbindService()
< — \ <

unbindService() stopSelf() /
killed by the System /
stopService()

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The Service can be also classified by its boundaries, taking the following forms:

* Local Service (LS): The Service runs on the same process as the other
Android components and therefore the shared memory could be used to
send Java Objects between client and Server.

* Internal Remote Service (IRS): The Service runs on a separate process but
it can only be used by the components that belong to the application that
defines it. To access it, an IPC technique (Messenger or AIDL) is required to
interact with the remote process.

* Global Service (GS): The Service runs on a separate process and could be
accessed by other applications. For instance, with IRS, an IPC communication
technique must be used by the client to access it.

Started service

As described previously, a started Service is a service that is initiated when the
Context method startService () is invoked by any entity on the system that has
access to a Context object or is a Context itself, such as an Activity:

ComponentName startService(Intent service)

An Intent is a messaging object that can carry data (action,

category, extras, and so on) and that you can use to request an

action from another Android component.

The startsService () function basically starts a service with an intent, and returns
to the user a component name that can be used to verify that the correct service was
resolved and invoked.

To simplify the Service resolution, we pass an Intent created from the current context
with the Service class that needs to be started:

startService (new Intent (this,MyStartedService.class)) ;

When the system receives the first startService (intent) request, it builds up the
Service by calling oncreate () and forwards the intent from the first startService
and the subsequent Intents to the onStartCommand function to be processed
according to the order of startService calls:

int onStartCommand (Intent intent, int flags, int startId)

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

The onStartCommand should return an int that defines the Service restart behavior
applied by the system in cases where the system kills it to release resources. Like
explained before, the system maintains a list of Android running entities on the
system ordered by rank, and once the available system resources are low it destroys
the entities with lower rank first to free up resources.

The most common restart int values are defined by the following Service static fields:

* START_STICKY: If the Service process is terminated by the system, the Service
is going to be restarted and no processed Intents will be delivered to the
onStartCommand function. When no start Intents are pending for delivery, a
null Intent is passed to the onStartCommand function. If a start request didn't
return before the system kills the Service, the start request is submitted again
on the restarted Service passing START_FLAG_RETRY on the onStartCommand
second argument.

* START NOT_STICKY: If the Service is terminated by the system, the Service
is only restarted when there is at least one pending start request to be
delivered.

* START REDELIVER_ INTENT: If the Service is terminated by the system, the
Service will be restarted redelivering the last delivered start Intent and any
pending requests. This kind of service is similar to START_STICKY, but instead
of delivering a null Intent in the start command, the last successfully delivered
Intent is dispatched. When the start request is redelivered, the flag START
FLAG_REDELIVERY is passed in on the onstartCommand second argument.

The onstartCommand, which executes on the main Thread, is the entry point for your
service, so in cases where you execute long running operations on your service, the
offload of your operation into a background thread is imperative for keeping your
application responsiveness at bearable levels.

In the next code snippet, we are going to create a basic Service that offloads the
Intent processing to a background thread. The saveMyLocationService Service
subclass is going to receive an address location in a String and consume it in an
operation that could occupy the CPU for a long period. First, we are going to create
the background thread, that will retrieve the locations from a queue and consume
them until it receives a signal to stop:

public class SaveMyLocationService extends Service
boolean shouldStop = false;
Queue<String> jobs = new LinkedList<Strings>() ;

Thread thread = new Thread() {
@Override

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

public void run() {
while (!shouldStop) {
String location = takeLocation() ;
if (location != null) {
consumelLocation (location) ;

@Override

public void onCreate() {
super.onCreate () ;
thread.start () ;

String takeLocation() {
String location = null;
synchronized (jobs) {
if (jobs.isEmpty())
try {
jobs.wait () ;
} catch (InterruptedException e) ({
Thread.currentThread () .interrupt () ;
return null;
}
}

location = jobs.poll() ;

}

return location;

}

void consumeLocation (String location) {...}

}

In the previous code, we basically constructed the foundations for our asynchronous
processing. The single thread that is started when the Service's oncreate () callback
is invoked on the main Thread, is going to monitor the jobs queue for new location
requests. The Thread will wait in the background efficiently, using a Java monitor,
until it gets notified with notify () when a new location is submitted.

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

When our background thread finds new locations in the queue, the takeLocation ()
that is waiting on the Java monitor returns and forwards the new request to the
consumeLocation () to execute the business logic requested. The jobs are going to
be processed sequentially following the order of insertion.

Once the shouldstop is set to true, the run () function will return and the thread will
be terminated.

We'll need to register the Service in our AndroidManifest file, using a <services
element as follows:

<service android:name=".chapter5.SaveMyLocationService"/>

In the next step we are going to implement the onstartCommand, the function that
will receive the request from the system in the first place and forward it to our thread
to be processed in background:

@Override
public int onStartCommand (Intent intent, int flags, int startId) {
super.onStartCommand (intent, flags, startId);
String location = intent.getStringExtra (LOCATION_ KEY) ;
synchronized (jobs) {
jobs.add(location) ;
jobs.notify () ;

}

return START STICKY;

}

On the onstartCommand, we received the intent object from the system and the
location passed as a String on the Intent extras. Next, we push it to our queue of
jobs used to store the jobs in sequence. Later, we return the START STICKY flag,
which means that we want the Service restarted after the system shuts down our
application and the pending intents delivered in case the system shuts down the
system to free up resources.

Finally, we have to implement the callback function to stop our background
processing infrastructure. This function is going to be called when the system forces
the service to terminate or any component sends a stop command:

@Override
public void omnDestroy () {
super.onDestroy () ;
synchronized (jobs) ({
shouldStop = true;
jobs.notify () ;

}
}

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

In the onDestroy () function, we mainly ask our thread to terminate, setting the
shouldstop as true and by notifying the thread to finish the run () function. In case
you allocated objects in your onCreate () function, this callback should be used to
liberate any resources that you created during the Service lifecycle.

Now we are going to create a simple Activity that is able to start the service and stop
the service:

public class SaveMyLocationActivity extends Activity {

void onStartServiceClick() ({
Intent intent = new Intent (this, SaveMyLocationService.class);
intent.putExtra (SaveMyLocationService.LOCATION KEY,
getCurrentLocation()) ;
startService (intent) ;

void onStopServiceClick()
Intent intent = new Intent (this, SaveMyLocationService.class) ;
stopService (intent) ;

}
}

In our Activity, we created a start button that calls onstartServiceClick(),and a
stop button that calls onStopserviceClick (), but for brevity we omitted the code.

Once the start button is clicked, our Activity will submit a new save location request,
with the current location retrieved from the getCurrentLocation () function, to our
service calling startService ().

Clicking on the stop button will result in a stopService (), which sends a stop
request to our Service that leads to a onDestroy () invocation on our Service.

It is essential to mention that if the service is stopped and started repeatedly, a new
thread is created to replace the older one. As mentioned before, the thread creation is
an expensive operation, so in order to reduce the burden of the thread creation, the
developer should keep the Service running as long it may be needed.

Our custom service is able to handle the onstartCommand () asynchronously very
well but in the next section, we will focus our attention on the IntentService class,
a special-purpose subclass of Service that comes in the Android SDK that makes it
very easy to implement a task queue to process work on a single background thread.

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

Building responsive apps with IntentService

The IntentService class is a specialized subclass of service that implements a
background work queue using a single HandlerThread. When work is submitted
to an IntentService, it is queued for processing by a single HandlerThread, and
processed in order of submission on the onHandleIntent function:

abstract void onHandleIntent (Intent intent) ;

If the user exits the app before the queued work is completely processed, the
IntentService will continue working in the background. When the IntentService
has no more work in its queue, it will stop itself to avoid consuming unnecessary
resources.

The system may still kill a background app with an active
IntentService, if it really needs to (to reclaim enough memory

to run the current foreground process), but it will kill lower
= priority processes first, for example, other non-foreground apps

that do not have active services.
The IntentService class gets its name from the way in which we submit work to it
by invoking startService with an Intent:

startService (new Intent (context, MyIntentService.class));

As we do with our previous example, we can call startService as often as we like,
which will start the IntentService if it isn't already running, or simply enqueue
work to an already running instance if there is one.

If we want to pass some data to a Service, we can do so by supplying a data URI or
extra data fields via an Intent:

Intent intent = new Intent (context, MyIntentService.class);
intent.setData(uri); intent.putExtra ("param", "some value");
startService (intent) ;

We can create an IntentService subclass by extending android. app.
IntentService and implementing the abstract onHandleIntent method.

We must invoke the single-argument constructor with a name for its background
thread (naming the thread makes debugging and profiling much easier).

public class MyIntentService extends IntentService {

public MyIntentService() {

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

super ("myIntentService") ;

}

protected void onHandleIntent (Intent intent) {
// executes on the background HandlerThread.

}

We'll need to register the Intentservice in our AndroidManifest file, using a
<services element as follows:

<service android:name=".chapter5.MyIntentService"/>

If we want our IntentService to only be used by the components of our own
application, we can specify that it is not public with an extra attribute:

<service android:name=".chapter5.MyIntentService"
android:exported="false"/>

Let's get started by implementing an IntentService to retrieve the number of SMSs
in the inbox from a particular mobile number:

public class CountMsgsIntentService extends IntentService
public static final String NUMBER_KEY = "number";

public CountMsgsIntentService()
super ("CountThread") ;

@Override
protected void onHandleIntent (Intent intent) {
String phoneNumber = intent.getStringExtra (NUMBER KEY) ;
Cursor cursor = getMsgsFrom(phoneNumber) ;
int numberOfMsgs = cursor.getCount () ;
// Return will be adressed later

}

// Retrieve the number of messages in the inbox for a
// specific number
private Cursor getMsgsFrom(String phoneNumber)
String[] select = {
Telephony.Sms. ID,
Telephony.Sms.ADDRESS,
Telephony.Sms.BODY,

}i

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

String whereClause =
Telephony.Sms.ADDRESS + " = '" 4+ phoneNumber + "'";
Uri quri = Uri.parse("content://sms/inbox") ;
return getContentResolver () .query (
quri,
select, // Columns to select
whereClause, // Clause to filter results
null, // Arguments for the whereClause
null) ;

}

Once the request is received on the IntentService, the request is pushed to the
internal Looper queue and as soon as it get chance to process it, the IntenService
invokes the onHandleIntent method with the Intent we passed in on the
startService () method.

Next, we query the SMS Inbox Content Provider using the phoneNumber received,
and after that we count the records retrieved.

Notice that we're declaring a public static constant name for the argument parameter,
just to make it easy to use the correct name from any client Activity that wants to
invoke the Service.

We can now invoke this IntentService as follows:

void triggerIntentService (String phone) {
Intent intent = new Intent (this,
CountMsgsIntentService.class) ;
intent.putExtra (CountMsgsIntentService.NUMBER KEY, phone) ;
startService (intent) ;

}

The code above receives the phoneNumber as an argument and submits a new start
request to IntentService to be processed sequentially following the submission
order.

So far so good, but you've probably noticed that we haven't done anything with the
result we retrieved. In the next section, we'll look at some of the ways in which we
can send results from services to activities or fragments.

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Handling results

Any service —including subclasses of IntentService —can be used to start
background work from which the originating Fragment or Activity doesn't
expect a response.

However, it is very common to need to return a result or display the result of the
background work to the user. We have several options for doing this:

* Send a PendingIntent to the Service from the originating Activity,
allowing the service to callback to the Activity via its onActivityResult
method

* Post a system notification allowing the user to be informed that the
background work was completed, even if the application is no longer
in the foreground

* Send a message to a Handler in the originating Activity using Messenger

* Broadcast the result as an Intent, allowing any Fragment or Activity—
including the originator — to receive the result of background processing

We'll learn about BroadcastReceiver, long-running tasks with service,
later, but now we'll return results with PendingIntent and alert the user
with system notifications.

Posting results with Pendingintent

When we invoke an IntentService, it does not automatically have any way to
respond to the calling Activity; so if the Activity wants to receive a result, it must
provide some means for the IntentService to reply.

Arguably the easiest way to do that is with PendingIntent, which will be familiar
to any Android developer who has worked with multiple activities using the
startActivityForResult and onActivityResult methods, as the pattern is
essentially the same.

. A PendingIntent is a token that you give to a foreign application
component (Service, BroacastReceiver, or other applications) that
= allows the foreign entity to use your application's permissions to
execute a predefined piece of code.

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

First, we'll add a few static members to CountMsgsIntentService to ensure that we
use consistent values between it and the calling Activity:

public static final String PENDING RESULT = "pending result";
public static final String RESULT = "result";
public static final int RESULT CODE = "countMsgs".hashCode() ;

We'll also need to define a static member in our Activity for the REQUEST_CODE
constant, which we can use to correctly identify the results returned to our
onActivityResult method:

private static final int REQUEST CODE = 0;

Now, when we want to invoke CountMsgsIntentService from our Activity, we'll
create a PendingIntent for the current Activity, which will act as a callback to
invoke the Activity onActivityResult method.

We can create a PendingIntent with the createPendingResult method of the
Activity, which accepts three parameters: an int result code, an Intent to use as the
default result, and an int that encodes some flags for how the PendingIntent can
be used (for example, whether it may be used more than once):

PendingIntent pending = createPendingResult (REQUEST CODE,
new Intent(), 0);

We pass the PendingIntent to the IntentService by adding it as an extra to the
Intent we launch the IntentService with:

private void triggerIntentService (String phone) {

PendingIntent pending = createPendingResult (
REQUEST CODE, new Intent(), 0);
Intent intent = new Intent (this,CountMsgsIntentService.class);
intent.putExtra (CountMsgsIntentService.NUMBER KEY, phone) ;
intent.putExtra (CountMsgsIntentService.PENDING RESULT,
pending) ;

startService (intent) ;

}

To handle the result that will be returned when this PendingIntent is invoked,
we need to implement onActivityResult in the Activity, and check for the
result code:

protected void onActivityResult (int reqg, int res, Intent data) {

if (req == REQUEST CODE &&

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

res == CountMsgsIntentService.RESULT CODE) {

// Retrieve the count from result Intent
int result = data.getIntExtra
CountMsgsIntentService.RESULT, -1);

// Update UI View with the result
TextView msgCountBut = (TextView) findViewById (
R.id.msgCountTv) ;
msgCountBut . setText (Integer.toString (result)) ;

}

super.onActivityResult (req, res, data);

}

The IntentService can now reply to the calling Activity by invoking one of the
PendingIntent send methods with the appropriate request code. Our updated
onHandleIntent method looks as follows:

@Override
protected void onHandleIntent (Intent intent)

String phoneNumber = intent.getStringExtra (NUMBER KEY) ;
Cursor cursor = countMsgsFrom(phoneNumber) ;
int numberOfMsgs = cursor.getCount () ;

try {
Intent result = new Intent();
result.putExtra (RESULT, numberOfMsgs) ;
PendingIntent reply = intent.getParcelableExtra (

PENDING RESULT) ;
reply.send(this, RESULT CODE, result) ;

} catch (PendingIntent.CanceledException exc) {

Log.e ("CountMsgsIntentService", "reply cancelled", exc);

}
}

The additional code creates a new Intent object and populates it with our

counter result retrieved from the cursor, and sends the result back to the calling
Activity using the received PendingIntent. Additionally, we handle the
CanceledException, in case the calling Activity decided that it wasn't interested in
the result anymore and canceled the PendingIntent.

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

That's all there is to it—our Activity will now be invoked via its onActivityResult
method when the IntentService completes its work. As a bonus, we will even
receive the result if the Activity has restarted, for example, due to configuration
changes such as a device rotation.

What if the user left the Activity (or even left the application) while the background
work was in progress? In the next section, we'll use notifications to provide feedback
without interrupting the user's new context.

Posting results as system notifications

System notifications appear initially as an icon in the notification area, normally at
the very top of the device screen. Once notified, the user can open the notification
drawer to see more details.

Notifications are an ideal way to inform the user of results or status updates from
services, particularly when the operation may take a long time to complete and the
user is likely to be doing something else in the meantime.

Let's post the result of our message counter as a notification, with a message
containing the result that the user can read when they open the notification drawer.
We'll use the support library to ensure broad API level compatibility, and add one
method to CountMsgsIntentService, as follows:

private void notifyUser (String phoneNumber, int msgsCount) {

String msg = String.format (
"Found %d from the phone number %s", msgsCount, phoneNumber) ;

NotificationCompat.Builder builder =
new NotificationCompat.Builder (this)
.setSmallIcon(R.drawable.ic_sms_counter not)
.setContentTitle ("Inbox Counter")
.setContentText (msg) ;

// Gets an instance of the NotificationManager service

NotificationManager nm = (NotificationManager) getSystemService (
Context .NOTIFICATION SERVICE) ;

// Sets an unique ID for this notification

nm.notify (phoneNumber.hashCode (), builder.build()) ;

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Each notification has an identifier that we can use to control whether a new
notification is posted or an existing one is reused. The identifier is an int, and is
the first parameter to the notify method. Since our countMsgsFrom value is an
int, and we would like to be able to post multiple notifications, it makes sense to
use phoneNumber as the ID for our notifications so that each different request can
produce its own separate notification.

To post a notification containing the result of our service request, we just need to
update onHandleIntent to invoke the notifyUser method:

@Override
protected void onHandlelIntent (Intent intent)

String phoneNumber = intent.getStringExtra (NUMBER KEY) ;
Cursor cursor = countMsgsFrom(phoneNumber) ;

int numberOfMsgs = cursor.getCount () ;

notifyUser (phoneNumber, numberOfMsgs) ;

}

Now that we've learned the basics of using IntentService, let's consider some real-
world applications.

Applications of IntentService

Ideal applications for Intentservice include just about any long-running task
where the work is not especially tied to the behavior of a Fragment or Activity, and
particularly when the task must complete its processing regardless of whether the
user exits the application.

However, IntentService is only suitable for situations where a single worker
thread is sufficient to handle the workload, since its work is processed by a single
HandlerThread sequentially following the order of submission, and we cannot start
more than one instance of the same IntentService subclass.

A use case that Intent Service is ideally suited for is one-shot, long-running tasks
that could be processed in the background without user intervention:

* Uploading data to remote servers

* Database or data backups

* Time consuming file data processing

* Communication with web service resources (WSDL or REST)

* Periodic time operations such as alarm processing, calendar event
processing, and so on

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

A use case that IntentService is ideally suited for is uploading data to remote
servers because:

The upload usually must complete, even if the user leaves the application

A single upload at a time usually makes best use of the available connection,
since bandwidth is often asymmetric (there is much smaller bandwidth for
upload than download)

A single upload at a time gives us a better chance of completing each
individual upload before losing our data connection

Let's see how we might implement a very simple IntentService that uploads
images to a simple web service via HTTP POST.

HTTP uploads with IntentService

For this example, we'll create a new Activity, UploadArtworkActivity, to
allow the user to pick an album artwork to upload. We'll start with the code for
AlbumListActivity that we created in Chapter 4, Exploring the Loader.

Our new UploadArtworkActivity only needs a small modification to add an
onItemClickListener interface to the Gridview of images, so that tapping an image
triggers its upload. We can add the listener as an anonymous inner class in onCreate
as follows:

grid.setOnItemClickListener (new AdapterView.OnItemClickListener () {

@Override

public void onItemClick (AdapterView<?> parent, View view,

int position, long id) ({

Cursor cursor = (Cursor) mAdapter.getItem(position) ;
int albumId = cursor.getInt (

cursor.getColumnIndex (MediaStore.Audio.Albums. ID)) ;
Uri sArtworkUri = Uri.parse(

"content://media/external/audio/albumart") ;
Uri albumArtUri = ContentUris.

withAppendedId (sArtworkUri, albumId) ;
Intent intent = new Intent (UploadArtworkActivity.this,
UploadArtworkIntentService.class) ;

intent.setData (albumArtUri) ;
startService (intent) ;

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This looks like quite a dense chunk of code, but all it really does is use the position of
the tapped thumbnail to move the Cursor to the correct row in its result set, extract
the ID of the album that was tapped, create a Uri for its artwork file, and then start
UploadArtworkIntentService with an Intent containing that Uri.

We'll extract the details of the upload into a separate class, so
UploadArtworkIntentService itself is just a fairly sparse IntentService
implementation. In onCreate, we'll set up an instance of our ImageUploader class,
which will be used to process all uploads added to the queue during this lifetime of
the Service:

public void onCreate() {
super.onCreate () ;
mImageUploader = new ImageUploader (getContentResolver()) ;

}

The implementation of ImageUploader itself is not all that interesting — we just use
Java's HTTPURLConnection class to post the image data to the server. The complete
source code is available on the Packt Publishing website, so we'll just list two critical
methods —upload and pump —and leave out the housekeeping:

public boolean upload(Uri data, ProgressCallack callback) {
HttpURLConnection conn = null;
try {
int len = getContentLength (data) ;
URL destination = new URL (UPLOAD URL) ;
conn = (HttpURLConnection) destination.openConnection() ;
conn.setRequestMethod ("POST") ;

OutputStream out = null;

try {
pump (in = mContentResolver.openlnputStream(data),

out = conn.getOutputStream(),
callback, 1len);
} finally {
if (in != null)
in.close() ;
if (out != null)

out.close() ;
int responseCode = conn.getResponseCode () ;
return ((responseCode >= 200) &&
(responseCode < 400)) ;

}

} catch (IOException e) {

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

Log.e ("Upload Service", "upload failed", e);
return false;

} finally {
conn.disconnect () ;

}

The pump method just copies 1 KB chunks of data from the InputStream to the
OutputStream, pumping the data to the server, and invokes the progress callback
function, as follows:

private void pump (InputStream in, OutputStream out,
ProgressCallack callback, int len)
throws IOException {

int length, i = 0, size = 1024;
byte[] buffer new byte[sizel; // 1kb buffer
while ((length = in.read(buffer)) > -1) {
out.write (buffer, 0, length);
out.flush() ;
if (callback != null)
callback.onProgress (len, ++i * size);

}
}

Each time a 1 KB chunk of data is pushed to the outputStream, we invoke the
ProgressCallback method, which we'll use in the next section to report the
progress to the user.

Reporting progress

For long-running processes, it can be very useful to report progress so that the user
can take comfort in knowing that something is actually happening.

To report progress from an IntentService, we can use the same mechanisms that
we use to send results —for example, sending PendingIntents containing progress
information, or posting system notifications with progress updates.

We can also use other techniques that we'll cover later in the chapter, broadcasting
intents to registered receivers.

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

. Whichever approach we take to report progress, we should
% be careful not to report progress too frequently, otherwise
" we'll waste resources updating the progress bar at the
expense of completing the work itself!

Let's look at an example that displays a progress bar on notifications in the
drawer —a use case that the Android development team anticipated and therefore
made easy for us with the setProgress method of NotificationCompat.Builder:

Builder setProgress (int max, int progress, boolean indeterminate) ;

Here, max sets the target value at which our work will be completed, progress is
where we have got to so far, and indeterminate controls which type of progress bar
is shown. When indeterminate is true, the notification shows a progress bar that
indicates something is in progress without specifying how far through the operation
we are, while false shows the kind of progress bar that we need — one that shows
how much work we have done, and how much is left to do.

We'll need to calculate progress and dispatch notifications at appropriate
intervals, which we've facilitated through our Progresscallback class.
Now we need to implement the Progresscallback and hook it up in
UploadArtworkIntentService:

private class ProgressNotificationCallback
implements ImageUploader.ProgressCallack {
private NotificationCompat.Builder builder;
private NotificationManager nm;
private int id, prev;

public ProgressNotificationCallback (

Context ctx, int id, String msg) {

this.id = id;

prev = 0;

builder = new NotificationCompat.Builder (ctx)
.setSmallIcon (android.R.drawable.stat sys upload done)
.setContentTitle ("Uploading Artwork")
.setContentText (msg)
.setProgress (100, 0, false);

nm = (NotificationManager)

getSystemService (Context .NOTIFICATION SERVICE) ;
nm.notify(id, builder.build()) ;

public void onProgress (int max, int progress) {

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

int percent = (int) ((100f * progress) / max) ;
if (percent > (prev + 5)) {
builder.setProgress (100, percent, false);
nm.notify(id, builder.build()) ;
prev = percent;

}

public void onComplete (String msg)
builder.setProgress (0, 0, false);
builder.setContentText (msg) ;
nm.notify(id, builder.build()) ;
}
}

The constructor of ProgressNotificationCallback consists of familiar code to post
a notification with a progress bar.

The onProgress method throttles the rate at which notifications are dispatched,
so that we only post an update as each additional 5 percent of the total data is
uploaded, in order not to swamp the system with notification updates.

The onComplete method posts a notification that sets both the integer progress
parameters to zero, which removes the progress bar.

To complete the code, we implement onHandleIntent to display the notification
drawer and deliver the upload result:

@Override
protected void onHandleIntent (Intent intent)
Uri data = intent.getData() ;

// Unique id per upload, so each has its own notification
int id = Integer.parselnt (data.getLastPathSegment()) ;
String msg = String.format ("Uploading %s.jpg", id);

ProgressNotificationCallback progress =
new ProgressNotificationCallback(this, id, msg);

// On Upload sucess
if (mImageUploader.upload(data, progress)) ({
progress.onComplete (
String. format ("Upload finished for %s.jpg", id));
// On Upload Failure
} else {

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

progress.onComplete (
String.format ("Upload failed %s.jpg", id));

}
}

Tap an artwork image to start uploading and you'll see a notification appear.
Slide open the notification drawer and watch the progress bar ticking up as
your image uploads.

We are finished with started services, so now it is time to move to a different type of
Service, the Bound Service.

Bound Service

A Bound Service is an Android Service that defines a client interface and allows
several entities to bind it by invoking bindService () and creating a relation
between each order that facilitates the interaction with a request-response model.

The service instance will be created when the first client attempts to connect to it
and will be alive until the last client disconnects from it using the unbindService ()
function.

In order to create the connection between the client and the server, the service must
implement the onBind () function and return an IBinder object that implements a
lightweight remote procedure mechanism to perform in-process or cross-process calls:

IBinder onBind (Intent intent)

When all the clients disconnect from the Service, calling unbindService (), the
service onUnbind () member method is called:

boolean onUnbind (Intent intent)

A Bound Service might reside in the same process (LS), in a different process that
belongs to the application (LIS), or in an another application process (GS), so the
technique to communicate with the service and the 1Binder type returned depends
entirely on the service process location, as mentioned before.

In the next section, we are going to explain how to interact and bind to a local Service
to initiate an asynchronous action on the Service.

The remote binding with AIDL or with Messenger are other techniques used in
advanced use cases where inter-process communication is required, though in this
book we are not going to cover it.

For a smooth start, first we are going to cover a local service binding.

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

Communicating with a Local Service

A local bound service is the most common type of bound service, and given
that the server and the client run on the same process, there is no need to use
an inter-process communication (IPC) technique to send requests and receive
responses between them. Moreover, both entities, the service client and server,
share the same address memory space within the process, making the exchange
of requests and responses quite easy using Java Objects.

Since we are within the same process, the Binder object returned by the onBind ()
Service method might define a method to return the service class instance
object. In this manner, we can use the public Service class functions to submit new
requests to the Service in the same way as we invoke a regular object method.

Let's demonstrate this with an example, creating a bound service that creates an
SHAT1 cryptographic digest from a string that we type in a Ul EditText.

Primarily, we will start by implementing our own Binder:

public class ShalHashService extends Service {

// Instance Binder given to clients
private final IBinder mBinder = new LocalBinder() ;

public class LocalBinder extends Binder {
ShalHashService getService() {
// Return this instance of LocalService
// so clients can call public methods
return ShalHashService.this;

}

@Override
public IBinder onBind(Intent intent) {
return mBinder;

}

Our binder, LocalBinder, extends from the Binder class, and provides a
getService () method to retrieve the instance of our service. Then, when any
client connects to our Service, the onBind () function will return our LocalBinder
instance object.

An Activity or Fragment that wants to directly interact with this service
first needs to bind to it using the bindservice method and secondly
supply a ServiceConnection to handle the onServiceConnected () /
onServiceDisconnected () callbacks.

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The serviceConnection implementation simply casts the IBinder received to
the concrete class defined by the Service, obtains a reference to the service, and
records it in a member variable of the Activity:

public class ShalActivity extends Activity {

ShalHashService mService;
boolean mBound = false;

// Defines callbacks for service binding,
// passed to bindService ()
private ServiceConnection mConnection = new ServiceConnection ()
{
@Override
public void onServiceConnected (ComponentName name,
IBinder service)

// We've bound to LocalService,

// cast the IBinder and get LocalService instance

ShalHashService.LocalBinder binder =
(ShalHashService.LocalBinder) service;

mService = binder.getService() ;

mBound = true;

// After this the Activity can invoke the Service methods

@Override

public void onServiceDisconnected (ComponentName arg0) {
mBound = false;
mService = null;

}
bi
}

When we lose the connection with Service unexpectedly, due to a service crash or
an unexpected error in the Android system, onServiceDisconnected gets called to
notify the client that the connection to the service is considered lost.

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

We can make the Activity bind and unbind during its onstart () and onStop ()
lifecycle method, because we only need to interact with the service when the
Activity is visible on the screen. We should try to avoid the bind and unbind
onResume () and onPause () Activity callbacks to reduce the number of connect
and disconnect transitions in your application's lifecycle:

@Override
protected void onStart() {
super.onStart () ;
// Bind to LocalService
Intent intent = new Intent (this, ShalHashService.class) ;
bindService (intent, mConnection, Context.BIND AUTO CREATE) ;

@Override
protected void onStop() {
super.onStop () ;
// Unbind from the service
if (mBound)
unbindService (mConnection) ;
mBound = false;

}

Once the Activity starts, we call the Context .bindService (), passing

an Intent that explicitly defines the service class that we want to bind, our
ServiceConnection instance, and the optional flag Context .BIND_AUTO_CREATE
that means that the System will keep the Service running as long as this bind exists.

In Hybrid Services (Bound/Started), after we bind to a Service, we can access
the Service by calling startService (Intent) and process Service calls over
onStartCommand (Intent, int, int).

This is great— once the binding is made, we have a direct reference to the service
instance and can call its methods! However, we didn't implement any methods in
our Service yet, so it's currently useless.

Let's create a method on ShalHashService to calculate the digest in the background
and return the result to the Activity.

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

First, to execute this task in background we need to setup the execution engine, so

to achieve that we are going to set up our own Executor based on the Threadpool
class supplied in java.util.concurrent. The Executor will support concurrency,
from two to four concurrent threads, and request queueing up to 32 queued jobs:

public class ShalHashService extends Service

private static final int CORE_POOL_SIZE = 2;

private static final int MAXIMUM_POOL_SIZE = 4;

private static final int MAX QUEUE_SIZE = 32;

private static final BlockingQueue<Runnable> sPoolWorkQueue =
new LinkedBlockingQueue<Runnable> (MAX QUEUE SIZE) ;

private ThreadPoolExecutor mExecutor;

// Factory to set the Thread Names
private static final ThreadFactory sThreadFactory =
new ThreadFactory() {
private final AtomicInteger mCount = new AtomicInteger (1) ;
public Thread newThread (Runnable r) {
Thread t = new Thread(r, "SHAlHashService #" +
mCount .getAndIncrement ()) ;
t.SetPriority(Thread.MIN_PRIORITY);
return t;
}
Vi

@Override
public void onCreate() {
super.onCreate () ;
mExecutor = new ThreadPoolExecutor (CORE POOL_ SIZE,
MAXIMUM POOL_SIZE, 1,
TimeUnit.SECONDS,
sPoolWorkQueue,
sThreadFactory) ;
mExecutor.prestartAllCoreThreads () ;

}

When the Service is created, immediately after the first binding, the Threadpool is
started and the core threads (2) are started with prestartAllCoreThreads, ready
to process the incoming requests as soon as they arrive in the Service. If the clients
submit requests at such a pace that the core threads are not able handle them, the
thread pool will increase the number of worker threads in the pool until it reaches
four threads.

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

Now that we have the executor in place, we will create the public method that
receives the request to digest a String:

void getShalDigest (final String text) ({

Runnable runnable = new Runnable() {
@Override
public void run()
try {

// Execute the Long Running Computation
final String digest = SHAl (text);
} catch (Exception e) {
Log.e ("ShalHashService", "Hash failed for "+ text, e);

!
i
// Submit the Runnable on the ThreadPool
mExecutor.execute (runnable) ;

private String SHAl (String text) throws Exception
MessageDigest md = MessageDigest.getInstance ("SHA-1");
md.update (text.getBytes ("iso-8859-1"), 0, text.length());
byte[] shalhash = md.digest () ;
return convertToHex (shalhash) ;

}

private String convertToHex (byte[] data) {

}

Since shalActivity has a direct object reference to ShalHashService, we can now
go ahead and invoke its getShalDigest method directly —taking care to check that
the service is actually bound first, of course:

// Invoke the ShalHash Service to calculate the digest
// when the hash button is pressed

queryButton.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View v) {
EditText et = (EditText)findvViewById(R.id.text) ;
if (mService != null) {

mService.getShalDigest (et.getText () .toString()) ;

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Taking the text retrieved from our EditText view, we call our Service
getShalDigest to calculate the typed text digest. This is a very convenient and
efficient way of submitting work to a Service —there's no need to package up a
request in an Intent, so there's no excess object creation or communication overhead.

Since getShalDigest is asynchronous, we can't return a result directly from the
method invocation, and shalHashService itself has no user interface, so how can we
present results to our user?

One possibility is to pass a callback to sha1HashService so that we can invoke
methods of our Activity when the background work completes. Let's define a
generic callback interface for the activity to implement:

public interface ResultCallback<T> {
void onResult (T data) ;

}

There is a serious risk that by passing an Activity into the Service, we'll expose
ourselves to memory leaks. The lifecycles of Service and Activity do not coincide,
so strong references to an Activity from a Service can prevent it from being
garbage collected in a timely fashion.

The simplest way to prevent such memory leaks is to make sure that
ShalHashService only keeps a weak reference to the calling Activity so that when
its lifecycle is complete, the Activity can be garbage collected, even if there is an
ongoing calculation in the Service.

It is really important to remember that whenever we update the Ul during the
ResultCallback.onResult, we must do it in the Ul Thread; therefore, it is essential
to create a Runnable object with the result and post it on the main Looper.

The modified sha1HashService is shown in the following code:

private void postResultOnUI (final String result,
final WeakReference<ResultCallback<String>> refCallback) {

// Retrieve the main Thread Looper
Looper mainLooper = Looper.getMainLooper () ;
final Handler handler = new Handler (mainLooper) ;
handler.post (new Runnable() {

@Override

public void run() {

if (refCallback.get() != null) {
refCallback.get () .onResult (result) ;

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

3N

public void getShalDigest (final String text,
ResultCallback<String> callback) {

final WeakReference<ResultCallback<Strings>> ref =
new WeakReference<ResultCallback<String>>(callback) ;

Runnable runnable = new Runnable() {
@Override
public void run()
try {

// Execute the Long Running Computation
final String digest = SHAL (text) ;
// Execute the Runnable on UI Thread
postResultOnUI (digest, ref);

} catch (Exception e) {
Log.e ("ShalHashService", "Hash failed", e);

}
i
// Submit the Runnable on the ThreadPool
mExecutor.execute (runnable) ;

}

We invoke the callback on the main thread using postResultonuI, so that
ShalActivity can interact with the user interface directly in the callback method.
We can implement the callback as a method of shalActivity:

public class ShalActivity extends Activity
implements ResultCallback<Strings> {

@Override
public void onResult (String data) {
// Updates the result view with the digest string
TextView et = (TextView)findViewById(R.id.hashResult) ;
et .setText (data) ;

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Now we can directly invoke methods in shai1HashService and return results via a
callback method of shalactivity by passing the Activity itself as the callback:

if (mService != null) {
mService.getShalDigest (et.getText () .toString(),
ShalActivity.this);

}

Our service uses their local ThreadPool executor to handle the requests in an
asynchronous way, although we might have used the AsyncTask public static
executors: SERIAL_EXECUTOR to execute our digest calculation in a serialized way, or
the THREAD_POOL_EXECUTOR to calculate the digest concurrently and independently:

void getShalDigest (final String text,
ResultCallback<String> callback)

AsyncTask.SERIAL EXECUTOR.execute (runnable) ;
// or
AsyncTask.THREAD POOL_EXECUTOR.execute (runnable) ;

}

Notice that the AsyncTask executors are a system-shared resource, a shared group of
threads, used by all the AsyncTasks in the system; therefore, our processing might
suffer a delay when all the executor threads are occupied doing work. In most use
cases there is no need to create our own custom group of working threads and the
AsyncTask executors should be used.

This direct communication between ShalActivity and ShalHashService

is very efficient and easy to work with. However, there is a downside: if the
Activity restarts because of a configuration change, such as a device rotation, the
WeakReference to the callback will be garbage collected and shalHashService
cannot send the result.

In the next section we are going to explore a mechanism that sends the results back
to an Activity, or an other part of the application, even after a configuration change -
Broadcast Intents.

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

Broadcasting results with intents

Broadcasting an Intent is a way of sending results to anyone who registers to
receive them. This can even include other applications in separate processes if we
choose, but if the Activity and Service are a part of the same process, broadcasting
is best done using a local broadcast, as this is more efficient and secure:

Brodcast Intent Mechanism

subscribes
|
delivers Fragment #1
»>
Intent
publishes é
Service > > =3
25 | subscribes
=3 |« -
» publishes Activity #1
>

We can update shalHashService to broadcast its results with just a few extra lines
of code. First, let's define two constants to make it easy to register a receiver for the
broadcast and extract the result from the broadcast Intent object:

public static final String DIGEST BROADCAST =
"asynchronousandroid.chapter5.DIGEST BROADCAST";
public static final String RESULT = "digest";

Now we can implement the method that does most of the work using the
LocalBroadcastManager to send an Intent object containing the calculated result.
We're using the support library class LocalBroadcastManager here for efficiency
and security —broadcasts sent locally don't incur the overhead of interprocess
communication and cannot be leaked outside of our application:

private void broadcastResult (String digest) {
Intent intent = new Intent (DIGEST_ BROADCAST) ;
intent.putExtra (RESULT, digest) ;
LocalBroadcastManager.getInstance (this) .
sendBroadcast (intent) ;

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The sendBroadcast method is asynchronous and will return immediately without
waiting for the message to be broadcast and handled by receivers. Finally, we invoke
our new broadcastResult method from getShalDigest

void getShalDigest (final String text)

Runnable runnable = new Runnable () {
@Override
public void run() {
try {

// Execute the Long Running Computation
final String digest = SHAl (text) ;

// Broadcast Result to Subscribers
broadcastResult (digest) ;

}

Great! We're broadcasting the result of our background calculation. Now we need to
register a receiver in ShalActivity to handle the result. Here's how we might define
our BroadcastReceiver subclass:

private static class DigestReceiver extends BroadcastReceiver
private TextView view;

@Override
public void onReceive (Context context, Intent intent) {
if (view != null) {
String result = intent.getStringExtra (
ShalHashService.RESULT) ;
view.setText (result) ;
} else {
Log.i("ShalHashService", " ignoring - we're detached") ;

public void attach(TextView view) {

this.view = view;

public void detach() {
this.view = null;

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

This DigestReceiver implementation is quite simple —all it does is extract and
display the result from the Intent it receives — basically fulfilling the role of the
Handler we used in the previous section.

We only want this BroadcastReceiver to listen for results while our Activity is at
the top of the stack and visible in the application, so we'll register and unregister it in
the onstart () and onstop () lifecycle methods. As with the Handler that we used
previously, we'll also apply the attach/detach pattern to make sure we don't leak
View objects:

@Override
protected void onStart()
super.onStart () ;

mReceiver.attach ((TextView) findViewById(R.id.hashResult)) ;
IntentFilter filter =

new IntentFilter (ShalHashService.DIGEST BROADCAST) ;
LocalBroadcastManager.getInstance (this) .
registerReceiver (mReceiver, filter);

@Override
protected void onStop() {

LocalBroadcastManager.getInstance (this) .
unregisterReceiver (mReceiver) ;

mReceiver.detach() ;

}

Of course, if the user moves to another part of the application that doesn't register
a BroadcastReceiver, or if we exit the application altogether, they won't see the
result of the calculation.

If our Service could detect unhandled broadcasts, we could modify it to alert the user
with a system notification instead. We'll see how to do that in the next section.

Detecting unhandled broadcasts

In the previous sections, we used system notifications to post results to the
notification drawer —a nice solution for when the user has navigated away from our
app before the background work has completed. However, we don't want to annoy
the user by posting notifications when our app is still in the foreground and can
display the results directly.

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Ideally, we'll display the results in the app if it is still in the foreground and send a
notification otherwise. If we're broadcasting results, the service will need to know if
anyone handled the broadcast and if not, send a notification.

One way to do this is to use the sendBroadcastSync synchronous broadcast
method and take advantage of the fact that the Intent object we're broadcasting is
mutable (any receiver can modify it). To begin with, we'll add one more constant to
ShalHashService

public static final String HANDLED = "intent handled";

Next, modify broadcastResult to use the synchronous broadcast method and
return the value of a Boolean extra property; HANDLED from the Intent:

void broadcastResult (final String text) {
Intent intent = new Intent (DIGEST BROADCAST) ;
intent.putExtra (RESULT, digest) ;
// Synchronous Broadcast
LocalBroadcastManager.getInstance (ShalHashService.this).
sendBroadcastSync (intent) ;
boolean handled = intent.getBooleanExtra (HANDLED, false);

}

Because sendBroadcastSync is synchronous, all registered BroadcastReceivers
will have handled the broadcast by the time sendBroadcastSync returns. This
means that if any receiver sets the Boolean extra property HANDLED to true,
broadcastResult will return true.

In our BroadcastReceiver, we'll update the Intent object by adding a Boolean
property to indicate that we've handled it:

@Override
public void onReceive (Context context, Intent intent) {
if (view != null) {
String result = intent.getStringExtra (

ShalHashBroadCastUnhService.RESULT) ;
intent.putExtra (ShalHashBroadCastUnhService.HANDLED, true);
view.setText (result) ;

} else {
Log.i("ShalHashService", " ignoring - we're detached") ;

}

Now if shalActivity is still running, its BroadcastReceiver is registered and
receives the Intent object and will set the extra Boolean property HANDLED with
the value true.

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

However, if ShalActivity has finished, the BroadcastReceiver will no longer
be registered and shalHashService will return false from its broadcastResult
method.

+ There's one final complication: unlike sendBroadcast, which

always invokes BroadcastReceivers on the main thread,
s oy s .
sendBroadcastSync uses the thread that it is called with.

