

Saving Data on Android
By Jennifer Bailey, Dean Djermanović, Aldo Olivares Dominguez, Fuad Kamal,
Subhrajyoti Sen & Harun Wangereka

Copyright ©2021 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Saving Data on Android Saving Data on Android

raywenderlich.com 2

Table of Contents: Overview
Book License 11...

Before You Begin 12..

What You Need 13..

Book Source Code & Forums 14...

About the Cover 15..

Acknowledgements 19...

Introduction 20..

Section 1: Saving Data Using Android SDK &
Jetpack DataStore 23...

Chapter 1: Using Files 24...

Chapter 2: Using SharedPreferences 46.................................

Chapter 3: SQLite Database 56...

Chapter 4: ContentProvider 78..

Chapter 5: Jetpack DataStore 102..

Section 2: Using Room 117..

Chapter 6: Room Architecture 118...

Chapter 7: Entity Definitions 129..

Chapter 8: Mastering Relations 144...

Chapter 9: The DAO Pattern 155...

Chapter 10: Using Room with Android Architecture
Components 170...

Chapter 11: Data Migration 194..

Saving Data on Android

raywenderlich.com 3

Section 3: Using Firebase 212..

Chapter 12: Firebase Overview 213...

Chapter 13: Introduction to Firebase Realtime
Database 222..

Chapter 14: Reading to & Writing from Realtime
Database 235..

Chapter 15: Realtime Database Offline Capabilities 254

Chapter 16: Usage & Performance 265...................................

Chapter 17: Introduction to Cloud Firestore 271...............

Chapter 18: Managing Data with Cloud Firestore 278.....

Chapter 19: Reading Data from Cloud Firestore 290........

Chapter 20: Securing Data in Cloud Firestore 305.............

Chapter 21: Cloud Storage 313...

Conclusion 323..

Saving Data on Android

raywenderlich.com 4

Table of Contents: Extended
Book License 11.

Before You Begin 12.

What You Need 13.

Book Source Code & Forums 14.

About the Cover 15.

Acknowledgements 19.
Content Development 19.

Introduction 20.
How to read this book 21.

Section 1: Saving Data Using Android SDK &
Jetpack DataStore 23.

Chapter 1: Using Files 24.
Reading and writing files in Android 24.

Getting started 25.

Viewing the files in Device File Explorer 29.

Securing user data with a password 37.

Understanding Parcelization and Serialization 43.

Key points 45.

Where to go from here? 45.

Chapter 2: Using SharedPreferences 46.
Understanding SharedPreferences 46.

Getting a reference to the SharedPreferences file 47.

Getting started 49.

Saving the user preferences 51.

Reading the user preferences 52.

Saving Data on Android

raywenderlich.com 5

Reading and writing the prefs from MainActivity 52.

Key points 55.

Where to go from here? 55.

Chapter 3: SQLite Database 56.
Getting started 59.

Using SQLiteOpenHelper 60.

Reading from a database 67.

Updating a TODO 69.

Deleting a TODO 71.

Unit Testing with Robolectric 71.

Key points 77.

Where to go from here? 77.

Chapter 4: ContentProvider 78.
Understanding content provider basics 79.

Getting started 84.

Implementing the content provider methods 88.

Challenge: Creating a client 99.

Key points 101.

Where to go from here? 101.

Chapter 5: Jetpack DataStore 102.
Getting started 103.

Limitations of SharedPreferences 104.

Types of DataStore implementations 104.

Creating your DataStore 105.

Writing to DataStore 106.

Reading from DataStore 108.

Migrating from SharedPreferences 112.

Key points 116.

Where to go from here? 116.

Section 2: Using Room 117.

Saving Data on Android

raywenderlich.com 6

Chapter 6: Room Architecture 118.
Object Relational Mappers 119.

Room and Android Architecture Components 120.

Advantages of using Room 126.

Frequently asked Room questions 126.

Your app 127.

Key points 128.

Chapter 7: Entity Definitions 129.
Getting started 130.

Tables and entities 131.

Creating your entities 137.

Creating the database 140.

Key points 143.

Where to go from here? 143.

Chapter 8: Mastering Relations 144.
Getting started 145.

Relations and entity-relationship diagrams 146.

Creating your relations 149.

Key points 154.

Chapter 9: The DAO Pattern 155.
Getting started 156.

Using DAOs to query your data 157.

Creating a provider class 161.

Testing your database 163.

Key points 168.

Where to go from here? 169.

Chapter 10: Using Room with Android Architecture
Components 170.

Getting started 171.

Using LiveData with a Repository 172.

Saving Data on Android

raywenderlich.com 7

Creating ViewModels 176.

Defining your Views 185.

Key points 193.

Where to go from here? 193.

Chapter 11: Data Migration 194.
Getting started 195.

Migrations 196.

Understanding Room migrations 196.

Exporting schemas 197.

Creating Room migrations 198.

Automated migrations 208.

Key points 211.

Where to go from here? 211.

Section 3: Using Firebase 212.

Chapter 12: Firebase Overview 213.
Firebase history 214.

Why Firebase? 214.

Getting started 215.

Key points 221.

Where to go from here? 221.

Chapter 13: Introduction to Firebase Realtime Database 222.
Overview 223.

Setting up Realtime Database 224.

Data structure 232.

Key points 234.

Where to go from here? 234.

Chapter 14: Reading to & Writing from Realtime
Database 235.

Reading and writing data 236.

Saving Data on Android

raywenderlich.com 8

Key points 252.

Where to go from here? 253.

Chapter 15: Realtime Database Offline Capabilities 254.
Enabling disk persistence 255.

Other offline scenarios and network connectivity features 262.

Key points 264.

Where to go from here? 264.

Chapter 16: Usage & Performance 265.
Pricing model 265.

Limitations 266.

Performance 267.

Key points 270.

Where to go from here? 270.

Chapter 17: Introduction to Cloud Firestore 271.
What is Cloud Firestore? 272.

Cloud Firestore vs. Realtime database 273.

Cloud Firestore Data Structure 274.

Key points 276.

Where to go from here? 277.

Chapter 18: Managing Data with Cloud Firestore 278.
Getting started 278.

Writing Data 282.

Updating Data 286.

Deleting Data 287.

Firebase Console 288.

Key points 289.

Where to go from here? 289.

Chapter 19: Reading Data from Cloud Firestore 290.
Reading Data 291.

Performing Queries 294.

Saving Data on Android

raywenderlich.com 9

Working offline 301.

Other features 302.

Key points 304.

Where to go from here? 304.

Chapter 20: Securing Data in Cloud Firestore 305.
What are Security Rules? 305.

Getting started 306.

Adding Security Rules 308.

Key points 312.

Where to go from here? 312.

Chapter 21: Cloud Storage 313.
Cloud Storage Overview 314.

Getting started 315.

Integrating Cloud Storage 317.

Key points 322.

Where to go from here? 322.

Conclusion 323.

Saving Data on Android

raywenderlich.com 10

LBook License

By purchasing Saving Data on Android, you have the following license:

• You are allowed to use and/or modify the source code in Saving Data on Android in
as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in Saving Data on Android in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from
_Saving Data on Android, available at www.raywenderlich.com”.

• The source code included in Saving Data on Android is for your personal use only.
You are NOT allowed to distribute or sell the source code in Saving Data on
Android without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

raywenderlich.com 11

Before You Begin

This section tells you a few things you need to know before you get started, such as
what you’ll need for hardware and software, where to find the project files for this
book, and more.

raywenderlich.com 12

iWhat You Need

To follow along with this book, you need:

• Android Studio 4.1+: Available at https://developer.android.com/studio/. This is
the environment in which you’ll develop most of the sample code in this book. If
you didn’t install it already, now is the right time to do that!

• Java SE Development Kit 8+: Most of the code in this book will be run on the
Java Virtual Machine or JVM, for which you need a Java Development Kit or JDK.
The JDK can be downloaded from Oracle at http://www.oracle.com/technetwork/
java/javase/downloads/index.html.

• Kotlin Playground: You can also use the Kotlin Playground available at the Kotlin
home page at https://play.kotlinlang.org.

• Android 6.0+: The minimumSdkVersion for the projects targets API 23. Therefore,
you need an emulator or device running API 23 or higher.

raywenderlich.com 13

iiBook Source Code &
Forums

Where to download the materials for this book
The materials for this book can be cloned or downloaded from the GitHub book
materials repository:

• https://github.com/raywenderlich/sda-materials/tree/editions/2.0

Forums
We’ve also set up an official forum for the book at https://
forums.raywenderlich.com/c/books/saving-data-on-android. This is a great place to
ask questions about the book or to submit any errors you may find.

raywenderlich.com 14

iiiAbout the Cover

Saving Data on Android Cover

Dragons are an extremely common and ancient piece of folklore in nearly all cultures
around the world. Most dragons are thought to breathe fire, or even ice, but legend
has it that green dragons breathe acid. Any warrior brave enough to charge a green
dragon would have the story of her battle permanently etched on her armor and
shield from the dragon’s acid.

Saving data on Android etches the story of data in a persistent manner on the user’s
device. There’s hardly an app out there that doesn’t persist data in some way. After
reading Saving Data on Android, you’ll be armed and ready to charge fearlessly into
battle with the dragons of development, to save your users’ data!

raywenderlich.com 15

Dedications
“In loving memory of my wife, Huma. Not every warrior

carries a sword.”

— Fuad Kamal

“To my parents, friends and colleagues, who have always
supported me and pushed me to achieve more. This book

wouldn’t have been possible without them.”

— Subhrajyoti Sen

“To my Mum for always supporting me. To my wife for the
encouragement and amazing support in everything that I

work on. To my extended family, friends and colleagues who
always push me to be a better version of myself. And to

Apps:Lab for nurturing and providing me the opportunity to
better myself, as well as all the Android Bits members for the

guidance throughout my journey as a developer.”

— Harun Wangereka

raywenderlich.com 16

About the Authors
Fuad Kamal is one of the authors of this book. Fuad provides
mobile strategy, architecture and development for the Health,
Fitness and Telematics markets. If you’ve ever been to an airport,
you’ve likely seen his work — the flight arrival and departure
screens are a Flash 7 interface he wrote near the beginning of the
millennium. He’s also into photography. He’s https://twitter.com/
FlexRonin on Twitter and Instagram or you can contact him
through anaara.com.

Subhrajyoti Sen is one of the authors of this book. Subhrajyoti is a
Google Developer Expert for Android and an Android Engineer at
KeepTruckin, where he develops apps to improve the trucking
industry. Before this, he also worked on apps to improve the
experience of Indian investors. He believes in the power of Open
Source and communities and actively tries to give back. When not
writing code, you can find him binge-watching anime, reading up
on public policy or playing Rocket League.

Harun Wangereka is one of the authors of this book. Harun is an
Android Developer who is passionate about creating quality
Android apps. He never tires of learning, building the tech
community and helping other developers upscale their skills. He
loves contributing to open-source projects and writing technical
articles on the topics of Android and Kotlin. He’s very passionate
about giving back to the community and sharing his knowledge
and experiences.

Saving Data on Android About the Team

raywenderlich.com 17

About the Editors
Gabriela Angebrandt is the technical and final pass editor of this
book. Gabriela is a tech enthusiast with a master’s degree in
Computer Science who specializes in Java, Kotlin and Swift. She is
an Android and iOS developer at Code Consulting Ltd. She got into
programming during college and has been developing apps for
several years. Her passion for sharing knowledge drives her to
contribute to the developer community through books and articles.
In her spare time, Gabriela attends tech talks and invests time to
learn new things from the programming world. When she’s not
crushing it in the tech world, she enjoys spending time with her
horse and cat, rock climbing and playing the piano.

Sandra Grauschopf is the language editor of this book. She is a
freelance writer, editor, and content strategist as well as the
Editing Team Lead at raywenderlich.com. She loves to untangle
tortured sentences and to travel the world with a trusty book in her
hand. You can follow her on Twitter at https://twitter.com/
sgrauschopf or learn more about her at http://
www.grauschopf.com/.

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this
book. She is Ray’s wife and business partner. She is a digital artist
who creates illustrations, game art and a lot of other art or design
work for the tutorials and books on raywenderlich.com. When she’s
not making art, she loves hiking, a good glass of wine and
attempting to create the perfect cheese plate.

Saving Data on Android About the Team

raywenderlich.com 18

viAcknowledgements

Content Development
We would like to thank Jennifer Bailey, Dean Djermanović and Aldo Olivares
Dominguez for their work as authors on the previous edition of this book.

raywenderlich.com 19

viiIntroduction

Welcome to the Second Edition of Saving Data on Android, completely updated for
Kotlin 1.5 and Android Studio 4.2!

Kotlin has been improved a lot for the past few years. It also has been announced as
Google’s preferred programming language for Android developers. Since then, Kotlin
becomes more popular with each new day and one of the main reasons is its
simplicity.

Saving Data on Android explains how to use Kotlin to manage data persistence in
your app. Once you read this book, you won’t ever doubt how to store your app’s
data.

The most important part is to learn how to avoid cluttering app storage. If you’re
dealing with sensitive and unique content, you’ll find out how to store data in a safe
environment as well. Since the last book version, there are some new tools launched
to our Android world, and this book covers them as well. Lucky you!

In this book, you’ll learn everything about saving data possibilities. You’ll start with
simple data persistence mechanisms — managing data using files, storing a small
amount of data in form of key—value pairs, creating SQLite type of database and
manipulating data in it using queries. You’ll find out how to share stored data across
more clients and what is the new and improved version of storing key—value pairs
delivered by Google.

Once you learn the basics, you’ll find out how to create a Room database that can
contain more complex data and in which way you can store, retrieve, update and
delete data from it.

Finally, you’ll meet some options of storing data remotely.

raywenderlich.com 20

These chapters include several plain code blocks what makes simultaneous reading
and coding pretty easy. This also means you’ll have a bunch of room for
experimenting. With a lot of practice, this book will make you an expert on data
persistence!

How to read this book
In this book, every chapter contains theory about the specific topic and a simple
practical task to learn implementation faster.

Each section is based on a certain type of data persistence. Also, there are three
awesome applications you’ll develop — each one per section.

To learn and notice every little detail, read chapters in order. However, this book is
for advanced users and there is a possibility you want to skip some chapters. In that
case, be sure to continue from the starter project of the chapter you are moving to.
The starter projects contain all steps implemented in the previous chapters of a
certain section.

Assuming you have some experience in Android, all code used in this book is written
in Kotlin and applications are built-in Android Studio.

While going through the chapter, you can type the code in Android Studio
immediately. Feel free to play with the code and investigate the references provided
in the chapter. Also, in the first section we prepared one fun challenge for you to
test how much you learned. :]

This book is split into 3 main sections:

Section I: Saving Data Using Android SDK and
Jetpack DataStore
Managing persistence is one of the main features that every mobile environment
should provide, and Android is no different. In this chapter, you’ll learn, through
practical examples, how to use the API that Android SDK provides to persist data.
You’ll learn when and how to manage persistence depending on the type and
quantity of data. The main focus will be on storing data to Files, SharedPreferences
and SQLite Database. You’ll also learn how to share data across multiple
applications with ContentProvider. At the end of the section, you’ll get familiar
with Google’s latest tool for handling data persistence —Jetpack DataStore — and
how to migrate from SharedPreferences to it.

Saving Data on Android Introduction

raywenderlich.com 21

Section II: Using Room
At Google I/O 2018, Google presented a set of new components for Android
development with the name of Architecture Components. The goal was to provide
a set of solutions for the most common problem in the development of Android
applications. The solution for persistence is Room which is the topic of this section.
You’ll learn how to use this library in the most common scenarios. Also, this section
includes steps on how to safely migrate data once database schema changes.

Section III: Using Firebase
Firebase is a mature suite of products that allow you to implement Android
applications that persist information in a safe, secure and reliable way. In this
section, you’ll learn the fundamentals and more advanced concepts of Firebase,
including how to read and write to Realtime Database, how to use it in offline
mode, as well as its usage and performance. You’ll learn a few things about managing
and securing data in Cloud Firestore. The last part of the section contains basic
about Cloud Storage.

It’s always the right time to explore data persistence possibilities. Are you ready to
dive into it? :]

Saving Data on Android Introduction

raywenderlich.com 22

Section 1: Saving Data Using
Android SDK & Jetpack DataStore

Ready to learn all about how to persist data in your app? In this chapter, you’ll use
practical examples to see how to use the API that Android SDK provides to persist
data. You’ll learn when and how to manage persistence depending on the type and
quantity of data.

Your main focus will be on storing data to Files, SharedPreferences and SQLite
Database. You’ll also learn how to share data across multiple apps with
ContentProvider.

Finally, you’ll learn how to use Jetpack DataStore, Google’s latest tool for handling
data persistence. Along the way, you’ll see how to migrate from SharedPreferences to
Jetpack DataStore.

raywenderlich.com 23

1Chapter 1: Using Files

By Fuad Kamal

There are many ways to store data in an Android app. One of the most basic ways is
to use files. Similar to other platforms, Android uses a disk-based file system that
you can leverage programmatically using the File API. In this chapter, you’ll learn
how to use files to persist and retrieve information.

Reading and writing files in Android
Android separates the available storage into two parts, internal and external. These
names reflect an earlier time when most devices offered built-in, non-volatile
memory (internal storage) and/or a removable storage option like a Micro SD card
(external storage). Nowadays, many devices split the built-in, permanent storage
into separate partitions, one for internal and one for external. It should be noted
that external storage does not indicate or guarantee that the storage is removable.

There are a few functional differences between internal and external storage:

• Availability: Internal storage is always available. On the other hand, external
storage is not. Some devices will let you mount external storage using a USB
connection or other options; this generally makes it removable.

• Accessibility: By default, files stored using the internal storage are only accessible
by the app that stored them. Files stored on the external storage system are
usually accessible by everything. However, you can make files private.

• Uninstall Behavior: After uninstalling the app, files saved to the internal storage
are removed and the ones in the external storage are not. The exception to this
rule is if the files are saved in the directory obtained by getExternalFilesDir.

raywenderlich.com 24

Here’s a usage hint: Use internal storage when you don’t want the user or any other
apps to access the files, like important user documents and preferences. Use external
storage when you want to allow users or other apps access to the files. This might
include images you capture within the app.

Getting started
To get started, you’ll build an app that uses internal storage. Locate using-files/
projects and open starter using Android Studio. Sync the project and run the app on
a device or emulator. For now, you can ignore the warnings in the code.

The Simple Note app has a simple user interface with two EditTexts, one for the
filename and one for a note. There are also three buttons along the bottom: READ,
WRITE and DELETE. The user interface looks like this:

The SimpleNote App User Interface.

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 25

The sample for this project includes three sub-packages:

• model: Includes a simple data class to represent a single note in Note.kt.
NoteRepository.kt contains the interface declaration with methods to add, get
and delete a Note. ExternalFileRepository, InternalFileRepository and
EncryptedFileRepository are implementation classes of NoteRepository.

• ui: This package includes MainActivity.kt. MainActivity implements the
OnClick methods for each button. Because the code to read, write, encrypt and
delete is abstracted behind NoteRepository and placed into separate classes, the
code to handle the button click events remains the same regardless of the type of
storage being utilized. This code is dependent on a single repository, and only the
concrete type of the repository needs to change.

• app: This package includes Utility.kt, which contains a utility function to produce
Toast messages.

Using internal storage
The internal storage, by default, is private to your app. The system creates an
internal storage directory for each app and names it with the app’s package name.
When you uninstall the app, files saved in the internal storage directory are deleted.
If you need files to persist — even after the app is uninstalled — use external storage.

Are you ready to see internal storage in action?

Writing to internal storage
Open MainActivity.kt. Notice the code immediately below the class definition:

private val repo: NoteRepository by lazy
{ InternalFileRepository(this) }

This is a lazy value. It represents an object of a class that implements
NoteRepository. There’s a separate implementation for each storage type
demonstrated in this chapter.

The repo is initialized the first time it’s used and will be utilized throughout
MainActivity. This includes the button click events that call the add, get and delete
methods required by NoteRepository.

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 26

In onCreate(), locate binding.btnWrite.setOnClickListener() add the
following code for the WRITE button’s click event:

// 1
if (binding.edtFileName.text.isNotEmpty()) {
 // 2
 try {
 // 3
 repo.addNote(Note(binding.edtFileName.text.toString(),
 binding.edtNoteText.text.toString()))
 } catch (e: Exception) { // 4
 showToast("File Write Failed")
 }
 // 5
 binding.edtFileName.text.clear()
 binding.edtNoteText.text.clear()
} else { // 6
 showToast("Please provide a Filename")
}

Here’s how it works:

1. Use an if/else statement to ensure the user entered the required information.

2. Put repo.addNote() into a try/catch block. Writing a file can fail for different
reasons like permissions or trying to use a disk with not enough space available.
Using a try/catch block will ensure the app doesn’t crash.

3. Call addNote(), passing in a Note that contains the filename and text provided
in the EditText fields.

4. If writing the file fails, display a Toast message and write the stack trace of the
error to Logcat.

5. To prepare the interface for the next operation, clear the text from edtFileName
and edtNoteText.

6. If the user didn’t enter a filename, display a toast message within the else block.
showToast() is a utility function that exists in Utility.kt.

The code for READ and DELETE click events are similar to what you added for
WRITE; these already exist in the sample project.

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 27

Now, open InternalFileRepository.kt and locate addNote(). Then, add the
following to the body of the method:

context.openFileOutput(note.fileName, Context.MODE_PRIVATE).use
{ output ->
 output.write(note.noteText.toByteArray())
}

This code opens the file in fileOutputStream using the Context.MODE_PRIVATE
flag; using this flag makes this file private to this app. The FileOutputStream is a
Closeable resource so we can manage it using use(). The note’s text is converted to
a ByteArray and written to the file.

Build and run. Enter Test.txt for the file name and some text for the note. Then, tap
WRITE. If the write is successful, the EditText controls will clear. Otherwise, the
stack trace is printed to Logcat.

Creating a file named Text.txt.

Now that you’ve learned how to read, write and delete files from internal storage,
wouldn’t it be nice to see a visual representation of the files in the file system?

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 28

Viewing the files in Device File Explorer
In Android Studio, there’s a handy tool named Device File Explorer. This tool allows
you to view, copy and delete files that are created by your app. You can also use it to
transfer files to and from a device.

Note: A lot of the data on a device isn’t visible unless the device is rooted. For
example, in data/data/, entries corresponding to apps on the device that
aren’t debuggable aren’t expandable in the Device File Explorer. Much of the
data on an emulator isn’t visible unless it’s an emulator with a standard
Android (AOSP) system image. Be sure to enable USB debugging on a
connected device.

Open the Device File Explorer by clicking View ▸ Tool Windows ▸ Device File
Explorer or by clicking the Device File Explorer tab in the window toolbar.

The Button to Open the Device File Explorer.

The Device File Explorer displays the files on your device. Open data > data >
com.raywenderlich.android.simplenote > files; you’ll see Test.txt and any other
files you’ve saved. Files are saved in a directory with the same name as the app’s
package name.

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 29

Note: The file location depends on the device; some manufacturers tweak the
file system, so your app directory might not be where you expect it. If that’s
the case, you can locate the folder using the app’s package name as this never
changes.

The files stored on the external storage are located in sdcard/Android/data/
app_name/.

Seeing the File in Device File Explorer.

At the top of the Device File Explorer, there’s a drop-down you can use to select the
device or emulator. After making your selection, the files appear in the main window.
You can expand the directories by clicking the triangle to the left of the directory
name.

Right-click the filename, and a menu pops up that allows you to perform different
operations on the file.

Seeing the File in Device File Explorer.

1. Open lets you open the file in Android Studio.

2. Save As… lets you save the file to your file system.

3. Delete allows you to delete the file.

4. Synchronize synchronizes the file system if it’s changed since the last run of the
app.

5. Copy Path copies the path of the file to the clipboard.

Now, it’s time to learn how to make your app read files.

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 30

Reading from internal storage
In InternalFileRepository.kt , replace return in getNote()with the current code:

// 1
val note = Note(fileName, "")
// 2
context.openFileInput(fileName).use { stream ->
 // 3
 val text = stream.bufferedReader().use {
 it.readText()
 }
 // 4
 note.noteText = text
}
// 5
return note

Here’s how it works:

1. Declare a Note, passing in a fileName and an empty string so that a valid object
gets returned from this function even if the read operation fails.

2. Open and consume the FileInputStream with use().

3. Open a BufferedReader with use() so that you can efficiently read the file.

4. Assign the text that was read to the file to note.noteText.

5. Return note.

Build and run. Next, enter the name of a file you previously saved and then tap
READ. The note’s text displays in the app.

And that’s it! Your app can now write and read notes. Up next, you’ll write the code
to delete a file.

Deleting a file from internal storage
In InternalFileRepository.kt, replace return of deleteNote() with the following
line of code:

return noteFile(fileName).delete()

This function returns a value of successful file deletion.

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 31

Build and run. Delete a file by tapping DELETE; you’ll see the appropriate message.
To confirm the file was deleted, use the Device File Explorer.

A Toast message is displayed after deleting a file.

Internal storage is great for storing private data in an app. But what if you want to
store data temporarily? To do this, you can use Internal Cache Files.

Internal cache files
Each app has a special and private cache directory to store temporary files. Android
may delete these files when the device is low on internal storage space, so it’s not
safe to store anything other than temporary files in this space. There’s also no
guarantee that Android will delete these files for you, so you must maintain this
directory yourself.

To write to the internal cache directory, use createTempFile() as shown in the
following example:

File.createTempFile(filename, null, context.cacheDir)

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 32

A good use case for temporary files is when you’re uploading images to a server. You
may not need the image persisted on the device, but you still need to upload some
files. You’d store the image in this temp file, upload it, and then delete the file upon
completion.

Next, it’s time to look at how to store files on External Storage.

Using external storage
External storage is appropriate for data you want to make accessible to the user or
other apps. Files saved on the external storage system aren’t deleted after
uninstalling the app. The external storage is made up of standard public directories.
Files saved to the external storage are world-readable and can be modified by
enabling mass storage and transferring the files to the computer via USB.

External storage isn’t guaranteed to be accessible at all times; sometimes it exists on
a physically removable SD card. Before attempting to access a file, you must check
for the availability of the external storage directories, as well as the files. You can
also store files in a location on the external storage system, where they will be
deleted by the system when the user uninstalls the app.

Now that you know the theory, it’s time to replace usage of internal storage with
external. You’ll start by adding the necessary permissions to the manifest.

Adding permissions in the manifest

To use external storage, you must first add the correct permission to the manifest. If
you wish to only read external files, use the READ_EXTERNAL_FILE permission.

<uses-permission
 android:name="android.permission.READ_EXTERNAL_STORAGE" />

If you want to both read and write, use the WRITE_EXTERNAL_STORAGE
permission.

<uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 33

Beginning with API level 19, reading or writing files in your app’s private external
storage directory doesn’t require the above permissions. If your app supports
Android API level 18 or lower, and you’re saving data to the private external
directory only, you should declare that the permission is requested only on the lower
versions of Android by adding the maxSdkVersion attribute:

<uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE"
 android:maxSdkVersion="18" />

In this app, you’ll be reading and writing to the external storage, so add the
WRITE_EXTERNAL_STORAGE permission inside the <manifest> element in
AndroidManifest.xml.

Writing the notes to external storage
Now that the correct permissions are in place, it’s time to write the file to the
external storage. Open ExternalFileRepository.kt and add the following code to
addNote():

// 1
if (isExternalStorageWritable()) {
 // 2
 FileOutputStream(noteFile(note.fileName)).use { output ->
 // 3
 output.write(note.noteText.toByteArray())
 }
}

Here’s how it works:

1. Check to see if the external storage is available.

2. Open a FileOutputStream with use().

3. Write note.noteText to the file.

Next, in MainActivity.kt, change the instance of the NoteRepository you’re
initializing to the following:

private val repo: NoteRepository by lazy
{ ExternalFileRepository(this) }

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 34

Finally, build and run to write a file to the external storage. Name the file as
ExternalStorageTest.txt and add a random note. Then, press WRITE.

Writing a file to external storage.

To view the file using the Device File Explorer, look in sdcard/Android/data, within
the app’s package name folder.

Reading from external storage
To read from the storage, open ExternalFileRepository.kt, and replace return of
getNote() with the following code:

val note = Note(fileName, "")
// 1
if (isExternalStorageReadable()) {
 // 2
 FileInputStream(noteFile(fileName)).use { stream ->

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 35

 // 3
 val text = stream.bufferedReader().use {
 it.readText()
 }
 // 4
 note.noteText = text
 }
}
// 5
return note

For the most part, the procedure here is the same as reading from the internal
storage but with a small difference. Here’s how it works:

1. Ensure the external storage is readable.

2. Open and consume the FileInputStream, with use(), as you did before.

3. Open a BufferedReader with use so that you can efficiently read the file.

4. Assign the text that was read to the file to note.noteText .

5. Return the note.

The above code blocks rely on the following two functions:
isExternalStorageWritable() and isExternalStorageReadable(). The first one
determines if the external storage is mounted and ready for read/write operations,
whereas the other determines only if the storage is ready for reading.

You’re ready to add the capability to delete a file from external storage.

Deleting a file from external storage
In ExternalFileRepository.kt, replace return with the following code into
deleteNote():

return isExternalStorageWritable() &&
noteFile(fileName).delete()

The first part of the condition checks if the external storage can be written to or
altered; the second part, if the first condition is true, returns the result of deleting
the file. This way, you can be sure that the file will be deleted only if you can
manipulate external storage.

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 36

Securing user data with a password
Security is important for the credibility of your app, especially when it comes to
securing users’ private data. Storing data on external storage allows the data to be
visible to other apps. That’s why it’s advised to avoid using external storage. Or at
least doing so, without a strong security system and encryption. To prevent users
from installing the app on external storage you can add
android:installLocation="internalOnly" to the manifest file.

Another best practice you can use to enhance your app’s security is to prevent the
contents of the app’s private data directory from being downloaded with adb
backup. You do this by setting the android:allowBackup="false" in the manifest
file.

One way to secure your data beyond the best practices listed above is to encrypt the
files before writing them to the external file system with a user-provided password.

Using AES and Password-Based Key Derivation
The recommended standard to encrypt data with a given key is the AES (Advanced
Encryption Standard). In this example, you’ll use the same key to encrypt and
decrypt data - known as symmetric encryption. The preferred length of the key is
256 bits for sensitive data.

It’s not realistic to rely on the user to select a strong or unique password. That’s why
it’s never recommended to use passwords directly to encrypt the data. Instead,
produce a key based on the user’s password using Password-Based Key Derivation
Function or PBKDF2.

PBKDF2 produces a key from a password by hashing it over many times with salt.
This creates a key of a sufficient length and complexity, and the derived key will be
unique even if two or more users in the system used the same password.

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 37

In this example, passwordString that represents the user’s password has been
hardcoded at the top of EncryptedFileRepository.kt.

Find encrypt() and add the code inside the empty try block:

// 1
val random = SecureRandom()
// 2
val salt = ByteArray(256)
// 3
random.nextBytes(salt)

Here’s how it works:

1. Generate a random value using the SecureRandom class. This guarantees the
output is difficult to predict as SecureRandom is a cryptographically strong
random number generator.

2. Create a ByteArray of 256 bytes to store the salt.

3. Pass the salt to nextBytes() which will fill the array with 256 random bytes.

Next, add the following code below the previous code block to salt the password.

// 4
val passwordChar = passwordString.toCharArray()
// 5
val pbKeySpec = PBEKeySpec(passwordChar, salt, 1324, 256) //
1324 iterations
// 6
val secretKeyFactory =
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1")
// 7
val keyBytes =
secretKeyFactory.generateSecret(pbKeySpec).encoded
// 8
val keySpec = SecretKeySpec(keyBytes, "AES")

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 38

Here’s how it works:

4. Convert the password into a character array.

5. Pass the password in char[] form, along with the salt, to PBEKeySpec, as well as
the number of iterations, 1324, and the size of the key, 256.

6. Generate an instance of a SecretKeyFactory using PBKDF2WtihHmacSHA1.

7. Pass the pbKeySpec to the secretKeyFactor.generateSecret() method and
assign the encoded property which returns the key in bytes.

8. Finally, keySpec is produced to use when you initialize the Cipher.

All of these steps seem a bit complex, but it’s the kind of thing that’s always the
same to use; only the data changes. You’re almost done!

Using an initialization vector
The recommended mode of encryption when using AES is the cipher block
chaining, or CBC. This mode takes each next unencrypted block of data and uses the
XOR operation with the previous encrypted block. One problem with this procedure
is that the first block is less unique as subsequent blocks. If one encrypted message
started the same as another message, the beginning blocks of the two messages
would be the same. This would help an attacker to find out what the message(s) are.
To solve this problem, you’ll create an initialization vector or an IV.

An IV is a block of random bytes that are XOR’d with the leading block of the data.
All subsequent blocks are dependent on the previous block, so using an IV uniquely
encrypts the entire message.

Inside encrypt(), below the last code block, add the following code to create an IV:

// 9
val ivRandom = SecureRandom()
// 10
val iv = ByteArray(16)
// 11
ivRandom.nextBytes(iv)
// 12
val ivSpec = IvParameterSpec(iv)

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 39

Here’s what’s happening:

9. Create a new SecureRandom object so that you’re not using a cached, seeded
instance.

10. Create a byte array with a size of 16 to store the IV.

11. Populate iv with random bytes.

12. Create the IvParameterSpec with the random iv so that you can use it when
performing the encryption.

Now, it’s time to use keySpec and ivSpec to encrypt a note. Below previously added
block, add:

// 13
val cipher = Cipher.getInstance("AES/CBC/PKCS7Padding")
cipher.init(Cipher.ENCRYPT_MODE, keySpec, ivSpec)
// 14
val encrypted = cipher.doFinal(plainTextBytes)
// 15
map["salt"] = salt
map["iv"] = iv
map["encrypted"] = encrypted

Here’s the explanation:

13. Create and initialize the Cipher using AES/CBC/PKCS7Padding. This specifies
AES encryption with cypher block chaining. PKCS7 refers to an established
standard for padding data that doesn’t fit into the specified block size.

14. Encrypt the bytes of the data with the cipher.

15. Place the salt, iv, and encrypted bytes into a HashMap.

Now encrypt() can be used to encrypt the note text before writing to a file. To
finish off the file encryption, insert the following code into addNote():

if (isExternalStorageWritable()) {
 ObjectOutputStream(noteFileOutputStream(note.fileName)).use
{ output ->
 output.writeObject(encrypt(note.noteText.toByteArray()))
 }
}

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 40

The code above creates an ObjectOutputStream with use() and utilizes it to write
the encrypted message out to the file.

Lastly, you have to change the instance of the NoteRepository in MainActivity.kt
to this:

private val repo: NoteRepository by lazy
{ EncryptedFileRepository(this) }

Build and run. Name a file as EncryptedTest.txt, add a random note and press
WRITE to create an encrypted file. Open the file with Device File Explorer a notice
that it’s filled with unreadable data because the file is encrypted.

Encrypted data.

Now you must add a mechanism to decrypt the file.

Decrypting the file
Locate decrypt() and add the following code in it:

var decrypted: ByteArray? = null
 try {
 // 1
 val salt = map["salt"]
 val iv = map["iv"]
 val encrypted = map["encrypted"]
 // 2
 val passwordChar = passwordString.toCharArray()
 val pbKeySpec = PBEKeySpec(passwordChar, salt, 1324, 256)
 val secretKeyFactory =
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1")
 val keyBytes =
secretKeyFactory.generateSecret(pbKeySpec).encoded
 val keySpec = SecretKeySpec(keyBytes, "AES")
 // 3
 val cipher = Cipher.getInstance("AES/CBC/PKCS7Padding")
 val ivSpec = IvParameterSpec(iv)
 cipher.init(Cipher.DECRYPT_MODE, keySpec, ivSpec)
 decrypted = cipher.doFinal(encrypted)
 } catch (e: Exception) {
 Log.e("SIMPLENOTE", "decryption exception", e)
 }
 // 4
 return decrypted

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 41

Here’s what’s happening:

1. Retrieve the salt, iv and encrypted fields from the HashMap.

2. Regenerate the key from the password.

3. Decrypt the encrypted data.

4. Return the decrypted data.

Call decrypt() after reading the file in getNote().

val note = Note(fileName, "")
if (isExternalStorageReadable()) {
 // 1
 ObjectInputStream(noteFileInputStream(note.fileName)).use
{ stream ->
 // 2
 val mapFromFile = stream.readObject() as HashMap<String,
ByteArray>
 // 3
 val decrypted = decrypt(mapFromFile)
 if (decrypted != null) {
 note.noteText = String(decrypted)
 }
 }
}
return note

Here’s how it works:

1. Open an ObjectInputStream with use() for reading data.

2. Read the data and store it into the HashMap.

3. Decrypt the file with decrypt(); if it was successful, assign the decrypted text to
note.noteText.

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 42

Build and run. Notice the weird, encrypted data is now decrypted and understandable
again! :]

Decrypted data.

Understanding Parcelization and
Serialization
In computer science, marshaling is the process of transforming an object into a
format that is suitable for transmission or storage. Android apps often transfer data
from one activity to another, where Parcelization and Serialization are the means
of marshaling objects.

By default — and because your app utilized ObjectOutputStream to write the file —
the encrypted data, iv and salt values were all serialized when written to the file.

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 43

Serializable
Serializable is a standard Java tagging interface. This interface has no operation but
it can be used to define the corresponding type as serializable. An object is
serializable when it can be converted into an array of bytes and vice versa. If an
object is Serializable it can also be written into a file or read from a file. However,
when you restore an object you still need a compatible version of the class used
during serialization. Implementing the Serializable interface isn’t enough - some
properties are implicitly not serializable like Thread or InputStream. The
Serialization process implies the use of reflection.

Reflection is the ability for an object to know things about itself. Therefore, using
serializable can result in a lot of garbage collection which then translates to poor
performance and battery drain. Fortunately, there’s another way to marshal objects
in Android.

Parcelable
Parcelable is also an interface. However, unlike Serializable, Parcelable is part of the
Android SDK. Because it’s designed not to use reflection, it requires the developer to
be explicit about the marshaling process, making it more tedious to use. Despite this
complication, using Parcelable can result in better app performance — although the
gain in performance is usually imperceptible to the user.

Parcelable is often used when passing data between activities in a Bundle.

Note: The Parcelable API isn’t for general purposes. It’s designed to be a high-
performance IPC transport. It’s not appropriate to place Parcel data into
persistent storage.

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 44

Key points
• The internal storage is a great place to store files that are specific and private to

your app.

• Use the internal cache to store temporary files.

• Use external storage to store files that you want users or other apps to have
access to.

• External files are persistent, even after the app is uninstalled. However, internal
files are deleted after uninstalling the app.

• To write files to the external storage, the correct permissions must be set in the
manifest.

• Because the external storage isn’t secure, it’s a good idea to use AES encryption
with a password-based generated key.

• Serializable and Parcelable are ways of marshaling data for transport or storage.

Where to go from here?
File encryption — and encryption in general — is a broad topic. To learn more about
it, read the tutorial located at https://www.raywenderlich.com/778533-encryption-
tutorial-for-android-getting-started. There is also a course on Jetpack Security
https://www.raywenderlich.com/10135609-jetpack-security, which covers using
Jetpack Security for the keychain and file encryption. To dig deeper into file
management on Android, also read the official documentation available at https://
developer.android.com/guide/topics/data/data-storage.

Saving Data on Android Chapter 1: Using Files

raywenderlich.com 45

2Chapter 2: Using
SharedPreferences
By Fuad Kamal

Files are a quick and convenient way to store unstructured data in Android. But there
are other convenient, more organized ways to store small bits of data. One of them is
by using SharedPreferences.

Understanding SharedPreferences
The SharedPreferences, or prefs for short, API provides the means to read and
write to a file that is formatted as XML. The API is especially useful when you need
to store things like application-wide flags to style your app, user progress, data
filters and so on.

The prefs file you create, edit and can delete is stored in the data/data/{application
package name} directory. The location of this file can be obtained programmatically
by calling Environment.getDataDirectory(). Like files, the data is app—specific
and will be lost if the application data is cleared through settings or if the app is
uninstalled.

raywenderlich.com 46

You already learned that SharedPreferences should not be used to store large
amounts of data, but rather small features of your app. As such, the data is
structured into key—value pairs, where each value has an identifier key, which
marks its location in the file. Then, by passing in the key, you can retrieve the last
value you stored. If there is no value for the key, you can specify a default that will be
returned instead. Furthermore, since the point of SharedPreferences is to store
simple data, the only supported types to store are Boolean, Int, Float, Long,
String and Set<String>.

Note: SharedPreferences are also stored at the location where app
Preferences are. However, the two should not be confused with one another.

The first step to using SharedPreferences is obtaining a reference to the app—
specific file, let’s see how to do that!

Getting a reference to the
SharedPreferences file
Depending on how you want to use SharedPreferences, there are different ways to
access or create the SharedPreferences file:

• getSharedPreferences() can be called from any Context in your app and allows
you to specify a name for the file. It’s handy if you need multiple
SharedPreferences files with different names.

• getPreferences() is called from Activity and doesn’t allow you to specify a file
name because it uses the default class name of that Activity. It’s handy if you
need to create different preference files for different activities.

• getDefaultSharedPreferences() is used for app settings and preferences at the
app level, and returns the default prefs file for the entire app. You can use this to
store data that is useful for your entire app, or features you set up every time a
user starts your app.

But getting preferences is only half of the work. You still need to read and write data
to the prefs.

Saving Data on Android Chapter 2: Using SharedPreferences

raywenderlich.com 47

Reading from preferences
Reading from prefs is pretty straightforward. Once you get ahold of a preference file,
you can use aptly named functions to read the variables of the data types mentioned
earlier in this chapter. You can use functions such as getInt(), getString() and
getLong(), passing in a key and an optional default value to get the stored value. An
example call, to get a String, by the key username, with a default value of an empty
String is as follows:

prefs.getString("username", "")

You will learn more about reading data through the chapter’s project, but for now,
let’s see how to write some data to SharedPreferences.

