
B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

www.apress.com

SOURCE CODE ONLINE9 781430 246862

53999
ISBN 978-1-4302-4686-2

US $39.99

Shelve in:
Mobile Computing

User level:
Beginning–Intermediate

Related Titles

Beginning
Android

Get started building apps for the
Android platform
—
Fifth Edition
—
Grant Allen

Get started in creating marketable apps for the burgeoning Android market. Begin your journey
by learning the essentials of programming for phones and tablets that are built around Google’s
wildly-successful Android platform. Beginning Android, Fifth Edition is fresh with details on the
latest iteration of the Android 5 and earlier versions.

Google’s Android operating-system has taken the industry by storm, going from its humble
beginnings as a smartphone operating system to its current status as a platform for apps that
run across a gamut of devices from phones to tablets to netbooks to televisions, and the list
is sure to grow. Smart developers are not sitting idly by in the stands, but are jumping into
the game of creating innovative and salable applications for this fast-growing, mobile- and
consumer-device platform. If you’re not in the game yet, now is your chance!

Begin at the beginning by installing the tools and compiling a skeleton app. Move through
creating layouts, employing widgets, taking user input, and giving back results. Soon you’ll
be creating innovative applications involving multi-touch, multi-tasking, and more! You’ll be
drawing data live from the Internet using web services and delighting your customers with
life-enhancing apps. Not since the PC era first began has there been this much opportunity for
the common developer.

Beginning Android

Allen
Beginning Android

BeginningBeginning

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning Android

Fifth Edition

Grant Allen

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning Android

Copyright © 2015 by Grant Allen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4686-2

ISBN-13 (electronic): 978-1-4302-4687-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The images of the Android Robot (01/Android Robot) are reproduced from work created and shared by
Google and used according to terms described in the Creative Commons 3.0 Attribution License. Android
and all Android and Google-based marks are trademarks or registered trademarks of Google Inc. in the
United States and other countries. Apress Media LLC is not affiliated with Google Inc., and this book was
written without endorsement from Google Inc.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Technical Reviewer: Jon Westfall
Editorial Board: Steve Anglin, Louise Corrigan, Jim DeWolf, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: Rebecca Rider
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

To all the future Android developers out there.

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Author���xix

About the Technical Reviewer���xxi

Acknowledgments���xxiii

Introduction��xxv

■■Part I: Get Android and Get Coding!��� 1

■■Chapter 1: Welcome to Android�� 3

■■Chapter 2: Ready, Set, Code!�� 7

■■Chapter 3: Inside Your First Android Project�� 35

■■Chapter 4: Changing and Enhancing Your Project�� 45

■■Part II: Activities and the User Interface��� 57

■■Chapter 5: Working with Android Widgets��� 59

■■Chapter 6: Layouts and UI Design��� 79

■■Chapter 7: Building Layouts with Lists and Adapters�� 107

■■Chapter 8: Working with Input Methods, Menus and Dialogs���������������������������� 127

■■Chapter 9: Adopting the Action Bar�� 155

■■Chapter 10: The Life of an Activity��� 169

www.it-ebooks.info

http://www.it-ebooks.info/

vi Contents at a Glance

■■Part III: A World of Wonderful Devices and Screens������������������������ 179

■■Chapter 11: Android Fragments��� 181

■■Chapter 12: Intents and Receivers��� 197

■■Chapter 13: Making Phone Calls�� 211

■■Chapter 14: Making Noise with Audio for Android��� 219

■■Chapter 15: Locations and Mapping with Android��� 239

■■Part IV: Working with Resources and Services������������������������������� 255

■■Chapter 16: Weaving the Web with Android��� 257

■■Chapter 17: Working with Files�� 287

■■Chapter 18: Managing Databases with Android �� 305

■■Chapter 19: Using Preferences��� 327

■■Chapter 20: Android Security and Permissions�� 343

■■Chapter 21: Incorporating External Libraries with Android������������������������������� 355

■■Chapter 22: Leveraging Android Services�� 371

■■Chapter 23: Communicating with Notifications�� 385

Index�� 403

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Author���xix

About the Technical Reviewer���xxi

Acknowledgments���xxiii

Introduction��xxv

■■Part I: Get Android and Get Coding!��� 1

■■Chapter 1: Welcome to Android�� 3

The Fast Path to Learning Android Development�� 3

Thinking in a Smartphone Mindset��� 4

Computing on the Go!�� 4

Size Matters��� 4

The Interface Is More Than the Screen�� 4

You Are Not Alone�� 4

Translating Developer Dreams into Android Action��� 5

A Look Inside Android�� 5

A Look Inside This Book�� 6

www.it-ebooks.info

http://www.it-ebooks.info/

viii Contents

■■Chapter 2: Ready, Set, Code!�� 7

Getting the Prerequisites for Android�� 7

Determining the Right Java for You��� 7

Knowing (Enough) Java for Android��� 9

Choosing a Development Environment��� 9

Option 1: Choosing Android Studio�� 10

Option 2: Choosing Eclipse the Quick Way��� 12

Options 3: Choosing Eclipse the Do-It-Yourself Way�� 13

Completing Your Development Environment Setup��� 18

Creating Your First Android Virtual Device��� 20

Creating Your First Android Application��� 25

Writing Your First Android Code��� 31

■■Chapter 3: Inside Your First Android Project�� 35

Looking at Android Project Structure�� 35

Starting at the Source��� 37

Benefitting from Generated Components�� 38

Using Libraries and JARs�� 38

Counting Your Assets��� 39

Putting Things in the Bin��� 39

Using Resources�� 39

Picturing What Drawables Can Do For You�� 39

User Interface Layouts��� 40

What’s on the Menu?��� 40

Valuable Values�� 41

Working with Other Key Files in Your Project�� 41

Controlling Applications with Android Manifests��� 41

Permutating Projects with Properties�� 43

“R” You Forgetting Something?��� 43

Solving the Appcompat Mystery�� 44

www.it-ebooks.info

http://www.it-ebooks.info/

ixContents

■■Chapter 4: Changing and Enhancing Your Project�� 45

Extending Your Application with the Android Manifest�� 45

Editing the Android Manifest��� 45

Specifying Target Screen Sizes��� 46

Controlling Support for Different Android Versions�� 48

Writing Actual Android Code�� 51

Introducing the Activity��� 52

Looking Inside Your First Activity��� 53

Building and Running Your Enhanced Application��� 54

■■Part II: Activities and the User Interface��� 57

■■Chapter 5: Working with Android Widgets��� 59

Understanding Activity Fundamentals��� 59

Naming with Labels��� 60

Pressing Buttons (redux)��� 61

Handling Images with ImageView and ImageButton��� 62

Fielding Text with EditText��� 63

CheckBox? Got It.�� 65

Switching to the Switch�� 68

Working with Radio Buttons�� 71

Timing All Manner of Things with Clocks�� 73

Easing Input with SeekBar�� 75

Views: The Base of All UI Widgets��� 76

Useful Common Inherited Properties��� 76

Useful Common Inherited Methods��� 76

Even More UI Widgets��� 77

■■Chapter 6: Layouts and UI Design��� 79

Working with Relative Layouts�� 80

Positioning Relative to the Activity Container�� 80

Identifiying Properties for Relative Layout��� 81

Relative Positioning Properties�� 81

www.it-ebooks.info

http://www.it-ebooks.info/

x Contents

Determining the Order of Layout Relationships��� 82

A RelativeLayout Example��� 82

Overlapping Widgets in Relative Layouts�� 85

Working with Linear Layouts��� 86

Controlling the Five Key Qualifiers for LinearLayout�� 87

An Example LinearLayout�� 88

Working with Table Layouts�� 93

Understanding Widget Behavior within TableLayout��� 93

An Example TableLayout�� 95

Working with Grid Layouts�� 97

Layout Manipulation with the Layout Editor�� 99

Recap of the Layout Editor UI�� 100

Even More Reasons for XML Layouts�� 101

Converting to XML-based Layouts with Java Logic��� 101

Attaching Layout Definitions to Java��� 103

Completing Your Revised App�� 103

■■Chapter 7: Building Layouts with Lists and Adapters�� 107

Using Adapters to Populate Options�� 108

Why Adapters?��� 108

Starting with ArrayAdapter�� 108

Making Lists�� 110

Making More Sophisticated Lists�� 112

Adapting to the GridView��� 115

Taking Options for a Spin�� 118

Automatic Field Population��� 122

Summary��� 126

■■Chapter 8: Working with Input Methods, Menus and Dialogs���������������������������� 127

Using The Input Method Framework��� 127

Real and Virtual Keyboards�� 127

Customizing IMEs�� 129

www.it-ebooks.info

http://www.it-ebooks.info/

xiContents

Accessorizing with Soft Keyboards��� 133

Scrolling in to View�� 135

Forcing the IME out of Existence��� 138

Working with Menus��� 138

Creating Menus for your Application��� 139

Working With Context Menus��� 140

Menus In Action��� 141

Inflating Menus from XML��� 145

Interacting with Dialogs�� 148

Creating Toast Notifications��� 149

Generating Traditional Dialog Alerts�� 149

Pardon The Interruption��� 150

Summary��� 153

■■Chapter 9: Adopting the Action Bar�� 155

Recognizing the Action Bar��� 155

Managing Android Versions for Action Bar�� 156

Creating Action Bar Applications��� 157

Enabling the Action Bar for your Application��� 157

Moving Menu Functionality to the Action Bar�� 159

Using Java to Manage Action Bars�� 160

Working with a Standard Action Bar in Java��� 161

Choosing a Tab Layout for the Action Bar�� 163

Using Other Layouts for the Action Bar�� 167

Summary��� 167

■■Chapter 10: The Life of an Activity��� 169

Understanding the Activity Lifecycle��� 169

Working with Activity Callback Methods��� 171

Understanding the Goals of Android Activity Behavior�� 175

Working with Activity Configuration Changes��� 176

Understanding the Default Configuration Change Approach��� 176

Saving Custom State��� 177

www.it-ebooks.info

http://www.it-ebooks.info/

xii Contents

■■Part III: A World of Wonderful Devices and Screens������������������������ 179

■■Chapter 11: Android Fragments��� 181

Introducing the Fragment Class�� 181

Backwards Compatibility with Fragments��� 182

Designing with Fragments in Mind�� 182

Introducing the Fragment Lifecycle��� 184

Understanding Fragment Lifecycle Callback Methods�� 184

Keeping Sane with Fragment Lifecycles��� 187

Implementing Your Own Fragment-Based Application�� 187

Creating Layouts for the Fragments Examples�� 187

Controlling Which Layout Is Chosen�� 189

Coding Differences for Fragments��� 190

Seeing Differing Fragment Behavior in Action��� 191

Summary��� 195

■■Chapter 12: Intents and Receivers��� 197

Introducing Intents�� 197

The Anatomy of an Intent��� 198

Intent Actions for all Kinds of Purposes��� 199

Understanding Intent Routing�� 200

Adding Intents to Your Manifest��� 200

Seeing Intent-launched Activities in Action��� 202

Deciding on Activity Dependency.�� 202

Creating an Intent�� 203

Starting the Intent-Invoked Activity��� 204

Introducing Receivers��� 208

Using Receivers When No UI is Needed��� 209

Navigating Receiver Limitations�� 209

■■Chapter 13: Making Phone Calls�� 211

Checking for Phones and “Phonies”��� 211

Mandating Telephony Support��� 211

Optional Telephony Support��� 212

www.it-ebooks.info

http://www.it-ebooks.info/

xiiiContents

Making Outbound Calls��� 212

Using ACTION_DIAL��� 217

Using ACTION_CALL��� 217

Working with Incoming Calls��� 217

■■Chapter 14: Making Noise with Audio for Android��� 219

Introducing the Media package��� 219

Building Your First Audio Application��� 219

Using Resources or Assets��220

Coding for Audio Playback Using the Media Framework��� 221

Starting With A Simple Audio Player Layout�� 222

Coding the AudioExample Behavior��� 223

Building Your Own Android Music Streaming Application��� 226

Synchronous versus Asynchronous Playback��� 230

Playing at Last��� 230

Alternative Audio Playback Approaches�� 231

Using SoundPool for Simultaneous Playback�� 231

Going Fully-Asynchronous with AsyncPlayer��� 232

Recording Audio with Android��� 232

Making Recordings with MediaRecorder��� 232

■■Chapter 15: Locations and Mapping with Android��� 239

Choosing Map Providers for Your Application�� 239

Google Maps�� 240

The OpenStreetMap Project��� 241

HERE/Ovi Maps�� 241

Which Technology to Choose?��� 241

Preparing for Google Maps Development�� 242

Creating Your API Project��� 242

Enabling a Maps API on Your Google API Project��� 242

Getting the API Key�� 243

Retrieving Your API Key�� 243

www.it-ebooks.info

http://www.it-ebooks.info/

xiv Contents

Building Your First Maps Application��� 244

Using MapActivity or FragmentActivity with MapView�� 244

Permissions and Manifest Settings for Maps�� 245

Building the Layout for Your Map Application�� 246

Adding Code for a Basic Map�� 246

Adding Flair and Features to Your Maps�� 250

Zoomin’�� 250

True North�� 250

Toolbars and theMy Location Button��� 250

Shakin’ It!�� 251

Changing Map Type��� 251

Listeners for Every Conceivable Type of Map Interaction�� 252

Even More Map Options��� 252

Summary��� 254

■■Part IV: Working with Resources and Services������������������������������� 255

■■Chapter 16: Weaving the Web with Android��� 257

Working with the WebView Widget�� 257

Creating a Simple Application with a WebView��� 258

Simple and Not-So-Simple WebView Security�� 259

Building HTML Layouts with WebView�� 262

UI-less Internet Interaction with Android�� 265

Why Multiple Approaches to Web Interaction?�� 265

Building a JSON-based Application with HttpURLConnection��� 267

Troubleshooting Issues with Internet Connections�� 272

Mastering Downloads with DownloadManager��� 274

Introducing the DownloadManager System Service��� 274

Selecting Permissions for DownloadManager Use�� 275

A Simple Downloader Example�� 276

Coding DownloadManager Behavior��� 277

Dealing with Download Problems�� 284

www.it-ebooks.info

http://www.it-ebooks.info/

xvContents

■■Chapter 17: Working with Files�� 287

Using Raw and Asset-based Files��� 287

Populating Lists from Resource Files�� 288

Working with Files from the File System�� 292

Android’s File System Model��� 292

Permissions for Reading and Writing Files�� 293

Examining External Files in Action�� 295

Seeing File Save and Read Behavior in Action�� 299

Ensuring External Storage Is Available When Needed��� 301

Other Considerations with Android File Systems�� 302

Android Filesystems Throughout History��� 302

Controlling UI Delays with File I/O��� 303

■■Chapter 18: Managing Databases with Android �� 305

SQLite: A Seriously Popular Database��� 305

A Crash Course in SQLite�� 306

Creating SQLite Databases for Your Application�� 307

Introducing the SQLiteExample Application��� 308

Building a Database-Driven Activity�� 312

Choosing Query Approaches for SQLite and Android��� 315

Managing Data Results with Cursors�� 317

Modifying Data with Your Android Application�� 319

Inserting Data�� 319

Updating Data�� 320

Deleting Data��� 321

Tracking SQLite Versions and Android Versions�� 321

Packaging and Managing SQLite Databases for Android ��� 323

Managing Performance and Android Storage�� 323

Packaging Your Own SQLite Database with Your Application�� 324

Preparing SQLite Databases for Packaging��� 324

www.it-ebooks.info

http://www.it-ebooks.info/

xvi Contents

■■Chapter 19: Using Preferences��� 327

Everything Old Is New Again��� 327

Starting with Preferences��� 328

Recording Preferences�� 329

Working with Preference-Specific Activities and Fragments�� 329

Seeing the Big Picture with Preferences��� 330

Using Preference and Preference Header Resources�� 331

Filling in the Blanks with PreferenceFragment��� 336

Bringing the Preference Puzzle Pieces Together��� 338

Other Preference Considerations�� 340

Customizing Preferences��� 340

Nesting Preferences and Display Quirks��� 341

Using the Old-School Approach to Preferences�� 341

Losing Headers and Fragments��� 341

Adapting PreferenceActivty for Older Behavior��� 342

■■Chapter 20: Android Security and Permissions�� 343

Requesting Permissions for Your Application�� 343

Dealing with Debugging Permissions�� 346

Installing Applications and Accepting Permissions��� 346

Pre-Marshmallow Behavior��� 346

Marshmallow and Beyond��� 347

Trading In Permissions�� 348

Creating Custom Permissions��� 349

Declaring Custom Permissions�� 349

Enforcing Custom Permissions�� 350

Securing Applications for Publication and Execution�� 351

Securing Your Application with Certificate Signing��� 351

Signing Is (Almost) Forever, So Take Care��� 353

Protecting Android and Applications at Runtime��� 353

www.it-ebooks.info

http://www.it-ebooks.info/

xviiContents

■■Chapter 21: Incorporating External Libraries with Android������������������������������� 355

The ART of Android�� 355

Choosing Library Sources or JARs�� 356

Direct Source Inclusion�� 356

Incorporating JARs�� 357

When Is Java not Java?��� 358

Absent JVM Features��� 358

Considering Java Performance for Android��� 358

Adapting an Application to Use an External Library�� 360

Sourcing Apache Commons IOUtils��� 360

Adding the JAR to Your Project’s Libraries�� 361

Referencing (or Refactoring for) Your External Libraries��� 365

Using Languages Beyond Java�� 368

Scripting Layer for Android Overview�� 368

Choosing Your Approach to SL4A��� 368

Testing SL4A on Your Emulator�� 369

■■Chapter 22: Leveraging Android Services�� 371

Services Background�� 371

Defining Your Own Service�� 372

Implementing Your Own Service Class�� 372

Controlling Service Lifecycle via Callbacks��� 373

Adding Manifest Entries for Your Service�� 373

Service Communication�� 374

Client-to-Service Communication��� 374

Service-to-Client Communication��� 377

Services in Action�� 380

Choosing the Service Design��� 380

Implementing the Java Logic for Our Service��� 380

Creating an Example Client for the Service��� 382

Testing the Service in Action��� 384

www.it-ebooks.info

http://www.it-ebooks.info/

xviii Contents

■■Chapter 23: Communicating with Notifications�� 385

Configuring Notifications��� 385

Customizing the Notification Object�� 386

Adding Icons for Notifications��� 388

Notifications in Action��� 389

Coding Notification Behavior��� 390

Notifications as the User Experiences Them��� 392

Using the Builder Approach to Notifications�� 396

Other Uses and Extensions to Notifications��� 397

Notifications and Services��� 397

More Advanced Notification Features��� 398

Timeline Notifications�� 398

Bundled Notifications�� 398

Expanding Notifications��� 400

More Embedded Actions in Notifications��� 400

Notifications Tailored for Wear��� 401

Index�� 403

www.it-ebooks.info

http://www.it-ebooks.info/

xix

About the Author

Grant Allen has worked in the information technology field for over 20 years as a chief
technology officer, entrepreneur, enterprise architect, and data management expert. Grant’s
roles have taken him around the world, specializing in global-scale systems design, together
with mentoring and coaching startups and hi-tech companies like Google on building great
teams and great technology. He is a frequent speaker on topics such as big data, mobile
ecosystems, Android, wearables, the Internet of Things, disruptive innovation, and more.
Grant has a PhD in building innovative high-technology environments and is the author of
six books on mobile development with Android and data management. You can learn more
about all his work at www.grantxallen.com.

www.it-ebooks.info

www.grantxallen.com
http://www.it-ebooks.info/

xxi

About the Technical
Reviewer

Jon Westfall, PhD, is an assistant professor of psychology,
researcher, programmer, and speaker. He has worked
as a consultant since 1997, founding his own firm, Bug
Jr. Systems. As a consultant he has developed custom
software solutions (including native Windows 32 applications,
Windows .NET applications, Windows Phone 7 and Android
mobile applications, as well as ASP, ASP.NET, and PHP web
applications). He has also served as a senior network and
systems architect and administrator (on both Windows and
Unix networks, and hybrids) and has also been recognized as
a Microsoft Most Valuable Professional (MVP) 2008–2012.
He has authored several books and presented at academic
as well as technology conferences and gatherings. He can be
found writing on his blog at JonWestfall.com, and on twitter
@jonwestfall.

www.it-ebooks.info

http://JonWestfall.com
http://@jonwestfall
http://www.it-ebooks.info/

xxiii

Acknowledgments

I’d like to thank all the great folks at Apress for helping get this newest edition of Beginning
Android into the hands of you, the reader. In particular, Jonathan Gennick and Jill Balzano
have been an amazing support team, encouraging, cajoling, and pushing me along the way.

I will also take this opportunity to thank all those Android developers who have encouraged
me at countless conferences and events around the world. It is great to hear how books like
Beginning Android help budding developers get started.

www.it-ebooks.info

http://www.it-ebooks.info/

xxv

Introduction

Welcome to Beginning Android, Fifth Edition. In this fifth edition, I have completely rewritten
the book and have taken stock of all the great changes that have happened to the Android
platform with the releases of version 5.0 Lollipop and version 6.0 Marshmallow.

Tackling the latest and greatest aspects of Android will become second nature once you
explore this book, but more importantly, you will also have a rock-solid foundation into
the fundamentals of Android that span all its versions. You will explore and learn about
activities, fragments, all of the user interface and user experience elements, services,
data management, web services, and many, many more building blocks for your Android
applications.

The best judge of this book’s value is the great applications you can create from the
knowledge with which it provides you. I look forward to trying all of the great applications
that will flow from the knowledge you take from this book. You can explore more about the
book itself at the website, www.beginningandroid.org (that’s .org, not .com), and contact me
via that site or my personal site at www.grantxallen.com.

All the best with your Android development!

—Grant Allen

November 2015

www.it-ebooks.info

www.beginningandroid.org
www.grantxallen.com
http://www.it-ebooks.info/

1

Part I
Get Android and Get Coding!

www.it-ebooks.info

http://www.it-ebooks.info/

3

Chapter 1
Welcome to Android
I would like to welcome you to this book, Beginning Android, 5th Edition. This is a new
edition of the book, but I’m sure this is not the first time you have encountered Android—
either by using one of the billion or more Android devices currently activated throughout
the world, or by hearing about it from friends, colleagues, or the media. It is hard to escape
Android; not only is it the world’s most prevalent mobile device operating system, but it
keeps growing. Google reports that it sees more than one million Android devices activated
every day.

If the growth doesn’t excite you, then the diversity of Android devices should. We all know
Android was developed for phones, and later, for tablets. But did you know that it now
powers everything from inflight entertainment systems, to TVs, headsets, glasses, watches,
shoes, games consoles, and even a brand of Japanese toilet? As Android grows, so does
people’s need for great applications they use on their devices. And that is where this book
helps. As a new Android developer, it will be natural for you to use this book in conjunction
with online searches, and I encourage you to do that. Be aware, however, that because
Android has rapidly changed over the last eight years, the material you find online can be of
varying quality and applicability. Sites like Stack Overflow are excellent resources, but it’s
prudent to check for what version of Android (or in what year) their content was written.

The Fast Path to Learning Android Development
Given the plethora of devices, you might be left wondering where to start. Too many choices
can lead to indecision, and I want to get you, the reader, working with Android as quickly as
possible. To help you make a rapid start, this book largely focuses on the original and most
common device type on which Android runs: the smartphone. I extend that to also include
tablets, since they have matured to be mainstream devices and the line is blurred between
phones and tablets in any case—thus the current “Phablet” trend.

This focus on phones helps you in lots of ways right from the start. You will be learning
skills and approaches for the largest device market in history, so your applications will have
the biggest possible audience. And you will also be learning the largest, richest, and most

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1: Welcome to Android

mature parts of Android development. Don’t worry, though! I also cover the leading edge
of Android later in the book, so you can also start mastering topics like Google Glass and
Android Wear.

Thinking in a Smartphone Mindset
As a reader of this book, you might well be new to Android development, but your background
as a developer in other areas, your technology expertise, and your know-how is harder to
predict. Before we delve into your first look at Android code and the building blocks of an
Android device, it is useful to start with some understanding of the fundamentals common to
all Android development on smartphones and tablets.

Computing on the Go!
The first, and most obvious, point to make about thinking like an Android developer is
that Android devices may have their roots in mobile phones, but today, actually making
and receiving phone calls is only a minor part of their popularity and pervasiveness. You
should think of the billion or more Android devices in circulation as little engines of mobile
computing that just happen to be able to make phone calls as one of their many capabilities.
They are literally mobile computers!

Size Matters
In developing for Android, you are dealing with screens of many sizes, but one thing in common
for the vast, vast majority of mobile Android devices is that you are working with small screens
or displays. Although you may develop for Android with the comfort of a full-sized desktop on a
modern notebook computer, your target audience, at the extreme, will have only a square inch
or so of display real estate on which to enjoy your development efforts.

The Interface Is More Than the Screen
Modern smartphones are more than just a screen for viewing text and other content.
Phones make calls, play music, vibrate and provide haptic feedback for games, sense the
temperature, report direction and location, and much more. When you think of the way in
which your users might interact with your applications, think beyond the simple visual screen.
A phone interacts with multiple senses, and you should design with all of them in mind.

You Are Not Alone
Yours will not be the only application running on someone’s Android device. In fact, they
may not just have other applications, but other applications that can do similar—or even
the same—work as your own. Be mindful that you cannot hog all of the device and all of its
features. Also keep in mind that for your users, it is two simple taps of a finger for them to
switch to another application.

www.it-ebooks.info

http://www.it-ebooks.info/

5CHAPTER 1: Welcome to Android

In later chapters, I also cover how resources and capabilities are shared and managed
across an Android device, and how being aware that your application can be interrupted
at any time is one of the key use cases you need to consider when developing Android
applications.

Translating Developer Dreams into Android Action
Now that you know how to think about developing for Android, you might also be thinking
that it sounds like a lot of compromises, and is that all there is to it? The good news is that
by taking care of a bunch of heavy lifting for you and by providing you with an amazing array
of support, tools, and the foundation on which to build applications of all sorts, Android lets
you focus on the essentials of mobile development.

First, Android’s dominant programming language is Java. That’s good, because it is one of
the most widely used languages on the planet. When you are developing, you get to use the
vast majority of standard Java, as well as additional libraries the community has added over
the years since Android’s public release.

Second, you have access to a range of development tools that are totally free! Yes, free.
Google provides not one, but two, free integrated development environments (IDEs) from
which to choose in which you can let your developer imagination go wild. We discuss both
of these in more detail in Chapter 2, but for now, you can rest easy knowing you can work
with either or both—Android Developer Tools (ADT) in Eclipse, or Android Studio, which is an
IntelliJ IDEA–based IDE.

Third, many additional tools—such as emulators, performance monitors, templates, design
tools, runtime environments, and more—have been added to the developer’s world. And
that’s not all: you can write an entire book on this! Joking aside, Android does ask you to
adopt a different development mindset to the one you need to design traditional desktop
applications, but then it makes an enormous effort to support you every step of the way.

A Look Inside Android
To finish your introduction to thinking like an Android developer, let me introduce the
fundamental building blocks of Android applications. I cover each of these areas in much
more detail in the coming chapters.

Activities are the fundamental “screens” or UI elements with which users interact. Because
of the nature of Android and the many display sizes with which you might work, a user might
see one or more activities as part of the user interface at any one time. Activities are easy
for you to design and develop, and they are easy for users to launch and use. Your target
Android systems love activities, so feel free to be prolific in your creation and use of them!

Intents are messages passed between applications and the Android environment and are
akin to events-driven messaging in modern desktop development environments. You can
write your applications so they listen out for events and respond appropriately—whether
that’s answering a phone call, reacting to information from onboard sensors, or responding
to changes in application state. Even better, you can create and pass your own intents,
expanding the capabilities of your applications and others on the same device.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://www.it-ebooks.info/

6 CHAPTER 1: Welcome to Android

Services are background applications that provide features, abilities, or actions on which
your applications (and their activities) can rely. Much like services or daemons in other
operating systems, Android services are long-lived and generally run without a visible
user interface (UI). Some services do provide visual elements, and you’ll learn more about
services in Chapter 22.

Content providers are a convenient abstraction to the many types and sources of data you
might want to use in your application. In traditional development environments, you have
to worry about all the tedious logistics of working with files, databases, network sockets,
protocols, and the like. Android vastly simplifies your life as a developer by supporting the
content provider metaphor for any data that needs to be shared on the device (and even
for off-device data). When building your own applications, you are also able to define and
develop your own content providers to enable data sharing with other applications, without
needing to work with low-level storage issues, proprietary query languages, odd protocol
considerations, or any other baggage.

A Look Inside This Book
With your mind now surging with thoughts of Android development, here’s the roadmap of
how we’ll explore all of the topics already mentioned, and more.

	The next three chapters complete Part I of the book; you’ll code your
first Android application in the very next chapter! No delays, no excuses.
After you write your first Android application, we’ll then pull it apart to
ensure you are familiar with the real-world code that represents the
concepts I’ve already described here. We’ll also tinker with and explore
what Android is doing for you, and what you need to be doing yourself
as a nascent Android developer.

	Part II helps you master the world of activities and the possibilities for
user interface magic with Android. I cover all the essential components
at your disposal for interface design and behavior and how mobile-
specific concepts like device rotation work.

	Part III expands on your new knowledge of interface design for Android
and introduces you to the power and flexibility of fragments. Fragments
allow you to work with devices of any size, from 1 inch to 100 inches! As
well as displays, we also explore input devices such as the camera, the
microphone, and other onboard capabilities.

	Part IV delves behind the scenes, building your knowledge of services,
resource handling, and other powerful components of Android that you
will want to use to make the best possible applications.

	Part V, the final part of the book, takes you the frontiers of Android and
looks at a range of topics, such as Google Play services, cloud-based
facilities you can incorporate into your application, and the explosive
growth in wearable Android with Google Glass and Android Wear.

Now that you have had a proper introduction to Android development and know where you
are going, it’s time to get started actually developing your first Android application!

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_22
http://www.it-ebooks.info/

7

Chapter 2
Ready, Set, Code!
There is no time like the present to get started with your very first Android application. That’s
right, you are going to start coding right now! This chapter takes you right through setting
up the tools to create Android applications, and you’ll have your first working Android
application before this chapter is done. Ready? Let’s code!

Getting the Prerequisites for Android
There are two main prerequisites to quickly consider for your forthcoming Android
development journey: will you need to separately install Java, and do you know what I call
“minimum viable Java” for the development you might like to do?

Determining the Right Java for You
In a moment, I discuss the two most popular ways to set up a development environment for
Android applications: preconfigured Eclipse and Android Developer Tools (ADT), and Android
Studio. Both of these options give you everything you need bundled together, including
Java, so you can start coding straight away. But if you are like me, you want more than two
options; you might also like to learn about how the tools are set up and how to use them to
create Android apps.

If you want to take full control of setting up the Android developer components and not use
one of the all-in-one bundles, or if you have an existing development environment in mind
and don’t want to use one of the options provided by Google, then you need to ensure you
have Java set up and available on your machine.

Getting the JDK
The Java Development Kit (JDK) has always been readily accessible, first through Sun and
now through Oracle. If you point your browser to java.oracle.com, Oracle redirects you to
the latest-and-greatest landing page for getting the JDK. But be warned! When it comes
to getting Java for Android development, you need to make sure you choose a supported

www.it-ebooks.info

http://www.it-ebooks.info/

8 CHAPTER 2: Ready, Set, Code!

version of Java. For now, this means avoiding any Java 8 release. Regardless of platform—
Windows, Linux, Mac—you want to choose either Java 6 or Java 7 (also known as Java 1.6
and Java 1.7—confusing, eh?).

Before you dive straight in to picking a JDK version, it is worth noting that, over the years,
Java has been a very large source of security vulnerabilities and has been notoriously
difficult to keep patched. This is thanks to repeated changes of ownership, changes in
approach to managing Java on operating systems of all kinds, and the tendency of various
software companies to bundle versions of Java with products that they then never update.
You can’t escape the need to install the JDK because the Java language is the chosen
development language for Android, but you should at least be aware of the added security
implications of having it on your development machine.

Android has supported Java 6 since its relatively early versions and has officially supported
Java 7 since the KitKat version 4.2 release (with a few very minor no-go areas, such as
try-with-resources). If you are setting up an entirely new environment, I recommend that
you choose Java 7 for your platform because doing so will future-proof your Android
development environment to the greatest degree possible.

Because a few of the tools bundled with the Android development environments from Google
still only come in 32-bit form, you should choose the 32-bit distribution of Java 7 for your
system if you want to get maximum benefit. For Mac users, however, only a 64-bit JDK is
available, which means a handful of tools are not available to you, though none of those feature
in this book. For the purposes of this book, you only need the standard edition (SE) version of
the JDK. At the time of writing, the latest security patch release for Java 7 was Java SE 7u71/72.

To download your version of the JDK, follow the links on the Oracle download page, and
choose the correct JDK distribution for your platform. For Linux users, this is the file
jdk-7u71-linux-i586.rpm; for Windows, it is jdk-7u71-windows-i586.exe; and for Mac, it is
jdk-7u71-macosx-x64.dmg. Make very sure it is the JDK you are downloading, and not myriad
other pieces of software that are mixed in to the Oracle download pages. You do not want
just the Java Runtime Environment (JRE), nor are you after OpenOffice, Oracle database
software, or the other pieces you see on the quite-confusing download page.

ALTERNATIVES TO THE OFFICIAL JAVA RELEASE

Astute Linux fans will note that Oracle only provides an RPM distribution for Java. If you are a user of Debian,
Ubuntu, Mint, or some other flavor of Linux that doesn’t use RPM for package management, you do have
options. Although it is not officially supported by Oracle, the OpenJDK distribution of Java works well on Debian
and its derivates. Using this distribution helps you avoid any complications you’ll encounter if you try to convert
the official RPM using a tool like alien.

Once you have downloaded the relevant JDK bundle, you are ready to install.

Note  When Android was first released, Java 5 was supported, but that version is best left to the
history books.

www.it-ebooks.info

http://www.it-ebooks.info/

9CHAPTER 2: Ready, Set, Code!

Installing the JDK
Follow the instructions included in your Java bundle to install the JDK appropriately. On
some systems, you might need administrative privileges to make your Java installation
available system wide.

Knowing (Enough) Java for Android
This book assumes you have a passing knowledge of coding in Java, as do most other
books and resources on Android development. If you are new to Android and new to Java,
then I recommend a crash course in the basics of Java—such as that offered by the book
Learn Java for Android Development by my fellow Apress author, Jeff Friesen (Apress, 2010).
Alternatively, countless online Java tutorials can get you up to speed quickly. The secret is
knowing on which topics you need to focus to be productive with Android development and
which you can ignore for now.

To help focus your learning, or refresh your memory if it has been a while since you last
wrote Java code, the following are the key topics that will get you (re)started with Java.

General coding knowledge:

	Structure and layout of code

	Object-orientation, classes, and objects

	Methods, data members

Java-specific coding knowledge:

	Interfaces and implementations

	Threading and concurrency

	Garbage collection

	Exception handling

	File handling

	Generics

	Collections

There is plenty more to Java than these topics alone, but they provide the foundation you
need to get started quickly with Android development.

Choosing a Development Environment
In the years since Android’s initial release, the tools and technology available to help build
applications have exploded in variety and capability. Google provides several options, which
I explore shortly, and many other companies and groups also offer development tools.
I cover a few of those more exotic options much later in this book. For now, I stick to the
most common environments you are likely to use: Android Studio and Eclipse.

www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 2: Ready, Set, Code!

The following sections cover installing Android Studio, as well as installing and configuring
Eclipse with Android Developer Tools (ADT); this coverage includes putting the ADT pieces
together yourself, since this gives you an appreciation for what you are actually getting when
you opt for one of the prebuilt developer bundles. Most importantly, remember you only
need one development environment. Don’t feel that you need to follow both the Android
Studio and Eclipse approaches, although you are welcome to if you have enough disk space
and curiosity.

Option 1: Choosing Android Studio
Google announced Android Developer Studio (now just Android Studio; the word Developer
has slowly been dropped from the name over the last year) a few years back as an
alternative new way to create Android applications. It is built on a foundation of the IntelliJ
IDEA environment, with ADT and other tools bolted on.

Despite the years that have since passed, Android Studio is still in beta! As of this writing,
the current version is 0.8.4, and although it is packed full of fantastic tools and features, it is
also prone to the odd quirk, bug, and crash. That said, Android Studio is rapidly approaching
maturity, and it is well worth your effort to learn to use it to develop Android applications.

Downloading Android Studio
Head to the Android developer site at developer.android.com/sdk/installing/studio.html
and download Android Studio. At the time of writing, zip files for Windows, Mac OS X, and
Linux are available for release number 135.1538390, in addition to an “all-in-one” installer
.exe file for Windows. Choose the download appropriate for your platform, and remember
where you save it.

Installing Android Studio
This process is as simple as unpacking the zip file and doing the following, depending on
your platform:

	Linux: Simply run studio.sh from the bin subdirectory, and Android
Studio completes the setup for you. It may prompt you to import settings
from a previous version of Android Studio, as shown in Figure 2-1.

Figure 2-1.  Android Studio prompts you to import settings from earlier versions

www.it-ebooks.info

http://www.it-ebooks.info/

11CHAPTER 2: Ready, Set, Code!

	Windows: If you are using the all-in-one installer, you now have a shiny
new program group in the start menu for Android Studio and a launch
icon within of the same name. If you download and extract the zip file,
you can run the studio.bat batch file from the bin subdirectory, which
deals with locating your JDK and determining the address width of your
version of Windows in order to run the right version of Android Studio—
32-bit or 64-bit.

	Mac OS X: When you drag the android studio.app file from the archive
into your Applications directory, Android Studio installs itself and
makes itself available as a normal application on your system.

No matter which platform you are on, you are likely to see the import settings option the first
time you run Android Studio, as shown in Figure 2-1. You can import any previous Android
Studio settings you may have.

Downloading the Android SDK
Unless you are using the all-in-one installer for Windows, you need to download the base
Android SDK for your platform from developer.android.com. On Linux and Windows,
remember to ensure you select the “bit-edness” that matches your existing installations of
Eclipse and Java: either 32-bit or 64-bit.

Unzip the Android SDK into a directory, and note where this is because you’ll need that
information shortly. For instance, this might be /home/myname/android-sdk on a Linux
machine.

Configuring the Android SDK for Android Studio
If you aren’t using the all-in-one installer, you need to tell Android Studio where to find the
Android SDK. To do this, use the menu option Configure ➤ Project Defaults ➤ Project
Structure; this opens the SDK Location setting shown in Figure 2-2.

www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 2: Ready, Set, Code!

Set the directory to the location in which you unzipped the SDK earlier, and click OK. Now
you’re ready to add the additional SDK components you need to make the most of Android
Studio. You can now jump ahead to the “Completing Your Development Environment Setup”
section of this chapter, or read on for instructions on how to set up Eclipse as your IDE.

Option 2: Choosing Eclipse the Quick Way
By far the easiest way to get the Android Developer Tools (ADT) and the Android SDK
installed and configured with Eclipse is to use the preconfigured bundle available from the
developer.android.com site. This bundle takes care of all the base components, leaving you
with the simple task of fetching additional SDK components—just as you’d need to with
Android Studio.

Figure 2-2.  Setting the Android SDK location in Android Studio

www.it-ebooks.info

http://www.it-ebooks.info/

13CHAPTER 2: Ready, Set, Code!

Options 3: Choosing Eclipse the Do-It-Yourself Way
Although the prepackaged methods of setting up an IDE are great, some people already
have Eclipse installed (and set up just the way they like it), and others are curious about how
all the developer tools fit together. If you are in this second camp, you want to put the pieces
together yourself. Next, I step you through downloading the Android SDK and adding the
ADT to your existing Eclipse installation.

Downloading the Android SDK
First, start by downloading the base Android SDK for your platform from developer.android.com.
On Linux and Windows, remember to ensure you select the bit-edness that matches your
existing installations of Eclipse and Java: either 32-bit or 64-bit.

Unzip the Android SDK into a directory, and note where this is because you’ll need this
information shortly—for instance, c:\program files\android-sdk-windows on a Windows
machine.

Adding ADT to Your Existing Eclipse IDE
Next, you need to add the ADT to Eclipse. To do this, start Eclipse, and from the Help menu,
choose Install New Software. You should see the Install dialog or something very similar to it,
as shown in Figure 2-3.

Note  You need to use Eclipse 3.7 or later in order to use the most recent versions of the Android
SDK and ADT. On a Mac OSX machine, you are also warned that Eclipse is not signed by a valid
Apple Developer ID’s certificate and that it might be unsafe software. Although Apple is trying to
practice good security in this regard, as long as you acquire Eclipse from the official website, it is
perfectly safe to allow it to run on your Mac.

www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 2: Ready, Set, Code!

When you click the Add button in the top right of the Install dialog the Add Repository dialog
appears. Choose a memorable name for the Android repository, such as Android Repository,
and for the location, enter https://dl-ssl.google.com/android/eclipse/, as shown in
Figure 2-4.

Figure 2-4.  Configuring the Android repository in Eclipse

Figure 2-3.  Eclipse Install Available Software dialog

www.it-ebooks.info

https://dl-ssl.google.com/android/eclipse/
http://www.it-ebooks.info/

15CHAPTER 2: Ready, Set, Code!

You might find that the Android Eclipse repository is already listed in the drop-down, in
which case you do not need to repeat the setup process. But assuming it isn’t already
present, once you click the OK button, the main Install dialog shows the status “Pending” in
the main area of the dialog briefly, until it contacts the URL shown and fetches the available
packages. You should then see this change to the main entry, Developer Tools, which
represents the ADT. When you click the triangular arrow to the left, the detailed components
of Developer Tools appear, as shown in Figure 2-5.

Figure 2-5.  Available components for Android Developer Tools

At this stage, if disk space permits, choose all the options. If you are looking to economize,
you can safely omit Native Development Tools and Tracer For OpenGL ES because I do not
cover those in this book. With your selection chosen, click the Next button, at which point
Eclipse presents an installation review dialog, as shown in Figure 2-6.

www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 2: Ready, Set, Code!

Choose the Next button, and you are presented with a license confirmation screen that
contains several different open source licenses. You need to accept all of the licenses
that correspond to the ADT components you have selected before you can click Finish to
continue. Figure 2-7 illustrates the common licenses you see at this point.

Figure 2-6.  Installation review of developer tools in Eclipse

Figure 2-7.  ADT installation license confirmation

www.it-ebooks.info

http://www.it-ebooks.info/

17CHAPTER 2: Ready, Set, Code!

Once you’ve digested the various license texts, you can click Finish and Eclipse commences
downloading and installing the ADT components. You see the normal Eclipse progress
dialog while this installation work is happening.

When the ADT installation is complete, Eclipse prompts you that it requires a restart to
continue. Save any other work you might have open, and allow the confirmation dialog to
restart Eclipse for you.

At this point, you have the ADT installed as part of Eclipse, but it has no idea where to find
the Android SDK with which to do its work. So let’s fix that now.

Configuring the Android SDK for ADT in Eclipse
When Eclipse restarts, you need to inform ADT where to find the SDK. To do this, open
Preferences in Eclipse; observe the new category, Android. Click Android to see a
configuration section, as shown in Figure 2-8.

Note  If you see any warnings about installing unsigned content, it is safe to continue.

Figure 2-8.  Configuring ADT with the Android SDK location

www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 2: Ready, Set, Code!

In the SDK Location field, enter the path to the location where you have extracted the Android
SDK archive. Click OK. You have completed the basic ADT configuration. ADT quickly tells
you if it can’t find the SDK components, as it performs a check to determine whether it
can see the tools directory within the Android SDK. If you see an error complaining that it
can’t find the tools directory, you know you need to double-check the directory setting in
Preferences for Android or confirm where you extracted your Android SDK.

At this point, you are in a common position to all other IDE setup approaches, whether that’s
Android Studio, the bundled Eclipse-plus-ADT installs, or some other esoteric or manual
approach. You now have the basic IDE set up and you’ve made Android SDK available, but
you still need to add specific SDK packages for Android versions and extensions, as well as
device images, in order to do anything useful. We handle that final part of set up next and
get you coding in a few short pages.

Completing Your Development Environment Setup
Welcome back, readers who have taken the Android Studio or bundled Eclipse-plus-ADT
approach! Regardless of your chosen IDE, you are now at the stage in which you have the
basics of the development environment in place, together with the core of the Android SDK.
The only things missing are the many version-specific additional packages, support libraries,
and device images that let you work with all manner of APIs and Android devices. Let’s get
those now and get you coding!

To complete the Android SDK setup, you need to launch the Android SDK Manager and
choose the additional packages you want for developing with Android. To launch the SDK
Manager, choose it from the Window menu in Eclipse or from the Configure menu in Android
Studio, or choose the SDK Manager binary from the directory to which you extracted the
Android SDK archive (for instance, SKD Manager.exe on Windows). The SDK Manager
appears as shown in Figure 2-9.

www.it-ebooks.info

http://www.it-ebooks.info/

19CHAPTER 2: Ready, Set, Code!

If you scroll up and down the packages list, you see a lot of packages from which to choose.
This extensive list is a combination of the diversity and depth of Android, and its longevity.
In addition to ARM and x86 system images, various support libraries, documentation, and
so forth, you also see every Android SDK release library, from the early Donut and Éclair
releases, through to the very latest Jelly Bean and Lollipop versions.

Although you might want to work with an older set of APIs for Android in some situations, to
learn development, it’s best to start with the latest and greatest. That means we are going
to start with the Android Lollipop libraries, system images, and documentation, and the
essential extras you need to learn Android development quickly. To that end, choose the
following options to install.

Figure 2-9.  The Android SDK Manager

www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 2: Ready, Set, Code!

From the Android 5.0 (API 21) section:

	Documentation for Android SDK

	SDK Platform

	Both the regular and TV ARM EABI system images

	Google APIs for ARM

	Base Google APIs

	Sources for Android SDK

From the Extras section:

	Android Support Library

	Google Play Services

	Google USB Driver

Click the Install 12 Packages button (or however many packages you’ve chosen), and
another familiar license acceptance screen displays. Accept the licenses shown, and choose
Install. The Android SDK Manager Log window opens to show you the progress of the
download and installation of your select SDK packages. Now is the time to fetch a coffee
or other refreshing beverage, because this install takes a few minutes. The Android SDK
Manager Log shows a completion message when it is done in addition to advising you to
restart any components that were updated during the process.

All of the components you need to start writing Android programs are now in place. The one
extra piece that is very handy for your development work is somewhere to run your Android
programs.

Creating Your First Android Virtual Device
Your Android development environment—whether it is Eclipse with ADT, or Android Studio—
provides you with the ability to emulate a real Android device so that you can test and debug
your Android code without needing to load it onto a real device. This is done by creating
Android Virtual Devices (AVDs).

To create and manage AVDs, open the Android Virtual Device Manager. You can access this
from the Window menu in Eclipse, the Tools ➤ Android menu in Android Studio, or by launching
the AVD Manager binary from your SDK installation directory—this is AVD Manager.exe on
Windows.

When the Android Virtual Device Manager starts for the first time, it presents an empty list of
devices, as shown in Figure 2-10.

www.it-ebooks.info

http://www.it-ebooks.info/

21CHAPTER 2: Ready, Set, Code!

To create your first virtual device, click the Create button. A dialog of configuration options
appears, as shown in Figure 2-11. I have supplied some good starting values for your first
virtual device, so go ahead and copy the settings you see, and click the OK button when
you’re done.

Figure 2-10.  The AVD Manager

www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 2: Ready, Set, Code!

Now that your device is created, it is listed in the AVD Manager. To launch your virtual
device, highlight it and click the Start button. You are prompted with launch options, as
shown in Figure 2-12.

Figure 2-11.  Defining an AVD

www.it-ebooks.info

http://www.it-ebooks.info/

23CHAPTER 2: Ready, Set, Code!

For the moment, the main setting to choose is Scale Display To Real Size. This attempts
to draw the virtual device window to the size of the device you specified in the device
configuration, which in this instance, is 4.7 inches (about 11.9cm).

Click Launch and the virtual device starts. This can take some time, even on a powerful
machine. (Later in the book, you explore installing on a real device, which is normally faster.)
You should now see a Starting Android Emulator status window, and then the splash screen
for Android in the simulated device screen, as shown in Figure 2-13.

Figure 2-12.  Launch options for you AVD

www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2: Ready, Set, Code!

Once the virtual device has finished starting, it displays the Android home screen and unlock
prompt, as shown in Figure 2-14. Feel free to unlock the screen and follow the help screens
that guide you through the various screens and menus.

Figure 2-13.  The AVD splash screen that shows when you start a virtual device

www.it-ebooks.info

http://www.it-ebooks.info/

25CHAPTER 2: Ready, Set, Code!

When you are done exploring your new virtual device, feel free to close it or leave it running
in the background. It is time to code!

Creating Your First Android Application
Without further ado, it is time to create your first Android application and write your first
Android code!

One of the huge benefits of setting up your IDE, whether it is Eclipse or Android Studio,
is that the Android Developer Tools exist to do all kinds of heavy lifting for you, including
putting all the structure and plumbing in place for a new application. You get to focus on just
writing the functional code to make you application do as you wish.

To have the developer tools do their magic, simply select File ➤ New ➤ Project in Eclipse,
or New ➤ Project in Android Studio, and then choose Android Application Project as your
project type. Figure 2-15 shows this step in Eclipse.

Figure 2-14.  The running AVD

www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2: Ready, Set, Code!

Click next, and you are prompted to enter a range of details about your new Android project,
as shown in Figure 2-16.

Figure 2-15.  Choosing the Android Application Project type

www.it-ebooks.info

http://www.it-ebooks.info/

27CHAPTER 2: Ready, Set, Code!

Here, you want to specify the following settings, leaving anything else you see at the default
provided in the wizard.

	Application Name: This is the name you see for your application when
it is installed on an Android device, and also when it appears in the
Play Store.

	Project Name: A unique name to identify your project within your IDE.
No other project in your IDE’s repository or workspace can have the
same name.

	Package Name: The Java package name that is used for packaging
this project. This follows the normal globally unique requirements of
Java packages. In this example, I’ve anchored the package name to one
of my registered domains.

	Target SDK: For the purposes of this chapter, check to ensure this has
picked up the most recent SDK version you chose to install earlier in this
chapter. Later in the book, I talk more about targeting well-adopted SDK
versions and how to deal with older versions you haven’t catered for
specifically in your project.

Figure 2-16.  Android project properties

www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2: Ready, Set, Code!

You can leave all the other settings at their defaults. When you’re done, click Next, and you
are presented with the next configuration screen, as shown in Figure 2-17. This screen deals
with launchers, activities, and other Android topics I cover shortly.

Figure 2-17.  Setting Android project launcher and activity details

You should leave all of these settings at the default. We return to them in later chapters to
discuss other options. Click Next to continue, and you see the Launcher Icon configuration
screen, as shown in Figure 2-18.

www.it-ebooks.info

http://www.it-ebooks.info/

29CHAPTER 2: Ready, Set, Code!

Icons are very much items of personal preference and artistic taste. Feel free to play
around with the scaling and shape options and the trimming and color settings here. When
you finish choosing your creative flourishes, click Next to move to the screen shown in
Figure 2-19, in which you choose the initial activity configuration for your new project.

Figure 2-18.  Configuring a launcher icon for your Android project

www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2: Ready, Set, Code!

For the purposes of this very first application, choose the Blank Activity option, and then
choose the Next button. At last, you are at the end of the project configuration, as shown in
Figure 2-20.

Figure 2-19.  Choosing the initial activity behavior for an Android project

www.it-ebooks.info

http://www.it-ebooks.info/

31CHAPTER 2: Ready, Set, Code!

The principal thing to remember on this screen is that the Activity Name is used for the
associated Java class, and so it must conform to Java class naming conventions and rules.
You can leave this at the default, MainActivity, and then click the Finish button. We discuss
exactly what an activity is in the next few chapters.

Writing Your First Android Code
When the Android project wizard finishes creating your project, you see a project structure
that includes many directories such as src, libs, res, and so on, as shown in Eclipse in
Figure 2-21. Do not worry about what all of these directories represent just yet. I cover that
in Chapter 3.

Figure 2-20.  Naming the first Android activity in the project wizard

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_3
http://www.it-ebooks.info/

32 CHAPTER 2: Ready, Set, Code!

For now, drill down into the values folder until you find the strings.xml file. Open this in your
IDE or editor; you should see half a dozen lines of XML.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 
 <string name="app_name">BeginningAndroid</string>
 <string name="hello_world">Hello world!</string>
 <string name="action_settings">Settings</string>
 
</resources>

Your first act of actual Android development should be to change the line, shown in bold, here:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 
 <string name="app_name">BeginningAndroid</string>
 <string name="hello_world">Beginning Android!</string>
 <string name="action_settings">Settings</string>
 
</resources>

Figure 2-21.  Your first project

www.it-ebooks.info

http://www.it-ebooks.info/

33CHAPTER 2: Ready, Set, Code!

That’s it! You have written your first Android application and are ready to run it. Save the
strings.xml file, change the focus in your IDE back to the MainActivity.java file, and
choose the Run option from the toolbar or menu.

You should see some log messages scroll past in your IDE; these let you know that your
application is being deployed to the AVD, and shortly after, if you unlock the screen on your
AVD, you should see the pleasing results of all your setup work in this chapter, as shown in
Figure 2-22.

Note  When first running a new project in Eclipse, you may be prompted to configure a Run
Configuration. If this happens, you can set the Target of your Run Configuration so it either prompts
you every time about which AVD to use to run your application, or sets a preference to automatically
run for you every time.

Figure 2-22.  Your first Android application running in the Virtual Device emulator

Congratulations! You are on your way to mastering the world of Android development.

www.it-ebooks.info

http://www.it-ebooks.info/

35

Chapter 3
Inside Your First Android
Project
In the previous chapter, I helped you get your development environment set up and then
quickly created the classic default application so you could rapidly get a feel for a real Android
project working in your environment. Regardless of whether you chose Android Studio or
Eclipse, you now have a real Android project at your disposal, and you can use this to dissect
what goes into such a project and learn the many options present. So let’s get started!

Looking at Android Project Structure
The best way to understand all of what goes into a standard Android project is to start with a
visual overview. Because the developer tools and SDK are doing a great deal for you, this turns
out to be a pretty big picture. So big, in fact, that I have to split it into two figures to show it to
you. Figures 3-1 and 3-2 show you the full project structure of your Beginning Android project;
many of the key folders are open so I can refer to their contents throughout this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 3: Inside Your First Android Project

Figure 3-1.  The structure of your Beginning Android project

www.it-ebooks.info

http://www.it-ebooks.info/

37CHAPTER 3: Inside Your First Android Project

Starting at the Source
Take a look at the first items in the project’s root directory; they are dedicated to source
code. The src folder is generated for you automatically (along with the other folders I mention
throughout this chapter). Within it, you see a directory tree based on the Java class name
you specified when you used the wizard to create your new project. In my case, this part of
the tree under src is com.artifexdigital.android.beginningandroid. If you chose to use a
different fully qualified class name, you see this change reflected here. Note that although it is
conventional in the Java community to use reversed domain names to provide uniqueness, you
do not strictly need to adhere to this convention. For instance, you can pick a fully-qualified
name that is unique based on other options, such as the reverse of your email address.

The one file you see at the leaf of the src tree is the initial Java source code file that
ADT created for you. In my case, this is the file MainActivity.java, which came from
the default name suggested by the new project wizard, but you can actually call this file
anything you like. This might prompt you to ask, “How does Android know where to find

Note  If your project structure looks a little (or even a lot) different, don’t panic. Some of the major
parts of the Android project structure have gradually changed over the many releases of Android,
ADT, and SDK. The structure shown here is from the v21 SDK for Lollipop, but yours may differ.

Figure 3-2.  The structure of your Beginning Android project (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 3: Inside Your First Android Project

the main() method if I mess with the name of this file?” I talk a little more about what is in
MainActivity.java (or its equivalent) in a moment, and I also cover the mystery of main() in
the context of Android.

Benefitting from Generated Components
Moving on from the src folder, you next see a gen folder. The contents in this folder vary
depending on what version of ADT you are using in your environment and whether or not
you have successfully built your project at any point. Assuming you are using an ADT release
of a similar vintage to Android Lollipop and that you have successfully built your project at
least once, you find at least two fully-qualified Java package references within.

The first package reference is to the mysterious android.support.v7.appcompat package,
though the mystery is partly solved through the truth-in-naming of the package itself. I'll
come back to this package a little later in the chapter. You also see the fully-qualified Java
package reference based on your chosen name during project creation.

Within both of these package references is a file named R.java. This is an automatically
compiled representation of the layout of your application, and it is created (or re-created,
depending on the circumstances) during project build events. I’ll talk more about how this is
used later in this chapter, as well as in Chapter 5, when we discuss layouts.

Using Libraries and JARs
I’ve already talked about Android’s use of Java as the foundational programming language
for Android development. As you would expect with any Java development, much of the
heavy lifting is done by other libraries and classes that are already built for you, typically
packaged as Java Archive (JAR) files.

Our Beginning Android application currently has these notable libraries:

	android.jar—Listed in Figure 3-1 under Android 5.0, this is the JAR file
for the Android SDK. Note that it is specific to the version of Android you
told the new application wizard to use for your application.

	Android Private Libraries—android-support-v7-appcompat.jar and
android-support-v4.jar are recent and more historic examples of
Android’s support and compatibility libraries. These exist to back-port
new platform features to old devices and the applications that target
them. I’ll talk more about this when we discuss relevant parts of UI
design and application behavior in Parts II and III.

As you build more and more complex applications, other libraries you import also show up
here and are also referenced further down in the libs directory.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_5
http://www.it-ebooks.info/

39CHAPTER 3: Inside Your First Android Project

Counting Your Assets
Next up, you should see an assets folder. Within it, you will likely find…nothing! Well,
at least initially—there is no default content in the assets folder. As you build more and
more complex projects, this is the location in which a variety of custom components and
datasources reside. Examples include video and audio files, SQLite databases, and any
other file-based resource that doesn’t fit within the predefined project structure provided by
the ADT.

Putting Things in the Bin
The bin directory continues the fine UNIX tradition of abbreviating binary to bin. Here you
find your compiled Android application. Look for the .apk file—this is the actual package
file that is installed on a phone or emulator for your application. It uses the ZIP format to
hold the application’s executable, resources, and the AndroidManifest.xml file (which we
discuss shortly).

Within the bin directory, you’ll also find a range of other compilation artifacts, such as the
dex file, which is the compiled Java application file itself, in addition to optimized code
objects, compressed images, and other compilation objects with which you ordinarily don’t
need to interact.

You can ignore anything else within the bin directory for now.

Using Resources
A great deal of the tooling and support with which Android, the ADT, and the SDK provide
you deals with using resources in extensive and clever ways to cut the amount of coding you
actually need to do. The files in res and its subdirectories are all static files that are typically
packaged with your application in the .apk file for deployment. The main types of resources
are covered next.

Picturing What Drawables Can Do For You
The first set of subdirectories in the res folder are the drawable-* folders. Projects created
with Android Jelly Bean, KitKat, Lollipop, or later start with five drawable-* folders:

	drawable-ldpi: The location for low-density artwork, typically 120dpi or
worse. This was more important historically; because of the continuous
improvement in screen quality, storage size, bandwidth, and so on over
the years, you may never need to concern yourself with low-density
drawables.

	drawable-mdpi: Meant for medium-density drawables, for resolutions up
to 160dpi.

	drawable-hdpi: High-density images are those with resolution
approaching 240dpi.

www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 3: Inside Your First Android Project

	drawable-xhdpi: The first of the “extra” high-density targets, xhdpi is
considered anything up to 320dpi.

	drawable-xxhdpi: Believe it or not, this isn’t the highest possible
resolution for which Android caters. xxhdpi is considered resolutions
up to 480dpi. Want more? xxxhdpi has been defined for resolutions
reaching 640dpi, but you won’t see a default folder for it in your project
structure.

Android is smart enough to deal with missing drawables for a given size by scaling
images from another size. The results aren’t always pixel-perfect, but for the user of your
application, it means they get an application that works rather than a mysterious missing
image in the middle of their activity.

SELECTIVE RESOURCE USE AND SUFFIXES

You will notice many more examples of resource directories like the drawables folders that have names and
somewhat-cryptic suffixes. In the drawables case, the suffix relates to the apparent resolution or pixel-density
of the image being used.

Other forms of selective resource control through directory name suffixes for other resources include
version-based suffixes like v8, v11, and v14 relating to SDK versions, and w820dp, w1280dp, and similar
suffixes that target exact device-independent pixel dimensions.

User Interface Layouts
In later chapters, I explore layouts and the many options and techniques for designing
Android user interfaces (UIs). For now, you can focus on the one file you see in the layout
folder, which is used for the default layout for the initial activity: activity_main.xml. If you
think of an activity as a screen or dialog in your Android application with which your user
interacts, then the XML in the layout provides a consistent language for describing those
user interfaces. There’s a lot more to know on this topic, but for now, you know where layout
XML files reside.

What’s on the Menu?
The design and use of menus within Android applications has evolved over the many
versions of Android. From a developer perspective, menus are treated as first-class UI
citizens, enjoying similar descriptive support through XML files as seen about with layouts
in general. As of yet, I don’t have any menus separately defined for the Beginning Android
application, so for now, the menu folder is empty.

www.it-ebooks.info

http://www.it-ebooks.info/

41CHAPTER 3: Inside Your First Android Project

Valuable Values
Using values in a separate XML file should already be familiar to you, since you edited the
onscreen text in the strings.xml file for the working example in Chapter 2. More broadly, the
contents of the values directory are strings, dimensions, styles, and other reference data that
is best handled through abstraction away from the code. Rather than embed my “Beginning
Android” string in my Java code, I can easily reference it, and other values.

You can already see how the abstraction supported by the XML approach to values makes
tasks such as internationalization and localization much easier. We’ll explore other uses for
this approach in later chapters too.

Working with Other Key Files in Your Project
Within the root folder of your project reside a few more critical files that either glue all
the disparate parts together or enable various project-level smarts within an IDE or other
environment to help manage the project.

Controlling Applications with Android Manifests
At the heart of every Android application is the manifest, represented in the file
AndroidManifest.xml within your project’s root folder. The manifest acts as the central
point of declaration for the project, enumerating everything from activities and services, to
permissions and SDK compatibility, and more.

The manifest is also used as the blueprint for bolting together the constituent parts of your
application, for instance, by specifying what activity will act as the launcher activity the user
first sees when the application starts.

The ADT aids your work here (and with any new project) by automatically creating a skeleton
manifest file for any new project. Listing 3-1 shows the manifest from the Beginning Android
example in Chapter 2.

Listing 3-1.  The AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.artifexdigital.android.beginningandroid"
 android:versionCode="1"
 android:versionName="1.0" >
 
 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="21" />
 
 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

42 CHAPTER 3: Inside Your First Android Project

 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 
</manifest>

As with any XML schema, element names are arbitrary, and so the Android designers chose
the not-unreasonable manifest element as the root element name. The namespace provided
here is a little quirky if you are used to vanilla namespace conventions in other uses of XML.
In Android, the convention is to assume the namespace only for attributes, not for elements
as well. This is strange, but workable, once you become familiar with it.

The first and most important following attribute is the package attribute. The package refers to
the name of the Java package that you wish to use as the core package for your application.
In the example, this is com.artifexdigital.android.beginningandroid. In addition to acting
as the base for your application, this sets up a nice short hand for other references to this
package throughout the manifest. Instead of having to type the full package name (and they
can be much longer than the one I’ve used here), you can refer to the package with a leading
dot, ".", notation instead. You can see this in action if you look further down in the activity
element, where the first attribute android:name refers to ".MainActivity" instead of com.
artifexdigital.android.beginningandroid.MainActivity. I don’t know about you, but I’m
all in favor of not have to type all that. Your package name acts as the unique identifier for
your application, both on devices such as phones and tablets, and also on Google Play and
other application market places. This means your should choose wisely, since there is no
way to change the package name, but have the application appear as the same unchanged
application in those locations!

The other key attributes of the manifest element are your android:versionName and
android:versionCode. The versionName value is designed to be a human-friendly
representation of what version of your application is in use. This can be any string value you
like, such as 1.0 shown in the example, or anything else you care to use. This is the value
that people see on their devices, on Google Play, and so on, so you might like to help them
out by sticking to something understandable.

android:versionCode has a different purpose. This is strictly an integer value, and successive
generations of your application must use higher values than previous generations. This is, in
effect, the true (internal) version number. By convention, developers usually start versionCode
at 1 and go from there, but you can start with any positive number you like.

Caution  Only one version of your application (typically, the one with the highest known
versionCode value) appears in Google Play at any one time. There are ways to make older
versions available, such as by using .apk side-loading, but the vast bulk of your audience probably
won’t do this.

www.it-ebooks.info

http://www.it-ebooks.info/

43CHAPTER 3: Inside Your First Android Project

The first child element of the manifest is the uses-sdk element. In the example manifest
file, you see two attributes: one for minSdkVersion and one for targetSdkVersion. The
minSdkversion controls the age/vintage of devices, emulators, and the like that you will
support with your application. In practice, this also governs which SDK features you should
use. If you stick to developing with Eclipse and the ADT, or Android Studio, then you get
helpful warnings if you try to use features introduced after your minSdkVersion level. The
targetSdkVersion is a short-hand way of indicating which SDK was used to develop and
test the application. It has some compatibility implications that we will discuss in later
chapters. If you are interested in real-time data on what SDK versions Google knows are
in use, and in what proportion, some data is made available in the Android Developer
dashboards at https://developer.android.com/about/dashboards/index.html.

The remaining elements within the manifest govern the initial behavior of your application.
You see one application element, and within that, one activity element. Even with the
very short coverage of drawables and strings earlier in this chapter, you can probably guess
at what the attributes android:icon, android:label, and android:theme are doing. They’re
referencing resources and values to provide an onscreen icon and name for your application,
and so on.

The activity element is given a label and defines which Java class is implementing the
activity’s logic. It usually also includes an intent-filter child attribute that specifies under
which conditions this activity can be invoked. I talk more about intents in Part II of the book,
but for now, simply note that in this example, I have an action and a category, and my
category flags that my application should appear in the device’s launcher so a user can run it
by choosing its icon.

You can (and will) place a great deal more in a manifest file; we’ll discover more about these
options throughout the rest of the book.

Permutating Projects with Properties
From a developer perspective, you build and maintain your Android application as a
project. Depending on which IDE you have chosen, you may see one or more of project.
properties, gradle.properties, ant.properties, or local.properties files. Each of these
controls project-specific configuration settings, such as cross-project references, key
material location for project signing, and so forth. Some are particular to a given build
environment or IDE, so for instance, you typically only see ant.properties if you’re using ant
to build your projects from the command line.

“R” You Forgetting Something?
I promised earlier in the chapter to explain more about the R.java files you see within your
project. The R.java file acts as an index to all of the resources identified in your project. Any
time you change, add, or remove a resource, ADT takes responsibility for regenerating the
R class and its contents. This happens automatically, so you should never manually edit the
R.java source files.

www.it-ebooks.info

https://developer.android.com/about/dashboards/index.html
http://www.it-ebooks.info/

44 CHAPTER 3: Inside Your First Android Project

You can see how I already used this automatic referencing support in the Beginning Android
application in Chapter 2. If you open the MainActivity.java file in your IDE or editor, you see
a call to the setContentView() method within the onCreate() method. I return to this in much
more detail in the coming chapters, but in this example, I pass R.layout.activity_main
as the parameter to the method. This is my way of telling Android I want to use the layout
specified in the activity_main.xml file in my layout resource directory. The R class takes
care of all the plumbing to make the necessary link back to my layout definition. You will see
this approach again and again with layouts, drawables, and other UI components.

Solving the Appcompat Mystery
If you pay attention to everything that is created for you when you use Android Studio or
Eclipse to create your new Android project, you will notice a second project that is created
automatically. The project is named appcompat_v7, and it is one of the elements of the
Android Support Library for older versions of Android and the devices that run them. You
can safely ignore this project for now; rest assured it’s doing some heavy lifting for you in
order to make your Android applications support a huge range of legacy devices.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://www.it-ebooks.info/

45

Chapter 4
Changing and Enhancing
Your Project
Now that you know your way around your Android project’s structure, it is time to get your
hands dirty, change things, and see what breaks! OK, perhaps you won’t break things
immediately, but in this chapter, I show you more of the capabilities of your project and how
to quickly leverage more of the developer tools. You also start to add more user interface
elements and program logic to your application. Let’s get to it.

Extending Your Application with the Android Manifest
Whether you use the New Project wizard in Eclipse, Android Studio, or another IDE that
supports Android Developer Tools (ADT), the job of creating your initial AndroidManifest.xml
file is done for you. The file itself is a little spartan, with just enough to get the job done. You
can control many of a project’s key additional features and optional settings by just adding
elements and attributes to AndroidManifest.xml.

Right now, you probably find this to be useful information in an abstract way, but it will
become increasing practical as your Android knowledge grows—in fact, many of you should
eventually feel happy to flick back to this chapter when you need to.

Editing the Android Manifest
The AndroidManifest.xml file comprises XML, and therefore is only text, as you saw in
Listing 3-1 in the preceding chapter. Editing XML/text is certainly doable, and many of
the early examples in this book ask you to do just that. But as the file becomes larger and
more complex, it can become cumbersome to perform clean edits and not inadvertently
upset opening and closing tags, disturb nesting levels, and make other mistakes. To help
overcome this annoyance, ADT includes a graphically-enhanced editor that displays the
elements and their attributes as selectable items with text fields in which to make edits. This
XML editor is shown in Figure 4-1.

www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 4: Changing and Enhancing Your Project

Note the tabs at the bottom of the figure. You can switch between graphical and text modes
by simply selecting the desired tab.

Specifying Target Screen Sizes
The range of screen sizes for Android devices is now truly mind-blowing. From the miniature
wearable watches with 1-inch (2.54cm) screens, to Android-driven 50-inch and larger TVs,
you may find your applications running on a vast array of screen sizes and densities. To make
them easier to manage and customize, Android divides these devices into multiple categories
based on diagonal screen size and the distance at which users normally view them:

	Small—Under 7.5cm/3in, at least 426dp×320dp resolution

	Normal—7.5cm to around 11.5cm/3in to around 4.5in, at least
470dp×320dp resolution

	Large—11.5cm to around 25cm/4.5in to around 10in, at least
640dp×480dp resolution

	Extra-large—Over 25cm/10in, at least 960dp×720dp resolution

If you, as a developer, do nothing to change the default screen support in your manifest
file, your application will support normal screens and will attempt (and usually succeed)
to support large and extra-large screens via some automated conversion by scaling and
resizing code built into Android. It will also attempt to support small screens, but on older
devices and SDK levels it will encounter historic issues and may not work.

Figure 4-1.  The graphical XML editor provided by the Android Developer Tools

www.it-ebooks.info

http://www.it-ebooks.info/

47CHAPTER 4: Changing and Enhancing Your Project

As a developer, you might immediately ask the question, “Which screens sizes should I
explicitly support, and how many of these different sizes are in use throughout the world?”
The Android developer site at https://developer.android.com/about/dashboards/index.html
attempts to provide some guidance, giving you a partial breakdown of which screen sizes
are active in the wild. Figure 4-2 shows a snapshot of the screen sizes listed during the early
writing of this book. If you take a look at the Android developer site dashboard as you read this
book after publication, you should get an interesting idea of how screen sizes and densities are
evolving with Android over time.

Figure 4-2.  Partial data provided by Google on screen sizes being used throughout the world

Note that this is not an entirely accurate picture, since it only deals with devices that report
data back to Google. However, it’s useful as a rough estimate.

MYSTERIOUS GOOGLE TV SIZE

As part of the original release of Google TV—and later, the Nexus 7 tablet—Google targeted some specific
screen sizes and densities “in between” the standard sizes shown in Figure 4-2. You don’t need to worry about
these now or even really consider them at all. For those of you who are curious, however, I’ll talk more about
screen sizes in Chapter 11.

To add support for all the screen sizes you want to target, you add a <supports-screens>
element in your manifest file. This lists the screen sizes for which you have explicit
support. For example, if you want to support large screens, you need to include the
<supports-screens android:largeScreens="true" > element and attribute. The pattern
for small and extra-large screens is similar; you can simply specify both by including

www.it-ebooks.info

https://developer.android.com/about/dashboards/index.html
http://dx.doi.org/10.1007/978-1-4302-4687-9_11
http://www.it-ebooks.info/

48 CHAPTER 4: Changing and Enhancing Your Project

additional attributes, for example, <supports-screens android:smallScreens="true"
android:xlargeScreens="true" >. It is fine to use the default setting of AndroidManifest.xml
to “just work,” however, if you plan on tailoring your user interface and artwork for larger
screens, be sure to add the relevant support for these screen sizes.

From Android 3.2 on, you can employ an alternative method to more accurately specify
the space requirements of your screen layouts. These attributes specify the smallest width,
sw<N>dp, available width, w<N>dp, and available height, h<N>dp (where N is the pixel count). At
first, using these prescriptive options may seem more complicated, but for many designers,
it is more natural to design a layout and a set of features, and then determine the minimum
and optimum sizes to the nearest pixel for presentation requirements.

Go ahead and edit your existing AndroidManifest.xml file to include broad screen support
using this addition:

<supports-screens android:smallScreens="true" android:normalScreens="true"
 android:largeScreens="true" android:xlargeScreens="true" >

Save your changes, and you should see a warning reported immediately. Because support
for extra-large screens was not introduced until a later version of Android and its SDK, you
will see a message similar to the following:

Attribute "xlargeScreens" is only used in API level 9 and higher (current min is 8)

Is this a problem? Not at all. You could take the easy way out and remove support for
extra-large screens. But where’s the fun in that? Instead, you can learn how to adjust and
control API-level support and the SDK versions with which you build Android applications.
Let’s do that instead!

Controlling Support for Different Android Versions
Android provides you with some control over the behavior of your application when it comes
to writing and running it across different devices with different versions of Android. The
principal method for controlling this is via the <uses-sdk> element in the Android Manifest,
as I briefly mentioned in Chapter 3. If you examine your manifest for the Beginning Android
example, you’ll see that it already specifies a minimum supported Android version and a
target version using the minSdkVersion and targetSdkVersion attributes I described earlier.
This covers enough to get you app working in the device emulator and even on a range of
real devices. However, thanks to the variety and age range of the more than 1 billion Android
devices active throughout the world, you probably want to add specific details about what
versions of Android your application can support. Table 4-1 lists API levels for the Android
SDK and the equivalent Android version release.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_3
http://www.it-ebooks.info/

49CHAPTER 4: Changing and Enhancing Your Project

Why list all of those versions and API levels here? The gotcha with all of the attributes for
<uses-sdk> is that they expect the integer matching the API level to be specified, not the
SDK version or Android version. Keep that in mind when you’re setting any of these values.

Keep the following considerations in mind when you are choosing a minSdkVersion attribute.
First and foremost, on what APIs will your application rely and are any of them specific
to newer versions of Android? A very simple example of this is the switch user interface
element (it looks just like a light switch). This was only introduced in API level 14 with the
release of Android 4.0. The action bar is another excellent example, although you don’t need
to worry about what this is for the moment. Google has gone to some significant effort to
provide you with the ability to use or mimic features released in later versions of the API with
devices that predate them. The most notable of these are the appcompat project you already
saw in Chapter 2 and the Android Support Library.

