Ronan Schwarz

Phil Dutson

James Steele e
Nelson To Second Edition

The Android
Developer’s Cookbook

Building Applications with the Android SDK

http://www.it-ebooks.info/

Praise for The Android™ Developer’s Cookbook, Second Edition

™

“The Android™ Developer’s Cookbook, Second Edition, contains the recipes for develop-
ing and marketing a successful Android application. Each recipe in the book contains
detailed explanations and examples of the right way to write your applications to
become a featured app in the Google Play Store. From understanding the basic fea-
tures of different versions of Android to designing and building a responsive U, this
cookbook gives you the recipes for success. You will learn to work with Android on
every level—from hardware interfaces (like NFC and USB), to networking interfaces
that will show you how to use mobile data efficiently, and even how to take advantage
of Google’s powerful billing interface. The authors do an incredible job of provid-
ing useful and real-life code examples for every concept in the book that can easily be
built on and adapted to any situation and makes this book an essential resource for all
Android developers.”
—David Brown, information data manager and application developer, San Juan
School District

“Easy to read and easy to understand but not lacking features. This is one of the best
books I have read on Android development. If you have the basics down, the recipes in
the book will take you to mastery.”

—Casey Doolittle, lead Java developer, Icon Health and Fitness

“The Android™ Developer’s Cookbook, Second Edition, provides a fantastic foundation
for Android development. It teaches core skills such as layouts, Android life cycle,
and responsiveness via numerous multi-threading techniques, which you need to be a
skilled Android chef.”

—XKendell Fabricius, freelance Android developer

“This book has something for everyone. I've been programming Android since 1.0
and I learned some things that are completely new to me.”
—Douglas Jones, senior software engineer, Fullpower Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

The Android”
Developer’s
Cookbook

Second Edition

http://www.it-ebooks.info/

Developer’s Library Series

~ Y ~ »
Socand Eation Secand Edition

T . Development . R
FIOSISMMInE) Android with the Force.com TeiPhone.
ObjectiveC 2.0 Wircless Appication Platform oo
e e et Development Eulfing Busiss Applstoes i the Ch e Sl cetions

Developer's Library

Developer's Library v v Developer's Library

vvAddison-Wesley

Visit developers-library.com for a complete list of available products

he Developer’s Library Series from Addison-Wesley provides
Tpracticing programmers with unique, high-quality references and
tutorials on the latest programming languages and technologies they
use in their daily work. All books in the Developer’s Library are written by
expert technology practitioners who are exceptionally skilled at organizing
and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-
source programming languages and databases, Linux programming,
Microsoft, and Java, to Web development, social networking platforms,
Mac/iPhone programming, and Android programming.

PEARSON

#Addison-Wesley Cisco Press ExaMyCRAM IBM gue 33 PRENTICE g4M6 | Safari’

Press. L34 L AV S

www.it-ebooks.info

http://www.it-ebooks.info/

The Android”
Developer’s
Cookbook

Building Applications with
the Android SDK

Second Edition

Ronan Schwarz
Phil Dutson
James Steele
Nelson To

vvAddison-Wesley

Upper Saddle River, NJ e Boston ® Indianapolis ® San Francisco
New York e Toronto ® Montreal ® London ® Munich e Paris e Madrid
Capetown e Sydney e Tokyo e Singapore e Mexico City

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the desig-
nations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quan-
tity for bulk purchases or special sales, which may include electronic ver-
sions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more informa-
tion, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data

Ronan Schwarz,

The Android developer’s cookbook : building applications with the Android
SDK / Ronan Schwarz, Phil Dutson, James Steele, Nelson To.—Second
edition.

pages cm

Includes index.

ISBN 978-0-321-89753-4 (pbk. : alk. paper)

1. Application software—Development. 2. Android (Electronic resource)
3. Operating systems (Computers) |. Schwarz, Ronan. Il. Dutson, Phil,
1981- Ill. To, Nelson, 1976- IV. Title.

QA76.76.A65S743 2013

004.1675—dc23 2013014476

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the pub-
lisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. To obtain permission to use material from
this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey
07458, or you may fax your request to (201) 236-3290.

Google and the Google logo are registered trademarks of Google Inc., used
with permission.

Android is a trademark of Google, Inc.

ISBN-13: 978-0-321-89753-4

ISBN-10: 0-321-89753-6

Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.

First printing, June 2013

www.it-ebooks.info

Editor-in-Chief
Mark Taub

Executive Editor
Laura Lewin

Development
Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Barbara Wood

Indexer
Jack Lewis

Proofreader
Denise Wolber

Technical
Reviewers
Casey Doolittle
Douglas Jones
James Steele

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor

Achorn International

http://www.it-ebooks.info/

To my beloved wife Susan and the Openlntents Community:
Thank you for your support

—Ronan

To Martin Simonnet and the Niantic Project for all the fun they have provided
—Phil

To Wei with love
—Jim

To my dear mom

—Nelson

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

10

11

12

13

14

15

16

Preface XXi

About the Authors XXV

Overview of Android 1

Application Basics: Activities and Intents
Threads, Services, Receivers, and Alerts
Advanced Threading Techniques 89
User Interface Layout 109

User Interface Events 145

Advanced User Interface Techniques
Multimedia Techniques 199
Hardware Interface 221

Networking 251

Data Storage Methods 287
Location-Based Services 315

In-App Billing 343

Push Messages 349

Android Native Development 361
Debugging 371

Using the Openlintents Sensor Simulator
Using the Compatibility Pack 401
Using a Continuous Integration System
Android OS Releases 411

Index 417

www.it-ebooks.info

21

51

177

395

409

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface XXi
About the Authors XXV

1 Overview of Android 1

The Evolution of Android 1

The Dichotomy of Android 2

Devices Running Android 2
HTC Models &
Motorola Models 5
Samsung Models 5
Tablets 5
Other Devices 6

Hardware Differences on Android Devices
Screens 7
User Input Methods 7
Sensors 8

Features of Android 10
Multiprocess and App Widgets 10
Touch, Gestures, and Multitouch 10
Hard and Soft Keyboards 10

Android Development 11
Designing Applications Well 11
Maintaining Forward Compatibility 11
Ensuring Robustness 12

Software Development Kit (SDK) 12
Installing and Upgrading 12
Software Features and API Level 14
Emulator and Android Device Debug 14
Using the Android Debug Bridge 15
Signing and Publishing 16

Google Play 16
End User License Agreement 16
Improving App Visibility 17
Differentiating an App 18
Charging for an App 18

www.it-ebooks.info

http://www.it-ebooks.info/

Xil

Contents

2 Ap

Managing Reviews and Updates 19
Alternatives to Google Play 20

plication Basics: Activities and Intents 21

Android Application Overview 21

Recipe: Creating a Project and an Activity 22

Directory Structure of Project and Autogenerated
Content 24

Android Package and Manifest File 26
Recipe: Renaming Parts of an Application 28
Recipe: Using a Library Project 29

Activity Lifecycle 31

Recipe: Using Activity Lifecycle Functions 31
Recipe: Forcing Single Task Mode 31
Recipe: Forcing Screen Orientation 34

Recipe: Saving and Restoring Activity
Information 34

Recipe: Using Fragments &5

Multiple Activities 36

Recipe: Using Buttons and TextView 37

Recipe: Launching a Second Activity from an
Event 38

Recipe: Launching an Activity for a Result Using
Speech to Text 42

Recipe: Implementing a List of Choices 44
Recipe: Using Implicit Intents for Creating an
Activity 45

Recipe: Passing Primitive Data Types between
Activities 46

3 Threads, Services, Receivers, and Alerts 51
Threads 51

Recipe: Launching a Secondary Thread 52
Recipe: Creating a Runnable Activity 55
Recipe: Setting a Thread’s Priority 56
Recipe: Canceling a Thread 57

Recipe: Sharing a Thread between Two
Applications 57

Messages between Threads: Handlers 58

Recipe: Scheduling a Runnable Task from the Main
Thread 58

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Recipe: Using a Countdown Timer 60

Recipe: Handling a Time-Consuming
Initialization 61

Alerts 63

Recipe: Using Toast to Show a Brief Message on the
Screen 63

Recipe: Using an Alert Dialog Box 64

Recipe: Showing Notification in the Status Bar 65
Services 69

Recipe: Creating a Self-Contained Service 70

Recipe: Adding a WakelLock 74

Recipe: Using a Foreground Service 7

Recipe: Using an IntentService 80
Broadcast Receivers 82

Recipe: Starting a Service When the Camera Button Is
Pressed 83

App Widgets 85
Recipe: Creating an App Widget 85
Advanced Threading Techniques 89
Loaders 89
Recipe: Using a CursorLoader 89
AsyncTasks 91
Recipe: Using an AsyncTask 92
Android Inter-Process Communication 94
Recipe: Implementing a Remote Procedure Call 94
Recipe: Using Messengers 99
Recipe: Using a ResultReceiver 105

User Interface Layout 109
Resource Directories and General Attributes 109
Recipe: Specifying Alternate Resources 111
Views and ViewGroups 112
Recipe: Building Layouts in the Eclipse Editor 113

Recipe: Controlling the Width and Height of Ul
Elements 115

Recipe: Setting Relative Layout and
Layout ID 119

Recipe: Declaring a Layout Programmatically 120

Recipe: Updating a Layout from a Separate
Thread 121

www.it-ebooks.info

Xiii

http://www.it-ebooks.info/

Xiv Contents

Text Manipulation 124
Recipe: Setting and Changing Text Attributes 124
Recipe: Providing Text Entry 127
Recipe: Creating a Form 129

Other Widgets: From Buttons to Seek Bars 130
Recipe: Using Image Buttons in a Table Layout 130

Recipe: Using Check Boxes and Toggle
Buttons 134

Recipe: Using Radio Buttons 137
Recipe: Creating a Spinner 138
Recipe: Using a Progress Bar 140
Recipe: Using a Seek Bar 141
6 User Interface Events 145

Event Handlers and Event Listeners 145
Recipe: Intercepting a Physical Key Press 145
Recipe: Building Menus 148
Recipe: Defining Menus in XML 152
Recipe: Creating an Action Bar 154
Recipe: Using ActionBarSherlock 156
Recipe: Using the SEARCH Key 159
Recipe: Reacting to Touch Events 161
Recipe: Listening for Fling Gestures 163
Recipe: Using Multitouch 165

Advanced User Interface Libraries 168
Recipe: Using Gestures 168
Recipe: Drawing 3D Images 171

7 Advanced User Interface Techniques 177

Android Custom View 177

Recipe: Customizing a Button 177
Android Animation 183

Recipe: Creating an Animation 184

Recipe: Using Property Animations 187
Accessibility 189

Recipe: Using Accessibility Features 189
Fragments 191

Recipe: Displaying Multiple Fragments at Once 191

Recipe: Using Dialog Fragments 196

www.it-ebooks.info

http://www.it-ebooks.info/

8

10

Contents

Multimedia Techniques 199
Images 199

Recipe: Loading and Displaying an Image for
Manipulation 202

Audio 206
Recipe: Choosing and Playing Back Audio Files 207
Recipe: Recording Audio Files 210
Recipe: Manipulating Raw Audio 211
Recipe: Using Sound Resources Efficiently 215
Recipe: Adding Media and Updating Paths 217
Video 217
Recipe: Using the VideoView 217
Recipe: Video Playback Using the MediaPlayer 219
Hardware Interface 221
Camera 221
Recipe: Customizing the Camera 222
Other Sensors 227
Recipe: Getting a Device’s Rotational Attitude 227

Recipe: Using the Temperature and Light
Sensors 230

Telephony 231
Recipe: Using the Telephony Manager 232
Recipe: Listening for Phone States 234
Recipe: Dialing a Phone Number 235
Bluetooth 236
Recipe: Turning on Bluetooth 237
Recipe: Discovering Bluetooth Devices 237
Recipe: Pairing with Bonded Bluetooth Devices 238
Recipe: Opening a Bluetooth Socket 238
Recipe: Using Device Vibration 241
Recipe: Accessing the Wireless Network 241
Near Field Communication (NFC) 243
Recipe: Reading NFC Tags 243
Recipe: Writing NFC Tags 245
Universal Serial Bus (USB) 248

Networking 251
Reacting to the Network State 251

www.it-ebooks.info

XV

http://www.it-ebooks.info/

XVi Contents

Recipe: Checking for Connectivity 251
Recipe: Receiving Connectivity Changes 253
Using SMS 255

Recipe: Autosending an SMS Based on a Received
SMS 257

Using Web Content 263
Recipe: Customizing a Web Browser 263
Recipe: Using an HTTP GET 264
Recipe: Using HTTP POST 267
Recipe: Using WebViews 269
Recipe: Parsing JSON 271
Recipe: Parsing XML 273

Social Networking 275
Recipe: Reading the Owner Profile 275
Recipe: Integrating with Twitter 275
Recipe: Integrating with Facebook 284

11 Data Storage Methods 287
Shared Preferences 287

Recipe: Creating and Retrieving Shared
Preferences 288

Recipe: Using the Preferences Framework 288

Recipe: Changing the Ul Based on Stored
Data 290

Recipe: Adding an End User License
Agreement 294

SQLite Database 297

Recipe: Creating a Separate Database
Package 297

Recipe: Using a Separate Database Package 300
Recipe: Creating a Personal Diary 303

Content Provider 306
Recipe: Creating a Custom Content Provider 308

File Saving and Loading 312
Recipe: Using AsyncTask for Asynchronous
Processing SIS

12 Location-Based Services 315

Location Basics Sills

Recipe: Retrieving Last Location 317

www.it-ebooks.info

http://www.it-ebooks.info/

13

14

15

Contents

Recipe: Updating Location Upon Change 318
Recipe: Listing All Enabled Providers 320

Recipe: Translating a Location to an Address (Reverse
Geocoding) 322

Recipe: Translating an Address to a Location
(Geocoding) 324

Using Google Maps 825

Recipe: Adding Google Maps to an
Application 328

Recipe: Adding Markers to a Map 329

Recipe: Adding Views to a Map 588

Recipe: Setting Up a Proximity Alert 336
Using the Little Fluffy Location Library 337

Recipe: Adding a Notification with the Little Fluffy
Location Library 338

In-App Billing 343
Google Play In-App Billing 343

Recipe: Installing Google’s In-App Billing
Service 344

Recipe: Adding In-App Billing to an Activity 345
Recipe: Listing Items for In-App Purchase 346

Push Messages 349
Google Cloud Messaging Setup 349
Recipe: Preparing for Google Cloud Messaging 349
Sending and Receiving Push Messages 85ill
Recipe: Preparing the Manifest 351
Receiving Messages E53
Recipe: Adding the BroadcastReceiver Class 858
Recipe: Adding the IntentService Class 354
Recipe: Registering a Device 356
Sending Messages 356
Recipe: Sending Text Messages 357
Recipe: Sending Messages with AsyncTask 358

Android Native Development 361
Android Native Components 361
Recipe: Using Java Native Interface 362
Recipe: Using the NativeActivity 364

www.it-ebooks.info

XVii

http://www.it-ebooks.info/

Xviii Contents

16 Debugging 371

Android Test Projects 371
Recipe: Creating a Test Project 371
Recipe: Populating Unit Tests on Android SIS
Recipe: Using Robotium S5

Eclipse Built-In Debug Tools 377
Recipe: Specifying a Run Configuration 377
Recipe: Using the DDMS 377
Recipe: Debugging through Breakpoints 380

Android SDK Debug Tools 380

Recipe: Starting and Stopping the Android Debug
Bridge 380

Recipe: Using LogCat 381
Recipe: Using the Hierarchy Viewer 384
Recipe: Using TraceView 385
Recipe: Using lint 388
Android System Debug Tools 390
Recipe: Setting Up GDB Debugging 392

A Using the Openintents Sensor Simulator 395
Setting Up the Sensor Simulator 395
Adding the Sensor Simulator to an Application 398

B Using the Compatibility Pack 401
Android Support Packages 401
Adding the Support Library to a Project 408

C Using a Continuous Integration System 409

D Android OS Releases 411

Cupcake: Android OS 1.5, API Level 3, Released
April 30, 2009 411

Donut: Android OS 1.6, API Level 4, Released
September 15, 2009 411

Eclair: Android OS 2.0, API Level 5, Released
October 26, 2009 412

Froyo: Android OS 2.2, API Level 8, Released
May 20, 2010 412

Gingerbread: Android OS 2.3, API Level 9, Released
December 6, 2010 412

www.it-ebooks.info

http://www.it-ebooks.info/

Honeycomb: Android OS 3.0, API Level 11, Released
February 22, 2011 413

Ice Cream Sandwich: Android OS 4.0, API Level 14,
Released October 19, 2011 413

Jelly Bean: Android OS 4.1, API Level 16, Released
July 9, 2012 414

Index 417

www.it-ebooks.info

Xix

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Android is the fastest growing mobile operating system (OS). With more than
800,000 applications available in the Google Play store, the Android ecosystem is
growing as well. There is enough diversity in device features and wireless carriers to
appeal to just about anyone.

Netbooks have always been a natural platform to adopt Android, but the liveliness
behind Android has fed the growth further into tablets, televisions, and even automo-
biles. Many of the world’s largest corporations—f{rom banks to fast food chains to air-
lines—have established a presence in Android and offer compatible services. Android
developers have many opportunities, and relevant apps reach more people than ever
before, increasing the satisfaction of creating a relevant app.

Why an Android Cookbook?

The Android OS is simple to learn, and Google provides many libraries to make it
easy to implement rich and complex applications. The only aspect lacking, as men-
tioned by many in the Android developer community, is clear and well-explained
documentation. The fact that Android is open source means anyone can dive in and
reverse engineer some documentation. Many developer bulletin boards have excellent
examples that were deduced using exactly this method. Still, a book that has a consis-
tent treatment across all areas of the OS is useful.

In addition, a clear working example is worth a thousand words of documentation.
Developers faced with a problem usually prefer to do a form of extreme programming;
that is, they find examples of working code that does something close to the solution
and modify or extend it to meet their needs. The examples also serve as a way to see
the coding style and help to shape other parts of the developer’s code.

This Android cookbook fills a need by providing a variety of self-contained recipes.
As each recipe is introduced, the main concepts of the Android OS are also explained.

Who Should Read This Book?

Users who are writing their own Android applications will get the most out of this
cookbook. Basic familiarity with Java and the Eclipse development environment is
assumed but not required for the majority of the book. Java is a modular language, and

www.it-ebooks.info

http://www.it-ebooks.info/

XXii

Preface

most (if not all) of the example recipes can be incorporated with minimal change into
the reader’s own Android project. The motivation and coverage of each topic in this
book make it usable as an Android course supplement.

Using the Recipes

In general, the code recipes in this cookbook are self-contained and include all the
information necessary to run a working application on an Android device. Chapters 1
and 2 give an introduction to the overall use of Android, but feel free to jump around
and start using whatever is necessary.

This book is written first as a reference, providing knowledge mostly by example
with the greatest benefits through implementation of the recipes of interest. The main
technique introduced in each recipe is specified in the section heading. However,
additional techniques are included in each recipe as needed to support the main recipe.

After reading this book, a developer should

= Be able to write an Android Application from scratch
= Be able to write code that works across multiple versions of Android

= Be able to use the various Application Programming Interfaces (APIs) provided in

Android
= Have a large reference of code snippets to quickly assimilate into applications

= Appreciate the various ways to do the same task in Android and the benefits of
each

= Understand the unique aspects of Android programming techniques

Book Structure

s Chapter 1, “Overview of Android,” provides an introduction to all aspects of
Android outside of the code itself. It is the only chapter that doesn’t include reci-
pes, but it provides useful background material.

= Chapter 2, “Application Basics: Activities and Intents,” provides an overview of
the four Android components and an explanation of how an Android project is
organized. It also focuses on the activity as a main application building block.

= Chapter 3, “Threads, Services, Receivers, and Alerts,” introduces background
tasks such as threads, services, and receivers, as well as notification methods for
these background tasks using alerts.

= Chapter 4, “Advanced Threading Techniques,” covers using AsyncTasks and
using loaders.

s Chapter 5, “User Interface Layout,” covers the user interface screen layout and
views.

www.it-ebooks.info

http://www.it-ebooks.info/

Additional References

Chapter 6, “User Interface Events,” covers user-initiated events such as touch
events and gestures.

Chapter 7, “Advanced User Interface Techniques,” covers creating a custom view,
using animation, offering accessibility options, and working with larger screens.
Chapter 8, “Multimedia Techniques,” covers multimedia manipulation and
record and playback of audio and video.

Chapter 9, “Hardware Interface,” introduces the hardware APIs available on
Android devices and how to use them.

Chapter 10, “Networking,” discusses interaction outside of the Android device
with SMS, web browsing, and social networking.

Chapter 11, “Data Storage Methods,” covers various data storage techniques
available in Android, including SQLite.

Chapter 12, “Location-Based Services,” focuses on accessing the location through
various methods such as GPS and using services such as the Google Maps API.
Chapter 13, “In-App Billing,” provides an instruction set on including in-app
billing in your application using Google Play services.

Chapter 14, “Push Messages,” covers how to use GCM for handling push mes-
sages with an application.

Chapter 15, “Native Android Development,” discusses the components and struc-
ture used for native development.

Chapter 16, “Debugging,” provides the testing and debugging framework useful
throughout the development cycle.

Additional References

There are many online references for Android. A few essential ones are

Android Source Code: http://source.android.com/

Android Developer Pages: http://developer.android.com/
Open Source Directory: http://osdir.com/

Stack Overflow Discussion Threads: http://stackoverflow.com/

Talk Android Developer Forums: www.talkandroid.com/android-forums/

www.it-ebooks.info

XXiii

http://www.talkandroid.com/android-forums/
http://source.android.com/
http://developer.android.com/
http://osdir.com/
http://stackoverflow.com/
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Ronan “Zero” Schwarz is cofounder of Openlntents, a Europe-based open source
company specializing in Android development. Ronan has more than fifteen years

of programing experience in a wide variety of fields such as augmented reality, web,
robotics, and business systems, as well as different programing languages, including C,
Java, and Assembler. He has been working on the Android Platform since 2007 and,
among other things, has helped create SplashPlay and Droidspray, both top finalists of
the Google Android Developer Challenge I and I1.

Phil Dutson is the lead UX and mobile developer for ICON Health and Fitness. He
has worked on projects and solutions for NordicTrack, ProForm, Freemotion, Sears,
Costco, Sam’s Club, and others. Through the years he has been using, tweaking,

and writing programs for mobile devices from his first Palm Pilot 5000 to his current
collection of iOS and Android devices. Phil has also authored jQuery, JQuery UI,

and jQuery Mobile; Sams Teach Yourself jQuery Mobile in 24 Hours; and Creating QR and
Tag Codes.

James Steele was doing postdoctoral work in physics at MIT when he decided to
join a start-up in Silicon Valley. Fifteen years later he continues to innovate, bringing
research projects to production in both the consumer and mobile markets. He actively
presents at and participates in various Silicon Valley new technology groups. Jim is VP
of Engineering at Sensor Platforms.

Nelson To has more than ten applications of his own in the Android Market. He has
also worked on enterprise Android applications for Think Computer, Inc. (PayPhone),
AOL (AIM), Stanford University (Education App), and Logitech (Google TV). He
also assists in organizing the Silicon Valley Android Meetup Community and teaches
Android classes in both the Bay Area and China.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

1

Overview of Android

The Android operating system (OS) has come a long way since the announcement of
the Open Handset Alliance in late 2007. The idea of an open source OS for embedded
systems was not new, but Google’s aggressive backing of it has definitely helped push
Android to the forefront in just a few years.

Many wireless carriers in multiple countries across various communication pro-
tocols have one or more Android phones available. Other embedded devices, such as
tablets, netbooks, televisions, set-top boxes, and even automobiles, have also adopted
the Android OS.

This chapter discusses various general aspects of Android that are useful for devel-
opers. It provides a foundation for the creation of Android applications and a context
for the recipes in the rest of this book.

The Evolution of Android

Google, seeing a large growth of Internet use and search with mobile devices, acquired
Android, Inc., in 2005 to focus its development on a mobile device platform. Apple
introduced the iPhone in 2007 with some groundbreaking ideas, including multitouch
and an open market for applications. Android was quickly adapted to include these fea-
tures and to offer definite distinctions, such as more control for developers and multi-
tasking. In addition, Android incorporated enterprise requirements, such as exchange
support, remote wipe, and virtual private network (VPN) support, to go after the
enterprise market that Research In Motion had developed and held so well with its
BlackBerry models.

Device diversity and quick adaptation have helped Android grow its user base, but
such growth comes with potential challenges for developers. Applications need to sup-
port multiple screen sizes, resolution ratios, keyboards, hardware sensors, OS versions,
wireless data rates, and system configurations. Each can lead to different and unpre-
dictable behavior, but testing applications across all environments is an impossible task.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Overview of Android

Android has therefore been constructed to ensure as uniform an experience across
platforms as possible. By abstracting the hardware differences, Android OS tries to
insulate applications from device-specific modifications while providing the flexibility
to tune aspects as needed. Future-proofing applications to the introduction of new
hardware platforms and OS updates is also a consideration. This mostly works as long
as the developer is well aware of this systematic approach. The generic Application
Programming Interfaces (APIs) that Android offers and how to ensure device and OS
compatibility are main threads discussed throughout this book.

Still, as with any embedded platform, extensive testing of applications is required.
Google provides assistance to third-party developers in many forms as Android Devel-
opment Tools (ADT) plugins for Eclipse (also as stand-alone tools), including real-time
logging capabilities, a realistic emulator that runs native ARM code, and in-field error
reports from users to developers of Google Play applications.

The Dichotomy of Android

Android has some interesting dichotomies. Knowing about them up front is useful for
understanding not only what Android is, but what it is not.

Android is an embedded OS that relies on the Linux kernel for core system services,
but it is not embedded Linux. For example, standard Linux utilities such as X Windows
and GNU C libraries are not supported. Android applications are written using the
Java framework, but Android is not Java. Standard Java libraries such as Swing are not
supported. Other libraries such as Timer are not preferred; they have been replaced
by Android’s own libraries, which are optimized for usage in a resource-constrained,
embedded environment.

The Android OS is open source, which means developers can view and use any of
the system source code, including the radio stack. This source code is one of the first
resources for seeing examples of Android code in action, and it helps clarify the usage
when documentation is lacking. This also means developers can use the system in the
same way as any core application and can swap out system components for their own
components. However, Android devices do contain some proprietary software that is
inaccessible to developers (such as Global Positioning System (GPS) navigation).

Devices Running Android

Worldwide there are hundreds of Android devices on the market from many manu-
facturers, including phones, tablets, televisions, car stereos, exercise equipment, and

accessories. Software can access information on the target device using the android.
os.Build class, for example:

if(android.os.Build.MODEL.equals ("Nexus+One")) { ... }

All Android-supported hardware shares some common features due to the nature of
the operating system. The Android OS is organized into the following images:

www.it-ebooks.info

http://www.it-ebooks.info/

Devices Running Android

= Bootloader—Initiates loading of the boot image during start-up

= Boot image—Kernel and RAMDisk

= System image—Android operating system platform and apps

= Data image—User data saved across power cycles

= Recovery image—TFiles used for rebuilding or updating the system

= Radio image—Files of the radio stack

These images are stored in nonvolatile flash memory, so they are protected when the
device powers down. The flash memory is used like read-only memory (hence, some
call it ROM), but it can be rewritten as necessary (for example, with over-the-air
Android operating system updates).

On start-up, the microprocessor executes the bootloader to load the kernel and
RAMDisk to RAM for quick access. The microprocessor then executes instructions
and pages portions of the system and data images into RAM as needed. The radio
image resides on the baseband processor, which connects to the radio hardware.

A comparison of some of the early and more recent smartphone models is shown in
Table 1.1. It shows that the processing hardware architecture is similar across devices: a
microprocessor unit (MPU), synchronous dynamic random access memory (SDRAM
or RAM for short), and flash memory (called ROM for short). The screen size is given
in pixels, but the dots per inch (dpi) vary depending on the physical screen size. For
example, the HTC Magic has a 3.2-inch diagonal screen with 320x480 pixels. This
equates to 180 pixels per inch but is classified as a medium-pixel-density device by
Android (which averages 160 dpi). All smartphones also offer a CMOS image sensor
camera, Bluetooth (BT), and Wi-Fi (802.11), although there are variations.

Other than improved capacity and performance on newer models, another main
differentiator is additional features. Some devices offer 4G; some have FM or addi-
tional cellular radios, video output (through HDMI or micro-USB), and a front-facing
camera. Knowing the differentiators helps a developer create great applications. In
addition to the built-in hardware, many Android devices come with a Micro Secure
Digital (microSD) card slot. A microSD card provides additional storage space for
multimedia and extra application data. However, until Android 2.2, the apps them-
selves could be stored only on the internal ROM.

HTC Models

HTC is a Taiwanese company founded in 1997. The first commercially available hard-
ware running Android was the HTC Dream (also known as the G1 where G stands for
Google). It was released in October 2008. Since then, HTC has put out over 20 phones
running Android, including Google’s Nexus One, the EVO 3D, and the One X+.

The Nexus One was one of the first Android devices to use a 1GHz microproces-
sor, the Snapdragon platform from Qualcomm. Snapdragon includes Qualcomm’s own
core as opposed to an ARM core, and it contains circuitry to decode high-definition
video at 720p. Most smartphones that have followed also use a 1GHz microprocessor.

www.it-ebooks.info

http://www.it-ebooks.info/

Table 1.1 Representative Android Smartphones”

Model

MPU RAM/ROM

Screen

Other Features

Galaxy Nexus
(November 2011)

Droid RAZR MAXX
(May 2012)

Google
Nexus 4
(November 2012)

Galaxy Note 2
(November 2012)

HTC One
(March 2013)

1.2GHz dual-core 1024MB/16GB

Samsung or 32GB
1.2GHz dual- 1024MB/16GB
core ARM

Corex-A9 SoC

1.5GHz Quad- 2GB/8GB or 16GB
core Qualcomm
Snapdragon

1.6GHz 2GB/32GB
Samsung Exynos 4
Quad 4412

1.7GHz Qualcomm 2GB/32 or 64GB
Snapdragon 600
APQ8064T

HD Super AMOLED
720x1280 xhdpi

Super
AMOLED 540x960
QHD hdpi

TrueHD-IPS Plus
LCD 786x1280
xhdpi

Super AMOLED
720%x1280

Super LCD 3
1080x1920

GSM/UMTS/HSPA+/HSUPA/CDMA/1xEV-DO/
LTE BT3.0 with A2DP, MHL through Micro-USB 2.0,
802.11b/g/n, 5MP camera 1.3MP front-facing
camera, geotagging, Wi-Fi hotspot, AGPS, NFC

GSM/CDMA/HSDPA/1xEV-DO/LTE BT4.0

with A2DP and EDR + LE, 802.11b/g/n, HDMI, Wi-Fi
hotspot, 8MP camera 1.3MP front-facing camera,
geotagging, DLNA, AGPS, HD 1080p video recording

GSM/UMTS/HSDPA,HSUPA,HSPA+ BT4.0 with A2DP
and LE, 802.11b/g/n, Wi-Fi hotspot, Wi-Fi Direct,
DLNA, HDMI, AGPS, SGPS, GLONASS,

8MP camera, 1.3 front-facing camera, geotagging,
HD 1080p video recording

GSM/UMTS/HSDPA, HSUPA, HSPA+ BT4.0,
802.11a/b/g/n, GPS, AGPS, Geotagging, SMP
camera, 1.9MP front-facing camera, 1080p video
recording, NFC

GSM/UMTS/HSDPA, HSUPA, HSPA+ BT4.0,
802.11a/b/g/n, GPS, AGPS, QuickGPS, Geotagging,
4.3MP camera, 2.1MP front-facing camera,

1080p video recording, NFC

“Data from http://en.wikipedia.org/wiki/Comparison_of_Android_devices and http://pdadb.net/

www.it-ebooks.info

14

pI0JPUY JO MBIAIBAQ T Jerdey)

http://en.wikipedia.org/wiki/Comparison_of_Android_devices
http://pdadb.net/
http://www.it-ebooks.info/

Devices Running Android

Other distinctions of the Nexus One are the use of two microphones to cancel back-
ground noise during phone conversations and a backlit trackball that lights up in dif-
terent colors based on the notification.

The HTC EVO 4G released in June 2010 produced quite a sensation as the first
commercially available phone that supports WiMAX (802.16e-2005). HTC also
released the EVO 3D in August 2011. It is similar to the EVO 4G but has the distinc-
tion of packing a 3D display that does not require the use of 3D glasses to view, as
well as two rear-facing cameras that can record 720p HD videos in 3D.

Motorola Models

Motorola has put out close to ten additional phone brands running Android. The
Motorola Droid X has capabilities similar to the HTC Droid Incredible, including HD
video capture. In 2011 Google acquired Motorola Mobility in the hope of strengthening
Android in the marketplace, giving a boost in innovation, and to protect the Android
ecosystem through the use of Motorola Mobility’s patent portfolio.

The Droid RAZR MAXX and RAZR MAXX HD are two phones developed
by Motorola that have an exceptionally long battery life while keeping a fairly slim
form factor.

Samsung Models

Samsung has been a strong force in the mobile market and is currently the number-
one Android device manufacturer, accounting for 42 percent of all Android devices
shipped during the fourth quarter of 2012. The most popular Samsung phones avail-
able are the Galaxy Note 2 and the Galaxy S3. Both of these devices feature Bluetooth
4.0, near field communication (NFC), and Samsung specifics such as S Beam and
AllShare support.

The Samsung Galaxy Nexus was the first Android 4.2 phone and one of the first
phones to be released with NFC built in. Samsung was the first to introduce smartphones
that attempt to bridge the gap between phones and tablets. Some refer to these phones
as “phablets,” as both the Galaxy Note and Galaxy Note 2 feature a screen that is
larger than 5 inches.

Tablets

With Apple’s introduction of the iPad, Android manufacturers were expected to intro-
duce tablet computers of their own. A tablet computer is loosely defined as having a
screen of 4.8 inches or larger and Wi-Fi connectivity. Because many have 3G wireless
service, they tend to be more like smartphones with large screens.

Archos was one of the first to market an Android tablet in late 2009. The first
model had a diagonal screen size of 4.8 inches and was called the Archos 5. Archos has
since introduced new models with screens ranging in size from 7 to 10 inches. Some

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Overview of Android

models come with an actual hard drive, while others use flash drives for memory.
Samsung offers several Galaxy Tab models with a variety of screen sizes from 7 to
10.1 inches.

Amazon offers the Kindle Fire line of tablets in four varieties. The tablets range in
size from 7 inches to 8.9 inches and have either single- or dual-core processors. Each
of these runs on a modified Android system that is connected to the Amazon Appstore
as well as Amazon MP3 and Amazon Video.

Google has also partnered with Asus to release the Nexus 7, a 7-inch tablet with
Android 4.2.1. Shortly thereafter, Google partnered with Samsung to build the Nexus 10.
The Nexus 10 is the first Android tablet to contain a resolution of 2560x1600, which
matches the display of the “retina” MacBook Pro computers and newer full-size iPad
devices. A comparison of some tablet computer models is shown in Table 1.2.

Other Devices

Given that Android is a generic embedded platform, it is expected to be used in many
other applications beyond smartphones and tablets. The first Android-based automobile
is the Roewe 350, which Shanghai Automotive Industry Corporation manufactures.
Android is mainly used for GPS navigation but can also support web browsing.

Saab has also created an information and entertainment system named IQon that
runs on the Android platform, giving drivers real-time feedback about engine work-
load, speed, torque, and similar mechanical data. It displays this information through
a built-in 8-inch console that features a touchscreen with a 3G or 4G data connec-
tion. While some of this information could be obtained by installing an aftermarket
part into the engine control unit (ECU) of the car, the idea of having Android baked
directly into the ECU is an interesting and exciting idea.

Android has also migrated into some new and exciting platforms such as watches
and the OUYA console. The Pebble watch was a Kickstarter project to build a watch
that could communicate with Android and iOS devices. It allows for access from an
Android device through use of its software development kit (SDK) and communicates
by using Bluetooth to show caller ID, current time, incoming text messages, email
reminders, and so on. The OUYA console is a terrific example of pushing the Android
system to the extreme. It is a console (similar to a PlayStation or Xbox) that is devoted
to Android gaming. While the project is new and at the time of this writing not avail-
able to the general public, OUYA has promised to release low-cost, cutting-edge
hardware on a yearly basis.

Hardware Differences on Android Devices

The hardware available on each Android device varies, as seen in Table 1.1. In general,
most of the differences are transparent to the developer and not covered further here.
However, a few hardware differences are important to understand to assist in writing
device-independent code. Screens, user input methods, and sensors are discussed here.

www.it-ebooks.info

http://www.it-ebooks.info/

Hardware Differences on Android Devices

Table 1.2 Representative Android Tablets

Model MPU RAM/ROM Screen Other Features
Archos 80 G9 1000MHz TI 512MB/16GB TFT LCD BT2.1 + EDR, 802.11b/g/n,
(September 2011) OMAP 4430 8 inches, 0.9MP camera
1024x768
Archos Genl10 1500MHz TI 1GB/16GB TFT LCD 802.11b/g/n, Bluetooth 4.0,
101 XS OMAP 4470 10.1 inches, attachable QWERTY-type
(September 2012) 1280x800 keyboard, 1.3MP camera, GPS
Samsung Galaxy 1400MHz 2GB/32GB TFT LCD BT4.0, 802.11a/b/g/n, GPS,
Note 10.1 Samsung 10.1 inches, geotagging, 5SMP camera,
(February 2012) Exynos 1280x800 1.9MP front-facing camera
Nexus 7 32GB 1300MHz 1GB/32GB IPS TFT LCD GSM/UMTS/GPRS/EDGE/
(November 2012) Quad-core 7 inches, UMTS/HSDPA/HSUPDA/
Cortex-A9 1280x800 HSPA+, BT3, 802.11a/b/
T30L g/n, 1.2MP camera, GPS,
geotagging
Nexus 10 32GB 1700MHz 2GB/32GB PLS LCD BT4, 802.11b/g/n, 5MP
(November 2012) Exynos 5 10 inches, camera, 1.9MP front-facing
Dual 5250 2560x1600 camera, GPS, geotagging
Screens

Two technologies used for displays are liquid crystal displays (LCDs) and light-emitting
diodes (LEDs). The two specific choices in Android phones are thin-film transistor
(TFT) LCDs and active-matrix organic LED (AMOLED) displays. A benefit of TFT
displays is a longer lifetime. A benefit of AMOLED displays is no need for backlight-
ing and therefore deeper blacks and lower power usage.

Overall, Android devices are categorized into small, normal, large, and extra-large
screens and low, medium, high, and extra-high pixel density. Note that the actual
pixel density may vary but will always be defaulted to low, medium, high, or extra-
high. Table 1.3 shows the typical screen size, resolution, and name associated with dif-
ferent screen sizes.

User Input Methods

Touchscreens enable users to interact with the visual display. There are three types of
touchscreen technology:
= Resistive—Two layers of resistive material sit on top of a glass screen. When a
finger, stylus, or any object applies pressure, the two layers touch and the location
of the touch can be determined. Resistive touchscreens are cost-effective, but

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 Overview of Android

Table 1.3 Device Screens Supported by Android

Screen Type Low-Density Medium-Density High-Density Extra-High-Density
(~120ppi), Idpi (~160ppi), mdpi (~240ppi), hdpi (~3200dpi), xhdpi
Small screen QVGA (240x320) 480x640 hdpi
(426x320dp) Idpi
Normal screen WQVGA400 HVGA (320x480) WVGA800 640x960 xhdpi
(470x320dp) (240x400) Idpi, mdpi (480x800) hdpi,
WQVGA432 WVGA (480x854)
(240x432) Idpi hdpi
Large screen 600x1024 mdpi
(640x480dp)
Xlarge screen 1024x600 Idpi WXGA (1280x800) 1536x1152 hdpi, 2048x1536 xhdpi,
(960x720dp) mdpi, 1024x768 1920x1152 hdpi, 2560x1536 xhdpi,
mdpi, 1280x768 1920x1200 hdpi 2560x1600 xhdpi
mdpi

only 75 percent of the light shows through, and until recently multitouch was
not possible.

= Capacitive—A layer of charged material is overlaid on a glass screen. When a
finger or any conductive object touches the layer, some charge is drawn off,
changing the capacitance, which is measured to determine the location of the
touch. Capacitive touchscreens allow as much as 90 percent of the light through,
although accuracy can be less than that of resistive touchscreens.

= Surface acoustic wave—This uses a more advanced method that sends and
receives ultrasonic waves. When a finger or any object touches the screen, the
waves are absorbed and are measured to determine the location of the touch. It is
the most durable solution, but more suitable for large-scale screens such as those
on automatic bank tellers.

All Android devices use either resistive or capacitive touchscreen technology, and
all support multitouch. In addition, each Android device may provide an alternative
method to access the screen through one of the following methods:

= D-pad (directional pad)—An up-down-right-left type of joystick
= Trackball—A rolling ball acting as a pointing device that is similar to a mouse

= Trackpad—A special rectangular surface acting as a pointing device

Sensors

Smartphones are becoming sensor hubs in a way, opening a rich experience for users.
Other than the microphone that every phone has, the first additional sensor introduced

www.it-ebooks.info

http://www.it-ebooks.info/

Hardware Differences on Android Devices

on phones was the camera. Different phone cameras have varying capabilities, and this
is an important factor for people when selecting a device. The same type of diversity is
now seen with the additional sensors.

Most smartphones have at least three additional basic sensors: a three-axis accel-
erometer to measure gravity, a three-axis magnetometer to measure the ambient
magnetic field, and a temperature sensor to measure the ambient temperature. For
example, the HTC Dream (G1) contains the following sensors (which can be displayed
using getSensorList () as described further in Chapter 9, “Hardware Interface”):

= AK8976A three-axis accelerometer

= AK8976A three-axis magnetic field sensor

= AKB8976A orientation sensor

= AKS8976A temperature sensor

The AK8976A is a single package from Asahi Kasei Microsystems (AKM) that
combines a piezoresistive accelerometer, Hall-effect magnetometer, and temperature
sensor. All provide 8-bit precision data. The orientation sensor is a virtual sensor that
uses the accelerometer and magnetometer to determine the orientation.

For comparison, the Motorola Droid contains the following sensors:

= LIS331DLH three-axis accelerometer

= AKB8973 three-axis magnetic field sensor
= AKS8973 temperature sensor

= SFH7743 proximity sensor

= Orientation sensor type

= LM3530 light sensor

The LIS331DLH is a 12-bit capacitive accelerometer from ST Microelectronics.

It provides much more accurate data and can sample up to 1kHz. The AK8973 is an
AKM package with an 8-bit Hall-effect magnetometer and temperature sensor.

In addition, the Droid contains two more sensors. The SFH7743 is an Opto Semi-
conductor’s short-range proximity detector that turns the screen off when an object
(such as the ear) is within about 40mm distance. The LM3530 is an LED driver with
a programmable light sensor from National Semiconductor that detects ambient light
and adjusts the screen backlight and LED flash appropriately.

One other example of sensors available on an Android device is the HTC EVO 4G,
which has the following sensors:

= BMA150 three-axis accelerometer

= AK8973 three-axis magnetic field sensor
= AKB8973 orientation sensor

= CM3602 proximity sensor

= CM3602 light sensor

www.it-ebooks.info

http://www.it-ebooks.info/

10

Chapter 1 Overview of Android

The BMA150 is a Bosch Sensortec 10-bit accelerometer which can sample up to
1.5kHz. The CM3602 is a Capella Microsystems, Inc., short-distance proximity sensor
and ambient light sensor combined into one.

Overall, it is important to understand that each Android model has different under-
lying hardware. These differences can lead to varying performance and accuracy of
the sensors.

Features of Android

The detailed features of Android and how to take advantage of them provide a main
theme throughout this book. On a broader level, some key features of Android are
major selling points and differentiators. It is good to be aware of these strong points of
Android and use them as much as possible.

Multiprocess and App Widgets

The Android OS does not restrict the processor to a single application at a time. The
system manages priorities of applications and of threads within a single application.
This has the benefit that background tasks can be run while a user engages the device
in a foreground process. For example, while a user plays a game, a background process
can check stock prices and trigger an alert as necessary.

App Widgets are mini applications that can be embedded in other applications (such
as the home screen). They can process events, such as start a music stream or update
the outside temperature, while other applications are running.

Multiprocessing has the benefit of a rich user experience. However, care must be
taken to avoid power-hungry applications that drain the battery. Multiprocess features
are discussed further in Chapter 3, “Threads, Services, Receivers, and Alerts.”

Touch, Gestures, and Multitouch

The touchscreen is an intuitive user interface for a hand-held device. If used well,
it can transcend the need for detailed instructions. After a finger touches the screen,
drags and flings are natural ways to interact with graphics. Multitouch provides a way
to track more than one finger touch at the same time. This is often used to zoom or
rotate a view.

Some touch events are available transparently to the developer without the need
to implement their detailed behaviors. Custom gestures can be defined as needed. It
is important to try to maintain a consistent usage of touch events across applications.
Touch events are discussed further in Chapter 6, “User Interface Events.”

Hard and Soft Keyboards

One feature on a hand-held device that polarizes users is whether it should have a
physical (also called hard) keyboard or a software (also called soft) keyboard. The tac-
tile feedback and definite placement of keys provided by a hard keyboard tend to make

www.it-ebooks.info

http://www.it-ebooks.info/

Android Development

typing much faster for some, whereas others prefer the sleek design and convenience
offered by a software-only input device.

With the large variety of Android devices available, either type can be found. A
side effect for developers is the need to support both. One downside of a soft keyboard
is that a portion of the screen needs to be dedicated to the input. This needs to be
considered and tested for any user interface (UI) layout.

Android Development

This book is focused on writing Android code, the main aspect of Android develop-
ment. However, dedicating a few words to the other aspects of development, including
design and distribution, is appropriate.

Designing Applications Well

Three elements are needed for an excellent application: a good idea, good coding, and
good design. Often, the last element is paid the least attention because most develop-
ers work alone and are not graphic designers. Google must realize this because it has
created a set of design guidelines: icon design, App Widget design, activity and task
design, and menu design. These can be found at http://developer.android.com/guide
/practices/ui_guidelines/. Google has also taken things a step further by creating a
site specifically to demonstrate design principles and how they can be implemented

in Android applications. This can be found at http://developer.android.com/design
/index.html.

Good design cannot be stressed enough. It sets an application apart, increases user
adoption, and builds user appreciation. Some of the most successful apps on the market
are a result of the collaboration between a developer and a graphic designer. A signifi-
cant portion of an app’s development time should be dedicated to considering the best
design for it.

Maintaining Forward Compatibility

New Android versions are generally additive and forward compatible at the API level.
In fact, a device can be called an Android device only if it passes compatibility tests
with the Android APIs. However, if an application makes changes to the underlying
system, compatibility is not guaranteed. To ensure forward compatibility of an applica-
tion when future Android updates are installed on devices, follow these rules suggested
by Google:

= Do not use internal or unsupported APIs.

= Do not directly manipulate settings without asking the user. A future release
might constrain settings for security reasons. For instance, it used to be possible
for an app to turn on GPS or data roaming by itself, but this is no longer allowed.

= Do not go overboard with layouts. This is rare, but complicated layouts (more
than ten deep or 30 total layouts) can cause crashes.

www.it-ebooks.info

11

http://developer.android.com/guide/practices/ui_guidelines/
http://developer.android.com/guide/practices/ui_guidelines/
http://developer.android.com/design/index.html
http://developer.android.com/design/index.html
http://www.it-ebooks.info/

12

Chapter 1 Overview of Android

= Do not make bad hardware assumptions. Not all Android devices have all
possible supported hardware. Be sure to check for the hardware needed, and if it
does not exist, handle the exception.

= Ensure that device orientations do not disrupt the application or result in
unpredictable behavior. Screen orientation can be locked, as described in Chap-
ter 2, “Application Basics: Activities and Intents.”

Note that backward compatibility is not guaranteed with Android. It is best to declare
the minimum SDXK version as described in Chapter 2, so the device can load the proper
compatibility settings. Using other new features on older targets is also discussed in
various places throughout the book.

Ensuring Robustness

In the same vein as compatibility support, applications should be designed and tested
for robustness. Following are a few tips to help ensure robustness:

= Use the Android libraries before Java libraries. Android libraries are constructed
specifically for embedded devices and cover many of the requirements of an
application. For cases such as working with third-party plugins and application
frameworks, Java libraries are included. However, in cases where either can be
used, the Android library is better.

= Take care of memory allocation. Initialize variables. Try to reuse objects
rather than reallocate. This speeds up application execution and avoids exces-
sive use of garbage collection. Memory allocations can be tracked using the
Dalvik Debug Monitor Server (DDMS) tool as discussed in Chapter 16,
“Debugging.”

= Use the LogCat tool for debugging and check for warnings or errors as also
discussed in Chapter 16.

= Test thoroughly, including different environments and devices if possible.

Software Development Kit (SDK)

The Android SDK is composed of the platform, tools, sample code, and documen-
tation needed to develop Android applications. It is built as an add-on to the Java
Development Kit and has an integrated plugin for the Eclipse Integrated Development
Environment (IDE).

Installing and Upgrading

Many places on the Internet have detailed step-by-step instructions for how to install
the Android SDK. For example, all the necessary links can be found on the Google
website http://developer.android.com/sdk/. Currently Google has bundled together all

www.it-ebooks.info

http://developer.android.com/sdk/
http://www.it-ebooks.info/

Software Development Kit (SDK)

the necessary pieces of the SDK into one convenient download as the ADT Bundle.
This bundle contains Eclipse with the ADT plugin installed, the Android SDK Tools,
Android Platform tools, the latest Android Platform, and the latest Android system
image for the emulator. It is available for Windows, Mac, and Linux systems.

As this bundle is a zip and preconfigured, all that really needs to be done is to
unzip the bundle and start the Eclipse program. When launched, the application
will ask where the workspace should be set up. Once that is determined, a screen
appears to help with setting up a new project or learning more about developing
with Android.

For developers who do not wish to download the entire bundle and would rather
install just the pieces they need, the general procedure outlined here emphasizes the
most common installation steps. These steps should be performed on a host computer
used as the development environment.

1. Install the Java Development Kit (for example, install JDK 6.0 for use with
Android 2.1 or above; JDK 5.0 is the minimum version needed for any earlier
version of Android).

2. Install Eclipse Classic (for example, version 4.2.1). In the case of Windows, this
just needs to be unzipped in place and is ready to use.

3. Install the Android SDK starter package (for example, version r21). In the case
of Windows, this just needs to be unzipped in place and is ready to use.

4. Start Eclipse and select Help — Install New Software. . . , and then type
https://dl-ssl.google.com/android/eclipse/ and install the Android DDMS
and Android Development Tools.

5. In Eclipse, select Window — Preferences. . . (on a Mag, select Eclipse —
Preferences) and select Android. Browse to the location where the SDK was
unzipped and apply.

6. In Eclipse, select Window — Android SDK and AVD Manager —
Available Packages, and then choose the necessary APIs to install (for example,
Documentation for Android SDK, SDK Platform, Google APIs, API 17).

7. From the same Android SDK and AVD Manager menu, create an Android
virtual device to run the emulator, or install USB drivers to run applications on
a plugged-in phone.

8. In Eclipse, select Run — Run Configurations. . . and create a new run
configuration to be used with each Android application (or similar for a debug
configuration). Android JUnit tests can be configured here, too.

Now the environment should be configured to easily develop any Android application
and run on the emulator or an actual Android device. Upgrading to a new version of
the SDK is simply a matter of selecting Help — Software Updates. . . in Eclipse and
choosing the appropriate version.

www.it-ebooks.info

13

https://dl-ssl.google.com/android/eclipse/
http://www.it-ebooks.info/

14

Chapter 1 Overview of Android

Software Features and API Level

The Android OS periodically rolls out new features, enhancements such as improved
efficiency, and bug fixes. A main driver in OS improvement is the increased capability
of hardware on new devices. In fact, major releases of the OS are generally coordi-
nated with new hardware rollouts (such as Eclair’s release with Droid).

Some legacy Android devices cannot support the new version requirements and are
not updated with new OS releases. This leads to a user base with a variety of possible
experiences. The developer is left with the task of checking for device capability or at
least warning of required features. This can be done through a check of a single num-
ber: the API level. For a list of Android versions and the changes made in each version,
see Appendix D.

Android currently follows a release schedule of six to nine months. Although pos-
sible, the over-the-air updates are logistically tricky and carriers prefer to avoid them.
Hardware manufacturers also appreciate some stability, which does not mean the first
devices in stores need an immediate update. However, when a release is made, the
additional features are worthwhile for developers to use.

Emulator and Android Device Debug

The emulator launches a window on the development computer that looks like an
Android phone and runs actual ARM instructions. Note that the initial start-up is
slow, even on high-end computers. Although there are ways to configure the emulator
to try to emulate many aspects of a real Android device such as incoming phone calls,
limited data rate, and screen orientation change, some features (such as sensors and
audio/video) are not the same. A recent addition to the emulator is the ability to use
the host GPU. This has helped to speed up the visual effects and transitions displayed
on the emulator. The emulator should be considered a useful way to validate basic
functionality for devices not available to the user. For example, the tablet screen size
can be tried without purchasing a tablet.

Note that a target virtual device must be created before the emulator can properly
run. Eclipse provides a nice method to manage Android Virtual Devices (AVDs). A
handy list of keyboard shortcuts for emulator functions is shown in Table 1.4.

In general, the first testing is best done with an Android phone. This ensures full
functionality and identification of real-time issues that cannot be fully re-created with
the emulator. To use an Android device as a developer platform, just hook it up to the
USB using the USB cable that came with the phone and ensure that the USB driver
is detected (this is automatic with a Mac; the drivers are included with the SDK for
Windows; and see Google’s web page for Linux).

Some settings on the Android device need to be changed to enable developer usage.
From the home screen, select MENU — Settings — Applications — Unknown
sources and MENU — Settings — Applications — Development — USB
debugging to enable installation of applications through the USB cable. More details
about Android debugging are provided in Chapter 16, “Debugging.”

www.it-ebooks.info

http://www.it-ebooks.info/

Table 1.4 Android OS Emulator Controls

Software Development Kit (SDK)

Key Emulated Function
Escape Back key

Home Home key

F2, PageUp Menu key

Shift-F2, PageDown Start key

F3 Call/Dial key

F4 Hangup/EndCall key
F5 Search key

F7 Power key

Ctrl-F3, Ctrl-KEYPAD_5 Camera key

Ctrl-F5, KEYPAD_PLUS
Ctrl-F6, KEYPAD_MINUS
KEYPAD_5

KEYPAD_4, KEYPAD_6
KEYPAD_8, KEYPAD_2
F8

Fo

AI-ENTER

Ctrl-T

Ctrl-F11, KEYPAD_7
Ctrl-F12, KEYPAD_9

Volume up key
Volume down key
DPAD center

DPAD left, DPAD right
DPAD up, DPAD down

Toggle cell network on/off

Toggle code profiling (when -trace set)

Toggle full-screen mode

Toggle trackball mode

Rotate screen orientation to previous layout

Rotate screen orientation to next layout

Using the Android Debug Bridge

It is often convenient to use the command line to access the Android device. This is

possible when it is connected to a computer using the USB cable. The Android Debug
Bridge (ADB), which comes with the SDK, can be used to access the Android device.
For example, to log in to the Android device as if it were a Linux computer, type

the following:

> adb shell

Then, many UNIX commands are usable on the device. Use exit to exit the shell. A
single command can be appended to the shell command to be executed without need-

ing to enter and exit the shell:

www.it-ebooks.info

15

http://www.it-ebooks.info/

16

Chapter 1 Overview of Android

> adb shell mkdir /sdcard/app bkup/

To copy files off the device, use pull and rename the files copied as needed:
> adb pull /system/app/VoiceSearchWithKeyboard.apk VSwithKeyboard.apk

To copy a file onto the device, use push:

> adb push VSwithKeyboard.apk /sdcard/app bkup/

To delete an application, for example, com.dummy.game, from the device, type
the following:

> adb uninstall com.dummy.game

These commands are the most commonly used, but more are available. Some addi-
tional commands are introduced in Chapter 16.

Signing and Publishing
For an application to be accepted on Google Play, it needs to be signed. To do this, a
private key needs to be generated and kept in a secure place. Then, the app needs to
be packaged in release mode and signed with the private key. When an application is
upgraded, the same key needs to sign it to ensure a transparent update for the user.
Eclipse automatically does all of this. Just right-click on the project to be signed and
select Export. . . — Export Android Application to initiate packaging. A password
can be used to create a private key, which is saved for future applications and upgrades.
Then, continue through the menu to the creation of an APK file. This is a packaged
version of the Android project in release mode and signed with the private key. It is
ready for upload to Google Play.

Google Play

After an application is designed, developed, tested, and signed, it is ready to be
deployed into Google Play. To use Google Play, a Google Checkout account needs to
be created. It is used not only to pay the initial developer fee of $25 but also for pay-
ments to the developer for any charged apps. Public exposure to a developer’s creation
is often exciting. Within hours of upload, an application can get hundreds of views,
downloads, ratings, and reviews from around the world. A few considerations for pub-
lication of an app are provided here for reference.

End User License Agreement

Any original content distributed in a tangible form is automatically copyrighted in most
of the world under the Berne Convention. Still, it is common practice to add a copyright
line with a date of publication to the content, such as © 2013. The method for adding
this symbol to an Android app is discussed in Chapter 5, “User Interface Layout.”

www.it-ebooks.info

http://www.it-ebooks.info/

Google Play

This can be taken one step further in an end user license agreement (EULA), which
is a contract between the developer (or company) and the customer (or end user)
providing the developer a form of protection for publicly distributed software. Most
EULAS contain sections such as “Grant of License,” “Copyright,” and “No Warran-
ties.” It is common practice to add a EULA to an application, especially if it is offered
for sale. The method for adding a EULA to an Android app is discussed in Chapter 11,
“Data Storage Methods.”

Improving App Visibility
Users find applications in three different ways. Catering to these methods helps to
increase visibility for an application.

Depending on the version of Play store users have on their devices, they may be
able to find new apps by browsing “Just In” apps. Choose a good descriptive name
for the application and place it in an appropriate category, such as “Games” or “Com-
munication.” Keep the description simple and to the point to get more views. The
“Games” category is overladen with apps, so there are subcategories. If the app is fun
but has no score or goal, consider the “Entertainment” category. Even so, with over
10,000 applications uploaded to the Android Market each month, an uploaded applica-
tion 1s pushed off the “Just In” list within a day or two.

Google has a committee that reviews new Android applications and selects them
to be shown prominently in various places of the “Apps” section of the Play store.
The best way to get an application featured is to make sure that all screen resolutions
and dpi levels are supported, there are well-articulated descriptions of the application,
images and a video of the app in action are included, and the app includes no services
that users perceive as a violation of privacy (such as reading system logs, sending SMS
messages without stating why, and using fine location instead of coarse location unless
absolutely required).

Another way users can find an app is by performing a keyword search. Determine
the essential keywords users might choose and include those in either the title or the
description of the app. Some users might speak a different language, so including
appropriate international keywords can help.

The last way users find an app in the Play store is by looking in the category of
“Top” apps; these apps get the highest ratings and the most downloads. To get in this
category takes time and effort with possible updates to fix bugs. This points to the last
consideration for app visibility: robustness. Ensure that the app does not contain major
bugs, does not waste excessive battery life, and has a foolproof way to exit. Nothing
turns off a potential customer more than seeing reviews that say, “This app uses all of
my battery,” or, “I can’t uninstall this app.” The “Top” apps are carved into “Free,”
“Paid,” and “Trending.”

One side note to mention: Almost all interactions between the developer and users
take place through Google Play. Providing developer contact information or a support-
ing website is often superfluous, as people browsing the mobile market rarely use it.

www.it-ebooks.info

17

http://www.it-ebooks.info/

18

Chapter 1 Overview of Android

Differentiating an App

Sometimes a developer creates an application only to find a similar variant already in
the Android Market. This should be treated as an opportunity rather than a discour-
agement. Differentiating the app simply through better design, interface, or execution
can quickly win over a user base. Basically, originality is nice, but it is not required.
That being said, one must be careful to avoid using copyrighted material.

Charging for an App

Every time a new application or its update is uploaded to the Android Market, the
developer must choose whether to provide it for free or charge for it. Following are
the main options:

= Provide the app for free. Everyone who can access Google Play can see and install
the app.

= Provide a free app, but include advertisements. In some cases, the developer
negotiates sponsorship for an app. More often, the developer works with a
third-party aggregator. Payouts are provided for clicked ads and less often for
impressions (ad views). Figure 1.1 shows an example banner ad from AdMob
(which is now part of Google). Such ads require the application to have
permission to access the Internet and the location of the device. Consider
using coarse location instead of fine location to avoid deterring some potential
customers from installing the app.

= Provide the app for a charge. Google handles all transactions, including charges,
but takes 30 percent of the proceeds and requires developers to have a merchant
account set up through Google Wallet. Countries that are not set up for charges
through Google Checkout cannot see or install an app for a charge. For these
reasons, some developers turn to third-party app stores for distribution.

= Post a free limited version, but charge for a full version. This gives users the
opportunity to try the app, and if they like it, they will have less resistance to
purchasing the full version. For some apps, this is a natural model (such as a game
with ten free levels), but not all apps can be partitioned this way.

= Sell virtual goods inside the app, or use in-app purchasing. Selling virtual items is
familiar in pay-to-win apps that are free but require the user to make a purchase
to increase inventory items, provide power-ups, or even to skip parts of the game.
This is an important way Facebook apps work, and it is becoming a popular
choice in the mobile world.