Writing to preferences
Writing to the SharedPreferences file is slightly more complicated. To write to the
file you must open it for editing, by creating an Editor. You can do that using edit()
on your SharedPreferences. The SharedPreferences.Editor is essentially a pointer
to the SharedPreferences file, in the app’s data directory. Then you pass key—value
pairs to methods such as putInt(), putString() and putLong(). Once the key—
value pairs have been added to the Editor, call either apply() or commit() to
finalize the changes, and save to the file.

Generally, it’s a good practice to choose apply() to write the SharedPreferences.
apply() will write the changes to the object out immediately, but then saves those
changes to the disk asynchronously. If two Editors try to use apply() at the same
time, the last one to call the function will be the one that has its changes saved.
apply() will complete before the app switches state so you don’t have to worry
about it interfering with the lifecycle of your app. commit() writes the changes
synchronously which can block the main thread and result in the app locking up,
until everything is properly stored.

Now, it’s time to look at an example of SharedPreferences in action.

Saving Data on Android Chapter 2: Using SharedPreferences

raywenderlich.com 48

Getting started
To get started with prefs, locate this chapter’s folder in the provided materials
named using-sharedpreferences, and open up the projects folder. Next, open the
organizedsimplenotes app under the starter folder. Allow the project to sync,
download dependencies and set up the workplace environment. Run the app on a
device or in a simulator. For now, ignore any warnings in the code.

The OrganizedSimpleNote App Interface.

The app allows you to create, edit and delete notes that are saved in the internal file
system. In the options menu items, there is an option to change the background
color. You can also filter the notes by priority, or sort them by specific sort order.

The Option Menu Items.

Select a new background color, sort order and one or more priority filters. Now, quit
the app and rerun it.

Saving Data on Android Chapter 2: Using SharedPreferences

raywenderlich.com 49

When the app reloads, the background color you selected persists. That is because
the background color you selected was saved to prefs and applied when the app was
rerun. The sort order and priority filters reset to defaults. They were not stored in
prefs.

Changed Background Color persist.

To see the saved value for the background color, open the Device File Explorer in
Android Studio, as you did in the previous chapter and navigate to the data/data/
com.raywenderlich.organizedsimplenote/shared_prefs directory. You’ll see a file
named com.raywenderlich.organizedsimplenote_preferences.xml.

The SimpleNote App Interface

If you open the file, you’ll see something similar to the following, depending on the
color you chose:

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
 <string name="key_app_background_color">Orange</string>
</map>

In the next steps, you’ll add the code to save and retrieve the sort order and priority
filters to and from the prefs so that these settings can persist between runs of the
app along with the background color.

Saving Data on Android Chapter 2: Using SharedPreferences

raywenderlich.com 50

Saving the user preferences
First, you have to create some constants which will represent the keys for the key—
value pairs of data you need to save. Open NotePrefs.kt and insert the following
declarations right below the declaration of DEFAULT_PRIORITY_FILTER:

 private const val KEY_NOTE_SORT_PREFERENCE =
"note_sort_preference"
 private const val KEY_NOTE_PRIORITY_SET = "note_priority_set"

Next, you have to create the function to write the sort order to the prefs file. Insert
the code below into saveNoteSortOrder(), replacing TODO:

sharedPrefs.edit()
 .putString(KEY_NOTE_SORT_PREFERENCE, noteSortOrder.name)
 .apply()

This code retrieves the Editor object from the app’s prefs and puts the sort order in
the preferences as a String with the key KEY_NOTE_SORT_PREFERENCE. It then uses
apply() so that the changes will be written asynchronously to the disk.

Now, provide the code to write the selected priority filters. Insert the code below into
saveNotePriorityFilters(), once again replacing TODO:

sharedPrefs.edit()
 .putStringSet(KEY_NOTE_PRIORITY_SET, priorities)
 .apply()

The previous code puts priorities, a Set of Strings, representing the selected
priority filters, into the prefs using putStringSet() with the key
KEY_NOTE_PRIORITY_SET.

Awesome! The functions to write to the prefs are done. Next, you’ll add the code to
read the values.

Saving Data on Android Chapter 2: Using SharedPreferences

raywenderlich.com 51

Reading the user preferences
Currently, getNoteSortOrder() returns the default value of
NoteSortOrder.FILENAME_ASC. Replace the returned value with the following:

NoteSortOrder.valueOf(
 sharedPrefs.getString(KEY_NOTE_SORT_PREFERENCE,
DEFAULT_SORT_ORDER)
 ?: DEFAULT_SORT_ORDER
)

The above code uses getString() to retrieve the sort order the user stored, or
DEFAULT_SORT_ORDER as the default value if the key KEY_NOTE_SORT_PREFERENCE
doesn’t exist.

Next, write the function to read the priority filters. Right now
getNotePriorityFilters() returns an empty Set. Replace setOf() with the
following:

sharedPrefs.getStringSet(KEY_NOTE_PRIORITY_SET,
setOf(DEFAULT_PRIORITY_FILTER))
 ?: setOf(DEFAULT_PRIORITY_FILTER)

The code above reads a Set of Strings from the prefs with the key
KEY_NOTE_PRIORITY_SET, and if nothing is found with that key, it will use
DEFAULT_PRIORITY_FILTER as the default - a set with the priority of "1" inside.

Now that the functions to read and write the sort order and priority filters are
written, you can use these functions in MainActivity.

Reading and writing the prefs from
MainActivity
Right now, in MainActivity.kt, you’re using hardcoded values for the sort order and
the priority filters, which you pass on to NoteAdapter, to display notes in a different
order and filter which notes should be in the list. The right way to do this, which
involves SharedPreferences, is to read a user’s preferred ways of sorting and
filtering, from prefs, and then passing those values to NoteAdapter.

Saving Data on Android Chapter 2: Using SharedPreferences

raywenderlich.com 52

To do this, open MainActivity.kt if you didn’t already, and change the way you
create the priorities Set by changing the statement to the following:

private val priorities by lazy
{ notePrefs.getNotePriorityFilters().toMutableSet() }

Instead of creating an empty mutable set and then adding values to it, you’re now
reading from the preferences, in a lazy way. Once you create NoteAdapter, the value
will be assigned and you can use priorities.

Then, change the creation of the NoteAdapter:

private val noteAdapter: NoteAdapter by lazy {
 NoteAdapter(this,
 priorities,
 notePrefs.getNoteSortOrder(), // Read from preferences
 ::showEditNoteDialog
)
}

Instead of passing in a hardcoded value for FILENAME_ASC as the NoteSortOrder,
you’re reading from the preferences to get the ordering the user previously selected.

Note: Do not attempt to modify a string set read from the prefs. The results
can be unpredictable. Always make a copy of the set instead, if it is going to be
modified, like in the case of this app. You can do that by calling
toMutableSet(), because Kotlin internally creates a new object, instead of
just copying the Set value.

Saving Data on Android Chapter 2: Using SharedPreferences

raywenderlich.com 53

The app can now load the saved preferences when the app launches, but it also needs
to store the values anytime the menu options change. To do that, find
updateNoteSortOrder() and insert the following, replacing TODO:

notePrefs.saveNoteSortOrder(sortOrder)

The line of code above will save the sortOrder to the prefs. Finally, find
updateNotePrioritiesFilter() at the bottom of MainActivity and insert this
line of code, once again replacing TODO:

notePrefs.saveNotePriorityFilters(priorities)

The above statement will save the list of priority filters to the prefs. If you look in
onOptionsItemSelected(), the above two functions you just wrote the code for are
called anytime the appropriate menu options are changed.

Finally, build and run. You can now filter and sort notes to your heart’s content and
the app will save your personalized preferences. Once you come back, everything will
be ready and waiting for you!

SharedPreferences Saving Successful.

Saving Data on Android Chapter 2: Using SharedPreferences

raywenderlich.com 54

Key points
• SharedPreferences are a great way to store small bits of data for an app.

• User—specific app configuration data is often stored in SharedPreferences.

• Preferences are also stored in an app’s default SharedPreferences, but they are
not to be confused with each other.

• SharedPreferences are not a good choice to store structured data, like various
entities, use a database for that.

• SharedPreferences are organized in key—value pairs that are ultimately written
out to a file in .xml format.

• Each app has its own SharedPreferences. When the app is uninstalled or the data
is deleted, these stored values are wiped away.

• You can create custom-named SharedPreferences files and store user’s choices
in them.

• To edit SharedPreferences, you first have to fetch its Editor, by calling edit().

• When writing SharedPreferences, use apply() instead of commit() to perform
an asynchronous, thread—safe write.

Where to go from here?
• Check the tutorial on location https://www.raywenderlich.com/2705552-

introduction-to-android-activities-with-kotlin about the utilization of
SharedPreferences.

• To view the documentation on SharedPreferences, visit the developer guide here:
https://developer.android.com/training/data-storage/shared-preferences.

• To read more about SharedPreferences, see the documentation found here:
https://developer.android.com/reference/android/content/SharedPreferences.

• As with encrypted files, you can also encrypt SharedPreferences, using the JetPack
Security library. You can learn more about this in the “Security Best Practices”
chapter of Android App Distribution as well as the RayWenderlich.com course on
JetPack Security: https://www.raywenderlich.com/10135609-jetpack-security

Saving Data on Android Chapter 2: Using SharedPreferences

raywenderlich.com 55

3Chapter 3: SQLite
Database
By Fuad Kamal

Using Files and Shared Preferences are two excellent ways for an app to store small
bits of data. However, sometimes an app needs to store larger amounts of data in a
more structured manner, which usually requires a database. The default database
management system (DBMS) that Android uses is called SQLite. SQLite is a library
that provides a DBMS, based on SQL. Some distinctive features of SQLite include:

• It uses dynamic types for tables. This means you can store a value in any column,
regardless of the data type.

• It allows a single database connection to access multiple database files
simultaneously.

• It’s capable of creating in-memory databases, which are very fast to work with.

Android provides the APIs necessary to create and interact with SQLite databases in
the android.database.sqlite package.

raywenderlich.com 56

Although these APIs are powerful and familiar to many developers, they are low-
level and do require some time and effort to use. Currently, it’s recommended to use
the Room Persistence Library instead, which will provide an abstraction layer for
accessing the data in your app’s SQLite databases. One disadvantage to using the
SQLite APIs is that there is no compile-time verification of the raw SQL queries, and
if the database structure changes, the affected queries have to be updated manually.
Another is that you need to write a lot of boilerplate code to connect and transform
SQL queries and data objects.

If you have written an app in the past that utilizes the SQLite APIs in Java, this
chapter will show you how to use them with Kotlin, instead. However, if you have
never seen an app that utilizes the SQLite APIs, this section will show you an
example of how to use them in your apps. Overall, this section will give you a greater
understanding and appreciation for the new and improved Room Persistence
Libraries.

Understanding database schemas
The first step to creating an app that reads from a SQLite database is to decide on a
database schema. The schema is the formal declaration of how the data in a
database is structured. It’s good practice to define constants that describe the
database schema in a self-documenting way in their own class or file. These can be
organized into subclasses for databases with multiple tables and should be visible
throughout the scope of the project.

The schema you’ll define is going to create a database called todoitems.db, with one
table inside. Inside this table will be three columns:

1. The primary key column will be an auto incrementing Integer named
todoitemid.

2. The todoname column will contain the actual text of the TODO item.

3. The todoiscompleted column will contain a Long value that will represent
whether a TODO item is completed or not.

The Database Schema.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 57

Understanding CRUD operations
CRUD stands for Create, Read, Update and Delete. These are the basic operations
that can be done with a database, to store, maintain and utilize data. Each in turn:

• Create: This operation adds a new record to the database. In SQL or Structured
Query Language, this is accomplished using an INSERT INTO statement.

• Read: The read operation queries the database or searches and returns zero to
many records meeting a specific criteria. In SQL, this is done by using a SELECT
FROM statement.

• Update: The update operation performs a change to an existing record or set of
records that meet a specific criteria. In SQL, the UPDATE statement is used.

• Delete: The delete operation is used to delete records meeting specific criteria. In
SQL, the DELETE FROM statement is used to delete a record.

• To specify criteria, the WHERE clause is used in SQL, along with the commands
listed above.

Fortunately, the SQLite APIs in Android provide a useful class called
SQLiteOpenHelper, which will simplify the integration with the database. This will
reduce the amount of knowledge you must have of raw SQL. However, if you’d like
more information about SQL and how to syntactically use it with SQLite, refer to the
documentation found in the Where to go from here? section at the end of this
chapter.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 58

Getting started
Open the starter project for this chapter and ignore the errors you get initially.
Notice there are three sections in the com.raywenderlich.android.sqlitetodo
package: model, view and controller.

• model contains the class ToDo, which represents a singular item on the TODO
list.

• view contains SplashActivity.kt and MainActivity.kt. The first file contains a
class which interface you see once you start the app. The second one contains the
class used to allow the user interacting with TODO tasks.

• controller contains two files that serve as a bridge between the data and the
interface. ToDoAdapter retrieves the data from the database and places it into the
RecyclerView list, whereas ToDoDatabaseHandler contains the code that
interacts with the database.

Now, it’s time to create the database schema utlilizing a contract class.

Creating the database constants using a
contract class
In the model package, create a new file and name it TodoDbSchema.kt. Place the
following code into the file:

object ToDoDbSchema {
 // 1
 const val DATABASE_VERSION = 1
 // 2
 const val DATABASE_NAME = "todoitems.db"
 object ToDoTable {
 // 3
 const val TABLE_NAME = "todoitems"
 object Columns {
 // 4
 const val KEY_TODO_ID = "todoid"
 // 5
 const val KEY_TODO_NAME = "todoname"
 // 6
 const val KEY_TODO_IS_COMPLETED = "iscompleted"
 }
 }
}

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 59

Here’s what each part is:

1. The version of the database. Manually increment this number each time the
database version is new, and you need to use the version to add update or
migration logic.

2. The name of the database as it will be stored in the app-specific database folder
on the device.

3. The name of the table will use to store the TODO items.

4. The column that contains the unique primary key for each TODO item.

5. The column that contains the text of the TODO item.

6. The column that will store an indicator whether or not you completed a TODO
item.

Now, it’s time to create your own database!

Using SQLiteOpenHelper
SQLiteOpenHelper is a helper class designed to help manage database creation and
version management. To use it, you need to create a subclass of it and implement
onCreate(), onUpgrade() and optionally the onOpen methods. This class will then
open the database if it exists, create it, if it does not exist, and upgrade it when
necessary. It does all these things automatically, using the above-mentioned
methods.

Now that the constants are in place and you’ve learned a bit about
SQLiteOpenHelper, it’s time to create the database and add the CRUD operations.

Open ToDoDatabaseHandler.kt and add replace the class declaration with:

class ToDoDatabaseHandler(context: Context):
SQLiteOpenHelper(context, DATABASE_NAME, null, DATABASE_VERSION)

The above code makes the database handler class a subclass of SQLiteOpenHelper.
This will allow the class to utilize the Android SQLite APIs in a simpler way.

Next up, you have to give the helper the schema data required to build the database.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 60

Creating the database
First, the database must be created if it doesn’t already exist. This is automatically
done by onCreate(), which will run only when it needs to. If the database already
exists, this method will not run.

Note: When testing an app that utilizes SQLite, you must uninstall the app to
delete the old database and reinstall the app to recreate it or completely clear
the data of an app.

Add the following method to ToDoDatabaseHandler:

//This method creates the database
override fun onCreate(db: SQLiteDatabase?) {
 // 1
 val createToDoTable = """
 CREATE TABLE $TABLE_NAME (
 $KEY_TODO_ID INTEGER PRIMARY KEY,
 $KEY_TODO_NAME TEXT,
 $KEY_TODO_IS_COMPLETED LONG);
 """
 // 2
 db?.execSQL(createToDoTable)
}

The parts above:

1. Assign an SQL CREATE statement which creates the table described in the
schema above, to the createToDoTable value.

2. Run the command using the database object provided by SQLiteOpenHelper.

The above method will be run anytime the app is run and the database isn’t found.
Otherwise, the database exists, and there’s no reason to recreate it.

One of the downsides of SQL, in general, is having to write the statements perfectly.
Be very mindful when creating SQL statements using concatenated strings. It’s very
easy to make an error in doing so. It can be helpful to print the query using a LOG
statement to check to see if the string is correct. The text of the query string is also
displayed at the end of an error message in Logcat if the app crashes with an error.
Additionally, you could use a local, or a Web SQL database terminal or environment,
to try and validate the statement.

Now that the database has been created, you must add a mechanism for upgrading it.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 61

Add the following method to ToDoDatabaseHandler :

//This method is used to update the database
override fun onUpgrade(db: SQLiteDatabase?, oldVersion: Int,
newVersion: Int) {
 // 1
 db?.execSQL("DROP TABLE IF EXISTS $TABLE_NAME")
 // 2
 onCreate(db)
}

The above:

1. Executes the SQL statement to drop the old the table if it exists.

2. Calls onCreate() again to recreate the database, this time with an upgrade.

onUpgrade() is the one that the framework calls automatically when a different
version of the DB is detected. This happens when an instance of the
SQLiteOpenHelper implementation is created with a different version number in its
constructor.

The implementation of this method should provide the code that is necessary to
upgrade to the new version of the schema. Since this is a very simple example, you’re
just dropping the previous table, and recreating it, using the new schema. But in real
environments, and big apps, you’d usually do something called a migration.

Migration is the process of updating the database, without dropping it. For example,
if you decide to add a new field to the TODO model, called toDoPriority, you would
need to change the database as well, because you need to store that field, and
retrieve it, but the old database doesn’t have that field defined. You would then
update the version number (e.g., from 1 to 2) and write a SQL statement, to update
the table, by adding a new column — toDoPriority.

In the next steps, you’ll add the CRUD operations to the database handler
implementation.

Using ContentValues
Before you add items to the database, it’s important to understand a construct
known as ContentValues. This is a class that allows you to store values that a
ContentResolver can process. The information that is stored in objects of this class
is stored as key-value pairs.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 62

The key consists of the column name for the piece of information being stored, and
the value consists of the value to be stored in that column. A key-value pair for each
column of the database in a particular row is put into the ContentValues object
before it is then handed to another method, which will resolve the content and
perform the database operation.

Simply put, ContentValues are similar to a Map structures and are used to define the
columns and the values to be used in database operations. As such, you’ll use them
to insert data into the database and update existing models if needed.

Adding a TODO
Add the following code in createToDo(), to insert a TODO item into the table:

// 1
val db: SQLiteDatabase = writableDatabase
// 2
val values = ContentValues()
// 3
values.put(KEY_TODO_NAME, toDo.toDoName)
values.put(KEY_TODO_IS_COMPLETED, toDo.isCompleted)
// 4
db.insert(TABLE_NAME, null, values)
// 5
db.close()

With the above, you:

1. Get a writeable instance of the database and store it in the db value.

2. Create an object of the ContentValues class called values.

3. Take the text of the TODO from the toDoName field and put it into values. Use
KEY_TODO_NAME as the key, and toDoName as the key’s value.

4. Put the key-value pair for the isCompleted field into values, as well.

5. Close the database, to avoid potential leaks.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 63

Running the program
Build and run. Use the Floating Action Button with the plus sign icon to add a
TODO item.

Adding an TODO Item.

When you enter the text for the item, tap ADD.

Now that you’ve added the code to create the database and added an item, next step
is to take a look at the new database.

Note: The item you added won’t be displayed in RecyclerView yet, but stay
tuned; you’ll add that capability after a few more steps.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 64

Viewing the SQLite database
Each app has its own folder to store databases on the device just like files. To look at
the database that was just created, open the Device File Explorer as you did in
Chapter 1, “Using Files”. You can found it on the bottom right-hand corner of
Android Studio as a collapsed, vertical pane.

Once in the Device File Explorer:

• Expand the data ▸ data ▸ com.raywenderlich.android.sqlitetodo ▸ databases
folder.

• Right-click on the databases folder and select Synchronize.

• Then select Save As….

• Save the entire folder to the location of your choice.

The Database Folder for the App and Context Menu of Device File Explorer

To view the database, you’ll need a tool that allows you to open the .db file. A tool
such as the SQLite Browser works nicely; you can find it here: https://
sqlitebrowser.org/dl/. Download, install and open the tool.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 65

Select Open Database and find and select your .db file. Then, switch to the Browse
Data tab. Find the drop-down Table: and select the todoitems item. Now the
records in the table will be listed in the main area of the window and you can see the
record that you added, along with its unique id and completed status.

The Database Folder for the App in DB Browser.

Note: Another tool you can use to view the database on the command line is
sqlite3, which you can find, here: https://developer.android.com/studio/
command-line/sqlite3.

Now that you’ve successfully added a record to your database and viewed it in the
file system, it’s time to write the rest of the CRUD operations!

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 66

Reading from a database
Before the record added in the previous step can be displayed, the app must have the
capability to read the records from the database. First, the database must be queried
for the records to display. Then, you’ll use a tool Cursor to iterate through the
records and add them to a list.

Understanding the cursor
In Android, Cursor is assigned to the result set of a query being run against the
database. Then it’s used to iterate over the result set in a type-safe manne - row by
row, field by field.

Internally, the rows of data that are returned by a query are stored in the Cursor
reads through the data-keeping track of its current position. To start iterating, the
current position must be moved to point to a valid row of data, such as the first row.
Then, a loop structure is utilized to keep reading while a next record exists, to read
in the result set.

In ToDoDatabaseHandler.kt, in readToDos() replace return with the following
code:

// 1
val db: SQLiteDatabase = readableDatabase
// 2
val list = ArrayList<ToDo>()
// 3
val selectAll = "SELECT * FROM $TABLE_NAME"
// 4
val cursor: Cursor = db.rawQuery(selectAll, null)
// 5
if (cursor.moveToFirst()) {
 do {
 // 6
 val toDo = ToDo().apply {
 toDoId =
cursor.getLong(cursor.getColumnIndex(KEY_TODO_ID))
 toDoName =
cursor.getString(cursor.getColumnIndex(KEY_TODO_NAME))
 isCompleted =
cursor.getInt(cursor.getColumnIndex(KEY_TODO_IS_COMPLETED)) == 1
 }
 // 7
 list.add(toDo)
 } while (cursor.moveToNext())
}
// 8

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 67

cursor.close()
// 9
return list

With the above, you:

1. Get a readable instance of the database.

2. Create an ArrayList<ToDo> to store the records.

3. Construct the SELECT query to get the records.

4. Create a Cursor object using SELECT on the database.

5. Starting at the beginning, and move Cursor through all the records one at a
time.

6. Assign the fields of each record to the corresponding attribute of a new ToDo
item.

7. Add the item to the list.

8. Close Cursor, to avoid memory leaks

9. Return list` as a result.

Build and run. The record added in the previous step is visible now.

The added TODO Item.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 68

So far, you’ve added a lot of code to the project. The app is now able to create a
database, update the database, add records and read the records. Next, you’ll add the
capability to update an existing record, and finally, to delete records.

Updating a TODO
To add the capability to update a record, replace return in updateToDo() with the
code below:

// 1
val todoId = toDo.toDoId.toString()
// 2
val db: SQLiteDatabase = writableDatabase
// 3
val values = ContentValues()
values.put(KEY_TODO_NAME, toDo.toDoName)
values.put(KEY_TODO_IS_COMPLETED, toDo.isCompleted)
// 4
return db.update(TABLE_NAME, values, "$KEY_TODO_ID=?",
arrayOf(todoId))

With this code, you:

1. Prepare the todoId argument, for the UPDATE clause.

2. Get a writable instance of the database.

3. Create a ContentValues object to contain the key-value pairs, and put the TODO
item’s property values in it.

4. Run the UPDATE query on the database and return the result of the operation.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 69

Now build and run. Tap the edit icon that looks like a pencil next to the record.
Update the record to a new value and tap Update.

Update a Record.

Now, the record should reflect any changes you made as it is displayed in
RecyclerView.

Updated Record.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 70

Note: db.update() is used in multiple places in the app. First, it was used in
the previous example when changes were made to the name of the TODO
item. The app also updates TODO items when the completed checkbox is
checked.

There is one more bit of functionality to add to this app. The app must also be able to
delete TODO items.

Deleting a TODO
In order to delete an item from the database, add the following code to
deleteToDo():

val db: SQLiteDatabase = writableDatabase
db.delete(TABLE_NAME, "$KEY_TODO_ID=?", arrayOf(id.toString()))
db.close()

The above section of code simply gets an instance of the writeable database, deletes
the correct TODO item filtered by its id, and closes the database.

Build and run. Tap the Delete icon that looks like a wastebasket and the TODO item
magically disappears. The list is not empty.

You have successfully written all the CRUD operations! Now, you’ll add a unit test to
the program with Robolectric to see how to unit test the model portion of the
program.

Unit Testing with Robolectric
You’re able to view the contents of the database using the command line or a third-
party tool. Wouldn’t it also be nice to run a JUnit test on the model portion of the
app? This can often be overlooked in the development and testing process.

To create some simple unit tests, you’ll use Robolectric. Simply put, Robolectric is a
framework that allows you to write Android powered unit tests and run them on a
desktop JVM while still using the Android API. Robolectric enables you to run your
Android tests in your integration environment without any additional setup, which
makes it a convenient choice.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 71

Now, you’ll create a unit test to test INSERT of the database. It will determine if the
names of the items are inserting into the database correctly.

To get started, open build.gradle(Module:app) and add the following code into the
android section:

testOptions {
 unitTests {
 includeAndroidResources = true
 }
}

This will tell gradle to use the includeAndroidResources flag, and the name pretty
much explains what that means! Next, add the following dependencies in the
dependencies section:

testImplementation "androidx.test:core:1.4.0"
testImplementation "org.robolectric:robolectric:4.4"

Sync the gradle file after making these changes. Next, open
ToDoDatabaseHandler.kt and add the following code inside the class, after
deleteToDo():

// 1
fun clearDbAndRecreate() {
 clearDb()
 onCreate(writableDatabase)
}

fun clearDb() {
 writableDatabase.execSQL("DROP TABLE IF EXISTS $TABLE_NAME")
}

// 2
fun getAllText(): String {
 var result = ""
 val cols = arrayOf(KEY_TODO_NAME, KEY_TODO_IS_COMPLETED)
 val cursor = writableDatabase.query(TABLE_NAME, cols,
 null, null, null, null, KEY_TODO_ID)
 val indexColumnName =
cursor.getColumnIndexOrThrow(KEY_TODO_NAME)
 while (cursor != null && cursor.moveToNext()) {
 result += cursor.getString(indexColumnName)
 }

 cursor.close()
 return result
}

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 72

Here’s what’s happening:

1. You erase and recreate the database once the testing is done. This allows the test
to be run multiple times and ensure that residual test data isn’t left in the
database.

2. getAllText() has one job, to create a String object that consists of the TODO
item names in the database all concatenated together. In the test you’ll write
soon, you’ll see if the database contains the values you expect to see after
inserting a few items.

Now, you’re ready to create the test. Unit tests are contained in the test folder. Open
ToDoDatabaseTest.kt in com.raywenderlich.android.sqlitetodo (test). Replace
the class definition wtih the following code:

@RunWith(RobolectricTestRunner::class)
class ToDoDatabaseTest {
 // 1
 lateinit var dbHelper: ToDoDatabaseHandler

 // 2
 @Before
 fun setup() {
 dbHelper =
ToDoDatabaseHandler(ApplicationProvider.getApplicationContext())
 dbHelper.clearDbAndRecreate()
 }

 @Test
 @Throws(Exception::class)
 fun testDbInsertion() {
 // 3
 // Given
 val item1 = ToDo(0, "Test my Program", false)
 val item2 = ToDo(0, "Test my Program Again", false)

 // 4
 // When
 dbHelper.createToDo(item1)
 dbHelper.createToDo(item2)

 // 5
 // Then
 val allText = dbHelper.getAllText()
 val expectedData = "${item1.toDoName}${item2.toDoName}"
 Assert.assertEquals(allText, expectedData)
 }

 // 6
 @After

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 73

 fun tearDown() {
 dbHelper.clearDb()
 }
}

With the above, you:

1. First, declare a database helper property.

2. Perform setup by initializing the database, then clear and recreate the database
to start with a fresh copy every time. The function annotated with @Setup will be
the first function to run before every test.

3. The test is written in cucumber style or Given/When/Then. You first create two
TODO items with two different names. Given those items…

4. …when they are added to the database…

5. …then Assert that getAllText() matches the expected value.

6. Clear the database after the test, just to be sure.

To run the test, click the green arrow next to the class declaration and select Run
‘TestDatabase’:

Run the Test.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 74

Then you can see the result of the test at the bottom of the screen:

The Test passed.

The positive result indicates that the values returned from the database handler
matched the expected string based on the two items that were manually created and
inserted.

This proves that the name fields were inserted into the database correctly.

Another neat feature of Robolectric is the .HTML report it can produce. To see this
report, make sure you are in project view utilizing the dropdown at the top-left of
the editor. Expand the Gradle pane with the tab on the right-hand of the screen, and
click the elephant icon to execute a new task. Then, in the dialog enter gradle
testDebugUnitTest and press Enter.

Gradle testDebugUnitTest Action.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 75

This will create the report. Then, in Project view browse** to app/build/reports/
tests/debug/index.html, right-click the file and select Open in Browser.

Generate test summary

Now you can see a fantastic report of your testing. Excellent work!

Test report

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 76

Key points
• When creating an SQLite database, you should define a database schema — a

group of String constants, used to define your database structure.

• A database needs to be created and updated, according to the context of the app,
and the version of the database.

• If an app doesn’t have a database with the same name as in your schema, it will
create one, using the defined schema.

• If the app already has a database with the same name, it will run the update
process, but only if the database version changed.

• You should avoid dropping the database if it changes, and try to migrate the
structure between versions.

• Every database consists of the four standard operations - Create, Read, Update,
and Delete, or CRUD for short.

• To help you avoid so much SQL code, and to simplify the operations, Android
utilizes the SQLiteOpenHelper.

• To store data for operations, the SQLiteOpenHelper uses ContentValues.

• ContentValues are just a key-value pair structure, just like a Map, which is used to
insert or update data in the database.

• You can inspect the database by copying it from the Device File Explorer, and
opening it with a tool, like the SQLite Browser or DB Browser.

• It’s a good practice to write some Unit tests for your database, to be sure
everything works as expected, without running the application.

Where to go from here?
If you would like to know more about SQLite and the syntax that makes up SQLite
queries, a more in-depth guide for SQLite can be found in SQLite’s Language Guide,
which you can access here: https://sqlite.org/lang.html.

This “Unit Testing with Robolectric” article is also an interesting guide about how
using Robolectric with Android, which you can read here: https://github.com/
codepath/android_guides/wiki/Unit-Testing-with-Robolectric.

Saving Data on Android Chapter 3: SQLite Database

raywenderlich.com 77

4Chapter 4:
ContentProvider
By Fuad Kamal

Being able to persist structured data in a SQLite database is an excellent feature
included in the Android SDK. However, this data is only accessible by the app that
created it. What if an app would like to share data with another app?
ContentProvider is the tool that allows apps to share persisted files and data with
one another.

Content providers sit between the app’s data source and provide a means to manage
this data. This can be a helpful organizational tool in an app, even if the app is not
intended to share its data externally with other apps. Content providers provide a
standardized interface that can connect data in one process with code running in
another process. They encapsulate the data and provide mechanisms for defining
data security at a granular level. A content provider can be used to aggregate
multiple data sources and abstract away the details.

Although it can be a good idea to use a content provider to better organize and
manage the data in an app, this isn’t a requirement if the app isn’t going to share its
data.

One of the simplest use cases of a content provider is to gain access to the Contacts
of a device via a content provider. Another common built-in provider in the Android
platform is the user dictionary. The user dictionary holds spellings of non-standard
words specific to the user.

raywenderlich.com 78

Understanding content provider basics
In order to get data from a content provider, you use a mechanism called
ContentResolver. It provides methods to query, update, insert and delete data from
a content provider. A request to a content resolver contains an URI to one of the
SQL-like methods. These methods return a Cursor instance.

Note: Cursor is defined and discussed in more detail in the previous SQLite
chapter. It’s essentially a pointer to a row in a table of structured data that was
returned by the query.

There are two basic steps to interact with a content provider via content resolver:

1. Request permission from the provider by adding a permission in the manifest
file.

2. Construct a query with an appropriate content URI and send the query to the
provider via content resolver object.

Understanding Content URIs
To find the data within the provider, use a content URI. The content URI is
essentially the address of where to find the data within the provider. A content URI
always starts with content:// and then includes the authority of a provider which
is the provider’s symbolic name. It can also include the names of tables or other
specific information relating the query. An example content URI for the user
dictionary looks like:

content://user_dictionary/words

Oftentimes, providers allow you to append an ID value to the end of the URI to find a
specific record, or a string such as count to denote that you want to run a query that
counts the number of records. You must refer to the provider documentation to
figure out what a specific content provider exposes.

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 79

Requesting permission to use a content
provider
The application will need read access permission for the specific provider. Utilize
the <uses-permission> element and the exact permission that was defined by the
provider. The provider’s application can specify which permissions requesting
applications must have in order to access the data. Users can see the requested
permissions when they install the application. For example, the code to request read
permission of the user dictionary is:

<uses-permission
android:name="android.permission.READ_USER_DICTIONARY" />

If you want to use the user dictionary, the above permission should be added inside
the manifest tag in AndroidManifest.xml.

Permission types

The types of permission that can be granted by a content provider include:

• Single read-write provider-level permission – This permission controls both read
and write access to the whole provider. It’s one permission to rule them all. :]

• Separate read and write provider-level permission – Read and write permissions
can be set separately for the whole provider.

• Path-level permission – Read, write or read/write permissions can be applied to
each content URI individually.

• Temporary permission – Temporary access can be granted to an application even if
it doesn’t have the permissions that would otherwise be required. This means that
only applications that need permanent permissions for your providers are apps
that continually access your data.

Constructing the query
The statement to perform a query on the user dictionary database looks like this:

cursor = contentResolver.query(
 // 1
 UserDictionary.Words.CONTENT_URI,
 // 2
 projection,
 // 3

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 80

 selectionClause,
 // 4
 selectionArgs,
 // 5
 sortOrder
)

contentResolver that is part of a context is utilized to call the query function and a
list of arguments can be passed if necessary. The only required argument is the
content URI. Below is an explanation of each of the parameters.

1. The content URI of the provider including the desired table.

2. The columns definitions to return for each row, this is String array.

3. The selection clause, similar to the WHERE clause only excluding the where. A ?
is used in place of arguments.

4. The arguments to be utilized for the selection clause that fill in the ?.

5. The sort order such as "ASC" or "DESC".

Note: Allowing raw SQL statements from external sources can lead to
malicious input from SQL injection attempts. Using the selection clause with ?
representing a replaceable parameter and an array of selection arguments
instead can prevent the user from making these attempts.

A content provider not only allows data to be read by an outside application, the data
can also be updated, added to or deleted.

Inserting, updating and deleting data
The insert, update and delete operations look very similar to the query operation. In
each case, you call a function on the content resolver object and pass the appropriate
parameters in.

Inserting data

Below is a statement to insert a record:

newUri = contentResolver.insert(
 UserDictionary.Words.CONTENT_URI,
 newValues
)

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 81

newValues is a ContentValues object which is populated with key-value pairs
containing the column and value of the data to be inserted into the new row. newURI
contains the content URI of the new record in the specific form — content://
user_dictionary/words/<id_value>.

Updating data

To update data, call update() on the content resolver object and pass in content
values that include key-values for the columns being updated in the corresponding
row. Arguments should also be included for selection criteria and arguments to
identify the correct records to update. When populating the content values, you only
have to include columns that you’re updating, and including column keys with a
null value will clear out the data for that column. One important consideration
when updating data is to sanitize user input. The developer guide to protecting
against malicious data has been included in the Where to go from here? section
below. update() returns an Integer value that contains the count of how many
rows were updated.

Deleting data

Deleting data is very similar to the other operations. Call delete() on the content
resolver object passing in arguments for the selection clause and selection
arguments to identify the group of records to delete. delete() returns an Integer
value which represents the count of how many rows were deleted.

Adding a contract class
A contract class is a place to define constants used to assemble the content URIs.
This can include constants to contain the authority, table names and column names
along with assembled URIs. This class must be created and shared by the developer
creating the provider. It can make it easier for other developers to understand and
utilize the content provider in their application.

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 82

MIME types
Content providers can return standard MIME types like those used by media, or
custom MIME type strings, or both. MIME types take the format type/subtype an
example being text/html. Custom MIME types or vendor-specific MIME types are
more complicated and come in the form of vnd.android.cursor.dir for multiple
rows, and vnd.android.cursor.item for single rows.

The vnd stands for vendor and isn’t part of the package name of the app. The
subtype of a custom MIME type is provider-specific and is generally defined in the
contract class for the provider.

getType() of the provider returns a String in MIME format. If the provider returns
a specific type of data, getType() returns the common MIME type for that data. If
the content URI points to a row or a table of data, getType() returns a vendor
specific formatted MIME type including the authority and the table name, e.g.
vnd.android.cursor.dir/
vnd.com.raywenderlich.android.contentprovidertodo.provider.todoitems.
This MIME type is for multiple rows in the todoitems table with the authority
com.raywenderlich.android.contentprovidertodo.provider.

A content URI can also perform pattern matches using content URIs that include
wildcard characters.

• * – Matches a String object of any valid characters of any length.

• # – Matches a String object of numeric characters of any length.

Now that you’ve learned a little bit about content providers, it’s time to create one of
your own.

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 83

Getting started
Locate the content-provider folder and open up the projects folder inside of it.
Next, open the ContentProviderToDo app under the starter folder. Allow the
project to sync, download dependencies, and setup the workplace environment.
Build and run to see the main screen.

Add a Content Provider dialog.

You have the shell for a basic todo list app, but if you try to add anything to the todo
list now, nothing gets added.

The provider package
It’s a good idea to keep the provider classes in their own package. If you look inside
the controller package, you’ll find the provider package. It contains the file with a
ToDoContract class.

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 84

The contract class
Now, open ToDoContract.kt and examine the contents:

// The ToDoContract class
object ToDoContract {
 // 1
 // The URI Code for All items
 const val ALL_ITEMS = -2

 // 2
 //The URI suffix for counting records
 const val COUNT = "count"

 // 3
 //The URI Authority
 const val AUTHORITY =
"com.raywenderlich.android.contentprovidertodo.provider"

 // 4
 // Only one public table.
 const val CONTENT_PATH = "todoitems"

 // 5
 // Content URI for this table. Returns all items.
 val CONTENT_URI = Uri.parse("content://$AUTHORITY/
$CONTENT_PATH")

 // 6
 // URI to get the number of entries.
 val ROW_COUNT_URI = Uri.parse("content://$AUTHORITY/
$CONTENT_PATH/$COUNT")

 // 7
 // Single record mime type
 const val SINGLE_RECORD_MIME_TYPE = "vnd.android.cursor.item/
vnd.com.raywenderlich.android.contentprovidertodo.provider.todoi
tems"

 // 8
 // Multiple Record MIME type
 const val MULTIPLE_RECORDS_MIME_TYPE =
"vnd.android.cursor.item/
vnd.com.raywenderlich.android.contentprovidertodo.provider.todoi
tems"

 // 10
 // Table Constants
 object ToDoTable {
 // The constants for the table columns
 object Columns {
 //The unique ID column

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 85

 const val KEY_TODO_ID: String = "todoid"
 //The ToDo's Name
 const val KEY_TODO_NAME: String = "todoname"
 //The ToDo's category
 const val KEY_TODO_IS_COMPLETED: String = "iscompleted"
 }
 }
}

1. The ALL_ITEMS constant is used for the URI when query() returns all the items
in the database.

2. count is the suffix used on the URI when the count of items in the table is
requested.

3. AUTHORITY is the prefix of the URI that serves as the symbolic name for the
provider.

4. CONTENT_PATH corresponds to the name of the todoitems table.

5. CONTENT_URI is created by concatenating the authority, or name of the
provider with the path, or the name of the table. Then it’s parsed into a URI used
to get all the records from the provider.

6. ROW_COUNT_URI is a second URI that utilizes the same authority but has the
count content type. It’s used to retrieve the number of records in the table.

7. SINGLE_RECORD_MIME_TYPE is the complete, custom MIME type for URIs
that return a single record.

8. MULTIPLE_RECORD_MIME_TYPE is the custom MIME type for URIs that will
return multiple records. Notice the use of dir instead of item — item is used for a
single record MIME type.

9. ToDoTable is an inner object that contains the name of the main table and
definitions for the columns in the database.

ToDoContract is the Contract class that contains all the constant definitions you
need for your content provider. This class can be distributed to client apps that
would like to use the provider and will provide insight into what this provider has to
provide.

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 86

Adding the content provider
Android Studio has a neat feature to automatically add content classes. A content
provider class extends ContentProvider from the Android SDK and implements all
the required methods. By using the automated method of adding the content
provider class, many of these method stubs will be provided for you. It will be your
job to fill in the functions in the content provider one by one. Ready to get started? :]

Right click the provider package and select New > Other > Content Provider.
Provide the class name ToDoContentProvider and the URI authority
com.raywenderlich.android.contentprovidertodo.provider. Also check the boxes
for exported and enabled. Ensure that the source language is Kotlin, and press
Finish.

Add a Content Provider dialog.

The class name field provides the name of the new class that will be created in the
provider package. The URI Authorities field can contain a semicolon-separated list
of one to many URI authorities that identify the data under the purview of the
content provider. Checking the exported field means that the component can be
used by components of other applications. This automatically adds a <Provider>
element into AndroidManifest.xml. Checking the enabled field allows the
component to be instantiated by the system.

Now that you have added the template for your content provider, open
AndroidManifest.xml to see the provider tag that has been added.

 <provider
 android:name=".controller.provider.ToDoContentProvider"

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 87

android:authorities="com.raywenderlich.android.contentproviderto
do"
 android:enabled="true"
 android:exported="true" />

Notice how the location, authority and permissions are included in this tag as we
specified through the dialog. Next, you need to implement the methods of the
content provider.