Table 4-1.  Android SDK Official API Levels and Equivalent Android Version

API Level Android Version

1 Android 1.0

2 Android 1.1

3 Android 1.5

4 Android 1.6

5 Android 2.0

6 Android 2.0.1

7 Android 2.1

8 Android 2.2

9 Android 2.3

10 Android 2.3.3

11 Android 3.0

12 Android 3.1

13 Android 3.2

14 Android 4.0

15 Android 4.0.3

16 Android 4.1

17 Android 4.2

18 Android 4.3

19 Android 4.4

(unnumbered) Google Glass extensions for Android 4.4

20 Android 4.4 for Wearables

21 Android 5.0

22 Android 5.1

23 Android 6.0

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://www.it-ebooks.info/

50 CHAPTER 4: Changing and Enhancing Your Project

Another consideration for minSdkVersion is how broadly you want to support older devices.
Because of the control telecom carriers exert over the availability and timeliness of updates
to Android devices, the vast majority of phones, tablets, and other devices in the wild are
running something other than the latest Lollipop 5.0 release with API 21. The Android website
tracks a breakdown of devices activated and their current Android release at https://
developer.android.com/about/dashboards/index.html (the same URL that tracks screens,
discussed earlier), and Figure 4-3 shows the state of device activations at the time of writing.

From this figure, you can see that you can target the vast majority of devices using a
minSdkVersion of 8 (from Android release 2.2, the first truly widespread release). In practice,
you also might think about the geographic spread of devices—what markets you might
want to sell or release into, and how that changes the distribution of Android versions. The
demographics and economic situations of those users will also come in to play—investment
bankers in New York will have very different ideas about purchasing apps compared to
backpackers in Vietnam.

The second and more subtle manifest value controlling Android versions is the
targetSdkVersion setting. With developers in mind, Android offers this value so you can
indicate which version you are writing your code against. The main benefit from this setting
comes behind the scenes, on devices running newer versions of Android. Knowing that
your code was written for version X, successive versions of Android implement a range of
optimizations and enhancements that can actually improve the behavior and responsiveness
of your code long after you’ve written it. One example of this is where Android allows your
application to adopt new system-default themes if the targetSdkVersion is high enough.

The targetSdkVersion setting is entirely optional, but if you do decide to use it, you must
have that release of the SDK installed on the system on which you are developing your
application. If you don’t have that particular version present, the ADT detects this and
displays errors in the logging area for your IDE. For instance, Figure 4-4 shows the error you
see in the Eclipse console output when it loads a project referencing a targetSdkVersion
with no matching SDK installed.

Figure 4-3.  Partial data on Android releases in use and related API level for SDK settings

www.it-ebooks.info

https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
http://www.it-ebooks.info/

51CHAPTER 4: Changing and Enhancing Your Project

The last of the three version-related manifest settings is maxSdkVersion. Ordinarily you
should never need to set this value; in fact, Google strongly recommends that you not do so.
However, it exists for very old versions prior to 2.0.2, where Android would perform a running
version instead of a declared maxSdkVersion check and refuse to install an application if the
device was running a higher (later) version.

When I examined screen sizes earlier in this chapter, I left you with an unresolved warning
about extra-large screen sizes needing at least API level 9 for support. Go ahead and edit
your AndroidManifest.xml to change the android:minSdkVersion to 9. The <uses-sdk>
element in your manifest should look like this:

<uses-sdk
 android:minSdkVersion="9"
 android:targetSdkVersion="21" />

Writing Actual Android Code
Up to this point, I have been taking things slowly to familiarize you with your new
environment and the framework Android and its build tools provide. But editing XML isn’t
exactly ground breaking. If you are itching to get at the heart of coding for Android, then the
wait is over.

Using the Beginning Android example I introduced in Chapters 2 and 3 as the basis, you
will step through the code for you project and modify it to perform some application logic
and present the user (that’s you, for now) with some real interaction. Along the way, you can
start to build your knowledge of the basic Java building blocks of all Android applications,
starting with an Android activity.

Note  You can have as many different versions of the SDK installed as you like. The only practical
limitation is disk space.

Figure 4-4.  Example errors from missing targetSdkVersion versions

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://dx.doi.org/10.1007/978-1-4302-4687-9_3
http://www.it-ebooks.info/

52 CHAPTER 4: Changing and Enhancing Your Project

Introducing the Activity
I covered the overall project structure and file layout in Chapter 3, and if you look within your
project’s src/ directory, you can see that the tree of folders I discussed all derive from the
Java package name I used when I created the project. For example, com.artifexdigital.
android.beginningandroid results in the directory structure src/com/artifexdigital/
android/beginningandroid. At the lowest directory, the ADT generates the file named
MainActivity.java, which is where you create your first activity.

If the MainActivity.java file isn’t already open in your IDE—Android Studio, Eclipse, or
whatever you’ve chosen to use—open it now and paste in the following code, overwriting
the existing content. You can find the example code for the book on the Apress website—
look for Ch04/BeginningAndroid for this example, shown in Listing 4-1.

Listing 4-1.  The Java Code for BeginningAndroid

package com.artifexdigital.android.beginningandroid;
 
import android.os.Bundle;
import android.app.Activity;
import android.view.View;
import android.widget.Button;
 
public class MainActivity extends Activity implements View.OnClickListener{
 Button myButton;
 Integer myInt;
 
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 myButton = new Button(this);
 myButton.setOnClickListener(this);
 myInt = 0;
 updateClickCounter();
 setContentView(myButton);
 }
 
 public void onClick(View view) {
 updateClickCounter();
 }
 
 private void updateClickCounter() {
 myInt++;
 myButton.setText(myInt.toString());
 }
}

Note  This chapter assumes you are following the naming conventions of the project and files
I used in the original instructions in Chapter 2. If you are using different names, just adjust the
instructions provided here so that the names match yours.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_3
http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://www.it-ebooks.info/

53CHAPTER 4: Changing and Enhancing Your Project

Looking Inside Your First Activity
Let’s examine the Java code in Listing 4-1 piece by piece. We’ll start with the package
declaration and imported classes; they are as follows:

package com.artifexdigital.android.beginningandroid;
 
import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.Button;

Your package declaration has to match the one you used at project creation time. From
there, as with any sort of Java project, you need to import any classes you reference. Most
of the Android-specific classes are in the android package. You also have a wide range
of Java SE and Java ME classes from which to choose for incorporating into any Android
program, such as java.util.Date and others. Not every Java SE or ME class is available—
Google doesn’t provide an exhaustive list of differences, instead it just documents what is
supported, which is largely derived from the Apache Harmony Java implementation.

Activities are the fundamental building blocks of user interaction in Android. You can think
of an activity as roughly analogous to a screen or device interface that the user sees and
the (initial) logic to control interaction with the user. An application is typically made up of
multiple activities that work together to present your application’s overall experience, even
though each activity is an independent object in its own right. An activity is a public class in
the Java sense, and it inherits from the android.app.Activity base class. In this case, the
activity holds a button (myButton):

public class MainActivity extends Activity implements View.OnClickListener {
 Button myButton;

Anyone familiar with any other UI toolkit, like Swing, immediately recognizes a button as a
typical UI widget. (I cover all available UI widgets and elements in Part II of the book.) In this
example, for the sake of simplicity, I have made the button the only UI widget of the activity,
and therefore, because I want all button clicks trapped just within the activity itself, I also
have the activity class implement OnClickListener.

The onCreate() method is invoked when the activity is started. This is one of the four
fundamental methods that control the lifecycle of an Android application. I cover more on the
lifecycle in the next chapter, but for now, you can rely on the fact that onCreate() is invoked
once and only once in the life of your activity.

From here, we first chain up to the superclass, calling its onCreate() method. This ensures
that our activity invokes the base Android activity initialization on instantiation:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 myButton = new Button(this);
 myButton.setOnClickListener(this);

www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 4: Changing and Enhancing Your Project

 myInt = 0;
 updateClickCounter();
 setContentView(myButton);
}

In our implementation, we then perform the following set up work:

	Create the button instance myButton (via new Button(this)).

	Instruct the button to send all button clicks to the activity instance itself
(via setOnClickListener()).

	Initialize the myInt counter that we’ll use to track the number of button
clicks.

	Call the private updateClickCounter() method as a shorthand way to
populate the text of the button so it can be drawn successfully.

	And finally, set the activity’s content view to be the button itself (via
setContentView()).

In later chapters, I examine more closely the purpose of the curious Bundle
savedInstanceState. For the moment, consider it a handle to a blob of useful state
information that all activities receive upon creation.

As an activity that implements the OnClickListener interface, this activity is responsible for
providing the necessary plumbing for the onClick() method, shown next.

public void onClick(View view) {
 updateClickCounter();
}

In Android, clicking a button invokes onClick() in the OnClickListener instance configured
for that button. The View object that triggered the click (in this case, the button) is then
passed to the listener. All we do here is call that private updateClickCounter() method:

private void updateClickCounter() {
 myInt++;
 myButton.setText(myInt.toString());
}

When we initially start the activity (onCreate()) or whenever the button is clicked (onClick()),
the text label of the button refreshes to be the current count of the number of clicks on
myButton via the setText() method.

Building and Running Your Enhanced Application
You can (re)build your application at any time using your IDE’s built-in Android packaging
tool. For example, Project->Build All in Eclipse. Then run the application. Android Studio or
Eclipse should launch your device emulator automatically if it is not already running, install
the apk file for your application, and launch the activity. If, for any reason, the activity doesn’t

www.it-ebooks.info

http://www.it-ebooks.info/

55CHAPTER 4: Changing and Enhancing Your Project

appear to launch, try finding the activity in the home screen of your emulated device, and
click on it to start it. You should see an activity very much like the one in Figure 4-5, which
shows what our app looks like after we click on the button several times.

Figure 4-5.  Your enhanced application displaying the click counter feature

Because the button consumes pretty much the entire device screen, you can press just
about anywhere to update the click counter shown in the button’s label.

You will note some UI effects, such as the pale border that surrounds the button and
the centering of the label text. These result from defaults in your layout and other styling
defaults, which I’ll explore in the coming chapters.

Congratulations, you have enhanced your Beginning Android application, turning it into a
piece of push-button wizardry. When you are done playing with your new creation, press the
Back triangle on the emulator, and return to the home screen.

www.it-ebooks.info

http://www.it-ebooks.info/

57

Part II
Activities and the User
Interface

www.it-ebooks.info

http://www.it-ebooks.info/

59

Chapter 5
Working with Android Widgets
In Chapters 2 and 3 you briefly walked through the process of creating a new project and
saw the files and project structure generated by the Android build tools. You also delved into
modifying and enhancing your first project in Chapter 4, adding a button to the user interface
and some program logic behind it. As you have probably guessed, there is much, much
more to the world of creating Android user interfaces and the logic that drives them.

In this chapter I introduce the many different kinds of user interface elements and how you
can used them to create a huge variety of applications. You will master not only how to use
these UI widgets in their own right, but you will also start to learn how they can control,
influence, and interact with your activities and the other program logic of your application.
Let’s get to it.

Understanding Activity Fundamentals
In Chapter 4, I introduced the activity as the basic building block for the screens or windows
with which your users interact with your Android application. Your application probably has
many different screens for showing data, capturing user input, displaying results of actions,
and more.

Android has developed a design philosophy that promotes less visually crowded or cluttered
screens that have plenty of space around screen elements or widgets. In its current form,
this design approach is known as Material Design, and you can find out much more about it
at http://developer.android.com/design/material/index.html. By no means do you need
to become an expert in all the suggestions on that site. As a new Android developer, the one
point to take on board right now is that if your application has activity user interfaces (UIs)
that are less cluttered and with fewer widgets, you will almost certainly end up with more
screens to cover all of your desired functionality. In Android terms, that means more activities.
In fact, the many-activity approach predates Material Design and its predecessors (and
will probably outlive its successors, too). With the knowledge of UI widgets you gain in this
chapter, let your activities flourish! Consider them cheap, easily used, and easily discarded,
and always feel at liberty to add more activities whenever it suits your design needs.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://dx.doi.org/10.1007/978-1-4302-4687-9_3
http://dx.doi.org/10.1007/978-1-4302-4687-9_4
http://dx.doi.org/10.1007/978-1-4302-4687-9_4
http://developer.android.com/design/material/index.html
http://www.it-ebooks.info/

60 CHAPTER 5: Working with Android Widgets

Naming with Labels
Labels are the most fundamental and straightforward of all user interface widgets. Almost
every UI toolkit ever devised has the notion of a label—a simple piece of (hopefully
descriptive) text that sits next to some other UI element or widget to add explanation, a
caption, detail, or notes. In Android, the label is known as a TextView. It is designed to be a
static string, though there are ways in which TextView values can be changed at runtime.

As with all widgets, you are totally at liberty to define a TextView in Java within your
application. Those of you familiar with designing nontrivial user interfaces solely in code will
realize that this gets very tedious very quickly. The faster, easier, and more elegant way of
adding labels is by inserting the TextView XML element into your XML layout through the
graphical layout editor, which will make the XML layout file changes for you.

Whether you code directly in Java or use the layout editor, setting the android:text property
is key to making your text appear as the label text. Even though you have used the XML
layout approach to use the TextView label, you can still control its value (the text seen on
screen) by referring to a string resource. I cover this later in the chapter, but examples of
when you might want to do this include when you want to localize your UI into different
languages, or when you want to adopt a user’s chosen preference.

Over 70 different properties can control the appearance and behavior of TextView labels.
These are some of the most commonly used properties:

	android:hint: A hint to display.

	android:typeface: Sets the typeface to use for the label
(e.g., monospace).

	android:textStyle: Indicates what combination of bold (bold), italic
(italic), or both (bold_italic) should be applied to the text.

	android.textAppearance: An omnibus property that lets you combine
text color, typeface, size, and style in one go!

	android:textColor: Uses the common RGB notation in hexadecimal to
choose the text color for the label. For example, #0000FF is blue.

When you open the ch5/LabelExample project, you see the contents for the layout.xml
resource, as shown in Listing 5-1.

Listing 5-1.  Using a TextView in Your XML Layout

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".LabelExample" >
 
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="A label by any other name is still a label" />
 
</RelativeLayout>

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

61CHAPTER 5: Working with Android Widgets

With only this layout, along with the bare-bones Java inserted for you by using the new
project option in either Android Studio or Eclipse, you get the result shown in Figure 5-1.

Figure 5-1.  The label example showing TextView in action

Pressing Buttons (redux)
We return to the topic of buttons, and in particular, the widget that you first employed in the
race to get coding in Chapter 2. Let me provide you with a little more detail to arm you with all
the useful knowledge you need for adding Buttons to your UIs. First, as with all other widgets,
Button is derived from the View object, and in particular, it is a subclass of the TextView. This
means everything mentioned in the previous section on labels applies to the Button.

Android allows you two approaches when dealing with the on-click listener for a Button. The
first option is the “classic” way of defining an object and explicitly stating in the definition
that it implements View.OnClickListener. Even better than the classic method is the
contemporary Android way of simplifying things. This simple option has two steps:

1.	 Create a public method on your activity that returns void. Have this
method accept a View parameter.

2.	 Modify your Button element in the XML to include the
android:OnClick attribute. Set the string value of the attribute to the
method name defined in step one.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://www.it-ebooks.info/

62 CHAPTER 5: Working with Android Widgets

Here is an example of how this looks in the Java code:

...
public void methodOnMyActivity(View myButton) {
 // method logic
}
...

And here is the matching XML layout to wire the Button widget to the method:

...
<Button android:onClick=" methodOnMyActivity " />
...

At first you may not feel this is any simpler than the traditional approach. But consider the
ease with which this method opens up options to change the Activity for a given Button
through simple dent of differing options in your XML specification—for instance, under
different language locales, screen sizes, and so on. I talk more about these options in
coming chapters.

Handling Images with ImageView and ImageButton
There’s an old saying that a picture is worth a thousand words. In that vein, as a developer,
you often want to let an image or picture speak for you, rather than attempt to deploy a
long text description. Android offers a number of image-based UI widgets. The two most
commonly used are parallels to the TextView and Button you have already seen; the
ImageView and ImageButton are their graphical equivalents.

Like the text-based widgets, you will most often define these in your XML layout rather than
build them laboriously in Java. The key XML attribute that both ImageView and ImageButton
share is android:src, which indicates the image to be used. If you remember back to the
overview of the typical project layout in Chapter 3, you can likely guess that the default
approach for specifying android:src values is to refer to graphics resources you have
placed in your project’s res/drawables directory (and/or density-specific variants thereof).

As the name suggest, ImageButton adds button-like behaviors, meaning onClickListener()
and other behaviors and semantics you use with a Button can also be used. Listing 5-2
shows an example of an ImageView configured to use a picture from res/drawables.

Listing 5-2.  ImageView in Action

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity" >
 
 <ImageView
 android:id="@+id/icon"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_3
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

63CHAPTER 5: Working with Android Widgets

 android:adjustViewBounds="true"
 android:src="@drawable/chair"
 android:contentDescription="A Chair" />
</RelativeLayout>

You can find the code for this example in the ch05/ImageViewExample project, and it includes
a picture of my favorite chair. You can see the results in Figure 5-2.

Figure 5-2.  The ImageView in action

Fielding Text with EditText
Static strings of text and interesting images are vital parts of many user interfaces, but a time
comes when you need the user to act, and that can mean asking them to input text. As with
almost every other widget toolkit ever invented, Android provides a UI widget for soliciting
text input: the EditText widget.

EditText is subclassed from TextView, and therefore inherits many of the same
characteristics available to TextView such as textAppearance. Also, a number of specific
properties ensure you can craft exactly the input field you want. These include the following:

	android:autoText: Manages the use of the built-in spelling correction
feature.

	android:digits: Limits the field to only accept digits as input.

www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 5: Working with Android Widgets

	android:password: Configures the field to display password dots as
characters are typed into the field, hiding the typed characters.

	android:singleLine: Manages the behavior of the enter key to
determine if this should create a new line within the text field or more
focus to the next widget.

An alternative approach exists for specifying field characteristics for EditText, which is the
use of the inputType property instead. I cover this in much more detail along with keyboards
and input methods in Chapter 8. For now, Listing 5-3 shows inputType in action with other
options.

Listing 5-3.  Using android:inputType to Control EditText Field Behavior

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".EditTextExample" >
 
 <EditText
 android:id="@+id/myfield"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:inputType="textCapSentences"
 android:singleLine="false" />
</RelativeLayout>

In this example, I set the android:inputType attribute to flag that the user’s text should have
the first word automatically capitalized, and android:singleLine is false, enabling multiple
lines of text within the one widget. Listing 5-4 shows the accompanying Java package. You
will find this example in ch05/EditTextExample.

Listing 5-4.  The EditText Widget in Action

package com.artifexdigital.android.edittextexample;
 
import android.os.Bundle;
import android.app.Activity;
import android.widget.EditText;;
 
public class EditTextExample extends Activity {
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_edit_text_example);
  
 EditText myfield=(EditText)findViewById(R.id.myfield);
 myfield.setText("Veni, Vidi, Vici");
 }
  
}

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_8
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

65CHAPTER 5: Working with Android Widgets

You can see the results from this example in Figure 5-3.

Figure 5-3.  Text input example showing EditView in action

If you look closely at Figure 5-3, you can see some telltale signs that this is an editable field.
Android’s built-in dictionary and spell-check features have flagged words with red underlining
that they think are misspelled. We’ll have to forgive the stock dictionary for not including
famous Latin phrases. You can also see the cursor at the end of the text; it’s ready for you to
actually edit, as the name EditText implies. If you think your users will tire of doing all the typing
themselves, you can employ Android’s AutoCompleteTextView variant (again subclassed), which
prompts the users with auto-completed suggested words as they enter text.

CheckBox? Got It.
Let’s continue with the familiar theme of UI widgets you have certainly seen before—Android
includes the classic CheckBox, which provides a binary yes/no or checked/unchecked
widget. As with the other widgets we have discussed, this is a subclass of View and
TextView, which means a range of useful properties are inherited.

The CheckBox object provides you with some Java helper methods to do useful things with
your check boxes:

	isChecked(): A method to examine if the CheckBox is checked.

	setChecked(): Checks (sets) the CheckBox regardless of the
current state.

	toggle(): Toggles the state of the CheckBox.

www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 5: Working with Android Widgets

Listing 5-5 is an example check box layout with simple logic, which you can find in the
ch05/CheckboxExample project:

Listing 5-5.  Layout for a CheckBox Widget

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".CheckboxExample" >
 
 <CheckBox
 android:id="@+id/check"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="The checkbox is unchecked" />
 
</RelativeLayout>

To have the check box actually do something useful, you can add Java logic to partner your
layout. Listing 5-6 is the Java package that demonstrates the check box.

Listing 5-6.  The CheckBox Java Code

package com.artifexdigital.android.checkboxexample;
 
import android.os.Bundle;
import android.app.Activity;
import android.widget.CheckBox;
import android.widget.CompoundButton;
import android.widget.CompoundButton.OnCheckedChangeListener;
 
public class CheckboxExample extends Activity {
 
 CheckBox myCheckbox;
  
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_checkbox_example);
  
 myCheckbox = (CheckBox)findViewById(R.id.check);
 myCheckbox.setOnCheckedChangeListener(new OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
 if (buttonView.isChecked()) {
 myCheckbox.setText("The checkbox is checked");
 }

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

67CHAPTER 5: Working with Android Widgets

 else
 {
 myCheckbox.setText("The checkbox is unchecked");
 }
 }
 });
 }
}

Surprise! Obviously much more is going on in that code than just the auto-generated
skeleton from Android Studio or Eclipse with ADT. The fifth import in the Java code
alludes to what is happening. By importing OnCheckedChangeListener and providing the
implementation for the onCheckedChanged() callback method, we’ve set up our check box
to be its own listener for state change actions. When the check box is toggled, the callback
fires, and the code updates the text of the check box with a written description of its new
state. This not only acts to nicely parcel all the behavior of the widget in one place, but it
means you can do things like form validation during entry, without needing to pass all of
the data and widget attributes to some other function for checking. Using this method, you
avoid lots of delays, and your code and its own sanity checks are nicely side by side.

You can see the results of this immediate update to the text along with the check box in
Figures 5-4 and 5-5.

Figure 5-4.  An unchecked check box

www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 5: Working with Android Widgets

Switching to the Switch
New to Android 4.0 and later releases (Ice Cream Sandwich, Jelly Bean, KitKat, Lollipop, and
Marshmallow) is a variant on the Checkbox. This is a two-state toggle Switch that provides
users with the ability to swipe or drag with their finger as if they were toggling a light switch.
They can also tap the Switch widget as if it were a Checkbox to change its state.

The Switch provides an android:text property to display associated text with the Switch
state, which is controlled via the setTextOn() and setTextOff() methods of the Switch.

Other useful methods available for a Switch include these:

	getTextOn(): Returns the text used when the Switch is on

	getTextOff(): Returns the text used when the Switch is off

	setChecked(): Changes the current Switch state to on (just like Checkbox)

For example, Listing 5-7, an excerpt from the ch05/SwitchExample project, shows a simple
switch layout:

Listing 5-7.  Layout for the SwitchExample

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".SwitchExample" >
 

Figure 5-5.  The check box is now checked

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

69CHAPTER 5: Working with Android Widgets

 <Switch
 android:id="@+id/switchdemo"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="The switch is off" />
 
</RelativeLayout>

Note that we can’t call the widget “switch,” due to reserved word conventions in Java.
The corresponding SwitchExample.java shown in Listing 5-8 retrieves and configures the
behavior of the switch:

Listing 5-8.  The SwitchExample Java Code

package com.artifiexdigital.android.switchexample;
 
import android.os.Bundle;
import android.app.Activity;
import android.widget.Switch;
import android.widget.CompoundButton;
import android.widget.CompoundButton.OnCheckedChangeListener;
 
public class SwitchExample extends Activity {
 
 Switch mySwitch;
  
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_switch_example);
  
 mySwitch = (Switch)findViewById(R.id.switchdemo);
 mySwitch.setOnCheckedChangeListener(new OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
 if (buttonView.isChecked()) {
 mySwitch.setText("The switch is on");
 }
 else
 {
 mySwitch.setText("The switch is off");
 }
 }
 });
 }
}

You can see from the general structure, use of methods, and behavior that the Switch
operates in very similar ways to the Checkbox. In fact, if you line up the layout and the
code side by side for both check box and switch examples, you can see a one-for-one
equivalence in both the layout and logic. You can see the results in Figures 5-6 and 5-7 with
the switch in each possible state.

www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 5: Working with Android Widgets

Figure 5-6.  The switch in the off position

Figure 5-7.  The switch is now on

www.it-ebooks.info

http://www.it-ebooks.info/

71CHAPTER 5: Working with Android Widgets

Working with Radio Buttons
With the previous widget examples, I have mentioned how common they are across lots of
other UI toolkits. This trend continues with the RadioButton widget. The RadioButton shares
the two-state operation that you see with CheckBox and Switch widgets, and it gains many
of the same features by also being a subclass of CompoundButton. This means you can set
colors, fonts, and so on, just as you can with the other widgets; you can also diagnose and
set state through methods like toggle() and isChecked().

RadioButton takes these capabilities further by adding an extra layer of functionality to
allow multiple radio buttons to be grouped into a logical set, and then allowing only one of
the buttons to be set at any time. That should sound familiar if you have used a web page
or other Android application any time in the last decade or so. The grouping is achieved
through adding each RadioButton to a RadioGroup container element in the XML layout.

You can assign the RadioGroup a reference ID in the layout via the android:id attribute
(just like you can with all other widgets), and by doing this, you can then access additional
methods available on the entire group of RadioButtons. These methods include the
following:

	check(): Checks/sets a specific radio button via its ID, regardless of its
current state.

	clearCheck(): Clears all radio buttons in the RadioGroup.

	getCheckedRadioButtonId(): Returns the ID of the currently checked
RadioButton (this will return -1 if no RadioButton is checked).

Listing 5-9 is taken from the ch05/RadioExample application as an example of the XML layout
for RadioButtons inside a RadioGroup.

Listing 5-9.  The XML Layout Showing RadioButton Grouping

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".RadioExample" >
 
 <RadioGroup
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
  
 <RadioButton android:id="@+id/radio1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Rock" />
 
 <RadioButton android:id="@+id/radio2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Paper" />
 

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

72 CHAPTER 5: Working with Android Widgets

 <RadioButton android:id="@+id/radio3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Scissors" />
 
 <RadioButton android:id="@+id/radio4"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Lizard" />
  
 <RadioButton android:id="@+id/radio5"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Spock" />
  
 </RadioGroup>
 
</RelativeLayout>

You can add other widgets such as a TextView within the RadioGroup too, and these render
within the group structure. You don’t need to add any custom code to the skeleton of a
newly generated project—you can see the RadioButton behavior just fine, as shown in
Figure 5-8.

Figure 5-8.  Fresh from the Big Bang Theory TV show, everyone’s favorite game in RadioButtons

www.it-ebooks.info

http://www.it-ebooks.info/

73CHAPTER 5: Working with Android Widgets

You can observe the behavior described above for a freshly instantiated RadioGroup. None of
the RadioButtons is set by default. If you wish to have a default set at rendering time, you
can use setChecked() on the RadioButton from your onCreate() callback in your activity.

Timing All Manner of Things with Clocks
A pair of simple widgets are available to display the current time on an Android device;
which you choose to use depends on your preference for analog or digital readouts. Both
the DigitalClock widget and AnalogClock widget do all the work for you by refreshing
themselves based on the system clock.

You do not need Java code to use either widget. Simply place the relevant widget XML into
your layout file, as shown in Listings 5-10 and 5-11.

Listing 5-10.  XML Layout for an AnalogClock

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.artifexdigital.android.analogclockexample.AnalogClock" >
 
 <AnalogClock android:id="@+id/analog"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 />
  
</RelativeLayout>

Listing 5-11.  XML Layout for a DigitalClock

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.artifexdigital.android.digitalclockexample.DigitalClock" >
 
 <DigitalClock android:id="@+id/digital"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 />
 
</RelativeLayout>

Note  I’ve taken liberties with the traditional Rock-Paper-Scissors game, using the new rules
popularized in a certain comedy TV show. I think it’s for the best.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

74 CHAPTER 5: Working with Android Widgets

You can use either of these layouts with a stock new Android project from Android Studio or
Eclipse to display the running clocks shown in Figures 5-9 and 5-10.

Figure 5-9.  The AnalogClock in action

www.it-ebooks.info

http://www.it-ebooks.info/

75CHAPTER 5: Working with Android Widgets

These examples are available in the ch05/ folder. I cover some other examples of clocklike
views, such as timers and other time counters, in later chapters.

Easing Input with SeekBar
When we looked at EditView earlier, I mentioned one of the attributes available to you was
android:digits, for limiting the field so it only accepts numeric input. This can be very useful
for the input of data such as telephone numbers, but sometimes you want people to provide
numeric or pseudo-numeric input in places where typing digits is awkward or tedious.

Enter the SeekBar widget, which can be used to gather user input. The user simply slides
the selector on the SeekBar to a visual point of the user’s liking. Classic examples of where
this type of user interface appears include volume controls (though we cover Android’s
dedicated volume control widgets in Chapter 12), color mix selection, answers to survey
questions on a disagree-to-agree scale, and so forth.

By default, positioning the selector determines the numeric property of the SeekBar
somewhere between 0 and 100. You can override the default range by using the setMax()
method. The getProgress() method, while it has a slightly misleading name, is used to
determine the current position and associated numeric value of the selector. You can also
register a listener for the SeekBar using the setOnSeekBarChangeListener() method to
capture activity and values whenever a user changes the selector position. You can find the
code for the example in ch05/SeekBarExample.

Figure 5-10.  The DigitalClock in action

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_12
http://www.it-ebooks.info/

76 CHAPTER 5: Working with Android Widgets

Views: The Base of All UI Widgets
All of the UI widgets described in this chapter inherit from the same base class: View.
Because this is true, you are provided with benefits, some of which you have already seen,
such as font settings, colors, and so forth.

In addition to these, you have a range of attributes and methods available that are inherited
from View, and these are fully covered in the Android documentation. Here are just a few of
the most commonly used ones.

Useful Common Inherited Properties
Properties available to all View-descended widgets that you will commonly use include
these:

	android:contentDescription: This is a text value associated with any
widget that accessibility tools can use, where the visual aspect of the
widget is of little or no help to the user.

	android: visibility: Determines if the widget should be visible or
invisible at first instantiation.

	android:padding: Expands the size of the overall widget beyond the
minimum size required to fit its content. For example, this can increase
the size of a button beyond what is required for its text or image.
Dimensions are in pixels, device-independent pixels, or millimeters.

	android:paddingLeft, android:paddingRight, android:paddingTop,
android:padding Bottom: A fine-grained alternative to android:padding,
which allows different pad values on all sides of the widget.

Note that for padding, you may also use the setPadding() method in Java to achieve
padded layout at runtime.

Useful Common Inherited Methods
As you might already have guessed, the commonly used methods inherited from View for
all widgets mostly revolve around basic state management, and navigating what widgets
exist, their groupings, their parent and child objects in the layout, and so forth. The most
commonly used include the following:

	getParent(): Finds the parent object, whether its a widget or container.

	findViewById(): Finds the widget with a given ID.

	getRootView(): Gets the root of the tree provided from the activities
original call to setContentView().

	setEnabled(), isEnabled(): Sets and checks the enabled state of any
widget, commonly used when you wish to deactivate other widgets
on screen based on checked items, switched options, or radio button
options.

www.it-ebooks.info

http://www.it-ebooks.info/

77CHAPTER 5: Working with Android Widgets

Even More UI Widgets
We have covered many of the UI building blocks in this chapter, and you should now know
how to start building the activity interfaces you might want to use for your application. Note
that this coverage is not exhaustive. In particular, I return to cover some of the media-focused
widgets in the audio and video chapters.

I cover an additional widget, TabView, in the next chapter on layouts, because its use and
features rely on some understanding of FrameLayout, which is also covered in that chapter.

And lastly, there are more complex widgets for dealing with dynamically generated content,
choice of data, and so forth, which I cover in Chapter 7.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_7
http://www.it-ebooks.info/

79

Chapter 6
Layouts and UI Design
In this chapter, I explore how to expand your knowledge of simple widgets so it covers
the full canvas of controlling your overall application and activity layout and design. I use
Android layouts as the definition-based way of describing how to organize and display all of
the widgets and other UI artifacts that comprise your user interface. In order to understand
how layouts work, you need to think of layouts as containers. A layout stores all of the
widgets and their attributes so that they are ready to be used, just like ingredients in kitchen
containers. The widgets I introduced in Chapter 5 are fine, but as soon as you want two or
more widgets on a screen, it becomes increasingly cumbersome to manage each one—each
has its own position, spacing, and inter-widget relationships—if you attempt to manage each
individually. You have already seen a hint of how managing groups of widgets makes your
life easier—through the RadioGroup element, which allows the aggregate control of multiple
RadioButton widgets.

This is where Android’s concept of containers for UI layout comes to the forefront. As you
will see during the introduction to each of the layout styles Android supports, one of the
key features provided by layouts is inheriting implicit layout specifications for the various
widgets you wish to display. This lets you focus on the key parts of your UI design that
add the functionality, flair, or behavior you seek and spend less time laboriously specifying
repetitious drawing instructions. This approach is also flexible enough to cover any given
screen that is “inflated” from a container, or multiple containers that are nested, stacked, or
otherwise combined together.

In this chapter, I walk through the four major layout containers provided by Android:

	RelativeLayout—Now the default in Android for new projects, the
RelativeLayout is a rules-governed approach to having UI elements
self-arrange.

	LinearLayout—Historically the most commonly used Android layout
(and the default for new projects until Android 4.0 and later). Following a
traditional box model, LinearLayout imagines all widgets as boxes to fit
within and around each other.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_5
http://www.it-ebooks.info/

80 CHAPTER 6: Layouts and UI Design

	TableLayout—A model that considers the screen area a grid, to be filled
in a similar way to how an HTML table gets filled.

	GridLayout—Not to be confused with the grid approach for
TableLayout, the GridLayout uses an infinite fine-line approach to
splitting screen space into successively more specific areas.

Following on from there, I explore, in more depth, the process of building layouts with the
layout editor introduced earlier, and the fundamentals of manipulating your XML layouts from
Java code. Lastly, I show you how to rewrite your click-counting button application so it
uses layouts. This is a big chapter, so let’s get started.

Working with Relative Layouts
The RelativeLayout, as you would assume, given its name, places your widgets on the
screen based on their relationships with other widgets and the parent container itself. If you
look back at the examples I used in the first chapters of the book, you’ll see that they all
used RelativeLayout by default, and in fact, this is the default for a new layout.xml file if
you use ADT in Eclipse or Android Studio. For example, you can place a given widget below
another, have top edges align, or ensure all widgets align to the right edge of the container
or a parent widget, and so forth.

Relative referencing relies on a set of standard attributes that describe the desired relationships,
which you include within your widgets’ element definitions in the XML specification.

Positioning Relative to the Activity Container
The most fundamental of relationships is covered by specifying how a UI widget relates to
its parent container. A range of true/false attributes are used to specify these relationships,
including the following:

	android:layout_alignParentTop: Aligns the widget’s top edge with the
top of the container.

	android:layout_alignParentBottom: Aligns the widget’s bottom edge
with the bottom of the container.

	android:layout_alignParentStart: Aligns the widget’s start side with
the left side of the container; used when taking account of right-to-left
and left-to-right written scripts. For instance, in an English language
left-to-right layout, this positioning would control the widget’s left side.

	android:layout_alignParentEnd: Aligns the widget’s end side with the
left side of the container; used when taking account of right-to-left and
left-to-right written scripts.

	android:layout_centerHorizontal: Positions the widget horizontally at
the center of the container.

	android:layout_centerVertical: Positions the widget vertically at
the center of the container. If you’d like both horizontal and vertical
centering, you can use the combined layout_centerInParent.

www.it-ebooks.info

http://www.it-ebooks.info/

81CHAPTER 6: Layouts and UI Design

Note that other layout modifiers like padding are taken into account when determining
edges, so you should think of any edge-aligning attributes as applying to the absolute outer
boundary of you widget.

Identifiying Properties for Relative Layout
To further control the layout of widgets and to describe their relative position to other
widgets in the layout, you need to provide the identity of the widget in the layout container.
Do this by using the android:id identifier attribute on any widget that you want to refer to.

The first time you reference an android:id value, ensure you use the plus modifier
(i.e., @+id/button1). Subsequent references to the same widget do not need to use the plus
sign. Using the plus notation helps the ADT linting tools spot instances in which you start
referring to an id that has not been properly introduced. Think of this as equivalent to
declaring variables before using them. Note that if you are using a version of the SDK older
than level 16, no linter support is available, but runtime checks are still performed for missing
plus notation on first use of an id.

With the id in place, another widget, such as another button like button2, can now
reference our example @+id/button1, introduced earlier,by nominating that id string in its
own layout-related properties. Note that names like button1 and button2 are OK for this
example, but in reality, you want to choose meaningful names for your widgets; you should
consider thinking up a naming scheme that will help you manage your layouts when they
become more complex.

Relative Positioning Properties
With the id semantics in place, you can use these six properties to control the position of
widgets relative to each other:

	android:layout_above: Used to place a UI widget above the widget
referenced in the property

	android:layout_below: Used to place a UI widget below the widget
referenced in the property

	android:layout_toStartOf: Used to indicate that the end edge of this
widget should be placed at the start edge of the widget referenced in
the property

	android:layout_toEndOf: Used to indicate that the start edge of this
widget should be placed at the end edge of the widget referenced in the
property

	android:layout_toLeftOf: Used to place a UI widget to the left of the
widget referenced in the property

	android:layout_toRightOf: Used to place a UI widget to the right of the
widget referenced in the property

www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 6: Layouts and UI Design

More subtely, you can also use one of numerous other properties to control the alignment of
a widget when compared to another. Some of these properties include the following:

	android:layout_alignStart: Flags that the widget’s starting edge
should be aligned with the start of the widget referenced in the property

	android:layout_alignEnd: Flags that the widget’s ending edge should
be aligned with the end of the widget referenced in the property

	android:layout_alignBaseline: Flags that the baseline of any text,
regardless of borders or padding, of the two widgets should be aligned
(see below)

	android:layout_alignTop: Flags that the top of the widget should be
aligned with the top of the widget referenced in the property

	android:layout_alignBottom: Flags that the bottom of the widget
should be aligned with the bottom of the referenced widget in the
property

In your two-button example, if you want button2 to be positioned to the right of button1, then in
the XML element for button2, include the attribute android:layout_toRightOf="@id/button1".

Determining the Order of Layout Relationships
Since way back in Android 1.6, Android has used a two-pass approach to process the
evaluation of relative layout rules; this means that it is safe to have forward references
to as-yet-undefined widgets. Prior to version 1.6, only a single-pass method was used,
meaning you couldn’t reference a widget until it had been declared in the layout XML. This
complicated some layouts, making developers take awkward workarounds. Thankfully,
it’s unlikely you’ll have to develop for a pre-version-1.6 envionment, so you can safely use
forward-referencing without further thought.

A RelativeLayout Example
Before you get lost in too much theory surrounding relative layouts, it is time to actually see
an example. Listing 6-1 shows the RelativeLayout from the ch06/RelativeExample project.

Tip  If you have ever tried to exactly position text in a label to line up with text in an editable field
in any UI design system, you know it can be a pain nudging each widget so that the text alignment
of the characters entered by your user looks “right,” especially when you consider different fonts,
labels with no borders versus EditView with borders, and so on. RelativeLayout provides a
great attribute called android:layout_alignBaseline that does all the hard work of this for
you automatically. It’s a great one to use for TextView and EditView combinations.

www.it-ebooks.info

http://www.it-ebooks.info/

83CHAPTER 6: Layouts and UI Design

Listing 6-1.  Using a RelativeLayout

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 tools:context=".RelativeLayoutExample" >
 
 <TextView android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="URL:"
 android:layout_alignBaseline="@+id/entry"
 android:layout_alignParentLeft="true"/>
 <EditText
 android:id="@id/entry"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@id/label"
 android:layout_alignParentTop="true"/>
 <Button
 android:id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/entry"
 android:layout_alignRight="@id/entry"
 android:text="OK" />
 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/ok"
 android:layout_alignTop="@id/ok"
 android:text="Cancel" />
  
</RelativeLayout>

Let’s examine the various elements in this RelativeLayout. First and foremost is the
RelativeLayout root element. In addition to the XML namespace attributes, I specify three
other attributes for the layout itself. I want the RelativeLayout to span the entire available width
on whatever sized screen is being used, so I choose android:layout_width="match_parent".
I could do the same for the height, but instead, I tell the RelativeLayout to only use as
much vertical space as is required to enclose the contained widgets. That’s the purpose of
android:layout_height="wrap_content".

When you examine the remaining code, you also see four widgets as child elements. These
are the TextView of my label, the EditView for my editable field, and the buttons, Button1
and Button2.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

84 CHAPTER 6: Layouts and UI Design

For the TextView label, my layout instructs Android to align its left edge with the left
edge of the parent RelativeLayout, using android:layout_alignParentLeft="true".
I also want the TextView to have its baseline automatically managed once I’ve introduced
the adjacent EditView, so I invoke the pixel-nudging perfection using android:layout_
alignBaseline="@+id/entry". Note that I introduce the id with a plus sign because I haven’t
yet described the EditView, so I need to forewarn of its impending existence.

For the EditView, I want it to be to the right of the label so that baseline magic can work, and
I want to have the EditView itself sit at the top of the layout, consuming all the remaining space
to the right of the TextView. I instruct it to lay out to the right using android:layout_toRightOf=
"@id/label" (which was already introduced, so I do not need to add the plus notation). I then
force the EditView to sit as high as possible in the remaining space of the RelativeLayout using
android:layout_alignParentTop="true" and take the remaining space on the canvas to the right
of the TextView by using android:layout_width="match_parent". This works because I know I
also asked the parent to use the maximum available remaining space for width.

The daisy-chaining of relative rules continues with the two buttons. I want Button1 placed
below the EditView and aligned with its right side, so I give it the attributes android:layout_
below="@id/entry" and android:layout_alignRight="@id/entry". I then tell Android
to place Button2 to the right of Button1 so the tops of the buttons are aligned using
android:layout_toLeft="@id/Button1" and android:layout_alignTop="@id/Button1".

By using the stock skeleton of a new Android project in Android Studio or Eclipse, you can
see the resulting layout, rendered in Figure 6-1.

Figure 6-1.  The RelativeLayoutExample sample application

www.it-ebooks.info

http://www.it-ebooks.info/

85CHAPTER 6: Layouts and UI Design

Overlapping Widgets in Relative Layouts
One feature unique to the RelativeLayout is its ability to have widgets overlap each
other so that when they are rendered in the Android UI, they appear to sit on top or
under one another. Android achieves this by keeping track of the child elements from the
XML definition, and it successively adds new “layers” for each new child element in the
RelativeLayout. This means that items defined later in the layout sit on top of older/earlier
items if they use the same space within the UI.

Let me show you how this works in a very straightforward example. Listing 6-2 shows the
layout definition from ch06/RelativeOverlapExample. The layout has two buttons declared.

Listing 6-2.  Drawing Overlapping Widgets in RelativeLayout

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".RelativeOverlapExample" >
 
 <Button
 android:text="BIG BUTTON AT BACK"
 android:textSize="72dip"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 <Button
 android:text="Small overlapping button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBottom="true"
 android:layout_alignLeft="true" />
 
</RelativeLayout>

The first button is set to fill all available screen real estate in the activity using the
match_parent options for width and height. Because I used such a large button, you can
immediately tell that the next widget defined—in this case, the second button—will overlap
this one to some degree. I’ve chosen the wrap_content option for Button2 so that it takes
only as much space as is needed to display the text. You can see the resulting effect of
Button2 sitting on top of (or if you prefer, in front of ) Button1 in Figure 6-2.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

86 CHAPTER 6: Layouts and UI Design

You can overlay any combination of widgets like this, and they can be of any type. All of the
widgets are still responsive in the normal way, except where they overlap. In the region of
overlap, any taps or clicks are handled by the top-most widget. As to why you would want
to overlap widgets, there are numerous reasons, from artistic desires for slight overlaps, to
tricks you might want to practice with widgets “hidden” behind others but still contributing in
some way to activity functionality, among others.

Working with Linear Layouts
If you have every worked with other widget toolkits, such as Swing, or the graphic design
world, you have probably heard of the box model, which at heart, asks you (the UI
designer) to think of the interface as a set of widgets that are added in rows and columns.
Because it was the original default layout for earlier versions of Android (now superseded
by RelativeLayout), you can use LinearLayout for pretty much all your layout container
needs, and then spend time tweaking how your widgets are boxed, nested, and so on. You
don’t get some of the fancy features of other layouts—such as the overlap capabilities of
RelativeLayout I described earlier—but it works, after a fashion.

Figure 6-2.  Overlapping widgets in action

www.it-ebooks.info

http://www.it-ebooks.info/

87CHAPTER 6: Layouts and UI Design

Controlling the Five Key Qualifiers for LinearLayout
For any given LinearLayout, you configure a core set of attributes to control the positioning
and appearance of the container and its widgets.

Orientation
The most basic attribute of a LinearLayout is to control whether the widgets fill the layout
in order horizontally, or vertically. For instance, in the box-model metaphor, are the boxes
stacked from the top down, or from one side to the other? You control orientation in your
XML Layout by using the android:orientation attribute of the LinearLayout element, or at
runtime, by using the setOrientation() method, passing either HORIZONTAL or VERTICAL as
the parameter.

Margins
In a LinearLayout container, when widgets are placed by default, no extra space is allocated
as a buffer between the widgets. You can alter this behavior using the margin-based
attributes, android:layout_margin, which affects all sides of a widget, or the various one-
sided attributes such as android:layout_marginTop. The value for the margin attributes is a
margin size, such as 10dip.

Specifying a margin in this way has a similar effect to the padding attributes I discussed
with relative layouts. The key difference is that margin attributes are only relevant where
the widget has a nontransparent background, such as is the case with a button. In these
cases, padding is considered to be within the boundary of the background, so in the button
example, the edges of the button are pushed further away from the text that is written on it.
Margin, on the other hand, affects the space outside the boundary of the widget, creating a
metaphorical moat that makes it so no other widgets can encroach. For any widget without
nontransparent backgrounds, margin and padding have identical effects.

Fill Method
Recall the discussion in the RelativeLayout example on using wrap_content or
match_parent as a way to specify how much space should be filled by a given widget.
To recap, wrap_content instructs the widget to dynamically size itself so it is only as large
as it needs to be to contain its content (whether that’s button text, an image, text in a
TextView, etc.). In contrast, match_parent instructs the widget to take as much of the
parent’s available layout space as possible (that’s simplifying things a little, but I’ll return
to this topic in more depth).

In LinearLayout containers, all contained widgets must specify a fill method, passing
values to the attributes android:layout_width and android:layout_height. Three
options for specifying fill method are available: wrap_content, match_parent, and lastly,
the least common method of specifying an exact device-independent pixel value, such
as 256dip.

www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 6: Layouts and UI Design

Weight
There is an obvious issue with using the fill method of match_parent with more than one
widget in the LinearLayout container. If two (or more) widgets are demanding all the
available free space, which one gets what? Weight is the answer!

In order to allocate the space across multiple widgets demanding the match_parent behavior,
the android:layout_weight attribute is added to those widgets to assign the proportion of
free space each one should receive. This attribute takes a simple number, such as 1 or 7.
Android then parses all of the widgets with an android:layout_weight attribute in the layout,
sums the weights, and gives a given widget its fraction of the total.

As an example, if you have two buttons, both configured to match_parent, and you set
one to android:layout_weight=1 and the other to android:layout_weight=7, then the first
button takes up one-eighth of the available space, 1/(1+7); and the other button takes up the
remaining seven eighths, 7/(1+7).

Other methods are available to set the weight as well, but this proportional method is the
most intuitive.

Gravity
The default behavior for a LinearLayout is to align all widgets—from the top if you are using
VERTICAL orientation, or from the left if you are using HORIZONTAL orientation. There are
situations in which this is not what you want, such as for fancy display effects, or when you
are manually overriding Android’s built-in regional and language settings to force
right-to-left layout. The XML attribute android:layout_gravity allows you to override the
default behavior, as does the method setGravity() at runtime.

Acceptable values for VERTICAL orientation for android:layout_gravity are left, center_
horizontal, and right. For HORIZONTAL orientation, Android defaults to aligning with respect
to the invisible base of the text of your widgets. Use the value center_vertical to have
Android use the notional center of the widget instead.

An Example LinearLayout
All the LinearLayout options can be daunting when you are thinking in purely theoretical
terms. The dynamic example in Listing 6-3 shows you how many of these options work.

Listing 6-3.  Exploring Options for LinearLayout

package com.artifiexdigital.android.LinearLayoutexample;
 
import android.os.Bundle;
import android.app.Activity;
import android.view.Gravity;
import android.widget.LinearLayout;
import android.widget.RadioGroup;
 

www.it-ebooks.info

http://www.it-ebooks.info/

89CHAPTER 6: Layouts and UI Design

public class LinearLayoutExample extends Activity implements RadioGroup.
OnCheckedChangeListener {
 RadioGroup orientation;
 RadioGroup gravity;
  
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_linear_layout_example);
  
 orientation=(RadioGroup)findViewById(R.id.orientation);
 orientation.setOnCheckedChangeListener(this);
 gravity=(RadioGroup)findViewById(R.id.gravity);
 gravity.setOnCheckedChangeListener(this);
 }
 
 public void onCheckedChanged(RadioGroup group, int checkedId) {
 switch (checkedId) {
 case R.id.horizontal:
 orientation.setOrientation(LinearLayout.HORIZONTAL);
 break;
  
 case R.id.vertical:
 orientation.setOrientation(LinearLayout.VERTICAL);
 break;
  
 case R.id.left:
 gravity.setGravity(Gravity.LEFT);
 break;
  
 case R.id.center:
 gravity.setGravity(Gravity.CENTER_HORIZONTAL);
 break;
  
 case R.id.right:
 gravity.setGravity(Gravity.RIGHT);
 break;
 }
 }
}

This example is very simple to begin with. I have defined two separate RadioGroup
widgets—one containing RadioButtons to control orientation, the other to contol gravity.
I start with the XML definition including the android:orientation="vertical" orientation, which
stacks the RadioGroups one above the other, and the RadioButtons within them in vertical
fashion as well. Rather than leaving this as is, I override this vertical stacking of the two radio
buttons in the first RadioGroup, giving them a horizontal layout by specifying android:orie
ntation="horizontal". This shows another useful feature that is available to you—nested
elements can inherit defaults but can also override them. To finish the initial definition, I set
some padding around all of my widgets—5dip—and opt for the wrap_content option.

www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 6: Layouts and UI Design

If I run a default Android project with just this layout definition and no supporting Java code,
you will still see the layout take effect, even if the radio buttons do nothing for now. The
layout is shown in Figure 6-3.

Figure 6-3.  The starting point for the LinearLayoutExample application

Obviously, to show the working options changing your layout’s orientation and gravity, I need
to add some Java code to make the relevant runtime calls. Listing 6-4 covers the code that
brings each RadioButton to life.

Listing 6-4.  LinearLayout Java Code to Enable RadioButton Logic

package com.artifiexdigital.android.LinearLayoutexample;
 
import android.os.Bundle;
import android.app.Activity;
import android.view.Gravity;
import android.widget.LinearLayout;
import android.widget.RadioGroup;
 
public class LinearLayoutExample extends Activity implements
RadioGroup.OnCheckedChangeListener {
 RadioGroup orientation;
 RadioGroup gravity;
  

www.it-ebooks.info

http://www.it-ebooks.info/

91CHAPTER 6: Layouts and UI Design

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_linear_layout_example);
  
 orientation=(RadioGroup)findViewById(R.id.orientation);
 orientation.setOnCheckedChangeListener(this);
 gravity=(RadioGroup)findViewById(R.id.gravity);
 gravity.setOnCheckedChangeListener(this);
 }
 
 public void onCheckedChanged(RadioGroup group, int checkedId) {
 switch (checkedId) {
 case R.id.horizontal:
 orientation.setOrientation(LinearLayout.HORIZONTAL);
 break;
  
 case R.id.vertical:
 orientation.setOrientation(LinearLayout.VERTICAL);
 break;
  
 case R.id.left:
 gravity.setGravity(Gravity.LEFT);
 break;
  
 case R.id.center:
 gravity.setGravity(Gravity.CENTER_HORIZONTAL);
 break;
  
 case R.id.right:
 gravity.setGravity(Gravity.RIGHT);
 break;
 }
 }
}

The setup for my code is straightforward. During the applications onCreate() call, I use
setOnCheckedChangedListener() to register two listeners for clicks on the RadioGroup
widgets. As I implement OnCheckedChangeListener in the activity, it becomes the listener.

When a click occurs, the listener invokes the callback onCheckChanged(). The first thing
I determine in the callback method is which RadioButton was clicked. Based on that, I call
either setOrientation() to toggle from vertical to horizontal layout flow, or setGravity() to
the relevant left, right, or center value. Some examples of how the layout changes are shown
in Figures 6-4 and 6-5.

www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 6: Layouts and UI Design

Figure 6-4.  Example changes in the LinearLayout

Figure 6-5.  Example changes in the LinearLayout

www.it-ebooks.info

http://www.it-ebooks.info/

93CHAPTER 6: Layouts and UI Design

Working with Table Layouts
If you remember the early days of the World Wide Web, you probably have memories of
page design of the times. I am not just talking about the gratuitous use of the blink tag, but
more specifically, about the tendency to use HTML tables as layout containers for everything
people wanted to see on a web page. Whether it was for the title bar, menus, pictures, or
text, the table could do a passable job of managing layout.

In the Android world, this approach is also supported, thanks to the TableLayout container.
TableLayout has many of the same quick-to-use, hard-to-perfect characteristics of
the HTML use of tables, but it is certainly useful in many layout situations. The key to
TableLayout is its use of TableRow child elements to control the size of the table (its number
of columns and rows). This should remind you even more of HTML if you have ever used it,
with its <table> and <tr> tags for table and rows.

Understanding Widget Behavior within TableLayout
Before using TableLayout, it is helpful to understand what you can control directy using XML
layout attributes or Java at runtime and what Android will implicitly manage for you.

You Count the Rows, Android Counts the Columns
Adding rows to your TableLayout is as simple as you would expect. Within your TableLayout
XML definition, you simply add one or more TableRow child elements to act as subcontainers
for widgets. When it comes to adding columns, on the other hand, you don’t explicitly
specify a number of columns in advance. Instead, when detailing the widgets in your rows,
Android pays attention to the row with the highest widget count. This implicitly becomes the
number of columns used to render your TableLayout.

Obviously leaving column counting to Android is great from a simplicity perspective, but
you may find yourself wanting a more fine-grained control over widget and column behavior.
You can achieve this, at least partially, by providing an android:layout_span attribute to any
widget, where you would like that widget to span more than one column.

As an example, this layout fragment uses a TextView that spans five columns and an
EditView that only uses one implicit column. Android then renders this as if it is effectively
six columns.

<TableRow>
 <TextView android:text="How old were you at your last birthday?:"
 android:layout_span="5" />
 <EditText
 android:id="@+id/age" />
</TableRow>

www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 6: Layouts and UI Design

By default, Android fills widgets into columns starting with the first avaliable column. You can
override this behavior by specifying an explicit android:layout_column attribute for your UI
widget.

We can amend the above fragment to “push” our TextView and EditView to later columns
as follows:

<TableRow>
 <TextView android:text="How old were you at your last birthday?:"
 android:layout_column="3"
 android:layout_span="5" />
 <EditText
 android:id="@+id/age" />
</TableRow>

When I use this approach, my TextView starts in column 4 (remember, zero-based column
indexes!) and continues until it has consumed through to column 8. The EditText field is
then automatically placed in column 9 since I have done nothing to alter Android’s built-in
column handling at that point.

Widgets without TableRows in a TableLayout
It is possible to intersperse UI widgets in your table outside of a TableRow child element.
In this case, any widgets so defined implicitly behave as if they were placed in a LinearLayout
with VERTICAL stacking, and their fill method implicitly defaults to match_parent. Effectively,
any widget in your TableLayout but outside a TableRow stacks downward from the last
TableRow, filling the full width of the row determined to be the widest of all your TableRows.

You might wonder why you would ever want to use this approach. To continue my earlier
HTML analogy, if you have ever used the <hr> element in HTML, you know that it creates a
horizontal rule (line) across the entire screen area. You can use the widget-outside-TableRow
approach to do the same thing, without needing to worry about how many columns Android
determines your layout has at runtime.

Controlling the Size of Columns in a TableLayout
Controlling the width of a given column is left to Android by default. It follows a scheme
similar to wrap_content, wherein Android sizes the column to fit the natural width of the
widest widget within it. This often works well, but at times, you want to have more control
over column width, particularly when you’re dealing with very wide or very narrow widgets
whose default width causes an undesirable look to your UI.

Caution  Android uses zero-based column numbering! As much as this seems sensible to the
hard-core computer science major, it will inevitably cause you—as a keen new Android developer–
to stumble into column numbering purgatory at least once. Zero-based indexing of columns will
eventually become second nature to you.

www.it-ebooks.info

http://www.it-ebooks.info/

95CHAPTER 6: Layouts and UI Design

Android offers three attributes to provide hints on final sizing of columns. I should say that
again for emphasis. Column sizing is not precise, and you, as the developer, can only do
so much to influence the final size of a column. This might sound like a restriction, but as
you experience more of the UI feature set of Android, and the plethora of device sizes and
resolutions, you will appreciate that this is actually a benefit. Here are the three attributes to
guide column sizing:

	android:stretchColumns: The column(s) specified stretch to consume
any extra space available on the TableRow.

	android:shrinkColumns: Any of the column(s) specified that contain
text have their horizontal space reduced and the text word-wrapped to
reduce the space they consume.

	android:collapseColumns: The column(s) specified are initially
included in the logical layout, but are hidden from display when the
UI is initially rendered. You can reveal them at runtime using the
setColumnsCollapsed() method.

Each of these attributes takes a comma-delimited set of column numbers. You can
shrink and stretch columns at runtime by using the setColumnsShrinkable() and
setColumnsStretchable() methods.

An Example TableLayout
Now that you have the theory of TableLayout under your belt, let’s look at a working
example that demonstrates a variety of the attributes I discussed earlier. Listing 6-5 shows
an example TableLayout, which mimics the earlier layout you saw for RelativeLayout.
You can also find the code in ch06/TableLayoutExample.

Listing 6-5.  A TableLayout to Mimic the Earlier RelativeLayout

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1"
 tools:context=".TableLayoutExample" >
 
 <TableRow>
 <TextView
 android:text="URL:" />
 <EditText android:id="@+id/entry"
 android:layout_span="3"/>
 </TableRow>
 <View
 android:layout_height="2dip"
 android:background="#0000FF" />

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

96 CHAPTER 6: Layouts and UI Design

 <TableRow>
 <Button android:id="@+id/cancel"
 android:layout_column="2"
 android:text="Cancel" />
 <Button android:id="@+id/ok"
 android:text="OK" />
 </TableRow>
 
</TableLayout>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1"
 tools:context=".TableLayoutExample" >
 
 <TableRow>
 <TextView
 android:text="URL:" />
 <EditText android:id="@+id/entry"
 android:layout_span="3"/>
 </TableRow>
 <View
 android:layout_height="2dip"
 android:background="#0000FF" />
 <TableRow>
 <Button android:id="@+id/cancel"
 android:layout_column="2"
 android:text="Cancel" />
 <Button android:id="@+id/ok"
 android:text="OK" />
 </TableRow>
 
</TableLayout>

If you include this layout with a stock project from Android Studio or Eclipse, you see the
output as shown in Figure 6-6.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

97CHAPTER 6: Layouts and UI Design

Working with Grid Layouts
A TableLayout appeals to those who yearn for HTML-style or CSS-style pixel precision
(or lack thereof). Often you’ll find yourself knowing how you’d like the elements of your layout
to appear relative to one another, or needing more finess when it comes to specifying the
placement of widgets in your layout. Enter the all-new GridLayout, released with Android 4,
Ice Cream Sandwich.

GridLayout is a layout that places its children onto a grid of infinitely detailed lines that
separate the area into cells. The key to GridLayout’s fine control is that the number of cells,
or more accurately the grid lines used to describe the cells, has no limit or threshold—you
specify how many or how few grid lines your GridLayout should have using rowSpec and
columnSpec properties. This means you can create a layout that mimics a simple table with a
few cells (that is, rows and columns), or for those demanding situations in which you need
fantastically fine precision, you can go crazy specifying thousands or even millions of cells.

Note  To complement GridLayout’s different view of the UI world, it uses
android:layout_gravity in place of android:layout_weight.

Figure 6-6.  Using TableLayout to mimic the earlier RelativeLayout

www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 6: Layouts and UI Design

As an example, here in Listing 6-6 is a GridLayout used in an XML layout file
(from ch06/GridLayoutExample):

Listing 6-6.  GridLayoutExample XML Definition

<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context=".GridLayoutExample" >
 
 <Button
 android:text="Defying gravity!"
 android:layout_gravity="top" />
 <Button
 android:text="Falling like an apple"
 android:layout_gravity="bottom" />
 
</GridLayout>

In an Ice Cream Sandwich Android emulator, you can see the activity using the GridLayout
as shown in Figure 6-7.

Figure 6-7.  The GridLayoutExample sample application

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

99CHAPTER 6: Layouts and UI Design

The buttons have followed their various gravity directions to place themselves on the GridLayout,
using the defaults for rowSpec and columnSpec counts. You can observe the utility of the
GridLayout not needing the somewhat tedious static layout directives of the TableLayout by
adding another button to your declarations in activity_grid_layout_example.xml.

...
 <Button
 android:text="Defying gravity!"
 android:layout_gravity="top" />
 <Button
 android:text="Floating middle right"
 android:layout_gravity="right|center_vertical" />
 <Button
 android:text="Falling like an apple"
 android:layout_gravity="bottom" />
...

Figure 6-8 shows how your GridLayout adapts to display its children:

Figure 6-8.  The GridDemo revised

Layout Manipulation with the Layout Editor
So far in this chapter I have used a write-your-own-XML approach to adding widgets to your
user interface. Although it’s certainly possible to do this for more and more complex interface
designs, you probably want an easier and more elegant way to design the look and feel of your
applications. That’s exactly what Android offers you by allowing you to edit the XML-based
layout files with developer tools like the graphical layout editor in Android Studio and Eclipse.

www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 6: Layouts and UI Design

Recap of the Layout Editor UI
Like any developer, you will face the age-old user interface development tug-of-war: should
user interfaces be coded logically and clinically, or laid out with flair and fashion on some
design canvas in graphical form?

The good news is that the Android developer tools cater to both approaches, even
simultaneously! You already saw the layout editor introduced briefly in Chapter 2. Let’s
now take a longer look to be sure you know its key capabilities, and then you can decide
for yourself when to lay out on a canvas, when to handcraft XML, and when to code Java
to deal with layout at runtime (which I cover next in this chapter). You can access the
editor by opening any layout XML file in your res/layout directory. So far in the example
applications you have typically only had one layout file, such as the FirstApp example
using the res/layout/activity_first_app.xml layout specification. Click on it, and when
it opens, you’ll see the graphical layout editor’s default view, shown in Figure 6-9.

Figure 6-9.  Graphical Layout of the FirstApp activity

This actually works on any layout file. You might have many activities in your application,
each with a layout. You can also have layouts and layout XML files for only part of a view.
For instance, in the next chapter, we explore adapters and lists, and you can have a layout
for an individual row in a list.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://www.it-ebooks.info/

101CHAPTER 6: Layouts and UI Design

Note the two tabs at the bottom of the layout: Graphical Layout and activity_first_app.xml.
These are two presentations of the same thing. The activity_first_app.xml tab contains
the actual textual content of that file, which is the XML specification that describes your
layout. The Graphical Layout tab is the notional user interface that your XML file describes.
This tab shows the results of the developer toolset parsing the XML and layout out the visual
interface your users would see for the given layout file.

On the left side of the graphical layout editor, you see categories for all of the widgets—or
layout elements—that are provided in stock form with Android. This includes text fields,
check boxes, buttons, and more that I introduced in Chapter 5. You also see a Layouts
category, which includes all of the layout containers I’ve already discussed in this chapter.

Android’s SDK ships with the Android Asset Packaging Tool (AAPT), which is designed to
take all of the various XML resource files, including layouts, and package/process them
into their final usable state. For layouts, your toolset (Eclipse, Android Studio, Ant, Beacon
Mountain, etc.) invokes AAPTand its principle job in this instance it to generate the R.java
source files within your project’s gen directory. The mystery of the R file is solved! As you’ve
already seen, this allows you to access your layouts and their widgets directly from within
your Java code.

Even More Reasons for XML Layouts
We have already explored how using XML layouts lets you describe each aspect and
interface element of your Android application, without you needing to use Java. We return
to the Java story shortly, but there is another very compelling reason to use XML for layout
definitions, even though many people consider it a little cumbersome and text-heavy.

One of the best reasons to use XML layouts is so you can enable the creation of tools,
like the graphical layout editor I just recapped, that, in turn, greatly assist in creating new
layouts, but more importantly, in rereading the definition into a design tool to support edits
and extensions. This kind of programmatic parsing and rendering is a huge challenge, but it
is made so much more tractable when the data is in a structured format like XML.

If you have experienced other development environments, you know that this principle of
separating layout definitions and application logic is a very popular architectural choice—
equivalents such as XUL, GWT, and XAML from Microsoft, Google, and Mozilla are all
examples of this technique.

Converting to XML-based Layouts with Java Logic
The good news about Java-driven layouts, and XML layouts, is that you can change your
mind. You might like to prototype in XML and use the graphical layout editor, or you might
like to try really fancy runtime layout choices using Java. At any point, you can change
your mind with a little recoding or rewriting of XML. As an example, Listing 6-7 shows the
counting Button from Chapter 2’s first application, converted into an XML layout file. You can
find this code in the ch06/FirstAgain sample project.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_5
http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://www.it-ebooks.info/

102 CHAPTER 6: Layouts and UI Design

Listing 6-7.  Redefining Layouts in XML

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".FirstAgainActivity" >
 
 <Button
 android:id="@+id/button"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_alignParentBottom="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentRight="true"
 android:layout_alignParentTop="true"
 android:text="" />
 
</RelativeLayout>

You can see the XML equivalents of the pieces we put together for the sample application,
including these:

	Establishing the root element and namespace for the layout, and
deciding to use RelativeLayout.

	Defining the Button child element and giving it an android:id so we can
reference it from Java (where our counter keeps track of the number of
button clicks).

	androind:layout_alignParentBottom, androind:layout_alignParentTop,
androind:layout_alignParentLeft, and androind:layout_
alignParentRight: Each of these four layout attributes controls how
this widget aligns with its parent. In the current example, these are a
little redundant, because our button and its parent consume the whole
activity space, so you won’t notice any effect. You can try editing the
layout to remove these to demonstrate this for yourself.

	android:layout_width and android:layout_height: As I did in the
original example, here I have the button’s width and height match the
parent (the entire screen).

	android:text: Indicates the initial text to be displayed on the button,
which, in this case, is an empty string.

This is admittedly a simple example converted to XML. More complex examples need more
that just the one child Button element: they are likely to end up with multiple branches
of XML hierarchies. You get to see more and more complex examples from here on,
because I favor XML layouts over Java-defined ones for the rest of the book, unless I am
demonstrating a particular runtime effect or behavior.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

103CHAPTER 6: Layouts and UI Design

Attaching Layout Definitions to Java
Let us assume you have become a convert to the XML layout approach and have sweated
over the definitions for the widgets and containers for your activity’s view in an XML layout
file. How do you tell your Java logic which layout to use (even if you only have one)? I’m
glad you asked. When it is invoked in your activity’s onCreate() callback, one simple
method joins up the parts. This is the setContentView() method. In order for your example
application to use the newly-minted XML layout in res/layout/activity_first_again.xml,
simply invoke it like this:

setContentView(R.layout.activity_first_again);

If you look back to the original version of our first example app, you can see that
setContentView() was called there as well. What differs here is that you are passing a
reference to the XML-based view you’ve defined, based on the aapt utility having parsed
your XML, and you’ve generated the R class so that you can reference it in this way. No
matter how many layout files you have, AAPT packages them all and makes them available
in the R.layout namespace, using the format R.layout.<your_layout_file_name_without_
the_XML_extention>.

In order to then access the various widgets in your layout, you invoke the findViewById()
method and pass it the numeric reference for your widget. Wait! What numeric reference?
I’m glad you asked. At packaging time, AAPT also assigns each widget in your layouts an
ID number and includes it as member data in the R.java file. You can open the file at any
time to see this, but tracking and using explicit numbers would be cumbersome and error
prone. Instead, you can have Android resolve the ID number for you using the R.id.<widget_
android:id_value> parameter. You can use this to resolve the ID for any widget subclassed
from the base View class (which is pretty much everything).

You can already see some of the possibilities this approach enables. Different activities can
be passed different instances of a View, and more intriguingly, you can change the View
based on some program logic, enabling you to, for instance, use a different layout when you
detect a different style of device.

Completing Your Revised App
In the original FirstApp demo, the button’s face showed the number of times the button had
been clicked, starting with 1 for when the button was loaded via onCreate(). The majority of
your existing logic, like counting clicks, still works in your modified (FirstAgain) application.
The key change is shown in Listing 6-8, substituting the previous Java calls in your activity’s
onCreate() callback with a definition from the XML layout.

www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 6: Layouts and UI Design

Listing 6-8.  FirstAgain Application Java Code

package com.artifexdigital.android.firstagain;
 
import android.os.Bundle;
import android.app.Activity;
import android.view.View;
import android.widget.Button;
 
public class FirstAgainActivity extends Activity implements View.OnClickListener {
 Button myButton;
 Integer myInt;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_first_again);
 myButton=(Button)findViewById(R.id.button);
 myButton.setOnClickListener(this);
 myInt = 0;
 updateClickCounter();
 }
  
 public void onClick(View view) {
 updateClickCounter();
 }
 
 private void updateClickCounter() {
 myInt++;
 myButton.setText(myInt.toString());
 }
}

The twin changes I described earlier are visible in the onCreate() method. First, use
setContentView() to load the AAPT-created R Java class for your desired XML layout. Then
find the button to use with the rest of your logic by invoking the findViewById() method,
asking it to find the widget that has the android:id value of "button". This gives you the
reference you need in order to track and update the value of your click counter.

www.it-ebooks.info

http://www.it-ebooks.info/

105CHAPTER 6: Layouts and UI Design

The results look strikingly similar to the original FirstApp demo, as shown in Figure 6-10.

Figure 6-10.  The revised FirstAgain sample activity

By now, you can probably imagine where you might start using some of the containers and
layout styles I have described, and you might also make some educated guesses about
what kinds of layouts and containers some of your favorite applications use. You’ve come to
the end of this chapter, but read on for some more advanced layout and widget use.

www.it-ebooks.info

http://www.it-ebooks.info/

107

Chapter 7
Building Layouts with Lists
and Adapters
The previous two chapters focused on widgets that convey single pieces of information or
provide basic interaction, and different ways to implement the layout of those widgets in
your activities. In this chapter, I cover some of the more advanced data-driven UI elements.
With these UI elements, not only do definitions in your layout XML files govern the content
and even the size and shape of the interface, but the interface adapts and changes based
on the data populating it.

A very common design goal for application developers is to want to present users with a
constrained list of choices from which they can choose. Think of applications like music
players, or phone dialers working from a contact list. What the developer desires is for the
user to pick the one entry they want, and then have some action performed with that entry.

That all sounds simple, right? Well, in Android, it is actually quite straightforward to show a
dynamic set of content and trigger a follow-on action, which allows you to avoid the need
to traverse to and fro across networks leveraging databases and remote services. All you
need to do is specify two complementary parts of the solution. First, from where should the
options or values originate? Second, what should the UI—our activity in this case—look like
in order to present these options? Android provides adapters for sourcing data and several
more advanced views that are all derived from the base View object for presenting data.
Let us dive in and see how these work in tandem.

www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 7: Building Layouts with Lists and Adapters

Using Adapters to Populate Options
Adapters are one of Android’s fundamental building blocks; they enable you as a developer
to build data-driven applications. By letting a user drive behavior by selecting choices, such
as contacts, songs, to-do list entries, and similar tasks, you create applications that tailor
themselves to each of your users by basing application behavior on their individual data.

Why Adapters?
In the previous paragraph, I mentioned many possible uses for data-driven applications.
Songs, contacts, and other classes of data are all rich sources from which to shape an
application. But imagine if every time you want to work with a type of data—say, videos—you
have to completely rewrite the code that controls how to find those videos on your device or
on the Internet, come up with the way of describing and updating data about those videos,
and put rules in place for important constraints like format, length, and so on. And just to
make the scenario even more burdensome, imagine you can reuse this work for songs, or
ebooks, or photos, or phone numbers.

Wanting to avoid the need to reinvent the wheel in this way is the reason Android built
adapters into the development framework. Adapters provide a common interface into a
myriad of different kinds and sources of data. Android adapters are purpose-built to feed
data from all sorts of inputs into one of Android’s list-style UI elements; a user then selects
one or more of the items presented. In practice, this can mean the user chooses songs for a
playlist, dials a person’s phone number, or checks off a to-do list item.

In order to provide you, the developer, with maximum flexibility, Android’s adapter design
gives you control over not only the source data for the widget that will host the data, but also
optional control over the way an item of data in the widget is laid out and presented. This
blurring of logic and presentation may sound a little crazy, but you are going to see some
examples where it makes perfect sense.

Starting with ArrayAdapter
The most basic of adapters in your Android toolkit is the ArrayAdapter. As its name implies,
an ArrayAdapter takes a Java array or array-like object, such as java.util.List, along with
your desired layout for a row of data, and returns an ArrayAdapter object, ready to use.

Listing 7-1 shows a very simple code fragment with all the steps you need to create your
first ArrayAdapter.

Listing 7-1.  The Basic Form of ArrayAdapter

String[] sampleAA={"your","very","first","Array","Adapter"};
new ArrayAdapter<String>(this, android.R.layout.simple_list_item_1, sampleAA);

www.it-ebooks.info

http://www.it-ebooks.info/

109CHAPTER 7: Building Layouts with Lists and Adapters

That is all there is to it. After instantiating the array, you can call the constructor and pass
these parameters:

	The desired context for this adapter

	A layout suitable for rendering the data (which, in this case, is an
Android default, android.R.layout.simple_list_item_1, but you can
and will want to design your own)

	The source data array or List

When invoked over an array or List, by default, ArrayAdapter assumes the source
information is text in nature and cast to string as necessary. (In later chapters, I show you
how you can control this to deal with nontext data.) Once the raw data is consumed, the
layout you provide is applied to generate the rendered widgets so they display in the final
container—whether that is a list, a checklist, a spinner, or something else.

To get an idea of how Listing 7-1 is going to render your array, you can open the
Android-provided layout android.R.layout.simple_list_item_1 by searching for the
simple_list_item_1.xml file in your SDK installation path. Depending on the version of the
Android SDK and developer tools you are using, it should look something like Listing 7-2.

Listing 7-2.  The simple_list_item_1.xml Android-provided Layout

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/text1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceListItemSmall"
 android:gravity="center_vertical"
 android:paddingStart="?android:attr/listPreferredItemPaddingStart"
 android:paddingEnd="?android:attr/listPreferredItemPaddingEnd"
 android:minHeight="?android:attr/listPreferredItemHeightSmall" />

I have omitted the multiline licensing boilerplate from the listing so you can concentrate on
the actual XML. First, you can see that the resulting rows will be rendered as TextView items.
That’s great, because you learned all about TextView layouts in Chapter 5. You can also see
that, by default, the items will stretch horizontally to match the parent width; this means they
will stretch to fit the spinner, list, or other type of container I will shortly introduce. Height is
set to wrap_content and therefore only consume as much space in the rendered layout as
is needed to show the relevant text, and you can set some other padding and appearance
characteristics to give a pleasing UI.