Free applications tend to get a lot of views. Even the most obscure and odd applica-
tions seem to be downloaded and viewed by at least 1,000 people in the first month
the application is in the Play store. There are some developers who explicitly say,

“This app 1s absolutely useless,” and yet they get over 10,000 downloads and a four-

www.it-ebooks.info

http://www.it-ebooks.info/

Google Play

'.'Géi'B'i'liEEa'ra Music US Top 10 son

Figure 1.1 Example mobile banner ad from AdMob

star rating. Somewhat relevant free applications can get as many as 50,000 downloads,
and extremely useful free applications have over 100,000 downloads. For most devel-
opers, such exposure is quite impressive.

Mobile advertisement is still in its infancy and usually does not entice enough users
to click the ad to make the app profitable. For now, monetizing apps is best done by
charging in the Play store or through in-app purchases. As long as the app is useful for
some people, has a clear description, and has a good selection of positive reviews, users
will purchase it. If an app is successful, it might make sense to raise its price.

Managing Reviews and Updates

If their apps are successful, most independent developers go through a process of
releasing a version and adapting it based on user feedback. Users like to see a developer
who is responsive. This leads to more people downloading an app, and as the number
of downloads increases, the validity of the app increases.

In general, it seems about 1 in 200 people rate an application, and a small subset of
those actually leave a review. If someone takes the time to type a review, it is usually
worth paying attention to it, especially if the review comments are constructive, such
as “Doesn’t work on the HTC Hero,” or “Nice app, just wish it did. . . .”

Updates that respond to user comments are seen in a positive light by new potential
customers. In any case, the reason for the update should be clearly highlighted. Some
users may get ten or more notifications a day of applications that have updates avail-
able. If they do not see a good reason to upgrade, they might not.

www.it-ebooks.info

19

http://www.it-ebooks.info/

20

Chapter 1 Overview of Android

Alternatives to Google Play

Other independent Android app stores exist. They might not have as convenient access
to Android devices as Google Play does, but they provide other benefits for developers
such as better app visibility, more places to charge for apps, and taking no portion of
the proceeds from an app. Also, some Android manufacturers create customized app
stores that are accessible from their devices. For example, getting app visibility onto
Motorola Android phones in the Chinese and Latin American markets can be done
through the Motorola app market at http://developer.motorola.com/shop4apps.

Several third-party application stores also exist, which are given in the following
list. Please note that some third-party stores pass around illegal, stolen, and/or cracked
software. If you are absolutely determined to use a third-party store, make absolutely
sure that you can trust it and do some research on it first.

= The Baidu App store (China)
http://as.baidu.com/

= Amazon Apps
WWWw.amazon.com/appstore

= Opera Mobile Apps Store
http://apps.opera.com/en_us/

= SlideMe
http://slideme.org/

= Getjar
www.getjar.com/

= AppBrain
www.appbrain.com/

www.it-ebooks.info

http://www.amazon.com/appstore
http://developer.motorola.com/shop4apps
http://as.baidu.com/
http://apps.opera.com/en_us/
http://slideme.org/
http://www.getjar.com/
http://www.appbrain.com/
http://www.it-ebooks.info/

2

Application Basics:
Activities and Intents

Each Android application is represented by a single Android project. An overview of
the project structure, including a brief introduction to the basic building blocks of an
application, is provided as useful background information for the recipes in this book.
Then the focus of this chapter turns to activities and the intents that launch them.

Android Application Overview

An Android application consists of various functionalities. Some examples are editing
a note, playing a music file, ringing an alarm, or opening a phone contact. These
functionalities can be classified into four different Android components, shown in
Table 2.1, each of which is specified by a Java base class.

Every application is made up of one or more of these components. They are instan-
tiated by the Android OS as needed. Other applications are allowed to use them, too,
within the specified permissions.

As multiple functionalities play out in the OS (some not even related to the
intended application, such as an incoming phone call), each component goes through
a lifecycle of getting created, focused, defocused, and destroyed. The default behavior
can be overridden for a graceful operation, such as saving variables or restoring
UI elements.

With the exception of ContentProvider, each component is activated by an asyn-
chronous message called an Intent. The Intent can contain a Bundle of supporting
information describing the component. This provides a method of passing information
between components.

The rest of this chapter demonstrates the previous concepts using the most common
component: the Activity. Because activities almost always specify an interaction
with a user, a window is automatically created with each activity. Therefore, a short
introduction to the Ul is also included. Of the other components, Service and

www.it-ebooks.info

http://www.it-ebooks.info/

22

Chapter 2 Application Basics: Activities and Intents

Table 2.1 Possible Components of an Android Application

Functionality Java Base Class Examples

Focused thing a user can do Activity Edit a note, play a game
Background process Service Play music, update weather icon
Receive messages BroadcastReceiver Trigger alarm upon event

Store and retrieve data ContentProvider Open a phone contact

BroadcastReceiver are covered in Chapter 3, “Threads, Services, Receivers, and
Alerts,” and ContentProvider is covered in Chapter 11, “Data Storage Methods.”

Recipe: Creating a Project and an Activity

A straightforward way to create an Android project or any of its components is to use

the Eclipse IDE. This method ensures proper setup of the supporting files. The steps

to create a new Android project are:

1.

(S S S

10.

11.

In Eclipse, choose File — New — Android Application Project. This
displays a New Android Project creation screen.

. Fill in the project name, such as SimpleActivityExample.
. Fill in the application name, such as Example of Basic Activity.
. Fill in the package name, such as com.cookbook.simpleactivity.

. Select a minimum required SDK. This will be the lowest Android version the

app can run on. Choosing at least API Level 8 or Android 2.2 is recommended.

. Select a build target SDK from the choices provided. Choose the highest

Android version that will be tested against.

. Choose the SDK version the app will be compiled against. This should be the

latest version available or the latest version required by the libraries.

. Choose the base theme of the application. The theme can be edited or changed

later if desired; this is just meant to be a good start.

. Next, configure some more project defaults. Check Create custom launcher

icon to replace the default icon now. To create the main activity in one of the
next steps, be sure Create Activity is checked.

In the Configure Launcher Icon screen, choose among text, clip art from a
small library, or an image from the hard drive. The resulting image will be
created in all four standard resolutions.

To create the main activity in the same step, be sure Create Activity is
checked and select BlankActivity. The use of fragments will be shown in a
later recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Application Overview

12. Fill in activity and layout names or leave them as is. To use one of the default
navigation patterns, a minimum SDK version of 14 is required, as they rely on
the ActionBar.

13. Press Finish to create the sample project.

All activities extend the abstract class Activity or one of its subclasses. The entry
point to each activity is the onCreate () method. It is almost always overridden to
initialize the activity, such as setting up the UI, creating button listeners, initializing
parameters, and starting threads.

If the main activity is not created with the project or another activity needs to be
added, the steps to create an activity are:

1. Create a class to extend Activity. In Eclipse, this can be done by right-clicking
on the project, choosing New — Class, and then specifying android.app.
Activity as the superclass.

2. Override the onCreate() function. In Eclipse, this can be done by right-
clicking on the class file, choosing Source — Override/Implement
Methods..., and then checking the onCreate() method. As with most
overridden functions, the overwritten onCreate () method must invoke the
superclass method, too; otherwise, an exception may be thrown at run-time.
Here, super.onCreate () should be called first to properly initialize the activity,
as shown in Listing 2.1.

Listing 2.1 src/com/cookbook/simple_activity/SimpleActivity.java

package com.cookbook.simple activity;

import android.app.Activity;
import android.os.Bundle;

public class SimpleActivity extends Activity {

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main) ;

3. If a Ul 1s used, specify the layout in an XML file in the res/layout/ directory.
Here, it is called main.xml, as shown in Listing 2.2.

4. Set the layout of the activity using the setContentView() function and passing
it the resource ID for the XML layout file. Here, it is R.layout.main, as shown
in Listing 2.1.

www.it-ebooks.info

23

http://www.it-ebooks.info/

24

Chapter 2 Application Basics: Activities and Intents

Listing 2.2 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match_parent"
android:layout height="match parent"
>

<TextView
android:layout width="match_parent"
android:layout height="wrap content"
android:text="@string/hello"
/>

</LinearLayout>

5. Declare the properties of the activity in the AndroidManifest.xml file. This is
covered in more detail later in Listing 2.5.

Note that the string resources are defined in the strings.xml file in the res/

values/ folder, as shown in Listing 2.3. This provides a central place for all strings in
case text needs to be changed or reused.

Listing 2.3 res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="hello">Hello World, SimpleActivity!</strings
<string name="app name">SimpleActivity</string>
</resources>

Now the directory structure of this project and the additional autogenerated
content are explored in more detail.

Directory Structure of Project and Autogenerated Content

The project structure is a mix of user-generated and autogenerated files. Figure 2.1
shows an example project structure, as seen from the Eclipse Package Explorer.
User-generated files include the following:

= src/ contains the Java packages the developer writes or imports for the
application. Each package can have multiple .java files representing different
classes.

= res/layout/ contains the XML files that specify the layout of each screen.
= res/values/ contains the XML files used as references by other files.
= res/values-v11/ contains the XML files for Honeycomb devices and above.

= res/values-v14/ contains the XML files for Ice Cream Sandwich and above.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Application Overview 25

Run

¥ & CookBook
v @#src
v ﬂ} com.example.cookbook
> [J] MainActivityjava
v 38 gen [Genera ava
v §3 com.example.cookbook
> [J] BuildConfig.java
> [J] Rjava
> =), Android 4.2
» =), Android Dependencies

&5 assets
» &, bin
> & libs
v lres
> (= drawable-hdpi
(= drawable-ldpi
> (= drawable-mdpi
P (= drawable-xhdpi
> (= drawable-xxhdpi
> (= layout
» (= menu
> (= values
> (= values-vll
> (= values-vl4
|d] AndroidManifest.xml
@, ic_launcher-web.png
[2) proguard-project.txt
project.properties

Figure 2.1 Android project directory
structure, as seen in the Eclipse IDE

= res/drawable-xhdpi/, res/drawable-hdpi/, res/drawable-mdpi/, and
res/drawable-1dpi/ are directories that contain pictures the application uses. They
have extra-large, high, medium, and low dots-per-inch resolution, respectively.

= assets/ contains additional nonmedia files the application uses.

= AndroidManifest.xml specifies the project to the Android OS.

The styles.xml file is created in all of the res/values-XX folders. This is because
the Android base theme changed to Holo starting with Honeycomb devices. It results
in having different parent themes in an app theme.

Autogenerated files include these:

= gen/ contains autogenerated code, including the generated class file R.java.

= project.properties contains project settings. Although autogenerated, it should
be kept under revision control.

www.it-ebooks.info

http://www.it-ebooks.info/

26

Chapter 2 Application Basics: Activities and Intents

An application’s resources include XML files describing the layout, XML files
describing values such as strings, labels of UI elements, and additional supporting files
such as pictures and sounds. At compile time, references to the resources are gathered
into an autogenerated wrapper class called R.java. The Android Asset Packaging Tool
(aapt) autogenerates this file. Listing 2.4 shows what it looks like for the “Creating a
Project and an Activity” recipe.

Listing 2.4 gen/com/cookbook/simple_activity/R.java

/* AUTO-GENERATED FILE. DO NOT MODIFY.

*

* This class was automatically generated by the
* aapt tool from the resource data it found. It
* should not be modified by hand.

*/

package com.cookbook.simple activity;

public final class R {
public static final class attr {
1
public static final class drawable {
public static final int icon=0x7£020000;
}

public static final class layout {
public static final int main=0x7£030000;
1

public static final class string {
public static final int app name=0x7£040001;
public static final int hello=0x7£040000;

Here, each resource is mapped to a unique integer value. In this way, the R.java
class provides a way to reference external resources within Java code. For example, to
reference the main.xml layout file in Java, the R.1layout.main integer is used. To ref-
erence the same within XML files, the "@layout/main" string is used.

Referencing resources from within Java or XML files is demonstrated in Table 2.2.
Note that to define a new button ID called home button, the plus sign is added to
the identifying string: @+id/home_button. More complete details on resources are
given in Chapter 5, “User Interface Layout,” but this suffices to cover the recipes in
this chapter.

Android Package and Manifest File

The Android project, sometimes also referred to as an Android package, is a collection
of Java packages. Different Android packages can have the same Java package names,
whereas the Android package name must be unique across all applications installed on
the Android device.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Application Overview

Table 2.2 Resources in Java and XML Files

Resource Reference in Java Reference in XML
res/layout/main.xml R.layout.main @layout/main
res/drawable-hdpi/icon.png R.drawable.icon @drawable/icon
@+id/home_button R.id.home_button @id/home_button
<string name="hello"> R.string.hello @string/hello

For the OS to access them, each application must declare its available components
in a single AndroidManifest.xml file. In addition, this file contains the required
permissions and behavior for the application to run. Listing 2.5 shows what it looks
like for the “Creating a Project and an Activity” recipe.

Listing 2.5 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.cookbook.simple activity"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"
android:label="@string/app name">
<activity android:name=".SimpleActivity"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activitys
</application>
<uses-sdk android:minSdkVersion="8" />
</manifest>

The first line is required and standard across all XML files in Android to specify the
encoding. The manifest element defines the Android package name and version. The
versionCode is an integer that can be evaluated in programs to determine the upgrade
or downgrade relationship. The versionName represents a human-readable format that
can have major and minor revisions declared.

The application element defines the icon and label the user sees from the Android
device menu. The label is a string and should be short enough to display under the
icon on a user’s device. Generally, the name can be up to two words of ten characters
each without being cut off.

The activity element defines the main activity that is launched when the
application is started and the name shown in the title bar when the activity is active.
Here, the Java package name needs to be specified, which in this example is com.

www.it-ebooks.info

27

http://www.it-ebooks.info/

28

Chapter 2 Application Basics: Activities and Intents

cookbook.simple activity.SimpleActivity. Because the Java package name is
usually the same as the Android package name, the shorthand notation is often used:
.SimpleActivity. However, it is best to remember that the Android package and the
Java package are distinct.

The intent-filter element informs the Android system of the capabilities of the
component. It can have multiple action, category, or data elements for this purpose.
This element is used in different recipes in this book.

The uses-sdk element defines the API level required to run the application. In
general, the API level is specified as follows:

<uses-sdk android:minSdkVersion="integer"
android:targetSdkVersion="integer"

android:maxSdkVersion="integer" />

Because the Android OS is constructed to be forward compatible, maxSdkvVersion is
highly discouraged and not even adhered to on devices with Android 2.0.1 or later.
Google Play, however, continues to use this as a filter, so the application is not shown
for download to devices running a higher SDK version.

Specifying targetSdkvVersion is not required, but it allows devices of the same
SDK version to disable compatibility settings that might speed up operation.
minsdkVersion should always be specified to ensure that the application does not
crash when run on a platform that does not support the required features in the appli-
cation. Always choose the lowest API level possible when specifying this.

The AndroidManifest.xml file can also contain permission settings needed to run
the application. More complete details about the options are provided in later chapters,
but this suffices to cover the recipes in this chapter.

Recipe: Renaming Parts of an Application

Sometimes a portion of an Android project needs to be renamed. Maybe a file was
copied manually into the project, such as from this book. Maybe the application
name has changed during development, and the change needs to be reflected in the
filesystem tree. Automatic tools help with this and ensure that cross-references are
automatically updated. For example, in the Eclipse IDE, there are different ways to
rename portions of an application:

= Rename the Android project, as follows:
1. Right-click the project and Refactor — Move to a new directory in the
filesystem.
2. Right-click the project and Refactor — Rename the project.
= Rename the Android package, as follows:

1. Right-click the package and Refactor — Rename the package.

2. Edit the AndroidManifest.xml file to ensure that the new package name is
reflected.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Application Overview

= Rename an Android class (such as the major components Activity, Service,

BroadcastReceiver, ContentProvider) as follows:

1. Right-click the .java file and Refactor — Rename the class.

2. Edit the AndroidManifest.xml file to ensure that android:name has the

new component name.

Note that renaming other files, such as XML files, usually requires manually

changing the corresponding references in the Java code.

Recipe: Using a Library Project

Library projects allow the reuse of resources and code in other applications. They are

also used for UT libraries that enable modern features on older devices. Library projects

were introduced with release 14 of the SDK tools. Library projects are very similar to

normal Android projects, as they too have source and resources folders and a manifest

file. The main difference is that they cannot run on their own, and they cannot be

compiled into an .apk file. To create a library project, do the following:

1.

Ul A N

(o))

11.

In Eclipse, choose File — New — Android Application Project. This dis-
plays a New Android Project creation screen.

. Fill in the project name, such as SimpleLibraryExample.
. Fill in the application name, such as Example of Basic Activity.
. Fill in the package name, such as com.cookbook.simplelibrary.

. Select a build target from the choices provided. These choices are based on the

SDK versions that are installed on the development computer.

. Uncheck Create custom launcher icon, as a library does not need one.
. Check Mark this project as a Library.

. To have activities in the library, check Create Activity. The created activity

will be used in the main project; check this and select BlankActivity for now.

. Fill in an activity name or leave it as is.
10.

Change the layout name to lib_activity_main. As all resources are compiled
into one R class in the end, it is best practice to give all resources of a library a
prefix to avoid name conflicts.

Press Finish to create the library project.

To use the library, a primary or main project is needed. Follow the “Creating

a Project and an Activity” recipe to add one to the workspace, with a minor

modification: Do not create an activity. Instead, use the activity from the

library project.

To reference a library project from the main project, do the following:

1.

In Eclipse, right-click on the project and choose Properties — Android.

www.it-ebooks.info

29

http://www.it-ebooks.info/

30 Chapter 2 Application Basics: Activities and Intents

2. Scroll down to the library section and press Add.

3. The dialog will show all available library projects in the workspace. Select the
SimpleLibrary project and press OK.

The project name and path reference are now shown in the Properties page. There
is a green arrow indicating that the reference was checked as OK. If the referenced
path cannot be found, a red cross will be shown instead.

After adding a library project, it is recommended to make a clean and full build of
the workspace to make sure the changes worked as expected.

Internally, library references are saved in the project.properties file, which is used
by both Eclipse and Ant. The resulting file should now look like this:

target=android-16

android.library.reference.l=../SimpleLibrary

Listing 2.6 adds the activity from the library to the AndroidManifest.xml file and
makes it the default launcher activity.

Listing 2.6 AndroidManifest.xml of the Main Project

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.simpleproject"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk android:minSdkVersion="8" android:targetSdkVersion="15" />

<application android:label="@string/app name"
android:icon="@drawable/ic_launcher"
android:theme="@style/AppTheme">

<activity
android:name="com.cookbook.simplelibrary.LibMainActivity"
android:label="@string/title activity activity main" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>

</activity>
</application>
</manifest>

Note here that the package name of the application is completely different from the
package name of the activity. Because the activity is loaded from the library project, its
name must be set to a full qualified package and class name.

www.it-ebooks.info

http://www.it-ebooks.info/

Activity Lifecycle

The project can now be run from within Eclipse; the activity from the library will
come to the front.

There are many use cases for library projects, from white-label apps that set differ-
ent themes in the main project but run on the same code base to using UI libraries
like ActionBarSherlock to support a modern look and feel on older Android devices.

Activity Lifecycle

Each activity in an application goes through its own lifecycle. Once and only once
when an activity is created is the onCreate() function executed. If the activity exits,
the onDestroy() function is executed. In between, various events can lead to the
activity being in multiple states, as illustrated in Figure 2.2. The next recipe provides
an example of each of these functions.

Recipe: Using Activity Lifecycle Functions

This recipe provides a simple way to see the activity lifecycle in action. For illustration
purposes, each overridden function is explicit, and a Toast command is added to show
on screen when the function is entered (more detail on the Toast widget is provided
in Chapter 3, “Threads, Services, Receivers, and Alerts”). The activity is shown in
Listing 2.7. Run it on an Android device and try various cases. In particular, note

the following:

» Changing the screen orientation destroys and re-creates the activity from scratch.

= Pressing the Home key pauses the activity but does not destroy it.

= Pressing the application icon might start a new instance of the activity, even if the
old one was not destroyed.

= Letting the screen sleep pauses the activity, and the screen awakening resumes it.

(This is similar to taking an incoming phone call.)

As seen here, various common user actions can cause the activity to be paused or
killed, or can even launch multiple versions of the application. Before moving on, it is
worth mentioning two additional simple recipes that can control this behavior.

Recipe: Forcing Single Task Mode

Navigating away from an application and launching it again can lead to multiple
instances of an activity on the device. Eventually the redundant instance of the
activity 1s killed to free up memory, but in the meantime it can lead to odd situations.
To avoid these, the developer can control this behavior for each activity in the
AndroidManifest.xml file.

To ensure that only one instance of the activity runs on the device, specify the
following in an activity element that has the MAIN and LAUNCHER intent filters:

android:launchMode="singleInstance"

www.it-ebooks.info

31

http://www.it-ebooks.info/

32 Chapter 2 Application Basics: Activities and Intents

Activity
starts

A\
> onCreate()
(User navigates) \
back to the activit;
My onStart() <t onRestart()
A

\ 4
Process is P
Killed onResume() <

A

Activity is The activity comes
running to the foreground
I

Another activity comes
in front of the activity

’ The activity comes
— A to the foreground
Other applications onPause()

need memory

|
The activity is no
longer visible

onStop()

Y

onDestroy()

Activity is
shut down

Figure 2.2 Activity lifecycle from http://developer.android.com/

This keeps a single instance of each activity in a task at all times. In addition, any
child activity is launched as its own task. To further ensure that there is only a single
task for all activities of an application, use the following:

android:launchMode="singleTask"

www.it-ebooks.info

http://developer.android.com/
http://www.it-ebooks.info/

Activity Lifecycle

Listing 2.7 src/com/cookbook/activity_lifecycle/ActivityLifecycle.java

package com.cookbook.activity lifecycle;

import android.app.Activity;
import android.os.Bundle;
import android.widget.Toast;

public class ActivityLifecycle extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
Toast.makeText (this, "onCreate", Toast.LENGTH_SHORT).show();

}

@Override
protected void onStart() {
super.onStart();
Toast.makeText (this, "onStart", Toast.LENGTH SHORT).show();

}

@Override
protected void onResume() {
super.onResume () ;
Toast.makeText (this, "onResume", Toast.LENGTH_SHORT).show();

}

@Override
protected void onRestart()
super.onRestart();
Toast.makeText (this, "onRestart", Toast.LENGTH_SHORT).show();

}

@Override

protected void onPause() {
Toast.makeText (this, "onPause", Toast.LENGTH_ SHORT).show();
super.onPause();

}

@Override

protected void onStop() {
Toast.makeText (this, "onStop", Toast.LENGTH_SHORT).show();
super.onStop () ;

}

@Override

protected void onDestroy() {
Toast.makeText (this, "onDestroy", Toast.LENGTH_SHORT).show();
super.onDestroy();

www.it-ebooks.info

33

http://www.it-ebooks.info/

34

Chapter 2 Application Basics: Activities and Intents

This allows the activities to share information easily as the same task.

In addition, it might be desirable to retain the task state, regardless of how a user
navigates to the activity. For example, if a user leaves the application and relaunches
it later, the default behavior often resets the task to its initial state. To ensure that
the task is always in its last state when the user returns, specify the following in the
activity element of the root activity of a task:

android:alwaysRetainTaskState="true"

Recipe: Forcing Screen Orientation

Any Android device with an accelerometer can determine which way is down. As
the device is tilted from portrait to landscape mode, the default action is to rotate
the application view accordingly. However, as seen in the “Using Activity Lifecycle
Functions” recipe, the activity is destroyed and restarted upon screen orientation
changes. When this happens, the current state of the activity might be lost, disrupting
the user experience.

One option to handle screen orientation changes gracefully is to save state
information before the change and restore information after the change. A simpler
method that might be useful is to force the screen orientation to stay constant. For
each activity in the AndroidManifest.xml file, the screenOrientation attribute
can be specified. For example, to specify that the activity always stays in portrait
mode, the following can be added to the activity element:

android:screenOrientation="portrait"
Similarly, landscape mode can be specified using the following:
android:screenOrientation="landscape"

However, this code still causes the activity to be destroyed and restarted when
a hard keyboard is slid out. Therefore, a third method is possible: Tell the Android
system that the application should handle orientation and keyboard slide-out events.
This is done by adding the following attribute to the activity element:

android:configChanges="orientation|keyboardHidden"

This can be used alone or in combination with the screenOrientation attribute
to specity the required behavior to the application.

Recipe: Saving and Restoring Activity Information

‘Whenever an activity is about to be killed, the onSaveInstanceState() function

is called. Override this to save relevant information that should be retained. When

the activity is then re-created, the onRestoreInstanceState() function is called.
Override this function to retrieve the saved information. This allows for a seamless user
experience when an application undergoes lifecycle changes. Note that most UI states
do not need to be managed because they are, by default, taken care of by the system.

www.it-ebooks.info

http://www.it-ebooks.info/

Activity Lifecycle

OnSaveInstanceState() is distinct from onPause (). For example, if another
component is launched in front of the activity, the onPause () function is called.
Later, if the activity is still paused when the OS needs to reclaim resources, it calls
onSaveInstanceState() before killing the activity.

An example of saving and restoring the instance state consisting of a string and a
float array is shown in Listing 2.8.

Listing 2.8 Example of onSavelnstanceState() and onRestorelnstanceState()

float [] localFloatArray = {3.14f, 2.718f, 0.577f};
String localUserName = "Euler";

@Override

protected void onSavelnstanceState(Bundle outState) {
super.onSavelnstanceState (outState);
//Save the relevant information
outState.putString("name", localUserName);
outState.putFloatArray("array", localFloatArray);

}

@Override

public void onRestorelnstanceState(Bundle savedInstanceState) {
super.onRestoreInstanceState(savedInstanceState);
//Restore the relevant information
localUserName = savedInstanceState.getString("name");
localFloatArray = savedInstanceState.getFloatArray("array");

Note that onCreate() also contains Bundle savedInstanceState. In the case
of an activity reinitializing after previously being shut down, the bundle saved in
onSavelnstanceState() is also passed to onCreate(). In all cases, the saved bundle is
passed to the onRestoreInstanceState() function, so it is more natural to use this to
restore states.

Recipe: Using Fragments

Fragments are the latest addition to the basic building blocks of an Android
application. Fragments are smaller parts of an activity meant for the grouping of views
and functionalities. The best analogy for them is to think of smaller building blocks
that can be stacked on one another to fill the volume of a bigger block. The need for
smaller blocks arose from the introduction of tablets and TV screens.

Fragments allow views to be bundled together and to be mixed and matched
within one or two (or even more) activities as needed. The classic use case for this
is going from landscape mode with a list and a detail view to portrait mode with a
single list and a detail screen. In fact, this pattern has become so mainstream that it
is now possible to create a skeleton app like this directly from the Create New
Project dialog.

www.it-ebooks.info

35

http://www.it-ebooks.info/

36

Chapter 2 Application Basics: Activities and Intents

The steps to do this are similar to the ones described in the previous recipe:
1. In Eclipse, choose File — New — Android Application Project.

. Fill in the project name, such as SimpleFragmentExample.

. Fill in the application name, such as Example of Basic Fragments.

. Fill in the package name, such as com.cookbook.simplefragments.

Ul N

. Select a minimum required SDK of API Level 11 or Android Honeycomb.
Fragments can be used in lower API versions only if the support library extra is
installed on the machine.

6. In the Create Activity screen, choose MasterDetailFlow as the start point.
7. Name the items used for demo purposes; for instance, fruits.

8. Press Finish to create the sample project.

Exploring the possibilities of this sample is left to the reader. Here, instead, a few
important things about fragments are highlighted.

Fragments come with their own lifecycle, which is dependent on the hosting
activities. As fragments can be added, shown, hidden, and removed at any time
during the lifecycle of an activity, their existence is much more short-lived than that
of other components. Similar to an activity, a fragment has onPause (), onResume (),
onDestroy(), and onCreate () methods.

It is to be noted, however, that onCreate (Bundle) is the second method called
on a fragment; the first one is onAttach(Activity), which signals that there is
a connection to the hosting activity now. Methods can be called on the activity
here; however, it is not guaranteed that the activity has been fully initialized itself.
Only after onActivityCreated() is called is the activity passed through its own
onCreate () method.

Given that fragments can be instantiated and added at much later times, the state of
the activity in onAttach() should not be relied upon. The method used to initialize
views and start most work is onCreateView(LayoutInflater, ViewGroup, Bundle).
The Bundle class given here is the saved instance state, if the fragment is re-created.

Fragments use bundles also for serializing arguments. Every parcelable type of
external information a fragment needs can be obtained from the hosting activity
by calling setArguments () and can always be read in the fragments with the
getArguments () call. This allows information coming from the starting intent of the
activity to be passed directly to the fragment to be shown.

Multiple Activities

Even the simplest applications have more than one functionality. Hence, there is often
a need to deal with multiple activities. For example, a game can have two activities: a
high-scores screen and a game screen. A notepad can have three activities: view a list

of notes, read a selected note, and edit a selected or new note.

www.it-ebooks.info

http://www.it-ebooks.info/

Multiple Activities

The main activity, as defined in the AndroidManifest.xml file, is started when
the application is started. This activity can launch another activity, usually after a
trigger event. This causes the main activity to pause while the secondary activity
is active. When the secondary activity ends, the main activity is brought to the
foreground and resumed.

To activate a particular component of the application, an intent naming the
component explicitly is used. If instead the requirements of an application can be
specified by intent filters, an implicit intent can be used. The system then determines the
best component or components to use, even if it is in a separate application or native to
the OS. Note that unlike other activities, implicit intents that reside in other applications
do not need to be declared in the current application’s AndroidManifest.xml file.

Android uses implicit intents as often as possible, providing a powerful frame-
work for modular functionality. When a new component is developed that meets the
required implicit intent filter, it can be used in place of an Android internal intent. For
example, say a new application for displaying phone contacts is loaded on an Android
device. When a user selects a contact, the Android system finds all available activities
with the proper intent filter for viewing contacts and asks the user to decide which
one should be used.

Recipe: Using Buttons and TextView

To fully demonstrate multiple activities, it is useful to use a trigger event. A button
press is introduced here for that purpose. The steps for adding a button to a given
layout and assigning an action to a button press follow:

1. Put a button in the designated layout XML file:
<Button android:id="@+id/trigger"
android:layout width="100dip" android:layout height="100dip"

android:text="Press this button" />

2. Declare a button that points to the button ID in the layout file:
Button startButton = (Button) findViewById(R.id.trigger);

3. Specify a listener for when the button is clicked:
//Set up button listener
startButton.setOnClickListener(new View.OnClickListener() {

//Insert onClick here

hE

4. Override the onClick function for the listener to do the required action:

public void onClick(View view) {

// Do something here

www.it-ebooks.info

37

http://www.it-ebooks.info/

38 Chapter 2 Application Basics: Activities and Intents

To show the result of an action, it is useful to change the text on the screen. The
steps for defining a text field and changing it programmatically follow:

1. Put a text field in the designated layout XML file with an ID. It can also be ini-
tialized to some value (here, it can be initialized to the string named hello in
the strings.xml file):

<TextView android:id="@+id/hello_text"
android:layout width="match_parent"
android:layout height="wrap content"
android:text="@string/hello"

/>

2. Declare a TextView that points to the TextView ID in the layout file:
private TextView tv = (TextView) findViewById(R.id.hello text);

3. If the text needs to be changed, use the setText function:
tv.setText("new text string");

These two UI techniques are used in the subsequent recipes in this chapter. A more
complete demonstration of Ul techniques is covered in Chapter 5, “User Interface
Layout.”

Recipe: Launching a Second Activity from an Event

In this recipe, MenuScreen is the main activity, as shown in Listing 2.9. It launches the
PlayGame activity. Here, the trigger event is implemented as a button click using the
Button widget.

When a user clicks the button, the startGame () function runs and launches the
PlayGame activity. When a user clicks the button in the PlayGame activity, it calls
finish() to return control to the calling activity. Following are the steps for launching
an activity:

1. Declare an intent that points to the activity to be launched.
2. Call startActivity on this intent.

3. Declare the additional activity in the AndroidManifest.xml file.

Listing 2.9 src/com/cookbook/launch_activity/MenuScreen.java

package com.cookbook.launch activity;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

www.it-ebooks.info

http://www.it-ebooks.info/

Multiple Activities

public class MenuScreen extends Activity {

@Override
public void onCreate(Bundle savedInstanceState) {

}

super.onCreate (savedInstanceState);
setContentView(R.layout.main);

//Set up button listener
Button startButton = (Button) findViewById(R.id.play game);
startButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
startGame();
}

hE

private void startGame() {

Intent launchGame = new Intent(this, PlayGame.class);
startActivity(launchGame);

Providing Current Context in an Anonymous Inner Class

Note the additional consideration needed for launching an activity with a button press, as
shown in Listing 2.9. The intent needs a context. However, using the this shortcut in the
onClick function is not properly resolved. Following are different ways to provide current
context in an anonymous inner class:

m Use Context.this instead of this.
m Use getApplicationContext () instead of this.
m Explicitly use the class name MenuScreen.this.

m Call a function that is declared at the right context level. This is what is used in
Listing 2.8: startGame ().

These methods are usually interchangeable. Use the one that works best for the situation.

The PlayGame activity shown in Listing 2.10 is simply a button with an onClick
listener that calls finish() to return control to the main activity. More functionality

can be added as needed to this activity, and multiple branches of the code can lead to
their own finish() calls.

Listing 2.10 src/com/cookbook/launch_activity/PlayGame.java

package com.cookbook.launch activity;

import
import
import
import

android.app.Activity;
android.os.Bundle;
android.view.View;
android.widget.Button;

www.it-ebooks.info

39

http://www.it-ebooks.info/

40 Chapter 2 Application Basics: Activities and Intents

public class PlayGame extends Activity {

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.game);

//Set up button listener
Button startButton = (Button) findViewById(R.id.end game);
startButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
finish();
}

F;

The button must be added to the main layout as shown in Listing 2.11, with the
ID play game to match what was declared in Listing 2.9. Here, the size of the button
is also declared in device-independent pixels (dip), which are discussed more in
Chapter 5, “User Interface Layout.”

Listing 2.11 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent"
>
<TextView
android:layout width="match parent"
android:layout height="wrap content"
android:text="@string/hello"
/>
<Button android:id="e+id/play game"
android:layout width="100dip" android:layout height="100dip"
android:text="@string/play game"
/>

</LinearLayout>

The PlayGame activity references its own button ID, end game, in the R.1layout.
game layout resource that corresponds to the layout XML file game.xml, as shown in
Listing 2.12.

Listing 2.12 res/layout/game.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout_height="match parent"

www.it-ebooks.info

http://www.it-ebooks.info/

Multiple Activities

>
<Button android:id="@+id/end game"
android:layout width="100dip" android:layout height="100dip"
android:text="@string/end game" android:layout gravity="center"
/>

</LinearLayout>

Although the text can be written explicitly in each case, it is good coding practice
to define variables for each string. In this recipe, the two string values play game
and end_game need to be declared in the string XML resource file, as shown in List-
ing 2.13.

Listing 2.13 res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="hello">This is the Main Menu</strings>
<string name="app name"s>LaunchActivity</string>
<string name="play game">Play game?</string>
<string name="end game">Done?</string>

</resourcess>

Finally, the AndroidManifest.xml file needs to register a default action to the new
class PlayGame, as shown in Listing 2.14.

Listing 2.14 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1"
android:versionName="1.0" package="com.cookbook.launch activity"s
<application android:icon="@drawable/icon"
android:label="@string/app name">
<activity android:name=".MenuScreen"
android:label="@string/app name">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".PlayGame"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="3" />
</manifest>

www.it-ebooks.info

41

http://www.it-ebooks.info/

42

Chapter 2 Application Basics: Activities and Intents

Recipe: Launching an Activity for a Result Using Speech to Text

In this recipe, launching an activity for a result is demonstrated. It also demonstrates
how to use speech-to-text functionality from Google’s RecognizerIntent activity
and print the result to the screen. Here, the trigger event is a button press. It launches
the RecognizerIntent activity, which does speech recognition on sound from the
microphone and converts it into text. When finished, the text is passed back to the
calling activity.

Upon return, the onActivityResult() function is first called with the returned
data, and then the onResume () function is called to continue the activity normally.
The calling activity can have a problem and not return properly. Therefore,
resultCode should always be checked to ensure RESULT OK before continuing
to parse the returned data.

Note that in general any launched activity that returns data causes the same
onActivityResult() function to be called. Therefore, a request code is customarily
used to distinguish which activity is returning. When the launched activity finishes,
it returns control to the calling activity and calls onActivityResult() with the same
request code.

The steps for launching an activity for a result follow:

1. Call startActivityForResult() with an intent, defining the launched activity
and an identifying requestCode variable.

2. Override the onActivityResult() function to check on the status of the result,
check for the expected requestCode, and parse the returned data.

Following are the steps for using RecognizerIntent:
1. Declare an intent with action ACTION RECOGNIZE SPEECH.

2. Add any extras to the intent; at least EXTRA LANGUAGE MODEL is required. This
can be set as either LANGUAGE_MODEL_FREE_FORM or LANGUAGE MODEL,_WEB_
SEARCH.

3. The returned data bundle contains a list of strings with possible matches to the
original text. Use data.getStringArrayListExtra to retrieve this data. This
should be cast as an ArrayList for use later.

A TextView is used to display the returned text to the screen. The main activity is
shown in Listing 2.15.

The additional supporting files needed are main.xml and strings.xml, which
need to define a button and the Textview to hold the result. This is accomplished
using Listings 2.11 and 2.13 in the “Launching a Second Activity from an Event”
recipe. The AndroidManifest.xml file needs to declare only the main activity,
which is the same as in the earlier “Creating a Project and an Activity” recipe. The
RecognizerIntent activity is native to the Android system and does not need to be
declared explicitly to be used.

www.it-ebooks.info

http://www.it-ebooks.info/

Multiple Activities

Listing 2.15 src/com/cookbook/launch_for_result/Recognizerintent Example.java

package com.cookbook.launch for result;
import java.util.ArrayList;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.speech.RecognizerIntent;
import android.view.View;

import android.widget.Button;

import android.widget.TextView;

public class RecognizerIntentExample extends Activity {
private static final int RECOGNIZER_EXAMPLE = 1001;
private TextView tv;

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

tv = (TextView) findViewById(R.id.text result);

//Set up button listener
Button startButton = (Button) findViewById(R.id.trigger);
startButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
// RecognizerIntent prompts for speech and returns text
Intent intent =
new Intent(RecognizerIntent. ACTION RECOGNIZE SPEECH);

intent.putExtra(RecognizerIntent.EXTRA LANGUAGE MODEL,
RecognizerIntent. LANGUAGE MODEL FREE FORM);
intent.putExtra(RecognizerIntent.EXTRA PROMPT,

"Say a word or phrase\nand it will show as text");
startActivityForResult (intent, RECOGNIZER EXAMPLE);

hE
}

@Override
protected void onActivityResult(int requestCode,
int resultCode, Intent data) {
//Use a switch statement for more than one request code check
if (requestCode==RECOGNIZER EXAMPLE && resultCode==RESULT OK) {
// Returned data is a list of matches to the speech input
ArrayList<String> result =
data.getStringArrayListExtra(RecognizerIntent.EXTRA RESULTS);

//Display on screen
tv.setText (result.toString());

super.onActivityResult (requestCode, resultCode, data);

www.it-ebooks.info

43

http://www.it-ebooks.info/

44 Chapter 2 Application Basics: Activities and Intents

Recipe: Implementing a List of Choices

A common situation in applications is to provide a user with a list of choices that can
be selected by clicking them. This can be easily implemented using ListActivity, a
subclass of Activity, and triggering an event based on what choice was made.

The steps for creating a list of choices follow:

1. Create a class that extends the ListActivity class instead of the Activity class:
public class ActivityExample extends ListActivity {

//content here

2. Create a string array of labels for each choice:
static final String[] ACTIVITY CHOICES = new String[] {
"Action 1",
"Action 2",

"Action 3"

}i

3. Call setListAdapter() with the ArrayAdapter specifying this list and
a layout:

setListAdapter(new ArrayAdapter<Strings>(this
android.R.layout.simple list item 1, ACTIVITY_ CHOICES));
getListView().setChoiceMode (ListView.CHOICE MODE_SINGLE);

getListView().setTextFilterEnabled(true);

4. Launch OnItemClickListener to determine which choice was selected and act
accordingly:
getListView().setOnItemClickListener(new OnItemClickListener()
{
@Override
public void onItemClick(AdapterView<?> arg0, View argl
int arg2, long arg3) f{
switch(arg2) {//Extend switch to as many as needed
case 0:
//code for action 1
break;
case 1:

//code for action 2

www.it-ebooks.info

http://www.it-ebooks.info/

Multiple Activities

break;

case 2:
//code for action 3
break;

default: break;

}

i

This technique is used in the next recipe.

Recipe: Using Implicit Intents for Creating an Activity

Implicit intents do not specify an exact component to use. Instead, they specify the
functionality required through a filter, and the Android system must determine the
best component to use. An intent filter can be an action, data, or a category.

The most commonly used intent filter is an action, and the most common action is
ACTION VIEW. This mode requires a uniform resource identifier (URI) to be specified
and then displays the data to the user. It does the most reasonable action for the given
URI. For example, the implicit intents in cases 0, 1, and 2 in the following example
have the same syntax but produce different results.

Following are the steps for launching an activity using an implicit intent:

1. Declare the intent with the appropriate filter specified (ACTION VIEW, ACTION
WEB_SEARCH, and so on).

2. Attach any extra information to the intent required to run the activity.

3. Pass this intent to startActivity().

This is shown for multiple intents in Listing 2.16.

Listing 2.16 src/com/cookbook/implicit_intents/ListActivityExample.java

package com.cookbook.implicit intents;

import android.app.ListActivity;

import android.app.SearchManager;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.AdapterView.OnItemClickListener;

public class ListActivityExample extends ListActivity {

www.it-ebooks.info

45

http://www.it-ebooks.info/

46 Chapter 2 Application Basics: Activities and Intents

static final String[] ACTIVITY CHOICES = new String[] {
"Open Website Example",
"Open Contacts",
"Open Phone Dialer Example",
"Search Google Example",
"Start Voice Command"

}i

final String searchTerms = "superman";

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

setListAdapter(new ArrayAdapter<Strings>(this,

android.R.layout.simple list item 1,

ACTIVITY CHOICES));
getListView().setChoiceMode (ListView.CHOICE MODE_SINGLE);
getListView().setTextFilterEnabled(true);
getListView().setOnItemClickListener(new OnItemClickListener()

{

@Override
public void onItemClick(AdapterView<?> arg0, View argl,

int arg2, long arg3) ({
switch(arg2) {
case 0: //opens web browser and navigates to given website
startActivity(new Intent(Intent.ACTION VIEW,
Uri.parse("http://www.android.com/")));
break;
case 1: //opens contacts application to browse contacts
startActivity(new Intent(Intent.ACTION VIEW,
Uri.parse("content://contacts/people/")));
break;
case 2: //opens phone dialer and fills in the given number
startActivity(new Intent(Intent.ACTION VIEW,
Uri.parse("tel:12125551212")));
break;
case 3: //searches Google for the string
Intent intent= new Intent(Intent.ACTION WEB_SEARCH);
intent.putExtra(SearchManager.QUERY, searchTerms);
startActivity(intent);

break;
case 4: //starts the voice command
startActivity(new
Intent (Intent.ACTION VOICE COMMAND));
break;

default: break;

Recipe: Passing Primitive Data Types between Activities

Sometimes data needs to be passed to a launched activity. Sometimes a launched
activity creates data that needs to be passed back to the calling activity. For example,

www.it-ebooks.info

http://www.it-ebooks.info/

Multiple Activities

the final score of a game needs to be returned to a high-scores screen. Following are
different ways to pass information between activities:

= Declare the relevant variable in the calling activity (for example, public int
finalScore) and set it in the launched activity (for example, CallingActivity.
finalScore=score).

= Attach extras onto bundles (demonstrated in this recipe).

= Use Preferences to store data to be retrieved later (covered in Chapter 6, “User
Interface Events”).

= Use the SQLite database to store data to be retrieved later (covered in Chapter 11,
“Data Storage Methods”).

A Bundle is a mapping from string values to various parcelable types. It can be
created by adding extras to an intent. This recipe shows data being passed from the
main activity to the launched activity, where it is modified and passed back.

The variables (in this case, an integer and a String) are declared in the
StartScreen activity. When the intent is created to call the PlayGame class, these
variables are attached to the intent using the putExtra method. When the result
is returned from the called activity, the variables can be read using the getExtras
method. These calls are shown in Listing 2.17.

Listing 2.17 src/com/cookbook/passing_data_activities/StartScreen.java

package com.cookbook.passing data activities;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

public class StartScreen extends Activity {
private static final int PLAY GAME = 1010;
private TextView tv;
private int meaningOfLife = 42;
private String userName = "Douglas Adams";

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
tv = (TextView) findViewById(R.id.startscreen text);

//Display initial values
tv.setText (userName + ":" + meaningOfLife);

//Set up button listener
Button startButton = (Button) findViewById(R.id.play game);

www.it-ebooks.info

a7

http://www.it-ebooks.info/

48 Chapter 2 Application Basics: Activities and Intents

startButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
startGame();

}

F;

@Override
protected void onActivityResult(int requestCode,

}

int resultCode, Intent data) {

if (requestCode == PLAY GAME && resultCode == RESULT OK) {
meaningOfLife = data.getExtras().getInt("returnInt");
userName = data.getExtras().getString("returnsStr");
//Show it has changed
tv.setText (userName + ":" + meaningOfLife);

}

super.onActivityResult (requestCode, resultCode, data);

private void startGame() {

Intent launchGame = new Intent(this, PlayGame.class);
//passing information to launched activity
launchGame.putExtra("meaningOfLife", meaningOfLife);

launchGame.putExtra("userName", userName);

startActivityForResult (launchGame, PLAY GAME);

The variables passed into the PlayGame activity can be read using the getIntExtra

and getStringExtra methods. When the activity finishes and prepares an intent to

return,

the putExtra method can be used to return data back to the calling activity.

These calls are shown in Listing 2.18.

Listing 2.18 src/com/cookbook/passing_data_activities/PlayGame.java

package com.cookbook.passing data_activities;

import
import
import
import
import
import

public

android.app.Activity;
android.content.Intent;
android.os.Bundle;
android.view.View;
android.widget.Button;
android.widget.TextView;

class PlayGame extends Activity {

private TextView tv2;
int answer;
String author;

www.it-ebooks.info

http://www.it-ebooks.info/

Multiple Activities

public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState);
setContentView(R.layout.game);

tv2 = (TextView) findViewById(R.id.game text);

//reading information passed to this activity

//Get the intent that started this activity

Intent i = getIntent();

//returns -1 if not initialized by calling activity
answer = i.getIntExtra("meaningOfLife", -1);
//returns [] if not initialized by calling activity
author = i.getStringExtra("userName");

tv2.setText (author + ":" + answer);

//Change values for an example of return
answer = answer - 41;
author = author + " Jr.";

//Set up button listener
Button startButton = (Button) findViewById(R.id.end game);
startButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
//Return information to calling activity
Intent i = getIntent();
i.putExtra("returnInt", answer);
i.putExtra("returnStr", author);
setResult (RESULT OK, 1i);
finish();

www.it-ebooks.info

49

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

3

Threads, Services,
Receivers, and Alerts

This chapter continues the introduction of the basic building blocks of an application.
First, the explicit specification of threads is introduced as a method to separate tasks.
Then, services and broadcast receivers are introduced. As shown in some recipes,
services and broadcast receivers benefit from using threads. The application widget,
which uses receivers, is then covered. This leads naturally to the discussion of various
alerts available to the developer.

Threads

Every application by default runs a single process upon creation that contains all the
tasks. To avoid hanging the user interface, time-consuming tasks, such as network
downloads or computationally intensive calculations, should reside in a separate
background thread. It is up to the developer to implement this properly, but then the
Android OS prioritizes the threads accordingly.

Most applications can benefit from the use of threads. If such occasions are not de-
tected in the software design phase, they quickly display during testing because the
Android system provides an alert to the user when the UT hangs, as shown in Figure 3.1.

Slow App isn't responding.

Do you want to close it?

Wait OK

Figure 3.1 An example message that displays when a thread hangs

www.it-ebooks.info

http://www.it-ebooks.info/

52

Chapter 3 Threads, Services, Receivers, and Alerts

Recipe: Launching a Secondary Thread

In this recipe, a ringtone song is played when an on-screen button is pressed. This
provides a simple illustration of how threads can be used with a time-consuming
operation. In the following, calling the play music() function without specifying a
separate thread blocks the application during music playback:

Button startButton = (Button) findvViewById(R.id.trigger);
startButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view){
// BAD USAGE: function call too time-consuming
// function causes main thread to hang

play music();

DE

This means that any user request such as navigating back to the home screen or
multiple pushes of an on-screen button are not registered until the music is completely
finished playing. The unresponsive Ul might even cause the Android system to display
an error such as the one shown in Figure 3.1.

This is resolved by launching a secondary thread to call the play music() function
as follows:

1. Create a new thread to hold a Runnable object:
Thread initBkgdThread = new Thread(

//Insert runnable object here

)i

2. Create a Runnable object that overrides the run() method to call the time-
consuming task:

new Runnable() {
public void run() {

play music();

3. Start the thread, which then runs the task:
initBkgdThread.start();

The setup of the secondary thread to contain the time-consuming task is quick, so
the main thread can continue servicing other events.

Before the code for the full activity is shown, the supporting files are discussed.
Media playback is covered more fully in Chapter 8, “Multimedia Techniques,” but
for illustration, the song is implemented here as a sequence of notes specified using

www.it-ebooks.info

http://www.it-ebooks.info/

Threads

ringtone text transfer language (RTTTL). For example, the following RTTTL code
describes a quarter-note of the A (220Hz) just below middle C. Putting this in a
single-line text file in the res/raw/ directory registers it as the R.raw.a4 resource.

a4:d=4,0=5,b=250:a4
Then, a call in the activity to the media player plays this ringtone note:

m_mediaPlayer = MediaPlayer.create(this, R.raw.a4);

m_mediaPlayer.start();

This recipe uses four different notes in four separate RTTTL files: g4.rtttl,
a4.rtttl, b4.rtttl, and c5.rtttl. These are just exact copies of the preceding example
with the a4 changed in the file to reflect the new note in each case, but it can also be
expanded to other notes or formats.

One aside is that MediaPlayer launches its own background thread to play the
media. So, if this were a single longer file, it would be possible to avoid the use of an
explicit thread as explained in Chapter 8, “Multimedia Techniques.” That fact does
not help when multiple files need to be played quickly, as here, but it is important to
know that threads are not always necessary.

The trigger for starting the music is a button press. The Button widget needs to
be specified in the main layout file (here called main.xml) and is identified with the
name trigger, as shown in Listing 3.1.

Listing 3.1 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match parent"
android:layout height="match parent"
>
<Button android:id="@+id/trigger"
android:layout width="100dip" android:layout height="100dip"
android:text="Press Me"
/>

</LinearLayout>

One side effect of launching a separate thread is that it still continues even if the
main activity is paused. This is seen by implementing the background thread and
navigating back to the home screen during music play. The music keeps playing until
it is completed. If this is not the preferred behavior, the play music() function can
check a flag (here called paused), which is set during the main activity’s onPause ()
function to stop music playback when the main thread is paused.

All the previous items are combined into the full activity PressAndPlay in List-
ing 3.2.

www.it-ebooks.info

53

http://www.it-ebooks.info/

Chapter 3 Threads, Services, Receivers, and Alerts

Listing 3.2 src/com/cookbook/launch_thread/PressAndPlay.java

package com.cookbook.launch thread;

import android.app.Activity;
import android.media.MediaPlayer;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;

public class PressAndPlay extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

Button startButton = (Button) findViewById(R.id.trigger);
startButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view)({

//Stand-alone play music() function call causes
//main thread to hang. Instead, create
//separate thread for time-consuming task.
Thread initBkgdThread = new Thread(new Runnable() {
public void run() {
play music();

i

initBkgdThread.start();

D
}

int[] notes = {R.raw.c5, R.raw.b4, R.raw.a4, R.raw.g4};
int NOTE_DURATION = 400; //millisec
MediaPlayer m mediaPlayer;
private void play music() {
for(int 1i=0; 1i<12; ii++)
//Check to ensure main activity not paused
if (1paused)
if(m mediaPlayer != null) {m mediaPlayer.release();}
m_mediaPlayer = MediaPlayer.create(this, notes[ii%4]);
m_mediaPlayer.start();
try {
Thread.sleep (NOTE_DURATION);
} catch (InterruptedException e) {
e.printStackTrace();
}

}

boolean paused = false;
@Override
protected void onPause() {

www.it-ebooks.info

http://www.it-ebooks.info/

Threads

paused = true;
super.onPause();

}

@Override

protected void onResume() {
super.onResume () ;
paused = false;

Note that the Thread.sleep() method pauses the thread for approximately the
amount of time specified (in milliseconds). This is used to implement the note duration.

Also note the convention used in the lifecycle methods: Additional activity-specific
logic is bracketed by the super methods. This is good practice to ensure proper com-
pletion of commands. So the internal pause flag is set to true before truly pausing the
activity, and the activity is fully resumed before setting the internal pause flag to false.

Recipe: Creating a Runnable Activity

This recipe shows an activity that evaluates a computationally intensive function, such
as edge detection in an image. Here, a dummy function called detectEdges() is run
to emulate the actual image-processing algorithm.

If detectEdges() is called in onCreate() by itself, it hangs the main thread and
does not display the UI layout until computation is done. Therefore, a separate thread
needs to be created and started for the time-consuming function. Because the main
purpose of the activity is this time-consuming operation, it is natural to have the
activity itself implement Runnable. As shown in Listing 3.3, the background thread is
declared in the onCreate () method. When the background thread is started, it calls
the activity’s run() method, which is overridden with the intended functionality.

The button is implemented exactly as in the previous “Launching a Secondary
Thread” recipe. Pressing the button shows that the Ul is still responsive when the
background task detectEdges() runs.

Listing 3.3 src/com/cookbook/runnable_activity/EdgeDetection.java

package com.cookbook.runnable activity;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

public class EdgeDetection extends Activity implements Runnable {
int numberOfTimesPressed=0;

@Override
public void onCreate(Bundle savedInstanceState) {

www.it-ebooks.info

55

http://www.it-ebooks.info/

56 Chapter 3 Threads, Services, Receivers, and Alerts

super.onCreate (savedInstanceState);

setContentView(R.layout.main);

final TextView tv = (TextView) findViewById(R.id.text);
//In-place function call causes main thread to hang:

/* detectEdges(); */

//Instead, create background thread for time-consuming task
Thread thread = new Thread(EdgeDetection.this);
thread.start();

Button startButton = (Button) findViewById(R.id.trigger);
startButton.setOnClickListener(new View.OnClickListener() ({
public void onClick(View view){

tv.setText ("Pressed button" + ++numberOfTimesPressed
+ " times\nAnd computation loop at "
+ """+ xi+ ", "+ ylo+ ") pixels");

N;
}

@Override

public void run() {
detectEdges();

1

//Edge Detection

int xi, yi;

private double detectEdges() {
int x pixels = 4000;
int y pixels = 3000;
double image transform=0;

//Double loop over pixels for image processing
//Meaningless hyperbolic cosine emulates time-consuming task
for(xi=0; xi<x pixels; xi++) {
for(yi=0; yi<y pixels; yi++) {
image_transform = Math.cosh(xi*yi/x pixels/y pixels);
}
}

return image_transform;

Recipe: Setting a Thread’s Priority

The Android system handles thread priorities. By default, a new thread, myThread,
gets a priority of 5. The developer can suggest a different priority by calling
myThread.setPriority(priority) before myThread.start(). The priority cannot
be set higher than Thread.MAX PRIORITY (which is 10) or lower than

Thread.MIN PRIORITY (which is 1).

Android provides an alternative way to set threading priorities. With android.
os.Process.setThreadPriority()a priority based on the “nice” Linux values
between 20 and -20 can be requested. Both versions map to the same underlying
system call, but android.os.Process.setThreadPriority() is more fine-grained.

www.it-ebooks.info

http://www.it-ebooks.info/

Threads

Recipe: Canceling a Thread

Sometimes when a component is finished or killed, the developer wants the threads it
spawns to also be killed. For example, take a thread defined in an activity:

private volatile Thread myThread;

The myThread.stop() method is deprecated because it might leave the application
in an unpredictable state. Instead, use the following when needed, such as in the
onStop () method of the parent component:

//Use to stop the thread myThread
if(myThread != null) {
Thread dummy = myThread;
myThread = null;

dummy.interrupt();

At the application level, there is another way to do this: Declare all spawned
threads as daemon threads using the setDaemon (true) method, as in the following
example. This ensures that threads associated with that application are killed when the
application’s main thread is killed.

//Use when initially starting a thread
myThread.setDaemon (true);

myThread.start();

Finally, there is always the method of using a while(stillRunning) loop in the
run() method and externally setting stillRunning=false to kill the thread. However,
this might not provide sufficient control over the timing of when the thread stops.

Recipe: Sharing a Thread between Two Applications

The previous recipes motivated the use of multiple threads in a single application.
The converse case is also sometimes useful, that is, use of multiple applications in
a single thread. For example, if two applications need to communicate with each
other, they can do so using binders rather than the more complicated inter-process
communication (IPC) protocol. The steps for doing this follow:

= Make sure each application, when packaged for release, is signed with the same
key for security reasons.

= Make sure each application is run with the same user ID. This is done by
declaring the same attribute, android:sharedUserId="my.shared.userid", in
the ActivityManifest.xml file for each application.

= Declare each relevant activity or component to be run in the same process.
This is done by declaring the same attribute, android:process="my.shared.
process-name", in the ActivityManifest.xml file for each component.

www.it-ebooks.info

57

http://www.it-ebooks.info/

58

Chapter 3 Threads, Services, Receivers, and Alerts

This ensures that the two components are run in the same thread and transparently
share the same information. The more complex case where permissions cannot be
shared is covered in the “Implementing a Remote Procedure Call” recipe in Chapter 4,
“Advanced Threading Techniques.”

Messages between Threads: Handlers

After multiple threads run concurrently, such as a main application thread and a
background thread, there needs to be a way for them to communicate. Example use
cases for such communication are:

= A main thread serves time-critical information and passes messages to the
background time-consuming thread to update.

= A large computation completes and sends a message back to the calling thread
with the result.

This can be accomplished with handlers, which are objects for sending messages
between threads. Each handler is bound to a single thread, delivering messages to it
and executing commands from it.

Recipe: Scheduling a Runnable Task from the Main Thread

This recipe implements a clock timer, which is often needed in applications. For
example, it can be used in a game to keep track of how long a player takes to complete
a level. This provides a simple way to handle user interaction while a background
thread continues to run.

The timer is run in a background thread so it does not block the UI thread, but
it needs to update the UT whenever the time changes. As shown in Listing 3.4, the
TextView text starts with a welcome message and the button text with trigger ID
starts with the value "Press Me".

Listing 3.4 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent"
>
<TextView android:id="@+id/text"
android:layout width="match parent"
android:layout height="wrap content"
android:text="@string/hello"
/>
<Button android:id="@+id/trigger"
android:layout width="100dip" android:layout height="100dip"

www.it-ebooks.info

http://www.it-ebooks.info/

Messages between Threads: Handlers

android:text="Press Me"
/>

</LinearLayout>

These text resources in the layout XML file are associated with TextView variables
in the BackgroundTimer Java activity using the following initializers:

mTimeLabel = (TextView) findViewById(R.id.text);
mButtonLabel = (TextView) findViewById(R.id.trigger);

After being identified in Java, the text can be modified during run-time. When the
application starts, mUpdateTimeTask starts a timer and overwrites the text mTimeLabel
with the new time in minutes and seconds. When the button is pressed, its onClick()
method overwrites the text mButtonLabel with the number of times the button
was pressed.

The handler mHandler is created and used to queue the runnable object
mUpdateTimeTask. It is first called in the onCreate() method, and then the recursive
call in the task itself continues to update the time every 200ms. This is used more
often than not to ensure a smooth time change each second without excessive
overhead in task calls. The complete activity is shown in Listing 3.5.

Listing 3.5 src/com/cookbook/background_timer/BackgroundTimer.java

package com.cookbook.background timer;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.os.SystemClock;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

public class BackgroundTimer extends Activity {
//Keep track of button presses, a main thread task
private int buttonPress=0;
TextView mButtonLabel;

//counter of time since app started, a background task
private long mStartTime = OL;
private TextView mTimeLabel;

//handler to handle the message to the timer task
private Handler mHandler = new Handler();

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

www.it-ebooks.info

59

http://www.it-ebooks.info/

60 Chapter 3 Threads, Services, Receivers, and Alerts

if (mStartTime == OL) {
mStartTime = SystemClock.uptimeMillis();
mHandler.removeCallbacks (mUpdateTimeTask);
mHandler.postDelayed (mUpdateTimeTask, 100);

}

mTimeLabel = (TextView) findViewById(R.id.text);
mButtonLabel = (TextView) findViewById(R.id.trigger);

Button startButton = (Button) findViewById(R.id.trigger);
startButton.setOnClickListener(new View.OnClickListener() ({
public void onClick(View view){
mButtonLabel.setText ("Pressed " + ++buttonPress
+ " times");

N;
}

private Runnable mUpdateTimeTask = new Runnable() {
public void run() {
final long start = mStartTime;

long millis = SystemClock.uptimeMillis() - start;
int seconds = (int) (millis / 1000);

int minutes = seconds / 60;

seconds = seconds % 60;
mTimeLabel.setText ("" + minutes + ":"

+ String.format ("%$02d",seconds));
mHandler.postDelayed(this, 200);

b

@Override

protected void onPause() {
mHandler.removeCallbacks (mUpdateTimeTask);
super.onPause();

}

@Override
protected void onResume() {
super.onResume () ;
mHandler.postDelayed (mUpdateTimeTask, 100);

Recipe: Using a Countdown Timer

The previous recipe is an example of handlers and a functional timer. Another timer is
provided with the built-in class CountDownTimer. This encapsulates the creation of a
background thread and the handler queuing into a convenient class call.