Our BroadcastReceiver interacts directly with the user interface, so we must call
it on the main thread. To broadcast the intent on the main thread synchronously, we
create an anonymous Runnable to execute the broadcast:

private void broadcastResult (final String text,
final String digest) {

Looper mainLooper = Looper.getMainLooper () ;
Handler handler = new Handler (mainLooper) ;

handler.post (new Runnable() {
@Override
public void run()

Intent intent = new Intent (DIGEST BROADCAST) ;
intent.putExtra (RESULT, digest) ;
LocalBroadcastManager.getInstance (ShalHashService.this) .
sendBroadcastSync (intent) ;
boolean handled = intent.getBooleanExtra (HANDLED,
false);

if (thandled) f{

notifyUser (text, digest) ;

3N
}

Now that we have the broadcast function in place, we can call it from the
getShalDigest to generate an Android notification when the intent is not
handled by a Receiver:

void getShalDigest (final String text) {
final String digest = SHAl (text) ;

// Execute the Runnable on UI Thread
broadcastResult (text, digest);

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This does just what we want—if our BroadcastReceiver handles the message,
we don't post a notification; otherwise, we will do so to make sure the user gets
their result.

So far we have been binding to a Service that runs within the same process, where
the client shares the memory address space with the Service. In the next section we
are going to detail how to interact with Services that run in remote processes using
the Android IPC-specific techniques.

Applications of Services

With a little bit of work, Services give us the means to perform long-running
background tasks, and free us from the tyranny of the Activity lifecycle. As
opposed to IntentService, directly sub-classing a service also gives us the
ability to control the level of concurrency.

With the ability to run as many tasks as we need and to take as long as is necessary
to complete those tasks, a world of new possibilities opens up.

The only real constraint on how and when we use services comes from the need to
communicate results to a user-interface component, such as a Fragment or Activity,
and the complexity this entails.

Ideal use cases for services tend to have the following characteristics:

* Long-running (a few hundred milliseconds and upward):

* Not specific to a single Activity or Fragment class

* Must complete, even if the user leaves the application

* Does not require user intervention to complete

* Operations that require state between different calls

* Requires more concurrency than IntentService provides, or needs control

over the level of concurrency

There are many applications that exhibit these characteristics, but the stand-out
example is, of course, handling concurrent downloads from a web service.

To make good use of the available download bandwidth and to limit the impact of
network latency, we want to be able to run more than one download at a time (but
not too many). We also don't want to use more bandwidth than necessary by failing
to completely download a file and having to restart the download later. So ideally,
once a download starts, it should run to completion even if the user leaves the
application.

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with Services

Summary

In this chapter, we explored the very powerful service component, putting it
to use to execute long-running background tasks with or without a configurable
level of concurrency.

We explored the incredibly useful IntentService —an ideal construct for
performing long-running background tasks off the main thread, surviving well
beyond the lifecycle of the initiating Activity, and even continuing to do useful
work when the application is no longer in the foreground.

We learned how to send work to an IntentService with parameterized Intents,
how to process that work in the background by implementing onHandleIntent,
and how to send results back to the originating Activity using a PendingIntent.

For cases where the application is no longer in the foreground or an operation
is particularly long-running, we saw how to post notifications to the notification
drawer, complete with progress updates.

We also saw the wide range of communication mechanisms available for delivering
results back to the user: direct invocation of local service methods; broadcasting
results to registered parties with BroadcastReceiver; and, if the user has already
left the application, raising system notifications.

In the next chapter, we'll add one other weapon to our arsenal: the ability to run
background tasks at specific times —even when the device is asleep — by scheduling
alarms with AlarmManager.

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with
AlarmManager

Maintaining the responsiveness of foreground apps has been our primary focus
throughout this book, and we've explored numerous ways to shift work away
from the main thread and run work in the background.

In all of our discussions so far, we wanted to get the work done as soon as possible,
so although we moved it to a background thread, we still performed the work
concurrently with ongoing main thread operations, such as updating the user
interface and responding to user interaction.

In this chapter we will learn how to defer work with AlarmManager to run at
some distant time in the future, initiating work without user intervention, and
even waking up the device from an idle state if it is really necessary. Meanwhile,
we will introduce you to some power saving features introduced with Android
Marshmallow 6 and explain how to adapt your application to this new paradigm.

In this chapter we will cover the following topics:

* Scheduling alarms with AlarmManager
* Canceling alarms

* Scheduling repeating alarms

* Scheduling alarms in Doze Mode

* Setting up an alarm clock

* Debugging AlarmManager alarms

* Handling alarms with Activities

* Handling alarms with BroadcastReceivers

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

* Staying awake with WakeLocks
* Restoring alarms on system boot

* Applications of AlarmManager

Introducing AlarmManager

In Chapter 2, Performing Work with Looper, Handler, and HandlerThread, we learned
how to schedule work on a HandlerThread using postDelayed, postAtTime,
sendMessageDelayed, and sendMessageAtTime. These mechanisms are fine for
short-term scheduling of work while our application is running in the foreground.

However, if we want to schedule an operation to run at some point in the distant
future, we'll run into problems. First, our application may be terminated before
that time arrives, removing any chance of the Handler running those scheduled
operations. Second, the device may be asleep, and with its CPU powered down it
cannot run our scheduled tasks.

The solution to this is to use an alternative scheduling approach, one that
/" is designed to overcome these problems: AlarmManager.

android.app.AlarmManager is a class that has been available in the Android SDK
since the first version, delivering an advanced API to fire off Intents in the future at
one specific time or time window defined by the user. The schedules are managed by
the Android system, taking into account the device power cycles and states to keep
energy consumption at a low level.

Moreover, AlarmManager is a system service that provides scheduling capabilities
far beyond those of Handler. Being a system service, AlarmManager cannot be
terminated and has the capacity, under certain conditions, to wake the device from
sleep to deliver scheduled alarms.

The leading features of android.app.AlarmManager are as follows:
* Ability to wake up the device from idle states: The user is able to control
how the system should handle your alarm when it is in energy saving mode

* Cancel Alarms: a mechanism to cancel a previously created alarm based on
Intent comparison

* Update Alarms: a mechanism to update an existing scheduled alarm

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

¢ Exact and Inexact Alarms: an API that is able to control the exactness of
our scheduling

* Scheduling managed by the Android system: The alarms will fire even
when your application is not running, and without consuming any
application resources to manage the timers

Scheduling alarms with AlarmManager

As we said before, all the alarm operations are managed through the singleton object
AlarmManager, an Android global system service that can be retrieved by any class
with access to a Context instance. As an example, in an Activity we can get the
AlarmManager from any member method by using the following code:

AlarmManager am = (AlarmManager)getSystemService (ALARM SERVICE) ;

Once we have a reference to the AlarmManager, we can schedule an alarm to deliver
a PendingIntent object to a Service, an Activity or BroadcastReceiver, at a time
of our choosing. The simplest way to do that is using the set method:

void set (int type, long triggerAtMillis, PendingIntent operation)

When we set an alarm, we must also specify a type flag— the first parameter to the
set method. The type flag sets the conditions under which the alarm should fire and
which clock to use for our schedule.

There are two conditions and two clocks, resulting in four possible type settings.

The first condition specifies whether or not the device will be woken up if itis in a
sleeping state at the time of the scheduled alarm —whether the alarm is a wakeup
alarm or not.

The clocks provide a reference time against which we set our schedules, defining
exactly what we mean when we set a value to triggeratMillis. We could base
our schedules on the following time references:

* The elapsed-time system clock—android. os.SystemClock —measures time
as the number of milliseconds that have passed since the device booted,
including any time spent in deep sleep. The current time according to the
system clock can be found using this code term:

SystemClock.elapsedRealtime ()

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

The real-time clock (Unix Time) - measures time in milliseconds since
the Unix epoch. The current time according to the real-time clock can be
found as follows:

System.currentTimeMillis ()

InJava, System.currentTimeMillis () returns the number
of milliseconds since midnight on January 1, 1970, Coordinated
Universal Time (UTC)—a point in time known as the Unix epoch.

%&‘ UTC is the internationally recognized successor to Greenwich
Mean Time (GMT) and forms the basis for expressing
international time zones, which are typically defined as positive
or negative offsets from UTC.

Given these two conditions and two clocks, these are the four possible type values
we can use when setting alarms:

android.app.AlarmManager.ELAPSED REALTIME: This schedules the alarm
relative to the system clock. If the device is asleep at the scheduled time it
will not be delivered immediately; instead, the alarm will be delivered the
next time the device wakes.

android.app.AlarmManager.ELAPSED REALTIME WAKEUP: This schedules
the alarm relative to the system clock. If the device is asleep, it will be woken
to deliver the alarm at the scheduled time.

android.app.AlarmManager.RTC: This schedules the alarm in UTC relative
to the Unix epoch. If the device is asleep at the scheduled time, the alarm will
be delivered when the device is next woken.

android.app.AlarmManager.RTC_WAKEUP: This schedules the alarm relative
to the Unix epoch. If the device is asleep it will be awoken, and the alarm is
delivered at the scheduled time.

We will start setting an alarm at a particular time, to go off 24 hours after the initial
boot. We'll use the TimeUnit class from the java.lang.concurrent package to
calculate times in milliseconds. To set the previous alarm, we need to calculate the
number of milliseconds in 24 hours, as shown in the following code:

long delay = TimeUnit.HOURS.toMillis (24L);
am.set (AlarmManager .ELAPSED REALTIME, delay, pending) ;

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

We can set an alarm to go off five minutes from now, using the system time, by
adding five minutes to the current time. Using the system clock, it looks like this:

long delay = TimeUnit.MINUTES.toMillis (5L) ;
long time = System.currentTimeMillis() + delay;
am.set (AlarmManager .RTC, time, pending) ;

To set an alarm for 9:00 pm today (or tomorrow, if it's already past 9:00 pm today),
we can use the Calendar class to do some time calculations:

Calendar calendar = Calendar.getInstance() ;

// Tomorrow at 9 if already passed 9pm today

if (calendar.get (Calendar.HOUR OF DAY) >= 21) ({
calendar.add(Calendar.DATE, 1);

}

calendar.set (Calendar .HOUR_OF DAY, 21);

calendar.set (Calendar .MINUTE, O0);

calendar.set (Calendar.SECOND, O0);

am.set (AlarmManager .RTC, calendar.getTimeInMillis (), pending) ;

None of the examples so far will wake the device if it is sleeping at the time of the
alarm. To do that, we need to use one of the WAKEUP alarm conditions, for example:

am.set (AlarmManager .ELAPSED REALTIME WAKEUP, delay, pending) ;
am.set (AlarmManager .RTC_WAKEUP, time, pending) ;

It is also important to understand that when the alarm clock time is in the past, the
alarm will sound immediately after we invoke the AlarmManager set alarm functions.

Setting alarms in recent Android versions

If our application targets an API level below 19 (KitKat), scheduled alarms will run
exactly at the alarm time. For applications targeting KitKat or later, the schedule

is considered inexact and the system may re-order or group alarms to minimize
wake-ups and save battery.

After API Level 23, the Android Development team went a little further and Doze
mode was introduced on the Android System to reduce battery consumption when
the device is unplugged from the power adapter, motionless, and not used by the
user for a long period of time.

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

The Doze system will try to decrease the device's wake-up frequency deferring
background jobs, network updates, syncs, and our precious alarm until the
device exits Doze mode or a recurring maintenance window runs to execute
pending jobs, certain alarms, or synchronization with the network. After the
maintenance window finishes, the device would enter Doze mode again

if it was not used in the meantime:

44— DOZE Mode ———p»

Figure 6.1: Doze Mode Timeline

Doze mode is likely to impact your application and will defer your alarms
until a maintenance window comes in, unless you use the methods
setAndAllowWhileIdle () and setExactAndAllowWhileIdle () to allow the
execution of your alarms in a deep idle state.

Moreover, the number of times that the Doze Mode maintenance window runs will
be less frequent in cases of long-term inactivity, so the impact of this new mechanism
on our scheduling will increase, hence causing more unpredictable jitters at the
alarm time.

During the doze mode the applications are also not allowed to access the network,
the WakeLocks are ignored and Wi-Fi scans are not executed.

If we need precision scheduling and you are targeting Marshmallow or later,
we shall use the new setExactAndAllowWhileIdle () method introduced at
APl level 23:

am.setExactAndAllowWhileIdle (AlarmManager.RTC_ WAKEUP,
time, pending) ;

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

. The Android system has protection that prevents abuse for exact
% alarms that fire off too frequently. AlarmManager only wakes up
e~ the device and dispatches one alarm per minute, and in low power
mode it can be as low as one every 15 mins.

If your application targets a version between KitKat (API Level 19) and
Marshmallow (API Level 23), the setExact method is enough for timing precision:

am.setExact (AlarmManager .RTC_WAKEUP, time, pending) ;

But we'll need to check that the methods exist before we try to call it; otherwise,
our app will crash when run under earlier API levels. Lets sketch out our new exact
alarm code:

if (Build.VERSION.SDK INT >= 23) {
// Wakes up the device in Doze Mode
am.setExactAndAllowWhileIdle (AlarmManager.RTC_WAKEUP, time,
pending) ;
} else if (Build.VERSION.SDK INT >= 19) {
// Wakes up the device in Idle Mode
am.setExact (AlarmManager .RTC_WAKEUP, time, pending) ;
} else {
// 0ld APIs
am.set (AlarmManager .RTC_WAKEUP, time, pending) ;

}

This will deliver our alarm at exactly the specified time on all platforms.

Don't forget that you should only use exact scheduling when you really need it, for
example, to deliver alerts to the user at a specific time. For most other cases, allowing
the system to adjust our schedule a little to preserve battery life is usually acceptable.

Android Marshmallow API Level 23 also comes with the setAndallowWhileIdle
function, which allows us to create an alarm to sound in Doze mode, but with less
exactness compared to setExactAndAllowWhileIdle ().

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

The system will try to batch these kinds of alarm across the entire system,
minimizing the number of times the device wakes up, and hence reducing the energy
consumption of the system. Here is the code to create an alarm that triggers, even in
Doze mode, 10 hours from now:

long delay = TimeUnit.HOURS.toMillis (10L) ;
long time = System.currentTimeMillis () + delay;

if (Build.VERSION.SDK INT >= 23) {
am.setAndAllowWhileIdle (AlarmManager .RTC WAKEUP, time, pending) ;

Testing your alarms in Doze Mode

In order to test your application's behavior in doze mode, the Android SDK team
added some new commands to the dumpsys tool to manually change the device's
power state from the command line.

It is also important to remember that Doze mode requires that your device is
unplugged from the charger. To force the device to a state where it is disconnected
from the charger, we should run the following command on a command line with
access to SDK Tools:

Emulate a charger unplug

adb shell dumpsys battery unplug

Emulate a charger plug in

adb shell dumpsys battery set ac 1

Then, to enter idle mode, we should turn off the screen and run the following
commands:

// Enable the doze mode, step required on Android Emulator
adb shell dumpsys deviceidle enable

// To goes directly go IDLE mode

adb shell dumpsys deviceidle force-idle

After the device is put in idle mode, we can enable the maintenance window by
running the following command:

// Goes from IDLE -> IDLE MAINTENANCE state
adb shell dumpsys deviceidle step

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

If we run the same step again the device goes back to an idle state; however, if we
want to go back to an active state, we should run the next command:

// Goes from IDLE, IDLE MAINTENANCE -> ACTIVE state
adb shell dumpsys deviceidle disable

With these handy commands we are able to verify that the alarm sounds even in
deep idle states.

Setting a Window alarm

One more addition in KitKat is setwindow (), which introduces a compromise
between exact and inexact alarms by allowing us to specify the time window within
which the alarm must be delivered. This still allows the system some freedom to play
with the schedules for efficiency, but lets us choose just how much freedom to allow.

Here's how we would use sentindo () to schedule an alarm to be delivered within
a 3 minute window —at the earliest 5 minutes from now and at the latest 8 minutes
from now — using the real-time clock:

if (Build.VERSION.SDK INT >= 109) {
long delay = TimeUnit.MINUTES.toMillis (5L);
long window = TimeUnit.MINUTES.toMillis (3L);
long time = System.currentTimeMillis() + delay;
am.setWindow (AlarmManager .RTC_WAKEUP, time, window, pending) ;

}

Debugging AlarmManager alarms

The Android System comes with a handy diagnostic tool that outputs to the
developer a list of registered alarms on the device. To get a list, we run the following
command from the command line:

adb shell dumpsys alarm

After we have created the exact 5 minute alarm on Android API Level 23, the system
will output our registered alarm on the command output:

Batch{bfce57 num=1 start=6199180 end=6199180 flgs=0x5}:
RTC_WAKEUP #0: Alarm{
d38d44 type 0 when 1449181419460
com.packpublishing.asynchronousandroid}
tag=*walarm*:my alarm
type=0 whenElapsed=+58s670ms when=2015-12-03 22:23:39

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

window=0 repeatInterval=0 count=0 flags=0x5
operation=PendingIntent{a58bbe0: PendingIntentRecord{
466e99 android broadcastIntent}}

The Alarm system tries to organize the alarm execution in batches for battery saving
purposes, so in the first line we have information about the alarm batch that our
alarm belongs to.

The details of the batch output format are shown in the following list:

bfces7: Batch internal identifier number
num=1: Number of alarms in this batch

start=6199180: It refers to the time, in terms of elapsed milliseconds since
system boot, at which the batch should be started

end=6199180: It refers to the time, in terms of elapsed milliseconds since
system boot, at which the batch will end

Inside the batch, our alarm gets detailed over the following fields:

d38d44: An internal identifier number used by the system

type 0 (RTC_WAKEUP): Alarm type

when: Alarm time based on the clock time (milliseconds since epoch)
tag=*walarm* :my_ alarm: Action specified on Intent

com.packpublishing.asynchronousandroid: Application package that
created the alarm

whenElapsed=+58s670ms: Refers to the time since the system started at
which this alarm will be triggered

when= 2015-12-03 22:23:39: The date/time at which this alarm will be
triggered

window= 180000: Refers to the value specified in the window field when the
setWindow () method is used

repeatInterval=0: Used in repeating alarms to specify the interval
between repeats

count=0: Number of times the alarm sounded

operation= PendingIntent...:Pending intent that will be triggered

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Canceling alarms

Once the alarm is set, it can be canceled very easily by invoking the AlarmManger.
cancel method with an intent that matches the alarm that we want to cancel.

The process of matching uses the filterEquals method of Intent, which compares
the action, data, type, class, component, package, and categories of both Intent

to test for equivalence. Any extras we may have set in the Intent are not taken

into account.

In the following code, we will show you how to create an alarm that fires off in 1
hour and the cancel code to dismiss it using different intent instances:

// Function to set the Alarm

void setlHourAlarm(long time) {
AlarmManager am= (AlarmManager) getSystemService (ALARM SERVICE) ;
long time = inlHourTime () ;
am.set (AlarmManager.RTC, time, createPendingIntent (time)) ;

// Cancel the alarm

void cancellHourAlarm(long time) {
AlarmManager am= (AlarmManager) getSystemService (ALARM SERVICE) ;
// Remove the alarms matching the Intent
am.cancel (createPendingIntent (time)) ;

// Creates the Pending Intent to set and cancel the alarm
PendinglIntent createPendinglIntent (long time) {

Intent intent = new Intent ("my alarm");

PendingIntent pending = PendingIntent.

getBroadcast (this, ALARM CODE, intent,
PendingIntent.FLAG UPDATE CURRENT) ;

// extras don't affect matching

intent.putExtra ("exactTime", time);

return pending;

}

// Calculate the Time

long inlHourTime () {
long delay = TimeUnit.MINUTES.toMillis (5L);
long time = System.currentTimeMillis () + delay;

return time;

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

Since in our example we use the same method to construct the set and cancel
PendingIntent, both will have the same action and match, so if the AlarmManager.
cancel runs and it finds a match, the Android system will remove the alarm
previously set from the list of enabled alarms.

To debug the cancellation of your alarm you could verify again
% with an adb shell dumpsys alarm that the alarm disappeared
T from the system alarm batches.

It is important to realize that whenever we create alarm using a pending intent with
the FLAG_UPDATE_CURRENT, we implicitly update any existing alarm with the new
Intent and its extras.

Scheduling repeating alarms

As well as setting a one-off alarm, we have the option to schedule repeating alarms
using setRepeating () and setInexactRepeating (). Both methods take an
additional parameter that defines the interval in milliseconds at which to repeat
the alarm. Generally, it is advisable to avoid setRepeating () and always use
setInexactRepeating (), allowing the system to optimize device wake-ups and
giving more consistent behavior on devices running different Android versions:

void setRepeating(
int type, long triggerAtMillis,
long intervalMillis, PendingIntent operation) ;

void setInexactRepeating(
int type, long triggerAtMillis,
long intervalMillis, PendingIntent operation)

AlarmManager provides some handy constants for typical repeat intervals:

AlarmManager.INTERVAL FIFTEEN MINUTES
AlarmManager.INTERVAL HALF HOUR
AlarmManager . INTERVAL HOUR
AlarmManager .INTERVAL HALF DAY
AlarmManager.INTERVAL DAY

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Let's now build up an example that creates a repeating alarm to be delivered
approximately 2 hours from now, then repeating every 15 minutes or so thereafter
like this:

Intent intent = new Intent ("my alarm");
PendingIntent broadcast = PendinglIntent.getBroadcast (
this, 0, intent,PendingIntent.FLAG UPDATE CURRENT) ;
long start = System.currentTimeMillis() +
TimeUnit .HOURS.toMillis (2L) ;
AlarmManager am = (AlarmManager)
getSystemService (ALARM SERVICE) ;
am.setRepeating (
AlarmManager.RTC WAKEUP, start,
AlarmManager.INTERVAL FIFTEEN MINUTES, broadcast) ;

From APl level 19, all repeating alarms are inexact— that is, if our application targets
KitKat or above, our repeat alarms will be inexact even if we use setRepeating ().
To have similar inexact behavior across all the Android versions you should use the
setInexactRepeating () (API Level 3) rather than setRepeating():

am.setInexactRepeating (
AlarmManager.RTC WAKEUP, start,
AlarmManager.INTERVAL FIFTEEN MINUTES, broadcast) ;

The inexact repeating tells the system that your alarm time could be adjusted
to reduce the device waking up frequently and increase the system's overall
power efficiency.

If we really need exact repeat alarms, we can use setExact () /
setExactAndAllowWhileIdle (), instead, and schedule the next alarm while
handling the current one.

Later, we might increase the repeating alarm interval and even change the Intent
Extras by calling the setRepeating () with an Intent that matches the previous
Intent and the flag FLAG_UPDATE_CURRENT, as shown in the following code:

Intent intent = new Intent ("my_ alarm");
PendingIntent broadcast = PendinglIntent.getBroadcast (
this, 0, intent, PendingIntent.FLAG UPDATE_ CURRENT) ;
// Updates the delivery intent extras
intent.putExtra("my int",3);
am.setRepeating(
AlarmManager.RTC_WAKEUP, System.currentTimeMillis(),
AlarmManager.INTERVAL HALF HOUR, broadcast) ;

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

Scheduling an alarm clock

From API Level 21, setAlarmClock, which sets a new alarm and displays a status
bar alarm icon, was introduced in the AlarmManager class:

void setAlarmClock (AlarmClockInfo info, PendingIntent operation)

In the next example we are going to create an alarm clock that goes off tomorrow at
10:00 pm:

Intent intent = new Intent ("my clock alarm");

Calendar calendar = Calendar.getInstance() ;

calendar.add(Calendar.DATE, 1);

calendar.set (Calendar.HOUR OF DAY, 22);

calendar.set (Calendar.MINUTE, O0);

calendar.set (Calendar.SECOND, O0);

PendingIntent broadcast = PendinglIntent.getBroadcast (
AlarmClockActivity.this, 0, intent,
PendingIntent.FLAG UPDATE CURRENT) ;

// Only applies to newer versions
If (Build.VERSION.SDK INT >= 21) {

AlarmClockInfo alarmInfo = new AlarmClockInfo(
calendar.getTimeInMillis(),
// Create a Pending intent to show Alarm Details
createShowDetailsPI()) ;

am.setAlarmClock (alarmInfo, broadcast) ;

} else {

am.set (AlarmManager .RTC_WAKEUP,
calendar.getTimeInMillis (), broadcast) ;

PendinglIntent createShowDetailsPI () {
ntent showIntent = new Intent (AlarmClockActivity.this,
ShowAlarmActivity.class) ;
return PendingIntent.getActivity (AlarmClockActivity.this, O,
showIntent,
PendingIntent.
FLAG _UPDATE_CURRENT) ;

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

If you are using a recent device, once we set the previous alarm we see the clock icon
on the system status bar:

g b 459

To cancel the alarm clock, we have to invoke the cancel method with a matching
intent:

Intent intent = new Intent ("my clock alarm");
PendingIntent broadcast = PendinglIntent.getBroadcast (

this, 0, intent, PendingIntent.FLAG UPDATE_ CURRENT) ;
am.cancel (broadcast) ;

Handling alarms

So far we have learned how to schedule exact and inexact alarms over the
AlarmManager Service singleton, so at this point we are ready to take a look
at how to handle the alarm in any Android application component.

Essentially, we can schedule anything that can be started with a PendingIntent,
which means we can use alarms to start Activities, Services, and
BroadcastReceivers. To specify the target of our alarm, we need to use the static
factory methods of PendingIntent:

PendingIntent.getActivities (Context, int,Intent([],int)
PendingIntent.getActivity (Context,int, Intent, int)
PendingIntent.getService (Context,int, Intent, int)
PendingIntent.getBroadcast (Context, int, Intent, int)

All static methods offered to create a pending intent, receiving as arguments a
Context object, an integer request code to identify the pending intent, an Intent or
an array of Intents that will be delivered to the component, and finally an integer to
specify the PendingIntent flags.

The pendingIntent flags used on the factory method play an important role in
Intent handling, so it is crucial to understand the flags that we can use to indicate
how the system should process an intent that already exists, to make an Intent
immutable or to set an intent that is only delivered once:

* FLAG_CANCEL_CURRENT: Indicates that the system should invalidate and
generates a new Intent.

* FLAG NO_CREATE: If the PendingIntent does not already exist, a new intent
is not created and factory method returns null.

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

* FLAG ONE_SHOT: Indicates that the pending intent created can only be
used once.

* FLAG_UPDATE_CURRENT: Indicates that if the pending intent already exists, the
Pending Intent is replaced with this one, including all the extras.

* FLAG_IMMUTABLE: Indicates that the pending intent created cannot be
modified afterwards. This flag is only available since API Level 23.

In most cases we want to completely replace an existing Intent with a new one,
so using FLAG_UPDATE_CURRENT is the right flag value to use.

In the following sections, we'll see build up examples for each type of
PendingIntent that can be used with AlarmManager.

Handling alarms with Activities

Starting an Activity from an alarm is as simple as registering the alarm with
a PendingIntent created by invoking the static getActivity method of
PendingIntent.

When the alarm is delivered, the Activity will be started and brought to the
foreground, displacing any app that was currently in use. Keep in mind that this is
likely to surprise and perhaps annoy users!

When starting Activities with alarms, we will probably want to set Intent .FLAG
ACTIVITY_CLEAR_TOP; so that if the application is already running, and our target
Activity is already on the back stack, the new intent will be delivered to the old
Activity and all the other activities on top of it will be closed:

Intent intent = new Intent (context, HomeActivity.class);
intent.setFlags (Intent.FLAG ACTIVITY CLEAR_TOP) ;
PendingIntent pending = PendingIntent.getActivity(

Context, 0, intent, PendingIntent.FLAG UPDATE CURRENT) ;

Not all Activities are suited to being started with getActivity. We might need to
start an Activity that normally appears deep within the app, where pressing back
does not exit to the home screen, but returns to the next Activity on the back-stack.

Let's imagine a situation where we want to start an Activity that is going to display
the details about the model, and we want have an Activity that lists the models on
the backstack.

[180]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

This is where getActivities comes in. With getActivities, we can push

more than one Activity onto the back-stack of the application, allowing us to
populate the back-stack to create the desired navigation flow when the user presses
"back". To do this, we create our PendingIntent by sending an array of Intents to
getActivities:

Intent first = new Intent (context, ListActivity.class);
Intent second = new Intent (context, DetailActivity.class);
first.setFlags (Intent.FLAG ACTIVITY CLEAR TOP) ;

PendingIntent pending = PendingIntent.getActivities(
context, O,
new Intent[] {first, second},
PendingIntent.FLAG UPDATE CURRENT) ;

The array of Intents specifies the Activity to launch, in order. The logical sequence
of events when this alarm is delivered is as follows:

1. If the application is already running, any Activities on the back-stack above
ListActivity are finished and removed, because we set the Intent .FLAG
ACTIVITY_CLEAR_TOP flag.

ListActivity is (re)started.

DetailActivity is started and placed on the back-stack above
ListActivity. The DetailActivity becomes the foreground Activity.

Handling alarms with Activity is good to know about, but is not a technique we
will use often, since it is so intrusive. We are much more likely to want to handle
alarms in the background, which we'll look at next.

Handling alarms with BroadcastReceiver

We met BroadcastReceiver already in Chapter 5, Interacting with Services, where we
used it in an Activity to receive broadcasts from a Service. In this section, we'll use
BroadcastReceiver to handle alarms set on the AlarmManager.

BroadcastReceivers can be registered and unregistered dynamically at runtime
like we did in Chapter 5, Interacting with Services, with Service, or statically in the
Android manifest file with a <receivers> element, and can receive alarms regardless
of how they are registered.

It is more common to use a statically registered receiver for alarms, because these are
known to the system and can be invoked by alarms to start an application if it is not
currently running.

[181]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

Let's implement a static defined BroadcastReceiver that is able to dispatch
an SMS to a phone number when an alarm sounds. First we will define our
BroadcastReceiver in the manifest file:

<receiver android:name=".chapteré6.SMSDispacther">
<intent-filters>
<action android:name="sms_dispacther"/>
</intent-filters>
</receivers>

The <intent-filters> element gives us the opportunity to say which Intents we
want to receive by specifying the action, data, and categories that should match.

Now its time to write the code to set up the schedule. To do that, we will create an
Activity that is going to provide a form to set the destination number, the number of
hours to defer the message dispatch, and the message text to send.

On the sMsDispatchActivity activity we will build a PendingIntent for the
sms_dispatcher action, passing the arguments required over the Intent extras:

public class SMSDispatchActivity extends Activity {
// UI Code omitted for brevity

private OnClickListener mSubmit = new OnClickListener() {

// Calculate the scheduled time

// time = now + N*hours

long delay = TimeUnit.HOURS.toMillis (hours) ;
long time = System.currentTimeMillis () + delay;

// Store the UI Form on the Intent
intent.putExtra (SMSDispatcher.TO KEY, phoneMumber) ;
intent.putExtra (SMSDispatcher.TEXT KEY, text);

// Create the Broadcast Pending Intent

PendingIntent broadcast = PendinglIntent.getBroadcast (
getBaseContext (), 0, intent,
PendingIntent. FLAG_UPDATE_CURRENT) ;

// Set an exact Alarm
if (Build.VERSION.SDK INT >= 23) {
am.setExactAndAllowWhileIdle (AlarmManager.RTC_WAKEUP, time,
broadcast) ;
} else if (Build.VERSION.SDK INT >= 19) ({
am.setExact (AlarmManager .RTC_WAKEUP, time, broadcast) ;

[182]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

} else {
am.set (AlarmManager .RTC_WAKEUP, time, broadcast) ;

}
}

When this alarm is due, AlarmManager will wake the device even in deep idle states
—if it isn't already awake —and deliver the Intent to the BroadcastReceiver is
onReceive method. The Alarm Manager will hold a wake lock as long as the alarm
receiver's onReceive () runs. Therefore, it guarantees that the device will remain
awake at least until onReceive completes, which means we can be sure of getting
some work done before the device will be allowed to return to sleep.

Working with BroadcastReceiver

When the system delivers an alarm to our BroadcastReceiver it does so on
the main thread, so the usual main thread limitations apply; we cannot perform
networking and we should not perform heavy processing or use blocking operations.

In addition, a statically registered BroadcastReceiver has a very limited lifecycle.
It cannot create user interface elements other than toasts or notifications posted via
NotificationManager, the onReceive method must complete within 10 seconds or
its process may be killed, and once onreceive completes, the receiver's life is over.

Since the work that we need in response is not intensive, we can simply complete it
during onReceive:

public class SMSDispatcher extends BroadcastReceiver

public static final String TO KEY = "to";
public static final String TEXT KEY = "text";

@Override
public void onReceive (Context context, Intent intent) {
// Retrieve the Destination number and the
// message from the intent extras
String to = intent.getStringExtra (TO _KEY) ;
String text = intent.getStringExtra (TEXT KEY) ;

Log.i("SMS Dispatcher", "Delivering message to " + to);
SmsManager sms = SmsManager.getDefault () ;
sms.sendTextMessage (to, null, text, null, 0), null);

[183]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

That's it; once the alarm fires off, the BroadcastReceiver.onReceive gets called
dispatching an SMS to the destination number with the text specified on the UI Form.

We can make this more useful by delivering a notification to the user when we
receive the message delivery report from the mobile network.

First, we will add a new action on the AndroidManifest.xml to be processed by our
BroadcastReceiver

<receilver android:name=".chapteré6.SMSDispatcher">
<intent-filters>
<action android:name="sms_dispatch"/>
</intent-filter>
<intent-filters>
<action android:name="sms_delivered"/>
</intent-filter>

</receivers>
Next, we will change the onrReceive method to process both kinds of Intent:

@Override
public void onReceive (Context context, Intent intent) {

if (intent.getAction() .equals (DELIVERED ACTION)) {
processDispatch (context, intent) ;

} else if (intent.getAction() .equals (DISPATCH ACTION)) {
processDelivered (context, intent);

}

Next, update the code to dispatch the message to set up a new pendingIntent for
the message delivery report:

void processDispatch (Context context, Intent intent) {

Intent deliveredIntent = new Intent ("sms_delivered") ;
deliveredIntent.putExtra (SMSDispatcher.TO KEY, to);
deliveredIntent.putExtra (SMSDispatcher.TEXT KEY, text);
sms . sendTextMessage (to, null, text, null,
PendingIntent .getBroadcast (context,
DISPATCH ACTION.hashCode (), deliveredIntent, 0));

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Finally, we add the code to process the message delivery report intent and inform
the user, in the notification drawer, if the message was delivered with success:

void processDelivered (Context context, Intent intent)
String to = intent.getStringExtra (TO KEY) ;
String text = intent.getStringExtra (TEXT KEY) ;
String title = null;

switch (getResultCode())

case Activity.RESULT_OK:
title = "Message Delivered to " + to;
break;

default:
title = "Message Delivery failed to " + to;
break;

}

NotificationCompat.Builder builder = new
NotificationCompat.Builder (context)
.setContentTitle(title)
.setContentText (text)
.setSmallIcon(android.R.drawable.stat notify chat)
.setStyle (new NotificationCompat.BigTextStyle ()
.bigText (text)) ;
NotificationManager nm = (NotificationManager)
context.getSystemService (
Context .NOTIFICATION SERVICE) ;
nm.notify(intent.hashCode (), builder.build()) ;

}

Although we can spend up to 10 seconds doing work in our BroadcastReceiver,
we really shouldn't—if the app is in the foreground when the alarm is triggered the
user will suffer noticeable lag if onReceive takes more than a hundred milliseconds
to complete on the main Thread. Exceeding the 10 second budget will cause the
system to kill the application and report a background ANR.

Moreover, if we try to execute the onReceive work in a background thread and
the onrReceive returns, the Android system is allowed to recycle the component.
Whenever no other Android component is running, the system could consider
the process to be empty and aggressively kill it, stopping our background work
immediately.

To avoid the UI glitching, and the BroadcastReceiver recycling, on Android API
Level 11, the BroacastReceiver.goAsync method was announced to delegate work
to a background thread for up to 10 seconds - we'll discuss this in the next section.

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

Asynchronous work with goAsync

If our application targets a minimum API level of 11, we can use a feature of
BroadcastReceiver.goAsync to handle the onReceive execution in a parallel line
of execution:

public final PendingResult goAsync ()

With goasync we can extend the lifetime of a BroadcastReceiver instance beyond
the completion of its onReceive method, provided the whole operation still
completes within the 10 second budget.

If we invoke goAsync, the system will not consider the BroadcastReceiver to have
finished when onReceive completes. Instead, the BroadcastReceiver lives on until
we call finish on the PendingResult returned to us by goAsync. We must ensure
that finish is called within the 10 second budget, otherwise the system will kill the
process with a background ANR.

Using goAsync, we can offload work to background threads using any appropriate
concurrency construct—for example, an AsyncTask —and the device is guaranteed to
remain awake until we call finish on the PendingResult.

Let's update our SMS dispatcher to send the message asynchronously:
public void onReceive (final Context context, final Intent intent) {
final PendingResult result = goAsync() ;

AsyncTaskCompat .executeParallel (
new AsyncTask<Void, Void, Voids>() {

@Override
protected Void doInBackground(Void... params) {
try {
// ... do some work here, for up to 10 seconds

processDispatch (context, intent) ;
} finally {

result.setResultCode (Activity.RESULT_OK) ;
result.finish() ;

}

return null;

I3F;

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

AsyncTaskCompat has been available in the Android Support

Library since version 21.0.0 and allows the developer to execute
/> multiple AsyncTask in parallel on a pool of threads in a

backward compatible fashion.

This is nice, though its utility is limited by the 10 second budget and the effects of
fragmentation (it is only available to API level 11 or above). In the next section, we'll
look at scheduling long-running operations with services.

Handling alarms with Services

Just like starting Activities, starting a Service from an alarm involves scheduling an
appropriate PendingIntent instance, this time using the static getService method:

Intent intent = new Intent (this,SMSDispatcherIntentService.class);
intent.putExtra (SMSDispatcherIntentService.TO KEY, phoneNumber) ;
intent.putExtra (SMSDispatcherIntentService.TEXT KEY, text);
PendingIntent service = PendingIntent.getService (

context, 0, intent, PendingIntent.FLAG UPDATE CURRENT) ;
am.set (AlarmManager .RTC_WAKEUP, time, service);

As you already know, the Service should be globally defined on the Android
Manifest with a service element. Given that we are calling it explicitly using the class
name, we only need to define the service class:

<service android:name=".chapter6.SMSDispatcherIntentService" >
</service>

We almost certainly want our Service to do its work off the main thread, so sending
work to an IntentService this way seems ideal, and an IntentService will also
stop itself when the work is finished. This works reliably if the device is awake.

However, if the device is asleep we have a potential problem. AlarmManager
documentation tells us that the only guarantee we have about the wakefulness

of the device is that it will remain awake until a BroadcastReceiver is onReceive
method completes.

Since directly starting a Sservice does not involve a BroadcastReceiver, and in any
case is an asynchronous operation, there is no guarantee that the service will have
started up before the device returns to sleep, so the work may not get done until the
device is next awakened.

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

This is almost certainly not the behavior we want. We want to ensure that the Service
starts up and completes its work, regardless of whether the device was awake when
the alarm was delivered. To do that, we'll need a BroadcastReceiver and a little
explicit power management, as we'll see next.

Staying awake with WakeLocks

Earlier in this chapter we learned that we can use a BroadcastReceiver to handle
alarms, and even do work in the background for up to 10 seconds, though only on
devices running API level 11 or greater.

In the previous section, we saw that handling alarms directly with services is not a
reliable solution for scheduling long-running work, since there is no guarantee that
our service will start up before the device returns to sleep.

We have a problem! If we want to perform long-running work in response to alarms,
we need a solution that overcomes these limitations.

What we really want is to start a Service to handle the work in the background, and
to keep the device awake until the service has finished its work. Fortunately, we
can do that by combining the waking guarantees of BroadcastReceiver to get the
Service started, then keep the device awake with explicit power management using
PowerManager and WakeLock.

As you might guess, WakeLock is a way to force the device to stay awake. WwakeLocks
come in various flavors, allowing apps to keep the screen on at varying brightness
levels or just to keep the CPU powered up in order to do background work. To use
WakeLocks, our application must request an additional permission in the manifest:

<uses-permission android:name="android.permission.WAKE LOCK" />

There are four different kinds of wakelock that may affect the system power
management differently:

* PowerManager.PARTIAL WAKE LOCK: Ensures that the CPU is on, leaving the
screen and the keyboard in the current state (idle or awake).

* PowerManager.SCREEN DIM WAKE LOCK: Ensures that the CPU is on,
the screen is on and may be in a dimmed state, and the keyboard could
remain off.

* PowerManager.SCREEN BRIGHT WAKE LOCK: Ensures that the CPU is on, the
screen is on full brightness, and the keyboard could remain off.

* PowerManager.FULL WAKE LOCK: Ensures that the CPU is on and the screen
and keyboard backlight are at full brightness.

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

To keep the CPU powered up while we do background work in a service, we
only need PARTIAL WAKE_LOCK, which won't keep the screen on, and which we can
request from the PowerManager like this:

PowerManager pm = (PowerManager)ctx.getSystemService (
Context .POWER_SERVICE) ;
WakeLock lock = pm.newWakeLock (
PowerManager .PARTIAL WAKE LOCK, "my app");

// Acquire the Power Lock
lock.acquire() ;

// Do your work here while CPU will stay on ..

// Release the Power lock
lock.release() ;

We'll need to acquire a WakeLock during our BroadcastReceiver is onReceive
method, and find some way to hand it to our Service so that the Service can
release the lock once its work is done.

Unfortunately, wakeLock instances are not parcelable, so we can't just send them to
the service in an Intent. The simplest solution is to manage the wakeLock instance as
a static property that both the BroadcastReceiver and the target Service can reach.

This is not difficult to implement, but we don't actually need to
implement it ourselves —we can use the handy v4 support library class,
WakefulBroadcastReceiver.

WakefulBroadcastReceiver exposes two static methods that take care of acquiring
and releasing a partial wakeLock. We can acquire the WakeLock and start the
Service with a single call to startWwakefulService:

ComponentName startWakefulService (Context context, Intent intent);

And when our Service has finished its work, it can release the WwakeLock with the
corresponding call to completeWakefulIntent:

boolean completeWakefulIntent (Intent intent) ;

Now, we will update our SMS schedule BroadcastReceiver to acquire the
wakelock and dispatch the intent over the startWakefulService:

public class WakefulSMSDispatcher extends BroadcastReceiver

@Override
public void onReceive (Context context, Intent intent) {

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

// Forward intent to SMSDispatcherIntentService class,

// the wakeful receiver is needed in case the

// schedule is triggered while the device

// is asleep otherwise the service may not have time to

// receive the intent.

intent.setClass (context, SMSDispatcherIntentService.class);
WakefulBroadcastReceiver.startWakefulService (context, intent) ;

}

We must make sure to release the wakeLock once the Service has finished its work,
otherwise we'll drain the battery by keeping the CPU powered up unnecessarily.
Let's implement the IntentService that receives the intent from the wakeful
BroadcastReceiver and sends the message in the service background thread:

public class SMSDispatcherIntentService extends IntentService

@Override
protected void onHandleIntent (Intent intent) {
try {

sms . sendTextMessage (to, null, text, null, null);
} finally {
WakefulBroadcastReceiver.completeWakefulIntent (intent) ;

}
}

This is great—by using a statically registered BroadcastReceiver we've ensured
that we receive the alarm, even if our application is not running when the alarm is
due. When we receive the alarm, we acquire a WwakeLock, keeping the device awake
while our Service starts up and does its potentially long-running work.