In the next chapter, I explore more advanced approaches that let you control how rows are
created and rendered even further, but for now, you should feel comfortable with what the
ArrayAdapter is doing to the data in your array.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://dx.doi.org/10.1007/978-1-4302-4687-9_5
http://www.it-ebooks.info/

110 CHAPTER 7: Building Layouts with Lists and Adapters

Making Lists
Android, like many other UI toolkits, includes a basic list widget for presenting sets of data.
This is the ListView, which, as the name suggests, is derived from the base View object, just
as all the other widgets we have discussed have been derived. You can link a ListView to
the adapter providing the source data and layout view by invoking the setAdapter() method.
Finally, you can configure a ListView for user interaction by registering a listener with
setOnItemSelectedListener() so that you can add your logic to react to the user’s choice.

A complete example that links an ArrayAdapter to a ListView is available in the
ch07/ListViewExample project, which is a simple list with a label on top that shows the current
selection. Listing 7-3 shows the XML layout including the specification for the ListView:

Listing 7-3.  ListViewExample Project’s Layout Specification

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".ListViewExample" >
 
 <TextView
 android:id="@+id/mySelection"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:drawSelectorOnTop="false" />
 
</RelativeLayout>

The Java code to control the list’s logic and connect it with its ArrayAdapter is shown in
Listing 7-4:

Listing 7-4.  ListViewExample Project’s Java Implementation

package com.artifexdigital.android.listviewexample;
 
import android.os.Bundle;
import android.app.ListActivity;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
 
public class ListViewExample extends ListActivity {
 private TextView mySelection;
 private static final String[] myListItems={"To", "be",
 "or", "not", "to", "be",
 "that", "is", "the", "question"};
 

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

111CHAPTER 7: Building Layouts with Lists and Adapters

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_list_view_example);
  
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, myListItems));
 mySelection=(TextView)findViewById(R.id.mySelection);
 }
  
 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 mySelection.setText(myListItems[position]);
 }
 
}

One of the first things you should note about this Java class is my choice of base class for
the activity. I have derived from the ListActivity, which I haven’t previously introduced. The
name ListActivity probably helps you understand the purpose here, but just to be clear,
if you are creating an activity in which the only child UI widget (or at least far-and-away the
most prominent and important) is a ListView, then you can use the ListActivity subclass
to shortcut many of the housekeeping steps a list-based activity warrants.

With that mystery solved, you can focus on where the list is configured to the adapter via
setListAdapter()—in this case, the method call provides an ArrayAdapter wrapping an
array quoting a soliloquy from a somewhat-famous play. Your application can listen in using
an override for onListItemClick() to find out when the selected items in the list change, and
you can invoke whatever logic you want for your application based on such a change. The
running application is shown in Figure 7-1.

www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 7: Building Layouts with Lists and Adapters

When you look at the way each row of the list has been rendered, you should be able to spot
the effects of the “free” default layout XML I mentioned at the start of the chapter. The overall
look is sourced both because we correctly configured the ArrayAdapter to use this layout, and
because our ListActivity is our base class and only activity, which means we get things like
the overall padding, font choice, Material Design or Holo theme, and more. I’ll return to themes
at a later point, but you can start to see what they offer and how you can easily capture their
defaults with choices like ListActivity and other more tightly-focused subclasses.

Making More Sophisticated Lists
If you have used other widget toolkits like Swing, AWT, .Net and so on, you are familiar with
some of the more advanced list interfaces that are very common across desktops, the Web,
and even mobile devices. One very common extension of the list approach is to provide a
pick list or multi–pick list from which a user can select one or more options in one pass.

You can modify the ListView example I introduced earlier to support the ability to pick one
or more entries. In making these changes, you also see how the basic constructs stay the
same, and all you need to do is make one configuration choice and pass an appropriate
layout for your row data to have everything work as intended.

Figure 7-1.  ListView with data from an ArrayAdapter

www.it-ebooks.info

http://www.it-ebooks.info/

113CHAPTER 7: Building Layouts with Lists and Adapters

You can control whether your ListView accepts one selection or multiple selections by
invoking its setChoiceMode() method or by configuring the android:choiceMode attribute in
the corresponding XML element for the ListView layout. There are only two options from
which to choose with setChoiceMode():

	CHOICE_MODE_SINGLE, which as the name suggests, configures the
ListView to only allow one selection at a time

	CHOICE_MODE_MULTIPLE, which allows any or all of the options in the
ListView to be simultaneously selected

Having told Android what behavior your ListView will have, you now need to make sure it
can render an appropriate onscreen widget to allow for your selection options. The following
are the relevant defaults packaged with the Android SDK from which you can freely choose:

	android.R.layout.simple_list_item_single_choice: To be used in
conjunction with single-choice lists

	android.R.layout.simple_list_item_multiple_choice: To be used
when multiple choice is desired

You can also create your own, tweaking layout options if you wish.

The overall XML layout for the activity changes very little—note the additional bold lines in
Listing 7-5 as compared to Listing 7-3.

Listing 7-5.  ListView Layout with Multiple-Choice Behavior Configured

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".CheckListExample" >
 
 <ListView
 android:id="@android:id/list"
 android:choiceMode="multipleChoice"
 android:drawSelectorOnTop="false"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
  
</RelativeLayout>

The key change in the layout is to set android:choiceMode to multipleChoice. That instructs
Android to allow your user to select more than one entry (without it automatically deselecting
other entries). The only other change you need to make is in your Java code to ensure you
pass an appropriate layout to the ArrayAdapter constructor that helps the user understand
and use the new multi-choice capability. In this case, Listing 7-6 shows the code using
Android’s default android.R.layout.simple_list_item_multiple_choice layout.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

114 CHAPTER 7: Building Layouts with Lists and Adapters

Listing 7-6.  Adding the Relevant Multiple-Choice Java Configuration to the Multiple-Choice ListViewExample

package com.artifexdigital.android.checklistexample;
 
import android.os.Bundle;
import android.app.ListActivity;
import android.widget.ArrayAdapter;
//import android.widget.ListView;
 
public class CheckListExample extends ListActivity {
 private static final String[] myListItems={"To", "be",
 "or", "not", "to", "be",
 "that", "is", "the", "question"};
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_check_list_example);
  
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_multiple_choice,
 myListItems));
 }
  
}

It will not surprise you that you have now immortalized Shakespeare, and Hamlet, in a much
more functional multi-choice ListView, complete with checkboxes for the users to pick out
their favorite words from that part of the play. Figure 7-2 shows the multiple-choice ListView
in action.

www.it-ebooks.info

http://www.it-ebooks.info/

115CHAPTER 7: Building Layouts with Lists and Adapters

Adapting to the GridView
It is no coincidence that all of the words in the preceding ListView examples are short.
Really, really short, in fact. You might be thinking we are wasting a huge amount of screen
real estate by putting each word on its own row in a ListView. Android provides a solution to
situations like this; you want situations in which a View makes the most of the available real
estate, while still supporting single- or multiple-selection.

The GridView provides a row-and-column grid of items you can use in presenting “lists”
of data to your users. In true Android style, GridView tries to do some of the heavy lifting
for you, which means, in practice, you can control some of the aspects of the layout—the
number and size of columns—while Android takes care of automatically managing the rest,
in particular, the number of rows. This is similar in concept to the TableLayout we explored in
Chapter 6.

You control the number and size of columns using the following attributes:

	android:numColumns: A well-named attribute that specifies how many
columns to render. You can also use the value auto_fit to have Android
compute how many columns will fit the available space based on the
other properties listed here and the size of the activity or screen.

	android:columnWidth: Specifies the width of each column in pixels.

Figure 7-2.  Multiple choice ListView with data from an ArrayAdapter

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_6
http://www.it-ebooks.info/

116 CHAPTER 7: Building Layouts with Lists and Adapters

	android:verticalSpacing: Indicates spacing between rows.

	android:horizontalSpacing: Indicates spacing across one row between
items in the GridView.

	android:stretchMode: Where you choose to use auto_fit for
android:numColumns, this controls the behavior of unused space when
laying out columns. Choices are columnWidth or spacingWidth, which
gives the spare space to either the columns or the whitespace between
them, respectively.

In all other respects, GridView operates in much the same way as the already-introduced list
selection widgets; it takes an adapter with an associated layout that is able to be registered
with a listener via the override for setOnItemSelectedListener()

To see a GridView in action, examine the example project in ch07/GridViewExample, which
you can see in Listing 7-7.

Listing 7-7.  The Layout XML for Use of GridView

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".GridViewExample" >
 
 <TextView
 android:id="@+id/mySelection"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <GridView
 android:id="@+id/grid"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:columnWidth="75dip"
 android:gravity="center"
 android:horizontalSpacing="5dip"
 android:numColumns="auto_fit"
 android:stretchMode="columnWidth"
 android:verticalSpacing="75dip" />
  
</RelativeLayout>

The key visual attributes for our grid are that we have elected to consume the entire
screen/activity space, except for the allowance for the label at the top. We further choose
to let Android decide on the optimal number of columns using the auto_fit value for
android:numColumns, and we specify horizontal spacing and column width to our desired
pixel sizes of 5dip and 75dip, respectively.

The structure of the supporting Java code is very similar to the earlier ListView examples,
with the only material changes being that I substituted in our GridView widget in the
appropriate places and selected a suitable layout file for binding to the adapter, as shown in
Listing 7-8.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

117CHAPTER 7: Building Layouts with Lists and Adapters

Listing 7-8.  Java Code for the GridView

package com.artifexdigital.android.gridviewexample;
 
import android.os.Bundle;
import android.app.Activity;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.GridView;
import android.widget.TextView;
 
public class GridViewExample extends Activity
 implements AdapterView.OnItemSelectedListener {
 private TextView mySelection;
 private static final String[] myListItems={"To", "be",
 "or", "not", "to", "be",
 "that", "is", "the", "question"};
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_grid_view_example);
 
 GridView myGrid=(GridView) findViewById(R.id.grid);
 myGrid.setAdapter(new ArrayAdapter<String>(this,
 R.layout.cell,
 myListItems));
 myGrid.setOnItemSelectedListener(this);
 }
  
 public void onItemSelected(AdapterView<?> parent, View v,
 int position, long id) {
 mySelection.setText(myListItems[position]);
 }
  
 public void onNothingSelected(AdapterView<?> parent) {
 //no-op
 }
 
}

For the curious, Listing 7-9 shows the cell.xml file from the res/layouts folder used by the
adapter (as R.layout.cell) to define the rendering of each cell in the grid.

Listing 7-9.  Layout XML for Each Cell of the GridView

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="14sp" />

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

118 CHAPTER 7: Building Layouts with Lists and Adapters

By choosing large verticalSpacing and columnWidth values in our layout (both 75dip), I am
attempting to create large box-like cells in the resulting application. In fact, such large cells
are almost like implied buttons. This effect is useful, and you can even go so far as to have
widgets like Buttons or ImageViews as the content of your cells (remember, you are in complete
control of the layout the adapter uses). Figure 7-3 shows our grid as it first appears.

Remember that your emulator or device might have a different screen size, and so our
android:numColumns="auto_fit" value can result in a layout of differing numbers of rows/columns
than the one you see in Figure 7-3.

Figure 7-3.  GridView with data from an ArrayAdapter

Taking Options for a Spin
There are times when you want to provide your users with a full list of items from which to
choose, but for other design reasons or constraints, you simply don’t have the space to show
them the entire list in one go. Other widget toolkits address this with the notion of a drop-down
or pick list. In Android, the same approach to saving space is achieved with the spinner.

Even without code of your own, you can see how a spinner works by simply playing with the
time and date settings of any Android device. In these cases, the source data is taken from the
system clock. When designing your own spinners, the general approach is the same as the one
you took with ListView or GridView: create an adapter to provide the data you want displayed,

www.it-ebooks.info

http://www.it-ebooks.info/

119CHAPTER 7: Building Layouts with Lists and Adapters

pick an appropriate view layout for your spinner “rows,” and hook up a listener object with
setOnItemSelectedListener() to carry out your desired logic when a user makes their choice.

Unlike other selection widgets, a spinner has two visual forms: the collapsed version and
the dropped-down version that appears while selection is in progress. If you want to also
customize the look and feel of your spinner in its dropped-down state, you still configure
the adapter (just as you do for the regular state of all selection widgets) and not the Spinner
widget itself. You do this with a call to the setDropDownViewResource() method, where you
provide the necessary resource ID of your desired view for the dropped-down state.

Listing 7-10 shows our ongoing Hamlet example converted to use a spinner.

Listing 7-10.  Layout XML for the Spinner Widget

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".SpinnerExample" >
 
 <TextView
 android:id="@+id/mySelection"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <Spinner android:id="@+id/spinner"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:drawSelectorOnTop="true" />
 
</RelativeLayout>

The attribute android:drawSelectorOnTop controls whether the arrow that provides the hint
that this is a Spinner widget is drawn on the side of the spinner UI.

You can now pour in the Java code that should look mostly familiar to you by now, with the
necessary substitutions to populate and use the spinner, as shown in Listing 7-11:

Listing 7-11.  Java Code to Support the Spinner Widget

package com.artifexdigital.android.spinnerexample;
 
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Spinner;
import android.widget.TextView;
import android.app.Activity;
 

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

120 CHAPTER 7: Building Layouts with Lists and Adapters

public class SpinnerExample extends Activity
 implements AdapterView.OnItemSelectedListener {
 private TextView mySelection;
 private static final String[] myListItems={"To", "be",
 "or", "not", "to", "be",
 "that", "is", "the", "question"};
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_spinner_example);
  
 mySelection=(TextView)findViewById(R.id.mySelection);
  
 Spinner spin=(Spinner)findViewById(R.id.spinner);
 spin.setOnItemSelectedListener(this);
  
 ArrayAdapter<String> myAdapter=new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 myListItems);
  
 myAdapter.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 spin.setAdapter(myAdapter);
 }
  
 public void onItemSelected(AdapterView<?> parent,
 View v, int position, long id) {
 mySelection.setText(myListItems[position]);
 }
  
 public void onNothingSelected(AdapterView<?> parent) {
 mySelection.setText("");
 }
}

In the Java implementation, when you use spin.setOnItemSelectedListener(this), the
activity itself is designated as the selection listener. You can do this because the activity
implements the OnItemSelectedListener interface. As I described earlier, it is possible to
have a custom View for both the collapsed and dropped-down states of a spinner, and
the call to aa.setDropDownViewResource() achieves this. I have used android.R.layout.
simple_spinner_item as the View for each row on the spinner—this is another of the defaults

www.it-ebooks.info

http://www.it-ebooks.info/

121CHAPTER 7: Building Layouts with Lists and Adapters

Figure 7-4.  Spinner showing initial state/collapsed state

shipped with the SDK. OnItemSelectedListener() updates the other label widget with the
chosen selection just as we did with the ListView and GridView examples.

Figures 7-4 and 7-5 show the spinner in action.

www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 7: Building Layouts with Lists and Adapters

In Figure 7-4 you can see one of the questionable design philosophies at play in
Google/Android’s contemporary widgets from recent editions like Lollipop, KitKat, and so
on. Although there are strong theoretical underpinnings in the minimalist look of the spinner
and the little arrow showing its capability (from cognitive neuroscience, if you must know),
to the uninitiated, the spinner doesn’t exactly announce its purpose with great fanfare to the
user. You might want to keep this in mind when opting between selection widgets in your
applications. One thing you can do to help your user in the case of using a spinner is to add
a TextView label providing a hint or suggestion as to its purpose.

Automatic Field Population
Lists of data can be long. Really, really long. Think for a moment about how many songs you
have as MP3 or other formats, or how many people you know on social media. If you had to
run through an entire list of hundreds or thousands of entries, you would probably give up.
What would help is some kind of quick filtering mechanism built right into the list. That is
exactly what the AutoCompleteTextView offers you.

You can think of the AutoCompleteTextView as a hybrid of the EditText and Spinner views.
The autocomplete part of its name should help you understand what it offers. As users type
into the widget, their text is taken and used as a search-stub to find any matching items
from a provided adapter prefixed with that text. Any matching candidates are shown in a

Figure 7-5.  Spinner in dropped-down state

www.it-ebooks.info

http://www.it-ebooks.info/

123CHAPTER 7: Building Layouts with Lists and Adapters

successively more refined drop-down view, just like a spinner. It is up to the users to
continue typing, all the way up to the full entry they want, or they can choose an item from
the suggested list at any time.

Caution  Be careful with really, really long lists. It takes some time to load the data into the view
when a list has hundreds or thousands of entries, and browsing that list, or typing for matches, is
also a slow experience. In Chapters 17, 18, and 19, I explore other ways, like databases, files, and
preferences, to feed data to your applications that are better at dealing with much larger sets.

The AutoCompleteTextView is a subclass of EditText, which means all of the properties and
attributes I described for EditText views in Chapter 5 are available for use. There are also
properties specific to AutoCompleteTextView, including the attribute android:completionTh
reshold, which indicates the minimum number of characters a user must type to trigger the
list-filtering behavior.

Adapters for the source data to your AutoCompleteTextView are set using the same
setAdapter() call you are now familiar with for other list objects. Because the user is allowed
to enter a value not provided by the adapter instead of registering listeners to determine
what choice was made, you use a TextWatcher instead to be notified when the text changes.
This is available on all TextView derived classes.

Listing 7-12 switches the running example to use the AutoCompleteTextView in the layout.

Listing 7-12. Layout for the AutoCompleteTextView

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context=".AutoExample" >
 
 <TextView
 android:id="@+id/mySelection"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <AutoCompleteTextView android:id="@+id/edit"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:completionThreshold="1" />
  
</RelativeLayout>

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_17
http://dx.doi.org/10.1007/978-1-4302-4687-9_18
http://dx.doi.org/10.1007/978-1-4302-4687-9_19
http://dx.doi.org/10.1007/978-1-4302-4687-9_5
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

124 CHAPTER 7: Building Layouts with Lists and Adapters

The Java code to support the layout and register the TextWatcher is shown in Listing 7-13.

Listing 7-13. Java Code for the AutoCompleteTextView

package com.artifexdigital.android.autoexample;
 
import android.os.Bundle;
import android.text.Editable;
import android.text.TextWatcher;
import android.widget.ArrayAdapter;
import android.widget.AutoCompleteTextView;
import android.widget.TextView;
import android.app.Activity;
 
public class AutoExample extends Activity implements TextWatcher {
 private TextView mySelection;
 private AutoCompleteTextView myEdit;
 private static final String[] myListItems={"To", "be",
 "or", "not", "to", "be",
 "that", "is", "the", "question"};
  
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_auto_example);
 mySelection=(TextView)findViewById(R.id.mySelection);
 myEdit=(AutoCompleteTextView)findViewById(R.id.edit);
 myEdit.addTextChangedListener(this);
  
 myEdit.setAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line,
 myListItems));
 }
  
 public void onTextChanged(CharSequence s, int start, int before,
 int count) {
 mySelection.setText(myEdit.getText());
 }
  
 public void beforeTextChanged(CharSequence s, int start,
 int count, int after) {
 // no-op
 }
  
 public void afterTextChanged(Editable s) {
 // no-op
 }
  
}

www.it-ebooks.info

http://www.it-ebooks.info/

125CHAPTER 7: Building Layouts with Lists and Adapters

Figure 7-6.  The AutoCompleteTextView waiting to show its capabilities

When you implement the TextWatcher, a new set of callbacks becomes available; it is worth
familiarizing yourself with these:

	beforeTextChanged(): Where you can specify logic to invoke before the
selected or typed item takes effect

	onTextChanged(): Logic to invoke at the point text changes, such as
when the user types the next character or deletes the previous one

	afterTextChanged(): Logic to invoke after the selection of text entry is
resolved

Our example uses onTextChanged() to set the value of the label in the activity. You can see
the AutoCompleteTextView and its behavior in Figures 7-6 and 7-7.

www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 7: Building Layouts with Lists and Adapters

Summary
That completes the introduction to lists and adapters, contributing to your growing
toolset for application design. I come back to this topic later in the book when we explore
databases, files, content providers, and other sources of information with which to populate
your widgets.

Figure 7-7.  AutoCompleteTextView in action

www.it-ebooks.info

http://www.it-ebooks.info/

127

Chapter 8
Working with Input Methods,
Menus and Dialogs
There is far more to designing great Android application activities than placing widgets on
a screen. Those widgets are good for many different kinds of interaction with your user,
but there are times when you need more. Whether it’s dealing with more sophisticated
approaches to input, offering options via menus, or providing important alerts and prompts
for action via dialogs, Android has you covered.

In this chapter we will cover a number of key components that expand your user interface
possibilities to all manner of things that “pop up” in the interface: keyboards, menus, and
dialogs. I will cover Android’s Input Method framework, which controls the use and behavior
of virtual keyboards. I will also introduce you to the different approaches to menu design in
Android, and explore the traditional menu approach. I will also investigate using dialogs and
some of the related design ideas that apply to all of these areas.

Using The Input Method Framework
Shortly after releasing Android, Google reoganized the ways in which users can enter data
on-screen into the Input Method Framework (IMF). This framework groups the ways in which
users can actually input text data on-screen into three categories: The very familiar soft
keyboard; hardware keyboards (either integral to the device, or as separate accessories),
and handwriting recognition.

Real and Virtual Keyboards
While the very first Android device (the G1, or Dream) came with a physical keyboard, the
majority of the tens of thousands of Android devices since released do not. There are still
models released with physical keyboards today though, and Android’s IMF means support
for either type - physical or virtual - is seamlessly handled.

www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 8: Working with Input Methods, Menus and Dialogs

Android’s internals include the necessary capabilities to detect the presence of a physical
keyboard. If none is detected, Android makes available an input method editor (IME) for
any EditText view which a user might select. By default, the stock IME will pick up a range
of sensible settings from the user’s locale and language settings, providing a useful and
usable soft keyboard straight away, as well as other locale-specific prefernences such as
whether the period or comma is used as the decimal “point”, and so on. Many developers
are happy with such defaults, and you can test for yourself what these look like with any of
your applications. A significant majority of Android applications need no customizing code
for their IMEs.

Where you do decide customizing IMEs is necessary for your application, the work is
very straight-forward. If you examine the example EditTextExample application shown in
Figure 8-1, you can probably think of a number of useful tweaks to the default soft keyboard,
as well as some changes to the behavior of the text the user inputs. (The code for this
example is available in ch06/EditTextExample. If you test this code, be sure to use a virtual
device that does not have a hardware keyboard enabled).

Figure 8-1.  The input method editor showing as a soft keyboard in the EditTextExample application

www.it-ebooks.info

http://www.it-ebooks.info/

129CHAPTER 8: Working with Input Methods, Menus and Dialogs

Customizing IMEs
From the introduction of Android 1.5, customizing your IME has been addressed
through the bundle of attributes you can assign to a given View (e.g. an EditText) via the
android:inputType attribute. This allows you to control all manner of style customizations
for your field, by providing class options in a pipe-delimited “stacked” list. The combination
of options chosen instructs Android what kinds of input to allow for the field. Android in
turn uses that information to disable or remove from the soft keyboard any keys that can’t
be used with the resulting field. For instance, a phone number field would have no need for
currency symbols, so these wouldn’t be available from the resulting soft keyboard the input
method framework generates.

The available classes of inputType are:

	text (set by default)

	number

	phone

	date

	time

	datetime

Within each of these inputType classes, there are potentially additional modifiers available to
allow even more customization. Listing 8-1 demonstrates some of the inputType classes in
action, and you can find the code in the activity_imeexample1.xml layout file from the
ch08/IMEExample1 project.

Listing 8-1.  inputType classes in action

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:stretchColumns="1"
 tools:context=".IMEExample1" >
 
 <TableRow>
 <TextView
 android:text="No inputType:" />
 <EditText />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Date:" />
 <EditText
 android:inputType="date" />
 </TableRow>

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

130 CHAPTER 8: Working with Input Methods, Menus and Dialogs

 <TableRow>
 <TextView
 android:text="Email address:" />
 <EditText
 android:inputType="text|textEmailAddress" />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Decimal number:" />
 <EditText
 android:inputType="number|numberDecimal" />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Multiline text:" />
 <EditText
 android:inputType="text|textMultiLine|textAutoCorrect"
 android:minLines="4"
 android:gravity="top" />
 </TableRow>
</TableLayout>

The layout from Listing 8-1 uses a TableLayout to host five variants EditText, each with
different uses of inputType to demonstrate the customizations from the IMF.

	The first row impicitly is an absolutely plain text field, as the inputType
attributes on the EditText is not set, meaning you get the default
behavior.

	By using the android:inputType = "date" for the second field, we instruct
the IMF to generate and IME that specifically allows only (valid) dates.

	The third row allows for email addresses to be input, via
android:inputType = "text|textEmailAddress".

	The fourth row is configured to allow for decimal numeric input, using
android:inputType = "number|numberDecimal".

	Finally, the last EditText caters to multiline input, and uses
autocorrection for any spelling mistakes.

You can see all of these classes and collections of modifiers customizing the keyboard
when you run the example code. For example, a plain text-entry field results in a plain soft
keyboard, as shown in Figure 8-2.

www.it-ebooks.info

http://www.it-ebooks.info/

131CHAPTER 8: Working with Input Methods, Menus and Dialogs

Remember that the default soft keyboard IME can differ between devices, particularly when
user locale and language settings are considered by the IMF. Exploring our inputType results
further, we can see the email customization with the @ symbol present, in Figure 8-3.

Figure 8-2.  A default soft-keyboard IME

www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 8: Working with Input Methods, Menus and Dialogs

Even here, you cannot always assume that different IMEs will necessarily present the
@ symbol on the keyboard with an inputType of email. The stock Android Lollipop and
earlier builds will do this, but you can both develop your own custom IMEs, and buy or
license them from other developers. In both cases, the @ symbol could be behind the
?123 option button, or indeed hidden further.

A more dramatic difference in the soft keyboard IME can be seen when we select a decimal
field. You can see the resulting soft keyboard in Figure 8-4.

Figure 8-3.  The soft-keyboard IME for email inputType in stock Android

www.it-ebooks.info

http://www.it-ebooks.info/

133CHAPTER 8: Working with Input Methods, Menus and Dialogs

The numeric keyboard shown is deliberately restricted to only providing digits and
associated decimal points and commas for entering valid numbers. These ancillary soft keys
will change depending on locale settings. For instance, in Europe where the comma is the
decimal separator, that comma will appear on the bottom row to the right of the zero.

This kind of point-of-entry validation and filtering is one of the key additional benefits of the
IMF and the various soft keyboards at your disposal. With a well-chosen android:inputType
you can provide users of your application an intuitive soft keyboard for the data entry your
application needs.

Accessorizing with Soft Keyboards
Look more closely at the preceeding Figure 8-1 through Figure 8-4. You should notice some
other subtle differences. In Figure 8-1, the key in the lower right corner of the soft keyboard
is a blue Done button. In Figure 8-2 it is a return arrow. In Figures 8-3 and 8-4, the lower
right key is a blue Next button. This lower-right button is known as the accessory button,
and its label and behavior changes depending on other inputType values.

There are two broad implicit behaviours. If you have an EditText widget with no modifiers for
android:inputType, then the accessory button will take the blue-colored Next label, and when
pressed will move the focus to the next EditText in the activity. The exception here is for the
last EditText on a given screen. In this case, the accessory button will have the Done label.

Figure 8-4.  The soft keyboard IME for a decimal number

www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 8: Working with Input Methods, Menus and Dialogs

You can control the labeling and behavior of the accessory button using the
android:imeOptions attribute. For example, in the imeexample2.xml layout file from the
ch08/IMEExmple2 project, I have modified the previous example to enhance the accessory
buttons, as shown in Llisting 8-2:

Listing 8-2.  Augmenting the look of the accessory button

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".IMEExample2" >
 
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1" >
 <TableRow>
 <TextView
 android:text="No inputType:" />
 <EditText />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Date:" />
 <EditText
 android:inputType="date" />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Email address:" />
 <EditText
 android:inputType="text|textEmailAddress"
 android:imeOptions="actionSend" />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Decimal number:" />
 <EditText
 android:inputType="number|numberDecimal"
 android:imeOptions="actionGo" />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Multiline text:" />
 <EditText
 android:inputType="text|textMultiLine|textAutoCorrect"
 android:minLines="4"
 android:gravity="top" />
 </TableRow>
 </TableLayout>
</ScrollView>

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

135CHAPTER 8: Working with Input Methods, Menus and Dialogs

In Listing 8-2 I have plugged in the Send action for the accessory button, so that when
pressed we trigger the actionSend action using the e-mail address. Similarly with the the
middle field, we have a Go label and action, with android:imeOptions="actionGo". Pressing
Next moves the focus to the following EditText, and Go attempts to take the user to the
“target” of the text that has been typed. For example, Android might attempt to infer that a
number is a phone number or other numeric identifier.

You can also attempt more complex or sophisticated actions with the accessory button by
using the setOnEditorActionListener() on the EditText. Part of the payload you receive
will be the relevant flag indicating the action specified, such as IME_ACTION_SEND.

Scrolling in to View
The sharp-sighted amongst readers will have noticed another aspect of the code in Listing 8-3
for the IMEExample2 application. The example introduces the ScrollView container to wrap
the layout.

While there has been a proliferation in different Android devices, the vast majority of them
are still phones, and those phones have small displays. You should also be aware of
“developer bias”, where as a developer you are more likely to skew towards a power user,
and own and use devices with larger screens and more features. There are many
approaches you as a developer can use to maximize information display, and deal with small
screens. Scrolling is a well-known metaphor on the desktop, and works in a broadly similar
way on Android. In principle, you can take any layout that you might otherwise describe for
your Android activities, and wrap it in a ScrollView. In doing so, the user will be presented
with the part of your contained layout that fits the screen, and automatic scrolling logic and
scrollbars will be added to enable the user to move to the parts of your layout that don’t fit
on screen.

In addition to the implicit layout changes that scrolling introduces, use of the IME triggers
other changes in your layout. When the user interacts with a widget that demands Android
present the IME, screen real estate is needed to show the actual resulting soft keyboard.
Where does this screen space come from, and how do you control the behavior? I’m glad
you asked.

Note  there are two Views that govern explicitly enabled scrolling in this fashion: ScrollView
for vertical scrolling, and HorizontalScrollView for horizontal scrolling. You cannot stack these
to get both forms of scrolling, so you will need to decide which suits your layout.

www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 8: Working with Input Methods, Menus and Dialogs

There are multiple possibilities that depend on device type and your application
development choices. Amongst the options Android can take to rearrange the on-screen
layout to fit your soft keyboard are:

	Activity panning can be used to slide your entire as-is layout off the
“edge” of your screen, in effect moving the screen up or to the side such
that only part of it is rendered and visible, but the user has the illusion that
the rest still exists. The IME is then shown in the resulting, freed up space.

	Your activity can be resized, scaling the rendered layout to a smaller-
than-specified scale so that the IME can fit below the activity layout, and
both be visible at the same time. This approachworks well for some of
the list-based layouts we explored in Chapter 7, but less well for layouts
that are graphics-intensive.

	Android can choose to completely obscure your activity, and allow the
IME to occupy the entire screen.

	If your activity exists within a Fragment (covered in Chapter 11), Android
can reflow and rearrange all of the activities within the Fragment,
and use one or more of the above techniques in combination to have
the IME and original activity layouts present side-by-side as far as is
feasible. This works best on larger screens and with applications written
to use the fragments model.

If you choose to do nothing and let Android take the default approach, then it will bias toward the
first two options of panning and resizing. When you want to take control of the IME presentation
behavior, use the android:windowSoftInputMode attribute on the activity element in your
manifest file for your project. Listing 8-3 shows the AndroidManifest.xml file for IMEExample2:

Listing 8-3.  Controlling IME reflow and resizing behavior

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.artifexdigital.android.imeexample2"
 android:versionCode="1"
 android:versionName="1.0" >
 
 <uses-sdk
 android:minSdkVersion="11"
 android:targetSdkVersion="17" />
 
 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme"
 android:windowSoftInputMode="adjustResize">
 <activity
 android:name="com.artifexdigital.android.imeexample2.IMEExample2"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_7
http://dx.doi.org/10.1007/978-1-4302-4687-9_11
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

137CHAPTER 8: Working with Input Methods, Menus and Dialogs

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 
</manifest>

Looking at the manifest, you can see the android:windowSoftInputMode="adjustResize"
entry which instructs Android to ignore its implicit preferences and attempt to shrink the
activity’s layout to accommodate the IME when it needs to be presented. You can see this in
action in Figure 8-5.

Figure 8-5.  Scaling the IME with explicit control

Because we have defined our layout within a ScrollView, when the scaling occurs we also
gain the benefit of the ScrollView’s scroll bars being triggered for use. This is even though
the Material Design excesses of Android Lollipop make those scroll bars hard to see.

You can control Android’s behavior to maximize screen real-estate using the additional methods
introduced in Honeycomb, and refined in Icecream Sandwich and Jelly Bean. Use the Java
methods setSystemUiVisibility() with the STATUS_BAR_HIDDEN option to hide the System Bar
and allow even larger full screen modes, or setDimAmount() to tweak the brightness of the home
buttons to remove distractions from your regularly resized full-screen layout.

www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 8: Working with Input Methods, Menus and Dialogs

Forcing the IME out of Existence
There are times when the automatic triggering of the IME would be counter-productive or
interfere with the user’s experience of your application. Android uses a background system
service, InputMethodManager, to govern appearance, disappearance, and other behaviors
of IMEs. Listing 8-4 shows a code snippet that invokes the hideSoftInputFromWindow()
method, which is available to you to forcably override the appearance of an IME.

Listing 8-4.  Forcing the IME out of existance

InputMethodManager myIMM =
 (InputMethodManager)getSystemService(INPUT_METHOD_SERVICE);
 
myIMM.hideSoftInputFromWindow(myEditTextforIMEHiding.getWindowToken(), 0);

Here I’ve used the verbose but hopefully instructive name myEditTextforIMEHiding as the
EditText field for which I wish to hide the IME. This will always ensure that the IME is hidden
in the first instance.

But be warned, your user can always force the IME to reappear. If they explicitly tap the
EditText field on a device with no physical keyboard, the IME will appear. It will also appear
for both EditText-style fields and those widgets that don’t normally trigger a soft keyboard
if the user hits the menu (soft) button. In the case of tapping the EditText, you can alter the
call to the hideSoftInputFromWindow() method as follows:

myIMM.hideSoftInputFromWindow(myEditTextforIMEHiding.getWindowToken(),
InputMethodManager.HIDE_IMPLICIT_ONLY);

In changing the second parameter to the method call, you instruct the InputMethodManager
to surpress the IME even on an explicit tap. Take care when using this approach and test it
thoroughly, lest you accidentally trigger IME supression and prevent the user from entering
text when you most want them to.

Working with Menus
Menus are a way in which your users will interact with your application outside of the
widgets you present in your UI layout. Just like the IME, menus appear near or over your
layout, and understanding their behavior will help you create useful additional interaction
modes for your application.

You and your users will almost certainly be familiar with the menu metaphor from using
desktop or notebook computers, and even TV sets. As well as application level menus,
Android provides the ability to create context menus for various UI elements, meaning you
can create a context menu for an EditText or similar field. In a traditional operating system,
users would normally have a mouse with which they could right-click or command-click to
make a context menu appear. In the Android world, gestures such as the “long press” can
be used to invoke a context menu.

www.it-ebooks.info

http://www.it-ebooks.info/

139CHAPTER 8: Working with Input Methods, Menus and Dialogs

Android offers two broad types of menus for use in your applications. The first is the Activity
or Options menu, and then there is the Context menu mentioned. Activity menus, since the
advent of Android Honeycomb, have migrated to the Action Bar, but they are still available
as Options menus on older devices. We’ll return to talk more about menus in the Action Bar
context in Chapter 10.

Creating Menus for your Application
Traditional menus are created using the dedicated callback method onOptionsMenuCreate().
This method is triggered at the time a menu would come in to existence, and it is passed an
instance of a Menu object. If you want to keep updating or modifying what your menu can
do in response to further user actions, for instance making an option unavailable once a
one-time activity has occured, you should preserve the Menu object so you can reference it
after the callback has gone out of scope.

Android will have its own notions of the various system features and other options that
should be injected in to your menus, and you can take advantage of what Android can do
by making the first line of you onOptionsMenuCreate() implementation a call to the super.
onCreateOptionsMenu(menu) method. Doing so allows Android to implicitly add additional
items for you, such as the “back arrow” button.

Following that step, you can add your own particular featuers to the Menu object using its
add() method. This is a highly overloaded method, meaning its many variants won’t be
apparent to you immediately, but here are some of the common parameters taken by the
most commonly used forms of add() for a Menu object:

	A choice identifier, which is a unique int value for each menu item, and
is passed to the onOptionsItemSelected() callback when the relevant
menu item is selected.

	An order identifier, which is an int value specifying the placement of
your item in the menu hierarchy, based on the lowest order identifier
being at the top. This is especially useful when interspersing your own
custom menu items with those Android provides for the call to the super
class. You can also use the value NONE to allow Android to manage
ordering implicitly.

	The menu text, which can be a resource ID reference or String value.
You should get used to using resource ID references to allow for future
language changes, internationalization and localization.

Note  Historically Android devices came with a fixed “menu” button or soft button equivalent. With
Google's release of Honeycomb, and especially since the advent of JellyBean, KitKat and Lollipop,
interface standards have shifted to heavily discourage the existence of any permanent menu button.
Interface standards instead promote use of the Action Bar, which we will cover in Chapter 10. You
may still find users deploying applications on devices with dedicated menu buttons, so knowing the
overall picture of menus remains useful.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_10
http://dx.doi.org/10.1007/978-1-4302-4687-9_10
http://www.it-ebooks.info/

140 CHAPTER 8: Working with Input Methods, Menus and Dialogs

Your call to the add() method for a Menu object will return a MenuItem object, which
itself has several interesting methods. Some of the most commonly used are the
setAlphabeticShortcut() and setNumericShortcut() methods, which enable you to
provide a one-character/digit shortcut for chosing your menu item when the UI has invoked
keyboard (IME) menu input using the setQwertyMode() method for the menu.

The options you choose from to populate your menu are not limited to simple text. You also
have the option of invoking the menu’s setCheckable() method, passing in a choice
identifier, to nominate that menu item as having a checkbox associated with it. This gives
your user immediate information and feedback on the setting that a given menu item
controls, such as whether WiFi is on or off. This concept can be extended further by the
introduction of group identifiers and the setGroupCheckable() method. A group identifier is
also an int property that can be assigned when using the menu’s add() method, and you
can provide the same group identifier to more than one menu item. You can then use
setGroupCheckable() to create a radio button that covers all items with that group identifier,
such that only one of those menu items can be turned “on” at a time. Using the WiFi
example again, you could implement available networks as menu items with the same group
identifier, and cover the selection of the user’s preferred network with setGroupCheckable().

Whatever form your menu takes, when a user actually chooses an item from your menu,
you are notified through the onOptionsItemSelected() callback. The callback will pass the
MenuItem object corresponding with the user’s choice. You can then invoke your desired
behavior, and can use common patterns such as a switch statement to handle all the
options available to the user and your consequential reactions to their choice.

Working With Context Menus
Context menus are conceptually similar to ordinary menus. The main areas that differ are
in flagging which of your UI elements will support a context menu, how menu items are
constructed, and how your application gets notified of the user’s choice. Let’s deal with
these in order.

To nominate that a particular UI element will support a context menu, make a call to
registerForContextMenu() from your activity’s onCreate() implementation passing as a
parameter the View that will host a context menu. Obviously, if you have multiple on-screen
elements that you want to have context menus, you will need to make multiple calls.

Regardless of how many widgets in your activity have context menus, they will all call
onCreateContextMenu(), at the point the user invokes the context menu on a given widget.
This is unlike regular activity/options menus that are instantiated once at activity creation
time. You need to implement the onCreateContextMenu() and based on the View object

Tip  You can create submenus within menus by using the addSubMenu() method. Your
submenus require choice identifiers, but in other respects you are free to add other entries such as
checkboxes, and to control a submenu’s behavior much as any other menu. Android prevents you
going crazy with nested submenus, limiting you to one extra level below the main menu.

www.it-ebooks.info

http://www.it-ebooks.info/

141CHAPTER 8: Working with Input Methods, Menus and Dialogs

passed (that is, the widget the user has selected), you will need to then build the necessary
context menu. The typical pattern for doing this involves using a switch block in your
Java code to handle which item needs its context menu, and then to proceed with the
necessary creation.

When a user chooses a context menu item, the onContextItemSelected() callback is fired.
It’s incumbent on you to implement this method in your activity, and as with the regular
menu case, you will be passed the MenuItem instance that the user chose. You can use the
switch statement again to trigger the desired program logic at this point.

Menus In Action
With all of that theory now digested, let’s examine what a working application with menus
looks like. In the following example, I have used the ListViewExample application from
Chapter 7, and I have adapted the Java implementation to illustrate a range of the menu
capabilities introduced so far in this chapter.

package com.artifexdigital.android.menuexample;
 
import android.app.ListActivity;
import android.os.Bundle;
import android.view.ContextMenu;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import java.util.ArrayList;
 
public class MenuExampleActivity extends ListActivity {
 private static final String[] items={"To", "be",
 "or", "not", "to", "be",
 "that", "is", "the", "question"};
 public static final int MENU_RESET = Menu.FIRST+1;
 public static final int MENU_UPPER = Menu.FIRST+2;
 public static final int MENU_REMOVE = Menu.FIRST+3 ;

Caution  Because you are only given the MenuItem that the user chose, and not immediately
given the relevant widget, it is best to ensure every menu item has a unique choice identifier across
the entire scope of your activity. You can make calls to getMenuInfo() for the MenuItem passed in
the onContextItemSelected() callback, which will return a ContextMenu.ContextMenuInfo
structure from which you can determine which widget had its context menu invoked, but it is far
easier to spare yourself the need for this logic by using activity-wide unique identifiers.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_7
http://www.it-ebooks.info/

142 CHAPTER 8: Working with Input Methods, Menus and Dialogs

 private ArrayList<String> words=null;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_menu_example);
 setupAdapter();
 registerForContextMenu(getListView());
 }
 
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 menu.add(Menu.NONE, MENU_RESET, Menu.NONE, "Reset");
 return(super.onCreateOptionsMenu(menu));
 }
 
 @Override
 public void onCreateContextMenu(ContextMenu menu,
 View v,
 ContextMenu.ContextMenuInfo menuInfo) {
 menu.add(Menu.NONE, MENU_UPPER, Menu.NONE, "Upper Case");
 menu.add(Menu.NONE, MENU_REMOVE, Menu.NONE, "Remove Word");
 }
 
 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case MENU_RESET:
 setupAdapter();
 return(true);
 }
 
 return(super.onOptionsItemSelected(item));
 }
 
 public boolean onContextItemSelected(MenuItem item) {
 AdapterView.AdapterContextMenuInfo menuInfo=
 (AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
 ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();
 
 switch (item.getItemId()) {
 case MENU_UPPER:
 String word=words.get(menuInfo.position);
 word=word.toUpperCase();
 adapter.remove(words.get(menuInfo.position));
 adapter.insert(word, menuInfo.position);
 return(true);
 
 case MENU_REMOVE:
 adapter.remove(words.get(menuInfo.position));
 return(true);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

143CHAPTER 8: Working with Input Methods, Menus and Dialogs

 return(super.onContextItemSelected(item));
 }
 
 private void setupAdapter() {
 words=new ArrayList<>();
 
 for (String someItem : items) {
 words.add(someItem);
 }
 
 setListAdapter(new ArrayAdapter<>(this,
 android.R.layout.simple_list_item_1, words));
 }
 
}

This example is deceptively long, so let’s get to the heart of the menu logic. First, we are
using a simple ListView and an ArrayAdapter to present the familiar list of words from
Shakespeare’s Hamlet soliloquy. So you can refer back to Chapter 6 for the various details
on the behavior of the ListView and adapter logic. That leaves the actual code setting up
the options menu and the context menu, and then dealing with their invocation.

The methods onCreateContextMenu() and onCreateOptionsMenu() are very straight-forward,
simply adding the items we wish to appear in each type of menu. The options menu receives
the MENU_RESET entry, with the label “Reset Word List”, while the context menu gets the
“Upper Case” and “Remove Word” entries tied to the the MENU_UPPER and MENU_REMOVE
references.

Just as the menu setup methods are paired for the options menu and context menu, so too
are the selection handlers. The onContextItemSelected() method deals with the logic of
capitalizing entries for the MENU_UPPER selection, and removing items from the ListView for
the MENU_REMOVE selection. Similarly, onOptionsItemSelected() deals with the MENU_RESET
logic to return the ListView to the originally populated version from the ArrayAdapter.

You can run the MenuExample application yourself and experiment with the menus. Figure 8-6
shows the running application with the context menu showing after a long-click on one of
the items in the ListView.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_6
http://www.it-ebooks.info/

144 CHAPTER 8: Working with Input Methods, Menus and Dialogs

As you click and choose multiple “Upper Case” and “Remove Word” items from the context
menu, the ListView population will eventually change to appear more like that shown in
Figure 8-7.

Figure 8-6.  Displaying the Context Menu

www.it-ebooks.info

http://www.it-ebooks.info/

145CHAPTER 8: Working with Input Methods, Menus and Dialogs

Inflating Menus from XML
In earlier chapters I demonstrated how any UI widget can be defined purely using XML in
your res folder. From there I showed how you can rely on Android to “inflate” your XML
definition into a real UI widget. The same principle applies to menus: You can fully describe
menus in XML, and then rely on Android to inflate them into existence.

Menu XML files are held in your project’s res/menu folder. As with other XML resources such
as layouts, you can create as many menu variants as you like, and have your chosen variant
inflated whenever you need, such as in response to a user initiating a context menu.
Listing 8-5 shows the ch08/MenuXMLExample application’s menu definition.

Listing 8-5.  Defining a Menu in XML

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/respond"
 android:title="Respond"
 android:icon="@drawable/ic_menu_respond" />
 <item android:id="@+id/echo"
 android:title="Echo"
 android:icon="@drawable/ic_menu_echo" />
</menu>

Figure 8-7.  The MenuExample UI after multiple uses of the menus

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

146 CHAPTER 8: Working with Input Methods, Menus and Dialogs

A menu definition has as its root a <menu> element. Within the <menu> element, you can then
specify any number of <item> elements to appear as menu items in your menu. You can also
use the <group> element to manage a set of menu items as a group, just as you can in Java
by providing a group identifier int for each item.

All of the behavior we explored with Java coded menus is available with XML definition for
run-time inflation, including the submenu structures and options. To create a submenu, add
a <menu> element as a child of the root <menu>. You can then add items, groups, and so forth
to the submenu just as you would to its parent.

To be able to refer to your menu in code, and to find out when and what menus items are
selected by your application’s user, be sure to include an android:id attribute with a unique
ID for each menu item.

Further Options for XML-Based Menus
The XML-based approach to menu definition provides all of the power of Java-coded
menus, which means support for all the optional methods we introduced for menus earlier in
the chapter. Table 8-1 shows the optional attributes you can apply to menu item elements in
your XML definition, and the corresponding behavior.

Table 8-1.  XML Menu Options

XML Menu Attribute Behavior

android:title The visible label for your menu item, when shown in the activity’s
UI. This can be a hard-coded String or a resource reference
(e.g. @string/MenuText1)

android:icon The icon to display adjacent to the android:title text. This is a
reference to a drawable resource.

android:orderInCategory Used to override the order of menu items in the XML definition.
This is a zero-based reference to allow Android to re-order your
menu at runtime. You might want to do this for instance so in your
XML menu layout file you group items by function, but in you menu
UI they are presented alphabetically.

android:enabled True and False values for the the android:enabled attribute
provide the same control that the Java methods setEnabled( ) and
setGroupEnabled( ) offer. The XML definition will control the initial
rendering of the menu item. To enable and disable a menu item
subsequently, you will need to invoke the relevant logic and Java
method in response to your user’s actions.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

147CHAPTER 8: Working with Input Methods, Menus and Dialogs

Inflating an XML-Defined Menu
With a XML definition for your menu, the next step is to wire up the necessary application
behavior to inflate your menu into existence as and when required. The key Java class
involved in inflating you definition into a useable menu is MenuInflater. Listing 8-6 shows the
complementary code listing for the XML menu from the ch08/MenuXMLExample project we
introduced in Listing 8-5.

Listing 8-6.  Java logic to complement the XML-defined menu

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 new MenuInflater(this).inflate(R.menu.option, menu);
 
 return(super.onCreateOptionsMenu(menu));
}
 
@Override
public void onCreateContextMenu(ContextMenu menu, View v,
 ContextMenu.ContextMenuInfo menuInfo) {
 new MenuInflater(this).inflate(R.menu.context, menu);
}

Here, we see how MenuInflater “pours” the menu items specified in the menu resource
(e.g., R.menu.option) into the supplied Menu or ContextMenu object.

We also need to change onOptionsItemSelected() and onContextItemSelected() to use the
android:id values specified in the XML:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.add:
 add();
 return(true);
 

Table 8-1.  (continued)

XML Menu Attribute Behavior

android:visible You can optional decided to hide menu items when first rendered
(not just disable them through a android:enabled=“false” attribute).
This is often used in combination with a parent menu item that
has a checkbox, which went activated invokes the Java logic via
setVisible( ) or setGroupVisible( ) methods to make a previously
invisible group or submenu item visible.

android:alphabeticShortcut Nominate a letter shortcut from a soft or hard keyboard to activate
this menu item.

android:numericShortcut Nominate a digit shortcut from a soft or hard keyboard to select a
desired menu item.

www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 8: Working with Input Methods, Menus and Dialogs

 case R.id.reset:
 initAdapter();
 return(true);
 }
 
 return(super.onOptionsItemSelected(item));
}
 
@Override
public boolean onContextItemSelected(MenuItem item) {
 AdapterView.AdapterContextMenuInfo info=
 (AdapterView.AdapterContextMenuInfo)item.getMenuInfo();
 ArrayAdapter<String> adapter=(ArrayAdapter<String>)getListAdapter();
 
 switch (item.getItemId()) {
 case R.id.cap:
 String word=words.get(info.position);
 
 word=word.toUpperCase();
 
 adapter.remove(words.get(info.position));
 adapter.insert(word, info.position);
 
 return(true);
 
 case R.id.remove:
 adapter.remove(words.get(info.position));
 
 return(true);
 }
 
 return(super.onContextItemSelected(item));
}

You should notice the resulting menu UI in your application is broadly similar to the
Java-based menu creation examples.

Interacting with Dialogs
There are times when you need to interrupt your user’s normal use of your application, to
notify them of an important event, change, or error. Anyone familiar with traditional desktop
or web development will recognize dialog boxes and overlays in web pages that provide
status or error information. Android provides two different kinds of pop-up dialog for use
when notifying or interacting with the user: A Toast object for transient notification, and
Alert objects for full dialog-style interaction.

In addition to these UI-centric approaches, Android also has a fully-fledged notifications
system that facilitates communication for intents and services which we will cover later in
the book. For now, let’s examine what the user will see with toasts and alerts.

www.it-ebooks.info

http://www.it-ebooks.info/

149CHAPTER 8: Working with Input Methods, Menus and Dialogs

Creating Toast Notifications
Toast messages appear as an overlay to the current activity without interrupting its focus or
the user’s input. This means things like keyboard entry, touch actions and so forth won’t be
lost if a Toast notification is displayed.

Because of its non-interfering nature, as an application developer you need to keep in mind
a few other characteristics of a Toast. First, you can’t control for how long the Toast will
be present. Android will manage the Toast’s lifetime on your behalf, and typically presents
a Toast message for several seconds before it fades from existence. As the user need not
press a button or otherwise dismiss a Toast, you will also not receive any notification or
callback that the user has seen the Toast, or responded to it. This means you typically want
to use a Toast to present non-critical, advisory information.

To create and configure a Toast object, simply call the class’ static makeText() method with
the following three parameters:

	The text you wish to display, as either a String or resource ID reference

	The Activity or Context with which the Toast is to be associated

	A duration value, using either of the constants LENGTH_SHORT or LENGTH_LONG

You can also create more elaborate or sophisticated Toast notifications that go beyond
simple text. For instance, you can create a Toast the presents an ImageView by creating a
new Toast instance, invoking the constructor, and then calling the methods setView() and
setDuration() to provide the View object for the Toast to use and its desired lifetime. With
these values configured, calling show() will the present the final form of the Toast to your user.

Generating Traditional Dialog Alerts
The one drawback of Toast alerts is the lack of interactivity with the user. You may need to
explicitly gather a response in your application. And sometimes you just want the traditional
look, feel and behavior of a dialog box. Android covers these requirements with the
AlertDialog class.

An AlertDialog has fundamentally well-known behavior when compared with dialog boxes
on other platforms. It creates a pop-up overlaying the current UI, acts in “modal” form
where the user is forced to interact with the AlertDialog before returning to the Activity or
Context, and can be constructed with a range of buttons and other Views to prompt the user
for meaningful interaction.

There are two general approaches to constructing your AlertDialog. The first approach is to use
the Builder class to stitch together calls to the various options (and their methods) which suit the
kind of dialog you would like to display. The second approach is to instantiate an AlertDialog
instance, using its create() method, and then make subsequent calls to the methods needed.

Whichever approach you take, you ultimately call the show() method for your AlertDialog to
finally present the dialog to the user of your application, and await their response of clicking
one of the available buttons. You can configure listeners for any button on your AlertDialog
if you want to catch the user’s response and perform some subsequent action, or use the
null listener where you don’t have actions to perform.

www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 8: Working with Input Methods, Menus and Dialogs

Here are some of the useful methods that are commonly used when constructing
AlertDialogs:

	setTitle() Configure the caption that appears as the title of the
AlertDialog

	setMessage() Configure the body text that appears in the AlertDialog

	setIcon() Configure an icon to appear in the leading corner of the
AlertDialog, where leading corner is adapted by Android depending on
left-to-right or right-to-left layout.

	setPositiveButton(), setNegativeButton() Choose the buttons that
appear beneath the message text, along with the button text to display
and the logic to invoke when selected.

	show() This method has a number of overloaded forms, but they all act
to show a configured AlertDialog instance.

Pardon The Interruption
It is time to see both the Toast and AlertDialog options in action. Listing 8-7 introduces the
basic layout for a Button that I will then use to trigger an AlertDialog, followed by a Toast pop
up. You can find this code and the subsequent Java logic in the ch08/PopUpExamples project.

Listing 8-7.  The Button definition that triggers AlertDialog and Toast popups

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.artifexdigital.android.popupexamples.PopUpExampleActivity" >
 
 <Button
 android:id="@+id/alertbutton"
 android:text="Press for AlertDialog"
 android:onClick="showAlertDialog" />
 
</RelativeLayout>

The logic of creating and displaying our AlertDialog and Toast notifications is in the actual
Java code shown in Listing 8-8.

Note  Android will automatically dismiss the AlertDialog once a button is pressed, regardless
of listener configuration. There is no way to have the dialog persist on-screen while your listener
callback is processed.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

151CHAPTER 8: Working with Input Methods, Menus and Dialogs

Listing 8-8.  Java code for AlertDialog and Toast popups

package com.artifexdigital.android.popupexamples;
 
import android.app.Activity;
import android.app.AlertDialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;
 
public class PopUpExampleActivity extends Activity {
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_pop_up_example);
 }
 
 public void showAlertDialog(View view) {
 new AlertDialog.Builder(this)
 .setTitle("AlertDialog Exmaple")
 .setMessage("This is the example AlertDialog.
 Press the button to see the Toast notification")
 .setPositiveButton("Show Toast", new DialogInterface.OnClickListener() {

 @Override
 public void onClick(DialogInterface dialog, int which) {
 Toast.makeText(PopUpExampleActivity.this,
 "The Toast Message", Toast.LENGTH_LONG)
 .show();

 }
 }).show();
 }

The logic here is straight-forward, and is driven by the simple button in our layout. When
the button is pressed, we use the Builder() approach to construct the AlertDialog, giving
the dialog a caption, text, and a Button of its own which in turn triggers the Toast. Our
PopUpExample application showing the AlertDialog after the initial button press is shown in
Figure 8-8.

www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 8: Working with Input Methods, Menus and Dialogs

Figure 8-8.  The AlertDialog presented to the user

Once the “positive” button on the AlertDialog is pressed, the dialog is dismissed and the
listener bound to the button press activates the creation of our Toast message. You can see
the Toast displayed in Figure 8-9.

www.it-ebooks.info

http://www.it-ebooks.info/

153CHAPTER 8: Working with Input Methods, Menus and Dialogs

Figure 8-9.  A Toast message popping up over the Activity

Summary
In this chapter you have seen all manner of UI elements that leap to the user’s attention:
IMEs, menus, and dialogs. You will continue to use these items in examples throughout the
rest of the book.

www.it-ebooks.info

http://www.it-ebooks.info/

155

Chapter 9
Adopting the Action Bar
The previous chapter introduced the traditional notion of menus, giving you some common
understanding across all Android versions of how a traditional menu would work. Starting with
traditional menus has also set you up to take the next logical step into Android’s (relatively)
new and more advanced approach to menu-like interaction with users: The Action Bar.

The Action Bar works to incorporate the most intuitive menu options that users might
wish to use at a given point in time, together with a standard set of navigation and option
elements to bring consistency across Android devices of all sizes and types. Your users will
not need to worry about screen size, layout, or where to find the most obvious actions to
take. The Action Bar solves all! (Well, almost all).

We will take a look at the Action Bar appearance and behavior, and how to develop
applications to use and take advantage of the Action Bar.

Recognizing the Action Bar
Depending on how you have tested the examples introduced earlier in the book, and on
which AVD or real device, you might have already seen the Action Bar reveal itself. But to
be absolutely sure, and for those who know they haven’t seen it, Figure 9-1 shows a typical
Android screen for contacts management that is running on an emulation of moderately-
sized tablet in landscape mode. The Action Bar is at the top.

www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 9: Adopting the Action Bar

Some of the key features of Figure 9-1’s Action Bar to note are the incorporation of the
DONE button that would otherwise be a menu option, and the < symbol representing the
back button (which may or may not display depending on context and other factors). Items
like the back button are added by Android as part of the Action Bar framework, meaning no
coding is required by you. Android will implicitly return to the previous activity. Or if there is
no prior activity (e.g., when first starting the application and working with the launch activity)
then the user is returned to the launcher.

Managing Android Versions for Action Bar
Support for the Action Bar was introduced in Android 3.0, otherwise known as Honeycomb.
The support was implemented as a new feature in the Android SDK, meaning inevitable
questions about version requirements arise.

Specifying SDK level for Native Action Bar Support
Honeycomb was released along with version 11 of the SDK for Android. To ensure your
application can work with the Action Bar natively, you should do one of two things. The
most common is to set the android:minSdkVersion to 11 in your android manifest file, in the
<uses-sdk> element, like this:

<uses-sdk
 android:minSdkVersion="11" />

Figure 9-1.  The Action Bar displayed at the top of a Contact detail screen

www.it-ebooks.info

http://www.it-ebooks.info/

157CHAPTER 9: Adopting the Action Bar

Alternatively, you can specify a lower android:minSdkVersion setting, and use an
android:targetSdkVersion of 11 or higher to indicate you desire SDK level 11 functionality
such as the Action Bar, but will settle for something lower if that’s all the device has
available. The two settings would look like this:

<uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="11" />

Utilizing the Support Library for Older Android Versions
One option for older versions of Android is to make use of the support library, which we
discussed in Chapter 2. Through the support library and the classes it offers (notably,
android.support.v7.app.ActionBarActivity) you can bring Action Bar behavior to devices
with SDK support as far back as version 8. We will explore some examples that use this
option later in this chapter.

Creating Action Bar Applications
You have seen examples of stock Android applicatoins using the Action Bar in Figure 9-1.
Now it is time to create your own. We will start by defining menu items to “migrate” to the
Action Bar, and then move on to more advanced topics of custom views and dealing with
menu-based input.

Enabling the Action Bar for your Application
As introduced earlier in the chapter, you will need to ensure the your manifest specifies
at least SDK level 11, if not higher, as the target SDK version in order to make the Action
Bar available to your application. Listing 9-1 shows the manifest for our example menu
application from chapter 8 converted to using the Action Bar.

Listing 9-1.  Manifest with target SDK set correctly for Action Bar

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.artifexdigital.android.actionbarexample"
 android:versionCode="1"
 android:versionName="1.0" >
 <uses-sdk
 android:minSdkVersion="11"
 android:targetSdkVersion="21" />
 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://dx.doi.org/10.1007/978-1-4302-4687-9_8
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

158 CHAPTER 9: Adopting the Action Bar

Figure 9-2.  The Action Bar example in action

 <activity
 android:name=".ActionBarExampleActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

With the Action Bar enabled implicitly, things like options menus will appear under the
control of a vertical ellipsis icon in the top-right of the Action Bar, revealing themselves when
the icon is pressed. You can see this in action in Figure 9-2, and compare the behavior to
earlier examples in the book that had no Action Bar at all

www.it-ebooks.info

http://www.it-ebooks.info/

159CHAPTER 9: Adopting the Action Bar

Having your options menu migrate automatically to the Action Bar is great, but that
migration doesn’t deal with any other custom menus you have created. Rather than leave
the user with a “split” experience, the next step is to move all of your key menu-like options
to the Action Bar.

Moving Menu Functionality to the Action Bar
The key to enabling a menu item to appear in the Action Bar is to include the attribute
android:showAsAction in your menu item’s <item> element. This is a simple stackable
attribute that takes a mandatory value of always,never, ifRoom, and a few others to control
whether the menu item is displayed. As the values suggest, an attribute of always indicates
the menu item should always be displayed in the Action Bar, never means it is never
promoted to the Action Bar, and lastly ifRoom indicates that you would like the menu item
shown if there is room, and your application’s functionality will not be compromised if the
Android system decides there is no space to display it.

One stackable optional attribute you can include is the withText option, which instructs
Android to include the menu text adjacent to the icon on the Action Bar. The withText option
can be used with either always or ifRoom, but obviously increases your chances of not
having room and therefore not being displayed with the ifRoom|showText combination.

Listing 9-2 shows our custom menu XML configuration to show variety of Action Bar
behavior in action.

Listing 9-2.  Manifest with target SDK set correctly for Action Bar

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 tools:context="com.artifexdigital.android.actionbarexample.ActionBarExampleActivity" >
 <item android:id="@+id/newcolor"
 android:title="Set Color Red"
 android:icon="@drawable/ic_red"
 android:actionLayout="@layout/red"
 android:showAsAction="always|withText"/>
 <item android:id="@+id/reset"
 android:title="Set Color Blue"
 android:icon="@drawable/ic_blue"
 android:showAsAction="ifRoom"/>
 <item android:id="@+id/about"
 android:title="About"
 android:icon="@drawable/ic_menu_about_colors" />
 <item
 android:id="@+id/action_settings"
 android:orderInCategory="100"
 android:title="@string/action_settings"
 app:showAsAction="never"/>
</menu>

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res-auto
http://schemas.android.com/tools
http://www.it-ebooks.info/

160 CHAPTER 9: Adopting the Action Bar

From here, there are no Java code changes necessary (assuming you are not also looking to
alter your menu item functionality). Action Bar use and preferences are expressed entirely in
the XML layout for your menu, which makes adoption even easier. You can see the new-look
Action Bar for our ActionBarExample application in Figure 9-3.

Figure 9-3.  A customized Action Bar from the example code

Using Java to Manage Action Bars
As with almost all aspects of Android, programmatic creation and control of the Action Bar is
provided in situations where you want to go beyond the augmented menu XML definition, or
you want to allow for some kind of run-time dynamic changes to your Action Bar and its menus.

Android provides the ActionBar object to easily define and manipulate your activity’s Action
Bar at run-time. There is even a subclassed version of Activity, known as ActionBarActivity,
for those circumstances where your activity is solely focused on the Action Bar and you are
not interested in other widgets.

www.it-ebooks.info

http://www.it-ebooks.info/

161CHAPTER 9: Adopting the Action Bar

Working with a Standard Action Bar in Java
While you can manipulate Action Bar state anywhere in your code, you most often will
want to do this as part of activity creation in onCreate() or shortly thereafter. Listing 9-3
introduces a little manipulation of the stock Action Bar through use of several of the methods
for ActionBar objects. The code for this can be found in the ch09/ActionBarExample2 folder.

Listing 9-3.  Manipulating behavior of an Action Bar in Java

package com.artifexdigital.android.actionbarexample;
 
import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
 
public class ActionBarExampleActivity extends Activity {
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ActionBar bar = this.getActionBar();
 bar.setTitle("The Colorful ActionBar Title");
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_STANDARD);
 setContentView(R.layout.activity_action_bar_example);
 }
 
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu as usual if Action Bar present
 getMenuInflater().inflate(R.menu.action_bar_example, menu);
 return true;
 }
}

Let’s examine how each piece of the Java code affects the Action Bar for our example
activity. First, after normal activity setup in onCreate(), we instantiate and ActionBar object
named bar using the getActionBar() method to ask the activity to hand us the reference for
its Action Bar. Thankfully, there are no tricky ID numbers or similar abstractions to track; an
activity has only one Action Bar.

With our ActionBar object in place, we use several of its methods to set our preferences.
The setTitle() method is quite self-explanatory, changing the ActionBar’s title to the phrase
we have chosen. Be careful how wordy you are when you do this, because you can run into
problems due to screen width, especially on narrow devices.

Lastly, we use the setNavigationMode() method to set our prefered behavior for the Action
Bar. In this instance we have chosen NAVIGATION_MENU_STANDARD, which is the vanilla version
of an Action Bar that attempts nothing more than to elevate your otherwise-normal menus to
be placed within the rendered Action Bar. We’ll explore some other options shortly.

www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 9: Adopting the Action Bar

As already mentioned, Android provides a variety of child classes of Activity tailored to
specific views. When it comes to the Action Bar, there is an ActionBarActivity child class
that can be used in much the same way, and is useful if that’s where most of you logic for
your activity will reside. Listing 9-4 shows a reworked version of Listing 9-3 changed to use
ActionBarActivity.

Listing 9-4.  Adopting the ActionBarActivity for action bars

package com.artifexdigital.android.actionbarexample;
 
import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;
 
public class ActionBarExampleActivity extends ActionBarActivity {
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ActionBar bar = this.getActionBar();
 bar.setTitle("The Colorful ActionBar Title");
 bar.setNavigationMode(ActionBar.NAVIGATION_MODE_STANDARD);
 setContentView(R.layout.activity_action_bar_example);
 }
 
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the Action Bar if it is present.
 getMenuInflater().inflate(R.menu.action_bar_example, menu);
 return true;
 }
}

When we run the ActionBarExample2 to generate menus programmatically, we see the
results depicted in Figure 9-4.

www.it-ebooks.info

http://www.it-ebooks.info/

163CHAPTER 9: Adopting the Action Bar

Choosing a Tab Layout for the Action Bar
If you have used any of the contemporary stock applications that come with an Android
phone, you might have encountered a different layout for Action Bars that includes multiple
tabs of menus or other custom views. For example, Figure 9-5 displays an application
showing a tabbed Action Bar.

Figure 9-4.  The Action Bar controlled from Java code

www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 9: Adopting the Action Bar

Using a tabbed Action Bar allows you to offer many more UI options in a small space, by
allowing the tabs to house a subset of views and widgets, and display them only when that
particular tab of the Action Bar is selected.

We can flag our desire to have a tabbed Action Bar by altering the parameter to the
setNavigationMode() method to NAVIGATION_MODE_TABS. This forewarns Android that we’ll be
constructing tabs and adding the necessary logic to make them work.

To implement a tabbed Action Bar, we need three things:

	First, the layouts you want each tab to inflate, such as menus, images, etc.

	Then the code that defines each Tab object, and its key parameters.

	Lastly, a custom listener that implements the TabListener interface, and
provides our logic for what to do when one of our tabs is selected.

You already know how to define a menu layout or other set of Views, so we’re left with the
Tab definition logic and behavior logic as new things to learn about.

Figure 9-5.  An example application with tabbed Action Bar

www.it-ebooks.info

http://www.it-ebooks.info/

165CHAPTER 9: Adopting the Action Bar

Defining Action Bar Tab Objects
In order to define the tabs that will consitute a tabbed Action Bar, we need to obtain the
activity’s Action Bar object, and then use the newTab() method to instantiate the Tab object
which represents a tab. You will need to issue newTab() calls for as many tabs as you wish
to have in your Action Bar. Listing 9-5 shows the changes to a regular activity’s onCreate()
method that enable such tab creation.

Listing 9-5.  Configuring an Action Bar to use tabs

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_tabbed_action_bar);
 
 ActionBar tabbed = getActionBar();
 tabbed.setTitle("Tabbed ActionBar");
 tabbed.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);
 
 CustomTabListener tabl = new CustomTabListener();
 // We can define as many tabs as we think necessary
 Tab tab1 = tabbed.newTab();
 tab1.setText("Tab One");
 tab1.setTabListener(tabl);
 tabbed.addTab(tab1);
 
 Tab tab2 = tabbed.newTab();
 tab2.setText("Tab Two");
 tab2.setTabListener(tabl);
 tabbed.addTab(tab2);
 
 Tab tab3 = tabbed.newTab();
 tab3.setText("Tab Three");
 tab3.setTabListener(tabl);
 tabbed.addTab(tab3);
}

We’ve created three tabs: tab1, tab2, and tab3. These will be added to our Action Bar when
each Tab object is passed to an addTab() method call on the Action Bar’s object, which
we’ve called tabbed. You will note I also perform two other set up steps for the tabs. The
setText() call provides a caption for each tab when presented on the Action Bar, and is
fairly self-explanatory. The other method invoked is the setTabListener() method, which
refers to the mysterious CustomTabListener object.

Coding the TabListener Behavior
When we configure the Action Bar to function in tabbed mode by using the
setNavigationMode() method option NAVIGATION_MODE_TABS, we also implicitly flag that we’ll
implement the necessary listener to detect and respond to user interaction with the tabs and
their content. The listener we need to implement is the ActionBar.TabListener interface.
For those of you using Android Studio or Eclipse with ADT, you will get a useful code-time

www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 9: Adopting the Action Bar

warning that you need to implement this interface. Text editor die-hards can refer to
developer.android.com for the details, but the essentials are as shown in Listing 9-6.

Listing 9-6.  Implementing the ActionBar.TabListener interface

package com.artifexdigital.android.tabbedactionbarexample;
 
import android.app.Activity;
import android.app.FragmentTransaction;
import android.app.ActionBar;
import android.app.ActionBar.Tab;
 
public class CustomTabListener implements ActionBar.TabListener{
 
 @Override
 public void onTabSelected(Tab tab, FragmentTransaction ft) {
 // implement your logic here to deal with tab selection
 // typically this will be a nested switch on which tab is passed
 // and then logic to display/respond to tab menu items
 }
 
 @Override
 public void onTabUnselected(Tab tab, FragmentTransaction ft) {
 // provide any cleanup logic needed when a tab is no longer selected
 }
 
 @Override
 public void onTabReselected(Tab tab, FragmentTransaction ft) {
 // provide logic to deal with state issues on tab reselection
 }
  
}

We can call our TabListener implementation anything we like. In my case, I’ve chosen the
name CustomTabListener to make it obvious. We need to cover the implementation of the
three methods defined in the interface, though for some of the methods you may not need
specific logic. If you d o not need specific logic, then simply leave an empty method.

	onTabSelected() This method is the workhorse of the TabListener,
typcially implementing the logic to determine which tab was selected.
That’s done via the Tab parameter. Then further code detects which
menu item is selected and what subsequent action to take. The process
is identical to normal menu management which I introduced in Chapter 8.
In essence, onTabSelected follows a common coding pattern of a switch
statement for Tab identification, and further switch logic for menu item
detection and follow-up action

	onTabUnselected() There are times when you need to perform cleanup
work or change UI behavior when a tab is no longer the focus. For
example, one common design flourish is to bold the text caption of the
Tab when it is selected, and unbold it when it is no longer selected (i.e.
when another tab is selected and its caption is bolded).

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_8
http://www.it-ebooks.info/

167CHAPTER 9: Adopting the Action Bar

	onTabReselected() If you maintain any state for menu items, or even the
Tab object itself, and you maintain that state through Java logic changes
at run time that alter the initial menu layout for a given tab, then you
might need to reinstate those changes when a tab is reselected. This
callback is rarely used, but is presented here for completeness.

The FragmentTransaction parameter enables the use of fragments for the UI design and
behavior for your tabs. The parameter is optional, and at this point in the book will make little
sense. However, we will move on to cover fragments in-depth in Chapter11, at which point
the capabilities will make perfect sense.

Future Changes For Action Bar Tabs
With the announcement of Android “M”, the yet-to-be-released version 5.x of Android,
Google has flagged that it will deprecate traditional tabbed Action Bar implementation in
favour of a new set of APIs called TabLayout. You might think this deprecation makes all
of the above discussion of tabbed Action Bars obsolete. Let me put your mind at ease.
The traditional Action Bar and tab construction will still be present in future SDK levels
(deprecated doesn’t mean removed, after all), and the vast bulk of devices in circulation
will be using pre-Android-M for many years. You can continue to build using the current
approach to tabs for some time.

Using Other Layouts for the Action Bar
There are a range of other more advanced layout options available for Action Bars. Two that you
will see from time are a list-based Action Bar, and an embedded custom view in the Action Bar.

Adopting a list-based Action Bar is done through setting the setNavigationMode() method
option to NAVIGATION_MODE_LIST. With the Action Bar object configured to expect a list, the
developer (that is, you) implement the ActionBar.OnNavigationListener interface and
provide list adapter (such as those introduced in Chapter 7) to populate your Action Bar.

Note  You are familiar now with lists, adapters, and the concept of a listener for an Action
Bar. Rather than showing another example, I will point you to the excellent references online at
developer.android.com/guide/topics/ui/actionbar.html for more details.

The Action Bar URL is also a good starting point for exploring adding custom views to your
Action Bars (and tabs!)

Summary
With all of the options offered by the ActionBar now added to your Android know-how, you
can start adding increasingly ambitious functionality to your application design and behavior.
I incorporate the ActionBar in many more examples later in the book to show you some
further possibilities.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_11
http://dx.doi.org/10.1007/978-1-4302-4687-9_7
http://www.it-ebooks.info/

169

Chapter 10
The Life of an Activity
Up to this point in the book, I have a approached activities in a very practical and tactical
way. The examples explored in the earlier chapters introduced activities as the basic UI
building blocks, and you’ve seen how the Java code for an activity implements the Android
framework and brings to life, through code, selected points in an activity’s lifecycle and the
logic to drive your application.

Now that you have a growing understanding of Android, activities, layout. and logic, let’s
delve in to the full background on activities, their lifecycle, and all of the common and
not-so-common behaviors you should appreciate when building applications. This tour of
the deeper fundamentals of activities will help expand your expertise. It also also lays the
groundwork for later discussions on services, notifications, intents, and more.

Understanding the Activity Lifecycle
All of the example Android applications so far explored in the book have consisted of
only one activity. But remember way back to the introductory chapter, where I stated
that applications consist of one or more activities. So your application can have as many
activities as you want, and each is governed by its own lifecycle. We’ll cover an example
later in this chapter where we have multiple activities in an application.

If all activities have lifecycle stages, what are these stages? I’m glad you asked. Figure 10-1
shows a graphic representation of the stages of an activity, and the callback methods related
to the transitions between these stages, or states as they are sometimes called. Thinking of
your activities in terms of both the stage they are in, as well as the callback methods called
to get it there, is very common once you are familiar with Android.

www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 10: The Life of an Activity

You can see that there are broadly four major states in which an activity can find itself:

	Launched: The point at which an activity comes in to existence, usually
as the result of your user performing some action in your application
(or starting your application)

	Running: The point at which your users actually sees your activity, after
all of the various logistics and setup steps are performed
(or re-performed)

Figure 10-1.  The Android Activity Lifecycle diagram

www.it-ebooks.info

http://www.it-ebooks.info/

171CHAPTER 10: The Life of an Activity

	Killed: A state in which the Android OS has determined it needs to
recoup the resources from your application, either from user-initiated
load or some other trigger.