The countdown timer takes two arguments: the number of milliseconds until the
countdown is done and how often in milliseconds to process onTick() callbacks.
The onTick() method is used to update the countdown text. Note that otherwise the
recipe is identical to the previous recipe. The full activity is shown in Listing 3.6.

www.it-ebooks.info

http://www.it-ebooks.info/

Messages between Threads: Handlers

Listing 3.6 src/com/cookbook/countdown/CountDownTimerExample.java

package com.cookbook.countdown;

import android.app.Activity;
import android.os.Bundle;

import android.os.CountDownTimer;
import android.view.View;

import android.widget.Button;
import android.widget.TextView;

public class CountDownTimerExample extends Activity {
//Keep track of button presses, a main thread task
private int buttonPress=0;
TextView mButtonLabel;

//countdown timer, a background task
private TextView mTimeLabel;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

mTimeLabel = (TextView) findViewById(R.id.text);
mButtonLabel = (TextView) findViewById(R.id.trigger);

new CountDownTimer (30000, 1000) {
public void onTick(long millisUntilFinished) ({
mTimeLabel.setText("seconds remaining: "
+ millisUntilFinished / 1000);

public void onFinish() {
mTimeLabel.setText("done!");

}.start();
Button startButton = (Button) findViewById(R.id.trigger);
startButton.setOnClickListener(new View.OnClickListener() {

public void onClick(View view)({
mButtonLabel.setText ("Pressed " + ++buttonPress + " times");

i

Recipe: Handling a Time-Consuming Initialization

This recipe addresses a common case of needing to run a time-consuming initial-

ization when an application starts. Initially, the layout is set to show a specific

3 : bhd L3 = . - .
Loading. . .” splash screen specified in the loading.xml file. In this example, it

is a simple text message as shown in Listing 3.7, but it could be a company logo or

introductory animation.

www.it-ebooks.info

61

http://www.it-ebooks.info/

62

Chapter 3 Threads, Services, Receivers, and Alerts

Listing 3.7 res/layout/loading.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="wrap content"
android:layout height="wrap content">
<TextView android:id="@+id/loading"
android:layout width="match parent"
android:layout height="wrap content"
android:text="Loading..."
/>

</LinearLayout>

While this layout is being displayed, the function initializeArrays(), which
takes time to complete, is launched in a background thread to avoid hanging the
UI. The initialization uses static variables to ensure that a screen change or another
instance of the activity does not require a recalculation of the data.

When the initialization is done, a message is sent to the handler mHandler. Since
the act of sending a message is all the information needed, just an empty message is
sent as mHandler.sendEmptyMessage (0).

Upon receiving the message, the Ul thread runs the handleMessage () method. It
is overridden to continue with the activity after the starting initialization, here setting
up the main screen specified in the main.xml layout file. The full activity is shown in
Listing 3.8.

Listing 3.8 src/com/cookbook/handle_message/HandleMessage.java

package com.cookbook.handle message;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.os.Message;

public class HandleMessage extends Activity implements Runnable {

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.loading);

Thread thread = new Thread(this);
thread.start();

}

private Handler mHandler = new Handler()
public void handleMessage(Message msg) {
setContentView(R.layout.main);
}

}:

www.it-ebooks.info

http://www.it-ebooks.info/

Alerts

public void run(){
initializeArrays();
mHandler.sendEmptyMessage(0);

}

final static int NUM_SAMPS = 1000;

static double[][] correlation;

void initializeArrays() {
if(correlation!=null) return;

correlation = new double[NUM SAMPS][NUM SAMPS];
//calculation
for(int k=0; k<NUM SAMPS; k++) {
for(int m=0; m<NUM SAMPS; m++) {
correlation(k][m] = Math.cos(2*Math.PI*(k+m)/1000);
}

Alerts

Alerts provide a quick message to the user outside of the application’s main Ul An alert
can be in an overlay window such as a toast or AlertDialog box. It can also be in the
notification bar at the top of the screen. The toast alert provides a printed message to the
screen with a single line of code. There is no need to work with the layout files. For this
reason, it is also a handy debug tool, equivalent to the printf statement in C programs.

Recipe: Using Toast to Show a Brief Message on the Screen

The Toast method was introduced in the previous chapter in a compact form:
Toast.makeText (this, "text", Toast.LENGTH SHORT).show();
It can also be written as a multiline command:

Toast tst = Toast.makeText(this, "text", Toast.LENGTH SHORT);
tst.show();

This form is useful when the text needs to be shown multiple times, as the instance
in the first line can be reused.

Two other uses for the multiline Toast command are to reposition the text location
or to add an image. To reposition the text location, or to center the toast in the screen
display, use setGravity before calling the show() method:

tst.setGravity(Gravity.CENTER, tst.getXOffset() / 2,
tst.getYOffset() / 2);

To add an image to a toast, use the following:

Toast tst = Toast.makeText(this, "text", Toast.LENGTH_LONG);

www.it-ebooks.info

63

http://www.it-ebooks.info/

Chapter 3 Threads, Services, Receivers, and Alerts

ImageView view = new ImageView(this);
view.setImageResource (R.drawable.my figure);
tst.setView(view);

tst.show();

Recipe: Using an AlertDialog Box

Providing a user with an alert and up to three buttons of possible actions can be done
with the AlertDialog class. Some examples are:

= “Your final score was 90/100: Try this level again, advance to next level, or go
back to the main menu.”

s “The image file is corrupt. Choose another or cancel action.”

This recipe takes the first example and shows how to provide an action on each
choice depending on which button is clicked. The example code is shown in List-
ing 3.9.

AlertDialog is initialized using the create() method; the text is specified using
the setMessage () method; the three possible button texts and corresponding actions
are specified using the setButton() method; and finally, the dialog box is displayed
to the screen using the show() method. Note that the logic in each of the onClick()
callback functions is just an example to show how to specify button actions.

Listing 3.9 Providing Action Choices with AlertDialog

AlertDialog dialog = new AlertDialog.Builder (this) .create();

dialog.setMessage("Your final score: " + mScore + "/" + PERFECT SCORE);
dialog.setButton(DialogInterface.BUTTON POSITIVE, "Try this level again",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
mScore = 0;
start_level();

b
dialog.setButton(DialogInterface.BUTTON NEGATIVE, "Advance to next level",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
mLevel++;
start_level();

}
RE
dialog.setButton(DialogInterface.BUTTON NEUTRAL, "Back to the main menu",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
mLevel = 0;
finish();

}
b

dialog.show();

www.it-ebooks.info

http://www.it-ebooks.info/

Alerts

Your final score: 90/100

Advance to Back to the Try this
next level main menu level again

Figure 3.2 An alert dialog box with three options

This produces the pop-up dialog box shown in Figure 3.2. Note that the buttons
are displayed in the order BUTTON POSITIVE, BUTTON NEUTRAL, and BUTTON

NEGATIVE. If a dialog box with two options or one option is needed, do not specify all
three button choices.

Recipe: Showing Notification in the Status Bar

The status bar across the top of the device screen shows pending notifications for users
to read whenever they choose. In general, because an activity mostly interacts with

the user, services are more likely to use this feature. As a rule, notifications should be
concise and minimal for the best user experience.

The steps for creating a status bar notification are:
1. Declare a notification and specify how it displays on the status bar:
String ns = Context.NOTIFICATION SERVICE;
mNManager = (NotificationManager) getSystemService(ns);
final Notification msg = new Notification(R.drawable.icon,
"New event of importance",
System.currentTimeMillis());
2. Define how it looks when the status bar is expanded for details and the action

taken when clicked (this future action is defined by a PendingIntent class):

Context context = getApplicationContext();
CharSequence contentTitle = "ShowNotification Example";
CharSequence contentText = "Browse Android Cookbook Site";
Intent msgIntent = new Intent(Intent.ACTION VIEW,
Uri.parse ("http://www.pearson.com"));

PendingIntent intent =

PendingIntent.getActivity(ShowNotification.this,

0, msgIntent,

Intent .FLAG_ACTIVITY NEW_TASK);

www.it-ebooks.info

65

http://www.it-ebooks.info/

66 Chapter 3 Threads, Services, Receivers, and Alerts

3. Add any further configurable information, such as whether to blink an LED,
play a sound, or automatically cancel the notification after it is selected. The
latter two are shown here:

msg.defaults |= Notification.DEFAULT SOUND;

msg.flags |= Notification.FLAG AUTO CANCEL;

4. Set the information for the notification event to the system:

msg.setLatestEventInfo(context, contentTitle, contentText, intent);

5. When the event of interest happens in the application, trigger notification with
a unique identifier:
mNManager.notify(NOTIFY ID, msg);

6. Upon completion, clear notification as needed with the same identifier.
If any information gets changed, the notification should be updated rather than
sending another notification. This can be done by updating the relevant information in

step 2, and then calling setLatestEventInfo again. An example activity illustrating a
notification is shown in Listing 3.10.

Listing 3.10 src/com/cookbook/show_notification/ShowNotification.java

package com.cookbook.show notification;

import android.app.Activity;

import android.app.Notification;

import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Context;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

public class ShowNotification extends Activity {

private NotificationManager mNManager;
private static final int NOTIFY ID=1100;

/** called when the activity is first created */

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

String ns = Context.NOTIFICATION SERVICE;
mNManager = (NotificationManager) getSystemService(ns);

www.it-ebooks.info

http://www.it-ebooks.info/

Alerts

final Notification msg = new Notification(R.drawable.icon,
"New event of importance",
System.currentTimeMillis());

Button start = (Button)findViewById(R.id.start);
Button cancel = (Button)findViewById(R.id.cancel);

start.setOnClickListener(new OnClickListener() {
public void onClick(View v) {
Context context = getApplicationContext();
CharSequence contentTitle = "ShowNotification Example";
CharSequence contentText = "Browse Android Cookbook Site";
Intent msgIntent = new Intent(IntentAACTIONi\/IEW,
Uri.parse("http://www.pearson.com"));
PendingIntent intent =
PendingIntent.getActivity(ShowNotification.this,
0, msgIntent,
Intent.FLAG ACTIVITY NEW TASK);

msg.defaults |= Notification.DEFAULT SOUND;
msg.flags |= Notification.FLAG AUTO CANCEL;

msg.setLatestEventInfo(context,
contentTitle, contentText, intent);
mNManager.notify(NOTIFY ID, msg);

K

cancel.setOnClickListener(new OnClickListener() {
public void onClick(View v) {
mNManager.cancel (NOTIFY ID);
}

K

With Android 4.1 came additional notification styles and an API based on a
builder pattern to create them. The recommended way to use them is by using the
NotificationCompat API, which requires the addition of android-support-v4.
jar to the project’s /libs/ folder. The four new styles are big text, big picture, inbox
style, and the ability to add a progress bar to a notification. All notifications still need
to have a small icon, title, and content text. Big text and big picture are very similar
(either a text or a bitmap object is added as content). The big-picture style is shown in
Listing 3.11.

Listing 3.11 A Big-Picture-Style Notification

Button startBigPic = (Button)findvViewById(R.id.startBigPic);
Button stopBigPic = (Button)findvViewById(R.id.stopBigPic);

startBigPic.setOnClickListener(new OnClickListener() {
public void onClick(View v) {

www.it-ebooks.info

67

http://www.it-ebooks.info/

68 Chapter 3 Threads, Services, Receivers, and Alerts

Context context = getApplicationContext();
CharSequence contentTitle = "Show Big Notification Example";
CharSequence contentText = "Browse Android Cookbook Site";

Intent msgIntent = new Intent(Intent.ACTIONj/‘IEW,
Uri.parse("http://www.pearson.com"));
PendingIntent intent =
PendingIntent.getActivity(ShowNotification.this,
0, msglntent,
Intent.FLAG_ACTIVITY NEW_TASK);

NotificationCompat.Builder builder =

new NotificationCompat.Builder(context);
builder.setSmallIcon(R.drawable.icon);
builder.setContentTitle (contentTitle);
builder.setContentText (contentText);
builder.setContentIntent (intent);

NotificationCompat.BigPictureStyle pictureStyle = new
NotificationCompat.BigPictureStyle();
Bitmap bigPicture= BitmapFactory.decodeResource (getResources(),
R.drawable.bigpicture);
pictureStyle.bigPicture (bigPicture);

builder.setStyle(pictureStyle);

mNManager.notify (NOTIFY ID+1,builder.build());

}
Ni
stopBigPic.setOnClickListener(new OnClickListener() {
public void onClick(View v) {
mNManager.cancel (NOTIFY ID+1);
}

F;

Intent, title, and content text are the same as in the previous notification. A
new builder instance is obtained and the mandatory information is set by calling
builder.setSmallIcon(..) and builder.setContentXX(..) for text, title, and
intent. The NotificationCompat.BigPictureStyle class needs to be given a
bitmap object, which can be read from the drawable folder with BitmapFactory.
decodeResource (getResources,R.drawable.bigpicture). A call to builder.
setStyle (pictureStyle); will ensure that the image gets displayed, then the
notification is shown.

The inbox style displays a list of text lines that resemble an email inbox. The
steps to display this are the same, except that an instance of NotificationCompat.
InboxStyle is given to the builder, and every line of text needs to be added to the
style object by calling inboxStyle.addline(..) with a CharSequence argument.
This is shown in Listing 3.12.

www.it-ebooks.info

http://www.it-ebooks.info/

Services

Listing 3.12 Inbox-Style Notification

Button startInbox = (Button)findViewById(R.id.startInbox) ;
Button stopInbox = (Button)findviewById(R.id.stopInbox);

startInbox.setOnClickListener(new OnClickListener() {
public void onClick(View v) {

}
i

Context context = getApplicationContext();
CharSequence contentTitle = "Show Big Notification Example";
CharSequence contentText = "Browse Android Cookbook Site";

Intent msgIntent = new Intent(Intent.ACTION_VIEW,
Uri.parse("http://www.pearson.com"));
PendingIntent intent =
PendingIntent.getActivity(ShowNotification.this,
0, msgIntent,
Intent.FLAG_ACTIVITY NEW TASK);

NotificationCompat.Builder builder =

new NotificationCompat.Builder(context);
builder.setSmallIcon(R.drawable.icon);
builder.setContentTitle (contentTitle);
builder.setContentText (contentText);

NotificationCompat.InboxStyle inboxStyle =
new NotificationCompat.InboxStyle();

for(int 1=0;i<4;i++){

inboxStyle.addLine ("subevent #"+1i);
}
builder.setStyle(inboxStyle);

builder.setContentIntent(intent);

mNManager.notify(NOTIFY ID+2,builder.build());

stopInbox.setOnClickListener(new OnClickListener() {
public void onClick(View v) {

}
b

mNManager.cancel (NOTIFY_ID+2);

Services

A service is an Android component that runs in the background without any user in-

teraction. It can be started and stopped by any component. While it is running, any

component can bind to it. A service can also stop itself. Some illustrative scenarios of a

service are:

www.it-ebooks.info

69

http://www.it-ebooks.info/

70 Chapter 3 Threads, Services, Receivers, and Alerts

An activity provides the user a way to select a set of music files, which then starts
a service to play back the files. During playback, a new activity starts and binds to
the existing service to allow the user to change songs or stop playback.

An activity starts a service to upload a set of pictures to a website. A new activity
starts and binds to the existing service to determine which file is currently being
uploaded and displays the picture to the screen.

A broadcast receiver receives a message that a picture was taken and launches a
service to upload the new picture to a website. The broadcast receiver then goes
inactive and is eventually killed to reclaim memory, but the service continues
until the picture is uploaded. Then, the service stops itself.

The general lifecycle of a service is illustrated in Figure 3.3.
As an aside on the third scenario, any background task within a component will be
killed when the component is killed. Therefore, tasks that are meaningful to continue

cven

after the component stops should be done by launching a service. This ensures

that the operating system is aware that active work is still being done by the process.
All services extend the abstract class Service or one of its subclasses. Similar to an

activity, the entry point to each service is the onCreate () method. There is no con-

cept of pausing a service, but it can be stopped, which calls the onDestroy() method.

Rec

ipe: Creating a Self-Contained Service

The steps to create a self-contained service associated with a single component are:

1.

Create a class to extend Service. (In Eclipse, this can be done by right-clicking
the project, choosing New — Class, and specifying android.app.Service as
the superclass.)

. Declare the service in the AndroidManifest.xml file by adding a variation of the
following (this should be done automatically if the previous Eclipse step was used):

<service android:name=".myService"></service>

3. Override the onCreate () and onDestroy() methods. (In Eclipse, this can

be done by right-clicking on the class file, choosing Source — Override/
Implement Methods..., and checking the onCreate() and onDestroy() meth-
ods.) These contain the functionality of the service when it is started and stopped.

4. Override the onBind() method for cases when a new component binds to this

service after it has already been created.

. Activate the service from an external trigger. The service cannot run by itself
but instead needs to be activated by a separate component or trigger in some
way. For example, a component can create an intent to start or stop the service
using startService() or stopService() as needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Services 71

onCreate() onCreate()

onStart() onBind()

(Client interacts with the service)

onRebind()

The service

is stopped _
(no callback) onUnbind()
onDestroy() onDestroy()

Service is Service is

shut down shut down

Figure 3.3 Service lifecycle (http://developer.android.com/)

To illustrate the previous process, a simple service is shown in Listing 3.13 to use
the play music() function from the first recipe in this chapter. Note the following:

= A Toast is used to show when the service is started or stopped.

= The onBind () method is overridden but not used. (This can be extended as

needed.)
= A thread still needs to be created for playing music so as not to block the UL

= The service does not stop when the activity is destroyed (for example, by
changing the screen orientation) or when the activity is paused (for example,
when pressing the Home key). This shows that the service, although launched by
the activity, runs as its own entity.

www.it-ebooks.info

http://developer.android.com/
http://www.it-ebooks.info/

72

Chapter 3 Threads, Services, Receivers, and Alerts

Listing 3.13 src/com/cookbook/simple_service/SimpleService.java

package com.cookbook.simple service;

import android.app.Service;
import android.content.Intent;
import android.media.MediaPlayer;
import android.os.IBinder;

import android.widget.Toast;

public class SimpleService extends Service {
@Override
public IBinder onBind(Intent arg0) {
return null;
}

boolean paused = false;

@Override
public void onCreate() {
super.onCreate();
Toast.makeText (this,"Service created ...",
Toast .LENGTH_LONG).show();
paused = false;

Thread initBkgdThread = new Thread(new Runnable() {

public void run() {
play music();
}
Ni

initBkgdThread.start();

}

@Override
public void onDestroy() {
super.onDestroy();
Toast.makeText (this, "Service destroyed ...",
Toast .LENGTH_LONG).show();
paused = true;

}

int[] notes = {R.raw.c5, R.raw.b4, R.raw.a4, R.raw.g4};

int NOTE_DURATION = 400; //millisec
MediaPlayer m mediaPlayer;
private void play music() {
for(int 1i=0; 1i<12; ii++)
//Check to ensure main activity not paused
if(!paused) {

if(m mediaPlayer != null) {m mediaPlayer.release();}

m_mediaPlayer = MediaPlayer.create(this

m_mediaPlayer.start();

try {
Thread.sleep (NOTE_DURATION);

} catch (InterruptedException e) {
e.printStackTrace();

}

notes[11%4]);

www.it-ebooks.info

http://www.it-ebooks.info/

Services

The AndroidManifest.xml file now has both the activity and service declared, as
shown in Listing 3.14.

Listing 3.14 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.cookbook.simple service"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"
android:label="@string/app name">
<activity android:name=".SimpleActivity"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>

</activitys>
<service android:name=".SimpleService"></service>
</application>
<uses-sdk android:minSdkVersion="3" />
</manifest>

The example activity that sets up the UI to trigger the start and stop of this service
is shown in Listing 3.15, and the associated layout file is shown in Listing 3.16 for the
two buttons.

Listing 3.15 src/com/cookbook/simple_service/SimpleActivity.java

package com.cookbook.simple service;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

public class SimpleActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

Button startButton = (Button) findvViewById(R.id.Button0l);
startButton.setOnClickListener(new View.OnClickListener()
public void onClick(View view){
startService(new Intent(SimpleActivity.this,
SimpleService.class));

}
N;

Button stopButton = (Button)findViewById(R.id.Button02);
stopButton.setOnClickListener(new View.OnClickListener() {

www.it-ebooks.info

73

http://www.it-ebooks.info/

74 Chapter 3 Threads, Services, Receivers, and Alerts

public void onClick(View v){
stopService(new Intent(SimpleActivity.this,
SimpleService.class));

Listing 3.16 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent">
<TextView
android:layout width="match parent"
android:layout height="wrap content"
android:text="@string/hello"
/>
<Button android:text="Do it" android:id="@+id/Button0l"
android:layout width="wrap content"
android:layout height="wrap content"></Button>
<Button android:text="Stop it" android:id="@+id/Button02"
android:layout width="wrap content"
android:layout height="wrap content"></Button>
</LinearLayout>

Recipe: Adding a WakeLock

When the user presses the power button or the device has not been used for a certain
amount of time, the screen goes off and the device goes to standby. While it is

on standby, most running processes are shut down or canceled, and the processor

goes into sleep mode, saving precious battery life. It is good practice to respect that
behavior and not drain the user’s battery by preventing standby. That being said, there
are cases when it is desirable to keep an app running even if the screen is off, music
playback being a prime example. To be able to keep an app running while the screen
is off, the app must set a WakeLock. This recipe uses the service from the previous
recipe and adds a WakeLock to it, so that music playback continues after the power
button on the device has been pressed. Table 3.1 shows which types of WakeLocks are
available for use.

There are two main types of WakeLock: partial WakeLock, which lets the screen
go off but makes sure the app is still running, and full WakeLock, which also keeps
the screen and the keyboard on even if the power button is pressed. Two subtypes
building upon partial WakeLock give a bit more fine-grained control over the screen
behavior. This recipe uses the partial WakeLock as the screen does not need to be
on while audio is playing. For using WakeLocks, a special WakeLock permission is
needed. This is added to the AndroidManifest.xml file in Listing 3.17.

www.it-ebooks.info

http://www.it-ebooks.info/

Services

Table 3.1 Comparison of Available WakeLocks

WakelLock Type CPU Screen Hardware Keyboard
PARTIAL WAKE LOCK On Off Off

SCREEN_DIM WAKE_ LOCK On Dimmed Off

SCREEN_BRIGHT WAKE_LOCK On Bright Off
FULL_WAKE_LOCK On Bright Bright

Listing 3.17 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.cookbook.simple service"
android:versionCode="1"
android:versionName="1.0">

<uses-permission android:name="android.permission.WAKE LOCK"/>

<application android:icon="@drawable/icon"
android:label="@string/app name">

<activity android:name=".SimpleActivity"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>

</activity>
<service android:name=".SimpleService"s</service>
</application>
<uses-sdk android:minSdkVersion="3" />
</manifest>

To acquire a WakeLock, access to the PowerManager class is needed. This class is a
system service and can be retrieved by calling Context.getSystemService (Context.
PowerService). To create a new WakeLock instance, call the following:

powerManager.mWakeLock =
powerManager .newWakeLock (PowerManager . PARTIAL WAKE LOCK, LOG_TAG) ;

Here, all the WakeLock properties wanted are specified by concatenating the flags
with an OR operation in the first argument, and giving a name tag to the WakeLock
in the second, usually the log tag of the service or activity. To activate the WakeLock,
simply call mWakelock.acquire() whenever needed.

www.it-ebooks.info

75

http://www.it-ebooks.info/

76

Chapter 3 Threads, Services, Receivers, and Alerts

WakeLocks need to be explicitly released if they are not needed anymore. This
is done by checking if they are held with mWakelock.isHeld() and then calling
mWakelock.release();. After the WakeLock is released, the device can go back
to sleep as it would normally when the screen goes off. One thing to note is that
WakeLocks need to be released in the reverse order in which they were acquired,
in the rare case that more than one of them is used. This is demonstrated in List-

ing 3.18.

Listing 3.18 Simple Service with a WakeLock

public class SimpleService extends Service {
private static final String LOG TAG = SimpleService.class.getSimpleName() ;

@Ooverride
public IBinder onBind(Intent arg0) {
return null;
1

boolean paused = false;
private WakeLock mWakeLock=null;

@Ooverride
public void onCreate() {
super.onCreate () ;
Toast .makeText (this, "Service created ...", Toast.LENGTH LONG) .show() ;
setWakeLock () ;
paused = false;
Thread initBkgdThread = new Thread(new Runnable () {
public void run()
play music();

1

initBkgdThread.start () ;

private void setWakeLock () {
PowerManager powerManager =
(PowerManager) getSystemService (Context . POWER_SERVICE) ;
mWakeLock=powerManager .newWakeLock (PowerManager . PARTIAL WAKE LOCK, LOG_TAG) ;
mWakeLock.acquire () ;

}

@Override
public void onDestroy() {

super.onDestroy () ;
releaseWakeLock () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Services

Toast .makeText (this, "Service destroyed ...", Toast.LENGTH_LONG) .show () ;
paused = true;

private void releaseWakeLock () {
if (mWakeLock!=null && mWakeLock.isHeld())

mWakeLock.release() ;

}
}

int[] notes = {R.raw.c5, R.raw.b4, R.raw.a4, R.raw.g4};
int NOTE_DURATION = 400; //millisec
MediaPlayer m mediaPlayer;
private void play music() {
for(int 1i=0; ii<12; ii++) {
//Check to ensure main activity not paused
if (Ipaused) {
if (m mediaPlayer != null) {m mediaPlayer.release();}
m_mediaPlayer = MediaPlayer.create(this, notes[ii%4]);
m_mediaPlayer.start () ;
try {
Thread.sleep (NOTE_DURATION) ;
} catch (InterruptedException e) {
e.printStackTrace() ;
}

In Listing 3.18, WakeLock is handled in two separate functions for a cleaner
separation; setWakeLock() is called in the onCreate() method of the service so it gets
set the moment the service starts. In the onDestroy() method, releaseWakeLock() is
called to make sure system resources are released if the service receives a stop request.

Recipe: Using a Foreground Service

Services are meant to run in the background and do short-lived tasks with a lower
priority. This means that services are the first thing the system will kill if a foreground
process such as an activity needs more memory or computing power. This is the
desired behavior in most cases. However, there are some times when it is desirable for
a service to stay alive and take priority over other background tasks. Again, playing
back music is a prime example. Android allows a service to be marked as a foreground
service, but this requires setting a mandatory ongoing notification in the notification
bar, so the user is informed about a service taking priority.

Activating the foreground mode is as simple as calling the following:

startForeground (NOTIFICATION ID, getForegroundNotification());

www.it-ebooks.info

7

http://www.it-ebooks.info/

78

Chapter 3 Threads, Services, Receivers, and Alerts

The arguments of startForeground are an ID with which to recognize the
notification and a new instance of a notification to show.

Foreground mode can easily be stopped by calling stopForeground (true);, the
flag telling it to remove the notification now. Again, those two calls are put in separate
methods and called from the onCreate() and onDestroy() methods of the service.
The biggest hassle here is creating the notification itself, as can be seen in Listing 3.19.

Listing 3.19 Foreground Service Class

public class SimpleService extends Service {
private static final int NOTIFICATION ID = 1;

@Override
public IBinder onBind(Intent arg0) {
return null;
1

boolean paused = false;

@Ooverride
public void onCreate() {
super.onCreate () ;
enforceForegroundMode () ;
Toast .makeText (this, "Service created ...", Toast.LENGTH_LONG) .show() ;
paused = false;
Thread initBkgdThread = new Thread(new Runnable () {
public void run()
play music();
1
1

initBkgdThread.start () ;

@Override
public void onDestroy() {
super.onDestroy () ;
releaseForegroundMode () ;
Toast .makeText (this, "Service destroyed ...", Toast.LENGTH_LONG) .show () ;
paused = true;

private final void enforceForegroundMode () {
startForeground (NOTIFICATION ID, getForegroundNotification());

private final void releaseForegroundMode () {
stopForeground (true) ;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Services

protected Notification getForegroundNotification() {
// Set the icon, scrolling text, and timestamp

Notification notification = new Notification(R.drawable.icon,

"playback running",System.currentTimeMillis());

// the PendingIntent to launch the activity if the user selects this notification

Intent startIntent=new Intent(getApplicationContext(),SimpleActivity.class);
startIntent.setFlags(Intent.FLA)

PendingIntent contentIntent = PendingIntent.getActivity(this, 0, startIntent, 0);

// Set the info for the views that show in the notification panel
notification.setLatestEventInfo(

this,

"Playing Music",
"Playback running",
contentIntent

return notification;

int[]

notes = {R.raw.c5, R.raw.b4, R.raw.a4, R.raw.g4d};

int NOTE_DURATION = 400; //millisec
MediaPlayer m mediaPlayer;
private void play music() {

for(int 1i=0; ii<12; ii++) {

//Check to ensure main activity not paused
if (!paused) {

if (m_mediaPlayer != null) {m mediaPlayer.release();}
m_mediaPlayer = MediaPlayer.create(this, notes[ii%4]);
m_mediaPlayer.start();
try
Thread.sleep (NOTE DURATION) ;
} catch (InterruptedException e) {
e.printStackTrace() ;
}

This listing shows that the code for creating the notification is the biggest change

to the service class. First, a new notification instance is created and given an icon and
ticker text to show in the collapsed notification bar. An intent is then wrapped into a
pending intent that will display the activity if the user clicks on the notification in the
fully shown state. That intent is set together with a title and a bit of descriptive text in
notification.setLatestEventInfo(..), and then this notification instance is returned
to pass it to the startForeground(..) method.

www.it-ebooks.info

79

http://www.it-ebooks.info/

80

Chapter 3 Threads, Services, Receivers, and Alerts

Recipe: Using an IntentService

An IntentService is a service that holds a queue of intents it has received and exe-
cutes them one by one. This is an ideal worker thread for many background tasks like
polling servers for new information or downloading large amounts of data. As intents
are very flexible and can hold any type of parcelable object in their extras, the amount
of configuration given within an intent is almost limitless. This enables sending very
complex queries to an IntentService and then letting it react. This recipe shows a
very simple example of such a service that receives texts to show in a notification. For
this, a layout with an edit text field for entering the message and a button to send it are
needed, as shown in Listing 3.20.

Listing 3.20 main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout_height="match parent"
>

<TextView
android:layout width="match parent"
android:layout_height="wrap_ content"
android:text="@string/hello"

/>

<EditText
android:id="@+id/editText1"
android:layout_width="match parent"
android:layout height="wrap content"
android:ems="10" >

<requestFocus />
</EditText>

<Button
android:id="@+id/Button0l"
android:layout width="wrap content"
android:layout_height="wrap_ content"
android:text="send message" />

</LinearLayout>

This activity is almost the same as in the other service examples. The edit text
box and the button in onCreate are registered and an onClickListener is set to the
button. Within the onClickListener the string is read from the edit box and put into
the intent as a string extra called msg. Then startService(..) is called on the intent.
This is shown in Listing 3.21.

www.it-ebooks.info

http://www.it-ebooks.info/

Services

Listing 3.21 Main Activity

public class SimpleActivity extends Activity {
EditText editText;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

editText=(EditText) findViewById(R.id.editTextl);

Button sendButton = (Button) findViewById(R.id.Button01l);
sendButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view){
Intent intent =
new Intent(SimpleActivity.this, SimplelIntentService.class);
intent.putExtra("msg",editText.getText().toString());
startService(intent);

The IntentService class does all the hard work; it will even stop itself after the
IntentQueue is empty. Only two things need to be implemented: a constructor that
gives the queue a name by calling super ("myName"), and the handleIntent method,
in which the intent is demarshaled and the query is executed. Not much more is
done than creating a notification, as seen in previous recipes, and extracting the
message sent with intent.getStringExtra("msg"). That string is used to replace the
descriptive text of the notification. Listing 3.22 shows the full IntentService.

Listing 3.22 Simple IntentService

public class SimplelntentService extends IntentService {

Notification notification=null;
private NotificationManager mNManager;

public SimplelIntentService() {
super ("SimpleIntentService");
}

@Override
protected void onHandlelntent(Intent intent)
createNotification();
if(intent.hasExtra("msg")){
updateNotification(intent.getStringExtra("msg"));
mNManager.notify(l, notification);

www.it-ebooks.info

81

http://www.it-ebooks.info/

82 Chapter 3 Threads, Services, Receivers, and Alerts

protected void createNotification(){
if (mNManager==null){
mNManager = (NotificationManager)
getSystemService (Context .NOTIFICATION SERVICE);

notification = new Notification(
R.drawable.icon,
"New event of importance",
System.currentTimeMillis());

// Set the icon, scrolling text, and timestamp

protected void updateNotification(final String text){
// the PendingIntent to launch the activity if the user
// selects this notification
Intent startIntent=new Intent(getApplicationContext(),SimpleActivity.class);

PendingIntent contentIntent =
PendingIntent.getActivity(this, 0,startIntent, 0);

// Set the info for the views that show in the notification panel
notification.setLatestEventInfo(

this,

"Message received",

text,

contentIntent

Broadcast Receivers

A broadcast receiver listens for relevant broadcast messages to trigger an event. Some
examples of broadcasted events already sent from the OS are:

= The camera button was pressed.
= The battery is low.

= A new application was installed.

A user-generated component can also send a broadcast, such as:
= A calculation was finished.

= A particular thread has started.

All broadcast receivers extend the abstract class BroadcastReceiver or one
of its subclasses. The lifecycle of a broadcast receiver is simple. A single method,

www.it-ebooks.info

http://www.it-ebooks.info/

Broadcast Receivers

onReceive (), is called when a message arrives for the receiver. After this method is
finished, the BroadcastReceiver instance goes inactive.

A broadcast receiver normally initiates a separate component or sends a notification
to the user in its onReceive () method, as discussed later in this chapter. If a broadcast
receiver needs to do something more time-consuming, it should start a service instead
of spawn a thread because an inactive broadcast receiver might be killed by the system.

Recipe: Starting a Service When the Camera Button Is Pressed

This recipe shows how to start a service based on a broadcasted event, such as when
the camera button is pressed. The BroadcastReceiver is needed to listen for the
specified event(s) and subsequently launch the service. The BroadcastReceiver itself
is started in another component. (Here, it is implemented as a stand-alone activity,
SimpleActivity.)

The activity shown in Listing 3.23 sets up a BroadcastReceiver and builds an
intent with the filter for the camera button. The filter for package-added messages is
also added for illustration purposes. Then, the BroadcastReceiver is started and this
intent filter is passed to it using the registerReceiver() method.

Listing 3.23 src/com/cookbook/simple_receiver/SimpleActivity.java

package com.cookbook.simple receiver;

import android.app.Activity;

import android.content.Intent;
import android.content.IntentFilter;
import android.os.Bundle;

public class SimpleActivity extends Activity {
SimpleBroadcastReceiver intentReceiver =
new SimpleBroadcastReceiver();

/** called when the activity is first created */

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

IntentFilter intentFilter =

new IntentFilter (Intent.ACTION CAMERA BUTTON) ;
intentFilter.addAction (Intent.ACTION PACKAGE ADDED) ;
registerReceiver (intentReceiver, intentFilter);

}

@Override

protected void onDestroy()
unregisterReceiver (intentReceiver) ;
super.onDestroy () ;

www.it-ebooks.info

83

http://www.it-ebooks.info/

Chapter 3 Threads, Services, Receivers, and Alerts

Note that the receiver is unregistered if the activity is ever destroyed. This is
unnecessary, but useful. The BroadcastReceiver component is shown in Listing 3.24.
The single lifecycle method onReceive() is overridden to check for any broadcasted
event. If it matches the specified event (here, it is the ACTION CAMERA BUTTON event),
a service is started in the original context.

Listing 3.24 src/com/cookbook/simple_receiver/SimpleBroadcastReceiver.java

package com.cookbook.simple receiver;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class SimpleBroadcastReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context rcvContext, Intent rcvIntent) {
String action = rcvIntent.getAction();
if (action.equals(Intent.ACTION CAMERA BUTTON)) {
rcvContext.startService(new Intent(rcvContext,
SimpleService2.class));

The service that is started in the SimpleBroadcastReceiver of Listing 3.24 is
shown in Listing 3.25. The service simply shows whether it was started or stopped
using Toast.

Listing 3.25 src/com/cookbook/simple_receiver/SimpleService2.java

package com.cookbook.simple receiver;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.widget.Toast;

public class SimpleService2 extends Service {
@Override
public IBinder onBind(Intent arg0) {
return null;
}

@Override
public void onCreate() {
super.onCreate() ;
Toast.makeText (this, "Service created ...",
Toast.LENGTH_LONG) .show () ;

}

@Override
public void omDestroy()

www.it-ebooks.info

http://www.it-ebooks.info/

App Widgets

super.onDestroy () ;
Toast.makeText (this, "Service destroyed ...",
Toast.LENGTH LONG) .show() ;

App Widgets

App Widgets are small iconlike views in an application. They implement a subclass
of the BroadcastReceiver for use in updating this view. Called widgets for short,
they can be embedded into other applications, such as the home screen, by long-
clicking (in other words, pressing and holding) an empty area of the touchscreen.
This displays a menu where a widget can be selected to install at that location. On
Android 4 devices they can also be added from the launcher directly. They can be
removed by a long click on the widget and dragging to the trash can. In all, they
require the following:

= A view describing the appearance of the widget. This is defined in an XML
layout resource file and contains text, background, and other layout parameters.

= An App Widget provider that receives broadcast events and interfaces to the
widget to update it.

= Detailed information about the App Widget, such as the size and update
frequency. Note that the home screen is divided into 4x4 cells for phones
and 8x7 cells for tablets, and so a widget is often a multiple of a single
cell size.

= Optionally, an App Widget configuration activity can be defined to properly
set any parameters of the widget. This activity is launched upon creation of the
widget.

Recipe: Creating an App Widget

This recipe creates a simple App Widget that displays some text on the home

screen. The text is configured to update every second, but note that by default,

the Android system forces the minimum update time to be 30 minutes. This helps
prevent poorly written widgets from draining the battery. Listing 3.26 implements
AppWidgetProvider, which is a subclass of BroadcastReceiver. The main method to
override is the onUpdate () function, which gets called when the system determines it
is time to update the widgets.

Listing 3.26 src/com/cookbook/widget_example/SimpleWidgetProvider.java

package com.cookbook.simple widget;

import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;

www.it-ebooks.info

85

http://www.it-ebooks.info/

86

Chapter 3 Threads, Services, Receivers, and Alerts

import android.content.Context;
import android.widget.RemoteViews;

public class SimpleWidgetProvider extends AppWidgetProvider (
final static int APPWIDGET = 1001;
@Override
public void onUpdate(Context context,
AppWidgetManager appWidgetManager, int[] appWidgetIds) {
super.onUpdate (context, appWidgetManager, appWidgetIds);
// Loop through all widgets to display an update
final int N = appWidgetIds.length;
for (int i=0; i<N; i++) {
int appWidgetId = appWidgetIds[il;
String titlePrefix = "Time since the widget was started:";
updateAppWidget (context, appWidgetManager, appWidgetId,
titlePrefix);

}

static void updateAppWidget(Context context, AppWidgetManager
appWidgetManager, int appWidgetId, String titlePrefix) {
Long millis = System.currentTimeMillis();

int seconds = (int) (millis / 1000);
int minutes = seconds / 60;
seconds seconds % 60;

CharSequence text = titlePrefix;
text += " " + minutes + ":" + String.format("%02d",seconds));

// Construct the RemoteViews object

RemoteViews views = new RemoteViews(context.getPackageName(),
R.layout.widget layout);

views.setTextViewText (R.id.widget example text, text);

// Tell the widget manager
appWidgetManager.updateAppWidget (appWidgetId, views);

The XML file describing the detailed information on the widget is shown in
Listing 3.27. It shows the size the widget takes on the home screen and how often it
should be updated in milliseconds. (The system minimum is 30 minutes.)

Listing 3.27 src/res/xml/widget_info.xml

<?xml version="1.0" encoding="utf-8"?>

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
android:minWidth="146dp"
android:minHeight="72dp"
android:updatePeriodMillis="1000"
android:initialLayout="@layout/widget layout">

</appwidget-provider>

www.it-ebooks.info

http://www.it-ebooks.info/

App Widgets

The view describing the appearance of the widget is laid out in an XML file, as
shown in Listing 3.28.

Listing 3.28 src/res/layout/widget_layout.xml

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/widget example text"
android:layout width="wrap content"
android:layout height="wrap content"
android:textColor="#££000000"
android:background="#fffffEf£"

www.it-ebooks.info

87

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

A

Advanced Threading
Techniques

This chapter showcases a collection of threading techniques that are provided by
the Android Framework to make the usage of threads easier and more secure. First,
the Loaders API that comes with the support package is demonstrated. Next, the
AsyncTask API is shown, which is a very flexible and powerful replacement for
raw Java threads. Then the ways of using inter-process communication on Android
are discussed.

Loaders

Typical usage scenarios for threads are the moments in an application lifecycle when
screens are initialized with data from databases or caches. If done on the main thread,
these operations can block the loading of the layout itself and leave the user staring at a
blank screen for a couple of seconds. To overcome the challenges of dealing with data
initialization, Android now provides a Loader API. A loader is a small object that gets
started through a manager, executes its query in the background, and then presents the
result through a common callback interface. There are two main types of loaders:

» CursorLoaders, used for querying databases and ContentProviders

= AsyncTaskLoaders, used for everything else

Recipe: Using a CursorLoader

This recipe uses a CursorLoader to show all contacts on the phone in a simple
ListView. Depending on how many contacts the phone holds, loading this query can
take a while. This is a simple activity with a ListView and no fragments. Loaders can
be used with both activities and fragments; the methods to override within each class
and the steps to do this are the same. To get access to the support API, the activity
needs to extend the FragmentActivity class. Listing 4.1 shows the activity.

www.it-ebooks.info

http://www.it-ebooks.info/

90 Chapter 4 Advanced Threading Techniques

Listing 4.1 MainActivity.java

public class MainActivity extends FragmentActivity
implements LoaderCallbacks<Cursors{

private static final int LOADER_ID = 1;
SimpleCursorAdapter mAdapter;
ListView mListView;

static final String[] CONTACTS_PROJECTION = new String[] {
Contacts._1ID,
Contacts.DISPLAY NAME

}i

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);
mListView=(ListView)findViewById(R.id.list);

mAdapter=new SimpleCursorAdapter(
getApplicationContext(), //context for layout inflation, etc.
android.R.layout.simple list item 1, //the layout file
null, //We don't have a cursor yet
new String[]{Contacts.DISPLAY NAME}, //the name of the data row
//The ID of the layout for data is displayed
new int[]{android.R.id.text1}

)i
mListView.setAdapter(mAdapter);

getSupportLoaderManager().initLoader (LOADER ID,null,this);

@Override
public Loader<Cursor> onCreateLoader(int loaderId, Bundle args)
return new CursorLoader(
getApplicationContext(),
Contacts.CONTENT_URI,
CONTACTS_PROJECTION,
null,
null,
Contacts.DISPLAY NAME + "COLLATE LOCALIZED ASC"

}

@Override
public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
if(loader.getId()==LOADER_ID){
mAdapter.swapCursor(cursor);

www.it-ebooks.info

http://www.it-ebooks.info/

AsyncTasks

@Override
public void onLoaderReset (Loader<Cursor> loader) {
if(loader.getId()==LOADER_ID){
mAdapter.swapCursor(null);
}

To make use of loaders, the activity needs to implement the LoaderCallbacks<T>
interface, which has three functions: onCreateLoader, onLoadFinished, and
onLoaderReset.

The onCreateLoader(int loaderId, Bundle args) function is called whenever
a request is made to initialize a loader. The ID can be used to distinguish the different
loaders, or it can be set to 0 if only one loader implementation is used. Here, a new
CursorLoader class is returned and given the same arguments that would be used for
making a query against a ContentProvider, mainly a content URI, a projection map, a
selection string with arguments, and an order function.

The onLoadFinished(Loader<Cursor> loader, Cursor cursor) method is
called when the loader is done. The loader’s ID can be checked by calling loader.
getId(), and if this has the expected value, the resulting cursor is set as a data source
for the list by calling mAdapter.swapCursor(). If the adapter had another cursor
active before, this would now be closed.

A call to the onLoaderReset (Loader<Cursor> loader) function closes the cursor
that is produced by the loader. mAdapter.swapCursor(null) must be called to make
sure it is no longer used in the list.

Loaders can also be set to automatically requery the cursor if its underlying
data changes, so the presenting views are kept up-to-date. A requery will result in
onLoadFinished being called again. This shows that loaders are a simple yet powerful
way to do initialization of activities or fragments.

AsyncTasks

AsyncTasks are classes that execute one method in a separate thread, allowing them to
take work away from the UI thread easily. The interesting part of AsyncTasks is that
only the doInBackground () method runs on a separate thread, allowing the
onPreExecute () and onPostExecute() methods to manipulate views or other parts
of the activity or fragment that started them. AsyncTasks are typed with a type for
Parameters, Progress Reporting, and Result. If any of those types are not used, they
can be set to Void. AsyncTasks allow reporting of progress back to the Ul thread

by calling setProgress(int) in doInBackground(). This will trigger a call to the
onProgressChanged() function of the AsyncTask, which is again called on the Ul
thread and can be used to update a progress dialog.

www.it-ebooks.info

91

http://www.it-ebooks.info/

92

Chapter 4 Advanced Threading Techniques

Recipe: Using an AsyncTask

This recipe uses an AsyncTask that loads an image from a remote location. This image
will then be displayed in an ImageView. Loading images from a server is a common
scenario for AsyncTasks, as doing this on the main thread could potentially block the
UI and should be avoided. Implementing the AsyncTask as an inner class allows the
image to be set directly into an ImageView after the download is finished. The com-
plete code is shown in Listing 4.2.

Listing 4.2 MainActivity

public class MainActivity extends Activity {
private static final int LOADER ID = 1;
ImageView mImageView;

private static final String IMAGE_URL =
"http://developer.android.com/images/brand/Android Robot 100.png";

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
mImageView= (ImageView) findViewById(R.id.image) ;
new ImageLoaderTask (getApplicationContext ()).execute (IMAGE URL) ;

public class ImageLoaderTask extends AsyncTask<String, Void, Strings{
private Context context;

public ImageLoaderTask (Context context) {
this.context=context;

@Override
protected String doInBackground(String. . . params) {
String path=context.getFilesDir ()
+File.pathSeparator
+"temp_"
+System.currentTimeMillis ()
+".png";

HttpURLConnection connection=null;
android.util.Log.v ("TASK", "opening url="+params[0]) ;
try {

final URL url=new URL (params[0]);
connection= (HttpURLConnection) url.openConnection() ;

www.it-ebooks.info

http://www.it-ebooks.info/

AsyncTasks

InputStream in =
new BufferedInputStream(connection.getInputStream()) ;

OutputStream out= new FileOutputStream(path);
int data = in.read();
while (data !'= -1) {
out.write(data) ;
data = in.read();
}
} catch (IOException e)
android.util.Log.e ("TASK", "error loading image",e);
e.printStackTrace() ;
return null;
}finally {
if (connection!=null) {
connection.disconnect () ;
}
}

return path;

@Override
protected void onPostExecute (String imagePath) {
super.onPostExecute (imagePath) ;
if (imagePath!=null) {
android.util.Log.v ("TASK", "loading image from temp
w file"+imagePath) ;
Bitmap bitmap=BitmapFactory.decodeFile (imagePath) ;
mImageView.setImageBitmap (bitmap) ;

The onCreate () method loads the layout, saves the instance of the Imageview into
a field variable, and starts the AsyncTask.

The ImageLoaderTask class takes a string parameter denoting the URL of the
image to load and returns a string with the path of the temp file that stores the
image. For the path, the application’s internal file folder is read from the context
and a filename is constructed with a prefix of temp followed by the current time
in milliseconds and a postfix of .png. The doInBackground function uses a simple
URLConnection to open an InputStream to the image, read it bytewise, and write it
to a FileOutputStream pointing to the path of the temp file.

The onPostExecute method gets the result of doInBackground as a parameter.

If this is not null, an image exists at this path. Because onPostExecute is run on the
UI thread of the activity, the image can be decoded into a bitmap and the bitmap set
into the ImageView of the activity. As the onPreExecute() and onPostExecute ()
methods are always run on the UI thread, these can be used to communicate with the
hosting activity or fragment and manipulate views if needed.

www.it-ebooks.info

93

http://www.it-ebooks.info/

Chapter 4 Advanced Threading Techniques

Android Inter-Process Communication

If two applications need to share resources but cannot get permissions, it is possible
to define an IPC message. To support IPC, an interface is needed to serve as a bridge
between applications. This is provided by the Android Interface Definition Language
(AIDL).

Defining AIDL is similar to a Java interface. In fact, it can be easily done in Eclipse
by creating a new Java interface and, after the definitions are complete, changing the
suffix of the file from .java to .aidl.

The data types that AIDL currently supports are

= Java primitives that include int, boolean, and float
= String

= CharSequence

= List

= Map

= Other AIDL-generated interfaces

= Custom classes that implement the Parcelable protocol and are passed by value

Recipe: Implementing a Remote Procedure Call

This recipe implements a remote procedure call (RPC) between two activities. First,
an AIDL interface can be defined, as shown in Listing 4.3.

Listing 4.3 IAdditionalService.aidl under com.cookbook.advance.rpc

package com.cookbook.advance.rpc;

// Declare the interface
interface IAdditionService {
int factorial(in int value);

After the AIDL file is created, Eclipse generates an IAdditionalService.java file
under the gen/ folder when the project is built. The contents of this file should not be
modified. It contains a stub class that is needed to implement the remote service.

Inside the first activity, rpcService, an mBinder member is declared as the stub
from IAdditionalService. It can also be interpreted as IBinder. In the onCreate()
method, mBinder is initiated and defined to call the factorial() function. When the
onBind() method is called, it returns mBinder to the caller. After onBind() is ready, the
other process activities are able to connect to the service. This is shown in Listing 4.4.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Inter-Process Communication

Listing 4.4 src/com/cookbook/advance/rpc/rpcService.java

package com.cookbook.advance.rpc;

import android.app.Service;

import android.content.Intent;
import android.os.IBinder;

import android.os.RemoteException;

public class RPCService extends Service {

IAdditionService.Stub mBinder;
@Override
public void onCreate() {
super.onCreate();
mBinder = new IAdditionService.Stub() {
public int factorial(int valuel) throws RemoteException {
int result=1;
for(int i=1; i<=valuel; i++){
result*=1i;
}

return result;

}:
}

@Override
public IBinder onBind(Intent intent) {
return mBinder;

}

@Override
public void onDestroy() {
super.onDestroy();
}
}

Now the second activity that runs in a different process must be specified. The
associated layout file is shown in Listing 4.5. Inside the layout there are three views
that actually serve the main roles. EditText takes the input from the user, Button
triggers the factorial() function call, and Textview with ID result is used for
displaying the result from the factorial.

Listing 4.5 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical" android:layout width="fill parent"
android:layout height="match parent">
<TextView android:layout width="match parent"
android:layout height="wrap content"
android:text="Android CookBook RPC Demo"
android:textSize="22dp" />

www.it-ebooks.info

95

http://www.it-ebooks.info/

96

Chapter 4 Advanced Threading Techniques

<LinearLayout

android:orientation="horizontal"

android:layout width="match parent"

android:layout height="wrap content"s

<EditText android:layout width="wrap content"
android:layout height="wrap content" android:id="@+id/valuel"
android:hint="0-30"></EditText>

<Button android:layout width="wrap content"
android:layout height="wrap content" android:id="@+id/buttonCalc"
android:text="GET"></Button>
</LinearLayout>

<TextView android:layout width="wrap content"
android:layout height="wrap content" android:text="result"
android:textSize="36dp" android:id="@+id/result"></TextView>

</LinearLayout>

The AndroidManifest.xml file is shown in Listing 4.6. Inside the service tag,
there is an extra attribute: android:process=".remoteService". This asks the system
to create a new process named remoteService to run the second activity.

Listing 4.6 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.cookbook.advance.rpc"
android:versionCode="1" android:versionName="1.0">
<application android:icon="@drawable/icon"
android:label="@string/app name" >
<activity android:name=".rpc" android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activitys>

<service android:name=".rpcService" android:process=".remoteService"/>
</application>
<uses-sdk android:minSdkVersion="7" />
</manifest>

The second activity is shown in Listing 4.7. It needs to call bindService() to
retrieve the factorial() method provided in rpcService. The bindService()
method requires a service connection instance as the interface for monitoring
the state of an application service. Therefore, this activity has an inner class
myServiceConnection that implements the service connection.

The myServiceConnection and IAdditionService classes are instantiated in
the rpc activity. The myServiceConnection listens to the onServiceConnected
and onServiceDisconnected callback methods. The onServiceConnected callback
function passes the IBinder instance to the IAdditionService instance. The

www.it-ebooks.info

http://www.it-ebooks.info/

Android Inter-Process Communication

M @ 10:05em

Advance Android AIDL Demo

Android CookBook RPC Demo

862453760

Figure 4.1 Output of the AIDL application

onServiceDisconnected callback method puts the IAdditionService instance
to null.

There are also two methods defined inside the rpc activity: initService()
and releaseService(). The initService() method tries to initiate a new
myServiceConnection. Then, it creates a new intent for a specific package
name and class name and passes it to the bindService method along with the
myServiceConnection instance and a flag BIND AUTO CREATE. After the service
is bound, the onServiceConnected callback function is triggered, and it passes the
IBinder method to the IAdditionService instance so the rpc activity can start to
call the factorial method. The output is shown in Figure 4.1.

Listing 4.7 src/com/cookbook/advance/rpc/rpc.java

package com.cookbook.advance.rpc;

import android.app.Activity;

import android.content.ComponentName;
import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;
import android.os.Bundle;

import android.os.IBinder;

import android.os.RemoteException;
import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

import android.widget.Toast;

public class rpc extends Activity

IAdditionService service;
myServiceConnection connection;

www.it-ebooks.info

97

http://www.it-ebooks.info/

98 Chapter 4 Advanced Threading Techniques

class myServiceConnection implements ServiceConnection {

public void onServiceConnected(ComponentName name,
IBinder boundService) {
service = IAdditionService.Stub.asInterface((IBinder) boundService);
Toast.makeText (rpc.this, "Service connected", Toast.LENGTH_ SHORT)
.show();
}

public void onServiceDisconnected(ComponentName name) {
service = null;
Toast.makeText (rpc.this, "Service disconnected", Toast.LENGTH_SHORT)
.show();
}

}

private void initService() {

connection = new myServiceConnection();

Intent i = new Intent();

i.setClassName ("com.cookbook.advance.rpc",

com.cookbook.advance.rpc.rpcService.class.getName());

if(!bindService(i, connection, Context.BIND AUTO_CREATE)) {
Toast.makeText (rpc.this, "Bind Service Failed", Toast.LENGTH LONG)
.show();

}
}

private void releaseService() {
unbindService(connection);
connection = null;

}

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

initService();
Button buttonCalc = (Button) findViewById(R.id.buttonCalc);

buttonCalc.setOnClickListener(new OnClickListener() {
TextView result = (TextView) findvViewById(R.id.result);
EditText valuel = (EditText) findViewById(R.id.valuel);

public void onClick(View v) {
int vl1, res = -1;
try {
vl = Integer.parselnt(valuel.getText().toString());
res = service.factorial(vl);
} catch (RemoteException e) {
e.printStackTrace();

result.setText (Integer.toString(res));

b
}

www.it-ebooks.info

http://www.it-ebooks.info/

Android Inter-Process Communication

@Override
protected void onDestroy() {
releaseService();
}
}

AIDL is good for doing full RPC between processes with different user IDs
(which can mean different applications). The downside to this is that AIDL is fully
synchronous and slow. If one or more activities need to communicate with a service
to pass queries or commands to it and get back the results, there are two simpler and
faster ways to do this, as will be shown in the following two recipes.

Recipe: Using Messengers

A Messenger class is a reference to a handler in a remote process that can be used to
send messages to that handler. Handlers allow messages to be sent into a queue and
to be processed one at a time. By providing two handlers, one in the activity and one
in the service, those two classes can communicate by sending messages between the
handlers. This is done by calling Messenger.send(msg), which will inject the message
into the remote handler. The Message class has a special field called Message.replyTo
that can hold a messenger reference. This reference can then be used to send the results
of the operation back to the original thread.
The following steps are used to create the service:
1. Create a Service class and define integer constants describing messages for reg-
istering and unregistering a client, as well as sending results.

2. Create a handler that reacts to those messages.
3. Create a messenger instance that references the handler.

4. In the service onBind function, return the binder object by calling Messenger.

getBinder().

This is shown in Listing 4.8.

Listing 4.8 Messenger Service

package com.cookbook.messenger service;

/**

* MessageControlledService is an abstract service implementation that
* communicates with clients via Messenger objects. Messages are passed
* directly into the handler of the server/client.

*/

public class MessageControlledService extends Service {

public static final int MSG INVALID = Integer.MIN VALUE;
public static final int MSG_REGISTER_CLIENT = MSG_INVALID+1;
public static final int MSG UNREGISTER CLIENT = MSG_INVALID+2;
public static final int MSG_RESULT = MSG_INVALID+3;

www.it-ebooks.info

99

http://www.it-ebooks.info/

100 Chapter 4 Advanced Threading Techniques

/** Make sure your message constants are MSG FIRST USER+n**/
public static final int MSG_FIRST USER=1;

private static final String LOG_TAG =
MessageControlledService.class.getCanonicalName();

/** keeps track of all current registered clients */
ArrayList<Messenger> mClients = new ArrayList<Messengers();

/**
* handler of incoming messages from clients
*/

private class CommandHandler extends Handler {

@Override
public void handleMessage (Message msg)
switch (msg.what) {
case MSG_REGISTER CLIENT:
mClients.add(msg.replyTo);

break;
case MSG _UNREGISTER CLIENT:
mClients.remove (msg.replyTo);

break;
default:
handleNextMessage (msg);
}

private final Handler mHandler=new CommandHandler();

/**
* target we publish for clients to send messages to IncomingHandler
*/

private final Messenger mMessenger = new Messenger(mHandler);

* Call this to send an arbitrary message to the registered clients
* @param what

* @param argl

* @param arg2

* @param object

protected final void sendMessageToClients(final int what,final int argl,
final int arg2,final Object object) {
for (int i = mClients.size() - 1; 1 >= 0; i--) {
try {
Message msg = Message.obtain(null, what,argl,arg2, object);
mClients.get(i).send(msg);
} catch (RemoteException e) {
// The client is dead. Remove it from the list;

www.it-ebooks.info

http://www.it-ebooks.info/

Android Inter-Process Communication

// we are going through the list from back to front
// so this is safe to do inside the loop.
mClients.remove (i);

/)------ service stuff

@Override

public IBinder onBind(Intent arg0) {
return mMessenger.getBinder();

}

/**
* This is your main method
*
* @param msg the next message in the queue
*/
public void handleNextMessage (final Message msg){
String echo="ECHO: "+(String)msg.obj;
sendMessageToClients(MSG RESULT, -1, -1, echo);

Connected clients are tracked with ArrayList<Messengers. In the handler,
clients are added to this list if a MSG_REGISTER CLIENT is received and removed on
MSG_UNREGISTER CLIENT. The method sendMessageToClients(. .) loops through
this list of messengers and calls send on all of them. This broadcasts the results to
all connected clients and allows communication with more than one activity at a time.
All other messages are given as arguments to a call of handleNextMessage (. .)
where all the real work can be done. In this example, the message.obj field is read as
a string, the word Echo is added to it, and it is sent back to the caller.

In this activity, when a message of type MSG_RESULT is received, message.obj is
cast to a string and displayed as a toast. Whatever is in the edit field is sent to the service
if the single button in the activity layout is clicked. This has created an echo service.

The activity has a lot more code for handling the connection than the service itself,
as it needs to start the service and bind to it to retrieve its messenger. The steps to
create a service connection follow:

1. Create a new ServiceConnection instance and implement the
onServiceConnected() and onServiceDisconnected() calls.

2. Implement a handler and create a messenger instance referencing this handler.
This messenger instance will be handed over to the service later.

3. In onCreate (), start the service by calling startService(. .).
4. In onResume (), bind to the service.

5. In onPause, disconnect the service by calling unbindService().

www.it-ebooks.info

101

http://www.it-ebooks.info/

102 Chapter 4 Advanced Threading Techniques

The code for the MessengeraActivity is shown in Listing 4.9.