Implementing the content provider
methods

Note: As you add code to the method stubs in the provider, be sure to replace
the TODO comments with the new code. Also, you may need to press alt +
enter and import libraries as you go along. If given the choice between
constants defined in the ToDoDbSchema or the new ToDoContract, choose
ToDoContract. The goal is to have the content provider depending on the
contract so that it serves as an abstract layer above the database handler. This
design allows for the data source to be swapped out as long as it meets the
same specifications as the previous data source, and no other code that is
dependent on the database will be affected, in this app or other apps that
utilize the contract.

Open ToDoContentProvider.kt. Notice how the class inherits from
ContentProvider in the Android SDK. Before implementing the methods, add the
following declarations inside the class above all the overridden method stubs:

 // 1
 // This is the content provider that will
 // provide access to the database
 private lateinit var db : ToDoDatabaseHandler
 private lateinit var sUriMatcher : UriMatcher

 // 2
 // Add the URI's that can be matched on
 // this content provider
 private fun initializeUriMatching() {
 sUriMatcher = UriMatcher(UriMatcher.NO_MATCH)
 sUriMatcher.addURI(AUTHORITY,CONTENT_PATH,
URI_ALL_ITEMS_CODE)

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 88

 sUriMatcher.addURI(AUTHORITY, "$CONTENT_PATH/#",
URI_ONE_ITEM_CODE)
 sUriMatcher.addURI(AUTHORITY, "$CONTENT_PATH/$COUNT",
URI_COUNT_CODE)
 }

 // 3
 // The URI Codes
 private val URI_ALL_ITEMS_CODE = 10
 private val URI_ONE_ITEM_CODE = 20
 private val URI_COUNT_CODE = 30

1. Add an instance of the database handler as the content provider sits between the
database and the rest of the program, also create a URI matcher to help construct
the URIs.

2. Create initializeURIMathching() and add each URI that this content provider
can match with. This provider will accommodate a URI to retrieve a single record
with an id hence the #, a URI to get all the records, and a URI to get a count of the
number of records. Each URI includes the authority, the content path, any
arguments represented by special characters, and a unique code.

3. Declare some constants that represent the numeric code for the URI. The
contract class gives descriptive names to the corresponding values these codes
will match with. These codes are unique and chosen by the developer.

The next step is to start implementing the stub methods one by one. The template
doesn’t always put them in the most logical order by default. You can reorder them if
you like.

Initializing the database and Uris

Insert the code below into onCreate() stub replacing TODO:

context?.let {
 db = ToDoDatabaseHandler(it)
 // intialize the URIs
 initializeUriMatching()
}
return true

onCreate() prepares the content provider by instantiating the database handler
object, calling initializeUriMatching() to initialize the URI matcher, and returns
true to signal that this content provider was created successfully.

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 89

Resolving the MIME type

Next, implement getType() by replacing the entire stub with the code below:

override fun getType(uri: Uri) : String? =
when(sUriMatcher.match(uri)) {
 URI_ALL_ITEMS_CODE -> MULTIPLE_RECORDS_MIME_TYPE
 URI_ONE_ITEM_CODE -> SINGLE_RECORD_MIME_TYPE
 else -> null
}

This function accepts Uri and matches it with the URI code. Then it returns the
correct MIME type. These constants are defined in the contract that has made the
code for this function more self-descriptive.

Now that the trivial details are out of the way, you can jump into implementing the
CRUD operations.

Querying the database

query() queries the database and returns the results. It has been designed so that it
can perform multiple types of queries, depending on the URI. Insert the code below
into the body of the function:

var cursor : Cursor? = null
when (sUriMatcher.match(uri)) {
 URI_ALL_ITEMS_CODE -> { cursor = db.query(ALL_ITEMS)}
 URI_ONE_ITEM_CODE -> {
 uri.lastPathSegment?.let {
 cursor = db.query(it.toInt())
 }
 }
 URI_COUNT_CODE -> { cursor = db.count()}
 UriMatcher.NO_MATCH -> { /*error handling goes here*/ }
 else -> { /*unexpected problem*/ }
}
return cursor

Here you declare a Cursor object and assign it to null. Based on the provided uri,
the URI matcher returns the corresponding code. Then, the WHEN statement calls
the correct function on the database handler object to retrieve the results, assigns
them to the cursor and returns cursor .

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 90

Modifying the adapter

To test the content provider you just created, open ToDoAdapter.kt and add the
following code inside the class before onCreateViewHolder():

 private val queryUri = CONTENT_URI.toString() // base uri
 private val queryCountUri = ROW_COUNT_URI.toString()
 private val projection = arrayOf(CONTENT_PATH) //table
 private var selectionClause: String? = null
 private var selectionArgs: Array<String>? = null
 private val sortOrder = "ASC"

These declarations provide the parameters you’ll need to pass to the
contentResolver methods to query, update, insert and delete from the database.

Add the following lines to bindViews():

with(binding) {
 // 1
 txtToDoName.text = toDo.toDoName
 chkToDoCompleted.isChecked = toDo.isCompleted
 // 2
 imgDelete.setOnClickListener(this@ViewHolder)
 imgEdit.setOnClickListener(this@ViewHolder)
 // 3
 chkToDoCompleted.setOnCheckedChangeListener
{ compoundButton, _ ->
 toDo.isCompleted = compoundButton.isChecked
 val values = ContentValues().apply {
 put(KEY_TODO_IS_COMPLETED, toDo.isCompleted)
 put(KEY_TODO_ID, toDo.toDoId)
 put(KEY_TODO_NAME, toDo.toDoName)
 }
 selectionArgs = arrayOf(toDo.toDoId.toString())
 context.contentResolver.update(
 Uri.parse(queryUri),
 values,
 selectionClause,
 selectionArgs
)
 }
 }

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 91

In this code you:

1. Fill up the RecyclerView item with the toDo item data — you provide its name
and the flag that tells if the item is completed or not.

2. Set setOnClickListener for both imgDelete and imgEdit.

3. Apply setOnCheckedChangeListener for chkToDoCompleted in which you
change the completed state for the toDo item and update contentResolver with
appropriate ContentValues, arguments and URI.

Then, add this block to onClick():

val cursor = context.contentResolver.query(
 Uri.parse(queryUri),
 projection,
 selectionClause,
 selectionArgs,
 sortOrder
)

if (cursor != null) {
 if (cursor.moveToPosition(bindingAdapterPosition)) {
 val toDoId =
cursor.getLong(cursor.getColumnIndex(KEY_TODO_ID))
 val toDoName =
cursor.getString(cursor.getColumnIndex(KEY_TODO_NAME))
 val toDoCompleted =
cursor.getInt(cursor.getColumnIndex(KEY_TODO_IS_COMPLETED)) > 0
 cursor.close()
 val toDo = ToDo(toDoId, toDoName, toDoCompleted)
 when (imgButton?.id) {
 binding.imgDelete.id -> {
 deleteToDo(toDo.toDoId)
 }
 binding.imgEdit.id -> {
 editToDo(toDo)
 }
 }
 }
}

With this code you set an action that will happen once the user click ons the delete
or update button — deleteToDo() and editToDo(). Both of these methods are
currently empty, you’ll implement them in a bit. To know which item to update or
delete, you use query() that returns a cursor containing. quieried to-do item’s
data . You use that data to create a ToDo item so you can pass it to deleteToDo() and
its id to editToDo() as parameters.

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 92

Next, you’ll utilize the content provider by calling the content resolver’s functions.

The adapter needs to know how many rows there are to properly configure
RecyclerView. Locate getItemCount() and insert this code above return:

// Get the number of records from the Content Resolver
val cursor = context.contentResolver.query(
 Uri.parse(queryCountUri),
 projection, selectionClause,
 selectionArgs, sortOrder
)
// Return the count of records
if (cursor != null) {
 if (cursor.moveToFirst()) {
 val itemCount = cursor.getInt(0)
 cursor.close()
 return itemCount
 }
}

The query above utilizes the query String queryCountURI, which is appended
with /count to query the provider for the count of records instead of returning all the
records or a single item. Now wouldn’t it be neat if another app could utilize these
queries as well?

Now, find TODO in onBindViewHolder() and replace it wiith this:

// 1
val cursor = context.contentResolver.query(
 Uri.parse(queryUri),
 projection,
 selectionClause,
 selectionArgs, sortOrder
)

// 2
if (cursor != null) {
 if (cursor.moveToPosition(position)) {
 val toDoId =
cursor.getLong(cursor.getColumnIndex(KEY_TODO_ID))
 val toDoName =
cursor.getString(cursor.getColumnIndex(KEY_TODO_NAME))
 val toDoCompleted =
cursor.getInt(cursor.getColumnIndex(KEY_TODO_IS_COMPLETED)) > 0
 cursor.close()
 val toDo = ToDo(toDoId, toDoName, toDoCompleted)
 holder.bindViews(toDo)
 }
}

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 93

In this code you:

1. Call query() on the content resolver returns cursor that allows the app to
iterate through all the records in the table, create a to-do item and bind the fields
of the RecyclerView’s row to the fields of that to-do item.

2. Create a ToDo object from the fields in the query and bind it to the view.

Lastly, add the code to insert a record. Then, you can test the basic functionality of
the content provider.

Inserting items

Open ToDoContentProvider.kt and locate insert(). Replace its TODO in with:

values?.let {
 val id = db.insert(it.getAsString(KEY_TODO_NAME))
 return Uri.parse("$CONTENT_URI/$id")
 }
return null

When inserting a to-do item, the only relevant information that is provided is the
name of that item. Completed is false by default and the id field is provided by
insert() itself. The database handler returns the id, and the content provider uses
this id to return a URI where this provider can access the new record.

Next, open ToDoAdapter.kt and find insertToDo(). Replace TODO with:

// 1
val values = ContentValues()
values.put(KEY_TODO_NAME, toDoName)
// 2
context.contentResolver.insert(CONTENT_URI, values)
notifyDataSetChanged()

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 94

Here you:

1. Create and populate a content values object.

2. Run the insert query on the content resolver to insert the record. Then, notify
adapter that change happened.

After all your hard work, it’s time to run the app and add a couple items! Build and
run the app. Click the button in the lower left corner and add some items to your
TODO list. They will be displayed in the list as you add them. Nice work! :]

Data appeared in the list.

The update and delete buttons will not actually do anything, yet. You’ll add the
functionality to update (edit) an item, next.

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 95

Updating items

Open ToDoContentProvider.kt and copy the code below into the body of update():

values?.let {
 val toDo = ToDo(
 it.getAsLong(KEY_TODO_ID),
 it.getAsString(KEY_TODO_NAME),
 it.getAsBoolean(KEY_TODO_IS_COMPLETED)
)
 return db.update(toDo)
}
return 0

First, you create a ToDo item by extracting the values utilizing the key values defined
in the contract. Then pass this toDo to db to update the database.

Now, open ToDoAdapter.kt and replace TODO in editToDo() with the following:

 // 1
val values = ContentValues().apply {
 put(KEY_TODO_NAME,
dialogToDoItemBinding.edtToDoName.text.toString())
 put(KEY_TODO_ID, toDo.toDoId)
 put(KEY_TODO_IS_COMPLETED, toDo.isCompleted)
}
// 2
context.contentResolver.update(
 Uri.parse(queryUri),
 values,
 selectionClause,
 selectionArgs
)
// 3
notifyDataSetChanged()

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 96

In this code block you:

1. Create and populate the ContentValues object.

2. Run the update query to update the record.

3. Notify the adapter that the dataset has changed so RecyclerView updates.

Run the app and use the pencil icon to update an item that you added previously.

Updating item successful.

The app can now update items. But what about deleting them? You will add the
ability to delete items in the next steps.

Deleting items

Deleting a record is simple. Open ToDoContentProvider.kt and replace TODO of
delete():

selectionArgs?.get(0)?.let {
 return db.delete(parseLong(it))
}
return 0

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 97

This gets the id for the record to delete out of the selectionArgs and pass that
value to the database handler to delete the record from the underlying database. The
number of rows that are deleted is returned.

Next, open ToDoAdapter.kt and replace TODO of deleteToDo() with:

// 1
selectionArgs = arrayOf(id.toString())
// 2
context.contentResolver.delete(Uri.parse(queryUri),
selectionClause, selectionArgs)
// 3
notifyDataSetChanged()
Toast.makeText(context, "Item deleted.", LENGTH_LONG).show()

Here you:

1. Populate selectionArgs with the id of the record to delete.

2. Run the query to delete the record.

3. Notify the adapter that the dataset has changed and show a Toast message.

Run the app, you are now able to delete items from the list. Great!

Deleting item successful.

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 98

Now you have created your very own content provider and content resolver in one.
Even though it’s not required to utilize a content provider when outside apps aren’t
accessing the data, sometimes it can provide an organizational layer of abstraction
that can improve an app’s overall architecture. Now, if you’d like, you can tackle an
additional challenge and create a client app that will utilize the content provider.

Challenge: Creating a client
For an additional, interesting challenge, make a copy of the app you just created that
creates a content provider and see if you can remove the database and transform it
into a client that utilizes the content provider.

Challenge Solution: Creating a client
It’s easy to create a client app that utilizes the provider you just created in the
previous steps. You can achieve this by making a copy of the provider app and
deleting the database and content provider from it. This proves the content provider
is shared with an external app. The steps are as follows:

1. Locate your final contentprovider app in the file system and make a copy of the
project folder with name final_client.. Append the word client to the name of
the folder so you can tell the difference between the two apps.

2. Open the app in Android Studio by going to File > Open… and select the new
folder and click OK.

3. Rename the package in the project to
com.raywenderlich.android.contentprovidertodoclient by right clicking on
the package and selecting Refactor > Rename…. A dialog emerges asking if
you’d like to rename the directory or the package. Click Rename Package. You
are then prompted for the new name so type that in and click Refactor. The last
step is to click the Do Refactor button at the bottom of the editor.

Do Refactor button to rename the package

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 99

4. Open the build.gradle app module and change the app id to
com.raywenderlich.android.contentprovidertodoclient.

5. Open strings.xml and change the name element value to Content Provider To
Do List Client.

6. Open AndroidManifest.xml and add the following permission just inside the
<manifest> tag.

<uses-permission android:name =
"com.raywenderlich.android.contentprovidertodo.provider.PERMISSI
ON"/>

This allows the client to use whatever permissions the provider set.

7. Delete the <provider> tag and its contents. This app does not provide data, it
simply relies on the data shared by the other app.

8. Remove the files model/ToDoDbSchema.kt, controller/provider/
ToDoContentProvider.kt and controller/ToDoDatabaseHandler.kt by right
clicking them, selecting Refactor > Safe Delete…. Uncheck any boxes that would
search for usages and hit OK. If the Usages Detected dialog pops up simply press
Delete Anyway. Allow the editor to sync the gradle dependencies if prompted to.

9. Once those files are removed, run the app. Any items you’ve added in the
previous app will show in the new app. But how is this possible? You just deleted
the database handler class as well as the schema and the content provider. If you
create, update or delete any to-do items and then run the previous app that
contains the content provider, those changes will reflect in that app as well. The
two apps are sharing data through the same content provider.

Congratulate yourself! You just created two apps that are sharing the same data,
think of the possibilities!

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 100

Key points
• Content providers sit just above the data source of the app, providing an

additional level of abstraction from the data repository.

• A content provider allows for the sharing of data between apps.

• A content provider can be a useful way of making a single data provider if the data
is housed in multiple repositories for the app.

• It’s not necessary to use a content provider if the app is not intended to share data
with other apps.

• The content resolver is utilized to run queries on the content provider.

• Using a content provider can allow granular permissions to be set on the data.

• Use best practices such as selection clauses and selection arguments to prevent
SQL Injection when utilizing a content provider, or any raw query data
mechanism.

• Data in a content provider can be accessed via exposed URIs that are matched by
the content provider.

Where to go from here?
See Google’s documentation on content provider here: https://
developer.android.com/guide/topics/providers/content-providers.

Learn more specifics about content provider permissions here: https://
developer.android.com/guide/topics/providers/content-provider-basics#Permissions.

Learn more about how to protect against malicious data from this guide found here:
https://developer.android.com/guide/topics/providers/content-provider-
basics#Injection

Find out more about using content providers with Storage Access Framework here:
https://developer.android.com/guide/topics/providers/document-provider.

Saving Data on Android Chapter 4: ContentProvider

raywenderlich.com 101

5Chapter 5: Jetpack
DataStore
By Subhrajyoti Sen

DataStore is Google’s new library to persist data as key-value pairs or typed objects
using protocol buffers. Using Kotlin coroutines and Flow as its foundation, it aims to
replace SharedPreferences. Since it’s part of the Jetpack suite of libraries, it’s also
known as Jetpack DataStore.

In this chapter, you’ll learn about:

• DataStore’s advantages over SharedPreferences.

• Types of DataStore implementations.

• Writing to Preferences DataStore.

• Reading from Preferences DataStore.

• Migrating existing SharedPreferences to DataStore.

It’s time to jump in!

raywenderlich.com 102

Getting started
Open the starter project in Android Studio. Build and run to see the main screen of
the app.

The Main Screen.

Using FloatingActionButton, you can add a note. You can filter and sort the notes
using the toolbar menu options. If you restart the app, you’ll notice that your sorting
and filtering preferences persist.

Right now, you can’t change the background color. You’ll fix that later.

In the source code, there are two files you should focus on:

1. NotePrefs.kt: This file contains a class that takes an instance of
SharedPreferences. It has methods to read and write the preferences.

2. MainActivity.kt: This file includes a class that uses an instance of NotePrefs to
update the preferences based on user interactions, then updates the UI
accordingly.

You’ll start updating the app shortly. But first, take a moment to understand more
about why to use DataStore and how it works.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 103

Limitations of SharedPreferences
Before you can understand DataStore’s advantages, you need to know about the
limitations of the SharedPreferences API. Even though SharedPreferences has
been around since API level 1, it has drawbacks that have persisted over time:

1. It’s not always safe to call SharedPreferences on the UI thread because it can
cause jank by blocking the UI thread.

2. There is no way for SharedPreferences to signal errors except for parsing errors
as runtime exceptions.

3. SharedPreferences has no support for data migration. If you want to change the
type of a value, you have to write the entire logic manually.

4. SharedPreferences doesn’t provide type safety. If you try to store both
Booleans and Integers using the same key, the app will compile just fine.

Google introduced DataStore to address the above limitations.

Types of DataStore implementations
DataStore offers two implementations, which you can choose from depending upon
your use case:

1. Preferences DataStore: Stores data as key-value pairs, similar to
SharedPreferences. You use this to store and retrieve primitive data types.

2. Proto DataStore: Uses protocol buffers to store custom data types. When using
Proto DataStore, you need to define a schema for the custom data type.

In this chapter, you’ll focus on Preferences DataStore. However, here’s a quick
overview of Proto DataStore.

SharedPreferences uses XML to store data. As the amount of data increases, the
file size increases dramatically and it’s more expensive for the CPU to read the file.

Protocol buffers are a new way to represent structured data that’s faster and than
XML and has a smaller size. They’re helpful when the read-time of stored data
affects the performance of your app.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 104

To use them, you define your data schema using a .proto file. A language-dependent
plugin then generates a class for you.

Given how vast a topic protocol buffers are, this chapter won’t cover them in depth.
However, you can refer to the Where to go from here? section for resources to learn
more about them.

Now, it’s time to build your first DataStore!

Creating your DataStore
To start working with Preferences DataStore, you need to add its dependency.

Open build.gradle and add the following dependency:

implementation "androidx.datastore:datastore-preferences:1.0.0"

Click Sync Now and wait for the dependency to sync.

Similar to other Jetpack libraries, the code to create DataStore is very concise. You
have to use the property delegate named preferencesDataStore to get an instance
of DataStore.

Open MainActivity.kt and add the following code right before the class declaration:

private val Context.dataStore by preferencesDataStore(
 name = NotePrefs.PREFS_NAME
)

In the code above, you create a property whose receiver type is Context. You then
delegate its value to preferencesDataStore(). preferencesDataStore() takes the
name of DataStore as a parameter. This is similar to how you create a
SharedPreferences instance using a name.

When you create a DataStore instance, the library, in turn, creates a new directory
named datastore in the files directory associated with your app.

Before you can start accessing DataStore, you need access to its instance.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 105

Accessing DataStore
Open NotePrefs.kt and change the constructor of NotePrefs to the following:

class NotePrefs(
 private val sharedPrefs: SharedPreferences,
 private val dataStore: DataStore<Preferences>
)

Note: Choose androidx.datastore.preferences.core.Preferences to add
the import for Preferences.

The code above adds a constructor parameter of type DataStore<Preferences>,
which indicates that this is an instance of DataStore.

Next, head over to MainActivity.kt and change the lazy assignment of notePrefs to
include the new constructor parameter:

private val notePrefs: NotePrefs by lazy {
 NotePrefs(

applicationContext.getSharedPreferences(NotePrefs.PREFS_NAME,
Context.MODE_PRIVATE),
 dataStore
)
}

The code above passes the DataStore instance created in MainActivity as a
parameter to NotePrefs.

Now that NotePrefs has access to DataStore, you’ll add the code to write data to it.

Writing to DataStore
To read and write data to DataStore, you need an instance of Preferences.Key<T>,
where T is the type of data you want to read and write.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 106

Creating a key
To interact with String data, you need an instance of Preferences.Key<String>.
The DataStore library also contains functions like stringPreferencesKey() and
doublePreferencesKey() that make it easy to create such keys.

Open NotePrefs.kt and code the following code inside companion object:

private val BACKGROUND_COLOR =
stringPreferencesKey("key_app_background_color")

The code above creates a key of type String and names it
key_app_background_color.

Writing a key-value pair
Now that you’ve created a key, you can use it to write a value corresponding to the
key. Replace saveNoteBackgroundColor() with the following:

suspend fun saveNoteBackgroundColor(noteBackgroundColor: String)
{
 dataStore.edit { preferences ->
 preferences[BACKGROUND_COLOR] = noteBackgroundColor
 }
}

Note: Here, you create a suspending function. If you need to brush up on
suspending functions, or coroutines in general, refer to our book, Kotlin
Coroutines by Tutorials https://www.raywenderlich.com/books/kotlin-
coroutines-by-tutorials.

In the code above, you use edit() to start editing DataStore. edit() takes in a
lambda that provides access to the underlying preferences. You then use the key,
BACKGROUND_COLOR, to store the new color.

Finally, you need to invoke saveNoteBackgroundColor() in MainActivity inside a
coroutine.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 107

Open MainActivity.kt and change the invocation of saveNoteBackgroundColor()
inside showNoteBackgroundColorDialog() to the following:

lifecycleScope.launchWhenStarted {

notePrefs.saveNoteBackgroundColor(selectedRadioButton.text.toStr
ing())
}

A lot is happening in the code above:

• lifecycleScope is an extension property that gives you access to
CoroutineScope, which is tied to the Activity’s lifecycle. CoroutineScope helps
you specify which thread the task will run on and when it can be canceled.

• launchWhenStarted() starts a coroutine in lifecycleScope when Activity is at
least in the STARTED state.

• saveNoteBackgroundColor() is invoked from inside lifecycleScope.

The code above makes sure Datastore updates asynchronously.

Also, remove the line below from showNoteBackgroundColorDialog() .

changeNotesBackgroundColor(getCurrentBackgroundColorInt())

You don’t need this anymore because, using DataStore, you’ll update your UI
reactively whenever the user chances their preferences.

Now, you’ve set up the method to write the data. Your next goal is to write the
mechanism to read this data.

Reading from DataStore
Unlike SharedPreferences, DataStore doesn’t provide APIs to read data
synchronously. Instead, it uses Flow to give you a way to observe data inside
DataStore and handle errors correctly. Flow is a Kotlin coroutines API that provides
an asynchronous data stream that sequentially emits values.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 108

Create a new file called UserPreferences.kt in com/raywenderlich/android/
organizedsimplenotes and add the following lines to it:

data class UserPreferences(
 val backgroundColor: AppBackgroundColor
)

In the code above, UserPreferences acts as a container class that groups different
user preferences. For now, it contains only the background color.

Initializing Flow
At this point, you need a way to convert the data you read from DataStore into an
instance of UserPreferences.

Open NotePrefs.kt and add the following code at the top of the class, just below the
class declaration:

// 1
val userPreferencesFlow: Flow<UserPreferences> = dataStore.data
 // 2
 .catch { exception ->
 if (exception is IOException) {
 emit(emptyPreferences())
 } else {
 throw exception
 }
 }.map { preferences ->
 // 3
 val backgroundColor =
AppBackgroundColor.getColorByName(preferences[BACKGROUND_COLOR]
?: DEFAULT_COLOR)

 UserPreferences(backgroundColor)
 }

Note: When prompted to add the import for Flow, choose
kotlinx.coroutines.flow.Flow.

The code above does a few important things:

1. Accesses the data inside DataStore using the data attribute, which returns Flow
of type Preferences.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 109

2. Catches any exceptions thrown into Flow. If the exception is an IOException, it
returns empty preferences using emit(). Else, it throws the error to the caller.

3. Reads the preference value using the BACKGROUND_COLOR key. If preferences
don’t contain data with the given key, it will return null. In that case, you choose
DEFAULT_COLOR. Finally, it creates an instance of UserPreferences and passes it
into Flow.

Collecting Flow
In the previous step, you accessed the data inside DataStore, mapped it to
UserPreferences and then emitted it into Flow.

Now, you need to collect Flow in MainActivity to read its values. Collecting a flow
is equivalent to reading the values emitted from Flow.

Open MainActivity.kt and replace the changeNotesBackgroundColor() invocation
inside onCreate() with the following code:

try {
 lifecycleScope.launchWhenStarted {
 notePrefs.userPreferencesFlow.collect { userPreferences ->

changeNotesBackgroundColor(userPreferences.backgroundColor.intCo
lor)
 }
 }
} catch (e: Exception) {
 Log.e("MainActivity", e.localizedMessage)
}

Also, add the following imports:

import kotlinx.coroutines.flow.collect
import android.util.Log

In the code above, you call collect() on Flow and get access to the
UserPreferences instance. You then extract the backgroundColor value and invoke
changeNotesBackgroundColor(). Finally, you wrap the entire collect() call in a
try-catch block since any exception throw by Flow will be re-thrown by collect()
as well.

Next, you need to fetch the background color from DataStore.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 110

Making synchronous calls
When you migrate a project from SharedPreferences to DataStore, it isn’t always
possible to replace all synchronous reads with asynchronous reads.

Open NotePrefs.kt and replace getAppBackgroundColor() with the following
code:

fun getAppBackgroundColor(): AppBackgroundColor =
 runBlocking {
 AppBackgroundColor.getColorByName(dataStore.data.first()
[BACKGROUND_COLOR] ?: DEFAULT_COLOR)
 }

In the code above, runBlocking() blocks the current thread while the coroutine
runs and effectively lets you make synchronous reads from DataStore.

Note: You should only use runBlocking() to read from DataStore when it’s
absolutely necessary because doing so potentially blocks the UI thread while
DataStore reads the values.

You use dataStore.data.first() to access the first item emitted by Flow and then
use BACKGROUND_COLOR to access the background color from the preferences.

Build and run. Open the overflow menu in the toolbar and change the background
color to orange. You’ll see that the background changes. Close and reopen the app.
The background color will still be orange.

Background Color Changes Based on the User’s Preferences.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 111

Congratulations, you’ve successfully used DataStore to store and retrieve user
preferences. Next, you’ll take a look at how to handle adding DataStore to an app
that already uses SharedPreferences.

Migrating from SharedPreferences
If you’re working on a new app, you can use DataStore right from the start. But, in
most cases, you’ll be working on an existing app that uses SharedPreferences. The
users of this app will already have preferences that you want to persist when you use
DataStore.

To emulate the second scenario, use the starter project.

Migrating the read/write methods
NotePrefs contains methods that persist preferences in SharedPreferences. The
first step in your migration is to rewrite these methods to use DataStore.

Open NotePrefs.kt and add the following code to companion object:

private val NOTE_SORT_ORDER =
stringPreferencesKey("note_sort_preference")
private val NOTE_PRIORITY_SET =
stringSetPreferencesKey("note_priority_set")

In the code above, you create keys for the note sort order and priority. This is similar
to how you handled the background color.

Next, replace saveNoteSortOrder(), getNoteSortOrder(),
saveNotePriorityFilters() and getNotePriorityFilters() with the following
code:

suspend fun saveNoteSortOrder(noteSortOrder: NoteSortOrder) {
 dataStore.edit { preferences ->
 preferences[NOTE_SORT_ORDER] = noteSortOrder.name
 }
}

fun getNoteSortOrder() = runBlocking {
 NoteSortOrder.valueOf(dataStore.data.first()
[NOTE_SORT_ORDER] ?: DEFAULT_SORT_ORDER)
}

suspend fun saveNotePriorityFilters(priorities: Set<String>) {
 dataStore.edit { preferences ->

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 112

 preferences[NOTE_PRIORITY_SET] = priorities
 }
}

fun getNotePriorityFilters() = runBlocking {
 dataStore.data.first()[NOTE_PRIORITY_SET] ?:
setOf(DEFAULT_PRIORITY_FILTER)
}

The code above is similar to what you already wrote for the background color
preference. In saveNoteSortOrder() and saveNotePriorityFilters(), you’re
assigning provided value to specific key and store it into DataStore. Using
getNotePriorityFilters() and getNoteSortOrder(), you’re retrieving stored
value, or a default value if the real one is null.

Open MainActivity.kt and replace updateNoteSortOrder() and
updateNotePrioritiesFilter() to make them use CoroutineScope, as follows:

private fun updateNoteSortOrder(sortOrder: NoteSortOrder) {
 noteAdapter.updateNotesFilters(order = sortOrder)
 lifecycleScope.launchWhenStarted {
 notePrefs.saveNoteSortOrder(sortOrder)
 }
}

private fun updateNotePrioritiesFilter(priorities: Set<String>)
{
 noteAdapter.updateNotesFilters(priorities = priorities)
 lifecycleScope.launchWhenStarted {
 notePrefs.saveNotePriorityFilters(priorities)
 }
}

updateNoteSortOrder() applies provided sorOrderd to the note list inside the
adapter. Then, it uses saveNoteSortOrder() to save the current order filter to
DataStore. updateNotePrioritiesFilter() is doing a similar thing - updates
noteAdapter about filter priorities, and saves the priorities to DataStore.

Now that you have methods to write values to DataStore and to read them, you have
one final step. You need to copy the user’s existing preferences values from
SharedPreferences to DataStore.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 113

Migrating the preferences
To migrate data from SharedPreferences, you need to tell DataStore the name of
the SharedPreferences instance that holds the data you want to copy. You use
SharedPreferencesMigration to achieve this.

To add a migration, change preferencesDataStore() to contain the following
paramter :

 produceMigrations = { context ->
 listOf(SharedPreferencesMigration(context,
NotePrefs.PREFS_NAME))
 }

Note: When adding the import for SharedPreferencesMigration, choose
androidx.datastore.preferences.SharedPreferencesMigration.

In the code above, produceMigrations is the constructor argument, and takes a
lambda of type (Context) -> List<DataMigration<Preferences>>.

You create an instance of SharedPreferencesMigration that takes a Context
instance and the name of the existing SharedPreferences. You then make a list
with the SharedPreferencesMigration instance and return it from the lambda.

Similarly, you can migrate multiple SharedPreferences to a single DataStore.

Without building the app, run it once. Change the priority to Priority 1 and Priority
2 and the sort order to Filename Ascending from the toolbar. Remember your
selections.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 114

Now, build and run for the last time to verify that your sorting and priority choices
from the previous session persisted. This proves that you correctly migrated the
preferences from SharedPreferences.

Note Preferences Persist Across App Launches.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 115

Key points
• SharedPreferences has limitations regarding blocking the UI thread, error

handling and data migration.

• Google introduced DataStore to address the limitations in the SharedPreferences
API.

• There are two implementations of DataStore: Preferences and Proto.

• You use preferencesDataStore() to create or get access to a DataStore
instance.

• DataStore instances can have a unique name, just like SharedPreferences.

• DataStore data is exposed as Flow that you can collect when you want to read
data.

• You use migrations to migrate data from SharedPreferences to DataStore.

Where to go from here?
In this chapter, you learned about Preferences DataStore in detail.

To learn about protocol buffers in your favorite programming language, refer to
Google’s protocol buffers documentation https://developers.google.com/protocol-
buffers/docs/tutorials.

To learn about Proto DataStore, refer to the official Android documentation at
https://developer.android.com/topic/libraries/architecture/datastore#proto-
datastore.

To improve the app, try removing all usages of runBlocking {}, then refactor
MainActivity so it reads the preferences asynchronously.

In the next chapter, you’ll start learning about Room and an architecture that
integrates with it well.

Saving Data on Android Chapter 5: Jetpack DataStore

raywenderlich.com 116

Section 2: Using Room

Architecture Components made their debut at Google I/O 2018. Google presented
them as a set of solutions for the most common problems in the development of
Android apps. Data persistence was among those problems, and one solution that
Architecture Components offers is Room. In this section, you’ll learn how to use the
Room library to persist data in your apps and how to safely migrate data after you
change your database schema.

raywenderlich.com 117

6Chapter 6: Room
Architecture
By Subhrajyoti Sen

In the previous section, you learned all the basics behind data storage on Android.
You learned how to work with permissions, shared preferences, content providers,
JetPack DataStore and SQLite.

SQLite is a fast, lightweight local database natively supported by Android that allows
you to store large amounts of data in a structured way. The only downside of SQLite
is that its syntax isn’t very intuitive since the way to interact with it can be very
different from platform to platform.

Therefore, in this chapter, you’ll learn about one of the most popular libraries that
helps you simplify your interaction with SQLite: Room.

Along the way, you’ll also learn:

• How Object Relational Mappers work.

• About Room’s integration with Google’s architecture components

• The basics behind entities, DAOs and Room databases.

• The advantages and disadvantages of Room.

• The app you are going to build in the rest of this section.

Surely, you’re ready to dive in!

raywenderlich.com 118

Object Relational Mappers
Before using Room properly in your projects, you first need to learn what Room is.

Room is a type of data persistence library commonly known as Object Relational
Mapper or ORM. ORMs are tools that allow you to retrieve, delete, save and update
the contents of a relational database using the programming language of your
choice.

ORMs are implemented as libraries or frameworks that provide an additional layer of
abstraction called the data layer, allowing you to better interact with your database
using a syntax similar to the object-oriented world.

To better understand how ORMs work, imagine that you have a Movie class with
three properties: An id, a name and a release_date.

The Movie class with its properties.

The diagram above is a class diagram that represents the Movie class. Like most
object-oriented languages, each of these properties has a specific data type such as
Int, String or Date.

With the help of an ORM, you can easily use the Movie class to create a new table in
your database. In an ORM, classes represent a table inside your database and each
property represents a column. For example, the ORM will translate the Movie class
into a table like this:

Empty table with three columns: id, name and release_date.

Each column would also have the data type that best represents the original data
type of the original property. For example, a String would be translated as a
varchar and an Integer as an Int.

Saving Data on Android Chapter 6: Room Architecture

raywenderlich.com 119

The way to create new records inside the tables differs from each implementation.
For instance, some ORMs automatically create new entries each time a new class
instance is created. Other ORMs such as Room use Data Access Objects or DAOs to
query your tables.

The following is a simple example of how you would use a DAO in Room to create
new Movie records in the previously mentioned table:

movieDao.insert(Movie(1, "Harry Potter", "10-11-05"))
movieDao.insert(Movie(2, "The Simpsons", "03-10-02"))
movieDao.insert(Movie(3, "Avengers", "08-01-10"))

And your table would look like this:

The table filled with data and three columns: id, name and release_date.

Easy, right?

Note: Room can autogenerate the primary key, in this case, ID. You will learn
how to do that in a later chapter.

Now, check out how Room and Google’s android architecture components work and
interact with each other.

Room and Android Architecture
Components
Over the years, Android developers have adopted different practices in developing
the architecture of their apps. Some programmers preferred to use an MVVM
architecture with SugarORM, while others used MVP with ObjectBox and Firebase.
This led to confusion since there was no recommended or official way of doing
things.

Saving Data on Android Chapter 6: Room Architecture

raywenderlich.com 120

Therefore, at the 2018 I/O conference, Google introduced the Android Architecture
Components, a set of libraries focused on creating a robust architecture for your
apps.

Room is part of the architecture components and it is Google’s ORM meant to
replace other libraries such as ObjectBox or SugarORM.

An app built with Room and other architecture components usually relies on a set of
components you’re going to see in detail in the following sections.

Database
On a device, the data is stored on a local SQLite database. Room provides an
additional layer on top of the usual SQLite APIs that avoids creating a lot of
boilerplate code using the SQLiteOpenHelper class.

For instance, suppose you want to create a simple database that stores a question
table for a quiz app, like the one you will be building in the next chapter. A
traditional implementation using the standard SQLite APIs would look something
like this:

private const val SQL_CREATE_ENTRIES =
 "CREATE TABLE question (" +
 "question_id INTEGER PRIMARY KEY," +
 "text TEXT"

private const val SQL_DELETE_ENTRIES = "DROP TABLE IF EXISTS
question"

class QuizDbHelper(context: Context) : SQLiteOpenHelper(context,
DB_NAME, null, DATABASE_VERSION) {
 companion object {
 const val DATABASE_VERSION = 1
 const val DB_NAME = "question_database.db"
 }
 override fun onCreate(db: SQLiteDatabase) {
 db.execSQL(SQL_CREATE_ENTRIES)
 }
 override fun onUpgrade(db: SQLiteDatabase, oldVersion: Int,
newVersion: Int) {
 db.execSQL(SQL_DELETE_ENTRIES)
 onCreate(db)
 }
 override fun onDowngrade(db: SQLiteDatabase, oldVersion:
Int, newVersion: Int) {
 onUpgrade(db, oldVersion, newVersion)
 }
}

Saving Data on Android Chapter 6: Room Architecture

raywenderlich.com 121

On the other hand, with Room the code becomes much more concise and easier to
understand:

@Database(entities = [(Question::class)], version = 1)
abstract class QuestionDatabase : RoomDatabase() {
 abstract fun questionsDao(): QuestionDao
}

As you can see, Room drastically reduced the amount of boilerplate code. Room
handles most of the database interaction for you under the hood. Instead of you
writing the boilerplate code, Room uses code generation to generate the boilerplate
code at compile time.

Entities
Entities in Room correspond to tables in your database and are usually defined in
Kotlin as data classes. Take a look at the following Entity example:

@Entity(tableName = "question") //1
data class Question(
 @PrimaryKey //2
 @ColumnInfo(name = "question_id") //3
 var questionId: Int,
 @ColumnInfo(name = "text")
 val text: String)

Room gives you many annotations that allow you to define how you want your data
class to be translated into an SQLite table.

Taking each commented section in turn:

1. The @Entity annotation tells Room that this data class is an Entity. You can use
many different parameters to tell Room how this Entity will be translated into
an SQLite table. In this case, you are using the tableName parameter to define
the name for the table.

2. The @PrimaryKey annotation is mandatory and each Entity must have at least
one field annotated as the primary key. You could also use the primaryKeys
parameter inside your @Entity annotation to define your primary key.

3. The @ColumnInfo annotation is optional but very useful since it allows specific
customization for your column. For example, you can define a custom name or
change the data type.

Saving Data on Android Chapter 6: Room Architecture

raywenderlich.com 122

DAOs
DAO stands for Data Access Object. DAOs are interfaces or abstract classes that
Room uses to interact with your database using annotated functions. Your DAOs will
typically implement one or more CRUD operations (create, read, update and delete
operations) on a particular Entity.

The code for a DAO that interacts with the question Entity defined above would
look like this:

@Dao //1
interface QuestionDao {

 @Insert(onConflict = OnConflictStrategy.REPLACE) //2
 fun insert(question: Question)

 @Query("DELETE FROM question") //3
 fun clearQuestions()

 @Query("SELECT * FROM question ORDER BY question_id") //4
 fun getAllQuestions(): LiveData<List<Question>>

}

Step-by-Step:

1. The @Dao annotation marks this interface as a Data Access Object. DAOs should
always be abstract classes or interfaces since, at compile time, Room will
internally create the necessary implementation for you according to your
provided query methods.

2. The @Insert annotation declares that this method will perform a create
operation by performing an INSERT INTO query using the object received as a
parameter to create a new record.

Saving Data on Android Chapter 6: Room Architecture

raywenderlich.com 123

3. The @Query annotation executes the query passed as a parameter. In this case,
you are performing a delete operation by executing a DELETE FROM query.

4. This is another @Query annotated method that retrieves all the questions from
your database by using SELECT query.

Don’t worry if something doesn’t make sense right now. You’ll be learning much
more about DAOs in the The DAO Pattern chapter.

Repository
This class acts as a bridge between your data sources and your app. The repository
class handles the interaction with your Room database and other backend endpoints
such as web services and Open APIs. Repositories make it easy to abstract the data
and network layers away from the rest of the app. This abstraction makes it easy to
add new data sources without affecting the rest of the app.

ViewModel
Just like the Repository acts as a bridge between your data sources and your app, the
ViewModels act as a bridge between your Repository and your user interface. The
ViewModel communicates the data coming from your Repository to your Views and
has the advantage of surviving configuration changes since it’s lifecycle-aware.

ViewModels are implemented independently of the views (Activities or Fragments).
The separation makes it easy to change the view layer without affecting the business
logic.

Saving Data on Android Chapter 6: Room Architecture

raywenderlich.com 124

LiveData
LiveData is a data holder class that implements the Observer pattern. This means it
can hold information and be observed for changes. Your views such as Fragments or
Activities observe LiveData objects returned from your ViewModels and update the
relevant widgets as needed. The unique thing about LiveData is that it emits changes
only if the observer is in an active state. Hence, if your Activity is in the backstack or
the background, LiveData will not emit any changes.

The following diagram illustrates the interaction between the components
mentioned above:

A diagram describing the interaction between Android Architecture components.

You will be learning much more about the above components in the upcoming
chapters, but for now, this is all you need to know.

Saving Data on Android Chapter 6: Room Architecture

raywenderlich.com 125

Advantages of using Room
Room uses a local SQLite database to store your data. Therefore, some of the
advantages and disadvantages of SQLite apply to Room as well.