Once our work is done, we release the WakeLock to allow the device to sleep again
and conserve power.

Resetting alarms after a system reboot

The AlarmManager service is a convenient class to schedule working on your
Android application; however, when the device shuts down or reboots, all your
alarms will be lost since the system does not retain them between system restarts.

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

To reset the alarm, we should persist your alarms and create a BroadcastReceiver
that sets our alarms whenever a system boot happens:

public class BootBroadcastReceiver extends BroadcastReceiver {

@Override

public void onReceive (Context context, Intent intent) {
// Retrieve the persisted alarms
List<SMSSchedule> persistedAlarms = getStoredSchedules() ;
// Set again the alarms

}

List<SMSSchedule> getStoredSchedules() {...}

}

In order to store our alarms, we created a PoJo class SMSSchedule as the model for
our schedules.

Second, in the Android Manifest we have to register our BroadcastReceiver to
receive the boot event:

<receiver
android:name=".chapter6.BootBroadcastReceiver"
android:enabled="true" >
<intent-filters>
<action android:name="android.intent.action.BOOT_ COMPLETED" />
</intent-filter>
</receivers>

Finally, we will add the permission to receive the boot complete event:

<uses-permission android:name="android.permission.RECEIVE BOOT
COMPLETED" />

Now after a system reboot, we re-create our alarms and they fire off even after a
system reboot. We also advise that the alarms using ELAPSED REALTIME should be
adjusted after a system reboot since the the clock where those alarms are based is
going to be restarted.

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduling Work with AlarmManager

Applications of AlarmManager

AlarmManager allows us to schedule work to run without user intervention.

This means that we can arrange to do work pre-emptively, for example, to prepare
data that our application will need to present to the user when they next open the
application, or to alert the user to new or updated information with notifications.

Ideal use cases include things like periodically checking for new e-mails, SMS
scheduling, time notifications, periodic data processing, downloading new editions
of periodical publications (for example, daily newspapers and magazines), or
uploading data from the device to a cloud backup service.

The AlarmManager is able to start future work effectively but the API should be
used carefully to keep your application battery power consumption at low levels.
To achieve that, the developer should try to keep the alarm frequency under certain
levels and use the exact set functions that force the device to wake up only in cases
where it is really necessary.

Summary

In this chapter, we learned to schedule work for our applications to perform at some
time in the distant future, either as a one-shot operation or at regular intervals.

We learned to set alarms relative to the system clock or real time, how to wake the
device up from a deep sleep and doze mode, how to cancel alarms when we no
longer need them, and how to set exact alarms on the most recent Android versions.

In the meantime, we introduced the reader to Doze Mode, a new power management
feature that saves battery cycles by deferring jobs and tasks to a maintenance
window. We learned how to test our alarms taking into account the new power
management states introduced by the doze mode.

We learned how to debug alarms created with AlarmManager and how to analyze
the information printed from the dumpsys commands.

Our exploration covered various options for responding to alarms, including
bringing an Activity to the foreground or doing work directly in a
BroadcastReceiver, synchronously or asynchronously.

Finally, we arranged for an IntentService to be launched with a wakeLock to
keep the CPU from powering down while our long-running background work is
completed, and to finish we learned how to re-create the alarms after a system boot
using a boot BroadcastReceiver.

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The AlarmManager is a very useful class to schedule work in the background

but it has some major disadvantages. First, it does not take into account the device
current context, like if the device is connected to the charger, or whether the device

is connected to a Wi-Fi network. Second, we can only schedule our background work
based on the time condition.

To solve these issues, the Android team introduced in Android Lollipop API
Level 5.0 the gobscheduler APL an API that allows the execution of background
work based on a number of time and context criteria.

In the next chapter we are going to explain how to exercise the JobScheduler API
to schedule tasks that will only run when the appropriate energy and environment
device conditions are met.

[193]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the
JobScheduler API

So far, we have been scheduling background work using a time condition in the
Handler facilities for the short-term future, and the Android Alarm Manager for
the long-term future.

Those APIs that are able to execute future tasks at an exact and inexact time in

the future are used to trigger events, refresh data in the background, or execute
tasks without user intervention. AlarmManager, which we covered in detail in the
previous chapter, is able to wake up the device from deep idle states and execute
work even without considering the device's battery state.

In this chapter, we will learn how to work with JobScheduler to execute jobs in the
background when several prerequisites are fulfilled and taking into account the
energy consumption context of the device.

In this chapter, we will cover the following:

e Introduction to JobScheduler

* Setting the JobScheduler running criteria

* Controlling the execution of your job with criteria

* How to schedule work with JobService

* Executing repeating tasks with JobScheduler

* Retrieving the list of pending JobScheduler schedules

e How to cancel a task in JobScheduler

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the JobScheduler API

Introduction to JobScheduler

The Android development team, under the project Volta umbrella, introduced

in the API Level 21 Lollipop release some enhancements and features in order to
improve the power usage on the Android platform. Apart from the tools introduced
to monitor and follow the battery usage in the Android platform, a new API for
scheduling background was officially released to help the developer. It saves extra
power cycles when the jobs used to support the developer's application do not need
a time of execution, and can be deferred until the device has better battery and
network context.

The API was not created to completely replace AlarmManager; however, the
JobScheduler APl is able to perform a better battery management and supply
extra behaviors.

The main features introduced with Scheduler API are as follows:

* Less power consumption: The job task could be delayed until the
device is powered to the charger or they are grouped to run in batches
on a regular basis

* Persistent jobs across reboots: We are able to install job schedules that
persistent task across device reboots

* Better network bandwidth management: The job could be delayed until
a higher bandwidth network is available, such as when a Wi-Fi network
connection is available

* Less intrusive execution: The job could be delayed until the user is not
interacting with the device

JobScheduler is a singleton system service that we can retrieve via a Context object
instance, using a code similar to the following:

JobScheduler js = (JobScheduler)
getSystemService (Context.JOB SCHEDULER SERVICE) ;

The Jobscheduler singleton service instance object helps us to manage our running
jobs and provides us with member functions to schedule, cancel, and retrieve a list of
deferred jobs.

Once we have a reference to the JobScheduler service, we can schedule a job by
passing JobInfo to the JobScheduler. schedule function:

int schedule (JobInfo job) ;

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

JobInfo is the object used in this framework where we specify all the information
about the job itself, all the conditions that should be fulfilled to initiate the job
execution, and the unit of work called Jobservice that will be started to execute the
work required.

To build a JobInfo object, a common factory pattern, known Software Engineering
as Builder and materialized in the static inner-class JobInfo.Builder, is available
to construct the JobInfo object passed to Jobscheduler. The pattern provides us
with a way to construct a multi-parameter JobInfo on a clean, step-by-step basis and
by using the Builder setter functions to define the JobInfo parameters.

First, we will have to build a JobInfo.Builder object using the following
constructor:

Builder (int jobId, ComponentName jobService)

jobIdis an internal number used to identify your job in the Jobscheduler
service and the second argument is used to set the Jobservice derived class
that will be invoked when the system verifies that all the pre-requisites are met
to execute the job.

Let's write some code to show this:

ComponentName jobSrvc= new ComponentName (ctx, MyJobService.class);
JobInfo.Builder jobIBuilder = new JobInfo.Builder (MY_JOB_ID,
jobSrvc) ;

Setting running criteria

With the Builder object reference, we can start setting up the job parameters and the
pre-requisites using the member function available in the Builder object.

Let's consider a couple of examples. In our first example, the job should only start
when there is a Wi-Fi network available, so to achieve that, we have to use the
following code to set the network availability pre-requisite:

jobIBuilder.setRequiredNetworkType (JobInfo.NETWORK TYPE UNMETERED) ;

An unmetered network connection means that you have a connection where you
don't have a limited amount of data usage per month and you are not charged when
you go over the usage limit. When a network type is not specified, as a condition, the
default value is NETWORK_TYPE_NONE, meaning that the job will run in any network
context and even without any network connection. Apart from the previous network
type criteria, there is NETWORK_TYPE_ANY, which determines that the job could run
when there is network connectivity available.

[197]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the JobScheduler API

To specify a job to run only when the device is plugged in and charging:

jobIBuilder.setRequiresCharging (true) ;

When a job should only run when the device is in idle mode:

jobIBuilder.setRequiresDeviceIdle (true) ;

Idle mode means that the job should only run when the device is not in use and
has not been used for some time. This could be the best time to execute heavier
computations because the user will not notice that the device resources have been
allocated to your job, thereby the computation does not interfere with the user
interactions. By default, any job will not require idle mode to run.

Persist your job execution across device reboots as follows:

jobIBuilder.setPersisted (true) ;

Such as an AlarmManager job, the job schedule will only survive a reboot if your
application holds the permissions to receive the completed boot. To achieve that,
add the following line to the Android Manifest file:

<uses-permission
android:name="android.permission.RECEIVE_BOOT COMPLETED" />

In those cases where you want to schedule a periodic task, you can set the interval in
milliseconds between subsequent executions:

long interval = TimeUnit.HOURS.toMillis (5L) ;
jobIBuilder.setPeriodic (interval) ;

This is an inexact interval since the Android system will try to group the jobs in
batches in order to save some battery cycles.

When you want to define a maximum defer time to run your job, we can specify a
time deadline where the job has to run, then it will run regardless of whether or not
the other criteria are met:

long maxExecutionTime = TimeUnit.MINUTES.toMillis (5L) ;
jobIBuilder.setOverrideDeadline (maxExecutionTime) ;

In the following code, we set one hour as the maximum time to defer this job, so, if
the other pre-requisites are not fulfilled, after one hour the job is going to run by the
system independently of the other criteria:

jobIBuilder.setOverrideDeadline (TimeUnit .HOURS.toMillis (1L)) ;

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

On the other hand, we can also specify a minimum defer time to this job as a criterion:

jobIBuilder.setMinimumLatency (TimeUnit.SECONDS.toMillis (120)) ;

With the values used above, our job will never run on the next 120 seconds since we
set a maximum latency time as a prerequisite to our job.

setMinimumLatency and setOverrideDeadline are not
applicable for periodic jobs criteria shall be avoided that it is in
% your recurrent jobs schedules. If any one of these criteria are used
T~ on recurrent jobs, an I1legalArgumentException exception
will be thrown when the build is called.

When the job fails, in order to specify a retry policy, we have to specify the backoff
initial value that determines the interval between retries and the retry increase
policy. The Jobscheduler API provides two policies that define the way in which
the retry time increases between subsequent tries:

* BACKOFF_POLICY LINEAR: The interval time between retries increases
linearly —initial_backoff millis * num retries
* BACKOFF_POLICY EXPONENTIAL: The interval time between retries increases

exponentially —initial backoff millis * 2 * (num retries)

Policy Linear

Job Execution T T 3T ses

. . Shours
Policy Exponential

y \ 4 \ 4 A 4

Job Execution T _ 2T AT | eee

The backof£ interval will increase until we reach a backoff of five hours (JobInfo.
MAX BACKOFF_DELAY MILLIS)and the initial default value is 30 seconds (JobInfo
.DEFAULT INITIAL BACKOFF MILLIS).

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the JobScheduler API

Now, in the following examples we are going to show you how to create a linear and
an exponential backoff policy for our jobInfo object:

// Initial Backoff of 10 minutes that grows linearly
jobIBuilder.setBackoffCriteria (TimeUnit .MINUTES.toMillis (10L),
JobInfo.BACKOFF_POLICY LINEAR) ;

// Initial Backoff of 3 minutes that grows exponentially
jobIBuilder.setBackoffCriteria (TimeUnit .MINUTES.toMillis (3),
JobInfo.BACKOFF_POLICY EXPONENTIAL) ;

The builder class also provides us a method to set some parameters to forward the
job over a PersistableBundle object:

PersistableBundle bundle = new PersistableBundle() ;
bundle.putInt (MY JOB ARG, 2) ;
jobIBuilder.setExtras (bundle) ;

A PersistableBundle is a special kind of bundle that
can be saved and restored later. Its main purpose is to pass

arguments to the deferred job execution.

As soon as we have all the criteria to schedule our defined job, we are able to
construct our JobInfo and use it to incorporate the job execution in our application:

JobInfo.Builder jobIBuilder =
// Set Criterias
JobInfo jobInfo = jobIBuilder.setRequiresCharging (true)

setRequiresDeviceIdle (true) .

build() ;

Scheduling a job

With the criteria already defined and the JobInfo object, we have all the entities
required to set up the job for our application. So now let's show you how to create a
job with a real example.

Our example will synchronize the user account information stored in a device file
with an HTTP web service over a job scheduled using the Scheduler API. The user
interface will provide us a Ul where we can update the user information, a button to
save the information on an internal file, and a button to set up the synchronization
job that will upload the account information to the web service.

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

First, let's start by defining our job pre-requisites and parameters:

* Our job should only run when the device is charging to save the battery

* Our job should only run when an unmetered network is available to save
mobile network bandwidth

* Our job should only run when the device is idle because we don't want to
slow down the Ul responsiveness

* Our job must run at least once within eight hours of being scheduled
* Our job should run even after device reboot
The gobInfo object requires an ID to identify the job in all the JobSchedule

methods, so it is a good idea, in order to ensure consistency, to use a public
static int to identify it:

static final int ACC_BACKUP_JOB ID ="AccountBackJobService"
hashCode () ;

Subsequent calls to cancel or list jobs created must use the same jobId defined here.

Since we use a file to store the account information internally on the device, the
filename used to retrieve account information needs to be passed to the job as an
argument. The same principle applies to the remote web service endpoint.

To forward the required parameters, we have to build PersistableBundle, passing
the filename and endpoint path as bundle parameters:

private static final String SYNC FILE = "account.json";
private static final String SYNC PATH = "account sync";
private static final String SYNC PATH KEY = "path";

PersistableBundle bundle = new PersistableBundle() ;

// Forward filename where the account information is stored
bundle.putString (SyncTask.SYNC FILE KEY,SYNC FILE) ;

// Forward the HTTP Path used to upload the account information
bundle.putString (SyncTask.SYNC PATH KEY,SYNC PATH) ;

Once the criteria are stated and we have the identifier and the class name of our
service, we are able to create our JobInfo using the Builder inner class, as shown in
the following code:

ComponentName serviceName = new ComponentName (this,
AccountBackupJobService.class) ;

// Setup the Job Information and criterias over a builder
JobInfo jobInfo = new JobInfo.

[201]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the JobScheduler API

Builder (ACC_BACKUP JOB ID, serviceName)
.setRequiresCharging (true)
.setRequiredNetworkType (JobInfo.NETWORK TYPE UNMETERED)
.setRequiresDevicelIdle (true)
.setPersisted (true)
.setOverrideDeadline (TimeUnit .HOURS.toMillis (8L))
.setExtras (bundle)
cbuild () ;

Now we are ready to schedule the job with the Jobscheduler service:

// Get a Reference to the Service
JobScheduler jobScheduler = (JobScheduler)
getSystemService(JOB_SCHEDULER_SERVICE);

int result = jobScheduler.schedule (jobInfo) ;

if (result == JobScheduler.RESULT FAILURE) {
// Failed to setup the job
Toast .makeText (AccountInfoActivity.this,
"Failed to setup a sharedpref backup job",
Toast .LENGTH_ SHORT) .show () ;
} else {
// Schedule Success
Toast .makeText (SharedPrefActivity.this,
"SharedPrefBack job successfully scheduled",
Toast .LENGTH_ SHORT) .show () ;

}

The JobScheduler's schedule method will return RESULT FAILURE in the case of
failure and in the case of success will return the job identifier that we defined in the
JobInfo.Builder constructor.

Now, since we have just scheduled our job, it's time to write the backup behavior
in the Jgobservice subclass. In the next section, we will detail how to implement a
Jobservice that plays well with the Jobscheduler framework.

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Implementing the JobService

Our Jobservice subclass is the entity that is going to do the hard work and
receive the callbacks as soon as all the criteria specified in the JobInfo are met. To
implement our own service, we have to extend from JobService and override the
start and stop callbacks, as shown in the following code:

public class AccountBackupJobService extends JobService
@Override
public boolean onStartJob (JobParameters params) {
// Start your job here

return false;
}
@Override
public boolean onStopJob (JobParameters params) {

// Stop your job here

return false;

}

The onstartJob callback function runs on the main thread, and if the job needs to do
asynchronous processing then it should return true to indicate it's still doing work
on a background thread. The callback function also receives the extra parameters
specified in the JobInfo bundle.

onStopdJob is automatically invoked by the system when it requires to cancel the job
execution because the criteria specified in the jobInfo are no longer fulfilled.

For example, our job requires to run the work while the device is in an idle state, so,
if the device leaves the idle mode because the user started to interact with the device,
onstopJob will get called to abandon the execution for the meantime.

In this function, we should release any resources allocated to our job and stop any
background processing in place. This function returning boolean would indicate
whether you'd like to retry this job following the same criteria specified in the job
creation or abandon the job execution. You should use true to reschedule this job
based on the retry criteria specified during the job creation.

Before we add our Service business logic, we must add our Service class to
AndroidManifest.xml and we must protect our service with the android.
permission.BIND_JOB_SERVICE permission:

<service
android:name=".chapter7.AccountBackupJobService"
android:exported="true"
android:permission="android.permission.BIND JOB_SERVICE" />

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the JobScheduler API

There are two important things to recall about your JobService implementation:

1. One, the onStartJob and onStopJob callbacks will run on the main thread,
and it is your responsibility to hand over your service's long running
executions to separate threads to prevent the appearance of any ANR dialog
in your application due to a blocking operation in the main thread.

2. Second, the Android system will acquire and hold a wakeLock for you
while your gobservice callbacks are running or until you explicitly call the
jobFinished method in the case that you return true in the onstartJob
function. If you don't, tell the system that your job execution is finished. The
WakeLock will keep your device awake and burn your device's battery in
vain. This could make your user angry and create a reason to uninstall your
application, because your application will waste resources and battery and
affect the user experience.

Now that we have learned the theory about the Jobservice, let's write the code to
execute the account synchronization with the remote server away from the main
thread on a background processing line.

Considering the Android constructs learned until now, we will use the AsyncTask

construct learned in Chapter 3, Exploring the AsyncTask, for its simplicity, and create
an AsyncTask subclass to upload the account information using the created for this
purpose:

public class Result<T> {
public T result;
public Exception exc;

}

public class SyncTask extends
AsyncTask<JobParameters, Void, Result<JobParameterss>> {

// Parameter Keys for parameter arguments
public static final String SYNC_FILE _KEY = "file";
public static final String SYNC_ENDPOINT KEY = "http endpoint";

// Variable used to store a reference to the service
private final JobService jobService;

// Constructor
public SyncTask (JobService jobService) {
this.jobService = jobService;

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

As a starting point, we specified the generic AsyncTask class parameter types, setting
JobParameters as the parameter for doInBackground and Result as the type
returned from doInBackground and passed to the onPostExecute function.

Later, we create the final constant keys used to pass information in the bundle.

The rResult type is also recovered from previous sessions to return an error when
something wrong happens during the background execution.

Without going into too much detail, we will implement the doInBackground code
responsible for uploading the data to the remote web service:

@Override
protected Result<JobParameters> doInBackground (
JobParameters... params) {

Result<JobParameters> result = new Result<JobParameters> () ;
HttpURLConnection urlConn = null;

try {
URL url;

// Retrieve the file to upload from the parameters

// passed in
String file = params[0] .getExtras() .

getString (SYNC_FILE_KEY) ;

// Remote WebService Path

String endpoint = params[0] .getExtras() .
getString (SYNC ENDPOINT KEY) ;
url = new URL ("http://<webs_host>:<webs ports>/"
+ endpoint) ;

// Load the account information stored internally

String body = Util.loadJSONFromFile (jobService, file);

// Write the information to the remote service
uploadJdsonToServer (urlConn, body) ;

// Process Server Response

} catch (Exception e) {
result.exc = e;
} finally {
if (urlConn != null) {
urlConn.disconnect () ;
}
}

return result;

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the JobScheduler API

Some implementation details are elided here for brevity, but we have implemented
the doInBackground function to read the JSON data stored internally on a device
file and we uploaded it over an Ht tpURLConnection. The Android Activity that
displays the form saves and syncs the button to the final user. The save button, once
pressed, stores the account information in the account . json local file when the save
button is clicked.

The sync button, once clicked, will schedule the job for synchronizing the data
with our remote HTTP server. When the job criteria defined by us are fulfilled,
doInBackground is called to execute the sync procedure in the background.

Now that we have the code to upload the data to our server, let's finish it by
processing the response and server errors:

try {

int resultCode = urlConn.getResponseCode () ;

if (resultCode != HttpURLConnection.HTTP OK) {
throw new Exception("Failed to sync with server :" +
resultCode) ;

}

result.result = params[0];

When an exception occurs, such as the server being down or a server internal error
happening, the exception is propagated over our Result object to onPostExecute
for further processing.

Note that we are being careful to handle the error situations, so, to notify the result of
the background work to the user, we will write an onPostExecute function that runs
on the main thread that is going to publish a system notification that informs the user
whether the task was completed successfully or failed miserably:

@Override
protected void onPostExecute (Result<JobParameters> result)

NotificationCompat.Builder builder =
new NotificationCompat.Builder (jobService) ;

if (result.exc != null) {
// Error handling
jobService.jobFinished (result.result, true);
builder.setContentTitle ("Failed to sync account")
.setContentText ("Failed to sync account " + result.exc);
} else {

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

// Success handling
builder.setContentTitle ("Account Updated")
.setContentText ("Updated Account Sucessfully at " +
new Date () .toString()) ;
jobService.jobFinished (result.result, false);
}

nm.notify (NOTIFICACTION ID, builder.build()) ;

}

When the task is done, we invoke jobFinished (JobParameters params, boolean
needsRescheduled) to let the system know that we are finished with that task;
however, when an exception happens, we inform the system that we were unable to
finish the task with success passing true on the second jobFinished argument.

When a finished job failed and needs to be rescheduled, we pass false as the

second jobService.jobFinished argument, and the Scheduler API will reschedule
our job using the back-off time specified in the JobInfo object. However, since our
job only executes on idle mode, the failed job will be added to the scheduler queue
and re-executed within a future idle maintenance window without using the back-off
times specified in the JobInfo.

It is important to always call jobFinished to release the wakeLock assigned to the
job and to inform the system that it can process additional jobs.

If everything goes well, a notification should appear in the notification drawer
presenting the success message and the time when the last synchronization
happened successfully.

Finally, we can update the SsyncJdobService code to start and stop the SyncTask
execution:

public class SyncJobService extends JobService {

private static final String TAG = "SyncJobService';
SyncTask mJob = null;
@Override
public boolean onStartJob (JobParameters params) {
Log.i(TAG, "on start job: " + params.getJobId());
if (mJob != null){
mJob = new SyncTask (this) ;
mJob.execute (params) ;
return true;

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the JobScheduler API

return false;

@Override
public boolean onStopJob (JobParameters params)
Log.i(TAG, "on stop job: " + params.getJobId()) ;
if (mJob != null){
mJob.cancel (true) ;
mJob = null;

}

return true;

Listing pending jobs

Unlike the AlarmManager API, the Scheduler API provides the ability to list all

the pending schedules for your application. This handy feature could help us to
recognize the jobs that are going to be executed in the future and react accordingly
with that list. The list retrieved could help us to pinpoint a pending job that we
would like to cancel.

The Jobscheduler service class has an instance method with the following
signature:

public List<JobInfo> getAllPendingJobs () ;

The method will return a list of JobInfo objects that we can use to observe job
parameter sets during the job build:

* Job criteria for each job:

e}

getNetworkType ()

° isRequireDeviceIdle ()

° isRequireCharging()
getMinLatencyMillis ()
isPeriodic ()
getIntervalMillis ()
isPersisted()

getMaxExecutionDelayMillis ()

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The gobservice subclass that will be called back by the Jobscheduler to
execute the job—getService ()

Job arguments: getExtras ()

Rehﬁlpohcy:getInitialBackoffMillis()arKigetBackoffPolicy()

Okay, now we are ready to create an Activity that prints a list of pending jobs for
our application:

public class JobListActivity extends Activity

@Override
protected void onCreate (Bundle savedInstanceState)

JobScheduler jobScheduler = (JobScheduler)

}

getSystemService (JOB_SCHEDULER_SERVICE) ;

// Get the list of scheduled jobs
List<JobInfo> jobList = jobScheduler.getAllPendingJobs () ;
// Initialize the adapter job list
JobListRecyclerAdapter adapter =

new JobListRecyclerAdapter (this, jobList) ;

rv.setAdapter (adapter) ;

// Set the Job Counter

TextView jobCountTv = (TextView) findViewById(R.id.jobCount) ;
jobCountTv.setText (Integer.toString(jobList.size())) ;

To list the pending jobs in the UI, we have used the support library Recyclerview
class, a more advanced version of ListView, which simplifies the creation of a large
set of Views.

First, we will build up our viewHolder to hold the references to the row views that
will display the job1d and the service endpoint:

public class JobListRecyclerAdapter extends

RecyclerView.Adapter<JobListRecyclerAdapter.JobViewHolders> {

public static class JobViewHolder extends

RecyclerView.ViewHolder
// References to the Views
CardvView cv;

TextView jobId;

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the JobScheduler API

TextView serviceName;

JobViewHolder (View itemView) {
super (itemView) ;

cv = (CardView)itemView.findViewById(R.id.cv) ;
jobId = (TextView)itemView.findViewById(R.id.jobIdTv) ;
serviceName = (TextView)

itemView.findviewById(R.id.className) ;

}
}

To bind the jobInfo parameters to the current viewHolder, we will write the
RecyclerView.onBindViewHolder to set the information based on the current
JobInfo:

@Override

public void onBindViewHolder (
JobListRecyclerAdapter.JobViewHolder holder, int position)
// Retrieve the job for the current list row
final JobInfo ji = mJobList.get (position) ;
// Update the UI Views with the Job Info
holder.jobId.setText (Integer.toString(ji.getId()));
holder.serviceName.setText (ji.getService () .getClassName()) ;

}

Yes, thanks to getAl1PendingJobs, we have a list of our jobs, and moreover,
we can analyze that programmatically to create behavior around the current
application situation.

Some code is omitted on purpose; however, the full source code is available on Packt
Publishing website. Take a look at the complete source code to appreciate how the
recycler view and the card view was used to build up the job list UL

To fully manipulate the jobs at will, there is only one CRUD (create, read, update,
delete) operation that we need to cover in this chapter - the delete operation. The
delete job operation is delivered by the cancel functions and is going to be covered
in detail in the next section.

[210]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Canceling a job

There are some situations where we want to provide for the users an ability to cancel
the job because the environment situation has changed or it does not make sense to
execute the job anymore — for example, the user changed a piece of information that
the job depends on and the job is no longer applicable. The Jobscheduler service
offers us the support for job cancellation with the following cancel and cancelall
methods:

void cancel (int jobId) ;

void cancelAll () ;

The first method, cancel (job1d), allows us to cancel a specific job using the
job identifier returned from the schedule (JobInfo job) function or the jobId
available on JobInfo objects returned by the getAllpendingJobs function.

The cancelall () method allows us to cancel the scheduled jobs that have been
registered with the Jobscheduler by the current application.

With gobInfo from the previous example we are able to cancel a specific job passing
the job identifier:

final JobInfo ji = ...;
JobScheduler jobScheduler = (JobScheduler)

mContext .getSystemService (mContext .JOB_SCHEDULER_SERVICE) ;
// Cancel a Specific Job based on the JobInfo->jobId
jobScheduler.cancel (ji.getId()) ;

Whenever we cancel a schedule, the job will be removed from the JobScheduler
future execution queue and will no longer be executed by the SyncJobservice or
any other JobService.

Scheduling a periodic job

So far, we have scheduled one-shot jobs, but do you know there is an option to
schedule the execution of a job at periodic internals. These kinds of jobs might be the
perfect construct to performing repeating backups or repeating network operations
such as application user data backup.

Let's update our AccountInfoActivity to schedule the periodic execution of the
account synchronization job.

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the JobScheduler API

We'll start by defining a new job identifier for our periodic job:

static final int SYNC PER JOB ID = "SyncJobPerService".hashCode () ;

We can schedule a periodic job to be executed approximately every 12 hours
like this:

JobInfo.Builder builder = new JobInfo.Builder (SYNC PER JOB 1ID,
serviceName) ;

builder.setRequiresDeviceIdle (true)
// Persist the schedule across the device reboots
.setPersisted(true)
.setPeriodic (TimeUnit.HOURS.toMillis (12L))
.setRequiredNetworkType (JobInfo.NETWORK TYPE UNMETERED)
.setRequiresDevicelIdle (true)
.setExtras (bundle) ;

// Schedule the repeating job

JobScheduler jobScheduler = (JobScheduler)
getSystemService (JOB_SCHEDULER_ SERVICE) ;

jobScheduler. schedule (builder.build()) ;

Now we are able to schedule the synchronization job to run periodically in the
background while the device is idle and the Wi-Fi network is available. The job
schedule will be persisted by the system and re-enabled after the device boots up
until we explicitly cancel the job or all the jobs are cancelled through cancelall ().

Applications of the JobScheduler

The Jobscheduler API allows us to schedule work that runs asynchronously
without user intervention in the future under certain conditions. This API is also able
to reduce the energy consumption by deferring the job execution until the device is
charging or connected to an unmetered network, such as the Wi-Fi network.

Ideal cases include things such as application database backup that could be
deferred and do not require exact time execution, a periodic upload of user data
to the network, and download of configuration parameters. So, typically jobs
that don't have to run immediately and which data doesn't have to be ready

for user consumption. Reducing your application energy consumption without
compromising the user experience will increase the device battery lifetime and
therefore improve the user experience.

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The JobScheduler could cover most of the AlarmManager use cases,
notwithstanding it provides advanced features to optimize device resources
acquisition. As an additional feature, this API provides a way to create schedule that
survive the device shutdown and restart.

The only big drawback is that JobScheduler was only introduced with Android 5.0
(Lollipop). Therefore, you need to target your application to an API Version 21 or
higher to interact with this API.

At the time of writing in July 2016, 45 percent of Android devices run a version
of Android that supports Jobscheduler. To get up-to-date information about the
Android market share by version, please check the Android Developer Dashboard.

Summary

In this chapter, we explored the Jobsheduler API, putting it to use to schedule
background work that starts when a group of conditions defined by us are met.

We learned in detail how to set the different criteria supported by the API and how
to schedule based on the JobInfo object that starts a job when the device is charging
and not in use.

In the meantime, we learned how to implement an asynchronous JobService that is
able to run in a background execution line and finish the job execution properly by
releasing all the acquired resources (WakeLock, . . .).

Later, we used the getAllPendingJdobs to create a sample code to list all the pending
Scheduler API jobs within our application. From the example, we learned how to
cancel a specific job or all the pending jobs in our applications.

To finish, we built a persistent and recurrent schedule using the Jobsheduler API,
which wakes up the device and executes our job every 12 hours.

In the next chapter, we will learn how to transfer data from and to the network using
effective asynchronous libraries and protocols, without even draining the battery.

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

So far, we have been using the HttpURLConnection HTTP client to transfer data
from and to the network, such as when downloading images from an HTTP server
and synchronizing information with a remote HTTP server. We have been using this
Android HTTP client blindly without going into much detail about the internals and
the features provided by this handy framework that deals transparently with the
HTTP protocol for us.

In this chapter, we'll learn more about the advanced features of HttpURLConnection
and fresh techniques to communicate asynchronously and securely with a remote
server using the HTTP protocol.

In the meantime, we will learn how use a customized HTTP client to communicate
over secure channels, tweak the HTTP client to deal with network delays, and learn
how to interact with web APIs.

In this chapter, we will cover the following:

* Introducing Android HTTP clients

* Performing HTTP requests asynchronously
* Interacting with JSON web APIs

* Interacting with XML web APIs

* Optimizing HTTP timeouts

* Communicating securely over SSL sessions

* HTTP open source libraries

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

Introducing Android HTTP clients

In recent times, the ability to send and receive data from remote servers has become
an essential feature that all applications should enforce in order to create dynamic
and impressive experiences. Today almost every application uses the network to pull
up data information, execute remote business logic operations, and download or
upload resources.

The network interactions that happen between the application and a remote server
are typically defined as a set of request/response messages that traverse the network
using a network protocol.

In general, the HTTP protocol is often used to transport messages between each peer,
and the Android SDK comes with two high-level HTTP clients available out of the
box to send and receive data: AndroidHttpClient and HttpURLConnection.

The HTTP communication protocol is a stateless, standard text-based application
protocol maintained by Internet Engineering Task Force (IETF) and the World
Wide Web Consortium (W3C) and is widely used on the Internet to exchange data
between a client, normally called a user agent, and a server.

The protocol has undergone some improvements over time, but most servers and

clients base their implementation on HTTP 1.1, a revision of the original HTTP 1.0,
which introduced the connection re-use feature and chunked transfer encoding to

the original protocol.

In a typical HTTP flow, the client, the entity that initiates the operation, sends a
request to the server over a connection and waits for the server's response. On the
other end, the server reads the request from the communication channel, processes
the request, and sends a response back to the client. In the next figure, we can
visualize a request and response example exchanged between peers:

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Request Response

GET /greetings HTTP/1.1 HTTP/1.1 200 OK

siapesy
siopeaH

This is an example

Apog

The new HTTP revision, 2.0, published in May 2015, hasn't been widely adopted and
there is no official support on the Android SDK.

After a preliminary HTTP protocol introduction, we will try to compare the HTTP
clients available on the Android SDK.

AndroidHttpClient

The AndroidHttpClient client library, based on the Apache HTTP client, has been
deprecated since API Level 9 (Gingerbread), but it provides a large and flexible API
to access HTTP servers with support for cookie management, timeout customization,
basic authentication schemes, and secure communication channels.

This client is more stable than Ht tpURLConnection on API Level 8 (Froyo) and API
Level 7 (Eclair).

On API Level 23 (Marshmallow), support for this client has been removed in favor
of Ht tpURLConnection due to the lack of transparent response compression and
response caching.

[217]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

HttpURLConnection

This client framework supports secure communication sessions (HTTPS), transparent
response compression, response caching, network timeout customization, network
connection polling, IPV6 support, proxy servers, and streaming.

According to Google, prior to API Level 8 (Froyo), this client has some important
issues that could spoil the HTTP connection re-use.

Since Android 4.4 (KitKat), this implementation engine is based
= on the open source OkHttp Square library.

Given that Ht t pURLConnection is the HTTP client recommended by Google for
Android versions greater than API Level 9, we will base our code examples on this

HTTP client. However, this fragmentation issue can be surpassed by using different
Android HTTP clients based on the API Level:

if (Build.VERSION.SDK INT >= 9) {
// After Gingerbread, use the google recommended
// client, HttpUrlConnection

} else {
// Prior to Gingerbread, use the Apache based
// client, AndroidHttpClient

}

In the next section, we will start to write our HTTP asynchronous toolkit based on
HttpURLConnection and explore the advanced features delivered by the client to
communicate with remote peers.

Performing HTTP requests
asynchronously

So far we have been using the Ht tpURLConnection client and AsyncTask to retrieve
remote data asynchronously in our code examples.

While this solution can work in most cases, we could end up with loads of duplicate
code in our applications.

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In this section, we will create a neat high-level asynchronous HTTP client to perform
remote requests outside of the main thread that forwards the result of the request to
the application's main thread using a callback handler. This approach fits well with
the application UI model because the callback handler, which executes on the main
thread, is able to update the UI with the data retrieved from the server.

First of all, let's define the basic interface that our asynchronous client should honor
to execute remote requests in the background:

public interface AsyncHTTPClient {
void execute (HTTPRequest request, ResponseHandler handler) ;

}

The HTTPRequest class is a Java model used to define all the parameters required to
build the HTTP request. We will omit some of the implementation details, but with
the help of the Builder class, we will be able to define the HTTP request verb, the
request URL, the HTTP headers, the HTTP query parameters, and the HTTP body:

public class HTTPRequest

final Verb mVerb;

final String mUrl;

final List<Header> mHeaders;

final Map<String, String> mParameters;
final Body mBody;

private HTTPRequest (Builder builder) {...}

}

ResponseHandler is the class that defines the callbacks that will be invoked when a
success or failure response is sent from the server, or an exception happens during
the operation execution. So, we'll define an abstract ResponseHandler class for the
subclasses to implement:

public abstract class ResponseHandler

// Method invoked when a success response is returned
// 200 Response Code
abstract public void onSuccess (HTTPResponse response) ;

// Method invoked when a failure response is returned
// 4XX, 50X
abstract public void onFailure (HTTPResponse response) ;

// Method Invoked when an error happens
abstract public void onError (Throwable error) ;

[219]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

All callback methods are forwarded automatically to the main thread when a
response or an error is ready to be dispatched to the handler. All the network and
input/output operations and memory allocations have to be done on the background
thread to avoid any UI undesired pauses.

When the server returns an HTTP response, one of the following methods,
onSuccess Or OnFailure, is invoked based on the code returned by the response
message. So, when any of the callbacks are called, an HTTPResponse object is
delivered for further processing.

For now, the HTTPResponse class carries information about the request code,
the response headers, and the response body:

public class HTTPResponse

final int mResponseCode;
final List<Header> mHeaders;
final Body mBody;

}

With the base classes and interface already defined, let's implement our
asynchronous high-level client with the help of the Ht tpURLConnection class.

Since we already know how to construct a background-processing pipeline based
on the AsyncTask class, for simplicity, we will base our implementation on this
construct. In the future, you can replace AsyncTask with AsyncTaskLoader to
support configuration changes:

public class HTTPAsyncTask extends
AsyncTask<HTTPRequest, Void, Result<HTTPResponses>> {

// Response Handler to be invoked In onPostExecute
// on the UI Thread
final ResponseHandler mHandler;

// Handler is passed on the constructor
public HTTPAsyncTask (ResponseHandler handler) {
this.mHandler = handler;

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

As defined in the preceding code, the input parameter type for our AsyncTask is
HTTPRequest and as a result an object of type Result<HTTPResponse> is sent to the
UI thread. The result, is a generic class, as defined in previous chapters, that is able to
carry an error or an HTTPResponse object.

With the HTTPAsyncTask generic parameters already defined, now it is time to
override doInBackground to send the HTTP request and process the response
in the background:

@Override

protected Result<HTTPResponse> doInBackground (HTTPRequest. ..
params) {

HTTPRequest request = params[0];

Body body = null;

HttpURLConnection conn = null;

Result<HTTPResponse> response = new Result<HTTPResponses () ;

try {

// Retrieve the request URL from the request object
URL url = new URL(request.mUrl) ;

// Opens up the connection to the remote peer
conn = (HttpURLConnection) url.openConnection() ;

// Set the HTTP Request verb
conn.setRequestMethod (request .mVerb) ;

// set The HTTP Request Headers
setRequestHeaders (conn, request) ;

// Allows Receiving data on the response
conn.setDoInput (true) ;

// Retrieve the response code
int responseCode = conn.getResponseCode () ;

// Build the HTTP Response Object
HTTPResponse.Builder builder = new HTTPResponse.Builder ()

. setResponseCode (responseCode) ;

// Fill the HTTP Response Headers

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

fillHeaders (conn.getHeaderFields (), builder) ;

// Read the Body from the Connection Input Stream
// using a factory
body = BodyFactory.read (conn.getContentType (),
conn.getInputStream()) ;
// Set the HTTPResponse body
builder.setBody (body) ;
// Build the HTTP Response Object
response.result = builder.build() ;
} catch (Exception e) {
response.error = e;
} finally {
if (conn != null) {
conn.disconnect () ;
}
}

return response;

}

// Write any header to the Request Ex: Accept: text/xml
void setRequestHeaders (HttpURLConnection con, HTTPRequest request)
for (Header header : request.mHeaders) ({
con.addRequestProperty (header.getName () , header.getValue()) ;

}
}

openConnection will establish a TCP connection with the resource specified
in the URL object. Once the connection is established, and we try to retrieve the
status line response code, our HTTP request headers and body are dispatched
to the network.

As soon as the status line is read, we process the HTTP response headers received
and we store them on our response object for further processing. As you probably
already know, an HTTP response might contain data on the HTTP message body,
related to the resource specified on the requested URL.

For further processing, the data will be consumed from the connection InputStream
in order to build a Body object. To detect the type of data content received on the
HTTP Response, the client should look into the header Content-Type content.

To simplify this recognition, the Ht t pURLConnection class provides the member
method, getContentType (), that retrieves the content directly from the header.

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The body consumption and construction is done on the BodyFactory class shown in
the following code:

public class BodyFactory {

public static Body read(String mimeType,
InputStream is) throws IOException {
Body result = null;
if (mimeType.startsWith("text"))
result = new TextPlainBody (mimeType) ;
result.consume (is) ;
}
return result;
}
}

Since we know the content type, we are ready to consume the body and store the
bytes received on a Body object for further processing by our ResponseHandler.

Body is an abstract class and itself is not able to read any kind of content, although
we can extend the Body class directly to build a text body from the received data.

Our Body subclass, called TextPlainBody, will implement the abstract consume
function in order to construct the body from the InputStream:

abstract void consume (InputStream is)
throws IOException;

The consume code for the TextPlainBody is omitted for brevity, though the full
source code is available to download from the Packt Publishing website. Take a look
at the TextPlainBody source code to appreciate how we build a string using the
InputStream.

For now, we only support the text/* type; however, in the next sections we are
going to extend the BodyFactory class to support other interesting mime types, such
as JSON documents.

Once the response body has been fully read, the connection with the remote server
will be closed and the resources held by the connection released.

The connection is not immediately destroyed but rather pushed to
%j%‘\ a connection pool for future use. After a finite amount of time idle
g (1dleTimeout) on the pool, the connection is destroyed.

[223]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

During the doInBackground execution, network or input/output exceptions are
likely to arise, so to avoid an application crash we must catch and forward them over
the result.error to the postExecute function and later to the ResponseHandler
specified when the execution is initiated.

Unchecked exceptions that propagate out of AsyncTask's methods will crash our
application, so we must test carefully and handle those if necessary.

To make our AsyncTask subclass useful, we have to write the onPostExecute
function that forwards the response or an error to the ResponseHandler object:

protected void onPostExecute (Result<HTTPResponse> result) {

if (result.error != null) {
mHandler.onError (result.error) ;
} else if (result.obj.mResponseCode ==
HttpURLConnection.HTTP_OK) {
mHandler.onSuccess (result.obj) ;
} else {
mHandler.onFailure (result.obj) ;

. Asstated before in Chapter 3, Exploring AsyncTask, the
% onPostExecute callback will be executed on the main thread,
=" so you should avoid any time-consuming operations on the
following callbacks: onError, onSucess, and onFailure.