Listing 4.9 MessengerActivity

public class MessengerActivity extends Activity {
private static final String LOG_TAG = null;

EditText editText;

/** messenger for communicating with service */

Messenger mServiceMessenger = null;

/** flag indicating whether we have called bind on the service */
boolean mIsBound;

protected Handler mHandler = new Handler()
@Override
public void handleMessage (Message msg) {
if(msg.what==MessageControlledService.MSG RESULT){
Toast.makeText (
getApplicationContext(),
(String)msg.obj,
Toast.LENGTH_SHORT
).show();

}i

Messenger mLocalMessageReceiver=new Messenger(mHandler);

/**
* class for interacting with the main interface of the service
*/
private final ServiceConnection mServiceConnection = new ServiceConnection() {

@Override

public void onServiceConnected(ComponentName className, IBinder service){
// This is called when the connection with the service has been
// established, giving us the service object we can use to
// interact with the service. We are communicating with our
// service through an IDL interface, so get a client-side
// representation of that from the raw service object.
mServiceMessenger = new Messenger(service);

// We want to monitor the service for as long as we are
// connected to it
try {
Message msg = Message.obtain(null,
MessageControlledService.MSG_REGISTER_CLIENT);
msg.replyTo = mLocalMessageReceiver;
mServiceMessenger.send(msg);

} catch (RemoteException e) {

// In this case the service has crashed before we could even
// do anything with it; we can count on soon being

www.it-ebooks.info

http://www.it-ebooks.info/

Android Inter-Process Communication

// disconnected (and then reconnected if it can be restarted)

// so there is no need to do anything here.

}

Log.v(LOG_TAG, "service connected");

}

@Override
public void onServiceDisconnected(ComponentName className) {

// This is called when the connection with the service has been

// unexpectedly disconnected--that is, its process crashed
mServiceMessenger = null;
Log.v(LOG_TAG, "service disconnected");

@Override

protected void onResume() {
super.onResume () ;
bindMessengerService();

}

@Override

protected void onPause() {
super.onPause();
unbindAccountService();

}

void bindMessengerService() {

Log.v(LOG_TAG,"binding accountservice");

// Establish a connection with the service. We use an explicit

// class name because there is no reason to let other

// applications replace our component.

bindService(new Intent(getApplicationContext(),
MessageControlledService.class),
mServiceConnection, Context.BIND AUTO CREATE);

mIsBound = true;

}

protected void unbindAccountService() {
if (mIsBound) {
Log.v(LOG_TAG,"unbinding accountservice");
// If we have received the service, and hence registered with
// it, now is the time to unregister
if (mServiceMessenger != null)

try

{

Message msg=Message.obtain(
null,
MessageControlledService.MSG_UNREGISTER CLIENT

)i

msg.replyTo = mServiceMessenger;

www.it-ebooks.info

103

http://www.it-ebooks.info/

104 Chapter 4 Advanced Threading Techniques

mServiceMessenger.send(msg);

} catch (RemoteException e) {

// There is nothing special we need to do if the service

// has crashed

}
}

// Detach our existing connection
unbindService (mServiceConnection);

mIsBound = false;

}

protected boolean sendMessageToService(final int what,
final int argl,final int arg2,
final Object object) {

arg2, object);

Message msg =
mServiceMessenger.send(msg);

} catch (RemoteException e) {
Log.e(LOG_TAG,"unable to send message to account service'",e);
//Retry binding
bindMessengerService();
return false;

try {
Message.obtain(null, what, argl,

}

return true;

}

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState);
startService(new Intent(getApplicationContext(),

MessageControlledService.class));
setContentView(R.layout.main);

editText=(EditText) findViewById(R.id.editTextl);

Button sendButton = (Button) findViewById(R.id.Button01l);

sendButton.setOnClickListener(new View.OnClickListener() ({

public void onClick(View view){
String text=editText.getText().toString();
sendMessageToService (MessageControlledService.MSG_FIRST USER,

-1,-1,text);

www.it-ebooks.info

http://www.it-ebooks.info/

Android Inter-Process Communication

Once the activity 1s bound to the service, the ServiceConnection.
onServiceConnected () method is called. The Ibinder that the service returns
is its messenger instance (refer back to Listing 4.8), so it gets saved in a field
variable. There is a sendMessageToService () function that is similar to the
SendMessageToClients() function of the service but uses the messenger
just received. The next step is to register the activity at the service by sending a
MSG_REGISTER CLIENT and setting the Message.replyTo field to the messenger
referencing the activity’s local handler.

In the activity’s onPause method, the service must be unbound to allow it to stop if
there are no more connected clients. It is important to send a MSG_UNREGISTER CLIENT
to the service before calling unbind on it, or the list of messengers available to the
service will go out of sync.

Recipe: Using a ResultReceiver

A ResultReceiver is a parcelable class that internally holds an IPC binder to
direct calls across different processes. It allows calling ResultReceiver.send(int
ResultCode, Bundle data) in one process while the instance of the receiver was
created in another process. The other process will then be able to read the arguments
and react to them. Because ResultReceiver is parcelable, it can be given as an
argument to an intent. The intent can be used to start another activity or a service,
which will be done here. ResultReceiver accepts a bundle as an argument, which
allows sending even complex objects that implement the parcelable interface.

The IntentService from Chapter 3, “Threads, Services, Receivers, and Alerts,”
is used to implement an echo service similar to the previous recipe. IntentService
is the perfect class to use with ResultReceiver, as it accepts intents as commands and
executes them in an ordered queue. The ResultReceiver passed within that intent
can then be used to send the result back to the calling activity. The service is shown in
Listing 4.10.

Listing 4.10 ResultReceiverintentService

public class ResultReceiverIntentService extends IntentService {
public static final String EXTRA RESULT RECEIVER = "EXTRA RESULT RECEIVER'";

public ResultReceiverIntentService() {
super ("SimpleIntentService");
}

@Override
protected void onHandleIntent(Intent intent) {
ResultReceiver rr=intent.getParcelableExtra(EXTRA RESULT RECEIVER);
if(intent.hasExtra("msg")){
String text= "Echo: "+intent.getStringExtra("msg");
Bundle resultBundle=new Bundle();

www.it-ebooks.info

105

http://www.it-ebooks.info/

106 Chapter 4 Advanced Threading Techniques

resultBundle.putString("msg", text);
rr.send(l, resultBundle);

This service needs to implement only two functions: the constructor, in which
the queue gets a name by calling super("name"); and the onHandleIntent(. .)
function. Here, the ResultReceiver is extracted from the intent by calling
getParcelableExtra() with a key constant defined as EXTRA RESULT RECEIVER.
The modified text is then put into a bundle, and the bundle is sent through the
receiver’s send (. .) method to the originating activity. By using integer constants as
result codes, more than one type of message could be sent back to the activity. The

activity is shown in Listing 4.11.

Listing 4.11 Main Activity

public class SimpleActivity extends Activity {
EditText editText;

Handler handler=new Handler();
ResultReceiver resultReceiver=new ResultReceiver(handler){

@Override
protected void onReceiveResult (int resultCode, Bundle resultData) {
super.onReceiveResult (resultCode, resultData);
Toast.makeText (
SimpleActivity.this,
resultData.getString("msg"),
Toast.LENGTH_SHORT
) .show();

1i
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState);
setContentView(R.layout.main);

editText=(EditText) findviewById(R.id.editText1l);

Button sendButton = (Button) findViewById(R.id.ButtonO1l);
sendButton.setOnClickListener (new View.OnClickListener() {

www.it-ebooks.info

http://www.it-ebooks.info/

Android Inter-Process Communication

public void onClick (View view) {
Intent intent=new Intent (
SimpleActivity.this,
ResultReceiverIntentService.class
)i
intent.putExtra ("msg",editText.getText () .toString()) ;

intent.putExtra (
ResultReceiverIntentService.EXTRA_ RESULT_RECEIVER,
resultReceiver
)i

startService (intent) ;

The activity holds an implementation of the ResultReceiver that overrides
the onReceiveResult () method. This is called by the internal binder object, and
then another process executes the send() function on the ResultReceiver. A
handler instance must be given to the ResultReceiver, which will execute the
onReceiveResult method on this handler thread. The implementation here will just
read the text sent back by the service and display it in a toast.

To send out a command, the string from an edit field is read and put into an
intent. The ResultReceiver instance is set as an extra into the intent as well. The
IntentService is called with startService, which will start it if it is not already
running and deliver the intent with its argument into the queue. The combination of
an IntentService and a ResultReceiver is the easiest way of doing inter-process
communication on Android.

www.it-ebooks.info

107

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

The Android UT consists of screen views, screen touch events, and key presses. The
framework for specifying the Ul is constructed to support the various Android devices.
This chapter focuses on the utilization of this framework for the initial graphical layout
and its changes. Chapter 6, “User Interface Events,” handles key presses and gestures.

User Interface Layout

Resource Directories and General Attributes

The UI display uses developer-generated resource files, some of which are discussed in
Chapter 2, “Application Basics: Activities and Intents,” in the context of the directory
structure of an Android project. For completeness, the entire set of resource directories

is summarized here:

res/anim/—Frame-by-frame animation or tweened animation objects.

res/animator/—cXtensible Markup Language (XML) files used for property
animations.

res/color/—XML files specifying a state list for colors.

res/drawable/—Image resources (bitmap, nine-patch, shapes, animations,
state lists, etc.). Note that these images can be modified and optimized during
compilation.

res/layout/—XML files specifying screen layouts.
res/menu/—XML files that are used to specify menus.

res/values/—XML files with resource descriptors. As with other resource
directories, filenames are arbitrary, but common ones, as used in this book, are
arrays.xml, colors.xml, dimens.xml, strings.xml, and styles.xml.

res/xml/—Other arbitrary XML files not covered previously.

res/raw/—Other arbitrary resources not covered previously, including images
that should not be modified or optimized.

www.it-ebooks.info

o

http://www.it-ebooks.info/

110

Chapter 5 User Interface Layout

Each UI object has three definable attributes that customize the look and feel of the
UI: the dimension of the object, text in the object, and the color of the object. The
possible values for these three general UI attributes are summarized in Table 5.1. Note
that for dimension, it is best to use dp or sp for device-independent compliance.

To unify the look and feel of the application, a global resource file can be used for
each of these attributes. This is also useful in that it is easy to redefine the attributes
later, as they are all collected in three files:

= Measurements and dimensions of items are declared in the XML resource file
res/values/dimens.xml. For example:

= XML declaration—<dimen name="large">48sp</dimens>

= XML reference—@dimen/large

= Java reference—getResources () .getDimension(R.dimen.large)

= Labels and text of items are declared in the XML resource file res/values/
strings.xml. For example:

= XML declaration—<string name="start pt">I\'m here</strings>

= XML reference—e@string/start_pt

= Java reference—getBaseContext () .getString(R.string.start_pt)

Table 5.1 Possible Values for the Three General Ul Attributes

Attribute Possible Values
Dimension Any number followed by one of the following dimensions:
px—Actual pixels on the screen
dp (or dip)—Device-independent pixels relative to a 160dpi screen
sp—Device-independent pixels scaled by user’s font size preference
in—Inches based on physical screen size
mm—Millimeters based on physical screen size
pt—1/72 inch based on physical screen size
String Any string, as long as apostrophes/quotes are escaped: Don\'t worry
Any properly quoted string: "Don't worry"
Any formatted string: Population: %1$d
Can include HTML tags, such as , <i>, or <u>
Can include special characters, such as © given by ©
Color Possible values are:

12-bit color #rgb

16-bit color with alpha opacity #argb

24-bit color #rrggbb

32-bit color with alpha opacity #aarrggbb
Also possible to use the predefined colors in the Color class within Java
files, such as Color.CYAN

www.it-ebooks.info

http://www.it-ebooks.info/

Resource Directories and General Attributes

= Colors of items are declared in the XML resource file res/values/colors.xml.
For example:

s XML declaration—<color name="red"s>#f00</color>
s XML reference—@color/red

= Java reference—getResources () .getColor (R.color.red)

Recipe: Specifying Alternate Resources

The resources described in the previous section provide a generic configuration that
Android can use by default. The developer has the ability to specity different values for
specific configurations distinguished by various qualifiers.

To support multiple languages, the strings can be translated and used in different
language values directories. For example, American English, British English, French,
simplified Chinese (used in mainland China), traditional Chinese (used in Taiwan),
and German strings are added using the following;:

res/values-en-rUS/strings.xml
res/values-en-rGB/strings.xml
res/values-fr/strings.xml
res/values-zh-rCN/strings.xml
res/values-zh-rT'W/strings.xml

res/values-de/strings.xml

Not all strings need to be redefined in these files. Any missing strings from the
selected language file fall back to the default res/values/strings.xml file, which
should contain a complete set of all strings used in the application. If any drawables
contain text and require a language-specific form, a similar directory structure should
also apply to them (such as res/drawables-zh-hdpi/).

To support multiple screen pixel densities, the drawables and raw resources (as
needed) can be scaled and used in different dpi value directories. For example, an
image file can belong to each of the following directories:

res/drawable-1dpi/
res/drawable-mdpi/
res/drawable-hdpi/
res/drawable-nodpi/

The low-, medium-, and high-density screens are defined as 120dpi, 160dpi, and
240dpi. Not all dpi choices need to be populated. At run-time, Android determines
the closest available drawables and scales them appropriately. The nodpi choice can be
used with bitmap images to prevent them from being scaled. In case both a language
and a dpi choice are specified, the directory can contain both qualifiers: drawable-
en-rUS-mdpi/.

www.it-ebooks.info

111

http://www.it-ebooks.info/

112 Chapter 5 User Interface Layout

The various types of screens available for Android devices are discussed in Chap-
ter 1, “Overview of Android.” It is often useful to define separate XML layouts for the
different screen types. The most often used qualifiers are:

= Portrait and landscape screen orientations: -port and -land

= Regular (QVGA, HVGA, and VGA) and wide aspect ratios (WQVGA, FWVGA,
and WVGA): -notlong and -long

= Small (up to 3.0-inch diagonal), normal (up to 4.5-inch diagonal), and large
(above 4.5-inch diagonal) screen sizes: -small, -normal, and -large

If screen orientation or aspect ratio is not defined, the Android system autoscales
the UI for the screen (although not always elegantly). However, if layouts for different
screens are defined, a special element should be added to the AndroidManifest.xml
file at the application element level to ensure proper support:

<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:resizable="true"

android:anyDensity="true" />

Note that if android:minSdkVersion or android:targetSdkVersion is 3
(Android 1.5), by default only android:normalScreens (the screen for the G1) is set
to true. Therefore, it is useful to explicitly declare the supports-screens element
for the application so more recent phones have a properly scaled UL

It should also be noted that starting with Android 3.2, some tablets that are 7 inches
fit the same category for screen dimensions as 5-inch devices (which would normally
use the large layout). To compensate for this, several new options have been added:
smallest width (sm<N>dp), available screen width (w<N>dp), and available screen height
(h<N>dp), where <N> is the size of dp values to be supported.

Views and ViewGroups

The basic building block of a graphical layout is a view. Each view is described by a
View object, which is responsible for drawing a rectangular area and handling events in
that area. The View is a base class for objects that interact with the user; they are called
widgets. Examples of widgets are buttons and check boxes.

A ViewGroup object is a type of View that acts as a container to hold multiple Views
(or other ViewGroups). For example, a ViewGroup object can hold a vertical or hori-
zontal placement of views and widgets, as shown in Figure 5.1. ViewGroup is a base
class for screen layouts.

The layout defines the user interface elements, their positions, and their actions. It
can be specified from either XML or Java. Most often, an initial base layout is declared
in XML and any run-time changes are handled in Java. This combines the ease of

www.it-ebooks.info

http://www.it-ebooks.info/

Views and ViewGroups 113

Your contact
information

Type name here

bhone here

Figure 5.1 View example that contains ViewGroups and widgets

developing the overall position of View and ViewGroup objects using XML and the
flexibility to change any component within the application using Java.

Another benefit of separating the XML layout from the Java activity is that the
same Android application can produce a different behavior depending on the screen
orientation, type of device (such as phone versus tablet), and locale (such as English
versus Chinese). These customizations can be abstracted into various XML resource
files without cluttering the underlying activity.

Recipe: Building Layouts in the Eclipse Editor

A quick way to get started with layouts is to use the handy graphical layout editor

in Eclipse. Take a new activity and open its layout resource XML file. Here, it is the
main.xml file. Then, click the Layout tab. This shows how the layout would look
graphically. Click the black screen and remove everything to start from scratch. Then,
follow these steps:

1. Click and drag a layout from the Layouts Selector to the screen area. For
example, choose TableLayout, which holds multiple Views or ViewGroups in
a column.

2. Click and drag any other layouts to nest them inside the first one. For example,
choose TableRow, which holds multiple Views or ViewGroups along a row. Add
three of these for this example.

3. Right-click each TableRow in the Outline view and add view elements from
the Views Selector. For example, add a Button and CheckBox to the first
TableRow, two TextViews to the second, and a TimePicker to the third.

4. Add a Spinner and VideoView view below the TableRow elements.

The result looks like Figure 5.2, and the landscape and portrait view can be toggled
to see the difference in the layout. Clicking the main.xml tab shows XML code

www.it-ebooks.info

http://www.it-ebooks.info/

114 Chapter 5 User Interface Layout

[1] viewExample.java | € main.xml £3 = [l || [E] Task List 52

Editing config: default

Find: |

Devices| AL ¥ Config| Partr v Locale| v ||Theme (5 Uncategorized

= Layouts 40
R] RadioAGroup
@ Relativelayout
Scrollview
SlidingDrawer
TabHost
Tabiwidget
TableLayout
TableRow
TextSwitcher
@ Wigwanimatar

W viswFnner .
= Views -
(B) Progréssbar

@ QuickContactBa. ..
® RadicButton

® RatingBar

® SeekBar

® Spinner

® TextWiew

® TimePicker

® ToggleButton

(T) TwolineListltem
@ videoyizw.

i_l__a}io_u_t_| mair,xml |

@+id/Button01

5= outline 52 :
= TableLayout01 {TableLayout)
] TableRow01 {TableRow)
ableRow02 (TableRow)
= TableRow03 (TableRow)
(T) TimePickerD1 (TimePicker)
® Spinner0l (Spinner)
() videoview01 (Videoview)

Figure 5.2 Android layout builder example, as seen in Eclipse

like that shown in Listing 5.1. This provides a simple method to build Uls with the
Android look and feel.

Listing 5.1 main.xml

<?xml version="1.0" encoding="utf-8"?>
<TableLayout android:id="@+id/TableLayout01l"
android:layout width="match parent"
android:layout height="match parent"
xmlns:android="http://schemas.android.com/apk/res/android">
<TableRow android:id="@+id/TableRow01"
android:layout width="wrap content"
android:layout height="wrap content"s
<Button android:text="@+id/Button0l"
android:id="@+id/Button01"
android:layout width="wrap content"
android:layout height="wrap content" />
<CheckBox android:text="@+id/CheckBox01"

www.it-ebooks.info

http://www.it-ebooks.info/

Views and ViewGroups

android:id="@+id/CheckBox01"
android:layout width="wrap content"
android:layout height="wrap content" />
</TableRow>
<TableRow android:id="@+id/TableRow02"
android:layout width="wrap content"
android:layout height="wrap content"s
<TextView android:text="@+id/TextView01l"
android:id="@+id/TextView01"
android:layout width="wrap content"
android:layout height="wrap content" />
<TextView android:text="@+id/TextView02"
android:id="@+id/TextView02"
android:layout width="wrap content"
android:layout height="wrap content" />
</TableRow>
<TableRow android:id="@+id/TableRow03"
android:layout width="wrap content"
android:layout height="wrap content"s
<TimePicker android:id="@+id/TimePicker01"
android:layout width="wrap content"
android:layout height="wrap content" />
</TableRow>
<Spinner android:id="@+id/Spinner0l"
android:layout width="wrap content"
android:layout height="wrap_ content" />
<VideoView android:id="@+id/VideoView01"
android:layout width="wrap content"
android:layout height="wrap content" />

</TableLayout>

Another way to view the layout is by using the Hierarchy Viewer. Running an
application in the emulator, the hierarchyviewer command can be run from the
command line. It resides in the tools/ directory of the SDK installation. For security
reasons, this works only with the emulator as the device because running the Hier-
archy Viewer on an actual device might reveal secure settings. Click the window of
interest and select Load View Hierarchy. This produces a relational view of the dif-
ferent layouts. The result for this recipe is shown in Figure 5.3.

Recipe: Controlling the Width and Height of Ul Elements

This recipe shows how specifying the width and height of UI elements changes the
overall layout. Each view object must specify a total width (android:layout width)

and

total height (android:layout height) in one of three ways:

Exact dimension—Provides control, but does not scale to multiple screen types well.
wrap_content—]Just big enough to enclose the contents of the element plus
padding.

match parent—Size maximized to fill the element’s parent, including padding.
This replaced fill_parent, which was deprecated in Android 2.2.

www.it-ebooks.info

115

http://www.it-ebooks.info/

116 Chapter 5 User Interface Layout

TableRow
#2@43 afdbB
id/TableRow03
TableRow
#2@43 afdbB
TableRow / id/TableRow03
#2@43 afdbB
id/TableRow03
TableRow
#2@43 afdbB
TableRow id/TableRow03
#2@43 afdbB
id/TableRow03 |
TableRow
#2@43 afdbB
id/TableRow03
TableRow
#2@43 afdbB
id/TableRow03 || TableRow
#2@43 afdbB | | #2@43 afdbB | | #2@43 afdbB | | #2@43 afdbB
| id/T: 3(|idrT id/T: id/T:
TableRow
#2@43 afdbB
id/TableRow03 TableRow TableRow TableRow TableRow
#2@43 afdbB #2@43 afdbB #2@43 afdbB | | #2@43 afdbB
id/Tal 3| |idr: id/Tal id/Tal 3
TableRow
#2@43 afdbB
013 aa / id/TableRow03
#2@43 afdbB
id/TableRow03
TableRow TableRow
#2@43 afdbB #2@43 afdbB
id/TableRow03 id/TableRow03
TableRow TableRow TableRow
#2@43 afdbB | | #2@43 afdbB || #2@43 afdbB | | #2@43 afdbB | | #2@43 afdbB || #2@43 afdbB
id/T: 3| [id/T: 3| [id/T: id/T: id/T: 3 || i/ 3

Figure 5.3 Android Hierarchy Viewer for the example in Listing 5.1

subftract divide

Figure 5.4 LinearLayout with four buttons aligned horizontally, as shown in Listing 5.2

Padding is the blank space surrounding an element, and it defaults to zero if it is
not specified. It is part of the size of a UI element and must be specified as an exact
dimension, but it can be specified using one of two types of attributes:

= padding—Sets padding equal on all four sides of an element

= paddingLeft, paddingRight, paddingTop, paddingBottom—Sets padding on
each side of an element separately

Some developers confuse padding with margins; margins are the spaces around an
element but are not included in the size of the UI element.

Another attribute is android:layout_weight, which can be assigned an integral
number value. It provides the Android system with a way to determine relative importance
based on the value for how spacing is handled between different elements of a layout.

www.it-ebooks.info

http://www.it-ebooks.info/

Views and ViewGroups

Listing 5.2 shows the main layout file as a linear layout with four buttons. This
aligns them horizontally on the screen, as shown in Figure 5.4.

Listing 5.2 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match parent"
android:layout height="match parent">
<Button android:text="add"
android:layout width="wrap content"
android:layout height="wrap content"
/>
<Button android:text="subtract"
android:layout width="wrap content"
android:layout height="wrap content"
/>
<Button android:text="multiply"
android:layout width="wrap content"
android:layout height="wrap content"
/>
<Button android:text="divide"
android:layout width="wrap content"
android:layout height="wrap content"
/>

</LinearLayout>

If the height of the “add” button is changed to match parent, the button fills the
vertical space of its parent while keeping the words aligned. If the width of any but-
ton is changed to match_parent, all subsequent buttons in the horizontal layout are
washed out. These are shown in Figure 5.5.

Also note in Figure 5.6 that the “multiply” and “divide” buttons have a portion of
the last letter cut off in two of the button configurations. This can be fixed by appending
a space to the text, such as “multiply ” and “divide ”. However, a more general method
to resolve this uses the layout. Take a look at the various button formats in Figure 5.6.

The four rows of buttons in Figure 5.6 are as follows:

= The first row is the same as what was created in Listing 5.2, but with spaces
appended to the end of each word.

= In the second row, the layout width is changed to match parent for the last
button, providing the space needed for the button, but it cannot be used for the
earlier buttons on the line as evidenced by the right part of Figure 5.5:

<Button android:text="divide"
android:layout width="match parent"
android:layout height="wrap content"

/>

= In the third row, padding is added to the “multiply” button to make the button
bigger, but it does not add this space to the word itself because it was declared as
wrap_content:

www.it-ebooks.info

117

http://www.it-ebooks.info/

118 Chapter 5 User Interface Layout

<Button android:text="multiply"
android:layout width="wrap content"
android:layout height="wrap content"
android:paddingRight="20sp"

/>

= In the fourth row, all buttons use match parent but also add layout weight
and assign it the same value for all buttons. This gives the most satisfying layout:
<Button android:text="add"
android:layout width="match parent"

android:layout height="wrap content"

android:layout weight="1"

/>

Figure 5.5 The match_parent in height keeps the horizontal alignhment, but a match_
parent in width washes out the remaining buttons.

subtract @ multiply @ divide

0 £ B

0 £ B

Figure 5.6 Various methods to tweak the layout of four buttons

www.it-ebooks.info

http://www.it-ebooks.info/

Views and ViewGroups

<Button android:text="subtract"
android:layout width="match parent"
android:layout height="wrap content"
android:layout weight="1"

/>

<Button android:text="multiply"
android:layout width="match parent"
android:layout height="wrap content"
android:layout weight="1"

/>

<Button android:text="divide"
android:layout width="match parent"
android:layout height="wrap content"
android:layout weight="1"

/>

Recipe: Setting Relative Layout and Layout ID

Sometimes it is more convenient to set the layout relative to a starting object or par-
ent object rather than according to absolute rules. Also, if the UT starts nesting
LinearLayouts, it might become inefficient, and it may become simpler to use relative
layouts. This can be done using a RelativeLayout view, as shown in Listing 5.3. The
layout is shown in Figure 5.7.

Listing 5.3 RelativeLayout

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent">
<TextView android:id="@+id/mid" android:text="middle"
android:layout width="wrap content"
android:layout height="wrap content"
android:1ayout_centerInParent="true“/>
<TextView android:id="@+id/high" android:text="high"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout above="@id/mid"/>
<TextView android:id="@+id/low" android:text="low"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout centerHorizontal="true"
android:layout below="@id/mid"/>
<TextView android:id="@+id/left" android:text="left"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout alignBottom="@id/high"
android:layout toLeftOf="@id/low"/>
</RelativeLayout>

www.it-ebooks.info

119

http://www.it-ebooks.info/

120 Chapter 5 User Interface Layout

Figure 5.7 Four text views from the RelativeLayout example

The explanation of these attributes and a list of the different available rules for rela-
tive layout are collected in Table 5.2. Because every layout can have portions declared
in XML files and other portions in Java code, both methods of referring to layouts are
shown. The first three rows of the table show attributes that need to point to a view
ID, and the last two rows show attributes that are Boolean.

Recipe: Declaring a Layout Programmatically
The XML layout framework in Android is the preferred method for enabling general

device changes and simple development. However, sometimes it is useful to change

some layout aspects programmatically—using Java, for example. In fact, the entire

layout can be declared using Java. For illustration, a portion of the previous recipe’s

layout is shown implemented as Java code in Listing 5.4.

Table 5.2 Possible Rules for Children in a Relative Layout

XML Attribute (All Start with
the android: Tag)

Java Constant

Relative Layout Rule

layout above
layout below
layout_toRightOf
layout_toLeftOf

layout_alignTop
layout alignBottom
layout alignRight
layout_alignLeft

layout_alignBaseline

layout_alignParentTop
layout_alignParentBottom
layout alignParentRight
layout alignParentLeft

layout centerInParent
layout_centerHorizontal
layout_centerVertical

ABOVE
BELOW
RIGHT OF
LEFT OF

ALIGN_TOP
ALIGN_BOTTOM
ALIGN_ RIGHT
ALIGN_LEFT

ALIGN_ BASELINE

ALIGN PARENT TOP
ALIGN_ PARENT BOTTOM
ALIGN PARENT RIGHT
ALIGN PARENT LEFT

CENTER_IN_ PARENT
CENTER_HORIZONTAL
CENTER_VERTICAL

Align this view’s edge rela-
tive to anchor view’s edge.

Align this view’s edge with
anchor view’s edge.

Align this view’s text base-
line with anchor view’s text
baseline.

Align this view’s edge with
parent view’'s edge.

Center this view within
parent.

www.it-ebooks.info

http://www.it-ebooks.info/

Views and ViewGroups

It should be stressed that not only is coding layout in Java cumbersome, but it is
also discouraged. It does not take advantage of the modular approach to resource
directories where a layout can be changed simply without modification of Java code, as
discussed in the “Specifying Alternate Resources” recipe.

Listing 5.4 src/com/cookbook/programmaticlayout/ProgrammaticLayout.java

package com.cookbook.programmatic_layout;

import android.app.Activity;

import android.os.Bundle;

import android.view.ViewGroup;

import android.view.ViewGroup.LayoutParams;
import android.widget.RelativeLayout;
import android.widget.TextView;

public class ProgrammaticLayout extends Activity {
private int TEXTVIEW1 ID = 100011;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

//Here is an alternative to: setContentView(R.layout.main);

final RelativeLayout relLayout = new RelativeLayout(this);

relLayout.setLayoutParams(new RelativeLayout.LayoutParams (
LayoutParams.MATCH_PARENT,
LayoutParams.MATCH PARENT));

TextView textViewl = new TextView(this);

textViewl.setText("middle");

textViewl.setTag (TEXTVIEWL ID);

RelativeLayout.LayoutParams textllayout = new
RelativeLayout.LayoutParams (LayoutParams.WRAP_CONTENT,
LayoutParams.WRAP CONTENT);
textllayout.addRule(RelativeLayout.CENTER IN PARENT);
rellLayout.addView(textViewl, textllayout);
TextView textView2 = new TextView(this);
textView2.setText("high");

RelativeLayout.LayoutParams text2Layout = new
RelativeLayout.LayoutParams (LayoutParams.WRAP_CONTENT,
LayoutParams.WRAP CONTENT);
text2Layout.addRule(RelativeLayout.ABOVE, TEXTVIEW1l ID);
relLayout.addView(textView2, text2Layout);

setContentView(relLayout);

Recipe: Updating a Layout from a Separate Thread

As discussed in Chapter 3, “Threads, Services, Receivers, and Alerts,” when a time-
consuming activity is being run, care must be taken to ensure that the UI thread stays
responsive. This is done by creating a separate thread for the time-consuming task

www.it-ebooks.info

121

http://www.it-ebooks.info/

122

Chapter 5 User Interface Layout

and letting the UI thread continue at high priority. If the separate thread subsequently
needs to update the UI, a handler can be used to post updates to the UI thread.

This recipe uses a button to trigger a time-consuming computation in two parts
and updates to the screen when each part is done. The layout, represented by the XML
in Listing 5.5, consists of status text called computation status and a trigger button
called action. It uses the strings defined in strings.xml, as shown in Listing 5.6.

Listing 5.5 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent">
<TextView android:id="@+id/computation_status"
android:layout width="match parent"
android:layout height="wrap content"
android:text="@string/hello" android:textSize="36sp"
android:textColor="#000" />
<Button android:text="@string/action"
android:id="@+id/action"
android:layout width="wrap content"
android:layout height="wrap_ content" />
</LinearLayout>

Listing 5.6 res/layout/strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="hello">Hello World, HandlerUpdateUil</string>
<string name="app name"sHandlerUpdateUi</string>
<string name="action">Press to Start</strings
<string name="start"sStarting...</string>
<string name="first">First Done</string>
<string name="second">Second Done</string>
</resources>

The steps to update the UI from a background thread follow:

1. Initialize a handler to the UI object that updates by the background thread.
(Here, it is called av.)

2. Define a runnable function (here, it is called mUpdateResults) that updates the
UI as needed.

3. Declare a handler to handle the messages between threads. (Here, it is called
mHandler.)

4. In the background thread, set flags as appropriate to communicate the change
in status. (Here, textString and backgroundColor are to be changed.)

www.it-ebooks.info

http://www.it-ebooks.info/

Views and ViewGroups

5. In the background thread, have the handler post the UI update function to the
main thread.

The activity created by these steps is shown in Listing 5.7.

Listing 5.7 src/com/cookbook/handler_ui/HandlerUpdateUi.java

package com.cookbook.handler ui;

import android.app.Activity;
import android.graphics.Color;
import android.os.Bundle;
import android.os.Handler;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

public class HandlerUpdateUi extends Activity {
TextView av; //UI reference
int textString = R.string.start;
int backgroundColor = Color.DKGRAY;

final Handler mHandler = new Handler();
// Create runnable for posting results to the UI thread
final Runnable mUpdateResults = new Runnable() {
public void run() {
av.setText (textString);
av.setBackgroundColor (backgroundColor);

}:

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
av = (TextView) findViewById(R.id.computation status);

Button actionButton = (Button) findvViewById(R.id.action);
actionButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
doWork () ;
}

i
}

//example of a computationally intensive action with UI updates
private void doWork() {
Thread thread = new Thread(new Runnable() {
public void run() {
textString=R.string.start;
backgroundColor = Color.DKGRAY;
mHandler.post (mUpdateResults);

computation(1);
textString=R.string.first;

www.it-ebooks.info

123

http://www.it-ebooks.info/

124

Chapter 5 User Interface Layout

backgroundColor = Color.BLUE;
mHandler.post (mUpdateResults);

computation(2);
textString=R.string.second;
backgroundColor = Color.GREEN;
mHandler.post (mUpdateResults);

}
b
thread.start();
}
final static int SIZE=1000; //large enough to take some time
double tmp;

private void computation(int val) {
for(int 1i=0; 1i<SIZE; ii++)
for(int jj=0; Jj<SIZE; jj++)
tmp=val*Math.log(ii+1)/Math.loglp(jj+1);

Text Manipulation

In views that incorporate text, such as TextView, EditText, and Button, the text
is represented in the XML layout file by the android:text element. As discussed
in the beginning of this chapter, it is good practice to initialize this with a string
defined in the strings.xml file, so that all strings are contained in a single place.
Therefore, a way to add text to a Ul element, such as Textview, looks like

the following:

<TextView android:text="@string/myTextString"
android:id="@+id/my_ text label"
android:layout_width="wrap content"
android:layout height="wrap content" />

The default font depends on the Android device and user preferences. To specity
the exact font, use the elements shown in Table 5.3. The default values are shown in
bold in the fourth column.

Recipe: Setting and Changing Text Attributes

This recipe changes the color of displayed text when a button is clicked. It can
easily be extended to change the font size or style instead, as discussed at the end of
the recipe.

The main layout is simply a TextView and Button arranged in a vertical
LinearLayout, as shown in Listing 5.8. The text is identified as mod_text and dis-
plays the string changed_text defined in the strings.xml file, as shown in List-
ing 5.9. The button is identified as change and displays the string button_text from
the string’s XML file.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Manipulation 125

Table 5.3 Useful TextView Attributes

Attribute XML Element Java Method Values
Display string android:text setText (CharSequence) Any string
Font size android:textSize setTextSize (float) Any dimension
Font color android:textColor setTextColor(int) Any color
Background color N/A setBackgroundColor (int) Any color
Font style android:textStyle setTypeface (Typeface) Bold
Italic
Bold italic
Font type android:typeface setTypeface (Typeface) Normal
Sans serif
Monospace
Text placement in android:gravity setGravity(int) Top
display area Bottom
Left
Right
(More . . .)

Listing 5.8 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent">
<TextView android:text="@string/changed text"
android:textSize="48sp"
android:id="@+id/mod text"
android:layout width="wrap content"
android:layout height="wrap content" />
<Button android:text="@string/button text"
android:textSize="48sp"
android:id="@+id/change"
android:layout width="wrap content"
android:layout height="wrap content" />
</LinearLayout>

Listing 5.9 res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app name">ChangeFont</string>

<string name="changed text">Rainbow Connection</strings

<string name="button text"sPress to change the font color</string>
</resources>

www.it-ebooks.info

http://www.it-ebooks.info/

126 Chapter 5 User Interface Layout

The activity shown in Listing 5.10 uses the main.xml layout and identifies the
TextView handler to the mod_text ID. Then the button’s OnClickListener method
is overridden to set the text color as described in Table 5.3.

Listing 5.10 src/com/cookbook/change_font/ChangeFont.java

package com.cookbook.change font;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

public class ChangeFont extends Activity {

TextView tv;

private int colorVals[]l={R.color.start, R.color.mid, R.color.last};

int 1dx=0;

/** called when the activity is first created */

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
tv = (TextView) findViewById(R.id.mod text);

Button changeFont = (Button) findviewById(R.id.change);
changeFont.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
tv.setTextColor (getResources().getColor(colorVals[idx]));
idx = (1dx+1)%3;

The possible color resources are defined in a global colors.xml file, as shown in
Listing 5.11. As defined, the colors are red, green, and blue, but they are named func-
tionally as start, mid, and last. This provides an easy way to change the colors later
without needing to change their handler names.

Listing 5.11 res/values/colors.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="start">#f00</color>
<color name="mid">#0f0</color>
<color name="last">#00f</color>
</resources>

www.it-ebooks.info

http://www.it-ebooks.info/

Text Manipulation

This recipe can be modified to change the text size (or text style) easily. For
example, colorVals[] would change to sizevals[] and point to the R.dimen
resources:

private int sizeVals[]={R.dimen.small, R.dimen.medium, R.dimen.largeb

tv.setTextSize (getResources().getDimension(sizevals[idx]));

Also, instead of the colors.xml file, the dimens.xml file would be used, as shown
in Listing 5.12.

Listing 5.12 Similar Usage for the dimens.xml File

<?xml version="1.0" encoding="utf-8"?>
<resources>
<dimen name="start">12sp</dimen>
<dimen name="mid">24sp</dimens>
<dimen name="last">48sp</dimen>
</resources>

To change the text string instead, colorvVals[] would change to textvals[] and
point to the R.string resources as follows:

private int textVals[]={R.string.first text,
R.string.second_text, R.string.third_textb
tv.setText (getBaseContext () .getString(textVals[idx]));

The strings.xml file would then be used, as shown in Listing 5.13.

Listing 5.13 Similar Usage for the strings.xml File

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app name">ChangeFont</string>
<string name="changed text">Rainbow Connection</strings
<string name="buttoN text">Press to Change the Font Color</strings
<string name="first_ text"sFirst</string»
<string name="second text"sSecond</string>
<string name="third text">Third</string>
</resources>

Recipe: Providing Text Entry

The EditText class provides a simple view for user input. It can be declared just like a
TextView with the most useful attributes shown in Table 5.4. Although each does have
a corresponding Java method, it is less illuminating to show those here. Again, the
default values are in bold in the last column.

For example, using the following XML code in a layout file shows a text entry
window with Type text here displayed in grayed-out text as a hint. On devices

www.it-ebooks.info

127

http://www.it-ebooks.info/

128

Chapter 5 User Interface Layout

Table 5.4 Useful EditText Attributes

Attribute XML Element Values

Minimum number of lines to android:minLines Any integer

display

Maximum number of lines to android:maxLines Any integer

display

Hint text to show when display android:hint Any string

is empty

Input type android:inputType text
textCapSentences
textAutoCorrect
textAutoComplete
textEmailAddress
textNoSuggestions
textPassword
number
phone
date
time
(More . . .)

without a keyboard or on those where the keyboard is hidden, selecting the Edit
window brings up the soft keyboard for text entry, as shown in Figure 5.8.

<EditText android:id="@+id/text result"

android:inputType="text"
android:textSize="30sp"
android:hint="Type text here"

android:layout_width="match parent"

android:layout height="wrap content" />

Figure 5.8 Text entry with soft keyboard

Type text here

www.it-ebooks.info

http://www.it-ebooks.info/

Text Manipulation

Type phone # here

Type email here

2 ABC 3 DEF

5 JKL 6 MNO

DEL

8 Tuv 9 WxYZ || &=

0+ Done

Figure 5.9 Using soft keyboards when inputText is set as "phone" or
"textEmailAddress"

By using android:inputType="phone" or ="textEmailAddress", the soft key-
board for phone number entry or the soft keyboard for email address entry displays
when the user selects the Input window. These are shown in Figure 5.9 with appropri-
ately changed hint text.

One more note: The text entry method can be specified as shown in Table 5.4 to
automatically capitalize each sentence as typed, automatically correct mistyped words,
or turn off word suggestions during typing. Control over these choices might be useful
depending on the text entry situation.

Recipe: Creating a Form

A form is a graphical layout with areas that can take text input or selection. For text
input, an EditText object can be used. After it is declared, some Java code needs to
capture the text entry at run-time. This is done as shown in Listing 5.14. Note that

the content of the text entry textResult in this example should not be modified. A
copy of the content can be made in case modification is needed.

Listing 5.14 Capturing Text from an EditText Object

CharSequence phoneNumber;
EditText textResult = (EditText) findViewById(R.id.text result);
textResult.setOnKeyListener (new OnKeyListener() {
public boolean onKey(View v, int keyCode, KeyEvent event) {
// Register the text when "enter" is pressed
if ((event.getAction() == KeyEvent.ACTION UP) &&
(keyCode == KeyEvent.KEYCODE ENTER)) {
// Grab the text for use in the activity
phoneNumber = textResult.getText();
return true;

}

return false;

www.it-ebooks.info

129

http://www.it-ebooks.info/

130

Chapter 5 User Interface Layout

Returning true from the onKey method indicates to the super function that the
key press event was consumed (used), and there is no need to process further.

To provide user selection of different options normally used in forms, standard
widgets such as check boxes, radio buttons, and drop-down selection menus are imple-
mented using widgets as shown in the next section.

Other Widgets: From Buttons to Seek Bars

The Android system provides some standard graphical widgets that developers can use
to create a cohesive user experience across applications. The most common ones are:

= Button—A rectangular graphic that registers when the screen is touched within
its bounds. It can contain user-provided text or images.

= CheckBox—A button with a check mark graphic and description text that can be
toggled on or off when touched. The ToggleButton is similar and also discussed here.

= RadioButton—A button with a dot graphic that can be selected when touched
but cannot then be turned off. Multiple radio buttons can be grouped together
into a RadioGroup (as a LinearLayout), which allows only one radio button of
the group to be selected at a time.

= Spinner—A button showing the current selection and an arrow graphic to
denote a drop-down menu. When the spinner is touched, the list of possible
values displays, and when a new selection is made, it is displayed in the spinner.

= ProgressBar—A bar that lights up to visually indicate the percentage of progress
(and optionally secondary progress) in an operation. It is not interactive. If a
quantitative measure of progress cannot be determined, the ProgressBar can be
set in indeterminate mode, which shows a rotating circular motion instead.

= SeekBar—An interactive progress bar that allows progress to be dragged and
changed. This is useful to show media playback, for example. It can show how
much of the media has been played, and a user can drag to move to an earlier or
later place in the file.

The following recipes provide some practical examples of these widgets.

Recipe: Using Image Buttons in a Table Layout

Buttons were introduced in Chapter 2, “Application Basics: Activities and

Intents.” Like any view, a background image can be added to a button using the
android:background attribute. However, using the special ImageButton widget pro-
vides some additional layout flexibility. It specifies an image using the android:src
attribute as follows:

<ImageButton android:id="@+id/imagebutton0"
android:src="@drawable/android cupcake"
android:layout width="wrap content"

android:layout height="wrap content" />

www.it-ebooks.info

http://www.it-ebooks.info/

Other Widgets: From Buttons to Seek Bars

centerCrop

centerlnside

fitCenter

fitEnd

fitStart

fitXY

Figure 5.10 Example results of android:scaleType for image views

When used in this way, the image shows on top of a Button widget. The
ImageButton widget inherits image placement from the Imageview widget using
android:scaleType. Possible values and how they modify a given image are illus-
trated in Figure 5.10.

Following are some additional possible manipulations used with image buttons:

» Using android:padding to keep buttons from overlapping or to add space
between them

= Setting android:background to null (which is @null in the XML layout file)
to hide the button and show only the image

When the button is hidden, by default, there is no visual feedback that an image
button was pressed. This can be rectified by creating a drawable XML file that
contains just a selector element:

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:drawable="@drawable/myimage pressed"

android:state pressed="true" />

www.it-ebooks.info

131

http://www.it-ebooks.info/

132

Chapter 5 User Interface Layout

<item android:drawable="@drawable/myimage focused"
android:state_focused="true" />
<item android:drawable="@drawable/myimage normal" />

</selector>

This specifies three different images depending on whether the button is pressed, in
focus, or just in a normal state. The three different images for these cases should also
reside in the drawable resource directory (such as res/drawable-mdpi/). Then, the
selector file can be specified as the android:src attribute of an ImageButton.

‘When multiple image buttons are placed together in a layout, it is often useful to
use the table layout, which is also shown in this recipe. The TableLayout view group
is similar to a LinearLayout with vertical orientation. Then, multiple rows can be
specified using the TableRow view group for each row. The example layout shown in
Listing 5.15 specifies an ImageButton and TextView in each row, producing the screen
layout shown in Figure 5.11.

Cupcake

Donut
Eclair
FroYo

Gingerbread

Figure 5.11 TableLayout of ImageButtons and TextViews

Listing 5.15 res/layout/ibutton.xml

<?xml version="1.0" encoding="utf-8"?>

<TableLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"

www.it-ebooks.info

http://www.it-ebooks.info/

Other Widgets: From Buttons to Seek Bars 133

android:layout height="match parent">
<TableRow>
<ImageButton android:id="@+id/imagebutton0"
android:src="@drawable/android cupcake"
android:scaleType="£fitXYy"
android:background="@null"
android:padding="5dip"
android:layout width="wrap content"
android:layout height="90dip" />
<TextView android:text="Cupcake"
android:layout width="wrap content"
android:layout_height="wrap content" />
</TableRow>
<TableRow>
<ImageButton android:id="@+id/imagebuttonl®
android:src="@drawable/android donut"
android:scaleType="£fitXYy"
android:background="@null"
android:padding="5dip"
android:layout width="wrap content"
android:layout height="90dip" />
<TextView android:text="Donut"
android:layout width="wrap content"
android:layout_height="wrap content" />
</TableRow>
<TableRow>
<ImageButton android:id="@+id/imagebutton2"
android:src="@drawable/android eclair"
android:scaleType="£fitXYy"
android:background="@null"
android:padding="5dip"
android:layout width="wrap content"
android:layout height="90dip" />
<TextView android:text="Eclair"
android:layout width="wrap content"
android:layout_height="wrap content" />
</TableRow>
<TableRow>
<ImageButton android:id="@+id/imagebutton3"
android:src="@drawable/android froyo"
android:scaleType="£fitXYy"
android:background="@null"
android:padding="5dip"
android:layout width="wrap content"
android:layout height="90dip" />
<TextView android:text="FroYo"
android:layout width="wrap content"
android:layout_height="wrap content" />
</TableRow>
<TableRow>
<ImageButton android:id="@+id/imagebutton4"
android:src="@drawable/android gingerbread"
android:scaleType="£fitXYy"
android:background="@null"
android:padding="5dip"
android:layout width="wrap content"
android:layout height="90dip" />

www.it-ebooks.info

http://www.it-ebooks.info/

134

Chapter 5 User Interface Layout

<TextView android:text="Gingerbread"
android:layout width="wrap content"
android:layout height="wrap content" />
</TableRow>
</TableLayout>

Recipe: Using Check Boxes and Toggle Buttons

Check boxes have a predetermined check mark graphic, colors for selection, and col-
ors for behavior when pressed. This provides a unifying look and feel across Android
applications. However, if a custom graphic to denote selection is required, the
setButtonDrawable () method can be used.

Sticking with the check box example here, the CheckBox widget needs to be
declared in a layout file, as shown in Listing 5.16. The android:text attribute dis-
plays as a label after the check box. For illustration, a few text views are also added to
the layout.

Listing 5.16 res/layout/ckbox.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent"-
<CheckBox android:id="@+id/checkbox0"
android:text="Lettuce"
android:layout width="wrap content"
android:layout_height="wrap_ content" />
<CheckBox android:id="@+id/checkbox1"
android:text="Tomato"
android:layout width="wrap content"
android:layout_height="wrap_ content" />
<CheckBox android:id="@+id/checkbox2"
android:text="Cheese"
android:layout width="wrap content"
android:layout_height="wrap_ content" />
<TextView android:text="Lettuce, Tomato, Cheese choices:"'
android:layout width="wrap content"
android:layout height="wrap_ content" />
<TextView android:id="@+id/status"
android:layout width="wrap content"
android:layout_height="wrap_ content" />
</LinearLayout>

The views in the layout file can be associated with view instances in the Java file,
as shown in Listing 5.17. Here, a private inner class is used to register the toppings of
a sandwich. All three check boxes have an onClickListener method, which keeps
track of the changes to the toppings, and this is updated to the text view as an
example. The final output with some sample selections is shown in Figure 5.12.

www.it-ebooks.info

http://www.it-ebooks.info/

Other Widgets: From Buttons to Seek Bars

false true true

Figure 5.12 CheckBox example showing unselected and selected widgets

Listing 5.17 src/com/cookbook/layout_widgets/CheckBoxExample.java

package com.cookbook.layout widgets;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;
import android.widget.CheckBox;

import android.widget.TextView;

public class CheckBoxExample extends Activity {
private TextView tv;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.ckbox);
tv = (TextView) findvViewById(R.id.status);

class Toppings {private boolean LETTUCE, TOMATO, CHEESE;}

final Toppings sandwichToppings = new Toppings();
final CheckBox checkbox[] = {
(CheckBox) findViewById(R.id.checkbox0),
(CheckBox) findViewById(R.id.checkboxl),
(CheckBox) findviewById(R.id.checkbox2)};

checkbox [0].setOnClickListener (new OnClickListener() {
@Override
public void onClick(View v) {
if (((CheckBox) v).isChecked()) {
sandwichToppings.LETTUCE = true;

www.it-ebooks.info

135

http://www.it-ebooks.info/

136 Chapter 5 User Interface Layout

} else {
sandwichToppings.LETTUCE = false;

tv.setText (""+sandwichToppings.LETTUCE + " "
+sandwichToppings.TOMATO + " "
+sandwichToppings.CHEESE + " ");

D
checkbox[1] .setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {
if (((CheckBox) v).isChecked()) {
sandwichToppings.TOMATO = true;
} else {
sandwichToppings.TOMATO = false;
}

tv.setText (""+sandwichToppings.LETTUCE + "
+sandwichToppings.TOMATO + " "
+sandwichToppings.CHEESE + " ");

}
K
checkbox[2].setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {
if (((CheckBox) v).isChecked()) ({
sandwichToppings.CHEESE = true;
} else {
sandwichToppings.CHEESE = false;
}

tv.setText (""+sandwichToppings.LETTUCE + "
+sandwichToppings.TOMATO + " "
+sandwichToppings.CHEESE + " ");

Toggle buttons are similar to check boxes but use a different graphic. In addition,
the text is incorporated into the button rather than put alongside. Listing 5.16 (and
Listing 5.17 for that matter) can be modified to replace each CheckBox with a
ToggleButton:

<ToggleButton android:id="@+id/ToggleButton0"
android:textOff="No Lettuce"
android:textOn="Lettuce"
android:layout_width="wrap_ content"
android:layout height="wrap content" />

Note that the android:text element is replaced by an android:textOff (defaults
to "OFF" if not specified) and android:textOn (defaults to "ON" if not specified) ele-
ment for display depending on the selection state of the toggle button. An example
output is shown in Figure 5.13.

www.it-ebooks.info

http://www.it-ebooks.info/

Other Widgets: From Buttons to Seek Bars

Lettuce

No Tomato

true false true

Figure 5.13 ToggleButton example with unselected and selected widgets

Recipe: Using Radio Buttons

A radio button is like a check box that cannot be unchecked. Selecting one radio but-
ton unselects a previously selected one. Usually a group of radio buttons is put into a
RadioGroup view group that ensures that only one button of the collection is selected
at a time. This is shown in the layout file in Listing 5.18.

Listing 5.18 res/layout/rbutton.xml

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup android:id="@+id/RadioGroup0l"
android:layout width="wrap content"
android:layout height="wrap content">
<RadioButton android:text="Republican"
android:id="@+id/RadioButton02"
android:layout width="wrap content"
android:layout height="wrap content" />
<RadioButton android:text="Democrat"
android:id="@+id/RadioButton03"
android:layout width="wrap content"
android:layout height="wrap content" />
<RadioButton android:text="Independent"
android:id="@+id/RadioButton0l"
android:layout width="wrap content"
android:layout height="wrap content" />
</RadioGroup>

This example activity is similar to the example shown in Listing 5.17, but with
CheckBox replaced by RadioButton. Listing 5.18’s layout is shown in Figure 5.14.

www.it-ebooks.info

137

http://www.it-ebooks.info/

138 Chapter 5 User Interface Layout

Figure 5.14 RadioGroup example showing three radio buttons

Recipe: Creating a Spinner

A drop-down menu is called a spinner. It is a widget defined in a normal screen layout
such as the one shown in Listing 5.19.

Listing 5.19 res/layout/spinner.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_ content"
android:layout height="wrap content"s
<Spinner android:id="@+id/spinner™"
android:prompt="@string/oceaN prompt"
android:layout width="wrap content"
android:layout height="wrap content" />
</LinearLayout>

The title of the drop-down menu can be specified with the android:prompt
attribute. It needs to be defined in a strings.xml file, for example:

<string name="ocean prompt">Choose your favorite ocean</strings

The spinner also needs a separate layout defined for the drop-down menu appear-
ance, such as Listing 5.20 for the spinner_entry.xml.

Listing 5.20 res/layout/spinner_entry.xml

<?xml version="1.0" encoding="utf-8"?>

<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:gravity="center"
android:textColor="#000"
android:textSize="40sp"

www.it-ebooks.info

http://www.it-ebooks.info/

Other Widgets: From Buttons to Seek Bars

android:layout width="match parent"
android:layout height="wrap content"s
</TextViews

Note that the spinner entry layout is not limited to text but can include images or
any object supported in layouts.

The activity to call the spinner needs to declare an Adapter constructor to fill the
drop-down menu with the view from the spinner entry layout file. An example of
such an activity is shown in Listing 5.21.

Listing 5.21 src/com/cookbook/layout_widgets/SpinnerExample.java

package com.cookbook.layout widgets;

import android.app.Activity;

import android.os.Bundle;

import android.widget.ArrayAdapter;
import android.widget.Spinner;

public class SpinnerExample extends Activity {
private static final String[] oceans = {
"Pacific", "Atlantic", "Indian",
"Arctic", "Southern" };

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.spinner);

Spinner favoriteOcean = (Spinner) findViewById(R.id.spinner);

ArrayAdapter<String> mAdapter = new

ArrayAdapter<String>(this, R.layout.spinner entry, oceans);
mAdapter.setDropDownViewResource (R.layout.spinner entry);
favoriteOcean.setAdapter (mAdapter);

In the previous example, the spinner entries are defined by the string array
oceans[], which is passed to the ArrayAadapter constructor. This implementation
assumes the spinner entries do not change during run-time. To specify a more general
case where spinner entries can be added or manipulated, mAdapter needs to be built
using its add () method. The bold part of code in the onCreate () method would then
become the following:

Spinner favoriteOcean = (Spinner) findViewById(R.id.spinner);

ArrayAdapter<String> mAdapter = new
ArrayAdapter<String>(this, R.layout.spinner entry);

mAdapter.setDropDownViewResource (R.layout.spinner entry);

www.it-ebooks.info

139

http://www.it-ebooks.info/

140

Chapter 5 User Interface Layout

for(int idx=0; idx<oceans.length; idx++)
mAdapter.add(oceans[idx]);

favoriteOcean.setAdapter (mAdapter);

This ArrayAdapter constructor allows the add(), remove(), and clear() methods
to change the selection list during run-time, and getView() to improve performance
speed by reusing layout views for each spinner entry.

Recipe: Using a Progress Bar

This recipe demonstrates the usage of a progress bar by taking Listing 5.7, which used
text to show progress in a computation, and showing the progress graphically instead.
This is done by adding a progress bar object to the layout, such as:

<ProgressBar android:id="@+id/ex_progress bar"
style="@android:attr/progressBarStyleHorizontal"
android:layout width="270dp"
android:layout height="50dp"
android:progress="0"

android:secondaryProgress="0" />

As the progress changes, the android:progress attribute can change to show a
colored bar going across the screen. The optional android:secondaryProgress attri-
bute shows a lighter-colored bar that can be used to indicate a progress milestone,
for example.

The activity to update the progress bar is shown in Listing 5.22. It is similar to List-
ing 5.7, but it uses ProgressBar instead of changing background colors. Here, the
update results function updates the progress attribute from Java.

Listing 5.22 src/com/cookbook/handler_ui/HandlerUpdateUi.java

package com.cookbook.handler ui;

import android.app.Activity;
import android.os.Bundle;

import android.os.Handler;

import android.view.View;

import android.widget.Button;
import android.widget.ProgressBar;

public class HandlerUpdateUi extends Activity {
private static ProgressBar m progressBar; //UI reference
int percentDone = 0;

final Handler mHandler = new Handler();
// Create runnable for posting results to the UI thread
final Runnable mUpdateResults = new Runnable() {
public void run() {
m_progressBar.setProgress(percentDone);
}

}i

www.it-ebooks.info

http://www.it-ebooks.info/

Other Widgets: From Buttons to Seek Bars 141

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
m progressBar = (ProgressBar) findViewById(R.id.ex progress bar);

Button actionButton = (Button) findviewById(R.id.action);
actionButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
doWork () ;
}

hE
}

//example of a computationally intensive action with UI updates
private void doWork() {
Thread thread = new Thread(new Runnable() {
public void run() {
percentDone = 0;
mHandler.post (mUpdateResults);

computation(l);
percentDone = 50;
mHandler.post (mUpdateResults);

computation(2);
percentDone = 100;
mHandler.post (mUpdateResults);

}
Ni
thread.start();

}

final static int SIZE=1000; //large enough to take some time
double tmp;
private void computation(int val) {
for(int 1i=0; 1i<SIZE; ii++)
for(int jj=0; Jj<SIZE; jj++)
tmp=val*Math.log(ii+1)/Math.loglp(jj+1);

If the updates need to be shown more often, use the postDelayed method of the
handler instead of the post method and add postDelayed to the end of the run-
nable update results function (similar to what was used in “Scheduling a Runnable
Task from the Main Thread” recipe in Chapter 3, “Threads, Services, Receivers, and
Alerts”).

Recipe: Using a Seek Bar

A seek bar is similar to a progress bar, but it can take user input to change the amount
of progress. Current progress is indicated by a small sliding box called a thumb. A user

www.it-ebooks.info

http://www.it-ebooks.info/

142 Chapter 5 User Interface Layout

can click and drag the thumb to visually indicate the new place to set the progress.
The main activity is shown in Listing 5.23.

Listing 5.23 src/com/cookbook/seekbar/SeekBarEx.java

package com.cookbook.seekbar;

import android.app.Activity;
import android.os.Bundle;
import android.widget.SeekBar;

public class SeekBarEx extends Activity {
private SeekBar m seekBar;
boolean advancing = true;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

m seekBar = (SeekBar) findViewById(R.id.SeekBar0l);
m_seekBar.setOnSeekBarChangeListener (new
SeekBar.OnSeekBarChangeListener() {
public void onProgressChanged(SeekBar seekBar,
int progress, boolean fromUser) {
if (fromUser) count = progress;

}

public void onStartTrackingTouch(SeekBar seekBar) {}
public void onStopTrackingTouch(SeekBar seekBar) {}

b

Thread initThread = new Thread(new Runnable() {
public void run() {
show time();
}
i

initThread.start();

}

int count;
private void show time() {
for(count=0; count<100; count++) {
m_seekBar.setProgress(count);

try {
Thread.sleep(100);

} catch (InterruptedException e) {
e.printStackTrace();

}

www.it-ebooks.info

http://www.it-ebooks.info/

Other Widgets: From Buttons to Seek Bars

The widget declaration in the layout XML file is shown in Listing 5.24. Note that

rather than using the default thumb button, a cupcake image is used, as shown in Fig-
ure 5.15.

Listing 5.24 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout_height="match parent">
<TextView android:layout width="match parent"
android:layout height="wrap content"
android:textSize="24sp" android:text="Drag the cupcake"
android:layout alignParentTop="true" />
<SeekBar android:id="@+id/SeekBar01"
android:layout centerInParent="true"
android:layout width="match parent"
android:layout height="wrap content"
android:thumb="@drawable/pink cupcake no bg" />
</RelativeLayout>

'SeekBar

Drag the cupcake

Figure 5.15 SeekBar example with a custom picture of a cupcake as the thumb

www.it-ebooks.info

143

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

O

User Interface Events

The two aspects of a Ul are screen layout and event handling. Chapter 5, “User
Interface Layout,” discussed how layouts are made up of vView objects, such as text and
buttons. This chapter shows how to handle events from a user, such as physical key
presses, touch events, and menu navigation. It also shows how to use a few advanced
user interface libraries, namely, gestures and 3D graphics.

Event Handlers and Event Listeners

Most user interaction with an Android device is captured by the system and sent to a
corresponding callback method. For example, if the physical BACK key is pressed, the
onBackPressed () method is called. Such events can be handled by extending the class
and overriding the methods, called event handlers.

User interaction with View or ViewGroup objects can also support event listeners.
These are methods that wait for the registered event and then trigger the system to
send the event information to the corresponding callback method. For example, the
OnClickListener event listener can be registered for a button and when it is pressed
by using setOnClickListener().

Event listeners are the preferred method when available because they avoid the class
extension overhead. Furthermore, an activity implementing an event listener gets a
callback for all the layout objects it contains, allowing for more concise code. Both
event listeners and event handlers are demonstrated in this chapter within the context
of handling physical key press events and screen touch events.