Room, however, has some important advantages over the SQLite APIs:

• Compile-time query verification: SQLite queries are usually executed at run-
time without any verification. If the query has any errors, an exception is thrown,
usually crashing your app. Room performs verifications on the SQL queries at
compile-time and notifies you of errors early on.

• Convenience annotations: As you already noticed in the previous examples,
there are some awesome annotations for reducing number of repetitive code parts
and boilerplate code.

• Data migration: Writing migrations between different versions of your database
can be a tedious task. Room provides a set of APIs that streamline this process and
also make it very easy to test the migrations.

Frequently asked Room questions
Are ORMs really necessary? Can’t I just use plain old SQLite?

Of course, you can use plain old SQLite! In fact, Android standard libraries include many
utilities and classes that help you work directly with SQLite. The only downside with this
approach is that you often have to deal with a lot of boilerplate code that can slow down
your development.

Are there other ORMs for Android besides Room?

Sure! There many ORMs out there like ObjectBox or SugarORM.

What are the advantages of using Room vs. other ORMs?

The main advantage of using Room vs. ORMs is that Room offers the best integration
with other architecture components like ViewModel and LiveData. Since Google develops
it, you can be sure this library will be maintained and improved for a very long time to
come.

Saving Data on Android Chapter 6: Room Architecture

raywenderlich.com 126

Your app
This chapter has been full of theory and concepts. You’re probably wondering when
you are actually going to start writing some code.

Well, the rest of the following chapters are going to be focusing solely on how to
apply the previously mentioned concepts to build a fun quiz app called DroidQuiz.
This app will allow your users to test their Android knowledge with a set of questions
stored in a Room database:

The main screen of DroidQuiz.

DroidQuiz will help you learn about many important concepts behind Room:

• How to add the appropriate dependencies to your build.gradle file for Room and
most of the architecture components such as LiveData.

• How to create a local SQLite database using Room.

• How to use Database Access Objects or DAOs to interact with your database.

Saving Data on Android Chapter 6: Room Architecture

raywenderlich.com 127

• How to use Google’s Android architecture components such as LiveData and
ViewModel to interact with your Room database.

• How to create indices and relationships between your tables.

• How to test your database, migrations, and ViewModels, and much more!

As you can see, there is a lot to learn. This section will guide you through every,
single step needed to build a final version of the app.

Key points
• Room is an ORM developed by Google as a part of Android Architecture

Components to simplify the interaction with your SQLite database and reduce
boilerplate code.

• Entities in Room correspond to tables in your database.

• DAO stands for Data Access Object.

• The Repository class handles the interaction with your Room database and other
backend endpoints.

• The ViewModel communicates the data coming from your repository to your views
and has the advantage of surviving configuration changes.

• LiveData is a data holder class that can hold information and be observed for
changes.

• ORMs provide an additional layer of abstraction that allows you to interact with
your relational database with an Object-Oriented Language syntax.

Saving Data on Android Chapter 6: Room Architecture

raywenderlich.com 128

7Chapter 7: Entity
Definitions
By Subhrajyoti Sen

In the previous chapter, you learned the architecture best suited for Room. You also
learned about ORMs, Android Architecture Components and the advantages and
disadvantages of SQLite.

In this chapter, you’ll cover all you need to know about Room entities. Along the
way, you’ll learn:

• The properties of SQLite tables.

• How to add Room’s dependencies to your Gradle files.

• How to create SQLite tables using Room annotations.

• How to define primary keys and column names.

Hopefully, you’re ready to get started!

Note: This chapter assumes you have a basic knowledge of Kotlin and Android.
If you’re new to Android, you can find a lot of beginner Android content to get
you started on our site at https://www.raywenderlich.com/category/android. If
you know Android, but are unfamiliar with Kotlin, take a look at our tutorial,
“Kotlin for Android: An Introduction” at https://www.raywenderlich.com/
174395/kotlin-for-android-an-introduction-2.

raywenderlich.com 129

Getting started
Have you ever played trivia games and thought, “There should be a game like this
but with questions for Android developers”? Well, the sample app you’ll be working
on, DroidQuiz, is a trivia game that allows you to answer a series of questions to test
your knowledge of Android.

In this chapter, you’re going to build entities that represent the tables of your
database. If you’ve had some previous experience with SQL, you probably know this
can be somewhat annoying or painstaking to accomplish. Additionally, in “Chapter 3,
SQLite Database,” you saw how, with SQL syntax, it can sometimes be hard to deduce
which parts of it caused an error (if by some chance you get one). The Room
database, and its annotation-driven system of creating entities and queries, make
this process tremendously easier.

Start by opening the starter project for this chapter in Android Studio 4.2 or greater.
Go to File ▸ Open, find app folders in the entity-definitions ▸ projects folder, and
select the starter directory.

Once the starter project finishes loading and building, run the app on a device or an
emulator.

Starting Screen of the Sample App.

Right now, the app is just an empty canvas, but that is about to change!

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 130

Tables and entities
Most databases consist of tables and entities. If you were to draw a parallel with
object-oriented programming, you could think of entities as a class definition,
which defines what the objects in the table should look like and how their respective
properties behave. Once you create those objects — instances of classes, or entities
in your case — you can store them somewhere in memory, which is the table. The
table as such is a container for all the created objects of some entity type.

This is a very brief, high-level description of how databases work, which is why it’s
also beneficial to see real-life examples.

Tables
If you reached this section of the book you’re probably already familiar with
relational databases, tables and SQLite. However, it’s important to review other key
concepts before you proceed to create your entities using Room.

Note: In this chapter, you are only going to learn the basics of database tables;
if you want to learn more, check out the SQLite chapters of the previous
section of the book.

Simply put, tables are structures similar to spreadsheets or two-dimensional arrays
that let you store records as rows with one or more fields defined as columns — or, as
mentioned above, a container for entity data.

For example, the following image shows how a table that stores information about
movies could look.

Example of a Movie Table.

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 131

Columns

Columns represent a field or property of your data like the Title, Description,
ReleaseDate or Rating. Columns usually have specific data types such as INTEGER,
VARCHAR, FLOAT or DATETIME that help preserve the integrity of the information
stored in your database.

For most of the tables, the first column will be used to store a primary key that
uniquely identifies the record. Primary keys are values often represented as a series
of Integers that are incremented one by one (1,2,3,4,5,…). This isn’t always the case
since you could also use any String that represents a unique value for each entry —
like a randomly generated hash or a social security number if you have more complex
security requirements. As such, the primary key is, at its core, the differentiating
agent between records. You can quickly look up records by primary keys or compare
two records to see if they are the same.

Primary keys also help you create relationships by defining a foreign key that
references a primary key of another table. For example, say that you have an Orders
table that stores the number of Blu-ray sales for each movie like below:

Example of an Orders Table.

In this case, the MovieID is a foreign key that identifies a unique movie record in
your Movies table. Therefore, if you want to retrieve extra details about an available
movie, you would only need to retrieve the movie row from your Movies table with
that particular ID. As such, you don’t have to store all of the data about ordered
movies in the Orders table, you can just look up movie details using the foreign key.
This makes each order object very light while holding enough data to look up more
detailed information.

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 132

Although not all database management systems will force you to have a primary key,
it’s strongly recommended that you have one for each of your tables since it makes it
much easier to retrieve information using queries. But, usually, when working with
databases, you can specify you want a primary key, and it gets auto-generated, so you
don’t have to worry about it.

Rows

Rows represent a record in your database and can contain as many columns as
needed to represent your data. Row and record are terms that are often used
interchangeably just like column and field. However, when creating a database,
you’ll need to make sure that your team is on the same page regarding naming
conventions.

In the Movie table example, you have five rows each representing a different movie
record added to your database. The ID column shows the primary key for each movie.
Title and Description are String values, ReleaseDate is Date field and Rating is
Float. This will help you form the appropriate entity within the Android project so
that Room can create the database and tables.

Entities
To create a table using Room you need to create an entity, just like you did above.
Entities in Room are defined by using a series of different annotations on classes.
The following are the most common annotations that you will use when defining an
entity:

• @Entity

@Entity declares that the annotated class is a Room entity. For each entity, a table is
created in the associated SQLite database to save your data. To add the annotation,
simply use the following approach:

@Entity
data class Movie(
 //...
)

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 133

This code would create a Movie table in your database. By default, Room always uses
the name of your class as the table name, but you can use the tableName property of
@Entity to set a different name like shown below:

@Entity(tableName = "movies")
data class Movie(
 //...
)

Now that the class is declared as an entity, you can use it in Room’s setup, which
you’ll see in a bit.

• @PrimaryKey

@PrimaryKey allows you to define a primary key for your table. It’s very important to
remember that each entity in Room must have at least one field defined as the
primary key:

@Entity
data class Movie(
 @PrimaryKey var id: Int,
 var title: String?,
 var description: String?,
 var releaseDate: String?,
 var rating: Float
)

You can also let Room generate the primary keys automatically for you, using
autogenerate of @PrimaryKey :

@Entity
data class Movie(
 @PrimaryKey(autogenerate = true) var id: Int,
 var title: String?,
 var description: String?,
 var releaseDate: String?,
 var rating: Float
)

In the above code, id is the primary key for your Movie table, and it’s going to be
automatically generated by Room incrementing the value each time by one. It’s
important to remember that if you set autogenerate to true, the type affinity for
the field must be INTEGER, or Int in Kotlin.

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 134

• @ColumnInfo

In the same way that the tableName property of @Entity allows you to customize
the name of your table, @ColumnInfo lets you change the name of your columns —
class properties in Kotlin:

@Entity
data class Movie(
 @PrimaryKey(autogenerate = true) var id: Int,
 var title: String?,
 var description: String?,
 @ColumnInfo(name = "release_date") var releaseDate: String?,
 var rating: Float
)

This annotation is particularly useful because you’ll often want to follow different
naming conventions for your class properties and your database columns, such as
releaseDate vs release_date naming.

• @Ignore

Room translates all of your class properties into database columns by default. If
there is a field that you don’t want to be converted into a column, you can use
@Ignore to tell Room to ignore it:

@Entity
data class Movie(
 @PrimaryKey(autogenerate = true) var id: Int,
 var title: String?,
 var description: String?,
 @ColumnInfo(name = "release_date") var releaseDate: String?,
 var rating: Float,
 @Ignore var poster: Bitmap?
)

In the above code, you use @Ignore to tell Room that you don’t want poster to be
converted as a column in your Movie table. You can also use ignoredColumn of
@Entity to declare which fields you want to ignore:

@Entity(ignoredColumns = arrayOf("poster"))
data class Movie(
 @PrimaryKey(autogenerate = true) var id: Int,
 var title: String?,
 var description: String?,
 @ColumnInfo(name = "release_date") var releaseDate: String?,
 var rating: Float,
 var poster: Bitmap?
)

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 135

• @Embedded

You use @Embedded on an entity’s field to tell Room that the properties on the
annotated object should be represented as columns on the same entity.

For example, say that you have a User table that contains address information. Your
entity could look like this:

@Entity
data class User(
 @PrimaryKey val id: Int,
 val firstName: String?,
 val street: String?,
 val state: String?,
 val city: String?,
 @ColumnInfo(name = "post_code") val postCode: Int
)

However, thanks to @Embedded you can represent the address fields as a separate
class but Room will still generate a single table:

data class Address(
 val street: String?,
 val state: String?,
 val city: String?,
 @ColumnInfo(name = "post_code") val postCode: Int
)

@Entity
data class User(
 @PrimaryKey val id: Int,
 val firstName: String?,
 @Embedded val address: Address?
)

Both implementations will generate a single User table with six fields: id,
firstName, street, state, city and postCode.

There are more annotations available, but these are by far the most commonly used
when creating your entities.

Now that you know the theory, it’s time to put it into practice!

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 136

Creating your entities
Since you’ll be working on with Room, you need to add the appropriate dependencies
to your build.gradle files to use Room. To ensure forward compatibility with future
versions of Android, you’ll use Androidx artifacts for this project.

Open the app-level build.gradle file and add the following lines under the
dependencies block:

//Room
implementation "androidx.room:room-runtime:$room_version"
kapt "androidx.room:room-compiler:$room_version"

The room-runtime library contains all the annotations you read about earlier and
all other classes you need from Room. The room-compiler library is an annotation
processor that reads the above annotations and generates the code used to create the
SQLite database.

Click Sync Now and wait until Android Studio finishes syncing your new
dependencies.

Build and run one more time just to make sure that the project is still working
properly after the updates to your Gradle files.

Verifying that The App shows The Main Screen.

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 137

Create a new package under the root directory of your app by right-clicking on the
package com/raywenderlich/android/droidquiz and selecting New ▸ Package and
name it data.

Creating a New Package - Data

Inside the data package, you’ll store all the code related to your Room database
including your entities and data access objects.

Create a new package inside the data package and name it model. Inside the model
package, you’ll store the data classes that will be converted to entities using
annotations.

Creating a New Package - Model

The DroidQuiz app will consist of a very simple database with two tables — a
Question table and an Answer table.

The Question table will have two columns:

• question_id: A self incrementing Int that will act as the primary key.

• text: A String that represents the text of the question.

The Answer table will have four columns:

• answer_id: The primary key for this table.

• question_id: A foreign key that references a question in the Question table.

• is_correct: A Boolean, which indicates if this is one of the correct answers or not.

• text: A String that represents the text of the answer.

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 138

Here is how the entity-relationship diagram would look:

Entity Relationship Diagram

Each question can have one or more answers, but each answer will only have one
associated question, thus creating a one-to-many relationship. Easy, right?

In this chapter, you’ll solely focus on defining entities, without foreign key
relationships. You’ll learn how to create relations later on in the book.

Create a new class under the model package by right-clicking on model and
selecting New ▸ Kotlin File/Class, and name it Question.

Replace the class definition with the following code:

@Entity(tableName = "questions") // 1
data class Question(
 @PrimaryKey(autoGenerate = true) // 2
 @ColumnInfo(name = "question_id") // 3
 var questionId: Int,
 val text: String
)

Note: Remember to use Alt + Enter on PC or Option + Return/Enter on a
Mac to import any missing dependencies.

This code does the following, step by step:

1. @Entity tells Room that this data class should be converted into an entity. The
tableName property indicates that the table name should be questions.

2. @PrimaryKey makes the questionId field of your Question class a primary key
of the table. The autogenerate property declares that Room will generate the
primary key for you as an auto-incremented integer.

3. @ColumnInfo allows you to customize your column’s properties like the name or
the type affinity - Integer, Text, Float, etc.

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 139

Now, create another class under the model package and name it Answer.

Once again, the class definition with the following code:

@Entity(tableName = "answers")
data class Answer(
 @PrimaryKey(autoGenerate = true)
 @ColumnInfo(name = "answer_id")
 val answerId: Int,
 @ColumnInfo(name = "question_id")
 val questionId: Int,
 @ColumnInfo(name = "is_correct")
 val isCorrect: Boolean,
 val text: String
)

The code is very similar to Question, so there isn’t much need to explain the steps.
With this, your entities are ready, and it’s time to create your database!

Creating the database
Create a new package under the data directory and name it db.

Project Structure

Now, create a new class under the db package and name it QuizDatabase. Replace
everything inside with the following:

@Database(entities = [(Question::class), (Answer::class)],
version = 1)
abstract class QuizDatabase : RoomDatabase()

Similar to your entities, Room uses @Database to define which class should be used
to generate your database tables, connections and queries.

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 140

@Database should always include at least two properties:

• entities: These should include an array of all the the entities associated with
your database.

• version: This is the current version of your database, which is used to migrate
everything once things change. You’ll learn more about the importance of versions
in “Chapter 11: Data Migration”.

Note: It’s very important that you declare your class as an abstract class that
extends from RoomDatabase or Room will throw an error.

There are many ways to get an instance of your database at runtime, but, for this
app, you’ll create a property inside your Application class.

Create a new class under the root package of your project — droidquiz — and name
it QuizApplication.

Replace the class declaration with the following:

//1
class QuizApplication : Application() {

 private val DB_NAME = "quiz_database"

 companion object {
 lateinit var database: QuizDatabase // 2
 private set
 }

 override fun onCreate() {
 super.onCreate()
 database = Room
 .databaseBuilder(
 this,
 QuizDatabase::class.java,
 DB_NAME
) // 3
 .build()
 }
}

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 141

Taking each commented section in turn:

1. Makes this class extend Application, so that it runs with the app launch.

2. Creates a database property that will hold a reference to your Room database.
Note that the property has a private setter. This ensures that the property can be
initialzied only inside QuizApplication.

3. databaseBuilder() creates an instance of your Room database at runtime. The
first parameter accepts a Context instance. The second parameter expects the
class that you annotated as your Room database. The third parameter allows you
to define a name for your SQLite database.

Now, open AndroidManifest.xml file and add your QuizApplication class to the
application tag:

android:name=".QuizApplication"

Finally, build and run to verify that everything is still working properly.

Final Screen.

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 142

While the changes are still not visually noticeable since you haven’t added any
DAOs, you have already created your first SQLite tables using Room entities. Good
job!

If you compare it to the very first implementation you’ve had with writing your
SQLite helper, you understand how and why Room is becoming more and more
popular among Android developers.

Key points
• Tables are structures similar to spreadsheets or two-dimensional arrays that let

you store records objects, as rows with one or more fields defined as columns.

• @Entity declares that the annotated class is a Room entity.

• @PrimaryKey allows you to define a primary key for your table to uniquely
differentiate data.

• @ColumnInfo lets you change the names for your columns, so you can use
different naming conventions in Kotlin and SQL.

• @Ignore tells Room to ignore a certain property from your class so it does not get
converted into a column in the database.

• @Embedded can be used on an entity’s field to tell Room that the properties on the
annotated object should be represented as columns on the same entity. This way
you can organize your data clearly while writing the same SQL.

Where to go from here?
In this chapter, you learned a lot about SQLite tables, Room and entities. If you want
to learn more about entities, I suggest the following resources:

• This official Android developer’s guide page, “Defining Data Using Room Entities,”
on how to define data using Room entities, which you can find here: https://
developer.android.com/training/data-storage/room/defining-data.

• This official Android developer’s guide page, “Entity,” which you can find here:
https://developer.android.com/reference/androidx/room/Entity.

In the next chapter, you’re going to learn even more about Room entities by creating
your first relations.

Saving Data on Android Chapter 7: Entity Definitions

raywenderlich.com 143

8Chapter 8: Mastering
Relations
By Subhrajyoti Sen

In the previous chapter, you learned all you need to know about tables, entities and
annotations. You also learned how to create your database and how to get a runtime
instance of it by using Room.databaseBuilder().

In this chapter, you’ll learn even more about entities by creating relations between
them using foreign keys and @Relation. Along the way, you’ll learn:

• How to create a relationship using primary keys and foreign keys.

• How to define a one-to-many relationship in Room.

• How to represent different kinds of relationships using entity-relationship
diagrams.

• How to use @Embedded.

• How to use @ForeignKey.

• How to use @Relationship.

Note: This chapter assumes you have basic knowledge of Kotlin and Android.
If you’re new to Android, check out our Android tutorials (https://
www.raywenderlich.com/category/android). If you know Android but are
unfamiliar with Kotlin, take a look at Kotlin For Android: An Introduction
(https://www.raywenderlich.com/174395/kotlin-for-android-an-
introduction-2).

raywenderlich.com 144

Getting started
If you are following along with your own app, open it up. If not, don’t worry. You can
use the starter project for this chapter, which you can find in the attachments. Now,
open the app in Android Studio 4.2.1 or greater by going to File ▸ Open, and
selecting the starter project directory.

Once the starter project finishes loading and building, run the app on a device or
emulator.

The DroidQuiz Application.

Great! The app is working as expected.

The code is basically the same as the previous chapter. But, if you are just getting
started, here is a quick recap of the packages and the code:

• The data package contains the db and model packages. The db package contains
the class that creates your Room database, while model contains all of the code
for the entities created in the previous chapter.

• The view package contains the code for all of the activities of your app.

You’re no doubt eager to start writing some code. But, before that, you’ll need to
learn a bit of theory first!

Saving Data on Android Chapter 8: Mastering Relations

raywenderlich.com 145

Relations and entity-relationship
diagrams
In this chapter, you’ll create a relation between two entities that you created in the
previous chapter — Question and Answer. The only problem is that relationships
are always hard to understand even if it’s just between two single tables. Therefore,
in this section, we are going to talk about a little tool that will help you to better
understand the different kinds of relations between — entity-relationship
diagrams.

You might have heard of entity-relationship diagrams before. They are quite
common in software design and it’s one of the first things they teach in college in
courses such as Databases 101 or Introduction to Relational Databases. An
entity-relationship diagram, ER diagram or ERD is a kind of flowchart that illustrates
the relationships between the components of a system representing something like a
school or a company using a set of symbols that include rectangles, ovals and
connecting lines.

ER diagrams are commonly created during the initial design of a database schema to
determine the tables, their fields and the nature of the relationship between them.

Many different ERD notations have been created over the years to serve different
purposes. The notation that we are using in this section is called Crow’s Foot
notation. Although ER diagrams may have different elements depending on the
notation system, they usually share similar components that include the following:

Entity
Represents a component, object or a concept of a system. Concepts described by an
entity can be concrete, such as a student or a car, or abstract, such as an event or a
schedule. Entities are translated as tables when creating your database schema. They
are commonly illustrated as rectangles in most ER diagrams, as shown on the Image
below.

The Student Entity.

Saving Data on Android Chapter 8: Mastering Relations

raywenderlich.com 146

Entities in the Crow’s Foot notation also include a list of attributes or properties that
define them. For a user entity, its attributes could be username, password and email.
They are listed in the rectangle as shown below:

The User Entity.

Relationship
A relationship tells you how two entities interact with each other and it’s usually
represented as a verb surrounded by a diamond. For example, think about a student
entity and a class entity. Their relationship could be described as follows:

Relation between Entities.

In this ER diagram, the relationship is described as “takes” and you could read it left
to right:

A student takes a class.

Or right to left:

A class is taken by a student.

Note: Not all ER diagrams illustrate the relationship between their entities
since it is often easy to infer from the context. In Crow’s Foot notation, it is
usually omitted.

Saving Data on Android Chapter 8: Mastering Relations

raywenderlich.com 147

Cardinality
Last but not least, cardinality tells you the kind of relationship two entities have.
There are three main cardinal relationships:

One-to-one: When one entity can only be related to one and only one instance of
the other entity. For example, a department on a company can only have one head of
department, and that head of department can only lead one department.

One-to-One Relation.

One-to-many: When one entity can be related to many instances of another entity.
For example, a teacher can teach many classes in a single semester, but a class can
only have one teacher.

One-to-Many Relation.

Many-to-many: When many instances of an entity can also be related to many
instances of another entity. For example, a book (like this one) can have many
authors, and an author can write many books.

Many-to-Many Relation.

Cardinalities can also have constraints that indicate the minimum and maximum
numbers in the relationships: One and only one, zero or one, zero or many and
one or many.

Saving Data on Android Chapter 8: Mastering Relations

raywenderlich.com 148

Here is the full list of cardinalities and constraints that you can find:

ER Cardinalities.

Now that you know how ER diagrams work, you’ll now learn how to create
relationships using Roms Entities.

Creating your relations
As briefly mentioned in the previous chapter, you’ll only need to create one
relationship between the entities in your app, and its ER diagram looks like this:

One-to-Many relation between Question and Answers.

Why don’t you use your recently acquired knowledge to guess which kind of
relationship is this?

Well, if you said “a one-to-many relationship” you are correct.

With the above ER diagram, you are saying: “One question can have one or more
answers and each answer can only be related to one and only one question”. Just
think about it and it makes a lot of sense since each question of the DroidQuiz app
will have at least one correct answer and two incorrect answers. The beauty of this
design is that you can easily expand it or modify it to have something like two
correct answers and two incorrect answers or 3 correct answers and 2 incorrect
answers… You get the point.

Now, you’ll see how easy it is to define foreign keys and one-to-many relationships
between your Room entities. In fact, you can do it by adding a single line of code.

Saving Data on Android Chapter 8: Mastering Relations

raywenderlich.com 149

Defining a foreign key
Open Answer.kt under the data ▸ model package.

The Answer entity already has a question_id field that you can use as a foreign key
that points to the question_id field of your Question entity. The problem is that
you still haven’t told Room that this is actually a foreign key. For this, you need to use
the foreignKeys property of @Entity to define the relationships.

Add a foreignKeys property to @Entity of your Answer class like this:

@Entity(tableName = "answer",
 foreignKeys = [// 1
 ForeignKey(entity = Question::class, // 2
 parentColumns = ["question_id"], // 3
 childColumns = ["question_id"], // 4
 onDelete = CASCADE) // 5
])

Also add the following imports:

import androidx.room.ForeignKey
import androidx.room.ForeignKey.CASCADE

Taking each commented section in turn:

1. foreignKeys allows you to define a relationship between this and another entity.
This property accepts an array of ForeignKey objects that you can use to define
foreign key constraints.

2. The first parameter in the constructor of a ForeignKey object accepts the entity
to which this entity is related. In this case, you are passing the Question class
since you want to create a foreign key constraint to the Question entity.

3. parentColumns accepts the column names in the parent entity as an array. Since
you want to match each answer to a single question, you’re passing the primary
key of your Question entity: question_id.

4. childColumns accepts the column names in the current entity to use as foreign
keys.

5. onDelete tells Room what to do in case the parent entity is deleted from the
database. For example, what would happen to your answers if the respective
question is deleted?

Saving Data on Android Chapter 8: Mastering Relations

raywenderlich.com 150

There are several options for onDelete:

1. CASCADE: If a record is deleted from the parent entity each row in the child
entity that was associated with the parent entity is also deleted. For this app,
you’re using this option since you want to delete the answers if the question is
deleted.

2. NO_ACTION: If the parent record is deleted or modified, no action is taken.

3. RESTRICT: This constraint means that, if a record in the parent entity has one or
more records mapped to it in the child entity, the app is prohibited from deleting
or updating the parent record.

4. SET_DEFAULT: If the parent record is deleted, the foreign key in the child record
gets a default value.

5. SET_NULL: If the parent record is deleted or updated, the foreign key in the child
record gets a NULL value.

Defining an index
One important thing to remember is that, if you define a foreign key constraint,
SQLite requires that you create a unique index in the parent entity for the mapped
columns. It’s also recommended in the documentation that you create an index on
the child table to avoid full table scans when the parent table is updated. If you
don’t, Room will throw a compile time warning.

Therefore, modify your annotation like this:

@Entity(tableName = "answer",
 foreignKeys = [
 ForeignKey(entity = Question::class,
 parentColumns = ["question_id"],
 childColumns = ["question_id"],
 onDelete = CASCADE)
],
 indices = [Index("question_id")]) // only this line
changes

You’ll need to add the import for androidx.room.Index, or you can just import
andoidx.room.*.

In the code above, the indices property allows you to define an index for one or
more columns in your entity by passing an array with the column names. This takes
care of the index for the child entity. Now you need to define it for the parent entity.

Saving Data on Android Chapter 8: Mastering Relations

raywenderlich.com 151

Open Question.kt and modify @Entity like below:

@Entity(tableName = "question", indices =
[Index("question_id")])

Again, you’ll need to add the import for androidx.room.Index.

Just like the Answer entity, this code is telling Room that you want to create an index
for the question_id primary key field.

Using @Relation
Now, say you want to retrieve a list of all the questions with their respective answers.
To do this, you would need to write two different queries: One to retrieve the list of
all the questions and another to retrieve the answers based on the question_id
value. Your DAO would look like this:

@Query("SELECT * FROM question ORDER BY question_id")
fun getAllQuestions(): LiveData<List<Question>>

@Query("SELECT * FROM answer WHERE question_id = :questionId")
fun getAnswersForQuestion(questionId: Int): List<Answer>

While the above approach isn’t bad, Room offers a better way to work with one-to-
many relations: @Relation.

@Relation is a very handy annotation that automatically retrieves records from
related entities. You can apply it to a List or Set of objects and Room will take care
of the rest for you. To see @Relation in action, find QuestionAndAllAnswers.kt
under the data ▸ model package. Add the following code to the class:

@Embedded // 1
var question: Question? = null

@Relation(
 parentColumn = "question_id", // 2
 entityColumn = "question_id"
)
var answers: List<Answer> = ArrayList() // 3

Saving Data on Android Chapter 8: Mastering Relations

raywenderlich.com 152

Step by step:

1. Since you want to be able to access all the fields in the Question entity, you are
using @Embedded to retrieve all the properties from that entity. If you need a
reminder of how annotations like @Embedded work, take a look at the Tables and
Entities section of the previous chapter.

2. @Relation accepts at least two parameters:

• parentColumn indicates the primary key of the parent entity.

• entityColumn indicates the field (usually the foreign key) on this entity that maps
to the primary key of the parent entity.

3. The answers list will contain the Answer objects related to the question
property.

Note: It’s important to remember that @Relation can only be used in Pojo
classes. Entities in Room can’t have relations.

And that’s it! Build and run the app again to verify everything is still working fine.

The final DroidQuiz application.

Saving Data on Android Chapter 8: Mastering Relations

raywenderlich.com 153

While the app has not visually changed, you now have a good foundation about how
Room works and your Database is almost ready.

In the next chapter, you’ll learn how to interact with your Entities by creating your
first Database Access Objects.

Key points
• An entity relation diagram, ER diagram or ERD is a kind of flowchart that

illustrates the relation between the components of a system.

• Entities represent a component, object or concept of a system. They are usually
translated as tables in your database.

• Entities in the Crow’s Foot notation also include a list of attributes or properties
that define them.

• An attribute that can uniquely identify a record of your entity is known as a key
attribute and they usually become primary keys in your database.

• A relationship tells you how two entities interact with each other and it is usually
represented as a verb.

• The cardinality of an ERD tells you the kind of relationship that two entities have.

• One-to-one relation: When one entity can only be related to one and only one
instance of the other entity.

• One-to-many relation: When one entity can be related to many instances of
another entity.

• Many-to-many relation: When many instances of an entity can also be related to
many instances of another entity.

Saving Data on Android Chapter 8: Mastering Relations

raywenderlich.com 154

9Chapter 9: The DAO
Pattern
By Subhrajyoti Sen

In the previous chapter, you learned about different kinds of relations, such as one-
to-one, one-to-many and many-to-many. You also learned how to create them
using annotations.

In this chapter, you’ll learn how to retrieve, insert, delete and update data from your
database using Database Access Objects (DAO).

Along the way, you will also learn:

• What DAOs are and how they work.

• How to create DAOs using Room annotations.

• How to prepopulate the database using a provider class.

• How to perform INSERT INTO queries using @Insert annotated methods.

• How to perform DELETE FROM queries using @Deleteannotated methods.

• How to use @Query to read data from the database.

Ready? Dive in!

raywenderlich.com 155

Getting started
Download the starter project attached to this chapter and open it using Android
Studio 4.2 or above. Once Gradle finishes building your project, take some time to
familiarize yourself with the code. If you have been following along, to this point,
you should already be familiar with the project since it is the same as the final
project from the last chapter. If you are just getting started, here is a quick recap of
the code:

• The data package contains two packages: db and model. The db package contains
the QuestionDatabase class, which defines your Room database. The model
package contains your entities: Question and Answer.

• The view package contains all your activities: SplashActivity, MainActivity,
QuestionActivity, and ResultActivity.

Now, build and run the app to verify that everything is working properly.

The Main screen.

Cool! Now you are ready to start creating some Database Access Objects to
manipulate the data.

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 156

Using DAOs to query your data
Database Access Objects are commonly known as DAOs. DAOs are objects that
provide access to your app’s data, and they are what make Room so powerful since
they abstract most of the complexity of communicating to the actual database. Using
DAOs instead of query builders or direct queries makes it very easy to interact with
your database. You avoid all the hardship of debugging query builders, if something
breaks, and we all know how tricky SQL can be! They also provide a better
separation of concerns to create a more structured application and improve its
testability.

In Room, the DAOs are defined as interfaces or abstract classes. The only difference
between both implementations is that the abstract class can optionally accept a
RoomDatabase instance, as a constructor parameter. They are also convenient for
defining large database transactions, using @Transaction on a method, and calling
multiple different methods within.

If you are wondering why DAOs are defined as abstract classes or interfaces, it’s
because Room takes care of creating each DAO implementation at compile-time, by
generating the business logic code for your definitions.

Note: Remember that Room does not support database access on the main
thread by default since performing long-running operations such as database
transactions might cause your app to freeze or crash. If you still want to take
this risk, you’ll need to explicitly call allowMainThreadQueries() on your
database builder.

But, alright, that’s enough theory. Think about all the operations that you will need
to perform on your database to make the DroidQuiz app work:

• You’ll need to get the list of all the questions currently stored in your database.

• You’ll also need to be able to create new questions when your app is created.

• Finally, you’ll have to delete questions at some point.

With the above in mind, create a DAO in your project that performs CREATE, READ,
and DELETE queries in your database. You’ll see how easy it is to create DAOs in
Room.

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 157

Create a new interface under the db package and name it QuizDao. To turn your new
interface into a DAO, simply add the @Dao annotation like below:

@Dao
interface QuizDao {
}

Now, add the following code to the interface:

@Insert(onConflict = OnConflictStrategy.REPLACE)
fun insert(question: Question)

@Insert(onConflict = OnConflictStrategy.REPLACE)
fun insert(answer: Answer)

@Insert is a shortcut that allows you to automatically create an INSERT INTO
query, that creates a new record in the appropriate table, with the object passed as a
parameter. In this case, the first method is going to create a new record in your
Question table using the question object passed as a parameter and the second
method is going to create a new record in your Answer table.

You might have also noticed the onConflict parameter. It allows you to define an
OnConflictStrategy, which will be used to specify what happens in case there is a
conflict when creating a new entry. There are several options:

• ABORT is the default option and instructs Room to abort the transaction, return
an error and roll back any changes made by the current SQL statement.

• IGNORE makes the transaction ignore the conflict and continue as expected.

• REPLACE replaces the old data with the new values and continues the transaction.

That’s all you need to create a DAO to insert new questions and answers into your
Database. Now, create the method to delete questions.

Add the following method to the same class:

@Query("DELETE FROM question")
fun clearQuestions()

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 158

That code uses @Query to execute a DELETE FROM query in your question table.
Since there is no WHERE clause, this will just delete all the records in your
question table, which is what you’ll need later.

Note: Notice how, if you examine the query String, there’s some degree of
autocomplete available. Room knows which entity definitions you’ve created
and which fields exist within them. You can use this to write queries and to
easily connect to those definitions, knowing that autocomplete is here to help
you write them.

Room also offers @Delete to automatically create DELETE FROM queries. A method
annotated with @Delete will delete its parameter objects from the database. For
example, if you wanted to delete a single question from your database, you could do
something like this:

@Delete
fun deleteQuestion(question: Question)

Note: If you want to learn more about @Delete, you can check out the official
documentation here: https://developer.android.com/reference/androidx/
room/Delete.

Finally, add the following methods:

@Query("SELECT * FROM question ORDER BY question_id") // 1
fun getAllQuestions(): List<Question>

@Transaction // 2
@Query("SELECT * FROM question") // 3
fun getQuestionAndAllAnswers(): List<QuestionAndAllAnswers>

Just like deleteQuestion(), the above methods use @Query to create SQL
statements.

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 159

Taking each commented section in turn:

1. This statement is retrieving all the question records in your database and
ordering them by question_id. The response is returned as a List of Question
objects.

2. @Transaction tells Room that the following SQL statements should be executed
in a single transaction. This is especially useful when you want to query
multiple tables like in the case of your one-to-many relation between the
questions table and the answers table.

3. Finally, you’re creating a select statement to retrieve all the questions from your
questions table. Notice that this method is returning a list of your
QuestionAndAllAnswers class so Room will immediately take the answers
associated with each question and store them inside the properties of your class.

And that’s it! Those are all the DAO definitions you will need.

For this app, you won’t be doing any updates to the data; therefore, you didn’t use
@Update. With @Update, the implementation of the annotated method will simply
update its parameters in the database if they already exist or won’t create any if they
don’t. But since you’re using the OnConflictStrategy.REPLACE when inserting data
anyways, you have a way to update the data, after all.

Now, to provide the QuizDao instance for usage, you simply need to add a function to
QuizDatabase. Open QuizDatabase.kt, and add the following code within:

abstract fun quizDao(): QuizDao

Your code should now look like this:

@Database(
 entities = [(Question::class), (Answer::class)],
 version = 1
)
abstract class QuizDatabase : RoomDatabase() {

 abstract fun quizDao(): QuizDao
}

Now, when you need to access QuizDaoand its functions, you simply have to retrieve
it from the QuizDatabase instance you create on app startup.

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 160

Creating a provider class
Now that your DAO methods are ready, you’ll create a provider class, that you will
need later on, to prepopulate your database. Create a new class under the data
package, name it QuestionInfoProvider and add the following method:

private fun initQuestionList(): MutableList<Question> {
 val questions = mutableListOf<Question>()
 questions.add(
 Question(
 1,
 "Which of the following languages is not commonly used
to develop Android Apps")
)
 questions.add(
 Question(
 2,
 "What is the meaning of life?")
)
 return questions
}

This method creates MutableList of two questions with the respective id and text
fields. You’ll use these questions later when prepopulating your database.

But you will also need to have answers for the above questions, so add the following
method:

private fun initAnswersList(): MutableList<Answer> {
 val answers = mutableListOf<Answer>()
 answers.add(Answer(
 1,
 1,
 true,
 "Java"
))
 answers.add(Answer(
 2,
 1,
 false,
 "Kotlin"
))
 answers.add(Answer(
 3,
 1,
 false,
 "Ruby"
))
 answers.add(Answer(

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 161

 4,
 2,
 true,
 "42"
))
 answers.add(Answer(
 5,
 2,
 false,
 "35"
))
 answers.add(Answer(
 6,
 2,
 false,
 "7"
))
 return answers
}

Just like initQuestionsList(), this method is creating MutableList, but with
Answer objects. Each answer corresponds to a Question object of the previous
method, using the questionId property to match each of them.

Now, add the following properties at the top of your class:

val questionList = initQuestionList()
val answerList = initAnswersList()

The above properties are immediately initialized with the list of questions and
answers that initQuestionList() and initAnswersList() return.

Finally, make this class a singleton by changing the class keyword to object:

object QuestionInfoProvider { ...}

The reason you use the object keyword is to make this class a singleton so that we
never really have to instantiate this class ourselves since you are only interested in
the utilities that this class provides.

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 162

And that’s it! Build and run your app to verify that it is still working as expected.

Verifying that the app is working fine.

Sweet! Although the UI is still not working, your database and DAOs are pretty much
ready to use. You’ll connect the business logic in the following chapters.

Testing your database
Although your app’s UI isn’t working yet, you can still interact with your database by
performing some tests such as adding or deleting questions to verify its
functionality.

Now, to test your database, you could start writing code in your activities that insert
or delete data and print the results. You could also wait until you have all your
ViewModels and wire it to your UI. The problem with this approach is that you might
end up with a ton of code that you’ll have to delete at the end anyway. Also, you
might forget to delete some of your print() statements and expose sensitive data
from your users.

To avoid the above issues, you are going to use a very useful testing framework for
Andriod named Espresso.

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 163

In your project, there’s a com.raywenderlich.android.droidquiz package with
(androidTest) next to it.

The androidTest package.

Under this package, create a new class named QuizDaoTest and add the following
code to it:

@RunWith(AndroidJUnit4::class)
class QuizDaoTest { // 1
 @Rule
 @JvmField
 val rule: TestRule = InstantTaskExecutorRule() // 2

 private lateinit var database: QuizDatabase // 3
 private lateinit var quizDao: QuizDao // 4
}

While adding the import for AndroidJUnit4, use
androidx.test.ext.junit.runners.AndroidJUnit4.

Briefly, the code above does the following:

1. Creates a test class for your QuizDao named QuizDaoTest.

2. Specifies that all tasks executed using Google’s Architecture Components should
be executed synchronously on the main thread. This is very important since unit
tests should be executed sequentially and synchronously.

3. Creates a lateinit var that will hold a reference to your Room database.

4. Creates a lateinit var that will hold a reference to your QuizDao.

Next, add the following code:

@Before
fun setUp() {
 val context =
InstrumentationRegistry.getInstrumentation().context // 1
 try {

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 164

 database = Room.inMemoryDatabaseBuilder(
 context,
 QuizDatabase::class.java) //2
 .allowMainThreadQueries() //3
 .build()
 } catch (e: Exception) {
 Log.i(this.javaClass.simpleName, e.message ?: "") //4
 }
 quizDao = database.quizDao() //5
}

When adding the import for InstrumentationRegistry, use
androidx.test.platform.app.InstrumentationRegistry.

@Before is used to specify a method that should be executed before any test is run.
Here’s what’s happening in the previous code:

1. Gets the context for this test and assigns it to context.

2. Creates an in-memory version of your database. This means that all data will
safely be deleted at the end of your test.

3. allowMainThreadQueries() allows you to execute queries on the main thread.
You need to call this method on your database builder, or Room will throw an
error.

4. Logs an exception if the database can’t be built.

5. Initializes your QuizDao.

Next, add the following code:

@Test
fun testInsertQuestion() {
 // 1
 val previousNumberOfQuestions = quizDao.getAllQuestions().size
 //2
 val question = Question(1, "What is your name?")
 quizDao.insert(question)
 //3
 val newNumberOfQuestions = quizDao.getAllQuestions().size
 //4
 val changeInQuestions = newNumberOfQuestions -
previousNumberOfQuestions
 // 5
 Assert.assertEquals(1, changeInQuestions)
}

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 165

When adding the import for Assert, use org.junit.Assert.

@Test specifies that this method is a test that you want to execute. Here’s what is
going on:

1. Calls getAllQuestions() of your DAO and store the size of currently available
questions.

2. Creates a Question and inserts it into your database.

3. Gets the new amount of questions from the database.

4. Calculates the delta from the new and previous amount of questions in the
database.

5. Uses assert() to let the test know you’re expecting only one new question in the
database. If the assertion fails, it means the Question object you created wasn’t
stored in the database, or it was stored more than once.