	Shutdown: The point at which all persistent state information, View
hierarchy, etc. is gone.

The various activity stages are fairly simple to understand. The main complexity comes from
the interplay of the various callback methods that govern transition between the stages and
control intermediary points along the way.

Working with Activity Callback Methods
We will work through each of the callback methods from Figure 10-1, and explore their
various behaviors and uses. There are some common characteristics of many of the
callbacks that you should know. In almost all cases it is common practice to chain up
to the parent class’s equivalent method as the first action in implementing the callback.
You have already sees examples of this in preceding chapters’ examples that invoked
super.onCreate() as the first action in the onCreate() implementation. I will call out those
exceptions where that isn’t done, but in general calling the super-method should be your
first action within any callback.

onCreate( )
This is where an activity’s lifecycle starts. It may be that a user has invoked the activity
for the very first time, or the activity may be restarting due to some environmental change
such as a rotation event. The possibility of a restart is why the full method signature void
onCreate(Bundle savedInstanceState) includes the Bundle object. There might be previous
state information that you have saved in your code prior to a memory-related shutdown, for
instance, that you need to recover for your activity. This Bundle object is typically known as
the instance state for a given instance of an activity.

The key actions you should take within your method logic for onCreate() are:

	Load all of the layouts you plan to use in the activity into the content view
so that the UI can be constructed in readiness for the onStart() call.

	Initialize any global activity-level variables listed in the activity’s class
definition

There are some other nuances to the use of onCreate() as part of recreating an activity.
These have to do with managing existing global resources from the possible earlier
incarnation of the activity, and dealing with remembering changes to views that happen in
your logic after onCreate(). For instance, if you programmatically change your View layout
dependent on user interaction, you might need to persist the user’s choices so you can
walk through such changes again in the case of an activity recreation scenario. We’ll cover
the global resource topic shortly under the onRetainNonConfigurationInstance(), and talk
about the use of the instance state and preferences later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 10: The Life of an Activity

onStart( )
Once onCreate() has built the necessary objects from your layout definitions, associated
these with context views, and done other initialization work, it is then the job of onStart() to
actually present the resulting UI to the user. I like to think of this method as the “OK, Show
Me The UI” method, though that doesn’t fit with the typical naming pattern for Android
callback methods. If you examine Figure 10-1 closely, you’ll see that onStart() can be
called on the path from onRestart().

There is rarely a need to override this method and provide your own implementation. If you
are tempted to fiddle with some of your logic and get things “done” before the UI shows up,
be aware that if your activity is following the onRestart() path, then the instance state is
still not fully restored and won’t be until the subsequent call to onRestoreInstanceState() is
made. If that leaves you struggling to think what you might actually add to an override at this
point, good! Like I said, it is rare to need to override the onStart() method.

One of the few cases that does warrant implementing your own onStart() override is when
you have some manner of custom resource that is long-lived, and that you have decided
to pause or freeze when the activity is not in view so as to minimize memory or other
resource consumption. If you decide to control such a resource through the onStop() or
onPause() callbacks, then the onStart() method would be where you would wake or thaw
such a custom resource. Be sure to call the super.onStart() method to invoke the parent’s
equivalent, even if you know there is no override code in the parent. Android itself still needs
to do its own internal chores in this case.

onRestoreInstanceState( )
When a user dismisses an activity, whether by hitting the back button or some other logic
you have coded into your application, then they have indicated they are done with the
activity itself, and any instance state associated with it. You as a developer have nothing
to worry about, and certainly nothing to retain and restore. But when the Android system
itself closes an activity, for instance because it is going to re-render it due to an orientation
change, then the act of recreating that activity for the users needs to do just that! Re-create,
including instance state.

It is important to note that the instance state is not long-term storage, nor is it designed to
persist in any permanent fashion. Where you need to store user data or preferences, the
Android Preference system is a perfect choice for small settings-like or option/choice values.

onResume( )
Just as a magician has that moment of revealing the culmination of her or his trick, so
too Android has onResume() as the magic-wand moment that occurs just before your UI
becomes visible. Why have onResume() and onStart() both trigger in the lead up to UI
visibility? Referring to Figure 10-1 again, you will notice onResume() in the boundary of the
shaded region labeled Foreground. Along with onResume and onPause(), these transitions
can be expected to happen many times in the life of your activity as others pre-empt it, are
themselves pre-empted and dismissed, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

173CHAPTER 10: The Life of an Activity

The only actions typically coded into an override for onResume() are those that affect real-time
visible activity, including:

	Animation

	Video

	Custom view transition effects

There is no state to manipulate or tinker with here, so resist the urge to meddle any further
during onResume().

onPause( )
A key building block of the multi-process architecture of Android is the ability to pause
applications and their activities to help maintain responsiveness and preserve battery
life. An activity's onPause() callback occurs just before it enters background state (see
onStop() later in this chapter). There is also the possibility of immediately resuming through
onResume(), which I have already covered.

Importantly, the onPause() call also marks the point beyond which Android can unilaterally
terminate your activity and reclaim its resources. Key steps you should be taking during
the onPause() call include saving state, deliberately deciding what to do with any running
animation, video, audio, etc. Once the onPause() call exits, there is no guarantee your
process and activity will ever receive an event again. So be prepared!

Careful observers will note that there is no parameter passed to onPause(). This is a deliberate
attempt to guide you to be as light-weight as you can at the time the method is invoked.

onStop( )
The onStop() method has the task of actually pushing your activity to the background. You can
think of this method as the complement to the onStart() method introduced earlier. Once the
onStop() call completes, your activity is no longer visible to the user, though its view hierarchy
and properties still exist - and are fed in to onResume() and onStart() if called.

Remember that onStop() might never be called at all for your activity, for instance if the
Android system is under severe memory pressure and Android decides to reclaim your
paused activity for its memory resources. It is for this reason you should rarely attempt
to override the onStop() method, and you should think carefully before relying on any
custom logic in this method. One of the few types of logic added to onStop() includes
service interaction with stock Android services or your own custom service, where lack of
foreground activity is no impediment.

onSaveInstanceState( )
From the picture painted in Figure 10-1, and the “paired” nature of many of the callback
methods discussed so far, it should come as no surprise that onSaveInstanceState() exists.
It is also reasonably self-explanatory as methods go. The primary purpose of of
onSaveInstanceState() is to preserve state information when an activity is about to be destroyed
through onDestroy() without the user realizing state information might be about to be lost.

www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 10: The Life of an Activity

You might think that would be a rare situation. However, there’s a common behavior that
users perform that unknowingly (to most) induces activity destruction and recreation. That
behavior is an orientation change, most typically through the user rotating the device while
your activity is running.

The good news is that the default implementation of onSaveInstanceState() already deals
with handling view preservation. Any other custom state data you would want to save should
be handled explicitly. Because of the potential I/O involved in saving state, be warned that
calls to onSaveInstanceState() can take a variable, and sometimes long, duration.

onRestart( )
The onRestart() callback method is triggered in the transition from stopped to started
states. This gives you some options to deal with how you choose to start your activity.
For instance, you can split your logic between a fresh start and a restart from stopped state.
In the latter case, you will have access to preserved view and other state data, giving you
some options to speed up or make things more efficient.

onRetainNonConfigurationInstance( )
Not only does this method have a ridiculously long name, but if you refer to the state
information in Figure 10-1, you’ll see that onRetainNonConfigurationInstance() isn’t
mentioned. That is not an accident, as it falls somewhat outside the normal flow of activity
state changes.

To understand why this method exists, you need to know a little more about what happens
when an activity undergoes a configuration change. The most obvious form of configuration
change is when we need to “redraw” an activity due to a rotation of the interface. Other
triggers for configuration change include docking the device in some form of cradle, or
adding or removing an SD card from the device. The term redraw is a misnomer, because
Android actually casts aside your existing activity, recreates it, and then expects you to pick
up from there as if (almost) nothing had happened. It doesn’t stretch or tweak your layouts;
it expects you to re-inflate them if you want to make use of additional or changed UI space.
The need to pick up and carry on doesn’t stop there.

There are potentially a range of resources you might have acquired for your activity that you
still want to use should a configuration change occur. Think things like open files, database
connections, objects supporting service interactions, and so forth. The
onRetainNonConfigurationInstance() method is the traditional way to retain those types of
resources. The method returns an object that includes references to all of the old activity’s
various resources, so you can carry them forward to use when the activity is recreated. If you
look at many of the examples already introduced in the book, you’ll see the onCreate()
method almost always calls getLastNonConfiguationInstance(), which is the step required
to gain access to the old activity’s reference object, and all the resources it contains.

Note  The approach described with onRetainNonConfigurationInstance() is slowly being
replaced by the use of headless fragments. However, the traditional approach will be supported for
some time to come.

www.it-ebooks.info

http://www.it-ebooks.info/

175CHAPTER 10: The Life of an Activity

onDestroy( )
Whether through an explicit user action, like clicking a “close” button you might have
provided, or unexpectedly due to low resources or similar circumstances, there comes a
time when your activity will be destroyed. Destruction is not a catastrophic as you might
think. Remember, activities are cheap and easy to create, so just because your user is
destroying the activity doesn’t mean your whole application is being shut down. Your user
could just as easily interact with and invoke this activity again in short order, and your
application’s resources will still persist.

The main logic you can consider adding to your override of onDestory() is any activity-centric
cleanup. Don’t try to interact with outside services or other resources that don’t belong to
your activity. Remember, there’s no guarantee that onDestroy() will be called, so you should
not rely on it.

Understanding the Goals of Android Activity Behavior
From a development perspective, having a grasp of the callback methods that control and
guide state is useful. But if you only think in terms of which call takes you between various
states, you might miss the bigger picture.

The number one goal of the activity state callback methods is to help you create and
maintain the impression of one seamless application when a user is working with your code.
It is great to have the power and flexibility to create and discard activities left, right, and
center for your app. But remember your is almost certainly thinking in terms of an application
and its “screens”, rather than in terms of a loosely coupled group of activities that live and
die multiple times.

Keep these guiding principles in mind as you create applications from more and more
activities:

	Keep activities focused. That doesn’t necessarily mean simple, but
rather ensure an activity doesn’t become the application version of the
kitchen sink. This will help you manage other facets like resource use,
state, and performance.

	Save state often. You will be surprised how often users do things like
switch apps, jump back to the launcher, or take some other step outside
your activity. Don’t think of saving state as something onerous, nor like
saving a long document that’s being written. Save early; save often.

	Ensure all UI Views have android:id attributes. This helps Android
automatically save instance state, including for mutable objects like an
EditText field into which a user might already have entered some text.

	Remember paused activities can vanish! Even your best-designed
application can run on a device in which the user has dozens of other
poorly designed applications running. And the moment your application
is paused, Android could decide it needs your application’s memory to
use somewhere else.

www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 10: The Life of an Activity

Working with Activity Configuration Changes
In the descriptions of activity lifecycle callback methods earlier in this chapter, I mentioned
several times that one change that happens outside the normal activity lifecycle is activity
configuration change. In a nutshell, a configuration change is something that affects the
fundamental baseline of your application and the Android device itself. The most obvious
example is a user rotating the device to give it a different orientation such as landscape
instead of portrait.

But orientation is not the limit of possible configuration change. The Android developer
documentation includes exhaustive notes on what constitutes a configuration change. Other
key changes include the user changing the language setting, plugging in a power source
such as a USB cable, docking the device, and more.

Understanding the Default Configuration Change Approach
One of the many things that Android does for your application is to track any configuration
changes that happen to the device on which your code is running. Rotation, device pairing,
charging, and more are all monitored. Should a configuration change occur, all running
applications are notified by callback that a change is in progress.

Ordinarily, you might think that notification then forces you to do a great deal of work to deal
with a configuration change. Nothing could be further from the truth. Along with monitoring
and managing configuration changes, Android provides other useful default
and/or automatic capabilities that make life easier for you, the developer.

Remember back to our discussion of the various resource folders within your project,
including those that cover layouts. Android does all of the work required to get you the
layout for a given configuration. You get portrait-orientated layouts when the device is
rotated to a portrait orientation, and landscape-orientated layouts for landscape. You don’t
need to personally do the coding to detect the orientation and change the UI to cope. You
simply ask for your resource by name, and Android sorts things out.

The one thing you as a developer do need to concern yourself with is the question of
which other resources you have acquired for your existing activity. This is because any
configuration change triggers Android to destroy the current activity and recreate it. You are
given the chance to gracefully save state and resources so they can be reloaded.

Following is the callback sequence for configuration change:

1.	 onSaveInstanceState() This will be called when the configuration
change is triggered, immediately before Android destroys the current
activity. This is the appropriate time to save any resources or other
transient user input or data you wish to keep. Use a Bundle object
to collect all of the various items you wish to preserve. You have
seen examples in this book where the Bundle is used, and older
Android examples you might find on line often refer to this Bundle
by the name icicle, which is meant to evoke the idea that you are

www.it-ebooks.info

http://www.it-ebooks.info/

177CHAPTER 10: The Life of an Activity

“freezing” state before thawing it again when the activity is recreated.
The superclass ancestor for onSaveInstanceState() does many
convenient things for you automatically, including saving View state
for any object with an ID (as mentioned previously), so it can be
recreated intact.

2.	 onCreate() This method invocation is passed the Bundle object
created in onSaveInstanceState(). As you’ve seen in each example
in the book so far, you needn’t do any more with this call other than
ensure it calls up to the parent class via super.oncreate(). If you
have any custom state saved, you can elect to implement your
restore logic here, or you can wait for the onRestoreInstanceState()
callback which occurs immediately following the onCreate() call.

3.	 onRestoreInstanceState() This method is also passed the
Bundle object created by onSaveInstanceState(), and you are
free to retrieve your various resources in this call if you prefer. One
advantage to waiting for the onRestoreInstanceState() call is that
you can be sure the content view has been set, and any layout
inflation has occurred prior to this call.

Saving Custom State
What data or objects can be saved as part of your instance state Bundle object? A quick
inspection of the Bundle class shows a plethora of put- and get-style methods for storing
integers, strings, complex objects and more. The pattern used is traditional key-value
storage, where each resource you wish to place is the Bundle is keyed by a String name you
provide. Example methods (not exhaustive) include:

	putInt() Store an integer value in the Bundle

	putFloat() Store a float value in the Bundle

	putString() Store a string value in the Bundle (beware a common pitfall
here, of accidentally confusing which string is you value, and which is
your key).

	putParcelable() Store a complex or custom object as a Parcelable in
the Bundle.

There are many more options for putting values into your Bundle object, and the
complementary get methods are self-explanatory.

Listing 10-1 shows a simple override of onSaveInstanceState() implementing the
preservation of some custom data during configuration change (e.g. inserting an SD card).

www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 10: The Life of an Activity

Listing 10-1.  Saving activity state during configuration change

@Override
 public void onSaveInstanceState(Bundle myBundle) {
 super.onSaveInstanceState(myBundle);
 myBundle.putInt("presses", 3);
}

Here we have simply saved an integer for later restoration once the configuration change has
completed. Think back to the very first example you explored in Chapter 2, tracking button
presses. We could use this approach to keep track of button presses in horizontal and
vertical orientation, for instance by keeping the two integer values and passing them through
successive configuration changes (though naturally we could use application-level variables
to do the same job). Listing 10-2 shows a simple override for onRestoreInstanceState() that
does the logic for this sort of button press tracking.

Listing 10-2.  Restoring activity state during configuration change

@Override
 public void onRestoreInstanceState(Bundle myBundle) {
 super.onRestoreInstanceState(myBundle);
 int buttonPresses = myBundle.getInt("presses");
 // do some other logic here to display or use the retrieved value
}

This is a deliberately simple example. Remember to keep your custom logic to a minimum
when handling configuration changes for your application’s activities.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://www.it-ebooks.info/

179

Part III
A World of Wonderful
Devices and Screens

www.it-ebooks.info

http://www.it-ebooks.info/

181

Chapter 11
Android Fragments
Your journey through Android fundamentals so far has explored all of the main aspects of
an Android application’s user interface, from layout to choice of widgets, and including the
creation and flow of activities through sample applications and your own testing. For quite
a few of the early years of Android the UI development only became complex when more
advanced widgets and screen elements were added to the tiny phone screens we were
all using.

Then along came tablets. Big tablets, medium-sized tablets, things that would one day be
called “phablets” and “jumbophones”. 2011 saw the introduction of devices with screens
up to – and in a few rare cases beyond – a foot in diagonal screen size. Google hurriedly
pushed out a major change to Android that would solve some of the issues being seen. This
was the dawn of the Fragments system.

The problems with tablets and large devices are easily visualized. Activities designed to
show header information like a person’s photo and name in a contacts activity, and then
more detailed address information in another activity, looked like a huge waste of space
on these giant screens. Even worse, initial adaptations to “fill” the big screens were done
through scaling layouts, which meant poor image fidelity with lots of janky edges and
pixelation, and users were left wondering why Android was making such poor use of all
that space.

Why wasn’t all that contact information on one well-designed screen? Fragments answers
that question by helping Android make smart choices about how to render groups of objects
on screen depending on the screen size, and whether to do that all in one activity, or through
many. Read on to learn how.

Introducing the Fragment Class
A little more background is in order to help you appreciate how Fragments not only helps
with the endless array of screen sizes Android now supports, but also how Fragments
promotes tremendous reuse of existing layouts and designs to save you hour upon hour of
additional design effort.

www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 11: Android Fragments

Up to this point in the book, if I asked you to deal with a new, much larger screen size, you
might think that one way of tackling this would be to define another layout dimension, such
as xxhdpi, and choose a layout container like RelativeLayout, meticulously laying out your
widgets on this larger canvas for users of larger tablets of an appropriate size. Of course,
tablets come in 7-inch, 10-inch, 13-inch and other sizes, so maybe you’d need a few of
these extra layouts. Next you’ll suddenly realise tablets can be rotated just like phones, and
big-and-tall layouts should really have a short-and-wide equivalent. All of sudden, you are
managing a dozen or more layouts for every activity within your application. Our example
applications have had just one or two activities up to this point. Imagine an application with
a dozen, or twenty, or one hundred activities. Do you want to maintain a thousand different
layouts just to deal with tablets? I didn’t think so.

Fragments solve the runaway layout issue by introducing an intermediary layer between
activities and the layout containers, and widgets that are rendered within those containers.
Fragments go a long way to reducing the complexity of dealing with multiple screen sizes
and the desire to compose layout differently for those different sizes.

Backwards Compatibility with Fragments
Fragments were introduced with Android v3.0 “Honeycomb” and have steadily been
improved since that rather hurried release. If you do find yourself targetting very old versions
of Android on devices with tablet-sized screens, Google makes available the Android
Compatibility library with SDKs for supporting older devices with newer features. While these
kinds of devices are rare in the tablet realm, they can be found in some strange embedded-
device use cases that make any kind of Android upgrade impossible. Examples I have seen
include a home telephone address book device, and very basic resistive-touch tablets from
manufacturers such as ZTE.

Designing with Fragments in Mind
The first thing to note about designing with Fragments is that they are entirely optional. If
you really love designing lots of layouts, you can stick with that approach. However, if you
want to save your creative energy for other parts of you application, then adopt Fragments
wherever you have identifiable chunks of your interface that you would like to appear in
multiple screen-size-dependent activities. Those activities can work with Fragment objects
to work out what fragments to show and not show.

An illustration will make much of the preceding discussion clearer, and let you grasp how
designing with fragments might be done. Figure 11-1 shows multiple possible renderings of
widgets, within fragments, attached to activities for devices in different sizes and orientation.

www.it-ebooks.info

http://www.it-ebooks.info/

183CHAPTER 11: Android Fragments

The larger displays capable of incorporating more on the screen can show fragments
side-by-side, or one above the other, depending on the landscape or portrait orientation of
the device. But only one of the fragments would be visible at a time on a traditional smaller
phone screen, with the other triggered by some application logic. In the first instance, this
is achieved by generating the XML for your layouts in <fragment> elements, as we will see
in the examples later in the chapter, and then letting Android, in conjuction with your activity
and its fragment manager, take on the work of what to show when. This means you still get
to code your layouts much as before; they just sit in a different place. The views inside can
have all the same simplicity or complexity, hierarchy, and so forth. The view hierarchy in the
layout is still used to create the UI that the user sees.

Along with the layouts and view hierarchy, a Bundle object is used with a Fragment to
provide initialization. This is in a very similar way to Activity in all of the examples we have
seen so far. Fragments have a range of other qualities that will seem very similar to activities,
with some subtle differences. For example:

	The need for a default constructor for any Fragment-derived class you
choose to create

	The strong recommondation of an additional Bundle of arguments and
properties that can be used to set up your Fragment, different to the
Bundle that is used to recreate it successfully after events such as rotation

	Knowledge of the Fragment Manager that belongs to the Activity hosting
the Fragment, enabling bidirectional interplay as required.

Now that we are talking about Fragment creation, instantiation and initialization, destruction
and recreation, we should look at how Fragments have their own lifecycle and related
callback methods. We’ll also consider what to look out for in comparison to the Activity
lifecycle discussed in Chapter 10.

Figure 11-1.  The logical nesting of Activities, Fragments, and UI Widgets

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_10
http://www.it-ebooks.info/

184 CHAPTER 11: Android Fragments

Introducing the Fragment Lifecycle
There are areas of commonality between the Fragment lifecycle and that of an Activity, but
it is useful to visualize where things are more complicated. This will help you appreciate the
extra possibilities available when working with Fragments, and also the extra limitations you
will run in to that dictate when and where you can do things you would assume are possible
from your Activity experience. Figure 11-2 shows the full Fragment lifecycle.

Figure 11-2.  The Full Fragment Lifecycle

Most of the differences you see when compared to the Activity lifecycle in the previous
chapter are to do with the interaction between a host Activity and its Fragments. There is
not necessarily a 1-to-1 relationship between lifecycle events at both levels. An Activity
experiencing one event might contain Fragments that have to transition multiple events and
stages for the same trigger.

Understanding Fragment Lifecycle Callback Methods
Even though many of the lifecycle callbacks share identical names to the ones we saw for
activities in Chapter 10, be careful not to be trapped into assuming those callbacks are
exactly the same. The following subsections describe the key differences, as well as the
Fragment-specific callbacks.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_10
http://www.it-ebooks.info/

185CHAPTER 11: Android Fragments

onInflate( )
The onInflate() method is called in order to inflate the layout of fragments defined in your
layout XML files using the <fragment> element. onInflate() is also called if you explicitly
create new fragments programmatically in your code via the newInstance() call. Parameters
passed include the reference activity in which the fragment will live, and an AttributeSet
with any additional XML attributes from the <fragment> tag. You can think of onInflate()’s
execution as a render-but-don’t-display step in which Android works out what the fragment
will look like, but actual UI creation and association with the activity does not happen until
onAttach().

onCreate( )
The fragment variant of onCreate() is similar to its activity cousin, but there are a few
subtleties. The main difference is that you cannot rely on any activity view hierarchy being
in place to reference in the onCreate() call. That’s mostly because the activity with which
the fragment is associated is transiting through its own lifecycle. And just when you think
you can start relying on the activity, it may well cease to exist – or at least, it might transition
or undergo configuration change, causing the activity view hierarchy to be destroyed or
recreated.

onAttach( )
The onAttach() callback happens immediately following Android’s determination of which
activity a fragment is attached to. At this point you can safely do things with the activity
relationship, such as get and use context for other operations. Any fragment has an inherited
method getActivity() that will return the activity to which it is attached. Your fragment can
also use the getArguments() method to fetch and work with any initialization paramters.

onCreateView( )
The onCreateView() callback allows you to return some sort of view hierarchy for your
fragment. It takes a LayoutInfater object, and ViewGroup and the Bundle of instance state,
and then relies on Android to choose a suitable layout based on all the usual screen size
and density attributes. Android inflates that layout with the .inflate() method of the
LayoutInflater, then modifies the layout in whatever way you think necessary, and then
hands back the resultant View object for rendering.

onViewCreated( )
Immediately after onCreateView() returns, onViewCreated() can perform further post-
processing work before any saved state is used to modify the View.

onViewStateRestored( )
This method is called in the cases when your fragment’s view hierarchy has all of its state
restored. This is handy for differentiating cases of new creation versus resumption, etc.

www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 11: Android Fragments

onStart( )
The fragment’s onStart() callback is linked to the activity’s equivalent onStart(), and is
called immediately after the fragment is displayed in the user’s UI. Any logic you think of
placing in an activity-level onStart() callback should in most cases be pushed down into the
fragment onStart() methods.

onResume( )
Another closely coupled callback between fragment and activity, onResume() is the last call
made before the user takes full control of the activity and its fragments.

onPause( )
The onPause() callback is also closely coupled with the overall Activity’s equivalent. If you
move logic to your fragments, then the rules from the Activity variant about pausing audio or
video, halting or releasing other actions, and the like all apply here.

onSaveInstanceState( )
Conceptually identical to the Activity equivalent, in the onSaveInstanceState() callback you
should be persisting any resources or data you want to keep between Fragment incarnations
to the Bundle object for the Fragment. Do not go crazy saving enormous amounts of
information. Remember that you can use identifier references for long-lived objects outside
the Fragment itself. You can just refer to, and save, those.

onStop( )
Identical to the equivalent for an Activity.

onDestroyView( )
This method is called in the pathway to end-of-life for the fragment. When Android has
detached the view hierarchy associated with the fragment, onDestroyView() is then
triggered.

onDestroy( )
When a fragment is no longer being used, the onDestroy() method is called. Technically the
fragment is still attached to and associated with its Activity at this point.

onDetach( )
Breaking the bonds with the Activity is the last part of ending the life of a Fragment. This
signals the point at which all other resources, references, and other lingering identifiers
should be detroyed, removed, or released.

www.it-ebooks.info

http://www.it-ebooks.info/

187CHAPTER 11: Android Fragments

Keeping Sane with Fragment Lifecycles
While there are many more lifecycle stages to consider with fragments, you do not necessarily
need to deal with every single state transition and lifecycle callback in your code. Just
as with the Activity discussion in Chapter 10, you are free to override only the mandatory
callbacks and select the others that you think are important to your application and its
functionality. At a minimum, you can stick to just overriding onCreateView() and be done.

You can see for yourself with the FragmentsExample application that we can pare down the
coding requirements to a much more manageable volume.

Implementing Your Own Fragment-Based Application
An example can help illustrate many of the concepts around fragments, and also give you a
starting point from which to expand to explore the many options for working with fragments.
I will use the simple set of colors from previous examples and rework their display into a
familiar master-detail UI design pattern.

Creating Layouts for the Fragments Examples
Our example ColorFragmentExample application will aim to show a list of colors, and when
clicked will present details on a given color. In order to make best use of screen space
available, we will use fragments to do the “heavy lifting”. This will ensure that users on
smaller screens see the color list initially. Then when they select a color, another activity
will host the fragment showing that color’s detail. Tablet users will have one activity that
hosts the fragment displaying the list of colors as well as the detail fragment, much like the
depiction in Figure 11-1.

The Color List Layout
Listing 11-1 shows the fragment layout that will be used in different ways to show the list
of colors.

Listing 11-1.  The universal fragment for showing colors in a list

<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/color_list"
 android:name="com.artifexdigital.android.colorfragmentsexample.ColorListFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_marginLeft="16dp"
 android:layout_marginRight="16dp"
 tools:context=".ColorListActivity"
 tools:layout="@android:layout/list_content" />

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_10
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

188 CHAPTER 11: Android Fragments

This is a simple <fragment> definition that in turn calls on the stock Android layout list_content,
which will show TextView entries in a list. This fragment layout will be used by both the
“single-pane” view layout on small devices where an activity will have this fragment
attached as the only UI, and by the “two-pane” view layout on large tablets for listing the
colors side-by-side with details.

The Color Detail Layout
Showing details of a color will be handled by a TextView, wrapped in a fragment and placed
in an Activity. The layout for the TextView is very straight-forward, and you can find this in the
fragment_color_detail.xml file, the contents of which are shown in Listing 11-2.

Listing 11-2.  The common TextView layout for color details

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/color_detail"
 style="?android:attr/textAppearanceLarge"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="16dp"
 android:textIsSelectable="true"
 tools:context=".ColorDetailFragment" />

A Host Activity For Color Details
In the circumstances where color details (laid out with the TextView from the previous
section) need to be shown in an Activity in its own right on a small screen, we need
to provide the layout for that Activity. The only job this Activity will have is to create
the fragment that then displays the TextView. You can see the relevant code in
activity_color_detail.xml, shown next in listing 11-3.

Listing 11-3.  The activity_color_detail.xml layout

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/color_detail_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".ColorDetailActivity"
 tools:ignore="MergeRootFrame" />

As you can see, this is a simple <FrameLayout> with some simple styling. The TextView will
be injected into this via a fragment.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

189CHAPTER 11: Android Fragments

The Large-screen Multi-fragment Layout
For those situations when our example application is running on a large screen, we need
a layout capable of hosting all the fragments and UI widgets we want on one screen. The
activity_color_twopane.xml layout file might look like yet another complication in the
fragment story. But if you look closely at Listing 11-4, you will see that the layout file really
is just a composition that includes the <fragment> and <FrameLayout> that we pulled into
separate layouts for smaller screens.

Listing 11-4.  The activity_color_twopane.xml layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_marginLeft="16dp"
 android:layout_marginRight="16dp"
 android:baselineAligned="false"
 android:divider="?android:attr/dividerHorizontal"
 android:orientation="horizontal"
 android:showDividers="middle"
 tools:context=".ColorListActivity">
 
 <fragment android:id="@+id/color_list"
 android:name="com.artifexdigital.android.colorfragmentsexample.ColorListFragment"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"
 tools:layout="@android:layout/list_content" />
 
 <FrameLayout android:id="@+id/color_detail_container"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="3" />
 
</LinearLayout>

The only differences compared to the (combined) separate layouts from earlier in this
chapter are the android:layout_weight values which will be used to control the comparative
screen real estate used by the two fragments when presented together in a single Activity.
A 1:3 ratio means the master list fragment will take a quarter of the space, and the detail
fragment will take three-quarters (the remainder).

Controlling Which Layout Is Chosen
At this point you are probably wondering how our application will decide which layout to
use, and therefore what arrangement of fragments, for different sized devices. The secret is
in the refs.xml files (plural), under each of the res/values-large and res/values-sw600dp
folders respectively. When our code runs on any device or emulator, Android will check at
run-time for any size-specific XML resources across all of the different size-specific resource

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

190 CHAPTER 11: Android Fragments

directories, including all of those mentioned in Chapter 3. There is only one child element in
refs.xml for large and sw600dp sized-screens, and it reads:

<item type="layout" name="activity_color_list">@layout/activity_color_twopane</item>

Any screen that is categorized as large, or meeting sw600dp resolution standard, will implicitly
pick up the instruction in the attributes to use the activity_color_twopane layout from the
XML file of the same name.

Coding Differences for Fragments
The good news regarding the Java you write for a fragment-based design is that by and large
there are few differences compared to working with Activities alone. The main differences were
already discussed earlier: Any UI-centric logic, data manipulation, use of content providers,
services, and so forth, moves to the fragments in your application. The activities are then still
important for application lifecycle handling and functionality that spans fragments.

Regardless of whether our application ends up displaying one or two fragments
simultaneously, it will run the ColorListActivity shown in Listing 11-5.

Listing 11-5.  The code for the ColorListActivity

package com.artifexdigital.android.colorfragmentsexample;
 
import android.content.Intent;
import android.os.Bundle;
import android.support.v4.app.FragmentActivity;
 
public class ColorListActivity extends FragmentActivity
 implements ColorListFragment.Callbacks {
 
 private boolean mTwoPane;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_color_list);
 
 if (findViewById(R.id.color_detail_container) != null) {
 mTwoPane = true;
 
 ((ColorListFragment) getSupportFragmentManager()
 .findFragmentById(R.id.color_list))
 .setActivateOnItemClick(true);
 }
 }
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_3
http://www.it-ebooks.info/

191CHAPTER 11: Android Fragments

 @Override
 public void onItemSelected(String id) {
 if (mTwoPane) {
 Bundle arguments = new Bundle();
 arguments.putString(ColorDetailFragment.ARG_ITEM_ID, id);
 ColorDetailFragment fragment = new ColorDetailFragment();
 fragment.setArguments(arguments);
 getSupportFragmentManager().beginTransaction()
 .replace(R.id.color_detail_container, fragment)
 .commit();
 } else {
 Intent detailIntent = new Intent(this, ColorDetailActivity.class);
 detailIntent.putExtra(ColorDetailFragment.ARG_ITEM_ID, id);
 startActivity(detailIntent);
 }
 }
}

Listing 11-5 is more straight-forward than it looks. Our onCreate() logic is very simple.
First the activity_color_list layout is inflated into the UI. Then we run a quick test to see
if the color_detail_container view object has been instantiated (even if it is not displayed),
and use the result as a proxy to determine whether we are running within the
activity_color_twopane layout triggered from our refs.xml rules. If we are, then we
set the mTwoPane Boolean to true and the the getSupportFragmentManager() to set up click
handling via the .setActivateOnItemClick() method.

The onItemSelected() override then does the subtle work of deciding what to do
when a user clicks a color. Should we create an additional fragment using the
color_detail_fragment layout and associated code in ColorDetailFragment.java, or
should we fire off startActivity() with the intent explicitly calling for the
color_detail_activity layout and associated ColorDetailActivity.java code?

You can look at those source files as well to see the basics for showing color details,
and also of the supporting ColorContent class which is just a fancy packaging of an item
set for colors and some management functions. I will spare you the endless pages of
code for what is some fairly straight-forward Java. Take a look at the source files in
ch11/ColorFragmentsExample, and do run them in different-sized emulators with some
breakpoints set so you can see the size-determining logic and fragment creation steps
being taken.

Seeing Differing Fragment Behavior in Action
There’s nothing like seeing the results on different sized devices or emulators to get an
appreciation of the fragment behavior in action. Figures 11-3 and 11-4 show the Color
list and Color detail fragments within separate activities on a small device (in this case, a
Nexus-5 AVD).

www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 11: Android Fragments

Figure 11-3.  The color list fragment showing on a Nexus 5 emulator

www.it-ebooks.info

http://www.it-ebooks.info/

193CHAPTER 11: Android Fragments

By comparison, when running the ColorFragmentsExample application on a large 10-inch
screen emulator, we see the behavior in Figures 11-5 and 11-6, where the fragments are
created and used within just the ColorListActivity activity.

Figure 11-4.  The new activity triggered to show the color detail fragment

www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 11: Android Fragments

Figure 11-5.  The starting display for ColorListActivity with one fragment on a large screen

Figure 11-6.  Having detected the large screen, the second fragment is added to the activity

www.it-ebooks.info

http://www.it-ebooks.info/

195CHAPTER 11: Android Fragments

Summary
Learning to use fragments is best done by working through more and more examples.
You have the solid foundation of the fundamentals for fragments thanks to this chapter, as
well as your first working example. Further examples throughout this book use Fragments
in different ways, and I encourage you to explore those examples too to expand your
Fragments skills. In particular, take a look at the maps example applications in Chapter 15,
and the preferences example application in Chapter 19.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_15
http://dx.doi.org/10.1007/978-1-4302-4687-9_19
http://www.it-ebooks.info/

197

Chapter 12
Intents and Receivers
You have learned many of the techniques for designing activities. Thanks to the preceding
chapter, you now also know about the lifecycle of an activity: when and how it starts,
pauses, and ends.

All of the examples presented so far have consisted of just one activity. But if you remember
the early part of the book, you will recall that I said Android’s architecture was built
around the assumption that activities are cheap, easy to create and destroy, and should
be plentiful to help build out the capabilities of any application you might wish to build.
Activities, in the plural.

Each of our example applications, from button counters to phone dialers, has used a
single activity to display its functionality (with the odd menu or action bar included). The
single activity was displayed when you launched the application from the Android launcher.
But if we create other activities for applications, how do we launch them? It is clearly too
cumbersome to have dozens or hundreds of activities within an application each have their
own launcher icon, so what’s a mobile platform to do?

Introducing Intents
The answer is in Android’s equivalent to a messaging and events system, known as intents.
Android intents are built around concepts used in other event-based operating systems
and environments such as Windows. Yet there are some key differences, which we will
cover shortly.

At its heart, an intent is a message sent to the Android system indicating you want to do
something. What the something is happens to be the first subtle difference between Android
intents and other messaging and event systems. At times you might know exactly what
action your application should take in response to a user request, and can pinpoint the
precise activity to summon in response. But there are other times when your application
won’t have precise control over what a user might want, nor have all the necessary data to
directly invoke another activity, but the user is expecting something. Android has both cases
covered by using the complementary part of the messaging system, known as the receiver.

www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 12: Intents and Receivers

Receivers are coded into an application in order to listen for various intents and respond in
various ways. Receivers will be covered later in this chapter once intents are fully introduced.
Intents and receivers together form the core of how multiple activities are wired together to
create seamless applications, and how activities from other applications can be harnessed
within your application to do work on your user’s behalf.

The Anatomy of an Intent
An Android intent is composed of two conceptual elements. First is the action desired, and
second is the context associated with the desired action. There are a wide variety of actions,
which we’ll cover shortly, but they include such straight forward concepts as “view this
thing”, “make a new one of these”, and so forth. Context is more variable, but can best be
thought of as a range of data to help make sense of the intent, direct the intent, and fuel the
resulting activity.

At its simplest, the data takes the form of a Uri, such as content://contacts/people/1,
which is the Uri for the first person in Android’s contact storage. If you bundle that Uri with
an action like ACTION_VIEW, you have formed an intent. Android is able to interpret the intent,
and will find an activity able to show the user a contact. Make the action something like
ACTION_PICK on a Uri that points to a collection such as content://contacts/people, and
Android looks for an activity that can present multiple contacts and provide the ability to pick
from them.

A Uri with an action is not all that can be packaged in the context of an intent. There are four
main additional elements you can include to expand the intent payload, and what Android
and applications can do with it. These are part of an Intent object.

Specifying an Intent Category
Your intent’s category helps govern what activity can satisfy it. For instance, the activity
where you intend your users to begin interacting with your applications should be of
category LAUNCHER. This category is what marks an activity as being suitable for placement
on the Launcher menu (home screens) for Android. Other activity/intent categories include
DEFAULT and ALTERNATIVE.

Specifying a MIME Type
There are times when you will not have, or will not know, a specific Uri for a collection of
items such as contacts or wifi networks. To help Android find a suitable activity that can deal
with sets of data in these situations, you can specify a MIME type. For instance, image-jpeg
for an image file.

www.it-ebooks.info

http://www.it-ebooks.info/

199CHAPTER 12: Intents and Receivers

Nominating a Component
There are times when you know exactly which activity you want to invoke with your intent. One
method is to specify the class of the activity in the component of the intent. Doing so makes
life easier in that you no longer need to include other data elements in your intent. However,
the approach is considered risky as it assumes knowledge about the implementation of the
component class that violates the encapsulation programming principle.

Including Extras
Sometimes you have a mixed bag of additional data you wish to provide to the receiver for a
variety of reasons. Where such data doesn’t fit into a Uri scheme or other part of the Intent
object, you can provide a Bundle object that includes arbitrary additional information. There
is, however, no way to force your receiver to make use of such a Bundle. The receiver might
or might not use the Bundle based on how the activity was written.

Intent Actions for all Kinds of Purposes
There is an exhaustive list of intent actions and categories provided with the Android
documentation at developer.android.com. I do not propose to rewrite all of that material
here, but I will highlight some notable and interesting actions so have more idea of what is
possible as we continue with the rest of the book.

	ACTION_AIRPLANE_MODE_CHANGED: The user of the device has toggled the
airplane mode setting from on to off, or vice versa.

	ACTION_CAMERA_BUTTON: The camera button (hard button or soft button)
was pressed.

	ACTION_DATE_CHANGED: The date has changed, meaning any application
logic you have written that users timers, elapsed time, and so forth
might be affected.

	ACTION_HEADSET_PLUG: The user of the device has attached or removed
headphones from the headphone socket.

As you can see, intent actions cover not just what happens in your application, but also its
environment on the device and even further.

Caution  Google adds new actions to the set available for intents with each new release of
Android. It also deprecates some older actions it deems no longer useful. As you maintain your
application over time, it is prudent to check if any actions on which your application depends have
been deprecated.

www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 12: Intents and Receivers

Understanding Intent Routing
The component approach is not a reliable nor safe approach with activities from other
applications. My point about the encapsulation principle is at the heart of this advice. Just as
you wouldn’t want other people relying on your internal class names within your application,
you shouldn’t rely on them in others’ applications. They can change in both signature and
behavior, and indeed be removed entirely in subsequent versions.

The recommended pattern for targetting the application or service of your choice is to use
Uris and MIME types appropriately. How then does one help Android determine which
activites or receivers (such as a service) should receive a given intent? Android uses a
scheme known as implicit routing to pass an intent on to all of the activities and so forth that
should receive it. Implicit routing is based on a set of eligibility rules that must all be met.
These rules are:

1.	 The activity must signal its ability to handle the intent through the
appropriate manifest entry (which we will discuss shortly)

2.	 If a MIME type is part of the intent context, the activity must support
the MIME type

3.	 Every category in the event context must also be supported by
the activity.

You can see how these rules helps narrow down the possible set of matching activities that
can receive your intent.

Adding Intents to Your Manifest
Android uses a specification of intent filters placed in your AndroidManifest.xml file to
indicate which components in a given application are able to be notified and respond
appropriately to which intents. If your component’s manifest entry doesn’t list the intent
action, it won’t be picked to receive such an intent. Think of it this way: the easiest way to
filter-out all of the many intents that you don’t wish to handle is to use a “filter-in” approach
to list the intents you do wish to consume.

When you create a new Android project, you actually create (or your IDE creates for you)
your first intent filter as part of the base manifest file. For instance, Listing 12-1 is the
manifest from your very first application, BeginningAndroid, in chapter 2. In bold you can see
the activity MainActivity and its specified intent file.

Listing 12-1.  Example intent filters from an AndroidManifest.xml file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.artifexdigital.android.beginningandroid"
 android:versionCode="1"
 android:versionName="1.0" >
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_2
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

201CHAPTER 12: Intents and Receivers

 <uses-sdk
 android:minSdkVersion="9"
 android:targetSdkVersion="21" />
 
 <supports-screens android:smallScreens="true" android:normalScreens="true"
 android:largeScreens="true" android:xlargeScreens="true" />
 
 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 
</manifest>

There are two key things to note here in the intent filter. We specify the MainActivity activity
is of the LAUNCHER category, meaning any intent must also be of that category. We also
specify the action android.intent.action.MAIN, which is used to signify that any intent
looking for a MAIN-capable activity may be accepted. Your MainActivity could have more
possible actions, and more categories, signifying it has more capabilities (assuming you’ve
coded for them in the component class logic).

Your other activities for your application would not use the MAIN/LAUNCHER combination for
action and category. While there are many actions and categories from which to chose, as
mentioned earlier, a very common category is the DEFAULT category. The DEFAULT category is
often used with view- and edit-style actions in combination with a <data> element describing
the mimeType that an activity can deal with for viewing or editing. For example, Listing 12-2
shows an intent filter for a Notepad-like application.

Listing 12-2.  An intent filter for an example secondary activity in your application

<activity
 android:name=".NotesViewActivity"
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />
 </intent-filter>
</activity>

www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 12: Intents and Receivers

Here in Listing 12-2 we have defined an activity, and through its intent filter nominated
that the activity can be launched to deal with an intent asking to view content using the
Uri for content with a vnd.android.cursor.dir/vnd.google.note mimeType. This intent
could obviously come from your own application, such as following a user action from your
launcher activity. Other applications that can create a well-formed Uri for this activity can
also trigger it through an intent using that Uri.

ANDROID VERSION 6.0 MARSHMALLOW AND VERIFIED LINKS

With the launch of Android 6.0, known as Marshmallow, Google have enhanced some of the behavior regarding
intents triggered from URLs. Historically, if you included a URL in your application as a link that your user could
click, and they had an application installed that identified itself as synonymous with the URL’s website, then
they would then see a system dialog asking if they wanted to complete the action with the application or the
website. They would also be asked if they wanted this to happen just once, or always for the give application
and website. Users became very frustrated at the unpredictable nature of whether they would see this dialog or
not, and whether their preference would “stick”.

With Android 6.0, Google has introduced auto-verified links, which is a feature you can add to your code
explicitly to make the link between URLs from a specific website and the companion application. This feature
includes “smarts” to enable seamless authentication and save the user any extraneous dialogs when Android,
the application, and the website team up to deal with the intent. The Android developer documentation is still
being updated to cover this feature of auto-verified links.

Seeing Intent-launched Activities in Action
You have now seen enough of the theory and structure of intents to work on an example
that should illustrate their power and convenience to you. You know that Android’s design
philosophy is to have many activities to support the varied functionality of your application,
such as a photo album application having one activity to view a single picture, another
activity to view groups or albums (perhaps using the GridView), and maybe more activities
for tagging, sharing with friends, and so on.

Before we get to implementation, there’s one last design choice to consider. If you launch an
activity via an intent from another activity, how much knowledge about the state of the launched
activity should the invoking activity be concerned with? Does your launching activity need to
know when the second (or subsequent) activities are completed, and be passed some result?

Deciding on Activity Dependency.
Android answers the dependency-vs-no-dependency issue by providing two main ways to
invoke an activity with an intent. The StartActivity() method is used to trigger Android to
find the activity that best meets the criteria of the intent (remember the discussion earlier in
the chapter, on action, category and mime types). That activity will be started, the intent will
be passed to it for possible data processing, and the new and old activity will then continue
on their separate lives. The activity from which you call StartActivity() will not be notified
about the called activity’s eventual end. No data will be available to inspect, and so forth.

www.it-ebooks.info

http://www.it-ebooks.info/

203CHAPTER 12: Intents and Receivers

If that just-described approach sounds unappealing, perhaps because you want to mimic a
parent-and-child relationship between your activities, there is an alternative. Let’s assume
you decide to include a social media sharing option in your photo album application. To
achieve this, you might need the user to complete a login process, and then return them to the
sharing activity and provide it the details of the successful login (such as a login cookie,
token, etc.). To support this closer dependency, Android provides the startActivityForResult()
method.

The startActivityForResult() method passes not only the intent to the activity selected
as the most appropriate, but also a calling number unique to the activity invocation. Your
parent activity is then notified when the called activity ends through the onActivityResult()
callback. The callback includes:

	The unique calling number associated with the specific child activity
and the original startActivityForResult() method. You would typically
use a switch pattern to determine which of your child activities had
completed, and continue with your application logic appropriately

	A numeric result code from the stock Android-provide results of RESULT_
OK and RESULT_CANCELED, plus any custom results you care to nominate
of the form RESULT_FIRST_USER, RESULT_FIRST_USER + 1, etc.

	An optional String object with any data your called activity should
return, such as the item chosen from a ListAdapter.

	An optional Bundle containing any additional information not found in
the above options.

You should decide at design/coding time when to use either startActivity() or
startActivityForResult(). While you can code to dynamically choose either at runtime, it
can become quite elaborate to handle all the possible outcomes.

Creating an Intent
Now that you know how to choose the appropriate activity invocation method, you must
first create the Intent object to use as the vessel from which to trigger the launch. If your
aim is to launch another activity from within your own application, the most straight-forward
technique is to create your intent directly and explicitly state the component you wish to
reach. You would create a new Intent object as follows:

new Intent(this, myOtherActivity.class);

Here, you are explicitly referencing that you want to invoke your myOtherActivity activity.
You do not need an intent filter in your manifest for this explicit invocation to work. Your
myOtherActivity will be started whether it likes it or not! Obviously the onus is on you as the
developer to ensure your myOtherActivity can respond accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 12: Intents and Receivers

Earlier in the chapter I explained how it was far more elegant to use a Uri and criteria-matching
approach to have Android find an appropriate activity. You can create a Uri for any of the
support schemes in Android. For example, here is a snippet creating a Uri for a contact in
the contacts system:

Int myContactNumber = 1;
Uri myUri = Uri.parse("content://contacts/people/"+myContactNumber.toString());
Intent myIntent = new Intent(Intent.ACTION_VIEW, myUri);

We are using the number for the first contact, and then constructing the Uri string for
referencing a contact. Finally, we pass the string to the new Intent object.

Starting the Intent-Invoked Activity
With the Intent created, you decide which of startActivity() or startActivityForResult()
to call. There are additional, more advanced options here Listing 12-3 shows the example
layout from the ch11/IntentExample project. It is a very simple layout with one label, one
field, and one button.

Listing 12-3.  An example layout involving intents

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context="com.artifexdigital.android.intentexample.IntentExampleActivity" >
 
 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBaseline="@+id/myContact"
 android:layout_alignBottom="@+id/myContact"
 android:layout_alignLeft="@+id/button1"
 android:text="Contact Number:" />
 
 <EditText
 android:id="@+id/myContact"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_marginLeft="28dp"
 android:layout_toRightOf="@+id/textView1"
 android:ems="10"
 android:inputType="number" >
 

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

205CHAPTER 12: Intents and Receivers

 <requestFocus />
 </EditText>
  
 <Button
 android:id="@+id/button1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_below="@+id/myContact"
 android:layout_marginTop="30dp"
 android:text="View Contact"
 android:onClick="viewContact" />
 
</RelativeLayout>

The viewContact() method for the button creates a contact Uri as explained above, then
creates the Intent object that will use the Uri, and finally starts an activity expecting no
follow-up results. You can see the code in listing 12-4.

Listing 12-4.  An activity expecting no follow-up results

package com.artifexdigital.android.intentexample;
 
import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
 
public class IntentExampleActivity extends Activity {
 private EditText myContact;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_intent_example);
 myContact=(EditText)findViewById(R.id.myContact);
 }
 
 public void viewContact(View view) {
 String myContactNumber=myContact.getText().toString();
 Uri myUri = Uri.parse("content://contacts/people/"+myContactNumber);
 startActivity(new Intent(Intent.ACTION_VIEW, myUri));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 12: Intents and Receivers

I have intentionally kept the logic that’s not related to the actual business of intents very
simple. That’s so you can focus on what we have discussed in this chapter.

When you run the IntentExample project, you should see the IntentExample activity as
shown in Figure 12-1.

Figure 12-1.  Our main activity triggered from launching the application

Remember, you are seeing this activity first, because Android Studio, Eclipse, or your
Android project creation tool of choice added it as the LAUNCHER category in your manifest file.

When you attempt to enter a number for a contact, you’ll see the appropriate digit-restricted
IME thanks to our layout specification for the EditText widget. This appears as shown in
Figure 12-2.

Note  Before running Listing 12-4’s activity, be sure to have used an existing virtual device where
you have added at least one contact using the built-in contacts application, and do not wipe the AVD
state when (re)starting the virtual device. This way, you will have contacts in the contact database
for the example to display

www.it-ebooks.info

http://www.it-ebooks.info/

207CHAPTER 12: Intents and Receivers

Enter the number for a contact (for example, type in the digit 1 for the first contact in the
system) and hit the “View Contact” button. Your contact Uri is parceled up in your Intent,
and startActivity() sends Android off on the hunt to find the most appropriate activity to
handle the ACTION_VIEW action for your intent. You can see the result in Figure 12-3.

Figure 12-2.  Submitting the data for Uri creation and intent triggering

www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 12: Intents and Receivers

Figure 12-3 shows the built-in contact view activity, and not something included in the
IntentExample project. Ours was a “safe” invocation because of our use of the Uri and our
trust in Android to find the right activity. We didn’t try to force things by using the explicit,
component-naming method.

Introducing Receivers
The bulk of this chapter has covered how to use intents to create and launch multiple
activities within your application in order to trigger a wide variety of actions in response to
your user’s demands and interaction with your program. But not every response to an intent
needs to be within the scope of an activity.

Indeed, there are a number of concrete examples of times when you do not really need
the bells and whistles of an activity to complete the desired outcome for an intent. Some
examples include performing calculations, data manipulation, and other tasks having no
need for any UI. You may also want to drect an intent at an Android service rather than atany
end-user-facing application. For instance, you may want to build a photo-sharing service that
sends all photos to a cloud storage provider for backup without any UI interaction. There are
even times when you will not know until run-time whether or not an activity is required, and
need to design for both an activity-related response and one with no activity involved.

Figure 12-3.  The contact activity selected to satisfy our intent

www.it-ebooks.info

http://www.it-ebooks.info/

209CHAPTER 12: Intents and Receivers

Using Receivers When No UI is Needed
To deal with these “activity-less” scenarios, Android provides the BroadcastReceiver
interface, and the concept of receivers. Just as activities are described as being light-weight
UI screens for quickly dealing with a user’s interactions, receivers are similarly meant to be
light-weight objects that are created to receive and process a broadcast intent, and then be
thrown away.

If you examine the definition for the BroadcastReceiver in the Android documentation,
you will see that it consists of only one method named onReceive(). You can think of the
onReceive() method as the “OK, do stuff” method for your receiver. You implement the
method using whatever logic you decide needs to happen to deal with the associated intent.

Just as activities are declared in you manifest file, so too are declarations for any
implementations of BroadcastReceiver you plan to have in your application. The element
name is <receiver>, with an android:name attribute of the class that implements
BroadcastReceiver. For example:

<receiver android:name=".MyReceiverClass" />

Your receiver will persist only for the time it takes to actually execute the logic in your
implementation of onReceive(), and then will be discarded for garbage collection. There
are also limitations in the base form of a receiver that mean you cannot issue callbacks, nor
invoke UI elements such as dialog boxes.

The exception to this what I’ve just described comes when you implement a receiver on a
service (or even an activity). In that case, the receiver will live for the lifetime of the related object.
The receiver will live either until the service stops, which is rare, or until the activity is destroyed.

Receivers cannot be created via the manifest for services or activities. Instead, you’ll need
to invoke the registerReceiver() within onResume() to indicate your activity would like to
receive intents (again, based on definted actions, categories and mime types), and similarly
clean up with a call to unregisterReceiver() during the onPause() callback.

Navigating Receiver Limitations
As well as the limitations noted above for receivers, there is one other important aspect to
note about their use in combination with intents. You might be imagining a world where you
can use intent definitions and broadcast receivers as a general-purpose messaging system
for an application. The one gotcha with that approach is that when activities are paused, as
described in the lifecycle in Chapter 10, they will not receive intents.

That paused activities won’t receive intents means that if you care about missed messages
via intents, then you will specifically need to avoid activity-bound receivers and declare your
receivers in the manifest as outlined at the start of this discussion. You will also need to think
about how you can otherwise be re-notified of, or recover, any “messages” that occurred
and were lost while activities were paused.

There are alternative approaches to a message bus for Android that rely on the Google Play
Services APIs. These are better suited to message bus metaphor, namely Google Cloud
Messaging. That product has its own quirks and limitations that are beyond the scope of this
book, but interested readers can find out more on the Android developer website.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_10
http://www.it-ebooks.info/

211

Chapter 13
Making Phone Calls
Of all the capabilities, applications and features available to users of Android, and to you as
a developer, the one “original” feature that is still pervasive is the ability to make telephone
calls. Even now when Android is appearing in cars, planes, home appliances, and more, the
very large majority of devices running Android are phones, and will be for some time.

Checking for Phones and “Phonies”
I claimed in the opening to the chapter that the vast majority of devices for Android are
phones. That is true, but the growth of tablets and other non-cellular devices means you
should think in advance about what telephony support your application must have, what is
nice to have, and what it can live without. In short, checking if the device is really a phone
will help you as a developer, and your users.

Mandating Telephony Support
Requiring phone support for your application is done by specifying the relevant uses-feature
option in your application’s manifest. For phone support, the hardware feature is named
telephony, and is specified as shown in Listing 13-1

Listing 13-1.  Including telephony as a requirement in your AndroidManifest.xml file

<uses-feature
 android:name="android.hardware.telephony"
 android:required="true"
/>

Specifying the telephony requirement ensures your application will run only on devices that
have cellular support, and that the Google Play store and other application stores can filter
results shown to people looking for applications such that your application isn’t shown as
available for install to devices that don’t have telephony support.

www.it-ebooks.info

http://www.it-ebooks.info/

212 CHAPTER 13: Making Phone Calls

Optional Telephony Support
Obviously an all-or-nothing approach to requiring telephony is fine in some circumstances,
but you might have in mind an application where telephony is nice to have, but not strictly
required. In those circumstances, instead of specifying the hardware requirement in your
manifest, you can check for detected telephony support on a given device at run time, and
code Java logic to handle both its presence and absence. The key to detecting various
device capabilities at run-time is the PackageManager class, and its most-frequently-used
method is hasSystemFeature().

Listing 13-2 is an example fragment of code showing PackageManager in action, using a
common if block pattern. The example detects the presence or absence of telephony
support at run-time.

Listing 13-2.  Detecting telephony support at run-time

PackageManager myDevice = getPackageManager();
if (myDevice.hasSystemFeature(PackageManager.FEATURE_TELEPHONY) {
 // the user's device has telephony support
 // add your call-related logic here
} else {
 // the user's device lacks telephony support
 // do something that doesn't require making calls
};

There are several other useful variants of telephony for which you can check. These include
whether a device is running on a GSM, CDMA, or other style of cellular network providing
telephony for the device.

Making Outbound Calls
With the device capabilities determined, you can now start doing interesting things like
making an outbound phone call. This is actually far simpler than you might imagine, as
Android is built around telephony as a core feature. You do not have to personally build
low-level components like radio firmware, network handshakes, etc. In fact, there is almost
no code required at all!

The secret to almost all of the telephony and phone call handling you might want to
undertake is the TelephonyManager class. Its methods include the ability to determine a wide
variety of details and state information about the phone and calls. Some of the most useful
methods are:

	getPhoneType() Returns the phone’s radio type (GSM, etc.)

	getNetworkType() Provides information on the data capabilities of the
network, including its categorization as 4G, LTE, 3G, GPRS, EDGE, etc.

	getCallState() Can determine whether the phone is idle (not in a call),
in the process of making a call by ringing a number, or connected in a
call (known as offhook).

www.it-ebooks.info

http://www.it-ebooks.info/

213CHAPTER 13: Making Phone Calls

The actual task of dialing a number and initiating the call is performed by invoking an
ACTION_DIAL or ACTION_CALL intent. We will cover the differences in the two approaches
shortly. Either intent takes a Uri representing the number your user wishes to call, taking
the string format tel:nnnnnnnn, where nnnnnnnn are the digits of the desired phone number.
Explaining the setup and behavior is easier with an example.

The folder ch13/PhoneCallExample contains working code, and a simple custom layout that
shows the various calling and dialing options in action. From that example code, Listing 13-3
presents a simple layout that allows a user to enter a number and make a call.

Listing 13-3.  Layout for a simple phone call example

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context="com.artifexdigital.com.phonecallexample.PhoneCallExample" >
 
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Phone Number:" />
 
 <EditText
 android:id="@+id/phonenumber"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="number" />
 
 <Button
 android:id="@+id/usedialintent"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Call with ACTION_DIAL"
 android:onClick="callWithActionDialIntent" />
 

Tip  It is very good practice to use getCallState() and examine the result before your application
tries to initiate a call, to avoid the embarrassing situation of interrupting an existing call or forgetting
that your user might be doing other call-related activities outside of your application. There are ways
to deal with multiple incoming or active calls, but they stretch beyond the scope of this book. You can
always check out the advanced call handling options at developer.android.com

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

214 CHAPTER 13: Making Phone Calls

 <Button
 android:id="@+id/usecallintent"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Call with ACTION_CALL"
 android:onClick="callWithActionCallIntent" />
</LinearLayout>

The layout has a label and an EditText field, into which the user can enter their desired
phone number. It also has two buttons, with each used to call a method invoking the relevant
intent. Figure 13-1 shows the layout as rendered in a virtual device.

Figure 13-1.  A simple layout for entering and dialing or calling a number

www.it-ebooks.info

http://www.it-ebooks.info/

215CHAPTER 13: Making Phone Calls

There are a few things to note about this example so as not to confuse you. First, the
EditText field has the inputType="number" attribute, which means it will restrict its input to
digits and some limited punctuation. This inputType is also why the IME shown for input into
the EditText field is limited in the same way. It looks like a phone dialer pad, but is just a
normal number EditText IME soft keyboard.

The two buttons are labeled to explicitly inform you what each one does when pressed. The
first button, labeled CALL WITH ACTION_DIAL, will use the ACTION_DIAL intent, and the other
button, labeled CALL WITH ACTION_CALL uses the alternative intent. So what’s the difference?
The ACTION_DIAL intent will trigger Android to display the phone dialer interface to the user
(see Figure 13-2 later in the chapter). Whereas the ACTION_CALL intent moves immediately to
dialing the number and placing the call, with no additional UI step.

Figure 13-2.  The Android dialer invoked through ACTION_DIAL intent

www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 13: Making Phone Calls

Why have these alternatives? You can probably think of many reasons, but the ACTION_DIAL
intent means the user will actually see the number, and have to hit the call button to go ahead
and place the call. This means it is the user who actually completes the steps to make the call.
The ACTION_DIAL intent needs no special permissions, as it’s the user who has the final say.

In contrast, ACTION_CALL will proceed immediately to calling with no further user interaction.
You can probably imagine various ways this can be abused, or accidentally cause issues. As
such, Android protects the ACTION_CALL intent with the CALL_PHONE permission. You must have
this in your manifest in order for a startActivity() call with ACTION_CALL intent to work.

Listing 13-4 shows the Java code that wires up the logic for the PhoneCallExample app.

Listing 13-4.  Java logic to implement phone dialing/calling example

package com.artifexdigital.com.phonecallexample;
 
import android.app.Activity;
import android.os.Bundle;
import android.content.Intent;
import android.net.Uri;
import android.view.View;
import android.widget.EditText;
 
public class PhoneCallExample extends Activity {
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_phone_call_example);
 }
 
 public void callWithActionDialIntent(View view) {
 EditText targetNumber=(EditText)findViewById(R.id.phonenumber);
 String dialThisNumber="tel:"+targetNumber.getText().toString();
 startActivity(new Intent(Intent.ACTION_DIAL, Uri.parse(dialThisNumber)));
 }
 
 public void callWithActionCallIntent(View view) {
 EditText targetNumber=(EditText)findViewById(R.id.phonenumber);
 String callThisNumber="tel:"+targetNumber.getText().toString();
 //the following intent only works with CALL_PHONE permission in place
 startActivity(new Intent(Intent.ACTION_CALL, Uri.parse(callThisNumber)));
 }
 
}

Both methods triggered by the two buttons, usedialintent and usecallintent, follow
the same pattern of logic: Find the phonenumber view into which the user has typed their
number and extract the digits to format in the pattern expected by the Uri format introduced
earlier in the chapter. With the Uri properly constructed, then fire the relevant intent through
startActivity().

www.it-ebooks.info

http://www.it-ebooks.info/

217CHAPTER 13: Making Phone Calls

Using ACTION_DIAL
Figure 13-2 shows the result of the user pressing the usedialintent button, and therefore
triggering the ACTION_DIAL intent and the presentation of the dialer UI to the user.

At first glance, the dialer in Figure 13-2 is very similar to the numeric IME shown as part
of Figure 13-1. However, there are some key differences over and above the color and
alignment of the digits. This is the real Android system dialer. It has extra flourishes such
as the ability to add the number entered as a contact. The number is also formatted
automatically depending on the device’s regional and language settings, the number of
digits entered, use of IDD codes, etc. In this example, Android has detected that the number
5551234567 looks like a North American number. Android has added the idiomatic brackets,
spacing, and hyphen expected in the USA and Canada.

The other UI element to note is the big green phone symbol centered at the bottom. This is
the call button that actually places the call using the number entered.

Using ACTION_CALL
There is no figure to show for pressing the usecallintent button, because we skip the dialer
and go straight to the call. I am going to assume you as a developer have probably made at
least one phone call from an Android device. You can imagine what the screen then looks like.

Working with Incoming Calls
Intercepting and handling an incoming call is a somewhat advanced endeavor, and beyond
the scope of this book. However, there are other actions your application can take when a
call is being received.

The main way in which your application can respond to incoming calls is by registering a
broadcast receiver for the broadcast intent ACTION_PHONE_STATE_CHANGED in your application
manifest file. This intent is fired by the Telephony Manager framework when a call is received.
Listing 13-5 demonstrates the receiver declaration in your AndroidManifest.xml file.

Listing 13-5.  Specifying a receiver for incoming calls in AndroidManifest.xml

<receiver android:name="MyPhoneStateChangedReceiver">
 <intent-filter>
 <action
 android:name="android.intent.action.PHONE_STATE" />
 </intent-filter>
</receiver>

When the call is made to the device, the intent is fired, and your receiver is notified by way
of callback to the specified method. Along with the intent, two possible extras are included.
First is a state value for the call, such as CALL_STATE_OFFHOOK to indicate the call has been
answered, or CALL_STATE_RINGING to indicate the phone is still ringing. In the latter case, the
second extra will be EXTRA_INCOMING_NUMBER which provides the caller ID if such is passed
by the network.

www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 13: Making Phone Calls

Listing 13-6 shows a simple fragment of Java code for the MyPhoneStateChangedReceiver
class to give you an idea of what you can do with the callbacks.

Listing 13-6.  Working with an incoming call

public class MyPhoneStateChangedReceiver extends BroadcastReceiver {
 @override
 public void onReceive(Context context, Intent intent) {
 String deviceCallState = intent.getStringExtra(TelephonyManager.EXTRA_STATE);
 if (deviceCallState.equals(TelephonyManager.EXTRA_STATE_RINGING) {
 // phone is still ringing, we have access to caller ID if provided
 String callerID =
 intent.getStringExtra(TelephonyManager.EXTRA_INCOMING_NUMBER);
 // go display the number, etc.
 } else {
 // do some other stuff
 }
 }
}

Because working with incoming calls is considered potentially sensitive from a security
perspective, your application must also include the permission READ_PHONE_STATE in the
manifest file in order to receive the ACTION_PHONE_STATE_CHANGED intent.

www.it-ebooks.info

http://www.it-ebooks.info/

219

Chapter 14
Making Noise with Audio
for Android
In the previous chapter, you began to explore Android beyond the simple programming
environment, branching out and using device features such as the ability to make phone
calls. We are going to continue expanding you Android reach, and your knowledge of how to
leverage the devices on which Android runs, by turning to the topic of audio and sound.

Introducing the Media package
Android provides a rich set of classes supporting the playback and recording of media of
all sorts, both audio and video. At the core of Android support is the Media package, which
provides everything from basic MP3 audio playback, MPEG video playback, and similar
support for a variety of other audio and video formats, through to recording audio and video,
and even specialized support for audio routing (choosing headphones over speakers) and
image recognition in image formats.

At the heart of the Media package are the MediaPlayer and MediaRecorder objects. These
two objects manage all the heavy lifting of playing back and recording. Let’s take a look at
managing audio with the Media package, before we move on to video in the next chapter.

Building Your First Audio Application
To start your musical journey, let’s consider one of the very basic uses your users might
have for audio playback and your application. If you think of devices like iPods, and even
older MP3 players, they effectively provided a mechanism to play back an audio file from the
device to the listener – the user of the application or device. We will build our own application
to do exactly that. Later in the chapter we will extend the functionality to mimic contemporary
streaming services like Spotify, and play back audio directly from a web location.

www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 14: Making Noise with Audio for Android

Using Resources or Assets
We are about to use an audio file to demonstrate playback in an Android application, and
you as the developer have the option of using an “assets” folder in which to store your
audio files , or the “raw” folder as discussed in Chapter 3. If you are using Eclipse and the
ADT, you will find your projects are already created with a raw folder, and this is the most
straight-forward option to use. If you are using Android Studio, particularly after the v1.0
release, your projects will be lacking both the raw and assets folders. While this simplifies
your project folder structure, it is probably taking things too far into the realm of absurdly
simplified.

To create a raw folder for holding audio files in Android Studio, navigate to the res folder
in the hierarchy, and choose the menu option File ➤ New ➤ Directory. Name the directory
“raw”, and your raw folder will now be in place.

If you prefer to use an asset folder and are using Android Studio, you should navigate to the
File ➤ New ➤ Folder ➤ Assets Folder option in Android Studio, which will then prompt for
the creation of an assests folder for your project, as shown in Figure 14-1.

Figure 14-1.  Creating a new asset folder for you audio file in Android Studio 1.0 or later

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_3
http://www.it-ebooks.info/

221CHAPTER 14: Making Noise with Audio for Android

Allow Android Studio to keep the default location. You should see a new folder pop into
existing in your project tree named assets, as shown in Figure 14-2.

The corresponding filesystem location for you Android Studio assets folder within your
project is ./app/src/main/assets (or .\app\source\main\assets under Windows).

If you want to continue using the traditional raw folder, you can find (or create) it under the
./app/src/main/res folder of your project.

Coding for Audio Playback Using the Media Framework
Delve into the special-case UI widgets and parts of the Media framework and you will find
a very slick, all-in-one audio player widget that is complete with stubs for implementing the
common playback functions people use when listening to music. Using that widget would
get you an application very quickly, but using it would completely rob you of understanding
how the parts of the media framework do their thing. You would miss learning the
fundamentals that you need to master as a budding Android developer.

So instead of presenting the fully polished application with no scope for learning these
things, we will build our own widget. We’ll explore the Media framework properly as we go.

Figure 14-2.  Assets folder created in an Android Studio 1.0 or later project

www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 14: Making Noise with Audio for Android

Starting With A Simple Audio Player Layout
In order to start exploring the use of the Media player framework for audio playback, we will
need a simple interface of our own construction. Figure 14-3 presents what is probably the
world’s most straight-forward audio player application.

Figure 14-3.  A simple audio player application

The layout provides just enough to begin the exploration of the Media framework: a
“Start” button, and a “Stop” button. The layout for the interface from Figure 14-3 is shown
in Listing 14-1.

Listing 14-1. The layout for the AudioExample application

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".AudioExample">
 

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

223CHAPTER 14: Making Noise with Audio for Android

 <Button android:id="@+id/startButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Start ♫"
 android:textSize="24sp"
 android:onClick="onClick"
 android:layout_above="@+id/stopButton" />
 
 <Button android:id="@+id/stopButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Stop ♫"
 android:textSize="24sp"
 android:onClick="onClick"
 android:layout_centerVertical="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />
 
</RelativeLayout>

The layout is a straight forward RelativeLayout with two Button views placed within it.
These buttons have android:id values of startButton for Start, and stopButton for Stop.
You can also see a range of additional attributes used to style the look and feel, such as the
android:layout_above attribute to place the Start button above the Stop button, and font
sizing to make the text large and obvious.

Note  You will also see in the android:text attribute values of each button the text ♫ This
isn’t some mysterious Android code, but rather is simple Unicode for the little musical symbol you see
on the buttons in Figure 14-3. Remember, layouts are XML, and XML is Unicode based, so you have
the freedom to include “text” like this. (See http://unicode-table.com for a list of such codes).

Each of the buttons also has the same value for the method to invoke when clicked. This
method is named in the android:onClick="onClick" attribute.

Coding the AudioExample Behavior
Let’s look at the application now. You can see the code in Listing 14-2, and in the
ch14/AudioExample folder.

Listing 14-2.  Java code for the AudioExample application

package com.artifexdigital.android.audioexample;
 
import android.app.Activity;
import android.media.AudioManager;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnPreparedListener;
import android.os.Bundle;
import android.view.View;
 

www.it-ebooks.info

http://unicode-table.com/
http://www.it-ebooks.info/

224 CHAPTER 14: Making Noise with Audio for Android

public class AudioExample extends Activity implements OnPreparedListener {
 private MediaPlayer mp;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_audio_example);
 }
 
 public void onClick(View view) {
 switch(view.getId()) {
 case R.id.startButton:
 doPlayAudio();
 break;
 case R.id.stopButton:
 doStopAudio();
 break;
 }
 }
 
 private void doPlayAudio() {
 mp = MediaPlayer.create(this, R.raw.audio_file);
 mp.setAudioStreamType(AudioManager.STREAM_MUSIC);
 mp.start();
 }
 
 private void doStopAudio() {
 if (mp != null) {
 mp.stop();
 }
 }
 
 // The onPrepared callback is for you to implement
 // as part of the OnPreparedListener interface
 public void onPrepared(MediaPlayer mp) {
 mp.start();
 }
 
 @Override
 protected void onDestroy() {
 super.onDestroy();
 if(mp != null) {
 mp.release();
 }
 }
 
}

www.it-ebooks.info

http://www.it-ebooks.info/

225CHAPTER 14: Making Noise with Audio for Android

Let’s walk through what each method does to build the features of our simple audio
file player application. First, our package imports some familiar dependencies such as
view.View and os.Bundle. You will also see three key Media framework packages installed,
which were alluded to in the chapter introduction. These are:

	Android.media.AudioManager: The AudioManager provides a range of
support functions to make audio handling of all sorts of audio easier.
You use AudioManager to flag that an audio source is a stream, voice,
machine-generated tone, and so on.

	Android.media.MediaPlayer: The work-horse of the Media package,
MediaPlayer gives you total control over preparing and playing back
audio from local and remote sources.

	Android.media.MediaPlayer.OnPreparedListener: The key to
asynchronous playback, OnPreparedListener is the interface that
enables callbacks to playback music after off-thread preparation has
been done.

Our class implements the OnPreparedListener interface, which obliges us to to eventually
provide the logic for the the onPrepared callback. We will come to that shortly.

The onCreate() callback implementation does the by-now familiar inflation of our layout into
a fully-fledged UI for the application. All of the interesting logic is in the other methods.

The onClick() method uses a very common design pattern to channel to the appropriate
application logic on the basis of the View passed to it. When the user of the application
actually clicks either of the startButton or stopButton buttons, Android passes the
respective View representing the clicked button to the onClick() method. We simply perform
switch logic to detect which View was passed to the method, and by implication which
button was pressed. For the startButton we then call the doPlayAudio() method. Similarly,
for the stopButton, we call the doStopAudio() method.

When a user of the application clicks the startButton, and doPlayAudio() is called, some
obvious things happen. For example, we get the file to play. But some not-so-obvious things
also happen. First we create a new MediaPlayer object, and bind our audio file resource to it.
The R.raw.audio_file notation is conceptually similar to the layout inflation notation you’ve
already seen, such as R.layout.activity_audio_example. Android will examine the raw
folder packaged with the application in the .apk file and try to find an asset named
audio_file.<some extension>.

Having found and bound our audio_file.m4a example file, we then introduce the use of
the AudioManager class through the mp.setAudioStreamType() method. AudioManager has a
range of tasks it performs for you, one of the most common being to set the stream type for
the given audio resource. Android supports a range of audio stream types, with the goal of
ensuring a given stream gets the fidelity and other audio characteristics needed for a given
purpose. For instance, the STREAM_DTMF audio stream is used for DTMF tones, and Android
filters any streams marked this way to conform to the DTMF standard. Similarly, the
STREAM_VOICE_CALL stream type triggers Android to invoke or suppress various echo-cancelling
techniques on voice audio.

www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 14: Making Noise with Audio for Android

The AudioExample application sets the stream type to STREAM_MUSIC, meaning our source
file is some kind of music recording. Because we are playing our audio file from an asset
packaged with the .apk, we can then move straight ahead and start actually playing
back the audio. The final call in doPlayAudio() is the mp.start() call. That call has
the MediaPlayer object start actually playing the file, sending audio to the speaker or
headphones.