Recipe: Intercepting a Physical Key Press

A standard Android device has multiple physical keys that can trigger events, as listed
in Table 6.1.

The system first sends any KeyEvent to the appropriate callback method in the in-
focus activity or view. These callback methods are:

www.it-ebooks.info

http://www.it-ebooks.info/

146

Chapter 6 User Interface Events

Table 6.1 Possible Physical Keys on an Android Device

Physical Key KeyEvent Description
Power key KEYCODE_POWER Turns on the device or wakes it from
sleep; brings the Ul to the lock screen
BACK key KEYCODE_BACK Navigates to the previous screen
MENU key KEYCODE MENU Shows the menu for the active
application
HOME key KEYCODE_HOME Navigates to the home screen
SEARCH key KEYCODE_SEARCH Launches a search in the active
application
Camera key KEYCODE CAMERA Launches the camera
Volume key KEYCODE VOLUME_ UP Controls the volume of the media by
KEYCODE_VOLUME DOWN context (voice when in a phone call,
music when in media playback, or ringer
volume)
DPAD KEYCODE DPAD CENTER Directional pad on some devices
KEYCODE_DPAD UP
KEYCODE_DPAD_DOWN
KEYCODE DPAD LEFT
KEYCODE DPAD RIGHT
Trackball KEYCODE DPAD CENTER Directional joystick on some devices
KEYCODE_DPAD UP
KEYCODE DPAD DOWN
KEYCODE DPAD LEFT
KEYCODE DPAD RIGHT
Keyboard KEYCODE_0, ..., Pull-out keyboard on some devices
KEYCODE 9,
KEYCODE A, ...,
KEYCODE_ 2

Media button

KEYCODE_HEADSETHOOK

Headset Play/Pause button

= onKeyUp (), onKeyDown (), onKeyLongPress () —Physical key press callbacks

= onTrackballEvent (), onTouchEvent () —Trackball and touchscreen press
callbacks
= onFocusChanged () —Called when the view gains or loses focus

These can be overridden by the application to customize with different actions. For

example, to turn off the camera button (to avoid accidental presses), just consume the

event in the onKeyDown () callback method for the activity. This is done by intercept-
ing the method for the event KeyEvent .KEYCODE CAMERA and returning true:

www.it-ebooks.info

http://www.it-ebooks.info/

Event Handlers and Event Listeners

public boolean onKeyDown(int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE CAMERA) {
return true; // Consume event, hence do nothing on camera button

}

return super.onKeyDown(keyCode, event);

Because the event is consumed, it does not get passed on to other Android compo-
nents. There are a few exceptions to this:

= The power button and HOME key are intercepted by the system and do not
reach the application for customization.

= The BACK, MENU, HOME, and SEARCH keys should not intercept the
KeyDown but instead the KeyUp. This coincides with Android 2.0 suggestions
because these buttons might not be physical keys in other platforms.

Listing 6.1 shows a variety of examples of intercepting physical key presses, includ-
ing the following:

= The Camera and DPAD left keys are intercepted in onKeyDown () to show a
message to the screen, and then the method is consumed (by returning true).

= The Volume Up key is intercepted to show a message to the screen, but it is not
consumed (returning false) and hence also actually increases the volume.

= The SEARCH key is intercepted in onKeyDown (), and the startTracking()
method is used to track it through to the KeyUp where a message is sent to
the screen.

= The BACK key is intercepted in onBackPressed().

A note on the latter: An Android guideline for usability is that the BACK key
should generally not be customized. However, if needed for some reason in an activity
or dialog, there is a separate callback method available with API Level 5 (Eclair) and
higher to intercept the BACK key: onBackPressed().

For backward compatibility with earlier SDKs, the KeyEvent .KEYCODE BACK can
be intercepted, and the onBackPressed() method can be explicitly called for earlier
SDKs, as shown in Listing 6.1. (Note: This code can be compiled only with Android
2.0 or higher due to the explicit mention of Eclair, but it is backward compatible
at run-time on all devices.) To intercept the BACK key in a view (not shown here)
requires using the startTracking() method, which is similar to the SEARCH key
example in Listing 6.1.

Listing 6.1 src/com/cookbook/PhysicalKeyPress.java

package com.cookbook.physkey;
import android.app.Activity;
import android.os.Bundle;
import android.view.KeyEvent;
import android.widget.Toast;

www.it-ebooks.info

147

http://www.it-ebooks.info/

148 Chapter 6 User Interface Events

public class PhysicalKeyPress extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
1
@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
switch (keyCode) {
case KeyEvent.KEYCODE CAMERA:
Toast.makeText (this, "Pressed Camera Button",
Toast.LENGTH_LONG).show();
return true;
case KeyEvent.KEYCODE DPAD LEFT:
Toast.makeText (this, "Pressed DPAD Left Button",
Toast.LENGTH_LONG).show();
return true;
case KeyEvent.KEYCODE VOLUME UP:
Toast.makeText (this, "Pressed Volume Up Button",
Toast.LENGTH_LONG).show();
return false;
case KeyEvent.KEYCODE SEARCH:
//example of tracking through to the KeyUp
if (event.getRepeatCount() == 0)
event.startTracking();
return true;
case KeyEvent.KEYCODE BACK:
// Make new onBackPressed compatible with earlier SDKs
if (android.os.Build.VERSION.SDK INT
< android.os.Build.VERSION CODES.ECLAIR
&& event.getRepeatCount() == 0) {
onBackPressed();

return super.onKeyDown(keyCode, event);
@Override

public void onBackPressed() {
Toast.makeText (this, "Pressed BACK Key",
Toast.LENGTH_LONG).show () ;
}
@Override
public boolean onKeyUp(int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE SEARCH && event.isTracking()
&& levent.isCanceled()) {
Toast.makeText (this, "Pressed SEARCH Key",
Toast .LENGTH_LONG).show();
return true;

}

return super.onKeyUp(keyCode, event);

Recipe: Building Menus
A developer can implement three types of menus in Android, and this recipe creates

an example of each:

www.it-ebooks.info

http://www.it-ebooks.info/

Event Handlers and Event Listeners

= Options menu—The main menu for an activity that displays when the MENU
key is pressed. For Android API Levels 10 and below, it contains an icon menu
and possibly an expanded menu when the More menu item is selected. For newer
levels of Android, only the original options menu is available.

= Context menu—A floating list of menu items that displays when a view is long
pressed.

= Submenu—A floating list of menu items that displays when a menu item is
pressed.

The options menu is created the first time the MENU key is pressed in an activity.
This launches the onCreateOptionsMenu() method that usually contains menu
methods, such as:

menu.add (GROUP_DEFAULT, MENU _ADD, 0, "Add")
.setIcon(R.drawable.ic_launcher);

The first argument of the add () method labels the group of the menu item. Groups
of items can be manipulated together. The second argument is an integer ID that
represents the menu item. It is passed to the callback function to determine which
menu item was selected. The third argument is the order of the item in the menu. If
it is not used, the order falls back to the order in which the items were added to the
Menu object. The last argument is the text that displays with the menu item. It can be
a String or a string resource such as R.string.myLabel. This is the only menu that
also supports adding icons to the menu choices using the setIcon() method.

This method is called only once, and the menu does not need to be built again for
the rest of the activity. However, the onPrepareOptionsMenu() method can be used
if any of the menu options need to change during run-time.

When an item from the options menu is clicked, the onOptionsItemSelected()
method is called. This passes the selected item ID, and a switch statement can be used
to determine which option was selected.

For this recipe, the options are to add a note, delete a note, or send a note. These
are represented as simple mock functions that increment a counter (itemNum), decre-
ment a counter, or show a Toast to the screen of the current counter value. To show
an example of changing the menu options at run-time, the delete option is available
only if a note has already been added in the past. This is done by grouping the delete
option in a separate group and hiding the group when the itemNum is zero. The activ-
ity is shown in Listing 6.2.

Listing 6.2 src/com/cookbook/building_menus/BuildingMenus.java

package com.cookbook.building menus;

import android.app.Activity;
import android.os.Bundle;
import android.view.ContextMenu;
import android.view.Menu;

www.it-ebooks.info

149

http://www.it-ebooks.info/

150

Chapter 6 User Interface Events

import android.view.Menultem;

import android.view.SubMenu;

import android.view.View;

import android.view.ContextMenu.ContextMenuInfo;
import android.widget.TextView;

import android.widget.Toast;

public class BuildingMenus extends Activity {
private final int MENU ADD=1, MENU SEND=2, MENU DEL=3;
private final int GROUP_DEFAULT=0, GROUP_DEL=1;
private final int ID DEFAULT=0;
private final int ID TEXT1=1, ID TEXT2=2, ID TEXT3=3;
private String[] choices = {"Press Me", "Try Again", "Change Me"};

private static int itemNum=0;
private static TextView bv;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
bv = (TextView) findViewById(R.id.focus_text);

registerForContextMenu((View) findViewById(R.id.focus text));

}

@Override
public boolean onCreateOptionsMenu(Menu menu) {
menu.add (GROUP_DEFAULT, MENU ADD, 0, "Add")
.setIcon(R.drawable.ic_launcher); //example of adding icon
menu.add (GROUP_DEFAULT, MENU SEND, 0, "Send");
menu.add (GROUP_DEL, MENU DEL, 0, "Delete");

return super.onCreateOptionsMenu(menu);

}

@Override
public boolean onPrepareOptionsMenu(Menu menu) {
if (itemNum>0) {
menu.setGroupVisible (GROUP_DEL, true);
} else {
menu.setGroupVisible (GROUP_DEL, false);
}

return super.onPrepareOptionsMenu(menu);

}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch(item.getItemId()) {
case MENU ADD:
create note();
return true;
case MENU_SEND:
send note();
return true;
case MENU DEL:
delete note();

www.it-ebooks.info

http://www.it-ebooks.info/

Event Handlers and Event Listeners 151

return true;

return super.onOptionsItemSelected(item);
@Override

public void onCreateContextMenu(ContextMenu menu, View v,

ContextMenuInfo menulnfo) {

super.onCreateContextMenu(menu, v, menulInfo);

if(v.getId() == R.id.focus_text) {
SubMenu textMenu = menu.addSubMenu("Change Text");
textMenu.add (0, ID TEXT1, 0, choices[0]);
textMenu.add (0, ID TEXT2, 0, choicesl[1]);
textMenu.add (0, ID TEXT3, 0, choices[2]);
menu.add (0, ID DEFAULT, 0, "Original Text");

}

@Override
public boolean onContextItemSelected(MenuItem item) {
switch(item.getItemId()) {
case ID DEFAULT:
bv.setText (R.string.hello);
return true;
case ID TEXTIL:
case ID TEXT2:
case ID TEXT3:
bv.setText (choices[item.getItemId()-1]);
return true;

return super.onContextItemSelected(item);
void create note() { // mock code to create note

itemNum++;
void send note() { // mock code to send note
Toast.makeText (this, "Item: "+itemNum,
Toast .LENGTH_SHORT).show();
void delete note() { // mock code to delete note
itemNum--;

The activity in Listing 6.2 also shows an example of a context menu and submenu.
A TextView focus_text is added to the layout, as shown in Listing 6.3, and regis-
tered for a context menu using the registerForContextMenu() function in the
onCreate () method of the activity.

When the view is pressed and held, the onCreateContextMenu() method is called
to build the context menu. Here, the SubMenu is implemented using the addSubMenu ()
method for the Menu instance. The submenu items are specified along with the main
menu items, and the onContextItemSelected() method is called when an item from

www.it-ebooks.info

http://www.it-ebooks.info/

152

Chapter 6 User Interface Events

either menu is clicked. Here, the recipe shows a change of text based on the
menu choice.

Listing 6.3 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent"
>

<TextView android:id="@+id/focus_text"
android:layout width="match parent"
android:layout height="wrap content"
android:textSize="40sp"
android:text="@string/hello"
/>

</LinearLayout>

Figures 6.1 and 6.2 show how the menus look for the different cases.

Send

Send Delete

Figure 6.1 Options menu (top) and an added option at run-time (bottom)

Recipe: Defining Menus in XML

Menus can also be built in XML and inflated with the appropriate callback method
from the previous recipe. This is a useful context for larger menus. Dynamic choices
can still be handled in Java.

www.it-ebooks.info

http://www.it-ebooks.info/

Event Handlers and Event Listeners

Press Me

Change Text
Try Again

Original Text
Change Me

Figure 6.2 The context menu that displays with a long click on the text (left) and the sub-
menu for the Change Text option that provides three alternate strings for the text view (right)

Menu files are usually kept in the res/menu/ resources directory. For example,
to make the context menu from the previous section, just create the XML file with

nested menus, as shown in Listing 6.4.

Listing 6.4 res/menu/context_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/submenu" android:title="Change Text">
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/textl" android:title="Press Me" />
<item android:id="@+id/text2" android:title="Try Again" />
<item android:id="@+id/text3" android:title="Change Me" />
</menu>
</item>
<item android:id="@+id/orig" android:title="Original Text" />

</menu>

Then, inflate this XML in the creation of the menu, and reference the IDs from
the item selection method. The two methods in Listing 6.2 that would be replaced are

shown in Listing 6.5.

Listing 6.5 Changed Methods in the Main Activity

@Override
public void onCreateContextMenu(ContextMenu menu, View v,

ContextMenuInfo menulnfo) {
super.onCreateContextMenu(menu, v, menulnfo);

www.it-ebooks.info

153

http://www.it-ebooks.info/

154 Chapter 6 User Interface Events

MenulInflater inflater = getMenuInflater();
inflater.inflate(R.menu.context menu, menu);
}
@Override
public boolean onContextItemSelected(Menultem item) {
switch(item.getItemId()) {
case R.id.orig:
bv.setText (R.string.hello);
return true;
case R.id.textl:
bv.setText (choices[0]);
return true;
case R.id.text2:
bv.setText (choices[1]);
return true;
case R.id.text3:
bv.setText (choices[2]);
return true;

}

return super.onContextItemSelected(item);

Recipe: Creating an Action Bar

The action bar is a window feature that was introduced in the release of Android 3.0
(Honeycomb). This was the release of Android that removed the need for a dedicated
menu button. To replace it, the ActionBar was created. The action bar can be used to
display user actions and global menu options. It can be used to reinforce a brand (as it
will display an icon or app logo) as well as to switch between fragments, offer drop-
down navigation, and display user actions such as search and share.

To get started with an action bar, the Holo theme should be used, and the
android:targetSdkVersion should be set to 11 or higher. For versions prior to
11, the ActionBarSherlock, which is covered later in this chapter, can be used.
The following snippet is an example of what can be used in the AndroidManifest
.xml file:

<uses-sdk android:minSdkVersion="11" android:targetSdkVersion="16" />

This recipe shows how to create an action bar. The menu is shown in Listing 6.6.

Listing 6.6 res/menu/activity_action_bar.xml

<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item android:id="@+id/menu_share"
android:title="Share"
android:icon="@drawable/ic_launcher"
android:orderInCategory="0"
android:showAsAction:"ifRoom|withText" />
<item
android:id="@+id/menu_settings"

www.it-ebooks.info

http://www.it-ebooks.info/

Event Handlers and Event Listeners

android:orderInCategory="100"
android:showAsAction="never"
android:title="@string/menu_settings"/>

</menu>

The action bar works like a menu and is defined in XML. This will be inflated in the
ActionBarActivity. This is shown in Listing 6.7.

Listing 6.7 src/com/cookbook/actionbar/ActionBarActivity.java

package com.cookbook.actionbar;

import android.app.Activity;
import android.os.Bundle;

import android.view.Menu;

import android.view.MenulInflater;
import android.view.Menultem;
import android.widget.Toast;

public class ActionBarActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity action bar);

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {
MenulInflater inflater = getMenulnflater();
inflater.inflate(R.menu.activity action bar, menu);
return true;

}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) (
case R.id.menu share:
Toast.makeText(this, "Implement share options here",
Toast.LENGTH SHORT).show();
default:
return super.onOptionsItemSelected(item);
}

}
}

The bold section in Listing 6.7 shows the section of code that is added to the default
activity in order to handle interaction with the Share menu item. Currently a Toast
will be shown when the Share button is tapped, but this could be changed to work
with providers to allow integration into other applications and services.

www.it-ebooks.info

155

http://www.it-ebooks.info/

156

Chapter 6 User Interface Events

Figures 6.3 and 6.4 show this example on a tablet running Ice Cream Sandwich and
a phone running Jelly Bean.

Recipe: Using ActionBarSherlock

The previous section described how to add an action bar to an application when run
on Android devices that have Android 3.0 or higher, but what about users with legacy
devices? This is where ActionBarSherlock comes into play. ActionBarSherlock bridges
the gap between API levels and allows the use of an action bar in Android API levels
below 11.

First, go to http://actionbarsherlock.com/ and download ActionBarSherlock.
Uncompress the downloaded file, then add the library folder as an “Android Project
from Existing Code.” After the project has been imported into the workspace, it needs
to be added as a library in the Android section of the project properties. Ant or Maven
can also be used to build ActionBarSherlock into a project. For details on how, visit
http://actionbarsherlock.com/usage.html.

After the project is set up to use the ActionBarSherlock library, it is time to make a
few small alterations to the project made in Listing 6.7. The Android Support Library
will need to be added, as this is part of what ActionBarSherlock uses to make the
action bar work on the versions of Android prior to Honeycomb (API Level 11). If
Eclipse is being used as the development IDE, simply right-click on the project folder

& | ActionBar G| sere

Action Bars are awesome

Implment share options here

¢ 9:06e T B

Figure 6.3 An action bar with a toast message displayed on a tablet running
Ice Cream Sandwich

www.it-ebooks.info

http://actionbarsherlock.com/
http://actionbarsherlock.com/usage.html
http://www.it-ebooks.info/

Event Handlers and Event Listeners 157

]

I®1 ActionBar

Action Bars are awesome

Implement share options here

oS OO =

Figure 6.4 An action bar with a toast message displayed on a phone running Jelly Bean

and choose Android Tools — Add Support Library. A download will begin and
the Support Library will be added to the project when the download has completed.

Now only a few modifications need to be made to add ActionBarSherlock to a
project. Listing 6.8 shows the required changes to ActionBarActivity.

Listing 6.8 src/com/cookbook/actionbar/ActionBarActivity.java

package com.cookbook.actionbar;

import com.actionbarsherlock.app.SherlockActivity;
import android.os.Bundle;

import com.actionbarsherlock.view.Menu;

import com.actionbarsherlock.view.MenuInflater;
import com.actionbarsherlock.view.Menultem;
import android.widget.Toast;

public class ActionBarActivity extends SherlockActivity {

www.it-ebooks.info

http://www.it-ebooks.info/

158

Chapter 6 User Interface Events

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity action_bar);

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {
MenuInflater inflater = getSupportMenuInflater();
inflater.inflate(R.menu.activity action bar, menu);
return true;

}

@Override
public boolean onOptionsItemSelected(Menultem item) {
switch (item.getItemId()) {
case R.id.menu_share:
Toast.makeText (this, "Implement share options here",
Toast.LENGTH_SHORT).show();
default:
return super.onOptionsItemSelected(item);
}

}
}

The boldface code displays the changes from Listing 6.7. These changes are the
imports required as well as a change from extends Activity to extends Sherlock-
Activity. A change is also made to the menu inflater, as it will now need to use get-
SupportMenulInflater instead of getMenuInflater.

In order for the action bar to work on older versions of Android, the Android
Manifest.xml file must be changed. The following line is an example of what
will work:

<uses-sdk android:minSdkVersion="7" android:targetSdkVersion="1l6" />

While changes are made to the AndroidManifest.xml file, the theme of the appli-
cation will also need to be changed to allow ActionBarSherlock to display and work
properly. The following is an example of what the application settings could look like:

<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app name"
android:theme="@style/Theme.Sherlock" >

Note that the bolded theme setting has been changed to use the provided Sherlock
theme. More information about using themes with ActionBarSherlock can be found at
http://actionbarsherlock.com/theming.html.

Figure 6.5 shows a portrait screenshot and Figure 6.6 shows a landscape screen-
shot taken from an Android device running Gingerbread (Android 2.3, API Level 9).
Notice how the word SHARE is removed in portrait mode to conserve space.

www.it-ebooks.info

http://actionbarsherlock.com/theming.html
http://www.it-ebooks.info/

Event Handlers and Event Listeners

i

lﬁl ActionBar

Action Bars are awesome

Implement share options here

Figure 6.5 An action bar working on a device running Gingerbread displayed in portrait

Recipe: Using the SEARCH Key

As of Android 4.1 (Jelly Bean), the SEARCH key on all devices has been hard-coded
by Google to be the shortcut key to invoke the Google Now service. This means

that developers can no longer redefine this key for their applications. However, those
building applications for pre-Jelly Bean devices can map the SEARCH key to trigger

¢ = B 23:16

- . -
1! ActionBar 1@ SHARE

Action Bars are awesome

Implement share options here

Figure 6.6 An action bar working on a device running Gingerbread displayed in landscape

www.it-ebooks.info

159

http://www.it-ebooks.info/

160

Chapter 6 User Interface Events

custom behavior. If an activity in the in-focus application is defined to be searchable,
the SEARCH key invokes it. A menu choice or equivalent should always be a redun-
dant way to call the searchable activity to accommodate devices without a SEARCH
key. The menu choice simply needs a call to onSearchRequested().

The searchable activity ideally should be declared as singleTop launch mode, as
discussed in Chapter 2, “Application Basics: Activities and Intents.” This enables mul-
tiple searches to take place without clogging the stack with multiple instances of the
activity. The manifest file would have the following lines:

<activity android:name=".SearchDialogExample"
android:launchMode="singleTop" >
<intent-filter>
<action android:name="android.intent.action.SEARCH" />
</intent-filter>
<meta-data android:name="android.app.searchable"
android:resource="@xml/my search"/>

</activitys>

The XML file referencing the details of setting up the search configuration is shown
in Listing 6.9. This file must be included when defining search in an application.

Listing 6.9 res/xml/my_search.xml

<?xml version="1.0" encoding="utf-8"?>

<searchable xmlns:android="http://schemas.android.com/apk/res/android"
android:label="@string/app name" android:hint="Search MyExample Here">

</searchable>

This recipe provides a search interface. The simplest main activity is shown in List-
ing 6.10 with a default main.xml file.

Listing 6.10 src/com/cookbook/search_diag/MainActivity.java

package com.cookbook.search diag;

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

Then, if the SEARCH key is selected, the searchable activity is activated. The
onCreate () method checks whether the intent is an ACTION SEARCH, and if it is, it

www.it-ebooks.info

http://www.it-ebooks.info/

Event Handlers and Event Listeners

acts on it. Listing 6.11 shows the main activity, which just displays the query to
the screen.

Listing 6.11 src/com/cookbook/search_diag/SearchDialogExample.java

package com.cookbook.search diag;

import android.app.Activity;
import android.app.SearchManager;
import android.content.Intent;
import android.os.Bundle;

import android.widget.Toast;

public class SearchDialogExample extends Activity {
/** called when the activity is first created */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
Intent intent = getIntent();

if (Intent.ACTION SEARCH.equals(intent.getAction())) {
String query = intent.getStringExtra(SearchManager.QUERY);
Toast.makeText (this, "The QUERY: " + query,
Toast .LENGTH_LONG).show();

Recipe: Reacting to Touch Events

Any interaction with the screen, be it a touch or a navigated selection using the track-
ball, is an interaction with the corresponding view at that location. Because the screen
layout is a hierarchy of views, as described in Chapter 5, “User Interface Layout,” the
system starts at the top of this hierarchy and passes the event down the tree until it is
handled by a view. Some events, if not consumed, can continue to pass down the tree
after being handled.

Listing 6.12 shows a button called ex_button that handles both a click and a long
click (press and hold) by setting two event listeners. When the event occurs, the corre-
sponding callback method is called and displays a Toast to the screen to show that the
method was triggered.

Listing 6.12 src/com/cookbook/touch_examples/TouchExamples.java

package com.cookbook.touch examples;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;
import android.view.View.OnLongClickListener;
import android.widget.Button;

import android.widget.Toast;

www.it-ebooks.info

161

http://www.it-ebooks.info/

162 Chapter 6 User Interface Events

public class TouchExamples extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
Button ex = (Button) findViewById(R.id.ex button);

ex.setOnClickListener (new OnClickListener() {
public void onClick(View v) {
Toast.makeText (TouchExamples.this, "Click",
Toast.LENGTH SHORT).show();

}
b
ex.setOnLongClickListener (new OnLongClickListener() ({
public boolean onLongClick(View v) {
Toast.makeText (TouchExamples.this, "LONG Click",
Toast.LENGTH SHORT).show();
return true;

D

The layout providing the button is given in Listing 6.13.

Listing 6.13 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent">
<Button android:id="@+id/ex button"
android:text="Press Me"
android:layout width="wrap content"
android:layout height="wrap content" />
</LinearLayout>

For compactness, this callback method is defined in place in Listing 6.12, but it can
also be defined explicitly for readability and reusability:

View.OnClickListener myTouchMethod = new View.OnClickListener() {
public void onClick(View v) {

//Insert relevant action here

};

ex.setOnClickListener (myTouchMethod);

Another way is to have the activity implement the OnClickListener interface.
Then, the method is at the activity level and avoids an extra class load:

www.it-ebooks.info

http://www.it-ebooks.info/

Event Handlers and Event Listeners

public class TouchExamples extends Activity implements OnClickListener {
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
Button ex = (Button) findViewById(R.id.ex button);

ex.setOnClickListener(this);

public void onClick(View v) {
if (v.getId() == R.id.directory button) {

// Insert relevant action here

This implementation of the onClick() method at the activity level helps to show
how a parent view can handle touch events for multiple children.

Recipe: Listening for Fling Gestures

As discussed in the beginning of the chapter, each view has an onTouchEvent ()
method associated with it. In this recipe, it is overridden with a gesture detector
that sets a gesture listener. The possible gestures in the OnGestureListener inter-
face are

= onDown () —Notifies when a tap-down event occurs

= onFling() —Notifies when a tap-down, movement, and matching-up event
occurs

= onLongPress () —Notifies when a long press occurs

= onScroll()—Notifies when a scroll occurs

= onShowPress () —Notifies when a tap-down event occurs before any movement
or release

= onSingleTapUp () —Notifies when a tap-up event occurs

When only a subset of gestures is needed, the SimpleOnGestureListener class can
be extended instead. It returns false for any of the previous methods not explicitly
implemented.

A fling consists of two events: a touch down (the first MotionEvent) and a release
(the second MotionEvent). Each motion event has a specified location on the screen
given by an (x,y) coordinate pair, where x is the horizontal axis and y is the vertical
axis. The (x,y) velocity of the event is also provided.

www.it-ebooks.info

163

http://www.it-ebooks.info/

164

Chapter 6 User Interface Events

Listing 6.14 shows an activity that implements the onFling() method. When the
movement is large enough (here, defined as 60 pixels), the event is consumed and
appends the statement describing the event to the screen.

Listing 6.14 src/com/cookbook/fling_ex/FlingExample.java

package com.cookbook.fling ex;

import android.app.Activity;

import android.os.Bundle;

import android.view.GestureDetector;

import android.view.MotionEvent;

import android.view.GestureDetector.SimpleOnGesturelListener;
import android.widget.TextView;

public class FlingExample extends Activity {
private static final int LARGE MOVE = 60;
private GestureDetector gestureDetector;
TextView tv;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
tv = (TextView) findViewById(R.id.text result);

gestureDetector = new GestureDetector(this,
new SimpleOnGestureListener() {
@Override
public boolean onFling(MotionEvent el, MotionEvent e2,
float velocityX, float velocityY) (

if (el.get¥() - e2.get¥() > LARGE MOVE) {
tv.append("\nFling Up with velocity " + velocityY);
return true;

} else if (e2.get¥() - el.getY() > LARGE MOVE) (
tv.append("\nFling Down with velocity " + velocityY);
return true;

} else if (el.getX() - e2.getX() > LARGE MOVE) {
tv.append("\nFling Left with velocity " + velocityX);
return true;

} else if (e2.getX() - el.getX() > LARGE MOVE) {
tv.append("\nFling Right with velocity " + velocityX);
return true;

}

return false;
} b
}

@Override
public boolean onTouchEvent(MotionEvent event) {
return gestureDetector.onTouchEvent (event);

www.it-ebooks.info

http://www.it-ebooks.info/

Event Handlers and Event Listeners

The TextView that contains the descriptive text in the previous activity is defined
in the main XML layout shown in Listing 6.15.

Listing 6.15 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent">
<TextView android:id="@+id/text result"
android:layout width="match parent"
android:layout height="match parent"
android:textSize="16sp"
android:text="Fling right, left, up, or down\n" />
</LinearLayout>

Recipe: Using Multitouch
A multitouch event is when more than one pointer (such as a finger) touches the
screen at the same time. This is identified by using a touch listener OnTouchListener,
which receives multiple types of motion events:

= ACTION DOWN—A press gesture has started with a primary pointer (finger).

= ACTION POINTER DOWN—A secondary pointer (finger) has gone down.

= ACTION MOVE—A change in press location has occurred during a press gesture.

= ACTION POINTER UP—A secondary pointer was released.

= ACTION_UP—A primary pointer was released, and the press gesture has
completed.

This recipe displays an image to the screen and allows the multitouch events to
zoom the image in or out. It also checks for single pointer events to drag the picture
around the screen. This is shown in the activity in Listing 6.16. First, the activity
implements the OnTouchListener that is set in the onCreate () method. When a touch
event occurs, the onTouch () method checks the motion event and acts as follows:

= If a first pointer touches the screen, the touch state is declared to be a drag
motion, and the touch-down position and Matrix are saved.

= Ifa second pointer touches the screen when the first pointer is still down, the
distance between the two touch-down positions is calculated. As long as it is
larger than some threshold (50 pixels here), the touch state is declared to be a
zoom motion, and the distance and midpoint of the two events, as well as the
Matrix, are saved.

= If a move occurs, the figure is translated for a single touch-down event and scaled
for a multitouch event.

= Ifa pointer goes up, the touch state is declared to be no motion.

www.it-ebooks.info

165

http://www.it-ebooks.info/

166

Chapter 6 User Interface Events

Listing 6.16 src/com/cookbook/multitouch/MultiTouch.java

package com.cookbook.multitouch;

import android.app.Activity;
import android.graphics.Matrix;
import android.os.Bundle;
import android.util.FloatMath;

import android.view.MotionEvent;

import android.view.View;

import android.view.View.OnTouchListener;
import android.widget.ImageView;

public class MultiTouch extends Activity implements OnTouchListener {
// Matrix instances to move and zoom image
Matrix matrix = new Matrix();
Matrix eventMatrix = new Matrix();

// possible touch states
final static int NONE = 0;
final static int DRAG = 1;
final static int ZOOM = 2;
int touchState = NONE;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
ImageView view = (ImageView) findViewById(R.id.imageView);
view.setOnTouchListener(this);

}

final static float MIN DIST = 50;
static float eventDistance = 0;
static float centerX =0, centerY = 0;

@Override
public boolean onTouch(View v, MotionEvent event) {
ImageView view = (ImageView) v;

switch (event.getAction() & MotionEvent.ACTION MASK) {
case MotionEvent.ACTION DOWN:
//Primary touch event starts: remember touch-down location
touchState = DRAG;
centerX = event.getX(0);
centerY = event.getY(0);
eventMatrix.set (matrix);
break;

case MotionEvent.ACTION POINTER DOWN:
//Secondary touch event starts: remember distance and center
eventDistance = calcDistance(event);
calcMidpoint (centerX, centerY, event);
if (eventDistance > MIN DIST) {
eventMatrix.set (matrix);

touchState = ZOOM;

}

break;

www.it-ebooks.info

http://www.it-ebooks.info/

Event Handlers and Event Listeners 167

case MotionEvent.ACTION MOVE:
if (touchState == DRAG) {
//single finger drag, translate accordingly
matrix.set(eventMatrix);
matrix.setTranslate(event.getX(0) - centerX,
event.getY(0) - centerY);

} else if (touchState == zooM) {
//multifinger zoom, scale accordingly around center
float dist = calcDistance(event);

if (dist > MIN DIST)
matrix.set(eventMatrix);
float scale = dist / eventDistance;

matrix.postScale(scale, scale, centerX, centerY);

}

// Perform the transformation
view.setImageMatrix (matrix);
break;

case MotionEvent.ACTION UP:
case MotionEvent.ACTION POINTER UP:
touchState = NONE;

break;

}
return true;

}

private float calcDistance(MotionEvent event) {
float x = event.getX(0) - event.getX(1l);
float y = event.getY(0) - event.getY(l);
return FloatMath.sqrt(x * x + y * y);

}

private void calcMidpoint(float centerX, float centerY,
MotionEvent event) {
centerX = (event.getX(0) + event.getX(1))/2;
centerY = (event.getY¥(0) + event.get¥(1))/2;

The layout that specifies a picture to zoom is shown in Listing 6.17. For this recipe,
it is taken as the icon.png, which is automatically created in Eclipse; however, it can
be replaced by any picture.

Listing 6.17 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match parent"

www.it-ebooks.info

http://www.it-ebooks.info/

168

Chapter 6 User Interface Events

android:layout height="match parent" >
<ImageView android:id="@+id/imageView"
android:layout width="match parent"
android:layout height="match parent"
android:src="@drawable/ic_launcher"
android:scaleType="matrix" >
</ImageView>
</FrameLayout>

Advanced User Interface Libraries

Some user interface features require complex algorithmic computations. Optimizing
this for an embedded system can sometimes be challenging and time-consuming. It is
in a developer’s best interest to leverage any available UT libraries. The following two
recipes provide some illustrative examples to use as a starting point.

Recipe: Using Gestures

A gesture 1s a hand-drawn shape on a touchscreen. The android.gesture package
provides libraries to recognize and handle these in a simple way. First, every SDK has
a sample program that can be used to build a collection of gestures in platforms/
android-2.0/samples/GestureBuilder/. The Gesture Builder project can be
imported and run on an Android device. It produces a file called /sdcard/gestures,
which can be copied off of the device and used as a raw resource for this recipe.

As an example, a file of handwritten numbers can be generated as shown in Fig-
ure 6.7. Multiple gestures can have the same name, so providing different examples of
the same gesture 1s useful to improve pattern recognition.

After this file is created for all numbers from 0 to 9 in all variants of interest, it can
be copied to res/raw/numbers, for example. The layout is shown in Listing 6.18, and
the main activity is shown in Listing 6.19. In the activity, the GestureLibrary is ini-
tialized with this raw resource.

This recipe adds a GestureOverlayView on top of the screen and implements an
OnGesturePerformedListener. When a gesture is drawn, the gesture is passed to
the onGesturePerformed() method, which compares it with all the gestures in the
library and returns an ordered list of predictions, starting with the most likely. Each
prediction has the name as defined in the library and the score for how correlated the
gesture 1s to the input gesture. As long as the first entry has a score greater than one, it
is generally a match.

Listing 6.18 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match_parent"
>

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced User Interface Libraries

<TextView
android:layout width="match parent"
android:layout height="wrap content"
android:gravity="center horizontal" android:textSize="20sp"
android:text="Draw a number"
android:layout margin="10dip"/>

<android.gesture.GestureOverlayView
android:id="@+id/gestures"
android:layout width="match parent"
android:layout height="0dip"
android:layout weight="1.0" />

<TextView android:id="@+id/prediction"
android:layout width="match parent"
android:layout height="wrap content"
android:gravity="center horizontal" android:textSize="20sp"
android:text=""
android:layout margin="10dip"/>

</LinearLayout>

Add gesture u Reload

Figure 6.7 The Gesture Builder application, which comes with the Android SDK,
can be used to create a gesture library

For illustration, this recipe compiles all the predictions in a String and displays
them on the screen. An example output is shown in Figure 6.8. This shows that
even though a visual match is not complete, the partial number can match a library
number well.

www.it-ebooks.info

169

http://www.it-ebooks.info/

170 Chapter 6 User Interface Events

Draw a number

five 12.60
seven 1.70
three 1.46
one 1.28
nine 1.25
nine 1.14
six 0.96
two 0.80
eight 0.77
four 0.60

Figure 6.8 The gesture recognition example that shows prediction scores

Listing 6.19 src/com/cookbook/gestures/Gestures.java

package com.cookbook.gestures;

import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;

import android.app.Activity;

import android.gesture.Gesture;

import android.gesture.GestureLibraries;

import android.gesture.GestureLibrary;

import android.gesture.GestureOverlayView;

import android.gesture.Prediction;

import android.gesture.GestureOverlayView.OnGesturePerformedListener;
import android.os.Bundle;

import android.widget.TextView;

public class Gestures extends Activity
implements OnGesturePerformedListener {
private GestureLibrary mLibrary;
private TextView tv;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
tv = (TextView) findViewById(R.id.prediction);

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced User Interface Libraries

mLibrary = GestureLibraries.fromRawResource(this, R.raw.numbers);
if (ImLibrary.load()) finish();

GestureOverlayView gestures =
(GestureOverlayView) findViewById(R.id.gestures);
gestures.addOnGesturePerformedListener (this);

}

public void onGesturePerformed(GestureOverlayView overlay,
Gesture gesture) {

ArrayList<Prediction> predictions = mLibrary.recognize(gesture);
String predList = "";
NumberFormat formatter = new DecimalFormat ("#0.00");
for(int i=0; i<predictions.size(); i++) {

Prediction prediction = predictions.get(i);

predList = predList + prediction.name + " "

+ formatter.format (prediction.score) + "\n";

}

tv.setText (predList);

Recipe: Drawing 3D Images
Android supports the Open Graphics Library for Embedded Systems (OpenGL ES).

This recipe, based on an Android API demo, shows how to create a three-dimensional
pyramid shape using this library and have it bounce around the screen and spin as it is
deflected off the edges. The main activity requires two separate support classes: one

to define the shape shown in Listing 6.20 and one to render the shape shown in List-
ing 6.21.

Listing 6.20 src/com/cookbook/open_gl/Pyramid.java

package com.cookbook.open gl;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.IntBuffer;

import javax.microedition.khronos.opengles.GL10;

class Pyramid {
public Pyramid()
int one = 0x10000;
/* square base and point top to make a pyramid */
int vertices[] = {
-one, -one, -one,
-one, one, -one,

one, one, -one,
one, -one, -one,
0, 0, one

www.it-ebooks.info

171

http://www.it-ebooks.info/

172 Chapter 6 User Interface Events

/* purple fading to white at the top */

int colors[] = {
one, 0, one, one,
one, 0, one, one,
one, 0, one, one,
one, 0, one, one,

one, one, one, one

Vi

/* triangles of the vertices above to build the shape */
byte indicesl] {

0, 1, 2, 0, 2, 3, //square base
0, 3, 4, // side 1
0, 4, 1, // side 2
1, 4, 2, // side 3
2, 4, 3 // side 4

}i

// buffers to be passed to gl*Pointer() functions

ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length#4);
vbb.order (ByteOrder.nativeOrder());

mVertexBuffer = vbb.asIntBuffer();

mVertexBuffer.put (vertices);

mVertexBuffer.position(0);

ByteBuffer cbb = ByteBuffer.allocateDirect(colors.length*4);
cbb.order(ByteOrder.nativeOrder());

mColorBuffer = cbb.asIntBuffer();

mColorBuffer.put(colors);

mColorBuffer.position(0);

mIndexBuffer = ByteBuffer.allocateDirect(indices.length);
mIndexBuffer.put(indices);
mIndexBuffer.position(0);

}

public void draw(GL10 gl) {
gl.glFrontFace (GL10.GL_CW);
gl.glVertexPointer(3, GL10.GL FIXED, 0, mVertexBuffer);
gl.glColorPointer (4, GL10.GL FIXED, 0, mColorBuffer);
gl.glDrawElements(GL10.GL TRIANGLES, 18, GL10.GL UNSIGNED BYTE,
mIndexBuffer);

}

private IntBuffer mVertexBuffer;
private IntBuffer mColorBuffer;
private ByteBuffer mIndexBuffer;

Note that the pyramid has five vertices: four in a square base and one as the raised
pointy top. It is important that the vertices be in an order that can be traversed by a
line across the figure (not just randomly listed). The center of the shape is at the origin
(0, 0, 0).

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced User Interface Libraries

Figure 6.9 The rotating, bouncing pyramid created with OpenGL ES

The five colors in RGBA form correspond to the vertices; the base vertices are
defined as purple and the top vertex as white. The library gradates the colors to fill in
the shape. Different colors or shading help provide a three-dimensional look.

The main draw() method is defined for triangle elements. The square base can be
made of two triangles, and each upper side is a triangle, which leads to six total tri-
angles or 18 indices. The pyramid is shown in two different perspectives as it bounces
around in Figure 6.9.

Then, a separate class can be created to extend GLSurfaceView.Renderer to render
this pyramid using the OpenGL ES library, as shown in Listing 6.21. Three methods
need to be implemented:

= onSurfaceCreated()—One-time initialization of the OpenGL framework

» onSurfaceChanged () —Sets the projection at start-up or when the viewport is
resized

= onDrawFrame () —Draws the graphic image every frame

Listing 6.21 src/com/cookbook/open_gl/PyramidRenderer.java

package com.cookbook.open gl;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

import android.opengl.GLSurfaceView;
/**

* Render a tumbling pyramid

*/

www.it-ebooks.info

173

http://www.it-ebooks.info/

174 Chapter 6 User Interface Events

class PyramidRenderer implements GLSurfaceView.Renderer {
public PyramidRenderer(boolean useTranslucentBackground) ({
mTranslucentBackground = useTranslucentBackground;
mPyramid = new Pyramid();

}

public void onDrawFrame(GL10 gl) {
/* Clear the screen */
gl.glClear (GL10.GL COLOR BUFFER BIT | GL10.GL DEPTH BUFFER BIT);

/* Draw a pyramid rotating */

gl.glMatrixMode (GL10.GL_MODELVIEW) ;
gl.glLoadIdentity();

gl.glTranslatef (mCenter[0], mCenter[l], mCenter[2]);
gl.glRotatef (mAngle, 0, 1, 0);

gl.glRotatef (mAngle*0.25f, 1, 0, 0);

gl.glEnableClientState (GL10.GL_VERTEX ARRAY);
gl.glEnableClientState (GL10.GL_COLOR_ARRAY);
mPyramid.draw(gl);

mAngle += mAngleDelta;

/* Draw it bouncing off the walls */
mCenter[0] += mVel[O];
mCenter[l] += mVell[ll;

if (Math.abs (mCenter[0])>4.0£f) {
mVel[0] = -mVel[O];
mAngleDelta=(float) (5*(0.5-Math.random()));

if (Math.abs (mCenter[1])>6.0£) {
mVel[l] = -mVell[ll];
mAngleDelta=(float) (5*(0.5-Math.random()));

}

public void onSurfaceChanged(GL10 gl, int width, int height) {
gl.glviewport(0, 0, width, height);

/* Set a new projection when the viewport is resized */
float ratio = (float) width / height;

gl.glMatrixMode (GL10.GL PROJECTION);

gl.glLoadIdentity();

gl.glFrustumf(-ratio, ratio, -1, 1, 1, 20);

}

public void onSurfaceCreated(GL10 gl, EGLConfig config) {
gl.glDisable(GL10.GL DITHER);

/* one-time OpenGL initialization */
gl.glHint (GL10.GL_PERSPECTIVE CORRECTION HINT,
GL10.GL FASTEST);

if (mTranslucentBackground) {
gl.glClearColor(0,0,0,0);

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced User Interface Libraries

} else {
gl.glClearcColor(1,1,1,1);

gl.glEnable (GL10.GL_CULL FACE);
gl.glShadeModel (GL10.GL SMOOTH);
gl.glEnable (GL10.GL_DEPTH TEST);

}

private boolean mTranslucentBackground;

private Pyramid mPyramid;

private float mAngle, mAngleDelta=0;

private float mCenter[]={0,0,-10};

private float mVel[]={0.025f, 0.03535227f, Of};

The dynamics of the bouncing pyramid are captured in the onDrawFrame ()
method. The screen is cleared for the new image, and then the pyramid center is set
to mCenter[]. The screen is defined as the origin, so the starting point of (0, 0,

-10) sets the shape back from right up against the screen. At each update, the shape is
rotated by mAngleDelta and translated by mvel[]. The mvels in the x and y directions
are set differently enough to provide a nice diversity of bouncing around the walls.
When the shape reaches the edge of the screen, the velocity sign is switched to have it
bounce back.

Finally, the main activity must set the content view to the OpenGL ES object, as
shown in Listing 6.22. The shape movement can be paused and resumed along with
the activity.

Listing 6.22 src/com/cookbook/open_gl/OpenGlExample.java

package com.cookbook.open gl;

import android.app.Activity;
import android.opengl.GLSurfaceView;
import android.os.Bundle;
/* wrapper activity demonstrating the use of GLSurfaceView, a view
* that uses OpenGL drawing into a dedicated surface */
public class OpenGlExample extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

// Set our Preview view as the activity content
mGLSurfaceView = new GLSurfaceView(this);
mGLSurfaceView.setRenderer (new PyramidRenderer(true));
setContentView(mGLSurfaceView);

}

@Override

protected void onResume() {
super.onResume () ;
mGLSurfaceView.onResume () ;

www.it-ebooks.info

175

http://www.it-ebooks.info/

176 Chapter 6 User Interface Events

@Override

protected void onPause() {
super.onPause () ;
mGLSurfaceView.onPause();

}

private GLSurfaceView mGLSurfaceView;

www.it-ebooks.info

http://www.it-ebooks.info/

v

Advanced User Interface
Techniques

The landscape of Android-powered devices has changed drastically in the last few
years. Where phones powered by Android once dominated, the advent of high-
resolution small screens, watches, tablets, and even TV screens (through the use of
Google TV) have taken applications and their layouts to new heights. This chapter
describes creating a custom view, animation, accessing the accessibility features, using
gestures, and drawing 3D images. It then discusses tablets and how to display multiple
fragments, using an activity wrapper, and using dialog fragments.

Android Custom View

As discussed in Chapter 5, “User Interface Layout,” Android has two types of views:
View objects and ViewGroup objects. A custom view can be created by either start-
ing from scratch or inheriting an existing view structure. Some standard widgets are
defined by the Android Framework under the vView and ViewGroup classes, and if pos-
sible, the customization should start with one of these:

= Views—Button, EditText, TextView, ImageView, and so on

= ViewGroups—LinearLayout, ListView, RelativeLayout, RadioGroup, and
SO on

Recipe: Customizing a Button

This recipe customizes a button using a class called MyButton. It extends the Button
widget so that the component inherits most of the Button features. To customize a
widget, the most important methods are onMeasure () and onDraw ().

The onMeasure () method determines the size requirements for a widget. It takes
two parameters: the width and height measure specifications. Customized widgets
should calculate the width and height based on the contents inside the widget and then

www.it-ebooks.info

http://www.it-ebooks.info/

178

Chapter 7 Advanced User Interface Techniques

call setMeasuredDimension() with these values. If this is not done, an
illegalStateException is thrown by measure ().

The onDraw() method allows customized drawing on the widget. Drawing is
handled by walking down the tree and rendering view by view. All parents are drawn
before the children get drawn. If a background drawable is set for a view, the view
draws that before calling back to its onDraw() method.

Inside the MyButton class, eight member methods and two constructors are imple-
mented. The member functions are:

= setText ()—Sets the text that is drawn on the button
= setTextSize ()—Sets the text size
= setTextColor()—Sets the text color

= measureWidth()—Measures the width of the Button widget
= measureHeight ()—Measures the height of the Button widget
= drawArcs ()—Draws arcs

= onDraw ()—Draws the graphics on the Button widget

= onMeasure ()—Measures and sets the boundary of the Button widget

The methods setText (), setTextSize(), and setTextColor() change the text
attributes. Every time the text is changed, the invalidate() method needs to be
called to force the view to redraw the button widget and reflect the change. The
method requestLayout () is called in the setText () and setTextSize() methods but
not in the setTextColor() method. This is because the layout is needed only when
the boundary of the widget changes, which is not the case with text color changes.

Inside onMeasure (), the setMeasuredDimension() method is called with
measureWidth() and measureHeight (). It is an important step for customizing the View.

The methods measurewidth() and measureHeight () are called with the size of
the parent view and need to return the proper width and height values of the custom
view based on the requested mode of measurement. If the EXACTLY mode of measure-
ment is specified, the method needs to return the value given from the parent View.

If the AT MOST mode is specified, the method can return the smaller of the two val-
ues—content size and parent view size—to ensure that the content is sized properly.
Otherwise, the method calculates the width and height based on the content inside the
widget. In this recipe, the content size is based on the text size.

The method drawaArcs() is a straightforward function that draws arcs on the but-
ton. This is called by onDraw() as the text is drawn. Animation of the arcs also takes
place here. Every time the arc is drawn, its length is incremented a little and the gradi-
ent is rotated, making a nice animation.

The class for the custom button is shown in Listing 7.1. A constructor method is
required, and here, two MyButton () methods are shown depending on arguments.
Each initializes the label view with the custom attributes. The android.graphics.*
libraries are similar in format to Java for graphics manipulations, such as Matrix
and Paint.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Custom View 179

Listing 7.1 src/com/cookbook/advance/MyButton.java

package com.cookbook.advance.customcomponent ;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Matrix;
import android.graphics.Paint;
import android.graphics.RectF;
import android.graphics.Shader;
import android.graphics.SweepGradient;
import android.util.AttributeSet;
import android.util.Log;

import android.widget.Button;

public class MyButton extends Button
private Paint mTextPaint, mPaint;
private String mText;
private int mAscent;
private Shader mShader;
private Matrix mMatrix = new Matrix();
private float mStart;
private float mSweep;
private float mRotate;
private static final float SWEEP_INC = 2;
private static final float START INC = 15;

public MyButton(Context context) {
super (context);
initLabelView();

}

public MyButton(Context context, AttributeSet attrs) {
super (context, attrs);
initLabelView();

}

private final void initLabelvView() {
mTextPaint = new Paint();
mTextPaint.setAntiAlias(true);
mTextPaint.setTextSize (16);
mTextPaint.setColor (0xFF000000);
setPadding(15, 15, 15, 15);
mPaint = new Paint();
mPaint.setAntiAlias(true);
mPaint.setStrokeWidth (4);
mPaint.setAntiAlias(true);
mPaint.setStyle(Paint.Style.STROKE);
mShader = new SweepGradient(this.getMeasuredwWidth()/2,
this.getMeasuredHeight()/2,
new int[] { Color.GREEN,
Color.RED,
Color.CYAN,Color.DKGRAY },
null);
mPaint.setShader (mShader);

www.it-ebooks.info

http://www.it-ebooks.info/

180 Chapter 7 Advanced User Interface Techniques

public void setText(String text) {
mText = text;
requestLayout () ;
invalidate();

}

public void setTextSize(int size) {
mTextPaint.setTextSize (size);
requestLayout () ;
invalidate();

}

public void setTextColor(int color) ({
mTextPaint.setColor(color);
invalidate();

}

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec){
setMeasuredDimension(measureWidth(widthMeasureSpec),
measureHeight (heightMeasureSpec));

}

private int measureWidth(int measureSpec) {
int result = 0;
int specMode = MeasureSpec.getMode (measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);

if (specMode == MeasureSpec.EXACTLY) {
// We were told how big to be
result = specSize;

} else {
// Measure the text
result = (int) mTextPaint.measureText(mText)

+ getPaddingLeft()
+ getPaddingRight();
if (specMode == MeasureSpec.AT MOST) {
result = Math.min(result, specSize);
}

}

return result;

}

private int measureHeight(int measureSpec) {
int result = 0;
int specMode = MeasureSpec.getMode (measureSpec);
int specSize = MeasureSpec.getSize(measureSpec);

mAscent = (int) mTextPaint.ascent();

if (specMode == MeasureSpec.EXACTLY) {
// We were told how big to be
result = specSize;

} else {
// Measure the text (beware: ascent is a negative number)
result = (int) (-mAscent + mTextPaint.descent())

+ getPaddingTop() + getPaddingBottom();
if (specMode == MeasureSpec.AT MOST) {
Log.v("Measure Height", "At most Height:"+specSize);
result = Math.min(result, specSize);

www.it-ebooks.info

http://www.it-ebooks.info/

Android Custom View

}
}
return result;

}

private void drawArcs(Canvas canvas, RectF oval, boolean useCenter,
Paint paint) {
canvas.drawArc(oval, mStart, mSweep, useCenter, paint);

}

@Override protected void onDraw(Canvas canvas) {
mMatrix.setRotate (mRotate, this.getMeasuredwidth()/2,
this.getMeasuredHeight()/2);
mShader.setLocalMatrix(mMatrix);
mRotate += 3;
if (mRotate >= 360)
mRotate = 0;
}

RectF drawRect = new RectF();
drawRect.set (this.getWidth() -mTextPaint.measureText (mText),
(this.getHeight () -mTextPaint.getTextSize())/2,
mTextPaint.measureText (mText),
this.getHeight()- (this.getHeight () -mTextPaint.getTextSize())/2);
drawArcs(canvas, drawRect, false, mPaint);
mSweep += SWEEP_INC;
if (mSweep > 360) {
mSweep -= 360;
mStart += START INC;
if (mStart >= 360) {
mStart -= 360;
}

if(mSweep >180){
canvas.drawText (mText, getPaddingLeft(),
getPaddingTop() -mAscent, mTextPaint);

invalidate();

This custom Button widget can then be used in a layout as shown in Listing 7.2.

Listing 7.2 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent"
android:gravity="center vertical"
>
<com.cookbook.advance.customComponent.MyButton
android:layout width="wrap content"
android:layout height="wrap content"
android:id="@+id/mybuttonl"
/>

</LinearLayout>

www.it-ebooks.info

181

http://www.it-ebooks.info/

182

Chapter 7 Advanced User Interface Techniques

Ml 8 3:26
custom component

Figure 7.1 An example of a custom button

The layout XML has only one ViewGroup (LinearLayout) and one View, called
by its definition location com.cookbook.advance.customComponent.myButton. This
can be used in an activity, as shown in Listing 7.3.

Listing 7.3 src/com/cookbook/advance/ShowMyButton.java

package com.cookbook.advance.customComponent ;

import android.app.Activity;
import android.os.Bundle;

public class ShowMyButton extends Activity{

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

setContentView(R.layout.main);

MyButton myb = (MyButton)findViewById(R.id.mybuttonl);
myb.setText ("Hello Students");

myb.setTextSize (40);

This shows that the custom button is used the same way as a normal Button wid-
get. The resulting custom button is shown in Figure 7.1.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Animation

Android Animation

Android provides two types of animation: frame-by-frame and tween. Frame-by-
frame animation shows a sequence of pictures in order. It enables developers to define
the pictures to display and then show them like a slide show.

Frame-by-frame animation first needs an animation-list element in the layout file
containing a list of item elements specifying an ordered list of the different pictures to
display. The oneshot attribute specifies whether the animation is played only once or
repeatedly. The animation list XML file is shown in Listing 7.4.

Listing 7.4 res/anim/animated.xml

<?xml version="1.0" encoding="utf-8"?>
<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false">
<item android:drawable="@drawable/anddevl" android:duration="200" />
<item android:drawable="@drawable/anddev2" android:duration="200" />
<item android:drawable="@drawable/anddev3" android:duration="200" />
</animation-list>

To display the frame-by-frame animation, set the animation to a view’s
background:

ImageView im = (ImageView) this.findViewById(R.id.myanimated);
im.setBackgroundResource (R.anim.animated);

AnimationDrawable ad = (AnimationDrawable)im.getBackground();
ad.start();

After the view background is set, a drawable can be retrieved by calling get
Background() and casting it to AnimationDrawable. Then, calling the start()
method starts the animation.

Tween animation uses a different approach that creates an animation by performing
a series of transformations on a single image. In Android, it provides access to the
following classes that are the basis for all the animations:

= AlphaAnimation—Controls transparency changes
= RotateAnimation—Controls rotations
= ScaleAnimation—Controls growing or shrinking

» TranslateAnimation—Controls position changes

These four animation classes can be used for transitions between activities, lay-
outs, views, and so on. All these can be defined in the layout XML file as <alphas>,
<rotate>, <scale>, and <translates>. They all have to be contained within an
AnimationSet <set>:

= <alphas> attributes:
android:fromAlpha, android:toAlpha

www.it-ebooks.info

183

http://www.it-ebooks.info/

184

Chapter 7 Advanced User Interface Techniques

The alpha value translates the opacity from 0.0 (transparent) to 1.0 (opaque).

= <rotates attributes:
android:fromDegrees, android:toDegrees

android:pivotX, android:pivotY

The rotate specifies the angle to rotate an animation around a center of rotation
defined as the pivot.

= <scale> attributes:
android:fromXScale, android:toXScale,
android:fromYScale, android:toYScale,
android:pivotX, android:pivotY

The scale specifies how to change the size of a view in the x axis or y axis. The pivot
location that stays fixed under the scaling can also be specified.

= <translates attributes:
android:fromXDelta, android:toXDelta,
android:fromyDelta, android:toYDelta

The translate specifies the amount of translation to perform on a view.

Recipe: Creating an Animation

This recipe creates a new mail animation that can be used when mail is received. The
main layout file is shown in Listing 7.5, and the new mail animation is shown in Fig-
ure 7.2.

Listing 7.5 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent"
android:gravity="center"
>

<ImageView

android:id="@+id/myanimated"

android:layout width="wrap content"

android:layout height="wrap content"
android:src="@drawable/mail"

/>

<Button

android:id="@+id/startanimated"

android:layout width="wrap content"

android:layout height="wrap content"

android:text="you’'ve got mail"

/>

</LinearLayout>

www.it-ebooks.info

http://www.it-ebooks.info/

Android Animation 185

To animate this view, an animation set needs to be defined. In Eclipse, right-click
the res/ folder and select New — Android XML File. Then, fill in the filename as
animated.xml and select the file type as Animation. Then, the file can be edited to
create the content shown in Listing 7.6.

B | 11:42em

you've got mail

Figure 7.2 Basic layout for the animation

Listing 7.6 res/anim/animated.xml

<?xml version="1.0" encoding="utf-8"?>

<set xmlns:android="http://schemas.android.com/apk/res/and-
roid" android:interpolator="@android:anim/accelerate interpolator"s

<translate android:fromXDelta="100%p" android:toXDelta="0"
android:duration="5000" />
<alpha android:fromAlpha="0.0" android:toAlpha="1.0" android:duration="3000" />
<rotate
android:fromDegrees="0"
android:toDegrees="-45"
android:toYScale="0.0"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="700"
android:duration="3000" />

www.it-ebooks.info

http://www.it-ebooks.info/

186 Chapter 7 Advanced User Interface Techniques

<scale
android:fromXScale="0.0"
android:toXScale="1.4"
android:fromYScale="0.0"
android:toY¥Scale="1.0"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="700"
android:duration="3000"
android:fillBefore="false" />
</set>

The main activity is shown in Listing 7.7. It is a simple activity that creates an
Animation object by using AnimationUtils to load the animationSet defined in
the animation. Then, every time the user clicks on the button, it uses the ImageView
object to run the animation by calling the startAnimation() method using the Ani-
mation object already loaded.

Listing 7.7 src/com/cookbook/advance/MyAnimation.java

package com.cookbook.advance;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;
import android.view.animation.Animation;
import android.view.animation.AnimationUtils;
import android.widget.Button;

import android.widget.ImageView;

public class MyAnimation extends Activity {
/** called when the activity is first created */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

final ImageView im

= (ImageView) this.findViewById(R.id.myanimated);
final Animation an

= AnimationUtils.loadAnimation(this, R.anim.animated);

im.setVisibility(View.INVISIBLE);
Button bt = (Button) this.findViewById(R.id.startanimated);
bt.setOnClickListener(new OnClickListener(){
public void onClick(View view){
im.setVisibility(View.VISIBLE);
im.startAnimation(an);

www.it-ebooks.info

http://www.it-ebooks.info/

Android Animation

Recipe: Using Property Animations

Starting with Honeycomb (API Level 11), objects such as buttons can also be animated
by changing their properties. In this recipe, there are three buttons that when clicked
will perform various animations based on property value changes.

Changes to property values can be done either directly in the activity code
or loaded in a separate XML file. When choosing an animation style, it is impor-
tant to remember that coding the animations in the activity allows for greater
control over dynamic data, whereas XML files make complex animations easier
to implement.

An important note regarding change with animations is that XML files that use
ValueAnimator, ObjectAnimator, and AnimatorSet tags should put resources in
the res/animator folder to distinguish between legacy animation XML files that are
stored in the res/anim folder.

Listing 7.8 shows the code for an activity that uses both inline animation code and
references to an XML file. onClickListener is used to bind each button to a function
that animates the button.

btnshift uses ValueAnimator along with ObjectAnimator to set the values that
will be applied to the button when clicked.

btnRotate has commented-out code that displays a rotation animation using inline
code. It also shows how to use an XML file, located in the res/animator directory
and shown in Listing 7.9, to perform the same animation.

btnSling also uses an XML file, shown in Listing 7.10, for animation but contains
two animations instead of one. Multiple animations can be included in the XML file
and will run simultaneously. The property of android:startOffset is used to delay
the start of animations. This will “queue” animations to run in order.