All that remains is to invoke our AsyncTask from our AsyncHTTPClient
subclass — PacktAsyncHTTPClient:

public class PacktAsyncHTTPClient implements AsyncHTTPClient

@Override
public void execute(HTTPRequest request,
ResponseHandler handler) {
// Execute the HTTP Request on the default AsyncTask Executor
new HTTPAsyncTask (handler) .execute (request) ;

}
.

Great! Now we have a core asynchronous HTTP client implementation with support
for text mime types. In the next section we will use our high-level client to retrieve a
text message from a remote server.

[224]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Retrieving a text response

With our asynchronous HTTP client supporting text responses, we are able to make
use of it to obtain a dynamic text so, let's create an activity that displays the text
available on a remote URL resource.

First, we have to build our HTTPRequest using the HTTPRequest . Builder class:

protected void onCreate (Bundle savedInstanceState) {

HTTPRequest .Builder builder = new HTTPRequest.Builder() ;
// Set the HTTP Verb to GET

builder.setVerb (HTTPRequest .Verb.GET) ;

// Sets location of the remote resource

builder.setUrl ("http://<hostnames>:<port>/greetings") ;

// Build the request object

HTTPRequest request = Dbuilder.build() ;

}

We wish to draw your attention to the fact that you should replace <hostname> and
<port> to make it work for your HTTP server.

As defined before, in order to execute the request over our asynchronous client,
AsyncHTTPClient, we must provide a ResponseHandler object to the execute
method. Moreover, we want to define an object that updates the UI with the text
obtained.

First of all, we will extend our ResponseHandler abstract and create a class to
process the body and forward the response to a callback that receives the text
message as the input:

public abstract class TextResponseHandler
extends ResponseHandler {
// Response Callback receiving the string body
abstract void onSuccess (String response) ;

@Override

public void onSuccess (HTTPResponse response) {
TextPlainBody body = (TextPlainBody)response.mBody;
// Invoke the callback that receives a string
onSuccess (body.getContent ()) ;

[225]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

Next, we need to finish our Activity code to send the HTTP request and in the
meantime we will also present a progress dialog making the user aware that
something is going on in the background:

HTTPRequest request = Dbuilder.build() ;

// Create a client Instance object

PacktAsyncHTTPClient client = new PacktAsyncHTTPClient () ;
// Enable a progress bar

ProgressBar pb =(ProgressBar) findViewById(R.id.loading) ;
pb.setVisibility (View.VISIBLE) ;

// Retrieve the response on the background
client.execute (request, textResponseHandler) ;

Now, all we need is to define our textResponseHandler, an anonymous inner class
that implements TextReponseHandler, updates the View with the string received,
and dismisses the indeterminate progress dialog enabled:

TextResponseHandler greetingsHandler = new TextResponseHandler () {

// Invoked when request was processed with success by the server
@Override
void onSuccess (String response) {

// Update the View with the String received on the

// HTTP body

EditText et = (EditText) findViewById(R.id.inputText) ;
et .setText (response) ;

dismissProgress () ;

// Invoked when the served returned an error
@Override
public void onFailure (HTTPResponse response) {
Log.e ("GreetingsActivity", "Server returned an error: " +
response.mResponseCode + " " +
response .mResponseMessage) ;
dismissProgress () ;

// Invoked when an error happened
@Override
public void onError (Throwable error) {

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Log.e ("GreetingsActivity", "Exception happened: " +
error.getMessage (), error) ;
dismissProgress () ;

}
}i

Notice that all the callback functions are going to be executed on the main thread,
so in these functions you should follow the golden rule of not blocking the thread to
avoid Ul delays.

When the server returns an error or an exception happens during the execution, the
following callback methods, onFailure and onError, are called respectively.

Support for reading text resources from a remote server is a good starting point,
although in most cases we intend to communicate with the remote server to
exchange structured document formats, such as JSON, XML, or even binary data.

Interacting with JSON web APIs

Our previous TextResponseHandler is able to process the generic response
HTTPResponse fulfilled with a text response and forward a String coming from JSON
web APIs and forward a String to the TextResponseHandler onReceive (String)
callback.

Now we want to go a little further and convert an HTTPResponse returned from
the doInBackground to a Plain Old Java Object (POJO) that characterizes a model
on our business logic. To achieve that, we must convert a JSON-structured content
returned on the HTTP body to one Java defined previously.

To forward the processing to the callbacks defined above, we will create the
JSONResponseHandler, an abstract subclass of ResponseHandler that implements
onSuccess (HTTPResponse), onFailure (HTTPResponse), and convert the objects to
<ResponseType> and <ErrorType> respectively:

public abstract class JsonResponseHandler<ResponseType, ErrorTypes
extends ResponseHandler

abstract public void onSuccess (ResponseType response) ;
abstract public void onFailure (ErrorType response) ;

[227]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

To support the processing of different body contents, our BodyFactory needs an
update. So, before we move on to the JSONResponseHandler implementation, we
will update our BodyFactory function to support the application/json mimetype:

public class BodyFactory {

public static Body read(String mimeType,
InputStream is)
throws IOException {

} else if (mimeType.startsWith("application/json")) {
result = new RawBody (mimeType) ;
result.consume (is) ;
}
return result;
}
}

Notice that we read the content from the network and we store the data on a new
Body class named RawBody that simply stores the content that comes from the HTTP
Response body on an internal byte memory buffer.

. Storing the full body might work for our simple client use cases.
% Although, if we are willing to process bodies with megabytes of
= data, we must use another strategy to read and consume the body,
consume the body in chunks, or save the body on a local filesystem.

With the body already with JSON web APIs stored on the device memory, we are
ready to process it with the help of our JsONResponseHandler.

Converting Java objects to JSON

To convert the JSON document format to a plain object we will make use of one open
source library that's very well known in the Android community — the Google GSON
library: https://github.com/google/gson.

The GSON library, a library developed and maintained by Google, is able to convert
Java objects to a JSON object and vice versa.

So, before you move on, make sure that you add the library to your Gradle or
Eclipse project:

compile 'com.google.code.gson:gson:2.5'

[228]

www.it-ebooks.info

https://github.com/google/gson
http://www.it-ebooks.info/

Chapter 8

To convert from a protocol encoded content body to a POJO, we will define the
BodyDecoder interface:

public interface BodyDecoder <T> {
T decode (Body body) throws Exception ;

}

To convert from a POJO to a Body object, we are going to define the BodyEncoder
interface:

public interface BodyEncoder<Ts> {
Body encode (T obj,String mimeType) throws Exception;

}

To decode a JSON document to a POJO, we will have to subclass this generic
interface and write the code to deal with the JSON decoding with the help of the
GSON library:

public class JSONConverter<POJO>
implements BodyEncoder<POJO>, BodyDecoder<POJO> {
// Store the Generic Type information
private final Type pojoType;

JSONConverter (Type pojoType) {
this.pojoType = pojoType;

@Override
public POJO decode (Body body) throws Exception
Gson gson = new Gsonf() ;
RawBody rawBody = (RawBody) body;
InputStream is = null;
POJO obj = null;
try {
is = new ByteArrayInputStream(rawBody.getContent ()) ;
BufferedReader bfReader =
new BufferedReader (new InputStreamReader (is)) ;
obj = gson.fromJson (bfReader, pojoType) ;
} finally {
if (is != null) is.close();
}

return obj;

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

Finally, we are ready to implement our generic JSONResponseHandler that
forwards the converted JSON-structured documents returned on the onSuccess
and onFailure methods to the generic types Response and Error.

Here is how the JsonResponseHandler code will look:

public abstract class JsonResponseHandler<ResponseType, ErrorTypes>
extends ResponseHandler {
// Store the Response Type class information
private final Type responseType;
// Store the Error Type class information
private final Type errorType;

JsonResponseHandler (Type responseType, Type errorType) {
this.responseType = responseType;
this.errorType = errorType;

// Callback invoked on the main Thread that converts

// a body to a POJO object

@Override

public void onSuccess (HTTPResponse response) {
RawBody body = (RawBody)response.mBody;

if (body != null) {

Response obj = null;
try {
obj = new JSONConverter<Responses> (responseType) .

decode (body) ;
onSuccess (obj) ;
} catch (Exception e) {

onError (e) ;

} else {
onSuccess ((Response)null) ;

}

@Override
public void onFailure (HTTPResponse response) {...}

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

This generically typed class is able to consume the RawBody object forwarded

from onSuccess or onFailure and expose two generic type parameters. The first
Response is a generic type that specifies the type of POJO class for the success
response (onsSuccess) and the Error generic type that specifies the type of POJO

class for the error function (onFailure).

When any of the callback functions that receive the HTTPResponse is invoked, with
the help of the GSON library we convert the JSON document, stored on the RawBody,

to a response/error object.

The onFailure function is omitted because its code is quite similar to the onSuccess
method; however, you can take a look at the full source code on the Packt Publishing

website to understand the differences.

Finally, we are ready to exercise our asynchronous client by reading a model from an

HTTP JSON body:

Content-Type: application/json

{

"userId": 1,
"idv: 1,
"title": "..",
"body": "..."
1

]

To test our client we will take advantage of JsoNPlaceHolder (http://
jsonplaceholder.typicode.com/), a fake online REST API for testing and

prototyping.

Before we try to access it, let's define the user POJO class that we will use in
our example:

public class User ({
public int id;
public String name;
public String username;
public String email;
public String phone;
public String website;

[231]

www.it-ebooks.info

http://jsonplaceholder.typicode.com/
http://jsonplaceholder.typicode.com/
http://www.it-ebooks.info/

Interacting with the Network

And we will define a POJO class for the failure function:

public class Error {
public int resultCode;
public String resultMessage;

}

To display the models returned from the fake API, we'll create a new
UserListActivity that will implement JSONResponseHandler and display
the name and the e-mail of all the users with the JSON document returned from
http://jsonplaceholder.typicode.com/users.

Let's start by defining the JsonResponseHandler<List<User>, Error> anonymous
class that receives a list of users as an argument , List<User>, for the success
callback and an Error object as the argument for the failure callback.

onSuccess (List<Users>) will update a ListView that displays the name followed
by the e-mail:

JsonResponseHandler<List<User>, Error> jsonResponseHandler =
new JsonResponseHandler<List<Users>, Errors (
new TypeToken<ArrayList<User>>() {} .getTypel(),

new TypeToken<Errors () {} .getType ()) {
// On Success Callback
@Override

public void onSuccess (List<User> users)
// Update the List View with the a List Adapter that displays
// the user name and email per user
ListView listView = (ListView) findViewById(R.id.usersList);
ListAdapter adapter = new UserListAdapter (
UserListActivity.this, users);
listView.setAdapter (adapter) ;
}
// Prints the Error object
@Override
public void onFailure (Error response)
Log.e ("UserListActivity",
"Error happened retrieving greetings " +
response.toString()) ;
}
@Override
public void onError (Throwable error) {
// Do Something with the exception

}

[232]

www.it-ebooks.info

http://jsonplaceholder.typicode.com/users
http://www.it-ebooks.info/

Chapter 8

All that remains is to write the Activity's onCreate function that builds up the HTTP
Request and dispatches the request, GET /users, to the JSONPlaceHolder AP

@Override

protected void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;
setContentView (R.layout.user list layout) ;

HTTPRequest.Builder builder = new HTTPRequest.Builder() ;

// Set the HTTP Verb to GET

builder.setVerb (HTTPRequest .Verb.GET) ;

// Sets location of the remote resource

builder.setUrl ("http://jsonplaceholder.typicode.com/users") ;

// Notify the server that the client is able to receive json
// documents

builder.addHeader (new Header ("Accept", "application/json")) ;
HTTPRequest request = builder.build();

PacktAsyncHTTPClient client = new PacktAsyncHTTPClient () ;
client.execute (request, jsonResponseHandler) ;

}

When the server sends back a response to our request, the JSONResponseHandler
object will decode the JSON document with a list of 10 users and convert the
document to a List<User> object.

The JSON data exchange format has predominantly been used on most recent APIs
and web services deployed on the Internet because of its simplicity, readability,
compactness, and lack of data structure rigidity.

However, XML-based remote web services, mainly based on the SOA data exchange
protocol, are still around to cover advanced use cases where we want to have stricter
data model schema validation and modelling, built-in namespace support, and
advanced information extraction tools.

XML-based APIs have lost some traction in the industry, although the XML-based
APIs are still common, so in the next section we will extend our toolkit to support the
encoding and decoding of XML content on our HTTP requests.

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

Interacting with XML web APIs

Over the last 10 years, XML message-based APIs have been successfully used to
exchange data (SOAP) and run remote procedures (XML-RPC) between applications
and remote servers. Moreover, nowadays, some REST APIs are built with JSON and
XML support, so it's up to the developer to decide whether they want to interact
with the API using XML or JSON documents.

With this in mind, we will extend our toolkit to exchange XML messages in order to
communicate with the remote server.

In the preceding sections, we implemented a ResponseHandler to decode JSON
documents sent on the HTTP body, but now we want to go further and add support
for sending XML documents on the HTTP Request.

If we go back into our HTTPAsyncTask details, the code required to support body
transmissions on the request was lacking; therefore, this is the perfect time to rewrite
the code to carry an entity body on the HTTP request:

@Override
protected Result<HTTPResponse> doInBackground (HTTPRequest... params) {
if (request.mBody != null) {

// Allows Sending data on the request
conn.setDoOutput (true) ;
// Specifies The Content-Type based on the Body Mime Type
conn.setRequestProperty (
"Content-type", request.mBody.getMimeType()) ;

// Retrieves the connection stream to write content
OutputStream os = conn.getOutputStream() ;
request.mBody.write (os) ;

}

// Retrieve the response code

int responseCode = conn.getResponseCode () ;

}

In the preceding code, when a body is available on the HTTPRequest object and
before we try to read the responsecCode of the response status line, we retrieve the
output stream from the Ht t pURLConnection and we write the content stored on the
Body object.

Apart from the data written, the header Context-Type is set on the HTTP request
header section based on the body's mimetype.

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Now, we are ready to send and receive entity bodies on the HTTP request and
response respectively, so now we can start to work on our XML implementation
example.

In the next paragraphs, and following the JSON section, we will write the code to
serialize an API Request into an XML document and the code to de-serialize XML
documents, received on response, to an API Response object.

Converting Java objects to XML

To de-serialize and serialize from Java objects to XML and vice-versa, we will
use the open source library SimpleXML (http://simple.sourceforge.net/);
therefore, to make use of it, please add this library to your application list of
external dependencies.

If you use Android Studio, here is the content to add to your build.gradle list
of dependencies:

dependencies {

compile ('org.simpleframework:simple-xml:2.7.+") {
exclude module: 'stax'
exclude module: 'stax-api'
exclude module: 'xpp3'

}
}

With the user model defined previously we will build up a APIRequest named
GetUserInfo that will get the user details (GetUserInfoResponse) for the user
identifier submitted in the request.

To describe this further, let's define the API Request POJO objects:

@Root (name = "GetUserInfo")

@Namespace (prefix="p",
reference="https://www.packtpub.com/asynchronous_android")

public class GetUserInfo {

@Namespace (reference=
"https://www.packtpub.com/asynchronous_android")
@Element (name="UserId")
public String userId;
// .. Setters and Getters

[235]

www.it-ebooks.info

http://simple.sourceforge.net/
http://www.it-ebooks.info/

Interacting with the Network

And let's define the API Response POJO object:

@Root
@Namespace (prefix = "p",
reference = "https://www.packtpub.com/asynchronous android")

public class GetUserInfoResponse

@Element (name = "User")
@Namespace (prefix = "p",
reference = "https://www.packtpub.com/asynchronous android")

private User user = new User();
// .. Setters and Getters

}

The annotation for the other classes, User, Address, and Company, are quite similar
to the ones above, with all the elements referring to the https://www.packtpub.
com/asynchronous_android namespace, hence we will omit the POJO changes
for brevity.

With the mapping between the Java objects and XML Request and response message
finished, let's start to work on the code that converts the GetUserInfo object into an
XML document.

To encode an XML document from a Java object, we will subclass this generic
interface to encode a POJO generic type into an XML document with the help of
SimpleXML:

public class XMLConverter<POJO>
implements Encoder<POJO>{

private final Class<POJO> clazz;
XMLConverter (Class<POJO> clazz){ this.clazz = clazz; }

@Override
public Body encode (POJO obj, String mimeType)
throws Exception {

// Creates SimpleXML Serializer Instance
Serializer serializer = new Persister();

ByteArrayOutputStream output = new ByteArrayOutputStream() ;

// Converts from obj -> xml document
serializer.write (obj, output) ;

// Build a RawBody body

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

RawBody body = new RawBody (mimeType) ;
output.close() ;

// Stores the result on the body
body.setContent (output.toByteArray()) ;
return body;

Converting XML to Java objects

To decode an XML document to a Java POJO object we will add the
BodyDecoder<P0OJO> to the XMLConverter class definition interface and write the
code to convert the XML document to a POJO generic class with the help of the
SimpleXML library:

public class XMLConverter<POJO>
implements BodyEncoder<POJO>, BodyDecoder<POJO> {

@Override
public POJO decode (Body body) throws Exception {
// Instantiate a SimpleXML Serializer
Serializer serializer = new Persister () ;
InputStream is = null;
RawBody rawBody = (RawBody)body;
POJO obj = null;
try {
is = new ByteArrayInputStream(rawBody.getContent ()) ;
BufferedReader bfReader =
new BufferedReader (new InputStreamReader (is)) ;

obj = (POJO) serializer.read(clazz, bfReader);
} finally {
if (is != null) is.close();

}

return obj;

}

With the XML serialization and deserialization already in place, let's start to write
the activity that will retrieve the user information from a remote server using the
GetUserInfo and GetUserInfoResponse defined above and display the user
information on a UL

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

To test our client, we will create a fake XML WebService with the help of the
mockable https://www.mockable.io/ web application. This web application allows
us to create configurable REST APIs that return a static JSON or XML document as

a response to the clients, so this tool will be extremely helpful to test our client in a
controlled environment.

Our fake HTTP API will return the following XML document when any HTTP
request is sent to the following URI, http://demo1472539.mockable.io/
GetUserInfo:

<?xml version="1.0" ?>
<p:GetUserInfoResponse
xmlns:p="https://www.packtpub.com/asynchronous_android">
<p:User>
<p:Id>12</p:Id>
<p:Name>John</p : Name >
<p:Username>John</p:Username>

<p:Company>
<p:Name>Packt</p:Name>

</p:Company>
</p:User>
</p:GetUserInfoResponse>

In order to convert the HTTPResponse objects received by the

onSuccess (HTTPRequest) and onFailure (HTTPResponse) callbacks to domain
models, we will have to subclass the ResponseHandler abstract class and create the
code to de-serialize a generic POJO class:

public abstract class XMLResponseHandler
<Response, Error> extends ResponseHandler {

// Class used to by Simple to convert to the ResponseTYpe
private final Class<Response> responseClass;

private final Class<Error> errorClass;
XMLResponseHandler (Class<Responses> responseClass,
Class<Error> errorClass) {

this.responseClass = responseClass;
this.errorClass = errorClass;

// Callback invoked with the converted Response object instance

[238]

www.it-ebooks.info

https://www.mockable.io/
http://demo1472539.mockable.io/GetUserInfo
http://demo1472539.mockable.io/GetUserInfo
http://www.it-ebooks.info/

Chapter 8

abstract public void onSuccess (Response response) ;

// Callback invoked with the converted Error object instance
abstract public void onFailure (Error response) ;

// Convert the body to a POJO object using the our converter
@Override
public void onSuccess (HTTPResponse response) {

RawBody body = (RawBody)response.mBody;

if (body != null) {

Response obj = null;
try {
obj = new XMLConverter<Responses (responseClass)

decode (body) ;
onSuccess (obj) ;

} catch (Exception e) {
onError (e) ;

}

} else { onSuccess((Response)null); }

}

//.. Failure elided for brevity

}

Now we are ready to collect the GetUserInfoResponse dispatched from
our fake server, so let's implement, on our Activity, an anonymous inner
XMLResponseHandler subclass that will update the UI with user details:

XMLResponseHandler<GetUserInfoResponse, Error> xmlResponseHandler
= new XMLResponseHandler<GetUserInfoResponse, Errors (
GetUserInfoResponse.class, Error.class) {

// Updates the UI with the user details

@Override

public void onSuccess (GetUserInfoResponse getUserInfoResponse) {
TextView nameTv = (TextView)findViewById(R.id.nameValue) ;
TextView emailTv = (TextView)findViewById(R.id.emailValue) ;

nameTv.setText (getUserInfoResponse.getUser () .name) ;
emailTv.setText (getUserInfoResponse.getUser () .email) ;

}

@Override
public void onFailure (Error response) {

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

// Do Something with the Error
}
@Override
public void onError (Throwable error) {
// Do Something with the Throwable
}
i

To finish our Activity, we will have to build the request and ask our asynchronous
client to execute our demand in the background with the help of the HTTPAsyncTask
class:

HTTPRequest.Builder builder = new HTTPRequest.Builder() ;
// Set the HTTP POST Verb
builder.setVerb (HTTPRequest .Verb.POST) ;

// Set location of the remote resource
builder.setUrl ("http://demol472539.mockable.io/GetUserInfo") ;

// Tell the Server that you are able to consume
// application/xml contents on the response
builder.addHeader (new Header ("Accept", "application/xml")) ;

// Build the Request Body object
GetUserInfo query = new GetUserInfo() ;
query.setUserId("123") ;
try {
// Encode the POJO into a XML Document
Body body = new XMLConverter<GetUserInfos> (GetUserInfo.class)
.encode (query, "application/xml") ;
builder.setBody (body) ;
} catch (Exception e) {
// Catch and display and error to the user

}

PacktAsyncHTTPClient client = new PacktAsyncHTTPClient () ;
client.execute (builder.build (), xmlResponseHandler) ;

Once the response is returned from the fake server, the Ul will be updated to show
the user name, e-mail, and other properties, based on the XML specified on the
fake endpoint.

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Nothing is mentioned about the error flow; however, I will challenge you to create a
fake endpoint that returns an error object to exercise the onError callback. The full
source code with the error flow is available to download from the Packt Publishing
website. Take a look at it to appreciate how error handling is implemented. The error
XML document might be something similar to this:

<?xml version="1.0"?>

<p:Error
xmlns:p="https://www.packtpub.com/asynchronous_android">

<p:ResultCode>1000</p:ResultCode>

<p:ResultMessage>The LDAP Server is down</p:ResultMessage>

</p:Error>

So far, we have covered most common formats (Text, XML, and JSON) used in the
industry to exchange data between HTTP clients and servers. Each of these formats
has its own strengths; however, for its compactness and simplicity (easy parsing,
syntax, and so on), the JSON format has been widely adopted by API designers,
electronics manufacturers, and Software as a Service (SaaS) vendors.

During this process, we will build up a core framework that could be easily
extended to support different data exchange formats, such as YAML or binary
protocols. Therefore, you might write your own BodyEncoder, BodyDecoder, and
ResponseHandler to fit a standard data format or even your own data format.

In this section, we will introduce the reader to a set of timeouts available on the
HttpUrlConnection used to accommodate network delays on the request execution.

Customizing HTTP timeouts

When Ht tpUrlConnection connects, reads, or writes content over a low bandwidth
network (2G, 3G, and so on), the exposure to unpredictable communication delays
can not be avoided. Moreover, apart from the mobile network delays, the HTTP
servers might introduce significant response delays (server latency) when they are
experiencing high volumes of traffic.

Although the default timeout values used by the the Ht tpUrlConnection are long
enough to cope with these delays, there are some special use cases where you might
want to customize the default values according to your needs. For example, when on
the way to the application server, the HTTP request travels through some proxies.

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

HttpUrlConnection offers us two member methods that can be used to change the
default timeouts:

void setConnectTimeout (int timeoutMillis)
void setReadTimeout (int timeoutMillis)

setConnectTimeout (int) is able to redefine the maximum time in milliseconds
that our client is allowed to wait until the TCP connection to the remote host is
established (server is down). ConnectTimeoutException will be thrown whenever
the connection fails, for example, if the server is down or is not able to respond in
time due to lack of resources, so you should be careful and handle this exception
cleanly in your code.

When the hostname resolves into multiple addresses, the client will try to connect
one after the other and the timeout will be applicable multiple times. If the timeout
is set to 0, the connection will be blocked until the TCP timeout expires, which on
Android is normally several minutes.

setReadTimeout (int) defines the maximum time that our client is allowed to

be blocked on the read operation until any available data is allowed to be read.

The default value 0 will block the read operation indefinitely until data becomes
available, the connection is dropped by the remote peer, or an error occurs on the
socket. When the timeout is longer than 0 and no data is available when the timeout
expires, a SocketTimeoutException will be thrown.

Now that we understand the meaning of each timeout, let's update our
HTTPRequest .Builder with some new setter methods:

public class HTTPRequest {
public static class Builder ({

private int mReadTimeout = 0; // Default Value
private int mConnectTimeout = 0; // Default Value

public void setConnectTimeout (int connectTimeoutMs)
this.mConnectTimeout = connectTimeoutMs;

public void setReadTimeout (int readTimeoutMs) {
this.mReadTimeout = readTimeoutMs;

[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Finally, we have to update HTTPAsyncTask to set the timeouts specified on
the HTTPRequest, on the Ht tpURLConnection object used to connect to the
remote server:

public class HTTPAsyncTask extends
AsyncTask<HTTPRequest, Void, Result<HTTPResponses>> {
@Override
protected Result<HTTPResponse> doInBackground (
HTTPRequest... params) {
conn = (HttpURLConnection) url.openConnection() ;
conn.setReadTimeout (request .mReadTimeout) ;
conn.setConnectTimeout (request .mConnectTimeout) ;

}
}

It's highly recommended that you test your customized timeouts under several
network latency levels and take into account the time that your server could defer
the response for a couple of seconds when it is under load.

A typical network delay could go from 80-120 ms on an LTE mobile network
to 150-550 ms on a GPRS mobile network

When you run your application on the Internet and you have to deal with

sensitive data, such as personal information, payment information, or business
documentation, it is really important to protect your communication channels with a
security layer that hides the exchanged data from an outside attacker or avoids any
spoofing attacks. In the next section, we will expand our high-level client to support
a secure SSL connection channel to the remote server.

Communicating securely over SSL
sessions

So far, we have been using plain connections to communicate with a remote HTTP
server. Despite the fact that these kinds of connections might fit your application
requirements when the data exchanged is not sensitive, there are use cases where
we must use a secure channel to send or receive, preventing any third party from
reading or changing the data exchanged on the network.

[243]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

In order to setup an SSL session with a remote server, our client, with the help of
some cryptographic tools, will create a cryptographic communication channel where
all the data is encrypted with a symmetric cipher that uses a secret key exchanged
during the secure connection handshake. Apart from that, the content received and
encrypted with a previously exchanged secret key is validated against other peer
public keys to prove that the data is coming and signed from the right source.

During the connection establishment, as part of the SSL handshake, the server has
to prove that it holds a private key for a trusted certificate. A trusted certificate is a
certificate that is available from our list of trusted Certificate Authorities (CAs) or it
was signed by one of the certificates available from your trusted CAs.

The Android platform comes out-of-the-box with a list of
% well-known trusted CAs that help us to assure the identity
e of most servers on the Internet.

Therefore, when we are contacting to a server with a certificate signed by a
well-known CA, the code used before to create an HTTPS connection does
not require any changes:

URL url = new URL("https://packtpub.com") ;
con = (HttpsURLConnection) url.openConnection() ;

This code example will create an SSL connection using the default cryptographic
cipher suite specified on the Android platform and validate the server against the
platform CAs.

Although this can work in most of the cases, it might be necessary to use

a specific CA, a list of trusted certificates, or only the safest ciphersuite (TLSv1)i

In the cases where the developer has to build their own ssLcontext and specify
their own TrustManagers and KeyManagers in order to connect successfully to the
remote server.

In the next paragraphs we are going to extend our client to use private keys and
CAs stored on Java keystores in order to validate and communicate with a server of
which the Certificate authority (CA) is managed by us.

First of all, we will create an ssLOptions class where we define the cipher suite that
we want to use in our SSL session:

public class SSLOptions

enum CipherSuite {

DEFAULT ("Default"), // Supported on Android API Level > 9
SSL("SSL"), // Supported on Android API Level > 9
[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

SSLv3 ("SSLv3"), // Supported on Android API Level > 9
TLS("TLS"), // Supported on Android API Level > 1
TLSv1 ("TLSv1l"), // Supported on Android API Level > 1+
TLSvl 1("TLSvl1l.1"), // Supported on Android API Level > 16+
TLSvl 2 ("TLSv1.2"); // Supported on Android API Level > 16+
}
// Cipher Suite used on the connection

final CipherSuite cipherSuite;
final SSLContext sslContext;

public SSLOptions (Context ctx, Builder builder)
throws Exception {
// Build up our own SSLContext
sslContext = SSLContext.
getInstance (cipherSuite.toString()) ;
// Will use the Android default KeyManager and TrustManager
sslContext.init (null,null,new SecureRandom()) ;

public static class Builder
private CipherSuite cipherSuite = CipherSuite.DEFAULT;

SSLOptions build(Context ctx) throws Exception {
return new SSLOptions(ctx, this);

}

With the preceding code we are able the control the cipher suite used by our
SsLContext; however, in order to use our own private key, certificates, and trusted
CAs, we will have to initialize the SSLContext with our own TrustManager and
KeyManager:

void init (KeyManager[] km, TrustManager[] tm, SecureRandom sr)

For simplicity, we will load our KeyManagers and TrustManager from a keystore file
stored on the application assets directory. The Java keystore is available on the Packt
Publishing website. So, before we go any further, download the asynchronous_
client.ks file from the Packt website with a ready-to-use private key, a certificate,
and the custom CA certificate that signed the certificate as the trusted Authority.

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

. Notice that you can build your own TrustManager and
% KeyManager custom subclass that can load the private key
& and the certificates from a different source but for simplicity
we will load them from a file.

Let's take a look at our asynchronous_client.ks java keystore file with the help
of the keytool application.

On the command line, please run the following command to list the content of the
keystore:

keytool -list -v -keystore asynchronous client.ks -storetype BKS
provider org.bouncycastle.jce.provider.BouncyCastleProvider
providerpath becprov-jdkl5on-146.jar

Alias name: asynchronous client

Entry type: PrivateKeyEntry

Certificate([1]:

Owner: C=UK, ST=Birmingham, L=Birmingham, O=Packt Publishing, OU=Packt
Publishing, CN=asynchronous_client

Issuer: C=UK,..,CN=packt

Certificate([2]:

Owner: C=UK,..,CN=packt

Alias name: ca

Entry type: trustedCertEntry
Owner: C=UK,..,CN=packt
Issuer: C=UK,..,CN=packt

Our keystore file, which will act as the trusted store file and keystore file, has a
public and private key named asynchronous_client and a trusted CA named ca.
The keytool requires the Bouncy Castle Provider JAR to read the the file contents, so
before, please download the file from the Packt website.

Notice that since we have C=UK, ST=Birmingham, L=Birmingham, O=Packt
Publishing, and CN=packt as a trusted CA, we will allow our HTTP to connect with
SSL endpoints that present a certificate signed by this authority or a certificate where
all intermediate certificates are trustworthy (a trusted certificate chain).

Every Android device comes with a pre-installed list of
trusted certificates that can be used to authenticate a secure

remote peer.

[246]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Now that we know the details about our keystore and truststore, let's update our
SSL options to load the KeyManager and TrustManager from the asynchronous_

client.ks:

public class SSLOptions {
final CipherSuite cipherSuite;
final SSLContext sslContext;
private final String keyStore;
private final String keyStorePassword;
private final String trustStore;
private final String trustStorePassword;

public SSLOptions (Context ctx, Builder builder)
throws Exception {

sslContext = initSSLContext (ctx) ;

}

// Initialize the SSLContect with loaded
private SSLContext initSSLContext (Context ctx)
throws Exception {

KeyManagerFactory kmf = getKeyManagerFactory (ctx) ;

TrustManagerFactory tmf = getTrustManagerFactory (ctx) ;

// Use the cipher suite defined SSL, SSLv3 , TLS,
SSLContext result = SSLContext.getInstance (
cipherSuite.toString()) ;

result.init(kmf != null ? kmf.getKeyManagers ()
tmf != null ? tmf.getTrustManagers ()
new SecureRandom()) ;

return result;

}

Notice that we initialize SSLContext using the Keymanager list and TrustManager
list returned by KeyManagerFactory and TrustManagerFactory respectively.
Hence, the next step is to write the code member method to acquire our factories.

So, let's start with the getKeyManagerFactory:

KeyManagerFactory getKeyManagerFactory (Context ctx)
throws Exception {
KeyManagerFactory kmf = null;
// Initialize Key store

[247]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

if (keyStore != null) {
// Load the file keystore from the assets directory
InputStream keyStorels = ctx.getResources() .
getAssets () .open (keyStore) ;
String algorithm = KeyManagerFactory.getDefaultAlgorithm() ;
kmf = KeyManagerFactory.getInstance (algorithm) ;

// Create BouncyCastle Key Store
KeyStore ks = KeyStore.getInstance ("BKS") ;

// Load the Keymanagers available on the file using
// a password

ks.load (keyStoreIs, keyStorePassword.toCharArray());
kmf.init (ks, keyStorePassword.toCharArray());

}

return kmf;

}

The previous code will load up a public and private key from a BCS keystore that we
previously prepared. So, all that remains is the get TrustManagerFactory function
used to load our trusted CA:

TrustManagerFactory getTrustManagerFactory (Context ctx)
throws Exception ({

TrustManagerFactory tmf = null;

if (trustStore != null) {

InputStream keyStorels = ctx.getResources() .
getAssets () .open(trustStore) ;

String algorithm = TrustManagerFactory.getDefaultAlgorithm() ;
tmf = TrustManagerFactory.getInstance (algorithm) ;
KeyStore ts = KeyStore.getInstance ("BKS");
ts.load (keyStorels, trustStorePassword.toCharArray()) ;
tmf.init (ts) ;

}

return tmf;

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Now that we have the sSLOptions class to initialize our SSLContext, let's move on
to the HTTPRequest and update our Builder to store the SSLOptions:

public class HTTPRequest
final SSLOptions mSSLOptions;

private HTTPRequest (Builder builder) {
this.mSSLOptions = builder.mSSLOptions;

public static class Builder ({
private SSLOptions mSSLOptions = null;

public Builder setSSLOptions (SSLOptions options)
this.mSSLOptions = options;
return this;

}

Finally, we are ready to update our HTTPAsyncTask to use our SSLOptions object
in order to customize our SSL client endpoint. Hence, we will be able to verify

the identity of our server that has a certificate signed by our own CA (c=Uk,
ST=Birmingham, L=Birmingham, O=Packt Publishing, CN=packt) and vice-versa:

@Override
protected Result<HTTPResponses>
doInBackground (HTTPRequest... params)
// Retrieve the request URL from the request object
URL url = new URL(request.mUrl) ;
// Opens up the connection to the remote pper
conn = initConnection (request, url) ;

HttpURLConnection
initConnection(HTTPRequest request, URL url) throws IOException {

HttpURLConnection genCon = (HttpURLConnection) url.
openConnection () ;
if (url.getProtocol().equals ("https"))
[249]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

HttpsURLConnection con = (HttpsURLConnection) genCon;
// Apply our SSL Options to the connection
if (request.mSSLOptions != null) {

applySSLContext (request, con) ;

}

return result;
}
void
applySSLContext (HTTPRequest request, HttpsURLConnection con) {
// Initialize the SSL Session with your own
// keystore and truststore
if (request.mSSLOptions != null) {
SSLContext ctx = request.mSSLOptions.sslContext;
con.setSSLSocketFactory (ctx.getSocketFactory()) ;
con.setHostnameVerifier (new AcceptAllHostNameVerifier()) ;

}

Notice that our implementation does not perform hostname verification, because the
server CN might not match the server hostname used to contact the HTTP server.

However, if you want to be stricter about this, change the setHostnameverifier
line to use the default behavior, implement your own HostnameVerifier, or

use the hostname verifiers available on the Android SDK, such as the Apache
X509HostnameVerifier that checks whether the supplied hostname matches any of
the supplied certificate CNs or Subject-Alts.

Finally, let's illustrate how to use our client to connect to a server that possesses a
certificate with the following certificate chain:

// Server Certificate

Certificate([1]:

Owner: CN=asynchronous_server, OU=Packt Publishing, O=Packt
Publishing, L=Birmingham, ST=Birmingham, C=UK

Issuer: CN=packt, ..., C=UK

// CA Certificate

Certificate([2]:

Owner: CN=packt, OU=Packt Publishing, O=Packt Publishing,
L=Birmingham, ST=Birmingham, C=UK

Issuer: CN=packt, .., C=UK

[250]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The following code shows how to establish an SSL session with a URL where the
protocol is https:

// Set the HTTP Verb to GET

builder.setVerb (HTTPRequest .Verb.GET) ;

// Sets location of the remote resource

builder.setUrl ("https://<server hostnames:<port>/hello ssl");
builder.addHeader (new Header ("Accept", "text/plain"));
SSLOptions.Builder sslBuilder = new SSLOptions.Builder() ;

// TLS Cipher Suite using the asynchronous_ client.ks

// as the truststore file and keystore file

sslBuilder.setKeyStore ("asynchronous_client.ks", "123gwe")
.setTrustStore ("asynchronous_client.ks", "123gwe")
.setCipherSuite (SSLOptions.CipherSuite.TLS) ;

// The Application context is required to load
// the keystore from the assets
builder.setSSLOptions (sslBuilder.build(getApplication()));

HTTPRequest request = builder.build();

PacktAsyncHTTPClient client = new PacktAsyncHTTPClient () ;
client.execute (request, textResponseHandler) ;

If the SSL handshake between the peers finishes with success, the server verifies
our identity and our client verifies the server's identity. As a result, a cryptographic
channel is opened between both entities keeping the data hidden from third-party
intruders.

Summary

In this chapter, we explored in detail the Ht tpUrlConnection Android HTTP
client and we built a basic and expandable asynchronous client to interact with
HTTP web APIs.

In the first section, we exposed the main differences between the
HttpUrlConnection client and the deprecated Apache HTTP client available
on pre-Marshmallow SDKs.

Next, we wrote the core classes and callback interfaces for our asynchronous
client and we expanded our high-level client to interact with JSON and Web APIs.
Additionally, we built the code to convert from our Java models to a JSON or an
XML document.

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

Interacting with the Network

Later, we learned how to configure the HTTP timeouts and to set up secure
communications that are able to use our own signed certificates, keys, and CAs. In
our example, we created and prepared an SSL context to be used to establish a secure
channel based on a prepared Java secure keystore.

In the next chapter, we will introduce and explore the JNI (Java Native Interface) to
create asynchronous tasks in native code (C/C++). This interface is able to interact
with compiled code that runs directly on the device's CPU.

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the
Native Layer

In previous chapters, we have been using Java thread APIs and concurrent
primitives delivered by the Android SDK to build our asynchronous constructs. A
Java thread, an independent line of execution in our application, is automatically
attached to the Android virtual machine and is bound to one native thread on the
system. In previous chapter examples, we executed Java compiled bytecode on the
JVM and used Java synchronization and concurrent primitives to solve correctness
and liveness issues.

In this chapter, we will make use of the Java Native Interface (JNI) to execute code
written in C/C++ and compile it to native code. The native code, which runs directly
on the hardware and makes use of the native CPU Application Binary Interface
(ABI), generally runs faster than the bytecode due to optimizations made by the
compilers, or optimizations introduced by developers with the use of specific ABI
techniques. Hence, when we perform intensive computing operations on the device
this could be the way to go to obtain a performance boost on your application and to
reduce the power consumption.

With this in mind, we will learn how to use the JNI interface to execute concurrent
tasks on native code (C/C++), interact with Java code from the native layer, and
update the Ul from native code.

Later, we will learn how to create native threads and use synchronization primitives
such as mutex and condition to avoid any memory consistency problems that could
come up when the device multiple line of executions in parallel and they share the
same memory segments.

To finish, we will start a group of threads to run background work on the native
layer that dispatches the result to the UI.

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

In this chapter, we will cover:

Introduction to JNI

Android NDK

Calling C functions from Java code

Calling C++ member/static functions from Java code
Accessing Java objects from native code

Executing native background work on Java threads
Executing asynchronous work on a native thread
Interacting with a Java monitor from native code

Handling Java exceptions on the native layer

Introduction to JNI

JNI is an interface that allows the execution of native code, written on C, C++, or
Assembly, from the Java Virtual Machine (JVM). The interface strictly defines the
way that any JNI implementation should act to manage and control the interactions
between Java code and the machine code. Moreover, the machine code is able to
interact with the JVM and create objects, execute member functions, modify the
member variables and handle Java exceptions.

The JNI, which allows you to execute machine code along with your Java code, is
typically used to:

Accelerate some critical portions of your application. Since the code runs
directly on the hardware, it could make use of specific instruction sets to
improve the execution:

o

Example: The use of SIMD instructions to accelerate audio or video
floating-point operations.

Integrate existing C/C++ libraries in to your Android application. You can
port any legacy code or library written to the Android platform and use it on
your Android application:

o

Example: The integration of open source libraries such as opencv,
1ibgdx, and box2d into your application runtime.

To use a platform dependent feature that is not accessible from the Java API:

o

Example: Low-level OS features such as poll and semaphores or
native APIS such as OpenGL, OpenSL ES, or OpenMAX AL.

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Notice that adding C/C++ with JNI to your project does not come free

and it typically adds complexity to your project, making it harder to
i debug, build, and test. Therefore, you must evaluate the cost/benefit

before you make the decision to use it in your application.

Android NDK (Native Development Kit)

To help with the building and construction of Android applications that require a
dynamic collaboration between the Java layer and the native layer, a development
kit named Android NDK is supplied on the Android Developer website (http://

developer.android.com/ndk/index. html).

The Android NDK, the Android toolset that allows you to compile your code
written in C/C++ to the several ABIs supported by Android, is also able to compile
pre-existing libraries written in C or C++ to the Android platform.

Before we move on in more detail, you should install the NDK package in your
development platform, following the instructions defined on http://developer.
android.com/ndk/downloads.

At the time of writing, the latest version of NDK is 10e, so we will base our code and
examples on this version for the rest of this chapter.

The Java source code that you will write in your application, compiled by Android
SDK, generates Android bytecode that will be interpreted by the Android JVM on
any Android device.