The doStopAudio() method is pretty self explanatory. It calls the stop() method on the
MediaPlayer object if it is instantiated. The reason for the if{} block testing for instantiation
is to ensure we don’t try to stop anything if the user has never pressed Start (i.e. they open
the application and press Stop, just for kicks).

Next in the code is the onPrepared() callback method. This is linked to the package
definition where AudioExample implements the OnPreparedListener interface. Strictly we
aren’t using the onPrepared() callback in this first pass of the AudioExample application,
but I wanted to include this deliberately to highlight that there are times where you
cannot immediately begin playback after the MediaPlayer object is instantiated and the
AudioManager has been invoked to set the stream type. Fear not, we will expand this
example in the next section to illustrate how and why to use the onPrepared() callback.

Lastly, we include logic in the onDestroy() callback to release the MediaPlayer object if it
has been previously created.

Obviously there’s no way to “show” what the running application is doing with audio
playback in a printed book, so you should go ahead and run the example to satisfy yourself
that the final working product actually makes some noise!

Building Your Own Android Music Streaming
Application
It would be a little strange if Android audio playback was limited to just what was on a
device. As you would expect from a smartphone platform born in the internet age, off-device
assets and resources are fair game for audio (and video), and the Media framework has you
covered.

Altering the existing AudioExample application is easy, and if you peruse the
ch14/AudioExample2 project you can see some straight forward changes to the UI, and some
not-so-straight-forward adaptations of the Java logic. Figure 14-4 shows the new layout as it
appears to the user running the application.

www.it-ebooks.info

http://www.it-ebooks.info/

227CHAPTER 14: Making Noise with Audio for Android

I will omit the layout XML in full for the sake of saving space, but the key changes you
should note in AudioExample2 are the TextView for the field label, and the EditText view with
an android:id of "@+id/sourceFile".

The changes to the Java logic are somewhat more extensive, and the code can be seen in
Listing 14-3.

Listing 14-3.  AudioExample2 logic

package com.artifexdigital.android.audioexample2;
 
import android.app.Activity;
import android.media.AudioManager;
import android.media.MediaPlayer;
import android.media.MediaPlayer.OnPreparedListener;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
 
public class AudioExample2 extends Activity implements OnPreparedListener {
 // useful for debugging
 // String mySourceFile=
 // "https://ia801400.us.archive.org/2/items/rhapblue11924/rhapblue11924_64kb.mp3";
 private MediaPlayer mp;
 

Figure 14-4.  A simple layout that accepts a URL for playback

www.it-ebooks.info

https://ia801400.us.archive.org/2/items/rhapblue11924/rhapblue11924_64kb.mp3
http://www.it-ebooks.info/

228 CHAPTER 14: Making Noise with Audio for Android

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_audio_example2);
 }
  
 public void onClick(View view) {
 switch(view.getId()) {
 case R.id.startButton:
 try {
 EditText mySourceFile=(EditText)findViewById(R.id.sourceFile);
 doPlayAudio(mySourceFile.toString());
 } catch (Exception e) {
 // error handling logic here
 }
 break;
 case R.id.stopButton:
 doStopAudio();
 break;
 }
 }
 
 private void doPlayAudio(String audioUrl) throws Exception {
 mp = new MediaPlayer();
 mp.setAudioStreamType(AudioManager.STREAM_MUSIC);
 mp.setDataSource(audioUrl);
 mp.setOnPreparedListener(this);
 mp.prepareAsync();
 }
 
 private void doStopAudio() {
 if (mp != null) {
 mp.stop();
 }
 }
 
 // The onPrepared callback is for you to implement
 // as part of the OnPreparedListener interface
 public void onPrepared(MediaPlayer mp) {
 mp.start();
 }
 
 @Override
 protected void onDestroy() {
 super.onDestroy();
 if(mp != null) {
 mp.release();
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

229CHAPTER 14: Making Noise with Audio for Android

The main changes you should notice between AudioExample and AudioExample2 are
the differences in the doClick() and doStartAudio() methods. There are a few other
minor changes that support the major changes in those two methods. We include the
android.widget.EditText import so that we can access and manipulate the text the user
enters into the UI, and we finally make use of the onPrepared() callback introduced in the
AudioExample application.

The doClick() method has two main changes. First, we create an EditText object, named
mySourceFile to work with the UI EditText field into which the application user types the
URL of their chosen audio file. We use the String value of the EditText to pass to the
modified doPlayAudio() method in the subsequent call. The try-catch block is in place to
cover the exceptions that doPlayAudio() can now throw.

As for doPlayAudio(), its ability to throw exceptions is just one of the many changes. Instead
of creating a MediaPlayer object pointing directly to a file in the .apk, we simply create the
new mp MediaPlayer object. We invoke the AudioManager package as before to declare that
the eventual data source will be STREAM_MUSIC.

The code then calls setDataSource() on the URL passed to doPlayAudio() from onClick().
The setDataSource() method is a very powerful tool, having quite a few overloaded forms
to handle source data presented as strings. Also present are FileDescriptor objects,
AssetFileDescriptor objects, and many other resource forms.

Using setDataSource() by implication gives us more power and flexibility with the
MediaPlayer object. We can interrogate the object with getDataSource() to see what is
currently allocated. We can also change the source data, which cannot be done if the
MediaPlayer object is passed a raw resource or asset directly at instantiation-time as in the
original AudioExample case.

There are more playback options that stem from using a data source, such as the ability to
define playback windows for only part of the source file. No matter how the MediaPlayer
object was created, the .seekTo() method can find an exact point in the data, and
.getCurrentPosition() can be used to determine the current playback point. Both
.getCurrentPosition() and .seekTo() work with millisecond precision.

In order for the setDataSource() call to successfully resolve and fetch the resource (music
file) at the URL given, we need to grant our application the android.permission.INTERNET
permission in the manifest file. I will cover permissions in much more detail in Chapter 19, but
for now all you need to do is add the following to your project’s AndroidManifest.xml file.

<uses-permission android:name="android.permission.INTERNET" />

Note that this line should be the first child element after the <manifest> root element. Put it
before the <application> child element that Eclipse or Android Studio created for you.

The next two changes to doStartAudio() work in tandem to ensure that we can play
back our audio file from the internet while accommodating all the vagaries of problematic
networks, slow connections, and an Android device busy with many parallel tasks. The first
of the calls is to .setOnPreparedListener(), indicating that it is our activity itself that will
deal with the registered callback. We’re finally working in anger with the implementation of
OnPreparedListener that the package definition has carried around since the first example.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_19
http://www.it-ebooks.info/

230 CHAPTER 14: Making Noise with Audio for Android

Lastly, a call is made to .prepareAsync() on the MediaPlayer object. This brings us to the
concept of immediate versus asynchronous playback, so we should deal with that now.

Synchronous versus Asynchronous Playback
As a developer, you have one important choice to make when working with a data source of
a MediaPlayer object. The choice is all about what behaviour the user will experience from
the point in time the intent to playback is triggered, up to when the actual source data has
successfully been accessed and any related playback UI has been prepared. Fundamentally,
the choice is this: Should the application (and UI) block and wait until the data source has
been reached and playback is ready, or should this happen asynchronously allowing your
application to do other things in the time the preparation takes?

Android provides for both approaches through the .prepare() and .prepareAsync()
methods. The .prepare() method does all of its work synchronously, forcing the user to
wait until such time as it is ready to invoke the onPrepared() callback. This is usually fine for
resources or assets you know to be on the device, either packaged with .apk or available
on the filesystem. The .prepareAsync() method, as the name suggests, is an asynchronous,
non-blocking version for data source preparation. Control is returned immediately, and at
some later point the onPrepared() callback will eventually be invoked.

Using .prepareAsync() is principally designed to cope with off-device resources (though you
can use it for local items as well). As a developer, you never know when the end-point for a
URL is going to be available, how responsive it will be, and how all of that changes from any
one day to another. Adopting the asynchronous approach is desirable in the circumstances,
and it is a design pattern you will see recur throughout your Android development.

Playing at Last
With all of the changes so far described for AudioExample2, your application will eventually
receive the callback to onPrepared(), and the logic here is unchanged from the previous
unused example. For AudioExample2, onPrepared() is actually called once .prepareAsync()
from onStartAudio() completes, and a simple call to the MediaPlayer's .start() method
gets the music rolling.

There are more details and nuances to the various states in which your MediaPlayer objects
and related data source can exist. Rather than repeat the fine documentation here in the
Beginning Android book, feel free to take a look a the state diagram and flow of callbacks
and transitions on the Android Developer website at:

http://developer.android.com/reference/android/media/MediaPlayer.html

As before, there is nothing to show in the interface here on the printed page that lets you
experience the audio, so you should go ahead and run the example to hear for yourself.
I have included a link to a public domain mp3 file in the comment at the top of the
AudioExample2 package. It is to Gershwin’s Rhapsody in Blue, which is such a great track
that everyone should hear it… possibly through their own Android app!

www.it-ebooks.info

http://developer.android.com/reference/android/media/MediaPlayer.html
http://www.it-ebooks.info/

231CHAPTER 14: Making Noise with Audio for Android

Alternative Audio Playback Approaches
The Media package and MediaPlayer object are great for playing back audio, and even video as
we will discover in the next chapter. As good as they are, there are some limitation to MediaPlayer
in particular. As a developer you should be aware of the alternatives at your disposal.

The principal limitation of MediaPlayer is that it can only deal with one audio/video track
at a time. This is fine in many circumstances, but I’m sure you can think of a range of
applications where this will be a moderate to severe limitation.

For example, creating a game application that uses many sounds and music tracks, and a
desire to have these play simultaneously isn’t possible with MediaPlayer. The good news is
that Android provides other options for a variety of special-case playback needs.

Using SoundPool for Simultaneous Playback
While the MediaPlayer class has enormous power and capabilities, sometimes you are
after just the basics. In particular, you might want to only worry about playing back audio
tracks local to the device – whether packaged as a resource or asset, or from the file system
accessed directly or via FileDescriptor.

Enter the SoundPool class, which is a cut-down wrapper class that encapsulates a subset of
the MediaPlayer functionality. SoundPool has the following very useful features:

	Simple playback from on-device: Because SoundPool doesn’t need
to handle off-device complications, the more complex methods and
capabilities of MediaPlayer are removed.

	Straight-forward File/Resource Access: Resources or assets packaged
with the .apk are accessed through SoundPool's simple .load()
method for resources, or the activity context’s .getAssets().openFd()
method for gaining a FileDescriptor for the local asset. For the
filesystem-inclined developer, .load() has an overloaded version to take
a full filesystem filepath to access audio files directly.

	Simultaneous Playback: As a developer, you can load as many sounds
as you like, with one limitation we will come to shortly. If you want drums
and guitar, you can have both!

There are other benefits of SoundPool you can read about from the documentation, but there
is also one major limitation to be aware of. This limitation is the overall limit on the memory
footprint of all the audio souces loaded into a SoundPool instance. The total internal buffer for
all audio is capped at 1MB. This sounds like a reasonable amount, but there’s more to the
SoundPool storage limits than meets the eye.

SoundPool tries to do everything it can to make playback fast and efficient. One of
the approaches it takes is to expand audio from whatever compression format it was
compressed with into an uncompressed in-memory representation. This means the amount
of buffer used by your audio tracks depends on things like number of channels, bit rates,
and duration. You might be surprised how quickly you can fill the 1MB buffer.

If you can work within the buffer size limitation, then SoundPool is an excellent alternative for
simple local-to-device playback.

www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 14: Making Noise with Audio for Android

Going Fully-Asynchronous with AsyncPlayer
While MediaPlayer has support for asynchronous preparation of an audio source, much of
the other setup and management is synchronous or uses the main application thread to
manage click handling and related stop, start, and pause behaviour. Sometimes, audio is
really not the focus of your application. Maybe you just want some “background music” as a
flourish or minor addition.

When you want audio handled entirely in the background, with little need for direct control,
then the AsyncPlayer class is the perfect option. The AsyncPlayer is capable of dealing with
the same data sources as MediaPlayer, meaning it can use on-device or remotely-accessed
items.

In practice, AsyncPlayer makes your work simple by limiting your options and your control.
All you do is to first create the AsyncPlayer, and then ask it to play a selection. That’s it.
For example:

ap = new AsyncPlayer("AsyncPlayerExample");
ap.play(this, Uri.parse(<some filepath or URL location >), false,
 AudioManager.STREAM_MUSIC);

This snippet declares a new AsyncPlayer. Then it invokes the .play() method to set an
audio resource to be played. The resource wil be accessed asynchronously, and played
when it can be played, which is typically shortly after the call completes, but you have
no control over the precise timing of playback. You basically have no other control than
to specify what is to be played. AsyncPlayer doesn’t give you callbacks, lacks seekTo()
and other useful methods, and frees itself of other baggage. It just plays the audio track,
eventually.

AsyncPlayer does provide a .stop() method. You can guess what it does. It stops the
playback, and kills the background thread. It is the only management method provided.

Recording Audio with Android
The flipside of playing back audio is making your own, and recording it to share with others,
or to replay at a later time. Android supports a range of approaches to recording audio, to
suit various levels of complexity and fidelity.

Making Recordings with MediaRecorder
The MediaRecorder class is the complement to MediaPlayer introduced earlier in this
chapter. MediaRecorder gives you a set of useful features to capture sound and record it. To
show its capabilities, you will find one more variant of our on-going example application in
ch14/AudioExample3. Figure 14-5 shows the user interface, which incorporates buttons for
recording and playback.

www.it-ebooks.info

http://www.it-ebooks.info/

233CHAPTER 14: Making Noise with Audio for Android

Listing 14-4 gives the layout.xml for the UI. You should note that I have extended the
pattern from the earlier examples, with all of the buttons triggering the onClick() method.

Listing 14-4.  The AudioExample3 layout definition

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".AudioExample">
 
 <Button android:id="@+id/startRecordingButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Start Recording ♫"
 android:textSize="24sp"
 android:onClick="onClick"
 android:layout_above="@+id/stopRecordingButton" />
 

Figure 14-5.  The AudioExample3 UI for recording and playback

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

234 CHAPTER 14: Making Noise with Audio for Android

 <Button android:id="@+id/stopRecordingButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Stop Recording ♫"
 android:textSize="24sp"
 android:onClick="onClick"
 android:layout_centerVertical="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />
 
 <Button android:id="@+id/startButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Start Playback ♫"
 android:textSize="24sp"
 android:onClick="onClick"
 android:layout_below="@+id/stopRecordingButton" />
 
 <Button android:id="@+id/stopButton"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Stop Playback ♫"
 android:textSize="24sp"
 android:layout_below="@+id/startButton"
 android:onClick="onClick" />
 
</RelativeLayout>

The layout is more closely related to the original AudioExample project, as we don’t need an
EditText widget to take a URL. We have two new permissions that will be required in order
for our application to be able to first record the audio from a microphone, and then store the
recording on the device. Your AndroidManifest.xml will need the two following privileges:

<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

With these permissions in place, our Java logic can do the work required. Listing 14-5 shows
the Java code for AudioExample3.

Listing 14-5.  Java logic for recording and playing back audio

package com.artifexdigital.android.audioexample3;
 
import android.app.Activity;
import android.media.AudioManager;
import android.media.MediaPlayer;
import android.media.MediaRecorder;
import android.os.Bundle;
import android.view.View;
import java.io.File;
 

www.it-ebooks.info

http://www.it-ebooks.info/

235CHAPTER 14: Making Noise with Audio for Android

public class AudioExample3 extends Activity {
 private MediaRecorder mr;
 private MediaPlayer mp;
 private String myRecording="myAudioRecording";
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_audio_example3);
 }
 
 public void onClick(View view) {
 switch(view.getId()) {
 case R.id.startRecordingButton:
 doStartRecording();
 break;
 case R.id.stopRecordingButton:
 doStopRecording();
 break;
 case R.id.startButton:
 doPlayAudio();
 break;
 case R.id.stopButton:
 doStopAudio();
 break;
 }
 }
 
 private void doStartRecording() {
 File recFile = new File(myRecording);
 if(recFile.exists()) {
 try {
 recFile.delete();
 } catch (Exception e) {
 // do exception handling here
 }
 }
 
 mr = new MediaRecorder();
 mr.setAudioSource(MediaRecorder.AudioSource.MIC);
 mr.setOutputFormat(MediaRecorder.OutputFormat.DEFAULT);
 mr.setAudioEncoder(MediaRecorder.AudioEncoder.DEFAULT);
 mr.setOutputFile(myRecording);
 try {
 mr.prepare();
 } catch (Exception e) {
 // do exception handling here
 }
 mr.start();
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 14: Making Noise with Audio for Android

 private void doStopRecording() {
 if (mr != null) {
 mr.stop();
 }
 }
 
 private void doPlayAudio() {
 mp = new MediaPlayer();
 try {
 mp.setDataSource(myRecording);
 } catch (Exception e) {
 // do exception handling here
 }
 mp.setAudioStreamType(AudioManager.STREAM_MUSIC);
 try {
 mp.prepare();
 } catch (Exception e) {
 // do exception handling here
 }
 mp.start();
 }
 
 private void doStopAudio() {
 if (mp != null) {
 mp.stop();
 }
 }
 
 @Override
 protected void onDestroy() {
 super.onDestroy();
 if(mr != null) {
 mr.release();
 }
 if(mp != null) {
 mp.release();
 }
 }
 
}

By now you are familiar with many of the logic constructs shown here. The onClick()
method switches on the button clicked by the user, our playback and stop methods
are almost identical to before. Interestingly, if you examine the doStopRecording() and
doStopAudio() methods, you see exactly the same logic applied to the MediaRecorder
and MediaPlayer objects respectively. One of the neat parallels of the two classes is that
common goals are served by logically matching methods.

The main expansion of the Java code is through the doStartRecording() method. This
method starts by ensuring the File object, myRecording, is created afresh, deleting any
previously existing object in the process. Notably, we are relying on the java.io.File
package to provide basic file handling capabilities. This is one example of stepping outside

www.it-ebooks.info

http://www.it-ebooks.info/

237CHAPTER 14: Making Noise with Audio for Android

the bounds of Android to include other useful libraries. We will cover more of the capabilities
of using standard Java libraries in Chapter 20.

The code goes to create the MediaRecorder object named mr. Then the code invokes the
.setAudioSource() method to indicate that the application wants to access the MIC in order
to record sound. It is this call that necessitates the RECORD_AUDIO permission.

With the microphone accessed, a pair of calls are then made to select the desired output
container format for the audio, and the desired codec to use to encode the audio that will be
placed in the container. These are the .setOutputFormat() and .setAudioEncoder() calls. The
example shown takes the DEFAULT option in each case, which typically varies depending in
particular on the audio codecs supported by the hardware device and version of Android in use.

Some commonly-used output formats include:

	AAC_ADTS: The container popularlized by Apple and AAC audio format.

	AMR_NB: The AMR Narrow Band container type is recommended when
you would like maximum portability across Android devices.

	MPEG_4: MPEG4 container format is one of the most venerable, but also
the most likely to be misinterpreted on older platforms and devices.
Use with caution.

	THREE_GPP: Another recommended container format for broad Android
support.

	WEBM: The container synonymous for both Google’s much-advertised but
little-used WEBM format, and also the default used with Ogg encoded files

The topic of container formats and audio and video codecs could, and does, literally fill
entire books by themselves. I will wrap up this area by highlighting the popular codecs used
for audio (and video) encoding in Android. They are:

	AAC: (And also AAC_ELD and HE_AAC) audio codecs for the Advanced
Audio Codec standard. Widely supported by Apple and other devices
and platforms.

	AMR_NB: The actual audio encoder for AMR narrow band. While not
widely used outside Android, this codec provides broad support across
Android versions and devices.

	VORBIS: The Ogg Vorbis audio codec format

Returning to our examination of the .doStartRecording() method, the .setOutputFile() call
configures the Java File object previously created as the repository for the audio stream the
user will record.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_20
http://www.it-ebooks.info/

238 CHAPTER 14: Making Noise with Audio for Android

Lastly we come to the familiar pattern of calling .prepare() and .start() for our
MediaRecorder object. Just as the MediaPlayer object has to deal with a variety of obstacles
and delays, so too does the MediaRecorder. Whether it’s a slow local filesystem, or remote
end point that is not responding, the .prepare() method takes care of the work to allow your
recording to be stored, and returns control once all is in place. The call to .start() actually
begins capturing the audio input.

As with our earlier playback examples, a printed book cannot demonstrate audio capture.
So try the example for yourself to see how each of the pieces described works in action.

www.it-ebooks.info

http://www.it-ebooks.info/

239

Chapter 15
Locations and Mapping with
Android
If I asked you what the most common task anyone performs on a mobile device is, I’m
guessing that using maps would be high on your list of responses. Of course there are other
popular tasks—like watching videos, messaging friends, searching in general, and making
calls—but searching for locations and seeking directions to them are some of the most
common activities people perform.

From their inception in 2008, Android devices have supported and promoted a range of
options for working with locations and maps. The most obvious and most used service is
Google Maps, which not only exists as a standalone application on most (but not all) Android
devices, but which you can also use to power a range of Android components for your
own location-powered application. The main components available to you as a developer
are MapView and MapActivity, but you can also use other approaches to include alternative
mapping and location services and functionality into your applications.

Choosing Map Providers for Your Application
Over the course of the history of Android, mapping and location has grown from defaulting
to and being synonymous with Google Maps, to offering a rich category of technology with
several strong contenders from which you, as the developer, can choose. Each option has
benefits and drawbacks, so it is worth spending a moment to consider in which technology
you want to invest your time and effort.

www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 15: Locations and Mapping with Android

Google Maps
Although it is easy to think of Google Maps on Android as part of Android itself, this is not
the case. From early on in Android’s history, Google Maps was split from the platform and
now it exists as part of the separately-packaged Google APIs. The principal reason for this
split was the competing desire to “strongly encourage” handset manufacturers to license
Google’s bundle of higher-order applications and APIs with any Android device, and the
desire to promote and ship as many Android devices as possible, regardless of whether they
included separately-licensed Google applications.

Google Maps bundled within the Google APIs is very simple to install, since Google provides
it in the same repository as the normal Android SDK components and the other additional
APIs it offers. Fire up your SDK Manager from Android Studio, Eclipse, or straight from
the command line, and you will see the Google APIs as an install candidate, as shown in
Figure 15-1.

Figure 15-1.  Google APIs as an install option in SDK Manager

The main drawback to using the Google Maps APIs then immediately becomes apparent.
Because Google Maps is not part of the Android open source package, it is not licensed in
an open source fashion. Instead, the Google APIs (including Google Maps) carry a range of
much more commercial-style licensing, and I would strongly encourage you to actually read
the fine print and ensure that you are happy with its meaning and implications.

www.it-ebooks.info

http://www.it-ebooks.info/

241CHAPTER 15: Locations and Mapping with Android

If Google Maps will form part of the applications you plan to sell in the Google Play store
or elsewhere, be aware that there are cost implications that you need to factor in to your
calculations.

The OpenStreetMap Project
Steve Coast started the OpenStreetMap project as a small volunteer effort in 2004 as an
way to crowd-source map and location data. OpenStreetMap began in response to the
comparatively high cost of licensing map and location data at the time, but it has since
exploded to become one of the biggest examples of high-quality crowd-sourced data on the
Internet today. Thousands upon thousands of volunteers collect data as they travel to work,
home, school, and beyond, using every conceivable GPS-capable device you can imagine,
including Android phones.

Using OpenStreetMap in your projects is a little more convoluted, because the
OpenStreetMap project has not made any neatly-packaged library or Android API available
itself. However, because the data for OpenStreetMap is licensed using the Open Data
Commons Open Database License, anyone is free to take it and use it as long as they
provide the necessary attribution to the source. A number of people have packaged the
OpenStreetMap data into useful Android libraries that they maintain and share themselves.

The most popular third-party libraries that provide OpenStreetMap data and APIs for
Android are OpenTouchMap and TouchMapLight. You can find out more about these
packages on the OpenStreetMap developer wiki at http://wiki.openstreetmap.org/wiki/
Android#Developer_tools.

HERE/Ovi Maps
Now owned by a consortium of German car manufacturers, HERE Maps (formerly Ovi Maps)
was, for a long time, the mapping and location technology owned by Nokia. HERE Maps
provides rich map data and APIs for multiple platforms, including Android. You can source
the APIs and documentation from the HERE developer website at https://developer.here.
com/native-apis.

Like Google Maps, HERE comes with a commercial license with a range of legal implications
and obligations. If you plan to include HERE Maps in your applications, read and understand
the license. If you are in any doubt, seek professional legal advice.

Which Technology to Choose?
Although the ultimate choice of mapping and location technology is up to you, I only have
finite space in this book to cover the mapping and location topic. For now, I will delve
into the Google Maps APIs since they are the most commonly used by beginner Android
developers. But you now know you have options, and you can even include multiple
mapping APIs in your application. I know of at least one fitness tracking application that
does exactly that.

www.it-ebooks.info

http://wiki.openstreetmap.org/wiki/Android#Developer_tools
http://wiki.openstreetmap.org/wiki/Android#Developer_tools
https://developer.here.com/native-apis
https://developer.here.com/native-apis
http://www.it-ebooks.info/

242 CHAPTER 15: Locations and Mapping with Android

Preparing for Google Maps Development
In order to use Google Maps from any form of application (not just Android ones), you as the
developer need to source and use a Google API key and configure your Google account for
the Maps API. You also need to extract the necessary cryptographic signature for you map
widgets to use so they can reference your account and map data can flow. Let’s cover these
steps briefly now; much more information on this setup is available from the general Google
developer site at https://developer.google.com.

Creating Your API Project
Head to https://console.developers.google.com and create a new project under your
Google account. You can call the project anything you like, although you might want to think
about how this will relate to your maps application and any other applications you plan to
write that make use of Google’s web-based APIs.

Enabling a Maps API on Your Google API Project
From your new API Project’s dashboard, follow the link named “Enable APIs and get
credentials like keys.” Doing so displays a very large list of the ever-changing set of APIs
Google builds for all of its services. In fact, this list and its layout changes so frequently that
I’m going to save some paper and not include a screen shot that will be out of date within
days. Look for the “Google Maps Android API” entry, and enable that API for your project.
You will see a confirmation that looks like the response shown in Figure 15-2.

Figure 15-2.  Confirmation of Google Maps Android API enabled

www.it-ebooks.info

https://developer.google.com/
https://console.developers.google.com/
http://www.it-ebooks.info/

243CHAPTER 15: Locations and Mapping with Android

Once you have the Maps API enabled, you need some further cryptographic keys to ensure
that only your approved applications can use your API Project (and incur any costs that
might be triggered).

Getting the API Key
Press the Go To Credentials button to see the details for your proposed API key. Make sure
to enter a meaningful key name and nominate the Android package that you will be using for
this key. You can have many, many keys for different applications, so do not feel like this is
a once-in-a-lifetime naming event. For the example that follows later in the chapter, I have
used com.artifexdigital.android.mapsexample, as you can see if Figure 15-3.

Figure 15-3.  Confirming API key details

Once you are happy with the details, click the Create button.

Retrieving Your API Key
The developer console then presents the API key it is has generated for you as I have
partially shown in Figure 15-4.

www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 15: Locations and Mapping with Android

All current Google Maps API keys begin with the substring ‘AIza’, though I have obscured
my API key for the reasons I mentioned in the caution statement.

Building Your First Maps Application
After you’ve completed the tasks of setting up your Google developer account and API key,
you might be wondering how much different a maps-based application is from the regular
Android development you have learned so far. The good news is that conceptually you are
now on very familiar ground, with all the earlier topics in this book are perfectly applicable to
building maps-based applications.

However, there are a few nuances to be aware of when it comes to composing layouts and
choosing permissions and device sensor options. Let’s delve into all of these choices as we
build our first maps-based application.

Using MapActivity or FragmentActivity with MapView
Historically, in order for a MapView widget to display a map in your application, it needed to
be placed within the purpose-built MapActivity subclass that you’d have needed to define
from the base class provided with the Android framework. A MapActivity subclass acts to
do a bunch of the stitching behind the scenes, and thus it handles much of the logistics
surrounding the “tiles” that make up a Google map and their display within your layout.

With the advent of fragments, which I covered in Chapter 11, much more flexible ways of
working with maps were introduced that allowed a MapView to inhabit a fragment and retain
much of the behind-the-scenes magic that makes using maps so easy. Let’s explore this
approach so that you are armed with the latest and greatest way of building and working
with map-based applications.

We’ll now explore the contemporary approach in some example applications so you become
familiar with the current preferred development style and adapt it to your needs.

Figure 15-4.  API key presented by the Google Developer Console

Caution  Never share your API key with anyone. Even though it is nominally tied to your Android
package, and you notionally have a unique package namespace that prevents others from abusing
your API Project (and your credit card), sophisticated attacks can use this information to your detriment.
Keep your API key secret, and use it only where needed in manifest files, layouts, or resource files.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_11
http://www.it-ebooks.info/

245CHAPTER 15: Locations and Mapping with Android

Permissions and Manifest Settings for Maps
Regardless of whether you use an old-style or new-style approach to creating location-
aware applications with Google Maps, you need to include several permissions in your
manifest file. We cover permissions in more detail in Chapter 20, but for now, you need to
adhere to these recommendations.

At a minimum, your application needs android.permission.INTERNET and android.
permission.ACCESS_COURSE_LOCATION. The latter allows you to use the APIs that let Android
talk to on-device sensors and radios that can approximate location at a course level. This
includes cellular (tower) data and wi-fi signals, but not GPS. IF you wish to have GPS
location data included “under the hood” when Android satisfies various location-style API
calls, you need to include android.permission.ACCESS_FINE_LOCATION.

Strictly speaking, some maps-based functionality will work without these permissions,
but I’d strongly advise you to include them so that features that maps expose (directions,
journey time calculations) can work seamlessly for your users.

Using the external Google APIs library also requires a custom permission that it enforces
(more on this in Chapter 20 as well). You need to include the com.google.android.
providers.gsf.permission.READ_GSERVICES permission in order to be able to include and
use the Google APIs.

Your <application> element also needs to include a <meta-data> custom child element that
specifies version information for the Google API library that you will set as a minimum for
using your application. For example, when building applications to target the Google APIs
released as part of Google Play services for Android version 6.0 Marshmallow, the <meta-
data> element would look as follows:

<meta-data
 android:name="com.google.android.gms.version"
 android:value="8298000"
 />

The android:name value has not changed since Android KitKat 4.2, but the android:value
changes with Google API (and implicitly Google Play services) versions. The current value for
Android version 6.0 Marshmallow is 8298000,but you should check for updates periodically
and decide if you wish to increase your target API level, just as you do for the Android API
level, or whether you want to set a more flexible API level tolerance as I describe a little later
in the chapter.

The final entry that you should add to your manifest is the API key you generated for your
application from the Google Developers Console. This is another <meta-data> element, and
it takes the following form:

<meta-data
 android:name="com.google.android.maps.v2.API_KEY"
 android:value="PUT_YOUR_API_KEY_VALUE_HERE"
/>

You can also reference a key value stored as a string in the strings.xml resource file (e.g.,
android:value="@string/my_secret_maps_api_key").

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_20
http://dx.doi.org/10.1007/978-1-4302-4687-9_20
http://www.it-ebooks.info/

246 CHAPTER 15: Locations and Mapping with Android

Building the Layout for Your Map Application
Creating a map-based application with FragmentActivity is very similar to some of the other
activity helper subclasses you have used throughout the book, such as ActionBarActivity
for building an ActionBar-centric application, and ListActivity for building activities that
are dominated by a ListView widget and the data populating it.

Listing 15-1 shows the layout for a straightforward map application named MapsExample,
which you can find in the ch15/MapsExample folder. Note in particular the way in which the
SupportMapFragment (that implicitly houses a MapView for you) is referenced. Because our
desired map classes are provided by a separate library (the Google APIs) outside of the
Android API and its widget namespace, we need to use the fully-qualified package name
reference in the layout XML.

Listing 15-1.  The Layout for a Maps-based Activity

<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/map"
 tools:context=".MapsExampleActivity"
 android:name="com.google.android.gms.maps.SupportMapFragment" />

The com.google.android.gms.maps.SupportMapFragment takes care rendering the map
canvas for us and placing a MapView. You can add other normal attributes to this <fragment>,
although some of them may be overridden implicitly when the fragment enters various parts
of its lifecycle.

Adding Code for a Basic Map
The code for rendering a map is unbelievably simple, although there are a few traps that
you as a developer should watch out for; we will cover those shortly. Listing 15-2 shows the
bare-minimum code to draw a map and puts one embellishment upon it.

Listing 15-2.  Code to Render a Map and Add a Push-Pin for London

package com.artifexdigital.android.mapsexample;
 
import android.support.v4.app.FragmentActivity;
import android.os.Bundle;
import com.google.android.gms.maps.GoogleMap;
import com.google.android.gms.maps.SupportMapFragment;
import com.google.android.gms.maps.model.LatLng;
import com.google.android.gms.maps.model.MarkerOptions;
 

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

247CHAPTER 15: Locations and Mapping with Android

public class MapsExampleActivity extends FragmentActivity {
 
 private GoogleMap myMap;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_maps_example);
 createMap();
 }
 
 @Override
 protected void onResume() {
 super.onResume();
 createMap();
 }
 
 private void createMap() {
 �myMap = ((SupportMapFragment) getSupportFragmentManager().findFragmentById

(R.id.map))
 .getMap();
 myMap.addMarker(new MarkerOptions().position(new LatLng(51.5, 0)).title("London"));
 }
}

That is all it takes to render a basic map. You can run this code (from the ch15/MapsExample
folder) on an emulator that includes the Google APIs. If you haven’t already done so, you
should create at least one AVD based on the Google-API-enhanced device images.

In our onCreate() override, we perform the normal steps to restore any state and inflate
our layout. We then call the createMap() method to do the work of putting together the
map itself. We do this from onResume() as well to ensure our map is re-created if any
configurations change, especially those triggered from rotation.

The createMap() method uses the SupportMapFragment library and the regular
findFragmentById() method to find the ID of the com.google.android.gms.maps.
SupportMapFragment from our layout. The .getMap() call does the work of actually getting the
map tiles, rendering them, and so forth.

I have added one extra to this map, by using the .addMarker() method for a map to create
a Marker object and position it over London, in the UK. I did this by passing a latitude and
longitude pair as either integers or floats.

GOOGLE APIS, GOOGLE PLAY, ANDROID APIS, AND VERSIONING CHAOS

If you attempt to use an AVD based on the Level 22 APIs and Google APIs, you will encounter an issue that the
combination of those APIs throws at developers; in these cases, the maps library expects a later version of the
Google APIs than the device images provide. This is a convoluted problem but you can fix it. If you have this
problem while you are attempting to run the example application (or any application that includes the Google
APIs), you can spot it by looking for the following LogCat entry when the application fails to show a map:

Google Play services out of date. Requires 7095000 but found 6774470

www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 15: Locations and Mapping with Android

Instead of showing a map, your activity will probably show a warning about Play Services needing to be
updated and offer an update button. So save yourself some pain and use a Level 21- or Level 23-based AVD
instead. Even then, you will have instances when this problem can strike, mainly due to the frequent updates
Google pushes for Google Play services and the hoops a developer needs to go through to update those services
on an AVD. In those circumstances, the easiest solution is to change the Google Play services dependency to be
far more forgiving of different versions. If you encounter this problem with your AVD, open your build.gradle
file for the app module, and change the dependency for “play services” to the following:

compile 'com.google.android.gms:play-services:6+'

You’ll likely see a far more specific version to start with, such as 8.3.0. By using the value 6+, you are telling
gradle to tolerate any build of Google Play services from the last few years.

When run, the MapsExample application shows a simple map, as you can see in Figure 15-5.

Figure 15-5.  The Basic MapsExample application running

After all the effort of setting up your API keys, and adding a little code, you have maps at
your disposal.

www.it-ebooks.info

http://www.it-ebooks.info/

249CHAPTER 15: Locations and Mapping with Android

This looks deceptive. Problems can and do crop up due to the lack of the Google APIs on
a device, and that means it is prudent to add some checks to your code to handle cases in
which the map object is null because the original instantiation failed as a result of missing
APIs. Listing 15-3 shows a slightly modified version of the stock Google example that is
created for you if you use the Google Maps template when you create a new project in
Android Studio or Eclipse.

Listing 15-3.  Simple Map Code with Missing-API Handling

package com.artifexdigital.android.mapsexample;
 
import android.support.v4.app.FragmentActivity;
import android.os.Bundle;
 
import com.google.android.gms.maps.GoogleMap;
import com.google.android.gms.maps.SupportMapFragment;
import com.google.android.gms.maps.model.LatLng;
import com.google.android.gms.maps.model.MarkerOptions;
 
public class MapsExampleActivity extends FragmentActivity {
 
 private GoogleMap myMap; // Might be null if Google Play services APK is not available.
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_maps_example);
 setUpMapIfNeeded();
 }
 
 @Override
 protected void onResume() {
 super.onResume();
 setUpMapIfNeeded();
 }
 
 private void setUpMapIfNeeded() {
 // Do a null check to confirm that we have not already instantiated the map.
 if (myMap == null) {
 // Try to obtain the map from the SupportMapFragment.
 �myMap = ((SupportMapFragment) getSupportFragmentManager().findFragmentById

(R.id.map))
 .getMap();
 // Check if we were successful in obtaining the map.
 if (myMap != null) {
 setUpMap();
 }
 }
 }
 
 private void setUpMap() {
 myMap.addMarker(new MarkerOptions().position(new LatLng(51.5, 0)).title("London"));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 15: Locations and Mapping with Android

Here I split the initial myMap object setup from the other code that adds the marker. In
setUpMapIfNeeded(), Google’s example code shows the typical way to test if the GoogleMap
object is still null after attempting the .getMap() call; it then shows how to skip any
additional map method calls if the object is null (because they would fail). In general, you
should add this kind of protection to your code so the rest of your application logic can
continue to function on devices that lack the Google APIs.

Obviously you can add a lot more to the map to suit your every need, so let’s cover a range
of the most popular options.

Adding Flair and Features to Your Maps
The market pin added to the map in the MapsExample application is one of the familiar
flourishes that you have no doubt experienced in your own use of maps. There are many
more tricks and treats that you can include when devising functionality for your maps. You
can configure many of these options in the layout file and/or in your Java code. I will mix and
match to get you comfortable with both approaches for some of the most common additions
to maps.

Zoomin’
The initial map depicted in Figure 15-5 shows London from the aerial perspective of half of
planet Earth. This is probably not so useful if, for instance, you are looking for the nearest
supermarket. You can add zoom controls to your map through the getUiSettings().
setZoomControlsEnabled() method. This takes a simple Boolean, which you set to true to
enable zoom controls.

True North
Before the advent of spoken turn-by-turn directions in your favorite mapping applications,
a good percentage of users used the compass on a map to help orientate themselves. You
can add the compass to your map using another of the getUiSettings() submethods—the
.setCompassEnabled() option, which also takes a Boolean.

Toolbars and theMy Location Button
You can enable other normal features, like the maps toolbar and the My Location
button, by using additional getUiSettings() calls. The setMapToolbarEnabled() and
setMyLocationButtonEnabled() methods do exactly what their names describe.

www.it-ebooks.info

http://www.it-ebooks.info/

251CHAPTER 15: Locations and Mapping with Android

Shakin’ It!
There is more than one way to interact with a map on an Android device. One of the more
interesting ways is to use gestures and device movement to control maps and related
information. Additional getUiSettings() calls can handle shakes, rattles, and rolls to let your
user play with your maps. Some of the major options are as follows:

	setRotateGesturesEnabled(): This method allows users to use a two-
finger spin gesture to have the compass orientation rotate for your map.

	setScrollGesturesEnabled(): With this method, swiping up and down
on the map allows scrolling through (virtual) space.

	setTiltGesturesEnabled(): This is particularly useful with building map
types and satellite/street-view maps. This alters the viewer’s perspective
from the default bird’s eye view to one of their own choosing based on
the titling gesture they use.

	setZoomGesturesEnabled(): The infamous “pinch to zoom” feature. This
is very handy for the user, and was once a minefield of patent litigation
between Google and one other notable mobile technology company.

Changing Map Type
The default map type for MapView objects in fragments or standalone is very useful for many
situations. But there are times when seeing building outlines, real satellite imagery, or some
hybrid combination of map type is more suited for the use you have in mind.

Your map object includes the .setMapType() method to indicate which of the supported map
types you wish to display. This takes an integer value, with these constants provided as part
of the GoogleMap package:

	MAP_TYPE_NORMAL: The default cartoon-style map with roads, parks,
street names, and so on.

	MAP_TYPE_SATELLITE: Uses the satellite imagery from Google Earth to
show real images of the map area. This includes the place names, street
names, and so on from a normal map.

	MAP_TYPE_TERRAIN: The terrain view shows all of the geographic features
of your map area, but it omits label overlays like street names by default.

	MAP_TYPE_HYBRID: The mix of everything—satellite imagery, street
outlines and names, terrain features, the works!

Your maps are of type MAP_TYPE_NORMAL by default. You can change types at any time.

www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 15: Locations and Mapping with Android

Listeners for Every Conceivable Type of Map Interaction
There are no fewer than 10 different listeners you can configure to interact with maps
and user actions. These range from the straightforward—such as the map equivalent of
an onClickListener, named, as you might suspect, the onMapClickListener—to esoteric
options like the onIndoorStateChangeListener for dealing with transitions to and from
indoor maps.

As with other listeners, you can configure a range of responses to deal with the events the
listener captures. In a straightforward example, we can register an onMapClickListener with
the .setOnMapClickListener() method like this:

myMap.setOnMapClickListener(this);

This sets the fragment to be its own handler and requires us to extend the class definition to
implement OnMapClickListener and to implement an onMapClick() method to deal with the
associated callback. We could structure a very simple example as follows:

public void onMapClick(LatLng point) {
 myMap.animateCamera(CameraUpdateFactory.newLatLng(point));
 Toast.makeText(getApplicationContext(), point.toString(),
 Toast.LENGTH_LONG).show();
}

The calls of note here include using the animateCamera() method to move the map to the
point the user clicked, and using the LatLng object passed to the call back to populate a
Toast message that tells the user what latitude and longitude they clicked.

Even More Map Options
There are so many more options for maps that they could fill a book. In fact, several books
have been written just on Google Maps APIs and using them with Android. I would suggest
Beginning Google Maps API 3, by Gabriel Svennerberg (Apress, 2010). Rather than turn
this book into a clone of Gabriel’s book, let us finish by looking at an updated MapsExample2
application that includes all of the preceding options and a few more (see Listing 15-4).

Listing 15-4.  Implementing a Range of Map Features in MapsExample2

package com.artifexdigital.android.mapsexample;
 
import android.support.v4.app.FragmentActivity;
import android.os.Bundle;
import android.widget.Toast;
import com.google.android.gms.maps.CameraUpdateFactory;
import com.google.android.gms.maps.GoogleMap;
import com.google.android.gms.maps.SupportMapFragment;
import com.google.android.gms.maps.model.LatLng;
import com.google.android.gms.maps.model.MarkerOptions;
 

www.it-ebooks.info

http://www.it-ebooks.info/

253CHAPTER 15: Locations and Mapping with Android

public class MapsExampleActivity extends FragmentActivity implements GoogleMap.
OnMapClickListener {
 
 private GoogleMap myMap;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_maps_example);
 setUpMapIfNeeded();
 }
 
 @Override
 protected void onResume() {
 super.onResume();
 setUpMapIfNeeded();
 }
 
 private void setUpMapIfNeeded() {
 if (myMap == null) {
 // Try to obtain the map from the SupportMapFragment.
 �myMap = ((SupportMapFragment) getSupportFragmentManager().findFragmentById(R.

id.map))
 .getMap();
 // Check if map is found
 if (myMap != null) {
 createMap();
 }
 }
 }
 
 private void createMap() {
 myMap.addMarker(new MarkerOptions().position(new LatLng(51.5, 0)).title("London"));
 myMap.getUiSettings().setZoomControlsEnabled(true);
 myMap.getUiSettings().setCompassEnabled(true);
 myMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);
 myMap.setOnMapClickListener(this);
 }
 
 @Override
 public void onMapClick(LatLng point) {
 myMap.animateCamera(CameraUpdateFactory.newLatLng(point));
 Toast.makeText(getApplicationContext(), point.toString(),
 Toast.LENGTH_LONG).show();
 }
}

You can run this example yourself from the ch15/MapsExample2 folder (do not forget to
substitute your own API key); you should see the results that appear in Figure 15-6.

www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 15: Locations and Mapping with Android

Summary
This chapter provided you with a very fast crash course on mapping and location for
Android, as well as much of the background and history on how today’s state-of-affairs came
to be. If you want to learn more, the developer.google.com and developer.android.com sites
have copious information on incorporating maps, and the OpenStreetMap and HERE Maps
sites include even more. Happy mapping!

Figure 15-6.  The MapsExample2 application showing our maps enhancements

www.it-ebooks.info

http://www.it-ebooks.info/

255

Part IV
Working with Resources
and Services

www.it-ebooks.info

http://www.it-ebooks.info/

257

Chapter 16
Weaving the Web
with Android
Your journey through Android’s capabilities has already taken you through many of the
widgets and UI elements that form your basic toolkit for building applications. It has also
introduced you to device capabilities that will bring features and functionality to your
applications. There is, however, an 800-pound gorilla in the Android application development
room, and that is the Internet.

Whether you want to bring HTML-based interfaces to your application, use services and
capabilities on the Internet, or just work to download files and data to your application from
a web server, Android has you covered. In this chapter, I explore three key building blocks
for incorporating Internet-based data and features into your Android applications: the
WebView widget for displaying web pages, the AndroidHttpClient and HttpURLConnection for
richer manipulation of web services, and the DownloadManager for working with data in bulk.

Working with the WebView Widget
You can think of the WebView widget as being like most other UI components in Android—it
provides a particular kind of UI experience for relevant data and functionality. With the
appropriate layout in place, you can then drive a web-browser-like display to show the
content of a page you specify. I say “web-browser-like” because under the hood, Android is
using the WebKit plumbing that forms the core of the Chrome browser to provide the parsing
and rendering capabilities needed to show web content. Interestingly, Chrome for Android
itself uses a separate parsing and rendering engine, just to keep things a little complicated.

There are some limitations and additional points for you to consider when using a WebView
widget, so let’s explore an example I can use as the basis for covering these.

www.it-ebooks.info

http://www.it-ebooks.info/

258 CHAPTER 16: Weaving the Web with Android

Creating a Simple Application with a WebView
You can place a WebView in a layout much as you would any other component, either by itself
or as one of a number of widgets in your activity. Listing 16-1 shows a straightforward layout
where the WebView is the only widget, and it takes pretty much all of the available screen
space.

Listing 16-1.  A Layout Incorporating a WebView

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".WebViewExample">
 
 <WebView
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:id="@+id/webView" />
 
</RelativeLayout>

No surprises here, although at this point it is worth flagging the first limitation of a WebView.
If you look at the android:layout_height attribute, you can see I have chosen match_parent.
This is the normal recommendation for WebView widgets. You can choose wrap_content, but
there are known issues with both the WebView and its parent being set to wrap_content that
result in incorrect sizing and scaling—and that basically result in a poor UI.

With a working layout defined, some Java logic is required to inflate the layout and do something
useful with the WebView. The WebViewExample sample application in the ch16/WebViewExample
folder uses the Java shown in Listing 16-2.

Listing 16-2.  The WebViewExample Implementation

package com.artifexdigital.android.webviewexample;
 
import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;
 
public class WebViewExample extends Activity {
 WebView myWV;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_web_view_example);
 

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

259CHAPTER 16: Weaving the Web with Android

 myWV = (WebView)findViewById(R.id.webView);
 myWV.loadUrl("http://www.artifexdigital.com");
 }
  
}

Such a small amount of code is capable of a great deal, depending on what the target
URL provided in the .loadUrl() call returns. The myWV object is an instance of the android.
webkit.WebView class, and that is worthy of comment. The Internet and Android’s WebKit
plumbing are considered first class citizens (apologies for the “class” joke), such that WebKit
has its own highest-level package in Android.

In other respects, the onCreate() method is quite simple, defining the myWV object for later
use, inflating the layout—including the WebView defined—and retrieving the ID of the WebView
for the instantiation call. That puts the code at the point where .loadUrl() can be called.

Normally .loadUrl() is called using the incarnation that takes a simple string parameter.
There is a variant of .loadUrl() that takes both the desired URL and a second parameter as
a String collection of additional HTTP headers to use.

Simple and Not-So-Simple WebView Security
At this point the WebViewExample application is almost ready to run. What remains is for us
to add the necessary permissions to the manifest to allow access to the Internet. Providing
the permission is as simple as adding the <uses-permission> option for the android.
permission.INTERNET option in our AndroidManifest.xml file, as shown in Listing 16-3.

Listing 16-3.  Adding the Permissions Needed to Access URLs through WebView

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.artifexdigital.android.webviewexample" >
  
 <uses-permission android:name="android.permission.INTERNET" />
 
 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".WebViewExample"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 
</manifest>

www.it-ebooks.info

http://www.artifexdigital.com/
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

260 CHAPTER 16: Weaving the Web with Android

Without the android.permission.INTERNET permission in place, your application throws
a range of unpredictable errors depending on the version of Android on which you run
it and the API levels specified in the manifest file. Modern versions of Android, including
Marshmallow 6.0 and Lollipop 5.0, show the error depicted in Figure 16-1.

Figure 16-1.  Errors showing in later versions of Android when the INTERNET permission is missing

You will probably confuse most lay users with a message like net:ERR_CACHE_MISS. Even
somewhat web-savvy users might be mistaken and think the problem is with caching or
something unrelated to permissions. You are also unlikely to actually ship an application with
this problem, since hopefully you test your applications before you ship them and when you
do, you notice the web page you are requesting is definitely not shown.

With the correct permissions in place in your manifest file, the WebViewExample application
should behave as expected and actually load the page. Figure 16-2 shows the successful
loading and rendering of the target URL.

www.it-ebooks.info

http://www.it-ebooks.info/

261CHAPTER 16: Weaving the Web with Android

Android’s security regime with WebView does not end with the android.permission.INTERNET
setting. If you look at both Figures 16-1 and 16-2, you should notice that the WebView might
have used the WebKit browser underpinnings to render output, but some other notable parts
of typical web browsers are missing.

For instance, there is no address bar shown in the WebViewExample application. This is the
default with WebView widgets; it prevents the WebView from being rerouted to other URLs
unless you explicitly override this behavior. You will also notice there are no scroll bars. This
is not a security measure, but rather a pragmatic interface choice on devices with no pointer.
Instead, users of your application can scroll by touch-and-drag with their finger.

By default, Android also prohibits JavaScript execution in a WebView. You can change this
restriction by invoking the method getSettings().setJavaScriptEnabled(true) on the
WebView object.

Figure 16-2.  Successfully loading a URL with WebView

www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 16: Weaving the Web with Android

GOOGLE, ANDROID, AND WEBVIEW SECURITY FLAWS

The history of security issues with WebView goes back some time, with a number of instances mentioned
widely online. Google’s current practice is to patch WebView bugs promptly, which is in line with its overall
security practice. Unfortunately, the combination of working through many handset manufacturers who do
not use Google’s patching priorities and historic issues with poor upgrade paths means that older versions of
Android have unpatched WebView bugs. You can help yourself protect your code and your users in a variety of
ways, but it is worth keeping in mind Google’s official stance on WebView for older pre-Android 4.4 devices:

“If the affected version [of WebView] is before 4.4, we generally do not develop the patches ourselves,
but welcome patches with the report for consideration. Other than notifying OEMs, we will not be
able to take action on any report that is affecting versions before 4.4 that are not accompanied with
a patch.”

How’s that for commitment to the long tail of Android versions? Android Lollipop 5.0 and Marshmallow 6.0
benefit from a rearchitecting of WebView by Google; in fact, Google is now releasing WebView as a stand-alone
application so that, in the future, it can be updated separately from the Android version of the device.

Building HTML Layouts with WebView
An alternative to simply pointing your WebView to a URL is to provide the HTML that can
be rendered within the WebView widget yourself and load it so it can be used with the
loadData() method. Although you may see this as duplicating capabilities, it opens up a
range of possibilities. You can, for instance, use HTML fragments to draw UI elements that
stock Android widgets do not cover. You can also use it to display data fetched from a file,
a database, or somewhere else online that is too big or otherwise cumbersome to bundle
at application install time. And, of course, you can go so far as to design the entire layout of
your application in HTML. There are pros and cons to this approach, which are argued about
extensively in many fine books and websites. I’ll spare you a long diatribe on this point and
assume you can judge for yourself if HTML is a useful interface design approach.

The loadData() method has several overloaded forms. The simplest version takes three
parameters, all of which are string values.

	The HTML content, which is parsed and rendered to display in the
WebView.

	A MIME type for the content, which is almost always text/HTML.

	The encoding used for the HTML content. UTF-8 is a safe option in
almost all cases.

www.it-ebooks.info

http://www.it-ebooks.info/

263CHAPTER 16: Weaving the Web with Android

It is easy to experiment with HTML-based layouts assuming you have some knowledge of
HTML. I have adapted the original WebViewExample application to replace the loadUrl() call
with a loadData() call, which you can find in the ch16/WebViewExample2 folder. The layout for
WebViewExample2 is exactly the same as it was for WebViewExample. The Java code differs, as
shown in bold in Listing 16-4.

Listing 16-4.  The Modified WebViewExample2 Using loadData()

package com.artifexdigital.android.webviewexample2;
 
import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;
 
public class WebViewExample2 extends Activity {
 WebView myWV;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_web_view_example2);
 
 myWV = (WebView)findViewById(R.id.webView);
 myWV.loadData("<html><p>A WebView HTML Page</p></html>",
 "text/html",
 "UTF-8");
 }
 
}

Here you can see the HTML payload provided to the loadData() method. Although the
example HTML is simple, you can use almost all of the HTML5 elements with only a few
minor exceptions. These include some quirks and limitations for <canvas> and the HTML5
video viewport extensions. (The Android developer website has more details on the
particular supported behavior.) For easier reading, I have also written the HTML payload
directly into the Java method call. In reality, it is far better to create string resources for your
HTML in your strings.xml file and refer to them by ID.

When you run the WebViewExample2 application, you should see output similar to that shown
in Figure 16-3.

www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 16: Weaving the Web with Android

As with the earlier WebViewExample application, there is no address bar and no scroll bars. As
mentioned earlier in the chapter, a user can scroll using swipe gestures on the screen.
As a developer, you also have a range of programmatic controls over scrolling and web page
behavior, via methods on the WebView object such as these:

	goBack(), which is analogous to hitting the back button in a browser,
sends the user back to the previous page visited in the WebView.

	goForward() moves forward one page in the history of pages visited in
the WebView, assuming at least one page forward has been visited.

	canGoBack() returns a boolean indicating if the WebView has any history,
and therefore whether goBack() would do anything.

	canGoForward(), like canGoBack(), returns a boolean indicating if there’s
a “future history” to which the WebView can progress.

	reload() reloads the content of the WebView from the source
(HTML or URL).

	clearCache() removes all cached items from the WebView’s inventory of
form entries, images, and so on.

	clearHistory() clears the history of URLs visited within the WebView object.

Figure 16-3.  HTML rendered in a WebView using loadData( )

www.it-ebooks.info

http://www.it-ebooks.info/

265CHAPTER 16: Weaving the Web with Android

Many more methods are available for WebView; an exhaustive list is at http://developer.
android.com/reference/android/webkit/WebView.html.

UI-less Internet Interaction with Android
Displaying web content in a WebView widget is a common way of integrating various Internet-
based sources into Android applications. However, there are many cases in which an
application’s interaction with a website or other Internet resource is all about consuming
data, or accessing web-exposed APIs, such as SOAP web services or RESTful JSON API
end points. In these cases, functionality and interaction are all possible without any UI to
speak of, although the results of these actions probably get communicated to the user in
some way. For instance, a music playlist might be updated, new features of a game might be
exposed, or the results of an online purchase might be displayed.

Whatever the need, Android provides a multitude of techniques so you can interact with
the Internet without a UI. The three principle approaches are via the Apache HttpClient
interface, the AndroidHttpClient object, and the HttpURLConnection object.

Why Multiple Approaches to Web Interaction?
As is the case when they discuss any technology that is entering its fourth or fifth decade
(depending on how you count), many people have differing opinions on the “best” way to
incorporate Internet capabilities into software and libraries developers use. Each package,
library, or class Android supports has its benefits and drawbacks, and you will not find a
consensus on which is “best” to use. The following sections discuss the three most popular
approaches at a high level.

The Apache HttpClient Approach
The venerable approach to Internet connectivity in Android is the Apache HttpClient. As
the name suggests, this was sourced from an Apache-sponsored project and featured in the
earliest Android devices. As far back as Android 2.2 Froyo, Google began signaling that this
interface’s days were numbered when it introduced the parallel AndroidHttpClient object.
Most of the capabilities you would expect are present with HttpClient-derived objects and
the related HttpRequest and HttpResponse implementations, which allows you to conduct
common Internet-enabled tasks.

These are the main issues with using Apache HttpClient:

	No default handing of SSL; the interface instead relies on you as the
developer to do the hard work of certificate management.

	Single-threaded by default, with significant overhead to work in a
multithreaded Android application.

	Marked as deprecated from Android API level 22 on (and will be
removed from the Android SDK at some imminent point).

www.it-ebooks.info

http://developer.android.com/reference/android/webkit/WebView.html
http://developer.android.com/reference/android/webkit/WebView.html
http://www.it-ebooks.info/

266 CHAPTER 16: Weaving the Web with Android

You can still use Apache HttpClient as your Internet connectivity approach today, and it is
a good option if you are targeting the many older Android 2.2 Froyo and 2.3 Gingerbread
devices on the market. But be aware that its days are numbered, and other approaches
target Android devices of all vintages.

The AndroidHttpClient Approach
With the release of Android 2.2, Google introduced the AndroidHttpClient as its preferred
approach to HTTP-and-friends interaction. Bundled as part of the android.net.http package,
it is an optimized implementation of DefaultHttpClient that tries to help you, the developer,
make good design choices. The following are among the many things it does for you:

	Integrated SSL handling with Android certificate management
capabilities, which means you do not need to handcraft the certificate
handling seen in Apache HttpClient.

	Better threading capabilities and the “benefit” of enforced performance
controls; it provides these by insisting that all activity happens off the
main UI thread. We will explore this more later in the chapter.

	Control over various HTTP connection and header attributes, such as
the user agent string.

	Various utility methods to handle more elaborate HTTP payloads (GZIP,
for example), date manipulation, and more.

One of the drawbacks for AndroidHttpClient is the loss of default cookie handling. Instead
of seamlessly caching cookies for the life of the object, as a developer, you need to use
a HttpContext object to persist cookies. The other principal thing to consider is whether
only targeting devices running Android 2.2 or later suits you. As of this writing, this decision
would encompass around 70 percent of the Android devices in circulation; but if you are
aiming for all 100 percent, there are other options.

The HttpURLConnection Approach
If I told you there was a “venerable” approach to Internet integration in your application that
was also as future-proof as Android itself, would you be interested? I hope the answer is
“yes,” because that is what we explore next. The Internet predates Android by decades,
and Java has provided a variety of approaches to working with Internet-based resources
for many years longer than Android has existed. The HttpURLConnection package has been
a mainstay of Java for a while, and because of Android’s Java underpinnings, it is also
available as a viable option to help you develop Internet-powered applications.

HttpURLConnection has advantages and disadvantages, just as HttpClient and
AndroidHttpClient have. For instance, Android enforces all network activity on non-main-UI
thread code. But its universality in being available for all versions of Android, and, of course,
wherever else Java is used, make it powerful and attractive. A huge number of examples
of using HttpClient and AndroidHttpClient are online and in other books, including the
Android Developer website. To help you expand to cover the fullest possible range of
approaches to Internet interaction, I’ll now explore an example with HttpURLConnection so
you can judge for yourself when you are comparing using this to those other examples.

www.it-ebooks.info

http://www.it-ebooks.info/

267CHAPTER 16: Weaving the Web with Android

Building a JSON-based Application with HttpURLConnection
The advent of JavaScript Object Notation, or JSON, has somewhat revolutionized
many forms of application development. Many databases now support it natively, many
developers use it to describe objects, and many APIs—particularly REST-based APIs on the
Internet—use it as the data format for sending information to and fro. You could use JSON
from APIs like this in any number of ways, but how would you fetch and send JSON to these
distant REST APIs? A tour through the HttpUrlConnectionExample application should shine a
light on the mechanics.

Layout or No Layout?
As mentioned earlier in the chapter, although you will want some form of UI for the user, such
as a WebView, you don’t necessarily want to show UI components exposing the plumbing
of how a web connection goes about its work (regardless of library or package in use). The
layout for our HttpUrlConnectionExample application is very straightforward, and you can
see it in Figure 16-4.

Figure 16-4.  The UI provided as a courtesy for the HttpUrlConnectionExample application

www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 16: Weaving the Web with Android

I will spare you the layout XML file—as you can imagine, it is quite sparse. Check the
ch16/HttpUrlConnectionExample folder if you are curious. The real activity in the application
happens soon after launch, when all the promise of the HttpURLConnection approach is
harnessed.

More Than Just a Series of Tubes
The plumbing for our application demonstrates the essential pieces of the
HttpURLConnection technique. Listing 16-5 covers the Java logic for the example.

Listing 16-5.  The Java Code Powering the HttpUrlConnectionExample Application

package com.artifexdigital.android.httpurlconnectionexample;
 
import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.widget.Toast;
 
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
 
public class HttpUrlConnectionExample extends Activity {
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_http_url_connection_example);
 
 //invoke an asyncTask-based object to do work off main UI thread
 //note the blank string placeholder, for easy conversation to take user input
 new InternetOperation().execute("");
 }
 
 private String fetchUrl(String url) {
 String urlContent = "";
 StringBuilder myStrBuff = new StringBuilder();
 
 try{
 URL myUrl = new URL(url);
 HttpURLConnection myConn = (HttpURLConnection)myUrl.openConnection();
 myConn.setRequestProperty("User-Agent", "");
 myConn.setRequestMethod("GET");
 myConn.setDoInput(true);
 myConn.connect();
 

www.it-ebooks.info

http://www.it-ebooks.info/

269CHAPTER 16: Weaving the Web with Android

 InputStream myInStrm = myConn.getInputStream();
 BufferedReader myBuffRdr = new BufferedReader
 (new InputStreamReader(myInStrm));
 
 while ((urlContent = myBuffRdr.readLine()) != null) {
 myStrBuff.append(urlContent);
 }
 
 } catch (IOException e) {
 // do error handling here
 e.printStackTrace();
 }
 
 return myStrBuff.toString();
 }
 
 private class InternetOperation extends AsyncTask<String, Void, String> {
 
 @Override
 protected void onPreExecute() {}
 
 @Override
 protected String doInBackground(String... params) {
 String myJson = "";
 myJson = fetchUrl("http://api.openweathermap.org/data/2.5/weather?q=London,uk");
 return myJson;
 }
 
 @Override
 protected void onPostExecute(String result) {
 int duration = Toast.LENGTH_LONG;
 
 Toast toast = Toast.makeText(getApplicationContext(), result, duration);
 toast.show();
 }
 @Override
 protected void onProgressUpdate(Void... values) {}
 }
}

That might seem like a lot of code for what I promised was a simple example, but in reality, it
is easy to digest. The action happens across three distinct parts of the code.

The onCreate() method has very little content. It inflates a layout that is not strictly needed
but that is helpful in this example as a container for showing some of the trace information
about what happens in other parts of the code. The last line of code in onCreate() is the
secret sauce that drives the rest of the fetching and display of a URL and its content. Here,
I create a new InternetOperation object, which is a subclass of the AsyncTask<> base class
Android provides for invoking additional threads.

www.it-ebooks.info

http://api.openweathermap.org/data/2.5/weather?q=London,uk
http://www.it-ebooks.info/

270 CHAPTER 16: Weaving the Web with Android

Jumping to the InternetOperation implementation itself, I have chosen the overloaded form
of AsyncTask<> that takes a String collection for the doInBackground() phase and also uses
a string for onPostExecute(). We pass the URL provided in the first String to the fetchUrl()
method—which I cover shortly—and pass back the returned payload in the results member
of InternetOperation (inherited from the parent class). The onPostExecute() method takes
the result and creates a toast to display that onscreen. Obviously this is a little contrived,
since in real life, you would likely want to parse the resulting payload from the URL,
interrogate the HTTP return code (200 for OK, 404 for not found, and so on), and decide
whether to render the response as a web page, a transaction result, or as some other action.

The fetchUrl() method does the bulk of the work preparing for the URL retrieval; it performs
the actual work of contacting the URL and streaming and processing its content into a
String object to return to the caller. The conceptual order of the code is as follows:

1.	 Define a new URL object and assign the user-provided URL String to it.

2.	 Define a new HttpURLConnection object, named myConn, for the
URL object.

3.	 Set the desired paramaters and attributes that the connection should
have and use. This is done with various calls to myConn’s methods.

4.	 myConn.setRequestProperty() can set a wide range of HTTP-related
values, and in the case shown, it adds a blank User-Agent string for
identifying the client application. Obviously you can use any User-Agent
string you like to mimic well-known browsers, crawlers, and so on.

5.	 myConn.setReqeustMethod() sets the HTTP verb to GET. This implies
that various other settings are included in the header of the HTTP
call when it is made, rather than the payload being used as it is in the
POST method. This is a much larger topic in its own right; you’ll find
plenty of additional information online.

6.	 myConn.setDoInput() is set to true, which flags to the server that the
response body will be consumed and used. There are times when
you wish to set this to false to indicate that only the header of the
response is important and that performance can be improved by
discarding the response body.

7.	 With the HttpURLConnection properties set as desired, invoke
.connect() to actually connect to the URL and see what its server
does in response.

8.	 The response is gathered via a BufferedReader and InputStream for
ultimately returning as a string of the web page content or as a server
response.

www.it-ebooks.info

http://www.it-ebooks.info/

271CHAPTER 16: Weaving the Web with Android

Many, many more options and methods are available to HttpURLConnection objects, and
Oracle, as the current “owner” of Java, provides an extensive set of documentation on them
at http://docs.oracle.com/javase/<insert your java version here>/docs/api/java/net/
URLConnection.html .

Running HttpUrlConnectionExample and Its Results
With the logic explained, and the world’s sparsest UI in place, running the code is as easy
as launching it in your chosen AVD. For this example, I have included a URL for publicly
available weather data from the Open Weathermap project.

http://api.openweathermap.org/data/2.5/weather?q=London,uk

If you check this URL in any browser, you should see a resulting JSON object returned as
the “web page.” The content should look something like Listing 16-6 (depending on the day
you look for the weather). Note that I have compressed the normally white-space-heavy
JSON layout to save space.

Listing 16-6.  The JSON Payload Returned from Open Weathermap

{"coord":{"lon":-0.13,"lat":51.51},"weather":[{"id":801,"main":"Clouds",
 "description":"few clouds","icon":"02d"}],"base":"stations","main":
 {"temp":288.59,"pressure":1037,"humidity":82,"temp_min":285.37,
 "temp_max":291.48},"visibility":10000,"wind":{"speed":4.1,"deg":80},
 "clouds":{"all":20},"dt":1443432329,"sys":{"type":1,"id":5089,
 "message":0.0192,"country":"GB","sunrise":1443419776,"sunset":1443462305},
 "id":2643743,"name":"London","cod":200}
 
 return "{\"coord\":{\"lon\":-0.13,\"lat\":51.51},\"weather\":
 [{\"id\":801,\"main\":\"Clouds\",\"description\":\"few clouds\",
 \"icon\":\"02d\"}],
 \"base\":\"stations\",\"main\":{\"temp\":288.59,\"pressure\":1037,
 \"humidity\":82,\"temp_min\":285.37,\"temp_max\":291.48},
 \"visibility\":10000,\"wind\":{\"speed\":4.1,\"deg\":80},
 \"clouds\":{\"all\":20},\"dt\":1443432329,\"sys\":{\"type\":1,
 \"id\":5089,\"message\":0.0192,\"country\":\"GB\",
 \"sunrise\":1443419776,\"sunset\":1443462305},\"id\":2643743,
 \"name\":\"London\",\"cod\":200}";

Let us see if the HttpUrlConnectionExample returns the same information via the logic
I described. Figure 16-5 shows the toast generated with the returned results from a
successful run of the application.

www.it-ebooks.info

http://docs.oracle.com/javase/%3cinsert%20your%20java%20version%20here%3e/docs/api/java/net/URLConnection.html
http://docs.oracle.com/javase/%3cinsert%20your%20java%20version%20here%3e/docs/api/java/net/URLConnection.html
http://api.openweathermap.org/data/2.5/weather?q=London,uk
http://www.it-ebooks.info/

272 CHAPTER 16: Weaving the Web with Android

Success! Obviously showing a user raw JSON is not the best application experience, so you
would probably parse the JSON to extract temperatures, wind, sunrise and sunset, and so
forth, to create a more pleasant experience.

Troubleshooting Issues with Internet Connections
If you have done any other form of development with Internet-based resources, web
services, or pretty much anything online, you realize that there are a myriad of different
ways in which things can go wrong. As a general strategy, definitely employ a liberal dose of
exception handling across any use of HttpURLRequest and the data or payload you gather as
you use it.

Rather than have the HttpUrlRequestExample application blow out to dozens of pages
of mainly try-catch blocks, I have deliberately kept it simple so you can understand the
mechanics, but in any real-world application, I would look to address these common types
of exceptions and code for appropriate behavior and mitigation.

Figure 16-5.  The JSON response showing in HttpUrlConnectionExample

www.it-ebooks.info

http://www.it-ebooks.info/

273CHAPTER 16: Weaving the Web with Android

Correct and Fully-Formed URLs
For many years, browsers have been trying to make users lives easier and easier. Whether
it is friendly interpretation of 400-series and 500-series HTTP error codes, or the not-so-
friendly hijacking of NXDOMAIN responses to show advertisements when a URL is not found,
the general thrust has been to get the users to their destination (or any destination) rather
than just leave them hanging.

One of the most pervasive forms of assistance is the browser assuming which protocol
the user meant to use when they omitted that from the URL they entered. For instance, if
the user types www.apress.com into the browser, it assumes the user meant to use HTTP, it
adds the missing http:// preamble to the string, and it implicitly directs the request to the
correctly formed http://www.apress.com URL instead. Great for the user, and for Apress!

That habit and its assumed behavior can cause you grief as a developer, however, because
packages like java.net.URL and java.net.HttpURLConnection mean HTTP when they
say HTTP. In practice, this means that although helper methods and the like exist to “fill in
the gaps,” if a URL isn’t entered correctly, by default if you just attempt to use the String
api.openweathermap.org you will get errors thrown akin to those in Listing 16-7.

Listing 16-7.  Partial LogCat Output Showing Malformed URL Errors

<date and time> com.artifexdigital.android.httpurlrequestexample W/System.err﹕
 java.net.MalformedURLException: Protocol not found:
 api.openweathermap.org/data/2.5/weather?q=London,uk
<date and time> com.artifexdigital.android.httpurlrequestexample W/System.err﹕
 at java.net.URL.<init>(URL.java:176)
<date and time> com.artifexdigital.android.httpurlrequestexample W/System.err﹕
 at java.net.URL.<init>(URL.java:125)
<date and time> com.artifexdigital.android.httpurlrequestexample W/System.err﹕
 at com.artifexdigital.android.httpurlrequestexample.HttpUrlRequestExample
 .fetchUrl(HttpUrlRequestExample.java:38)
...

The key error is shown in bold on the second line of the LogCat snippet. By not specifying
the protocol (http://) in the URL string, we technically attempted to use a malformed URL.
The upshot is that you either need to add the protocols explicitly or dynamically via helper
methods (your own, or the java.net.* ones), or help your users specify which protocol they
want, so you avoid the issue up front. Catching MalformedURLException errors should also
be part of your normal code patterns when you’re working with Internet connections.

Misbehaving on the Main Thread
Earlier in the chapter, when discussing the various libraries and packages that are available
to you for working with the Internet, I mentioned that any use of AndroidHttpClient must
use a background thread for any network connection. This same stricture is true for
HttpURLConnection—any network activity must happen off the main UI thread.

In the HttpUrlConnectionExample application, you can easily see how we use an AsyncTask<>
implementation to make our fetchUrl() call on a dedicated thread. As your code gets more
and more complicated and your applications add many activities, private classes, and more,

www.it-ebooks.info

http://www.apress.com/
http://www.apress.com/
http://www.it-ebooks.info/

274 CHAPTER 16: Weaving the Web with Android

it can become tricky to know for sure that you have spawned a separate thread for all
attempts to invoke .connect() and its parallels in other classes.

I mentioned that network connections on the main UI thread are a performance no-no.
They are bad for the users and bad for their impression of Android. In fact, Google was
so concerned that they didn’t just forcefully recommend that network activity happen
elsewhere—they changed Android to detect any attempt to do this and throw errors at the
unlucky developers. Listing 16-8 shows the partial error stack you will see if you accidentally
(or purposefully) try to invoke any form of network connection on the main thread. The
formatting is wrapped to fit the page.

Listing 16-8.  Proactive Catching and Error Reporting of Network Activity on the Main UI Thread

com.artifexdigital.android.httpurlrequestexample E/AndroidRuntime﹕
 FATAL EXCEPTION: main
 Process: com.artifexdigital.android.httpurlrequestexample, PID: 26207
 java.lang.RuntimeException: Unable to start activity
 ComponentInfo{com.artifexdigital.android.httpurlrequestexample/
 com.artifexdigital.android.httpurlrequestexample.HttpUrlRequestExample}:
 android.os.NetworkOnMainThreadException
 at android.app.ActivityThread.performLaunchActivity
...

The second to last line, shown in bold, holds the key. We run straight into the
NetworkOnMainThreadException with any attempt to use any kind of network connection
(from any package or library) on the main thread. This means no sneaky Internet calls in
onCreate() or any other callback without them being wrapped in AsyncTask<> or similar
thread-management libraries.

Mastering Downloads with DownloadManager
As well as providing the many different foundational packages and libraries for network
and Internet connectivity, Android also gives you access to a number of Internet-aware
components to deal with common, higher-order concepts like maps, downloads, and more.
To complete the current chapter, let’s explore the built-in DownloadManager facility for dealing
with large and complex downloads.

Introducing the DownloadManager System Service
In old versions of Android, up to version 2.3, if you wanted to download any significant
file or volume of data from an online source, you had to code your own tools and
classes and do all the work yourself; it was a little like building a glorified example of the
preceding HttpURLConnectionExample application. That got really painful for developers
who werestruggling to cope with ever-expanding file types, network issues, and more,
however. There had to be a better way; Android delivered this with the introduction of
DownloadManager in version 2.3, and improvements have been made to it ever since.

www.it-ebooks.info

http://www.it-ebooks.info/

275CHAPTER 16: Weaving the Web with Android

The DownloadManager system service give you access to a lot of features that take the
complexity out of managing large downloads, including the following:

	Network connectivity differentiation gives you options to allow, throttle,
postpone, or end downloads depending on your network connection
type (LTE, 4G, 3G, etc.), wifi signal strength, and so on.

	Cost-sensitivity controls allow you to avoid downloads if data roaming is
in use and if there is a risk of excessive cost to the application’s user.

	Device keep-alive ensures that the device doesn’t disable radios or
enter sleep mode.

	Download resumption for interrupted downloads.

	Connectivity-mode handoff, when the device transitions from cellular, to
wifi, and so on.

The service taking on these tasks for you frees you to simply deal with the request in general
and the resulting file.

Selecting Permissions for DownloadManager Use
The entire point of downloading something from the Internet is to take it from a server
somewhere and place it locally on some storage for later use. At a minimum, this implies the
following two permissions are needed to successfully work with DownloadManager.