Next, add the following method:

@Test
fun testClearQuestions() {
 for (question in QuestionInfoProvider.questionList) {
 quizDao.insert(question)
 }
 Assert.assertTrue(quizDao.getAllQuestions().isNotEmpty())
 Log.d("testData", quizDao.getAllQuestions().toString())
 quizDao.clearQuestions()
 Assert.assertTrue(quizDao.getAllQuestions().isEmpty())
}

This test simply verifies the correct functionality of clearQuestions() by inserting
and deleting all the question records in QuestionInfoProvider. It also logs the data
saved, so you can see the data does exist within the database.

Finally, add the following method:

@After
fun tearDown() {
 database.close()
}

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 166

Contrary to @Before that specifies methods that should be executed before any test
is run, @After specifies which methods should be executed after each of the tests has
concluded. Generally speaking, methods annotated with @After are used to release
resources allocated with @Before. In this case, you are closing the connection to
your database.

When you run an Espresso test, it’ll install your app on a device or emulator, then
execute all the code in your tests. Under the com.raywenderlich.android.droidquiz
with the (androidTest) notation, right-click your QuizDaoTest and select Run
‘QuizDaoTest’. You can also click the green arrow next to the test class name, or
click the arrow next to an individual test.

Running the Instrumenttion Test.

When asked to select a deployment target select your emulator and click OK.

Your project will build, install, and execute all your tests. If you followed every step
properly all the tests should pass.

You have now interacted with your database without adding a single line of code to
your activities. You also know that your DAOs work as expected and can confidently
proceed to focus on the other layers of your architecture such as your ViewModels
and Views.

If you need even more proof of the awesome work you did in this chapter, you can
add some Log.d() statements to the tests, to print out the data being read from the
in-memory database. But the tests should be proof enough!

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 167

Key points
• Database Access Objects are commonly referred to as DAOs.

• DAOs are objects that provide access to your app’s data by abstracting most of the
complexity behind querying and updating your database.

• In Room, DAOs can be defined as interfaces or abstract classes.

• @Insert is a marker, which allows you to automatically create an INSERT INTO
query.

• @Insert can take an OnConflictStrategy parameter, that allows you to specify
what happens in case there is a conflict when creating a new database entry.

• @Query allows you to perform any kind of queries in your database. You can also
use autocomplete, to easily connect to entities and their property definitions.

• @Transaction tells Room that the following SQL statements should be executed
in a single transaction.

• @Delete allows you to automatically create DELETE FROM queries, but it requires
a parameter to be removed; e.g., a Question object.

• @Update updates a record in the database if it already exists, or omits the
changes, if it doesn’t, leaving the database unchanged.

• Writing tests with Espresso is a good way to see if your database code works
properly.

• You can run Espresso tests, without manually going through the app, in less
than a few seconds.

• Inserting the data and reading from the databse in Espresso is safe, because you
can work with an in-memory version of the database.

• In-memory databases clear up after tests end, so there’s no need to do extra
cleanup, other than to close() the database, to avoid leaks.

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 168

Where to go from here?
You now know how to create DAOs to interact with your database. You can download
the final project by opening the attachment on this chapter, and if you want to learn
more about DAOs in Room, you can explore the following resources:

• Google’s guide, “Accessing data using Room DAOs” (https://
developer.android.com/training/data-storage/room/accessing-data).

• The official documentation about Room DAOs (https://developer.android.com/
reference/androidx/room/Dao).

In the next chapter, you are finally going to see your UI working by integrating your
Room database and DAOs with other architecture components such as LiveData and
ViewModels.

Saving Data on Android Chapter 9: The DAO Pattern

raywenderlich.com 169

10Chapter 10: Using Room
with Android Architecture
Components
By Subhrajyoti Sen

In the previous chapters, you learned how to create the most important components
of a Room Database: your Data Access Objects (DAOs) and your Entities.

While having your DAOs and entities is usually enough to interact with your
database, you still need a way to display all the information to the user, all the while
handling the lifecycle of the app and configuration changes. This is where Android
Architecture Components such as ViewModel and LiveData come to the rescue!

In this chapter, you’ll learn:

• What LiveData and ViewModel are, and how to use them.

• How to make your DAOs return LiveData instead of simple data objects.

• How to create ViewModels that are lifecycle-aware and observe them in your
activities.

• How to create a Repository that acts as a bridge between your ViewModels and
your DAOs.

• How to prepopulate your database using a provider class.

Note: This chapter assumes you have basic knowledge of Kotlin and Android.
If you’re new to Android, check out our Android tutorials here: https://
www.raywenderlich.com/category/android. If you know Android but are
unfamiliar with Kotlin, take a look at, “Kotlin For Android: An Introduction,”
here: https://www.raywenderlich.com/174395/kotlin-for-android-an-
introduction-2.

raywenderlich.com 170

Getting started
Start by opening the starter project using Android Studio 4.2, or greater, by going
to File ▸ Open and selecting the starter project directory.

If you have been following along until this point, you should already be familiar with
the code since it is the same as the final project from the last chapter. But, if you are
just getting started, here is a quick recap:

• The data package contains two packages: db and model. db contains the
QuizDatabase class and your DAOs. model contains your entities: Question and
Answer.

• The view package contains all the activities for your app: SplashActivity,
MainActivity, QuestionActivity and ResultActivity.

Build and run the app on a device or emulator.

The Main Screen.

Looks like everything is working as expected. You’re ready to start working on
connecting Room to your app. But, first, you need to learn about LiveData.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 171

Using LiveData with a Repository
To use LiveData, you first need to learn what it is. To put it simply, LiveData is an
observable piece of data, which is aware of the Android lifecycle. You could, for
simplicity’s sake, think of an Observable from Reactive Extensions, but which also
listens to the Android lifecycle. As such, you can listen to its updates, by adding
Observers.

Furthermore, by knowing the lifecycle state at all times, it has smart internal
mechanisms, which stop potential observers from being updated, unless the lifecycle
is active — your app and the screen with LiveData objects are visible. Because of this,
you can easily avoid updating the UI, when the app is not active — e.g. when it’s in
the background.

According to the documentation, there are six main advantages of using LiveData vs
other similar libraries:

• Ensures your UI matches your data state: Since LiveData implements the
observer pattern, you can be sure that your UI widgets such as Buttons,
ListViews, RecyclerViews or TextViews will always be updated with the latest
information.

• No memory leaks: Since LiveData observers are bound to the lifecycle of other
components, they will be destroyed as soon as the associated component is
destroyed.

• No crashes due to stopped activities: When an Activity becomes paused or
stopped it won’t receive any new LiveData notifications.

• No more manual lifecycle handling: Google made sure that LiveData is
lifecycle-aware by default, so you don’t have to manually control them.

• Proper configuration changes: Since LiveData is lifecycle-aware, and it caches
the latest piece of data emitted, your Android components will receive the last
emitted state, after configuration changes.

• Sharing resources: LiveData can be extended to wrap system services, so they
can be shared in your app.

It sounds awesome, right? Well, you’re going to use it to wrap the results of your
DAO queries, and as such, every Activity and Fragment you use will automatically
be notified of any changes. But, to do this, you need to add the LiveData dependency
to your project, and change the DAO definitions, to return LiveDatas.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 172

Adding LiveData to the project
Add the following dependencies to the app build.gradle file:

// architecture components
implementation "androidx.arch.core:core-common:2.1.0"
implementation "androidx.lifecycle:lifecycle-common:2.3.1"
implementation "androidx.lifecycle:lifecycle-extensions:2.2.0"
implementation "androidx.lifecycle:lifecycle-viewmodel-
ktx:2.3.1"

By adding the core and lifecycle dependencies, you add some of Android Jetpack’s
fundamental components, which are related to the Android lifecycle. This also
includes the LiveData component, so you can use it, without changing anything.

Now, open QuizDao.kt inside the data > db package. Take a look at
getAllQuestions() and getQuestionAndAllAnswers():

@Query("SELECT * FROM question ORDER BY question_id")
fun getAllQuestions(): List<Question>

@Transaction
@Query("SELECT * FROM question")
fun getQuestionAndAllAnswers(): List<QuestionAndAllAnswers>

Right now, these methods are just returning a simple List but how do you make
them return a LiveData object instead? Well, it’s very easy! You just need to change
your method signatures to this:

@Query("SELECT * FROM question ORDER BY question_id")
fun getAllQuestions(): LiveData<List<Question>>

@Transaction
@Query("SELECT * FROM question")
fun getQuestionAndAllAnswers():
LiveData<List<QuestionAndAllAnswers>>

As previously mentioned, LiveData is an observable wrapper around a piece of data.
Because of this, you can hold anything within it, like a list, array or a list of nested
lists, you get the point!

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 173

So, to use LiveData, you need to wrap the object that you want to observe for
changes, which in this case are the results of getAllQuestions() and
getQuestionsAndAllAnswers(). Now, every time the data in Room changes, for
example by adding a new Question object, your LiveData and its observers will be
notified, with the new information. But, if you keep calling to the DAO, you’ll always
get a new LiveData, and this defeats the purpose of Room being observable.

Additionally, you should never talk to the DAOs directly, because it’s easier to modify
the code for internal database communication if you wrap it around another layer of
abstraction. For this reason. you’ll create a Repository that acts as a bridge between
your DAOs and the ViewModels, which you’ll define later.

Creating a quiz repository
Create a new Kotlin interface under the data package and name it QuizRepository.
Add the following code, also importing the missing classes:

interface QuizRepository {

 fun getSavedQuestions(): LiveData<List<Question>>

 suspend fun saveQuestion(question: Question)

 suspend fun saveAnswer(answer: Answer)

 fun getQuestionAndAllAnswers():
LiveData<List<QuestionAndAllAnswers>>

 suspend fun deleteQuestions()
}

The above interface defines the methods that you’ll need in your repository. By using
an interface you make it much easier to change the implementation of your code if
you later decide that you need another database implementation rather than Room.

Now, create a new Kotlin class under the data package and name it Repository.
Make your class implement the QuizRepository interface:

class Repository: QuizRepository {
}

Override all the functions in the interface to implement them. You can press Ctrl + I
and Android Studio should display a list of all the missing members. Select all of
them and press OK.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 174

Next, add the following properties at the top of your class:

private val quizDao: QuizDao by lazy {
 QuizApplication.database.quizDao()
}
private val allQuestions by lazy {
 quizDao.getAllQuestions()
}
private val allQuestionsAndAllAnswers by lazy {
 quizDao.getQuestionAndAllAnswers()
}

You create two LiveData values, to observe and react to the data within the
database, and all the changes. allQuestions will hold a reference to all the
questions currently stored in your database.

Once again, since this is LiveData, your observers will be notified each time a new
record is added or updated in the questions table. allQuestionsAndAllAnswers
holds a LiveData list of QuestionAndAllAnswers. This property will be useful when
displaying a question and its answers to your users.

Now, implement saveQuestion() and saveAnswer() as follows:

override suspend fun saveQuestion(question: Question) {
 quizDao.insert(question)
}

override suspend fun saveAnswer(answer: Answer) {
 quizDao.insert(answer)
}

The above code uses insert() of your quizDao to create new Question and Answer
records in your database. You are using a suspend function because you don’t want
to block the main thread by executing long-running operations on it.

Note: If you are new to suspend functions, check out the Kotlin Coroutines
Tutorial for Android: Getting Started at https://www.raywenderlich.com/
1423941-kotlin-coroutines-tutorial-for-android-getting-started.

Next, add this line to deleteQuestions() :

quizDao.clearQuestions()

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 175

Just like saveAnswer() and saveQuestion(), this method uses a suspend function
to execute one of your DAO’s methods: clearQuestions(). As the name implies,
deleteQuestions() will delete all the questions in your database.

Finally, implement the remainder of the code like this:

override fun getSavedQuestions() = allQuestions

override fun getQuestionAndAllAnswers() =
allQuestionsAndAllAnswers

Once again, because you’re using LiveData, if you ever need to access fresh
information from the database, you simply have to observe the preloaded LiveDatas
in your repository. And that is all you need to create a repository that interacts with
your database using your Data Access Objects.

At this point, you might be wondering: Why do I need to define a repository that
interacts with my DAOs? Can’t I simply use my DAOs inside my ViewModels?

Well, you certainly can use your DAOs directly inside your ViewModels, but you also
need to remember a very important principle in programming: The Single
Responsibility Principle. The Single Responsibility Principle states that each class
in your code should have a single responsibility or a single reason to change and that
it should do it well. Just like in a company, you wouldn’t want developers doing
accounting stuff and you wouldn’t want your accountants touching your code.

Also, by having each class focusing on a single task you’ll make your code much
easier to maintain and test.

All right, that’s enough about LiveData. Next, you’ll learn about ViewModel!

Creating ViewModels
The ViewModel is a part of the Android Architecture Components and it’s
designed to solve two common issues that developers often face when developing
Android apps:

• When an activity or fragment is destroyed, data is lost: Most developers can
restore simple data by saving it using onSaveInstanceState() and retrieving it
from the Bundle in onCreate(). However, this is not always a good approach since
Bundles are only suitable for small amounts of data that can be serialized and de-
serialized. You shouldn’t store all the data you’re displaying and working with.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 176

• Separation of Concerns: Activities and fragments usually have to execute
different operations such as database transactions, HTTP requests, UI updates and
more. It’s better to separate Views from the business logic by delegating this task
to a more appropriate class such as ViewModels.

But how does the ViewModel help solve these issues? Well, ViewModel is specifically
designed to hold and manage data related to your user interface. Just like LiveData,
ViewModel is lifecycle aware, which means that it can react to the state of your
Android components. Furthermore, using factories, and dependency management, it
can survive configuration changes such as screen rotations. Therefore you won’t
need to manually restore data using methods such as onSaveInstanceState(), you
can simply retrieve everything you stored within the view model.

ViewModel sounds like the perfect choice to manage the questions and answers for
your DroidQuiz app, right?

Create a new package named viewmodel under drodquiz. Create a new Kotlin class
inside this package and name it MainViewModel.

Make MainViewModel extend the ViewModel abstract class by modifying your code
like this:

class MainViewModel() : ViewModel() {

}

Now, since you are going to need your repository to interact with your database from
your ViewModel classes, add the following parameter to the primary constructor of
your class:

class MainViewModel(private val repository: QuizRepository) :
ViewModel() {

}

Finally, add the following code:

fun prepopulateQuestions() {
 viewModelScope.launch(Dispatchers.IO) {
 for (question in QuestionInfoProvider.questionList) {
 repository.saveQuestion(question)
 }
 for (answer in QuestionInfoProvider.answerList) {
 repository.saveAnswer(answer)
 }
 }

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 177

}

fun clearQuestions() {
 viewModelScope.launch(Dispatchers.IO) {
 repository.deleteQuestions()
 }
}

In the code above, prepopulateQuestions() creates new question and answer
records in your database by using the sample data included in your
QuestionInfoProvider, while clearQuestions() deletes all the questions in your
database using deleteQuestions() on your QuizRepository. viewModelScope is a
CoroutineScope that is tied to the lifecycle of the ViewModel, meaning that
whenever ViewModel is destroyed, all work launched from viewModelScope will be
automatically canceled. Dispatchers.IO specifies that the work should be
performed on a background thread.

Note: Here you are using a method in your ViewModel to prepopulate your
database since it is very useful to learn how to perform delete and insert
operations at any time. However, if you want to prepopulate your database
with some default data, most of the time you’ll probably use addCallback()
on your database builder, which gives you a callback, for when the database is
ready. Then, within the callback you can call your prepopulated code.

The ViewModel class for MainActivity is ready! Now, it’s time to create one for
your QuestionActivity. This will be slightly more complex, but don’t worry, you’ll
be guided every step of the way.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 178

Representing the state
QuestionActivity can have four different states at any given point:

• Loading State: Displayed when the list of questions is being loaded from your
database and it’s represented by a progress bar.

The Loading State.

• Data State: Displayed when you are ready to display a question to your user. This
state is represented by a text and a group of radio buttons for the options.

The Data State.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 179

• Empty State: Displayed when there are no questions in your database. This state
is represented by an image and a text saying that there are no questions.

The Empty State.

• Finish State: A special state, sent from ViewModel when there are no more
questions to be displayed. This state is only used by QuestionActivity to know
when to navigate to ResultActivity.

To represent the above states you are going to create a sealed class that your
ViewModel will update and QuestionActivity will observe using LiveData. In the
end, you’ll have an architecture like this.

The MVVM Architecture.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 180

Your Views will only be in charge of communicating the actions from the user to
your ViewModel and rendering the data received. ViewModel will be in charge of
communicating with the repository, handling the logic and sending UI-ready data to
your View. Interesting huh? :]

Create a new Kotlin class under the model package and name it QuizState. Modify
your class like below:

sealed class QuizState {
 object LoadingState : QuizState()
 data class DataState(val data: QuestionAndAllAnswers) :
QuizState()
 object EmptyState : QuizState()
 data class FinishState(val numberOfQuestions: Int, val score:
Int) : QuizState()
}

As you can see each of the aforementioned states is represented here. The
DataState has a data attribute that contains a question and its associated answers.
The FinishState class holds the number of questions in the quiz, within
numberOfQuestions and the number of correct answers from the user within score.
The other two states - LoadingState and EmptyState are simple objects, which
represent events for the two cases.

Now, it’s time to create your ViewModel.

Changing the state
Create a new class under the viewmodel package and name it QuizViewModel.
Modify your class like below:

class QuizViewModel(repository: QuizRepository) : ViewModel() {
}

Just like before, you are making the QuizViewModel class extend from ViewModel()
and have the repository property in the primary constructor.

Next, add the following properties to the top of your class:

private val questionAndAnswers =
MediatorLiveData<QuestionAndAllAnswers>() // 1
private val currentQuestion = MutableLiveData<Int>() // 2
private val currentState = MediatorLiveData<QuizState>() // 3
private val allQuestionAndAllAnswers =
repository.getQuestionAndAllAnswers() // 4
private var score: Int = 0 // 5

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 181

Step by step:

1. Represents the current QuestionAndAnswers that is going to be sent to
QuestionActivity and displayed to the user.

2. currentQuestion is a helper property that helps you keep track of which
question has to be displayed from the list of questions retrieved from the
repository. For example, if currentQuestion is equal to 0 you are going to
display the question with question_id = 0.

3. currentState contains the current QuizState that is going to be updated by
your ViewModel and observed by QuestionActivity.

4. allQuestionAndAllAnswers contains a LiveData list of all the questions in your
database.

5. score is another helper that holds the score of your user which is updated each
time your user answers a question correctly.

Next, add the following methods:

fun getCurrentState(): LiveData<QuizState> = currentState

private fun changeCurrentQuestion() {
 currentQuestion.postValue(currentQuestion.value?.inc())
}

getCurrentState() will be used by your MainActivity to retrieve and observe the
current QuizState. changeCurrentQuestion() simply adds one to the value of
currentQuestion.

Next, add the following method:

private fun addStateSources() {
 currentState.addSource(currentQuestion)
{ currentQuestionNumber -> // 1
 if (currentQuestionNumber ==
allQuestionAndAllAnswers.value?.size) {

currentState.postValue(QuizState.FinishState(currentQuestionNumb
er, score))
 }
 }
 currentState.addSource(allQuestionAndAllAnswers)
{ allQuestionsAndAnswers ->
 // 2
 if (allQuestionsAndAnswers.isEmpty()) {
 currentState.postValue(QuizState.EmptyState)

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 182

 }
 }
 currentState.addSource(questionAndAnswers)
{ questionAndAnswers -> // 3

currentState.postValue(QuizState.DataState(questionAndAnswers))
 }
}

You’ll call addStateSources() to add the sources which your currentState needs
to observe: currentQuestion, allQuestionAndAllAnswers and
questionAndAnswers. Taking each commented section in turn:

1. If currentQuestion is equal to the number of questions in your database it
means that your user has finished answering the questions in your quiz, so you’ll
change the value of QuizState to FinishState.

2. If the list of questions retrieved from the database is empty you’ll change the
value of QuizState to EmptyState.

3. This is the questionAndAnswers that you’ll send to the QuestionActivity in
DataState.

Now, add the following method:

 private fun addQuestionSources() {
 questionAndAnswers.addSource(currentQuestion)
{ currentQuestionNumber ->
 val questions = allQuestionAndAllAnswers.value

 if (questions != null && currentQuestionNumber <
questions.size) {

questionAndAnswers.postValue(questions[currentQuestionNumber])
 }
 }

 questionAndAnswers.addSource(allQuestionAndAllAnswers)
{ questionsAndAnswers ->
 val currentQuestionNumber = currentQuestion.value

 if (currentQuestionNumber != null &&
questionsAndAnswers.isNotEmpty()) {

questionAndAnswers.postValue(questionsAndAnswers[currentQuestion
Number])
 }
 }
}

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 183

This method adds two different sources to your questionAndAnswers:
currentQuestion and allQuestionAndAllAnswers. Observing currentQuestion
will help you update the current allQuestionAndAllAnswers that will be sent to the
QuestionActivity using a Data. Observing allQuestionAndAllAnswers will tell
your questionAndAnswers when the list of questions has been properly retrieved
from your database.

Next, add the following methods:

fun nextQuestion(choice: Int) { // 1
 verifyAnswer(choice)
 changeCurrentQuestion()
}

private fun verifyAnswer(choice: Int) { // 2
 val currentQuestion = questionAndAnswers.value

 if (currentQuestion != null &&
currentQuestion.answers[choice].isCorrect) {
 score++
 }
}

Step by step:

1. This method will be called when the user presses NEXT and will call
verifyAnswer() and changeCurrentQuestion().

2. verifyAnswer() checks if the answer selected by the user is correct and will
increase the score value accordingly.

Finally, add the following init block, under your class properties, to set up your
ViewModel:

init {
 currentState.postValue(QuizState.LoadingState)
 addStateSources()
 addQuestionSources()
 currentQuestion.postValue(0)
}

Here, you are initializing the QuizState as LoadingLoadingState and
currentQuestion with a value of zero (0). You are also calling addStateSources()
and addQuestionSources() as soon as your ViewModel is created.

And that’s it! Your ViewModels are ready. Now, you need to create your Views.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 184

Defining your Views
As mentioned at the beginning of this chapter, the ViewModel is scoped to the
lifecycle of an Activity or Fragment which means that it will live as long as its
scope is still alive.

Getting access to a ViewModel
To create a ViewModel you usually call the
ViewModelProviders.of(Scope).get(Type) which contains several utility
methods that help you attach a ViewModel to a certain lifecycle and keep track of its
state. This is how the code would look:

viewModel =
ViewModelProvider(this).get(MainViewModel::class.java)

The only problem with the above approach is that the ViewModelProvider is
responsible for creating our ViewModels and, as such, it can’t call their custom
constructors. By default, ViewModelProvider will always call the empty constructor
using get(). This is a problem because you need to pass the repository as a
parameter.

There are several approaches to solve the above problem but the usual way of doing
it is to create a factory for the ViewModel and to pass it to ViewModelProvider. To
keep things short and to the point, a couple of extension functions for the Activity
and Fragment classes have already been prepared for you that automatically take
care of doing all of this for you. If you want to take a look at the source code just
open Utils.kt under the root package.

Open MainActivity.kt and add the following property at the top of your class:

private val viewModel by lazy { getViewModel
{ MainViewModel(Repository()) } }

The above code uses lazy initialization to create your MainViewModel using
getViewModel() which automatically takes care of the initialization and creation
logic of the ViewModels using a ViewModelFactory.

Next, you need to set up menu actions for the user.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 185

Interacting with the ViewModel
Add the following methods to MainActivity:

private fun prepopulateQuestions() =
viewModel.prepopulateQuestions() // 1

private fun clearQuestions() = viewModel.clearQuestions() // 2

override fun onOptionsItemSelected(item: MenuItem): Boolean { //
3
 when (item.itemId) {
 R.id.prepopulate -> prepopulateQuestions()
 R.id.clear -> clearQuestions()
 else -> Toast.makeText(this, "error",
Toast.LENGTH_SHORT).show()
 }
 return super.onOptionsItemSelected(item)
}

Step by step:

1. prepopulateQuestions() uses your viewMode instance to prepopulate your
Room database with sample question and answer records.

2. clearQuestions() uses your viewModel instance to clear all the rows in your
database.

3. Here, you are adding the appropriate actions to your Activity‘s action bar. If the
user taps on the prepopulate button, you’re going to call
prepopulateQuestions(). If the user taps the clear button, you’ll call
clearQuestions().

And that is all you need to do in your MainActivity! Now, you need to set up the
ViewModel for QuestionActivity.

Open QuestionActivity.kt and add the following property for your QuizViewModel:

private val viewModel by lazy { getViewModel
{ QuizViewModel(Repository()) } }

Just like MainActivity, you are using lazy initialization and getViewModel() to
create an instance of your QuizViewModel when QuestionActivity is created for
the first time.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 186

Now that your ViewModel is set up, you only need to create some methods that
handle the different states provided by your QuizState and render them to the
screen. Since all the logic is handled in your ViewModel, this should be pretty easy.

Add the following code:

private fun render(state: QuizState) {
 when (state) {
 is QuizState.EmptyState -> renderEmptyState()
 is QuizState.DataState -> renderDataState(state)
 is QuizState.FinishState ->
goToResultActivity(state.numberOfQuestions, state.score)
 is QuizState.LoadingState -> renderLoadingState()
 }
}

render() will be in charge of calling the appropriate methods depending on
QuizState using a when expression.

Now, add the following code to handle your states:

private fun renderDataState(quizState: QuizState.DataState)
{ //. 1
 binding.progressBar.visibility = View.GONE
 displayQuestionsView()
 binding.questionsRadioGroup.clearCheck()
 binding.questionTextView.text = quizState.data.question?.text
 binding.questionsRadioGroup.forEachIndexed { index, view ->
 if (index < quizState.data.answers.size)
 (view as RadioButton).text =
quizState.data.answers[index].text
 }
}

private fun renderLoadingState() { // 2
 binding.progressBar.visibility = View.VISIBLE
}

private fun renderEmptyState() { // 3
 binding.progressBar.visibility = View.GONE
 binding.emptyDroid.visibility = View.VISIBLE
 binding.emptyTextView.visibility = View.VISIBLE
}

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 187

These are all the methods that render() will use to display different kinds of screens
to the user. Taking each commented section in turn:

1. renderDataState() displays a question to your user usingdata of your
QuizState.Data.

2. renderLoadingState() displays a progress bar.

3. renderEmptyState() displays an image and text saying that there are no
questions in the database.

Now, add the following methods:

fun nextQuestion() { // 1
 val radioButton =
findViewById<RadioButton>(binding.questionsRadioGroup.checkedRad
ioButtonId)
 val selectedOption =
binding.questionsRadioGroup.indexOfChild(radioButton)
 if (selectedOption != -1) {
 viewModel.nextQuestion(selectedOption)
 } else {
 Toast.makeText(this,
getString(R.string.please_select_an_option),
Toast.LENGTH_SHORT).show()
 }
}

private fun displayQuestionsView() { // 2
 binding.questionsRadioGroup.visibility = View.VISIBLE
 binding.questionTextView.visibility = View.VISIBLE
 binding.button.visibility = View.VISIBLE
}

private fun goToResultActivity(numberOfQuestions: Int, score:
Int) { // 3
 val intent = Intent(this, ResultActivity::class.java).apply {
 addFlags(Intent.FLAG_ACTIVITY_NEW_TASK)
 addFlags(Intent.FLAG_ACTIVITY_CLEAR_TASK)
 putExtra(SCORE, score)
 putExtra(NUMBER_OF_QUESTIONS, numberOfQuestions)
 }

 startActivity(intent)
}

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 188

Briefly:

1. nextQuestion() calls your ViewModel’s nextQuestion() passing the index of
the selected radio button as a parameter. It will be called every time the user taps
NEXT. The OnClickListener is bound within the XML to nextQuestion().

2. displayQuestionsView() makes your questionsRadioGroup,
questionTextView and button widgets visible, so you can display a question to
your user.

3. goToResultActivity() creates an Intentobject to start ResultActivity and
passes the score and numberOfQuestions values as extras.

To define SCORE and NUMBER_OF_QUESTIONS, add the following code to the bottom of
your class:

companion object {
 const val SCORE = "SCORE"
 const val NUMBER_OF_QUESTIONS = "NUMBER_OF_QUESTIONS"
}

The code above defines two string constants that will act as keys in Bundle being
passed to ResultActivity.

Next, add the following code:

private fun getQuestionsAndAnswers() {
 viewModel.getCurrentState().observe(this) {
 render(it)
 }
}

This method simply calls getCurrentState() to get the QuizState value of your
ViewModel. Since QuizState is a LiveData value you can observe it using
observe() and each time its value changes you’ll call render() passing a new
QuizState as a parameter.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 189

Finally, add the following line inside onCreate():

binding.button.setOnClickListener { nextQuestion() }
getQuestionsAndAnswers()

In the code above, you set a click listener on the NEXT button which invokes
nextQuestion() when clicked. Since you immediately want to start observing the
QuizState value, onCreate() is the best place to call getQuestionsAndAnswers().

The last step to finish building your app is to display the quiz results to your user.

Open ResultActivity.kt under the view package. Add the following code inside
onCreate(), importing scoreTextView from activity_result.xml:

val score = intent.extras?.getInt(QuestionActivity.SCORE)
val numberOfQuestions =
intent.extras?.getInt(QuestionActivity.NUMBER_OF_QUESTIONS)
binding.scoreTextView.text =
String.format(getString(R.string.score_message), score,
numberOfQuestions)

That’s it! Build and run your app to see it in action.

The Start Screen shows properly.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 190

Click START to see the empty screen layout.

The Empty Screen.

Now, go back to the main screen and click prepopulate in your action bar:

The Prepopulate Menu Option.

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 191

Click START and you’ll see your question and answers displayed.

The Question & Answers Screen.

Answer the questions and take a look at the final screen to see your score!

The Results Screen.

Sweet! Your app is now working and displaying your Question and Answers!

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 192

Key points
• LiveData is a data holder class, as a List, that can be observed for changes by an
Observer.

• LiveData is lifecycle-aware, meaning it can observe the lifecycle of Android
components like the Activity or Fragment. It will only keep updating observers if
its component is still active.

• ViewModel is part of the Android Architecture Components and it’s specifically
designed to manage data related to your user interface.

• A Repository helps you separate concerns to have a single entry point for your
app’s data.

• You can combine LiveDatas and add different sources, to take action if
something changes.

Where to go from here?
I hope you enjoyed this chapter! If you had trouble following along, you can always
download the final project attached to this chapter.

So far, you have only learned about three of the Android Architecture Components
classes: LiveData, ViewModel and Room. However, there are many other classes
that Google provides. If you want to learn about them, you can use the following
resources:

• This tutorial about MVVM and Databinding with Android Design Patterns: https://
www.raywenderlich.com/636803-mvvm-and-databinding-android-design-
patterns.

• This tutorial about the Paging Library which helps create Lists on Android: https://
www.raywenderlich.com/6948-paging-library-for-android-with-kotlin-creating-
infinite-lists.

• This tutorial about the WorkManager architecture component in which you’ll learn
how to create and manage background tasks: https://www.raywenderlich.com/
6040-workmanager-tutorial-for-android-getting-started.

See you in the next chapter!

Saving Data on Android Chapter 10: Using Room with Android Architecture Components

raywenderlich.com 193

11Chapter 11: Data
Migration
By Subhrajyoti Sen

In the last chapter, you finally learned how to integrate your Room components with
other architecture components like LiveData and ViewModel to make your app
display a nice set of questions to your users.

But what happens if you want to modify your database schema to organize questions
by category or difficulty?

Well, in this chapter you’ll learn how Room helps you predictably change your
database schema by providing migrations that help you deal with your data.

Along the way you’ll learn:

• How to create a migration.

• How to add a migration to your database.

• How to perform SQLite queries.

• How to fall back to a destructive migration.

Ready? It’s time to get started.

raywenderlich.com 194

Getting started
To begin, open the starter project in Android Studio 4.2 or greater by going to File ▸
Open and selecting the project from this chapter’s attachments.

If you’ve been following along up to this point, you should already be familiar with
the code. If you’re just getting started, here’s a quick recap:

• The data package contains two packages: db and model. db contains
QuestionDatabase, which implements your Room database. The model package
contains your entities, Question and Answer. It also includes Repository, which
helps your ViewModels interact with your DAOs.

• The view package contains all your activities: SplashActivity, MainActivity,
QuestionActivity and ResultActivity.

• The viewmodel package contains ViewModels of your classes: MainViewModel and
QuestionViewModel.

Build and run the app on a device or emulator.

The Main Screen.

Important: Prepopulate the database and then tap START to start a quiz.

Cool! Now, it’s time to start working with migrations.

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 195

Migrations
Before creating your first migrations with Room, you need to learn what migrations
are, right?

Simply put, a database or schema migration is the process of moving your data
from one database schema to another. There are many reasons why you might want
to move your data to another database schema. For example, you might need to add
a new table because you want to implement a new feature. Some data isn’t available
and some columns of your database can be removed. Or, the API you’re invoking
provides different information and you want to add some new columns to an existing
table. Or, another table can be removed because part of an A/B test and you need to
save space.

The process of migrating your data from one schema to another could be as simple
as copying data from one table to another or as complex as reorganizing your entire
database. Either way, properly planning your migrations comes with benefits:

• Reversible: Sometimes, you might want to roll back your changes and return to an
old schema. Without migrations, this process might be a complete nightmare.
You’d have to manually apply all the changes, and you might not even remember
how your old database looked.

• No data loss: With migrations, it’s much easier to move your data from one
schema to another in a predictable manner without losing data.

Understanding Room migrations
SQLite handles database migrations by specifying a version number for each
database schema you create. In other words, each time you modify your database
schema by creating, deleting or updating a table, you have to increase the database
version number and modify SQLiteOpenHelper.onUpgrade(). onUpGrade() will tell
SQLite what to do when one database version changes to another.

For example, say one of your users still has database version 1 but a new update of
your app now uses database version 2. SQLite would realize that the current database
version is obsolete and needs an upgrade. Then, SQLite would look for
SQLiteOpenHelper.onUpgrade(db, 1, 2) and trigger its body to migrate to the
new schema. If SQLiteOpenHelper.onUpgrade(db, 1, 2) doesn’t exist, it will
trigger an error.

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 196

Room migrations work in a very similar way. The difference is that Room provides an
abstraction layer on top of the traditional SQLite methods with a Migration class.

Migration(startVersion, endVersion) is the base class of a database migration;
it can move between any two versions defined by the startVersion and endVersion
parameters. The reason for emphasizing any is because you don’t necessarily need to
specify a sequential migration. For example, say Room opens database version 2 and
the latest version is 5. Normally, Room would execute migrations in this order:

Migration(2, 3)

Migration(3, 4)

Migration(4, 5)

The beauty of Room is that you can also specify a migration that goes directly from
version 2 to version 5 like this: Migration(2, 5), which makes the migration
process much faster. Of course, there won’t always be a direct path from migration X
to migration Y, so executing all your migrations one by one might be necessary, but
it’s usually a good practice to specify a direct migration if possible.

If you don’t specify an appropriate migration for the current database version, Room
will throw a runtime error and the app will crash.

Note: You can also call fallbackToDestructiveMigration() when building
your database. This will tell Room to destructively recreate tables if you
haven’t specified a migration. The advantage is that you won’t need to create
any migrations and your app won’t crash. The disadvantage is that you’ll
delete your data every time you specify a new database version.

Now that you know the theory, you can move on to creating your first Room
migrations!

Exporting schemas
It’s considered good practice to start exporting the schema before you start writing
your first migration. The export is a JSON representation of the database schema.
This representation comes in very handy when you want to understand the changes
taking place over various database versions.

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 197

Open QuizDatabase.kt and set the exportSchema attribute of @Database to true as
follows:

@Database(entities = [(Question::class), (Answer::class)],
 version = 1,
 exportSchema = true
)

Next, you have to specify the directory to store the schemas in. Add the following
code inside defaultConfig of the app-module build.gradle:

kapt {
 arguments {
 arg("room.schemaLocation", "$projectDir/schemas".toString())
 }
}

The code above passes an argument to the Kotlin annotation processer that sets the
location of the schema to the schemas directory inside the project directory, which
in this case is app.

Build the app. Once the build is complete, you’ll find the schema export at app/
schemas/com.raywenderlich.android.droidquiz.data.db.QuizDatabase/1.json
where 1 represents the database version. Whenever you’ll change the database
version and build the project, the new schema will be exported.

Creating Room migrations
Right now, you have a very nice app that displays a series of random questions to
your users. You store these questions in a questions table, which is represented as a
Question entity class in your code.

But what happens if you want to add difficulty levels like easy, medium and hard?

Well, right now your question table doesn’t have an attribute to classify questions
based on their difficulty. So your first step is to add a new column to provide that
functionality to your users. Here’s how you do that:

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 198

Open Question.kt under the data ▸ model package. You want to represent the
difficulty in terms of numbers such as 1, 2 or 3, where 1 is the lowest difficulty and 3
is the highest. To represent this concept, modify your question class to add a
difficulty property like so:

@Entity(tableName = "questions", indices =
[Index("question_id")])
data class Question(
 @PrimaryKey(autoGenerate = true)
 @ColumnInfo(name = "question_id")
 var questionId: Int,
 val text: String,
 val difficulty: Int = 0 // Only this line changes
)

This property will represent the difficulty of the question and will have a default
value of 0.

Now, build and run the app and press START to see if it works. And the app crashed!

A Dialog informing that the app crashed.

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 199

Open the logcat console and take a look at the error displayed.

The App Crash error.

Note: If the app didn’t crash, you might have forgotten to press START earlier,
when you ran the app before modifying. If the app crashed but you got a
different error message, try uninstalling the app from your device or emulator
and repeating the steps above.

Did you expect that crash?

Upgrading the database version
Each time you change the database schema, you need to change the database
version. This will help Room know which migrations to run when building the
database.

The error seems simple enough to fix, right? According to the Logcat console, you
just need to increase the version number, so try that now.

Open QuizDatabase.kt under the data ▸ db package and increase the database
version by changing the version parameter value to 2 in the @Database notation:

@Database(
 entities = [(Question::class), (Answer::class)],
 version = 2, // version change
 exportSchema = true
)

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 200

Build and run the app again and press START. And the app crashes again!

App has crashed again.

Open the Logcat console to see the problem.

The App Crash error.

It looks like you’re making some progress since the error is different now. The error
indicates that Room doesn’t know how to change the database schema from 1 to 2,
so it’s giving you two options:

• Create a migration that goes from database schema 1 to 2.

• Call fallbackToDestructiveMigration() when building your database.

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 201

The second option is the easiest one to implement since you only need to add a
single line of code. The only problem with this approach is that you’ll lose all your
data when changing the schema from version 1 to 2. This is fine for your app since
you have a handy button to populate your database in the main menu, but it might
not be a good idea for other projects where you want to preserve user data.

With the above in mind, you’re going to follow the first approach and create a new
migration.

Implementing a migration
Create a new package under the db package and name it migrations.

Inside migrations, create a new class and name it Migration1To2. Make your class
extend Migration like this:

class Migration1To2 : Migration(1, 2) {
}

The first parameter in the constructor represents the start version of the database.
The second one represents the end version after you’ve applied this migration.

Next, press Control + I (implement methods) so Android Studio displays all missing
members. Select all of them and press OK. Your class should now have migrate() :

class Migration1To2 : Migration(1, 2) {
 override fun migrate(database: SupportSQLiteDatabase) {
 TODO("not implemented") // To change body of created
functions use File | Settings | File Templates.
 }
}

Inside migrate(), you should execute all the queries you need to properly change
the database schema to the version indicated in the constructor.

Now, since the change is a very simple one, you’ll only need to execute a single
ALTER query to change your questions table.

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 202

Modify migrate() as follows:

override fun migrate(database: SupportSQLiteDatabase) {
 database.execSQL("ALTER TABLE questions ADD COLUMN difficulty
INTEGER NOT NULL DEFAULT 0")
}

database.execSQL() executes the query passed as a parameter. Here, you’re
executing an ALTER TABLE query in your questions table that adds a new
difficulty column that only accepts integers. It has a default value of 0.

Now that you’ve defined your migration, you need to tell Room to execute it before
building your database.

Open QuizDatabase.kt and add the following companion object to the bottom of
your class:

companion object {
 val MIGRATION_1_TO_2 = Migration1To2()
}

You’ll use this companion object to store a reference to all the migrations that you’ll
define later.

Now, open QuizApplication.kt and modify your database builder inside onCreate()
as follows:

database = Room.databaseBuilder(this, QuizDatabase::class.java,
"question_database")
 .addMigrations(QuizDatabase.MIGRATION_1_TO_2) // Only this
line changes
 .build()

addMigrations() accepts one or more migration objects. Room will use these
migrations to bring the database to the latest version.

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 203

Build and run your app and press START to verify that your migration works
properly:

Migration works correctly.

Sweet! It looks like your app works now.

Until now, the changes that you’ve made to your database schema have been really
simple, since you only needed to add a new column to your table.

Changing column type in the schema
What happens if you need to modify a previously created column?

Well, it turns out that the ALTER TABLE statement is very limited; the only
operations that you can perform with it are RENAME TABLE, RENAME COLUMN
and ADD COLUMN.

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 204

If you want to perform complex schema changes such as changing the type affinity
of a column, you’ll need to use more than one query. But don’t worry, the following
steps summarize the process:

1. Create a new temporary table with the new schema.

2. Copy the data from the original table to the temporary table.

3. Drop the original table.

4. Rename the temporary table with the same name as the original table.

To illustrate this process, imagine you want to modify the type affinity of the
difficulty column to TEXT instead of INTEGER so that you can store the operating
system that the question refers to.

To do this, open Question.kt and modify the category property:

@Entity(tableName = "questions", indices =
[Index("question_id")])
data class Question(
 @PrimaryKey(autoGenerate = true)
 @ColumnInfo(name = "question_id")
 var questionId: Int,
 val text: String,
 val difficulty: String = "0", // Only this line changes
)

The code above changes the data type of difficulty from Int to String.