With your source code written in C or C++, the NDK compiler will convert it to CPU
code with different instruction sets, hardware features, calling conventions, and
storing conventions. Each kind of CPU architecture has its own ABI that defines how
the machine code should be arranged to interact with CPU hardware.

The NDK toolset comes with tools that abstract these hardware traits and generates
machine code to the following ABIs: armeabi, armeabi-v7a, arm64-v8a, x86, x86_64,
mips, and mips64.

Most of the time you want to support as many devices as possible, so by default, the
NDK will generate code for all the CPU architectures and instruction sets supported.

[255]

www.it-ebooks.info

http://developer.android.com/ndk/index.html
http://developer.android.com/ndk/index.html
http://developer.android.com/ndk/downloads
http://developer.android.com/ndk/downloads
http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

Calling C functions from Java code

The powerful NI interface, as referred to before, is able to manage interaction in
both directions, from Java to C and from C to Java.

A regular Java class declaring a method with the keyword native declares that the
method behavior is implemented in native code. Like a regular Java method, the JNI
native method is able to receive Java objects or primitive types as arguments and
return primitive types and objects.

Let's see how a native method definition will look like in a Java class:

public class MyNativeActivity extends Activity {

@Override
protected void onCreate (Bundle savedInstanceState)

cTv.setText (isPrime(2) ? "true" : "false");

private native boolean isPrime (int number) ;

}

The preceding activity will call the native code to check whether a number is prime
or not and print the result on the Ul

Notice that our function receives a primitive as an argument and return a primitive
boolean as a result and does not have any body, like an abstract function.

With the member function declared as native, we inform the compiler that this
function is going to be implemented in C/C++, in a native library that gets loaded
dynamically at runtime.

With the member function now declared as native on the Java side, let's use javah to
declare and implement our native method in the native code.

A javah is able to help the developer to generate native method prototypes with
name conventions used by the JNI interface, the SDK becomes a handy tool that
generates a header file for all your class native methods.

To use it, please go to your project directory, create a jni directory, and run the next
javah to generate the header file for your native function. In Android Studio IDE,
open a terminal window and go to the src/main directory:

javah -d jni -classpath <sdk direcorys/android.jar:../../build/
intermediates/classes/debug/ com.packpublishing.asynchronousandroid.
chapter9.MyNativeActivity

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

If everything goes as expected, the file com_..._chapter9 MyNativeActivity.h
will be generated with our native method declaration:

JNIEXPORT jboolean JNICALL Java_ com packpublishing
asynchronousandroid_chapter9 MyNativeActivity isPrime
(JNIEnv *, jobject, jint);

The native method will receive a INIEnv* pointer to the JVM environment, a
jobject reference to the actual Java object instance that invoked the method,
and an integer argument.

The previous method declared in the following JNI specification, it should be declared
and implemented in your code and loaded on the runtime over a shared library.

Now that we have the method declared, let's create a source file under jni called
c_functions.c, with the native method implementation for our isPrime function:

#include "com packpublishing asynchronousandroid chapter9
MyNativeActivity.h"

#ifdef cplusplus
extern "C" {
#endif

jboolean Java com packpublishing asynchronousandroid chapter9
MyNativeActivity isPrime(JNIEnv *env, jobject obj, jint number) {

int c;

for (c = 2; c < number ; c++) {

if (number % ¢ == 0)
return JNI_ FALSE;

}

return JNI_ TRUE;
}
#ifdef cplusplus

}

#endif

When MyNativeActivity.isPrime is called, the JNI interface transparently
forwards the processing to the native code function, passing a native integer
primitive (jint). The Android JNI implementation automatically converts the Java
type int value to a native type (jint), executes the native function, and at the end
returns jboolean that is automatically converted by the JNI interface to a Java
primitive, boolean

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

The following table shows how Java types are mapped to native types:

Java Type Native Type Description

boolean Jboolean Unsigned 8 bits

byte Jbyte Signed 8 bits

char jchar Unsigned 16 bits
short jshort Signed 16 bits

int jint Signed 32 bits

long long jlong Signed 64 bits

float jfloat Floating Number 32 bit
double jdouble Floating Number 64 bit
Object jobject Any Java Object

Class class Class Object

String jstring String objects

void void

Although we have the native function declared and implemented in our source

file, the JVM will not find the method until we have loaded the shared library that
contains our native function. First, we will define the ndk folder in our project's root
folder 1ocal.properties file:

ndk.dir=<Path to downloaded NDK package>/android-ndk-rl0e

Next, in our build.gradle module configuration we will define the shared library
name under the ndk configuration section:

apply plugin: 'com.android.library'
android {
defaultConfig {

minSdkVersion 9

ndk { moduleName "mylib" }

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Finally, Android Studio is able to compile c_functions.c and generate a shared

library with the name mylib for all the ABIs supported in the build directory:

— 1ib

— armée4-vsa

| L— libmylib
— armeabi

| L— libmylib
— armeabi-v7a
| L— libmylib
F— mips

| L— libmylib
— mipsé4

| L— libmylib
— x86

| L— libmylib
L— x86 64

L— libmylib.

.80

.80

.80

.80

.80

.80

SO

These libraries are going to be packed in a universal apk file ready to be loaded by
our Android application.

All that remains is to load the library on our runtime before we try to use it in our
code. To load shared libraries on the JVM runtime, the java.lang.System class
provides a static method to load a shared library and its dependencies, so before
we use it on our class we will add a static section to our Activity class to load the
library as soon as the class loader loads our class:

public class MyNativeActivity extends Activity {

}

}

static {

System.loadLibrary ("mylib") ;

When the library is required, the System class automatically detects the ABI where
the device is running and loads the required platform dependent library. Therefore,

if you are running on an x86 device, x86/1ibmylib.so is going to be loaded.

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

Calling C++ functions from native code

So far, we have called a C function implemented in the ¢_functions.c source, so,
in the next section, we will show you how to call a C++ member class.

First, we will add the isPrimeCcPlusPlus native method to MyNativeActivty that
returns String as a result. Let's see how the native function declaration will look:

public class MyNativeActivity extends Activity {

@Override
protected void onCreate (Bundle savedInstanceState) {

TextView cPlusTv = (TextView)
findviewById (R.id.helloFromCPlusPlus) ;
cPlusTv.setText (isPrimeCPlusPlus (4)) ;

public native String isPrimeCPlusPlus (int number) ;

}

Running the javah tool against the new MyNativeActivity class definition will
generate a new function declaration with the following signature:

JNIEXPORT jstring JNICALL Java_ com packpublishing asynchronousandroid
chapter9 MyNativeActivity isPrimeCPlusPlus (JNIEnv *, jobject, jint);

Next, we are going to implement the prime function, as a class static function, on
a C++ source file with the name mylib. cpp:

#include "com packpublishing asynchronousandroid chapter9
MyNativeActivity.h"

class Math ({
public:
static int isPrime (int number) { ...// Elided for brevity}

bi

#ifdef cplusplus
extern "C" {
#endif

jstring Java_ com packpublishing asynchronousandroid chapter9
MyNativeActivity isPrimeCPlusPlus

[260]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

(JNIEnv * env, jobject obj, jint number) {

return (env)->NewStringUTF (
Math: :isPrime (number) ? "Is Prime" : "Is not Prime");

#ifdef cplusplus

}

#endif

If you build your project in Android Studio, the mylib.cpp source file will be
detected and the new function and class will be added to the 1ibmylib.so shared
library file.

Once we run the application, the C++ system default library will be loaded with a
minimal system C++ runtime. The default C++ runtime does not provide the C++
standard library, exception support, and RunTime Type Information (RTTI).
Therefore, if you want to make use of C++ standard library string classes, containers,
streams, and general algorithms, you will have to explicitly load the C++ runtime
required before you load your library. For a complete and up to date comparison of
the C++ runtime available on Android, please check C++ Runtimes on the Android
Developer website.

If we want to use a different C++ runtime than the system runtime, we must
explicitly set the runtime in your module's build.gradle file:

ndk {
moduleName "mylib"
stl "c++_shared"

}

Moreover, we must load the non-default C++ runtime library before we load our
library or any library that depends on it:

public class MyNativeActivity extends Activity {
static {
System.loadLibrary ("c++_ shared") ;
System.loadLibrary ("mylib") ;

}
}

Since c++_shared provides a complete STL library implementation, from now on we
will use this runtime as the base C++ runtime for our code examples.

Great! So far, we have learned how to interact with native methods using the JNI
interface, so our next step is to learn how to access Java objects from native code.

[261]

www.it-ebooks.info

https://developer.android.com/ndk/guides/cpp-support.html
http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

Accessing Java objects from native code

When we call a native function, the C or C++ function receives a INIEnv pointer
to a table of JNI methods used to interact with JVM Runtime. The JNIEnv pointer
provides us with a set of primitives ready to find a Java class definition, set or get
Java object field values, call static or member Java object functions, create Java
objects, interact with Java monitors, or deal with exceptions.

Our next example will count the number of words on an EditText Ul Widget on a
native function and update a Textview text with count results from the native code.
Therefore, we will learn how to use JNIEnv to access a member Java object field and
how to call a Java object method (TextView.setText) using the INIEnv interface.

Let's start by defining our native function and invoke it every time the EditField
content changes:

public class MyNativeActivity extends Activity {

protected EditText inputTextEt
protected TextView charCountTv

null;

null;

@Override
protected void onCreate (Bundle savedInstanceState)

// Reference stored as member fields for native access
inputTextEt (EditText) findvViewById(R.id.inputText) ;
charCountTv = (TextView) findViewById(R.id.charCount) ;

// Called every time the code changes
inputTextEt.addTextChangedListener (new TextWatcher () {
@Override
public void onTextChanged (CharSequence s, int start,
int before, int count)
updateWordCounter (s.toString()) ;

}

1)
}
// Native function that calculates the number of words
// in a string
private native void updateWordCounter (String s) ;

[262]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Notice that a new function is added to Activity so make sure you run javah to
generate the new native function declaration.

Next, we will define the JNI native function that counts the number of words
for a string:

class Util {
public:
static int countWords (const std::string &strString) {

};...

Void Java_com packpublishing asynchronousandroid chapter9
MyNativeActivity updateWordCounter (JNIEnv *env, jobject obj, jstring
text) {

std::string content (env->GetStringUTFChars (text, 0));
size_t word_cnt= Util::countWords (content) ;

// Update the TexView with word cnt integer

}

We left the native implementation because we will implement it on a step-by-step
basis. As the first step, we will get the TextView object instance, used to present the
number of words on the UI text input, from the charcountTv object field.

To access a Java object field or method, a jmethodID or j£ieldID is always
required:

jmethodID GetMethodID (JNIEnv* env, jclass clazz,
const char*name,
const char* methodSignature) ;

jfieldID GetFieldID (JNIEnv*, jclass clazz,
const char*name,
const char* fieldTypeCode) ;

[263]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

In order to construct the methodSignature or the fieldTypeCode (TC), we have to
map the Java types to type codes using the following table:

Java Type Type Code (TC)
boolean Z

Byte B

Char c

double D

float F

Int I

Long J

short S

Object L<packages>;
Void v

When we convert an array, always prefix the type code with the [character.

To create a j£ie1dID we need a single type code. However, to construct the method
signature we use the following format:

(<Argument 1 TC ><Argument N TC>) <Return TC»>

Let's see how we obtain the charCountTv TextView object in the native code using
the instructions explained below:

// 1. Obtain a reference to the MyNativeActivity class definiton
jclass activityClass = env->GetObjectClass (obj) ;

// 2. Get the fieldId for the charCountTv TextView

jfieldID charCountFId = env->GetFieldID(activityClass,
"charCountTv", "Landroid/widget/TextView;") ;

// 3. Retrieve the object using the object and the jfieldID

jobject tvObj = env->GetObjectField (obj,charCountFId) ;

Once we have the Textview reference, we can invoke the setText (CharSequence)
instance method to publish the number of words found. To invoke a Java method we
will make use of the JNI function callvoidMethod with a jmethod1d created from
the method signature:

void CallVoidMethod (JNIEnv *env, jclass clazz,
jmethodID methodID, ...);

[264]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Let's see how the native code that updates the TextView charCountTv with the
number of words will look:

// 1. Get the TextView class definition
jclass textViewClass = env->GetObjectClass (tvObj) ;

// 2. Get the methodId for the TextView.setText function
jmethodID setTextMId = env->GetMethodID (
textViewClass, "setText", " (Ljava/lang/CharSequence;)V");

// 3. Invoke the SetText instance function
env->CallVoidMethod (
tvObj, setTextMId, env->NewStringUTF (wordCountStr) ;

To invoke static methods and methods with different kind of result types, the JNI
interface provides us with a set of functions with the following signatures:

// To invoke a Class static method that returns a Java Type
<NativeType> CallStatic<Type>Method (
JNIEnv *env, jobject obj, jmethodID methodID, ...);

// To invoke a method that returns a Java <Type>
<NativeType> Call<Type>Method(
JNIEnv *env, jobject obj, jmethodID methodID, ...);

// To invoke a method that returns a Java <Typel] >
<NativeArrayType> Call<Type>MethodA (
JNIEnv *env, jobject obj, jmethodID methodID, ...);

Now that we have the basic knowledge about how to call native functions with the
JNI interface, we are ready to start using the JNI to execute asynchronous work on
native code.

Executing native background work on
Java threads

In previous sections, we used the JNI interface to execute native functions on the
main thread. Since they run on the main thread, the functions were able to update
the UI, access the Activity instance fields, and or update any UI widget directly.

However, as we discussed before, for long computing or intensive tasks we have to
execute them on the background thread.

[265]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

In previous sections, we learned how to use the AsyncTask, Loader, Handler, and
Remote Services to execute work on background threads that don't reduce the Ul
responsiveness or interfere with Ul rendering.

In any of these Android specific constructs, the background thread is already
attached to the JVM. Hence, the background thread already possesses access to a
ready to use JNI environment.

In our next example, we will make use of the Loader construct and build
AsyncTaskLoader, that loads an image on the background, converts the image to
gray scale in native code, and publishes the result on the Ul screen.

First, we will detail how the Loader Java class definition will look before we start to
dig into the native function details:

public class GrayImagelLoader extends AsyncTaskLoader<Result<Bitmap>> {

final String fileName;
Bitmap grayImage;

public ToGrayImageLoader (Context ctx, String fileName)
super (ctx) ;
this.fileName = fileName;

@Override
public Result<Bitmap> loadInBackground() {
Result<Bitmap> result = new Result<Bitmap> () ;
try {
BitmapFactory.Options options = new BitmapFactory.Options() ;
options.inPreferredConfig = Bitmap.Config.ARGB 8888;

// Build a RGBA 8888 Bitmap to represent the image
Bitmap b = BitmapFactory.decodeFile (this.fileName, options) ;

// Convert the Image to Gray scale on Native code
Bitmap originallImage = BitmapFactory.decodeStream (
getContext () .getAssets () .open(fileName)) ;

// Fill the result with the Gray Image

result.obj = convertImageToGray (originalImage) ;
} catch (Exception e) ({

result.error = e;

[266]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

return result;

private native Bitmap convertImageToGray (Bitmap original) ;

}

Notice that our Loader will load a Bitmap image wrapped in a generic Result class,
as we did in previous sections. When any exception happens on the Java or Native
code, Result.error is filled, making the Loader consumer able to detect an error
and react accordingly.

Our loader will receive as an argument the image filename to load from the assets
and will decode the image to a Bitmap object in the ARGB_8888 format and return an
image in grayscale

When the native function executes in the background thread without errors, the
Result<Bitmap> object is delivered to the Loader consumer in the Ul Thread to be
updated to the device screen.

Executing javah against our new AsynTaskLoader class should generate the com_
packpublishing_asynchronousandroid_chapter9_ToGrayImageLoader.hheader
file with the following function signature:

JNIEXPORT jobject JINICALL Java_ com packpublishing asynchronousandroid
chapter9 ToGrayImageLoader convertImageToGray (JNIEnv * env, jobject
loader, jobject bitmap) ;

To process Bitmap objects on the native layer, the jnigraphics shared library is
required. Therefore, let's update our gradle build configuration to link our library
with the jnigraphics shared library:

ndk {
moduleName "mylib"
stl "stlport shared"
1dLibs "jnigraphics", "log"

}

Linking our library mylib against jnigraphics will force the dynamic loader to load
the jnigraphics library every time our library is loaded by System.loadLibrary.
Beyond that, the gradle system will pack the jnigraphics shared library for the
several ABIs required in the application package file (APK).

Now that we have the method defined in the header, it is time to implement the
native function that converts the original Bitmap to a grayscale Bitmap.

[267]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

First, let's create the source file image . cpp that includes the jni method definition
and the required jnigraphics header file:

#include "com packpublishing asynchronousandroid chapterS
ToGrayImageLoader.h"
#include <android/bitmap.h>

Next, we will implement the function that converts the original pixels to gray pixels:

jobject Java_ com packpublishing asynchronousandroid chapter9
ToGrayImageLoader convertImageToGray (JNIEnv * env, jobject obj,

jobject bitmap) {

AndroidBitmapInfo info; // Image Information
void * pixels; // Pixel Matrix
int ret; // Jdni Graphics operation result code

// Reads the Image width, height, format, ...

if ((ret = AndroidBitmap getInfo(env, bitmap, & info)) < 0) {
jclass clazz = env->FindClass("java/lang/RuntimeException") ;
env->ThrowNew (clazz, "Failed to get bitmap info");

return 0O;

}

// Loads the bitmap pixel matrix on pixels pointer
if ((ret = AndroidBitmap lockPixels (env,bitmap, (void **)& pixels))

0) {)

// Exception Generation Elided for brevity

}

// Convert each pixel to gray

<

AndroidBitmap unlockPixels (env, bitmap) ;
return bitmap;
}
With the help of the jnigraphics library, we can read the image information using
AndroidBitmap_getInfo and if everything goes well, the image info will be stored
on the local variable info for further use.

[268]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

However, if AndroidBitmap_getInfo fails we will throw an exception in JVM

and return immediately from the native function because we call return. Under a
normal situation, if we throw an exception in the JVM with ThrowNew, the native
function does not stop and transfers control to the exception handler. Therefore, if
an exception is thrown during a native code call, when the function returns, the JNI
interface will detect it and transfer the execution to the exception handler.

In our example, we generate a Runt imeException with the jclass obtained from
the Findclass JNI function.

When we finish the bitmap processing, we unlock the pixels through
AndroidBitmap unlockPixels and we return the Bitmap jobject to the
loadInBackground function that originally invoked the native method from the
background thread.

As you already know, the processed Bitmap will be delivered by the
AsyncTaskLoader in the UlThread, and it could be used to update an Imageview
or other kind of UI Widget that presents an image on the screen. Let's see how a
LoaderCallback.onLoadFinished callback might look:

@Override

public void onLoadFinished (Loader<Result<Bitmap>> loader,
Result<Bitmap> data) {

if (data.obj != null) {
ImageView iv = (ImageView)findViewById(R.id.grayImage) ;
iv.setImageBitmap (data.obj) ;

} else {
Log.e ("<TAG>", data.error.getMessage(), data.error) ;

}
}

In this simple example, we were able to execute asynchronous work in machine
code with AsyncTaskLoader help, although a similar procedure could have been
done with an AsyncTask subclass, a normal thread, or even a HandlerThread. These
kind of Android construct use Java background threads managed by Android JVM,
therefore, it is not required to explicitly attach these threads to JVM since they are
part of the JVM system and have their own JNIEnv.

In the next chapter, we are going to learn how to create pure native threads and use
them to execute background work for our Android application in a consistent and
reliable way.

[269]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

Executing asynchronous work on a
native thread

The Android NDK is bundled with the POSIX thread C API that provides an API

to create and destroy native threads, native mutual exclusion synchronization
primitives, named mutexes, and condition variables, that like Java monitors, allow
threads to wait until a change in a resource happens. Apart from this global API, the
developer also has access to a higher level C++11 thread API available on clang and
gnu_stl C++ Runtimes.

Since both of these frameworks offer the same kind of concurrent functionalities
we will use C++11 thread framework for its simplicity and similarity with the Java
Thread API.

First, let's update our ndk build.gradle to use the clang C++ Runtime that
supports the thread API that we are going to use in our following code examples:

ndk {
moduleName "mylib"
stl "c++_shared"
cppFlags.add ("-frtti")
cppFlags.add ("-exceptions)

Attaching and detaching native threads from
JVM

In order to interact with our JVM and execute background work concurrently for us,
the native threads should be attached to the current virtual machine and build its
own JNIEnv.

The thread JNIEnv is tied to a specific native thread and cannot be shared with other
threads since it manages its own references and local thread environment.

To present this to you in a more practical way, in the next few paragraphs, we will
build a code example that creates JVM attached native threads that execute work in
the background and interact with the Ul thread, publishing a keep-alive message
using a well known Android handler construct.

To attach any thread to the JVM, we need to access the global virtual machine
structure, JavavM:

jint AttachCurrentThread(JavaVM *vm, void **p env, void *thr args)

[270]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

A good way to get the JVM structures to retrieve from JNI_onLoad, a function that
is automatically called on our library by the JavaVM when our library gets loaded.
When the callback is called by the JNI interface, we will save the JavaVM reference
for future use:

// Java VM Global Pointer

static JavaVM* gVm = NULL;

jint JNI_OnLoad (JavaVM* vm, void* reserved) ({
gvm = vm;
return JNI_VERSION 1 4;

}

With the JVM global pointer ready to be used, we are able to attach any native thread
to the application JVM and start interacting with the INIEnv.

As a starting point, we will create a high level C++ class that automatically attaches
to the JVM, and detaches from the JVM when the instance has been destroyed. This
class will be used as the base class in our thread examples, providing a common
abstract interface for native thread creation.

Let's see how the JavaThread class definition will look:

#include <thread> // including the C++11 Thread Header
#include <jni.h> // JNI Header
class JavaThread: public std::thread ({
public:
JavaThread () ;
Void join(); // Wait for the thread to finish
void entryPoint () ;
void start () ;
void stop() ;
protected:
// Method that subclass should implement to define
// the unit of work
virtual void run() = 0;
virtual void onDetach() {};JNIEnv* threadEnv = NULL; // Thread
specific JNI Environment
std::thread thread ; // C++11 Thread
// 1is Thread attached to JVM
bool isStarted = false;
std::condition variable startCond;
std: :mutex startMutex;
volatile bool shouldStop = false;
std::condition variable stopCond;
std: :mutex stopMutex;

[271]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

In this class header, we subclass the JavaThread from the original C++ thread class
defined and we define the abstract method run. Any worker thread can subclass
JavaThread, providing its own implementation of the run method. Additionally, the
protected thread specific to the JNI interface environment is stored in threadEnv for
future use by the thread subclasses.

Beyond that, we will introduce you to the C++ synchronization primitives, available
from the thread header. std:mutex is a mutual exclusive primitive that only allows
one thread at a time to enter a protected critical scope. If a thread is executing the
critical code, another thread that tries to enter the critical section will block the
execution until the thread executing the critical section releases the lock. Here is a
simple example:

// Thread waits for his turn

mutex.lock () ;

...// Only one thread enters on this section
mutex.unlock () ;

The same behavior would have been achieved in Java by using the synchronized
word in a Java block or a synchronized block.

The condition concurrent primitive, like a Java monitor, can be used to block a thread
or a group of threads execution until another thread modifies a shared information
and sends a signal to notify the waiting threads.

Now that we know what these C++ concurrency primitives are used for, let's
implement the JavaThread that automatically attaches and detaches itself to and
from JVM.

First of all, we will start the background native thread in the native start () by
passing the entryPoint functions as the runtime function for the thread:

void JavaThread::start() {
thread = std::thread(&JavaThread::entryPoint, this);
std::unique lock<std::mutex> lck(startMutex) ;
// wait until the Thread is attached to JVM
while (!isStarted) startCond.wait (lck) ;

}

As soon as std: :thread creates the thread in the system it will call the entrypoint
function in our object to initialize the JNI environment.

[272]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In the meantime, we will block the calling thread until the new thread attaches
to JVM and sends a signal to the startCond condition variable. Next, when
std: :thread initializes the new thread in the operating system, it changes

the execution control to the member function specified in the constructor,
JavaThread: :entryPoint. In this function, we will attach the native

thread to the JVM, dispatching the execution to the subclass run () method.

Let's see how we might implement the entryPoint function:

void JavaThread: :entryPoint () {

// Attach current thread to Java virtual machine
// and obrain JNIEnv interface pointer
{
// Acquires the start Mutex to access the conditional variable
std::unique lock<std::mutex> lck(startMutex) ;
// Ataches the current thread to the JVM
// and caches the JNIEnv
if (gVm->AttachCurrentThread (&threadEnv, NULL) != 0) {
..// Handle the error

}

isStarted = true; // Changes the shared variable

startCond.notify all(); // Notify the thread constructor
}
onAttach () ;
try {
// Run the subclass method
run () ;
} catch (...) {

// Detach current thread when an exception happens
onDetach () ;

gVm->DetachCurrentThread () ;

throw;

}

// Detach current thread from Java virtual machine
onDetach () ;
gVm->DetachCurrentThread () ;

}

Notice that the thread is detached from the JVM even when a runtime exception is
thrown during the run execution. When the thread is detached from the JVM, all
the thread monitors are released and all the Java threads waiting for this thread
are notified.

[273]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

For the stopping mechanism, we will make use of a boolean variable and condition
variable to notify that the shouldstop condition has changed. Later on, our
JavaThread subclass will take advantage of this mechanism to stop the run ()
execution.

Let's see how the stop method will look:

void JavaThread::stop()
// Acquire the stop mutex
std::unique lock<std::mutex> lck(stopMutex) ;
// Change the should stop condition
this->shouldStop =true;
// Notify any thread waiting for this signal that shouldstop
// condition has changed.
stopCond.notify all();

}

With the native thread base class completely defined, we are now ready to create our
derived class that implements the required behavior in the run method.

As defined before, we will use a Handler construct to submit messages from the
background threads to the Ul thread. Since they run on the same process and share
the same memory, we can safely pass a reference to a Handler object to the native
background threads.

First, before we start to implement our JavaThread sub-class, we will write the
NativeThreadsActivity and implement a Handler anonymous subclass to receive
messages from the native threads:

public class NativeThreadsActivity extends Activity
public static final int HEALTHCHECK = 0; // Handler Message Code

// Process the Message sent by the native threads
Handler myHandler = new Handler () {
public void handleMessage (Message msg)
switch (msg.what) {
case HEALTHCHECK:
TextView tv = (TextView) findViewById(R.id.console) ;
tv.setText ((String) msg.obj + tv.getText());
break;

}
Vi
// Start the Native Threads when the start button is clicked
public native void startNativeThreads (Handler handler) ;

[274]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

// Stop The Native Threads when the stop button is clicked
public native void stopNativeThreads() ;

}

Once our handler receives a message with the code HEALTHCHECK it
will prepend the String received on the msg.obg to a TextView on the
Activity UI screen.

This class will also be responsible for starting and stopping the native threads each
time we click on the start and stop button.

The start and stop button setup is omitted in the code example. However, the start
button will invoke the native function of startNativeThreads, passing myHandler
as the Handler argument and the stop button will invoke stopNativeThreads to
stop the native thread execution. Additionally, we can also call stopNativeThreads
on Activiy.onStop to stop the threads when the activity gets destroyed.

Now we need to implement the JavaThread that will run in the background and
submit a healthcheck message to the Ul thread over the handler object. Since

the handler is coming from a different jniEnv, the first thing to do is to create a

JNI global reference from the original handler. Let's start by implementing the
constructor that creates a global Handler object reference and store the reference in a
member variable:

class HealthCheckThread: public JavaThread ({

jobject handlerObj; // Cache the Global Reference
public:
HealthCheckThread (JNIEnv *env_, jobject handlerObj) :
JavaThread (),
// Use the main threadJNIEnv to create a global ref
handlerObj (env_->NewGlobalRef (handlerObj)) {}

}

In the constructor, we received the object reference from the main thread, we called
our JavaThread default constructor, and we created a global reference to store the
original reference.

[275]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

JNI references explained

It's really important to understand in detail how JNI references are managed by JVM,
because if we don't use them properly, we can crash the application or introduce

a memory leak in the application. A memory leak will affect the application
performance, increase battery consumption, and in the long term crash the
application with a java.lang.OutOfMemoryError exception. As you know, JVM
Garbage Collector (GC) manages the application memory use, cleaning up objects
when they are not in use. An object is considered eligible for garbage collection
when no references to that object exist in the memory, so, when the GC finds a none
referred object it will release the object from the memory.

JNI supports three types of reference:

* Local Reference - References attached to a thread, JN1Env, which is lifetime
valid for the duration of a native method. The reference is passed to the
native method and destroyed as soon as the method returns. The user can
also create and delete local references in the native method to prevent any
object from being garbage collected. Keep in mind that a local reference is
valid in the JNIEnv where it was created. The following JNI functions are
available to manage local references:

Jobject NewLocalRef (jobject) ;
void DeleteLocalRef (jobject);

o

JVM provides a function to allocate space in the current JNI frame to
store local references. By default, it has the capacity for 16 references:

jint EnsurelocalCapacity(jint) ;

* Global Reference - References used to keep global objects alive for an
unlimited period of time. These kinds of reference can be shared between
thread JNIEnv objects. It is critical to explicitly delete the reference from JVM
when they are no longer required. When you don't free the reference from
the system you are creating a memory leak in your application. Notice that
when you free the reference from the system, the reference is no longer valid,
so if you try to use it an exception will be thrown in the JNI interface. The
following JNI functions are used to manage local references:

jobject NewGlobalRef (jobject);
void DeleteGlobalRef (jobject) ;

[276]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

* Weak Global Reference - Like the global reference, but it doesn't prevent the
object from being garbage collected when it is the only alive reference to the
object. Weak global references in JNI are a streamlined version of Java Weak
References:
jweak NewWeakGlobalRef (JNIEnv *env, jobject obj);
void DeleteWeakGlobalRef (JNIEnv *env, jweak obj);

Interacting with Ul from native threads

Since we want to cache a reference to a Handler object that survives the
startNativeThreads execution, it makes sense to create a global reference before
we save it in a member variable. The reference will be later used in our background
thread to submit messages to the UI.

Given that we created a global reference in our HealthCheckThread class, to release
the reference in JVM and avoid any memory loss, we will delete the global reference
in the HealthCheckThread.onDetach () function called during thread stopping;:

class HealthCheckThread: public JavaThread {

virtual void onDetach () {
jniEnv () ->DeleteGlobalRef (handlerObj) ;

}
}

Next, we will update the HealthCheckThread and implement the run method
that is going to submit health check messages to the Handler object attached to
the Ul thread:

virtual void run()

while (!shouldStop) {
std::unique lock<std::mutex> lck(stopMutex) ;
// Do Work
//
sendHealthMessage () ;
// Wait until a stop signal is sent
stopCond.wait for(lck, std::chrono::seconds (1)) ;

}

[277]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

The run function will continuously execute until shouldStop is true. Furthermore,
between each cycle, the thread will send a message and block for one second unless
a stop signal is sent to notify the thread to stop. In this case, the native condition
variable is used to wake up the thread from the one second sleep when the stop
condition is set.

All that remains regarding the HealthCheckThread class is to implement the
sendHealthMessage:

void sendHealthMessage () {

// Get the Handler class from the JVM
jclass handlerClass = jniEnv()->FindClass ("android/os/Handler") ;

// Get the Handler.obtainMessage methodId
jmethodID obtainMId = jniEnv () ->GetMethodID (handlerClass,
"obtainMessage"," (ILjava/lang/Object;)Landroid/os/Message;") ;

// Build up the alive message
std: :ostringstream oss;
oss << "Thread[" << std::this thread::get_id()
<< "] is alive at " << ctime(& tt) << std::endl;;

// Obtain a message object

jobject messagObj = jniEnv()->CallObjectMethod (handlerObj,
obtainMId,
HEALTHCHECK MESSAGE,
jniEnv () ->NewStringUTF (oss.str () .c_str()));

// Get the Handler.senMessage methodId
jmethodID sendMsgMId = jniEnv () ->GetMethodID (handlerClass,
"sendMessage", " (Landroid/os/Message;) Z2") ;

// Engqueues a new message on the main thread looper

jniEnv () ->CallBooleanMethod (handlerObj, sendMsgMId, messagObj) ;
// Deletes the local references

jniEnv () ->DeletelLocalRef (handlerClass) ;

jniEnv () ->DeletelLocalRef (messagObj) ;

}

Before we start to use the handler object, we retrieve a Message from the Handler
global message poll using the obtainMessage instance method. To build the string
message passed in the Message object, we format a message using ostringstream, a
thread ID, and the current datetime.

[278]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Then, we push the built Message to the handler object to be delivered in our
Activity. To finish, we delete the created local reference from the local JNIEnv.

Starting the native threads

Just to finish our example, we will write the native methods startNativeThreads
and stopNativeThreads. These methods will create and destroy the native threads
each time we tap on the start or stop button. The UI code is omitted for brevity. Let's
look at the startNativeThreads first:

static const int num threads = 10;
static JavaThread* threads[num threads];

void Java_com packpublishing asynchronousandroid chapter9
NativeThreadsActivity startNativeThreads
(JNIEnv *jEnv, jobject activity, jobject handler) {

LOGI ("Starting %d Native Threads",num_ threads) ;

// Launch a group of threads

for (int i = 0; i < num threads; ++1i) ({
threads[i] = new HealthCheckThread (jEnv, handler) ;
threads[i] ->start () ;

}

In startNativeThreads, we create num_thread threads passing the main thread
JNIEnv and the handler reference to the HealthCheckThread constructor. The
HealthCheckThread pointer returned from the constructor is cached in a static array
for future use.

Stopping the native threads

Given that we allocate the HealthCheckThread object in the dynamic memory using
the C++ operator new, in the stopNativeThreads, apart from stopping the thread
execution, it is required to release the dynamic memory to avoid any memory leaks
in the native code. So, all that remains is to implement the stopNativeThreads:

void Java com packpublishing asynchronousandroid chapter9
NativeThreadsActivity stopNativeThreads (JNIEnv *env, jobject activity)

{

LOGI ("Stopping %d Native Threads", num_ threads) ;

for (int i = 0; i < num threads; ++1i) ({

[279]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

// Notify the thread to stop

threads[i] ->stop () ;
// This blocks the execution of the current thread until
// HealthCheckThread native thread finishes
threads[i] ->join() ;

// De-allocates memory previously allocated

delete threads[i];

}

}

The stopNativeThreads function will stop the created threads using the
JavaThread: : stop member function. As detailed before, the stop member function
will use a condition primitive to notify the running loop that it should finish its
execution. After we notify the background thread, we wait for it to finish and we
destroy the object stored in the array pointer.

Great! In this section, we were able to start native threads, attach them to JVM, and
interact with the main thread using a Handler object. On the way, we learned about
the C++ condition and mutex concurrent primitives to synchronize the access

to shared resources in the native code. Although we have been using the C++11
concurrent primitives to create and synchronize threads, we could have written our
examples using the concurrent primitives provided by the POSIX pthread library.

The POSIX library 1ibpthread also provides methods to manage native threads,
mutual exclusion concurrency primitives (mutexes), and condition variables.

Handling Java exceptions in the native
layer

While in Java, when an exception is thrown during a method execution, the JVM
stops the normal method execution and tries to find an exception handler in the
runtime to take control of execution, the same does not apply when you execute the
Java method from the JNI code.

The JNI requires developers to explicitly implement the exception handling after an
exception has occurred in a Java method invocation.

Moreover, when exception handling is pending, only a few JNI functions are
safe to be invoked: DeleteGlobalRef, DeleteLocalRef, DeleteWeakGlobalRef,
ExceptionCheck, ExceptionClear, ExceptionDescribe, ExceptionOccurred,
MonitorExit, PopLocalFrame, PushLocalFrame, Release<PrimitiveType>
ArrayElements, ReleasePrimitiveArrayCritical, ReleaseStringChars,
ReleaseStringCritical, and ReleaseStringUTFChars.

[280]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

There are three ways to handle Java exceptions in a native function.

The first way is to clear the pending exception with ExceptionClear and continue
to execute the native code. This approach is seldom safe and you need to review all
error flows to verify that you are handling the exception properly.

The second way is once the pending exception is detected, release the JNI allocated
resources, stop the native code execution, and return the control to the Java code.
In this case, the JNI will try to find a Java exception handler in the Java frame that
invoked the native method.

The third way is to release the pending exception, generate a new exception with
a different class type, and return from the native method with the new exception
pending to be handled in Java code.

In our next example, we will follow the third because we will use most of the
functions available in the JNI to handle exceptions. First, we will show you

how to use the JNI exception in handling functions to clear a pending Java
exception. Beyond that, we will stop the native method execution, release all the
native resources, and throw a different exception to be handled in Java by the
RuntimeException handler.

First, we will write an Activity that invoking the native method will spawn a
pending exception in JVM:

public class ExceptionActivity extends Activity {

OnClickListener onClickListener = new OnClickListener () {
@Override
public void onClick (View v) {
try {
// Allocate a ByteBuffer with a size of 8 bytes
ByteBuffer byteBuffer = ByteBuffer.allocate(8);

// Call a native function that will try to access
// an out of bounds buffer position
genException (byteBuffer) ;
// Catches a Runtime Exception

} catch (RuntimeException e) {
// Prints the Exception Stack Trace to the TextView
TextView console = (TextView)findViewById(R.id.console) ;
StringWriter sw = new StringWriter();
e.printStackTrace (new PrintWriter (sw)) ;
console.setText (sw.toString()) ;

[281]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

}
}
}i

// Native Function that will generate and Exception
private native void genException (ByteBuffer buffer);

}

Each time the genException button is clicked, call a native method that fails with a
runtime exception (java.lang.IndexOutOfBoundsException).

The onClick (View v) method is only able to handle java.lang.
RuntimeException, so we must handle IndexOutOfBoundsException in the native
function and convert it to Runt imeException:

void Java_com packpublishing asynchronousandroid chapter9
ExceptionActivity genException (JNIEnv * jniEnv, jobject activityObj,
jobject byteBuffer) {

// Get the ByteBuffer class
jclass byteBufC= jniEnv->GetObjectClass (byteBuffer) ;

jmethodID getMid = jniEnv>GetMethodID (byteBufC, "get"," (I)B");

// Trying to access a buffer position out of the buffer capacity
jbyte byte = jniEnv->CallByteMethod (byteBuffer,getMid, 32) ;

if (jniEnv->ExceptionCheck()) {
// Prints the exception on the standard Error
jniEnv->ExceptionDescribe () ;
// Clears the exception on the JVM
jniEnv->ExceptionClear() ;
jclass excC = jniEnv>FindClass ("java/lang/RuntimeException") ;
jniEnv->ThrowNew (excC, "Failed to get byte from buffer");
// Release the Allocated Resources
jniEnv->DeletelLocalRef (excC) ;
jniEnv->DeletelLocalRef (byteBufC) ;
// Return with Pending RuntimeException
return;

[282]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

There are two functions used to detect an exception in a JNI native function:

The ExceptionOccurred function returns a jthrowable object reference if there is a
pending exception that is not handled so far, or null when no exception is ready.

The ExceptionCheck function returns jboolean when there is an outstanding
unhandled exception in JVM, the function will return JNI_TRUE as the result.

Assuming that we don't want to use jthrowable returned by ExceptionOccurred,
we will use ExceptionCheck to detect the exception and enter the exception
handling code branch.

Thereafter, with the ExceptionDescribe function we will print the current pending
throwable stack trace in the error output, and with ExceptionClear, we will clear
the pending IndexOutOfBoundsException from JVM.

Given that we are only able to handle RuntimeException in the Activity function,
we will attach a Runt imeException to JVM to be handled as soon as the native code
returns.

To conclude, and since we are going to stop the native function execution, we must
release any resource or JNI references allocated before we return from the native
function.

Yes, with the help of these JNI exceptions, you should be able to detect and handle
any settled unhandled exception that results from a Java method invocation. As
stated before, it is extremely important to manually handle any pending exception
before you try to safely invoke other JNI methods that invoke member or static
functions, get or set fields on objects, or even create new objects.

Interacting with a Java monitor from
native code

So far, we have been synchronizing access to shared resources in Java threads using
synchronized statements or synchronized methods:

synchronized (obj) { ... // synchronized block }
synchronized void incrementCount() { ... // synchronized methods }
[283]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

When we are executing a native method and want to have access to a resource

or variable shared between multiple Java code and native code, the JNI offers us
MonitorEnter and MonitorExit methods to control access to the mutual exclusion
zone managed by a Java synchronized block:

jint MonitorEnter (JNIEnv *env, jobject obj);
jint MonitorExit (JNIEnv *env, jobject obj);

MonitorEnter, the function responsible for acquiring access to the Java monitor
scope, might block when another native thread or Java thread is the owner of the
monitor. When any thread acquires access to the block, JVM will make sure that no
other thread enters the critical section apart from the current thread.

MonitorExit is the function responsible for releasing the monitor acquired
previously with MonitorEnter, giving the chance to another thread to enter
the mutual exclusion section.

To prevent a deadlock condition, any MonitorEnter call must be
" followed by a MonitorExit call.

In our next code example, we will demonstrate this technique to synchronize the
access to a shared object used by the Java code and the native code.

We are going to create a native thread that is constantly polling command requests
from a shared queue list managed in our Activity.

StatsActivity will have a button to push commands to the shared queue list and
will display the request responses sent by the native thread in a Textview. Whereas
the UI will push commands to the request queue list in a main thread, and the native
code will try to pull commands from the native code in a background thread, both
need synchronized access to the shared queue list.

Our command will ask the native layer to send information about the amount
of main memory that a program uses to run. As soon as it receives the response,
it will print in the Ul TextView.

To start, let's define the code to push new commands from the UI point of view:

public class StatsActivity extends Activity {
// Memory RSS(Resident Set Size) SIZE Retrieve size Request
public static final int MEM RSS REQUEST = 0;

// Shared Resource between Java and Native
Queue<Integer> requests = new LinkedList<Integers() ;

[284]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Object queueLock = new Object () ;

OnClickListener onRSSReglListener = new OnClickListener() {
@Override
public void onClick (View v) {
synchronized (queueLock) {
requests.add (MEM_RSS REQUEST) ;
}
}
}i

@Override
protected void onCreate (Bundle savedInstanceState) {

RSSButton.setOnClickListener (onRSSReqgListener) ;

}

Notice that, before onkRSSRegListener pushes the new request command to
the queue list, it acquires access to the synchronized section controlled by the
queueLock object.

Given that the queueLock object is going to act as the guard object to access the
shared resource we have to forward it to the native code.

Since we have already written the command request consumer, now we will move
our focus to the command request consumer, the native C++ gavaThread subclass
named CPUStatThread, that will process the requests and send back the command
response.