1.	 android.permission.INTERNET for accessing the Internet, just as with
the other examples in this chapter

2.	 android.permission.WRITE_EXTERNAL_STORAGE, which is the typical
permission you need to write to your device’s user-accessible
storage or SD card

I cover the WRITE_EXTERNAL_STORAGE permission in detail in Chapter 17 and the topic of
managing and using files. For now, make sure you have the necessary entries in your
AndroidManifest.XML file, as shown in Listing 16-9.

Listing 16-9.  Manifest Permissions for Using DownloadManager

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.artifexdigital.android.downloadmanagerexample" >
 
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
...
</manifest>

The DownloadManager also supports several other permissions, notably android.permission.
DOWNLOAD_WITHOUT_NOTIFICATION. This permission allows an application to avoid posting
notifications about downloads, which otherwise are always shown. This clearly has security
implications for silent downloads, thus the protection offered by this additional permission.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_17
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

276 CHAPTER 16: Weaving the Web with Android

A Simple Downloader Example
The manifest shown earlier in Listing 16-9 is for the example application,
DownloadManagerExample, which you can find in the ch16/DownloadManagerExample folder of
the sample code. Any good downloader needs a UI, and Listing 16-10 shows the layout for
a simple two-button display to start and view downloads.

Listing 16-9.  The DownloadManagerExample Layout

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.artifexdigital.android.downloadmanagerexample" >
 
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 
 android.permission.DOWNLOAD_WITHOUT_NOTIFICATION
 
 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".DownloadManagerExample">
  
 <Button
 android:id="@+id/startDownload"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Start Download"
 android:onClick="onClick" />
 
 <Button
 android:id="@+id/viewDownloads"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="View Downloads"
 android:layout_below="@id/startDownload"
 android:onClick="onClick" />
 
</RelativeLayout>

My two-button example layouts should start to become familiar after a while. Here we have a
Start Download button and a View Downloads button, which are pretty self explanatory. The
secret sauce is in the Java implementation. The layout renders the UI shown in Figure 16-6.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

277CHAPTER 16: Weaving the Web with Android

Coding DownloadManager Behavior
To give a user the ability to download is great, but you can also provide additional features
that let them know when the download is in progress, when it is done, and even ways to
work with downloads when they are complete. Our code covers some of these extended
features and sets you up to expand even further.

Listing 16-10 is the complete code for the DownloadManagerExample application, with some
areas already ripe for you to expand. I am also including techniques from earlier chapters to
show, in particular, the use of broadcast intents and receivers to handle communication flow
and some aspects of behavior.

Listing 16-10.  Code Implementing the DownloadManagerExample Project

package com.artifexdigital.android.downloadmanagerexample;
 
import android.app.DownloadManager;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.net.Uri;

Figure 16-6.  The DownloadManagerExample application UI

www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 16: Weaving the Web with Android

import android.os.Environment;
import android.support.v7.app.ActionBarActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
 
public class DownloadManagerExample extends ActionBarActivity {
 Uri myUri = Uri.parse("https://ia801400.us.archive.org/2/items/" +
 "rhapblue11924/rhapblue11924_64kb.mp3");
 private DownloadManager myDLManager = null;
 private long downloadTarget = -1L;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_download_manager_example);
 
 myDLManager = (DownloadManager) getSystemService(DOWNLOAD_SERVICE);
 registerReceiver(onDownloaded,
 new IntentFilter(DownloadManager.ACTION_DOWNLOAD_COMPLETE));
 }
 
 public void onClick(View view) {
 switch(view.getId()) {
 case R.id.startDownload:
 if (downloadStatus != -1L) {
 // Consider logic here for simultaneous downloads
 // But for now we will keep it simple
 }
 else {
 startDownload(view);
 }
 break;
 case R.id.viewDownloads:
 viewDownloads(view);
 break;
 }
 }
 
 @Override
 public void onDestroy() {
 super.onDestroy();
 unregisterReceiver(onDownloaded);
 }
 
 public void startDownload(View view) {
 
 downloadTarget = myDLManager.enqueue(new DownloadManager.Request(myUri)
 .setAllowedNetworkTypes
 (DownloadManager.Request.NETWORK_MOBILE |
 DownloadManager.Request.NETWORK_WIFI)

www.it-ebooks.info

https://ia801400.us.archive.org/2/items/
http://www.it-ebooks.info/

279CHAPTER 16: Weaving the Web with Android

 .setTitle("Amazing Tunes")
 .setDescription("Rhapsody in Blue")
 .setDestinationInExternalPublicDir(
 Environment.DIRECTORY_DOWNLOADS,
 "rhapsody.mp4"));
 
 //Disable the Start Download button until current download ends
 Button myStartButton=(Button)findViewById(R.id.startDownload);
 myStartButton.setText("Downloading...");
 myStartButton.setEnabled(false);
 }
 
 public void viewDownloads(View view) {
 startActivity(new Intent(DownloadManager.ACTION_VIEW_DOWNLOADS));
 }
 
 BroadcastReceiver onDownloaded =new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 //return Start Button to enabled state
 Button myStartButton=(Button)findViewById(R.id.startDownload);
 myStartButton.setText("Start Download");
 myStartButton.setEnabled(true);
 }
 };
 
}

Let’s break this down into sections to ensure you understand what each area covers. The
activity setup and onCreate() method put in place some useful constants and inflate our
basic layout. The myUri value is set to the same mp3 track we played with in Chapter 14 on
Audio, and a DownloadManager object is created and then used to bind to the system service
using the getSystemService(DOWNLOAD_SERVICE) call.

The activity is also flagged as a receiver with a filter for ACTION_DOWNLOAD_COMPLETE broadcast
intents, which happens to be the intent fired when a download completes (you could have
guessed that from the name). We could have configured this in the manifest instead, but it
helps to see alternatives in practice. The onDownloaded method implements the logic for the
BroadcastReceiver, which I cover shortly.

With the activity live, we have an onClick() method to implement a little logic around which
button has been clicked. The Start Download button triggers the startDownload() method,
and I’ve placed a little stub of if/then logic here if you wish to experiment with multiple
simultaneous downloads and what happens when the user clicks Start Download more than
once. For now, the logic in startDownload() prevents this, but you are free to change it.

The startDownload() method is where the action happens. Any download performed
through DownloadManager relies on the notion of queuing items to be downloaded and having
the system service work through its queue asynchronously. Your enqueed download might
start instantaneously, but it might not, depending on what other activity is happening, what

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_14
http://www.it-ebooks.info/

280 CHAPTER 16: Weaving the Web with Android

other downloads are in progress, and so on. If you revisit the enqueue() method, you will
note that it takes a DownloadManager.Request object that looks and acts like a builder-style
object—because that is exactly what it is.

downloadTarget = myDLManager.enqueue(new DownloadManager.Request(myUri)
 .setAllowedNetworkTypes
 (DownloadManager.Request.NETWORK_MOBILE |
 DownloadManager.Request.NETWORK_WIFI)
 .setTitle("Amazing Tunes")
 .setDescription("Rhapsody in Blue")
 .setDestinationInExternalPublicDir(
 Environment.DIRECTORY_DOWNLOADS,
 "rhapsody.mp4"));

Here we are using a combination of .setAllowedNetworkTypes() to specify that mobile and
wifi are acceptable connectivity levels from which to initiate the download. For very large
downloads, consider what network charges a user might need to pay, and allow them some
control over whether NETWORK_MOBILE is included. There is also a .setAllowOverRoaming()
Boolean to control dreaded roaming charges. The .setTitle() and .setDescription() calls
add some useful text to the download when you are viewing its progress and the completed
file, which you can see on the following pages in the screenshots of the example in action.
These can be any strings you like. Lastly, we use .setDestinationInExternalPublicDir()
to choose one of the system-provided locations for the file. We cover this in significantly
more detail in Chapter 17 when we cover files and file systems for Android. For now, you can
proceed knowing that your download will be called rhapsody.mp4 and will be placed in the
common downloads folder used by all applications.

The startDownload() method is rounded out with some UI tricks to prevent multiple
simultaneous downloads. I have done this only to keep the example simple to understand
at first use—there is no Android limitation at play here. Using findViewById(), we find the
reference for the Start Download button, change its text to “Downloading...,” and disable
the button itself. Starting a download, therefore, changes the look of the UI, as shown
in Figure 16-7.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_17
http://www.it-ebooks.info/

281CHAPTER 16: Weaving the Web with Android

These UI steps are reversed in the onDownloaded() broadcast receiver implementation.
Assuming a download completes normally, our UI returns to the original form shown in
Figure 16-6. Of course, that assumption is a little risky, and we will talk more about that in
a moment. Android itself adds the animated downloading arrow to the notification bar at
the top of the screen. At any point during a download, your user can swipe down to see
the notification drawer (which we cover in-depth in Chapter 23) to see the progress of their
downloads. This is depicted in Figure 16-8, where you can see the title and description text
we used in the enqueue() method and Request object.

Figure 16-7.  A download in progress. Note also the system-generated arrow in notification bar

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_23
http://www.it-ebooks.info/

282 CHAPTER 16: Weaving the Web with Android

We have implemented an onDestroy() override, which ensures our broadcast receiver
is unregistered. This prevents stray receivers from consuming resources and causing
problems, and it also means that your activity will not be triggered if it is not already running
when some other application decides to perform a download with DownloadManager. Note
that we do nothing with the DownloadManager object itself. We don’t dispose or destroy or
unassign the myDLManager object, because we don’t have to. Android is designed to garbage
collect objects referencing any system service, so we can simply leave the housekeeping to
the system.

Last up is the viewDownloads() method. It is deceptively simple, attempting to start an activity
that responds to the broadcast intent filter of DownloadManager.ACTION_VIEW_DOWNLOADS.

startActivity(new Intent(DownloadManager.ACTION_VIEW_DOWNLOADS));

Absent any other application that has already registered a receiver that can handle this
intent, you are likely to trigger the system-provided Downloads management activity, as
show in Figure 16-9.

Figure 16-8.  Download in progress shown in the notification drawer

www.it-ebooks.info

http://www.it-ebooks.info/

283CHAPTER 16: Weaving the Web with Android

In the spirit of liberally using plenty of activities, this Downloads activity can also fire off
an intent for a playback activity just by touching the download. Figure 16-10 shows and
example of this using one of the built-in playback activities. You can, of course, tweak your
audio examples from Chapter 14, register a receiver, and see if you can trigger your own
playback code.

Figure 16-9.  Our successful download in the general Downloads activity

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_14
http://www.it-ebooks.info/

284 CHAPTER 16: Weaving the Web with Android

When everything works normally, the user of your application gets all the benefit of
smooth downloads, and you get the benefit of writing comparatively little code and letting
the DownloadManager service do all the hard work. Of course, things do not always work
smoothly, and I cover dealing with those circumstances next.

Dealing with Download Problems
The download manager offers a range of methods and data to help you keep tabs on the
progress and status of your downloads, as well as see resulting information about what went
right, and what might have gone wrong. Your DownloadManager object includes a .query()
method that takes a Query object. By providing the reference to the relevant download,
you will be returned a Cursor object that can be “walked through” to gather all kinds of
information.

Cursor myDLCursor = myDLManager.query(new DownloadManager
 .Query()
 .setFilterById(downloadTarget));

Figure 16-10.  Playing back the downloaded mp3

www.it-ebooks.info

http://www.it-ebooks.info/

285CHAPTER 16: Weaving the Web with Android

Data available from the cursor includes the following:

	COLUMN_BYTES_DOWNLOADED_SO_FAR: The number of bytes already
downloaded for the file

	COLUMN_LAST_MODIFIED_TIMESTAMP: The last modified time of the file

	COLUMN_LOCAL_URI: The local Uri reference for the local file

	COLUMN_STATUS: The status value for the download (more on this shortly)

	COLUMN_REASON: Any additional reason information for the COLUMN_STATUS

Even though a successfully completed download fires the DownloadManager.ACTION_
DOWNLOAD_COMPLETE intent, it is still prudent to check the COLUMN_STATUS of your download to
ensure its value is STATUS_SUCCESSFUL.

Here are other possible values for COLUMN_STATUS:

	STATUS_FAILED: Where the download failed for some reason, and will not
be retried automatically.

	STATUS_PAUSED: A download is waiting to retry, or for the user to
resume it.

	STATUS_PENDING: When your download is successfully queued via
enqueue() but has not yet started.

	STATUS_RUNNING: The download is in progress.

Some of the Query object columns are only populated in some COLUMN_STATUS states. For
example, COLUMN_BYTES_DOWNLOADED_SO_FAR does not have any data while the download
is in STATUS_PENDING state, and COLUMN_REASON is only populated in STATUS_FAILED states,
hopefully with useful diagnostic information.

Remember to keep the user’s perspective in mind when things go wrong; be careful not
to let coding for the perfect situation cause further issues. The DownloadManagerExample
application leaves the Start Download button disabled in some failure modes, so you can
practice your skills expanding the code to cover STATUS_FAILED states and return the button
to enabled. Figure 16-11 shows a failed download in the Downloads activity. Note the
differing text inserted from STATUS_REASON automatically by Android (our code did not do this).

www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 16: Weaving the Web with Android

Figure 16-11.  A failed download

www.it-ebooks.info

http://www.it-ebooks.info/

287

Chapter 17
Working with Files
Android offers quite a wide range of approaches to the topic of dealing with storing, and
retrieving, data for you applications. In the next three chapters, I cover the major features
that allow you to store data away, to process it, to use it for logic and other functions in your
application. Android offers a built-in preference system for maintaining state about a user’s
settings, options, and preferences. Bundled with all Android installations is a fully working
SQLite library, which provides embedded relational database capability. The last main data
storage technology Android supports is the traditional file, stored on a file system.

In this chapter I cover the basics of working with files in Android; to do this, I work with
the two broad approaches to thinking about file-based data when you build Android
applications. The first of these two approaches is what I call the “application embedded”
model, which uses raw resources and assets packaged with your application; and the
second is what I term the “Java I/O” approach, which enlists the venerable java.io package
to manipulate files, data streams, and so on using all the traditional methods you might be
used to from Java and working with Linux file systems.

There is no “better” or “best” approach. Each technique has its pros and cons, which I cover
as we discuss the relative file handling capabilities and build a few example applications
along the way. Let’s get started.

Using Raw and Asset-based Files
In Chapters 14 and 15, you saw examples of how to use raw resources in the res/raw
project directory and asset resources from the assets project directory when you are
working with audio and video. However, your use of the raw and asset locations is not
limited to just media files like audio, images, and video.

You can place any file you like in these locations, but the burden is then on you as a
developer to ensure you know how to access their content. For instance, you can store
a text file or an XML representation of some data. Android makes accessing such a file
easy through the Resources class and its getResources() method. Once you have your
raw resource file, you can present its content through an InputStream by calling the

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_14
http://dx.doi.org/10.1007/978-1-4302-4687-9_15
http://www.it-ebooks.info/

288 CHAPTER 17: Working with Files

openRawResources() method. Interpreting that InputStream is then your job as a developer.
We’ll look at an example that drawings on the ListView and Adapter example from Chapter 7
shortly. First, let me cover some important advantages and disadvantages to working with
data sources from raw or asset files.

The advantages to the raw-based approach include the following:

	Easy packaging with your application and its .apk file, thanks to the
Android Asset Packaging Tool (AAPT).

	Ability to place resources in a library project so they are accessible from
a range of applications.

	Simple static data is easily represented in human-readable and
machine-manageable formats like XML.

There are also some important disadvantages to be aware of if you take this approach:

	By default, read-only. Editing existing resources packaged with the
application is not trivial, and creating dynamic assets at runtime is
complex.

	Not designed for wide sharing with other on-device applications

	Static nature raises questions about keeping information up to date.

You might decide that for your application and functionality, the benefits of a raw-based
approach outweigh the disadvantages. As I highlighted in this chapter’sintroduction, the
choice of a file-like data management technique is subjective, and you are free to adopt this
approach when you think it suits your application.

Populating Lists from Resource Files
Let’s look at a practical example of using an XML file packaged as a resource to populate
a list dynamically at runtime. Recall the ListViewExample application from Chapter 7. In its
first incarnation, it used a string array defined in the Java code, which is populated with the
opening words of a soliloquy from Shakespeare’s Hamlet. The output appears in Figure 7-1.
Later versions showed lists of colors. That was all fine for demonstrating ListViews and
Adapter logic, but in reality, you will almost certainly want to manage your data separate
from your code, so let’s place those words into an XML resource instead.

Listing 17-1 shows a simple layout that provides a ListView to ultimately display the content
of our XML resource file.

Listing 17-1.  The Layout for the RawFileExample

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".RawFileExample" >
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_7
http://dx.doi.org/10.1007/978-1-4302-4687-9_7
http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

289CHAPTER 17: Working with Files

 <TextView
 android:id="@+id/mySelection"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <ListView
 android:id="@android:id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:drawSelectorOnTop="false" />
 
</RelativeLayout>

Let’s focus on the color list example, for which the application uses the data in the
colors.xml file in the ch17/RawFileExample project. The content of colors.xml is in Listing 17-2.

Listing 17-2.  The colors.xml File Content

<colors>
 <color value="red" />
 <color value="orange" />
 <color value="yellow" />
 <color value="green" />
 <color value="blue" />
 <color value="indigo" />
 <color value="violet" />
 <color value="black" />
 <color value="white" />
</colors>

The colors.xml file is deliberately simple because I want us to focus on the logic we need
to actually open this file, read and parse its content, and place it in an appropriate data
structure so we can use it in the application. Listing 17-3 shows the logic for a very simple
ListActivity-based application that shows the colors from the file in a list and allows the
user to click to choose a particular color.

Listing 17-3.  RawFileExample Java Logic for Processing the XML Resource File

package com.artifexdigital.android.rawfileexample;
 
import android.app.ListActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
import java.io.InputStream;
import java.util.ArrayList;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
  

www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 17: Working with Files

public class RawFileExample extends ListActivity {
 private TextView mySelection;
 ArrayList<String> colorItems=new ArrayList<String>();
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_raw_file_example);
 mySelection=(TextView)findViewById(R.id.mySelection);
 
 try {
 InputStream inStream=getResources().openRawResource(R.raw.colors);
 DocumentBuilder docBuild=DocumentBuilderFactory
 .newInstance().newDocumentBuilder();
 Document myDoc=docBuild.parse(inStream, null);
 NodeList colors=myDoc.getElementsByTagName("color");
 for (int i=0;i<colors.getLength();i++) {
 colorItems.add(((Element)colors.item(i)).getAttribute("value"));
 }
 inStream.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, colorItems));
 }
 
 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 mySelection.setText(colorItems.get(position).toString());
 }
 
}

The first thing you should notice about this code is the number of external libraries I am
importing to handle file I/O and XML parsing. I return to the topic of employing the power of
external libraries in Chapter 20, but you should make the most of opportunities like this to
pull in existing well-built libraries rather than reinvent XML parsing.

The onCreate() method has changed significantly from the examples back in Chapter 7,
so let’s examine what is going on. The first line of the method is the actual file-handling in
action. I created an InputStream object, and the getResources().openRawResource() call
carries out the heavy lifting of finding the file within the .apk, allocating file descriptors,
associating them with the InputStream, and readying the system for subsequent use of the
data stream from the file. Everything that follows is the logic you need to interpret what is in
the file.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_20
http://dx.doi.org/10.1007/978-1-4302-4687-9_7
http://www.it-ebooks.info/

291CHAPTER 17: Working with Files

Next I use a DocumentBuilder object to parse the content of the file and store the resulting
DOM representation in a Document object, myDoc. I invoke the getElementsByTagName()
method to collect all of the <color> elements into the NodeList object. This might seem
excessively pedantic, but imagine a more complicated XML schema with other elements,
child elements, and so on, and you can see how this does the sifting work quite efficiently.

Lastly, I use a for loop to iterate through the NodeList <color> entries, extracting the value
attribute’s text—which happens to be the color names I want to present in the ListView.
With this in place, I can now inflate the ListView with the ArrayAdapter configured to use my
list of color names, asking it to render things using the default simple_list_item_1 built-in
XML layout.

The logic for handling the user clicking a color is unchanged from Chapter 7, apart from the
variable names. I could make XML handling even easier by using specialist XML resource
calls, but I’ll save that topic for later.

If we run our application, it shows the content of the colors.xml file rendered in our
ListView, as shown in Figure 17-1.

Figure 17-1.  The RawFileExample application showing the contents of an XML file

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_7
http://www.it-ebooks.info/

292 CHAPTER 17: Working with Files

Working with Files from the File System
If you are used to reading and writing files on file systems from traditional Java applications,
then performing the same work in Android will be very familiar to you. For those of you not
familiar with Java-based file I/O, here is a quick crash course, in one paragraph.

From the Java perspective, files are treated as streams of data, and the key pair of
objects you will use are InputStream and OutputStream, for reading and writing data
to/from files, respectively. These streams are provided by calling the openFileInput() or
openFileOutput() methods from your context or activity. When a stream is available, your
program logic is then responsible for actions such as reading in from the InputStream or
writing out to the OutputStream and tidying up all of the resources when you are done.

Android’s File System Model
In the very early days of Android, a representation of the built-in file system was presented to
developers, together with some rudimentary controls for reserving part of the file system for
Android’s internal use; this left developers using the remainder of the file system for storing
other files.

This roughly mapped to the notion of on-board storage being “internal,” and plugged-in
storage, such as an SD card, being “external.” Then a funny thing happened as the 2.x and
3.x releases of Android came to market. Google decided to discourage the use of add-on
SD cards, though manufacturers could push to include them and many still do. This meant
that Android had to deal with both possible scenarios—devices with dedicated external
storage, and devices without. Google’s solution was to abstract the presence or absence
of physical removable storage and present the system with internal and external partitions.
Now, “external” actually maps to part of the on-board storage, and any removable SD card
or similar hardware is silently mounted to a subdirectory under the “external” partition.

In addition to the “internal” area being used for system-related purposes, other differences
also represent advantages and disadvantages to both internal and external storage.

Here is a description of the pros and cons of internal storage:

	Internal storage is found on every Android device and is always in place.

	The default security boundary for internally-saved files is private to your
application. You need to take explicit steps to share files.

	Files that form the part of your application designated to be placed
on internal storage are considered a hermetic part of your application.
The files are installed when the application is installed and are removed
when the application is removed.

	Internal storage might be significantly smaller than the available external
storage, and often it is the area that fills first, causing users issues
with space management, even when they have ample external storage
available.

www.it-ebooks.info

http://www.it-ebooks.info/

293CHAPTER 17: Working with Files

External storage differs in these ways:

	Android provides a USB abstraction layer and interface for external
storage. When an Android device is in use as a USB device, applications
on the device cannot access external storage.

	The default security boundary is to make all files on external storage
world-readable. Other applications can read your externally-stored files
without developer or user knowledge or permission.

	Depending on the save method invoked, externally-stored files might
not be removed when your application is uninstalled.

With these benefits and costs in mind, whether you choose to use internal or external files
for your project, read on.

Permissions for Reading and Writing Files
If you choose to use internal storage, your application always has permissions to write to,
and read from, the portion of internal storage reserved for it. You can request details of your
application’s internal storage by calling getFilesDir(). More usefully, you can use getDir()
to create a named (sub)directory for you to use.

When you call openFileOutput(), a file itself is opened for output streaming, otherwise
known as writing (and one is created if it doesn’t already exist). The openFileInput()
method performs file opening—but not creating—for an InputStream to satisfy your reading
requirements.

Both openFileOutput() and openFileInput() accept a number of MODE_* options to fine tune
the file and stream behavior. The mostly commonly used include these:

	MODE_APPEND: With this option, none of the existing data in the file is
changed; the data from the string is appended to the existing content in
the file.

	MODE_PRIVATE: Permissions on the file are set so only the application
that creates it (and any other that runs as the same user) is allowed to
access the file. This is the default.

	MODE_WORLD_READABLE: This option opens permissions for reading to all
applications and users on the device. This is considered poor security
practice but often crops up when a user considers using content
providers or services overkill.

	MODE_WORLD_WRITABLE: Even more dangerous than world-readable
is world-writable. Any application or user can write to the file. Just
because other developers use this, doesn’t mean you should!

www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 17: Working with Files

It is important to remember that, you as a developer, and you application user, do not need
any specific permissions to create, open, or write to an internal file within the application’s
allocated internal file system space. The simplest example of creating a file stored within the
internal device storage looks like this:

FILE myFile = new FILE(context.getFilesDir(), "myFileName");

When working with external storage, a different set of methods are at your disposal, and
the permission model is somewhat more strict; it is even undergoing a steady shift as this
book is written.

In order to write to external storage, your Android manifest needs to include the privilege
android.permission.WRITE_EXTERNAL_STORAGE. You should already be familiar with this
permission from the audio and video examples in Chapters 14 and 15.

All Android versions up to and including Android M allow your application to read
freely from external storage without specifying or requiring any particular permission.
But do not be complacent about this. Google has flagged that it intends to introduce and
enforce read permissions in a future Android release. To that end, it already supports the
inclusion of the permission name it plans to use to allow reading from external storage—
android.permission.READ_EXTERNAL_STORAGE. You should definitely start including this
privilege now in your manifest, even though it is effectively a no-op. Doing so future-proofs
your applications so that when Google finally flicks the switch to start enforcing permission-
based reading from external storage, you are ready.

The methods used to access external storage closely mirror the methods I previously
introduced for internal storage, but the words “external” or “public” are added as part of the
method name.

The getExternalStoragePublicDirectory() method is designed to allocate well-structured
directories and files into which you can store documents, audio, pictures, video, and more.
The method takes an enum signifying one of the predefined application directories and a
filename of your choosing. Android provides nearly a dozen application directories, including
the following:

	DIRECTORY_DOCUMENTS: For storing traditional text or other editable
documents created by the user

	DIRECTORY_MUSIC: A place to keep all kinds of music and audio files

	DIRECTORY_PICTURES: For storing still-image files such as photos,
drawings, and so on

Although these predefined locations are helpful and provide some predictability, at times,
you will have distinctly different types of files you want to store on the device. You’ll use
the general-purpose getExternalStorageDirectory() method in these circumstances;
it provides similar functionality to the getFilesDir() I noted earlier in the chapter for
internal storage.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_14
http://dx.doi.org/10.1007/978-1-4302-4687-9_15
http://www.it-ebooks.info/

295CHAPTER 17: Working with Files

Examining External Files in Action
You now have enough exposure to the theory of external files to examine a working
example. The ExternalFilesExample app, which you’ll find in ch17/ExternalFilesExample, is
a very simple walk through of the mechanics of saving a file and reading back its content.

Figure 17-2 shows the layout for providing a text entry field, buttons for file writing
and reading, and a text reading field. The corresponding layout XML flle is in the
ch17/ExternalFilesExample project, but I omit it here for brevity.

Figure 17-2.  An activity with fields and buttons for testing external file management

The Java logic that supports our little application follows the pattern I have used several
times. A common onClick() method handles the button clicks and switches to the
appropriate method based on which button the user chooses at runtime. The code is shown
in Listing 17-4.

Listing 17-4.  The ExternalFilesExample Java Code

package com.artifexdigital.android.externalfilesexample;
 
import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.view.View;

www.it-ebooks.info

http://www.it-ebooks.info/

296 CHAPTER 17: Working with Files

import android.view.inputmethod.InputMethodManager;
import android.widget.EditText;
 
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
 
public class MainActivity extends Activity {
 public final static String FILENAME="ExternalFilesExample.txt";
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
 
 public void onClick(View view) {
 switch(view.getId()) {
 case R.id.btnRead:
 try {
 doReadFromFile();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 break;
 case R.id.btnSave:
 doSaveToFile();
 break;
 }
 }
 
 public void doReadFromFile() throws Exception {
 doHideKeyboard();
 EditText readField;
 readField=(EditText)findViewById(R.id.editTextRead);
 try {
 InputStream inStrm=openFileInput(FILENAME);
 if (inStrm!=null) {
 // We will use the traditional Java I/O streams and builders.
 // This is cumbersome, and we'll return with a better version
 // in Chapter 20 using the IOUtils external library
 
 InputStreamReader inStrmRdr=new InputStreamReader(inStrm);
 BufferedReader buffRdr=new BufferedReader(inStrmRdr);
 String fileContent;
 StringBuilder strBldr=new StringBuilder();
 

www.it-ebooks.info

http://www.it-ebooks.info/

297CHAPTER 17: Working with Files

 while ((fileContent=buffRdr.readLine())!=null) {
 strBldr.append(fileContent);
 }
 inStrm.close();
 readField.setText(strBldr.toString());
 }
 
 }
 catch (Throwable t) {
 // perform exception handling here
 }
 }
 
 public void doSaveToFile() {
 doHideKeyboard();
 EditText saveField;
 saveField=(EditText)findViewById(R.id.editText);
 try {
 OutputStreamWriter outStrm=
 new OutputStreamWriter(openFileOutput
 (FILENAME, Context.MODE_PRIVATE));
 try {
 outStrm.write(saveField.getText().toString());
 }
 catch (IOException i) {
 i.printStackTrace();
 }
 outStrm.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 
 public void doHideKeyboard() {
 View view = this.getCurrentFocus();
 if (view != null) {
 InputMethodManager myIMM=(InputMethodManager)
 this.getSystemService(Context.INPUT_METHOD_SERVICE);
 myIMM.hideSoftInputFromWindow
 (view.getWindowToken(), InputMethodManager.HIDE_NOT_ALWAYS);
 }
 }
 
}

www.it-ebooks.info

http://www.it-ebooks.info/

298 CHAPTER 17: Working with Files

What Goes in to Saving and Reading Files
Let’s focus on the key methods in the ExternalFilesExample project, starting with the
doSaveToFile() method. We need to perform some preparation and housekeeping prior to
defining the method; we do this by first calling doHideKeyboard() (which I explain shortly),
followed by creating our local saveField variable and binding it to the EditTextView in our
layout. We do this so we can eventually reference the text we want to save in the UI.

The try/catch block that follows defines the output stream we will use to stream the text to
the file nominated by the variable FILENAME, which is set globally to whatever meaning we
need. We then invoke the .write() method to attempt to actually write out the text through
the stream to the file.

You should also notice the multiple layers of exception handling. There are many, many reasons
writing to files can run into issues, whether they involve full partitions or users spontaneously
removing the volume to which you were writing—sometimes halfway through the writing
process! In short, you can never have too much exception handling around file access.

Reading from the file is handled by the doReadFromFile() method. As with the
doSaveToFile() method, the initial work you perform is some necessary setup and
housekeeping. First you need to call the doHideKeyboard() method. When you do, the local
variable readField is created and bound to the editTextRead widget in the UI. We use this to
display the contents of the file once they have been read.

What follows in the try/catch block is almost entirely classic Java file handling, in all its
cumbersome glory. A stream reader is used to access the file, which is then passed to a
buffer. We use the buffer to access the stream one line at a time in the while block, and
slowly we build up the file content in the string builder. Once we have read all of the lines
from the stream (and therefore, the file), we close the stream and transfer everything that has
been buffered in the strBldr object to the readField EditText widget in our Android UI.

I have deliberately taken the old-fashioned Java approach to be sure you appreciate
everything that is happening when you access a file. I will return to this example in Chapter 20
to demonstrate a third-party Java library that does all of the messy work in one simple
method call. If Java was being designed today, I hope file handling would be one of the
things that was radically simplified.

Helping Hands with IMEs
When your user is busy typing text in the EditText field, the IME is triggered to present the
soft keyboard for text entry. We could go to some effort to code for an accessory button
(as covered in Chapter 8) to provide a “done” option that then hides the IME, but that’s an
additional key-press to ask of your users.

Instead, I have been a little subtle in ensuring the layout still includes the Save (and Read)
button even when the IME is presented. This means the user can type to her heart’s
content and then immediately hit the Save button. The call to doSaveToFile() invokes
doHideKeyboard, which determines first, what view the user interacted with, and second,
whether or not the Input Method Framework is active and presenting an IME (keyboard) to
the user. Any keyboard currently being shown will be closed automatically, representing a
convenience to the user.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_20
http://dx.doi.org/10.1007/978-1-4302-4687-9_8
http://www.it-ebooks.info/

299CHAPTER 17: Working with Files

Seeing File Save and Read Behavior in Action
Now that I’ve described the logic and layout, it is time for you to see the finished product in
action. Figure 17-3 shows the initial display of the ExternalFilesExample application when
the user first starts to enter text into the top field.

Figure 17-3.  Entering text to be saved to an external file

The IME displays over the lower half of the screen, but our buttons are still visible. This really
only works in this example as a hack—it is not the polished UI a fully-fledged application
would use, but it is sufficient to show the file I/O in which we are interested.

At any point, the user can hit the “Save to File” button, and the doSaveToFile() method
kicks in. As I discussed earlier in the chapter, this invokes the doHideKeyboard() method,
and our UI then appears as shown in Figure 17-4.

www.it-ebooks.info

http://www.it-ebooks.info/

300 CHAPTER 17: Working with Files

The text the user typed into the EditText field is saved in the external file
ExternalFilesExample.txt. The user can recall its content at any time by hitting the
Read from File button. If they do, the contents of the file are read and displayed by the
doReadFromFile() method, and they show in the lower EditText field, as in Figure 17-5.

Figure 17-4.  The IME is hidden when the user saves the file

www.it-ebooks.info

http://www.it-ebooks.info/

301CHAPTER 17: Working with Files

That covers all of the behavior within the ExternalFilesExample application.

Ensuring External Storage Is Available When Needed
Earlier in the chapter I mentioned that one of the potential drawbacks of using external
storage is the uncertain nature of whether you can rely on it being there when you need it.
Remember that your users can physically remove SD cards from their devices, and even
for those devices that mimic external storage as a separate partition on internal memory,
Android still allows that external storage to be mounted as a USB device elsewhere, which
makes that part of the storage unavailable to applications while it is so mounted.

To develop well-behaved applications, you should perform some sanity checks on the
presences and availability of your external storage before your application attempts to use it.

Android provides some useful environment methods to help with this. The principal method
you want to use is Environment.getExternalStorageState(), which returns a string from
a predefined enum that describes the current state of the external storage. This external
storage state can have many states, including one of the following commonly seen values:

	MEDIA_BAD_REMOVAL: This state indicates the physical SD card was
removed before it was unmounted, possibly leaving files in an
inconsistent state due to cached pages not being flushed (see the file
system discussion later in this chapter).

Figure 17-5.  Recalling the contents of the external file

www.it-ebooks.info

http://www.it-ebooks.info/

302 CHAPTER 17: Working with Files

	MEDIA_CHECKING: When an SD card is inserted, checks are performed
to determine if the card has been formatted, and if so with which file
system. This is the value returned while these processed take place.

	MEDIA_MOUNTED: The normal state for external storage that can be used.

	MEDIA_MOUNTED_READ_ONLY: Typically seen when the SD card’s physical
switch is set to the read only position, which means that no writing to
that part of external storage can be performed.

	MEDIA_REMOVED: This value is returned when no external storage is
mapped from the on-board device and no SD card is present.

	MEDIA_SHARED: When the device has its external storage mounted as a
USB device to some other external platform, this is the value returned
to indicate that external storage is not available to be used at this time,
even though it is present in the device.

You can check the Android documentation for a full list of all the possible external storage
state values.

Other Considerations with Android File Systems
Now that you are familiar with a variety of approaches to working with files in Android, I need
to make you aware of a few subtle and not-so-subtle management considerations that you
should think about to ensure the long-term viability of using files on the file system.

Android Filesystems Throughout History
When the original Android systems were launched, their NAND-based on-board storage
was presented to the devices through a file system designed to better support flash-based
storage. At the time, the file system chosen was YAFFS, or Yet Another Flash File System.
This file system offered a number of useful benefits, including wear-leveling support so that
the decay over time of flash storage from multiple writes was managed, and to some extent,
hidden from the operating system and applications, as well as file system–level garbage
collection tools to help move bad regions of storage to a “dead pool” so they would not be
used for meaningful storage.

YAFFS has evolved over time to become YAFFS2, with some tweaks and enhancements
along the way. There is one significant drawback to the YAFFS file system, which is tied up
in its locking behavior and impact on application responsiveness. YAFFS has no file-locking
semantics; instead it relies on locking the entire files system to ensure consistent access
to a file being modified. That means, in practice, that only one file can be written to by any
application at a time, and any other application, or threads of applications, is blocked and
has to wait its turn to write. This has negative consequences for any device capable of
issuing parallel I/O calls, such as multiprocessor devices capable of running processes
or threads simultaneously. As most Android devices in the last few years have sported
dual-core or quad-core processors, this is becoming a more prevalent issue.

www.it-ebooks.info

http://www.it-ebooks.info/

303CHAPTER 17: Working with Files

Newer Android devices have had a choice of underlying solid-state storage technology,
and device manufacturers have added ext4 as a file system in a range of cases. This file
system comes with traditional file-level locking semantics, which means concurrency issues
are greatly reduced. Unfortunately, there is no easy way for you to determine from your
application which file system is being used by a user’s device. If you run into concurrency
or I/O delay issues with the underlying storage when you are performing read or write
operations from your application’s main UI thread, all your user will notice is a slow or
unresponsive application. As a developer, you are likely to get the blame, even when it might
be Android itself that is causing the issue.

Controlling UI Delays with File I/O
As a developer, you can take several approaches to mitigate locking and contention issues
with the YAFFS file system. These techniques can also assist in general with other types
of I/O to network end points.

Using StrictMode to Profile an Application
We will explore a range of developer-focused tools and utilities in the coming chapters, but
the most relevant for any I/O delay issues is the StrictMode policy system that profiles the
operation of all of your code looking for issues defined in its policies.

StrictMode currently has only two sets of policies on which you can call. The first are the
virtual machine policies that cover generally poor behavior or practices across an entire
application, such as leaking database connection objects. The second set of policies are
the thread policies, and these look specifically for poorly behaved code happening on
the main UI thread. The policies I’ve just mentioned can help spot code—both yours, and
Android’s—that is going to slow or interrupt a user’s smooth experience with the UI.

Activating a StrictMode policy can be as simple as calling the static StrictMode.
enableDefaults() method from your onCreate() callback. Doing so reports all kinds of
useful information in your LogCat output regarding UI thread issues including file I/O
concerns. You can also define your own policies if you desire; the Android documentation
has many more details on this.

Caution  Never leave StrictMode policies defined in your final, publicly-available, application.
Either use application logic such as if/then/else to skip setting policies in released applications, or
simply comment the code out of any final version. Leaving StrictMode in place creates significant
amounts of log data on user devices that can cause issues with full devices.

www.it-ebooks.info

http://www.it-ebooks.info/

304 CHAPTER 17: Working with Files

Moving Logic to Asynchronous Threads
StrictMode is an excellent tool for finding candidate logic that you can move away from the
main UI thread and interface. You might also know of other logic in your application that
doesn’t need to happen on the critical path, such as the background lookup of data from a
web service, or messaging and polling-style work for maintaining lists, cached items,
and so forth.

Android provides a method for spawning asynchronous threads called AsyncTask(). This is
well worth mastering as part of your Android learning, since most developers use it as the
workhorse for managing threading across their applications.

The AsyncTask() class is provided in a form that means you, as the developer, must
subclass it to create specific implementations for the work you want to do. In its most basic
form, it provides a doInBackground() method to encapsulate the actual logic your want
performed on another thread. You can implement optional additional methods to provide
pre- and post-execution logic, interact with the UI in a controlled way, and so on.

Listing 17-5 outlines a subclassing of AsyncTast() to illustrate how you can use it to perform
file-saving operations. This is only one of countless ways you can implement this, and I’ll
return to the subject of threading and task management in more depth later in the book.

Listing 17-5.  An Example AsyncTask Subclassing

private class SmartFileSaver extends AsyncTask<Void, Void, Void> {
  
 protected void onPreExecute() {
 // This method will fire on the UI thread
 // Show a Toast message
 Toast.makeText(this, "Saving File", Toast.LENGTH_LONG).show();
 }
  
 protected void doInBackground() {
 // This method will spawn a background thread
 // All work happens off the UI thread
 // create output stream
 // call .write()
 // catch exceptions
 // etc.
 }
  
 protected void onPostExecute() {
 // This method will fire on the UI thread
 // Show a Toast message
 Toast.makeText(this, "File Saved", Toast.LENGTH_LONG).show();
 }
}

Using the SmartFileSaver.execute() method invokes your various onPreExecute(),
doInBackground(), and onPostExecute() methods with Android managing the related thread
lifetime and UI interaction.

www.it-ebooks.info

http://www.it-ebooks.info/

305

Chapter 18
Managing Databases with
Android
Files are not the only way to store information from your application onto an Android device.
Every Android device ships with an embedded and embeddable database known as SQLite.
Those of you familiar with SQLite know that it represents a rock-solid database engine that
ships as a single library, and that it can be included in all manner of applications. SQLite has
been around for almost 20 years and has proven itself one of the winners in the “small but
mighty” database category.

For those of you not familiar with SQLite, or its Android capabilities, let me quickly walk you
through the database fundamentals of using SQLite, and how to use it with Android to build
up a simple database-driven application.

SQLite: A Seriously Popular Database
If you are questioning whether you should invest your time learning about SQLite as part
of your Android education, let me provide some reassurance. SQLite is, without a doubt,
the most popular database platform shipped with, or used by, software today. Some of its
adherents include the following:

	Google (well, obviously, we’re talking Android here). Not only does SQLite
ship built in to Android, but it is also the database the Chrome Web browser
uses for storing all kinds of profile information, from bookmarks to cookies.
It is also used for supporting the “local storage” option of HTML5.

Note  If you would like to delve deeper into the world of SQLite, beyond what I cover in this chapter,
I recommend The Definitive Guide to SQLite, Second Edition. In the interests of full disclosure, I should
admit that the authors of that book are Michael Owens and Grant Allen. That second name should look
familiar to you, as that is none other than the author of the book you are now reading.

www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 18: Managing Databases with Android

	Apple. Android’s great competitor, the iPhone, ships with SQLite as a
standard library as well. As do iPads, all recent Macintosh machines,
and even devices like Apple TV.

	Mozilla. The Firefox browser uses SQLite for many tasks similar to what
Chrome uses it for, including options for HTML5 local storage support.

	Symbian. If you remember Nokia phones before the Microsoft era, then
you will certainly know of and have used Symbian. It, too, shipped with
SQLite.

	Oracle. Yes, the database behemoth best known for being one of the
giants (in both reputation and resource consumption) of the database
world. Many of Oracle’s products ship with SQLite embedded,
particularly the range of products it acquired from the Sun acquisition.

And this is just a sample of the incredibly broad use and support for SQLite across the
technology industry. Even if all of these names don’t sway you to learn about SQLite for
Android use, the millions of Android applications that already use it and that are available
from the Google Play store should convince you it’s a solid technology foundation for data
storage needs in your Android applications.

A Crash Course in SQLite
SQLite is designed to be a very familiar database library that provides the relational
database query and transaction capabilities to whatever application loads the library. It uses
a fairly standards-compliant implementation of SQL as the query language, as you probably
guessed from the name.

As a language, SQL has steadily evolved in various date-stamped versions, such as SQL-
92 and SQL-99, and SQLite supports all the usual SELECT, INSERT, UPDATE, and DELETE
commands, but there are some key features of later SQL standards it doesn’t support. Here
are some of the support restrictions:

	Only a subset of ANSI outer join syntax is supported.

	There is minimal alter table support—basically just what you need to
rename and add columns—so you won’t be able to drop columns or
perform data type morphing (more on this later).

	Row-centric triggers are OK, but you won’t be able to use statement-
centric triggers.

	Views are strictly read-only.

	There isn’t any support for any windowing or OLAP capabilities
(LAG, LEAD, etc.).

To be honest, these few missing features are all at the higher end of typical database usage,
and for a very small embeddable database library, you still get the huge range of the power
that SQL offers.

www.it-ebooks.info

http://www.it-ebooks.info/

307CHAPTER 18: Managing Databases with Android

In this list, note that in the second item on altering tables flags, you cannot play with existing
data types for a table. This isn’t because of any ideological reason; rather, it has to do with
the one fundamentally different—and some would say strange—area of the design of SQLite.

When you are specifying data types for a column, such as integer or char, SQLite happily
accepts such syntax, but under the hood, it implements a data typing system it calls
manifest typing. In layperson’s terms, what this really means is that the notion of prescribed
data types really isn’t present;instead, SQLite simply uses them as guides and allows you to
create data of any “type” in a given column.

This is very close in concept to the data type flexibility you might have experienced in
contemporary NoSQL-style databases. The data type isn’t enforced across the whole
column; instead, it is simply another attribute of each individual value in that column for the
rows in a table.

Creating SQLite Databases for Your Application
There are two main approaches to bootstrapping a SQLite database for your application:
you can either create a SQLite database file from somewhere else, such as your
development machine, and copy it as a resource in your Android project, or you can have
your application create and populate a database for you.

The drawback of the packaging approach is that as a developer, you find it becomes more
difficult to keep the database schema and code development in sync—this is a problem not
unique to Android. Ordinarily, you might think that having to manage the creation and initial
population in you Android code would be a similar burden, but Android comes to the rescue
with some excellent setup assistance.

As part of Android’s SQLite support, the SQLiteOpenHelper class is provided for you to subclass
in your application. This class takes care of all the initial setup of a SQLite database, and it
deals with future changes and upgrades. You need to implement at least three of the methods
from the parent class, and a fourth method for downgrades is also available as an option.

First, you need to add any logic to the SQLiteOpenHelper constructor (calling that parent
constructor as a basis). The parent takes care of checking to see if the nominated database
file itself actually exists and creates the file if it needs to. It also performs a version check
against the provided version and calls the onUpgrade and onDowngrade methods as
determined. It can also do some other fancy tricks, but those are the essentials.

Second, you need to implement the onCreate() method. Here you actually perform the SQL
commands to create the tables, indexes, views, and so forth that you want in your database. You
should also perform any inserts, updates, and the like that you need to seed your database.

Lastly, you have to provide an implementation for onUpgrade(), and you can optionally also
provide one for onDowngrade(). The point of these methods is to handle the schema changes
and any related data changes you wish to have occur as you upgrade your application over
time (and presumably, change the SQLite database to support the new application logic).
You will often see a quick hack that uses the “drop and re-create” approach. This is not
something I recommend performing unless the data is really unimportant to your user and
you know you can create it again if you need to—for example, if you have backed up the
user’s data to a web service or end point.

www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 18: Managing Databases with Android

It is one thing to read a few paragraphs that dryly describe what should be in the code; it’s
another to...... So let’s improve the situation by taking a look at the example application I use
throughout this chapter to explore Android and SQLite.

Introducing the SQLiteExample Application
The ch18/SQLiteExample application highlights all of the key SQLite capabilities you might
want to use when you’re building database-driven Android applications, and it builds on some
of the list-based UIs we explored in earlier chapters. Figure 18-1 shows the UI comprised of
a ListView for showing known Android device models from a SQLite database, along with
buttons for adding new device models and showing information about known devices.

Figure 18-1.  The SQLiteExample main activity and appearance

Since you are already familiar with this kind of UI design, I won’t dwell on it in huge detail.
Listing 18-1 shows the layout.

www.it-ebooks.info

http://www.it-ebooks.info/

309CHAPTER 18: Managing Databases with Android

Listing 18-1.  The SQLite Example Main Activity Layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:orientation="vertical"
 tools:context=".SQLiteExample">
 
 <LinearLayout
 android:id="@+id/buttonGroup"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 
 <Button
 android:id="@+id/addNewModel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Add New Model"
 android:onClick="onClick"/>
 
 <Button
 android:id="@+id/getModelInfo"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Show Model Info"
 android:onClick="onClick"/>
 
 </LinearLayout>
 
 <ListView
 android:id="@android:id/list"
 android:layout_width="wrap_content"
 android:layout_height="match_parent" />
 
</LinearLayout>

When you look at this code you should notice two quick points. First, note that I define
two nested LinearLayouts. The outer-most LinearLayout uses orientation=vertical,
and contains the inner LinearLayout and the ListView with the stock Android id.
The inner LinearLayout houses the two buttons, addNewModel and getModelInfo, with
orientation=horizontal. This is a quick layout hack to have the UI widgets flow as I want
them, but you can devise a more elegant solution with suitable weightings, gravity, and
layout references.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

310 CHAPTER 18: Managing Databases with Android

The second point to note is the presence of the by-now normal pattern of both buttons
registering the same method to handle clicks. As usual, when we delve into the supporting
Java code, our onClick() method determines which button was pressed and directs the
logic from there.

Look again at Figure 18-1; you can see several devices already listed, which suggests
that there is data in a database somewhere that I am already using to demonstrate the
application. This data was placed there when I implemented the SQLiteOpenHelper I used in
the SQLiteExample application. The Java for my implementation appears in Listing 18-2.

Listing 18-2.  The MySQLiteHelper SQLiteOpenHelper Implementation

package com.artifexdigital.android.sqliteexample;
 
import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
 
public class MySQLiteHelper extends SQLiteOpenHelper {
 public static final String TABLE_NAME="devices";
 public static final int COLNO__ID = 0;
 public static final int COLNO_MODEL_NAME = 1;
 public static final int COLNO_RELEASE_YEAR = 2;
 public static final String[] TABLE_COLUMNS =
 new String[]{"_id","model_name","release_year"};
 
 private static final String DBFILENAME="devices.db";
 private static final int DBVERSION = 1;
 private static final String INITIAL_SCHEMA=
 "create table devices (" +
 "_id integer primary key autoincrement," +
 "model_name varchar(100) not null," +
 "release_year integer not null" +
 ")";
 private static final String INITIAL_DATA_INSERT=
 "insert into devices (model_name, release_year) values " +
 "('LG Nexus 4', 2012)," +
 "('LG Nexus 5', 2013)," +
 "('Samsung Galaxy S6', 2015)";
 
 public MySQLiteHelper(Context context) {
 super(context, DBFILENAME, null, DBVERSION);
 }
 
 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(INITIAL_SCHEMA);
 db.execSQL(INITIAL_DATA_INSERT);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

311CHAPTER 18: Managing Databases with Android

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 // perform upgrade logic here
 // This can get quite complex
 if (oldVersion==1) {
 // do upgrade logic to new version
 }
 // and so on
 }
 
}

From the Java listing, you can see the various mandatory helper requirements that I
introduced earlier in the chapter. The constructor takes the file name and version information
so that it can check to see if the SQLite database file exists and can create it if it needs to. In
our case, I have called the database file “devices.db”.

The onCreate() implementation looks deceptively simple. Two calls are made to the
execSQL() method; this is your introduction to the first of many of the methods that are
used to actually issue SQL commands and work with results. In its most basic and common
form, the execSQL() method takes a string SQL statement as a parameter, which is the SQL
command executed by the SQLite library. Normally there is nothing returned, assuming the
execution is successful.

The SQL statements passed to the execSQL() calls are built up in the constant declarations
at the beginning of the class. The constant-based approach is not a new one, but you
should take note of the few additional constants the application uses:

	The three COLNO_* constants represent the ordinal position of the
columns in the table as defined. These positions are important for some
of the access methods that implicitly use the default column order for
returning data.

	TABLE_COLUMNS is a String array of the column names in the table.
A number of the methods we are about to explore make use of this
collection of names.

You should also note the _id column of the table. This uses the autoincrement feature of
SQLite to have it generate a unique integer value as the primary key for your table.
A number of the built-in Android tools, helper classes, and so on use and expect the name
_id convention to be available, so it’s a design choice you should adopt for all of your
SQLite tables.

The other SQL statement issued through execSQL() is the INITIAL_DATA_INSERT statement
that performs a multirow insert to bootstrap some data into the one table in our schema.
This statement is entirely optional and specific to this example. Your own application might
have no initial data, or enormous amounts. The syntax used for the insert statement itself is
only supported in later versions of SQLite, and, therefore, later versions of Android. I return
to the SQLite versions and features versus Android versions toward the end of the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

312 CHAPTER 18: Managing Databases with Android

The last method in the helper class implementation is a skeleton for onUpgrade(). In the
example application, we are dealing with the first version of the application (DBVERSION
equals 1 and is used in the constructor call). However, you can see the outline of the logic
you can use to work with the provided oldVersion and newVersion values in order to decide
what schema changes, data updates, or other actions you might need as part of an upgrade
to your application. As I mentioned previously, you will see many examples online of people
simply dropping and re-creating a database as the onUpgrade() implementation. It’s lazy, but
it works to a degree, so long as you don’t care about your user’s data. Beware this approach
if you are storing any data of value!

Building a Database-Driven Activity
Now that you understand the structure and purpose of the SQLiteOpenHelper class, you
can actually use it to build a database-driven application. The logic that sits behind the
SQLiteExample application is shown in Listing 18-3. This is a fairly long listing, even though
I have broken out the DialogWrapper class into a separate file and have not copied it here to
save space—you can always view this yourself in the ch18/SQLiteExample source code.

Listing 18-3.  The Main SQLiteExample Activity

package com.artifexdigital.android.sqliteexample;
 
import android.app.AlertDialog;
import android.app.ListActivity;
import android.content.ContentValues;
import android.content.DialogInterface;
import android.os.Bundle;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.view.LayoutInflater;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Toast;
 
import java.util.ArrayList;
import java.util.Calendar;
import java.util.List;
 
public class SQLiteExample extends ListActivity {
 private SQLiteDatabase myDB;
 private MySQLiteHelper myDBHelper;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_sqlite_example);
 
 myDBHelper = new MySQLiteHelper(this);
 myDB = myDBHelper.getWritableDatabase();
 
 displayModels();
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

313CHAPTER 18: Managing Databases with Android

 public void onClick(View view) {
 switch(view.getId()) {
 case R.id.addNewModel:
 addModel();
 break;
 case R.id.getModelInfo:
 getModelInfo(view);
 break;
 }
 }
 
 public List<String> getModels() {
 List<String> models = new ArrayList<>();
 
 Cursor cursor = myDB.query(MySQLiteHelper.TABLE_NAME,
 MySQLiteHelper.TABLE_COLUMNS, null, null, null, null, null);
 
 cursor.moveToFirst();
 while (!cursor.isAfterLast()) {
 String model = cursor.getString(MySQLiteHelper.COLNO_MODEL_NAME);
 models.add(model);
 cursor.moveToNext();
 }
 
 cursor.close();
 return models;
 
 }
 
 public void displayModels() {
 List<String> modelEntries = getModels();
 
 ArrayAdapter<String> adapter = new ArrayAdapter<>(this,
 android.R.layout.simple_list_item_1, modelEntries);
 setListAdapter(adapter);
 }
 
 public void getModelInfo(View view) {
 
 Cursor cursor = myDB.rawQuery(
 "select _id, model_name, release_year " +
 "from devices", null);
 
 cursor.moveToFirst();
 while (!cursor.isAfterLast()) {
 String model = cursor.getString(MySQLiteHelper.COLNO_MODEL_NAME);
 Integer year = cursor.getInt(MySQLiteHelper.COLNO_RELEASE_YEAR);
 Toast.makeText(this, "The " + model +
 " was released in " + year.toString(),
 Toast.LENGTH_LONG).show();
 cursor.moveToNext();
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

314 CHAPTER 18: Managing Databases with Android

 cursor.close();
 
 }
 
 private void addModel() {
 LayoutInflater myInflater=LayoutInflater.from(this);
 View addView=myInflater.inflate(R.layout.add_model_edittext, null);
 final DialogWrapper myWrapper=new DialogWrapper(addView);
 
 new AlertDialog.Builder(this)
 .setTitle(R.string.add_model_title)
 .setView(addView)
 .setPositiveButton(R.string.ok,
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {
 insertModelRow(myWrapper);
 }
 })
 .setNegativeButton(R.string.cancel,
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton) {
 // Nothing to do here
 }
 })
 .show();
 }
 
 private void insertModelRow(DialogWrapper wrapper) {
 ContentValues myValues=new ContentValues(2);
 
 myValues.put(MySQLiteHelper.COLNAME_MODEL, wrapper.getModel());
 myValues.put(MySQLiteHelper.COLNAME_YEAR,
 Calendar.getInstance().get(Calendar.YEAR));
 
 myDB.insert(MySQLiteHelper.TABLE_NAME,
 MySQLiteHelper.COLNAME_MODEL, myValues);
 //uncomment if you want inserts to be displayed immediately
 //displayModels();
 }
 
 @Override
 public void onDestroy() {
 super.onDestroy();
 
 myDB.close();
 }
 
}

www.it-ebooks.info

http://www.it-ebooks.info/

315CHAPTER 18: Managing Databases with Android

The first and most important part of any SQLite-based Android application is creating an
object from your helper class, and keeping it for the life of the activities that need it. Typically
that’s easily done, as is demonstrated here in our example application from within the
launcher activity.

With your helper object available, any time you need to work with the database, all you
need do is invoke its getReadableDatabase() or getWritableDatabase() method to return
a database object for your underlying SQLite database. As the names suggest, a database
object that is readable is used for only SELECT-style queries, whereas the writable version
allows DML statements (INSERT, UPDATE, DELETE) and DDL statements like the ones used in
our onCreate() helper class method.

When you are done with the immediate needs of using the database object, simply call its
.close() method and the helper class tidies up. You typically do this as part of the process
of your activity being finalized in onDestroy() or similar.

Our example application creates the helper object and uses getWriteableDatabase(), and
then it proceeds to populate the modelEntries list using the getModels() method. With the
results in hand, we feed our ArrayAdapter what it needs to inflate the ListView with the
data returned from the database. The getModels() method is a deceptively short method,
because is introduces and uses two major capabilities having to do with SQLite databases
and Android. The first concept is the query helper approach to gathering data from your
SQLite database, and the second concept involves the cursor object for managing the
results that are returned. Let’s look at the bigger picture of both these concepts in detail.

Choosing Query Approaches for SQLite and Android
When you are using SQLite in your application, you have to choose between two principal
ways of actually retrieving the information stored in the database. Although the basis of both
is the humble SELECT statement, your choice basically boils down to how much structure and
hand-holding you want.

Walking Through the Query Building Process
The first approach, as seen in the getModels() method of the SQLiteExample application, is
the query() method. The query() approach provides a very structured path to build up the
necessary and desired column choices, tables, predicates, and so on for the query that will
actually be issued against your SQLite database.

When using query(), you don’t actually write the SQL SELECT statement itself. Instead, you
step through the following constituent phases, and the query() method builds the equivalent
SQL under the hood.

1.	 Provide the name of the table to be used in the query.

2.	 Provide the column names to select (or “project” if you are into
official relational database nomenclature).

3.	 Provide predicates for the where clause, including any optional
positional parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 18: Managing Databases with Android

4.	 If positional parameters are used, provide the values for the
parameters.

5.	 Provide any GROUP BY, HAVING, or ORDER BY clauses.

Where one of the parts is not needed, you simply provide null. Thus, from SQLiteExample,
you saw our call take this form:

myDB.query(MySQLiteHelper.TABLE_NAME, MySQLiteHelper.TABLE_COLUMNS,
 null, null, null, null, null)

This means we didn’t use any predicates in a where clause, had no parameters, and didn’t
use any GROUP BY, HAVING, or ORDER BY options.

If this all seems very straightforward, I want you to go back and carefully read the first item
in the preceding list of the steps for using query(). Note that you provide the name of the
table—singular! That’s right. The number one drawback of the query() approach is that it
can only work with one table in a given call. This means you cannot use joins to other tables.
More subtly, the predicates to the where clause must not implicitly invoke the use of other
tables, meaning you cannot sneak in a subselect, an EXISTS predicate, or other approach
that references another table or tables.

Using the Raw Power of SQL
If the query() method seems limiting, and you ache to use the full power of SQL, then
rawQuery() is the alternative. As suggested by its name, rawQuery() takes a “raw” string
representing a SQL statement. The second parameter is an optional array of positional
parameters, if you choose to use them in your SQL statement. Where you don’t need
parameterization, simply pass null as the second parameter.

You can see the working example of rawQuery() in the getModelInfo() method of SQLiteExample:

myDB.rawQuery("select _id, model_name, release_year " + "from devices", null)

You are free to go wild with all the SQL complexity your heart desires. Everything SQLite
supports can be included in rawQuery(), including nested subselects, joins, and more. Be
aware, however, that the power of rawQuery() comes at a price. If you have a well-known
set of static queries, then managing them with rawQuery() is fine. But as your query strings
become more complex, and especially if you find yourself dynamically building SQL SELECT
statements through string concatenation, then life becomes both more complex and more
risky. The main danger to watch out for with string concatenation and dynamic SQL you run
via rawQuery() is the risk of SQL injection.

SQL injection refers to the practice of malicious users inserting SQL database commands
into text fields and application URLs in order to trigger (to deceive!) the application into
executing those commands. Such exploits are among the most common, and SQL injection
is at the root of many embarrassing breaches of security. This isn’t an Android issue, nor
really a SQLite issue—it affects every database where unsanitized dynamic SQL is used.
Practice safe SQL!

www.it-ebooks.info

http://www.it-ebooks.info/

317CHAPTER 18: Managing Databases with Android

Managing Data Results with Cursors
Regardless of which approach you use to query the database, your return object is a cursor,
which I now cover. This concept is pretty much identical to the concept of cursors in other
database programming libraries, so if you have used cursors in other databases, you already
have a pretty good idea of how the SQLite cursor behaves with Android. For those of you
who have not yet worked with cursors, the best way of thinking of them is as complete
sets of data that result from a query, and a pointer (or cursor position) to the current row of
interest within the result set.

The data-plus-positional-pointer metaphor is key to understanding the many capabilities a
Cursor object gives you. Among the common tasks you can perform are the following:

	Move the cursor position and iterate over the result set with
methods like moveToFirst() and moveToNext(); test the position with
isAfterLast().

	Interrogate the result set to learn the names of columns, ordinal column
positions, and so on with getColumnNames() and getColumnIndex().

	Extract individual column values from the current row with getString(),
getInt(), and other similar methods for other data types.

	Get statistics about the result set with getCount(), but be aware that this
forces the entire result set for the cursor to be read, which can consume
considerable memory and take quite a bit of time for large results.

	Free all of the cursor resources using the close() method.

You typically process your cursor results in a loop, performing whatever application logic you
need on each row. The SQLiteExample app does this in a few places, including in this snippet
from getModels():

Cursor cursor = myDB.query(MySQLiteHelper.TABLE_NAME,
 MySQLiteHelper.TABLE_COLUMNS, null, null, null, null, null);
 
cursor.moveToFirst();
while (!cursor.isAfterLast()) {
 String model = cursor.getString(MySQLiteHelper.COLNO_MODEL_NAME);
 models.add(model);
 cursor.moveToNext();
}
 
cursor.close();

Here I use the query() method for a SQLite database object and pass it the name of the
table and the String array with the column names that interest us. This means I get back a
cursor with a result set that looks like Listing 18-4.

www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 18: Managing Databases with Android

Listing 18-4.  Sample Cursor Result Set for the SQLiteExample Activity

_id model_name release_year
--- ----------------- ------------
1 LG Nexus 4 2012
2 LG Nexus 5 2013
3 Samsung Galaxy S6 2015

I invoke the .moveToFirst() method before entering the loop, which means the current row
for the cursor is the _id=1 row. Stepping through the loop, I test that we have not moved to
the end of the result set for the cursor with isAfterLast(), and I call getString(), passing it
the column position for the model_name column, which is represented by the COLNO_MODEL_
NAME constant declared in the helper class. I add this string to our ArrayList, and use
moveToNext() to continue processing the next row.

You can also feed a Cursor object to a SimpleCursorAdapter so you can use it in binding
with a ListView or other selection UI widget. In order to use any of the CursorAdapter
options, or their subclasses, you must use the table structure pattern I introduced earlier
in the chapter. You must create your table with a column named _id as the primary key,
and you must set this key with the autoincrement property. This is the value that all of the
adapter’s methods expect, such as onListItemClick().

Inventing Cursors of Your Own
When the built-in Cursor class is not enough for your needs, you can branch out
with the SQLiteDatabase.CursorFactory object and the queryWithFactory() and
rawQueryWithFactory() methods that work with it. The factory object is responsible for
generating new cursor objects with the newCursor() method. In all my years of working with
Android, I have not yet found a real need to implement CursorFactory, so if you wish to
know more, head over to the Android documentation.

Tip  This kind of iterative row processing is a very common programming practice, but it contains
the most common performance peril in all database-related programming. Do not be seduced
by the iterative logic of while loops or for loops if you can express the same logic declaratively in
SQL. SQL is pretty much always the best choice for computation and crunching the data. Use the
iterative approach in your Java code for non–data-processing logic, such as where data is bound to
UI widgets or non–SQL-like processing is performed. Your performance will be preserved and your
users will thank you for it.

www.it-ebooks.info

http://www.it-ebooks.info/

319CHAPTER 18: Managing Databases with Android

Modifying Data with Your Android Application
A world in which you can only read existing data is usually not what you are after when you
are building database-driven applications. At some stage, you will want your users to add,
modify, and remove information from your SQLite database. This means you want to be able
to run INSERT, UPDATE, and DELETE SQL DML statements against your database.

Android’s SQLite support offers you two ways in which to carry out your DML desires.
The first is to use the execSQL() method and pass a fully-formed SQL statement. This is
what the SQLiteExample application does using the helper class when the database is first
created. As discussed earlier, execSQL() is suitable for any kind of statement that doesn’t
expect to return a result. This means INSERT, UPDATE, and DELETE are just fine. If SQLite ever
supports MERGE, and Android updates the SQLite library accordingly, that would also be a
good candidate statement. I cover more about the nuances of Android versions and SQLite
versions shortly.

The second option to using DML on your database is to use your SQLiteDatabase object’s
.insert(), .update(), and .delete() methods, taking the “guided-path” approach to DML
in much the same way that .query() guides you to easier SELECT statements. All of these
methods use a ContentValues object, which provides a SQLite-tailored map of values and
columns.

Inserting Data
If you look at the insertModelRow() method from SQLiteExample, you can see the .insert()
method in operation:

private void insertModelRow(DialogWrapper wrapper) {
 ContentValues myValues=new ContentValues(2);
 
 myValues.put(MySQLiteHelper.COLNAME_MODEL, wrapper.getModel());
 myValues.put(MySQLiteHelper.COLNAME_YEAR,
 Calendar.getInstance().get(Calendar.YEAR));
 
 myDB.insert(MySQLiteHelper.TABLE_NAME,
 MySQLiteHelper.COLNAME_MODEL, myValues);
 //uncomment if you want inserts to be displayed immediately
 //displayModels();
}

The .insert() method here is pretty readable thanks to the use of the helper class
constants, but why those constants are there bears scrutiny. The first parameter is the name
of the table into which you want your data inserted. The second parameter is an Android-
required column from the table that can accept nulls, and it is known as the null column
hack. This requirement is a workaround for some slightly strange insert behavior in SQLite
itself. This hack is only used if the third parameter, the ContentValues object, is empty.

www.it-ebooks.info

http://www.it-ebooks.info/

320 CHAPTER 18: Managing Databases with Android

Ordinarily, the ContentValues object has some data added to it before it gets used. In our
SQLiteExample application, you can see it is pulling string data from the DialogWrapper
object using its .getModel() method. You can open up the class definition for yourself, but
.getModel() is returning the text a user enters in the dialog box, which displays if they press
the Add New Model button, as shown in Figure 18-2.

Figure 18-2.  Prompting for new data to insert in the SQLiteExample application

The text the user enters becomes the value for the .put() call on the ContentValues object,
and the COLNAME_MODEL column name String is used as the key. For the year of release value,
we use a common Java technique to simply calculate the current year, though you can
expand the complexity of the dialog to have the user input that as well.

Updating Data
Updating data with the .update() method is very similar in approach to how you do it with.
insert(), with one additional consideration. Just as with .insert(), you call .update()
with the String that represents the name of the table you wish to update, and you call a
ContentValues object that represents the new values the column or columns you want to
update should have. You can also provide an optional where clause to provide the criteria
with which you can refine which rows to update. This where clause can include the question

www.it-ebooks.info

http://www.it-ebooks.info/

321CHAPTER 18: Managing Databases with Android

mark, ?, as a value placeholder, and you can pass a final parameter that is a list of values
you can use to replace the ? parameter placeholders. This is a very common technique for
parameter substitution in other database libraries, so it is likely to be familiar to many of you.

The main drawback of the .update() approach is the simplicity of the ContentValues object.
It must contain actual values, and cannot use formulas or dynamically calculate the updated
value as part of the executed update statement. If you need that level of sophistication, you
should use a SQL update statement as part of the execSQL() method instead.

Deleting Data
Deleting data with .delete() is very similar to the process of updating with .update(); the
only exception is that you do not need to provide any “new” values. Simply provide the
name of the table you want to target for the delete, and optionally, provide the where clause
and any parameter values it might need. This can be as simple as the following example:

myDB.delete(MySQLiteHelper.TABLE_NAME, "_id=?", args);

Assuming you provide something for args—for example, a list with one value in it, such as
“2”—the delete() call will substitute that value for the ? marker, note the table name (in our
case, “devices” is the MySQLiteHelper.TABLE_NAME value), and execute the resulting SQL. In
our case, the SQL statement would be as follows:

delete from devices where _id=2

Again, for complex cases that requiring calculations, joins, subselects, and so on, to
determine what rows to delete, you should use the execSQL() option instead.

Tracking SQLite Versions and Android Versions
Just as Android has released many versions over the years, so too has SQLite. Although
SQLite is considered to be very mature and not in need of constant overhauling, at least
three different library versions have shipped with various releases of Android.

All releases of Android since the initial release, up to and including versions 2.1.x, shipped
with SQLite support that used the version 3.5.9 library. When Android 2.2 (Froyo) was
released, the SQLite library changed to version 3.6.22. This version had very little impact; it
mostly dealt with minor bug fixes and subtle improvements.

Things were static for some time again until the advent of Android 3.0 (Honeycomb). But
from Honeycomb on, upgrades to the SQLite library have come thick and fast with new
Android releases. Table 18-1 breaks down of all the Android versions at which SQLite
versions changed.

www.it-ebooks.info

http://www.it-ebooks.info/

322 CHAPTER 18: Managing Databases with Android

From SQLite 3.7 on, significant enhancements and improvements have been made to
features like locking, concurrency, and logging. You can decide not to worry about all the
more powerful new features and just treat things as if you are using a common ancestor
version of SQLite. However, there are two key things to note, even if you do want to ignore
such library updates.

The database files SQLite creates include an internal version number. Historically, prior to
version 3.7, this was always 1, but with the release of SQLite 3.7, it began to be incremented
because at this point a newer format was required to support some of the new features.
Ordinarily you can totally ignore this within an Android application. However, if you decide
to package and ship a prebuilt SQLite database file with your application, you need to think
about what older versions of Android you plan to support. If versions earlier than Android
3.0 Honeycomb interest you, ensure that you use the older SQLite database file format.
Although all versions of the SQLite library happily work with the old format without requiring
any kind of update or rebuild, shipping a newer format database to an old device with a pre-
3.7 SQLite library version will cause unpredictable results, likely including program crashes
and data corruption issues.

The second point you need to think about is any situations in which you want to use
rawQuery() or execSQL() and newer SQL syntax that is supported by later versions
of SQLite. A concrete example of this is the insert statement I constructed in the
MySQLiteHelper class. This example uses the newer multirow insert syntax that was only
introduced in SQLite 3.8:

insert into devices (model_name, release_year) values
 ('LG Nexus 4', 2012),
 ('LG Nexus 5', 2013),
 ('Samsung Galaxy S6', 2015)

Table 18-1.  Android Versions That Introduced New SQLite Versions

Android Version SQLite Version

1.0 3.5.9

2.2 3.6.22

3.0 3.7.4

4.1 3.7.11

5.0 3.8.4.3

5.1 3.8.6

6.0 3.8.11

www.it-ebooks.info

http://www.it-ebooks.info/

323CHAPTER 18: Managing Databases with Android

Usually, you will find ways of working around this if you want to provide the broadest
possible support. For example, I can perform our multirow insert using a hack with unions
and subselects, as follows:

insert into devices (model_name, release_year)
 select 'LG Nexus 4', 2012
 union
 select 'LG Nexus 5', 2013
 union
 select 'Samsung Galaxy S6', 2015

This is far less elegant, but it is supported in all versions of SQLite. The main point here is
that you need to check whether you plan to use any recently added SQL features in your
statements, and you need to decide whether to set an appropriate minSdkVersion value in
your application manifest to ensure you target versions of Android with the SQLite library
capabilities you need, or code your SQL to the lowest common denominator.

Packaging and Managing SQLite Databases for Android
You are now well on your way to mastering the use of SQLite for your Android applications.
But in addition to learning simple coding, make sure to acquaint yourself with design
considerations and the topic of the “care and feeding” of databases, so that your users
enjoy using your database-driven applications over time. Whether it’s ensuring that I/O
performance doesn’t hinder your UI thread, or preparing the perfect database to include in
your application, a little attention to detail here goes a long way.

Managing Performance and Android Storage
In Chapter 17, I covered various aspects of using and managing files and file systems on
Android in detail, including SQLite database files. I won’t repeat everything from that chapter
here, but I do want to point out one thing that you will hear again. Most Android devices ship
with onboard storage based on flash (using NAND hardware).

As you build Android applications using SQLite databases, and as you merrily have your
users inserting, updating, and deleting data, remember that they will be reliant on the flash
storage to manage the writes to “disk.” Unfortunately, flash storage is notoriously fickle and
consistent fast writes. Often you might get great write performance, and then suddenly see
a speed decrease because the flash storage is managing some internal properties such as
wear leveling and the like. This means a write could suddenly take hundreds of milliseconds
or even whole seconds.

Don’t be fooled by the behavior of your application when you are running it in the emulator.
It might look fast, but it is almost certainly using an AVD completely cached in your
computer’s very fast memory, including the simulated storage and file system. Writes in the
emulator are not really writes to disk, and they will seem much faster than any write your
application performs when it is actually deployed to a device.

To mitigate the performance risk, use the AsnycTask() approach described in Chapter 17 so
that database changes happen on an asynchronous thread, away from the main UI thread.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_17
http://dx.doi.org/10.1007/978-1-4302-4687-9_17
http://www.it-ebooks.info/

324 CHAPTER 18: Managing Databases with Android

You should also think about what happens to flash, and to your application’s data, in low-power
situations. If a device loses power, SQLite’s abilities to recover from crashes and preserve
the “durability” property of ACID should protect your actual data. But you may need to know
this is happening, and you may also want to check to see if any transactions were rolled
back because they failed to commit during a power-down or power-up situation.

You can add some smarts to your application to track and take action in low-power situations.
You can register a receiver in your application to watch for broadcasts like ACTION_BATTERY_
CHANGED. You can also examine the intent payload, determine what is going on with the
power and battery, and take action such as warning the user or deferring write-heavy tasks.

Packaging Your Own SQLite Database with Your Application
In the SQLiteExample application, the helper class adds three rows of data to the devices table
to seed the database. But what if I want to add a few hundred devices? Indeed, currently
thousands of known Android devices have been released. Trying to insert all of these at
database creation time when the application first runs will be cumbersome, will possibly
provide a terrible performance experience, and could run into a variety of runtime errors.

In situations in which you want a nontrival database to be used from the beginning with your
application, you can ship a SQLite database in place, packaging it with your other assets
within the .apk file.

You are already familiar with the assets/ folder in your project. You can place an already-
created-and-populated SQLite database file into the assets/ folder and then pass the path
and filename to the overloaded openDatabase() method that accepts a full file location as its
first parameter.

To create the full path and filename for your SQLite database file, you need to know that
database assets get placed into the file system folder /data/data/your.package.name/
databases/. Append the string representing your file name (e.g., devices.db from our
example application) and you have the value to pass as a parameter to openDatabase().
In our example application, this would be the following:

/data/data/com.artifexdigital.android.sqliteexample/devices.db

Preparing SQLite Databases for Packaging
Handcrafting databases of any type is a tedious affair, so you will almost certainly want
some tools to help design your database and populate it if you want to package a database
file with your Android application.