Now, create a new class under the migrations package and name it Migration2To3.
Add the following code to the file:

class Migration2To3 : Migration(2, 3) {
 override fun migrate(database: SupportSQLiteDatabase) {
 database.execSQL(
 "CREATE TABLE question_new (question_id INTEGER NOT NULL,
" +
 "text TEXT NOT NULL, " +
 "difficulty TEXT NOT NULL, " +
 "PRIMARY KEY (question_id))"
) //1

 database.execSQL("CREATE INDEX
index_question_new_question_id ON question_new(question_id)") //
2

 database.execSQL(
 "INSERT INTO question_new (question_id, text, difficulty)
" +

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 205

 "SELECT question_id, text, difficulty FROM questions"
)//3

 database.execSQL("DROP TABLE questions") //4

 database.execSQL("ALTER TABLE question_new RENAME TO
questions") //5

 }
}

Briefly:

1. Creates a new temporary table with the new schema called question_new.

2. Adds an index to the question_id column of your question_new table.

3. Retrieves all the data from your original questions table using a SELECT
statement and adds it to your question_new table using an INSERT INTO
statement.

4. Drops the original question table using a DROP TABLE statement.

5. Renames your question_new table to questions using an ALTER TABLE with a
RENAME TO statement.

Open QuizDatabase.kt and modify QuizDatabase like this:

@Database(
 entities = [(Question::class), (Answer::class)],
 version = 3, // Changes the db version
 exportSchema = true
)
abstract class QuizDatabase : RoomDatabase() {
 abstract fun quizDao(): QuizDao

 companion object{
 val MIGRATION_1_TO_2 = Migration1To2()
 val MIGRATION_2_TO_3 = Migration2To3() // Adds a reference
to your new migration
 }
}

Just like before, you’ve changed the database version to 3 and created a reference to
your new migration inside the companion object.

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 206

Finally, add your new migration to your database by opening the
QuizApplication.kt file and changing your database builder inside onCreate():

database = Room.databaseBuilder(this, QuizDatabase::class.java,
DB_NAME)
 .addMigrations(QuizDatabase.MIGRATION_1_TO_2,
QuizDatabase.MIGRATION_2_TO_3)
 .build()

Build and run, then press START.

Second migration works correctly.

Creating a direct migration
You might have noticed that you now have two different migrations for three
different versions of your database. If one of your users had the first version of your
database installed and wanted to update the app to the latest version, Room would
execute each migration one by one. Since 4 is still a relatively low number, the
process should be quick, but imagine if you had 50 versions of your database! It
would be much better to have a shortcut right?

Well, Room allows you to define a migration path that starts from and goes to any
version of your database. To illustrate this concept, define a migration that goes
from database version 1 to 3.

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 207

Create a new class under the migrations package and name it Migration1To3.
Replace everything inside the class with the following:

class Migration1To3 : Migration(1, 3) {
 override fun migrate(database: SupportSQLiteDatabase) {
 database.execSQL("ALTER TABLE questions ADD COLUMN
difficulty TEXT NOT NULL DEFAULT '0'")
 }
}

The above simply executes two ALTER TABLE statements to add difficulty and
category columns. Since these columns didn’t exist in the version 1 database, we
don’t have to worry about the more complex SQL for the migration in the prior step.

Open QuizDatabase.kt and add the following line to the companion object to
create a reference to your new migration:

val MIGRATION_1_TO_3 = Migration1To3()

Now, go to QuizApplication.kt and add your new migration to the database builder:

database = Room.databaseBuilder(this, QuizDatabase::class.java,
DB_NAME)
 .addMigrations(
 QuizDatabase.MIGRATION_1_TO_2,
 QuizDatabase.MIGRATION_2_TO_3,
 QuizDatabase.MIGRATION_1_TO_3
)
 .build()

Cool! You now have a migration that goes directly from database version 1 to 3. If
you build the app, the migration won’t execute since your app is already on database
version 3, but you can now be sure that all your users on database version 1 will
properly migrate to the new version when they update the app.

Automated migrations
The migrations that you wrote in the previous section can seem like a lot of code to
achieve simple changes. Luckily, from version 2.4.0-alpha01 onwards, Room
supports automatic migrations.

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 208

Automatic migrations work great only for simple schema changes like:

• Deleting a column (@DeleteColumn)

• Deleting a table (@DeleteTable)

• Renaming a column (@RenameColumn)

• Renaming a table (@RenameTable)

In the points above, you can see their related annotations. In this section, you’ll use
@RenameColumn but the procedure to use the other annotations is quite similar.

Consider that you want to rename the difficulty attribute to something like
challengeLevel.

Create a new file inside migrations and name it Migration3To4. Adding the
following code to it:

@RenameColumn(
 tableName = "questions",
 fromColumnName = "difficulty",
 toColumnName = "challengeLevel"
)
class Migration3To4 : AutoMigrationSpec

The code above does a couple of things:

1. Automated migrations extend AutoMigrationSpec instead of Migration.

2. @RenameColumn specifies the original name of the column as well as the table
name, and also the new column name.

Next, open QuizDatabase.kt and add the following paramter to @Database:

autoMigrations = [
 AutoMigration(
 from = 3,
 to = 4,
 spec = Migration3To4::class
)
]

In the code above, autoMigrations takes an array of automated migrations and
starts applying them one by one.

Also, change the database version to 4.

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 209

Your @Database should now look like the following:

@Database(entities = [(Question::class), (Answer::class)],
 version = 4,
 exportSchema = true,
 autoMigrations = [
 AutoMigration(
 from = 3,
 to = 4,
 spec = Migration3To4::class
)
]
)

Build and run the app. Click START. You will notice that the app runs fine, verifying
that the migration was successful.

Room internally uses the exported schemas to figure out the changes needed to
make the migration work.

You have successfully added your first automated migration.

Migration worked correctly

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 210

Key points
• Simply put, a database or schema migration is the process of moving your data

from one database schema to another.

• SQLite handles database migrations by specifying a version number for each
database schema that you create.

• Room provides an abstraction layer on top of the traditional SQLite migration
methods with Migration.

• Migration(startVersion, endVersion) is the base class for a database
migration. It can move between any two migrations defined by the startVersion
and endVersion parameters.

• fallbackToDestructiveMigration() tells Room to destructively recreate tables
if you haven’t specified a migration.

Where to go from here?
By now, you should have a very good idea of how Room migrations work. Of course,
the process will differ from project to project, since the queries you’ll need to
execute will depend on your database schema, but the basic idea is always the same:

• Change the database version.

• Create a migration.

• Add the migration to your database builder.

If you want to learn more about Room migrations the official documentation at
https://developer.android.com/training/data-storage/room/migrating-db-versions is
always a good resource.

See you in the next Room, er, chapter!

Saving Data on Android Chapter 11: Data Migration

raywenderlich.com 211

Section 3: Using Firebase

Firebase is a mature suite of products that allow you to implement Android apps that
persist information safely, securely and reliably. In this section, you’ll learn the
fundamentals and more advanced concepts of Firebase, including how to read and
write to Realtime Database, how to use it in offline mode and everything you need
to know about its usage and performance. You’ll learn a few things about managing
and securing data in Cloud Firestore. Finally, the last part of the section contains
basics about Cloud Storage.

raywenderlich.com 212

12Chapter 12: Firebase
Overview
By Fuad Kamal

Creating a successful mobile app isn’t easy. Not only do developers need to focus on
writing code and fixing bugs, they often need to manage a variety of tools and build
complex infrastructures too. Factor in tight schedules and resource constraints, and
you’ve got your work cut out!

Thankfully, though, Google understood the need for a simpler way to create high-
quality apps, and in 2014 they acquired Firebase. More recently, Google announced
that in October 2019, they will start to sunset their existing Google Analytics for
mobile apps and is directing its users to use Firebase instead. With Firebase,
developers got all of the existing functionality of Google Analytics, plus a lot more.

Note: The Google Analytics referred to hereafter in this book is a new sub-
feature of Firebase and not the legacy platform.

raywenderlich.com 213

Firebase history
Initially, Firebase was a mobile backend service that let you build mobile apps
without having to worry about managing your own backend. However, not too long
after its release, developers wanted more, so Firebase expanded its initial feature set
to include more features. With these new features, you can develop apps faster,
increase your user base, make more money and ensure the delivery of high-quality
apps. On top of all that, there’s an analytics product that ties it all together.

Note: Most modern mobile apps require a data access layer for things that
can’t be done solely on a device, like sharing and processing data from
multiple users or storing large files. The remote server, typically known as the
backend, is responsible for handling these backend services.

Why Firebase?
Firebase is known for its easy-to-use APIs, great documentation and fantastic
developer support. In addition to that, it only takes a few minutes to integrate
Firebase with your projects.

Today, apps are rarely developed for a single platform, and most mobile apps are
developed for the two biggest: Android and iOS. For that reason, developers often
look for cross-platform solutions.

Firebase is a cross-platform service that works on Android, iOS and the web. By using
a cross-platform solution, developers are not spending as much time as they would if
they needed to use a separate service for each one. Not to mention, there’s no need
for businesses to invest additional money in different platforms.

Another bonus to using Firebase is that its products are integrated into one set of
tools. There’s a single SDK, a console and one place to go for the documentation and
support. Data between different Firebase products is shared where and when needed,
which leads to even faster development.

Saving Data on Android Chapter 12: Firebase Overview

raywenderlich.com 214

Getting started

Firebase Console
Firebase Console is where you set up and manage your apps. From there, you can
view all of your projects as well as create new ones.

To get started with Firebase, open your web browser and navigate to https://
console.firebase.google.com.

If you’re not already logged in, do so now.

Firebase Console Main Screen.

To get started, you’ll create a simple social media app that lets you share your
thoughts with other app users.

First, you need to add your app to Firebase. Follow the steps:

1. Click Add project.

2. For the project name, enter WhatsUp.

Create Project Dialog.

Saving Data on Android Chapter 12: Firebase Overview

raywenderlich.com 215

3. Uncheck Enable Google Analytics for this project.

4. Click Create project.

Disable Google Analytics Switch.

Once your project is created, click Continue. Then you’ll see the main screen.

Project Homepage.

That’s it! You’ve successfully created your first Firebase project.

Saving Data on Android Chapter 12: Firebase Overview

raywenderlich.com 216

Now, click Build from the menu on the left and then select Authentication.

The Firebase Options Menu.

Next, you’ll see the authentication screen. Click the Sign-in method tab.

Authentication Page.

Among the sign-in providers click Google. Enable Google sign-in and click save.

The list of sign-in providers.

This allows your app users to authenticate with their Google account.

Saving Data on Android Chapter 12: Firebase Overview

raywenderlich.com 217

Firebase analytics
To build a successful app, you need to clearly understand how your users behave and
how they use your app. This is why analytics are so important.

There are many analytics categories that your app can use. This includes, in-app
behavior analytics, which measures who your users are and what they are doing;
attribution analytics, which you can use to measure the effectiveness of your
advertising and other growth campaigns; push notifications analytics, crash
reporting analytics and more.

Without Firebase, you may need to use multiple analytics libraries and tools to
collect and save your analytics data. This becomes problematic when you need to
share analytics data among those tools. Analytics for Firebase, however, is built to
provide all of the data mobile app developers need in one place. Analytics integrates
across Firebase features and provides you with two key capabilities: unlimited
reporting for up to 500 distinct events and audience segmentation. With audience
segmentation, you can create a custom audience that you target with new features or
notification messages, for example. You can choose your custom audience base using
parameters like device data or user properties.

Once you integrate your app with Firebase, analytics comes standard out-of-the-box.

Developing
Firebase offers many products that help you develop your app. Products that you’ll
use in this section of the book are Authentication, Realtime Database, Cloud
Firestore and Cloud Storage. Now, you’ll learn the basics of each one.

Authentication

Most apps need a way to identify a user so they can customize their experience and
keep user data secure, while making authentication easy for both end-users and
developers.

Firebase supports many different ways for your users to authenticate. Firebase Auth
has built-in functionality for third-party providers such as Facebook, Twitter, Github
or Google. If you want to authenticate users via an email address, you can do that,
too.

Saving Data on Android Chapter 12: Firebase Overview

raywenderlich.com 218

You can present login functionality to the users in two different ways: using your
own interface or taking advantage of Firebase’s open source UI, which is also
customizable. When the user authenticates, information about that user is returned
to the device via a callback. You can then use that information to customize the
experience for the specific user.

Firebase also manages user sessions, which means that users will remain logged in
after the app restarts.

Realtime Database

Many apps need a way to store and share data from the server. When building your
own backend, there are a few things that you need to manage, such as setting up and
maintaining the database, real-time data synchronization and offline support. This
can be tedious and time-consuming.

Firebase Realtime Database does it all for you, including storing and syncing data
in real time. This allows users to access the data from any device.

Data is stored on the cloud, and whenever data is updated, all relevant devices get
notified simultaneously within milliseconds.

Realtime Database is also optimized for offline use. It uses a local cache to store
changes when the user loses network connection and when it comes back online
local data gets automatically synchronized.

Realtime Database also takes care of security. You can use security rules to specify
who has access to various pieces of data. Security rules are securely stored on the
server.

Cloud Firestore

Cloud Firestore, like Realtime Database, is also used for saving the data to the cloud.
It comes with the same feature set as Realtime Database, letting you store data in
the cloud and sync data among different devices or share it with other users.

Cloud Firestore comes with client libraries, full offline mode support, a
comprehensive set of security rules that help manage access to the data and a data
browsing tool. It allows you to structure your data in a way that makes sense to you.
It also automatically fetches changes from the server as they happen, or if you prefer,
you can fetch them manually.

Saving Data on Android Chapter 12: Firebase Overview

raywenderlich.com 219

Cloud Firestore also integrates with other Firebase products like Authentication.
You’ll learn the differences between Realtime Database and Cloud Firestore as you
progress through this book.

Cloud Storage

When it comes to storing and sharing pictures and similar files, Cloud Storage is
crucial. Cloud Storage lets you upload user files to the cloud so they can be shared
with others. If you want to share those files with specific users, you can leverage
Firebase Authentication for that.

All network transfers are performed through a secure connection. If the connection
breaks during network transfer, the transfer is paused and resumed once the network
connection comes back online. This makes Cloud Storage ideal for large files or slow
and unreliable network connections.

Other products

Firebase also offers other products for developing your app that aren’t covered in
this book. These include ML Kit, Cloud Functions and Hosting. You can learn more
about them by reading the official Firebase page at https://firebase.google.com/
products/.

Improving app quality
Firebase can help you improve the quality of your apps.

Before pushing your app to production, you need to test it. For that, Firebase
provides you with Test Lab.

With so many different devices out there, you need to ensure that every feature of
your app works as expected regardless of screen size or operating system version.
Testing on every device is challenging since most developers don’t have access to all
available devices. Firebase Test Lab makes it possible to test your app with a variety
of physical devices hosted in the cloud.

Bugs are frustrating for users and can cause them to uninstall the app and negatively
impact its success. Many things can go wrong in the app and cause it to crash.
Firebase Crashlytics collects, analyzes and organizes crash reports. It can also help
you prioritize issues so that you can fix the most important ones first.

Saving Data on Android Chapter 12: Firebase Overview

raywenderlich.com 220

Your users will use your app in different circumstances — different devices, different
networks and different locations. You need to provide the best user experience to all
of them. To do that, you need metrics that tell you what’s happening during critical
moments of your app’s use.

The only way to get that information is from the users themselves or by using
Firebase Performance Monitoring. The Performance Monitoring SDK collects
information about your app’s performance, such as the app’s startup time or details
about HTTP transactions. You can also use the provided API to instrument your app
to measure critical moments that you want to improve.

Growing a business
Firebase has several products that you can use to methodically grow your app, gain
more users and help you earn more money.

In-App Messaging helps you engage users who are actively using your app by
sending them targeted and contextual messages that nudge them to complete key
in-app actions, like beating a game level or buying an item.

Google Analytics for Firebase gives you the power to build up groups of users, or
audiences, out of just about anything you can measure in your app. It provides free,
unlimited reporting on up to 500 distinct events.

Key points
• Firebase is Google’s mobile platform that helps you quickly develop high-quality

apps and grow your business.

• Firebase consists of three main pillars: Develop, Improve and Grow.

• Firebase Console is a single place where you need to go to set up and manage your
app.

Where to go from here?
There’s a lot more to explore in Firebase. You can find out more about different
Firebase products and their key features in the official Firebase documentation:
https://firebase.google.com/docs.

Saving Data on Android Chapter 12: Firebase Overview

raywenderlich.com 221

13Chapter 13: Introduction to
Firebase Realtime Database
By Fuad Kamal

Having a central place for storing application data is a common requirement for
mobile applications. Let’s say you’re building a mobile game and you need to save
user progress. You can save it locally on the phone. But what if the user logs in with
the same account on a different device? That device doesn’t know that the user has
already made some progress and the user will need to start the game all over again.
That can lead to unhappy users and bad app reviews.

In this case, you would need to save user progress to a remote database so that users
can have access to the data from any number of devices they own. That database is
usually hosted somewhere, on the Internet, making it accessible through a simple
network connection. This concept is known as the cloud. You can think of the cloud
as someone else’s computer, or an entire infrastructure, which you’ve rented for
various services.

Firebase Realtime Database is a solution that stores data in the cloud and provides
an easy way to sync your data among various devices. It’s powered by the Google
Firebase platform, and is just a single piece in an otherwise large puzzle.

In this chapter, you’ll learn how the Realtime Database works and its key
capabilities. Furthermore, you’ll add the Realtime Database to an Android project.
Along the way, you’ll learn how the Realtime Database takes care of security with
database rules, how data is saved to the database and the best practices for the data
structure.

raywenderlich.com 222

Overview
Firebase Realtime Database is a cloud-hosted database that supports iOS, Android,
Web, C++ and Unity platforms.

Realtime means that any changes in data are reflected immediately across all
platforms and devices within milliseconds. Most traditional databases make you
work with a request/response model, but the Realtime Database uses data
synchronization and subscriber mechanisms instead of typical HTTP requests,
which allows you to build more flexible real-time apps, easily, with less effort and
without the need to worry about networking code.

Many apps become unresponsive when you lose the network connection. Realtime
Database provides great offline support because it keeps an internal cache of all the
data you’ve queried. When there’s no Internet connection, the app uses the data
from the cache, allowing apps to remain responsive. When the device connects to the
Internet, the Realtime Database synchronizes the local data changes with the remote
updates that occurred while the client was offline, resolving any conflicts
automatically.

Client devices access the Realtime Database directly, without the need for an
application server. Security rules take care of who has access to what data, and how
they can access it. You’ll learn more about security rules later in this chapter.

Firebase Realtime Database is not completely free. There are certain pricing plans. If
you want your app to scale you’ll need to pay for the number of connections, disk
usage and network usage. You can check out pricing plans on the firebase pricing
plans page here: https://firebase.google.com/pricing/.

Realtime Database is a NoSQL database. NoSQL stands for “Not only SQL”. The
easiest way to think of NoSQL is that it’s a database that does not adhere to the
traditional relational database management system (RDMS) structure. As such, the
Realtime Database has different optimizations and functionality compared to a
relational database. It stores the data in JSON format. The entire database is a big
JSON tree with multiple nodes. When planning your database you need to keep this
in mind to make your database as optimized as possible. You’ll also learn more about
data structure and best practices later in this chapter.

Saving Data on Android Chapter 13: Introduction to Firebase Realtime Database

raywenderlich.com 223

Setting up Realtime Database
In Chapter 12, “Firebase Overview,” you added your app to a Firebase project. Now,
you need to connect your app to Firebase, to enable its services.

Prerequisites
There are few requirements that you need to fulfill in order to setup Firebase with
Android.

• To run your app on a physical device or an emulator you need to have at least API
level 9, which is Android 2.3 Gingerbread.

• The device must have Google Play Services installed.

• Your app needs to use Gradle 4.1 or higher.

• Your app needs to target API level 16 or later.

• Uses Jetpack (AndroidX) (https://developer.android.com/jetpack/androidx/
migrate) which includes com.android.tools.build:gradle v3.2.1 or later, and
combileSdkVersion 28 or later

Connecting the app to the project
Go to the Firebase console and open the WhatsUp project that you created.

Firebase Getting Started Screen.

Click the Android icon to connect your Android app with Firebase.

Saving Data on Android Chapter 13: Introduction to Firebase Realtime Database

raywenderlich.com 224

Registering app

The first step is to register your app. For that, you need two pieces of information.
The first one is your app’s package name which you can find in the app-level
build.gradle file as applicationId

Add Firebase to your app Screen.

Enter com.raywenderlich.android.whatsup as the package name. App nickname is
optional so you won’t add it.

The second thing that you need to provide is the SHA1 hash of your debug key. This
is only required if you’ll use specific Firebase features. In this project, it’s needed for
the Authentication feature. You can get your SHA1 hash in two ways, by using
Android Studio, and Gradle, or by typing in a terminal command.

For the first option, open the Gradle tab from the right-hand side toolbar, and locate
signingReport:

Gradle Signing Report Action.

Saving Data on Android Chapter 13: Introduction to Firebase Realtime Database

raywenderlich.com 225

Run it, and you should see the output in the terminal. The alternative is running the
following command:

keytool -list -v -keystore ~/.android/debug.keystore -alias
androiddebugkey -storepass android -keypass android

Both commands give information about your debug keystore. In the Android Studio,
open the Terminal panel. If one of the commands is executed, you’ll see a line that
starts with SHA1.

Signing Report with SHA1 key.

Copy the value after that. That value is just a series of hex values, which represent
your application’s debug keystore signature. Paste that value into the Debug
signing certificate SHA-1 text box in the console. Click Register app.

Downloading config file

Next, you need to download the google-services.json config file by clicking the blue
button, and add it to your Android project. Follow the instructions in the console to
do that, so that you paste it to the correct location. This file contains your app
configuration. If your Firebase configuration changes later you’ll need to download
an updated config file and replace the existing one.

Download Google-Service JSON file.

Saving Data on Android Chapter 13: Introduction to Firebase Realtime Database

raywenderlich.com 226

Adding Firebase SDK

Next, you need to add the Firebase client libraries to your app. Follow the
instructions in the console for this, as well.

Adding Firebase SDK.

First, you need to add the Google Services Gradle plugin to your build script
configuration. This plugin reads the google-services.json config file and injects
some of its values into your build. Here, you’ll also add a dependency to Firebase
core. Make sure to use the latest version. You can check the documentation to find
the latest version (https://firebase.google.com/docs/android/setup#available-
libraries). Once you do that click Next.

Saving Data on Android Chapter 13: Introduction to Firebase Realtime Database

raywenderlich.com 227

Verifying installation

The last step is to verify if everything is set up correctly. For this, you only need to
run your app on a device or an emulator. Before you do that, go to the
LoginActivity class and uncomment the code. Repeat the process for the
HomeActivity and AuthenticationManager classes. Run your app. If everything is
set up correctly you’ll get a verification message in the console.

Installation verification.

You can click Continue to console now.

Adding Realtime Database

First, you need to create your database in the console. From the menu on the left
select Database. Scroll to the Realtime Database section and click Create
database. The security rules dialog will open.

Security rules.

Select the second option, Start in test mode, and click Enable. You’ll learn more
about security rules in a bit.

Saving Data on Android Chapter 13: Introduction to Firebase Realtime Database

raywenderlich.com 228

Once your database is created you’ll see its preview.

Database Preview.

To add the Realtime Database service to your app, you only need to add one more
dependency. Open build.gradle and add the following dependency, making sure
you’re using the latest version:

implementation "com.google.firebase:firebase-database:20.0.0"

Database rules
In this section, you’ll be working on the WhatsUp app which has an authentication
feature so the app can know who your users are. Authentication is the process of
verifying users are who they say they are, and giving them certain security access to
your service.

User identity is an important security concept. Different users have different data
and different capabilities. In this app, the user will be able to delete posts it created
but not the other people’s posts. Because of this, you need a way to control who has
access to what data in your database. The process of determining who has access to
what is called authorization.

To implement the various aspects of security, authentication and authorization
would require a lot of work. Firebase has the Authentication service which can use
for all those sides of security, and the Realtime Database service uses internal
Realtime Database Rules for authorization.

Saving Data on Android Chapter 13: Introduction to Firebase Realtime Database

raywenderlich.com 229

Database rules allow you to control access for each user. They determine who has
read and write access to your database, how your data is structured, and what
indexes exist. Every time reading or writing is attempted, a request will only be
completed if your rules allow it.

Firebase Database rules are also a JSON object which must have a top-level rules
node. By default, the rules node contains two primitives, .read and .write and they
determine who has read and write access. If .read and .write are set to true,
everyone would have complete access to your data, so they can both read and write
as they want. To protect your database from abuse, you need to customize those
rules.

The Firebase Database Rules include built-in variables and functions that allow you
to refer to other paths, server-side timestamps, authentication information, and
much more. For this app, you’ll write a rule that grants read and write access only for
authenticated users.

This is what this rule looks like:

{
 "rules": {
 ".read": "auth != null",
 ".write": "auth != null"
 }
}

Navigate to the Rules tab, replace the rules with the above snippet and click
Publish.

Adding specific Rules.

Now, only authenticated users are allowed to read from and write to your database.

You can learn more about database rules in the documentation here: https://
firebase.google.com/docs/database/security/.

Saving Data on Android Chapter 13: Introduction to Firebase Realtime Database

raywenderlich.com 230

Communication with the Realtime Database
You need a way to talk to the Realtime Database. The first thing you need is a
connection. To get a connection you need to create a database reference first. Open
RealtimeDatabaseManager.kt and add the databaseReference property:

private val databaseReference =
FirebaseDatabase.getInstance().reference

This gets you a reference to the root of the Firebase JSON tree. You’ll learn more
about data structure later in this chapter.

For connectivity testing purposes, add a method to the RealtimeDatabaseManager
that will write some dummy data to the database.

fun addDummyData() {
 databaseReference.setValue("Saving data on Android")
}

Next, open HomeActivity.kt and add the following property:

private val realtimeDatabaseManager by lazy
{ RealtimeDatabaseManager() }

Now, call addDummyData() from the bottom of initialize():

realtimeDatabaseManager.addDummyData()

Run the app and sign in with your Google account by clicking Sign in with Google.
Next, go to Firebase Console and select Database from the menu on the left side.
You should see your data in the database.

Database populated.

Saving Data on Android Chapter 13: Introduction to Firebase Realtime Database

raywenderlich.com 231

Congratulations! You have successfully communicated with the Realtime Database.
Before you continue, delete the data from the database directly from the console by
clicking the X button from the right side of the value. You’ll learn a lot more about
reading and writing to the Realtime Database in the next chapter.

Data structure

JSON format
As mentioned before, the Firebase Realtime Database stores data in JSON format.
JSON stands for JavaScript Object Notation and it’s a language-independent data
format with a minimal number of value types: strings, numbers, booleans, lists,
objects, and null. It consists of key/value pairs. The key/value pairs are separated by a
colon and each pair is separated by a comma. It is easy for humans to read and write
and for machines to parse and generate. This is a sample JSON object:

{
 "name": "Dean",
 "lastname": "Djermanovic",
 "age": 23,
 "gender": "male"
}

Best practices for data structure
The entire database is a big JSON tree with multiple nodes. When pushing new data
to the database you either create a new node with an associated key or update an
existing one. Therefore there is the danger of creating a deeply nested structure.
Firebase Realtime Database allows nesting data up to 32 levels deep but that doesn’t
mean that this should be the default structure. When thinking about data structure
you need to think about how your data is going to be consumed, you need to make
the process of saving and retrieving as easy as possible.

If you have very complex structures with a lot of nesting you fetch all the data every
time you read from the database, which is not needed in most cases. If you want to
get the data from a specific node you get all the data below that node as well. Take a
look at this restaurants structure for example:

{
 "restaurants": {
 "first_restaurant": {},

Saving Data on Android Chapter 13: Introduction to Firebase Realtime Database

raywenderlich.com 232

 "second_restaurant": {},
 "third_restaurant": {}
 }
}

Fetching the restaurant’s data would get you all of its child nodes data as well. In
addition, when you grant someone access to a node in your database you also grant
them access to all of its children’s data. You can limit this by specifying how many
restaurants you want to fetch or to fetch only restaurants that satisfy some condition
but in general, when you’re loading data you’re loading all of it. Because of this, it’s
good practice to keep your data structure as flat as possible.

Another good practice would be that you organize your data in a way that you don’t
fetch the data that you’re not rendering on the UI. If you split your data into separate
paths you can be more specific about what data you want to fetch. Traditionally, you
would have a set of data and you’d build your UI on top of that, but with Firebase,
since it’s easy to write data, people build their UI and then they start building a data
structure from the app. This flat data structure affects the performance in a good
way since you don’t need to fetch extra data that you won’t use, which allows the UI
to stay responsive and fast.

Generally, there’s no right or wrong approach to structuring your data. Storage is
cheap. You can have a million copies of the exact same string field in the Realtime
Database and it will cost you almost nothing but the problem appears when fetching
this data. With a little bit of practice, you’ll be able to judge better what makes sense
to nest and what doesn’t.

Saving Data on Android Chapter 13: Introduction to Firebase Realtime Database

raywenderlich.com 233

Key points
• To use Firebase Realtime Database in your Android project you need to go through

the configuration process first.

• The Realtime Database provides database rules to control access for each user.

• Firebase Authentication is very much connected to database solutions Firebase
offers, since it controls the access to data, on a per-user basis.

• Firebase Realtime Database stores data in JSON format.

• Because the structure is a JSON, it operates with simple data like numbers,
Strings, Objects, Booleans and Lists.

• Firebase Realtime Database data structure should be as flat as possible and
designed with scaling in mind.

Where to go from here?
In this chapter, you saw how to configure Realtime Database and what are best
practices when it comes to structuring your data. If you want to learn more you can
check out official Firebase documentation (https://firebase.google.com/docs).

You also wrote your first data to the database. In Chapter 14: Reading to &
Writing from Realtime Database you’ll learn a lot more about reading from and
writing to Realtime Database and you’ll integrate it to the WhatsUp app. You’ll be
able to write posts from the app and upload them to the Realtime Database and
other users will be able to read them as well.

Saving Data on Android Chapter 13: Introduction to Firebase Realtime Database

raywenderlich.com 234

14Chapter 14: Reading to &
Writing from Realtime
Database
By Fuad Kamal

In the last chapter, you integrated Realtime Database into your app. You added
Firebase SDK to your app and connected the app with the Firebase project. You also
learned about database rules and you set them up to allow only authenticated users
access to the database. You even wrote your first data to the database which was just
a sneak peek of what you’ll do in this chapter.

This chapter will teach you how to work with Realtime Database data. You’ll learn
how to read and write data as well as how to do basic manipulation with that data.
First, you’ll learn about performing CRUD operations on to the Realtime Database.
CRUD is just an acronym for the four basic types of SQL commands: Create, Read,
Update and Delete. You’ll combine all these concepts together in order to build a fully
functional app with Realtime Database as the backend.

Setting up Firebase

You need to set up Firebase in order to follow along. Do the following steps:

1. Create a project in the Firebase console.

2. Enable Google sign-in.

3. Set security rules to the test mode to allow everyone read and write access.

4. Add google-service.json to both starter and final projects.

To see how to do this, go back to Chapter 12: “Firebase Overview” and Chapter 13:
“Introduction to Firebase Realtime Database.”

raywenderlich.com 235

Reading and writing data
Open the starter project, and build and run your app. If this is the first time you’re
running this app you’ll need to sign in first in order to use it. To sign in, tap Sign in
with Google and follow the steps on the screen. Next, click on the floating action
button. A new screen opens where you can write your post. Write something and
click POST.

Adding a Post.

As you can see nothing happens yet. Next, you’ll add the logic for saving the post to
the database.

Saving data to the database
Open RealtimeDatabaseManager.kt. Add the following line to the class:

private val database = FirebaseDatabase.getInstance()

The database object is the main entry point to the database. getInstance() gets
you the default FirebaseDatabase instance. There are overloads of getInstance()
if you want to get the database for the specific URL or specific app.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 236

Next, you need to create an actual object which will contain data. Inside the class,
add the code for creation of the Post object:

private fun createPost(key: String, content: String): Post {
 val user = authenticationManager.getCurrentUser()
 val timestamp = getCurrentTime()
 return Post(key, content, user, timestamp)
}

This function uses AuthenticationManager to get the current logged in user name,
gets the current time and then returns the newly created Post instance.

Now that you have a post object, you need to store it. But first, add a constant above
the class declaration:

private const val POSTS_REFERENCE = "posts"

You’ll use this constant in retrieving reference from the database. Now, add the
function for saving the post to the database:

 fun addPost(content: String, onSuccessAction: () -> Unit,
onFailureAction: () -> Unit) {
 //1
 val postsReference = database.getReference(POSTS_REFERENCE)
 //2
 val key = postsReference.push().key ?: ""
 val post = createPost(key, content)

 //3
 postsReference.child(key)
 .setValue(post)
 .addOnSuccessListener { onSuccessAction() }
 .addOnFailureListener { onFailureAction() }
 }

Here’s what happens here:

1. The DatabaseReference class represents a particular location in the database
and it’s used to refer to the location in the database to which you want to write to
or read from. getReference() returns a reference to the database root node. You
won’t save posts to the root node. Instead, you’ll create a new node for the posts,
which is why you added the POSTS_REFERENCE constant earlier. You pass that
constant to getReference() and this returns a reference for the provided path.
Now you can use postsReference to read or write data to this location.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 237

2. Posts will be added as a child of the posts node. To add a post as a child it needs
to have a unique key that will be used as a path to the specific post. The key
needs to be unique because setting a value to the existing path would overwrite
the previous value on that path. You don’t want that. You can use push() to
create an empty node with an auto-generated key. This method returns a
database reference to the newly created node. You can call getKey() on the
database reference to get the key to that reference. Next, you create a Post
instance that you’ll save to the database and you store the key of that post so you
can refer to it later.

3. To access the newly created location you can use child() that returns a
reference to the location relative to the calling reference. Finally, you use
setValue() to save the post to this location. The Realtime Database accepts
multiple data types to store the data: String, Long, Double, Boolean,
Map<String, Object>, and List<Object>. You can also use custom Kotlin or
Java objects to store the data model class directly to the database as you’re doing
here. Finally, you attach OnSuccessListener that gets called if the post is saved
to the database successfully, and OnFailureListener that gets called if the post-
saving failed.

Now, open AddPostActivity.kt and replace the TODO in addPostIfNotEmpty() with
the following:

val postMessage = postText.text.toString().trim()
 if (postMessage.isNotEmpty()) {
 realtimeDatabaseManager.addPost(postMessage,
 { showToast(getString(R.string.posted_successfully)) },
 { showToast(getString(R.string.posting_failed)) })
 finish()
 } else {
 showToast(getString(R.string.empty_post_message))
 }

Here you get the text from EditText and if it’s not empty you save the text to the
database and you close the current activity. Otherwise, you show an error message.

Build and run your app. Click on the floating action button on the home screen,
add some text and tap Post. Current activity gets closed and the home screen is
shown. You’ll fix that in a bit. After you reopen the app, the added post will be
displayed on the home screen.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 238

To make sure your post is saved to the database, open the database in the Firebase
console and you’ll see your post here along with additional data that you added:

Firebase Console preview - Post is saved in the database.

Good job! You’ll add the logic for displaying posts on the home screen next.

Fetching data from the database
When it comes to reading the data from the database you have two options. You can
read the data once or you can be notified whenever data changes. Since you want to
see every new post from other users instantly, you’ll implement the second option.

To get all posts from the database and listen for value changes you need to use
ValueEventListener. You need to attach this listener to the specific location in the
database that you want to listen for changes from.

Open RealtimeDatabaseManager.kt and at the top of the class add:

private val postsValues = MutableLiveData<List<Post>>()

You’ll use LiveData to notify the observers about post changes.

Next, below the previous line add:

private lateinit var postsValueEventListener: ValueEventListener

This is where you’ll store your event listener.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 239

Next, add the following function:

private fun listenForPostsValueChanges() {
 //1
 postsValueEventListener = object : ValueEventListener {
 //2
 override fun onCancelled(databaseError: DatabaseError) {
 /* No op */
 }

 //3
 override fun onDataChange(dataSnapshot: DataSnapshot) {
 //4
 if (dataSnapshot.exists()) {
 val posts = dataSnapshot.children.mapNotNull
{ it.getValue(Post::class.java) }.toList()
 postsValues.postValue(posts)
 } else {
 //5
 postsValues.postValue(emptyList())
 }
 }
 }

 //6
 database.getReference(POSTS_REFERENCE)
 .addValueEventListener(postsValueEventListener)
}

1. You add ValueEventListener as an anonymous inner class and you assign it to
postsValueEventListener field. There are two methods that you need to
implement.

2. onCancelled(databaseError: DatabaseError) gets triggered if reading from
the database is cancelled. Reading can be canceled in case if there are server
issues or if you don’t have access to the location you’re trying to read from due to
database rules. databaseError contains more information about an error that
occurred. In this case, you won’t do anything if reading gets canceled.

3. onDataChange(dataSnapshot: DataSnapshot) gets triggered whenever data
under the reference you attached the listener to gets changed; either new data is
added or existing data is updated or deleted. This is the method where you
perform desired operations on the new data. You get the data back as
DataSnapshot. DataSnapshot contains all the data from a specific location in
the database. DataSnapshot is just an immutable copy of your database data so
can’t use it to modify the data in the database.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 240

4. By calling exists() on the DataSnapshot object you check if the snapshot
contains a non-null value. If there is data in the snapshot you get all of the direct
children of the snapshot and you map each one to the Post object by calling
getValue(Post::class.java) on a child. getValue(Post::class.java) wraps
the data to the specified Post class and returns an instance of the passed in class
or null if there is no data in this location. Then you add Post instances to the
list and you set this list to the LiveData field created earlier which will notify all
active observers about new data.

5. If data doesn’t exist you set an empty list as the new value of LiveData. This is
needed in the case where all posts get deleted and the database is empty. In that
case, dataSnapshot.exists() will return false and by setting empty list as the
new value you’ll reflect that.

6. You attach the listener to POSTS_REFERENCE because that is the location from
where you want to listen for changes.

Now inside the class, add onPostsValuesChange():

fun onPostsValuesChange(): LiveData<List<Post>> {
 listenForPostsValueChanges()
 return postsValues
}

This method just calls the function that attaches the listener and returns LiveData.

You only want to listen for posts updates when you’re on the home screen. Once you
navigate away from the home screen you don’t care about posts updates anymore. To
achieve that you need to remove event listener when you’re no longer interested in
the events.

Add this code inside the slass:

fun removePostsValuesChangesListener() {

database.getReference(POSTS_REFERENCE).removeEventListener(posts
ValueEventListener)
}

This method removes the passed in event listener, by calling
removeEventListener(), from the specified location.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 241

Open HomeActivity.kt and add the following method:

private fun onPostsUpdate(posts: List<Post>) {
 feedAdapter.onFeedUpdate(posts)
}

This method will get called every time posts update and it will set new data to the
RecyclerView adapter.

Now, find listenForPostsUpdates() and replace the TODO with the following:

realtimeDatabaseManager.onPostsValuesChange()
 .observe(this, Observer(::onPostsUpdate))

This code enables listening for the changes in the posts. On every update, the system
will call onPostsUpdate().

Finally, override onStop():

override fun onStop() {
 super.onStop()
 realtimeDatabaseManager.removePostsValuesChangesListener()
}

Once the activity stops, it also stops listening for the posts updates.

Build and run. You’ll see the post that you previously added on the home screen.

The user can preview the post added to the database.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 242

Build and run your app on a different device and log in with a different account. Add
a new post and observe on your first device how the data is updated in the realtime.

Updating and deleting data
Tap on a post to open another screen that shows post details.

The Post Details Screen.

On this screen, you can edit your post by taping on its text. When you’re done you
can tap UPDATE the post content. By tapping Delete you can delete the post if
you’re the author of the post. There’s also a Comments section here. The app also
has the feature of adding a comment to the post which will be displayed here. If you
try to tap any of these buttons you’ll see that nothing happens. You’ll implement
those functionalities next.

Updating

Updating data in Realtime Database is almost the same as writing. You use the same
method for updating - setValue() . Above the RealtimeDatabaseManager class
declaration, add next constant:

private const val POST_CONTENT_PATH = "content"

You’ll use this constant to indicate which field in the database you want to update.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 243

Now add the following to the class:

fun updatePostContent(key: String, content: String) {
 //1
 database.getReference(POSTS_REFERENCE)
 //2
 .child(key)
 //3
 .child(POST_CONTENT_PATH)
 //4
 .setValue(content)
}

1. First, you get a reference to the location of the posts in the database.

2. Here you use the key to access the location of the post you want to update.

3. You can create a new object and write the entire object to this location but that
isn’t needed. You can update a specific field in the post by specifying the path to
that field. Here you update only the content of the post.

4. Finally, you call setValue() with new content to update the content of the post.

Now, use this method in PostDetailsActivity.kt. Replace the TODO in
updatePostButton.setOnClickListener() in the initializeClickListener()
with this:

realtimeDatabaseManager.updatePostContent(post.id,
postText.text.toString().trim())
finish()

When the user taps UPDATE the post content will change and the current activity
will close.

Build and run. Open any post in the list that was written by you, update the post
content, tap UPDATE and verify both on the home screen and Firebase console that
post content is updated.

Deleting

Deleting data in Realtime Database is very simple. You have two options. You can
delete data by using setValue() and specify null as an argument or you can use
removeValue() which will set the value at the specified location to null. You’ll use
the latter approach.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 244

Open RealtimeDatabaseManager.kt and add the deleting post function:

fun deletePost(key: String) {
 database.getReference(POSTS_REFERENCE)
 .child(key)
 .removeValue()
}

Here you get a reference to the location of the posts, then you get the reference to
the desired post and call removeValue() to delete it.

Open PostDetailsActivity.kt, navigate to initializeClickListener() and replace
the TODO in deletePostButton.setOnClickListener() with this:

realtimeDatabaseManager.deletePost(post.id)
finish()

Build and run your app. Open any post in the list that was written by you and click
the delete button. Verify on the home screen and Firebase console that the post is
deleted.