Listing 7.8 src/com/cookbook/propertyanimation/MainActivity.java

package com.cookbook.propertyanimation;

import android.animation.ArgbEvaluator;
import android.animation.ObjectAnimator;
import android.animation.ValueAnimator;
import android.app.Activity;

import android.graphics.Color;

import android.os.Bundle;

import android.view.View;

import android.view.animation.AnimationUtils;
import android.widget.Button;

public class MainActivity extends Activity
Button btnShift;
Button btnRotate;
Button btnSling;
@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

www.it-ebooks.info

187

http://www.it-ebooks.info/

188 Chapter 7 Advanced User Interface Techniques

setContentView(R.layout.activity main);

btnShift = (Button)this.findvViewById(R.id.button);
btnRotate = (Button)this.findViewById(R.id.buttonl);
btnSling = (Button)this.findViewById(R.id.button2);

btnsShift.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {
int start = Color.rgb(0xcc, Oxcc, 0xcc);
int end = Color.rgb(0x00, 0xff, 0x00);
ValueAnimator va =
ObjectAnimator.ofInt (btnShift, "backgroundColor", start, end);
va.setDuration(750);
va.setRepeatCount(1);
va.setRepeatMode (ValueAnimator.REVERSE);
va.setEvaluator(new ArgbEvaluator());
va.start();
}
BE

btnRotate.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {
// Use ValueAnimator
/*
ValueAnimator va = ObjectAnimator.ofFloat(btnRotate, "rotation", 0f, 360f);
va.setDuration(750);
va.start();
*/
// Or use an XML-defined animation
btnRotate.startAnimation(AnimationUtils.loadAnimation(MainActivity.this,
R.animator.rotation));
}

i

btnSling.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {
btnSling.startAnimation(AnimationUtils.loadAnimation(MainActivity.this,

R.animator.sling));

b

Listing 7.9 res/animator/rotation.xml

<?xml version="1.0" encoding="utf-8"?>
<rotate
xmlns:android="http://schemas.android.com/apk/res/android"
android:fromDegrees="0"
android:toDegrees="360"
android:pivotX="50%"
android:pivotY="50%"
android:duration="500" android:fillAfter="true">
</rotate>

www.it-ebooks.info

http://www.it-ebooks.info/

Accessibility

Listing 7.10 res/animator/sling.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
<scale
android:interpolator="@android:anim/accelerate decelerate_interpolator"
android:fromXScale="0.0"
android:toXScale="1.8"
android:fromYScale="0.0"
android:toYScale="1.4"
android:pivotX="50%"
android:pivotY="50%"
android:fillAfter="false"
android:duration="1000" />
<scale

android:fromXScale="1.8"
android:toXScale="0.0"
android:fromyScale="1.4"
android:toYScale="0.0"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="1000"
android:duration="300"
android:fillBefore="false" />

</set>

Accessibility

Android comes with several accessibility features baked into the platform. TalkBack is
a service that is installed on most Android devices. It works by using voice synthesis
to read what is displayed on the screen. If a device does not have TalkBack installed, it
can be downloaded from Google Play.

TalkBack can be enabled by navigating to the settings section of the device and to
the item named “Accessibility.” When TalkBack is installed, a toggle for TalkBack can
be enabled. When it is turned on, the way a user interacts with the Android device is
changed. The entire screen becomes an input surface that allows gestures and swipes
to navigate between various applications and screens. An application must first be
selected, and then the screen must be double-tapped to open it.

Soft keys such as the Back or Home key must be selected and then double-tapped.

Recipe: Using Accessibility Features
Google recommends the following checklist for creating accessible applications:

= Make sure that the component is described. This can be done with
android:contentDescription in the layout XML file.

= Make sure that the components used are focusable.

= Take advantage of the accessibility interfaces if using any custom controls.

www.it-ebooks.info

189

http://www.it-ebooks.info/

190 Chapter 7 Advanced User Interface Techniques

= Do not use audio only for interaction. Always add a visual cue or even haptic
feedback to applications.

= Test applications without looking at the screen using TalkBack.

‘When adding descriptions to interface components, the editText field uses
android:hint instead of android:contentDescription. When the field is empty,
the value of android:hint will be read out loud. If the field contains text that has
been entered by the user, that will be read out loud in place of the hint. Listing 7.11
shows a layout file with the fields populated.

Listing 7.11 res/layout/activity_main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
tools:context=".MainActivity" >

<EditText
android:id="@+id/edittext1"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout alignParentTop="true"
android:layout centerHorizontal="true"
android:ems="10"
android:hint="Enter some text here"
android:nextFocusDown="@+id/buttonl" >

<requestFocus />
</EditText>

<TextView
android:id="@+id/textviewl"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout below="@+id/editTextl"
android:layout centerHorizontal="true"
android:layout marginTop="35dp"
android:contentDescription="Text messages will appear here"
android:text="This is a TextView" />

<RadioGroup
android:id="@+id/radiogroupl"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout below="@+id/textViewl"
android:layout centerHorizontal="true"
android:layout marginTop="21dp" >

<RadioButton
android:id="@+id/radio0"
android:layout width="wrap content"
android:layout height="wrap content"
android:checked="true"

www.it-ebooks.info

http://www.it-ebooks.info/

Fragments

android:contentDescription="Select for a banana"
android:text="Banana" />

<RadioButton
android:id="e@+id/radiol"
android:layout width="wrap content"
android:layout height="wrap content"
android:contentDescription="Select for a coconut"
android:text="Coconut" />

<RadioButton
android:id="@+id/radio2"
android:layout width="wrap content"
android:layout height="wrap content"
android:contentDescription="Select for a grape"
android:text="Grape" />
</RadioGroup>

</RelativeLayout>

Fragments

On large-screen devices, how the application will display information in a pleasing
and easy-to-use manner must be considered. Knowing that tablets have a larger physi-
cal viewing area than most phones, developers can plan on having their applications
display data differently from the way they do on a small-screen device.

Some great examples of this are applications that are already built into both phones
and tablet devices such as the Contacts or People application. When one of those appli-
cations is opened on a phone, users are treated to a list view that allows them to scroll
through their contacts and then tap contacts to open information about them. On a
tablet, the list view is smaller and displayed on the left side of the screen; the right side
of the screen shows the extended information about the contact.

The Calendar application has a similar function, showing a small and precise
amount of data on a phone while showing extended information on the bottom por-
tion of the screen on a tablet.

The ability to display extended data is done through the use of fragments. Frag-
ments are modular portions of an activity that can be used to change the presentation
of an application. A fragment acts similarly to an activity, but it has a different lifecycle
and way of processing logic. The recipes in this section focus on using fragments to
optimize the display of content across devices with various screen sizes.

Recipe: Displaying Multiple Fragments at Once

This recipe includes two fragments to display a list using a ListFragment and to dis-

play a TextView using a fragment. On small-screen devices, the list is best displayed in
one window and the text in a separate window. On large-screen devices, both the list
and the text can be displayed in the same window.

www.it-ebooks.info

191

http://www.it-ebooks.info/

192

Chapter 7 Advanced User Interface Techniques

To start, the XML layout files are defined using two XML files in the res/layout
folder for small-screen devices, and a layout file in the res/layout-large folder for
large-screen devices.

Listing 7.12 shows the activity_main.xml file. The layout file is rather minimal, as
the ListFragment that will be loaded into the FrameLayout will provide most of the
layout needed.

Listing 7.12 res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/fragment container"
android:layout width="match parent"
android:layout_height="match parent" />

To continue the layout for small-screen devices, another layout that can be used to
display text values is needed. Listing 7.13 shows the contents of text_view.xml.

Listing 7.13 res/layout/text_view.xml

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/text"
android:layout width="match parent"
android:layout height="match parent"
android:padding="16dp"
android:textSize="18sp" />

For large-screen devices, a folder named layout-large will need to be created
inside the res directory. Once that folder has been created, another layout XML file is
needed. In this instance, another activity_main.xml file is added. Listing 7.14 shows
the contents of the file that will be used for the large-screen layout.

Listing 7.14 res/layout-large/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout width="match parent"
android:layout height="match parent">

<fragment android:name="com.cookbook.fragments.ItemFragment"
android:id="@+id/item fragment"
android:layout weight="1"
android:layout width="0dp"
android:layout height="match parent" />

www.it-ebooks.info

http://www.it-ebooks.info/

Fragments

<fragment android:name="com.cookbook.fragments.TextFragment"
android:id="@+id/text fragment"
android:layout weight="2"
android:layout_width="0dp"
android:layout height="match parent" />

</LinearLayout>

The fragment elements inside Listing 7.15 reference a class file that holds the

logic used for each fragment. The listing shows the contents of a fragment element
that references src/com/cookbook/fragments/ItemFragment.java. The
ItemFragment.java file uses getFragmentManager to determine if the device should
use the large layout or not. Also note that ItemFragment references Strings.Items,
which is an array created in Strings.java that is imported in TextFragment.java.

Listing 7.15 src/com/cookbook/fragments/ltemFragment.java

package com.cookbook.fragments;

import android.app.Activity;

import android.os.Build;

import android.os.Bundle;

import android.support.v4.app.ListFragment;
import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.ListView;

public class ItemFragment extends ListFragment {
OnItemSelectedListener mCallback;

public interface OnItemSelectedListener {
public void onItemSelected(int position);
}

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

// Older than Honeycomb requires a different layout

int layout = Build.VERSION.SDK INT >= Build.VERSION CODES.HONEYCOMB °?
android.R.layout.simple list item activated 1
android.R.layout.simple list item 1;

setListAdapter(new ArrayAdapter<Strings(getActivity(), layout,
Strings.Items));

}

@Override
public void onStart() {
super.onStart();
if (getFragmentManager().findFragmentById(R.id.item fragment) != null) {
getListView().setChoiceMode (ListView.CHOICE MODE_SINGLE);
}

www.it-ebooks.info

193

http://www.it-ebooks.info/

194 Chapter 7 Advanced User Interface Techniques

@Override
public void onAttach(Activity activity)
super.onAttach(activity);

try {
mCallback = (OnItemSelectedListener) activity;
} catch (ClassCastException e) {
throw new ClassCastException(activity.toString()
+ " must implement OnItemSelectedListener");

}

@Override

public void onListItemClick(ListView 1, View v, int position, long id) {
mCallback.onItemSelected(position);
getListView().setItemChecked(position, true);

Listing 7.16 shows the contents of the fragment element that references src/com/
cookbook/fragments/TextFragment.java.

Listing 7.16 src/com/cookbook/fragments/TextFragment.java

package com.cookbook.fragments;

import com.cookbook.fragments.Strings;
import com.cookbook.fragments.R;

import android.os.Bundle;

import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;

import android.widget.TextView;

public class TextFragment extends Fragment {
final static String ARG POSITION = "position";
int mCurrentPosition = -1;

@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) {
return inflater.inflate(R.layout.text view, container, false);

}

@Override
public void onStart() {
super.onStart();

Bundle args = getArguments();

if (args != null) ({
updateTextView(args.getInt (ARG_POSITION));

www.it-ebooks.info

http://www.it-ebooks.info/

Fragments

} else if (mCurrentPosition != -1) {
updateTextView(mCurrentPosition);
} else {

TextView tv = (TextView) getActivity().findvViewById(R.id.text);
tv.setText ("Select an item from the list.");

}

public void updateTextView(int position){
TextView tv = (TextView) getActivity().findViewById(R.id.text);
tv.setText (Strings.Text [position]);
mCurrentPosition = position;

}

@Override

public void onSavelInstanceState(Bundle outState) {
super.onSavelnstanceState (outState);
outState.putInt (ARG POSITION, mCurrentPosition);

Now that the layout has been set up and the fragments have been created, List-

ing 7.17 shows the contents of MainActivity.java. The fragments are handled by the
FragmentManager by means of a FragmentTransaction. The FragmentTransaction
keeps track of what fragments are available in the view. Whenever FragmentTransaction
is used to add, remove, or replace fragments, the commit () method must be called.

Listing 7.17 src/com/cookbook/fragments/MainActivity.java

package com.cookbook.fragments;

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;
import android.support.v4.app.FragmentTransaction;

// When using the support lib, use FragmentActivity
public class MainActivity extends FragmentActivity implements
ItemFragment.OnItemSelectedListener {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);

//1f using large layout, use the Support Fragment Manager

if (findviewById(R.id.fragment container) != null) {
if(savedInstanceState != null){
return;

}

www.it-ebooks.info

195

http://www.it-ebooks.info/

196 Chapter 7 Advanced User Interface Techniques

ItemFragment firstFragment = new ItemFragment();
firstFragment.setArguments (getIntent().getExtras());

getSupportFragmentManager().beginTransaction().add(R.id.fragment container,
firstFragment).commit();

}
}

public void onItemSelected(int position) {
TextFragment textFrag =
(TextFragment) getSupportFragmentManager()
.findFragmentById(R.id.text fragment);

if (textFrag != null) ({
textFrag.updateTextView(position);

} else {
TextFragment newFragment = new TextFragment();
Bundle args = new Bundle();
args.putlInt (TextFragment.ARG_POSITION, position);
newFragment.setArguments(args);

FragmentTransaction transaction =
getSupportFragmentManager () .beginTransaction();

transaction.replace(R.id.fragment container, newFragment);

transaction.addToBackStack(null);

transaction.commit();

Recipe: Using Dialog Fragments

In addition to changing the layout of a page, a DialogFragment can be used

to display a dialog window that contains a fragment. A DialogFragment is exactly
what it sounds like: a dialog that is contained inside a fragment. It is recommended to
always build dialogs with DialogFragments; the support library can help with porting
code to previous versions of Android. Listing 7.18 shows how the activity is set up to
use DialogFragment. Note that because it is using a fragment, it must extend
FragmentActivity.

Listing 7.18 src/com/cookbook/dialogfragment/MainActivity.java

package com.cookbook.dialogfragment;

import android.os.Bundle;

import android.support.v4.app.FragmentActivity;
import android.view.View;

import android.widget.Button;

import android.widget.Toast;

www.it-ebooks.info

http://www.it-ebooks.info/

Fragments

public class MainActivity extends FragmentActivity {

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);

Button buttonOpenDialog = (Button) findViewById(R.id.opendialog);
buttonOpenDialog.setOnClickListener(new Button.OnClickListener() {

@Override

public void onClick(View arg0) {
openDialog();

}

K
}

void openDialog()
MyDialogFragment myDialogFragment = MyDialogFragment.newInstance();
myDialogFragment.show(getSupportFragmentManager(), "myDialogFragment");

}

public void protestClicked() {
Toast.makeText (MainActivity.this, "Your protest has been recorded", Toast.
= LENGTH_LONG) .show () ;

}

public void forgetClicked() ({
Toast.makeText (MainActivity.this,
"You have chosen to forget", Toast.LENGTH LONG).show();

Listing 7.19 shows the logic for DialogFragment. Here, the class MyDialogFragment
extends DialogFragment. The onCreateDialog method is overridden, and a new
Dialog is built along with some onClick logic.

Listing 7.19 src/com/cookbook/dialogfragment/MyDialogFragment.java

package com.cookbook.dialogfragment;

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.DialogInterface;
import android.os.Bundle;

import android.support.v4.app.DialogFragment;

public class MyDialogFragment extends DialogFragment {
static MyDialogFragment newInstance() {
MyDialogFragment mdf = new MyDialogFragment();
Bundle args = new Bundle();

www.it-ebooks.info

197

http://www.it-ebooks.info/

198 Chapter 7 Advanced User Interface Techniques

args.putString("title", "Dialog Fragment");
mdf.setArguments (args);
return mdf;

}

@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {
String title = getArguments().getString("title");
Dialog myDialog = new AlertDialog.Builder(getActivity())
.setIcon(R.drawable.ic_launcher
.setTitle(title)
.setPositiveButton("Protest", new DialogInterface.OnClickListener() {

@Override
public void onClick(DialogInterface dialog, int which) {
((MainActivity) getActivity()).protestClicked();

}
H

.setNegativeButton("Forget", new DialogInterface.OnClickListener() {

@Override
public void onClick(DialogInterface dialog, int which) {
((MainActivity) getActivity()).forgetClicked();

}

}).create();

return myDialog;

}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Multimedia Techniques

The Android platform provides comprehensive multimedia functionality. This chapter
introduces techniques to manipulate images, record and play back audio, and record
and play back video. Most decoders are supported by Android for reading multimedia,
but only a subset of encoders is available for creating multimedia. Basic media frame-
work support in Android 4.1 is summarized in Table 8.1. Vendor-specific versions of
Android are known to support more formats than this. This is specifically true for
Google TV devices.

An application that records any type of media requires setting the appropriate per-
mission in the AndroidManifest.xml file (one or both of the following):

<uses-permission android:name="android.permission.RECORD AUDIO"/>

<uses-permission android:name="android.permission.RECORD_VIDEO"/>

Images

Images local to an application are usually put in the res/drawable/ directory, as dis-
cussed in Chapter 5, “User Interface Layout,” and are packaged with the application.
They can be accessed with the appropriate resource identifier, such as R.drawable
.my_ picture. Images on the Android device filesystem can be accessed using the
normal Java classes, such as an InputStream. However, the preferred method in
Android to read an image into memory for manipulation is to use the built-in class
BitmapFactory.

BitmapFactory creates bitmap objects from files, streams, or byte arrays. A
resource or a file can be loaded like this:

Bitmap myBitmapl = BitmapFactory.decodeResource(getResources(),
R.drawable.my picture);
Bitmap myBitmap2 = BitmapFactory.decodeFile (filePath);

www.it-ebooks.info

http://www.it-ebooks.info/

200

Chapter 8 Multimedia Techniques

Table 8.1 Supported Media Types in Android 4.1 for Reading and Writing

Format/Code Encoder Decoder Details Supported File Type(s)/
Container Formats
Image
JPEG X X Base + progressive JPEG (.jpg)
GIF X GIF (.gif)
PNG X X PNG (.png)
BMP X BMP (.bmp)
WEBP X X WebP (.webp)
(Android (Android
4.0+) 4.0+)
Audio
AAC LC X X Support for mono/ = 3GPP (.3gp)
stereo/5.0/5.1 content * MPEG-4 (.mp4, .m4a)
with standard sampling » ADTS raw AAC (.aac,
rates from 8 to 48kHz decode in Android
3.1+, encode in
Android 4.0+, ADIF not
supported)
* MPEG-TS (.ts, not seek-
able, Android 3.0+)
HE-AACv1 X X
(AAC+) (Android
4.1+)
HE-AACv2 X Support for stereo/5.0/5.1
(enhanced content with standard sam-
AAC+) pling rates from 8 to 48kHz
AAC ELD X X Support for mono/stereo con-
(enhanced low- (Android (Android tent with standard sampling
delay AAC) 4.1+) 4.1+) rates from 16 to 48kHz
AMR-NB X X 4.75-12.2kbps sampled @ 3GPP (.3gp)
8kHz
AMR-WB X X 9 rates from 6.60kbit/s 3GPP (.3gp)

to 23.85kbit/s sampled @
16kHz

(continues)

www.it-ebooks.info

http://www.it-ebooks.info/

Images

Table 8.1 (Continued)
Format/Code Encoder Decoder Details Supported File Type(s)/
Container Formats
FLAC X » Mono/stereo (no FLAC (.flac) only
(Android multichannel)
3.1+) » Sample rates up to 48kHz
(but up to 44.1kHz is rec-
ommended on devices with
44.1kHz output, as the
48-44.1kHz downsampler
does not include a low-pass
filter)
- 16-bit recommended
= No dither applied for 24-bit
MP3 X Mono/stereo 8-320Kbps con- MP3 (.mp3)
stant (CBR) or variable bit-rate
(VBR)
MIDI X * MIDI Type O and 1 » Type O and 1 (.mid,
- DLS Version 1 and 2 xmf, .mxmf)
« XMF and Mobile XMF « RTTTL/RTX (.rtttl, .rtx)
+ Support for ringtone for- - OTA (.ota)
mats RTTTL/RTX, OTA, and - iMelody (.imy)
iMelody
Vorbis X - 0gg (.0gg)
- Matroska (.mKy,
Android 4.0+)
PCM/WAVE X X + 8- and 16-bit linear PCM WAVE (.wav)
(Android (rates up to limit of hardware)
4.1+) - Sampling rates for raw
PCM recordings at 8000,
16,000, and 44,100Hz
Video
H.263 X X - 3GPP (.3gp)
* MPEG-4 (.mp4)
H.264 AVC X X Baseline Profile (BP) - 3GPP (.3gp)
(Android * MPEG-4 (.mp4)
3.0+) * MPEG-TS (.ts, AAC
audio only, not seek-
able, Android 3.0+)
MPEG-4 SP X 3GPP (.3gp)
VP8 X Streamable only in Android - WebM (.webm)
(Android 4.0 and above - Matroska (.mKy,
2.3.3+4) Android 4.0+)

www.it-ebooks.info

201

http://www.it-ebooks.info/

202 Chapter 8 Multimedia Techniques

After the image is in memory, it can be manipulated using the bitmap methods,
such as getPixel() and setPixel(). However, most images are too large to manipu-
late full scale on an embedded device. Instead, consider subsampling the image:

Bitmap bm = Bitmap.createScaledBitmap (myBitmap2, 480, 320, false);

This helps to avoid outofMemory run-time errors. The following recipe shows an
optimized method for loading large images.

Recipe: Loading and Displaying an Image for Manipulation

This recipe shows an example of an image cut into four pieces and scrambled before
being displayed to the screen. It also shows how to create a selectable list of images.

When a picture is taken on a device, it is put in the DCIM/Camera/ directory,
which is used as an example image directory in this recipe. The image directory is
passed to the ListFiles activity, which lists all files and returns the one chosen by the
user. The ListFiles activity is shown in Listing 8.1.

Listing 8.1 ListFiles.java

public class ListFiles extends ListActivity {
private List<String> directoryEntries = new ArrayList<String>();

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
Intent i = getIntent();
File directory = new File(i.getStringExtra("directory"));

if (directory.isDirectory()){
File[] files = directory.listFiles();

//Sort in descending date order
Arrays.sort(files, new Comparator<Files(){
public int compare(File f1, File f2) {
returnLong.valueOf (
fl.lastModified()).compareTo(f2.lastModified()
)i

Ni
//Fill list with files
this.directoryEntries.clear();

for (File file : files){
this.directoryEntries.add(file.getPath());
}

ArrayAdapter<String> directorylList = new ArrayAdapter<Strings(
this,
R.layout.file row, this.directoryEntries);

//Alphabetize entries

www.it-ebooks.info

http://www.it-ebooks.info/

Images

//directoryList.sort (null);
this.setListAdapter(directoryList);

}

@Override
protected void onListItemClick(ListView 1, View v,
int position, long id)
File clickedFile = new File(this.directoryEntries.get(position));
Intent i = getIntent();
i.putExtra("clickedFile", clickedFile.toString());
setResult (RESULT OK, 1);
finish();

A File object is created based on the directory string passed to the activity. If it
is a directory, the files are sorted in reverse chronological order by specifying a new
compare () method based on the lastModified() flag of the files.

If instead an alphabetical list is desired, the sort () method can be used. (This is
in the ListFiles activity, too, but commented out.) The list is then built and dis-
played on the screen using a separate layout file R.1layout.file row, which is shown
in Listing 8.2.

Listing 8.2 res/layout/file_row.xml

<?xml version="1.0" encoding="utf-8"?>

<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="wrap content"
android:textSize="20sp"
android:padding="3pt"

/>

ListFiles returns the path of the selected file to the calling activity, which can
read this from the bundle in its onActivityResult (. .) method.

The chosen picture is then loaded into memory for manipulation. If the file is
too large, it can be subsampled as it is loaded to save memory; just replace the single
bolded statement in onActivityResult of Listing 8.3 with the following:

BitmapFactory.Options options = new BitmapFactory.Options();
options.inSampleSize = 4;

Bitmap imageToChange = BitmapFactory.decodeFile(tmp, options);

An inSampleSize of four creates an image 1/16 the size of the original (four times
smaller in each of the pixel dimensions). The limit can be adaptive based on the origi-
nal image size.

www.it-ebooks.info

203

http://www.it-ebooks.info/

204

Chapter 8 Multimedia Techniques

Another method to save memory is to resize the bitmap in memory before manipu-
lations. This is done using the createScaledBitmap () method, as shown in this
recipe. Listing 8.3 shows the main activity.

Listing 8.3 ImageManipulation.java

package cc.dividebyzero.android.cookbook.chapters8.image;

import cc.dividebyzero.android.cookbook.chapter8.ListFiles;
import cc.dividebyzero.android.cookbook.chapter8.R;
import cc.dividebyzero.android.cookbook.chapter8.R.id;
import cc.dividebyzero.android.cookbook.chapter8.R.layout;
import android.app.Activity;

import android.content.Intent;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.os.Bundle;

import android.os.Environment;

import android.widget.ImageView;

public class ImageManipulation extends Activity {
static final String CAMERA PIC DIR = "/DCIM/Camera/";
ImageView iv;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.image manipulation);
iv = (ImageView) findViewById(R.id.my_ image);

String imageDir =
Environment.getExternalStorageDirectory().getAbsolutePath()
+ CAMERA PIC DIR;

Intent i = new Intent(this, ListFiles.class);
i.putExtra("directory", imageDir);
startActivityForResult(i,0);

}

@Override
protected void onActivityResult(int requestCode,
int resultCode, Intent data) {
super.onActivityResult (requestCode, resultCode, data);
if(requestCode == 0 && resultCode==RESULT OK) {
String tmp = data.getExtras().getString("clickedFile");
Bitmap imageToChange= BitmapFactory.decodeFile(tmp);
process_image (imageToChange);

}

void process_image (Bitmap image) {
Bitmap bm = Bitmap.createScaledBitmap(image, 480, 320, false);
int width = bm.getWidth();
int height = bm.getHeight();

www.it-ebooks.info

http://www.it-ebooks.info/

Images

int x = width>>1;
int y = height>>1;

int[] pixelsl = new int[(width*height)];
int[] pixels2 = new int[(width*height)];
int[] pixels3 = new int[(width*height)];
int[] pixels4 = new int[(width*height)];

7

bm.getPixels(pixelsl, 0, width, 0, 0, width>>1, height>>1

)
bm.getPixels(pixels2, 0, width, x, 0, width>>1, height>>1);
bm.getPixels(pixels3, 0, width, 0, y, width>>1, height>>1);
bm.getPixels(pixels4, 0, width, x, y, width>>1, height>>1);
if(bm.isMutable()) {

bm.setPixels(pixels2, 0, width, 0, 0, width>>1, height>>1);
bm.setPixels(pixels4, 0, width, x, 0, width>>1, height>>1);
bm.setPixels(pixelsl, 0, width, 0, y, width>>1, height>>1);
bm.setPixels(pixels3, 0, width, x, y, width>>1, height>>1);

}

iv.setImageBitmap (bm);

The associated main layout is shown in Listing 8.4.

Listing 8.4 image_manipulation.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent">
<TextView android:layout width="match parent"
android:layout height="wrap content"
android:textSize="30sp"
android:text="Scrambled Picture" />
<ImageView android:id="@+id/my_ image"
android:layout width="wrap content"
android:layout height="wrap_ content" />
</LinearLayout>

The AndroidManifest.xml file must declare both the activities, as shown in List-
ing 8.5. An example of the output is shown in Figure 8.1.

Listing 8.5 AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="cc.dividebyzero.android.cookbook.chapter8"

android:versionCode="1"

android:versionName="1.0">

<uses-sdk android:minSdkVersion="8" android:targetSdkVersion="15" />

<application android:label="@string/app name"
android:icon="e@drawable/ic_launcher"
android:theme="@style/AppTheme">

www.it-ebooks.info

205

http://www.it-ebooks.info/

206 Chapter 8 Multimedia Techniques

<activity android:name=".Chapter8">
<intent-filter »>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activity>
<activity android:name=".ListFiles">
<intent-filter »>
<action android:name="android.intent.action.PICK" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filters>
</activity>
<activity android:name=".audio.AudioPlayback"/>
<activity android:name=".audio.AudioRecording"/>
<activity android:name=".audio.AudioSoundPool"/>

<activity android:name=".video.VideoViewActivity"/>
<activity android:name=".video.VideoPlayback"/>
<activity android:name=".image.ImageManipulation"/>
</applications>
</manifests>

Audio

There are two distinct frameworks for recording and playing audio. The choice of
which to use depends on the application:
= MediaPlayer/MediaRecorder—This is the standard method to manipulate
audio but the data must be file- or stream-based. It creates its own thread for
processing. SoundPool uses this framework.

= AudioTrack/AudioRecorder—This method provides direct access to raw audio
and is useful for manipulating audio in memory, writing to the buffer while

i B 23:31
chapterg

Scrambled Picture

Figure 8.1 Scrambled image

www.it-ebooks.info

http://www.it-ebooks.info/

Audio

already playing, or any other usage that does not require a file or stream. It does
not create its own thread for processing.

These methods are used in the following recipes.

Recipe: Choosing and Playing Back Audio Files

The MediaRecorder and MediaPlayer classes are used to record and play back either
audio or video. This recipe focuses on audio, and the usage is straightforward. For
playback, the steps are as follows:

1. Create an instance of the MediaPlayer:

MediaPlayer m mediaPlayer = new MediaPlayer();

2. Specify the source of media. It can be created from a raw resource:
m_mediaPlayer = MediaPlayer.create(this, R.raw.my music);

Another option is to select a file from the filesystem (which then also needs a
prepare statement):

m_mediaPlayer.setDataSource(path);
m_mediaPlayer.prepare();

In any case, these statements need to be surrounded by a try-catch block
because the specified resource might not exist.

3. Start playback of the audio:

m_mediaPlayer.start();

4. When the playback is done, stop the MediaPlayer and release the instance to
free up resources:

m_mediaPlayer.stop();
m_mediaPlayer.release();

This recipe uses the same ListFiles activity shown in Listings 8.1 and 8.2 to
create a selectable list of audio files for playback. It is assumed that audio files are in the
/sdcard/music/ directory of the Android device, but this is configurable.

When the ListFiles activity returns a file, it is initialized as the MediaPlayer
media source, and the method startMP() is called. This starts the MediaPlayer and
sets the button text to show “Pause.” Similarly, the pauseMp () method pauses the
MediaPlayer and sets the button text to show “Play.” At any time, the user can click
the button to pause or continue the playback of the music.

In general, the MediaPlayer creates its own background thread and does not
pause when the main activity pauses. This is reasonable behavior for a music player,
but in general, the developer might want control over this. Therefore, for illustration
purposes, in this recipe the music playback is paused and resumed along with the main
activity by overriding the onPause () and onResume () methods. This is shown in
Listing 8.6.

www.it-ebooks.info

207

http://www.it-ebooks.info/

208

Chapter 8 Multimedia Techniques

Listing 8.6 AudioPlayback.java

package cc.dividebyzero.android.cookbook.chapter8.audio;

import
import
import
import
import
import
import
import
import
import
import

cc.dividebyzero.android.cookbook.chapter8.ListFiles;
cc.dividebyzero.android.cookbook.chapters.R;
cc.dividebyzero.android.cookbook.chapter8.R.id;
cc.dividebyzero.android.cookbook.chapter8.R.1layout;
android.app.Activity;

android.content.Intent;

android.media.MediaPlayer;

android.os.Bundle;

android.os.Environment;

android.view.View;

android.widget.Button;

public class AudioPlayback extends Activity {
static final String MUSIC DIR = "/music/";
Button playPauseButton;

private MediaPlayer m mediaPlayer;

@Override
protected void onCreate(Bundle savedInstanceState) {

}

super.onCreate (savedInstanceState);

setContentView(R.layout.audio playback);
playPauseButton = (Button) findViewById(R.id.play pause);

m_mediaPlayer= new MediaPlayer();

String musicDir = Environment.getExternalStorageDirectory(
.getAbsolutePath() + MUSIC_DIR;

//Show a list of music files to choose
Intent i = new Intent(this, ListFiles.class);
i.putExtra("directory", musicDir);
startActivityForResult(i,0);

playPauseButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {

if(m mediaPlayer.isPlaying()) {
//Stop and give option to start again
pauseMP();

} else {
startMP();

}
i

@Override
protected void onActivityResult(int requestCode, int resultCode,

Intent data) {
super.onActivityResult (requestCode, resultCode, data);
if(requestCode == 0 && resultCode==RESULT OK) {

String tmp = data.getExtras().getString("clickedFile");

www.it-ebooks.info

http://www.it-ebooks.info/

Audio 209

try {
m_mediaPlayer.setDataSource (tmp);
m_mediaPlayer.prepare();

} catch (Exception e) {
e.printStackTrace();

}

startMP();

}

void pauseMP() {
playPauseButton.setText ("Play");
m_mediaPlayer.pause();

}

void startMP() {
m_mediaPlayer.start();
playPauseButton.setText ("Pause");

}

boolean needToResume = false;

@Override
protected void onPause() {
if(m mediaPlayer != null && m mediaPlayer.isPlaying()) ({
needToResume = true;
pauseMP();

}

super.onPause();

}

@Override
protected void onResume() {
super.onResume () ;
if(needToResume && m mediaPlayer != null) {
startMP();
}

The associated main XML layout with the Play/Pause button is shown in List-
ing 8.7.

Listing 8.7 res/layout/audio_playback.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout_height="match parent">
<Button android:id="e@+id/play pause"
android:text="Play"
android:textSize="20sp"
android:layout width="wrap_ content"
android:layout height="wrap content" />
</LinearLayout>

www.it-ebooks.info

http://www.it-ebooks.info/

210 Chapter 8 Multimedia Techniques

Recipe: Recording Audio Files

Recording audio using MediaRecorder is similar to playback from the previous
recipe, except a few more things need to be specified (DEFAULT can also be used and is
the same as the first choice in these lists):

= MediaRecorder.AudioSource:
= MIC—DBuilt-in microphone
= VOICE UPLINK—Transmitted audio during voice call
= VOICE DOWNLINK—Received audio during voice call
= VOICE_CALL—DBoth uplink and downlink audio during voice call
= CAMCORDER—Microphone associated with camera if available
= VOICE RECOGNITION—Microphone tuned for voice recognition if available
s MediaRecorder.OutputFormat:
= THREE GPP—3GPP media file format
= MPEG_4—MPEGH4 media file format
= AMR_NB—Adaptive multirate narrowband file format
= MediaRecorder.AudioEncoder:

= AMR_NB—Adaptive multirate narrowband vocoder

The steps to record audio are as follows:
1. Create an instance of the MediaRecorder:
MediaRecorder m_Recorder = new MediaRecorder();
2. Specify the source of media, for example, the microphone:
m_Recorder.setAudioSource (MediaRecorder.AudioSource.MIC);
3. Set the output file format and encoding, such as:

m_Recorder.setOutputFormat (MediaRecorder.OutputFormat .THREE GPP);
m_Recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);

4. Set the path for the file to be saved:

m_Recorder.setOutputFile(path);

5. Prepare and start the recording:

m_Recorder.prepare();
m_Recorder.start();

These steps for audio recording can be used just as they were in the previous recipe
for playback.

www.it-ebooks.info

http://www.it-ebooks.info/

Audio

Recipe: Manipulating Raw Audio

The MediaRecorder/MediaPlayer framework is useful for most audio uses, but to
manipulate raw audio straight from the microphone, process it without saving to a file,
and/or play back raw audio, use AudioRecord/AudioTrack instead. First, set the per-
mission in the AndroidManifest.xml file:

<uses-permission android:name="android.permission.RECORD AUDIO" />

Then, the steps to record are the following:

1. Create an AudioRecord instance, specifying the following to the constructor:

= Audio source—Use one of the MediaRecorder.AudioSource choices described
in the previous recipe; for example, use MediaRecorder.AudioSource.MIC.

= Sampling frequency in hertz—Use 44100 for CD-quality audio or half-rates
such as 22050 or 11025 (which are sufficient for voice and are the only sampling
frequencies guaranteed to be supported).

= Channel configuration—Use AudioFormat.CHANNEL IN STEREO to record
stereo sound and CHANNEL IN MONO to record mono sound.

= Audio encoding—Use either AudioFormat.ENCODING PCM_8BIT for 8-bit
quantization or AudioFormat.ENCODING PCM_16BIT for 16-bit.

= Buffer size in bytes—This is the total size of allotted memory in static
mode or the size of chunks used in streaming mode. This must be at least
getMinBufferSize() bytes.

2. Start recording from the AudioRecord instance.

3. Read audio data to memory audioDatal[] using one of the following methods:
read(short[] audioData, int offsetInShorts, int sizeInShorts)

read(byte[] audioData, int offsetInBytes, int sizeInBytes)
read(ByteBuffer audioData, int sizelInBytes)

4. Stop recording.

For example, the following is suitable to record voice from the built-in microphone
to a memory buffer myRecordedaudio, which can be declared a short[] (for instance,
16 bits each sample). Using a short[] has the advantage of not having to worry about
byte ordering when reassembling the byte values into a short. Note that 11,025 sam-
ples per second and a buffer size of 10,000 samples means this recording is a little less
than a second long:

short[] myRecordedAudio = new short[10000];

AudioRecord audioRecord = new AudioRecord(
MediaRecorder.AudioSource.MIC, 11025,
AudioFormat.CHANNEL IN MONO,
AudioFormat.ENCODING PCM_16BIT, 10000);

www.it-ebooks.info

211

http://www.it-ebooks.info/

212

Chapter 8 Multimedia Techniques

audioRecord.startRecording();
audioRecord.read(myRecordedAudio, 0, 10000);
audioRecord.stop();

audioRecord.release();

Then, the steps to play back the audio are as follows:

1. Create an AudioTrack instance specifying the following to the constructor:

= Stream type—Use AudioManager.STREAM MUSIC for capturing from the
microphone or playback to the speaker. Other choices are STREAM VOICE
_CALL, STREAM SYSTEM, STREAM RING, and STREAM ALARM.

= Sampling frequency in hertz—This has the same meaning as during recording.

= Channel configuration—Use AudioFormat.CHANNEL OUT_STEREO to play back
stereo sound. There are many other choices such as CHANNEL OUT
_MONO and CHANNEL_OUT_ SPOINT1 (for surround sound).

= Audio encoding—This has the same meaning as for recording.
= Buffer size in bytes—This is the size of chunks of data to play at a time.

= Buffer mode—Use AudioTrack.MODE STATIC for short sounds that can fully fit
in memory, avoiding transfer overheads. Otherwise, use AudioTrack
.MODE_STREAM to write data to hardware in buffer chunks.

2. Start playback from the AudioTrack instance.

3. Write memory audioDatal[] to hardware using one of the following methods:

write(short[] audioData, int offsetInShorts, int sizeInShorts)
write(byte[] audioData, int offsetInBytes, int sizelInBytes)

4. Stop playback (optional).

For example, the following is suitable to play back the voice data in the previous
record example:

AudioTrack audioTrack = new AudioTrack(
AudioManager.STREAM MUSIC, 11025,
AudioFormat.CHANNEL OUT MONO,
AudioFormat.ENCODING PCM_16BIT, 4096,
AudioTrack.MODE_STREAM);

audioTrack.play();

audioTrack.write (myRecordedAudio, 0, 10000);

audioTrack.stop();

audioTrack.release();

This recipe uses these two options to record audio to memory and play it back. The
layout specifies two buttons on the screen: one to record audio and another to play
back that recorded audio, as declared in the main layout file shown in Listing 8.8.

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 8.8 audio_recording.xml

Audio

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout width="match_ parent"
android:layout height="match parent">

<TextView android:id="@+id/status"
android:text="Ready" android:textSize="20sp"
android:layout width="wrap content"
android:layout height="wrap content" />
<Button android:id="@+id/record"
android:text="Record for 5 seconds"

android:textSize="20sp" android:layout_ width="wrap_content"

android:layout height="wrap content" />
<Button android:id="@+id/play"
android:text="Play" android:textSize="20sp"
android:layout width="wrap content"
android:layout height="wrap content" />
</LinearLayout>

The main activity shown in Listing 8.9 first creates an OnClickListener for these

buttons to record or play back the in-memory audio buffer. The onClick() callback

method creates the appropriate background thread because neither AudioTrack nor

AudioRecord should be run in the UI thread. For illustration, two different methods

of creating the thread are shown: The record_thread() has a local thread with
the UI updated through a Handler, and the play thread uses the main activity’s

run() method.

The buffer is kept in memory. For illustration, the recording is kept to 5 seconds.

Listing 8.9 AudioRecording.java

package cc.dividebyzero.android.cookbook.chapter8.audio;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

cc.dividebyzero.android.cookbook.chapter8.R;
cc.dividebyzero.android.cookbook.chapter8.R.id;
cc.dividebyzero.android.cookbook.chapter8.R.layout;
android.app.Activity;

android.media
android.media
android.media
android.media
android.media

.AudioFormat;
.AudioManager;
.AudioRecord;
.AudioTrack;
.MediaRecorder;

android.os.Bundle;
android.os.Handler;
android.util.Log;
android.view.View;
android.widget.Button;
android.widget.TextView;

public class AudioRecording extends Activity implements Runnable
private TextView statusText;

www.it-ebooks.info

213

http://www.it-ebooks.info/

214 Chapter 8 Multimedia Techniques

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.audio recording);

statusText = (TextView) findvViewById(R.id.status);

Button actionButton = (Button) findviewById(R.id.record);
actionButton.setOnClickListener(new View.OnClickListener()
public void onClick(View view) {
record_thread();
}

i

Button replayButton = (Button) findViewById(R.id.play);
replayButton.setOnClickListener(new View.OnClickListener()
public void onClick(View view) {
Thread thread = new Thread(AudioRecording.this);
thread.start();

i
}

String text string;
final Handler mHandler = new Handler();
// Create runnable for posting
final Runnable mUpdateResults = new Runnable() {
public void run() {
updateResultsInUi(text string);
}

}i

private void updateResultsInUi(String update txt) {
statusText.setText (update txt);

private void record thread() {
Thread thread = new Thread(new Runnable() {
public void run() {
text string = "Starting";
mHandler.post (mUpdateResults);

record();

text_string = "Done";
mHandler.post (mUpdateResults);

}
F;
thread.start();

}

private int audioEncoding = AudioFormat.ENCODING_ PCM_16BIT;
int frequency = 11025; //hertz
int bufferSize = 50*AudioTrack.getMinBufferSize(

frequency,

AudioFormat.CHANNEL OUT_ MONO,

audioEncoding

)i

// Create new AudioRecord object to record the audio

www.it-ebooks.info

http://www.it-ebooks.info/

Audio

public AudioRecord audioRecord = new AudioRecord(
MediaRecorder.AudioSource.MIC,
frequency,
AudioFormat.CHANNEL_IN_ MONO,
audioEncoding,
bufferSize
)i
// Create new AudioTrack object w/same parameters as AudioRecord obj
public AudioTrack audioTrack = new AudioTrack(
AudioManager.STREAM MUSIC,
frequency,
AudioFormat.CHANNEL_OUT_MONO,
audioEncoding,
4096,
AudioTraCk.MODEisTREAM
) .

short[] buffer = new short[bufferSizel;

public void record() {

try {
audioRecord.startRecording();
audioRecord.read(buffer, 0, bufferSize);
audioRecord.stop();
audioRecord.release();

} catch (Throwable t) {
Log.e("AudioExamplesRaw","Recording Failed");

}

}

public void run() { //Play audio using runnable activity
audioTrack.play();
int 1=0;
while(i<bufferSize) {
audioTrack.write (buffer, i++, 1);
}

return;

}

@Override
protected void onPause() {
if(audioTrack!=null) {
if(audioTrack.getPlayState () ==AudioTrack.PLAYSTATE PLAYING) {
audioTrack.pause();
}
}

super.onPause();

Recipe: Using Sound Resources Efficiently

To keep the smaller memory requirements of compressed audio files but also the ben-
efit of lower-latency playback of raw audio files, the SoundpPool class can be used. This
uses the MediaPlayer service to decode audio and provides methods to repeat sound
buffers and also speed them up or slow them down.

www.it-ebooks.info

215

http://www.it-ebooks.info/

216

Chapter 8 Multimedia Techniques

Usage is similar to the other sound methods described in previous recipes: initial-
ize, load a resource, play, and release. However, note that the SoundPool launches
a background thread, so a play() right after a load() might not produce sound if
the resource does not have time to load. Similarly, a release() called right after a
play() releases the resource before it can be played. Therefore, it is best to tie Sound-
Pool resources to activity lifecycle events (such as onCreate and onPause) and tie the
playback of SoundPool resources to a user-generated event (such as a button press or
advancement in a game).

Using the same layout file as in Listing 8.7, the main activity of this recipe is
shown in Listing 8.10. A button press triggers the SoundPool to repeat a drumbeat
eight times (the initial time plus seven repeats). Also, the rate alternates from half-
speed to double speed between button presses. Up to ten streams can play at once,
which means that ten quick button presses can launch ten drumbeats playing
simultaneously.

Listing 8.10 AudioSoundPool.java

package cc.dividebyzero.android.cookbook.chapters8.audio;

import cc.dividebyzero.android.cookbook.chapter8.R;
import cc.dividebyzero.android.cookbook.chapter8.R.id;
import cc.dividebyzero.android.cookbook.chapter8.R.layout;
import cc.dividebyzero.android.cookbook.chapter8.R.raw;
import android.app.Activity;

import android.media.AudioManager;

import android.media.SoundPool;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

public class AudioSoundPool extends Activity {
static float rate = 0.5f;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

setContentView(R.layout.audio soundpool);
Button playDrumButton = (Button) findViewById(R.id.play pause);

final SoundPool mySP = new SoundPool(
10,
AudioManager.STREAM MUSIC,
0);

final int soundId = mySP.load(this, R.raw.drum beat, 1);

playDrumButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
rate = 1/rate;
mySP.play(soundId, 1f, 1f, 1, 7, rate);

www.it-ebooks.info

http://www.it-ebooks.info/

Video

Recipe: Adding Media and Updating Paths

After an application creates a newly recorded audio file, that file can be registered with
the system as available for use. This is done using the MediaStore class. For example,
Listing 8.11 shows how to register a saved audio file myFile as a possible ringtone,
notification, and alarm, but not to be seen by an MP3 player (because IS _MUSIC is
false).

Listing 8.11 Example of Registering an Audio File to the System

//Reload MediaScanner to search for media and update paths
sendBroadcast (new Intent(Intent.ACTION MEDIA MOUNTED,
Uri.parse("file://"
+ Environment.getExternalStorageDirectory())));
ContentValues values = new ContentValues();
values.put (MediaStore.MediaColumns.DATA, myFile.getAbsolutePath());
values.put (MediaStore.MediaColumns.TITLE, myFile.getName());
values.put (MediaStore.MediaColumns.TIMESTAMP,
System.currentTimeMillis());
values.put (MediaStore.MediaColumns.MIME TYPE,
recorder.getMimeContentType());
MediaStore.Audio.Media.ARTIST, SOME_ARTIST HERE);
MediaStore.Audio.Media.IS_RINGTONE, true);
values.put (MediaStore.Audio.Media.IS NOTIFICATION, true);
values.put (MediaStore.Audio.Media.IS_ALARM, true);
values.put (MediaStore.Audio.Media.IS MUSIC, false);
ContentResolver contentResolver = new ContentResolver();
Uri base = MediaStore.Audio.INTERNAL CONTENT URI;
Uri newUri = contentResolver.insert(base, values);
String path = contentResolver.getDataFilePath (newUri);

values.put
values.put

Here, ContentValues is used to declare some standard properties of the file, such as
TITLE, TIMESTAMP, and MIME_TYPE, and ContentResolver is used to create an entry
in the MediaStore content database with the file’s path automatically added.

Video

There are two different ways of displaying video. One uses the MediaPlayer frame-
work similar to the audio examples discussed previously. The other uses a VideoView
class that takes care of most of the work and is recommended for simpler use cases.

Recipe: Using the VideoView

Using a VideoView is very easy. Once it is declared in the XML layout and the lay-
out has been loaded, all that needs to be done is to give a URL of the video to the
Videoview and it will start playing immediately. It will even show an error dialog, if
the video format is not supported by the framework or some other error occurred.

To make things easier for the user, there is another helper class called the
MediaController. This adds Play/Pause, Forward, and Rewind buttons and a Seeking

www.it-ebooks.info

217

http://www.it-ebooks.info/

218 Chapter 8 Multimedia Techniques

Bar control. All that needs to be done is to hook up the MediaController to the
VideoView to act as its anchor with .setAnchorView. This way, a full video player can
be obtained with just a few lines of code, as can be seen in Listing 8.12.

Listing 8.12 VideoViewActivity.java

public class VideoViewActivity extends Activity {

private static final String VIDEO DIR =
File.separator+"DCIM"+File.separator+"Camera";
private VideoView videoView;

@Override
public void onCreate(Bundle savedInstanceState){
super.onCreate (savedInstanceState);

setContentView(R.layout.video view);

videoView= (VideoView) findViewById(R.id.videoViewl);
MediaController controller=new MediaController(this);
controller.setMediaPlayer(videoView);
controller.setAnchorView(videoView);

videoView.setMediaController(controller);

String videoDir = Environment.getExternalStorageDirectory()
.getAbsolutePath() + VIDEO DIR;

//Show a list of video files to choose
Intent i = new Intent(this, ListFiles.class);
i.putExtra("directory", videoDir);
startActivityForResult(i,0);

}

@Override
protected void onActivityResult(int requestCode,
int resultCode, Intent data) {
super.onActivityResult (requestCode, resultCode, data);
if(requestCode == 0 && resultCode==RESULT OK) {
String path = data.getExtras().getString("clickedFile");

videoView.setVideoPath (path);
videoView.start();

The accompanying layout is seen in Listing 8.13.

www.it-ebooks.info

http://www.it-ebooks.info/

Video

Listing 8.13 video_view.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:orientation="vertical" >

<VideoView
android:id="@+id/videoViewl"
android:layout width="match parent"
android:layout height="wrap content"

/>

</LinearLayout>

Recipe: Video Playback Using the MediaPlayer

The MediaPlayer framework can also be used to play videos. The main difference
from playing audio is that a surface for rendering the video frames must be provided.
This is done using the SurfaceView class, which is added to the layout just beneath
the Play/Pause button in Listing 8.14.

Listing 8.14 video_playback.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical®
android:layout width="match parent"
android:layout height="match parent"s
<Button android:id="e@+id/play pause"
android:text="Play"
android:textSize="20sp"
android:layout width="wrap content"
android:layout height="wrap content" />
<SurfaceView
android:id="@+id/surface"
android:layout width="match parent"
android:layout height="0dip"
android:layout weight="1"
android:visibility="visible"
/>

</LinearLayout>

Creating the surface can take some time. Because of this, the SurfaceHolder.
Callback method is used to set the display of the MediaPlayer after the surface is
created. Once this is done, videos can be played. If a video is started without attaching
a display or if setDisplay is called with a null argument, only the audio track of the
video is played.

www.it-ebooks.info

219

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Hardware Interface

Android devices have multiple types of hardware that are built in and accessible to
developers. Sensors, such as a camera, accelerometer, magnetometer, pressure sensor,
temperature sensor, and proximity sensor, are available on most devices. Telephony,
Bluetooth, near field communication (NFC), and other wireless connections are also
accessible to the developer in some form. This chapter shows how to leverage these
hardware APIs to enrich the experience of an application. Note that these recipes are
best run on actual Android devices because the emulator might not provide accurate
or realistic behavior of hardware interfaces.

Camera

The camera is the most visible and most used sensor in an Android device. It is a
selling point for most consumers, and the capabilities are getting better with each
generation. Image-processing applications normally work on an image after it is
taken, but other applications, such as augmented reality, use the camera in real time
with overlays.

There are two ways to access the camera from an application. The first is by declar-
ing an implicit intent as described in Chapter 2, “Application Basics: Activities and
Intents.” The implicit intent launches the default camera interface:

Intent intent = new Intent("android.media.action.IMAGE_CAPTURE");
startActivity(intent);

The second way leverages the Camera class, which provides more flexibility in the
settings. This creates a custom camera interface, which is the focus of the recipes
that follow. Camera hardware access requires explicit permission in the Android
Manifest.xml file:

<uses-permission android:name="android.permission.CAMERA" />

This is implied in the following recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

222 Chapter 9 Hardware Interface

Recipe: Customizing the Camera
Control of the camera is abstracted into various components in the Android system:
= Camera class—Accesses the camera hardware

= Camera.Parameters class—Specifies the camera parameters such as picture size,
picture quality, flash modes, and method to assign GPS location
= Camera Preview methods—Sets the camera output display and toggles streaming

video preview to the display

= SurfaceView class—Dedicates a drawing surface at the lowest level of the view
hierarchy as a placeholder to display the camera preview

Before describing how these are tied together, the layout structure is introduced.
The main layout is shown in Listing 9.1 and includes a Surfaceview class to hold the
camera output.

Listing 9.1 res/layout/main.xml

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:orientation="vertical">

<SurfaceView android:id="@+id/surface"
android:layout width="match parent"
android:layout height="match parent">
</SurfaceView>

</LinearLayout>

A control interface can be added on top of this view by using a separate layout, as
shown in Listing 9.2. This layout contains a button at the bottom center of the screen
to take a picture.

Listing 9.2 res/layout/cameraoverlay.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match_ parent"
android:layout height="match parent"
android:orientation="vertical"
android:gravity="bottom"
android:layout gravity="bottom">

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match_ parent"
android:layout height="wrap content"
android:orientation="horizontal"
android:gravity="center horizontal">

www.it-ebooks.info

http://www.it-ebooks.info/

Camera

<Button

android:id="@+id/button"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="take picture"

/>

</LinearLayout>
</LinearLayout>

The main activity involves multiple functionalities. First, the layout is set up as

follows:

1.

The window settings are changed to be translucent and full screen. (In this
instance, they hide the title and notification bar.)

. The surfaceview class defined in the previous layout (R.id.surface) is then

filled by the camera preview. Each SurfacevView contains a SurfaceHolder
class for access and control over the surface. The activity is added as the
SurfaceHolder’s callback, and the type is set to SURFACE TYPE PUSH_
BUFFERS, which means it creates a “push” surface and the object does not own
the buffer. This makes video streaming more efficient.

. A LayoutInflater class is declared to inflate another layout (cameraoverlay

.xml) over the original (main.xml) layout.

Next, the activity sets a trigger for taking a picture:

1.

An onClickListener class is added on the button from the cameraoverlay
layout, so when clicked, it takes a picture (mCamera.takePicture()).

. The takePicture() method needs to have the following interfaces implemented:

= ShutterCallback() to define any effects needed after the picture is taken,
such as a sound to let the user know that the picture has been captured.

= PictureCallback() for raw picture data if the hardware has enough
memory to support this feature. (Otherwise, the data might return as null.)

= A second PictureCallback() method for the compressed picture data. This
calls the local method done() to save the picture.

Then, the activity saves any pictures that were taken:

1.

3.

The compressed picture byte array is saved to a local variable tempData for
manipulation. BitmapFactory is used to decode the byte array into a Bitmap
object.

. The media content provider is used to save the bitmap and return a URL.

If this main activity were called by another activity, this URL would be the
return information to the caller activity to retrieve the image.

After this process, finish() is called to kill the activity.

www.it-ebooks.info

223

http://www.it-ebooks.info/

224 Chapter 9 Hardware Interface

Finally, the activity sets up a response to a change in the surface view:

1. A SurfaceHolder.CallBack interface is implemented. This requires three
methods to be overridden:

= surfaceCreated()—Called when the surface is first created. Initialize
objects here.

= surfaceChanged () —Called after surface creation and when the surface
changes (for example, format or size).

= surfaceDestroyed () —Called between removing the surface from the view
of the user and destroying the surface. This is used for memory cleanup.

2. The parameters for the camera are changed when the surface is changed (such
as PreviewSize based on the surface size).

These functionalities are in the complete activity shown in Listing 9.3.

Listing 9.3 src/com/cookbook/hardware/CameraApplication.java

package com.cookbook.hardware;

import android.app.Activity;

import android.content.Intent;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;
import android.graphics.PixelFormat;
import android.hardware.Camera;

import android.hardware.Camera.PictureCallback;
import android.hardware.Camera.ShutterCallback;
import android.os.Bundle;

import android.provider.MediaStore.Images;
import android.util.Log;

import android.view.LayoutInflater;

import android.view.SurfaceHolder;

import android.view.SurfaceView;

import android.view.View;

import android.view.Window;

import android.view.WindowManager;

import android.view.View.OnClickListener;
import android.view.ViewGroup.LayoutParams;
import android.widget.Button;

import android.widget.Toast;

public class CameraApplication extends Activity
implements SurfaceHolder.Callback {
private static final String TAG = "cookbook.hardware";
private LayoutInflater mInflater = null;
Camera mCamera;
byte[] tempData;
boolean mPreviewRunning = false;
private SurfaceHolder mSurfaceHolder;
private SurfaceView mSurfaceView;
Button takepicture;

www.it-ebooks.info

http://www.it-ebooks.info/

Camera 225

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

getWindow().setFormat (PixelFormat .TRANSLUCENT) ;

requestWindowFeature (Window.FEATURE_NO TITLE);

getWindow().setFlags (WindowManager.LayoutParams.FLAG FULLSCREEN,
WindowManager.LayoutParams.FLAG FULLSCREEN);

setContentView(R.layout.main);

mSurfaceView = (SurfaceView)findViewById(R.id.surface);
mSurfaceHolder = mSurfaceView.getHolder();
mSurfaceHolder.addCallback(this);

// Uncomment the following line if using less than Android 3.0 (API 11)
// mSurfaceHolder.setType(SurfaceHolder.SURFACE TYPE PUSH BUFFERS);

mInflater = LayoutInflater.from(this);
View overView = mInflater.inflate(R.layout.cameraoverlay, null);
this.addContentView (overView,
new LayoutParams (LayoutParams.MATCH PARENT,
LayoutParams.MATCH_PARENT));
takepicture = (Button) findvViewById(R.id.button);
takepicture.setOnClickListener(new OnClickListener(){
public void onClick(View view){
mCamera.takePicture (mShutterCallback,
mPictureCallback, mjpeg);

K
}

ShutterCallback mShutterCallback = new ShutterCallback(){
@Override
public void onShutter() {}

}:

PictureCallback mPictureCallback = new PictureCallback() {
public void onPictureTaken(byte[]l data, Camera c) {}

}:

PictureCallback mjpeg = new PictureCallback() {
public void onPictureTaken(byte[] data, Camera c) {
if(data !=null) {
tempdata=data;
done();

}:

void done() {
Bitmap bm = BitmapFactory.decodeByteArray(tempdata,
0, tempdata.length);
String url = Images.Media.insertImage(getContentResolver(),
bm, null, null);
bm.recycle();
Bundle bundle = new Bundle();
if(urlt=null) {
bundle.putString("url", url);

www.it-ebooks.info

http://www.it-ebooks.info/

226 Chapter 9 Hardware Interface

Intent mIntent = new Intent();
mIntent.putExtras(bundle);
setResult (RESULT OK, mIntent);
} else {
Toast.makeText (this, "Picture cannot be saved",
Toast.LENGTH_SHORT).show();
}
finish();

}

@Override
public void surfaceChanged(SurfaceHolder holder, int format,
int w, int h) {
Log.e(TAG, "surfaceChanged");
try {
if (mPreviewRunning) {
mCamera.stopPreview();
mPreviewRunning = false;

}

Camera.Parameters p = mCamera.getParameters();
p.setPreviewSize(w, h);

mCamera.setParameters(p);
mCamera.setPreviewDisplay(holder);
mCamera.startPreview();
mPreviewRunning = true;

} catch(Exception e) {
Log.d("",e.toString());

}

}

@Override
public void surfaceCreated(SurfaceHolder holder) {

Log.e(TAG, "surfaceCreated");
mCamera = Camera.open();

}

@Override

public void surfaceDestroyed(SurfaceHolder holder) {
Log.e(TAG, "surfaceDestroyed");
mCamera.stopPreview();
mPreviewRunning = false;
mCamera.release();
mCamera=null;

Note that the camera preview from the camera hardware is not standardized, and
some Android devices might show the preview sideways. In this case, simply add the
following to the onCreate() method of the CameraPreview activity:

this.setRequestedOrientation(ActivityInfo.SCREEN ORIENTATION_ LANDSCAPE);

www.it-ebooks.info

http://www.it-ebooks.info/

Other Sensors

Other Sensors

The proliferation of small and low-power micro-electro-mechanical systems (MEMS)
is becoming more evident. Smartphones are becoming aggregators of sensors, and the
push for sensor accuracy by smartphone manufacturers is driving the need for better-
performing devices.

As discussed in Chapter 1, “Overview of Android,” each Android phone has a
selection of different sensors. The standard two are a three-axis accelerometer to
determine device tilt and a three-axis magnetometer to determine compass direction.
Other devices that might be integrated are temperature sensor, proximity sensor,
light sensor, and gyroscope. Following are the currently supported sensors in the
Android SDK:

= TYPE ACCELEROMETER—Measures acceleration in meters per second squared

= TYPE AMBIENT TEMPERATURE—Measures temperature in degrees Celsius
(replaced TYPE TEMPERATURE in API Level 14)

= TYPE GRAVITY—Measures movement on a three-dimensional axis including the
magnitude of gravity

= TYPE GYROSCOPE—Measures orientation based on angular momentum

= TYPE LIGHT—Measures ambient light in lux

= TYPE LINEAR ACCELERATION—Measures movement on a three-dimensional axis
without the effects of gravity

= TYPE MAGNETIC FIELD—Measures magnetic field in microteslas

= TYPE_ PRESSURE—Measures air pressure

= TYPE PROXIMITY—Measures the distance of a blocking object in centimeters

= TYPE RELATIVE HUMIDITY—Measures humidity as a percentage

» TYPE_TEMPERATURE—Measures temperature in degrees Celsius

The getSensorList () method lists all the available sensors in a particular device.
SensorManager manages all sensors. It provides various sensor event listeners with
two callback functions—onSensorChanged() and onAccuracyChanged () —that are
used to listen for sensor value and accuracy changes.