SQLite has a wealth of options to choose from, including the sqlite3 shell program that
ships with almost all operating systems (Windows is the exception here). Even the Android
emulator provides access to the sqlite3 utility. You can invoke it from the adb shell utility
once you are connected to your emulated device. For example,

sqlite3 /data/data/com.artifexdigital.android.sqliteexample/devices.db

www.it-ebooks.info

http://www.it-ebooks.info/

325CHAPTER 18: Managing Databases with Android

A lot of options are available within the sqlite3 utility. Check out the documentation at
sqlite.org for more details. The adb tool also provides some other useful general file
management commands that you can harness for your SQLite database files, such as adb
push to move a file to a device, and adb pull to copy a file from a device.

Of course, you may want to use a fancier GUI tool, and there are many to choose from. One
of the most popular is a plug-in for Firefox known as the SQLite Manager. Figure 18-3 shows
the SQLite Manager in action.

Figure 18-3.  The GUI for SQLite Manager in Firefox

One nice aspect of using browser extensions like this is that they work on all the platforms
the browser itself supports.

For a wider list of GUI tools for SQLite database management, check out sqlite.org.

www.it-ebooks.info

http://www.it-ebooks.info/

327

Chapter 19
Using Preferences
In the previous chapters you learned how to store, modify, and retrieve information from
the Android file system and using SQLite databases. Android has multiple ways of storing
information that suit many different purposes and goals. One of the simplest pieces of
information you may want to store on behalf of your users is a simple preference or option
setting. For instance, you may want to store a preference for date format, or a nickname in a
chat program.

Using a dedicated file or database for storing very small preference data is overkill, so
Android provides the preferences system as a way of storing and using simple key/value
items that persist across repeated activity lifecycles. Although the system and technique are
called preferences, you can, in fact, store anything you like, so long as it can be mapped to
simple key/value pairs. The main limitation, as you will explore in the examples that follow, is
that the key values must be strings, and the values must be in one of the primitive Java data
types such as int, Boolean, and so on.

Everything Old Is New Again
Before we delve into the details of coding and controlling preferences, here’s a little history
lesson to help you understand how preferences have changed over Android’s lifetime.

With the original release of Android, preferences were controlled by the PreferenceActivity
subclass, which had the job of loading preferences from resource XML files. This process
was very straightforward, and simple. As a developer, you’d use PreferenceActivity to
directly determine, based on individual preferences, what behavior your application should
perform.

Things changed to a degree when Google released Android 3.0 (Honeycomb). Although the
PreferenceActivity subclass (and its fragment parallels, PreferenceFragment and others)
still has the job of controlling preferences, it does so by loading preference headers from
your resource files.

www.it-ebooks.info

http://www.it-ebooks.info/

328 CHAPTER 19: Using Preferences

As we explore both new and old approaches, you’ll see how things differ. The reason you
as a developer still need to be familiar with both approaches is two-fold. First and foremost,
the new PreferenceActivity approach is not included in the Android support library for
older versions, meaning there is no system-provided way to mimic the new behavior in an
older Android version. The second reason is related to the first—old versions of Android,
particularly Android 2.2 and 2.3, still abound, and you need to make some design choices
about whether you want to target those old versions. Let’s explore both new and old
preference approaches, and you can then decide what you should use for your application.

Starting with Preferences
Preferences can be conceptually grouped into three “tiers” or “scopes” that target different
levels of sharing and availability.

The lowest level of preferences work at the level of an activity and are accessed via the
getPreferences() method. getPreferences() uses the activity class name to associate the
preference with the activity (this process is transparent to you—more on this in a moment).
A security visibility parameter is also passed to getPreferences(), and normally you would
choose the MODE_PRIVATE constant to mark the preference as private so that no other
application can access it.

The next highest level of preferences targets your entire application or application-level
context. Preferences at this level are controlled with the getSharedPreferences() method,
which takes a similar privacy marker to getPreferences() and an explicit preference set
name. This means you can create and use multiple preference sets at the application level.
If you return to getPreferences() at the activity level for the moment, you should know that
it actually calls getSharedPreferences() and uses the activity class name as the preference
set value.

The last scope or tier of preferences falls under the PreferenceManager object and its
governance of shared preferences across the entire Android device and its preference
framework. Interaction here is normally via the getDefaultSharedPreferences() method and
its variants. Calls to getDefaultSharedPreferences() take a context, such as your activity.

Whichever level you work at, the associated method call returns a SharedPreferences object
representing the complete map of relevant key/value pairs. A SharedPreferences object
comes equipped with getter helper methods such as getInt, getString, and getBoolean,
each of which takes a String as the key to look for among the preferences. A second
“defValue” parameter is also provided, and it represents the default to return if the key is not
found (by implication, that preference has not yet been set).

In practice it is almost always worth working with your preferences at the highest level
using getDefaultSharedPreferences(). This has two benefits. First, you get a fully-formed
SharedPreferences object that works seamlessly with a PreferenceActivity. Second, as a
developer, you save yourself from the ongoing mental gymnastics of having to remember the
various tiers of preferences and where you might have stashed away a given preference key/
value pair.

www.it-ebooks.info

http://www.it-ebooks.info/

329CHAPTER 19: Using Preferences

Recording Preferences
Once you have your SharedPreferences object in hand, you can modify the value or values
you desire by calling the edit() method to invoke the editor for your preferences. This
provides you with a SharedPreferences.Editor object, which has setter methods that match
the getters mentioned earlier, such as setString(), setBoolean(), and so forth.

A number of additional methods are crucial to editing your preferences:

	commit() actually saves the changes you have made via setter calls.
This returns a Boolean indicating success or failure.

	apply() is a faster version of commit(), effectively doing a “fire and
forget” attempt to persist your changes. There is no return value.

	remove() is used to purge a single preference key and its value.

	clear() deletes all of your preference keys and values. Use with caution!

The main behavior to note is that you must code your application to use commit() or apply()
after you use any combination of setter calls in order to actually save your changes to
preferences. Without such a call, your efforts are lost when the SharedPreferences.Editor
object loses scope.

On the flip side of needing to commit, once you do call commit() or apply(), preference
changes are instantly visible. This means, for instance, that a preference set in one fragment
of a visible activity is instantly available in another fragment within the same activity.

Working with Preference-Specific Activities and Fragments
The preferred way to incorporate preferences into your application is through the use of
PreferenceActivity and PreferenceFragment contexts. There are lots of good reasons
to use this approach that become apparent in the example we explore shortly. However,
there is a non-code reason to use the activity and fragment approach provided by Android:
consistency.

It is possible to design and build your own system of managing preferences. You might
think you have a good approach that uses some kind of local storage, a database, or
even a remote web service. But if you think about this from the user’s perspective, when
they work with a device, they work with lots of applications, not just yours, and if each
does preferences in a distinct and different way, the user experience becomes confusing,
disjointed, and quite likely, a mess.

If you use the PreferenceActivity approach, along with PreferenceFragment and the
related preference header and preferences XML resource files, you provide your users with a
consistent and very slick preference experience. As a reminder, the preference system was
revamped with Android 3.0, so you will find many old references online and in books to the
previous technique. I will talk about the old approach briefly toward the end of the chapter
so that those of you developing for older devices are covered. For now, let’s explore the
contemporary approach in the sample application, FragmentPreferencesExample, which you
can find in ch19/FragmentPreferencesExample.

www.it-ebooks.info

http://www.it-ebooks.info/

330 CHAPTER 19: Using Preferences

Seeing the Big Picture with Preferences
I have designed the sample application, FragmentPreferencesExample, to show the many
options you have with preferences in action, as well as to let you visualize the behind-
the-scenes preference values as you interact with the a PreferenceActivity and its
PreferenceFragments.

Figure 19-1 shows the initial view of the launcher activity.

Figure 19-1.  The FragmentPreferencesExample application, showing the menu in the action bar

We will discuss the use of getDefaultSharedPreferences, the SharedPreferences object, and
using the getters to populate what you see in Figure 19-1 shortly. Of immediate interest is
the simple menu that has been promoted to the action bar, offering you the option to change
preferences.

Invoking the Change Preferences menu item results in the activity shown in Figure 19-2,
which reveals preferences in all their glory.

www.it-ebooks.info

http://www.it-ebooks.info/

331CHAPTER 19: Using Preferences

The layout and detail shown in Figure 19-2 demonstrate PreferenceFragments in all their
glory and the controlling preference headers that define and manage them. Let’s start our
exploration of the code from the vantage of the preference headers.

Using Preference and Preference Header Resources
In Listing 19-1, I took the layout and entries for the left-side preference headings from
configuration data in the preference_headers.xml file.

Listing 19-1.  Contents of the preference_headers.xml File

<preference-headers xmlns:android="http://schemas.android.com/apk/res/android">
 <header
 �android:fragment="com.artifexdigital.android.fragmentpreferencesexample.

DefaultPreferenceFragment"
 android:title="First cluster of preferences"
 android:summary="These will be sourced from the preference_cluster_1.xml file">
 <extra android:name="fragprefresource" android:value="preference_cluster_1" />
 </header>
 <header

Figure 19-2.  Preference headers and the preference screen in fragments

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

332 CHAPTER 19: Using Preferences

 �android:fragment="com.artifexdigital.android.fragmentpreferencesexample.
DefaultPreferenceFragment"

 android:title="Second cluster of preferences"
 android:summary="from preference_cluster_2.xml, and you could add more">
 <extra android:name="fragprefresource" android:value="preference_cluster_2" />
 </header>
</preference-headers>

Dissecting this preference header resource file is straightforward and should illuminate how
control over all of the ultimate low-level preferences is performed. Within the <preference-
headers> element, you can define one or more <header> elements that act to visually group
individual collections of preferences. You can see that in this case, I have two <header>
elements, but I could have one, five, or dozens.

This preference header resource file is loaded from a PreferenceActivity context and controls
all of the preference headings, options, display, and so forth you see in Figure 19-2. Each
header has a handful of attributes, including the title used for display text and a summary to
further explain that header’s purpose. A child <extra> element is the secret that links a given
header to the subordinate preferences it controls through a trick I introduce later in the chapter.

In the example application, the two <header> elements each include an <extra> element,
named preference_cluster_1 and preference_cluster_2, respectively. These map to
resource XML files preference_cluster_1.xml and preference_cluster_2.xml. You can
name these files anything you like, so long as you ensure matching android:value attributes
within the <extra> child element. These are used to create the PreferenceFragment subclass
that will contain the respective clusters of preferences.

You might have noticed that I have strenuously avoided using the term category when
describing preference headers and preference resource files. I have used the terms cluster
or group, because there is no logical restriction on what preferences can be placed together
in a preference resource file, nor are there any coding or logic implications from grouping
things together. The word category can be misleading when used with preferences, as
developers start to think that perhaps all checkbox preferences need to be placed together,
or anything that affects program logic, such as font characteristics, must be placed together.
No such requirement exists—you are free to group preferences in any way you like, just as in
the example application.

Returning to the two clusters of preferences defined in preference_headers.xml, Listing 19-2
shows the preference_cluster_1.xml file.

Note  For Android Studio users, to use the naming and referencing approach from the
FragmentPreferencesExample application, you need to create a folder named xml within
the res folder of your project to hold your preference-related XML files. Eclipse users with the
traditional ADT should already see this folder in their project hierarchy.

www.it-ebooks.info

http://www.it-ebooks.info/

333CHAPTER 19: Using Preferences

Listing 19-2.  The Preferences Described in preference_cluster_1.xml

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <PreferenceCategory android:title="An example Preference Category subheading">
 <CheckBoxPreference
 android:key="checkbox1"
 android:title="Checkbox Preference"
 android:summary="A typical checkbox"
 />
 <CheckBoxPreference
 android:key="checkbox2"
 android:title="Checkbox Preference"
 android:summary="Another checkbox"
 />
 <RingtonePreference
 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="Pick a tone, any tone"
 />
 </PreferenceCategory>
 <PreferenceCategory android:title="Another subheading">
 <EditTextPreference
 android:key="text"
 android:title="Text Entry Dialog for Preferences"
 android:summary="Choose this to show a dialog for text entry"
 android:dialogTitle="Enter your text value"
 />
 <ListPreference
 android:key="list"
 android:title="Selection Dialog"
 �android:summary="Choose this to show a list populated from an array to

choose from"
 android:entries="@array/colors"
 android:entryValues="@array/color_codes"
 android:dialogTitle="What is your favorite color?" />
 </PreferenceCategory>
</PreferenceScreen>

Its partner file, preference_cluster_2.xml, is shown in Listing 19-3.

Listing 19-3.  The Preferences Described in preference_cluster_2.xml

<PreferenceScreen
 xmlns:android="http:// schemas.android.com/apk/res/android">
 <CheckBoxPreference
 android:key="checkbox3"
 android:title="More Checkbox"
 android:summary="Another typical checkbox"
 />

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

334 CHAPTER 19: Using Preferences

 <SwitchPreference
 android:key="switch"
 android:title="A Switch"
 android:summary="A switch instead."
 />
</PreferenceScreen>

Each file includes the root <PreferenceScreen> element, portraying what one onscreen
display of preferences will include. Each child element is a preference variant of some
sort, based on the standard widgets with which you are already familiar, such as Checkbox,
EditText, and so on. When the PreferenceFragment subclass is instantiated, it takes care of
inflating the preference UI items into widgets on the screen. You do not need to define your
own layouts in general—the only exception is where you wish to use a custom layout for
list elements in a ListView rendering for ListPreference. If you are happy with the defaults,
you will see a ListPreference preference rendered with the contents of the array resource
named in the android:entries attribute. These act as the key to the equivalent positional
entry in the android:entryValues array. That sounds a little clunky, but it works.

For instance, if you look in the arrays.xml resource from the example project, you will see an
array named colors like this:

<string-array name="colors">
 <item>Red</item>
 <item>Orange</item>
 <item>Yellow</item>
 <item>Green</item>
 <item>Blue</item>
 <item>Indigo</item>
 <item>Violet</item>
</string-array>

Following the colors array is the color-code array, which provides the possible parameter
values associated with each display key:

<string-array name="color_codes">
 <item>#FF0000</item>
 <item>#FFA500</item>
 <item>#FFFF00</item>
 <item>#00FF00</item>
 <item>#0000FF</item>
 <item>#4B0082</item>
 <item>#EE82EE</item>
</string-array>

With the default ListView row layout, if you choose the Selection Dialog preference item in
the first cluster of preferences, you will see the ListView dialog rendered in Figure 19-3.

www.it-ebooks.info

http://www.it-ebooks.info/

335CHAPTER 19: Using Preferences

The main attribute to note about all the preference types is android:key, which is the
reference half of the key/value pair that constitutes a preference. Note that you do not strictly
need to use reference files to break up the preference headers and resource XML files in
the fashion shown. You can include bare key/value preference items in multiple <extra>
elements within the <header> if you prefer. But I think you’ll agree the separation makes
sense, and it is much more readable when your collection of preferences grows to moderate
or large in size.

Figure 19-3.  A preference that selects from an array presented in ListView fashion

www.it-ebooks.info

http://www.it-ebooks.info/

336 CHAPTER 19: Using Preferences

Because the Android preference framework and the preference header and individual
preference screen files do much (but not all!) of the background work to bring
everything together, the ChangePreferences PreferenceActivity just needs to call
the loadHeadersFromResource() method in your implementation of the override for
onBuildHeaders, as you can see in Listing 19-4.

Listing 19-4.  The PreferenceActivity Implementation in ChangePreferences

package com.artifexdigital.android.fragmentpreferencesexample;
 
import android.preference.PreferenceActivity;
import java.util.List;
 
public class ChangePreferences extends PreferenceActivity {
 @Override
 public void onBuildHeaders(List<Header> myPrefHeaders) {
 loadHeadersFromResource(R.xml.preference_headers, myPrefHeaders);
 }
 
 @Override
 protected boolean isValidFragment(String fragmentName) {
 return DefaultPreferenceFragment.class.getName().equals(fragmentName);
 }
}

The second override within ChangePreferences is the isValidFragment method. This
method was introduced in Android 4.1 in response to a security vulnerability that allowed
arbitrary fragments to be injected at runtime when a PreferenceActivity loaded a
PreferenceFragment. You need to implement logic to ensure the fully qualified name of
the fragment being loaded is the one you intended when the fragment is invoked. Do not
fall into the trap of simply returning true in the isValidFragment method. Although this is
syntactically correct, it leaves the original vulnerability available for exploit.

Filling in the Blanks with PreferenceFragment
You will see shortly that when we examine the launcher activity for the
FragmentPreferencesExample application, we simply start the ChangePreferences
activity when the user selects the Change Preferences menu item, by dint of directly
starting the ChangePreferences activity with a call to startActivity(). Because it is a
PreferenceActivity, it will invoke the onBuildHeaders() callback and elegantly map out
all of the preference headers you decided to declare in the related XML resource. No fuss,
no extra coding required. For each header, the related preference screen elements will
be parsed—whether from a nominated resource file or from direct key/value entries—and
then something a little jarring occurs. The Android preference framework then expects
to find the custom subclass you have coded to process the items from the resource file
and call addPreferenceFromResource(). You read that correctly. Android does a great job
helping with the preference headers, and then it leaves you in the lurch with the individual
preference screens.

www.it-ebooks.info

http://www.it-ebooks.info/

337CHAPTER 19: Using Preferences

You have a few choices in this situation, depending on the volume of preferences you plan
for your application and your appetite for needless repetitive coding. You can

	Customize a PreferenceFragment subclass for each preference screen,
calling addPreferenceFromResource() and any optional logic you might
imagine.

	Design a single PreferenceFragment subclass that can navigate all of
your preferences, for instance, via their headers using an agreed format
for <extra> elements to enable them to be identified, and the associated
<preference-screen> elements to be handled by the same subclass for
fragment handling.

I know it seems crazy that you need to go to this additional level of effort when you would
expect the Android preference framework to take care of this. Sadly, even after four major
releases of Android since the advent of the new approach to preferences, this is still a work
in progress.

Listing 19-5 shows an implementation of the PreferenceFragment subclass for the example
application.

Listing 19-5.

package com.artifexdigital.android.fragmentpreferencesexample;
 
import android.os.Bundle;
import android.preference.PreferenceFragment;
 
public class DefaultPreferenceFragment extends PreferenceFragment {
 
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate (savedInstanceState);
 
 int myResource=getActivity().getResources().getIdentifier(
 getArguments().getString("fragprefresource"),"xml",
 getActivity().getPackageName());
 
 addPreferencesFromResource(myResource);
 }
 
}

You can find many alternative examples and approaches to the same write-once-use-
everywhere approach to the PreferenceFragment subclassing issue. As
addPreferencesFromResource() takes a resource identifier for the preferences to inflate in the
fragment. This implementation tries to find the related <header> by expecting the <extras>
element to include an android:name attribute with the value "fragprefresource" and uses
the getIdentifier() trick to go from knowing a textual name of the related android:value,
which is the preference file that Android will have automatically loaded, to finding its related

www.it-ebooks.info

http://www.it-ebooks.info/

338 CHAPTER 19: Using Preferences

resource ID at runtime. This is a reflection-based technique, which also relies on two other
parameters: first, a resource type, which for our preference files is xml, and second, the
package to hold the resulting resource, which is almost always your own package.

Bringing the Preference Puzzle Pieces Together
Now that you understand how the internals of preferences are managed, and the pieces to
fill in the blanks that Android has left, you can review the interesting parts of the example
FragmentPreferencesExample application. Most of the code in Listing 19-6 is simple
onscreen widget entry setup, so you can see the preference values, even when they are not
interacting with the PreferenceActivity and fragments.

Listing 19-6.  The Launcher Activity in FragmentPreferencesExample

package com.artifexdigital.android.fragmentpreferencesexample;
 
import android.support.v7.app.ActionBarActivity;
import android.content.Intent;
import android.content.SharedPreferences;
import android.os.Bundle;
import android.preference.PreferenceManager;
import android.view.Menu;
import android.view.MenuItem;
import android.widget.TextView;
  
public class FragmentPreferencesExample extends ActionBarActivity {
 private TextView checkbox1=null;
 private TextView checkbox2=null;
 private TextView checkbox3=null;
 private TextView ringtone=null;
 private TextView text=null;
 private TextView list=null;
 private TextView mySwitch=null;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_fragment_preferences_example);
 
 checkbox1=(TextView)findViewById(R.id.checkbox1);
 checkbox2=(TextView)findViewById(R.id.checkbox2);
 checkbox3=(TextView)findViewById(R.id.checkbox3);
 ringtone=(TextView)findViewById(R.id.ringtone);
 text=(TextView)findViewById(R.id.text);

Tip  Using reflection is a slow process in any language and system, and particularly in the case
of Android with limited processing power and system resources. Use it sparingly, and never in
frequently called code, loops, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

339CHAPTER 19: Using Preferences

 list=(TextView)findViewById(R.id.list);
 mySwitch=(TextView) findViewById(R.id.myswitch);
 }
 
 @Override
 public void onResume() {
 super.onResume();
 
 SharedPreferences myPrefs =
 PreferenceManager.getDefaultSharedPreferences(this);
 
 checkbox1.setText(new Boolean(myPrefs.getBoolean("checkbox1", false))
 .toString());
 checkbox2.setText(new Boolean(myPrefs.getBoolean("checkbox2", false))
 .toString());
 checkbox3.setText(new Boolean(myPrefs.getBoolean("checkbox3", false))
 .toString());
 ringtone.setText(myPrefs.getString("ringtone", "?"));
 text.setText(myPrefs.getString("text", "?"));
 list.setText(myPrefs.getString("list", "?"));
 mySwitch.setText(new Boolean(myPrefs.getBoolean("switch", false))
 .toString());
 }
 
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.menu_fragment_preferences_example, menu);
 return true;
 }
 
 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 int id = item.getItemId();
 
 if (id == R.id.change_preferences) {
 startActivity(new Intent(this, ChangePreferences.class));
 return true;
 }
 
 if (id == R.id.action_settings) {
 // We could invoke other preference changes here if desired
 return true;
 }
 return super.onOptionsItemSelected(item);
 }
 
}

The two areas of code worth noting are the onResume() override and the
onOptionsItemSelected() override. In the case of onResume(), whether the application
is starting for the first time, as shown in Figure 19-1, or resuming from running in the
background or being paused, I used a SharedPreferences object and the getter methods

www.it-ebooks.info

http://www.it-ebooks.info/

340 CHAPTER 19: Using Preferences

described at the beginning of the chapter to update the onscreen widget values. If you do
this as well, you can always see the details of your preference settings. You may never need
to do this in a real application, but it is useful for learning and debugging. Figure 19-4 shows
the activity once I have toyed with the preferences to some degree.

Figure 19-4.  The FragmentPreferencesExample application after various preferences are set

In onOptionsItemSelected(), I test which menu item was chosen, and if it is the
change_preferences resource identified in my menu layout, I explicitly launch my
ChangePreferences() PreferenceActivity and the fun begins.

Other Preference Considerations
The Android preference framework continues to evolve; it received minor tweaks and
changes in all of the releases up to Android 6.0 (Marshmallow). There are still areas where it
pays to know the boundaries of what Android does and does not offer.

Customizing Preferences
There are two fundamental approaches to extending the preference framework if
you find you are limited by the many options already offered in PreferenceActivity,
PreferenceFragment, and the headers and screens of the preferences that populate them.

www.it-ebooks.info

http://www.it-ebooks.info/

341CHAPTER 19: Using Preferences

	Extend the DialogPreference class to create a custom preference
dialog. For instance, you can create a dialog with multiple fields,
performing calculations, and so forth, which then ultimately sets a
preference value.

	Extend a <header> to include an <intent> child element, and include
the attribute android:action="your-fully-package-qualified-intent-
here". When it is chosen, the intent is fired, and then whichever suitable
activity has the relevant intent-filter set is selected to run.

Both of these approaches are a left as an exercise for you to experiment with.

Nesting Preferences and Display Quirks
If you develop applications with many preferences, it can be tempting to think about nesting
one set of preferences inside another, and so on. Be aware that the modern themes, such
as Holo and the various material-design inspired options shipped with Android versions
4.0, 5.0, and 6.0, do not provide nested preference screen thematics, so your nested
PreferenceScreen items will appear unskinned and look very different from any other theme
or design language you might have chosen.

Using the Old-School Approach to Preferences
Now that you have mastered the contemporary Android preference framework, let’s take a
quick look at the old approach to preferences so that you are familiar with it should you ever
need to target pre-Android 3.0 with your applications, but also so you can spot outdated
advice when you inevitably go searching the Internet for tweaks and tricks for preferences.

Losing Headers and Fragments
The main conceptual differences in the original Android preferences framework were
the single “level” of preference resources, and the lack of fragments in general and
the PreferenceFragment in particular. Remember that fragments themselves were only
introduced in Android 3.0 as part of the scramble to address the then-booming tablet
market.

The main help you receive is via the PreferenceActivity class, which still bootstraps most
of the things you need to manage preferences; this includes offering shared access to the
system’s SharedPreferences object in a very smooth way.

In other respects, the main launcher activity can remain the same, and indeed, whatever
activities you would otherwise code for a given application are not affected when you
change to using the old approach to preferences.

www.it-ebooks.info

http://www.it-ebooks.info/

342 CHAPTER 19: Using Preferences

Adapting PreferenceActivty for Older Behavior
You can change the ChangePreferences class to deal with multiple preference resource files
by “stacking” calls to addPreferencesFromResource() in the standard onCreate() override,
as shown in Listing 19-7.

Listing 19-7.  Modifying ChangePreferences for the Old Approach to Preferences

package com.artifexdigital.android.oldpreferencesexample;
 
import android.preference.PreferenceActivity;
 
public class ChangePreferences extends PreferenceActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 
 addPreferencesFromResouce(R.xml.preference_cluster_1);
 addPreferencesFromResouce(R.xml.preference_cluster_2);
 // and potentially many more calls to addPreferencesFromResouce()
 }
 
}

As you can see in Listing 19-7, you can call addPreferencesFromResource() to stack more
and more preference UI widgets into the PreferenceActivity. This might become a bit silly if
you get carried away, so you can either confine your preferences to a small collection, or use
some switch logic in a menu callback to selectively load a few of the preference resources.

www.it-ebooks.info

http://www.it-ebooks.info/

343

Chapter 20
Android Security and
Permissions
The fact that you are reading this book, and are thinking of developing applications for
Android, means you have certainly been exposed to ongoing security issues that are an
inescapable fact of modern operating systems and programs. Catchy names like Heartbleed
and Shellshock have brought security to the forefront of even nontechnical consumers’
thinking, so people looking to buy and use your applications will be more aware than ever
that there are risks and problems that can lurk in an unexpected corner of the Internet, or the
latest Android game they just downloaded.

The good news is that security is a fundamental part of all phases of development,
deployment, and use of applications in Android, and there are lots of things Android does
for you and many tools at your disposal to help you build robust, secure applications. In this
chapter we explore the permissions system that allows you to safely share resources and
interact with other parts of Android; we discuss the packaging and deployment of applications
to a device; and we cover the protection offered by Android’s package management, package
signing, and related Google Play Store mechanisms. Let’s get started!

Requesting Permissions for Your Application
You are already familiar with a few instances of requesting permissions for the example
applications used earlier in the book. In Chapter 13, the PhoneCallExample application
needed the CALL_PHONE permission in order to directly dial a number; and in Chapter 17, the
example applications working to write data to storage needed the WRITE_EXTERNAL_STORAGE
permission in order to change files.

These are just two examples of the dozens of permissions baked into Android with the
goal of protecting sensitive data or powerful (and potentially costly) features. In addition to
using the Android-provided set of permissions, you as a developer are also able to create
custom permissions for your application, and you have control over whether and how other
applications use your resources. I cover custom permissions more later in the chapter.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_13
http://dx.doi.org/10.1007/978-1-4302-4687-9_17
http://www.it-ebooks.info/

344 CHAPTER 20: Android Security and Permissions

You need to request each permission you wish to be granted through a <uses-permission>
element in your AndroidManifest.xml file. You may remember seeing these entries in the
earlier examples, but now, so you get the complete picture, let me explain that you can have
as few or as many permission requests as you deem fit in your manifest; each is a child
element under the <manifest> root that takes this form:

<uses-permission android:name="<the permission name>"
 android:maxSdkVersion="<version number>"

When you are specifying the value for the android:name attribute, you have well over 100
separate permissions from which to choose. I won’t waste pages repeating them all here,
so to get an idea of your choices, you can check the full list in the Android developer
documentation at http://developer.android.com/guide/topics/manifest/uses-
permission-element.html. A few of the notable and interesting permissions that I haven’t
already covered in earlier chapters are as follows:

	ACCESS_FINE_LOCATION: Enables your application to get the maximum
precision for device location from a range of sensors including GPS, wifi,
cell tower triangulation, and more.

	BODY_SENSORS: Gain access to data about the device user’s physical
body, taken from sensors, such as skin temperature monitors, pulse
monitors, pedometers, and so on.

	FLASHLIGHT: Allows access to camera flashes and dedicated flashlights
that can be used as light sources and works (separate from any other
function, like taking pictures).

	INTERNET: Talks to remote network IPs and services running remotely
onthe device.

Any Android-provided permission lives in the android.permission namespace, so when you
are specifying any permission value in the android:name attribute of <uses-permission>, you
need to include the fully-qualified name, such as android.permission.INTERNET.

The android:maxSdkVersion attribute tells Android the threshold for version-checking when
you are installing and running your application. A device that is running an Android release
higher than the maxSdkVersion you specify ignores the permission request. The main use
for this attribute is not to inadvertently fail permission checks and break your application;
instead, it primarily works with known permission relaxation changes that happen in Android
from release to release. For instance, from API version 19 on, an application no longer needs
to request WRITE_EXTERNAL_STORAGE to write to its own application-scoped directories. In
fact, we could add this to our example application from Chapter 17 and save the file system
permission checks on newer API releases.

Listing 20-1 shows an excerpt of the AndroidManifest.xml file for the PermissionsExample
application from the ch19/PermissionsExample folder. You can see it is as simple as directly
editing the XML to add the desired permission entries.

www.it-ebooks.info

http://developer.android.com/guide/topics/manifest/uses-permission-element.html
http://developer.android.com/guide/topics/manifest/uses-permission-element.html
http://dx.doi.org/10.1007/978-1-4302-4687-9_17
http://www.it-ebooks.info/

345CHAPTER 20: Android Security and Permissions

Listing 20-1.  Permissions Added to the Manifest of the PermissionsExample Project

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.artifexdigital.android.permissionsexample" >
 
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.CAMERA" />
 ...

For those nostalgic users who are fans of Eclipse and the ADT, there is a graphical XML
editor that helps ensure that layouts, manifests, and other XML files are always valid and
well-formed. For the AndroidManifest.xml and permissions in particular, this editor also
provides a list of known platform-provided permissions from which you can just click to
insert the selected permissions into the underlying manifest file. Figure 20-1 shows the
editor in action.

Figure 20-1.  The graphical XML editor in Eclipse provides plenty of help specifying permissions

This might seem like needless UI gloss, but for Eclipse users, it ensures that permission
typographical naming errors are avoided; you will find this functionality very useful once you
understand the design-time limitations in debugging permissions (more on that later in the
chapter). For Android Studio users, Google dispensed with a graphical editor for manifest
files and instead relies on the content assistance feature to provide valid permission entries
as you type. That strictly is just as good at getting permission names right, but it is an overall
loss in ensuring that your XML file as a whole is valid and well-formed from the beginning.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

346 CHAPTER 20: Android Security and Permissions

Dealing with Debugging Permissions
When you are working with permissions for secured services and resources, one of
the frustrations of Android development is the lack of design-time checks for required
permissions as you write your Java code. This means that in the absence of any other tools
or tricks, you typically first learn of any mistakes or omissions to required permissions when
you are debugging on an emulated device.

In general, you see errors emitted in LogCat that describe the symptoms of what has gone
wrong, and usually some suggestive steps indicate what permission your application is trying
to use but currently lacks. This differs depending on the specifics of what you are trying to
do, but as an example, if you attempt to use an Internet-based resource without the android.
permission.INTERNET permission in your manifest, typically an error like this appears:

java.net.SocketException: Permission denied (maybe missing INTERNET permission)

Many of the permissions return a more generic SecurityException, but you get the idea.

Installing Applications and Accepting Permissions
Android’s approach to bundling permissions and presenting them to the user for acceptance
has historically been a fairly basic, even crude, approach. There have even been a few comical
slip-ups as Google has moved to meet user demand that it provide much more control over
runtime permission use, which has been a mainstay for other mobile platforms such as iOS.

Pre-Marshmallow Behavior
The vast majority of devices running in the wild are using Android versions 2.x, 3.x, or 4.x; all
of these versions, with one minor exception, require the potential user of your application to
accept all of your permission requests when they go to install, or else they abort any attempt
to install. There is no halfway point, no optional permissions, and nothing as nuanced as the
approach seen in other systems.

There are some subtle and not-so-subtle impacts of this approach. First and foremost, users
are forced to make potentially important decisions about sharing data, such as contacts or
location, all at once, and for an application that might request dozens of permissions, this
can present a bewildering choice to the user.

A related issue is the users’ perception, in general, of what the application may do with the
permission they grant, and what it can do with multiple permissions they grant in combination.
Great examples are what happens when the same application requests android.permission.
CAMERA and android.permission.INTERNET. This makes sense for a Snapchat-style picture
messaging system, but imagine this combination of requests from something like a
streaming music app. Similarly, android.permission.CONTACTS and android.permission.
CALL_PHONE makes sense for a phone book app, but what if an alarm clock application
asked for that? Users are sensitive to combinations that they perceive as exposing their
personal data and risking their privacy, and they are even more sensitive when the request
combinations seem to bear no relation to the way expect to use the application.

www.it-ebooks.info

http://www.it-ebooks.info/

347CHAPTER 20: Android Security and Permissions

As a developer, your best approach for all Android versions, but pre-Marshmallow
Android 6.0 in particular, is to request as few permissions as possible. When you do request
a permission, provide a clear rationale for why your application needs a given permission,
and expect to lose a small set of potential users who might not be prepared to accept what
you ask for.

APP OPS, OR APP OOPS?

Enduring criticism of the all-or-nothing approach to application permissions seemed to precipitate a change
at Google with the Android 4.3 release, which included an intriguing new feature called App Ops. This was a
permission management approach that allowed users to selectively revoke permissions after they installed
applications, which gave the user the control many believed they rightful needed and deserved.

This was in keeping with Google’s general “Put the User First” principle, but sadly, it seemed to clash with
competing commercial and other objectives. Shortly after the release of Android 4.3, the 4.4.2 “update” was
released; it reached out and hid all App Ops functionality from the end user. All the framework support was left
in place, but as a functional user-controlled fine-grained permission system, App Ops disappeared as quickly
as it appeared.

As a developer, even if you decide to detect release levels all the way down to minor point releases, I don’t
recommend coding specific behavior for the presence of App Ops on an Android 4.3 or 4.4 platform. Google
eventually released App Ops in the guise of runtime permissions in Marshmallow.

Marshmallow and Beyond
With the release of Android 6.0 Marshmallow, Google has changed tack and has finally given
users what they have long asked for in the form of selective permission granting when they
install an application. This changed behavior is still very new, since Marshmallow is coming
to market as this book goes to print.

What this means for you as a developer is that in addition to adhering to the principle of least
privilege, meaning that you only ask for the permissions you strictly need, you should also
prepare for how your application will behave if it is denied the expected permission to perform
some action—write to a file, read contacts, take a picture, and so on. In such a situation, it’s
likely that your application’s default behavior is that Android simply silently fails, and the next
piece of code in your application then also fails with some form of unhandled exception, such
as a null reference, because your expected resource isn’t there when you ask for it.

Applications using the new permission model for Android Marshmallow trigger a system
prompt to the user when they attempt to use a given permission, and Android triggers the
new onRequestPermissionsResult() callback in your application so that you can perform
your permission allowed/denied logic.

Google is gradually preparing for the full release of Android Marshmallow, but at this time,
the final (third) preview is still ironing out issues in the new runtime security model. The
behavior only changes if your application requests permissions using the special
<uses-permission-sdk-m> value for the preview releases of Marshmallow in addition to
checking the device’s build of Android via Build.VERSION.CODENAME.

www.it-ebooks.info

http://www.it-ebooks.info/

348 CHAPTER 20: Android Security and Permissions

In the full release, users will also be able to revoke permissions they granted at installation
time. This means that just because your application works initially, you can’t take it for
granted that it will always have the permissions it had when it was first installed. Android
now supports the checkSelfPermission() method from any context, which allows you to test
for granted permissions before you attempt to use them. This method takes the permission
name as the parameter—for example:

Context.checkSelfPermission(Manifest.permission.CALL_PHONE);

Make sure you watch out for updates to forward and backward compatibility as Google irons
out the bugs on the https://developer.android.com/preview/features/
runtime-permissions.html page of the Android developer website.

Trading In Permissions
Android adds and even removes permissions from the platform over time. As you saw
in Chapter 17, when we discussed file access, Google has flagged that it will introduce
the READ_EXTERNAL_FILE permission at some future point. WRITE_EXTERNAL_STORAGE was
introduced in Android 1.5, but its implementation was altered in Android 4.3, when the
security model of Android changed to always allow an application to write to its own
private-named file locations.

Implicit permissions are also bundled with your application automatically, depending on
your setting for the android:minSdkVersion attribute in <uses-sdk> in your manifest. An SDK
setting of 3 implicitly adds android.permission.READ_PHONE_STATE and android.permission.
WRITE_EXTERNAL_STORAGE, even if your application doesn’t care for, and doesn’t use, those
permissions. Your application users see these implicit permission requests, along with your
explicit ones, at install time. When you change to a higher SDK version, these permissions
are no longer implicitly requested, but others might be. You shouldn’t rely on the implicit
permissions for your application if you actually do need them. Instead, always explicitly add
them to your manifest so that if Google does swap out the implicitly requested permission in
some future SDK version, your application still requests what it needs and keeps working.

The release of Android Marshmallow introduces 11 new permissions, which you can read
about in depth in the Android developer documentation. A few of the more notable new
appearances are as follows:

	GET_ACCOUNTS_PRIVILEGED: Provides access to the set of all registered
accounts on the device.

	PACKAGE_USAGE_STATS: Allows access to the metrics on how often
components of a package, such as one of your activities or services,
are called.

	USE_FINGERPRINT: Accesses the fingerprint scanner hardware on devices
when it is present.

www.it-ebooks.info

https://developer.android.com/preview/features/runtime-permissions.html
https://developer.android.com/preview/features/runtime-permissions.html
http://dx.doi.org/10.1007/978-1-4302-4687-9_17
http://www.it-ebooks.info/

349CHAPTER 20: Android Security and Permissions

Creating Custom Permissions
You are not limited to the set of permissions Android provides with each release of the API.
If you find yourself creating data, activities, services, content providers, or other assets over
which you’d like to exert some control, then you can secure them with custom permissions
you define.

Most often, you will want to consider custom security permissions if your application is
storing and using sensitive or private user data. At the context level, you can also secure the
content provider and other code you provide that supplies the logic to manipulate and use
such data.

Using custom permissions is a two-part process. First, you declare the existence of the
permission, and then you enforce its use.

Declaring Custom Permissions
To declare the permission you would like to create, add a <permission> element to your
manifest. The <permission> element has eight attributes, of which you need to provide at
least the following:

	android:name: This string will be the programmatic name of the
permission, referred to in code and XML elements. By convention, use
your package name and a meaningful permission name to create the
fully-qualified name. This prevents name collisions across namespaces.

	android:label: This will be the permission name displayed to users
at install time and at runtime in Android 6.0 and later. Being short and
meaningful are key characteristics of a good label.

	android:description: This string provides some meaningful narrative
to what your permission does. “Protects FoozApp” isn’t a great
description. “The FoozKey permission protects your personal player
profile in the FoozApp game” is better.

We can expand the manifest I showed earlier in Listing 20-1 by adding a custom permission
declaration, as shown in Listing 20-2.

Note  You must define the android:description attribute as a resource reference to a string,
such as android:description="@string/my_desc". There is no literal text in the attribute
within your manifest for this one.

www.it-ebooks.info

http://www.it-ebooks.info/

350 CHAPTER 20: Android Security and Permissions

Listing 20-2.  Defining a Custom Permission in the PermissionsExample Application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.artifexdigital.android.permissionsexample" >
 
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.CAMERA" />
 
 <permission
 android:name="com.artifexdigital.android.PE_SEE_HIDDEN"
 android:label="PE See Hidden Data"
 android:description="@string/pe_see_hidden_desc" />
 ...

You can also define a banner and an icon to use when prompting users and include your
permission in Android’s permission groups and levels as with the stock Android permission
grouping approach.

Enforcing Custom Permissions
With your permission defined, you can then opt to enforce it to restrict access through either
declarations in your manifest, or through code in the related Java classes.

You can protect an activity, receiver, or content provider by adding the android:permission
attribute to the relevant context element in your manifest. For instance, to protect our
PermissionsExampleActivity from the example application, we would further extend the
manifest, as shown in Listing 20-3.

Listing 20-3. Enforcing a Custom Permission in the PermissionsExample Application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.artifexdigital.android.permissionsexample" >
 
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.CAMERA" />
 
 <permission
 android:name="com.artifexdigital.android.PE_SEE_HIDDEN"
 android:label="PE See Hidden Data"
 android:description="@string/pe_see_hidden_desc" />
 
 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme"
 android:permission="com.artifexdigital.android.PE_SEE_HIDDEN" >
 <activity

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

351CHAPTER 20: Android Security and Permissions

 android:name=".PermissionsExampleActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application
</manifest>

With this permission in place, no other application can invoke our PermissionsExampleActivity
through a startActivity() call without first requesting the PE_SEE_HIDDEN permission. If
this is a service (which I cover in the next chapter), it can’t be implicitly started, stopped, or
bound in another context without the permission. If we modify the code and manifest to be
a broadcast receiver, we ignore any intent designed to trigger invocation unless the intent
initiator holds the PE_SEE_HIDDEN permission.

To achieve the same effect in code is a little harder, because the methods available
are fairly primitive. You can check the permissions of the caller by using the
checkCallingPermissions() method with a permission name to see if the caller holds that
permission. You can also telegraph your permission requirements when sending broadcasts
in your code via the sendBroadcast() method by using the optional permission name
parameter to signal to receivers that you only want responses from those that hold the
named permission.

Securing Applications for Publication and Execution
There is a great deal more to the security and protection mechanisms provided by Android
than just the permission system. Two areas in particular where the security framework
shows its mettle are in the signing requirements that guarantee and protect the provenance
of a given application through the use of PKI and certificates, and in Android’s Linux
underpinnings, which means application process and user contexts enjoy strict boundaries
and protection. We’ll explore both of the aspects of Android security next.

Securing Your Application with Certificate Signing
Before you can publish your application to Google Play and make it available for download
and installation to Android devices, you are required to sign you application with a suitable
X.509-style PKI certificate. For those of you not familiar with PKI and digital certificates, PKI
is a cryptographic system you can use to do things like assert identity, establish trust, and
pass secrets. You can find many great descriptions online.

With you digital certificate in hand (or more accurately, on your machine), you can sign
the .apk file that, in effect, is the zip-formatted container that holds you application code,
manifest, resources, and assets, all ready for deployment.

www.it-ebooks.info

http://www.it-ebooks.info/

352 CHAPTER 20: Android Security and Permissions

Sourcing or Creating a Signing Certificate
Obviously to sign an .apk file with a digital certificate you actually need the certificate.
You have two broad options: making a commercial purchase of a certificate issued from a
publicly trusted root or intermediate Registry, or generating a self-signed certificate using a
tool such as keytool.

With self-signed certificates, your main concern is that, by definition, no other party asserts
the validity and trustworthiness of your signing certificate. For this reason, self-signed
certificates are considered the poor cousins of the PKI world.

The Keystore
Whichever style of certificate you choose, you will likely want to use the keystore facility that
keytool offers to manage your certificates and public/private key material.

You can tell keytool to store a (self-signed) certificate it is generating by passing the –keystore
parameter and the path you would like to use as your keystore. A bunch of other parameters
are offered by keystore; you can examine these at your leisure by reviewing the output of
keytool --help.

Whether you realized it or not, you have already been using a certificate and a keystore when
you have been working with the example applications from the book. Both Eclipse with the
ADT and Android Studio automatically create a developer keystore known as the Debug
Keystore, and both also create a self-signed certificate you use when deploying the .apk
files from the example applications to a device emulator. You can examine this debug setup,
and even change it so it uses a different keystore location and/or certificate by opening
the Build options from the Android > Build menu. There are some “gotchas” to doing this,
however, so keep reading to be sure you understand the implications.

Signing Your APK
With a certificate in place, and your build system (Eclipse, Android, Ant, or something else)
capable of building your .apk file, you have multiple options in how you approach signing.

You can use the jarsigner tool that ships with the JDK to manually sign your .apk file, which
needs a few relevant parameters to do its job.

jarsigner -keystore <path to your keystore> <necessary passwords> <path to your .apk>
<application name>

The pseudo-parameters shown here give you the basics, and obviously, more options are
available for the jarsigner tool. The drawback is the finicky nature of using a command-line
tool and the risk of exposing passwords when you are running command-line tools in general.

Android Studio users can generate the signed .apk directly from the project view by
choosing the Build ➤ Generate Signed APK menu option. You are prompted for exactly the
same information the jarsigner tool requires, just through a friendlier UI that helps avoid
some of the mistakes. It should not surprise you to know that the information is used to
actually run jarsigner itself under the hood.

www.it-ebooks.info

http://www.it-ebooks.info/

353CHAPTER 20: Android Security and Permissions

With a signed .apk file, you can manually deploy your application through the “side loading”
technique using the adb tool, or you can publish it to your developer account on Google Play
for public download and use. Deploying with adb can be as simple as this:

adb install <path to signed .apk file>

You can entertain other options and considerations for deployment, such as optimizing the
final .apk file using the zipalign tool. You can read more about this in the Android developer
documentation.

Signing Is (Almost) Forever, So Take Care
You know already that you must sign your application with your chosen certificate before
you can installed it on a device, and that Google helps this process with your emulator
environments by automatically creating debug certificates and keystores. If you have an
Android Developer account and plan to publish applications to Google Play, the certificate
takes on additional importance.

The signing certificate along with the fully qualified package name for your application form
the principal identifiers for your application. When you create updates in the future, either
because you are adding features or fixing bugs, you need to sign the new-and-improved
application with the same certificate in order for Google Play to consider it an upgrade for
the same application, rather than a separate application in its own right.

This might seem onerous, but it’s one of the most important guarantees user have that an
update to their favorite application comes from you, and not someone impersonating you.
For this reason, as well as for the general security imperatives of protecting yourself and your
users, you should take a great deal of care with the key material for your certificate. Protect
your private key and the keystore repository you are using, keep an offline backup, and do
not upload this to any form of cloud service or repository. Should you ever lose your key
material and be unable to use your existing certificate, there is no feasible way to re-create it.
If you are forced to use a different certificate for signing updates to your applications, those
applications will be considered completely separate applications by Android and Google Play.

The certificates you use for signing your application also need to be unusually long-lived. By
default, the certificates you create with keytool are valid for around 20 years (14,000 days).
You can opt to use a shorter or longer validity period, but Google Play checks to ensure a
lifetime is valid to at least the 22nd of October, 2033. This is very different from certificates
used for SSL, S/MIME, or other protocols, where generally shorter-lived certificates are
preferred, and rotation to new certificates is performed regularly. You have probably guessed
that because of the identification implications, certificate rotation is not practiced with
Android applications and their signing certificates.

Protecting Android and Applications at Runtime
In addition to the certificate signing that attests to the authenticity and origin of your
application and the permissions model that protects data and services, Android also uses
its Linux underpinnings to enforce a runtime process and user model to provide even more
security for your application and all the other applications that run on a given device. You can
think of this as protecting applications from each other and Android itself from applications.

www.it-ebooks.info

http://www.it-ebooks.info/

354 CHAPTER 20: Android Security and Permissions

Every application loaded on to a device or emulator is automatically allocated its own
user context and underlying user account. You as a developer do not control this, and the
user of the device typically does not know this is happening. Your application runs under
the ownership of this account for its entire lifetime on the device, so once its account is
allocated at install time, that is a permanent attribute of the application.

Because each application uses its own user account, as with any Linux-based system
where many applications are running, the processes are owned by many different users.
Figure 20-2 depicts the user and process boundaries for Android applications on a device.

Figure 20-2.  Imagining the user and process model of Android’s Linux underpinnings

If this is transparent to you as a developer, and to the user running the applications, you
might ask why this is important. The main benefit here is that you application’s implicit
user account has permissions over files and process artifacts for your application, but not
for any other applications. If there is any kind of security vulnerability and one application
starts misbehaving, this ownership separation provides another line of defense by ensuring
the compromised application cannot automatically run rampant with the files and other
resources of other applications at the Linux level.

www.it-ebooks.info

http://www.it-ebooks.info/

355

Chapter 21
Incorporating External
Libraries with Android
Way back in time, long before Google bought Android, the founders of Android made the
choice to use Java as the development language. This was for a host of reasons, including
Java’s widespread use, which meant many talented developers could write applications for
the platform, but those developers could also write libraries and other tools that could be
used by Java programs in general. Whether it’s on a server, a desktop, or a mobile device,
Java supports a wealth of libraries that rival any other development language.

Before you race off thinking that absolutely all of Java is at your disposal, there are a few
limits and omissions of which you should be aware.

The ART of Android
When Android was originally released, one of the choices its designers made was to
embed an Android-specific runtime to execute the Java-coded applications written to run
on Android. Instead of a stock JVM, Android introduced Dalvik. Conceptually, the Android
runtime does much the same job as the JVM, handling things like memory allocation, stack
management, compilation functions, and garbage collection.

Dalvik was good for the job at hand, but as Android evolved, so too did the need to improve
and update the runtime. With the release of Android 4.4, Google started testing the
brand-new Android runtime, or ART, as the next incarnation of VM for code execution in
Android.

There are some great improvements in ART and some key differences between ART and
Dalvik, which makes for better application behavior and more efficient system resource
use. Before I detail these key changes, the one thing about which you can relax is that as a
developer, you basically do not need to worry about which runtime is present on a device.
Dalvik is used by default on almost all contemporary devices, and newer devices running
late KitKat 4.4 Android versions, 5.0 Lollipop, or 6.0 Marshmallow still all use 100-percent
Dalvik-compatible byte code as the input for the VM—whether it’s Dalvik or ART.

www.it-ebooks.info

http://www.it-ebooks.info/

356 CHAPTER 21: Incorporating External Libraries with Android

Here are the key improvements and new features you should know about in ART:

	Ahead-of-time (AOT) compilation. Dalvik used a snippet-based just-
in-time compilation approach to small sections of code that resulted
in compiled “traces.” This sped up parts of applications that were
frequently used, but it also left large tracts of applications unoptimized.
ART performs AOT compilation at install time, which means the user is
by and large oblivious to the one-time overhead.

	Strict Java Native Interface (JNI) health and hygiene, in which ART
provides stricter enforcement of JNI precautions and also leverages
compacting features in garbage collection. JNI is beyond the scope of
this book, but some excellent articles online discuss the precautions you
should take if you are writing C or C++ for use through JNI with Android
applications in an ART-based environment.

	Unified stack model with thread-configurable stack sizes. Dalvik used
separate stacks for Java and native code and also had some inflexible
stack size defaults. ART provides a cleaner model that also has more
configuration options.

	Better diagnostic and debugging options through better runtime
exception logging, and better instrumentation of issues such as locks,
live objects, and method testing using method-exit modeling.

By the time you need to know more about ART’s inner workings, you will well and truly be
in the realm of professional Android developer. More information is available at developer.
android.com.

Choosing Library Sources or JARs
Broadly speaking, you can choose to use the raw source code of an external library or other
piece of code, or you can use the packaged JAR (Java archive) file. You can mix and match
when working with multiple libraries or external sources as you see fit.

Direct Source Inclusion
To incorporate Java source code in your application, you need to place the code in the
source tree along with the rest of your Android Java code. Depending on your build tools
and environment, the location might differ.

Android Studio
The Java source files for the library should be placed in the main source tree along
with your Android Studio Java source files. Within you project’s root folder, you should
be able to follow the path ./app/src/main/java. Within that Java folder, you will see
further subfolders that represent your package namespace. In the example application
ExternalLibraryExample, I used the fully-qualified package name com.artifexdigital.
android.externallibraryexample. So the full path from the project root is ./app/src/
main/java/com/artifexdigital/android/externallibraryexample. This is where you’ll see

www.it-ebooks.info

http://www.it-ebooks.info/

357CHAPTER 21: Incorporating External Libraries with Android

existing Java source for your project, and where you should place source files for external
library source that you want included in the package context of your application (i.e., you
want to just copy over portions of code rather than use the library as a separate package).
You can opt to follow a fully-qualified package name from the java directory if you prefer to
keep the packages separate.

Of course, you can also drag and drop the files through your GUI file manager and Android
Studio, but knowing the plumbing that makes this work is crucial if you need to debug
missing or misplaced source files.

Eclipse
Eclipse follows a similar conceptual approach to Android Studio, but the path structure
is a little simpler. From the project root folder, the src folder contains all of the
fully-qualified packages in folder hierarchy form. So for the example ExternalLibraryExample
project, the full path to the source Java files is ./src/com/artifexdigital/android/
externallibraryexample.

Just as with Android Studio, you can take the easy approach and use a GUI file manager
(Explorer for Windows, Finder for Mac OS X, Nautilus for Linux, and so on) and drag and
drop your source files into the source folder in Eclipse. But where is the fun in that?

Other Development Environments
Ant or other build tools are usually structured as per the original Eclipse-style project layout,
so use your application’s equivalent to a src directory.

Incorporating JARs
The alternative to copying source directly into your code is to use prepackaged JAR files.
The approach for JAR files is deceptively simple:

1.	 Acquire the JAR file for the external library you wish to use.

2.	 Copy it to the library location for your project (dependent on
IDE or environment).

3.	 Configure your build tools to find and use the JAR.

4.	 Import the library into your code and start coding!

This is a deceptively simple approach, since the configuration step has not always been
the most intuitive of tasks. Both Eclipse and Android Studio offer much better automated
support for this in recent releases, but historically it has been a manual task with the pitfalls
and chances for mistakes that entails.

In the interests of making the process well-understood, I will step you through
explicit examples later in the chapter, adding a well-known external library to the
ExternalLibraryExample project.

www.it-ebooks.info

http://www.it-ebooks.info/

358 CHAPTER 21: Incorporating External Libraries with Android

When Is Java not Java?
After the discussion on the ART environment earlier in the chapter, you should, by now,
realize that ART is not a 100-percent like-for-like implementation of the official Oracle/Sun
JVM, nor was Dalvik. There are some important differences and omissions of which you
need to be aware, particularly when you start relying on external libraries and packages.

In essence, if those external sources expect an aspect of Java that ART does not provide or
does not implement, you will end up with your application exhibiting uncertain behavior at
best, and code that just does not work at worst. Consider these broad areas when you are
thinking of the difference between ART and JVM.

Absent JVM Features
Each release of Android was built broadly targeting features from a JVM of a similar vintage.
Obviously this has changed over time as both Android with ART/Dalvik and the JVM
incorporate new features, and as Google decides whether or not to take up features of the
JVM it wants to include.

The main features you will notice that are missing from ART (and Dalvik) are the Swing UI
toolkit and a range of location and mobile-optimization packages. Notionally all of these
have equivalents in Android.

Considering Java Performance for Android
There are three key performance considerations that you need to think through with an
Android mindset so you avoid building a hog of an application that nobody likes.

Package Size
If you are incorporating code from non-Android origins, you might find that packages written
for a traditional desktop or server environment are larger than anything you are writing
yourself. The sheer size of the libraries can cause your application size to blow out—where
anything larger than 50MB to 100MB when finally packaged on Google Play looks bloated.
This also impacts memory footprint, discussed momentarily.

CPU Use
Lots of Java libraries have been written on ever-more-powerful x86 processors over the
years, and often they liberally use threading in the expectation that multicore processors are
commonplace. Although it is true that Android devices have moved to multicore in recent
years, almost all Android devices are using ARM-based processor designs, and in general,
they have much less power than a traditional desktop or server.

www.it-ebooks.info

http://www.it-ebooks.info/

359CHAPTER 21: Incorporating External Libraries with Android

Memory Use
When you are dealing with Java on a desktop or server, memory is typically measured in
gigabytes or tens of gigabytes, and it’s not unusual for a Java application and its libraries
to drive JVM memory to the limit. A typical Android handset has much less memory, and
you also will not have tools at hand like jstat or gcutil to closely monitor memory use
and garbage collection. Although there are some other tools that do help, watch out for
especially memory-hungry libraries when you are thinking of external imports for your code.

Operating System or Native Dependencies
It is rare to find Java libraries that leverage the various forks seen on some operating
systems (Windows, for example), but it is worth double-checking on any library just in
case. Likewise, libraries that use the Native Development Kit (NDK) to leverage some native
resource need careful scrutiny. NDK is available for use in Android, but the native resources
being referenced might not be, so you need to do some digging through NDK layers to the
underlying native code.

Unusual I/O or Interfaces
Some libraries expect to have control over logging locations and paths, which can have
implications on Android and cause subtle quirks or failures. For instance, a library that
assumes a /tmp-like shared scratch space is available could be in for a surprise. Some libraries
also expect the existence of the console, which you certainly will not have under Android.

Versioning and Cascading Dependencies
Like your very own application, a Java library is created at a point in time and is likely itself
relying on other libraries, all the way down to the oldest base classes and foundations.
Whether it’s a JAR compiled with an older JVM or a daisy-chain of library dependencies that
lead to mysterious destinations, some investigation of the heritage of a library can save you
pain in the future.

Overcoming Java Library Issues
In addition to the checks and vigilance described in the previous section, there are more
things you can do to make life easier for yourself when you are using external libraries.

	Look at open source alternatives; they offer source transparency that
makes spotting dependencies and issues easier.

	Extract only the source you need, if you have access to it.

	Repackage or strip down the JAR to remove unneeded dependencies.

	Use continuous integration and build tools to constantly test your
application against changing library dependencies.

	Use a device library testing service to see what quirks might exist with
libraries you think are packaged normally, but in fact might differ from
one device manufacturer to another.

www.it-ebooks.info

http://www.it-ebooks.info/

360 CHAPTER 21: Incorporating External Libraries with Android

Adapting an Application to Use an External Library
In Chapter 17, I introduced some simple example applications that dealt with files and file
systems. The examples from that chapter demonstrated a lot about the things you need to
know when working with files. The ExternalFilesExample application also demonstrated one
of the “high-fidelity” parts of Android’s Java implantation: Android wholly adopted Java’s
original, traditionally cumbersome file I/O language.

Fortunately, many fine external Java libraries exist that provide a far more elegant and
approachable way of dealing with file I/O, and these libraries work well in the Android
context. One in particular, the Apache Commons IOUtils library, is a perfect example to use
to demonstrate the power of using external libraries and the straightforward way in which
you can incorporate them into your applications.

We will use IOUtils to retrofit the ExternalFilesExample application with nicer source code
for the file I/O aspects, turning it into the ExternalLibraryExample application you will find in
ch21/ExternalLibraryExample. Let’s get stuck in to the retrofit!

Sourcing Apache Commons IOUtils
Apache publishes all of the Commons project source code and JAR files at
http://commons.apache.org. The IOUtils main page is at http://commons.apache.org/
proper/commons-io/. You will notice references to the current version of the package,
Commons IO 2.4, and older versions. For our example, download the current version in
binary form (either the .zip or .tar.gz file).

Unpack your chosen download when it completes; you should see contents including the
following:

	commons-io.2.4.jar, which is the actual JAR file compiled from the
source; it is ready for use in a Java project such as your Android
application.

	commons-io-sources.jar, which is a JAR that provides the source code.

	commons-io-2.4-tests.jar and commons-io-2.4-test-sources.jar,
which provide the junit and other tests used by the developers.

	commons-io-2.4-javadoc.jar, which provides the JavaDoc-style
documentation for use in IDEs such as Eclipse and Android Studio.

	docs folder with API documentation, samples, and so on.

	LICENCE.txt and other text files, which contain the Apache license
information, readme, and other notices.

We are really only interested in the commons-io-2.4.jar file to add to our project, although
you can use the test-focused JARs if you are creating unit tests in your project and the
JavaDoc JAR for contextual assistance and package documentation.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_17
http://commons.apache.org/
http://commons.apache.org/proper/commons-io/
http://commons.apache.org/proper/commons-io/
http://www.it-ebooks.info/

361CHAPTER 21: Incorporating External Libraries with Android

Adding the JAR to Your Project’s Libraries
From your unpacked binary download, it is the commons-io-2.4.jar file you need to add
to your project. The approach for doing this varies depending on the IDE or tools you are
using, and obviously covering every esoteric development environment would exhaust
the pages in the book quickly. However, I can demonstrate how it’s done in Android
Studio and Eclipse, and from this information, you can infer how to do it if you are using a
different environment.

Adding JARs in Android Studio
To incorporate the commons-io-2.4.jar into your Android Studio project, or indeed to add
JARs in general to any Android Studio project, follow these four steps.

1.	 Create a libs folder in the project hierarchy directly under the root,
and copy the commons-io-2.4.jar file to the matching location
on disk. Android Studio should update the project hierarchy
automatically, but to see the library in your project, you need to
switch to Project view.

2.	 From within the Project view of your project in Android Studio,
right-click on the JAR and choose the Add As Library option,
which is buried toward the bottom of the menu, as shown
in Figure 21-1.

www.it-ebooks.info

http://www.it-ebooks.info/

362 CHAPTER 21: Incorporating External Libraries with Android

3.	 At this point, you should see a confirmation to add the library to the
app portion of your project. When you click OK, you see a Project
Sync In Progress overlay message as Android Studio invokes the
gradle build process to add the necessary build rules for the library
to the future compilation of your project.

4.	 Strictly speaking, normally you should be able to trust your IDE to
perform this build dependency configuration without a hitch. The
reality, however, is that Android Studio has had a rapid rise, and
its fair share of bugs and problems, and this is one of those areas

Figure 21-1.  The crucial Add Library step to incorporate an external JAR into your project

www.it-ebooks.info

http://www.it-ebooks.info/

363CHAPTER 21: Incorporating External Libraries with Android

where older versions of Android Studio have had problems. When
the gradle build success message appears, it is worth opening your
build.gradle file to ensure the commons-io-2.4.jar library has been
added as a dependency. You should see the entry in bold shown
in Listing 21-1.

Listing 21-1.  Ensuring the JAR Dependency Is Correctly Added to Your build.gradle File

apply plugin: 'com.android.application'
 
android {
 compileSdkVersion 22
 buildToolsVersion "22.0.1"
 
 defaultConfig {
 applicationId "com.artifexdigital.android.externallibraryexample"
 minSdkVersion 11
 targetSdkVersion 22
 versionCode 1
 versionName "1.0"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
 }
 }
}
 
dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:appcompat-v7:22.2.1'
 compile files('libs/commons-io-2.4.jar')
}
 

5.	 Lastly, it’s prudent to ensure your project can build regardless of any
prevail state. Invoke the Build ➤ Clean Project option to perform a
clean build of your application.

At this point, you are ready to reference your included library, so in our example, we can now
go ahead and import and use IOUtils for file I/O operations.

Adding JARs in Eclipse
The process for adding JARs to an Android project in Eclipse is similar to the way you would
do it in an ordinary Java project.

1.	 To begin, download the commons-io-2.4.zip or .tar.gz file as in the
Android Studio description in the previous section.

www.it-ebooks.info

http://www.it-ebooks.info/

364 CHAPTER 21: Incorporating External Libraries with Android

2.	 With the archive downloaded, extract the contents and copy the
commons-io-2.4.jar file to the /libs folder of your project. In recent
versions of ADT working with Eclipse, this should automatically
trigger a build rule change to incorporate the JAR in the build path.
In reality, this doesn’t always work, or you may find yourself with an
older environment and may want to set the build path explicitly.

3.	 To explicitly set the build path to include the commons-io-2.4.jar
file in your /libs folder, choose the Project ➤ Properties menu
option. In the Properties dialog, choose the Libraries tab. If you are
using a newer version of Eclipse and the ADT, you should already
see the library shown under Android Private Libraries, as shown in
Figure 21-2. If your library isn’t shown, click the Add JARs button
and browse to find your .jar file, which in our example is
commons-io-2.4.jar.

Figure 21-2.  Confirming that the build path is set correctly for external libraries in Eclipse with the ADT

4.	 Whether you have added the commons-io-2.4.jar file manually,
or it was automatically picked up and included, it is a good safety
measure to perform a clean build of the project. Choose the
Project ➤ Clean menu option. You are now ready to import and use
the library in your code.

www.it-ebooks.info

http://www.it-ebooks.info/

365CHAPTER 21: Incorporating External Libraries with Android

Referencing (or Refactoring for) Your External Libraries
The process of importing and using the packages and classes provided by an external
library is basically the same in Android as with normal Java programming. A quick walk
through the refactoring for our ExternalLibraryExample project should provide a refresher
for anyone rusty on the details.

The layout for the application is the same for the ExternalFilesExample project from
Chapter 17. When rendered, the layout in Figure 21-3 should look familiar to you.

Figure 21-3.  The unchanged UI design for ExternalLibraryExample application

The code required to use the IOUtils library features is fairly straightforward—remember,
that was the entire reason for opting for this library, since it cleans up the mess that is vanilla
Java I/O. Listing 21-2 shows the changes in the externallibraryexample.java code; the
import of IOUtils and its use is in bold.

Listing 21-2.  Modified Code to Use the IOUtils External Library

package com.artifexdigital.android.externallibraryexample;
 
import android.app.Activity;
import android.content.Context;
import android.os.Bundle;

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_17
http://www.it-ebooks.info/

366 CHAPTER 21: Incorporating External Libraries with Android

import android.view.View;
import android.view.inputmethod.InputMethodManager;
import android.widget.EditText;
 
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStreamWriter;
import java.io.StringWriter;
 
//importing the IOUtils external library for use
import org.apache.commons.io.*;
 
public class ExternalLibraryExample extends Activity {
 public final static String FILENAME="ExternalLibraryExample.txt";
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_external_library_example);
 }
 public void onClick(View view) {
 switch(view.getId()) {
 case R.id.btnRead:
 try {
 doReadFromFile();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 break;
 case R.id.btnSave:
 doSaveToFile();
 break;
 }
 }
 
 public void doReadFromFile() throws Exception {
 doHideKeyboard();
 EditText readField;
 readField=(EditText)findViewById(R.id.editTextRead);
 try {
 InputStream inStrm=openFileInput(FILENAME);
 if (inStrm!=null) {
 // File I/O using the much more elegant Apache IOUtils approach
 
 StringWriter myWriter = new StringWriter();
 IOUtils.copy(inStrm, myWriter);
 String fileContent = myWriter.toString();
 
 inStrm.close();
 readField.setText(fileContent);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

367CHAPTER 21: Incorporating External Libraries with Android

 }
 catch (Throwable t) {
 // perform exception handling here
 }
 }
 
// code continues unchanged from here
...

The proof of the external library use is, as you would expect, in building and running the
application. You should definitely go ahead and run things; watch the LogCat output in
particular to see if there are any issues packaging the JAR with your .apk and deploying it to
the emulator. Assuming all of the configuration steps went smoothly, and you haven’t made any
errors in your code, you should end up with a running application that incorporates your desired
JARs. Figure 21-4 shows the ExternalLibraryExample running, showing off our use of IOUtils.

Figure 21-4.  ExternalLibraryExample running successfully and using IOUtils for file I/O

It is true that the actual application here is not the most demanding in the world. But that is
precisely so that you can appreciate the steps you must take to set up and use the external
JAR without getting swamped with fancy application logic or UI.

www.it-ebooks.info

http://www.it-ebooks.info/

368 CHAPTER 21: Incorporating External Libraries with Android

Using Languages Beyond Java
One interesting and powerful result of building your own runtime environment and VM is your
ability to take full control over what source languages can be supported. With Android’s use
or ART (and Dalvik before it), Google provided a great deal of openness in allowing you to
use many different source languages, providing you with plumbing to help convert to
Dalvik-compliant Java byte code and even providing you with interpreted language support
through a few interesting approaches.

The most well-known Android technique for interpreted languages is the Scripting Language
For Android module, or SL4A.

Scripting Layer for Android Overview
The SL4A was written and maintained by Damon Kohler and is now available from a
repository on GitHub at https://github.com/damonkohler/sl4a. Active development has
“paused” on SL4A, so what follows may begin to atrophy over time, though several forks of
the work are still seeing activity.

SL4A provides support for quite a few interpreted scripting languages, including these:

	BeanShell

	JRuby

	Lua

	Perl

	Python

	Rhino (the Java-based JavaScript layer from Mozilla)

	Tcl

Historically SL4A also supported PHP, but for a variety of reasons later versions have
deprecated support for it.

Choosing Your Approach to SL4A
If you are interested in using one of the languages supported by SL4A, you have two
approaches from which to choose. You can embed support for SL4A in your own application
by including the source or JAR forms as described earlier in this chapter. This allows you to
then perform all kinds of tricks in the interpreted language of your choice, and you can even
provide your own layout and UI for an IDE. Yes, you can write an application development
environment in your chosen Android application development environment—nested IDEs.

The alternative approach is to install the full SL4A application onto your emulator or
device, and then write your scripts within the application. Obviously, this approach doesn’t
result in separate fully-functional applications, but it does open up a range of control and
management capabilities that are lacking in stock Android.

www.it-ebooks.info

https://github.com/damonkohler/sl4a
http://www.it-ebooks.info/

369CHAPTER 21: Incorporating External Libraries with Android

Testing SL4A on Your Emulator
To install the full SL4A environment and a supported language on an emulator, first
download the source from GitHub and build the projects included. This will create a range
of .apk files.

Assume for a moment you wanted to try Python in SL4A; you would need the following
packaged .apk files from your SL4A project: sl4a_r4.apk and python_for_android_r4.apk.

Next, ensure your emulator AVD is running, and from the command shell in your host
operating system, use the adb tool to install the .apk files as follows:

adb install <path_to_files>/sl4a_r4.apk
adb install <path_to_files>/python_for_android_r4.apk

Installing SL4A and any of its language modules will present a typical permissions overview
acceptance dialog, which you should accept. Interestingly, the applications or script
fragments you might write with SL4A inherit the permissions of the container application.
This means if you build SL4A support into your own application and have permissions
such as WRITE_EXTERNAL_FILE granted to the application, then the scripts you run inside the
application using the SL4A library will enjoy that same write permission.

When SL4A is installed, you should see it available in the list of applications from the
launcher in your emulator. When you start SL4A, you should see a home activity similar to
the one shown in Figure 21-5.

Note  The “r4” values refer to release number, and this may differ depending on which repository
you take the source code from to build your .apk files.

www.it-ebooks.info

http://www.it-ebooks.info/

370 CHAPTER 21: Incorporating External Libraries with Android

The interpreters for the languages installed are shown, so in our case, Python is listed along
with the default basic shell. Start the Python interpreter, and you should see Python’s familiar
triple-greater-than prompt, >>>.

From here, you can play around with Python to your heart’s content. To get you started, you
should be aware that the Python SL4A library includes a dedicated “android” module that you
can import and use to control Android features and classes from within your Python script.

Almost every attempt at coding in a new environment starts with the Hello World-style
program, so here’s the absolute based SL4A Python code to get you running.

>>> import android
>>> mySL4APyObj = android.Android()
>>> result = mySL4APyObj.makeToast('Hello World')

For more information, and to explore the possibilities of SL4A, I recommend the excellent
book Pro Android Python with SL4A, by Paul Ferrill (Apress, 2011).

Figure 21-5.  The SL4A interpreter system started on an emulator

www.it-ebooks.info

http://www.it-ebooks.info/

371

Chapter 22
Leveraging Android Services
Android’s underpinnings of the Linux operating system extend to multiple areas of the
platform, many of which you have explored already. As with almost every operating system
in existence, Android provides for a specific class of program that runs independently of any
user interface, running in the background to provide crucial functionality regardless of other
activity. In Android these programs are called services, similar to the services concept in
Windows, or the daemon concept in Unix and Linux.

In this chapter, I explore the rationale and fundamentals of Android services, and the steps
you need to take to create, start, work with, and control them. We also explore some simple
service examples to help you complete your understanding not only of how to use services,
but how to create your own.

Services Background
The need for services has numerous sources, most of which stem from any situation in which
one or more applications require functionality without any specific need to see or access
an activity or other user interface. Dozens of services run on a stock Android device, and
undoubtedly you can think of many more possibilities you can code yourself, such as these:

	Provide a local interface to control a remote API such as a mapping
service or social network.

	Maintain long-lived connections for chat-like applications that have
“conversations” running over days, weeks, months, or more.

	Continue with processing a task or piece of work once invoked by a
user, without further interaction. A great example is downloading an
Android application update once the user has requested it.

There are, of course, many more examples, and you will often find that a more complex
service pairs itself with some other application that can trigger its work, check its status,
and so on. For instance, a home-screen audio player widget actually triggers a background
service to do the main task of playing back an audio track.

www.it-ebooks.info

http://www.it-ebooks.info/

372 CHAPTER 22: Leveraging Android Services

There is no strict requirement mandating that you use services with your applications.
Instead, you should think of them as a very useful kind of resource upon which you can call
if you need to, but that you can forget about at other times. Many of the applications you
write will have no need for services at all. But some of your applications will call out for the
use of services, both of the stock Android variety and the ones you write yourself.

Defining Your Own Service
The process of defining and creating your own service application is very similar to the
work you have already learned about when you created normal activity-based Android
applications. The broad steps should look very familiar to you:

	Using an Android-provided base class, you extend and inherit to create
your own specific service.

	Decide on the callback methods you need to override, and code the
logic to implement your desired behavior.

	Update the AndroidManifest.xml file to provide the permissions,
definitions, and links into the wider Android platform you need for your
service to run and serve applications.

Let’s take a look at these three areas in a little more detail.

Implementing Your Own Service Class
Android provides the basic Service class as a foundation from which you can build your own
service, and it also offers several useful subclasses out of the box that deal with common
service patterns. The most commonly used, and most useful, of these is the IntentService
subclass. You are free to use the basic Service class or aim for one of the more-specific
subclasses.

The basic code skeleton should not surprise you and is shown in Listing 22-1.

Listing 22-1.  Skeleton of a Service Application in Android

package com.artifexdigital.android.serviceskeleton
 
import android.app.service
//more imports here
 
public class SkeletonService extends Service {
 //overrides and implementation logic here
}

www.it-ebooks.info

http://www.it-ebooks.info/

373CHAPTER 22: Leveraging Android Services

Controlling Service Lifecycle via Callbacks
Android’s Service class and its subclasses provide a range of callbacks designed to be
overridden so that you can implement your own logic and service control behavior. This
framework is conceptually similar to the Activity and Fragment lifecycle approach, but there
are distinctly fewer states in which a service will find itself, and consequently, you need to
concern yourself with only five main methods at coding time.

	onCreate(): Almost identical to the onCreate() method for Activities,
the Service’s onCreate() method is invoked when any trigger for service
activity happens.

	onStartCommand(): When the related startService() method is called
by a client application, the onStartCommand() method is invoked and its
logic is processed.

	onBind(): When a client application attempts to bind to the service with
a bindService() call, the onBind() method is invoked.

	onTrimMemory(): For devices running Android version 3.0 or later,
services selected for resource reclamation while the device is under
memory shortage have their onTrimMemory() method called. This is
the somewhat-more-graceful approach to letting services try to return
memory in a controlled fashion before more drastic measures are taken.

	onDestroy(): When performing a normal graceful shutdown, onDestroy()
is invoked. Just as with normal Activities, graceful shutdown is not
guaranteed, and therefore neither is a call to onDestroy().