As explained before, cPUStatThread will implement the run method and send us
the response using Activity's Handler, so let's first implement the run method to
retrieve requests from Activity in the new source code file stats. cpp:

#include "thread.h" // Header where JavaThread is defined
static const int RSS REQUEST= O0;
class CPUStatThread: public JavaThread ({

// Reference to the Activity and received on the constructor
jobject activityObj;

virtual void run()
while (!shouldStop) {

[285]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

std::unique lock<std::mutex> lck(stopMutex) ;
processMessage () ;
// Wait until a stop signal is sent

stopCond.wait for(lck,std::chrono::milliseconds (200)) ;

}

void processMessage () {
jclass activityClass = jniEnv () ->GetObjectClass (activityObj) ;

// Retrieve the QueueLock (lockObj) and the Handler
// Fields (handlerObj) objects from Activity and
// getNextRequest methodId

// Acquire the queue monitor
jniEnv () ->MonitorEnter (lockObj) ;

// Retrieve the next command request to be processed
int requestCode = jniEnv () ->CallIntMethod (activityObj,
getNextRequestMid) ;
switch (requestCode) {
case RSS REQUEST:
LOGI ("Received a RSS Request") ;
sendRSSMessage (handlerObj) ;
break;
}
// Release the queue monitor
jniEnv () ->MonitorExit (lockObj) ;
// Release local References to avoid leaks

}...
}i

Our run method will retrieve the queueLock field from StatsaActivity and after
acquiring access to the synchronized block controlled by the queueLock, it will pull
a new request from the queue using the StatsActivity's getNextRequest method:

public class StatsActivity extends Activity ({

int getNextRequest () {
return requests.size()> 0 ? requests.remove():-1;

[286]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

getNextRequest will return -1 when nothing is available to be processed, therefore
our thread will sleep for 100 milliseconds, as defined in our run method.

When an RSS_REQUEST is received, our native background will process it in the
sendRSSMessage method and send a response back with the memory consumed by
the process in the system.

Wrapping native data objects

So far, to send any kind of structured data from native code to Java code, we have
been building and dispatching regular Java objects. However, to reduce the overhead
required to convert from native types to Java types, and vice-versa, it could make
sense to send native wrapped structures or object pointers to Java Runtime instead of
creating a pure Java object in the native code.

The most reliable technique is to store the native address into a long member
variable of the wrapper object to be compatible with 64 bit and 32 bit pointers:

public class MyObject
// Transports a pointer to original
// native object or structure
long nativePtr;

}

As you know, JVM Garbage Collector will constantly maintain the heap memory
and clean the unreferenced objects for us to free more memory for next allocations
required by your application. The same does not apply to native objects allocated in
the dynamic memory using a new operator or the malloc function.

When we create an object in native heap, we always have to explicitly release it using
the delete operator or free function, so to enforce the memory clean up on all the
objects that wrap native objects we will define an interface that defines the required
function to release underlying native objects:

public interface Disposable {
// Releases the native objects wrapped on the object
void dispose() ;

}

Although we can use the finalize method to release any native
resources when the object gets garbage collected, there is no guarantee
T that the GC will call finalize at any specific time in the future.

[287]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

To demonstrate this technique in our example, we will send back using the Handler,
a native CPUStat struct wrapped in a Java object.

Let's first define the native cpustat sent when to carry the information related to the
process memory consumption:

struct CPUStat({
double vm; // Virtual Memory Size
double rss; // Process Resident Memory
// constructor
CPUStat (double &vm_,
double &rss) :vm(vm), rss(rss_) {}

And its Java counterpart:

public class JCPUStat implements Disposable
// Reference to the native struct stored on a long
long nativePtr;

public JCPUStat (long nativePtr) {
this.nativePtr = nativePtr;

}

native long getRSSMemory () ;

@Override
public native void dispose() ;

}

Notice that our Jcpustat implements the disposable object explained before, so all
that remains is to write the native methods for the JCPUStat class:

// Generic function to convert a nativePtr member to a T pointer
template <typename T>
T * getNativePtr (JNIEnv * env, jobject obj) {
jclass ¢ = env->GetObjectClass (obj) ;
jfieldID nativePtrFID = env->GetFieldID(c, "nativePtr", "J");
jlong nativePtr = env->GetLongField(obj, nativePtrFID) ;
return reinterpret cast<T * >(nativePtr);

void unsetNativePtr (JNIEnv * env, jobject obj) ({
jclass ¢ = env->GetObjectClass (obj) ;
jfieldID nativePtrFID = env->GetFieldID(c, "nativePtr", "J");

[288]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

env->SetLongField (obj, nativePtrFID, O0);

void Java_com packpublishing asynchronousandroid chapter9 JCPUStat
dispose (JNIEnv *env, jobject obj) {

// Retrieves the pointer to the original structure
CPUStat *stat = getNativePtr<CPUStats> (env,obj) ;
if (stat != 0) {
delete stat; // Releases the memory allocated to stat
unsetNativePtr (ev,obj) ;

}
}

To simplify the native reference handling, we created two generic functions to
manipulate a nativeptr field in wrapper objects. The first function, getNativeptr,
will get the pointer field from the object and with help from reinterpret_cast we
will convert the original long value stored in a CPUStat pointer.

After we get access to the original pointer, we can call the delete operator that will
free the memory in the system and set the nativePtr as 0. Setting the pointer to zero
will prevent a double free from happening when you call the dispose method twice
by mistake.

Next, with the wrapper class defined, we will process the original request and build
a JCPUStat response object to send back to Activity using the activity Handler:

// Function to retrieve the Memory Usage
void CPUStatThread: :processMemUsage (
double& vm _usage, double& resident set){...}

void CPUStatThread::sendRSSMessage (jobject & handlerObj) ({

double vm, rss;

// Read the mempory usage

processMemUsage (vin, rss) ;

jclass jCpuStatClass = jniEnv () ->FindClass(
"com.packpublishing.asynchronousandroid.chapter9.JCPUStat") ;

// Find the JCPUStat Constructor

jmethodID jCpuConstructorMid = jniEnv () ->GetMethodID (
jCpuStatClass, "<init>", "(J)V");

// Create a native CPUStat object

[289]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

CPUStat * cpuStat = new CPUStat (vm, rss);

// Wrap the native object on a JCPUStat object

jlong nativePtr = reinterpret cast<jlongs(cpuStat);

jobject jCpuStat = jniEnv () ->NewObject (
jCpuStatClass, jCpuConstructorMid, nativePtr) ;

// Get the Handler Reference and send Message

// Build up the Response Message with the
jobject messagObj = jniEnv()->CallObjectMethod (
handlerObj, obtainMId, RSS RESPONSE, jCpuStat);

// Push the message to the main Thread Handler
jniEnv () ->CallBooleanMethod (handlerObj, sendMsgMId, messagObj) ;
// Clean up the local references

Our sendrssSMessage function will calculate the memory consumed by the process
using system facilities, and build a JcpPUStat object that wraps a native C++
structure. Afterwards, JCPUStat is dispatched to the main thread using the activity
handler member object passed in the sendrsSMessage function. To finish, we
cleaned up all the local references created in the local scope.

The full source code is available from the Packt Publishing website. Take a look at
the complete source code to appreciate how we determined the memory consumed
by the current process.

To complete the example, we will update StatsActivity to handle the RSS
command response on the Handler:

public class StatsActivity extends Activity {
public static final int MEM RSS REQUEST = 0;
public static final int MEM RSS RESPONSE = 1;
public Handler myHandler = new Handler() {
public void handleMessage (Message msg)
switch (msg.what) {
case MEM _RSS RESPONSE:
TextView tv = (TextView) findViewById(R.id.console) ;
JCPUStat stat = (JCPUStat) msg.obj;
tv.setText ("Memory Consumed is "+stat.getRSSMemory ()) ;
// Releases the native object and frees the memory
stat.dispose() ;
break;

[290]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

}
}
}i

public native void startCPUStatThread() ;
public native void stopCPUStatThread ()

}

Once we get gcpUStat from the Message object, we read the RSS memory using its
native method getRSSMemory and then we print the result on the console UI widget.

As we explained before the Jcpustat . dispose method is explicitly called on the
Java Runtime to destroy the native object sent to us by the background thread. The
JVM GC will not clean up the native objects, therefore we must call dispose to
release native resources attached to a Disposable object.

getRSSMemory like the dispose method will make use of the nativePtr field to
retrieve the RSS value stored on the native object. Let's see how it looks:

jlong Java com packpublishing asynchronousandroid chapter9 JCPUStat
getRSSMemory (JNIEnv *env, jobject obj) {

CPUStat *stat = getNativePtr<CPUStats> (env,obj) ;

return (jlong)stat->rss;

}

For brevity, startCPUStatThread and stopCPUStatThread is omitted, as it is
very similar to code used to start the native threads on previous example —see the
downloadable samples for the complete code.

Great! We learned how to wrap native objects in Java objects, we defined an interface
to purge native memory from a java object when the native object is no longer
required and we learned how to create from native Java Objects calling the object
constructor.

Summary

In this chapter we introduce you to the JNI, a standard API available on Java to
interact with native code written in Assembly, C or C++ that it is available to any
Android Developer with the Android NDK kit installed.

In the first section we explain how to setup a project with JNI code on Android
Studio and how to call C function and C++ member functions from any Java class
on your application.

[291]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Work on the Native Layer

Later, we use the JNI interface to execute a Loader asynchronous background work
on a native function. The native function was able to convert a colorful image to a
gray image on a Java background thread created by the AsyncTaskLoader.

Next, we discover how to attach and detach a pure native thread created using the
C++ standard library to the JVM. The attached thread worked as a normal Java
thread and managed its own JNI Environment, resources and references.

In the meantime, we also discovered the differences between JNI global and Local
references and how to access a Java object field from the native code scope.

We also learned a technique to wrap native objects on Java objects and we define a
concrete interface to dispose JNI resources attached to Java objects.

At the end of the chapter, we learned how to detect and handle a pending exception
thrown on the JVM by a Java function.

We all the techniques explained on this chapter you should be able to integrate any
code written in C/C++ in your asynchronous background execution. Beyond that,
you can also make use of the native code to optimize a crucial functionality in your
application or integrate with some native handy libraries.

In the next chapter, we will learn how to use the Google GCM to push and pull
efficiently realtime messages from your server and how to schedule work with
Google Play Services framework.

[292]

www.it-ebooks.info

http://www.it-ebooks.info/

10

Network Interactions
with GCM

In previous chapters, in order to update any kind of dynamic data that our examples
required, we explicitly initiated a connection to a remote server, waking up the
network radio and other resources required to perform the network operation. The
application might fetch either fresh data or exactly the same data if nothing has
changed since the last fetch.

Although this communication-fetching model might work for most use cases, it
could consume battery resources and internet bandwidth in vain when the data
does not change often.

This technique, commonly known as data polling, may also increase the server load
when a great number of clients try to fetch or verify whether any data has changed.

An alternative to the polling technique is data pushing. In this technique, the server
tells the application when new data is available or when the data has changed. When
the data consumer (application) gets notified, it will initiate a new interaction with
the server to retrieve the fresh data.

Since fewer synchronizations are required, it will lead to fewer network interactions,
which will lead to less battery resources consumed.

In this chapter, we will introduce you to Google Cloud Messaging (GCM),

a service delivered by Google Play Services that will help you to build applications
that require data pushing or pulling messaging services. GCM delivers a framework
to deliver push messages to multiple devices or group of devices in a battery-efficient
way.

[293]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

In this chapter, we will cover the following topics:

Polling versus pushing messaging

How to setup and configure GCM for your application
Receiving downstream messages from the server with GCM
Receiving downstream messages from GCM topic streams
Sending upstream messages to your server with GCM

Registering one shot and periodic network tasks with GemNetworkManager

Introduction to GCM

Since every network interaction with your server could wake the wireless radio
interface up, on a device with limited energy resources it is crucial to minimize the
number of times that your application tries to hit the network to sync data.

For applications that require regular updates and up-to-date data, like a messaging
application, polling in the background by setting an alarm for every x minutes, then
waking up the radio and downloading your data could drain the battery in a matter
of hours.

Client Server

—_— Regue.
T = Pooling Interval quest GET fresource

Example: 2mins
Server Request #1

- . date) Processing
pesponse (NO P '
e [resOUICE
— Request GeT Iresource changed
. Server Request #2
[Processing

Response (New Data)

Figure 1 - Polling data from remote server

[294]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

The GCM offers us a platform to efficiently deliver notifications, with less than
4096 bytes, when there is new data to be consumed or to synchronize. This
interaction model reduces the network interactions, and there is no need to
constantly poll the server to discover data changes.

Application Server
Downstream Data (New Data)]
. . Downstreamn Data (New Data) > b fTESOUTCE
Client receives P changed
the fresource a-,
update
2
Q
[N (7]
(8]
Upstreamn Data Update /resource 0
— » Upstream Data Update /resource
Client Wants e [resource
to update changed

the resource

Beyond the ability to dispatch downstream messages from your server (using HTTP
or XMPP protocol messages) to your Android application, the GCM framework
provides a battery-efficient communication channel to dispatch upstream messages
from your application to a XMPP server managed by you.

The GCM client that runs on the Android device provides a reliable and
battery-efficient connection between your GCM server and the device. The
connection maintained is highly optimized to minimize bandwidth and battery
consumption. Therefore, the use of GCM for applications that require high-frequency
network data updates, such as real-time messaging, is extremely recommended.

Beyond that, when the device is offline and is not able to contact the GCM service,
the platform is able to retain the messages in queues until a maximum number of
20 queued messages, and ensure the delivery of the messages as soon as the device

goes online again.

[295]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

Setting up and configuring GCM for your
application

To setup Google Cloud Messaging on your application you will have to register
with GCM and set up a Google API Project on your Google Developers Console
(https://developers.google.com/mobile/add):

First pick Android App Platform

Specify your application name

Example: Asynchronous Android

3. Supply your application package name

Example: com.packpublishing.asynchronousandroid

Select Cloud Messaging Services and Enable Google Cloud Messaging

5. Generate the configuration files and download the JSON configuration file
google-services.json to your computer.

6. Save your credentials (Server APIKey, Senderld) to authenticate with the
GCM platform

Once you have registered your application with GCM, get the google-services.
json configuration file and copy the file into the app/ or mobile/ directory of your
Android Studio Project.

Next, add the Google Play Services SDK to your project level and app-level <PROJECT
DIRECTORY>/build.gradle file and rebuild your Android Studio Project:

buildscript {
repositories {
jcenter ()
}
dependencies {
classpath 'com.android.tools.build:gradle:1.5.0"
classpath 'com.google.gms:google-services:1.5.0-beta2’

[296]

www.it-ebooks.info

https://developers.google.com/mobile/add
https://developers.google.com/mobile/add
http://www.it-ebooks.info/

Chapter 10

Update the application module build < PROJECT DIRECTORY >/app/build.

gradle:

apply plugin: 'com.android.application'

android
compileSdkVersion
buildToolsVersion
defaultConfig {
applicationId
minSdkVersion

23
"21.1.1"

"com.packpublishing.asynchronousandroid"
9

targetSdkVersion 23

}

dependencies {

compile 'com.google.

}

android.gms:play-services-gcm:8.3.0"'

apply plugin: 'com.google.gms.google-services'

To use GCM on your Android application you need to have a device with Android
API 8 or higher with the Google Play Store installed, or a device with API level 9 if
you want to use the new GCM features delivered by the Google Play Services.

With the Google Services library dependencies declared on our build files, we can
start to bootstrap the GCM infrastructure on our application.

To use GCM in your application, you have to register for the following permissions
on your application AndroidManifest .xml file:

<uses-permission android:name="android.permission.INTERNET" />

<!-- Required to wakeup the device and deliver messages -->

<uses-permission android:name="android.permission.WAKE LOCK" />

<permission android:name="<Package>.permission.C2D MESSAGE"

android:protectionLevel="signature"/>

<uses-permission android:name="<Package>.permission.C2D MESSAGE"/>

</manifest>

Notice that you should replace <Package> with your unique application
A package, such as com. packpublishing.asynchronousandroid.

[297]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

Registering the GCM Receiver

In order to receive Broadcast Intents from the GCM Platform, we will add the GCM
GcmReceiver, a WakefulBroadcastReceiver subclass provided by the GCM library,
to our AndroidManifest.xml application element:

<receiver
android:name="com.google.android.gms.gcm.GcmReceiver"
android:exported="true"
android:permission="com.google.android.c2dm.permission.SEND" >
<intent-filters>

<action
android:name="com.google.android.c2dm. intent .RECEIVE" />

<category android:name="<Package>" />
</intent-filters>
</receivers

This BroadcastReceiver receives an Intent when a new downstream message
arrives from the GCM Server, so it is required to subscribe to Intents with action
com.google.android.c2dm. intent .RECEIVE.

Setting up a registration service

In order to receive downstream messages from the GCM platform, the Android
application requires a registration token. The registration token, a secret ID issued by
the GCM server, must be obtained to identify the device on the service.

To obtain a registration token we will define an IntentService that will retrieve
the registration token using Instance ID AP Let's start by defining it on the
AndroidManisfest.xml:

<service android:name=".chapterl0.RegistrationIntentService"
android:exported="false">
</service>

Our IntentService subclass will retrieve a new registration token in the
background using the Sender1d returned from the GCM registration. Once the

new registration token is received, it will be dispatched to our servers to be stored
safely. The token is our pass key to access the GCM service, so, in order to submit
notifications, the server has to present this token. On the device, the registration will
be implicitly stored securely by the GCM framework.

public class RegistrationIntentService extends IntentService {

@Override

[298]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

protected void onHandleIntent (Intent intent) {

SharedPreferences sharedPreferences = PreferenceManager.
getDefaultSharedPreferences (this) ;

try {
// Get the InstanceID Singleton
InstancelID instanceID = InstancelID.getInstance (this);
Log.i(TAG, "\N--------mmmmmmmmmm oo \n" +
" GCM App instance UUID: " + instanceID.getId() +
E N B e \n"

// Retrieve the Sender Id from GCM Registration
String senderId = getString(R.string.gcm defaultSenderId) ;

// Retrieve a token with a sender ID
String token = instanceID.getToken (senderId,
GoogleCloudMessaging.INSTANCE ID SCOPE, null);

// Save the Registration to the server
sendRegistrationToServer (token) ;

sharedPreferences.edit ().
putBoolean (MyChatActivity.SENT TOKEN TO SERVER, true).
apply () ;

} catch (Exception e) {
Log.d(TAG, "Failed to get registration token", e);
sharedPreferences.edit ().
putBoolean (MyChatActivity.SENT TOKEN TO SERVER, false).
apply () ;

}

Once a registration token is received with success, we update the default application
shared preferences file, setting the SENT_TOKEN_TO_SERVER to true. This property
indicates whether the generated token has been sent to your server. If the property is
false, we send the token to your server. Otherwise, your server should have already
received the token.

[299]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

If an exception happens while fetching the new token or updating our registration
token on our server during the sendRegistrationToServer call, we will set

the SENT_TOKEN_TO_SERVER as false, ensuring that a new attempt is going be
executed later.

Though you would want to persist the registration to your backend server, for now,
we will print the registration token to the log output. You can pick the value using
logcat for future use in our examples.

private void sendRegistrationToServer (String token) {
Log.i(TAG, " GCM Registration Token: " + token);

InstancelD listener

The first time we get InstanceID through InstanceID.getInstance, a UUID
Application identifier is generated to identify the application on the GCM platform.

The instance ID may become invalid, if:

* The application explicitly deletes Instance ID (Instance.deleteToken)
* The device is factory reset
* The application is uninstalled

* The user clears application data

To receive a notification, each time the registration token requires a refresh,
we will create a service that extends InstanceIDListenerService, registers
to com.google.android.gms.iid. InstanceID intent, and includes it on the
AndroidManifest.xml:

<service
android:name=".chapterl0.MyInstanceIDListenerService"
android:exported="false">
<intent-filters>
<action android:name="com.google.android.gms.iid.InstanceID" />
</intent-filter>

</services>

public class MyInstanceIDListenerService
extends InstanceIDListenerService {
@Override
public void onTokenRefresh()
// Starts the Registration Service to obtain a new token
Intent intent = new Intent (this,

[300]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

RegistrationIntentService.class);
startService (intent) ;
sharedPreferences.edit ().
putBoolean (MessagingActivity.SENT TOKEN TO_ SERVER, false).

apply () ;

}

The onTokenRefresh callback will be invoked when the registration token needs
to be refreshed. This may occur if the security of the previous token has been
compromised, such as with a suspicious use of the token. This procedure is usually
initiated by the instanceID provider.

Instance ID APl is used to manage security tokens that authorize your application or
your server to interact with the GCM Service.

Server Application GCM Server
Instanceld Listener Registration Service

getToken()
>

" MNew Token

New Registration Token
— ‘
Store the Token
for future use i

_onTokenF{e.resh() .| getToken()

. M
startService()
New Token
<

Mew Registration Token

Beyond the creation of new tokens, the InstanceID singleton instance is able to
delete tokens or even invalidate an InstanceID.

void deleteInstanceID()
void deleteToken(String authorizedEntity, String scope)

[301]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

Receiving downstream messages

With the basic blocks required to set up the GCM client already in place, in our
tirst GCM example we will send a simple downstream message through the GCM
Platform and print it as a notification on the Android Notification drawer.

To handle GCM messages, we will have to implement a service that extends from
GemListenerService and override the onMessageReceived (String, Bundle)
method. Since GemReceiver extends WakefulBroadcastReceiver, it is guaranteed
that the CPU is going to be awake until the service completes the delivery.

Our GemListenerService subclass will receive a message from GCM and create an
Android Notification as soon as it receives it.

public class NotificationGCMHandler extends GcmListenerService {

public static final int NOTIFICATION_ID ="GCMNotification".
hashCode () ;

@Override
public void onMessageReceived(String from, Bundle data)

String msgType = data.getString("type");

// Notification Message received from GCM.
if (msgType.startsWith("my notifications")) ({
createNotification(data.getString("title"),
data.getString ("body")) ;

}

private void createNotification(String title, String body) {
// Elided for brevity...

}
}

We also need to register our GemListenerService service class in the
AndroidManifest.xml registering the service to receive the com.google.android.
c2dm.intent .RECEIVE action:

<service android:name=".chapterl0.NotificationGCMHandler"
android:exported="false" >
<intent-filter>
<action
android:name="com.google.android.c2dm. intent .RECEIVE" />
</intent-filters>
</service>

[302]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

To instigate the initial registration with GCM, we will create an Activity that will
start the RegistrationService's IntentService to retrieve the required token.
However, before we try to retrieve the token, we will have to check if the Google
Play Services is available on the device, and that the version installed on this device
is no older than the one required by this client.

Let's get started by implementing the Activty.onCreate method, triggering
interaction with the GCM platform:

public class MyChatActivity extends Activity {

}

public static final String SENT TOKEN TO SERVER = "sent2Server";

private final static int PLAY SERVICES RESOLUTION_ REQUEST = 9000;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

if (checkPlayServices()) ({
Log.1i(LOG TAG, "Registering to GCM") ;
SharedPreferences sharedPref = PreferenceManager.

getDefaultSharedPreferences (this

// Registering is started when there is no available token
boolean sentToken = sharedPref.
getBoolean (SENT TOKEN_ TO SERVER, false);
if (!sentToken)
//...Print an error

}

Intent int = new Intent (this, RegistrationIntentService.
class) ;

startService (int) ;

Before we start the registration service, checkPlayServices will verify if the Google
Play Services is installed on the device. If the service is not available, a dialog box is
shown to the user that allows the users to download it from the Play Store or enable
it on the device system settings:

private boolean checkPlayServices() {

// Returns the singleton instance of GoogleApiAvailability.

GoogleApiAvailability apiAvailability = GoogleApiAvailability.
getInstance() ;

// Verify if the Google Play Service installed is

// installed and compatible with GCM Library used

[303]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

int rc = apiAvailability.isGooglePlayServicesAvailable (this) ;
if (rc != ConnectionResult.SUCCESS)

// The error can be resolved with a user action
if (apiAvailability.isUserResolvableError (rc)) ({

// Shows a user action dialog to resolve the issue
apiAvailability.getErrorDialog (this,
rc, PLAY SERVICES RESOLUTION REQUEST) .show() ;
} else {
Log.i(TAG, "This device is not supported.");
// Finishing the Activiy
finish () ;
}

return false;

}

return true;

}

When the isGooglePlayServicesAvailable returns success, we return true from
the function and initiate the registration service.

When the function returns an error that can be resolved by the user, such as
SERVICE_VERSION UPDATE REQUIRED, a localized dialog is shown to the user to
correct the problem. The dialog could redirect the user to the Play Store if Google
Play Services is out of date or missing, or to system settings if Google Play Services is
disabled on the device.

If the returned cannot be solved by a user action, we simply finish the current
Activity and print a log message because the device will not be able to register in
GCM and receive the downstream message.

Yes! We finished the application GCM bootstrap, and as soon as we start the
Activity and register with GCM, the device will be ready to receive downstream
messages from GCM.

Remember that our registration service will print a registration token to the log output,
so don't forget to note it when you run the MyChatActivity for the first time.

I ...: GCM Application Instance Identifier: <InstanceIds
I ...: GCM Registration Token: <Registration Tokens>

To interact with GCM you could set up an HTTP or XMPP backend server that uses
the server credentials to connect to the GCM Service. For simplicity and testing we
will build and submit HTTP messages directly.

[304]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

To send a downstream message to our device we will have to send HTTP POST a
message with a JSON object in the payload, setting the field to to with our noted
registration token and a data object field with our custom notification properties:
title and body and type.

Here is a JSON-formatted message that will generate an Android notification as soon
as NotificationGCMHandler receives it from GCM:

{

"data": {
"title": "Hello from GCM",
"body": "Hello from your fake server",
"type": "my notifications"
I
"to": "<DeviceRegistrationTokens>"

}

To submit HTTP messages to the GCM platform, you can use the curl command or
use the chrome web application Postman (http://www.getpostman.com/). Here is
the curl command that will submit the previous message to GCM:

$ curl --request POST \
--url https://gcm-http.googleapis.com/gcm/send \
--header 'authorization: key=<Server API Key>' \
--header 'Content-Type: application/json' \
--data '{"data":{"title":"Hello from GCM", "body":"Hello from
your fake server","type":"notification"},
"to":"<DeviceRegistrationToken>"}"'

Don't forget to replace the <server API Key> with the API key generated on the
Google Cloud Console registration and replace <DeviceRegistrationToken> with
the token generated for your device. Notice that the downstream data messages have
a maximum 4KB payload.

If everything goes well with your GCM setup, your data object properties are passed
to your onMessageReceived () method in the data bundle object and the GCM
service will send you back a HTTP Response (200) with a message body similar to
the one below:

{

"multicast id": 6425212369847183592,

"success": 1,
"failure": 0,
"canonical ids": O,
"results": [{
"message_id": "0:1456441876781708%69ee9872f9fd7ecd"

1

[305]

www.it-ebooks.info

http://www.getpostman.com/
http://www.it-ebooks.info/

Network Interactions with GCM

Receiving messages from topic

The downstream messages allow us to send send short (4KB) messages to alert the
user of new updates, new content or even reminders.

A downstream message is a one-way communication channel where the users
can receive messages, but they cannot respond to them directly or take any
immediate action.

To build interactive experiences, such as a chat system, we will have to support a
bidirectional communication where the user can receive downstream messages and
also send upstream messages to other devices or groups of devices.

In our next example, we will build a simple group messaging system based on the
GCM upstream messaging and topic messaging features. The group messaging system
will allow multiple devices to publish text messages to a shared message channel.

GCM topic messaging allows your backend server to send a message to devices that
have a particular topic. Once the GCM receives a message to a particular topic, it will
route and deliver the message to the subscribed devices transparently using the list
of subscribed devices managed on the GCM platform.

A topic is identified by the name that follows the next regular expression:
/topics/[a-zA-20-9- .~%]+

To start receiving messages related to a particular topic name, a GCM-registered
client application will have to subscribe in GCM with its own registration token and
the desired topic stream.

First of all, we will update our RegistrationIntentService to subscribe our
application to the " /topics/forum" message stream using the registration token
received:

public class RegistrationIntentService extends IntentService {
private static final String TOPIC NAME = "forum";

@Override
protected void onHandleIntent (Intent intent) {

// Retrieve the token
String token = instanceID.getToken (senderld,

[306]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

GoogleCloudMessaging.INSTANCE ID SCOPE,null);

// Subscribe to Topics
subscribeTopics (token) ;

}

private void subscribeTopics (String token) {
GcmPubSub pubSub = GecmPubSub.getInstance (this) ;
try {
pubSub.subscribe (token, "/topics/ " + TOPIC_NAME, null);
} catch (Exception e) {
Log.e(TAG, "Failed to subscribe to " + TOPIC NAME, e);

}

To unsubscribe the device from the GCM "forum" topic, we can invoke GemPubSub's
unsubscribe () with the registration token and topic name.

The topic messages are delivered to our GemListenerService
(NotificationGCMHandler) in the same way the push notification GCM messages
were delivered in our previous example. The topic messages are delivered to our
application, with the from field storing the topic name /topics/forum.

I will give you an idea of what a typical topic message for our topic could look like:

{
"to": "/topics/forum",
"data": {
"username": "heldervasc",
"text": "I need to learn more about Android Development"

}
}

The data object field is the field on the message that we might use to pass custom
properties to the application. In our example, it carries information about the
username and text written by the user.

Next, and taking into account that NotificationGCMHandler will receive the
topic messages sent from the GCM, we will update it to handle the topic messages
received, and broadcast each topic message to any local BroadcastReceiver.

[307]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

Our NotificationGCMHandler will simply wrap the topic messages on the Intents
and dispatch them to the local Activity within your process. This asynchronous
communication technique, already explained in previous chapters, is faster and more
secure as your messages don't leave your application:

public class NotificationGCMHandler extends GcmListenerService

public
public
public
public

static
static
static
static

@Override

final
final
final
final

String FORUM_TOPIC = "/topics/forum";
String USERNAME KEY = "username';
String TEXT _KEY = "text";

String MSG DELIVERY = "asyncforum";

public void onMessageReceived (String from, Bundle data)

// Verify if it is a forum message
if (from.equals (FORUM TOPIC)) ({

// Build an intent from the forum topic message.

Intent intent =
intent.putExtra(USERNAME_KEY, data.getString(USERNAME_KEY));
intent.putExtra (TEXT KEY, data.getString(TEXT KEY)) ;

new Intent (MSG_DELIVERY) ;

// Broadcast the intent to local interested objects

LocalBroadcastManager.

getInstance (this) .sendBroadcast (intent) ;

} else

}

{

With our GemListenerService forwarding the messages received from our
messaging topic, it is time to build the Activity that is going to display the messages
received and publish messages to the group chat using the GCM upstream messages.

Starting from the work done in the previous chapter, we will create a
MessagingActivity that will also verify that Google Play Services is available and
start the RegistrationIntentService when no registration token is available:

public class MessagingActivity extends Activity

@Override

protected void onCreate (Bundle savedInstanceState)

super.onCreate (savedInstanceState) ;

[308]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

setContentView (R.layout.chat layout) ;
if (checkPlayServices()) ({

}

To receive and display the topic messages in our Activity, we will create an
anonymous BroadcastReceiver subclass that dynamically registers and
unregisters the reception of local Intents whose action is MSG_DELIVERY.

Since we only want to receive the topic messages when the Activity is in the
foreground, we will register and unregister to the local broadcasts on onResume and
onPause callbacks:

public class MessagingActivity extends Activity

@Override
protected void onResume () {
super .onResume () ;

// Create an intent filter to receive forum Intents
IntentFilter filter = new IntentFilter(
NotificationGCMHandler.MSG DELIVERY) ;

// Register the local Receive to receive the Intents
LocalBroadcastManager.getInstance (this) .
registerReceiver (onMessageReceiver, filter);

@Override
protected void onPause() {
super.onPause () ;
// Unregister the Local Receiver
LocalBroadcastManager.getInstance (this) .
unregisterReceiver (onMessageReceiver) ;

}

All that remains is to display our group chat messages on the Ul and implement the
BroacastReceiver that receives the broadcast Intents and updates the UI with the
message username and text.

[309]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

To process the Broadcast Intent, we must override the onrReceive method of
BroacastReceiver in order to receive local Intent:

BroadcastReceiver onMessageReceiver = new BroadcastReceiver () {

@Override
public void onReceive (Context context, Intent intent) {

TextView chatText = (TextView)findViewById(R.id.chatWindow) ;
String username = intent.getStringExtra ("username") ;

String bodyText = intent.getStringExtra ("text");

String line = String.format("%s : %$s%n", username,bodyText)
// Prepend the message

chatText.setText (line + chatText.getText ().toString());

}
Vi

Now, if you submit a topic message to the GCM using the following curl command,
you will see a new message popping up on the Ul Textview:

curl --request POST \
--url "https://gcm-http.googleapis.com/gcm/send" \
--header 'authorization: <SERVER_API_KEY>' \
--header 'Content-Type: application/json' \
--data '{ "data": {

"username": "heldervasc",

"text": "Welcome to Asynchronous Android group chat"

Y
"to": "/topics/forum"

} 1

Sending upstream messages

Although we are able to receive the chat group messages, we are not able to interact
with the message stream from the application. Additionally, to send and process
upstream messages with the GCM platform, an application server that implements
the XMPP Connection Server protocol is required to connect to the GCM servers and
receive upstream XMPP messages.

To deal with our group messages we built a very basic XMPP server that processes the
upstream messages from the device and forwards the message to the topic message.

[310]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

The basic XMPP Server source code is available from the Packt Publishing website.
Grab it from the Packt website, and, before you run it, update the static fields with
your SenderID and your ServerKey in the GCMServer. java class file.

private static final String SENDER ID = "<YOUR SENDER ID>";
private static final String SERVER KEY = "<SERVER KEY>";

The server will connect to the GCM platform, initiate a XMPP session, and process
all the messages delivered to the <SENDER_ID>@gcm.googleapis.com.

To generate an upstream message, we created a EditText on the Ul and created
a button that, once fired, will send an upstream message. To send an upstream
message on the GCM platform, the application needs to provide the following fields:

* The address of our server on the GCM platform: <SENDER_ID>@gcm.
googleapis.com.

* A unique message identifier (message_id)

* A message payload with a custom key/value pairs

Now, let's update MessagingActivity to send the upstream message based on the
EditText input field. Since the upstream dispatch requires network access, and as
you know we cannot perform networking on the main Thread, we must perform the
execution off the main thread using an AsyncTask subclass. On the Activity class,

we implemented a basic asynchronous construct named AsyncJdob to perform the
network operation in the background, catching any exception that happen during the
upstream request. This special purpose class could be used in background tasks that
don't produce any results:

public abstract class AsyncJdob
extends AsyncTask<Void, Void, Result<Voids> > {

@Override

protected Result<Void> doInBackground (Void ...args) {
Result<Void> result = new Result<Voids> () ;
try { runOnBackground() }
catch (Throwable e) { result.error = e; }
return result;

}

@Override

protected void onPostExecute (Result<Void> result)
if (result.error != null) { onFailure(result.error);}
else { onSuccess();}

}

// Backrgound Execution Task

[311]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

abstract void runOnBackground() throws Exception;
// Error Callback

abstract void onFailure (Throwable e) ;

// Success Function

abstract void onSuccess() ;

}

With Asyncdob, we declared three abstract methods that any Asyncdob subclass
should provide implementations. runonBackground should implement the
background task, onFailure should be used to handle execution exceptions, and
the onsSuccess callback is invoked to inform the developer that the job has been
successfully completed.

Now we are ready to implement the onClicklistener that will build up an
upstream message and dispatch it to our XMPP server in the background:

OnClickListener sendListener = new OnClickListener () {

@Override
public void onClick (View v) ({

TextView msgText = (TextView) findViewById(R.id.msg) ;
final String msgToSend = msgText.getText ().toString() ;
msgText .setText ("") ;

new AsyncJob () {
@Override
void runOnBackground () throws Exception {

// Build the data Bundle wit our key/value pairs

Bundle data = new Bundle() ;

data.putString (USERNAME KEY, "Helder");

data.putString (EXT KEY, msgToSend) ;

data.putString("topic", NotificationGCMHandler.
FORUM_TOPIC) ;

// Generate a random message Id

String id = Integer.toString(new Random () .nextInt());

// Get the GCMMessaging instance
GoogleCloudMessaging gcm = GoogleCloudMessaging.
getInstance (MessagingActivity.this) ;

// Sends the Message to the GCM platform
gcm. send (getString (R.string.gcm SenderId) +

[312]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

"@gcm.googleapis.com", id, data);
}
@Override
void onFailure (Throwable e) {
//.. Handle the exception
Log.e (TAG, "Failed to send upstream message to forum",e);
}
@Override
void onSuccess () {
//.. No Exception thrown

}.execute () ;

}
}i

In our example, we created a Bundle object with all the payload data that we want
to dispatch. Beyond that, we created a unique message ID using the java.util.
Random.nextInt instance method.

This message receives as parameters the address following the format <SENDER_ID>e@
gcm.googleapis. com, the unique message ID string generated from the random
integer, and the bundle with your payload.

Once we invoke the GoogleCloudMessaging. send, if an active connection is
available, the new upstream message will be sent immediately, otherwise the
message will be queued. Once the connectivity is re-established, the queued
messages are dispatched to the GCM servers.

limit is reached, it returns an error.

[If the client attempts to send more messages after the 20-message]

The GoogleCloudMessaging API will reuse and manage the connection to the GCM
platform in an efficient way, maximizing the device battery life transparently for us.

As soon as the message is received by our XMPP server, the message is dispatched
to /topics/forumand, consequently, it will update the Ul message stream with the
message we typed.

[313]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

GcmListenerService delivery callbacks

In some situations, when there is no connectivity with the GCM servers due to lack
of network connectivity, the message could remain on the local queues for a long
period of time. So, in order to discard a message that remains on the queue without
being sent to the GCM Service within the time specified, the GoogleCloudMessaging
API provides an additional send method that could receive a TTL (Time to Live) time
to set the message expire time:

void send (String to, String msgId, long timeToLive, Bundle data)

This works great when you have messages that are only relevant if they arrive
within a certain time frame. With a time to live of 0, we'll attempt to send and return
an error immediately if we're not connected. This situation does not apply for our
example, so we will keep the original code with the send method that does not
discard an old unsent message.

It is important to understand that the application GCM client is only able to queue
a maximum of 20 messages when there is no connection to the GCM platform for a
long period of time.

Beyond the upstream expiration feature, the GemListenerService also allows us to
receive the upstream messages' dispatch statuses by overriding the onMessageSent
and onSendError callbacks:

void onMessageSent (String msgId)
void onSendError (String msgld, String error)

The onMessagesSent callback is invoked when the message is delivered to the

GCM and the is called when there is an error dispatching the message to the GCM
connection server. Notice that both callbacks are invoked with the message identifier
as argument, so you should use this identifier to pinpoint the message that was sent
or failed with an error.

For efficiency reasons, the GCM message delivery reports are delivered in batches,
so don't expect to receive the callback execution immediately after you upload a
single message.

To receive upstream messages' dispatch statuses in our chat example, we will update
our NotificationGCMHandler and override the onMessageSent and onSendError:

public class NotificationGCMHandler extends GcmListenerService {
@Override
public void onMessageSent (String msgId)
super .onMessageSent (msgId) ;

[314]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Log.1i(TAG, "Message w/ id="+msgId+" send to GCM Server ");

}

@Override
public void onSendError (String msgld, String error) {
super.onSendError (msgId, error);
Log.e (TAG, "Message w/ id=" + msgId +
" send failed with error "+error) ;

}

The callback methods defined in our GemListenerService callbacks we print a
message to the application log output with the message that was sent or failed. The
dispatch of a message could fail if the message expiration time is reached or when a
maximum size of upstream queued messages has been reached.

Sweet! We've finished our group chat based on the GCM platform. During our
journey we learned how to send a topic message upstream and downstream using a
battery-efficient API that maintains a network connection with the Google servers.
The API allows us to create bidirectional communication channels between the
server and a device, or between a group of devices.

Executing tasks with GCM Network
Manager

Beyond the messaging framework, the GCM library comes with
GemNetworkManager, an API that allows us to efficiently schedule recurrent or
periodic tasks on all the devices that run API level 9 (Android 2.1) and above. For
devices running on API Level 21 (Lollipop) and above, GCM Network Manager uses
the native Jobscheduler APl internally, covered in detail in Chapter 7, Exploring the
JobScheduler API. In the same way as the JobScheduler AP, it will try to batch the
jobs and reduce the number of wakeups from idle state to improve the battery life of
your user's device.

Moreover, with GCM Network Manager we are also able to set criteria that should
meet to start the job execution, such as when the device is in a charging state or an
unmetered WIFI connectivity is available. Although the GCM API offers us the same
criteria offered by the Jobscheduler AP], it can be used on older and newer devices
that have Google Play Services installed.

So, before you try to use it, you need to make sure that Google Play Services version
is available on the device using the GoogleApiAvailability class, as we did for the
GCM example.

[315]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

Take a look at the checkPlayServices () function from our previous example to a
more complete solution. The previous function will display dialog when any user
action is required to update or install Google Play Services.

We can schedule a task execution on GCM Network Manager to run under certain
conditions, such as:

* When certain network connectivity is available (any network available,
unmetered network connectivity)
* When the device is plugged to the charger
* A task that runs within a predefined time window in the future
* Specify the task to run even after a reboot
While the criteria supported are the same as the Scheduler API covered previously
and available on devices that run on Android Lollipop, this API requires some extra

mandatory criteria that you should specify to register a service task execution on the
GCM Network.

To build and construct a GCM task, two Builder classes are available: The
OneoffTask.Builder used to create single shot tasks, and the PeriodicTask.
Builder used register a task that runs recurrently at regular intervals.

Building a one shot task
A OneoffTask is a task that will execute once, within a specified time window in
the future. The options available to configure a Oneof £fTask from the OneoffTask.
Builder are:

* Execution Window Range (Mandatory)

* Tag Identifier (Mandatory)

* GcmTaskService subclass that runs our task(Mandatory)

* Extra Arguments (Optional)

* Job Persistence (Optional)

* Required Network (Optional)

* Charging Required (Optional)

* Update Current Task (Optional)

[316]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

In our next example, we will make use of GCM Network Manager to schedule the
backup of account settings. The account settings, when updated, are stored in a
local file and, once the backup runs, the account details will be pushed to our XMPP
server over an upstream message. For saving our account settings, we will create an
Activity that displays a form to fill our personal details.

The form will have a button that, once clicked, will save our account details on a
local file and register a GCM Network task execution to push our details to our
network XMPP Server.

To extend the battery life and reduce our metered mobile internet usage, we will
register our backup task to run only when the WIFI network is available and the
device is charging, at most 4 hours after scheduling.