Recipe: Getting a Device’s Rotational Attitude

Ideally, the accelerometer measures the Earth’s gravitational field as G = 9.8m/sec?,
and the magnetometer measures the Earth’s magnetic field that ranges from H =
30uT to 60uT depending on the device’s location in the world. These two vectors are
enough to implement a simple textbook estimation of rotation, as used in the
getRotationMatrix() method. This recipe shows how to use this information.

The coordinate system of the device (also known as the body) frame is defined in
this way:

www.it-ebooks.info

227

http://www.it-ebooks.info/

228

Chapter 9 Hardware Interface

= The x axis is defined along the direction of the short side of the screen (along the
menu keys).

= The y axis is defined along the direction of the long side of the screen.

= The z axis is defined as pointing out of the screen.

The coordinate system of the world (also known as inertial) frame is defined in
this way:

= The x axis is the cross-product of the y axis with the 2z axis.

= The y axis is tangential to the ground and points toward the North Pole.

= The z axis points perpendicular to the ground toward the sky.

These two systems are aligned when the device is flat on a table with the screen
facing up and pointing north. In this case, the accelerometer measures (0, 0, G) in the
x, y, and z directions. At most locations, the magnetic field of the Earth points slightly
toward the ground at an angle kand even when the device points north is given by (0,
H cos(k), -H sin(b).

As the device tilts and rotates, SensorManager.getRotationMatrix() provides the
3%3 rotation matrix R[] to get from the device coordinate system to the world coor-
dinate system and 3X3 inclination matrix I[] (rotation around the x axis) to get from
the true magnetic field direction to the ideal case (0, H, 0).

Note that if the device is accelerating or is near a strong magnetic field, the values
measured do not necessarily reflect the proper reference frame of the Earth.

Another way to express the rotation is by using SensorManager.getOrientation().
This provides the rotation matrix R[] and the attitude vector attitude(]:

= attitude[0]—Azimuth (in radians) is the rotation angle around the world-frame
z axis required to have the device facing north. It takes values between -PI and
PI, with O representing north and PI/2 representing east.

= attitude[1]—Pitch (in radians) is the rotation angle around the world-frame
x axis required to have the device face straight up along the long dimension of
the screen. It takes values between -PI and PI with O representing device face up,
and PI/2 means it points toward the ground.

= attitude[2]—Roll (in radians) is the rotation angle around the world-frame
y axis required to have the device face straight up along the short dimension of
the screen. It takes values between -PI and PI with O representing device face up,
and PI/2 means it points toward the right.

This recipe displays the attitude information to the screen. The layout provides a
text with ID attitude, as shown in Listing 9.4.

Listing 9.4 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"

www.it-ebooks.info

http://www.it-ebooks.info/

Other Sensors

android:layout width="match_ parent"
android:layout height="match parent"
>
<TextView android:id="@+id/attitude"

android:layout width="match parent"
android:layout height="wrap content"
android:text="Azimuth, Pitch, Roll"
/>

</LinearLayout>

The main activity is shown in Listing 9.5. The accelerometer and magnetom-
eter are registered to return data to the sensor listener. SensorEventListener then
assigns values based on which sensor triggered the callback. The attitude information
is determined based on the rotation matrix, converted from radians to degrees, and is
displayed on the screen. Note that the refresh rate of the sensors can take on different
values as follows:

= SENSOR DELAY FASTEST—Fastest update rate possible

= SENSOR DELAY GAME—Update rate suitable for games

= SENSOR DELAY NORMAL—The default update rate suitable for screen

orientation changes

= SENSOR DELAY UI—Update rate suitable for the user interface

Listing 9.5 src/com/cookbook/orientation/OrientationMeasurements.java

package com.cookbook.orientation;

import android.app.Activity;

import android.hardware.Sensor;

import android.hardware.SensorEvent;

import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;

import android.widget.TextView;

public class OrientationMeasurements extends Activity {
private SensorManager myManager = null;
TextView tv;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
tv = (TextView) findvViewById(R.id.attitude);
// Set Sensor Manager
myManager = (SensorManager)getSystemService(SENSOR SERVICE);
myManager.registerListener(mySensorListener,
myManager.getDefaultSensor (Sensor.TYPE ACCELEROMETER),
SensorManager.SENSOR_DELAY GAME);
myManager.registerListener (mySensorListener,

www.it-ebooks.info

229

http://www.it-ebooks.info/

230 Chapter 9 Hardware Interface

myManager.getDefaultSensor (Sensor.TYPE MAGNETIC FIELD),
SensorManager.SENSOR_DELAY GAME);

}

float[] mags = new float[3];
float[] accels = new floatl[3];
float[] rotationMat = new float[9];
float[] inclinationMat = new float[9];
float[] attitude = new float[3];
final static double RAD2DEG = 180/Math.PI;
private final SensorEventListener mySensorListener
= new SensorEventListener() {
@Override
public void onSensorChanged(SensorEvent event)

{

int type = event.sensor.getType();

if(type == Sensor.TYPE_MAGNETIC FIELD) {
mags = event.values;
}

if(type == Sensor.TYPE ACCELEROMETER) {
accels = event.values;

SensorManager.getRotationMatrix(rotationMat,

inclinationMat, accels, mags);
SensorManager.getOrientation(rotationMat, attitude);
tv.setText ("Azimuth, Pitch, Roll:\n"

+ attitude[0]*RAD2DEG + "\n"

+ attitude[l]*RAD2DEG + "\n"

+ attitude[2]*RAD2DEG);

}

public void onAccuracyChanged(Sensor sensor, int accuracy) {}

For consistent data, it is good practice to avoid putting computationally intensive
code into the onSensorChanged() method. Also note that SensorEvent is reused
for subsequent sensor data. Therefore, for precise data, it is good practice to use the
clone() method on event values, for example:

accels = event.values.clone();

This ensures that if the accels data is used elsewhere in the class, it does not keep
changing as the sensors continue sampling.

Recipe: Using the Temperature and Light Sensors

The temperature sensor is used to determine the temperature of the phone for internal
hardware calibration. The light sensor measures ambient light and is used to automati-
cally adjust the brightness of the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Telephony

These sensors are not available on all phones, but if they exist, the developer can
use them for alternative reasons. The code to read the values from these sensors is
shown in Listing 9.6. It can be added to the activity in the previous recipe to see
the result.

Listing 9.6 Accessing the Temperature and Light Sensors

private final SensorEventListener mTListener
= new SensorEventListener(){
@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {}

@Override
public void onSensorChanged(SensorEvent event) {
Log.v("test Temperature",
"onSensorChanged:"+event.sensor.getName());
if(event.sensor.getType()==Sensor.TYPE AMBIENT TEMPERATURE){
tv2.setText ("Temperature:"+event.values[0]);
}

}i

private final SensorEventListener mLListener
= new SensorEventListener(){
@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {}

@Override
public void onSensorChanged(SensorEvent event) {
Log.v("test Light",
"onSensorChanged:"+event.sensor.getName());
if(event.sensor.getType()==Sensor.TYPE_LIGHT){
tv3.setText ("Light:"+event.values[0]);
}

}i

myManager.registerListener(mTListener, sensorManager
.getDefaultSensor(Sensor.TYPE TEMPERATURE),
SensorManager.SENSOR_DELAY FASTEST);
myManager.registerListener(mLListener, sensorManager
.getDefaultSensor(Sensor.TYPE_LIGHT),
SensorManager.SENSOR_DELAY FASTEST);

Telephony

The Android telephony API provides a way to monitor basic phone information,
such as the network type, connection state, and utilities for manipulating phone
number strings.

www.it-ebooks.info

231

http://www.it-ebooks.info/

232 Chapter 9 Hardware Interface

Recipe: Using the Telephony Manager

The telephony API has a TelephonyManager class, which is an Android system ser-
vice, to access information about the telephony services on the device. Some of the
telephony information is permission protected, so access must be declared in the
AndroidManifest.xml file:

<uses-permission android:name="android.permission.READ PHONE STATE" />

The main activity is shown in Listing 9.7.

Listing 9.7 src/com/cookbook/hardware.telephony/TelephonyApp.java

package com.cookbook.hardware.telephony;

import android.app.Activity;

import android.os.Bundle;

import android.telephony.TelephonyManager;
import android.widget.TextView;

public class TelephonyApp extends Activity {

TextView tvl;

TelephonyManager telManager;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
tvl =(TextView) findViewById(R.id.tvl);
telManager = (TelephonyManager)

getSystemService (TELEPHONY SERVICE);

StringBuilder sb = new StringBuilder();
sb.append("deviceid:")

.append (telManager.getDeviceId()).append("\n");
sb.append("device Software Ver:")

.append (telManager.getDeviceSoftwareVersion()).append("\n");
sb.append("Line number:")

.append (telManager.getLinelNumber()).append("\n");
sb.append ("Network Country ISO:")

.append (telManager.getNetworkCountryIso()).append("\n");
sb.append ("Network Operator:")

.append (telManager.getNetworkOperator()).append ("\n");
sb.append ("Network Operator Name:")

.append (telManager.getNetworkOperatorName ()).append ("\n");
sb.append("Sim Country ISO:")

.append (telManager.getSimCountryIso()).append("\n");
sb.append("Sim Operator:")

.append (telManager.getSimOperator()).append("\n");
sb.append("Sim Operator Name:")

.append (telManager.getSimOperatorName()).append("\n");
sb.append("Sim Serial Number:")

.append (telManager.getSimSerialNumber()).append("\n");
sb.append("Subscriber Id:")

.append (telManager.getSubscriberId()).append("\n");

www.it-ebooks.info

http://www.it-ebooks.info/

Telephony

sb.append("Voice Mail Alpha Tag:")

.append (telManager.getVoiceMailAlphaTag()).append("\n");
sb.append("Voice Mail Number:")

.append (telManager.getVoiceMailNumber()).append("\n");
tvl.setText(sb.toString());

The main layout XML file, shown in Listing 9.8, outputs the screen shown in Fig-
ure 9.1.

Listing 9.8 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent"
>

<TextView
android:id="@+id/tv1"
android:layout_width="match parent"
android:layout height="wrap content"
android:text="@string/hello"
/>

</LinearLayout>

M@ 7:27em

tor:310
Sim Operator Name
5im 5

i ail Alp
Voice Mail Num

Figure 9.1 Output using the TelephonyManager
class

www.it-ebooks.info

233

http://www.it-ebooks.info/

234

Chapter 9 Hardware Interface

Recipe: Listening for Phone States

The PhoneStateListener class provides information about the different telephony

states on the device, including network service state, signal strength, and message-

waiting indicator (voicemail). Some require explicit permission, as shown in Table 9.1.

For example, to listen for an incoming call, TelephonyManager needs to register a
listener for the PhoneStateListener.LISTEN CALL STATE event. The three possible

call states are:

= CALL_ STATE IDLE—Device not being used for a phone call

= CALL STATE RINGING—Device receiving a call

= CALL_ STATE OFFHOOK—Call in progress

This recipe lists the phone call state changes as they occur. By using the LogCat

tool (discussed in Chapter 16, “Debugging”), these different states can be seen when

an incoming call or outgoing call occurs.

The main activity is shown in Listing 9.9. It creates a new inner class extending

PhoneStateListener, which overrides the onCallStateChanged method to catch

the phone call state changes. Other methods that can be overridden are onCallFor-

wardingIndicator(), onCellLocationChanged(), and onDataActivity().

Table 9.1 Possible Phone State Listener Events and Required Permissions

Phone State Listener

Description

Permission

LISTEN CALL
FORWARDING INDICATOR

LISTEN CALL STATE

LISTEN_CELL_ INFO

LISTEN_ CELL LOCATION

LISTEN_ _DATA ACTIVITY

LISTEN DATA
CONNECTION STATE

LISTEN MESSAGE
WAITING INDICATOR

LISTEN NONE

LISTEN_SERVICE_STATE

LISTEN SIGNAL
STRENGTHS

Listen for call forward
indicator changes

Listen for call state changes

Listen for changes to
observed cell information

Listen for cell location
changes

Listen for direction of data
traffic on cellular changes

Listen for data connection
state changes

Listen for message-waiting
indicator changes

Remove listeners

Listen for network service
state changes

Listen for network signal
strength changes

READ PHONE STATE

READ PHONE STATE

None

ACCESS_COARSE_LOCATION

READ PHONE_STATE

None

READ PHONE STATE

None

None

None

www.it-ebooks.info

http://www.it-ebooks.info/

Telephony

Listing 9.9 src/com/cookbook/hardware.telephony/HardwareTelephony.java

package com.cookbook.hardware.telephony;

import android.app.Activity;

import android.os.Bundle;

import android.telephony.PhoneStateListener;
import android.telephony.TelephonyManager;
import android.util.Log;

import android.widget.TextView;

public class HardwareTelephony extends Activity {

TextView tvl;

TelephonyManager telManager;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
tvl =(TextView) findViewById(R.id.tvl);
telManager = (TelephonyManager)

getSystemService (TELEPHONY SERVICE);

telManager.listen(new TelListener(),
PhoneStateListener.LISTEN CALL STATE);

}

private class TelListener extends PhoneStateListener {
public void onCallStateChanged(int state, String incomingNumber)
super.onCallStateChanged(state, incomingNumber);

Log.v("Phone State", "state:"+state);
switch (state) {
case TelephonyManager.CALL STATE IDLE:
Log.v("Phone State",
"incomingNumber:"+incomingNumber+" ended");
break;
case TelephonyManager.CALL STATE OFFHOOK:
Log.v("Phone State",
"incomingNumber:"+incomingNumber+"
picked up");
break;
case TelephonyManager.CALL STATE RINGING:
Log.v("Phone State",
"incomingNumber:"+incomingNumber+" received");
break;
default:
break;

Recipe: Dialing a Phone Number

To make a phone call from an application, the following permission needs to be added
to the AndroidManifest.xml file:

<uses-permission android:name="android.permission.CALL PHONE" />

www.it-ebooks.info

235

http://www.it-ebooks.info/

236

Chapter 9 Hardware Interface

The act of making a call can use either the ACTION CALL or ACTION DIALER
implicit intent. When using the ACTION_DIALER intent, the phone dialer user interface
is displayed with the specified phone number ready to call. This is created using:

startActivity(new Intent(Intent.ACTION CALL,
Uri.parse("tel:15102345678")));

When using the ACTION_CALL intent, the phone dialer is not shown and the speci-
fied phone number is just dialed. This is created using:

startActivity(new Intent(Intent.ACTION DIAL,
Uri.parse("tel:15102345678")));

Bluetooth

Bluetooth from the IEEE standard 802.15.1 is an open, wireless protocol for exchang-
ing data between devices over short distances. A common example is from a phone

to a headset, but other applications can include proximity tracking. To communicate
between devices using Bluetooth, four steps need to be performed:

1. Turn on Bluetooth for the device.
2. Find paired or available devices in a valid range.
3. Connect to devices.

4. Transfer data between devices.

To use the Bluetooth service, the application needs to have BLUETOOTH permis-
sion to receive and transmit and BLUETOOTH ADMIN permission to manipulate Blue-
tooth settings or initiate device discovery. These require the following lines in the
AndroidManifest.xml file:

<uses-permission android:name="android.permission.BLUETOOTH" />

<uses-permission android:name="android.permission.BLUETOOTH ADMIN" />
All the Bluetooth API functionality resides in the android.bluetooth package.
There are five main classes that provide the features:

= BluetoothAdapter—Represents the Bluetooth radio interface that is used to
discover devices and instantiate Bluetooth connections

= BluetoothClass—Describes the general characteristics of the Bluetooth device
= BluetoothDevice—Represents a remote Bluetooth device

= BluetoothSocket—Represents the socket or connection point for data exchange
with another Bluetooth device

= BluetoothServerSocket—Represents an open socket listening for incoming
requests

These are discussed in detail in the following recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Bluetooth

Recipe: Turning on Bluetooth

Bluetooth is initialized using the BluetoothAdapter class. The getDefaultAdapter()
method retrieves information about the Bluetooth radio interface. If null is returned,
it means the device does not support Bluetooth:

BluetoothAdapter myBluetooth = BluetoothAdapter.getDefaultAdapter();

Activate Bluetooth using this BluetoothAdapter instance to query the status. If
not enabled, the Android built-in activity ACTION REQUEST ENABLE can be used to
ask the user to start Bluetooth:

if(!myBluetooth.isEnabled()) {
Intent enableIntent = new Intent(BluetoothAdapter
.ACTION_REQUEST ENABLE);
startActivity(enablelIntent);

Recipe: Discovering Bluetooth Devices

After Bluetooth is activated, to discover paired or available Bluetooth devices, use the
BluetoothAdapter instance’s startDiscovery() method as an asynchronous call.
This requires registering a BroadcastReceiver to listen for ACTION FOUND events
that tell the application whenever a new remote Bluetooth device is discovered. This is
shown in the example code in Listing 9.10.

Listing 9.10 Discovering Bluetooth Devices

private final BroadcastReceiver mReceiver = new BroadcastReceiver() {
public void onReceive(Context context, Intent intent) {
String action = intent.getAction();
// When discovery finds a device
if (BluetoothDevice.ACTION FOUND.equals(action)) {
// Get the BluetoothDevice object from the intent
BluetoothDevice device = intent.getParcelableExtra(
BluetoothDevice.EXTRA_DEVICE) ;
Log.v("BlueTooth Testing",device.getName() + "\n"
+ device.getAddress());

}i

IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION FOUND);
registerReceiver(mReceiver, filter);
myBluetooth.startDiscovery();

The BroadcastReceiver can also listen for ACTION DISCOVERY STARTED events
and ACTION DISCOVERY FINISHED events that tell the application when the discovery
starts and ends.

www.it-ebooks.info

237

http://www.it-ebooks.info/

238

Chapter 9 Hardware Interface

For other Bluetooth devices to discover the current device, the application can
enable discoverability using the ACTION REQUEST DISCOVERABLE intent. This activity
displays another dialog on top of the application to ask users whether or not they want
to make the current device discoverable:

Intent discoverableIntent
= new Intent(BluetoothAdapter.ACTION REQUEST DISCOVERABLE);

startActivity(discoverableIntent);

Recipe: Pairing with Bonded Bluetooth Devices

Bonded Bluetooth devices are those that have already paired with the current device
sometime in the past. When pairing two Bluetooth devices, one connects as a server
and the other as the client using the BluetoothSocket and BluetoothServerSocket
classes. To get the bonded Bluetooth devices, the BluetoothAdapter instance’s
method getBondedDevices() can be used:

Set<BluetoothDevice> pairedDevices = mBluetoothAdapter.getBondedDevices();

Recipe: Opening a Bluetooth Socket

To establish a Bluetooth connection with another device, the application needs to
implement either the client-side or server-side socket. After the server and client are
bonded, there is a connected Bluetooth socket for each device on the same RFCOMM
(Bluetooth transport protocol). However, the client device and server device obtain
the Bluetooth socket in different ways. The server receives the Bluetooth socket
instance when an incoming connection is accepted. The client receives the instance
when it opens an RFCOMM channel to the server.

Server-side initialization uses the generic client-server programming model with
applications requiring an open socket for accepting incoming requests (similar to
TCP). The interface BluetoothServerSocket should be used to create a server listen-
ing port. After the connection is accepted, a BluetoothSocket class is returned and
can be used to manage the connection.

BluetoothServerSocket can be obtained from the BluetoothAdapter instance’s
method listenUsingRfcommWithServiceRecord (). After the socket is obtained, the
accept () method starts listening for a request and returns only when either a con-
nection has been accepted or an exception has occurred. The BluetoothSocket class
then returns when accept () returns a valid connection. Finally, the close() method
should be called to release the server socket and its resources because REFECOMM
allows only one connected client per channel at a time. This does not close the con-
nected BluetoothSocket. The following excerpt shows how these steps are done:

BluetoothServerSocket myServerSocket

= myBluetoothAdapter.listenUsingRfcommWithServiceRecord(name, uuid);
myServerSocket.accept();
myServerSocket.close();

www.it-ebooks.info

http://www.it-ebooks.info/

Bluetooth

Note that the accept () method is a blocking call and so it should not be imple-

mented inside the main thread. It is a better idea to implement this inside a w

thread, as shown in Listing 9.11.

Listing 9.11 Establishing a Bluetooth Socket

orking

private class AcceptThread extends Thread {
private final BluetoothServerSocket mmServerSocket;

public AcceptThread() {
// Use a temporary object that is later assigned
// to mmServerSocket, because mmServerSocket is final
BluetoothServerSocket tmp = null;

try {
// MY _UUID is the app's UUID string, also used by the client

tmp = mAdapter.listenUsingRfcommWithServiceRecord(NAME,MY UUID);

} catch (IOException e) { }
mmServerSocket = tmp;

}

public void run() {
BluetoothSocket socket = null;

// Keep listening until an exception occurs or a socket is returned

while (true) {

try {
socket = mmServerSocket.accept();

} catch (IOException e) {
break;
}

// If a connection was accepted
if (socket != null) ({

// Do work to manage the connection (in a separate thread)

manageConnectedSocket (socket) ;
mmServerSocket.close();
break;

}

/** will cancel the listening socket and cause thread to finish */
public void cancel() {

try {
mmServerSocket.close();

} catch (IOException e) { }

To implement the client device mechanism, the BluetoothDevice needs

to be

obtained from the remote device. Then the socket needs to be retrieved to make
the connection. To retrieve the BluetoothSocket class, use the BluetoothDevice
method createRfcommSocketToServiceRecord (UUID) with the UUID used in

listenUsingRfcommWithServiceRecord. After the socket is retrieved, the

www.it-ebooks.info

239

http://www.it-ebooks.info/

240

Chapter 9 Hardware Interface

connect () method can be used to initiate a connection. This method is also blocking
and should also be implemented in a separate thread, as shown in Listing 9.12. The
UUID is inside the BluetoothDevice object that is found during discovery.

Listing 9.12 Connecting to a Bluetooth Socket

private class ConnectThread extends Thread {
private final BluetoothSocket mmSocket;
private final BluetoothDevice mmDevice;

public ConnectThread(BluetoothDevice device) {
// Use a temporary object that is later assigned to mmSocket,
// because mmSocket is final
BluetoothSocket tmp = null;
mmDevice = device;

// Get a BluetoothSocket to connect with the given BluetoothDevice
try {

// MY UUID is the app's UUID string, also used by the server code
tmp = device.createRfcommSocketToServiceRecord(MY_UUID);

} catch (IOException e) { }

mmSocket = tmp;

}

public void run() {
// Cancel discovery because it will slow down the connection

mAdapter.cancelDiscovery();

try {
// Connect the device through the socket. This will block

// until it succeeds or throws an exception.
mmSocket.connect();
} catch (IOException connectException) {
// Unable to connect; close the socket and get out
try {
mmSocket.close();
} catch (IOException closeException) { }
return;

}

// Do work to manage the connection (in a separate thread)
manageConnectedSocket (mmSocket) ;

}

/** will cancel an in-progress connection and close the socket */
public void cancel() {
try {
mmSocket.close();
} catch (IOException e) { }

www.it-ebooks.info

http://www.it-ebooks.info/

Bluetooth

After the connection is established, the normal InputStream and OutputStream
can be used to read and send data between the Bluetooth devices.

Recipe: Using Device Vibration
Device vibration is a common feature in all cellular phones. To control vibration on an
Android device, a permission must be defined in the AndroidManifest.xml file:

<uses-permission android:name="android.permission.VIBRATE" />

Then, using the device vibrator is just another Android system service provided by
the framework. It can be accessed using the Vibrator class:

Vibrator myVib = (Vibrator) getSystemService(Context.VIBRATOR SERVICE);

With a vibrator instance, just call the vibrate() method to start device vibration:
myVib.vibrate(3000); //Vibrate for 3 seconds

If needed, the cancel() method can be used to stop a vibration before it finishes:
myVib.cancel(); //Cancel the vibration

It is also possible to vibrate in a rhythmic pattern. This is specified as a vibration-
pause sequence. For example:

long[] pattern = {2000,1000,5000};
myVib.vibrate (pattern,1);

This causes the device to wait for 2 seconds and then start a pattern of vibrating
for 1 second, then pausing for 5 seconds, indefinitely. The second argument to the
vibrate () method is the index of the pattern at which to start repeating. This can be
set to -1 to cause no repeat of the pattern at all.

Recipe: Accessing the Wireless Network

Many applications use the network connectivity of the Android device. To better
understand how to handle application behavior due to network changes, Android pro-
vides access to the underlying network state. This is done by broadcasting intents to
notify application components of changes in network connectivity and offer control
over network settings and connections.

Android provides a system service through the ConnectivityManager class to let
developers monitor the connectivity state, set the preferred network connection, and
manage connectivity failover. This is initialized as follows:

ConnectivityManager myNetworkManager
= (ConnectivityManager) getSystemService(Context.CONNECTIVITY SERVICE);

To use the connectivity manager, the appropriate permission is needed in the
AndroidManifest.xml file for the application:

<uses-permission android:name="android.permission.ACCESS NETWORK STATE" />

www.it-ebooks.info

241

http://www.it-ebooks.info/

242

Chapter 9 Hardware Interface

The connectivity manager does provide the two methods, getNetworkInfo ()
and getActiveNetworkInfo(), to obtain the details of the current network in a
NetworkInfo class. However, a better way to monitor the network changes is to create
a broadcast receiver, as shown in the following example:

private BroadcastReceiver mNetworkReceiver = new BroadcastReceiver()({
public void onReceive(Context ¢, Intent i){
Bundle b = i.getExtras();
NetworkInfo ni = (NetworkInfo)
b.get (ConnectivityManager.EXTRA NETWORK INFO);
if(ni.isConnected()){
//Do the operation
Jelse{

//Bnnounce to the user the network problem

After a broadcast receiver is defined, it can be registered to listen for Connectivity
Manager.CONNECTIVITY ACTION intents:

this.registerReceiver (mNetworkReceiver,

new IntentFilter(ConnectivityManager.CONNECTIVITY ACTION));

The mNetworkReceiver class defined previously extracts only the NetworkInfo
from ConnectivityManager.EXTRA NETWORK INFO. However, the connectivity man-
ager has more information that can be exposed. Following are the different types of
information available:

= EXTRA EXTRA INFO—Contains additional information about the network state

= EXTRA IS FAILOVER—Returns a boolean value if the current connection is the
result of a failover network

= EXTRA NETWORK INFO—Returns a NetworkInfo object
= EXTRA NETWORK TYPE—Triggers a CONNECTIVITY ACTION broadcast

= EXTRA NO_ CONNECTIVITY—Returns a boolean value if there is no network
connectivity
= EXTRA OTHER NETWORK INFO—Returns a NetworkInfo object about the

available network for failover when the network is disconnected

= EXTRA REASON—NReturns a String value that describes the reason for connection
failure

ConnectivityManager also provides the capability to control network hardware
and failover preferences. The setNetworkPreference () method can be used to select
a network type. To change the network, the application needs to set another permis-
sion in the AndroidManifest.xml file:

<uses-permission android:name="android.permission.CHANGE NETWORK STATE" />

www.it-ebooks.info

http://www.it-ebooks.info/

Near Field Communication (NFC)

Near Field Communication (NFC)

NFC is a wireless technology that is built into many Android devices. When there
are two devices with NFC capability, and small amounts of data such as playlists,
web addresses, and contact information are to be moved, NFC is a fantastic medium
for communication. It is ideal because it does not require complicated passwords,
discovery, or device pairing. When using Android Beam, a simple tap on one
device with an accept dialog tap on the other will transfer data using NFC
between devices.

NFC reads and transfers small bits of data between devices through the use of
encoded NFC Data Exchange Format (NDEF) messages. Each NDEF message con-
tains at least one NDEF record. This record will contain the following fields:

= 3-bit type name format (TINF)
= Variable-length type

= Variable-length ID (optional)
= Variable-length payload

The 3-bit TNF field can contain many different values that are used by Android
as part of the tag dispatch system to decide how to map a MIME type or URI to the
NDEF message being read. If the tag is recognized, the ACTION NDEF_DISCOVERED
intent is used and an activity that handles this intent will be started. If no activities are
registered when a tag is scanned or if the data is unrecognized, the ACTION TECH
DISCOVERED intent is started and the user will be prompted to choose a program to
open. When developing an application, developers may want to take advantage of
the foreground dispatch system to keep the Android system from exiting the app and
opening another to process the NFC data.

Using NFC in applications requires permission to access the NFC hardware. The
following can be added to the AndroidManifest.xml file:

<uses-permission android:name="android.permission.NFC" />

By using a minimum SDK level of 10, read and write support for NFC, as well as
enhanced NDEF options, is available for use in applications. For those wanting to use
Android Beam, a minimum level of 14 must be used.

Recipe: Reading NFC Tags

Working with NFC is generally tied to reading and writing. The code in Listing 9.13
can be used to build a reader that will return some of the data stored in NFC tags.
This data is then shown inside a TextView.

Listing 9.13 src/com/cookbook/nfcreader/MainActivity.java

package com.cookbook.nfcreader;

import com.cookbook.nfcreader.R;

www.it-ebooks.info

243

http://www.it-ebooks.info/

244

Chapter 9 Hardware Interface

import
import
import
import
import
import
import
import
import
import
import

public

android.

android

android

android

android

app.Activity;

.app.PendingIntent;
android.

content.Intent;

.content.IntentFilter;
android.
.nfc.NdefRecord;
android.

nfc.NdefMessage;

nfc.NfcAdapter;

.0s.Bundle;
android.
android.

os.Parcelable;
util.Log;

android.widget.TextView;

class MainActivity extends Activity {

protected NfcAdapter nfcAdapter;
protected PendingIntent nfcPendingIntent;

private static final String TAG = MainActivity.class.getSimpleName();

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);

}

nfcAdapter = NfcAdapter.getDefaultAdapter(this);
nfcPendingIntent = PendingIntent.getActivity(this, O,
new Intent(this, this.getClass()).addFlags(Intent.FLAG ACTIVITY SINGLE TOP),

0);

public void enableForegroundMode() {
Log.d(TAG,

"enableForegroundMode");

IntentFilter tagDetected = new IntentFilter(NfcAdapter.ACTION TAG DISCOVERED);
IntentFilter[] writeTagFilters = new IntentFilter[] {tagDetected};
nfcAdapter.enableForegroundDispatch(this, nfcPendingIntent,

writeTagFilters, null);

public void disableForegroundMode() {
Log.d(TAG,

"disableForegroundMode");

nfcAdapter.disableForegroundDispatch(this);

@Override
public void onNewIntent(Intent intent) {
Log.d(TAG, "onNewlIntent");

String stringOut = "";

if

(NfcAdapter.ACTION TAG DISCOVERED.equals(intent.getAction())) {
TextView textView = (TextView) findViewById(R.id.main_ tv);

Parcelable[] messages =
intent.getParcelableArrayExtra(NfcAdapter.EXTRA NDEF MESSAGES);

www.it-ebooks.info

http://www.it-ebooks.info/

Near Field Communication (NFC) 245

if (messages != null) ({
for (int i = 0; 1 < messages.length; i++) {
NdefMessage message = (NdefMessage)messages/[i];

NdefRecord[] records = message.getRecords();

for (int j = 0; j < records.length; j++) {
NdefRecord record = recordsl[jl;
stringOut += "TNF: " + record.getTnf() + "\n";
stringOut += "MIME Type: " + new String(record.getType()) + "\n";
stringOut += "Payload: " + new String(record.getPayload()) + "\n\n";

textView.setText (stringOut);

@Override
protected void onResume() {
Log.d(TAG, "onResume");

super.onResume () ;

enableForegroundMode();

}

@Override
protected void onPause() {
Log.d(TAG, "onPause");

super.onPause () ;

disableForegroundMode();

}
}

The application built in Listing 9.13 uses the foreground dispatch system to ensure
that the application is used to process any scanned NFC tags. Note that in the
onPause () method, disableForegroundMode () is called to stop the application
from being the default handler for NFC tags. The onResume () method restores
this capability.

Recipe: Writing NFC Tags

Android devices that support NFC are also able to write to unprotected NFC tags.
Listing 9.14 shows a sample application that will write information to an NFC tag.
Note that when writing to NFC tags, the information on the card will be erased and
replaced with the information written to it.

www.it-ebooks.info

http://www.it-ebooks.info/

246 Chapter 9 Hardware Interface

Listing 9.14 src/com/cookbook/nfcwriter/MainActivity.java

package com.cookbook.nfcwriter;

import java.io.IOException;
import java.nio.charset.Charset;

import android.app.Activity;

import android.app.PendingIntent;
import android.content.Intent;

import android.content.IntentFilter;
import android.nfc.NdefMessage;

import android.nfc.NdefRecord;

import android.nfc.NfcAdapter;

import android.nfc.Tag;

import android.nfc.tech.Ndef;

import android.nfc.tech.NdefFormatable;
import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.Toast;

public class MainActivity extends Activity implements OnClickListener {

protected NfcAdapter nfcAdapter;
private Button mainButton;
private boolean mInWriteMode;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);

nfcAdapter = NfcAdapter.getDefaultAdapter(this);

mainButton = (Button)findViewById(R.id.main button);
mainButton.setOnClickListener(this);

}

public void onClick(View v) {
displayMessage ("Touch and hold tag against phone to write.");
beginWrite();

}

@Override

protected void onPause() {
super.onPause();
stopWrite();

@Override
public void onNewIntent(Intent intent) {
if(mInWriteMode) {
mInWriteMode = false;
Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA TAG);
writeTag(tag);

www.it-ebooks.info

http://www.it-ebooks.info/

Near Field Communication (NFC)

}
}

private void beginWrite() {
mInWriteMode = true;

PendingIntent pendingIntent = PendingIntent.getActivity(this, O,
new Intent(this, getClass()).addFlags(Intent.FLAG ACTIVITY SINGLE TOP), 0);
IntentFilter tagDetected =
new IntentFilter(NfcAdapter.ACTION TAG DISCOVERED);
IntentFilter[] filters = new IntentFilter[] { tagDetected };

nfcAdapter.enableForegroundDispatch(this, pendingIntent, filters, null);

}

private void stopWrite() {
nfcAdapter.disableForegroundDispatch(this);

}

private boolean writeTag(Tag tag) {
byte[] payload = "Text stored in an NFC tag".getBytes();
byte[] mimeBytes = "text/plain".getBytes(Charset.forName ("US-ASCII"));
NdefRecord cardRecord = new NdefRecord(NdefRecord.TNF_MIME MEDIA,
mimeBytes, new bytel0], payload);
NdefMessage message = new NdefMessage (new NdefRecord[] { cardRecord });

try {
Ndef ndef = Ndef.get(tag);
if (ndef != null) {
ndef.connect();

if (Indef.isWritable()) {
displayMessage("This is a read-only tag.");
return false;

}

int size = message.toByteArray().length;

if (ndef.getMaxSize() < size) {
displayMessage("There is not enough space to write.");
return false;

}

ndef.writeNdefMessage (message);
displayMessage ("Write successful.");
return true;

} else {
NdefFormatable format = NdefFormatable.get(tag);
if (format != null) ({
try {

format.connect();
format.format (message);
displayMessage ("Write successful\nLaunch a scanning app or scan and
w»choose to read.");
return true;
} catch (IOException e) {
displayMessage ("Unable to format tag to NDEF.");
return false;

www.it-ebooks.info

247

http://www.it-ebooks.info/

248

Chapter 9 Hardware Interface

} else {
displayMessage("Tag doesn’t appear to support NDEF format.");
return false;
}
}

} catch (Exception e) {
displayMessage ("Write failed.");
}

return false;

}

private void displayMessage(String message) {
Toast.makeText (MainActivity.this, message, Toast.LENGTH_LONG).show();

}

The application built in Listing 9.14 will write “Text stored in an NFC tag” as the
payload for the message with a MIME type of “text/plain.” You can see these values
being placed in the writeTag() method. By changing these values, you can change
how the NFC tag will be handled by the Android system.

Universal Serial Bus (USB)

Starting with Android 3.1, USB devices can be used in Android in either host or
accessory mode. Older Android devices running Gingerbread 2.3.4 can use accessory
mode provided that the Google support APIs are included. The following two classes
are used when developing for accessory mode:

= UsbManager—Allows communication with connected USB accessories

= UsbAccessory—Represents a USB device with methods for retrieving
information about it

Host mode allows the Android-powered device to control whatever is connected.
This also means that the Android device will be powering the USB device. Examples
of devices that would be used in host mode include keyboards, mice, and other input
devices. Host mode is available in Android 3.1 and above. The following classes are
used when developing in host mode:

= UsbManager—Accesses the state of USB connections and communicates with
USB devices

= UsbDevice—Represents the USB device that is plugged in
= UsbInterface—An interface on a UsbDevice
= UsbEndpoint—An endpoint of a UsbInterface

= UsbDeviceConnection—Sends and receives messages to a USB device

www.it-ebooks.info

http://www.it-ebooks.info/

Universal Serial Bus (USB)

» UsbRequest—Represents a USB request packet

= UsbConstants—Constants that are used for the USB protocol

Accessory mode allows the USB device to power the Android device. USB devices
that use accessory mode must follow the rules of the Android Accessory Develop-
ment Kit (ADK). Examples of USB devices that would be used in accessory mode
include external diagnostic devices, music controllers, docking stations, and other
similar devices.

When developing with a USB device plugged in, developers will probably not be
able to use USB debugging. When this is the case, LogCat can still be used, but over
a wireless connection. This is done by using ADB (Android Debug Bridge) over TCP.
To do this, start with the Android device in debug mode and connected to a com-
puter. Enable Wi-Fi on the device and find the current IP address. Open the terminal
or command prompt and navigate to the SDK installation directory and into the
platform-tools directory. Type the following into the command prompt or terminal:

adb tcpip 5555

This will change the connection mode from USB to TCP/IP. If this is not
changed, attempts to connect to the device over the network will fail. To connect to
the device, type the following, where DEVICEIPADDRESS is the IP address of the
device to be connected:

adb connect DEVICEIPADDRESS:5555

Note that for some operating systems, the port (:5555) does not need to be added
to the command. The port number is not limited to 5555; any open port can be used.
If the connect command is run with the port and it fails, try running the command
again without specifying any port number.

Once connected, all of the commands can be run that would normally run under
ADB. Of these, adb logcat is probably the most important.

After using the network to debug an application and to revert to USB, type adb
usb into the console and ADB will restart, looking for USB connections.

For more information on ADB and how to use it, visit http://developer.android

.com/tools/help/adb.html.

www.it-ebooks.info

249

http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

10

Networking

Network—based applications provide increased value for a user, in that content
can be dynamic and interactive. Networking enables multiple features, from social
networking to cloud computing.

This chapter focuses on the network state, short message service (SMS), Internet
resource-based applications, and social networking applications. Knowing the net-
work state is important to applications that fetch or update information that is avail-
able through a network connection. SMS is a communication service component that
enables the exchange of short text messages between mobile phone devices. Internet
resource-based applications rely on web content such as HTML (HyperText Markup
Language), XML (eXtensible Markup Language), and JSON (JavaScript Object Nota-
tion). Social networking applications, such as Twitter, are important methods for
people to connect with each other.

Reacting to the Network State

Knowing how and if a device is connected to a network is a very important facet of
Android development. Applications that stream information from a network server
may need to warn users about the large amount of data that may be charged to their
accounts. Application latency issues may also be a concern. Making some simple que-
ries enables users to find out if they are currently connected through a network device
and how to react when the connection state changes.

Recipe: Checking for Connectivity

The ConnectivityManager is used for determining the connectivity of a device. This
recipe can be used to determine what network interfaces are connected to a network.
Listing 10.1 uses the ConnectivityManager to display if the device is connected via
Wi-Fi or Bluetooth.

www.it-ebooks.info

http://www.it-ebooks.info/

252

Chapter 10 Networking

Listing 10.1 src/com/cookbook/connectivitycheck/MainActivity.java

package com.cookbook.connectivitycheck;

import android.app.Activity;

import android.content.Context;

import android.net.ConnectivityManager;
import android.net.NetworkInfo;

import android.os.Bundle;

import android.widget.TextView;

public class MainActivity extends Activity {
TextView tv;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);
tv = (TextView) findViewById(R.id.tv_main);

try {
String service = Context.CONNECTIVITY SERVICE;
ConnectivityManager cm = (ConnectivityManager)getSystemService(service);

NetworkInfo activeNetwork = cm.getActiveNetworkInfo();

boolean isWiFi = activeNetwork.getType() == ConnectivityManager.TYPE WIFI;
boolean isBT = activeNetwork.getType() == ConnectivityManager.TYPE BLUETOOTH;

tv.setText ("WiFi connected: "+isWiFi+"\nBluetooth connected: "+isBT);
} catch(Exception nullPointerException) {
tv.setText ("No connected networks found");

Listing 10.1 uses the constants TYPE WIFI and TYPE BLUETOOTH to check for connec-
tivity on these networks. In addition to TYPE WIFI and TYPE BLUETOOTH, the follow-
ing constants can also be used to determine connectivity:

= TYPE DUMMY—For dummy data connections

= TYPE ETHERNET—For the default Ethernet connection

= TYPE MOBILE—For the default mobile data connection

= TYPE MOBILE DUN—For DUN-specific mobile data connections

= TYPE_MOBILE HIPRI—For high-priority mobile data connections

= TYPE MOBILE MMS—For an MMS-specific mobile data connection
= TYPE MOBILE_ SUPL—For an SUPL-specific mobile data connection

= TYPE WIMAX—For the default WiMAX data connection

www.it-ebooks.info

http://www.it-ebooks.info/

Reacting to the Network State 253

=

i ConnectivityCheck

WiFi connected: true
Bluetooth connected: false

Figure 10.1 Checking for device connectivity

Figure 10.1 shows an application running with the code from Listing 10.1. Even
though Bluetooth has been enabled, it reports false for being connected because it does
not currently have an active connection.

Recipe: Receiving Connectivity Changes

A broadcast receiver can be used to check the status of network connectivity when it is
necessary to react to changes in connectivity status.

A broadcast receiver can be declared in the application manifest, or it can be a sub-
class inside the main activity. While both are accessible, this recipe uses a subclass in
conjunction with the onCreate () and onDestroy() methods to register and unregister
the receiver.

As this recipe checks for connectivity, the following permissions need to be added
to the application manifest:

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS NETWORK STATE" />

www.it-ebooks.info

http://www.it-ebooks.info/

254

Chapter 10 Networking

Listing 10.2 shows the code needed to check for connectivity changes. When a

change is detected, the application will display a toast message informing the user of
the change.

Listing 10.2 src/com/cookbook/connectivitychange/MainActivity.java

package com.cookbook.connectivitychange;

import
import
import
import
import
import
import
import
import

public

android.app.Activity;

android.content.BroadcastReceiver;

android.content.Context;
android.content.Intent;

android.content.IntentFilter;

android.net.ConnectivityM
android.net.NetworkInfo;
android.os.Bundle;
android.widget.Toast;

anager;

class MainActivity extends Activity {

private ConnectivityReceiver receiver = new ConnectivityReceiver();

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);

IntentFilter filter = new IntentFilter(ConnectivityManager.CONNECTIVITY ACTION);
receiver = new ConnectivityReceiver();
this.registerReceiver(receiver, filter);

}

@Override
public void onDestroy() {

}

super.onDestroy();
if (receiver != null) ({

this.unregisterReceiver(receiver);

}

public class ConnectivityReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

ConnectivityManager conn

(ConnectivityManager)context.getSystemService (Context.CONNECTIVITY SERVICE);

NetworkInfo networkInfo =

conn.getActiveNetworkInfo();

if (networkInfo != null && networkInfo.getType() == ConnectivityManager
= TYPE WIFI)

Toast.makeText (context,
} else if (networkInfo !=
Toast.makeText (context,

"WiFi is connected", Toast.LENGTH_SHORT).show();
null) {
"WiFi is disconnected", Toast.LENGTH_SHORT).show();

www.it-ebooks.info

http://www.it-ebooks.info/

Using SMS

} else {
Toast.makeText (context, "No active connection", Toast.LENGTH_SHORT).show();

b - @

'el Connectivity Change 'ﬁ' Connectivity Change

This app checks for changes in network connectivity This app checks for changes in network connectivity

WiFi is connected There is not an active network connection

L) - !) (| =
Figure 10.2 When Wi-Fi is enabled, a Figure 10.3 Wi-Fi and mobile data are dis-
toast message appears informing abled, so a toast informing the user of the
the user of the connection lack of network connectivity is displayed

Figure 10.2 shows the message that appears when Wi-Fi is connected. Figure 10.3
shows the message that appears when both Wi-Fi and mobile data have been
disconnected.

Using SMS

The Android Framework provides full access to SMS functionality using the
SmsManager class. Early versions of Android placed SmsManager in the
android.telephony.gsm package. Since Android 1.5, where SmsManager supports

www.it-ebooks.info

255

http://www.it-ebooks.info/

256 Chapter 10 Networking

both GSM and CDMA mobile telephony standards, the SmsManager class is now
placed in the android.telephony package.
Sending an SMS through the SmsManager class is fairly straightforward:
1. Set the permission in the AndroidManifest.xml file to send SMS:

<uses-permission android:name="android.permission.SEND SMS" />

2. Use the SmsManager.getDefault () static method to get an SMS manager
instance:

SmsManager mySMS = SmsManager.getDefault();

3. Define the destination phone number and the message that is to be sent. Use
the sendTextMesssage () method to send the SMS to another device:

String destination = "16501234567";
String msg = "Sending my first message";
mySMS.sendTextMessage (destination, null, msg, null, null);
This is sufficient to send an SMS message. However, the three additional param-
eters in the previous call set to null can be used as follows:
s The second parameter is the specific SMS service center to use. Set this to null
to use the default service center from the carrier.
= The fourth parameter is a PendingIntent to track if the SMS message was sent.

s The fifth parameter is a PendingIntent to track if the SMS message was
received.

To use the fourth and fifth parameters, a sent message and a delivered message
intent need to be declared:

String SENT SMS_FLAG = "SENT_ SMS'";
String DELIVER SMS_FLAG = "DELIVER_ SMS";

Intent sentIn = new Intent(SENT_SMS_ FLAG);
PendingIntent sentPIn = PendingIntent.getBroadcast(this,0,sentIn,0);

Intent deliverIn = new Intent(SENT SMS_FLAG);
PendingIntent deliverPIn

= PendingIntent.getBroadcast(this,0,deliverIn,0);

Then, a BroadcastReceiver class needs to be registered for each PendingIntent to receive the
result:

BroadcastReceiver sentReceiver = new BroadcastReceiver(){
@override public void onReceive(Context ¢, Intent in) {
switch(getResultCode()){
case Activity.RESULT_OK:
//sent SMS message successfully;

www.it-ebooks.info

http://www.it-ebooks.info/

Using SMS

break;
default:
//sent SMS message failed

break;

BroadcastReceiver deliverReceiver = new BroadcastReceiver(){
@Override public void onReceive(Context c, Intent in) {
//SMS delivered actions

}i

registerReceiver(sentReceiver, new IntentFilter(SENT_SMS FLAG));

registerReceiver(deliverReceiver, new IntentFilter(DELIVER_SMS FLAG));

Most SMSs are restricted to 140 characters per text message. To make sure the
message is within this limitation, use the divideMessage () method that divides
the text into fragments in the maximum SMS message size. Then, the method
sendMultipartTextMessage () should be used instead of the sendTextMessage ()
method. The only difference is the use of an ArrayList of messages and pend-
ing intents:

ArrayList<String> multiSMS = mySMS.divideMessage (msg);
ArrayList<PendingIntent> sentIns = new ArrayList<PendingIntent>();

ArraylList<PendingIntent> deliverIns = new ArrayList<PendingIntents();

for(int i=0; i< multiSMS.size(); i++){
sentIns.add(sentIn);

deliverIns.add(deliverIn);

mySMS.sendMultipartTextMessage (destination, null,

multiSMS, sentIns, deliverIns);

Recipe: Autosending an SMS Based on a Received SMS

Because most SMS messages are not read by the recipient until hours later, this recipe
sends an autoresponse SMS when an SMS is received. This is done by creating an
Android service in the background that can receive incoming SMSs. An alternative
method is to register a broadcast receiver in the AndroidManifest.xml file.

The application must declare permission to send and receive SMSs in the
AndroidManifest.xml file, as shown in Listing 10.3. It also declares a main activity
SMSResponder that creates the autoresponse and a service ResponderService to send
the response when an SMS is received.

www.it-ebooks.info

257

http://www.it-ebooks.info/

258

Chapter 10 Networking

Listing 10.3 AndroidManifest.xml

<?xml version="1

.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.cookbook.SMSResponder"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"

android:label="@string/app name">

<activity android:name=".SMSResponder"

android:label="@string/app name">

<intent-filters
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activity>
<service android:enabled="true" android:name=".ResponderService">
</service>
</applications>

<uses-permission android:name="android.permission.RECEIVE SMS"/>
<uses-permission android:name="android.permission.SEND_ SMS"/>

</manifest>

The main layout file shown in Listing 10.4 contains a LinearLayout with three

views: a TextView to display the message used for the autoresponse, Button used to

commit changes on the reply message inside the application, and EditText where the

user can enter a reply message.

Listing 10.4 res/layout/main.xml

<?xml version="1

.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout_height="match parent">
<TextView android:id="e@+id/display"

android:
android:
android:
android:

/>

<Button

android:
android:
android:

/>

layout_width="match parent"
layout height="wrap content"
text="@string/hello"
textSize="18dp"

android:id="@+id/submit"
layout_width="wrap_content"
layout height="wrap content"
text="Change my response"

<EditText android:id="@+id/editText"

android:
android:

/>

</LinearLayout>

layout width="match parent"
layout_height="match parent"

www.it-ebooks.info

http://www.it-ebooks.info/

Using SMS

The main activity is shown in Listing 10.5. It starts the service that listens and auto-
responds to SMS messages. It also allows the user to change the reply message and save
it in SharedPreferences for future use.

Listing 10.5 src/com/cookbook/SMSresponder/SMSResponder.java

package com.cookbook.SMSresponder;

import android.app.Activity;

import android.content.Intent;

import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.os.Bundle;

import android.preference.PreferenceManager;
import android.util.Log;

import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

public class SMSResponder extends Activity {
TextView tvl;
EditText edl;
Button btl;
SharedPreferences myprefs;
Editor updater;
String reply=null;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

myprefs = PreferenceManager.getDefaultSharedPreferences(this);

tvl = (TextView) this.findViewById(R.id.display);
edl = (EditText) this.findViewById(R.id.editText);
btl = (Button) this.findViewById(R.id.submit);

reply = myprefs.getString("reply",
"Thank you for your message. I am busy now."
+ "I will call you later");

tvl.setText (reply);

updater = myprefs.edit();
edl.setHint (reply);
btl.setOnClickListener(new OnClickListener() {
public void onClick(View view) {
updater.putString("reply", edl.getText().toString());
updater.commit();
SMSResponder.this.finish();

www.it-ebooks.info

259

http://www.it-ebooks.info/

260

Chapter 10 Networking

// Start service
Intent svc = new Intent(this, ResponderService.class);
startService(sve);
catch (Exception e)
Log.e("onCreate", "service creation problem", e);

The majority of code is contained in the service, as shown in Listing 10.6. It
retrieves SharedPreferences for this application first. Then, it registers a broadcast
receiver for listening to incoming and outgoing SMS messages. The broadcast receiver
for outgoing SMS messages is not used here but is shown for completeness.

The incoming SMS broadcast receiver uses a bundle to retrieve the protocol
description unit (PDU), which contains the SMS text and any additional SMS meta-
data, and parses it into an Object array. The method createFromPdu() converts the
Object array into an SmsMessage. Then the method getOriginatingAddress() can
be used to get the sender’s phone number, and getMessageBody () can be used to get
the text message.

In this recipe, after the sender address is retrieved, the respond() method is called.
This method tries to get the data stored inside SharedPreferences for the auto-
respond message. If no data is stored, it uses a default value. Then, it creates two
PendingIntents for sent status and delivered status. The method divideMessage() is
used to make sure the message is not oversized. After all the data is managed, it is sent
using sendMultiTextMessage ().

Listing 10.6 src/com/cookbook/SMSresponder/ResponderService.java

package com.cookbook.SMSresponder;
import java.util.ArrayList;

import android.app.Activity;

import android.app.PendingIntent;

import android.app.Service;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.content.IntentFilter;
import android.content.SharedPreferences;
import android.os.Bundle;

import android.os.IBinder;

import android.preference.PreferenceManager;
import android.telephony.SmsManager;
import android.telephony.SmsMessage;
import android.util.Log;

import android.widget.Toast;

public class ResponderService extends Service {

www.it-ebooks.info

http://www.it-ebooks.info/

Using SMS

//the action fired by the Android system when an SMS was received

private static final String RECEIVED_ACTION =
"android.provider.Telephony.SMS RECEIVED";

private static final String SENT_ ACTION="SENT_ SMS";

private static final String DELIVERED ACTION="DELIVERED SMS";

String requester;
String reply="";
SharedPreferences myprefs;

@Override
public void onCreate() {
super.onCreate();
myprefs = PreferenceManager.getDefaultSharedPreferences(this);

registerReceiver(sentReceiver, new IntentFilter (SENT ACTION));
registerReceiver(deliverReceiver,
new IntentFilter (DELIVERED_ ACTION));

IntentFilter filter = new IntentFilter (RECEIVED ACTION);
registerReceiver(receiver, filter);

IntentFilter attemptedfilter = new IntentFilter (SENT ACTION);
registerReceiver(sender,attemptedfilter);

}

private BroadcastReceiver sender = new BroadcastReceiver(){
@Override
public void onReceive(Context c¢, Intent 1) {
if(i.getAction().equals(SENT ACTION)) {
if(getResultCode() != Activity.RESULT OK) {
String recipient = i.getStringExtra("recipient");
requestReceived(recipient);

}
}i
BroadcastReceiver sentReceiver = new BroadcastReceiver() {
@Override public void onReceive(Context ¢, Intent in) {
switch(getResultCode()) {
case Activity.RESULT OK:
//sent SMS message successfully;
smsSent () ;
break;
default:
//sent SMS message failed
smsFailed();
break;

}i

public void smsSent() {
Toast.makeText (this, "SMS sent", Toast.LENGTH SHORT);
}

public void smsFailed() {
Toast.makeText (this, "SMS sent failed", Toast.LENGTH SHORT);

www.it-ebooks.info

261

http://www.it-ebooks.info/

262 Chapter 10 Networking

}

public void smsDelivered() {
Toast.makeText (this, "SMS delivered", Toast.LENGTH SHORT);

BroadcastReceiver deliverReceiver = new BroadcastReceiver() {
@Override public void onReceive(Context ¢, Intent in) {
//SMS delivered actions
smsDelivered();

}i

public void requestReceived(String f)
Log.v("ResponderService","In requestReceived");
requester=f;

}

BroadcastReceiver receiver = new BroadcastReceiver() {
@Override
public void onReceive(Context c, Intent in) {
Log.v("ResponderService","On Receive");
rep1Y=n||;
if(in.getAction().equals (RECEIVED ACTION)) {
Log.v("ResponderService","On SMS RECEIVE");

Bundle bundle = in.getExtras();
if(bundle!=null) {
Object[] pdus = (Object[])bundle.get("pdus");
SmsMessage[] messages = new SmsMessage[pdus.length];
for(int i = 0; i<pdus.length; i++) {
Log.v("ResponderService","FOUND MESSAGE");
messages[i] =
SmsMessage.createFromPdu((byte[])pdus[il]);
}
for (SmsMessage message: messages) {
requestReceived (message.getOriginatingAddress());

respond();

}i

@Override
public void onStart(Intent intent, int startId) {
super.onStart (intent, startId);

public void respond() {
Log.v("ResponderService","Responding to " + requester);
reply = myprefs.getString("reply",
"Thank you for your message. I am busy now."
+ "I will call you later.");
SmsManager sms = SmsManager.getDefault();
Intent sentIn = new Intent(SENT_ACTION);

PendingIntent sentPIn = PendingIntent.getBroadcast(this,
0,sentIn,0);

www.it-ebooks.info

http://www.it-ebooks.info/

Using Web Content

Intent deliverIn = new Intent(DELIVERED ACTION);
PendingIntent deliverPIn = PendingIntent.getBroadcast(this,
0,deliverIn,0);
ArrayList<String> Msgs = sms.divideMessage(reply);
ArrayList<PendingIntent> sentIns = new ArrayList<PendingIntent>();
ArrayList<PendingIntent> deliverIns =
new ArrayList<PendingIntent>();

for(int i=0; i< Msgs.size(); i++) {
sentIns.add(sentPIn);
deliverIns.add(deliverPIn);

}

sms.sendMultipartTextMessage (requester, null,
Msgs, sentIns, deliverIns);

}

@Override

public void onDestroy() {
super.onDestroy();
unregisterReceiver(receiver);
unregisterReceiver(sender);

}

@Override

public IBinder onBind(Intent arg0) {
return null;

}

Using Web Content

To launch an Internet browser to display web content, the implicit intent
ACTION VIEW can be used as discussed in Chapter 2, “Application Basics: Activities
and Intents,” for example:

Intent i = new Intent(Intent.ACTION VIEW);
i.setData(Uri.parse("http://www.google.com"));
startActivity(i);

It is also possible for developers to create their own web browser by using WebView,
which is a View that displays web content. As with any view, it can occupy the full
screen or only a portion of the layout in an activity. WebView uses WebKit, the open
source browser engine used in Apple’s Safari, to render web pages.

Recipe: Customizing a Web Browser

There are two ways to obtain a WebView object. It can be instantiated from the
constructor:

WebView webview = new WebView(this);

www.it-ebooks.info

263

http://www.it-ebooks.info/

264

Chapter 10 Networking

Alternatively, a Webview can be used in a layout and declared in the activity:
WebView webView = (WebView) findViewById(R.id.webview);

After the object is retrieved, a web page can be displayed using the loadURL()
method:

webview.loadUrl("http://www.google.com/");

The WebSettings class can be used to define the features of the browser. For
example, network images can be blocked in the browser to reduce the data loading
using the setBlockNetworkImage () method. The font size of the displayed web con-
tent can be set using the setDefaultFontSize () method. Some other commonly used
settings are shown in the following example:

WebSettings webSettings = webView.getSettings();
webSettings.setSaveFormData(false);
webSettings.setJavaScriptEnabled(true);
webSettings.setSavePassword(false);

webSettings.setSupportZoom(true);

Recipe: Using an HTTP GET

Besides launching a browser or using the Webview widget to include a WebKit-based
browser control in an activity, developers might also want to create native Internet-
based applications. This means the application relies on only the raw data from the
Internet, such as images, media files, and XML data. Just the data of relevance can be
loaded. This is important for creating social networking applications. Two packages
are useful in Android to handle network communication: java.net and android.net.

In this recipe, an HTTP GET is used to retrieve XML or JSON data (see www.json
.org/ for an overview). In particular, the Google search Representational State Trans-
fer (REST) API is demonstrated, and the following query is used:

http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=

To search for any topic, the topic just needs to be appended to the query. For
example, to search for information on the National Basketball Association (NBA), the
following query returns JSON data:

http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=NBA

The activity needs Internet permission to run. So, the following should be added to
the AndroidManifest.xml file:

<uses-permission android:name="android.permission.INTERNET"/>

The main layout is shown in Listing 10.7. It has three views: EditText for user
input of the search topic, Button to trigger the search, and Textview to display the
search result.

www.it-ebooks.info

http://www.json.org/
http://www.json.org/
http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=
http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=NBA
http://www.it-ebooks.info/

Using Web Content

Listing 10.7 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match_ parent"
android:layout height="match parent"
>
<EditText
android:id="@+id/editText"
android:layout width="match parent"
android:layout_height="wrap content"
android:singleLine="true"
/>
<Button
android:id="@+id/submit"
android:layout width="wrap content"
android:layout_height="wrap content"
android:text="Search"
/>
<TextView
android:id="@+id/display"
android:layout width="match parent"
android:layout_height="match_parent"
android:text="@string/hello"
android:textSize="18dp"
/>

</LinearLayout>

The main activity is shown in Listing 10.8. It initiates the three layout ele-
ments in onCreate (). Inside the OnClickListener class for the button, it calls
searchRequest (). This composes the search item using the Google REST API URL
and then initiates a URL class instance. The URL class instance is then used to get an
HttpURLConnection instance.

The HttpURLConnection instance can retrieve the status of the connection. When
HttpURLConnection returns a result code of HTTP_OK, it means the whole HTTP
transaction went through. Then, the JSON data returned from the HTTP transaction
can be dumped into a string. This is done using an InputStreamReader passed to
a BufferReader to read the data and create a String instance. After the result
from HTTP is obtained, it uses another function processResponse () to parse the
JSON data.