The general approach to lifecycle management stays the same. Your service should create
what it needs during its onCreate() call and clean up and dispose of any lingering resources
during onDestroy().

You will notice that there are no equivalents to onPause() or onResume() for a service. Your
service is either running or it’s not, and there’s no need to provide background-transition
methods when a service is considered always in the background. You should ensure that you
minimize any state held by the service or use preferences or other storage where appropriate.
Not only can Android terminate a service at any time for resources—bypassing any call to
onDestroy()—but users can also kill your services via the application management system’s
setting activity. This becomes more complicated if your clients decided to bind to your service
in a long-lived fashion; I explore this in the examples in a moment.

Adding Manifest Entries for Your Service
To flag that you want your application recognized as a service by Android, you need to make a
few modifications to your manifest file. The main change is that you need to define a <service>
element as a child of the <application> element. Listing 22-2 shows the minimal entry for a
service, providing the required android:name attribute, which in this case is “Skeleton”.

www.it-ebooks.info

http://www.it-ebooks.info/

374 CHAPTER 22: Leveraging Android Services

Listing 22-2.  A Minimal Service Definition in the AndroidManifest.xml File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.artifexdigital.android.skeletonservice" >
 
 <uses-permission android:name="android.permission.INTERNET" />
 
 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 
 <!-- any other application child elements would go here -->
 
 <service android:name="Skeleton">
 
 </application>
 
</manifest>

You can freely define a service and activities in the same project (and therefore have
them both in the manifest). This is very common for applications that are developed in
conjunction with their own services. If you want to protect your service from being accessed
indiscriminately, you can add permissions from the set described in Chapter 20, specifying
an android:permission attribute in your <service> element.

Service Communication
Defining services is really as straightforward as it seems from the introduction in this chapter.
Once you have created a service, however, controlling how client applications such as
activities (and even other services) communicate with them is a little more involved. How
clients communicate with a service takes one of two possible paths—they either use starting
commands or binding—but the converse of services communicating with clients has a world
of options and choices for you to make as a developer.

Client-to-Service Communication
When any kind of client wants to work with a service, whether that client is an activity,
a fragment, or some other service, one fundamental question guides which of the two
communication approaches is best suited to the task. Is this a one-time, fire-and-forget
request for a service to do something for the client? In these cases, the command approach
to service communication is best. If the client needs to work with the service over a series
of actions and wants to maintain an ongoing interaction with the service, then the bind
approach is preferable.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://dx.doi.org/10.1007/978-1-4302-4687-9_20
http://www.it-ebooks.info/

375CHAPTER 22: Leveraging Android Services

Invoking Commands with startService( )
To have a service perform some action for your application, whether that’s from an activity
or some other context, a simple call to startService() is the easiest way to go. Just as
the startActivity() method introduced earlier in the book can trigger an arbitrary activity
by taking an intent and some parameters, startService() also accepts an intent as the
first parameter, and a set of intent extras as the second parameter so that you can pass
call-specific payload data to the service. The pseudo-code form looks like this:

startService(someSignatureIntent);

In the basic pattern for calling, startService() can use the simplest form of the Intent
parameter—the class of the intent itself. startService() is an asynchronous call, meaning
the main UI thread of your application continues immediately and does not block on the
return from the method call.

If the service itself is not started, the Android service framework takes care of starting it
for you and your application user. The intent passed as a parameter is provided to the
onStartCommand() method so that you can inspect and use it as you see fit within the rest
of the logic you code for the onStartCommand() method. Unlike the calling application,
which is not blocked by the service invocation, the onStartCommand() method is processed
on the service’s main thread, so be careful not to burden your code with too much heavy
processing, external calls with indeterminate timing, or anything else that might prevent
a speedy response. If you need to perform such long-running work within your service,
incorporate additional threads through the java.util.concurrent package and its Executor
and related abilities.

Using the startService() approach does not provide return payloads in the normal
sense to the calling client application. (I cover service-to-client communication later in the
chapter.) The startService() call does return a value to the service instance from a range of
predefined values that are mainly designed to signal whether the call completed successfully
or was killed for resource-starvation or other reasons. Among the return values your service
might see are these common responses:

	START_STICKY: Restart the service once Android has enough free memory
to do so, but don’t worry about the triggering intent; pass a null intent
instead.

	START_NON_STICKY: Don’t automatically restart the service at all, even
if Android resource pressure drops to a low enough level to allow it.
Implicitly this means the service is not started until your application
or some other application explicitly calls startService() or otherwise
invokes the need for the service again.

	START_REDELIVER_INTENT: Restart the service once Android has enough
free memory, and also attempt to redeliver the original Intent object
passed to the service when the original (failing) call was made.

A service that starts from a startService() invocation keeps running indefinitely, assuming
no low-resource conditions cause Android to kill it and the user doesn’t deactivate the
device. This is in keeping with the fire-and-forget notions of startService() in that once
your client has what it wants, it doesn’t really care what happens to the service afterward.

www.it-ebooks.info

http://www.it-ebooks.info/

376 CHAPTER 22: Leveraging Android Services

As a developer, you might, from time to time, want to explicitly and gracefully shut down a
service. For such a shut down, you have two options:

	Call the stopService() method, which is analogous to startService(),
and provide either the same intent used to start the service as a
parameter or an intent of a derived class. When you do, the service
stops and all resources are released, the state is destroyed, and so on.
Android does not track or count the number of startService() calls
to a service, and it does not care which client sends the appropriate
stopService() call. Only one stopService() command is needed to end
the service, regardless of how many startService()methods the service
received in its lifetime.

	Code your service logic so that the service calls stopSelf() itself,
in effect terminating its own existence. You might do this as part of
some logical culmination to the logic of your service, such as when a
download has completed or an audio track has finished playback.

You are free to experiment with either approach to stopping services or just to leave the
business of service cleanup to Android. Binding with services differs markedly in this area;
I cover this next.

Binding to Services with bindService( )
Whereas a command-driven approach of startService() is useful for one-time interaction
with a service, at times you will want your application to have a longer-lived interaction with
a service in which it sends multiple commands and receives data in response as part of the
functionality you want to provide your users.

When a client binds to a service, in effect, it sets up a duplex communication channel that
allows access to the service’s published API through the service’s Binder object. This Binder
is the object returned from the bindService() call from the client, and it acts as the conduit
for further activity. Just as with startService(), the client can signal to Android by using the
BIND_AUTO_CREATE flag that it wants the service started if it is currently stopped. Unlike with
the startService() approach, once a client releases the bind with the service, the service
becomes a candidate to be shut down. I cover the shut down mechanics later in the chapter.

Caution  If you attempt to bind to a service that is not already running, and you do not provide
the BIND_AUTO_CREATE flag as part of the bindService() call, then the method returns
false and no Binder object, which leaves you without a service to talk to. Even if you think
you know the service’s state, you should practice clean exception handling and always check for
bindService() failure in these cases.

www.it-ebooks.info

http://www.it-ebooks.info/

377CHAPTER 22: Leveraging Android Services

An additional flag is available to help you with non-graceful shutdown situations if the
Android device is under memory pressure. The BIND_ALLOW_OOM_MANAGEMENT flag indicates
that you are happy with your binding being considered noncritical, and that your application
can tolerate the consequences of Android killing the service to recoup memory in out-of-
memory situations. You are, in effect, signaling your willingness to sacrifice your binding for
the sake of other applications.

A Binder class is provided by the Android framework, and normally you subclass this to
implement whatever methods you want exposed as a form of API to your service’s clients.
Your imagination is pretty much the only limit here—you can have as few as one method, or
as many as you deem necessary to provide your desired features.

A client’s call to bindService() is an asynchronous call that includes the intent with which
to identify the service, and the already-introduced optional (but usually useful) BIND_AUTO_
CREATE flag. As an asynchronous method, the client making the bindService() call does
not know the state of the service and this call until it interrogates the ServiceConnection
object and the resulting Binder object is returned from onBind(). This is the point at which
the client can start calling the Binder methods and actually interact with the functionality
of the service.

Your client code is free to retain the ServiceConnection for as long as you desire. When the
work with the service is ultimately finished, the unbindService() call signals that the binding
to the service can be released and the ServiceConnection object and associated resources
are freed. This process also means onServiceDisconnected() is eventually called, that
the Binder object is no longer in scope, and that its API-like methods should no longer be
invoked. If other client applications have bound to the service, and are therefore still happily
using it, your call to unbindService() does not cause the service to stop. However, the last
client to unbind will implicitly trigger Android to shut down the service without explicit calls
or intervention from you.

Because your binding to a service is notiionally for a long time, you need to handle other
lifecycle events that might affect your application. Configuration changes, such as screen
rotation, are the main events to handle, and you can accommodate these by ensuring that
your call to bindService() uses the application context, rather than the literal activity, so that
your context survives the destroy-and-re-create process of the activity during rotation. You
should also use the onRetainNonConfigurationInstance() lifecycle method to persist any
state or resources you need.

Service-to-Client Communication
From the introduction to the service used in the preceding section, you can see client-to-service
communication is well-covered by the command approach and the bind approach. The
reverse flow, from the service to a client, is far less structured, although there are enough
options to cover almost any scenario you can imagine. Let’s cover the main options so you
form an appreciation of what to use in various situations.

www.it-ebooks.info

http://www.it-ebooks.info/

378 CHAPTER 22: Leveraging Android Services

Use bindService Methods for All Communication
The first and most obvious option for service-to-client communication is to have all
interaction happen via bindService() and the methods you create for clients to use. The
advantage of the bind approach is that you control exactly what the client receives by the
returned objects and information from your service methods, and this guarantees that the
client actually gets what it asks for.

The obvious disadvantage is that any client that chooses to use the command-style
approach to interacting, by firing off startService() calls, gets no such feedback
mechanism for communication. This might not sound like a drawback now, but remember
that you should design services to serve many different types of clients, so in fact this
limitation hinders many possible users of your service.

Intents and Broadcast Receivers
Android already has a general approach for one component to signal or communicate with
another component using broadcast intents and receivers. Cast you mind back to Chapter 12,
and you should remember that you can trigger a broadcast intent from your code; you can
do this just as easily from a service as from an activity.

This action allows you to register a BroadcastReceiver object via registerReceiver() in
a client and capture a component-specific broadcast from the service, or some action
imperative that you document so that the client can differentiate broadcast intents and
process them accordingly.

The main drawback to this approach is that the intent must be action-orientated, rather
than simply hoping for some activity to volunteer to act on a component. Additionally, in this
case, you are assuming that the client activity itself is still running with its receiver and that
it hasn’t been paused or chosen for destruction due to other device-level events or resource
constraints.

Use PendingIntent Objects
Android provides PendingIntent objects as a way of signifying an intent with an associated
action that needs to be performed. In the service realm, your client uses onActivityResult()
to deal with the down-stream logic once the service performs its work. The client passes
the PendingIntent object to the service by adding it as an intent extra in the startService()
call, and the service itself signals the client by calling the send() method on it.

The main disadvantage to this approach is the extra client code you need to interpret the
variety of send() invocations that can be used, and that you need to identify exactly which
one was called.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_12
http://www.it-ebooks.info/

379CHAPTER 22: Leveraging Android Services

Use Messenger and Message Objects
As if PendingIntent objects were not enough, Android also provides the Messenger object to
facilitate intercontext communication, such as from a service to an activity. Individual activities
all have a Handler object that they can use to send messages to themselves, but the Handler
is not exposed for activity-to-activity or activity-to-service interaction. A Messenger object can
send messages to any Handler, and thus such objects can be used as intermediaries to
bridge the gap.

To use a Messenger object, add it as an extra to your intent prior to service invocation.
The service receives the intent as normal and can extract the Messenger object from
the extras; when the time comes to communicate to the client, the service creates and
populates a Message object, and then it calls the .send() method on the Messenger passing
the Message as a parameter. Your client activity receives this via the Handler and its
handleMessage() method.

The main drawbacks here are the additional steps you need to create and exchange
Messenger and Message objects, and the fact that the handleMessage() method for your
activity is processed on the main application thread, which means you want to keep
message processing to a minimum, or at least hand off heavier processing to another thread
you create.

Use Independent Messaging
A twist on the built-in option of Messenger objects is to use some external messaging or
pub/sub system to deal with service-to-client communication. You might use such an
approach when you don’t strictly need real-time communication, but you know you will need
such communication eventually.

The external messaging can leverage not just other messaging systems on the Android
device, but also Internet-based messaging systems, such as Google Cloud Messaging.
Google Cloud Messaging is a large topic in its own right, but Google has provided a good
set of Android examples for its use; you can find these on the developer website at
https://developers.google.com/cloud-messaging/android.

Create Callbacks and Listeners
The preceding examples of Messenger and PendingIntent objects show how easy it is to
attach objects to the intent extras that are fed to a service. The principle requirement for any
such object is that it is Parcelable; you can create your own objects that meet this criterion,
such as a callback or listener of your own.

The logic follows a flow of you defining your listener objects and having the client and
service coded to deploy and drop listeners as needed at specific times when communication
is required. The main problem with this approach is that it is difficult to coordinate registering
and retracting listeners so that neither the service nor the client is left with dangling or
defunct listeners when the other party is trying to communicate. At best, this just leads to
failed communication; at worst, as defunct listeners build up, you consume large amounts
of memory.

www.it-ebooks.info

https://developers.google.com/cloud-messaging/android
http://www.it-ebooks.info/

380 CHAPTER 22: Leveraging Android Services

Use Notifications
Although services have no direct UI themselves, there are ways to have services communicate
via a client application’s UI. One of these approaches involves the Notification object,
which can present directly to the user. I cover notifications in depth in Chapter 23, so I will
save the discussion until then.

Services in Action
Now that you are familiar with the theory and fundamentals of services and their behavior
with Android, let’s examine an example service and client application. There are a range of
classic patterns for which services are used, such as audio playback, message delivery,
management of a long-running download that doesn’t need user involvement, and so on.
For the purposes of having a useful but simple example, I mock up a photo-sharing service
and simple client example application to demonstrate service theory in action. Remember
the focus here is on engineering a service to make the theory concrete rather than rivaling
Flickr with actual photo sharing.

Choosing the Service Design
The nature of our example photo sharing lends itself to the startService() model of firing
off a command to “share” and not needing an ongoing to-and-fro interaction with binding.
Let’s devise our service from the base Service class and do the work of implementing
the onStartCommand() method and the onBind() method (even though it is not used by
our example client). Other subclasses provided with Android, such as IntentService,
offer to cover much of the implementation for you, such as neatly calling stopService()
automatically after your startService() call completes. In this case, we do not want or need
some of those helpers—specifically, we want our service to live on after the startService()
call so that we can later stop sharing if we want to.

The actual photos and who is sharing them are not important for the mechanics of how the
service works, so I will leave those areas set out with comments. You are free to experiment
and add images or other resources if you wish.

Implementing the Java Logic for Our Service
The ServiceExample implementation is relatively straightforward, covering the necessary
implementation of overrides expected from the base Service class, plus our own service-
specific logic for photo sharing. Listing 22-3 contains the full service implementation from
the example in ch22/ClientExample.

Listing 22-3.  Service Implementation for ServiceExample.java

package com.artifexdigital.android.clientexample;
 
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_23
http://www.it-ebooks.info/

381CHAPTER 22: Leveraging Android Services

public class ServiceExample extends Service {
 public static final String EXTRA_ALBUM="EXTRA_ALBUM";
 private boolean isShared=false;
 
 @Override
 public IBinder onBind(Intent intent) {
 // We need to implement onBind as a Service subclass
 // In this case we do not actually need it, so can simply return
 return(null);
 }
 
 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 String album=intent.getStringExtra(EXTRA_ALBUM);
 startSharing(album);
 return(START_NOT_STICKY);
 }
 
 @Override
 public void onDestroy() {
 stopSharing(); }
 
 private void startSharing(String album) {
 if(!isShared) {
 // Simplified logic - you might have much more going on here
 Log.w(getClass().getName(), "Album successfully shared");
 isShared=true;
 }
 }
 
 private void stopSharing() {
 if(isShared) {
 // Simplified logic - you might have much more going on here
 Log.w(getClass().getName(), "Album sharing removed");
 isShared=false;
 }
 }
 
}

Because we are not doing any service-specific setup at service startup, we can omit extra
logic in an onCreate() call and rely on the parent class to take care of this. We implement
onStartCommand() so that we can take the appropriate action when the client calls
startService(). Specifically, we examine the intent used to designate the service and find
out the extras the ServiceExample wants—namely the name of the photo album to share.
With the album name, a call is then made to the startSharing() method implemented for
this specific service.

www.it-ebooks.info

http://www.it-ebooks.info/

382 CHAPTER 22: Leveraging Android Services

The startSharing() method is mostly commented out, as I mentioned earlier. One useful
thing we can do is deal with the fact that services have no user interface by logging relevant
information at various service method points. In practice, this helps you with all kinds of
debugging, usage metrics, and so on. In our example, by watching the output in LogCat,
you can see that the service is actually running and being used. This can be really useful to
you if, for example, you forget to add the <service> element to your manifest. A lack of log
output hints that the service isn’t in use or even running.

Part way through this code, the onDestroy() method is implemented, and in this case, it simply
calls our service’s stopSharing() method. Like startSharing(), this is mostly commented out
with some logging to help you confirm that your service code is working and being reached.

Even though the client example shown later in this chapter does not attempt to bind to
the service, we still need to implement onBind() based on our subclassing from Service.
However, we can leave this returning null in this instance. Other clients you might write
could conceivably want to bind to our photo-sharing service to do fancier things, like show a
photo montage, loop through the album, and so forth.

Creating an Example Client for the Service
You can just leave the service as is, but then you are left dangling with no way to actually test
to see that it does what I say it does or to try out any of the modifications you might want to
make. Listing 22-4 provides a simple layout for a client to drive our ServiceExample service.

Listing 22-4.  The Layout for the ClientExample Application

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".ClientExampleActivity">
 
 <Button
 android:id="@+id/startSharing"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Start Sharing"
 android:onClick="onClick" />
 
 <Button
 android:id="@+id/stopSharing"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Stop Sharing"
 android:layout_below="@id/startSharing"
 android:onClick="onClick" />
 
</RelativeLayout>

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

383CHAPTER 22: Leveraging Android Services

This is not a particular sophisticated UI, as you will see when you test it out. The
ClientExample application has just two buttons—one labeled “Start Sharing” and one
labeled “Stop Sharing”—with android:id attributes of startSharing and stopSharing,
respectively.

Because we are using the command-style approach to the service, the Java logic is also
quite straightforward. Listing 22-5 shows the complete client logic.

Listing 22-5.  Java Implementation of the Sample ClientExample Application

package com.artifexdigital.android.clientexample;
 
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
 
public class ClientExampleActivity extends Activity {
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_client_example);
 }
 
 public void onClick(View view) {
 switch(view.getId()) {
 case R.id.startSharing:
 startSharing(view);
 break;
 case R.id.stopSharing:
 stopSharing(view);
 break;
 }
 }
 
 public void startSharing(View view) {
 Intent myIntent=new Intent(this, ServiceExample.class);
 myIntent.putExtra(ServiceExample.EXTRA_ALBUM, "My Holiday Snaps");
 startService(myIntent);
 }
 
 public void stopSharing(View v) {
 stopService(new Intent(this, ServiceExample.class));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

384 CHAPTER 22: Leveraging Android Services

By now the basic onCreate() method should be familiar, inflating the layout. My onClick()
implementation performs the usual check for which button the user pressed and triggers
either the startSharing() or stopSharing() method as needed.

The startSharing() method instantiates an intent for the service and provides a very
credible album name for the particular photos we want to share. The service is called with
startService() passing the intent. The stopSharing() implementation simply calls the
stopService() command with a new intent of the appropriate type to match the original
service call and thus targets our service correctly for shutdown.

Testing the Service in Action
I will leave running the service and watching the results to you. Don’t forget to add the
<service> entry to your manifest—for example,

<service android:name=".ServiceExample" />

If you do run the ClientExample application, when it triggers the calls to the ServiceExample
service, you should see entries like this in LogCat.

...com.artifexdigital.android.clientexample.ServiceExample: Album successfully shared

...com.artifexdigital.android.clientexample.ServiceExample: Album sharing removed

www.it-ebooks.info

http://www.it-ebooks.info/

385

Chapter 23
Communicating with
Notifications
One of the enduring features of all operating systems is their ability to seek your attention,
calling you to action for some form of notification. Whether it is the arrival of a new email or
an SMS message from a friend, a low battery warning, the confirmation of a purchase, or
traffic alerts, notifications in Android are all about trying to get your attention.

Android devices have a range of ways to notify you that we explore in this chapter. The
familiar tray icons that appear at the top of the Android launcher are likely familiar to you.
After the examples of using dialog boxes earlier in the book, you should know all about
pop-up style messages, and you might even have seen their downside—applications that
get “pop-up happy” and insist on responses again and again.

Android also supports some hardware that, among other things, lends a hand on the
notifications front. The vibration and haptic feedback mechanisms of a phone or tablet
help you feel notifications, and phones, including ones as old as the original Dream/G1,
incorporate a pulsing light in the trackwheel or a set of buttons that provide a visual clue to
the user that notifications are waiting.

To make all of this work well for the user, and to make it all so it can be easily incorporated
into applications by developers, it will not surprise you to learn that Android includes a
complete framework as part of the SDK to help bring notifications to your applications.

Configuring Notifications
Applications have lots of ways of grabbing a user’s attention when something interesting
happens. But an application can also be paused, in the background, and frankly forgotten by
the user when an event happens. Services do not even have a user interface through which
they catch the user’s eye. Applications and services also need ways to direct the user to the
relevant activity in response to an event.

www.it-ebooks.info

http://www.it-ebooks.info/

386 CHAPTER 23: Communicating with Notifications

All of these requirements are handled in Android by the NotificationManager system service.
To gain access to the NotificationManager, you need to pass the appropriate parameter to
the getSystemService() method from your activity or your own service logic. In practice, this
is as simple as creating an object with a call like this:

getSystemService(NOTIFICATION_SERVICE)

With the resulting NotificationManager object, you then have access to the main notification
management methods. These are the typical methods with which you will normally control
your notifications:

	notify(): This is the main method you would use to raise notifications
according to your desired triggers and events. This takes a
Notification object as a parameter, which is the main data structure
that carries the payload of your notification—text, images, and so
on—as well as the way or ways in which you would like to catch the
user’s attention.

	cancel(): To dismiss a notification, you use the cancel() method.
Android is also able to cancel notification in response to certain user
actions, such as swipe-to-dismiss gestures.

	cancelAll(): Use this method when you just want to get rid of all the
notifications that a NotificationManager object has active.

Customizing the Notification Object
Out of the box, notifications are quite functional and include a bunch of sensible defaults to
help catch the user’s attention. But sometimes you want to up the ante and make your
notification irresistable. The Notification object has methods to enhance and customize
your notification.

Note  Some of the following methods are from the original methods and data members available
for the Notification object. Starting in API level 11, several of these methods—in particular the
constructor—were deprecated in favor of a slightly different approach. I cover all of the original
ways of configuring a notification since this allows you to understand individual configuration
options one at a time. At the end of the chapter, I demonstrate how to use the newer builder option
to perform all the configurations using the new approach.

The good news is the older approach may be deprecated, but it is still available all the way up to
and including Android version 6.0 Marshmallow.

www.it-ebooks.info

http://www.it-ebooks.info/

387CHAPTER 23: Communicating with Notifications

Adding Sounds to Your Notification
Android supports the notion of default sounds for many different types of notifications,
all of which can be configured by the device user. This means that you can avoid having
to manually specify sounds if you do not want to go to that effort and simply tell your
Notification object to use the default sound by invoking its .defaults() method as follows:

Notification myNotification = new Notification(...);
myNotification.defaults = Notification.DEFAULT_SOUND;

Where you do wish to provide your own sounds, it is as simple as providing the Uri
reference to a sound file resource. This can be a sound file of your own that you have added
to your raw project resources, or a Uri reference to one of the many sounds that come
prepackaged with Android.

For instance, to use the Kalimba sound that ships as part of stock Android, you can source
the Uri for this resource using the ContentResolver class, and assign the sound accordingly:

Notification myNotification = new Notificiation(...);
myNotification.sound = Uri.parse(ContentResolver.SCHEME_ANDROID_RESOURCE +
 "://" +
 getPackageName() +
 "/raw/kalimba");

One very important aspect to remember with notification sounds (and several other notification
attributes we discuss shortly) is that if you assign a sound via .sound() and set .defaults()
to include the flag DEFAULTS_SOUND, then the default always overrides the custom sound,
regardless of the order in which you call the methods on your Notification object.

Shining a Light for Your Notification
Almost all phone and tablet-format Android devices come with a built-in LED light below
the main screen. This has several uses, but the primary one is to aid in notifying users
of events like notifications. You can control this LED in various ways by configuring your
Notification object.

	Set the .lights() method to true, which activates the LED.

	Where color is supported, use ledARGB and your desired hex code for
the RGB-based color you wish to use to have a device change the color
of the LED.

	Control blinking speed and spacing using the ledOnMS and ledOffMS
values, which express on and off times in milliseconds.

Whatever customization you wish to perform, you should also make sure you set the
Notification.flags field to include the Notification.FLASH_SHOW_LIGHTS flag. On devices
with simpler LEDs, your choice of color might be ignored and replaced with a different
brightness of the fixed color the LED supports. Also, a handful of devices have color-variable
LEDs, but their manufacturers haven’t included the necessary support for the Notification
class so that you are able to control color.

www.it-ebooks.info

http://www.it-ebooks.info/

388 CHAPTER 23: Communicating with Notifications

This raises a larger point that you should keep in mind. Your application can also run on
devices that do not have a notification LED, such as an Android TV or an in-car system. It is
best to think of your LED customization as a useful extra, rather than the only tool for gaining
the user’s attention.

Vibrating to Shake Things Up
If lights and sounds are not enough to get your user’s attention, try shocking them into action
with a little vibration. Another default flag exists to allow use of the device-wide default.

myNotification.defaults = Notifcation.DEFAULT_VIBRATE;

Note that in order for your application to be permitted to make a device vibrate, you
must ask for <uses-permission android:name="android.permission.VIBRATE" /> in your
application manifest. You can also perform custom vibration via .vibrate(), providing a
long[] of the duration of on/off timing for the vibration, with values in milliseconds. For
example, new long[] {1000, 500, 1000, 500, 1000} makes your notification vibrate three
times for a second each, with a half-second pause between vibrations.

Adding Icons for Notifications
So far, each of the notification customizations has aimed to catch the user’s attention.
Icons differ in that they attempt to provide more information to the user regarding what the
notification is about once they have actually noticed it.

In addition to providing the drawables that convey more meaning to your user, you also
need to provide a contentIntent value,PendingIntent, which should be raised when
the user decides to touch the icon in your notification. As you saw in earlier chapters, a
PendingIntent acts as a wrapper and a “snooze” function allowing you to ready an Intent to
later trigger some activity, service, or what have you.

One more flourish is available when you are adding an icon and contentIntent to your
notification. You are also allowed to add a short piece of text to include via the tickerText
attribute. This is where you can put the most important part of the notification text, such as
the name of a person sending a message in a messaging app, the subject of an email, the
caption of a photo, and so on. If you want to save coding effort and you plan on including all
three of the icons, contentIntent and tickerText, the setLatestEventInfo() method allows
you to specify all three in a single call.

Icon Sizes for Old and New Android Versions
If you like the notion of adding icons to your notifications, then consider what kind of fidelity
you would like your icons to have across older and newer Android versions and different
screen densities.

www.it-ebooks.info

http://www.it-ebooks.info/

389CHAPTER 23: Communicating with Notifications

To support all of Android’s recommended notification styles and sizes, you need to provide
four or more different drawables that represent your icon:

	A 25-pixel square for all Android versions prior to 2.3 (and regardless of
actual screen density on those old devices). This is placed in the
res/drawable resource folder.

	A 24-pixel by 38-pixel bounding box, housing a 24-pixel square icon,
for use on high-density, extra-high-density, and extra-extra-high-density
screens. This icon is placed in the res/drawable-hdpi-v9, res/drawable-
xhdpi-v9, and res/drawable-xxhdpi-v9 folders.

	A 16-pixel by 25-pixel bounding box, housing a 16-pixel square icon,
for use on medium-density screens. This icon is placed in the
res/drawable-mdpi folder.

	A 12-pixel by 19-pixel bounding box, housing a 12-pixed square icon,
for use on low-density screens. This icon is placed in the res/drawable-
ldpi-v9 project folder.

More details on icon styling and use are available in the design section of the Android
developer site. This includes some useful information on up-scaling and down-scaling
drawables where you decide not to include one or more of the size-and-density-specific
icons for your application. It is not the end of the world to omit one of these icons, but
you should at least be aware of the possible poor onscreen look of your notification if you
choose to skip one.

Floating Numbers for Added Information
One type of flourish on notifications you may have already seen, and have come to
appreciate, is the extra floating “number” that can appear over an icon to summarize either
the count of similar notifications, or unread/unresponded notifications.

The Notification object includes a public member named number that you can set directly
with the number you wish to have appear in the top-right or top-left corner of the icon
(depending on locale and right-to-left or left-to-right convention on the device). By default
this value is not set, and in the unset state, Android simply ignores it and does not attempt
to show any number as an icon overlay.

Notifications in Action
Now that you are familiar with the concepts and customizable features of notifications
with Android, let’s take a look at the first example application that shows a bunch of these
features in action. The NotificationExample sample is provided in the
ch23/NotificationExample folder.

The layout is very similar to some of the two-button test layouts you have already seen for
other examples in the book. Figure 23-1 shows the layout with the two buttons: one to fire
the notification, and another to clear it.

www.it-ebooks.info

http://www.it-ebooks.info/

390 CHAPTER 23: Communicating with Notifications

There are no particularly noteworthy features to the layout XML, so I will omit it to save
space—feel free to browse the XML in the ch23/NotificationExample project.

Coding Notification Behavior
The code for NotificationExample, shown in Listing 23-1, is interesting.

Listing 23-1.  Implementing the Code for NotificationExample

package com.artifexdigital.android.notificationexample;
 
import android.app.Activity;
import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
 

Figure 23-1.  The basic NotificationExample layout, with no notifications showing

www.it-ebooks.info

http://www.it-ebooks.info/

391CHAPTER 23: Communicating with Notifications

public class NotificationExample extends Activity {
 private static final int NOTIFICATION_ID=12345;
 private int notifyCount = 0;
 private NotificationManager myNotifyMgr = null;
 
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_notification_example);
 myNotifyMgr = (NotificationManager)getSystemService(NOTIFICATION_SERVICE);
 }
 
 public void onClick(View view) {
 switch(view.getId()) {
 case R.id.notify:
 raiseNotification(view);
 break;
 case R.id.clearNotify:
 dismissNotificaiton(view);
 break;
 }
 }
 public void raiseNotification(View view) {
 Notification myNotification = new Notification(
 R.drawable.wavinghand,
 "Notice This",
 System.currentTimeMillis());
 PendingIntent myPendingI = PendingIntent.getActivity(this, 0,
 new Intent(this, NotificationFollowon.class), 0);
 
 myNotification.setLatestEventInfo(this,
 "Title",
 "Notification contents",
 myPendingI);
 
 myNotification.sound = Uri.parse("android.resource://" +
 getPackageName() +
 "/" +
 R.raw.pop);
 myNotification.vibrate=new long[] {1000L, 500L, 1000L, 500L, 1000L};
 myNotification.number=++notifyCount;
 myNotification.flags|=Notification.FLAG_AUTO_CANCEL;
 
 myNotifyMgr.notify(NOTIFICATION_ID,myNotification);
 }
 
 public void dismissNotificaiton(View view) {
 myNotifyMgr.cancel(NOTIFICATION_ID);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

392 CHAPTER 23: Communicating with Notifications

Although there is a reasonable amount of code here, and in the companion NotifcationFollowon
class, much of it should already be familiar to you. Setting up the activity in onCreate()
does the normal task of restoring or creating state and inflating the layout, in addition to the
work of creating the myNotifyMgr object to bind to the system notification infrastructure. The
NotificationExample class itself also sets up a ficticious ID for the notification and a counter
to track how many pending notifications there are. Note that you can easily decide to have
multiple different types of notifications from your application. If you decide to do this, be
sure to use a different ID to distinguish each type.

Employing the onClick() method establishes the familiar pattern I use to group button-click
handling together—though, again, in this example, you can just as easily have each button
call the relevant raiseNotification() and dismissNotification() methods directly. It is the
implementation of these methods that houses our interesting notification logic.

Within the raiseNotification() method, we perform almost all of the optional configuration
and customization I described at the start of the chapter. First, we create the Notification
object and assign the wavinghand.png icon and the status text to use on versions of Android
that support showing status text at the time of notification.

Next, we create a PendingIntent that points at the NotificationFollowon activity. This is
triggered if a user decides to click on the wavinghand.png icon in the notification drawer.
The PendingIntent is then bundled with a notification title and an additional notification
message using the setLatestEventInfo() method, and it is ready for deployment into the
notification drawer.

Lastly, we go to town using all of the extra notification bells and whistles for the
Notification object:

	.sound() is called and given the pop.mp3 sound as a resource from the
raw folder.

	.vibrate() is called with a cadence of one second on, half a second off
of vibration.

	.number() is called to increment the number of times the notification has
been raised.

	.flags() is called to include the FLAG_AUTO_CANCEL option in the flags field.

With all of the options configured, we finally pass the Notification object and the
NOTIFICATION_ID to the NotificationManager for presentation to the user.

Notifications as the User Experiences Them
Running the NotificationExample application in a virtual device provides most of the
experience of notifications. Figure 23-2 shows the notification appearing in the icon bar of
the home screen.

www.it-ebooks.info

http://www.it-ebooks.info/

393CHAPTER 23: Communicating with Notifications

The little waving hand icon can be a bit hard to make out on the printed page, so definitely
try running the example for yourself to see it appear in your own virtual device. Depending
on the API levels supported by your AVD, you may or may not see the additional status text
associated with the Notification object.

Clicking the Clear Notification button makes the icon disappear, and if you are fast enough
to click it while the pop sound is still playing or a real device is still vibrating, those additional
customizations also stop.

The notification stays in place throughout the lifecycle of the activity, and even after you
have gone off to other applications or have returned to the launcher home screen. Try it for
yourself, and you should still see the notificication icon, as in Figure 23-3.

Figure 23-2.  Notification triggered in top-left corner—the small waving hand icon

www.it-ebooks.info

http://www.it-ebooks.info/

394 CHAPTER 23: Communicating with Notifications

At any point after the notification has fired, the device user can access the notification
drawer that collects all the notifications from all the applications on the device. They do
this by grabbing the bar at the top of the screen and dragging all the way to the bottom.
Figure 23-4 shows our example notification with many of the additional details we added,
including the notification title and additional text.

Figure 23-3.  Notification icon persists even after leaving activity

www.it-ebooks.info

http://www.it-ebooks.info/

395CHAPTER 23: Communicating with Notifications

What you see in the notification drawer is heavily dependent on the release of Android you
are using. The most modern Lollipop and Marshmallow approach is shown in Figure 23-4, with
our icon chosen from the appropriate screen density resource or scaled from the nearest
available resource packaged within the application. Our 25-by-25 pixel waving hand is far
more recognizable in the notification drawer. The title and additional text are shown, along
with the timestamp passed to the Notification object at creation time.

You will also notice that the number value is presented in the notification drawer of newer
Android releases, instead of as an overlay on the icon in the icon bar. This change was
largely driven by the tendency of the icons to become crowded and overwhelmed on
phone-sized screens, so it was moved to the drawer, which made it more likely that it
wouldn’t be lost in the noise.

The user can click the icon to trigger the follow-on activity, or they can simply dismiss
the notification—just as if they had hit the Clear Notification button on the activity home
screen. In Android version 4.0 (Ice Cream Sandwich) and later, you also see the three slightly
offset horizontal bars below the notifications; this is the dismiss all option. This triggers the
cancelAll() method on all active NotificationManager objects, which completely clears the
notification drawer.

A completely clear notification drawer looks like the depiction in Figure 23-5.

Figure 23-4.  The notifications drawer open, showing our notification

www.it-ebooks.info

http://www.it-ebooks.info/

396 CHAPTER 23: Communicating with Notifications

Note that clearing notifications in this fashion does not necessarily clear the notification
count you may have been tracking in your application. Remember, just because you have
switched away from the application, doesn’t mean Android has necessarily triggered
onDestroy() or reaped the application for its resources.

Using the Builder Approach to Notifications
At the beginning of the chapter, I pointed out that there were newer approaches to creating
your Notification objects that were introduced from API level 11 on. The main change to
be aware of is the preference for using a NotificationBuilder object to handle all of the
configuration and customization for your notification.

This means that the followingaspects of the original Notifcation class are flagged as
deprecated, though support is still provided in the most recent Android version 6.0
Marshmallow release.

	Overloaded options for the constructor are deprecated.

	The setLatestEventInfo() method is deprecated.

Figure 23-5.  All notifications have been cleared from the device

www.it-ebooks.info

http://www.it-ebooks.info/

397CHAPTER 23: Communicating with Notifications

The Notification.Builder allows you to stack method calls for all the components of
the Notification you wish to customize. This means that in the NotificationExample
sample application, we can replace our constructor call and our subsequent call to
setLatestEventInfo() with the following use of the builder:

Notification myNotification = new Notification.Builder(context)
 .setContentTitle("Notice this")
 .setContentText("Notification content")
 .setSmallIcon(R.drawable.wavinghand)
 .setLargeIcon(R.drawable.wavinghand)
 .setContentIntent(myPendingI)
 .setWhen(System.currentTimeMillis())
 .build();

Note that we need to move the declaration of the contentIntent’s PendingIntent object so
it falls before we use the builder so it is in scope for the .setContentIntent() call. In most
other respects, you can see the equivalent aspects of the traditional notification constructor
and other calls in the builder approach.

Other Uses and Extensions to Notifications
Notifications have enjoyed almost constant enhancement since Android was released, and
I touch on more advanced uses next. There is a great deal more to the advanced features
that are beyond the scope of this book, but you can read about them online at the Android
developer site.

Notifications and Services
In Chapter 22, we discussed services and their traditional nature of staying in the
background and being invisible to the user, while, at the same time, performing useful tasks
or actions for the user. Remember that services can also be subject to Android’s need
to reclaim resources, and so they can be killed off when memory is heavily constrained.
Although you know about the “stickiness” and out-of-memory controls for services, there
is another approach to keeping services around when they otherwise might be subject to
termination, and this method involves using notifications.

A service can declare that it should be considered at the priority level of foreground,
which gives it the same chance of surviving as the applications that are currently in
onCreate()/onResume() parts of their lifecycle. The cost to you as a developer is that
you must implement a user notification that flags to the device user that your service has
taken on foreground priority.

You achieve the move to foreground by calling the startForeground() method in your
service’s onCreate() logic. The startForeground() method takes a Notification object as a
parameter, and it takes a unique ID, just as the .notify() method for NotificationManager
does. You can guess what startForeground() does with those parameters. If you need or
want to move the service to the background priority level, you call stopForeground() and
this also uses the cancel() method under the hood with the relevant NotificationManager
object to clear the related notification.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4302-4687-9_22
http://www.it-ebooks.info/

398 CHAPTER 23: Communicating with Notifications

More Advanced Notification Features
Although this chapter has focused on the fundamentals of notifications, you should at least
be aware of the many types of advanced notification features Google has added in recent
releases. Many of these styles of notifications were tailored to suit particular derivations
of Android, such as Google Glass, Android Wear, and the TV and in-car modificaitons
to Android. I could fill a book that just deals with all of the nuances and possibilities of
advanced notification features, but we just do not have the page count to spare.

Instead, here is an overview of some of the more interesting new-style notifications; the
Android developer documentation can help you learn more.

Timeline Notifications
This is more of a formatting approach than a leap in functionality. With the introduction of
Google Glass, Google created a larger notification canvas with options for much larger
images. Figure 23-6 shows the classic Timeline Notification teaser.

Figure 23-6.  A notification formatted for Google Glass’s timeline format

Bundled Notifications
Bundled notifications take the idea of the number attribute that counts multiple notifications
and turns it on its head. Instead of just presenting a count, a bundled notification presents
a “top” notification and visual cues allow the user to open the bundle and see all the related
notifications. Figure 23-7 shows a top-level notification for a bundled notification.

www.it-ebooks.info

http://www.it-ebooks.info/

399CHAPTER 23: Communicating with Notifications

Figure 23-7.  The top notification in a bundle of notifications

The key visual cue that this is a bundle is the folded corner motif in the top-right. The user
can actually swipe that part of the notification to reveal all of the notifications that constitute
the bundle. Figure 23-8 shows a sample of notifications in a bundle.

Figure 23-8.  The notifications within a bundle

www.it-ebooks.info

http://www.it-ebooks.info/

400 CHAPTER 23: Communicating with Notifications

The one additional UI feature here is the subtle white bar at the bottom of the bundled
notifications. The bar is divided into a number of sections equal to the number of notifications
in the bundle. The highlighted part of the footer bar changes to represent which notification in
the bundle the user is viewing.

Expanding Notifications
From Android version 4.1 Jelly Bean on, Google added support for expanding notifications
that do not trigger an activity when the notification is clicked. Instead, expandable
notifications can increase their size within the notifications drawer and show additional
content as well as one or more embedded actions (I will discuss embedded actions
momentarily). This allows the user to make much more use of larger screens like tablets
and phablets, as well as move straight to the desired response action rather than having to
navigate to the contentIntent-triggered activity and then chose an action.

Figure 23-9 shows a notification that has expanded to a much larger size, using a background
image, and with two embedded actions for the user to quickly use.

Figure 23-9.  Expanding notification with multiple embedded actions

More Embedded Actions in Notifications
One particular set of new features promoted by Google across all the variants of the Android
platform is the ability to add direct actions to the notification. Whereas the traditional
notification can use the contentIntent member of the Notification object to trigger a
specific activity, embedded actions provide more context and the abililty to label the tasks
(multiple!) that can be performed. This, in effect, gives you capabilities like a mini embedded
menu of actions inside the notification. Figure 23-10 shows a simple reply function surfaced
within a message notification.

www.it-ebooks.info

http://www.it-ebooks.info/

401CHAPTER 23: Communicating with Notifications

Notifications Tailored for Wear
With the recent rapid growth in the wearable Android space, it will come as no surprise that
specific wearable-tailored notification styles exist in Android version 4.3 KitKat and later
versions. The main options available cover the aesthetics of text sizing and placement with
images, as shown in Figure 23-11, plus full support for square and round screen displays
translating into appropriately shaped notifications.

Figure 23-10.  Actions within a timeline notification

Figure 23-11.  Circular notifications for Android Wear

www.it-ebooks.info

http://www.it-ebooks.info/

403

■■A
Accessory button, 133
Action bar

ActionBarActivity, 162
ActionBar.OnNavigation

Listener interface, 167
android:minSdkVersion, 156
android.support.v7.app.

ActionBarActivity, 157
android versions, 156
applications

action, 158
customized, 160
menu item, 159–160
target SDK, 157
XML configuration, 159

CustomTabListener, 166–167
FragmentTransaction, 167
getActionBar( ) method, 161
SDK level, 156
setNavigationMode( ) method, 161, 167
tab layout, 163–164
TabListener interface, 166
tab objects, 165

Activity, android
android.app.Activity base class, 53
android-specific classes, 53
Apache Harmony Java, 53
control interaction, 53
IDE–Android Studio, 52
implementation, 54
imported classes, 53
Java code, 52
Java SE and Java ME classes, 53
MainActivity.java file, 52
onClick( ) method, 54
onClickListener, 53–54

onCreate( ) method, 53
public class, 53
setText( ) method, 54
UI toolkit, 53
updateClickCounter( ) method, 54

Activity callback methods
onCreate( ), 171
onDestroy( ), 175
onPause( ), 173
onRestart( ), 174
onRestoreInstanceState( ), 172
onResume( ), 172
onRetainNonConfigurationInstance( ), 174
onSaveInstanceState( ), 173
onStart( ), 172
onStop( ), 173

Adapters
ArrayAdapter, 108–109
constraints, 108
data-driven applications, 108
list-style UI elements, 108

ADT. See Android Developer Tools (ADT)
Ahead-of-time (AOT) compilation, 356
Android:maxSdkVersion attribute, 344
Android

activities, 5
ART, 356
audio and sound, 219
content providers, 6
intents, 5
Java-coded applications, 355
prerequisites, 7
services, 6

Android 6.0 Marshmallow
installation time, 348
onRequestPermissionsResult( )

callback, 347
permission granting, 347

Index

www.it-ebooks.info

http://www.it-ebooks.info/

404 Index

Android activity lifecycle
activity model, 170
configuration changes

onCreate( ), 177
onRestoreInstanceState( ), 177
onSaveInstanceState( ), 176

custom state, 177
guiding principles, 175
states, 170–171

Android application creation
activity behavior selection, 29–30
launcher and activity settings, 28
launcher icon configuration, 28–29
programming code, 31–33
project properties, 27
project type, seletion, 25–26
settings, 27
Virtual Device emulator, 33

Android applications, 354
ADT, 7
Java 7–8
JDK, 7

Android audio playback
doStartAudio( ), 229
Java, 227
Media framework, 226
setDataSource( ), 229

Android code, 51
Android:description, 349
Android Developer Tools (ADT), 7, 45
Android development

interface, 4
Java, 5
tools, 5

Android:label, 349
Android Manifest, 41

ADT, 45
AndroidManifest.xml file, 45
attributes, 42
graphical XML editor, 46

AndroidManifest.xml, 344
Android project

android manifests, 41
bin directory, 39
generated components, 38
JAR, 38
libraries, 38
manifests, 41–43

menus, 40
with properties, 43
res folder, 39
source code, 37
structure, 35–37
user interface layouts, 40
values, 41

Android runtime (ART)
code execution, 355
contemporary devices, 355
JVM, 355
stack size, 356

Android SDK Manager, 18–20
Android security

Android Studio users, 345
graphical XML editor, 345
packaging and deployment, 343
platform-provided permissions, 345
trading in permissions, 348
WRITE_EXTERNAL_

STORAGE permission, 343
Android services

client-to-service communication (see
Client-to-service communication)

definition, 372
design, 380
Java logic, 380–383
lifecycle management, 373
manifest file, 373–374
service class implementation, 372
service-to-client communication (see

Service-to-client communication)
sources, 371
testing, 384
theory and fundamentals, 380

Android Studio, 356–357
android SDK, 11–12
configuration, 362
external JAR, 362
gradle File, 363
installation

Linux, 10
Mac OS X, 11
Windows, 11

JARs, 361
Project Sync, 362
project view, 361
selection, 10

www.it-ebooks.info

http://www.it-ebooks.info/

405Index

Android versions
action bar, 49
AndroidManifest.xml, 51
android SDK, 48
API levels, 48–49
control telecom carriers, 50
eclipse console, 50
equivalent android version, 49
error, targetSdkVersion versions, 51
Lollipop 5.0, 50
maxSdkVersion attributes, 51
minSdkVersion attributes, 48–50
optimizations and enhancements, 50
partial data, API, 50
system-default themes, 50
targetSdkVersion setting, 50
uses-sdk element, 48–49, 51

Android Virtual Devices (AVDs)
creation, 21–22
launch options, 23
Manager, 21
splash screen, 23–24

Apache commons, 360
App Ops functionality, 347
ArrayAdapter

android.R.layout.simple_list_item_1, 109
constructor and parameters, 109
ListView, 112
multiple choice ListView, 115

AsnycTask( ) approach, 323
AssetFileDescriptor objects, 229
Assets, 220–221
AsyncPlayer, 232
Audio behavior, 223, 225
AudioManager, 225
Audio playback approaches, 221–222

audio/video track, 231
MediaPlayer object, 231

AutoCompleteTextView
action, 126
android:completionThreshold, 123
capabilities, 125
EditText and Spinner, 122
Java coding, 124
layout, 123
onTextChanged( ), 125
setAdapter( ), 123
TextWatcher, 123–125

■■B
BroadcastReceiver interface, 209
Bundled notifications, 398, 400

■■C
CheckBox, 66–68
checkCallingPermissions( ) method, 351
checkSelfPermission( ) method, 348
Client-to-service communication

bindService( ), 376–377
startService( ), 375–376

Context menus
onContextItemSelected( ), 141
onCreateContextMenu( ), 143
onCreateOptionsMenu( ), 143
registerForContextMenu( ), 140
running application, 143–144

Custom permissions
declaration, 349–350
enforcement, 350–351

■■D
Databases with android

applications, 323
delete( ), 321
minSdkVersion value, 323
rawQuery( ), 322
SQLite, 305

Debugging permissions, 346
Default Configuration

Change Approach, 176–178
Dialog-style interaction

AlertDialog and Toast popups, 149–151
Builder( ) approach, 151
class’ static makeText( ) method, 149
Toast messages, 149, 153

doClick( ), 229
doPlayAudio( ) methods, 225–226
doStartAudio( ) methods, 229
DownloadManager

application UI, 277
built-in playback activities, 283–284
code implementation, 277, 279
DownloadManagerExample layout, 276
enqueue( ) method, 281
findViewById( ), 280

www.it-ebooks.info

http://www.it-ebooks.info/

406 Index

getSystemService, 279
management activity, 282
notification drawer, 282
onDestroy( ), 282
onDownloaded( ), 281
permissions, 275
problems, 284–286
query( ) method, 284
setAllowedNetworkTypes( ), 280
setDestinationInExternalPublicDir( ), 280
startDownload( ) method, 279–280
system service, 274
viewDownloads( ) method, 282

■■E
Eclipse, 357, 364
Eclipse IDE

ADT
addition, 13
android SDK location, 17
components, 15
license confirmation, 16

Android repository configuration, 14
available software dialog, 14
download process, 13
installation review, 16

EditText widget, 63–65
Emulator, 369–370
Enhanced application, 54–55
External file management

IMEs, 298
onClick( ) method, 296–297
saving and reading files

doHideKeyboard( ) method, 298–299
doSaveToFile( ) method, 298–299
try/catch block, 298

text entry field and buttons, 295
External library

application, 367
configuration steps, 367
file I/O aspects, 360
high-fidelity, 360
IOUtils, 365–366
Java implantation, 360
Java programming, 365
UI design, 365

External storage, 301

■■F
File system

External Files (see External
file management)

external storage, 293, 301
InputStream and OutputStream, 292
internal storage, 292
I/O

asynchronous threads, 304
StrictMode policy system, 303

reading and writing, 293–294
YAFFS (see YAFFS file system)

Fragment-based application
color detail layout, 188
ColorListActivity, 190–191
color list layout, 187
fragment behavior

in action, 191, 193–194
host activity, color detail, 188
multi-fragment layout, 189

Fragment class
activities, fragments

and UI widgets, 183
backwards compatibility, 182
definition, 182
qualities, 183

Fragment lifecycle callback methods
onAttach( ), 185
onCreate( ), 185
onCreateView( ), 185
onDestroy( ), 186
onDestroyView( ), 186
onDetach( ), 186
onInflate( ), 185
onPause( ), 186
onResume( ), 186
onSaveInstanceState( ), 186
onStart( ), 186
onStop( ), 186
onViewStateRestored( ), 185

Full Fragment Lifecycle, 184

■■G
Google Maps

API Project, 242–244
higher-order applications, 240
SDK Manager, 240

DownloadManager (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

407Index

Grid Layouts
application, 98
GridDemo, 99
XML layout file, 98

GridView
ArrayAdapter, 118
attributes, 115
Java coding, 117
Layout XML, 116–117
number and size of columns, 115
verticalSpacing and columnWidth, 118

■■H
HERE/Ovi Maps, 241

■■I
IME. See Input method editor (IME)
Input method editor (IME), 128–131
Input method framework (IMF)

HorizontalScrollView, 135
IME customization

android:inputType attribute, 129
EditText TableLayout, 130
inputType classes, 129–130
soft-keyboard IME, 131–133

IME out of existance, 138
real and virtual keyboards, 127–128
ScrollView, 135–137
setSystemUiVisibility( ), 137
soft keyboards (see Soft keyboards)

Integrated development
environments (IDEs), 5

Intents
Bundle object, 199
component, 199
creation, 203–204
dependency vs. no-dependency, 202
event-based operating systems, 197
invoked activity

contact view activity, 208
layout, 204–205
Uri creation and triggering, 207

launcher menu, 198
manifest, 200–201
MIME type, 198
receivers, 198
routing, 200

Internal storage, 292–294
Internet connections troubleshooting

fully-formed URLs, 273
main UI thread, 274

■■J, K
JAR files, 357
Java

ARM-based processor designs, 358
ART, 358
gigabytes, 359
I/O or interfaces, 359
JVM features, 358
library issues, 359
operating system/native

dependencies, 359
Oracle/Sun JVM, 358
package size, 358
versioning and

cascading dependencies, 359
Java code

setContentView( ) method, 103
XML layouts, 101

Java Development Kit (JDK)
installation, 9
Java-specific

coding knowledge, 9
Linux users, 8
Mac users, 8

Java Native Interface (JNI), 356
JDK. See Java Development Kit (JDK)
JSON-based application

fetchUrl( ) method, 270
java coding, 268–269
layout, 267
onCreate( ) method, 269
open weathermap, 271–272
URL and streaming, 270

■■L
Layout Editor

Java code, 103
XML (see XML Layouts)

Layouts and UI Design
FirstApp demo, 103–104
GridLayout, 80
LinearLayout, 79

www.it-ebooks.info

http://www.it-ebooks.info/

408 Index

RelativeLayout, 79
TableLayout, 80

Library sources, packaged JAR, 356
LinearLayout

exploring options, 88–89
fill method, 87
gravity, 88
Java Code, 90–91
margins, 87
orientation, 87
RadioButton, 91
RadioGroup widgets, 89
weight, 88

Linux-based system, 354
Lists

ArrayAdapter, 110
ListActivity, 111–112
ListView

project’s java implementation, 110
project’s layout specification, 110

onListItemClick( ), 111
setAdapter( ) method, 110
setListAdapter( ), 111
setOnItemSelectedListener( ), 110

ListView
android:choiceMode, 113
android SDK, 113
multiple-choice behavior configured, 113
multiple-choice java configuration, 114
setChoiceMode( ) method, 113

■■M
Making phone calls

ACTION_CALL, 217
ACTION_DIAL, 217
incoming calls, 217–218
mandating telephony support, 211
optional telephony support, 212
outbound calls

dialing/calling code, java, 216
dialing/calling number layout, 214
layout, phone call, 213–214
methods, 212

Mapping and location services
createMap( ) method, 247
features and flair, 250

Google Maps, 240–241
HERE/Ovi Maps, 241
interaction, 252
layout, 246
MapActivity/FragmentActivity, 244
MapView and MapActivity, 239
My Location Button, 250
OpenStreetMap Project, 241
options, 252–254
permissions and manifest settings, 245
setMapType( ) method, 251
toolbars, 250

Media package, 219
MediaPlayer, 225
MediaRecorder, 232–236.

See setAudioSource( ) method, 237
Menus

context menus, 140–141
creation

add( ) method, 139
addSubMenu( ) method, 140
onOptionsItem

Selected( ) callback, 140
onOptionsMenuCreate( ), 139
setAlphabeticShortcut( ), 140
setCheckable( ) method, 140
setGroupCheckable( ), 140
setNumericShortcut( )

methods, 140
setQwertyMode( ) method, 140

java implementation, 141–142
MenuExample UI, 145
types, 139
XML-based approach, 146–148

■■N
Notifications

builder approach, 396–397
bundled, 398, 400
circular, 401
coding, 390–392
configuration, 385–386
customization, 386
embedded actions, 400–401
expanded, 400
floating numbers, 389
icons, 388–389

Layouts and UI Design (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

409Index

layout, 389
LED light, 387
pop-up style messages, 385
sounds, 387
timeline, 398
user experiences, 392–396
vibration, 388

■■O
onClick( ) method, 225
onCreate( ) callback, 225
onCreate( ) method, 307
onListItemClick( ), 111
onPreparedListener interface, 225
openDatabase( ) method, 324
openStreetMap Project, 241

■■P
Preferences

additional methods, 329
big picture, 330
customizing, 340–341
getPreferences( ) method, 328
header resources

arrays.xml resource, 334
ListView layout, 334
XML files, 331–334

nesting and display quirks, 341
PreferenceActivity

subclass, 327–329, 342
PreferenceFragment subclass

application, 337
customize, 337
design, 337
Launcher Activity, 338–339

SharedPreferences object, 328
Pre-Marshmallow behavior

Android 6.0, 347
android versions, 346
users’ perception, 346

prepare( ) method, 230
prepareAsync( ), 230

■■Q
Query Building Process, 315

■■R
RadioButton

android:id attribute, 71
methods, 71
XML Layout, 71–72

RadioGroup widgets, 89
Raw and asset-based files

advantages, 288
audio and video, 287
disadvantages, 288
resource files

colors.xml, 289, 291
ListActivity application, 289–290
ListViews and Adapter logic, 288
string array, 288

Receivers
BroadcastReceiver, 209
limitations, 209
UI interaction, 208–209

RelativeLayout
activity container, 80
ADT, 80
overlapping widgets, 85–86
property, 81–82
singleand two-pass approach, 82
stock skeleton, 84

■■S
Scripting layer, 368
Securing applications

APK, 352–353
certificate signing, 352
keystore facility, 352

SeekBar widget, 75
sendBroadcast( ) method, 351
Service-to-client communication

bindService( ), 378
callbacks and listeners, 379
independent messaging, 379
intents and broadcast receivers, 378
Messenger and Message objects, 379
notifications, 380
PendingIntent objects, 378

setDataSource( ), 229
Signing certificate, 353

www.it-ebooks.info

http://www.it-ebooks.info/

410 Index

SL4A approach, 368
Snapchat-style picture

messaging system, 346
Soft keyboards

accessory button, 133–134
blue Done button, 133
decimal number, 133
EditTextExample application, 128
explicit control, IME, 137
IME reflow and resizing behavior, 136
inputType classes, 129–130
on-screen layout, 136
setOnEditorActionListener( ), 135
stock android, 132

SoundPool
asset, 231
off-device complications, 231
size limitation, 231

Spinner widget
aa.setDropDownViewResource( ), 120
android:drawSelectorOnTop, 119
collapsed version, 119
dropped-down version, 119, 122
initial state/collapsed state, 121
Java coding, 119–120
layout XML, 119
ListView and GridView, 118, 121
OnItemSelectedListener, 120
setDropDownView

Resource( ) method, 119
setOnItemSelectedListener( ), 119
spin.setOnItemSelected

Listener(this), 120
SQLite

activity, 312–313
and android, 315
Apple, 306
application, 320
autoincrement feature, 311
autoincrement property, 318
bootstrapping, 307
ContentValues, 320
cursor, 317
execSQL( ) method, 311, 319
Google, 305
GUI, 325
insertModelRow( ) method, 319

language, 306
moveToFirst( ) method, 318
Mozilla, 306
newCursor( ) method, 318
onCreate( ) implementation, 311, 315
onUpgrade( ), 312
Oracle, 306
query( ) method, 317
Raw Power, 316

sqlite3 shell program, 324
SQLiteExample application, 324
SQLiteOpenHelper, 307, 310
startActivity( ) call, 351
Switch

methods, 68
off position, 70
on position, 70

Synchronous vs. asynchronous playback
onPrepared( ), 230
playback UI, 230

■■T
TabLayout, 167
Table Layouts

columns, 94
RelativeLayout, 95–97
TableRows, 94
XML layout attributes/Java, 93

Target screen sizes
Android 3.2, 48
android developer site, 47
AndroidManifest.xml, 48
API-level support, 48
automated conversion, 46
categories, 46
data provided, google, 47
Google TV, 47
Nexus 7 tablet—Google, 47
SDK versions, 48
xlargeScreens, API, 48

TextView
action window, 61
definition, 60
properties, 60
XML Layout, 60

Timeline notifications, 398

www.it-ebooks.info

http://www.it-ebooks.info/

411Index

■■U, V
UI widgets

AnalogClock, 73–74
android:inputType, 64
CheckBox, 65, 67–68
DigitalClock, 73, 75
EditText, 63–65
ImageButton, 62
ImageView, 62–63
inherited methods, 76
inherited properties, 76
RadioButton, 71–72
SeekBar, 75
Switch, 68
TextView

action window, 61
properties, 60
XML Layout, 60

TextView label
definition, 60

View.OnClickListener, 61
update( ) approach, 321
User Interface Layouts, 40

■■W
Web interaction, WebView widget

AndroidHttpClient approach, 266
Apache HttpClient approach, 265
HttpURLConnection approach, 266

WebView widget
android.webkit.WebView class, 259
getSettings( ).setJavaScriptEnabled, 261
HTML layouts, 262–265
implementation, 258–259
layout, 258
onCreate( ) method, 259
security, 259–262

■■X
XML layout approach, 60
XML Layouts

Java logic, 101–102
programmatic parsing and rendering, 101

■■Y, Z
YAFFS file system, 302–303

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part 1: Get Android and Get Coding!
	Chapter 1: Welcome to Android
	 The Fast Path to Learning Android Development
	 Thinking in a Smartphone Mindset
	 Computing on the Go!
	 Size Matters
	 The Interface Is More Than the Screen
	 You Are Not Alone

	 Translating Developer Dreams into Android Action
	 A Look Inside Android
	 A Look Inside This Book

	Chapter 2: Ready, Set, Code!
	 Getting the Prerequisites for Android
	 Determining the Right Java for You
	Getting the JDK
	Installing the JDK

	 Knowing (Enough) Java for Android

	 Choosing a Development Environment
	 Option 1: Choosing Android Studio
	Downloading Android Studio
	Installing Android Studio
	Downloading the Android SDK
	Configuring the Android SDK for Android Studio

	 Option 2: Choosing Eclipse the Quick Way
	 Options 3: Choosing Eclipse the Do-It-Yourself Way
	Downloading the Android SDK
	Adding ADT to Your Existing Eclipse IDE
	Configuring the Android SDK for ADT in Eclipse

	 Completing Your Development Environment Setup

	 Creating Your First Android Virtual Device
	 Creating Your First Android Application
	 Writing Your First Android Code

	Chapter 3: Inside Your First Android Project
	 Looking at Android Project Structure
	 Starting at the Source
	 Benefitting from Generated Components
	 Using Libraries and JARs
	 Counting Your Assets
	 Putting Things in the Bin
	 Using Resources
	 Picturing What Drawables Can Do For You
	 User Interface Layouts
	 What’s on the Menu?
	 Valuable Values

	 Working with Other Key Files in Your Project
	 Controlling Applications with Android Manifests
	 Permutating Projects with Properties
	 “R” You Forgetting Something?
	 Solving the Appcompat Mystery

	Chapter 4: Changing and Enhancing Your Project
	 Extending Your Application with the Android Manifest
	 Editing the Android Manifest
	 Specifying Target Screen Sizes
	 Controlling Support for Different Android Versions

	 Writing Actual Android Code
	 Introducing the Activity
	 Looking Inside Your First Activity
	 Building and Running Your Enhanced Application

	Part 2: Activities and the UserInterface
	Chapter 5: Working with Android Widgets
	 Understanding Activity Fundamentals
	 Naming with Labels
	 Pressing Buttons (redux)
	 Handling Images with ImageView and ImageButton
	 Fielding Text with EditText
	 CheckBox? Got It.
	 Switching to the Switch
	 Working with Radio Buttons
	 Timing All Manner of Things with Clocks
	 Easing Input with SeekBar
	 Views: The Base of All UI Widgets
	 Useful Common Inherited Properties
	 Useful Common Inherited Methods

	 Even More UI Widgets

	Chapter 6: Layouts and UI Design
	 Working with Relative Layouts
	 Positioning Relative to the Activity Container
	 Identifiying Properties for Relative Layout
	 Relative Positioning Properties
	 Determining the Order of Layout Relationships
	 A RelativeLayout Example
	 Overlapping Widgets in Relative Layouts

	 Working with Linear Layouts
	 Controlling the Five Key Qualifiers for LinearLayout
	Orientation
	 Margins
	 Fill Method
	 Weight
	 Gravity

	 An Example LinearLayout

	 Working with Table Layouts
	 Understanding Widget Behavior within TableLayout
	You Count the Rows, Android Counts the Columns
	Widgets without TableRows in a TableLayout
	Controlling the Size of Columns in a TableLayout

	 An Example TableLayout

	 Working with Grid Layouts
	 Layout Manipulation with the Layout Editor
	 Recap of the Layout Editor UI
	 Even More Reasons for XML Layouts
	 Converting to XML-based Layouts with Java Logic
	 Attaching Layout Definitions to Java

	 Completing Your Revised App

	Chapter 7: Building Layouts with Lists and Adapters
	 Using Adapters to Populate Options
	 Why Adapters?
	 Starting with ArrayAdapter

	 Making Lists
	 Making More Sophisticated Lists
	 Adapting to the GridView
	 Taking Options for a Spin
	 Automatic Field Population
	 Summary

	Chapter 8: Working with Input Methods, Menus and Dialogs
	 Using The Input Method Framework
	 Real and Virtual Keyboards
	 Customizing IMEs
	 Accessorizing with Soft Keyboards
	 Scrolling in to View
	 Forcing the IME out of Existence

	 Working with Menus
	 Creating Menus for your Application
	 Working With Context M enus
	 Menus In Action
	 Inflating Menus from XML
	Further Options for XML-Based Menus
	Inflating an XML-Defined Menu

	 Interacting with Dialogs
	 Creating Toast Notifications
	 Generating Traditional Dialog Alerts
	 Pardon The Interruption

	 Summary

	Chapter 9: Adopting the Action Bar
	 Recognizing the Action Bar
	 Managing Android Versions for Action Bar
	Specifying SDK level for Native Action Bar Support
	Utilizing the Support Library for Older Android Versions

	 Creating Action Bar Applications
	 Enabling the Action Bar for your Application
	 Moving Menu Functionality to the Action Bar

	 Using Java to Manage Action Bars
	 Working with a Standard Action Bar in Java
	 Choosing a Tab Layout for the Action Bar
	Defining Action Bar Tab Objects
	Coding the TabListener Behavior
	Future Changes For Action Bar Tabs

	 Using Other Layouts for the Action Bar

	 Summary

	Chapter 10: The Life of an Activity
	 Understanding the Activity Lifecycle
	 Working with Activity Callback Methods
	onCreate( )
	onStart( )
	onRestoreInstanceState( )
	onResume( )
	onPause( )
	onStop( )
	onSaveInstanceState( )
	onRestart( )
	onRetainNonConfigurationInstance( )
	onDestroy( )

	 Understanding the Goals of Android Activity Behavior
	 Working with Activity Configuration Changes
	 Understanding the Default Configuration Change Approach
	 Saving Custom State

	Part 3: A World of WonderfulDevices and Screens
	Chapter 11: Android Fragments
	 Introducing the Fragment Class
	 Backwards Compatibility with Fragments
	 Designing with Fragments in Mind

	 Introducing the Fragment Lifecycle
	 Understanding Fragment Lifecycle Callback Methods
	onInflate( )
	onCreate( )
	onAttach( )
	onCreateView( )
	onViewCreated( )
	onViewStateRestored( )
	onStart( )
	onResume( )
	onPause( )
	onSaveInstanceState( )
	onStop( )
	onDestroyView( )
	onDestroy( )
	onDetach( )

	 Keeping Sane with Fragment Lifecycles

	 Implementing Your Own Fragment-Based Application
	 Creating Layouts for the Fragments Examples
	The Color List Layout
	The Color Detail Layout
	A Host Activity For Color Details
	The Large-screen Multi-fragment Layout

	 Controlling Which Layout Is Chosen
	 Coding Differences for Fragments
	 Seeing Differing Fragment Behavior in Action

	 Summary

	Chapter 12: Intents and Receivers
	 Introducing Intents
	 The Anatomy of an Intent
	Specifying an Intent Category
	Specifying a MIME Type
	Nominating a Component
	Including Extras

	 Intent Actions for all Kinds of Purposes
	 Understanding Intent Routing
	 Adding Intents to Your Manifest

	 Seeing Intent-launched Activities in Action
	 Deciding on Activity Dependency.
	 Creating an Intent
	 Starting the Intent-Invoked Activity

	 Introducing Receivers
	 Using Receivers When No UI is Needed
	 Navigating Receiver Limitations

	Chapter 13: Making Phone Calls
	 Checking for Phones and “Phonies”
	 Mandating Telephony Support
	 Optional Telephony Support

	 Making Outbound Calls
	 Using ACTION_DIAL
	 Using ACTION_CALL

	 Working with Incoming Calls

	Chapter 14: Making Noise with Audio for Android
	 Introducing the Media package
	 Building Your First Audio Application

	Chapter 15: Locations and Mapping with Android
	 Choosing Map Providers for Your Application
	 Google Maps
	 The OpenStreetMap Project
	 HERE/Ovi Maps
	 Which Technology to Choose?

	 Preparing for Google Maps Development
	 Creating Your API Project
	 Enabling a Maps API on Your Google API Project
	 Getting the API Key
	 Retrieving Your API Key

	 Building Your First Maps Application
	 Using MapActivity or FragmentActivity with MapView
	 Permissions and Manifest Settings for Maps
	 Building the Layout for Your Map Application
	 Adding Code for a Basic Map

	 Adding Flair and Features to Your Maps
	 Zoomin’
	 True North
	 Toolbars and the My Location Button
	 Shakin’ It!
	 Changing Map Type
	 Listeners for Every Conceivable Type of Map Interaction
	 Even More Map Options

	 Summary

	Part 4: Working with Resources and Services
	Chapter 16: Weaving the Web with Android
	 Working with the WebView Widget
	 Creating a Simple Application with a WebView
	 Simple and Not-So-Simple WebView Security

	 Building HTML Layouts with WebView
	 UI-less Internet Interaction with Android
	 Why Multiple Approaches to Web Interaction?
	The Apache HttpClient Approach
	The AndroidHttpClient Approach
	The HttpURLConnection Approach

	 Building a JSON-based Application with HttpURLConnection
	Layout or No Layout?
	More Than Just a Series of Tubes
	Running HttpUrlConnectionExample and Its Results

	 Troubleshooting Issues with Internet Connections
	Correct and Fully-Formed URLs
	Misbehaving on the Main Thread

	 Mastering Downloads with DownloadManager
	 Introducing the DownloadManager System Service
	 Selecting Permissions for DownloadManager Use
	 A Simple Downloader Example
	 Coding DownloadManager Behavior
	 Dealing with Download Problems

	Chapter 17: Working with Files
	 Using Raw and Asset-based Files
	 Populating Lists from Resource Files

	 Working with Files from the File System
	 Android’s File System Model
	 Permissions for Reading and Writing Files
	 Examining External Files in Action
	What Goes in to Saving and Reading Files
	Helping Hands with IMEs

	 Seeing File Save and Read Behavior in Action
	 Ensuring External Storage Is Available When Needed

	 Other Considerations with Android File Systems
	 Android Filesystems Throughout History
	 Controlling UI Delays with File I/O
	Using StrictMode to Profile an Application
	Moving Logic to Asynchronous Threads

	Chapter 18: Managing Databases with Android
	 SQLite: A Seriously Popular Database
	 A Crash Course in SQLite
	 Creating SQLite Databases for Your Application
	 Introducing the SQLiteExample Application

	 Building a Database-Driven Activity
	 Choosing Query Approaches for SQLite and Android
	Walking Through the Query Building Process
	Using the Raw Power of SQL

	 Managing Data Results with Cursors
	Inventing Cursors of Your Own

	 Modifying Data with Your Android Application
	 Inserting Data
	 Updating Data
	 Deleting Data

	 Tracking SQLite Versions and Android Versions
	 Packaging and Managing SQLite Databases for Android
	 Managing Performance and Android Storage
	 Packaging Your Own SQLite Database with Your Application
	 Preparing SQLite Databases for Packaging

	Chapter 19: Using Preferences
	 Everything Old Is New Again
	 Starting with Preferences
	 Recording Preferences
	 Working with Preference-Specific Activities and Fragments
	 Seeing the Big Picture with Preferences
	 Using Preference and Preference Header Resources
	 Filling in the Blanks with PreferenceFragment

	 Bringing the Preference Puzzle Pieces Together
	 Other Preference Considerations
	 Customizing Preferences
	 Nesting Preferences and Display Quirks

	 Using the Old-School Approach to Preferences
	 Losing Headers and Fragments
	 Adapting PreferenceActivty for Older Behavior

	Chapter 20: Android Security and Permissions
	 Requesting Permissions for Your Application
	 Dealing with Debugging Permissions

	 Installing Applications and Accepting Permissions
	 Pre-Marshmallow Behavior
	 Marshmallow and Beyond
	 Trading In Permissions

	 Creating Custom Permissions
	 Declaring Custom Permissions
	 Enforcing Custom Permissions

	 Securing Applications for Publication and Execution
	 Securing Your Application with Certificate Signing
	Sourcing or Creating a Signing Certificate
	The Keystore
	Signing Your APK

	 Signing Is (Almost) Forever, So Take Care
	 Protecting Android and Applications at Runtime

	Chapter 21: Incorporating External Libraries with Android
	 The ART of Android
	 Choosing Library Sources or JARs
	 Direct Source Inclusion
	Android Studio
	Eclipse
	Other Development Environments

	 Incorporating JARs

	 When Is Java not Java?
	 Absent JVM Features
	 Considering Java Performance for Android
	Package Size
	CPU Use
	Memory Use
	Operating System or Native Dependencies
	Unusual I/O or Interfaces
	Versioning and Cascading Dependencies
	Overcoming Java Library Issues

	 Adapting an Application to Use an External Library
	 Sourcing Apache Commons IOUtils
	 Adding the JAR to Your Project’s Libraries
	Adding JARs in Android Studio
	Adding JARs in Eclipse

	 Referencing (or Refactoring for) Your External Libraries

	 Using Languages Beyond Java
	 Scripting Layer for Android Overview
	 Choosing Your Approach to SL4A
	 Testing SL4A on Your Emulator

	Chapter 22: Leveraging Android Services
	 Services Background
	 Defining Your Own Service
	 Implementing Your Own Service Class
	 Controlling Service Lifecycle via Callbacks
	 Adding Manifest Entries for Your Service

	 Service Communication
	 Client-to-Service Communication
	Invoking Commands with startService( )
	Binding to Services with bindService( )

	 Service-to-Client Communication
	Use bindService Methods for All Communication
	Intents and Broadcast Receivers
	Use PendingIntent Objects
	Use Messenger and Message Objects
	Use Independent Messaging
	Create Callbacks and Listeners
	Use Notifications

	 Services in Action
	 Choosing the Service Design
	 Implementing the Java Logic for Our Service
	 Creating an Example Client for the Service
	 Testing the Service in Action

	Chapter 23: Communicating with Notifications
	 Configuring Notifications
	 Customizing the Notification Object
	Adding Sounds to Your Notification
	Shining a Light for Your Notification
	Vibrating to Shake Things Up

	 Adding Icons for Notifications
	Icon Sizes for Old and New Android Versions
	Floating Numbers for Added Information

	 Notifications in Action
	 Coding Notification Behavior
	 Notifications as the User Experiences Them

	 Using the Builder Approach to Notifications
	 Other Uses and Extensions to Notifications
	 Notifications and Services

	 More Advanced Notification Features
	 Timeline Notifications
	 Bundled Notifications
	 Expanding Notifications
	 More Embedded Actions in Notifications
	 Notifications Tailored for Wear

	Index