Before we register our task on GCM Network Manager, we will add our
GemTaskService to the application manifest:

<service
android:name=".chapterl0.MyBackupService"
android:exported="true"

android:permission="com.google.android.gms.permission.BIND NETWORK
TASK SERVICE">

<intent-filters>
<action
android:name="com.google.android.gms.gcm.ACTION TASK READY"/>
</intent-filters>
</service>

In the Android Manifest we added Intent filters required to receive GCM start
broadcasts and, to protect our service from being started by programmes other than
Google Play Services, we added the com.google.android.gms.permission.BIND_
NETWORK_TASK_SERVICE permission.

Next, we are ready to register a one-off task to backup the account details stored
locally on the application default shared preference file. Whenever the user updates
the account details and taps the save button on the UlI, the account details will be
stored locally and a OneoffTask task is built and registered on GCM NM to publish
the changes on our network servers.

[317]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

Let's see what the save button onclickListener looks like:

public class AccountSettingsActivity extends Activity {
public static final String TASK BACKUP = "backup";
public static long FOUR HOUR = 3600*4L;

// Executed when the user taps on save button
OnClickListener listener = new OnClickListener () {

@Override
public void onClick (View v) {
// Store the details on the default shared preferences file

// Obtain a GCM NM Instance
GecmNetworkManager gcmNM = GemNetworkManager.
getInstance (AccountSettingsActivity.this);
OneoffTask task = new OneoffTask.Builder ()
// Sets the Service to start
.setService (MyBackupService.class)
// Task Identifier
.setTag (TASK BACKUP)
// Will run in the next 4 hours
.setExecutionWindow (0L, FOUR_HOUR)
// Requires WIFI Network
.setRequiredNetwork (Task.NETWORK STATE UNMETERED)
// Requires Charging
.setRequiresCharging (true)
Lbuild () ;

gcmNM. schedule (task) ;
}
}i
}

To register tasks from your Activity, we obtained an instance of
GemNetworkManager using the Activity context. Next, we created a OneoffTask.
Builder object and set the task to start the MyBackupService service to complete
the task and to run the task at least 4 hours after the scheduling.

Notice that the framework will start your job as soon as all the criteria are met and
taking into account other jobs scheduled to run. As explained before, the GCM NM
will delay the job execution and batch jobs to reduce the number of CPU wakeups
from idle state.

[318]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Now, we will create the MyBackupService that extends from GemTaskService and
implements the following method:

int onRunTask (TaskParams args) ;

Our onrRunTask method will publish our account detail updates to our XMPP server:

public class MyBackupService extends GcmTaskService

@Override
public int onRunTask (TaskParams taskParams) {
Log.i (TAG, "Backing up the account settings");

try {

// Obtain the default Shared preference object
SharedPreferences sp =PreferenceManager.
getDefaultSharedPreferences (this) ;

// Builds the upstream data bundle

Bundle data = new Bundle() ;

data.putString (FIRST NAME, sp.getString(FIRST NAME, ""));
data.putString (LAST NAME, sp.getString (LAST NAME, ""));
data.putString (AGE, sp.getString(AGE, ""));

// Specify the resource to update (Optional)
data.putString("resource", " /account") ;
data.putString ("operation", "update") ;

String msgId = Integer.toString(new Random() .nextInt ()) ;
GoogleCloudMessaging gcm = GoogleCloudMessaging.
getInstance (MyBackupService.this) ;

gcm.send(SENDER _ID + "@gcm.googleapis.com", msgId, data);

} catch (IOException e) {
Log.e (TAG, "Failed to backup account", e);
return GcmNetworkManager.RESULT RESCHEDULE;

}

return GcmNetworkManager.RESULT SUCCESS;

}
}

To execute the onRunTask method, the GemTaskService started by GCM NM will
spawn a background thread with THREAD PRIORITY BACKGROUND priority and will
keep the device awake holding CPU wakelock for at most 3 minutes. After 3 minutes
of execution, if your task has not returned, GCM NM considers that your task has
timed out, and will release the CPU wakelock.

[319]

www.it-ebooks.info

http://www.it-ebooks.info/

Network Interactions with GCM

If your service receives more than one request at once, you should
serialize the job execution with a synchronized section to avoid
’ thread safety issues.

The result code returned by onRunTask will determine the task execution success
(RESULT SUCCESS), failure (RESULT_FAILURE) or failure with reschedule (RESULT
RESCHEDULE). In our particular example, if an exception is thrown during the
upstream message submission the result code RESULT RESCHEDULE returned will
force the task to be re-executed again after a back-off period (exponential).

Summary

In this chapter we learned how to send and receive data using a battery-efficient
communication channel provide by GCM Platform.

First, we learned the differences between polling and push/pull communication
techniques to interact with network servers. The push and pull messaging used
by GCM is able to reduce the battery efficiency of your application by avoiding
redundant server queries to keep the user's data up to date.

In the meantime, we learned how to setup and configure the GCM library on our
application. To interact with Google Services, our device obtained a instanceID and
registration token to authenticate and identify our device on the GCM service.

Next, we learned how handle notification messages and topic messages on our
application and we interacted with a custom XMPP server using GCM upstream
messages. At the same time, we built group chat system that is able to aggregate
messages from different users in a unified stream of messages displayed on the screen.

Finally, we learned how to use GCM Network Manager to schedule network tasks
that run when certain criteria are meet on the device such as the device is connected
to the WIFI network.

In the next chapter, we will introduce the reader to the RxJava, a library used to
compose asynchronous and event-based tasks on Java by using observable data
streams.

[320]

www.it-ebooks.info

http://www.it-ebooks.info/

11

Exploring Bus-based
Communications

In previous chapters, we have been using different techniques to disseminate
data/events/notifications between several Android application components
(Activity, Fragment, Service, BroadcastReceiver, ..):

* Intents were sent through the system carrying communication messages or
notifications to notify a Service or Activity to start

* Broadcast Intents were used to report a result back from background processes

* Handlers were used to communicate between different processes and

thread executions

These techniques usually involved a tight coupling between the component

that sends the message and the component that receives it. Typically, the sender
dispatches a message to a certain receiver and deals with the receiver lifecycle in
order to detect any receiver unavailability.

In this chapter, we are going to present to the reader a new construct and pattern,
delivered by the EventBus library, that most of the time simplifies communication
between the different application components by decoupling the event producer and
event consumer component.

In this chapter, we will cover the following topics:

* Introducing bus-based communication
* Setting up an EventBus library in your project

* Defining and dispatching events in the Bus

[321]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Bus-based Communications

* Registering subscribers
* Processing events asynchronously with threadMode

* Posting and removing sticking events

Introduction to bus-based
communication

The Bus based communication software pattern, also known as Publish/Subscribe, is
a pattern that allows sender and receiver entities to communicate without requiring
them to explicitly know each other. This communication model suppresses the

tight coupling between components and allows the delivery of messages from one
receiver to more than one final recipient. There are five different entities involved in
the communication pattern: publisher, subscriber, event, bus, and broker.

The publisher submits events to a shared messaging pipeline, named bus, controlled
by an entity called broker, that governs the stream of events submitted and forwards
them to a list of interested entities, called subscribers, that previously registered in
the broker to receive certain kinds of event.

In order to receive certain kinds of event, the subscriber should express interest in
these events by creating a subscription in the broker and the broker should keep a
list of enabled subscriptions and forward the events to all of the subscribers.

If a consumer loses interest in one kind of event, it terminates the subscription, and
as a consequence, the broker will stop forwarding the unsubscribed events related
to the subscriber.

event A
. event A Subscriber event A
Publisher UBSCrIDEr gypscriver
) » . event B
Publisher Subscriber Subscriber
. event A
Publisher Subscriber Subscriber
event A

[322]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

In this loosely coupled communication model, the publisher submits event A in the
shared bus without knowing the exact subscriber that will consume the event. In the
same way, the subscriber does not know about the sender entity that submitted the
event unless something is sent in event A to identify the event's origin.

On Android specifically, it could simplify the communication between Fragments,
Activities, Services, or any other business logic object, such as persistence
service, that manages your application or Ul state. In our examples, we will use
the library to send notifications between activies and fragments. However, the
same kind of construct could be applied to communicate between services and
broadcast receivers.

EventBus library

Although there are several open source libraries that are able to deliver this kind
of pattern in Android, we will base our code examples on the popular event bus
library (http://greenrobot .org/eventbus/) since it offers advanced features
and high performance.

The high performance library is optimized for the Android OS and it has been used
by many popular applications on Google Play.

These are the advanced features delivered by the EventBus library that you should
be aware of:

* Annotation-based subscription - You can define an subscription method by
annotating an Android Activity, Service, or Fragment instance method

* Background and main thread event delivery - The subscriber could define
in which thread the event will be delivered regardless of whether it was
generated in a background or main thread

* Event and subscriber inheritance - We can construct events or subscribers by
extending (Java subclass) other events or subscribers:

class OtherEvent extends MyEvent

* No configuration required - The library, by default, allows us to use
a ready-to-use default Bus that does not require explicit instantiation,
and can be used to submit events from anywhere in the application:

EventBus.getDefault () .post (new MyEvent ()) ;

[323]

www.it-ebooks.info

https://github.com/greenrobot/EventBus)
http://www.it-ebooks.info/

Exploring Bus-based Communications

Before we start using it, we will add the GreenRobot Eventbus dependency to our
module or application build.gradle file:

dependencies {
compile 'org.greenrobot:eventbus:3.0.0'

}

Before we go deeper, we will present a simple example in which we use the library
to publish a simple event from a BroadcastReceiver to an Activity. Thus, the
Activity receiver method will deliver a notification on the screen.

First, we will create a BroadcastListener that listens for network changes and
submits an event in the Bus when the mobile network is not available and an event
with a detailed network state when the device mobile network is available. The
events will be propagated in the Bus and delivered to all the subscribers interested
in them, which in our case, will be an Activity that will display a message on the
screen that shows the mobile network state.

Defining events

First, we will define the POJO classes that would be submitted in the Bus by the
publisher to notify the interested entities whether the mobile network connectivity is
available or not:

public class MobileNetConnectedEvent {
public final String detailedState;
public MobileAvailableEvent (String detailedState) {
this.detailedState = detailedState;
}
}

public class MobileNetDisconnectedEvent {}

The MobileNetConnectedEvent event is a POJO class that will be sent when the
mobile network is available and will carry a string message with the detailed
network state.

The MobileNetDisconnectedEvent is an event that does not carry any information
but it will notify the event subscriber that connection with the network was lost.

[324]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Submitting events

Now with events defined, we will create the BroadcastListener that is going to
receive Intents from the Android OS when any network connectivity changes (Wi-Fi,
Mobile, ...) occur on the device, and submits the events in the Bus when the mobile
connectivity has changed:

public class MobileNetworkListener extends BroadcastReceiver

@Override
public void onReceive (Context context, Intent intent) {
// Retrieve the NetworkInfo from the received Intent
NetworkInfo info =(NetworkInfo)intent.
getExtras () .get (ConnectivityManager.EXTRA NETWORK_ INFO) ;
if (isMobileNetwork (context, info) && !info.isConnected()) {
// Publish an mobile network disconnected Event
EventBus.getDefault () .post (
new MobileNetDisconnectedEvent ()) ;
} else if (isMobileNetwork (context, info) &&
info.isConnected())
// Publish an mobile network connected Event
EventBus.getDefault () .post (
new MobileNetConnectedEvent (info.getState () .toString())) ;

}

public boolean isMobileNetwork (Context context,
NetworkInfo info) {
return info != null &&
(info.getType() == ConnectivityManager.TYPE MOBILE) ;

}

As we described before, the default and ready-to-use EventBus could be retrieved
from anywhere in our application, so, when a network change event is received
regarding the mobile network, we just get the default Bus by invoking EventBus.
getDefault () and we submit an event to it by calling the Bus.post (Object event)
function.

Note that we will identify a network based on the NetworkInfo received in the
ConnectivityManager.EXTRA NETWORK INFO Intent extra.

When a network change related to the mobile network is detected, we submit either
MobileNetConnectedEvent Or a MobileNetDisconnectedEvent in the default Bus.

[325]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Bus-based Communications

Registering sbscribers

With the publisher/sender class and event class already specified, all that remains
is to register our Activity class to receive both events and print the event sent on
the screen.

Like we stated before, to receive any event from the Bus, the Subscriber entity,
which could be any Java class on your code, will have to register on the Bus and
subscribe to the event that it is interested in.

Any object will have to register on the Bus by calling the register function and
provide a single on<EventName> (EventType) method annotated with org.
greenrobot . eventbus . Subscribe for all the kind of event that it is interested in:

@Subscribe
void on<EventClassnames> (EventClassname event) {

}...

Let's implement the functions that are going to handle the
MobileNetDisconnectedEvent and the MobileNetConnectedEvent
event in our Activity:

@Subscribe
public void
onMobileNetDisconnectedEvent (MobileNetDisconnectedEvent event) {

String message = String.format (
"Mobile connection is not available \n");
appendToConsole (message) ;

@Subscribe
public void
onMobileNetConnectedEvent (MobileNetConnectedEvent event) {

String message = String.format (
"Mobile connection is available State - %s\n",
event .getDetailedState()) ;

appendToConsole (message) ;

[326]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Both public callbacks have the @Subscribe annotation and an
MobileNetDisconnectedEvent /MobileNetConnectedEvent object as the only
method argument. Hence, whenever any of these events are posted on the Bus by
our BroadcastReceiver sender and the Activity has already subscribed to them,
our callbacks are notified, appending a new message on the Ul console screen.

Finally, to register our Activity on the default Bus, we will override the onstart
and onStop Activity functions to register and unregister, respectively:

@Override

public void onStart() {
super.onStart () ;
EventBus.getDefault () .register (this) ;

@Override

protected void onStop() {
EventBus.getDefault () .unregister (this) ;
super.onStop () ;

}

Once we register our class object, the Bus will transverse the Activity methods
using the reflection API and check for any methods that are annotated with the
Subscribe annotation. Once it finds any @Subscribe annotated methods with a
POJO Event as an argument, it will register the instance method to be invoked when
the event is published on the Bus.

As soon as our Activity is destroyed, we terminate the bus subscription and the
Bus will stop sending the events. In any Android component, such as Activity,
Fragment, and service, we should register and unregister on the Bus according to
the component lifecycle. It is really important to unregister the components from the
Bus, otherwise the Bus will maintain a reference to the registered component and
prevent it from being garbage collected. As a result, it will generate a memory leak in
the application.

Thread mode

EventBus, by default, delivers the event in the subscriber in the same thread where
the sender posted the event. Although this delivery scheme might work for most
use cases, such as events that perform Android UI changes, when a long operation
is executed in the event callback, the subscriber might block the main thread and
prevent the system from running the Ul rendering in time and drop some UI frames
as a result.

[327]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Bus-based Communications

To cope with time-consuming operations that might happen during the event
delivery, the EventBus library allows us to define the Thread in which the Bus
will call to deliver the event to the subscriber (ThreadMode).

There are four modes supported by EventBus that we can use to control the event
delivering behavior:

* ThreadMode.POSTING - The subscribers callback will be invoked in the same
thread where the sender posted the event. This is default behavior and the
events will be delivery synchronously to all the entities that subscribed to the
dispatched event.

* ThreadMode.MAIN - The Bus will invoke the subscriber's callback in the main
Ul thread. Thus, if the sender is running in the background thread when
it posts the event to the Bus, the bus will queue the message in the main
Looper and the event will get delivered in the main thread. For more details
about how Looper and Handlers work, see Chapter 2, Performing Work with
Looper, Handler, and HandlerThread. When the event is produced in the main
thread it behaves as the ThreadMode . POSTING mode.

* ThreadMode.BACKGROUND - The bus will invoke the subscriber's callback in
a background thread that prevents the event handling from blocking the Ul
thread. Notice that EventBus uses only one background thread to invoke all
the callbacks, so, any long-running component could defer the delivery of
subsequent events. When the event is produced in the background thread it
is in the ThreadMode . POSTING mode.

* ThreadMode.ASYNC- The Bus will invoke the subscriber's callback using a
group of threads managed by the Bus. The thread pool of worker threads,
created from Executors.newCachedThreadPool, is going to be recycled
and might be used to execute blocking operations, such as network or long
computing operations.

You should set the thread mode required for your example based on the kind of
processing required to consume the Event. For example, when the consumer updates
the Ul a ThreadMode . MAIN should be explicitly specified if the producer could

post an event from the background thread. In other use cases, if the consumer does
blocking or intensive operations you should use the ThreadMode . ASYNC mode to
span the events over a group of threads.

To explicitly determine in which thread the method is to be called by EventBus, we
must specify the threadMode property in the Subscribe annotation:

// Execute the callback on a Background Thread
// managed by EventBus

@Subscribe (threadMode = ThreadMode.BACKGROUND)
public void onMyEvent (MyEvent event) {...}

[328]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Typically, an Android application requires tasks to run background work to

obtain dynamic data from the network service or from a content service. The data
retrieved is then dispatched to the main thread to be presented in the Ul main
thread. In previous chapters, we used different techniques (AsyncTask, Loader, and
HTTP Async client) to accomplish this. In our next example, we are going to use
ThreadMode . BACKGROUND mode to perform an IO blocking operation that retrieves
product information using an EventBus asynchronous background thread pool.

With the results from the previous operation, we will build an event with product
details that will be reported back to the main Ul thread to update the product on
the screen.

Our Activity will present a Fragment with the product details and Next and
Previous buttons to browse between the product list. As explained before, we will
use the EventBus to dispatch an event details request to a background thread and we
will use an event to publish the results back from the Activity background method to
the DetailsFragment fragment.

First, we will define the RetrieveProductEvent and ProductDetailEvent POJOs
used to model a product details request and to model the product details:

public class RetrieveProductEvent

// Product Identifier
final long identifier;

}

public class ProductDetailEvent

final long identifier;
final String brand;
final String name;
final float price;

[329]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Bus-based Communications

Then, we will create the Fragment that is going to register on the Bus and subscribe
to receive the ProductDetailEvent events with the product data. As you know,

it's essential to register and unregister the Fragment on the bus in order to prevent
leaked memory resources, so, we will use the Fragement onResume and the onpause
lifecycle callbacks to accomplish that:

public static class DetailFragment extends Fragment {

@Override
public void onResume () {
EventBus.getDefault () .register (this) ;

super.onResume () ;

@Override

public void onPause() {
EventBus.getDefault () .unregister (this) ;
super.onPause () ;

}

Given that we want to update the Ul when we receive the ProductDetailEvent, we
will create a subscriber that runs on ThreadMode . MAIN thread mode, and therefore,
receives the event callback in the main Thread:

public static class DetailFragment extends Fragment

@Subscribe (threadMode = ThreadMode.MAIN)
public void onProductDetailEvent (ProductDetailEvent event) {
Log.i (TAG, "Product details received for identifier"
+event.identifier+" on" +
Thread.currentThread () .getName ()) ;
// Update the Product Details on the UI
brandTv.setText (event .brand) ;
nameTv.setText (event .name) ;

priceTv.setText (Float.toString(event.price)) ;

@Override

public View onCreateView (LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState)

[330]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

// Inflate the layout for this fragment
return inflater.inflate(R.layout.detail fragment,
container, false);

@Override

public void onViewCreated(View view,
Bundle savedInstanceState) {
// Initialize the UI widgets

}

Following that, we will create the Activity that loads the DetailsFragment and will
request to load the first product (product1d=0) from the product catalogue:

public class PaginatedActivity extends FragmentActivity
int productId = 0;

@Override

public void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;
setContentView (R.layout.paginated layout) ;

// Loads the Details Fragment

FragmentManager fragmentManager = getSupportFragmentManager () ;

FragmentTransaction fragmentTransaction = fragmentManager.
beginTransaction() ;

DetailFragment fragment = new DetailFragment () ;

fragmentTransaction.add(R.id.detail fragment, fragment) ;

fragmentTransaction.commit () ;

// Request to load the first product
EventBus.getDefault () .post (
new RetrieveProductEvent (productId)) ;

}

@Override

public void onStart() {
super.onStart () ;
EventBus.getDefault () .register (this) ;

[331]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Bus-based Communications

@Override

protected void onStop()
EventBus.getDefault () .unregister (this) ;
super.onStop () ;

}
}

The Activity will create a FragmentTransaction to the DetailsFragment and
commit it to the FragmentManager. To conclude, it will post an event on the bus to
load the first new product RetrieveProductEvent (productId).

Next, we are going to implement the subscriber method that is going to process the
RetrieveProductEvent, obtain the product details for the specified identifier in the
background, and dispatch the new product details event to all the interested entities:

@Subscribe (threadMode = ThreadMode.ASYNC)
public void onRetrieveProductEvent (RetrieveProductEvent event)
Log.i (TAG, "Retrieving the product " + event.identifier
+ " on " + Thread.currentThread() .getName()) ;

// Retrieve on background the product details
// for the product with the event.identifier id
ProductDetailEvent pde = ...;

// Post an EventDetailsEvent on the Bus to
// publish the event details for the product requested
EventBus.getDefault () .post (pde) ;

}

Using ThreadMode . ASYNC, we will force the EventBus to invoke the callback on one
of the Threads available in the EventBus asynchronous thread pool. This thread
mode is used to perform asynchronous operations that might block for some time
or take some time to execute, such as long computation calculations or network
operations.

Based on the thread mode defined by you, EventBus will manage all the thread
switching required to deliver to events in the right group of threads or thread,
regardless of whether the event is dispatched from the main thread or a background
thread.

When the details of the product requested are loaded, the returned
ProductDetailEvent object is posted on the Bus for further processing.

[332]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Given that the DetailsFragment has the function onProductDetailEvent subscribed
to receive the ProductDetailEvent in the main thread, the bus broker will call the
function in the UI thread updating the brandTv, nameTv, priceTv, and TextView
widgets with the product details.

With the EventBus threadMode feature, we could submit events to the main thread
from any thread in the application and we can even hand over work to background
lines of execution using a clean and simple interface.

Just to conclude the example, we will add two buttons to browse between the
product list sequence. The Next button will submit a RetrieveProductEvent
request to get the next product on the list and the Previous button will submit a
RetrieveProductEvent to get the previous product on the list:

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.paginated layout) ;

// Submit an event to load the next Product

Button next = (Button)findViewById(R.id.next) ;
next.setOnClickListener (new View.OnClickListener () {
@Override

public void onClick (View v) {
EventBus.getDefault () .post (
new RetrieveProductEvent (++productId)) ;

}
13N

// Submit an event to load the previous Product

Button prev = (Button)findViewById(R.id.previous) ;
prev.setOnClickListener (new View.OnClickListener () {
@Override

public void onClick (View v) {
if (productId > 0) {
EventBus.getDefault () .post (
new RetrieveProductEvent (--productId));

[333]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Bus-based Communications

Using the Publish/Subscribe pattern delivered by EventBus, we were able to
update the DetailFragment without sharing a strict interface with the Activity.
Moreover, the event might have come from any other Android component and the
result would have been dispatched in the main thread by Event Bus.

Posting sticking events

Whenever we publish an event on the bus, the EventBus broker automatically
delivers the event to all the current subscribers, and by default, will immediately
clear the transient event. The new subscribers that register after the event is delivered
to the current subscribers will not get the event.

There are situations when a new subscriber registers on the bus and no new event is
produced or submitted on the Bus for a long period of time. As such, the subscriber
will wait until the next event appears on the bus to produce any output from it.

Furthermore, when the new subscriber is responsible for updating an Android Ul
component like an Activity or a Fragment, the subscribers have to wait for a new
event to occur, hence, it might delay the UI update for a significant amount of time.

To solve this problem, the EventBus allows us to create Sticky events that are kept
in the memory and delivered to subscribers once they register on the Bus. EventBus
will keep the latest event of certain types in the memory and deliver it during the

registration whenever the subscriber creates a subscription with sticky delivered on.

To deliver a sticky event on the bus, the only thing that we need to do is invoke the
Bus .postSticky function rather than the post function:

void postSticky(new MyEvent ())

And create a subscriber method with the sticky property enabled:

@Subscribe (sticky = true)
public void onMyEvent (MyEvent event)

As an example, the LocationManager service allows us to create a
LocationListener that receives the current geographical location when the device's
location changes by a certain minDistance:

LocationManager.

requestLocationUpdates (String provider, // GPS or NETWORK
long minTime, float minDistance,
LocationListener listener)

[334]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

If we use LocationListener to publish non-sticky LocationEvents on the Bus
and the device's location does not change for a long period of time, new subscribers
will have to wait until the device position changes to receive the current position
from the Bus:

public class LocationEvent {

final double latitude; // location latitude in degrees.
final double longitude; // location longitude in degrees.

LocationEvent (double latitude, double longitude) {
this.latitude = latitude;
this.longitude = longitude;

}

Moreover, to reduce the device's energy consumption, the minimum time between
location updates (minTime) should be significant enough to be noticeable by the
application user in order to remove the waiting time for the next event the will have
the sticky event technique.

If we register our Subscriber method with sticky delivery enabled, the

new sticky registration will immediately get the latest position from the bus,
stopping the subscriber from waiting for the next location update posted by the
LocationListener

To demonstrate this, first we will create an Activity that manages its own
LocationListener, receives location updates, and posts sticky LocationEvent
events on the Bus:

public class LocationActivity extends Activity {

@Override
public void onResume () {
super.onResume () ;

LocationManager manager = (LocationManager)
getSystemService (Context .LOCATION SERVICE) ;
Location location = manager.getLastKnownLocation (

LocationManager.GPS PROVIDER) ;

// Post the latest known position if available
if (location != null) {
EventBus.getDefault () .postSticky (

new LocationEvent (location.getLatitude(),

[335]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Bus-based Communications

location.getLongitude())) ;
}
// Request a location update only if device location changed
// Minimum time between updates: 5000ms
// Minimum distance between location updates: 100 meters
manager .requestLocationUpdates (
LocationManager.GPS PROVIDER, 5000, 100, listener);

}

@Override
public void onPause()
super.onPause () ;
LocationManager manager= (LocationManager)
getSystemService (Context .LOCATION SERVICE) ;
manager .removeUpdates (listener) ;

//Handle location callback events
private LocationListener listener = new LocationListener() {
@Override
public void onLocationChanged (Location location) {
EventBus.getDefault () .postSticky (
new LocationEvent (location.getLatitude(),
location.getLongitude())) ;

}

@Override

public void onProviderDisabled(String provider) { }
@Override

public void onProviderEnabled(String provider) { }
@Override

public void onStatusChanged (String provider,
int status, Bundle extras) {}

}i
}

In the preceding code, we register our anonymous listener to receive location
updates when the Activity enters the foreground and we unregister the listener
when the Activity is paused, to either be destroyed or moved away from the
foreground. We register our listener to receive updates almost every five seconds
and when the position changes by 100 meters.

In the meantime, when the last known position is available from the GPS Location
Provider, we post a sticky event on the Bus to deliver the last known position for

future subscribers.

[336]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Our LocationListener, once again, will convert a Location object received by an
onLocationChanged callback to a LocationEvent object and submit a sticky event
on the bus with the callback. This sticky event will update the EventBus cached
LocationEvent and all sticky Subscriber methods will immediately get this event
once they subscribe.

Note that we start from the assumption that the GPS Provider is enabled on the
device. For a more complete example, before you try to use the LocationManager,
verify whether the GPS Location is available or not and ask the user to enable it on
the device settings when the provider is not available.

Beyond that, in order to receive location updates, the android.permission.ACCESS_
COARSE_LOCATION Or android.permission.ACCESS_FINE LOCATION permissions
must be declared in the application permissions or requested at the runtime for API
Levels greater than 23 (Marshmallow). The full source code is available from the
Packt Publishing website. Take a look at the complete source code to appreciate how
to request the required Android OS permissions.

Next, we will create a button that launches new LocationEvent subscribers that
register and unregister on the Bus immediately:

Button newSubs = (Button)findViewById(R.id.launch) ;
newSubs.setOnClickListener (new View.OnClickListener () {
@Override

public void onClick (View v) {

new Runnable() {

@Subscribe (sticky = true)

public void onLocationEvent (LocationEvent event)
String locTxt = String.format (

"Lat [$f] Long[%$f]l", event.latitude, event.longitude) ;
Log.i (TAG, "Last known Location is "+ locTxt) ;
// Update the UI with the last position
// retrieved from the new Subscriber
TextView locationTv = (TextView)
findviewById (R.1id.location) ;

locationTv.setText (locTxt) ;

@Override

public void run() {
EventBus.getDefault () .register (this) ;
/] ...

EventBus.getDefault () .unregister (this) ;

[337]

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Bus-based Communications

The code in the button's onclickListener will register a new Runnable object
instance on the Bus and unregister after that. During registration, the sticky
Subscriber method, onLocationEvent, will immediately get invoked with
the previously posted Location sticky object dispatched on the bus by our
LocationListener.

As soon as it receives a LocationEvent, the onLocationEvent method will update
the UI with the last position longitute and latitude and print the position on the
Android Log. With this approach, a sticky subscriber method will not have to wait
until the position changes to receive a device position and update the UL

Removing sticky events

In some use cases, it could be convienient to invalidate a sticky event from the Bus
and prevent a cached event from getting delivered to the following Subscribers.
EventBus allows us to clear the sticky events by calling the following functions:

* removeStickyEvent (<MyEventClass>) - Removes and gets the recent
sticky event for the given event type

* removeStickyEvent (Object event) - Removes the sticky event if it equals
the passed event

* removeAllStickyEvents () - Removes the sticky events for all types

Let's use one removeStickyEvent function to remove the latest sticky
LocationEvent from the bus:

// Check if the sticky event exist on the Bus
LocationEvent evt = EventBus.getDefault ().
getStickyEvent (LocationEvent.class) ;
// Check if the event is null
if (evt != null) {
EventBus.getDefault () .removeStickyEvent (stickyEvent) ;

}

After we remove the sticky event from the bus, the latest LocationEvent will be
removed from the bus and no event is delivered during the registration to new
LocationEvent subscribers.

[338]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Summary

In this chapter, we learned about the publish/subscribe messaging pattern used

to communicate between decoupled entities on an Android application. This
pattern must be applied to send event notifications or data to one or more Android
component recipients.

Next, we introduced to the reader the EventBus, an optimized open source library
that delivers the publish-subscribe pattern for the Android platform and provides
advanced features such as sticky events and asynchronous event delivery.

Following that, we learned how set up the library, how to model events, and how to
dispatch events on the default Bus. The Bus, a shared entity that receives the events,
will act as a broker and proxy for the events to the final recipients that previously
subscribed to them.

We took a detailed look at Eventbus threadMode feature of EventBus that allows
us to define the thread in which the Bus delivers the event to the subscriber. Hence,
we were able to consume events in different threads (background, main thread, and
asynchronous threads) from the posting thread.

To finish our journey, we learned about sticky events, events that are cached on the
Bus and delivered to new sticky subscribers during the registration and prevent such
methods from waiting for the next event, in case of the absence of new data.

[339]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

12

Asynchronous Programing
with RxJava

In previous chapters, we have been using Android-based constructs such as Loader
and AsyncTask to offload work from the main thread to low priority background
threads.

Although these straightforward constructs are able to deliver results that require
intensive IO operations or network data, they don't provide out-of-the-box solutions
for exception handling, task composition, and asynchronous event processing.

Beyond that, the popular AsyncTask construct is not able to deal with Activity or
fragment configuration changes or cache results between configuration changes.
Therefore, to cope with these kinds of problem, most of time the developer ends
up creating a lot of extra code and complicated flows to handle the traits of these
simple constructs.

To simplify the development of composable asynchronous work, we will introduce
you to RxJava, a functional framework that allow us to observe, transform, filter,
and react to streams of events (click, touch, network, I/O events, and so on) in order
to compose complex lines of execution that are able to react to errors and chain
asynchronous computations.

In this chapter, we will cover the following topics:

* Introduction to RxJava

* Creating Observables

* Transforming Observables
* Understanding Schedulers

* Performing Asynchronous IO with Schedulers

[341]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

* Composing Tasks with RxJava
* Observing Ul events with RxJava
* Combining Tasks with RxJava

* Working with Subjects

Introduction to RxJava

RxJava is an implementation of Reactive Extensions (Reactivex) on JVM, which was
developed by Netflix and is used to compose asynchronous event processing that
reacts to an observable source of events.

The framework extends the observer pattern by allowing us to create a stream of
events that could be intercepted by operator (input/output) functions that modify
the original stream of events and deliver the result or an error to a final Observer.
This framework abstracts away concerns about things such as low-level threading,
synchronization, thread safety, concurrent data structures, and non-blocking 1/O.

There are three main basic building blocks that interact with each other in RxJava
processing, the Observable, the Observer, and the Subscriber.

An Observable is an entity that emits a sequence of events (zero or more events)
of the generic type T (such as String or any Java type) at any point in time, or
emits a Throwable when a failure occurs during the event processing. Beyond
that, it provides methods to subscribe to its event stream and manage Observer
subscriptions.

A single is a special kind of Observable that can only emit either a single success
event value or an error event.

An observer, after registering as a subscriber, consumes the events of type T
generated by the Observable<T>. An Observer must implement Observer<Ts:

public interface Observer<Ts>

void onCompleted() ;
void onError (Throwable e) ;
void onNext (T t);

}

Any observer will receive a callback to onNext whenever a new event is emitted by
the Observable it's subscribed to until it receives onCompleted or onError to close
the event stream.

[342]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

A subscriber is a helper abstract class you can use as your Observer's base if you
want subscription support. The subscriber class provides methods to cancel the
Observable subscription:

abstract class Subscriber<Ts>
implements Observer<T>, Subscription

public interface Subscription

void unsubscribe () ;
boolean isUnsubscribed() ;

}

unsubscribe is the function used to cancel the Observer subscription. Therefore,
once the observer subscription is terminated, the Subscriber will no longer receive
the events generated by the Observable.

Here is a simple graph displaying the common interactions between an Observable
and a Subscriber:

Subscriber Observable
subscribe()
> The Observable starts
o deliver events
onMNext(T)
<
onMNext(T)
al
onCompleted(T)
< The Observable stops
OR to deliver events
onError(E)
<
OR
unsubscribe()
>

The onNext (T) Observer's callback is invoked when a new item is emitted by the
Observable.

The onError (Throwable) Observer's callback is invoked to notify that an error
condition was found and the stream will be terminated.

[343]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

The onCompleted () Observer's callback is invoked to indicate that the stream has
completed successfully and all the events were delivered with success.

Cold versus Hot Observable

An Observable can be classified as hot or cold based on the time that it starts
emitting events. A cold Observable only starts emitting events to the Observers when
an Observer subscribes to it. In this case, it is expected that the Observer will receive
the stream from the beginning.

A hot Observable will begin emitting events as soon as it gets created, so the
Observer will only receive the events emitted after the subscription is created.
The events emitted before the subscription will not be received by the Observer.

RxJava setup

Before we move further, let's add the required libraries to your project. If you're
using Android Studio, just add the following dependencies to the module build.
gradle script:

dependencies {

compile 'io.reactivex:rxandroid:1.1.0"'

compile 'io.reactivex:rxjava:1.1.0'

}

rxjava is a library that implements the Reactive Extensions (http://reactivex.
io/) onJava, and rxandroidis a library that adds classes to help write reactive
components with RxJava in Android applications.

Creating Observables

To create an Observable, we can either create an Observable from scratch
using the create function and calling Observer methods explicitly, or we can
use built-in Observable creation methods that convert common data types to
Observable streams.

Let's start with a simple example and create an observable that emits a String using
the creating Observable. from operator:

Observable<String> myObservable =
Observable. from(Arrays.asList ("Hello from RxJava'",
"Welcome...",
"Goodbye")) ;

[344]

www.it-ebooks.info

http://reactivex.io/
http://reactivex.io/
http://www.it-ebooks.info/

Chapter 12

The Observable. from static function creates Observable from an array that will
synchronously emit String items to any Observer. The Observable created will be a
cold Observable and will only start emitting events after an Observer subscribes to it.

Now, let's create a Subscriber that consumes the data and prints each string to the
Android Log until 0bservable invokes the onComplete callback:

Subscriber<String> mySubscriber = new Subscriber<Strings() {

@Override
public void onCompleted() {
Log.i (TAG, "Rx Java events completed") ;

}

@Override
public void onError (Throwable e) {
Log.e (TAG, "Error found processing stream", e);

}

@Override
public void onNext (String s) {
Log.i (TAG, "New event -" + s);
}
}i

Next, with observable and the subscriber class just defined, once we subscribe our
Subscriber class on Observable, the onNext () function will be called three times
passing each string in the Array, defined previously.

Subsequently, after all the Strings are consumed by the Subscriber, the
onCompleted function is called to close the stream:

myObservable.subscribe (mySubscriber) ;

The observable instance is responsible for managing all subscriptions, notifying all
its subscribers, and it won't begin emitting items until we subscribe to them.

Apart from using Observable. from or another creation operator, we can create
Observables by calling the create method and implementing Observable.
OnSubscribe<T> that explicitly calls onNext, onError, and onCompleted.

Let's create our own Observable that emits integer numbers using the create
function:

Observable<Integer> myObservable = Observable.create(
new Observable.OnSubscribe<Integers () {

[345]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

@Override

public void call (Subscriber<? super Integer> sub)
// Emitting Numbers
sub.onNext (10) ;
sub.onNext (3) ;
sub.onNext (9) ;
// Stream completed with success
sub.onCompleted() ;

!
)i

Remember that a well-behaved observable must attempt to call either the observer's
onCompleted or onError exactly once after emitting all the items by calling the
subscriber's onNext function.

Notice that the previous Observable is also classified as a cold Observable because it
will only start emitting when a Subscriber entity subscribes to it.

Alternatively, we can subscribe to Observable using Action functions to handle the
items dispatched in different separated functions. All that you need to do is pass an
Actionl<T> function for event processing, an Actionl<Throwable> for the error
emission, and Actiono to receive the stream completion notification.

Let's write the required action functions that react to our Observable<String>
emissions:

Actionl<Integer> onNextAction = new Actionl<Integers () {
@Override
public void call (Integer s) { Log.i(TAG, "New number :" + s); }
i
Actionl<Throwable> onError = new Actionl<Throwables> () {
@Override
public void call (Throwable t)
Log.e(TAG, "Error: " + t.getMessage(), t);
}
i
Action0 onComplete = new ActionO () {
@Override
public void call() { Log.i(TAG, "Rx number stream completed")}

Vi

myObservable.subscribe (onNextAction, onError, onComplete) ;

[346]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Beyond the from operator and the create operator functions there are other simple
Observable functions that can be used to build observable:

Observable. just: Creates an Observable from a short number of objects
(Max 10 Objects):

Observable<Integers>.just(1,2,3)

Observable.range: Emits a range of numbers:

Observable.range(1,10) ;

Transforming Observables

Apart from the ability to widely implement the Observable-Subscribe software
pattern, the RxJava framework allows us to transform, filter, convert, aggregate,
manipulate, and work with the stream of items emitted by observable by using
Observable operators. These entities are able to completely transform the event
stream before the events are delivered to the final Subscriber.

RxJava comes with a handy collection of operators that are able to transform the
event's content and control the time that the event is delivered.

Let's describe the most common operators available on RxJava:

map: Applies a function to each item emitted and emits the result of the
function as a new item.

flatMap: Applies a function to each item emitted by the source observable
where the function returns an Observable that could emit a different
number of items or a different type of event.

filter: A transformation operator that uses a function that verifies if each
item emitted by the source Observable satisfies a condition. If the condition
passes the item, it is forwarded to the following Subscriber.

first: Emits only the first item emitted by the source Observable.
count: Emits the number of items received from the original Observable.

zip: Combines the emissions of two Observables using a function that
receives the N item of each original Observable as an argument.

contains: Emits a Boolean event that indicates whether the source
Observable has a specified object.

merge: Merges the events of multiple Observers into one event stream.

delay: Delays the emission of an item by a specified amount of time.

[347]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

For a more complete, detailed, and up-to-date list of operators supported by RxJava,
check the Rxgava Wiki on GitHub (https://github.com/ReactiveX/RxJava/
wiki/Alphabetical—List—of—Observable—Operators)

The rxJava operators generally process an Observable and return an Observable.
This design feature allows us to chain the operators and create a composed sequence
of operators that transform the event stream. The last operator is responsible for
delivering the items to the subscriber, or deliver an error when something goes
wrong.

Now, let's create our first operator example that transforms a multiline text emitted
by the source Observable and delivers a new deliver an Integer with the number of
lines that contain the word rxJava:

String content = "This is an example \n " +
"Looking for lines with the word RxJava\n" +
"We are finished.";
Observable
.just (content)
.flatMap (new Funcl<String, Observable<String>> () {
@Override
public Observable<String> call (final String content) {
return Observable.from(content.split ("\n"));
P
.filter (new Funcl<String, Booleans () {
@Override
public Boolean call (final String line) {
return line.contains ("RxJava") ;
}
})
.count ()
.subscribe (new Subscriber<Integers () {

@Override
public void onNext (Integer s) {
Log.i (TAG, "Number of Lines " + s);
}
P

To start, we create an Observable from the original using the Observable.just
creation operator passing the text source as the unique object.

Next, to split the original text in to lines, we use the £1atMap operator, which
receives the original text emitted by the first Observable and returns a new
Observable created from the sliced lines array.

[348]

www.it-ebooks.info

https://github.com/ReactiveX/RxJava/wiki/Alphabetical-List-of-Observable-Operators
https://github.com/ReactiveX/RxJava/wiki/Alphabetical-List-of-Observable-Operators
http://www.it-ebooks.info/

Chapter 12

The new Observable coming from the flatMap operator will emit a single String
for each line available on the original content, therefore, in order to count the lines
with the word rxJava, we will discard the lines that don't have the word using the
filter operator.

To finish, we will count the number of events emitted and publish the results to a
Subscriber that is expecting an integer as a result.

Here is a graphical presentation of the previous functional pipeline:

v

71"This..finished.” —| F
v v
‘ flatMap
v v v
“This ..example”| | “Looking ..." “We are...” ’T
v v
filter
h 4
“Looking ..." ‘ 7
v v
count

[F| - onComplete

Yes. The extensive set of transformation operators allows us to create a complex
functional processing chain that is able to transform the data on the way and deliver
results to any Subscriber object in a readable and functional way.

Understanding Schedulers

There is an incorrect misconception and belief that RxJava processing is
multithreaded by default. An observable and the list of transformations applied by
the specified operators occur on the same thread that the subscription is made.

[349]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

Hence, on Android, if the subscription is carried out on the main thread, the
operators chain processing will run on the main thread, blocking the UI until the
work is done.

While this behavior might work for lightweight processing tasks, when the operation
requires IO interaction or CPU-intensive computing, the task execution might block
the main Thread and crash the application with an ANR.

To simplify the asynchronous and concurrent executions, the RxJava framework
allows us to define a Sscheduler entity that defines the thread where a unit of work
is executed.