Querying and filtering data
To show how to query data you’ll add another feature to the app. You’ll enable users
to add comments to the post.

Open RealtimeDatabaseManager.kt and add two more constants above the class
declaration:

private const val COMMENTS_REFERENCE = "comments"
private const val COMMENT_POST_ID_PATH = "postId"

COMMENTS_REFERENCE is used to refer to the location of comments and
COMMENT_POST_ID_PATH is used when building a query. You’ll do that in a bit.

Next, add commentsValues and commentsValueEventListener fields to the class:

private val commentsValues = MutableLiveData<List<Comment>>()
private lateinit var commentsValueEventListener:
ValueEventListener

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 245

Now, add a helper function for building a Comment instance:

private fun createComment(postId: String, content: String):
Comment {
 val user = authenticationManager.getCurrentUser()
 val timestamp = getCurrentTime()
 return Comment(postId, user, timestamp, content)
}

When adding Commentimport, use
com.raywenderlich.android.whatsup.model.Comment. With this method you
create aComment object in the same way as you created your firstPost `
object.

Now, add the following function:

fun addComment(postId: String, content: String) {
 val commentsReference =
database.getReference(COMMENTS_REFERENCE)
 val key = commentsReference.push().key ?: ""
 val comment = createComment(postId, content)

 commentsReference.child(key).setValue(comment)
}

This function saves the comment to the database. It uses the same logic as the post
saving function so you should be familiar with this by now.

Next, in PostDetailsActivity.kt, navigate to initializeClickListener() and
replace the TODO inside addCommentButton.setOnClickListener() with the
following:

val comment = commentEditText.text.toString().trim()
 if (comment.isNotEmpty()) {
 realtimeDatabaseManager.addComment(post.id, comment)
 commentEditText.text.clear()
 } else {
 showToast(getString(R.string.empty_comment_message))
}

Here you get the text from EditText and, if it’s not empty, you save the comment to
the database.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 246

Build and run. Open details of any post from the list, add a comment and click ADD
COMMENT.

A comment added successfully.

EditText gets cleared but nothing happens on the UI. Go to the Firebase console.
You’ll see there that comment is saved to the database.

The Comment is visible in the Firebase console.

You can see there that comment has a postId child. This is how you’ll know to which
post comment belongs.

Finally, you can add logic for reading the comments from the database.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 247

Open RealtimeDatabaseManager.kt again and add this code:

private fun listenForPostCommentsValueChanges(postId: String) {
 commentsValueEventListener = object : ValueEventListener {
 override fun onCancelled(databaseError: DatabaseError) {
 /* No op */
 }

 override fun onDataChange(dataSnapshot: DataSnapshot) {
 if (dataSnapshot.exists()) {
 val comments = dataSnapshot.children.mapNotNull
{ it.getValue(Comment::class.java) }.toList()
 commentsValues.postValue(comments)
 } else {
 commentsValues.postValue(emptyList())
 }
 }
 }

 database.getReference(COMMENTS_REFERENCE)
 //1
 .orderByChild(COMMENT_POST_ID_PATH)
 //2
 .equalTo(postId)
 .addValueEventListener(commentsValueEventListener)
}

This function listens for comments value updates and it’s very similar to
listenForPostsValueChanges(), but there are two differences:

1. orderByChild() returns a Query instance where children are ordered by the
postId value. A query is a request for data or information from a database. The
Query class is used for reading data and it has many useful methods that allow
you to fetch the data in a way you want. You can filter data by some criteria, sort
data, limit, etc. Check the official documentation (https://firebase.google.com/
docs/reference/android/com/google/firebase/database/Query) to see what it
offers.

2. equalTo() returns a Query instance that contains child nodes only where the
node value is equal to the specified function argument. In this case, it will return
a query with the comments for the specific post.

The rest of the code is the same as the code for listening for post updates.

Next, add a function, which will delete all of the comments for the specific post:

private fun deletePostComments(postId: String) {
 database.getReference(COMMENTS_REFERENCE)
 .orderByChild(COMMENT_POST_ID_PATH)

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 248

 .equalTo(postId)
 .addListenerForSingleValueEvent(object :
ValueEventListener {
 override fun onCancelled(databaseError: DatabaseError)
{
 /* No op */
 }

 override fun onDataChange(dataSnapshot: DataSnapshot)
{
 dataSnapshot.children.forEach { it.ref.removeValue()
}
 }
 })
}

It uses exactly the same logic for fetching the comments for the specific post as
listenForPostCommentsValueChanges() and you’re already familiar with how to
delete data from the database.

Call this function from the bottom of deletePost() passing in the key of the post:

deletePostComments(key)

This makes sure that when a post gets deleted, its comments get deleted as well.

Next, add onCommentsValuesChange() which starts listening for comments updates
and returns a LiveData object:

fun onCommentsValuesChange(postId: String):
LiveData<List<Comment>> {
 listenForPostCommentsValueChanges(postId)
 return commentsValues
}

Now, open PostDetailsActivity.kt again, navigate to listenForComments() and
replace the TODO with the following:

realtimeDatabaseManager.onCommentsValuesChange(post.id)
 .observe(this, Observer(::onCommentsUpdate))

Observer in this case requires you to import androidx.lifecycle.Observer. This
just starts listening for the comments update.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 249

Next, back in RealtimeDatabaseManager.kt, add a function for removing the
comments listener:

fun removeCommentsValuesChangesListener() {

database.getReference(COMMENTS_REFERENCE).removeEventListener(co
mmentsValueEventListener)
}

Finally, in PostDetailsActivity.kt, override onStop() and call
realtimeDatabaseManager.removeCommentsValuesChangesListener() to remove
the comments listener when you no longer want to listen for comment updates.

override fun onStop() {
 super.onStop()

realtimeDatabaseManager.removeCommentsValuesChangesListener()
}

Build and run. Navigate to the same post you added a comment to earlier.

The comment is visible on the Post Details Screen.

Now you can see your comment on the UI as well. Add more comments from the
same and from the different account to see how comments are updated in real time.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 250

Other features

Transactions

Realtime Database also allows you to write data to the database using a transaction.
A database transaction is a unit of work that is independently executed and it must
be atomic, consistent, isolated and durable. If the WhatsUp app had a feature to
allow you to “like” a post you could use transactions to keep track of how many likes
a given post had. Since there is a use case where multiple users could “like” the post
at the same time, the transaction would allow you to always have fresh and correct
data about likes.

Check the official documentation https://firebase.google.com/docs/database/
android/read-and-write#save_data_as_transactions to see how to work with
transactions.

Listening for child events

Previously you saw how to use value event listener. Often you’ll also need to know
about changes in children of a specific node. In that case, you’ll need to use a child
event listener. Child event listeners notify the app when child nodes are added,
deleted or moved within a parent node. To add a child event listener you’ll need to
call addChildEventListener() on a database reference instance, and there are four
methods that you’ll need to implement. Check the official documentation https://
firebase.google.com/docs/database/android/lists-of-data#child-events to learn more
about child events.

Indexing

There can be a performance issue if your app frequently queries the database. To
improve query performance you should consider defining indexing rules. A database
index is a data structure that is used to quickly locate and access the data in a
database.

You can learn more about indexing data in the official documentation https://
firebase.google.com/docs/database/security/indexing-data.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 251

Key points
• The FirebaseDatabase object is the main entry point to the database

• DatabaseReference represents a particular location in the database and it is used
to refer to the location in the database to which you want to write to or read from.

• push() is used to create an empty node with an auto-generated key.

• Firebase Realtime Database has several types of listeners, and each listener type
has a different kind of callback.

• ValueEventListener listens for data changes to a specific database reference.

• ChildEventListener listens for changes to the children of a specific database
reference.

• You need to decide how to handle listeners when the user is not actively
interacting with the app. In most cases, you want to stop listening for updates. To
do that you need to remove the listener.

• For updating data in Realtime Database, use setValue() .

• You can delete data by using setValue() and specify null as an argument or you
can use removeValue() which will set the value at the specified location to null.

• A query is a request for data or information from a database. The Query class is
used for reading data and it has many useful methods that allow you to fetch the
data in a way you want.

• A database transaction is a unit of work that is independently executed and it
must be atomic, consistent, isolated and durable.

• To improve query performance you should consider defining indexing rules.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 252

Where to go from here?
You covered a lot in this chapter. You have seen how to write data to the Realtime
Database, how to listen for changes in the database and how to update and delete
data. It takes a little bit of practice to get used to working with Realtime Database so
feel free to play a bit with the current app. To see specifics about each method, what
it does and how it does it, you can visit the official Firebase documentation to find
out.

WhatsUp app works great for now, but what if you were using it in a place where the
Internet connection is bad? What if you started uploading data and you lost Internet
connection in the process? Can you write data to the database if you’re offline? The
good news is that Realtime Database provides great offline support. In Chapter 15,
“Realtime Database Offline Capabilities”, you’ll learn how Firebase handles all of the
mentioned cases. You’ll make your WhatsUp app work seamlessly offline and you’ll
learn what happens under the hood that makes that possible.

Saving Data on Android Chapter 14: Reading to & Writing from Realtime Database

raywenderlich.com 253

15Chapter 15: Realtime
Database Offline
Capabilities
By Harun Wangereka

So far, you’ve created an app that enables you to save posts to the database and read
the posts from the database. The next step is to implement offline support. If you
turn off your internet connection now and run your app, you’d see an empty screen
because your app can’t fetch the data from the database.

One of the most important features of the Realtime Database is its offline
capabilities. If you were creating your backend system, you would need to persist the
data by yourself. Firebase handles that for you, and it enables your app to work
properly even when the user loses network connection. In this chapter, you’ll learn
how exactly it does that, and you’ll add offline support to your app so that you could
see posts on the screen and even add posts while you are offline.

Setting up Firebase

If you skipped previous chapters, you need to set up Firebase to follow along. Do the
following steps:

1. Create a project in the Firebase console.

2. Enable Google sign-in.

3. Create a new Realtime Database. Set security rules to the test mode to allow
everyone read and write access. You should never use these settings for your
production apps.

4. Add google-service.json to both starter and final project’s root directory.

raywenderlich.com 254

If you need a reminder of how to do this, go back to Chapter 12: “Firebase Overview”
and Chapter 13: “Introduction to Firebase Realtime Database.”

Be sure to use the starter project from this chapter, by opening the realtime-
database-offline-capabilities/projects/starter rather than continuing with the
final project you previously worked on. It has a few things added to it, including
placeholders for the code that you’ll add in this chapter.

Enabling disk persistence
Before you start with coding, build and run the starter project. Make sure your device
is connected to the Internet.

The sign in screen.

If you aren’t logged in, do so. After successful login, you’ll see your posts on the
home screen. Open any post, disconnect your mobile device from the network and
navigate back to the home screen.

Note: The post and comments on screenshots can differ a bit than yours. You
can use any post content you like!

Saving Data on Android Chapter 15: Realtime Database Offline Capabilities

raywenderlich.com 255

The screen with all saved posts.

Notice that your posts are still there. By default, Firebase stores your data in-
memory. Now, close the app and kill the app process from the Recent apps menu.
Run your app again. Now, you’ll see an empty screen.

Empty posts screen.

Saving Data on Android Chapter 15: Realtime Database Offline Capabilities

raywenderlich.com 256

Caching data locally
To enable disk persistence, you only need one line of code. Open
WhatsUpApplication.kt and add the following at the end of onCreate():

FirebaseDatabase.getInstance().setPersistenceEnabled(true)

Setting the argument of setPersistenceEnabled() to true enables the app to
store the data to the device’s local storage — the disk. That is what makes the data
available even after you kill the app.

The reason you had to enable disk persistence in the Application class, instead of
the RealtimeDatabaseManager, is that setPersistenceEnabled() needs to be
called once per app and before creating the first database reference.

Turn on the network connection on your device. Build and run. Your posts will
appear on the home screen.

The screen with all saved posts.

Now, disconnect your mobile phone from the network, close the app and kill the app
process from the Recent apps menu. Run your app again. You’ll see the posts
appearing on the home screen again. Nice job!

Saving Data on Android Chapter 15: Realtime Database Offline Capabilities

raywenderlich.com 257

Writing data when offline
To test this case, disconnect your mobile device from the network and create a new
post with the text “Newly added post to test persistence.”. You’ll see that the post
appears on the home screen.

The post is added offline.

Then, open the Firebase console and check if your post is saved to the database.
You’ll notice that the post isn’t there since you are offline and there is no connection
to the database. But where is the post stored then?

The post isn't added to the database.

Saving Data on Android Chapter 15: Realtime Database Offline Capabilities

raywenderlich.com 258

Now, connect your mobile phone to the network and observe the database data in
the console. You’ll see that a few moments after you connect your app back to the
Internet your post appears in the database.

The post is visible in the database.

Setting the argument of setPersistenceEnabled() to true also keeps track of all
the writes you initiated while you were offline and then when the network
connection comes back, it resends all the write operations. This makes the user
experience optimal even if the user loses the network connection for a moment
because your app works as if it’s connected to the Internet. After all, it uses local
data from the disk for synchronization.

Enabling persistence also ensures any data or changes made while offline are kept
even across phone restarts. All operations are queued and sent to the Firebase
Realtime Database server once the app has a connection.

Saving Data on Android Chapter 15: Realtime Database Offline Capabilities

raywenderlich.com 259

Keeping data in sync
Realtime Database stores a copy of the data, locally, only for active listeners. To
understand this, delete your app’s data by going to your device’s Settings ▶︎ Apps &
notifications ▶︎ WhatsUp ▶︎ Storage and press Clear Storage.
Make sure you’re connected to the Internet and the posts are visible on the home
screen. Then, disconnect the device from the Internet and open any post that you
know has comments. You’ll notice that there are no comments displayed even if you
instructed the app to store data locally. Since Realtime Database stores data locally
only for active listeners, your comments weren’t saved because you haven’t accessed
them yet.

Don’t worry, you’ll fix this issue in a few moments.

Open RealtimeDatabaseManager.kt and remove private modifier from
COMMENTS_REFERENCE. Your constant now looks like this:

const val COMMENTS_REFERENCE = "comments"

To save data locally for the location that has no active listeners attached, open
WhatsUpApplication.kt , find onCreate() and change calls on the database
instance to include keepSynced():

FirebaseDatabase.getInstance().apply {
 setPersistenceEnabled(true)
 getReference(COMMENTS_REFERENCE).keepSynced(true)
}

Now, Realtime Database will download the comments and keep them in sync, even if
there are no active listeners at that location. Whatever happens at this location —
either data gets deleted or updated, you’ll receive an update locally, as well.

Saving Data on Android Chapter 15: Realtime Database Offline Capabilities

raywenderlich.com 260

Build and run. Connect your mobile device to the network, and after posts are
loaded, disconnect your app from the network. Now open any post that you know has
comments. You’ll see your comments this time.

The post presenting comments when offline.

Default cache size is 10MB, which allows you to store a substantial amount of data
locally, and, in most cases, this should be enough. If you exceed that limit, any data
that hasn’t been used for a long time will be deleted. So it’s an LRU cache kind of
mechanism.

However, in a multi-user app, there is a huge chance of reaching race conditions. For
example, if two users aren’t connected to the Internet, and both create a post, one
later than the other, and if they finally connect to the Internet at the same time,
whichever user has a better and faster connection will write to the database first.
After that, the other user can overwrite existing data in the database. This is
important to know because, usually, this isn’t the desired behavior.

Saving Data on Android Chapter 15: Realtime Database Offline Capabilities

raywenderlich.com 261

Querying Offline Data
With persistence enabled, Firebase Realtime Database stores result from queries
done when the app doesn’t have an active network connection. The queries are done
on data that has been previously loaded. It firsts loads data from the cache. Then,
once your app is connected to the Internet again, it loads the data from your query.
A query can return some items while offline. Then when online, more items will be
added to your query results.

Other offline scenarios and network
connectivity features
Firebase has many features that can help you when in offline mode and connectivity
are an important part of your app. The features you’re about to learn apply to your
app regardless if the local offline persistence is enabled or not.

Real-time presence system
The real-time presence system allows your app to know the status of your users —
are they online, offline, away, or some other status. This feature is inevitable for
chat applications for example, because you want to know if the person you’re texting
is online. This feature may seem simple, but to build an entire app infrastructure or a
mechanism, which handles this for you, can be quite troublesome.

Firebase has this infrastructure implemented and it allows you to use it out of the
box. Firebase saves the user presence status info to the /.info/connected location
that you can observe just like any other location in the database. The .info/
connected reference just contains a boolean which indicates if the client is
connected or not. The problem appears if you want to write something to the
database when the user status changes to the offline status. For this case, you can
use onDisconnect() from Firebase. This method tells the Firebase server to do
something when it notices that the client isn’t online anymore. It works properly,
even in cases when the app crashes or the connection is lost, or any other nasty edge
case.

Saving Data on Android Chapter 15: Realtime Database Offline Capabilities

raywenderlich.com 262

On Android, Firebase automatically manages the connection state to optimize
battery usage and reduce bandwidth. If the client app doesn’t have any connection
to the database, no active listeners, no pending requests, or similar, Firebase will
automatically close the connection after 60 seconds of inactivity. Alternatively, you
can explicitly close the connection by using goOffline().

To learn more about the presence feature, check the official documentation (https://
firebase.google.com/docs/database/android/offline-capabilities#section-presence).

Latency
Generally speaking, latency is the time delay between the cause and the effect of
some change. In Realtime Database that would be, for example, when the user
triggers disconnecting from the server until the disconnecting action is done, or the
delay between requesting a login entry, to an actual authorization response.

Firebase handles latency in a way that it stores a timestamp that is generated on the
server as data in a value called TIMESTAMP. The timestamp is a static field in the
ServerValue class and you access it by calling ServerValue.TIMESTAMP. You can
use it to reliably know the exact time when the action actually finishes.

Saving Data on Android Chapter 15: Realtime Database Offline Capabilities

raywenderlich.com 263

Key points
• Realtime Database allows you to enable disk persistence to make your data

available when you’re offline.

• Enabling disk persistence also tracks all the writes you initiated while you were
offline and then when the network connection comes back it synchronizes all the
write operations.

• Realtime Database stores a copy of the data, locally, only for active listeners. You
can use keepSynced() on a database reference to save data locally for the location
that has no active listeners attached.

• You can be able to query data that is available offline. Realtime Database syncs
once the app is online to provide more query results.

• Firebase provides you with a real-time presence system, which allows your app to
know the status of your users, are they online or offline.

• Firebase handles latency in a way that stores a timestamp, that is generated on
the server, as data when the client disconnects and lets you use that data to
reliably know the exact time when the user disconnected.

Where to go from here?
In this chapter, you learned how Firebase works offline and what features it provides
to help you handle offline mode and connectivity issues. You also improved your
app’s user experience in a way that you enabled your app to work as expected even
if the user is not connected to the Internet.

For more info and examples on enabling offline capabilities, visit the official
documentation (https://firebase.google.com/docs/database/android/offline-
capabilities).

Chapter 16: “Usage & Performance” is the last chapter about Realtime Database and
it will teach you more about its performance and limits.

Saving Data on Android Chapter 15: Realtime Database Offline Capabilities

raywenderlich.com 264

16Chapter 16: Usage &
Performance
By Harun Wangereka

In the previous chapters, you learned how to work with the Firebase Realtime
Database. Realtime Database is built to handle high-traffic apps. To work effectively
with Realtime Database, you have to be aware of its usage and performance limits.
This chapter covers just that.

In this chapter, you’ll cover the Realtime Database pricing model, general Realtime
Database limits, reading and writing limitations and performance. You’ll learn how
to measure and optimize performance and how to profile your database.

Pricing model
Realtime Database is free — but that’s only true up to a certain point. Visit the
Firebase pricing page (https://firebase.google.com/pricing), and notice the text -
“Start for free, then pay as you go.”. Firebase is designed to work for free for smaller
startups or experimental projects, like the one you’ll build in this section. However,
Firebase offers additional pricing plans too.

The Spark Plan is free and exists so that everyone can experiment and get their
hands on Firebase, integrate it into their apps and see how it performs. The majority
of the money that Firebase makes comes from big apps with lots of users. All of the
products that Firebase has are included in all the plans that they offer. This means
that you can try out any product you want for free.

raywenderlich.com 265

When it comes to Realtime Database, the metrics that Firebase uses to decide how
much to bill you for their services are:

1. Simultaneous connections: You can have up to 100 simultaneous connections for
free. This limit can’t be raised.

2. Data storage: You can store 1GB of data for free. Data in this context is text data
and 1GB of text data is an enormous amount.

3. Downloaded data: You can download 10GB of data per month for free from
Realtime Database.

4. Databases per project: You’re not allowed to have multiple databases per project
for free.

For more information about Firebase billing and how to optimize Realtime Database
usage, check out the official Firebase billing guidelines (https://firebase.google.com/
docs/database/usage/billing).

Limitations
As mentioned earlier in this chapter, Realtime Database is built to handle high-
traffic apps, but it still has some limits. You’ll examine some of those limits next. In
general, all of them apply to Realtime Database, not for the free plans alone.

Realtime Database allows you to have 100 simultaneous connections for free, but
100,000 simultaneous connections in a paid plan. This doesn’t mean that your app
can’t have 100,000 maximum users because not all of your users are connected at
once. Simultaneous connections are devices or other clients currently connected to
the database.

A single database can approximately send 100,000 responses per second. Responses
are anything that comes from the database, like reading operations, or broadcast.

When writing to Realtime Database, the maximum size of a single write event is
1MB. That write event includes already existing data at the location that you’re
writing to plus the new data.

When it comes to the data in Realtime Database, the data is stored as a JSON tree, as
you learned previously. The maximum number of child nodes must be less than 32
levels deep, the maximum length of the UTF-8 encoded key is 768 Bytes and the
maximum size of the UTF-8 encoded string is 10MB.

Saving Data on Android Chapter 16: Usage & Performance

raywenderlich.com 266

Reading and writing operations are also limited. The size of the data stored in the
database at a single location should be less than 256MB for a single-read operation.
If you want to perform a read operation at a larger location, consider using data
pagination with a query, shallow queries or backing up the data. The maximum time
to run a single query is 15 minutes. The total number of cumulative nodes in a path
that you want to listen to or query needs to be less than 75 million.

Realtime Database can handle 64MB per minute through simultaneous write
operations on the database. The maximum size of a single write request is 16MB if
you’re writing through the SDK and 256MB if you’re writing from the REST API.

To avoid those limits and scale your Realtime Database data, you can have your data
divided across multiple Realtime Database instances. Since the limits mentioned
above only apply to a single Realtime Database instance, this is a way to avoid them.
Having multiple database instances also allows you to balance server load and
improve performance. This concept is known as database sharding.

To learn more about Realtime Database limitations, visit the official Firebase
documentation (https://firebase.google.com/docs/database/usage/limits). Learn
more about scaling on the sharding page (https://firebase.google.com/docs/
database/usage/sharding).

Performance

Monitoring
Realtime Database offers several ways to monitor database performance and find the
source of eventual problems in your app. It offers the following tools that provide
insight into performance data:

1. Realtime Database Profiler tool.

2. Firebase Console.

3. Cloud Monitoring.

You’ll look into these tools next.

Saving Data on Android Chapter 16: Usage & Performance

raywenderlich.com 267

Realtime Database Profiler

One of the tools that Firebase provides is the Realtime Database profiler tool. This
tool gives you an overview of reading and writing operations on the database in real-
time, which includes information about the speed and operation payload size. The
information doesn’t have any historical data, so don’t use it to estimate billing.

Firebase Console

Firebase console can also be a helpful debugging tool. The usage tab in the console
gives you data about storage, bandwidth and simultaneous connections.

Console usages section

Cloud Monitoring

Firebase also offers Cloud monitoring. This has a granular approach to performance
monitoring. It allows you to use the Metrics Explorer to see the individual
performance, create diverse chart dashboards that display several combinations of
performance metrics. It gives you ability to monitor your billed usage if you’re on
the paid plan, and also contains useful metrics to monitor performance.

With cloud monitoring, you can create alerts when your Database metrics meet a
certain threshold. This is very helpful as you’ll receive the alerts on your email as per
your metric threshold settings.

To learn more about performance monitoring tools, check out the official page
(https://firebase.google.com/docs/database/usage/monitor-performance).

Saving Data on Android Chapter 16: Usage & Performance

raywenderlich.com 268

Profiling
Database profiling is critical for finding bottlenecks or other issues that might be
degrading the user experience. The Firebase command-line interface offers a variety
of tools. One of these, the Database Profiling tool, analyzes the activity in the
database over a specific period and generates a detailed report that you can use to
troubleshoot the database performance.

The profiling results are split into three main categories: speed, bandwidth and
unindexed queries. The speed category contains data about reading, writing and
broadcast speed. The bandwidth category profiles database data consumption across
incoming and outgoing operations. Finally, the unindexed queries category contains
data about unindexed queries since those queries can be expensive.

Optimizing
The best way to optimize performance is to gather all of the data from the tools
mentioned above. After you have gathered the data find out about best practices in
the area that you want to improve and make changes accordingly.

Other ways of optimizing performance are, already mentioned, sharing data across
multiple database instances and the following:

• Build efficient data structures.

• Index your queries.

• Reuse SSL sessions.

• Prevent unauthorized access.

• Limit download by use of query-based rules.

• Optimize connections.

• Remove unused or duplicate data.

• Ship scalable and easy to update code.

• Improve listener efficiency.

The method you choose to optimize performance is entirely dependent on the
results you get from the data gathered. With the data, you can check on the best
practices for each metric.

Saving Data on Android Chapter 16: Usage & Performance

raywenderlich.com 269

To learn more about optimizing database performance, check out the official
documentation on optimization (https://firebase.google.com/docs/database/usage/
optimize).

Key points
• Realtime Database is free up to a certain point.

• Realtime Database is built to handle high-traffic apps but it has some limits.

• Firebase provides you with tools that allow you to monitor, profile and optimize
Realtime Database usage and performance.

Where to go from here?
In this chapter, you covered the usage and performance aspects of Realtime
Database, which are critical to know for large-scale apps.

This chapter wraps up the Realtime Database part of this section. This is a good
place to pause and revisit what you learned so far. Also, try to play with Realtime
Database and check the official documentation to continue learning about what it
can offer you as you build your apps.

In the coming chapters, you’ll learn about Cloud Firestore, which is another
Firebase product that’s similar to Realtime Database.

Saving Data on Android Chapter 16: Usage & Performance

raywenderlich.com 270

17Chapter 17: Introduction
to Cloud Firestore
By Harun Wangereka

In the previous chapters, you learned how to use Realtime Database for storing data
in the cloud. Firebase offers another product that you can use for storing data in the
cloud: Cloud Firestore.

Cloud Firestore has a similar feature set as Realtime Database. It allows you to store
data in the cloud and sync data across devices. It is designed to overcome all the
drawbacks of Realtime Database — and it also stores data within a single JSON
document.

In this chapter, you’ll learn how to use Cloud Firestore and get familiar with the
differences between Realtime Database and Cloud Firestore. More importantly, you’ll
learn how to determine when it’s appropriate to use one over the other.

raywenderlich.com 271

What is Cloud Firestore?
Cloud Firestore is a NoSQL database similar to Realtime Database. It stores data in
a structure that looks like a tree, but where data is stored as documents.

Documents and collections are the primary building blocks of Cloud Firestore. It’s
helpful to think of documents as files. These files consist of key-value pairs known as
fields — this is similar to how models work. The values can be anything - strings,
numbers, binary data, or even nested objects in a map format that resembles a JSON
object. Collections, on the other hand, are simply groups of documents.

When working with Cloud Firestore, there are a few rules to keep in mind:

• Collections can only contain documents. For example, you can’t add a String
object to the collection.

• Documents can’t contain other documents; however, they can point to
subcollections. For example, your collections can contain many documents, and
those documents can point to other collections. This is how things are formatted
in a tree-like structure.

• The root of the Cloud Firestore database can only contain collections.

For example, in the WhatsUp app you created earlier, you could have a Posts
collection that contains a document for each post. Each document would point to a
Comments collection that contains comments for that post, and the document that
contains the comments would point to another collection, and so on.

When you worked with Realtime Database, you learned that you should avoid these
deeply nested hierarchy structures. In Cloud Firestore, however, these deeply nested
structures are typical because the queries are shallow, meaning that querying data
from a document will get you only that document; you don’t have to query the entire
collection or the subcollections within the document. This also means that queries
are more efficient and flexible than in a Realtime Database, especially when it comes
to filtering and sorting the data.

With the WhatsUp app running with Cloud Firestore, you could have a collection of
posts and any other collections you need to represent the data.

Saving Data on Android Chapter 17: Introduction to Cloud Firestore

raywenderlich.com 272

Cloud Firestore vs. Realtime database
Due to the similarity between Realtime Database and Firestore, you may be
wondering how they’re different. Both of these products offer a cloud-based
database solution with real-time data syncing for mobile clients, so what gives?

You can think of Cloud Firestore as an improved version of Realtime Database
because it’s designed to overcome the drawbacks of the Realtime Database with
things like scaling, data structuring and querying. Since Realtime Database stores
data as one big JSON tree, it’s challenging to organize and scale complex data.

Firestore has a new and intuitive data model. It handles complex data using
subcollections within documents. Because of how it stores documents and data,
Firestore has faster queries than Realtime Database, and it supports indexed queries
with compound sorting and filtering. Additionally, in Realtime Database, you can’t
sort and filter the data in the same query. When you query the data, the result is the
whole subtree. Firestore allows all kinds of query chaining that NoSQL databases
allow. Instead of querying entire collections or a document, you can query
subcollections within a document. Furthermore, in Realtime Database, you need to
perform write operations in a single query; in Firestore, you can collect all of your
data and write it as a batch operation. This means that it executes one large job in
small parts to improve efficiency.

Firestore has a lot of advanced features too. Both Realtime Database and Firestore
offer offline support; however, Realtime Database offers it only for mobile clients,
while Firestore offers it for web apps as well.

With Realtime Database, you need callbacks for transactions. With Firestore, you
don’t. Transactions complete automatically when all of them are finished.

Scalability in Realtime Database isn’t that big of a problem, but when the data
exceeds the limits you learned about in Chapter 16, “Usage & Performance”, you
needed to shred your data across multiple database instances. In Firestore, you won’t
need to do that regardless of how big your database will be — it handles database
scaling for you. This is a considerable improvement for large-scale projects.

Firestore also has support for complex queries when the user is offline. Realtime
Database only offers support for simple queries of local data.

Saving Data on Android Chapter 17: Introduction to Cloud Firestore

raywenderlich.com 273

Like Realtime Database, Firestore is free, up to a certain point; you need to pay for
your database to scale. Firestore charges based on the reading and write operations
that you’re performing on the database.

Because of the improvements that the Firestore offers compared to the Realtime
Database, Firebase recommends using the Firestore for all new projects.

Cloud Firestore Data Structure
In this chapter, you learned that Firestore is a NoSQL database, meaning there is no
SQL. But if there’s no SQL, you can’t build queries that will take one piece of data
from one part of the database, and another piece of data from another part of the
database, and merge them. In Firestore, to get data from two different parts of the
database, you must make two different requests. If you run into that scenario, you
likely need to re-structure your data in a way that you’ll always be able to get what
you need in one request.

You also learned that Firestore Database consists of collections and documents. Take
the WhatsUp app, for example. While it’s possible to have a Posts collection that
contains individual posts as documents, WhatsUp has the feature where every post
can contain comments. Maybe you can make it so that every post document contains
a Comments subcollection, and that that collection contains comments for that post.
With that setup, you could easily fetch the post and the comments in a single call.
However, that’s not how you want to do that.

When you think about it, you don’t need to know about the post comments until the
user opens the post by tapping on it. It’s only when the post details screen appears
that you need the comments. In this case, a better approach is to have a Comments
collection stored as a separate collection rather than as a subcollection. You can then
put the post id to the individual comment, so you’ll know to which post the
comment belongs. Finally, when fetching comments, you can filter them by the post
id and get all of the comments that belong to a specific post.

There is one drawback to this approach, however, and that is data duplication. Every
comment has an author so you’ll likely want to know who wrote the comment. In
WhatsUp this isn’t the case, but in other apps, you could have another collection of
users, and then the comment would need to contain the user data.

Saving Data on Android Chapter 17: Introduction to Cloud Firestore

raywenderlich.com 274

By doing that, not only do you fill the database with duplicate user data objects in
each of the comments but also if the user chooses to change the data, you’ll need to
update all of the comments, as well. So, perhaps a better approach is to store the
author id in the comment; then, when you need to get the user data, you can filter
out the independent Users collection using the available id.

One significant advantage of the NoSQL database is that it can distribute data across
multiple machines easily. In relational databases, when you have an app that’s
becoming more popular and needs more storage space, you’d need a more powerful
and bigger machine. This is known as vertical scaling.

In many NoSQL databases, including Firestore, when you need more storage,
Firestore spreads your data across many servers. This is known as horizontal
scaling, and it’s much easier to scale horizontally than vertically. Why? Because it’s
much easier to get many moderately powerful machines than to continually upgrade
a single machine to handle everything. Machines have their limits too, you know!

Collections and Documents
You learned that Realtime Database stores data as one large JSON tree that contains
keys and values. You also learned that these values can be objects containing other
key-value pairs. Firestore is a collection of objects that are stored in a hierarchical
structure that resemble a tree. Every object in a collection is represented as a
document. The document consists of key-value pairs known as fields in Firestore.
These values can be strings, numbers, binary data, or nested objects in a map format.
The limitation, however, is that the document size must be less than 1MB.

In simple terms, collections are nothing more than a group of documents. A
document can’t contain other documents, but it can contain another collection
known as subcollection. Collections are containers for documents. A collection can
only contain documents. It can’t directly contain raw fields with values, and it can’t
contain other collections. The document names within a collection are unique.

The general hierarchy in Firestore is usually collections first, then documents. A
document can have a subcollection. Inside a subcollection you have documents and
you can have subcollections too. This allows you to nest more data. The nesting limit
is 100 levels deep. Subcollections enable you to structure data hierarchically,
making data easier to access. Your collections and documents should follow this
hierarchy.

Saving Data on Android Chapter 17: Introduction to Cloud Firestore

raywenderlich.com 275

Cloud Firestore supports many data types. To learn more about them, visit the
official documentation: https://firebase.google.com/docs/firestore/manage-data/
data-types.

References
Firestore identifies each document by its location in the database. A reference is a
lightweight object pointing to a location in your database. A reference doesn’t
perform any network operation. You can create a reference to a location even if it
doesn’t have any data. You can create references for your collections and documents.
Collection reference and document reference are different types of references. This
means the operations on each reference also differ.

Key points
• Cloud Firestore is a NoSQL database similar to Realtime Database.

• Firestore stores data as a collection of objects which are stored in a hierarchical
structure that resemble a tree.

• Documents and collections are the main building blocks of Cloud Firestore.

• Documents consist of key-value pairs known as fields.

• Collections are a group of documents.

• Collections can only contain documents.

• The root of the Cloud Firestore database can only consist of collections.

• A document can’t contain other documents, but it can contain another collection;
these are known as subcollections.

• It’s easier to query, filter and sort data using Firestore since it can all be done
within a single request.

• It’s best to use foreign-key-like fields in objects, as you don’t want to duplicate
data and clutter the database.

• Firestore scales horizontally; this is easier than Realtime Database which scales
vertically.

• A reference is a lightweight object that points to the location of a collection or
document.

Saving Data on Android Chapter 17: Introduction to Cloud Firestore

raywenderlich.com 276

Where to go from here?
In this chapter, you learned the basics of Cloud Firestore. You learned what Firestore
is, the differences between Firestore and Realtime Database, and how Firestore
structures the data. You still have a lot to cover, so be sure to visit the official
documentation (https://firebase.google.com/docs/firestore) to understand the
specifics of Cloud Firestore better.

In the next chapter, you’ll learn how to manage Firestore data using Firebase
Console and how to add and delete data from the database.

Saving Data on Android Chapter 17: Introduction to Cloud Firestore

raywenderlich.com 277

18Chapter 18: Managing
Data with Cloud Firestore
By Harun Wangereka

In the previous chapter, you learned the basics of Cloud Firestore. You learned what
Firestore is, how it differs from Realtime Database and how it structures its data. In
this chapter, you’ll integrate Firestore into the app. You’ll refactor the current
WhatsUp app to use Firestore as the backend. The functionality of WhatsUp will
remain the same.

In the process, you’ll learn how to add data to Firestore, how to update and delete
data, and how to use Firebase Console to manage Firestore data.

Getting started
You need to set up Firestore before you can start using it. If you followed along with
Realtime Database chapters, you have already created the project in the Firebase
console. If you didn’t, go back to Chapter 12: “Firebase Overview” and Chapter 13:
“Introduction to Firebase Realtime Database” to see how to create the project in the
console and how to connect your app with Firebase.

raywenderlich.com 278

Creating the Database
Open your WhatsUp project in the Firebase console. Select Firestore Database
from the menu on the left.

Firestore Landing Page

Tap Create database in the Cloud Firestore section at the top of the page. Next,
you’ll see the dialog with security rules. Firestore offers two security modes for you:

• Test mode will allow anyone to have read and write access to the database for a
period of 30 days. You can adjust the date to the one you’d want.

• Production mode will deny all reads and writes to the database.

Choose the test mode for now. You’ll learn more about the security of Cloud
Firestore in “Chapter 20: Securing Data in Cloud Firestore”.

Firestore Security Rules

Saving Data on Android Chapter 18: Managing Data with Cloud Firestore

raywenderlich.com 279

Tap Next to go to the next step of creating your database. You’ll see the screen for
setting your Cloud Firestore location.

Firestore Location

Firestore allows you to set the location where it stores data. In the drop-down
widget, choose either a multi-region or a single region from the available list of
regions.

Tap Enable. You’ll see your database on the screen after Firebase finishes creating it.

Firestore Database

Saving Data on Android Chapter 18: Managing Data with Cloud Firestore

raywenderlich.com 280

Configuring your Application
You’ve created the database in the console. Now you need to configure your app so it
can communicate with the database.

Note: This chapter provides starter and final projects that you can use to
follow along. To use these projects, you need to configure them first by
creating a project in the Firebase and by adding the google-services.json
configuration file to the project. Take a look at Chapter 12: “Firebase
Overview” and Chapter 13: “Introduction to Firebase Realtime Database.” to
see how to do that.

Open the starter project for this chapter.

First, you need to add a Firestore client library for Android to the project. Open
build.gradle and add the following dependency at the end of the dependencies
block:

implementation 'com.google.firebase:firebase-firestore:23.0.2'

After adding this dependency, sync a Gradle. Click Sync Now in the notification
shown after changing the file.

Build gradle notification.

The second thing you need to do is to initialize the Firestore instance. Navigate to
CloudFirestoreManager.kt inside firebase/firestore package. Add a database field
as a top-level variable below the commentsValues variable:

private val database = FirebaseFirestore.getInstance()

Saving Data on Android Chapter 18: Managing Data with Cloud Firestore

raywenderlich.com 281

Resolve the import errors when the IDE prompts you. Here, you’re getting a Firestore
instance fromFirebaseFirestore. You’ll use it for all the communication with
Firestore Database from the application.

With this setup, you’re now ready to start writing and reading data from Firestore.

Writing Data
To learn how to use Firestore, you’ll refactor the existing Whatsup app. The first part
ready for refactoring is writing. Instead of writing data to Realtime Database, you’ll
write the data to Cloud Firestore.

In CloudFirestoreManager.kt, replace TODO inside addPost() with the following:

// 1
val documentReference =
database.collection(POSTS_COLLECTION).document()
// 2
val post = HashMap<String, Any>()
// 3
post[AUTHOR_KEY] = authenticationManager.getCurrentUser()
post[CONTENT_KEY] = content
post[TIMESTAMP_KEY] = getCurrentTime()
post[ID_KEY] = documentReference.id
// 4
documentReference
 .set(post)
 .addOnSuccessListener { onSuccessAction() }
 .addOnFailureListener { onFailureAction() }

In the code above:

1. First, you call collection() passing in the posts collection path stored in the
POSTS_COLLECTION constant. As a result, the method returns a reference to the
collection at the specified path in the database. Then, you use that collection
reference to get the document reference by calling document(). This method
points to the new document within that collection with an auto-generated ID.
You’ll use that document reference to get the document ID that you’ll store in
the database with the post object.

Saving Data on Android Chapter 18: Managing Data with Cloud Firestore

raywenderlich.com 282

2. Here, you create data that you want to save to the document. You represent this
data as a map where String is the type of the key and Any is the type of the
value.

3. You need to populate the map with the values that you want to write to the
database - you add author, post content, timestamp and the ID of the document.

4. The last part is saving the data. First, you call set() on the document reference.
It will replace the data in the document if it already exists or it will create it if it
doesn’t. You pass in the map that contains the data that you want to write to that
document. set() is an asynchronous operation and, once ready, it returns a Task
object. Since the operation is asynchronous, you attach two listeners. One is
OnSuccessListener() is called if the Task completes successfully, and
OnFailureListener() is called if the operation fails. You pass in the actions that
the system invokes depending on the result of the operation.

Open AddPostActivity.kt, find addPostIfNotEmpty() and replace TODO inside the
if block with:

cloudFirestoreManager.addPost(postMessage, ::onPostAddSuccess, :
:onPostAddFailed)

Here, you’re calling previously added code in addPost() on the
cloudFirestoreManager instance. You also pass the message you want to add, and
success and failure methods.

Saving Data on Android Chapter 18: Managing Data with Cloud Firestore

raywenderlich.com 283

Build and run. Sign in if necessary. Tap the floating action button at the bottom right
corner. Add some text and tap Post.

First Firestore Post.

You’ll get a Toast message that says that the post is saved successfully. The home
screen displays nothing.

That is because you haven’t implemented the logic for reading yet.

Saving Data on Android Chapter 18: Managing Data with Cloud Firestore

raywenderlich.com 284

Open the database in the console. You’ll see your post there. If you don’t see it try to
refresh the page.

Posts on Firestore Collections.

Congratulations, you saved your first post to the Firestore database! From the
screenshot, you have a posts collection that has a single document. The document
has author, content, id and timestamp fields. Most likely, yours will have different
content.