The subscribeon (Scheduler) operator allows us to set the Scheduler that defines
the thread on which the subscription has been made and the Observable will start
to operate.

When no Scheduler is specified, the Observable and operations will run on the
thread that invoked the subscribe function.

On Android, a subscribe function is typically invoked from an Android

Activity or Fragment that runs on the main Thread, then if any operation takes a
substantial amount of time to finish it will block the UI Thread and degrade the Ul
responsiveness.

By controlling the thread where the subscription is made, we are controlling the
thread where the Observable and its operators are going to execute and even the
thread where the subscriber will receive the callbacks.

The observeon (Scheduler) allows us to set the Scheduler that defines the thread in
which the Observer callbacks (onNext, onError, onCompleted) are invoked.

During the Observable and operator chain, we can use ObserveOn several times to
change the thread where the computation will run.

To simplify Scheduler use, the RxJava and the RxAndroid library compiled
a list of predefined schedulers ready to be used to create multithreaded
asynchronous chains:

* Schedulers.immediate (): Default Scheduler that returns a Scheduler that
executes the work immediately in the current thread.

* Schedulers.trampoline (): Returns a Scheduler that queues work in the
current thread to be executed after the current work completes.

* Schedulers.newThread (): Returns a Scheduler, spawns a new thread, and
executes the work on the new Thread.

[350]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

* Schedulers.computation (): Returns a Scheduler intended for
computational intensive work. This can be used for event loops, processing
callbacks, and other computational work. Do not perform blocking IO work
on this scheduler. This Scheduler uses a fixed thread pool size where the
size is dependent on the CPUs to optimize CPU usage and minimize CPU
switching.

* Schedulers.io(): Creates and returns a Scheduler that executes the
work of a cached pool of threads that grows and shrinks as needed, reusing
already created threads that are idle to execute the require work. This
Scheduler is intended for asynchronously performing blocking IO tasks,
such as network or file system read and write.

® Scheduler.from(Executor): Creates a Scheduler that will execute the unit
of work on the java.util.concurrent.Executor passed as argument.

* AndroidSchedulers.mainThread (): Creates a Scheduler that executes
the required work on the Android application main thread. This
Android scheduler, provided by the RxAndroid library, is based on the
HandlerThread that runs the unit of work serially.

* HandlerScheduler.from(Handler): Creates a Scheduler that executes
work on a specified Handler. The AndroidSchedulers.mainThread () is
of specialization of this Scheduler that runs on a Handler attached to the
Android UI thread.

By default, Rxjava uses Schedulers.immediate (), which
@’@‘\ subscribes to the Observer on the current thread and delivers
’ the events in the current thread.

RxJava allows us to define our own Scheduler, but for the scope of this book, we will
only use the built-in Schedulers to cover our concurrency needs.

Performing IO operations with
Schedulers

In the next example, we will use Schedulers to mirror the behavior of AsyncTask
and retrieve text from the network on the background thread. Subsequently, the
result will be published to a Subscriber that runs on the main Thread.

[351]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

First of all, we will create a function that creates an Observable that emits the
String retrieved from the network:

Observable<String> getTextFromNetwork (final String url)

return Observable.create (
new Observable.OnSubscribe<Strings>() {
@Override
public void call (Subscriber<? super String> sub)
try {
String text = downloadText (url) ;
sub.onNext (text) ;
sub.onCompleted() ;

} catch (Throwable t) {
sub.onError(t) ;

!
)i
!

Before we specify the Scheduler used to run our asynchronous call, we need to state
two assumptions:

* Since the code that runs on Observable performs a network operation we
must run Observable on the background thread

* To publish the result and update the UI, we must execute our Subscriber
callbacks on the main Thread

Now, let's build up the asynchronous rRxJava execution that retrieves the text and
update the Ul following the previous assumptions and using the Scheduler entities
described earlier:

class MySubscriber extends Subscriber<Strings> {

@Override
public void onCompleted() {}

@Override
public void onError (Throwable e) {
// Shows a Toast on Error
Toast .makeText (RxSchedulerActivity.this,
e.getMessage (),
Toast .LENGTH_ LONG) .show () ;

[352]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Log.e (TAG, "Error retrieving ", e);

}

@Override

public void onNext (String text)
// Updates the UI on Success
EditText textFrame = (EditText)findviewById(R.id.text) ;
textFrame.setText (text) ;

getTextFromNetwork ("http://demol472539.mockable.io/mytext")
.subscribeOn (Schedulers.io())
.observeOn (AndroidSchedulers.mainThread ())
.subscribe (new MySubscriber())

)i

subscribeOn (Schedulers.io()) will make the Observable created by the
getTextFromNetwork function run on the Scheduler. io thread pool intended for
blocking IO operations.

Once we call the subscribe function, downloadText will be queued to run on a thread
managed by the Scheduler created by Schedulers.io (), emitting the results as a
String in the onNext () function.

The observeon (AndroidSchedulers.mainThread ()) ensures that the Subscriber
callbacks onNext, onCompleted, and onError will run on the Android main Thread.
Therefore, if the network operation completes with success, onNext is invoked
updating EditText with the result obtained.

If any exception is thrown during the network execution, a Throwable object is
delivered to the subscriber.onError callback, which executes on the UI Thread,
and a Toast that shows an error is displayed on the Ul

This example shows how simple and concise an asynchronous call can be on
RxJava. Moreover, it abstracts you from the thread management as AsyncTask does
and provides you exception handling facilities to deal with exceptional errors.

[353]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

Canceling subscriptions

When an Activity or a Fragment gets destroyed, our chain could continue to run
in the background, preventing the Activity from being disposed if the chain has
references to the Activity or Fragment. When you no longer need the result of
the chain, it could make sense to cancel the subscription and terminate the chain
execution.

When we call the Observable.subscribe () function, it returns a Subscription
object that can be used to terminate the chain immediately:

Subscription subscription = getTextFromNetwork (
"http://demol472539.mockable.io/mytet")

.subscribe (new MySubscriber()) ;

Again, the most appropriate Activity lifecycle method for this is onpause, which is
guaranteed to be called before the Activity finishes:

protected void onPause()
super.onPause () ;
if ((subscription != null) && (isFinishing()))
subscription.unsubscribe () ;

Composing Observables

As we explained earlier, an observable interface is defined in a way that allows us
to chain and combine different Observables to create complex tasks in a functional
and declarative way.

Starting from our previous work, in our next example, we will make use of the
RxJava composing feature and execute a second network call that depends on the
previous Observable that will translate the text downloaded using a web service
before we emit the translated text to the Subscriber.

To execute the translation on the network on a logically separate unit, we will
create a new Observable that receives the text to translate, executes the task on the
network, and emits the translated text as a String to the following Observable:

Observable<String> translateOnNetwork (final String url,
final String toTranslate) ({
return Observable.create (
new Observable.OnSubscribe<Strings> () {
@Override

[354]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

public void call (Subscriber<? super Strings> ts) {
try {
String text = translateText (
"http://demol472539.mockable.io/translate",
toTranslate) ;

sub.onNext (text) ;
sub.onCompleted() ;

} catch (Throwable t) {
sub.onError (t) ;

!
)i
!

Next, we are ready to chain the network executions and display the results on the Ul
using the same Subscriber used previously:

getTextFromNetwork (RETRIEVE TEXT URL)

.flatMap (new Funcl<String, Observable<String>>() {
@Override
public Observable<String> call (String toTranslate) {

return translateOnNetwork (TRANSLATE URL, toTranslate);

}

)

.subscribeOn (Schedulers.io())

.observeOn (AndroidSchedulers.mainThread ())

.subscribe (new MySubscriber()) ;

The network IO operation defined on the translateonNetwork, which depends on
getTextFromNetwork, will only run if the previous operation finished with success,
and takes the result from getTextFromNetwork as an argument.

After translateOnNetwork Observable receives the text content from the
previous network operation, it will use it as input for its operation and will perform
the translation of the previous content on the network, invoking the function
translateText (url, content).

Given that translateText () finishes with success, the translated content is
delivered to the next Observable. Since the next Observable is the Subscriber, the
result is delivered transparently on the main Thread to update the Ul

[355]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

Besides that, since we override the Subscriber is onError function, if something
goes wrong during the execution of either network requests, the error is propagated
to our callback to be handled properly. Hence, with a few lines of code, we are able
to inform the user that an asynchronous task has failed and we were not able to
deliver the expected data to them.

Great, with a few lines of code we created a complex task that performs a chain of
asynchronous network operations in the background, delivering the results on the
main thread, or delivering an error when something goes wrong.

Monitoring the event stream

Although so far we have been using the Observable operators to manipulate stream
events, there are operators that allow us to monitor the events without changing
them. These operators, known sometimes as utility operators, are able to react to

the events or errors emitted on the Observable chain created between the source
Observable and the final Subscriber without creating any side effects.

Let's enumerate them and explain the more common utility operators used to
observe the event stream:

* doOnSubscribe (Actiono0): Registers an Actiono0 function to get called when
a Subscriber subscribes to the observable.

* doOnUnsubscribe (Action0): Registers an Action0 function to get called
when a Subscriber unsubscribes from the Observable.

* doOnNext (Actionl): Registers an Actionl to be called when a new event is
emitted from the source Observable. The Event <T> object is also passed as
an argument to the Actionl function.

* doOnCompleted (Action0): Registers an Actiono function to be called when
the source Observable emits the onComplete event.

* doOnError (Actionl): Registers an Action1 function to be called when an
error is emitted from the source Observable. The Throwable emitted on the
onError is also passed to the Actionl.call function.

* doOnTerminate (Actiono0): Registers an Actiono function to be invoked
when an error or onComplete is emitted by the source observable. This
callback function also means that the previous Observable will emit no
more items.

These multipurpose operators will allow us to observe and debug complex chains
that usually involve several transformations, create progress dialogs to show
progress, cache results, and even generate processing analytics.

[356]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

In our next example, we will make use of these operators to log the progress of our
previous multi network operation in the Android Log, and to present a progress
dialog on screen as long as the operation is progressing;:

Observable.just (RETRIEVE TEXT URL)
.doOnNext (new Actionl<Strings () { // Runing on the main Thread
@Override
public void call (String url) {
progress = ProgressDialog.show (RxSchedulerActivity.this,
"Loading",
"Performing async operation", true);
Log.i (TAG, "Network IO Operation will start "+ tmark());
}
})
.observeOn (Schedulers.io()) // Running on a background Thread
.flatMap (new Funcl<String, Observable<Strings>>() {
@Override
public Observable<String> call (String url) {
return getTextFromNetwork (url) ;

}
1)
.doOnNext (new Actionl<Strings () {
@Override
public void call (String text) {
Log.i(TAG, "Text retrieved w/ success " + tMark());
Log.i(TAG, "Translating the text " + tMark());

}
})
.flatMap (new Funcl<String, Observable<Strings>>() {
@Override
public Observable<String> call (String toTranslate) {
return translateOnNetwork (TRANSLATE URL, toTranslate);
}
})
.doOnNext (new Actionl<Strings () {
@Override
public void call (String translatedText) {
Log.i(TAG, "Translation finished " + tMark());
}
})
.observeOn (
AndroidSchedulers.mainThread () // Executing on main Thread
)

.doOnTerminate (new ActionO () {

[357]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

@Override
public void call() {
if (progress != null)
progress.dismiss () ;
Log.i (TAG, "Dismissing dialog " + tMark()) ;
}
)
// Starts the execution on the main Thread
.subscribeOn (AndroidSchedulers.mainThread ())
.subscribe (new MySubscriber()) ;

As you know, to make changes in the Android U], it is imperative to run your code
on the main Thread. Hence, in order to receive doonNext from the first Observable
in the main thread, we invoke subscribeon () with AndroidSchedulers.
mainThread () forcing the first Observable, the one created with the just operator,
to emit notifications to doonNext in the main Thread.

As soon as doOnNext () receives the notification with the String carrying the URL to
retrieve the text, we display ProgressDialog in the Ul and we log a message in the
Android Log.

Next, since we want to perform network operations off the main thread, using the
observeOn operator, we force following Observables to send notifications to the
threads managed by the 10 Scheduler. This means that the following operators and
Observables will execute and emit events in the IO Scheduler threads.

In the meantime, between each network operation, we intercept the start of the
second network operation to print the message in Android with a doonNext between
getTextFromNetwork and translateOnNetwork Observables.

When the network operations finish, and before we update the Ul with the results
and we dismiss the progress dialog, we switch the execution to the main thread by
again invoking the operator observeon () with the main Thread Scheduler.

Before we display the results on the screen, with the doonTerminate operator we
register an Action function to be called to dismiss the progress dialog previously
started. As described before, the function will be invoked, whether the chain
terminates with success or with an error.

At the end, the subscriber callbacks will be invoked to update the UI with the
results returned or to show an error message.

[358]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

If the network operation terminates with success you should see a similar logging
stream in the Android Log:

.54.390 I Network IO Operation will start T[main]

.54.850 I Text retrieved w/ success T[RxCachedThreadScheduler-1]
.54.850 I Translating the text T[RxCachedThreadScheduler-1]
.55.160 I Translation finished T[RxCachedThreadScheduler-1]
.55.200 I Dismissing dialog on T[main]

For debugging purposes, [<Thread_Name>] shows the name of the thread that
logged the message.

Combining Observables

In the previous example, we used two Observable to create a simple sequence of
network operations. The second asynchronous operation operated with the result of
the first operation and the two operations that executed serially produced a String
result that updates the UL

In our next example, we will run two tasks in parallel and combine the results of
both operations using a combining RxJava operator. Each operation will retrieve
asynchronously a JSON Object from the network and combine both results in the
JSON Object to produce the JSON string passed to the Ul main Thread.

Since we only want to emit one Event or an error from the operation, we are going to
use, for the first time, a special kind of Observer, single.

While an observable is able to invoke onNext, onError, and onCompleted Observer
functions, a single entity will only invoke either onsuccess or onError to a
SingleSubscriber:

// Success callback invoked on success
void onSuccess (T value) ;

// Callback to notify that an unrecoverable error has occurred
void onError (Throwable error) ;

After one of the callback functions is called, the single finishes and the subscription
to it ends. Like a regular observable, the Single object emitted event can be
processed with operators before it reaches the final SingleSubscriber.

[359]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

Now, let's define the two single operations that retrieve a single JsoNObject from
the network:

Single<JSONObject> postSingle = Single.create (
new Single.OnSubscribe<JSONObject> () {
@Override
public void call (SingleSubscriber<? super JSONObjects> sub) {
try {
// Retrieve the Post content JSON Object
sub.onSuccess (
getJson ("http://demol472539 .mockable.io/post")) ;
} catch (Throwable t) {
sub.onError (t) ;

}

) .subscribeOn (Schedulers.newThread ()) ;

Single<JSONObject> authorSingle = Single.create(
new Single.OnSubscribe<JSONObject> () {
@Override
public void call (SingleSubscriber<? super JSONObjects> sub) {
try {
// Retrieve the Author content JSON Object
sub.onSuccess (
getdson ("http://demol472539 .mockable.io/author")) ;
} catch (Throwable t) {
sub.onError (t) ;

}

) .subscribeOn (Schedulers.newThread ()) ;

Like we did for the previous Observable, we used the Single.create

static function to build a custom single entity that either explicitly calls the
SingleSubscriber.onSuccess function when the network operation finishes with
success, or calls the SingleSubscriber.onError function when an error is thrown
on the getJson IO operation.

The getJson function will basically retrieve a JSON Object by connecting to the
HTTP URL provided as an argument and return a JSONObject.

By forcing the Single to subscribeon the newThread Sheduler, we are allowing
each custom single entity to run their operation concurrently on a new thread.

[360]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Since the two operations will run in parallel, we need to use the combining operator
to combine the Single results together in a single JsSoNObject and emit the resulting
JSON string to the final SingleSubscriber. The appropriate combining operator
for our example is zip, because it is able to wait for the result of two or more
Single/Observable and apply a function to each Single output object.

The function that receives the emitted objects as an argument can produce a result of
the same type or of a different type.

This is the zip operator function definition for combining two Singles into a
Single<R>:

Single<R> zip(Single<Tl> ol, // First Single
Single<T2> 02, // Second Single
final Func2<T1,T2,R> zipFunction)

In our example, R is a String, T1 and T2 are a JSONObject, and zipFunction receives
the JsoNObjects arguments to generate a String as the result.

Now we are ready to use the zip operator and combine the result of each
independent asynchronous operation into a String. The resulting string will update
a Widget, so the final Subscriber should be invoked in the main Thread.

Let's write the functional code that fetches the JsoNObject parts and dispatches the
resulting String to the Ul:

Single.zip (postSingle, authorSingle,
new Func2<JSONObject, JSONObject, Strings>()
@Override
public String call (JSONObject post, JSONObject author)
String result = null;

// Create the Root JSON Object

JSONObject rootObj = new JSONObject () ;

try {
// Add the post object to root JSON Object
rootObj.put ("post", post) ;
// Add the author object to root JSON Object
rootObj.put ("author", author);
// Save the JSON Object, Encode the JSON Object
// into a String
result = rootObj.toString(2) ;

} catch (Exception e) {
Exceptions.propagate (e) ;

[361]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

return result;

!
3
.observeOn (AndroidSchedulers.mainThread())
.subscribe (subscriber) ;

Using the zip operator, we combined the result of the two operations, postsingle
and authorSingle, that ran on a new thread created by the newThread Scheduler, on
the Func2 that received the two JSONObjects as arguments and produced a String.

Since we subscribed the single to work on its own Thread, the zip function will
combine the result of both singles on the thread built by the last defined Single
(authorsingle) resulting in a log similar to the following output:

.040 I ...: Getting the Post Object on RxNewThreadScheduler-1
.050 I ...: Getting the Author Object on RxNewThreadScheduler-2
.660 I ...: Combining objects on RxNewThreadScheduler-2

After combining the objects, the String produced by Funcz is delivered to the final
Subscriber in the main Thread

All that remains is to implement the trivial singleSubscriber that updates the Ul:

SingleSubscriber<String> subscriber =
new SingleSubscriber<Strings () {

@Override
public void onSuccess (String result) { // Updates the UI }

Vi

Observing Ul Events with RxJava

So far, we have been using RxJava to process and manipulate data streams, which
simplified the development of asynchronous that require IO blocking operations that
will hang the application for a while.

In this section, we want to explain how to use RxJava and reactive streams to
simplify the handling of Ul events generated from Android Widgets.

In our next example, we will present a list of Soccer Teams with an instant search
result input field. As you type in the input field, the names available in the list will
be filtered if the text that you typed matches the beginning of any soccer team on
the list.

[362]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

To achieve the result required, we will create a custom Observable that attaches
a TextWatcher to the searching input field, listens for onTextChanged events, and
emits a String event when the text changes.

The Observer will feed a reactive functional stream that will filter our list of teams in
a Recycler View.

First, we will write a Custom Observable that registers TextWatcher to EditField
when an Observer subscribes, and deregisters TextWatcher when the subscription
finishes:

public class TextChangeOnSubscribe
implements OnSubscribe<String> {
// Don't Prevent the GC from recycling the Activity
WeakReference<EditText> editText;

// Receive the EditText View to verify Changes
public TextChangeOnSubscribe (EditText editText) {
this.editText = new WeakReference<EditText> (editText) ;

@Override
public void call(final Subscriber<? super String> subscriber)
final TextWatcher watcher = new TextWatcher () ({

@Override
public void onTextChanged (
CharSequence s, int start, int before, int count) {

// Emit a new String when the text changes
if (!subscriber.isUnsubscribed()) ({
subscriber.onNext (s.toString()) ;

}
Vi
// Remove the Text change Watcher when the subscription ends
subscriber.add (new MainThreadSubscription() {
@Override
protected void onUnsubscribe () {
editText.get () .removeTextChangedListener (watcher) ;
}
P
// Sets the Watcher on the EditField
editText.get () .addTextChangedListener (watcher) ;

[363]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

subscriber.onNext ("") ;

}
}i

EditText search = (EditText) findViewById(R.id.searchTv);
Observable<String> textChangeObs = Observable.
create (new TextChangeOnSubscribe (search))

.debounce (400,
TimeUnit .MILLISECONDS) ;

The TextChangeOnSubscribe class, which implements the OnSubscribe<String>
and receives a subscription callback, will set a TextWatcher in the received
EditField once the subscription is performed by the Subscriber.

When TextWatcher.onTextChanged is invoked to notify a text change in EditField,
a new String event with the new content should be emitted in the Subscriber.

To unregister the TextWatcher in the EditField, we add a
MainThreadSubscription anonymous class to the subscriber list that removes our
TextChangeListener in the EditField

To prevent the text change event from generating too many updates in the Ul we
used the debounce operator to only emit a new search term if there's been a 400
millisecond delay since the last text change event.

Next, we will use the search Events generated by our Observable to filter the teams
available in the Reciclerview list:

List<String> soccerTeams = Arrays.asList(
"Real Madrid", "Barcelona', "Sporting CP",...,"Chelsea");

subcription = Observable.combineLatest (
// Observables
Observable.just (soccerTeams), textChangeObs,
// Combine Function
new Func2<List<String>, String, List<Strings>>() {

// Filter the list with the filter String and sort the list
@Override
public List<String> call (List<String> fulllist,
String filter) {
List<String> result = new ArrayList<Strings () ;
for (String team : fullList) ({

[364]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

if (team.startsWith(filter)) ({
result.add (team) ;

}
}

// Sort the Collection
Collections.sort (result) ;
return result;

}
3]
.observeOn (AndroidSchedulers.mainThread ())
.subscribe (new Actionl<List<String>>() {
@Override
public void call (List<String> teams) {
// Update the Recycler View with a filtered list of Teams
mAdapter = new MyAdapter (teams) ;
mRecyclerView.setAdapter (mAdapter) ;

}
3N

To filter the soccer team list with the search term emitted by the textChangeEvent
we applied the operator combineLatest to textChangeObs Observable and to the
Observable created from the soccer team list with the operator just.

The combineLatest will combine the latest item emitted by each Observable using
a specified function and emit items based on the results of this function invocation.

The function that combines both Observables will simply filter the soccer list with
the last text content emitted by the onTextChanged and sort the resulting list.

To finalize, a new RecyclerView.Adapter is created with the resulting
List<String> and the filtered list of teams will be displayed to the user.

Notice that to update our Recyclerview with the resulting filtered list, we explicitly
set the Observer to run on the main Thread by passing the Android main Thread
Scheduler to the observeOn operator.

Don't forget to terminate the subscription before the Activity is
— destroyed by calling subcription.unsubscribe () ;

Although, for educational purposes, we built our own Observables from the Android
EditField Widget text change events, there is an easy-to-use, open source library
named RxBinding (https://github.com/JakeWharton/RxBinding) that is able to
create Observables for most Android Widgets available on the Android SDK.

[365]

www.it-ebooks.info

https://github.com/JakeWharton/RxBinding
http://www.it-ebooks.info/

Asynchronous Programing with RxJava

If you don't want to implement your own Observables, or process Ul events in
a traditional way, you can make use of it to process Android Ul events using a
functional RxJava reactive paradigm.

Working with Subjects

So far, we have been working with observables, Subscriber, Observer, and
Scheduler entities to create our RxJava functional processing lines. In this section,
we will introduce the reader to a new kind of entity in the RxJava framework, the
Subject. The subject is a sort of adapter or bridge entity that acts as an Observable
and Observer:

public abstract class Subject<T,R>
extends Observable<R>
implements Observer<T>

Since it can act as a Subscriber, it can subscribe to one or more Observables that
emit Objects of the generic type T, and since it acts as an Observable, it can emit
events of the generic type R and receive subscriptions from other Subscriber.
Hence, it can emit events of the same type as received or emit a different type

of event.

For example, the Subject<String, Integers> will receive events of type String
and emit events of the type Integer.

The subject could receive the events from the Observable and generate a new
event stream with different timings, proxy the events, convert to a new kind of event,
queue the events, transform the events, or even generate new events.

A subject is always considered a hot Observable and will begin emitting events
as soon as it is created. This is a very important Subject feature and you should
consider it when you want to process the full event stream sequence.

RxJava comes with some standard Subject classes designed to be used in
distinctive use cases. The list below will enumerate the most common ones:

* AsyncSubject: Subjects that will only emit the last item emitted by the
source Observable when the source Observer completes the stream by
calling onComplete ()

* PpublishSubject: The Subject only delivers to the Observers the events
emitted after their subscription

[366]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

* ReplaySubject: Emits all the events emitted by the source Observable, even
those that were emitted before the subscription is made

* BehaviorSubject: Emits the last emitted item by the source Observable
when the subscription is done, then continues to any other items emitted by
the source observable

In the following example, we will show you how to use PublishSubject and
demonstrate how the events are propagated to a final Observer that subscribes and
later unsubscribes to the subject. Moreover, we will submit events to Subject
before and after the subscription is made:

PublishSubject<Integer> pubSubject = PublishSubject.create() ;
pubSubject.onNext (1) ;
pubSubject.onNext (2) ;
Subscription subscription = pubSubject.doOnSubscribe (new ActionO () {
@Override
public void call() {
Log.i (TAG, "Observer subscribed to PublishSubject");
}
}) .doOnUnsubscribe (new Action0() {
@Override
public void call() {
Log.i (TAG, "Observer unsubscribed to PublishSubject");
}
}) .subscribe (new Actionl<Integers () {
@Override
public void call (Integer integer) {
Log.i (TAG, "New Event received from PublishSubject: " + integer);

}
1
pubSubject .onNext (3) ;
pubSubject .onNext (4) ;
subscription.unsubscribe () ;
pubSubject .onNext (5) ;
pubSubject.onCompleted() ;

First, we created the PublishSubject by calling the PublishSubject.create
static function, and then we started delivering integers to it and calling the onNext
function.

In the meantime, we subscribed to the subject with an Actionl function in order to
consume the events.

[367]

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous Programing with RxJava

To print the exact time when the subscription and unsubscription is made, we
provided an Actiono function to the doonUnsubscribe and doOnSubscribe that
prints a message to the Android Log.

As a result, the code above should output the following output:

43.230 I Observer subscribed to PublishSubject
43.230 I New Event received from PublishSubject: 3
43.230 I New Event received from PublishSubject: 4
43.230 I Observer unsubscribed to PublishSubject

As described before, only the events dispatched while the final observer is
subscribed are emitted to the Action callback. Therefore, the events submitted before
the subscriptions and after the unsubscription are not received by our Subscriber.

Now, for comparison, let's try to compare the event stream emitted by a
ReplaySubject, with the exact sequence of events submitted to the Subject.

Again, the ReplaySubject class was built by calling the create static function, and as
a result, you should see the following output:

.600 I Observer subscribed to ReplaySubject
.600 I New Event received from ReplaySubject: 1
.600 I New Event received from ReplaySubject: 2
.600 I New Event received from ReplaySubject: 3
.600 I New Event received from ReplaySubject: 4
.600 I Observer unsubscribed to ReplaySubject

On the http://reactivex.io/documentation/subject.html website, there are
diagrams to help you understand graphically the interactions between Subjects,
Subscribers, and source Observables.

As expected, ReplaySubject will receive all the events submitted to the subject,
even the ones delivered before the subscription was made are received by the
Observer. After the Observer unsubscribes, it stops receiving the events from
the Subject.

As an exercise, you can try to create the same for the AsyncSubject and
BehaviorSubject.

[368]

www.it-ebooks.info

http://reactivex.io/documentation/subject.html
http://www.it-ebooks.info/

Chapter 12

Summary

In this final chapter, we learned how to use RxJava, an open source library that
helps to process our Android application data or event streams using functional and
reactive processing pipelines.

In the first sections, we learned in detail some of RxJava basic building blocks —
Observable, Observer, and Subscriber.

Next, we introduced some of RxJava most common operators that are able to
manipulate, transform, and combine event streams generated by an Observable.

In order to perform operations asynchronously and concurrently, we learned about
the scheduler, a magic RxJava entity that controls the concurrency, and is able to
schedule rRxJava units of work to run in background threads and feed the results
back to the main Android Thread.

Next, using custom Observables and combining operators, we learned how
to associate and compose interdependent complex blocking or long computing
operations, such as REST API network operation.

In the meantime, we also learned how to react to a custom Observable that emits
Android Widget Ul events using a RxJava event functional pipeline.

Finally, we learned about the subject RxJava entity, an entity that can act as an
Observer and Observable and can act as a proxy between our source Observable
and the final observer.

Over the course of this book, we've armed ourselves with a powerful array of tools
for building responsive Android applications. We discovered that it is incredibly
important to move as much work as possible off the main thread, and explored a
number of constructs and asynchronous techniques to make the smoothest and most
awesome experience for your users.

Remember that to keep your application responsive and avoid any Ul lost frames, an
Android callback (service, Activity, and so on) that runs on the main UI Thread
should terminate in under 16 ms.

[369]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A

ahead-of-time (AOT) compilation 3
AIDL (Android Interface Definition
Language) 27
AlarmManager
about 166
android.app.AlarmManager,
features 166, 167
applications 192
used, for scheduling alarms 167-169
alarms
alarm clock, scheduling 178, 179
AlarmManager Alarms,
debugging 173,174
cancelling 175,176
handling 179, 180
handling, Activities used 180, 181
handling, BroadcastReceiver used 181-183
handling, Services used 187
repeating alarms, scheduling 176, 177
resetting, after system reboot 190, 191
scheduling, AlarmManager used 167-169

setting, in recent Android versions 169-171

testing, Doze mode used 172
WakeLocks, used for staying awake 188
Window alarm, setting 173
Android Application Manifest (AAM) 5
Android application package (APK) 3
Android, concurrency
about 12,14
concurrent package constructs 19
concurrent programs, correctness
issues 14, 15
concurrent programs, liveness issues 16
executor framework 20

Index

thread coordination 16
Android HTTP clients
about 216, 217
AndroidHttpClient client library 217
HttpURLConnection 218
Android NDK (Native Development Kit)
about 255
URL 255
Android primary building blocks
about 21
Activity concurrent issues 21, 22
bound services, issues 26
service concurrent, issues 25
started services, issues 25, 26
user interface, manipulating 23, 24
Android process model
about 5
process ranks 5
process sandboxing 6
Android service
Android concurrency constructs 28, 29
broadcast receiver concurrent issues 28
separate process 27
Android software stack
about 2
ART runtime 3, 4
Dalvik runtime 2,3
memory sharing 4
Zygote 4
Android thread model
about 6
Application Not Responding (ANR)
dialog 9,10
main thread 7-9
responsiveness, maintaining 10, 11
Application Binary Interface (ABI) 253

[371]

www.it-ebooks.info

http://www.it-ebooks.info/

AsyncTask
about 62-65
applications 92, 93
canceling 75-78
deterministic progress feedback,
providing 72-74
executing 67-69
Execution State 78
indeterministic progress feedback,
providing 69-71
types, declaring 65-67
AsyncTask, issues
about 84
fragmentation issues 84
lifecycle issues 85, 86
lifecycle issues handling, early cancellation
used 86
lifecycle issues handling, with retained
headless fragments used 87-92
memory leaks 85
AsyncTaskLoader
used, for building responsive apps 107-116

B

Bound Service
about 130, 149
Local Service, communicating with 150-157
results, broadcasting with intents 158-160
unhandled broadcasts, detecting 160-162
bound services
issues 26
BroadcastReceiver
alarms, handling with 181-183
goAsync, asychronous work with 186
working with 183-185
broker 322
bus-based communication 322, 323

C

Certificate authority (CA) 244
C functions

calling, from Java code 256-259
C++ functions

calling, from native code 260, 261
cold

versus Hot Observable 344

composition 53
concurrency 12
concurrency level
controlling 81-83
copy-on-write (COW) 4
CursorLoader
used, for building responsive apps 116-118

D

Dalvik VM (DVM) runtime 2
data
loading, Loaders used 101-107
deterministic progress feedback
providing 72-74
downstream messages
receiving 302-305
Doze mode
used, for testing alarms 172

E

EventBus library
about 323,324
URL 323

events
defining 324
submitting 325

event stream
monitoring 356-358

exceptions
handling 79, 80

G

GC (garbage collection) 4, 86
GcmlListenerService delivery
callbacks 314, 315

GCM Network Manager
one shot task, building 316-320
used, for executing tasks 315, 316

Global Service (GS) 131

Google Cloud Messaging (GCM)
about 294, 295
configuring, for application 296, 297
GCM Receiver, registering 298
InstancelD listener 300, 301
Registration Service, setting up 298-300

[372]

www.it-ebooks.info

http://www.it-ebooks.info/

setting up, for application 296, 297
Google GSON library

reference link 228
Greenwich Mean Time (GMT) 168

H

HTTP requests
interacting, with JSON web APIs 227, 228
performing, asynchronously 218-224
reference link 238
text response, retrieving 225-227
XML web APIs, interacting with 234, 235
HTTP timeouts
customizing 241, 243
HTTP uploads
with IntentService 144
Hybrid Service 130

indeterministic progress feedback
providing 69-71
inheritance 53
input/output (I/O) 7
IntentService
applications 143
HTTP uploads 144-146
progress, reporting 146-149
used, for building responsive apps 136-138
Internal Remote Service (IRS) 131
Internet Engineering Task Force (IETF) 216
inter-process communication (IPC)
technique 27,150
IO operations
performing, Schedulers used 351-353

J

Java code
C functions, calling 256-259
Java exceptions
handling, in native layer 280
Java monitor
interacting with, from native code 283-286
native data objects, wrapping 287-291
Java Native Interface (JNI) 254

Java objects

accessing, from native code 262-264
Java threads

native background work, executing 265-269
job

cancelling 211

pending jobs, listing 208-210

periodic job, scheduling 211, 212

scheduling 200-202
JobScheduler

about 196

applications 212

features 196, 197

job, scheduling 200-202

running criteria, setting 197-200
JobService

implementing 203-207
JSONPIlaceHolder

reference link 231, 232
JSON web APIs

interacting with 227, 228

Java objects, converting to JSON 228-233
Just-In-Time (JIT) compilation 3

L

Least-Recently-Used (LRU) 5
Linux user ID (UID) 6
Loader API
about 96
Loader 97
Loader Manager 98
LoaderManager.LoaderCallbacks 99
Loaders
about 96
applications 125
combining 119-124
Lifecycle 100
used, for loading data 101-107
Local Service (LS) 131
Looper
about 32, 33
composition, versus inheritance 52, 53
explicit references, leaking 43, 44
Handler, applications 59
Handler class 34-37

[373]

www.it-ebooks.info

http://www.it-ebooks.info/

HandlerThread, applications 59
Handler, used for deferring work 40, 41
implicit references, leaking 41-43
messages, debugging 58
messages, dispatching 58
multithreading, with Handler 53-57
multithreading, with ThreadHandler 53-57
pending messages, cancelling 50, 51
pending Runnable, cancelling 46
sending messages, versus

posting runnables 59
sequence, on Android 32
Ul, updating with Handler 45, 46
work, scheduling with post 39, 40
work, scheduling with send 47-49
work, sending to 37, 38

messages
receiving, from topic 306-310
upstream messages, sending 310-313
mockable
reference link 238

N

native background work

executing, Java threads used 265-269
native code

C++ functions, calling 260, 261

Java objects, accessing 262-265
native layer

Java exceptions, handling 280-283
native thread

asynchronous work, executing 270

attaching, from JVM 270-275

detaching, from JVM 270-275

JNI references 276

starting 279

stopping 279, 280

Ul interacting with 277, 278

(0

Observables
combining 359-362
composing 354, 355

creating 344-347
transforming 347-349

P

parallelism 12
parent process ID (PPID) 6
PendingIntent

used, for posting results 139-141
pending jobs

listing 208-210
periodic job

scheduling 211, 212
Plain Old Java Object (POJO) 227
process ID (PID) 6
process ranks

about 5

background process 5

empty process 5

foreground process 5

service process 5

visible process 5
publisher 322

R

RenderThread 9
responsive apps
building, AsyncTaskLoader used 107-116
building, CursorLoader used 116-118
building, IntentService used 136-138
results
broadcasting, intents used 158-160
handling 139
posting, as system notifications 142, 143
posting, PendingIntent used 139-141
RxJava
about 342-344
setup 344
used, for observing UI Events 362-366

S

Schedulers

about 349, 351

used, for performing IO operations 351-353
service

about 128, 129

[374]

www.it-ebooks.info

http://www.it-ebooks.info/

applications 163
bound service 130
hybrid service 130
started service 130-135
SimpleXML
reference link 235
Software as a Service (SaaS) 241
SSL sessions
setting up 244
used for secure communications 243-251
started service
about 131-135
IntentService, applications 143
issues 25, 26
responsive apps building, IntentService
used 136-138
results, handling 139
results, posting as system
notifications 142, 143
results posting, PendingIntent
used 139-141
sticking events
posting 334-338
removing 338

thread ID (TID) 7
thread mode 327-333

U

Ul Events
observing, RxJava used 362-366
UI/Main thread 8
unhandled broadcasts
detecting 160
upstream messages
setting up 310-313
user identifier (UID) 6

w

WakeLocks

used, for staying awake 188-190
Window Alarm

setting 173
World Wide Web Consortium (W3C) 216

X

XML web APIs

Subjec.ts _ interacting with 234, 235

work.mg with 366-368 Java objects, converting to XML 235, 236
subscribers XML, converting to Java objects 237-241

about 322

registering 326, 327 Z
Subscriptions

cancelling 354 Zygote 4
T
tasks

executing, GCM Network Manager

used 315, 316
[375]

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Asynchronous Programming in Android
	Android software stack
	Dalvik runtime
	ART runtime
	Memory sharing and Zygote

	Android process model
	Process ranks
	Process sandboxing

	Android thread model
	The main thread
	The Application Not Responding (ANR) dialog
	Maintaining responsiveness

	Concurrency in Android
	Correctness issues in concurrent programs
	Liveness issues in concurrent programs
	Thread coordination
	Concurrent package constructs
	Executor framework

	Android primary building blocks
	Activity concurrent issues
	Manipulating the user interface
	Service concurrent issues
	Started services issues
	Bound services issues

	Service in a separate process
	Broadcast receiver concurrent issues
	Android concurrency constructs

	Summary

	Chapter 2: Performing Work with Looper, Handler, and HandlerThread
	Understanding Looper
	Understanding Handler
	Sending work to a Looper
	Scheduling work with post
	Using Handler to defer work
	Leaking implicit references
	Leaking explicit references
	Updating the UI with Handler
	Canceling a pending Runnable
	Scheduling work with send
	Cancelling pending messages
	Composition versus inheritance
	Multithreading with Handler and ThreadHandler
	Looper message dispatching debugging

	Sending messages versus posting runnables
	Applications of Handler and HandlerThread

	Summary

	Chapter 3: Exploring the AsyncTask
	Introducing AsyncTask
	Declaring AsyncTask types
	Executing AsyncTasks
	Providing indeterministic progress feedback
	Providing deterministic progress feedback
	Canceling an AsyncTask
	AsyncTask Execution State

	Handling exceptions
	Controlling the level of concurrency
	Common AsyncTask issues
	Fragmentation issues
	Memory leaks
	Activity lifecycle issues
	Handling lifecycle issues with early cancellation
	Handling lifecycle issues with retained headless fragments

	Applications of AsyncTask
	Summary

	Chapter 4: Exploring the Loader
	Introducing Loaders
	Loader API
	Loader
	Loader Manager
	LoaderManager.LoaderCallbacks

	Loader lifecycle

	Loading data with Loader
	Building responsive apps with AsyncTaskLoader
	Building responsive apps with CursorLoader
	Combining Loaders
	Applications of Loader
	Summary

	Chapter 5: Interacting with Services
	Introducing Service
	Started service
	Building responsive apps with IntentService
	Handling results
	Posting results with PendingIntent
	Posting results as system notifications
	Applications of IntentService
	HTTP uploads with IntentService
	Reporting progress

	Bound Service
	Communicating with a Local Service
	Broadcasting results with intents
	Detecting unhandled broadcasts

	Applications of Services
	Summary

	Chapter 6: Scheduling Work with AlarmManager
	Introducing AlarmManager
	Scheduling alarms with AlarmManager
	Setting alarms in recent Android versions
	Testing your alarms in Doze Mode
	Setting a Window alarm
	Debugging AlarmManager alarms

	Canceling alarms
	Scheduling repeating alarms
	Scheduling an alarm clock
	Handling alarms
	Handling alarms with Activities
	Handling alarms with BroadcastReceiver
	Working with BroadcastReceiver
	Asynchronous work with goAsync

	Handling alarms with Services
	Staying awake with WakeLocks

	Resetting alarms after a system reboot
	Applications of AlarmManager
	Summary

	Chapter 7: Exploring the
JobScheduler API
	Introduction to JobScheduler
	Setting running criteria
	Scheduling a job
	Implementing the JobService
	Listing pending jobs
	Canceling a job
	Scheduling a periodic job
	Applications of the JobScheduler
	Summary

	Chapter 8: Interacting with the Network
	Introducing Android HTTP clients
	AndroidHttpClient
	HttpURLConnection

	Performing HTTP requests asynchronously
	Retrieving a text response
	Interacting with JSON web APIs
	Converting Java objects to JSON

	Interacting with XML web APIs
	Converting Java objects to XML
	Converting XML to Java objects

	Customizing HTTP timeouts
	Communicating securely over SSL sessions
	Summary

	Chapter 9: Asynchronous Work on the Native Layer
	Introduction to JNI
	Android NDK (Native Development Kit)

	Calling C functions from Java code
	Calling C++ functions from native code
	Accessing Java objects from native code
	Executing native background work on Java threads
	Executing asynchronous work on a native thread
	Attaching and detaching native threads from JVM
	JNI references explained
	Interacting with UI from native threads
	Starting the native threads
	Stopping the native threads

	Handling Java exceptions in the native layer
	Interacting with a Java monitor from native code
	Wrapping native data objects

	Summary

	Chapter 10: Network Interactions
with GCM
	Introduction to GCM
	Setting up and configuring GCM for your application
	Registering the GCM Receiver
	Setting up a registration service
	InstanceID listener

	Receiving downstream messages
	Receiving messages from topic
	Sending upstream messages
	GcmListenerService delivery callbacks
	Executing tasks with GCM Network Manager
	Building a one shot task

	Summary

	Chapter 11: Exploring Bus-based Communications
	Introduction to bus-based communication
	EventBus library
	Defining events
	Submitting events
	Registering sbscribers
	Thread mode
	Posting sticking events
	Removing sticky events
	Summary

	Chapter 12: Asynchronous Programing with RxJava
	Introduction to RxJava
	Cold versus Hot Observable

	RxJava setup
	Creating Observables
	Transforming Observables
	Understanding Schedulers
	Performing IO operations with Schedulers
	Canceling subscriptions
	Composing Observables
	Monitoring the event stream
	Combining Observables
	Observing UI Events with RxJava
	Working with Subjects
	Summary

	Index