For cases where you only need to write small chunks of data, this is the approach
you’ll be using. In the next section, you’ll be looking at using transactions to write a
bunch of data at the same time.

Transactions
Firestore supports another way of writing data, transactions. Firestore has
transactions for cases when you want to write a bunch of data to the database at
once. While the transaction is executing, the user won’t be able to read that partially
changed state. If one of the operations that are in execution in a transaction fails,
none of them will be applied because that could potentially leave the database in an
inconsistent and undesired state. Firestore applies either all or none. One
transaction operation can write to 500 documents maximally.

There is another type of transaction called batched write. Batched write allows you
to perform a bunch of writes all at once, in other words, in a batch. It works in a way
that you specify what you want to change and tell the SDK to change it. You don’t
have to worry about what happens if the operation fails halfway through. None of
the changes will be applied in that case. Also, another user won’t be able to change
that same data that you are currently changing because those write operations are
atomic which means that the operation is guaranteed to be isolated from other
operations that may be happening at the same time. Batch operation is also much
more efficient than doing many individual write operations. A good use case for
batch write is when you want to change many related documents and your new value
does not depend on the old value.

Saving Data on Android Chapter 18: Managing Data with Cloud Firestore

raywenderlich.com 285

To learn more about transactions and batched writes check out the official
documentation: https://firebase.google.com/docs/firestore/manage-data/
transactions.

Updating Data
Next, you’ll add an update feature to your app. You’ll see that it’s very similar to
what you did when adding new data. Open CloudFirestoreManager.kt , look for
updatePostContent() and replace TODO inside it with the following:

// 1
val updatedPost = HashMap<String, Any>()
// 2
updatedPost[CONTENT_KEY] = content
// 3
database.collection(POSTS_COLLECTION)
 .document(key)
 .update(updatedPost)
 .addOnSuccessListener { onSuccessAction() }
 .addOnFailureListener { onFailureAction() }

Here’s what you’re doing:

1. You create a map of data that you want to save to the database. This is similar to
how you create new data.

2. You specify the data that you are updating. In this case, this is only the post
content.

3. Finally, you get the reference to the posts collection. From there you get the
reference to the document that you’re updating by specifying a key. You then call
update() on a document reference which updates fields in the document. The
listener logic stays the same as in the case of writing new data.

Open PostDetailsActivity.kt, find initializeClickListener() and replace TODO
in the updatePostButton on-click listener with:

cloudFirestoreManager.updatePostContent(
 post.id,
 postDetailsBinding.postText.text.toString().trim(),
 ::onPostSuccessfullyUpdated,
 ::onPostUpdateFailed
)

Saving Data on Android Chapter 18: Managing Data with Cloud Firestore

raywenderlich.com 286

In this code, you’re calling your updatePostContent() and passing the id of the
post you want to update. You’re also passing the new message that you’ve added and
finally, you pass your success and failure action methods. When you tap UPDATE
POST it will update the database with the updated content.

Now you can update posts in the database as well. You’ll be able to test this
functionality when you put in place reading logic in “Chapter 19: Reading Data from
Cloud Firestore”.

Deleting Data
One last bit of functionality that you’ll add in this chapter is post deleting. Open
CloudFirestoreManager.kt, replace TODO inside deletePost() with the following:

database.collection(POSTS_COLLECTION)
 .document(key)
 .delete()
 .addOnSuccessListener { onSuccessAction() }
 .addOnFailureListener { onFailureAction() }

To delete a post, you first get a reference to the collection of the post by calling
collection() on a database instance and passing in the path to the posts
collection. Then you get a reference to the specific post document that you want to
delete by passing in the key which is the ID of the post. Finally, you call delete() on
a document reference which deletes the document referred to by the reference. This
method deletes data asynchronously, so you also attach the listeners that get
triggered when the deleting succeeds or fails.

Now, open PostDetailsActivity.kt and inside initializeClickListener() replace
TODO of the deletePostButton on-click listener with the following:

cloudFirestoreManager.deletePost(post.id, ::onPostSuccessfullyDe
leted, ::onPostDeleteFailed)

Here, you make a call to your deletePost() which you’ve updated. You pass the id
of the post you want to delete. Now, when you open post details you can delete a
post by tapping DELETE. You’ll also test this functionality when you implement
reading logic in “Chapter 19: Reading Data from Cloud Firestore”.

One important thing to mention here is when you delete a post document, if that
document contained a subcollection, that subcollection wouldn’t be deleted. When
you delete a document only that document is deleted; Firestore doesn’t delete the
documents inside the subcollections.

Saving Data on Android Chapter 18: Managing Data with Cloud Firestore

raywenderlich.com 287

Firebase Console
You can do all operations you implemented in this chapter, like adding data,
updating and deleting, manually in the Firebase console.

Open Firebase Console in the browser and navigate to Firestore Database.

From here, you can view your database data. You can click on any collection to see
the documents within that collection, and you can click on any document to see the
details of that document.

You’ll also notice a menu icon in every column title cell. Click on one of them. Then,
you’ll see the options to delete a document or a specific field of the document.

Documents Options Menu

You can also filter the documents inside the collection by clicking the filter button.

Filter Collections Data.

Visit the official documentation, https://firebase.google.com/docs/firestore/using-
console, to explore more possibilities of the console.

Saving Data on Android Chapter 18: Managing Data with Cloud Firestore

raywenderlich.com 288

Key points
• You can create a Firestore database in the Firebase console.

• You need to add a Firestore client library for Android to the project to use
Firestore APIs.

• You need to initialize a Firestore instance to communicate with the database.

• You call collection() passing in the collection path to get a reference to the
collection at the specified path in the database.

• You need to create and populate the map of data that you want to save to the
database.

• You call set() on the document reference that will replace the data in the
document if it already exists or it will create it if it doesn’t to save the data to the
database. You pass in the map that contains the data that you want to write to that
document.

• Firebase supports transactions that you use in cases when you want to write a
bunch of data to the database at once.

• You call update() on a document reference to update fields in the document.

• You call delete() on a document reference which deletes the document referred
to by the reference.

• Adding, updating and deleting operations are asynchronous.

• You can use the console to manage data in the database.

Where to go from here?
You’ve implemented adding, updating, and deleting functionalities in this chapter
and you saw how you can use the Firebase console to achieve that. You can visit the
official documentation, https://firebase.google.com/docs/firestore/manage-data/
add-data, to learn more about these operations.

You still don’t have a way to test these functionalities. In “Chapter 19: Reading Data
from Cloud Firestore” you’ll add the ability to listen for data updates in real-time.
You’ll also learn how to read data from the database and do other data operations.

Saving Data on Android Chapter 18: Managing Data with Cloud Firestore

raywenderlich.com 289

19Chapter 19: Reading Data
from Cloud Firestore
By Harun Wangereka

In the previous chapter, you learned how to write data to Firestore, and how to
update or delete data from Firestore by implementing that functionality in the
WhatsUp app. You also became familiar with the Firebase console and learned how
to use it for managing data.

In this chapter, you’ll continue working on your app. Since now you still don’t have
any data on the home screen when you run the app, you’ll focus on implementing
reading logic. In the process, you’ll learn how to read data from Firestore, how to
listen for updates in real-time, and how queries work.

Setting up Firebase

If you skipped previous chapters, you need to set up Firebase to follow along. Do the
following steps:

1. Create a project in the Firebase console.

2. Enable Google sign-in.

3. Set security rules to the test mode to allow everyone read and write access.

4. Add google-service.json to both starter and final projects.

To see how to do this, go back to Chapter 12: “Firebase Overview” and Chapter 13:
“Introduction to Firebase Realtime Database.”

Be sure to use the starter project from this chapter, by opening the reading-data-
from-cloud-firestore folder and its starter project from the projects folder, rather
than continuing with the final project you previously worked on. It has a few things
added to it, including placeholders for the code to add in this chapter.

raywenderlich.com 290

Reading Data
Like the Realtime Database, Firestore allows to read data once or to listen for data
changes in real-time.

To get the data once, you need to call get() on the collection reference from which
you want to read the data or you can also use get() on the document reference, if
you need to read data from a specific document. For example, this is how you’d read
the data from the posts collection:

database.collection("posts")
 .get()
 .addOnSuccessListener { result ->
 ...
 }
 .addOnFailureListener { exception ->
 ...
 }

Since getting the data is asynchronous, you need to attach a listener that will notify
you when the data fetching is complete. It returns the data as a QuerySnapshot.
QuerySnapshot is a class that contains the results of a query and can contain
QueryDocumentSnapshot objects if they are available. A QueryDocumentSnapshot
contains data read from a document in your Firestore database. You’ll see an
example of this shortly.

Since you want your app to always have the latest data, you won’t fetch the data only
once. Instead, you’ll put in place a listener, so you can receive events when the data
changes.

Listening for Data Changes
If you don’t have the project open by now, make sure to open it, and head over to
CloudFirestoreManager.kt. Add a postsRegistration this field below
commentsValues variable:

private lateinit var postsRegistration: ListenerRegistration

Add the IDE import when the IDE prompts you. ListenerRegistration represents a
subscription of sorts, for a database reference, when you attach a listener to the
reference. You’ll use it to assign a posts listener to it and to remove it when needed,
to clean up your code, and to stop receiving changes.

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 291

Still inside CloudFirestoreManager.kt , navigate to
listenForPostsValueChanges(). Replace TODO inside the function with the
following implementation:

// 1
postsRegistration = database.collection(POSTS_COLLECTION)
 // 2
 .addSnapshotListener(EventListener { value, error ->
 // 3
 if (error != null || value == null) {
 return@EventListener
 }
 // 4
 if (value.isEmpty) {
 // 5
 postsValues.postValue(emptyList())
 } else {
 // 6
 val posts = ArrayList<Post>()
 // 7
 for (doc in value) {
 // 8
 val post = doc.toObject(Post::class.java)
 posts.add(post)
 }
 // 9
 postsValues.postValue(posts)
 }
 })

Here’s a breakdown of the code above:

1. You assign the listener to postsRegistration variable that you’ve declared, by
attaching an EventListener to the database collection. You receive the database
collection by calling database.collection(POSTS_COLLECTION).

2. You call addSnapshotListener() on the collection reference which starts
listening for the data changes at its location.

3. When onEvent() is called you first check if an error occurred by checking if the
error argument is not null, or if the value is null. If it is you’ll return from the
function since you cannot consume the event.

4. You check if the received data actually contains documents - it isn’t empty.

5. You update the postsValues with emptyList() when the value is empty. Which
means no posts are available.

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 292

6. If there are values, instantiate an ArrayList to store them.

7. Iterate through each document in the value snapshot.

8. Parse each document as a Post, and add it to posts.

9. Update the postsValues with parsed posts.

To resolve the import error add this import for EventListener class in your imports

import com.google.firebase.firestore.EventListener

To read the data, you pass in the listener of type EventListener that Firestore calls
whenever data changes or if an error occurs. EventListener is a generic interface
for any type of event listening, and contains only onEvent(T value,
FirebaseFirestoreException error) that you’re required to implement.
onEvent() will be called with the new value or the error if an error occurred. You get
the result data as a QuerySnapshot object. This is the easiest way to communicate
data changes or errors. Since it’s generic, it can work for any collection.

Open HomeActivity.kt and navigate to listenForPostsUpdates() . Replace the
TODO inside the function with the following:

cloudFirestoreManager.onPostsValuesChange()
 .observe(this, Observer(::onPostsUpdate))

Here, you register an observer for values on the posts collection. When you receive
new data, you’ll reflect that by displaying it on the screen.

You also need to remove the listener when you no longer want to receive data
change events. To do that, open CloudFirestoreManager.kt and navigate to
stopListeningForPostChanges() . Replace the function code with the following:

fun stopListeningForPostChanges() = postsRegistration.remove()

Here, you call remove() on a ListenerRegistration object. This removes the
listener from the location that this listener is assigned to.

Now go back to HomeActivity.kt and add this code:

override fun onStop() {
 super.onStop()
 cloudFirestoreManager.stopListeningForPostChanges()
}

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 293

Here, you call your stopListeningForPostChanges() method. It stops the listener
when the activity stops.

Build and run. You should see the posts now on the home screen:

Listening to Firetore Collection.

You can test the real-time updates by deleting the posts from the console. You”ll see
the app will instantly reflect the changes.

Performing Queries
Sometimes, you don’t want to read only the documents of certain collections.
Sometimes you need to filter out, match by values, or simply skip a certain amount
of documents. To do this, you use database queries. Currently, you don’t have any
nested documents in the posts collection. Up next, you’ll add comments to it to
make it a bit more complex.

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 294

Adding Comments
Open CloudFirestoreManager.kt, and navigate to addComment(). Replace TODO
with the following code:

// 1
val commentReference =
database.collection(COMMENTS_COLLECTION).document()
// 2
val comment = HashMap<String, Any>()
// 3
comment[AUTHOR_KEY] = authenticationManager.getCurrentUser()
comment[CONTENT_KEY] = content
comment[POST_ID] = postId
comment[TIMESTAMP_KEY] = getCurrentTime()
// 4
commentReference
 .set(comment) // 5
 .addOnSuccessListener { onSuccessAction() } // 6
 .addOnFailureListener { onFailureAction() } // 7

To sum it up, here’s what happens:

1. Create a new document in Firestore, and store its reference.

2. Create HashMap<String, Any>, to store the comment data.

3. Store the data in comment.

4. Use commentReference to communicate the save operation.

5. Set the reference value to the new comment.

6. In the case of a Success, call onSuccessAction().

7. In case something goes wrong - a Failure occurred, call onFailureAction().

Open PostDetailsActivity.kt and find initializeClickListener(). Replace TODO
inside the addCommentButton click listener with:

cloudFirestoreManager.addComment(
 post.id,
 comment,
 ::onCommentSuccessfullyAdded,
 ::onCommentAddFailed
)

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 295

In this code, you call addComment() with the comment from EditText. You’re also
passing the id of the post and methods to handle success and failure. This will save
the comment to the database when you tap ADD COMMENT.

Build and run. Tap on any post in the list. Enter some text into the comments
EditText and tap ADD COMMENT:

The screen for creating a comment.

Your comment is now saved to the database. Open the database in the console to
confirm that. You should see your comment there.

Comments Collection in Firestore Database.

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 296

Listening for comments
You can add comments to the database now, but you still can’t read them. Since you
store comments in a separate collection from posts, to read them you’ll need to write
a query that returns comments for the specific post. Every comment document has a
post_id property that indicates to which post the comment belongs.

Open CloudFirestoreManager.kt. Add a commentsRegistration field below the
postsRegistration variable:

private lateinit var commentsRegistration: ListenerRegistration

You’ll use this field to assign the comments listener to it and to remove the listener
when needed like before.

Next, navigate to listenForPostCommentsValueChanges(). Replace TODO inside
the function with the following:

// 1
commentsRegistration = database.collection(COMMENTS_COLLECTION)
 // 2
 .whereEqualTo(POST_ID, postId) // 3
 // 4
 .addSnapshotListener(EventListener { value, error ->
 if (error != null || value == null) {
 return@EventListener
 }
 if (value.isEmpty) {
 postsValues.postValue(emptyList())
 } else {
 val comments = ArrayList<Comment>()
 for (doc in value) {
 val comment = doc.toObject(Comment::class.java)
 comments.add(comment)
 }
 commentsValues.postValue(comments)
 }
 })

Here’s what you’re doing:

1. As before, you assign a listener to the commentsRegistration reference.

2. whereEqualTo() creates a query that filters the documents in the collection that
contain the specified field and value in that field.

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 297

3. You pass in two parameters. One is POST_ID, which represents the post_id
property in your collection. The second parameter, postId represents the value
for comparison. This query will only return the documents that belong to the
specified post. whereEqualTo() returns Query that you can read or listen to.

4. Once again, you attach EventListener and parse the comments list, if there are
any, updating the UI when you’re done.

Next, open PostDetailsActivity.kt and navigate to listenForComments(). Replace
TODO inside the function with the following:

 post?.id?.let {postId ->
 cloudFirestoreManager.onCommentsValuesChange(postId)
 .observe(this, Observer(::onCommentsUpdate))
 }

Add necessary import from the lifecycle package. With these lines, you are listening
for the comments changes for that particular post and when the data changes you
update the UI.

Go back to CloudFirestoreManager.kt and look for
stopListeningForCommentsChanges(). Replace the function with the following:

fun stopListeningForCommentsChanges() =
commentsRegistration.remove()

Here, you remove the comments listener from the location that you assigned to
commentsRegistration.

Open PostDetailsActivity.kt and add the following code below onStart():

override fun onStop() {
 super.onStop()
 cloudFirestoreManager.stopListeningForCommentsChanges()
}

In the code above, you call stopListeningForCommentsChanges() which stops the
listener when the activity stops.

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 298

Build and run. Open a post that has at least one comment. You’ll see all comments
appear in the post details section of the app.

Adding Comments in Realtime.

Adding more comments to the post will appear instantly since you’ve attached a
listener. Firestore notifies the listener of any changes in the comments collection.

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 299

Deleting comments
One last thing that you need to add is the ability to delete the comments. You’ll
delete the comments for the particular posts when you delete that post.

Open CloudFirestoreManager.kt and navigate to deletePostComments(). Replace
TODO inside the function with the following:

// 1
database.collection(COMMENTS_COLLECTION)
 .whereEqualTo(POST_ID, postId)
 //2
 .get()
 //3
 .continueWith { task -> task.result?.documents?.forEach
{ it.reference.delete() } }

In the code above, you:

1. Create a reference to the comments collection and filter the comments that
belong to the specific post.

2. Call get() to retrieve the filtered-by-post comments, asynchronously.

3. After you load the comments, you delete them from the database, one by one.

Using continueWith() on a Task instance returns a new Task. The Task completes
with the result of applying the specified Continuation to this Task. A
Continuation function once called, continues execution after completion of a Task.
You fetch the comments for the specific posts and delete them by traversing the
result documents and calling delete() on each document reference.

Finally, in CloudFirestoreManager.kt, at the end of deletePost() add:

 deletePostComments(key)

This will delete the comments tied to that post, when you delete a post.

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 300

Build and run. Open the post that you added a comment to before. You’ll now see the
app displays your comment. Add another comment and you’ll see that it’s displayed
on the screen immediately.

Listening to Comments Updates.

Now, delete the posts that you added comments to and observe the database in the
console. Notice that comments for that post are deleted, as well.

Working offline
Like Realtime Database, Firestore can also work offline. Cloud Firestore stores a
copy of data that your app is using, locally, so that you can have access to the data if
the device goes offline. You can perform operations like reading, writing and
querying on the local copy. When your device goes back online, Firestore
automatically syncs the data with the data that is stored remotely!

Firestore offline persistence is enabled by default for mobile clients. You can test this
in your WhatsUp app.

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 301

Here are the steps:

• Add some posts if you don’t have them already. You can add some comments to
that post as well if you like.

• Disconnect the device from the network and kill the process of your app. Start your
app again and you’ll notice that your data is still displayed on the screen.

• Add another post. Tap the floating action button on the home screen and enter
some content for the post and tap Post. Nothing happens because you only
consider post saved when it is saved to the remote database.

• Go back to the home screen by tapping the system back button. The app displays
the post that you added while offline on the home screen. This is because the app
saved it to the local cache. If you open the console and look into the database you
won’t see that post in the database.

• Connect your device back to the network. You’ll get a Toast message on the device
that the post is saved and now you can see your post in the remote database.

If you don’t want to have the offline feature enabled, you can disable it when
initializing Cloud Firestore.

Check the official documentation (https://firebase.google.com/docs/firestore/
manage-data/enable-offline) to learn more about offline support.

Other features
Cloud Firestore has many other features. You’ll go through some of them next.

Ordering and limiting
You’ve already seen how you can specify which documents you want to fetch from
the collection by using whereEqualTo(). But there’s much more you can do, on top
of whereEqualTo():

• You can use orderBy() on the collection reference to sort the data by the specified
field. By default, Firestore sorts the documents in ascending order by document
ID.

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 302

• You can use limit() on the collection reference to only return up to the specified
number of documents.

• You can also combine all of where() for filtering with limit() and orderBy().

Pagination
You can have a lot of data stored in your database, but at times you don’t need all the
data. Pagination allows you to split your database data into chunks so that you don’t
need to fetch it all at once.

Firestore provides you with the pagination feature, which works in a way where you
don’t need to execute one large query. Instead, you use multiple smaller queries
sequentially. Firestore library has some useful methods that you can use to divide
your query into smaller queries, like startAt(), startAfter(), endAt() or
endBefore().

Check the official documentation (https://firebase.google.com/docs/firestore/query-
data/query-cursors) to learn more about pagination.

Indexing
To ensure good performance for every query, Firestore requires an index. Firestore
automatically creates indices for the basic queries for you.

Check the official documentation (https://firebase.google.com/docs/firestore/query-
data/indexing) to learn more about how to add indexing manually and how it works.

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 303

Key points
• Firestore allows to read data once or to listen for data changes in real-time.

• To get the data once, you would need to use get() on the collection reference.

• The ListenerRegistration interface represents a Firestore subscription listener.

• You can call addSnapshotListener() on a collection reference to start listening
for data changes at a specific location.

• Queries are used to get only a subset of the documents within a collection.

• Cloud Firestore stores a copy of data that your app is using, locally, so that you can
access the data if the device goes offline.

• You can also use orderBy() and limit(), on the collection reference, to get only
specific documents from a collection.

• Pagination allows you to split your database data into chunks so that you don’t
need to fetch all your data at once.

• To ensure good performance for every query, Firestore requires an index, when
creating them.

Where to go from here?
You covered a lot in this chapter. You learned how to read data from Firestore and
listen for data changes in real-time. You also learned what queries are and how to
use them only to fetch specific documents from a collection.

To learn more about those features, you can check out the official documentation
(https://firebase.google.com/docs/firestore/query-data/get-data).

WhatsUp is now complete, but it has one big flaw. Anyone can read and write the
data to the database. In “Chapter 20: Securing Data in Cloud Firestore”, you’ll learn
how to secure the data in the database and restrict access to the data.

Saving Data on Android Chapter 19: Reading Data from Cloud Firestore

raywenderlich.com 304

20Chapter 20: Securing Data
in Cloud Firestore
By Harun Wangereka

In the previous chapters, you implemented all the features to the WhatsUp app
except the most important one. You haven’t implemented any security rules, which
means anyone has access to your data.

In this chapter, you’ll learn what security rules in Cloud Firestore exist and how to
add them to your database to make your data safe.

What are Security Rules?
To set up your own security system you’d need to set up your own server that acts as
a proxy between your mobile clients and the remote database. That server would
need to process all the requests that are sent to the database and make sure that the
client is accessing only the data that it is allowed to see.

Security rules handle security for you. You don’t need to set up your own security
system.

raywenderlich.com 305

How Security Rules Work
Security rules check the requests that are coming to the database and let through
those that meet the criteria and reject the ones that don’t. So for example, if your
database only allows writing data to the authenticated client and an unauthenticated
user tries to write something to the database, then the database will reject that
request.

Any request that comes to the database involves the document. You’re either trying
to write the document to the database, read the document from the database, update
an existing document, or something similar. Cloud Firestore will take a look at the
security rules that apply to the document that your request contains. It will then run
a set of tests that you wrote to determine if it will allow the request or not.

In a nutshell, security rules consist of two things:

1. Specifying which documents you are securing.

2. What logic you’re using to secure them.

Getting started
To see how the security rules look like open your Firestore Database in the console.
Open the Rules tab at the top.

Cloud Firestore Security Rules.

This is where you can see your current logic for the security rules. These are the
default security rules that you added while creating Firestore Database. To be able to
create your own rules, you need to understand the security rules syntax as in the
image above.

Saving Data on Android Chapter 20: Securing Data in Cloud Firestore

raywenderlich.com 306

You start by specifying your Security Rules versions as:

rules_version = 2

By default, version one of the security rules is the one used. So here, you’re
specifying version two of the security rules. Using this version enables you to do
more queries like collection group queries. This version also changes the following
behavior of recursive wildcards:

• Recursive wildcards match zero or more path items. In version one, the wildcards
can’t match an empty path and must return one or more path items.

• In version one, recursive wildcards can only be at the end of a match statement. In
version two, you can place your wildcard anywhere in the match statement. Check
the official documentation (https://firebase.google.com/docs/firestore/security/
get-started#security_rules_version_2) to see the differences in the behavior.

On the next line you have a match block:

match /databases/{database}/documents

This line indicates the path that all the documents belong to. By default, all the
documents belong to the /databases/{database}/documents path. {database} in
curly brackets is a wildcard that matches any database name. You’ll learn more about
wildcards later. Next, you have another match block:

match /{document=**} {
 ...
}

This is where you set the rules for the specific document by specifying the path to
that document. match specifies the path to the document. document=** is a
recursive wildcard that matches any document in the entire database.

In your current database, you have a posts collection that contains a specific post.
The path to the specific post looks like this:

/databases/{database}/documents/posts/{postId}

If you only want to write a security rule that applies to that specific path you’d do it
like this:

match /databases/{database}/documents {
 match posts/{postId} {
 ...

Saving Data on Android Chapter 20: Securing Data in Cloud Firestore

raywenderlich.com 307

 }
}

From the above snippet, the first match block, As you can see, Firestore lets you nest
the paths.

Now, your posts collection could have a subcollection. You could add a separate rule
for that subcollection like this:

match /databases/{database}/documents {
 match posts/{postId} {
 match subcollection/{documentId} {
 ...
 }
 }
}

There is one important thing to notice when looking at these nested rules. The rules
you add to the top-level match posts/{postId} do not apply to the inner match
statements. Security rules in Cloud Firestore do not cascade.

Adding Security Rules
Your WhatsUp app is still not safe. You’ll add security rules next to restrict the
access to data. Open Firestore Database in the console and tap Rules. Replace the
exisiting rule with:

rules_version = '2';
service cloud.firestore {
 match /databases/{database}/documents {
 match /{document=**} {
 allow read, write: if request.auth.uid != null;
 }
 }
}

This rule allows read and write access on all documents for any signed-in user. The
allow expression specifies when to allow the writing or reading of data.

Saving Data on Android Chapter 20: Securing Data in Cloud Firestore

raywenderlich.com 308

When you’re done with writing the rules to the editor click Publish.

Firebase Security Rules Editor.

Usually, it takes a minute for the security rules to make an effect, but sometimes it
can take up to 10 minutes. Before you start testing make sure you wait a couple of
minutes.

Testing the Security Rules
Firestore has the Rules Playground which you can use to test your rules. You’ll be
using the Rules Playground to test the rule you’ve created.

Security Rules Playground.

Click the Data tab, open posts collection and copy the ID of one post. Go back to
Rules and tap the Up arrow in the Rules Playground section. This opens the Rules
Playground window.

Saving Data on Android Chapter 20: Securing Data in Cloud Firestore

raywenderlich.com 309

Next, do the following:

1. Under the Simulation type field leave it set to get.

2. Under the Location field enter the path to the specific post. In my case the path
looks like this:

posts/posts/FNlxMWV6kZUgyr9vPFv8

The posts/FNlxMWV6kZUgyr9vPFv8 is the ID of the post. Replace that value with the
ID you copied earlier.

Leave the Authenticated switch in the inactive state.

Now, tap Run. You should see an error message:

Security Rules Failure.

Your request didn’t succeed because you simulated an unauthenticated request. The
Rules Playground shows you the rule which your request doesn’t meet and shows
you the line.

Saving Data on Android Chapter 20: Securing Data in Cloud Firestore

raywenderlich.com 310

Now change the Authenticated switch to an active state. Leave the authentication
fields that appear with their default values, and tap Run again.

Security Rules test request is successful.

Your request is now successful since it meets all the conditions in your rules. Now all
users that want to read and write to your database have to be authenticated. It
prevents unauthorized reads and writes which at times can be from unwanted parties
and can increase your usage and cost.

Monitoring Security Rules
Firebase also provides statistics for your set rules. You can access your rules data by
tapping the Monitor rules tab which is next to the Edit rules tab.

The rules graph.

Saving Data on Android Chapter 20: Securing Data in Cloud Firestore

raywenderlich.com 311

From this, Firestore provides the following information:

• Total allows. This is the number of reads and writes for your apps and users who
meet your set criteria.

• Total denies. Number of reads and write denials for your apps or users.

• Total errors. The number of errors encountered in your rules.

There’s a graph for the statistics too.

Key points
• Security rules check the requests that are coming to the database. The rules let

through those that meet the criteria and reject the ones that don’t.

• Security rules consist of two things. One is specifying which documents you are
securing. The second thing is what logic you’re using to secure them.

• In the Rules tab in the Firebase Console, you can see your current security
configuration.

• match statement specifies the path to the document.

• allow expression specifies when to allow the writing or reading of data.

• Security rules in Cloud Firestore do not cascade.

• Cloud Firestore provides the Rule Playground feature that you can use to test
your rules.

Where to go from here?
In this chapter, you learned the basics of the Cloud Firestore’s Security rules. Your
WhatsUp app now only allows authenticated users to access the data.

To learn more about writing conditions, structuring and testing Security rules check
out the official guidelines: https://firebase.google.com/docs/firestore/security/rules-
structure.

Saving Data on Android Chapter 20: Securing Data in Cloud Firestore

raywenderlich.com 312

21Chapter 21: Cloud Storage

By Harun Wangereka

With Realtime Database and Cloud Firestore, you saved data to the database. But
what about files like photos, for example? While small pieces of data like posts,
comments or users tend to be a few kilobytes of text, photos are much larger. Storing
and retrieving photos extends the startup and loading time when reading the
database. You don’t want to store photos in a database because it should be fast.

raywenderlich.com 313

In this chapter, you’ll learn how to store media files using another Firebase feature —
Cloud Storage. You’ll learn how to store an image in the cloud and how to get a URL
to the image to display it in your app.

Note: If you skipped previous chapters, you need to set up Firebase to follow
along. Do the following steps:

1.Create a project in the Firebase console.

2.Enable Google sign-in.

3.Set security rules to test mode to allow everyone read and write access.

4.Add google-service.json to both starter and final projects.

Note: To see how to do the steps above, go back to “Chapter 12: Firebase
Overview” and “Chapter 13: Introduction to Firebase Realtime
Database”.

Be sure to use the starter project from this chapter by opening the 21-cloud-
storage folder and its starter project from the projects folder, rather than
continuing with the final project you previously worked on. This chapter’s
starter project has a few things added to it, including placeholders for the code
to add in this chapter.

Cloud Storage Overview
Cloud Storage is a Firebase product used for saving files associated with your app.
You can use it to store large documents or media files like images or videos.

Since Cloud Storage operates with large files, it’s fundamental to provide robust
network connection mechanisms and fallbacks. Cloud Storage handles all the
potential network problems for you. Depending on your connection, upload or
download can take a while. If you lose the network connection in the middle of an
upload or a download, the transfer will continue where it left off, after you reconnect
to the network. This makes transferring your data very efficient.

Saving Data on Android Chapter 21: Cloud Storage

raywenderlich.com 314

Cloud Storage also has security features that will safely store your files away from
the public. You can decide who can write data to and read data from the storage.

The foundations of Cloud Storage are the folders that you create to organize your
data. You can then decide which users can access which folders.

There’s more theory you could learn, but for now, you’ll use the Firebase console to
set up Cloud Storage. You’ll use the WhatsUp app to store, download and display
images to users on the app screen.

Getting started
Open your WhatsUp app in the Firebase console. Select Storage from the Build
menu on the left.

Cloud Storage Getting Started Menu.

Tap Get started to set up Cloud Storage.

Adding Security Rules in Cloud Storage.

Saving Data on Android Chapter 21: Cloud Storage

raywenderlich.com 315

For your first step, you need to set up security rules for your storage. Leave the
default rules that allow reads and writes from authenticated users. Tap Next.

Location Settings.

In the second step, you need to choose the location for your Cloud Storage. You can
choose the location of your preference from the drop-down list that appears. Tap
Done once you finish. Your Cloud Storage is now ready for use.

Cloud Storage Home Page.

You can see that your storage is empty; you haven’t added any files yet. Next, you’re
going to change this. Tap the little folder icon in the top-right corner to create a
new folder.

Creating a New Folder.

Saving Data on Android Chapter 21: Cloud Storage

raywenderlich.com 316

Name your folder photos and tap Add folder. You’ll use this folder to store the
photos.

Add a New Folder.

Cloud Storage is now set up and ready for use. Next, you’ll integrate it with your app.

Integrating Cloud Storage
Open the starter project for this chapter. Build and run. You’ll see the main screen
for adding posts.

Cloud Storage Starter App.

Saving Data on Android Chapter 21: Cloud Storage

raywenderlich.com 317

On this empty screen find a floating action button in the bottom-right corner. Very
soon you’ll implement action for that button. Then, once you tap it, it will open File
Explorer on your device.

Phone File Explorer.

This is where you’ll choose the image that you want to store to Cloud Storage.

Note: File Explorers may vary in appearance depending on your Android
version, phone manufacturer and whether you’ve installed third-party file
manager applications.

Next, you’ll implement the logic for uploading the image. When a user selects an
image, you’ll upload it to Cloud Storage. Then, you’ll get a URL of that image which
you’ll use to display the image on the home screen.

Open CloudStorageManager.kt , replace the TODO inside uploadPhoto() with:

//1
val photosReference =
firebaseStorage.getReference(PHOTOS_REFERENCE)
//2
selectedImageUri.lastPathSegment?.let { segment ->
 //3
 val photoReference = photosReference.child(segment)

Saving Data on Android Chapter 21: Cloud Storage

raywenderlich.com 318

 //4
 photoReference.putFile(selectedImageUri)
 //5
 .continueWithTask(Continuation<UploadTask.TaskSnapshot,
Task<Uri>> { task ->
 val exception = task.exception
 if (!task.isSuccessful && exception != null) {
 throw exception
 }
 return@Continuation photoReference.downloadUrl
 })
 //6
 .addOnCompleteListener { task ->
 if (task.isSuccessful) {
 val downloadUri = task.result
 onSuccessAction(downloadUri.toString())
 }
 }
}

In the code above:

1. First, you get a reference to the photos folder that you created earlier, by calling
getReference() on firebaseStorage. This is where you’ll upload your photo.

2. You get lastPathSegment of the image URI. You’ll use it as the name of the file
that you’re going to save.

3. Get a reference that points to the location to which you’ll store the image.

4. Here you call putFile() to store the image to photosReference. You also pass
in the content URI of the image. This method stores the image asynchronously. It
returns an instance of UploadTask that you’ll use to track the upload progress.

5. Next, you call continueWithTask() on the UploadTask object to get the
download URL of the image you’re uploading when the image upload finishes.
When importing, use com.google.android.gms.tasks.Continuation.

6. If the Task request is successful, you return photoReference.downloadUrl.
Otherwise, you throw an exception.

7. Finally, you attach OnCompleteListener so you’ll receive a notification when the
upload finishes.

8. If the task is successful, you get the download URI by calling task.result. You
pass that result to onSuccessAction().

Saving Data on Android Chapter 21: Cloud Storage

raywenderlich.com 319

Now, open HomeActivity.kt, below your onPhotoUploadSuccess() add:

private val pickImages =
registerForActivityResult(ActivityResultContracts.GetContent())
{ uri ->
 uri?.let { selectedImageUri ->
 binding.progressbar.visibility = View.VISIBLE

cloudStorageManager.uploadPhoto(selectedImageUri, ::onPhotoUploa
dSuccess)
 }
 }

Here, you using the new Activity Result API to register your pickImages callback.
This callback uses an inbuilt contract, ActivityResultContracts.GetContent(),
in the API. It makes it easy for you to launch the image picker option. When you
select your image from the File Explorer, you’ll get the URI of the selected image
from the callback. You pass the URI using uploadPhoto() on the
cloudStorageManager object.

Finally, in initialize() , replace the TODO inside addPostFab click-listener with:

pickImages.launch(IMAGE_TYPE)

With this line, you launch your pickImages contract. You pass mimeType for your
content. In this case, it’s image/jpeg since you only want to upload image files. With
this, your app is ready to choose and upload images to Cloud Storage. :]

Build and run. Now, open the File Explorer by using the floating button. Select an
image from the File Explorer. It will immediately upload to Cloud Storage.

Saving Data on Android Chapter 21: Cloud Storage

raywenderlich.com 320

When the upload finishes, you’ll see the image on the home screen.

Selected Image Uploaded.

Saving Data on Android Chapter 21: Cloud Storage

raywenderlich.com 321

Go to the Firebase console and open your app’s Cloud Storage. You’ll see the photo
you uploaded in the photos folder.

Cloud Storage Images List.

Awesome! You’ve successfully connected your app to Firebase Cloud Storage!

Key points
• Cloud Storage is a Firebase product used for saving files associated with your app.

• If you lose a network connection in the middle of the upload or a download, the
transfer will continue where it left off after you reconnect to the network.

• Cloud Storage also has security features that will make your files secure.

• The foundations of Cloud Storage are folders that you can create to organize your
data.

Where to go from here?
This chapter was only an introduction to Cloud Storage to show you how to store
media files to the cloud. You learned how to set up Cloud Storage and how to upload
and download files from it. Cloud Storage has many other features. To learn more
about them visit the official guidelines https://firebase.google.com/docs/storage/
android/start.

Saving Data on Android Chapter 21: Cloud Storage

raywenderlich.com 322

22Conclusion

Congratulations! After a long journey, you’ve learned a lot about persistence in
Android. You can use the API and tools provided by the Android SDK as well as the
Room library, which Android Architecture Components provide. On the other hand,
if you want to resolve persistence with the latest tools, you now know how to use
Google’s Jetpack DataStore. If your app needs to manage persistence, along with
security and offline capability, you can now know the fundamentals of using the
Firebase suite.

Remember, if you want to further your understanding of Kotlin and Android app
development after working through Saving Data on Android, we suggest you read
Android Apprentice and Kotlin Apprentice, which are available on our online store:

• https://www.raywenderlich.com/books/android-apprentice

• https://www.raywenderlich.com/books/kotlin-apprentice

If you have any questions or comments as you work through this book, please stop by
our forums at http://forums.raywenderlich.com and look for the particular forum
category for this book.

Thank you again for purchasing this book. Your continued support is what makes the
tutorials, books, videos, conferences and other things we do at raywenderlich.com
possible, and we truly appreciate it!

Wishing you all the best in your continued work with Kotlin and saving data on
Android.

–The Saving Data on Android book team

raywenderlich.com 323

	Book License
	What You Need
	Book Source Code & Forums
	About the Cover
	Acknowledgements
	Content Development

	Introduction
	How to read this book

	Chapter 1: Using Files
	Reading and writing files in Android
	Getting started
	Viewing the files in Device File Explorer
	Securing user data with a password
	Understanding Parcelization and Serialization
	Key points
	Where to go from here?

	Chapter 2: Using SharedPreferences
	Understanding SharedPreferences
	Getting a reference to the SharedPreferences file
	Getting started
	Saving the user preferences
	Reading the user preferences
	Reading and writing the prefs from MainActivity
	Key points
	Where to go from here?

	Chapter 3: SQLite Database
	Getting started
	Using SQLiteOpenHelper
	Reading from a database
	Updating a TODO
	Deleting a TODO
	Unit Testing with Robolectric
	Key points
	Where to go from here?

	Chapter 4: ContentProvider
	Understanding content provider basics
	Getting started
	Implementing the content provider methods
	Challenge: Creating a client
	Key points
	Where to go from here?

	Chapter 5: Jetpack DataStore
	Getting started
	Limitations of SharedPreferences
	Types of DataStore implementations
	Creating your DataStore
	Writing to DataStore
	Reading from DataStore
	Migrating from SharedPreferences
	Key points
	Where to go from here?

	Chapter 6: Room Architecture
	Object Relational Mappers
	Room and Android Architecture Components
	Advantages of using Room
	Frequently asked Room questions
	Your app
	Key points

	Chapter 7: Entity Definitions
	Getting started
	Tables and entities
	Creating your entities
	Creating the database
	Key points
	Where to go from here?

	Chapter 8: Mastering Relations
	Getting started
	Relations and entity-relationship diagrams
	Creating your relations
	Key points

	Chapter 9: The DAO Pattern
	Getting started
	Using DAOs to query your data
	Creating a provider class
	Testing your database
	Key points
	Where to go from here?

	Chapter 10: Using Room with Android Architecture Components
	Getting started
	Using LiveData with a Repository
	Creating ViewModels
	Defining your Views
	Key points
	Where to go from here?

	Chapter 11: Data Migration
	Getting started
	Migrations
	Understanding Room migrations
	Exporting schemas
	Creating Room migrations
	Automated migrations
	Key points
	Where to go from here?

	Chapter 12: Firebase Overview
	Firebase history
	Why Firebase?
	Getting started
	Key points
	Where to go from here?

	Chapter 13: Introduction to Firebase Realtime Database
	Overview
	Setting up Realtime Database
	Data structure
	Key points
	Where to go from here?

	Chapter 14: Reading to & Writing from Realtime Database
	Reading and writing data
	Key points
	Where to go from here?

	Chapter 15: Realtime Database Offline Capabilities
	Enabling disk persistence
	Other offline scenarios and network connectivity features
	Key points
	Where to go from here?

	Chapter 16: Usage & Performance
	Pricing model
	Limitations
	Performance
	Key points
	Where to go from here?

	Chapter 17: Introduction to Cloud Firestore
	What is Cloud Firestore?
	Cloud Firestore vs. Realtime database
	Cloud Firestore Data Structure
	Key points
	Where to go from here?

	Chapter 18: Managing Data with Cloud Firestore
	Getting started
	Writing Data
	Updating Data
	Deleting Data
	Firebase Console
	Key points
	Where to go from here?

	Chapter 19: Reading Data from Cloud Firestore
	Reading Data
	Performing Queries
	Working offline
	Other features
	Key points
	Where to go from here?

	Chapter 20: Securing Data in Cloud Firestore
	What are Security Rules?
	Getting started
	Adding Security Rules
	Key points
	Where to go from here?

	Chapter 21: Cloud Storage
	Cloud Storage Overview
	Getting started
	Integrating Cloud Storage
	Key points
	Where to go from here?

	Conclusion