Listing 10.8 src/com/cookbook/internet/search/GoogleSearch.java

package com.cookbook.internet.search;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;

www.it-ebooks.info

265

http://www.it-ebooks.info/

266 Chapter 10 Networking

import java.net.URL;
import java.security.NoSuchAlgorithmException;

import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;

import android.app.Activity;

import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

public class GoogleSearch extends Activity {
/** called when the activity is first created */
TextView tvl;
EditText edl;
Button btl;
static String url =
"http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=";

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);

tvl = (TextView) this.findViewById(R.id.display);
edl = (EditText) this.findViewById(R.id.editText);
btl = (Button) this.findViewById(R.id.submit);

btl.setOnClickListener(new OnClickListener() {
public void onClick(View view) {
if(edl.getText().toString()!=null) {
try{
processResponse (
searchRequest (edl.getText().toString()));
} catch(Exception e) {
Log.v("Exception Google search",
"Exception:"+e.getMessage());

}

edl.setText ("");

i
}

public String searchRequest(String searchString)
throws MalformedURLException, IOException {
String newFeed=url+searchString;
StringBuilder response = new StringBuilder();
Log.v("gsearch","gsearch url:"+newFeed);
URL url = new URL(newFeed);

HttpURLConnection httpconn
= (HttpURLConnection) url.openConnection();

www.it-ebooks.info

http://www.it-ebooks.info/

Using Web Content 267

if (httpconn.getResponseCode () ==HttpURLConnection.HTTP OK) {
BufferedReader input = new BufferedReader(
new InputStreamReader(httpconn.getInputStream()),

8192);
String strLine = null;
while ((strLine = input.readLine()) != null) ({

response.append (strLine);

}

input.close();

}

return response.toString();

}

public void processResponse(String resp) throws IllegalStateException,
IOException, JSONException, NoSuchAlgorithmException {
StringBuilder sb = new StringBuilder();
Log.v("gsearch","gsearch result:"+resp);
JSONObject mResponseObject = new JSONObject(resp);
JSONObject responObject
= mResponseObject.getJSONObject ("responseData");
JSONArray array = responObject.getJSONArray("results");
Log.v("gsearch","number of results:"+array.length());
for(int i = 0; i<array.length(); i++) {
Log.v("result",i+"] "+array.get(i).toString());
String title = array.getJSONObject(i).getString("title");
String urllink = array.getJSONObject (i)
.getString("visibleUrl");
sb.append(title);
sb.append("\n");
sb.append (urllink);
sb.append("\n");

}

tvl.setText (sb.toString());

The detailed mechanism used requires an understanding of the incoming JSON
data structure. In this case, the Google REST API provides all the result data under
the results JSONArray. Figure 10.4 shows the search result for NBA.

Note that this recipe will run on Android projects only prior to API Level 11. This
is due to running network requests on the main thread. The next recipe, “Using HTTP
POST,” uses an AsyncTask to fix the NetworkOnMainThreadException that is thrown.

Recipe: Using HTTP POST

Sometimes, raw binary data needs to be retrieved from the Internet such as an image,
video, or audio file. This can be achieved with the HTTP POST protocol by using
setRequestMethod (), such as:

httpconn.setRequestMethod (POST) ;

www.it-ebooks.info

http://www.it-ebooks.info/

268

Chapter 10 Networking

NBA.com: PLAYOFFS 2010
v.nba.com

NBA - National Basketball

Association Teams, Scores, Stats, News

...

espn.go.com

National Basketball Association -
Wikipedia, the free encyclopedia
en.wikipedia.org

NBA on Yahoo! Sports - News,
Scores, Standings, Rumors, Fantasy
Games

sports.yahoo.com

Figure 10.4 The search result from the Google
REST API query

Accessing data through the Internet can be time-consuming and unpredictable.
Therefore, a separate thread should be spawned anytime network data is required.

In addition to the methods shown in Chapter 3, “Threads, Services, Receivers,
and Alerts,” there is a built-in Android class called AsyncTask that allows background
operations to be performed and publishes results on the Ul thread without needing to
manipulate threads or handlers. So, the POST method can be implemented asynchro-
nously with the following code:

private class MyGoogleSearch extends AsyncTask<String, Integer, String> {
protected String doInBackground(String... searchKey)
String key = searchKey[0];

try {
return searchRequest(key);

} catch(Exception e) {
Log.v("Exception Google search",
"Exception:"+e.getMessage());

return "";

www.it-ebooks.info

http://www.it-ebooks.info/

Using Web Content

protected void onPostExecute(String result)
try {
processResponse (result);
} catch(Exception e) {
Log.v("Exception Google search",

"Exception:"+e.getMessage());

}

This excerpt can be added to the end of the GoogleSearch.java activity in List-
ing 10.8. It provides the same result with one additional change to the code inside the
button onClickListener to

new MyGoogleSearch().execute(edl.getText().toString());

Recipe: Using WebViews

WebViews are useful for displaying content that may change on a semiregular basis, or
for data that may need to be changed without having to force an update to the applica-
tion. WebViews can also be used to allow web applications access to some client-side
features of the Android system such as using the toast messaging system.

To add a WebView to an application, the following should be added to the layout
XML:

<WebView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/webview"
android:layout width="match parent"
android:layout height="match parent" />

The following permission must also be added to the application manifest:
<uses-permission android:name="android.permission.INTERNET" />

To create a simple page without any user interaction, add the following to the
onCreate () method of the main activity:

WebView myWebView = (WebView) findViewById(R.id.webview);
myWebView.loadUrl("http://www.example.com/");

In order to enable JavaScript on the page inside of the WebView, the WebSettings
must be changed. This can be done using the following:

WebSettings webSettings = myWebView.getSettings();
webSettings.setJavaScriptEnabled(true);

To trigger native methods from JavaScript, a class that can be used as an inter-
face needs to be created. Listing 10.9 shows an activity with all of the pieces put
together.

www.it-ebooks.info

269

http://www.it-ebooks.info/

270

Chapter 10 Networking

Listing 10.9 src/com/cookbook/viewtoaweb/MainActivity.java

package com.cookbook.viewtoaweb;

import android.app.Activity;

import android.content.Context;

import android.os.Bundle;

import android.webkit.JavascriptInterface;
import android.webkit.WebSettings;

import android.webkit.WebView;

import android.widget.Toast;

public class MainActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);

WebView myWebView = (WebView) findViewById(R.id.webview);

WebSettings webSettings = myWebView.getSettings();
webSettings.setJavaScriptEnabled(true);

myWebView.addJavascriptInterface (new WebAppInterface(this), "Android");
myWebView.loadUrl("http://www.devcannon.com/androidcookbook/chapterl0/webview/");

}

public class WebAppInterface {
Context context;

WebAppInterface (Context c) {
context = c;
}

@JavascriptInterface
public void triggerToast(String toast) {

Toast.makeText (context, toast, Toast.LENGTH_SHORT).show();
}

The following HTML is used to trigger the code from Listing 10.9:

<input type="text" name="toastText" id="toastText" />

<button id="btn" onClick="androidToast()">Toast it</buttons
The following JavaScript is used to trigger the code:

function androidToast() {
var input = document.getElementById('toastText');
Android.triggerToast (input.value);

Figure 10.5 displays the WebView with a toast that was launched from the page
being viewed.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Web Content 271

o

I8 View to a Web

Android WebView

Use the input below to type in a message. Use
the button to show a toast on the device
screenx.

type and toast Toast it

*When using a WebView from an Android device

= Figure 10.5 Triggering a toast message from a
page inside a WebView

A}

Recipe: Parsing JSON

JSON is a very popular format for data transfer, especially when used with web
services. Android has included a set of classes in the org.json package that can be
imported into code to allow manipulation of JSON data.

To get started parsing, first a JSON object needs to be created; this can be done like
s0:

private JSONObject jsonObject;

Some data in JSON format is also needed. The following creates a string containing
some JSON data:

private String jsonString =
n {\"item\" . {\uname\u Z\"myName\",\"numbers\" . [{\nid\u :\nl\n}, {\uid\n :\|I2\H}] }}u;

Because a string is not a JSON object, one will need to be created that contains the
value of the string. This can be done like so:

jsonObject = new JSONObject(jsonString);

Now that there is an object to manipulate, data can be gotten from it. If the
getString() method were used to pull data from an “object” that is inside the

www.it-ebooks.info

http://www.it-ebooks.info/

272

Chapter 10 Networking

jsonObject, a JSONException would be thrown. This is because it is not a string.
To pull a specific value, another object must be set up that contains the desired string,
like so:

JSONObject itemObject = jsonObject.getJSONObject ("item");
The value of "name" can be gotten by using the following:
String jsonName = itemObject.getString("name");

A loop may be used to get the information stored in the "numbers" section of
jsonObject. This can be done by creating a JSONArray object and looping through it,
as follows:

JSONArray numbersArray = itemObject.getJSONArray("numbers");

for(int i = 0;i < numbersArray.length();i++){

numbersArray.getJSONObject (1) .getString("id");

Listing 10.10 shows how parsing may be put together inside an activity and dis-
played in a Textview. Note that when pulling JSON data from a remote location, such
as through a web service, a separate class or AsyncTask must be used so that the main
UI thread is not blocked.

Listing 10.10 src/com/cookbook/parsejson/MainActivity.java

package com.cookbook.parsejson;

import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends Activity {

TextView tv;
private JSONObject jsonObject;
private String jsonString =
" {\"item\" . {\"name\“ :\"myName\",\"numbers\" . [{\uid\u :\nl\n}, {\nid\n :\||2\n}] }}u;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);
tv = (TextView) findViewById(R.id.tv_main);

try {
jsonObject = new JSONObject(jsonString);
JSONObject itemObject = jsonObject.getJSONObject("item");
String jsonName = "name: " +itemObject.getString("name");

www.it-ebooks.info

http://www.it-ebooks.info/

Using Web Content

JSONArray numbersArray = itemObject.getJSONArray("numbers");

String jsonlds = "";

for(int i = 0;i < numbersArray.length();i++){
jsonlds += "id: " +

numbersArray.getJSONObject (i).getString("id").toString() + "\n";

}

tv.setText (jsonName+"\n"+jsonIds);

} catch (JSONException e) {
e.printStackTrace();

Recipe: Parsing XML

The official Android documentation recommends the use of XmlPullParser for pars-

ing XML data. You may use any method you prefer to get XML data; however, for

this recipe, a simple one-node XML string will be used. Listing 10.11 shows an activity
that will display the process of reading the XML document, including the node and

text value, into a TextView.

The XML data is processed one line at a time, with the next () method moving
to the next line. In order to parse for specific nodes inside the XML data, an if else

statement must be added for them in the while loop.

Listing 10.11 src/com/cookbook/parsexml/MainActivity.java

package com.cookbook.parsexml;

import java.io.IOException;
import java.io.StringReader;

import org.xmlpull.vl.XmlPullParser;
import org.xmlpull.vl.XmlPullParserException;
import org.xmlpull.vl.XmlPullParserFactory;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends Activity
TextView tv;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

setContentView(R.layout.activity main);
tv = (TextView) findViewById(R.id.tv_main);

www.it-ebooks.info

273

http://www.it-ebooks.info/

274 Chapter 10 Networking

String xmlOut = "";
XmlPullParserFactory factory = null;
try {
factory = XmlPullParserFactory.newlnstance();
} catch (XmlPullParserException e) {
e.printStackTrace();
}

factory.setNamespaceAware (true);
XmlPullParser xpp = null;
try {
xpp = factory.newPullParser();
} catch (XmlPullParserException e) {
e.printStackTrace();
}

try {

xpp.setInput (new StringReader("<node>This is some text</node>"));
} catch (XmlPullParserException e) {

e.printStackTrace();
}

int eventType = 0;

try {
eventType = xpp.getEventType();

} catch (XmlPullParserException e)
e.printStackTrace();

}

while (eventType != XmlPullParser.END DOCUMENT) {
if(eventType == XmlPullParser.START DOCUMENT) {
xmlOut += "Start of XML Document";
} else if (eventType == XmlPullParser.START TAG)
xmlOut += "\nStart of tag: "+xpp.getName();
} else if (eventType == XmlPullParser.END TAG) {
xmlOut += "\nEnd of tag: "+xpp.getName();
} else if (eventType == XmlPullParser.TEXT) {
xmlOut += "\nText: "+xpp.getText();
}
try {
eventType = xpp.next();
} catch (XmlPullParserException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}

xmlOut += "\nEnd of XML Document";

tv.setText (xmlOut);

}

www.it-ebooks.info

http://www.it-ebooks.info/

Social Networking

Social Networking

Twitter is a social networking and microblogging service that enables its users to send
and read messages known as tweets. Twitter is described as the “SMS of the Internet,”
and indeed, each tweet cannot exceed 140 characters (although links are converted to
shorter links and not counted against the 140-character limit). Twitter users can follow
other people’s tweets or be followed by others.

Recipe: Reading the Owner Profile

Starting with API Level 14 (Ice Cream Sandwich), developers are able to access the
owner profile. This is a special contact that stores RawContact data. To read the owner
profile of a device, the following permission must be added to the AndroidManifest.
xml file:

<uses-permission android:name="android.permission.READ PROFILE" />

The following enables access to profile data:

// sets the columns to retrieve for the owner profile - RawContact data
String[] mProjection = new String[
{
Profile. ID,
Profile .DISPLAY NAME PRIMARY,
Profile.LOOKUP_KEY,
Profile . PHOTO THUMBNAIL URI

}i

// retrieves the profile from the Contacts Provider
Cursor mProfileCursor =
getContentResolver().query(Profile.CONTENT URI,mProjection,null,null,null);
// Set the cursor to the first entry (instead of -1)
boolean b = mProfileCursor.moveToFirst();
for(int i = 0, length = mProjection.length;i < length;i++) {
System.out.println("*** " 4

mProfileCursor.getString (mProfileCursor.getColumnIndex (mProjection[i])));

Note that where System.out.println() is used is the place where logic can be
inserted to process the profile information. It is also worth mentioning that the output
will be shown in LogCat, even though it is not a method from Log.*.

Recipe: Integrating with Twitter

Some third-party libraries exist to assist in integrating Twitter into Android applica-
tions (from http://dev.twitter.com/pages/libraries#java):

www.it-ebooks.info

275

http://dev.twitter.com/pages/libraries#java
http://www.it-ebooks.info/

276 Chapter 10 Networking

= Twitter4] by Yusuke Yamamoto—An open source, Mavenized, and Google App
Engine-safe Java library for the Twitter API, released under the BSD license

= Scribe by Pablo Fernandez—OAuth module for Java, Mavenized, and works with
Facebook, LinkedIn, Twitter, Evernote, Vimeo, and more

For this recipe, the Twitter4] library by Yusuke Yamamoto is used, which has doc-
umentation at http://twitterdj.org/en/javadoc/overview-summary.html. The recipe
enables users to log in to Twitter by using OAuth and make a tweet.

Twitter has made changes to its authentication system that now require applications
to register in order to access the public feed. To get started, an application has to be
registered at https://dev.twitter.com/apps/new. During the registration process, OAuth
public and private keys will be generated. They will be used in this recipe, so take
note of them.

As this application will be accessing the Internet, it will need the INTERNET per-
mission. There will also be a check to make sure that the device is connected to a
network, so the ACCESS_NETWORK_STATE permission is also required. This is done by
editing the AndroidManifest.xml file, as shown in Listing 10.12.

Listing 10.12 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.cookbook.tcookbook"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="17" />

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK STATE" />

<application

android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app name"
android:theme="@style/AppTheme" >
<activity

android:name="com.cookbook.tcookbook.MainActivity"

android:label="@string/app name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
<intent-filters>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="oauth" android:host="tcookbook"/>

www.it-ebooks.info

http://twitter4j.org/en/javadoc/overview-summary.html
https://dev.twitter.com/apps/new
http://www.it-ebooks.info/

Social Networking

</intent-filter>
</activity>
</applications>
</manifest>

For the layout of the application, everything will be put into the activity_main.
xml file. This file will contain a button that is visible on page load and then several
buttons, TextViews, and an EditText widget. Note that some of these will be hidden
with android:visibility="gone". Listing 10.13 shows the contents of the
activity_main.xml file.

Listing 10.13 res/layout/activity_main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:orientation="vertical" >
tools:context=".MainActivity" >

<Button android:id="@+id/btnLoginTwitter"
android:layout width="match parent"
android:layout height="wrap content"
android:text="Login with OAuth"
android:layout marginLeft="10dip"
android:layout marginRight="10dip"
android:layout marginTop="30dip"/>

<TextView android:id="@+id/1blUserName"
android:layout width="match parent"
android:layout height="wrap content"
android:padding="10dip"
android:layout marginTop="30dip"/>

<TextView android:id="@+id/lblUpdate"
android:text="Enter Your Tweet:"
android:layout width="match parent"
android:layout height="wrap content"
android:layout marginLeft="10dip"
android:layout marginRight="10dip"
android:visibility="gone"/>

<EditText android:id="@+id/txtUpdateStatus"
android:layout width="match parent"
android:layout height="wrap content"
android:layout margin="10dip"
android:visibility="gone"/>

<Button android:id="@+id/btnUpdateStatus"
android:layout width="match parent"
android:layout height="wrap content"
android:text="Tweet it!"
android:layout marginLeft="10dip"

www.it-ebooks.info

277

http://www.it-ebooks.info/

Chapter 10 Networking

android:layout marginRight="10dip"
android:visibility="gone"/>

<Button android:id="@+id/btnLogoutTwitter"
android:layout width="match_parent"
android:layout height="wrap content"
android:text="Logout/invalidate OAuth"
android:layout marginLeft="10dip"
android:layout marginRight="10dip"
android:layout _marginTop="50dip"
android:visibility="gone"/>

</LinearLayout>

One activity is used in the application, and two classes are used: one to help with
connection detection and one to display an alert message when the wrong application
OAuth keys are used.

In the main activity, several constants are set up for use. These include the OAuth
Consumer key and Consumer secret. A connectivity check is run to make sure that
the user can reach Twitter. Several onClickListener classes are also registered to trig-
ger logic such as login, logout, and update when clicked.

As Twitter handles authentication for the user, the information passed back is
saved in application preferences and is checked again when the user attempts to log
in to the application. An AsyncTask is also used to move any tweets made to a back-
ground thread.

Listing 10.14 shows the contents of the activity in full.

Listing 10.14 src/com/cookbook/tcookbook/MainActivity.java

package com.cookbook.tcookbook;

import twitter4j.Twitter;

import twitter4j.TwitterException;

import twitter4j.TwitterFactory;

import twitter4j.User;

import twitter4j.auth.AccessToken;

import twitter4j.auth.RequestToken;
import twitter4j.conf.Configuration;
import twitter4j.conf.ConfigurationBuilder;
import android.app.Activity;

import android.app.ProgressDialog;
import android.content.Intent;

import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.content.pm.ActivityInfo;
import android.net.Uri;

import android.os.AsyncTask;

import android.os.Build;

import android.os.Bundle;

import android.os.StrictMode;

import android.text.Html;

import android.util.Log;

www.it-ebooks.info

http://www.it-ebooks.info/

import
import
import
import
import

public

Social Networking

android.view.View;
android.widget.Button;
android.widget.EditText;
android.widget.TextView;
android.widget.Toast;

class MainActivity extends Activity {

// Replace the following value with the Consumer key
static String TWITTER CONSUMER _KEY = "01189998819991197253";
// Replace the following value with the Consumer secret
static String TWITTER CONSUMER_SECRET =

"616C6C20796F75722062617365206172652062656C6F6E6720746F207573";

static String PREFERENCE NAME = "twitter oauth";
static final String PREF_KEY OAUTH TOKEN = "oauth token";
static final String PREF_KEY OAUTH_SECRET = "oauth token secret";

static final String PREF_KEY TWITTER _LOGIN = "isTwitterLoggedIn";

static final String TWITTER CALLBACK URL = "oauth://tcookbook";

static final String URL_TWITTER_AUTH = "auth url";
static final String URL TWITTER OAUTH VERIFIER = "oauth verifier";
static final String URL_TWITTER_OAUTH TOKEN = "oauth token'";

Button btnLoginTwitter;
Button btnUpdateStatus;
Button btnLogoutTwitter;
EditText txtUpdate;
TextView 1lblUpdate;
TextView lblUserName;

ProgressDialog pDialog;

private static Twitter twitter;
private static RequestToken requestToken;

private static SharedPreferences mSharedPreferences;

private ConnectionDetector cd;

AlertDialogManager adm = new AlertDialogManager();

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);
// used for Android 2.3+
if (Build.VERSION.SDK INT > Build.VERSION CODES GINGERBREAD) {
StrictMode.ThreadPolicy policy =
new StrictMode.ThreadPolicy.Builder().permitAll().build();
StrictMode.setThreadPolicy(policy);

}

setRequestedOrientation(ActivityInfo.SCREEN ORIENTATION PORTRAIT);

cd = new ConnectionDetector(getApplicationContext());

www.it-ebooks.info

279

http://www.it-ebooks.info/

280 Chapter 10 Networking

if (lcd.isConnectingToInternet()) {
adm.showAlertDialog(MainActivity.this, "Internet Connection Error",
"Please connect to working Internet connection", false);

return;
}
1f(TWITTER_CONSUMER_KEY.trim().length() == 0 ||
TWITTER_CONSUMER_SECRET.trim().length() == 0){

adm.showAlertDialog(MainActivity.this,
"Twitter OAuth tokens",

"Please set your Twitter OAuth tokens first!", false);
return;
}
btnLoginTwitter = (Button) findvViewById(R.id.btnLoginTwitter);
btnUpdateStatus = (Button) findViewById(R.id.btnUpdateStatus);
btnLogoutTwitter = (Button) findviewById(R.id.btnLogoutTwitter);

txtUpdate = (EditText) findViewById(R.id.txtUpdateStatus);
1blUpdate = (TextView) findvViewById(R.id.lblUpdate);
1blUserName = (TextView) findViewById(R.id.lblUserName);

mSharedPreferences = getApplicationContext().getSharedPreferences ("MyPref", 0);

btnLoginTwitter.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View arg0) {
// Call login Twitter function
loginToTwitter();
}
Ni

btnUpdateStatus.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
String status = txtUpdate.getText().toString();

if (status.trim().length() > 0) {
new updateTwitterStatus().execute(status);
} else {
Toast.makeText (getApplicationContext(),
"Please enter status message", Toast.LENGTH SHORT).show();

}
Dk

btnLogoutTwitter.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View arg0) {
// Call logout Twitter function
logoutFromTwitter();
}
Ni

if (lisTwitterLoggedInAlready()) {
Uri uri = getIntent().getData();

www.it-ebooks.info

http://www.it-ebooks.info/

Social Networking

if (uri != null && uri.toString().startsWith(TWITTER CALLBACK URL)) {
String verifier = uri.getQueryParameter(URL_TWITTER_OAUTH VERIFIER);

try {
AccessToken accessToken = twitter.getOAuthAccessToken(requestToken,

wyerifier);

/]

Editor e = mSharedPreferences.edit();

e.putString (PREF_KEY OAUTH_TOKEN, accessToken.getToken());
e.putString (PREF_KEY OAUTH SECRET,accessToken.getTokenSecret());
e.putBoolean (PREF_KEY TWITTER_LOGIN, true);

e.commit();

Log.e("Twitter OAuth Token", "> " + accessToken.getToken());
btnLoginTwitter.setVisibility(View.GONE);

1blUpdate.setVisibility(View.VISIBLE);
txtUpdate.setVisibility(View.VISIBLE);
btnUpdateStatus.setVisibility(View.VISIBLE);
btnLogoutTwitter.setVisibility(View.VISIBLE);

long userID = accessToken.getUserId();
User user = twitter.showUser(userID);
String username = user.getName();

1blUserName.setText (Html.fromHtml("Welcome " + username + ""));
} catch (Exception e) {
Log.e("***Twitter Login Error: ",e.getMessage());

private void loginToTwitter() {

(lisTwitterLoggedInAlready()) {
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.setOAuthConsumerKey (TWITTER_CONSUMER_KEY);
builder.setOAuthConsumerSecret (TWITTER _CONSUMER_SECRET);
Configuration configuration = builder.build();

TwitterFactory factory = new TwitterFactory(configuration);
twitter = factory.getInstance();

if(!(Build.VERSION.SDK INT >= Build.VERSION CODES.HONEYCOMB)) {
try {
requestToken = twitter.getOAuthRequestToken(TWITTER CALLBACK URL);
this.startActivity(new Intent(Intent.ACTION_ VIEW,
Uri.parse(requestToken.getAuthenticationURL())));
} catch (TwitterException e) {
e.printStackTrace();

} else {
new Thread(new Runnable() {

www.it-ebooks.info

281

http://www.it-ebooks.info/

282 Chapter 10 Networking

public void run() {
try {
requestToken = twitter.getOAuthRequestToken(TWITTER CALLBACK URL);
MainActivity.this.startActivity(new Intent(Intent.ACTION VIEW,
Uri.parse(requestToken.getAuthenticationURL())));
} catch (TwitterException e) {
e.printStackTrace();
}
}
}).start();
}
} else {
Toast.makeText (getApplicationContext(),"Already logged into Twitter",
Toast .LENGTH_LONG).show () ;
}
}

class updateTwitterStatus extends AsyncTask<String, String, String> {

@Override

protected void onPreExecute() {
super.onPreExecute();
pDialog = new ProgressDialog(MainActivity.this);
pDialog.setMessage ("Updating to Twitter...");
pDialog.setIndeterminate (false);
pDialog.setCancelable(false);
pDialog.show();

}

protected String doInBackground(String... args) {

// Log.d("*** Text Value of Tweet: ",args[0]);
String status = args[0];
try {

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.setOAuthConsumerKey (TWITTER _CONSUMER_KEY);
builder.setOAuthConsumerSecret (TWITTER _CONSUMER_SECRET);

String access token =
mSharedPreferences.getString (PREF_KEY OAUTH_TOKEN, "");
String access token secret =
mSharedPreferences.getString (PREF_KEY OAUTH_SECRET, "");

AccessToken accessToken =
new AccessToken(access token, access_ token secret);
Twitter twitter =
new TwitterFactory(builder.build()).getInstance (accessToken);

twitter4j.Status response = twitter.updateStatus(status);

// Log.d("*** Update Status: ",response.getText());
} catch (TwitterException e) {
Log.d("+** Twitter Update Error: ", e.getMessage());

}

return null;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Social Networking

protected void onPostExecute(String file url) {
pDialog.dismiss();
runOnUiThread (new Runnable() {
@Override
public void run() {
Toast.makeText (getApplicationContext(),
"Status tweeted successfully", Toast.LENGTH_SHORT).show();
txtUpdate.setText ("");

hE
}

}

private void logoutFromTwitter() {
Editor e = mSharedPreferences.edit();

e.commit

e.remove (PREF_KEY OAUTH TOKEN);

e.remove (PREF_KEY OAUTH_SECRET);

e.remove (PREF_KEY TWITTER_LOGIN);
0

btnLogoutTwitter.setVisibility(View.GONE);
btnUpdateStatus.setVisibility(View.GONE);
txtUpdate.setVisibility(View.GONE);
1blUpdate.setVisibility(View.GONE);
1blUserName.setText ("");
1blUserName.setVisibility(View.GONE);

btnLoginTwitter.setVisibility(View.VISIBLE);

}

private boolean isTwitterLoggedInAlready() {
return mSharedPreferences.getBoolean(PREF_KEY TWITTER LOGIN, false);

protected void onResume() {
super.onResume () ;
}

More information on using Twitter4j can be found in the following resources:

» www.androidhive.info/2012/09/android-twitter-oauth-connect-tutorial/ by
Ravi Tamada

= http://blog.doityourselfandroid.com/2011/08/08/improved-twitter-oauth
-android/ by Do-it-yourself Android

= http://davidcrowley.me/?p=410 by David Crowley
= https://tutsplus.com/tutorials/?q=true&filter_topic=90 by Sue Smith
= http://blog.blundell-apps.com/sending-a-tweet/ by Blundell

www.it-ebooks.info

283

http://www.androidhive.info/2012/09/android-twitter-oauth-connect-tutorial/
http://blog.doityourselfandroid.com/2011/08/08/improved-twitter-oauth-android/
http://blog.doityourselfandroid.com/2011/08/08/improved-twitter-oauth-android/
http://davidcrowley.me/?p=410
https://tutsplus.com/tutorials/?q=true&filter_topic=90
http://blog.blundell-apps.com/sending-a-tweet/
http://www.it-ebooks.info/

284

Chapter 10 Networking

Recipe: Integrating with Facebook

Facebook has changed rapidly in the last couple of years, and it remains one of the top
social networking sites. One thing the Facebook team has done recently is to clean up
their documentation to help developers. The official documentation can be found at
https://developers.facebook.com/docs/getting-started/facebook-sdk-for-android/3.0/.

To get started with Facebook development, first download the Facebook SDK
and the Facebook android package (APK) from https://developers.facebook.com
/resources/facebook-android-sdk-3.0.zip. The APK is provided as a means of authen-
tication without having to use a WebView. If the Facebook application is already
installed on the phone, the APK file need not be installed.

Next, add the Facebook SDK as a library project to the Eclipse installation. This
is done by choosing File — Import and then General — Existing Projects into
Workspace. Note that Facebook warns against using the “Copy projects into work-
space” options, as this may build incorrect filesystem paths and cause the SDK to func-
tion incorrectly.

After the Facebook SDK has been imported, the sample projects are available for
experimentation. Note that most of the projects require the generation of a key hash
that will be used to sign applications and that developers can add to their Facebook
developer profile for quick SDK project access.

The key is generated by using the keytool utility that comes with Java. Open a
terminal or command prompt and type the following to generate the key:

OS X:

keytool -exportcert -alias androiddebugkey -keystore ~/.android/debug.keystore |
[ccc]lopenssl shal -binary | openssl base64

Windows:

keytool -exportcert -alias androiddebugkey -keystore $HOMEPATHS%\.android\debug.
keystore [ccc]| openssl shal -binary | openssl base64

The command should be typed in a single line, although terminals or command
prompt windows may show it breaking into multiple lines. When the command is
executed, a password prompt should appear. The password to enter is android. After
the key has been generated successfully, it will be displayed. Note that if a “'keytool!
is not recognized as an internal or external command . . .’ erroris
generated, move to the bin directory of the JRE installation directory and try again.
If there is a similar error for “openssl,” download OpenSSL from http://code.google
.com/p/openssl-for-windows/. If there are still errors, make sure that the bin directo-
ries have been added to the system path or that the exact directories are being used
instead of e HOMEPATHY.

If more than one computer will be used for development, a hash must be generated
for each one and added to the developer profile at https://developers.facebook.com/.

Once that is done, dig into the sample applications and log in with them. The
showcase example project, called HelloFacebookSample, demonstrates how to access
a profile, update a status, and even upload photos.

www.it-ebooks.info

https://developers.facebook.com/docs/getting-started/facebook-sdk-for-android/3.0/
https://developers.facebook.com/resources/facebook-android-sdk-3.0.zip
https://developers.facebook.com/resources/facebook-android-sdk-3.0.zip
http://code.google.com/p/openssl-for-windows/
http://code.google.com/p/openssl-for-windows/
https://developers.facebook.com/
http://www.it-ebooks.info/

Social Networking

The last step in creating an application that integrates with Facebook is to create a
Facebook app that will then be tied to the Android application by using a generated
key hash. This will take care of integration and allow users to authenticate themselves
while using the application.

The developer site gives a terrific breakdown of all the pieces needed to get started.
Be sure to read the official Scrumptious tutorial, which can be found at http://
developers.facebook.com/docs/tutorials/androidsdk/3.0/scrumptious/.

www.it-ebooks.info

285

http://developers.facebook.com/docs/tutorials/androidsdk/3.0/scrumptious/
http://developers.facebook.com/docs/tutorials/androidsdk/3.0/scrumptious/
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

11

Data Storage Methods

Complicated and robust Android applications often need to use some type of data
storage. Depending on the situation, different data storage methods are available to the
developer:

= SharedPreferences for lightweight usage, such as saving application settings and
the UI state

= A built-in SQLite database for more complicated usage, such as saving application
records

= The standard Java flat file storage methods: InputFileStream and
OutputFileStream

These are discussed in this chapter. Also discussed is the ContentProvider
Android component that is used to share data between applications. It should be
noted that another basic data storage method managed by the Android system, the
onSavelnstanceState() and onRestoreInstanceState() pair, was already discussed
in Chapter 2, “Application Basics: Activities and Intents.” The optimal method to use
depends on the situation, as discussed in each recipe.

Shared Preferences

SharedPreferences is an interface that an application can use to quickly and effi-
ciently save data in name-value pairs, similar to a bundle. The information is stored in
an XML file on the Android device. For example, if the application com.cookbook.
datastorage creates a shared preference, the Android system creates a new XML file
under the /data/data/com.cookbook.datastorage/shared_prefs directory.

Shared preferences are usually used for saving application settings such as user settings,
theme, and other general application properties. They can also save login information
such as username, password, auto-login flag, and remember-user flag. The shared prefer-
ences data is accessible by every component of the application that created it.

www.it-ebooks.info

http://www.it-ebooks.info/

288 Chapter 11 Data Storage Methods

Recipe: Creating and Retrieving Shared Preferences

The shared preferences for an activity can be accessed using the getPreferences()
method, which specifies the operating mode for the default preferences file. If instead
multiple preference files are needed, each can be specified using the getShared
preferences() method. If the shared preferences XML file exists in the data direc-
tory, it is opened; otherwise, it is created. The operating mode provides control over
the different kinds of access permission to the preferences:

= MODE_PRIVATE—Only the calling application has access to the XML file.

= MODE_WORLD READABLE—AII applications can read the XML file. This setting has
been deprecated in API Level 17; use ContentProvider, BroadcastReceiver, or
a service instead.

= MODE _WORLD WRITEABLE—AIl applications can write to the XML file.
This setting has been deprecated in API Level 17; use ContentProvider,
BroadcastReceiver, or a service instead.

After a SharedPreferences object is retrieved, an Editor object is needed to
write the name-value pairs to the XML file using the put () method. Currently, five
primitive types are supported: int, long, float, String, and boolean. The following
code shows how to create and store shared preferences data:

SharedPreferences prefs = getSharedPreferences("myDataStorage",
MODE_PRIVATE);

Editor mEditor = prefs.edit();

mEditor.putString("username","datastorageuserl");

mEditor.putString("password","passwordl234");

mEditor.apply();

Note that when developing with Android 2.3 (Level 9) or above, the apply()
method should be used to commit changes, as this will trigger an async request to
update the file. Previous versions of Android require using the commit () method.

The following shows how to retrieve shared preferences data:

SharedPreferences prefs = getSharedPreferences("myDataStorage",
MODE_PRIVATE);
String username = prefs.getString("username", "");

String password = prefs.getString("password", "");

Recipe: Using the Preferences Framework

Android provides a standardized framework for setting preferences across all applica-
tions. The framework uses category preferences and screens to group related settings.
PreferenceCategory is used to declare a set of preferences into one category.
PreferenceScreen presents a group of preferences in a new screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Shared Preferences

This recipe uses the preferences defined in the XML file in Listing 11.1. A
PreferenceScreen is the root element with two EditTextPreference elements for
username and password. Other possible elements are CheckBoxPreference,
RingtonePreference, and DialogPreference. The Android system then generates
a UI to manipulate the preferences, as shown in Figure 11.1. These preferences are
stored in shared preferences, which means they can be retrieved by calling get

Preferences().

Listing 11.1 res/xml/preferences.xml

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
<EditTextPreference
android:title="User Name"
android:key="username"
android:summary="Please provide user name">
</EditTextPreferences>
<EditTextPreference
android:title="Password"
android:password="true"
android:key="password"
android:summary="Please enter your password">
</EditTextPreferences>
</PreferenceScreenx>

Then, an activity extending PreferenceActivity calls the addPreferences
FromResource () method to include these preferences in the activity, as shown
in Listing 11.2. Note that when developing with an API level of 11 or higher, a
PreferenceFragment must be used to call the addPreferencesFromResource ()
method.

Listing 11.2 src/com/cookbook/datastorage/MyPreferences.java

package com.cookbook.datastorage;

import android.os.Bundle;
import android.preference.PreferenceActivity;

public class MyPreferences extends PreferenceActivity {
@Override
public void onCreate (Bundle savedInstanceState)

super.onCreate (savedInstanceState) ;

addPreferencesFromResource (R.xml.preferences) ;

}

www.it-ebooks.info

289

http://www.it-ebooks.info/

290

Chapter 11 Data Storage Methods

The main activity merely needs to launch PreferenceActivity when needed
(for example, when the Menu key is pressed). Listing 11.3 shows a simple example of
showing the preferences upon start-up of the activity.

Listing 11.3 src/com/cookbook/datastorage/DataStorage.java

package com.cookbook.datastorage;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;

public class DataStorage extends Activity {

/** called when the activity is first created */

@Ooverride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;
Intent i = new Intent(this, MyPreferences.class);
startActivity (i) ;

The AndroidManifest.xml file needs to include all activities, including the new
PreferenceActivity, as shown in Listing 11.4. This creates the preferences screen
shown in Figure 11.1.

Listing 11.4 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.cookbook.datastorage"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app name">
<activity android:name=".DataStorage"
android:label="@string/app name">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"
/>
</intent-filters>
</activity>
<activity android:name=".MyPreferences" />
</application>
<uses-sdk android:minSdkVersion="7" />
</manifest>

Recipe: Changing the Ul Based on Stored Data

The DataStorage activity of the previous recipe can be extended to check the shared
preferences when loading, altering the behavior accordingly. In this recipe, if a user-

www.it-ebooks.info

http://www.it-ebooks.info/

Shared Preferences 291

M & 7:39 Pm

datastorage

User Name

Ser name

Figure 11.1 The preferences Ul generated by the
Android system from an XML preferences file

name and password are already saved in the SharedPreferences file, a login page is
displayed. After a successful login, the activity can successfully continue. If no login
information is on file, the activity continues directly.

The main.xml layout file can be modified to be a login page, as shown in List-
ing 11.5. This uses two EditText objects for username and password, as covered in
Chapter 5, “User Interface Layout.”

Listing 11.5 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent">
<TextView
android:layout width="match parent"
android:layout height="wrap content"
android:text="username"

/>

<EditText
android:id="@+id/usertext"
android:layout width="match parent"
android:layout height="wrap content"

/>

<TextView
android:layout width="match parent"
android:layout height="wrap content"
android:text="password"

/>

www.it-ebooks.info

http://www.it-ebooks.info/

292 Chapter 11 Data Storage Methods

<EditText
android:id="e+id/passwordtext"
android:layout_width="match parent"
android:layout height="wrap_ content"
android:password="true"

/>

<Button
android:id="e+id/loginbutton"
android:layout_width="wrap content"
android:layout height="wrap_ content"
android:text="login"
android:textSize="20dp"

/>

</LinearLayout>

The main activity DataStorage, as shown in Listing 11.6, is modified to first read
the username and password data from the SharedPreferences instance. If this data
is not set, the application launches the MyPreferences activity (Listing 11.2) directly
to set the preferences. If the data is set, the application displays the login layout main
.xml shown in Figure 11.2.

The button has an onClickListener that verifies whether the login information
matches the username and password from the SharedPreferences file. A successful
login enables the application to continue, which in this case just launches the
MyPreferences activity. Any login attempt shows a toast message of success or failure
for illustration purposes.

Listing 11.6 src/com/cookbook/datastorage/DataStorage.java

package com.cookbook.datastorage;

import android.app.Activity;

import android.content.Intent;

import android.content.SharedPreferences;
import android.os.Bundle;

import android.preference.PreferenceManager;
import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.EditText;

import android.widget.Toast;

public class DataStorage extends Activity {
SharedPreferences myprefs;
EditText userET, passwordET;
Button loginBT;
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
myprefs = PreferenceManager.getDefaultSharedPreferences(this);
final String username = myprefs.getString("username", null);
final String password = myprefs.getString("password", null);
if (username != null && password != null){
setContentView(R.layout.main) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Shared Preferences

userET = (EditText)findViewById(R.id.usertext);
passwordET = (EditText)findViewById(R.id.passwordtext);
loginBT = (Button)findViewById(R.id.loginbutton) ;

loginBT.setOnClickListener (new OnClickListener() {
public void onClick(View v) {
try {
if (username.equals (userET.getText () .toString())
&& password.equals (
passwordET.getText () .toString())) {
Toast.makeText (DataStorage.this,
"login passed!!",
Toast.LENGTH_SHORT) .show() ;
Intent i = new Intent(DataStorage.this,

MyPreferences.class) ;
startActivity(i);

} else {
Toast.makeText (DataStorage.this,
"login failed!!",
Toast.LENGTH SHORT) .show() ;

} catch (Exception e)
e.printStackTrace() ;
}

}

i

} else {
Intent 1 =

new Intent (this, MyPreferences.class);
startActivity (i) ;

Figure 11.2 The login screen described
by Listing 11.5

www.it-ebooks.info

293

http://www.it-ebooks.info/

294

Chapter 11 Data Storage Methods

Recipe: Adding an End User License Agreement

As discussed in Chapter 1, “Overview of Android,” it is often useful to display an end
user license agreement (EULA) when a user first installs and runs an app. If the user
does not accept it, the downloaded application does not run. After a user does accept
it, the EULA is never shown again.

This EULA functionality is already implemented and available publicly under the
Apache License as the Eula class shown in Listing 11.7. It uses SharedPreferences
with the Boolean PREFERENCE EULA ACCEPTED to determine whether the EULA was
previously accepted or not accepted.

Listing 11.7 src/com/cookbook/eula_example/Eula.java

/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either expressed or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*

/
package com.cookbook.eula example;

import android.app.Activity;

import android.app.AlertDialog;

import android.content.DialogInterface;
import android.content.SharedPreferences;

import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.Closeable;

/**
* displays a EULA ("End User License Agreement") that the user has to accept before
* using the application
*/
class Eula {
private static final String ASSET EULA = "EULA";

private static final String PREFERENCE EULA ACCEPTED = "eula.accepted";
private static final String PREFERENCES EULA = "eula";
/**

* callback to let the activity know when the user accepts the EULA

*/

www.it-ebooks.info

http://www.it-ebooks.info/

Shared Preferences

static interface OnEulaAgreedTo {
void onEulaAgreedTo() ;
}

/**
* displays the EULA if necessary
*/

static boolean show(final Activity activity)

final SharedPreferences preferences =
activity.getSharedPreferences(
PREFERENCES EULA, Activity.MODE PRIVATE) ;

//to test:
// preferences.edit ()
// .putBoolean (PREFERENCE EULA ACCEPTED, false).commit();

if (!preferences.getBoolean (PREFERENCE EULA ACCEPTED, false)) {
final AlertDialog.Builder builder =
new AlertDialog.Builder (activity);
builder.setTitle(R.string.eula_title);
builder.setCancelable (true) ;
builder.setPositiveButton(R.string.eula accept,
new DialogInterface.OnClickListener() ({
public void onClick(DialogInterface dialog, int which) {
accept (preferences) ;
if (activity instanceof OnEulaAgreedTo) {
((OnEulaAgreedTo) activity).onEulaAgreedTo() ;
}

i
builder.setNegativeButton(R.string.eula refuse,
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {
refuse (activity) ;

i
builder.setOnCancelListener (
new DialogInterface.OnCancelListener() {
public void onCancel (DialogInterface dialog)
refuse (activity) ;

i

builder.setMessage (readEula(activity));
builder.create() .show() ;

return false;

}

return true;

}

private static void accept(SharedPreferences preferences) {
preferences.edit () .putBoolean (PREFERENCE EULA ACCEPTED,
true) .commit () ;

}

private static void refuse(Activity activity) {
activity.finish();

www.it-ebooks.info

295

http://www.it-ebooks.info/

296 Chapter 11 Data Storage Methods

}

private static CharSequence readEula(Activity activity) {
BufferedReader in = null;
try {
in = new BufferedReader (new InputStreamReader (activity.getAssets().
= open (ASSET _EULA))) ;
String line;
StringBuilder buffer = new StringBuilder();
while ((line = in.readLine()) != null)
buffer.append(line) .append('\n') ;
return buffer;
} catch (IOException e) {
return "";
} finally {
closeStream(in) ;
}

}
/**

* closes the specified stream
*/
private static void closeStream(Closeable stream) {
if (stream != null) {
try {
stream.close() ;
} catch (IOException e) {
// Ignore
}

The Eula class needs to be customized as follows:

1. The actual text of the EULA needs to be put in a text file called EULA (as
specified by the ASSET EULA variable in Listing 11.7) and placed in the assets/
directory of the Android project. This is loaded by the readEula() method of
the Eula class.

2. A few strings need to be specified for the Acceptance dialog box. These can be
collected in the string’s resource file. Example wording is shown in Listing 11.8.

Listing 11.8 res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="hello">Welcome to MyApp</string>
<string name="app name">MyApp</string>
<string name="eula title">License Agreement</string>
<string name="eula accept">Accept</string>
<string name="eula refuse">Don\'t Accept</string>
</resources>

www.it-ebooks.info

http://www.it-ebooks.info/

SQLite Database

Then, any application can automatically have the EULA functionality if the follow-
ing line in the onCreate () method of the main activity of the application is included:

Eula.show(this);

SQLite Database

For more complex data structures, a database provides a quicker and more flexible
access method than flat files or shared preferences. Android provides a built-in database
called SQLite that provides full relational database capability using SQL commands.
Each application that uses SQLite has its own instance of the database, which is by
default accessible only from the application itself. The database is stored in the /data/
data/<package_name>/databases folder of an Android device. A content provider
can be used to share the database information between applications. The steps for
using SQLite follow:

1. Create a database.
. Open the database.

. Create a table.

2

3

4. Create an insert interface for datasets.
5. Create a query interface for datasets.
6

. Close the database.

The next recipe provides a general method to accomplish these steps.

Recipe: Creating a Separate Database Package

A good modular structure of classes is essential for more complicated Android projects.
Here, the database class is put in its own package, com.cookbook.data, so it is easy to
reuse. This package contains three classes: MyDB, MyDBhelper, and Constants.

The MyDB class is shown in Listing 11.9. It contains a SQLiteDatabase instance and
a MyDBhelper class (described in the following) with the methods that follow:

= MyDB () —Initializes a MyDBhelper instance (the constructor).

= open() —Initializes a SQLiteDatabase instance using MyDBhelper. This opens
a writeable database connection. If SQLite throws any exception, it tries to get a
readable database instead.

= close()—Closes the database connection.

= insertDiary()—Saves a diary entry to the database as name-value pairs in
a ContentValues instance and then passes the data to the SQLiteDatabase
instance to do an insert.

= getDiaries() —Reads the diary entries from the database, saves them in a
Cursor class, and returns them from the method.

www.it-ebooks.info

297

http://www.it-ebooks.info/

298

Chapter 11 Data Storage Methods

Listing 11.9 src/com/cookbook/data/MyDB.java

package com.cookbook.data;

import
import
import
import
import
import

public

android.
android.
android.
android.
android.

android

content.ContentValues;
content.Context;
database.Cursor;
database.sglite.SQLiteDatabase;
database.sglite.SQLiteException;

.util.Log;

class MyDB {

private SQLiteDatabase db;
private final Context context;
private final MyDBhelper dbhelper;
public MyDB(Context c) {
context = c;
dbhelper = new MyDBhelper (context, Constants.DATABASE NAME, null,
Constants.DATABASE VERSION) ;
}

public void close()

{
}

public void open() throws SQLiteException

{

db.close();

try {
db = dbhelper.getWriteableDatabase () ;
} catch(SQLiteException ex) {
Log.v("Open database exception caught", ex.getMessage());
db = dbhelper.getReadableDatabase() ;
}
1
public long insertDiary(String title, String content)
try(
ContentValues newTaskValue = new ContentValues();
newTaskValue.put (Constants.TITLE NAME, title);
newTaskValue.put (Constants.CONTENT NAME, content);
newTaskValue.put (Constants.DATE_NAME,
java.lang.System.currentTimeMillis ()) ;
return db.insert (Constants.TABLE NAME, null, newTaskValue);
} catch(SQLiteException ex) {
Log.v("Insert into database exception caught",
ex.getMessage ()) ;
return -1;
}
}
public Cursor getDiaries()
{
Cursor c¢ = db.query(Constants.TABLE NAME, null, null,
null, null, null, null);
return c;

www.it-ebooks.info

http://www.it-ebooks.info/

SQLite Database

The MyDBhelper class, shown in Listing 11.10, extends SQLiteOpenHelper. The
SQLiteOpenHelper framework provides methods to manage database creation and
upgrades. The database is initialized in the class constructor MyDBhelper(). This
requires the context and database name to be specified for creation of the database file
under /data/data/com.cookbook.datastorage/databases and the database schema
version to determine whether the onCreate() or onUpgrade () method is called.

Tables can be added in the onCreate () method using a custom SQL command such as:

create table MyTable (key id integer primary key autoincrement,
title text not null, content text not null,

recordDate long);

Whenever a database needs to be upgraded (when a user downloads a new ver-
sion of an application, for example), the change in database version number calls the
onUpgrade () method. This can be used to alter or drop tables as needed to update the
tables to the new schema.

Listing 11.10 src/com/cookbook/data/MyDBhelper.java

package com.cookbook.data;

import android.content.Context;

import android.database.sglite.SQLiteDatabase;

import android.database.sglite.SQLiteException;

import android.database.sglite.SQLiteOpenHelper;

import android.database.sglite.SQLiteDatabase.CursorFactory;
import android.util.Log;

public class MyDBhelper extends SQLiteOpenHelper{
private static final String CREATE TABLE="create table "+
Constants.TABLE NAME+" ("+
Constants.KEY ID+" integer primary key autoincrement, "+
Constants.TITLE _NAME+" text not null, "+
Constants.CONTENT NAME+" text not null, "+
Constants.DATE_NAME+" long);";

public MyDBhelper (Context context, String name, CursorFactory factory,
int version) ({
super (context, name, factory, version);

}

@0override
public void onCreate (SQLiteDatabase db) {
Log.v ("MyDBhelper onCreate","Creating all the tables");
try {
db.execSQL (CREATE TABLE) ;
} catch(SQLiteException ex) {
Log.v("Create table exception", ex.getMessage());

}

@0override
public void onUpgrade (SQLiteDatabase db, int oldVersion,
int newVersion) {

www.it-ebooks.info

299

http://www.it-ebooks.info/

300 Chapter 11 Data Storage Methods

Log.w("TaskDBAdapter", "Upgrading from version "+oldVersion

+" to "+newVersion

+", which will destroy all old data");
db.execSQL("drop table if exists "+Constants.TABLE NAME);
onCreate (db);

The third file of the com.cookbook.data package is the Constants class, shown in
Listing 11.11. This class is used to hold all the String constants because they are used
in both MyDB and MyDBhelper.

Listing 11.11 src/com/cookbook/data/Constants.java

package com.cookbook.data;

public class Constants {
public static final String DATABASE NAME="datastorage";
public static final int DATABASE_VERSION=1;
public static final String TABLE NAME="diaries";
public static final String TITLE NAME="title";
public static final String CONTENT NAME="content";
public static final String DATE NAME="recordDate";
public static final String KEY ID="_ id";

Recipe: Using a Separate Database Package

This recipe demonstrates SQLite data storage using the previous recipe’s database
package. It also ties together the login screen from the “Changing the Ul Based on
Stored Data” recipe and enables the creation and listing of personal diary entries. First,
a layout XML file for creating diary entries—diary.xml—is shown in Listing 11.12
and its output screen in Figure 11.3.

Listing 11.12 res/layout/diary.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match parent"
android:layout height="match parent"
>
<TextView
android:layout width="match parent"
android:layout height="wrap content"
android:text="Diary Title"

/>

<EditText
android:id="e+id/diarydescriptiontext"
android:layout width="match parent"
android:layout height="wrap content"

/>

www.it-ebooks.info

http://www.it-ebooks.info/

<TextView
android:
android:
android:

/>

<EditText
android:
android:
android:

/>

<Button
android:
android:
android:
android:
android:

/>

</LinearLayout>

SQLite Database

layout_width="match parent"
layout height="wrap content"
text="Content"

id="@+id/diarycontenttext"
layout_width="match_ parent"
layout height="200dp"

id="@+id/submitbutton"
layout width="wrap content"
layout_height="wrap_ content"
text="submit"
textSize="20dp"

submit

Figure 11.3 The diary entry creation screen

The main activity is Diary.java, shown in Listing 11.13. The com.cookbook.data

package needs to be imported, and the MyDB object is declared, initialized, and opened

for use. It also displays the diary.xml layout and handles the “submit” button press to

save data to the database.

www.it-ebooks.info

301

http://www.it-ebooks.info/

302 Chapter 11 Data Storage Methods

Listing 11.13 src/com/cookbook/datastorage/Diary.java

package com.cookbook.datastorage;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.EditText;

import com.cookbook.data.MyDB;

public class Diary extends Activity {
EditText titleET, contentET;
Button submitBT;
MyDB dba;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.diary);
dba = new MyDB(this);

dba.open();

titleET = (EditText)findViewById(R.id.diarydescriptiontext);
contentET = (EditText)findViewById(R.id.diarycontenttext);
submitBT = (Button)findViewById(R.id.submitbutton);

submitBT.setOnClickListener(new OnClickListener() {
public void onClick(View v) {
try {
saveItToDB();
} catch (Exception e) {
e.printStackTrace();
}

D
}

public void saveItToDB() {

dba.insertDiary(titleET.getText().toString(),
contentET.getText().toString());

dba.close();
titleET.setText("");
contentET.setText("");
Intent i = new Intent(Diary.this, DisplayDiaries.class);
startActivity(i);

The DataStorage.java class is the same as in Listing 11.6 with MyPreferences.
class changed to launch Diary.class when the login is successful:

Toast.makeText (DataStorage.this, "login passed!!",
Toast.LENGTH_SHORT).show();
Intent i = new Intent(DataStorage.this, Diary.class);

startActivity(i);

www.it-ebooks.info

http://www.it-ebooks.info/

SQLite Database

Finally, the AndroidManifest.xml file must be updated to include the new activi-
ties, as shown in Listing 11.14.

Listing 11.14 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.cookbook.datastorage"
android:versionCode="1" android:versionName="1.0">
<application android:icon="@drawable/icon"
android:label="@string/app name">
<activity android:name=".DataStorage"
android:label="@string/app name">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activity>
<activity android:name=".MyPreferences" />
<activity android:name=".Diary"/>
</application>
<uses-sdk android:minSdkVersion="7" />
</manifest>

Now that a separate database has been integrated, the layout for the list of entries is
discussed in the next recipe to complete the diary application.

Recipe: Creating a Personal Diary

This recipe leverages the Listview object to display multiple entries from a SQLite
database table. It shows these items in a vertically scrolling list. The Listview needs

a data adapter to tell the view whenever the underlying data changes. Two XML

files need to be created: diaries.xml, which populates the Listview shown in List-
ing 11.15, and diaryrow.xml, which populates the row inside the Listview shown in
Listing 11.16.

Listing 11.15 res/layout/diaries.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match parent"
android:layout height="match parent"-
<ListView
android:layout width="match parent" android:dividerHeight="1px"
android:layout height="match parent"
android:id="1ist">
</ListViews>
</LinearLayout>

www.it-ebooks.info

303

http://www.it-ebooks.info/

304

Chapter 11 Data Storage Methods

Listing 11.16 res/layout/diaryrow.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout android:layout width="wrap content"
android:layout height="wrap content"
android:layout_alignLeft="@+id/name" android:layout below="@+id/name"
xmlns:android="http://schemas.android.com/apk/res/android"
android:padding="12dip">
<TextView android:layout width="wrap content"
android:layout height="wrap content" android:id="@+id/name"
android:layout _marginRight="4dp" android:text="Diary Title"
android:textStyle="bold" android:textSize="1l6dip" />
<TextView android:id="@+id/datetext"
android:layout_width="wrap_ content"
android:layout_height="wrap content" android:text="Date Recorded"
android:textSize="14dip" />
</RelativeLayout>

The activity DisplayDiaries.java extends ListActivity to display a ListView.
Inside this class, two inner classes are defined: MyDiary is a data class to hold the con-
tent of the diary entry (title, content, and date), and DiaryAdapter is a BaseAdapter
class to handle data retrieval from the database (using getData()). The following
methods are derived from BaseAdapter and called by Listview:

= getCount () —Returns how many items are on the adapter
= getItem()—Returns the item specified
= getItemID()—Returns the ID of the item (for this example, there is no item ID)

= getView()—Returns a view for each item

Note that ListView calls getview() to draw the view for each item. To improve
the UI rendering performance, the view returned by getview() should be recycled as
much as possible. This is done by creating a ViewHolder class to hold the views.

When getview() is called, the view currently displayed to the user is also passed in,
which is when it is saved in the ViewHolder and tagged. On subsequent calls to
getView() with the same view, the tag identifies the view as already in the ViewHolder.
In this case, the content can be changed on the existing view rather than a newly cre-
ated one.

The main activity is shown in Listing 11.17, and the resulting view of diary entries
in a ListView is shown in Figure 11.4 on page 307.

Listing 11.17 src/com/cookbook/datastorage/DisplayDiaries.java

package com.cookbook.datastorage;
import java.text.DateFormat;
import java.util.ArrayList;

import java.util.Date;

import android.app.ListActivity;
import android.content.Context;

www.it-ebooks.info

http://www.it-ebooks.info/

import
import
import
import
import
import
import

import
import

SQLite Database

android.database.Cursor;
android.os.Bundle;
android.view.LayoutInflater;
android.view.View;
android.view.ViewGroup;
android.widget.BaseAdapter;
android.widget.TextView;

com.cookbook.data.Constants;
com.cookbook.data.MyDB;

public class DisplayDiaries extends ListActivity {
MyDB dba;
DiaryAdapter myAdapter;
private class MyDiary{

}

public MyDiary(String t, String c, String r){
title=t;
content=c;
recordDate=r;

}

public String title;

public String content;

public String recordDate;

@Override
protected void onCreate(Bundle savedInstanceState) {

}

dba = new MyDB(this);
dba.open();
setContentView(R.layout.diaries);

super.onCreate(savedInstanceState);
myAdapter = new DiaryAdapter(this);
this.setListAdapter (myAdapter);

private class DiaryAdapter extends BaseAdapter {

private LayoutInflater mInflater;
private ArrayList<MyDiary> diaries;
public DiaryAdapter(Context context) {
mInflater = LayoutInflater.from(context);
diaries = new ArrayList<MyDiary>();
getData();
}
public void getData(){
Cursor c¢ = dba.getDiaries();
startManagingCursor(c);
if (c.moveToFirst()){
do{
String title =
c.getString(c.getColumnIndex(Constants.TITLE NAME));
String content =
c.getString(c.getColumnIndex(Constants.CONTENT NAME));
DateFormat dateFormat =
DateFormat.getDateTimeInstance();
String dateData = dateFormat.format(new
Date(c.getLong(c.getColumnIndex(
Constants.DATE NAME))).getTime());
MyDiary temp = new MyDiary(title,content,dateData);

www.it-ebooks.info

305

http://www.it-ebooks.info/

306 Chapter 11 Data Storage Methods

}

diaries.add(temp);
} while(c.moveToNext());

@Override

public int getCount() {return diaries.size();}

public MyDiary getItem(int i) {return diaries.get(i);}
public long getItemId(int i) {return i;}

public View getView(int arg0, View argl, ViewGroup arg2) {

}

final ViewHolder holder;

View v = argl;

if ((v == null) || (v.getTag() == null)) {
v = mInflater.inflate(R.layout.diaryrow, null);
holder = new ViewHolder();
holder.mTitle = (TextView)v.findViewById(R.id.name);
holder.mDate = (TextView)v.findViewById(R.id.datetext);
v.setTag (holder);

} else {
holder = (ViewHolder) v.getTag();

}

holder.mdiary = getItem(arg0);
holder.mTitle.setText (holder.mdiary.title);
holder.mDate.setText (holder.mdiary.recordDate);
v.setTag (holder);

return v;

public class ViewHolder {

MyDiary mdiary;
TextView mTitle;
TextView mDate;

Content Provider

Every application has its own sandbox and cannot access data from other applications.
If access to functions not provided by its own sandbox is required, the application must
explicitly declare permission up front before installation. Android provides an inter-
face called ContentProvider to act as a bridge between applications, enabling them
to share and change each other’s data. A content provider allows a clean separation
between the application layer and the data layer. It requires a permission setting in the

AndroidManifest.xml file and can be accessed using a simple URI model.

Following are some of the native databases Android makes available as content
providers:

= Browser—Read or modify bookmarks, browser history, or web searches.

www.it-ebooks.info

http://www.it-ebooks.info/

Content Provider

E M@ 1:57 PM

-datasturage T

test1
May 11, 2010 10:41:34 PM

hello
May 11, 2010 1

new content
16, 2010 10:

Watching TV

May 16, 20

Figure 11.4 The ListView of diary entries

= CallLog—View or update the call history.

= Contacts—Retrieve, modify, or store personal contacts. Contact information is
stored in a three-tier data model of tables under a ContactsContract object:

= ContactsContract.Data—Contains all kinds of personal data. There is a
predefined set of common data, such as phone numbers and email addresses,
but the format of this table can be application-specific.

= ContactsContract.RawContacts—Contains a set of data objects associated
with a single account or person.

= ContactsContract.Contacts—Contains an aggregate of one or more
RawContacts, presumably describing the same person.
= LiveFolder—A special folder whose content is provided by a content provider.
= MediaStore—Access audio, video, and images.

= Setting—View and retrieve Bluetooth settings, ringtones, and other device
preferences.

= SearchRecentSuggestions—Configure to operate with a search-suggestions
provider.

= SyncStateContract—View the content provider contract for associating data with
a data array account. Providers that want to store this data in a standard way can
use this.

= UserDictionary—Store user-defined words used by input methods during

www.it-ebooks.info

307

http://www.it-ebooks.info/

308

Chapter 11 Data Storage Methods

predictive text input. Applications and input methods can add words to the
dictionary. Words can have associated frequency information and locale
information.

To access a content provider, the application needs to get a ContentResolver
instance to query, insert, delete, and update the data from the content provider, as
shown in the following example:

ContentResolver crInstance = getContentResolver(); //Get a ContentResolver instance
crInstance.query(People.CONTENT URI, null, null, null, null); //Query contacts
ContentValues new Values= new ContentValues();

crInstance.insert(People.CONTENT URI, new Values); //Insert new values
crInstance.delete(People URI, null, null); //Delete all contacts

ContentValues update Values= new ContentValues();
crInstance.update(People URI, update Value, null,null); //Update values

Each content provider needs to have a URI, which is used for registration and
permission access. The URI must be unique from provider to provider and have the
generic suggested format:

content://<package names.provider.<custom ContentProvider name>/<DataPath>

For simplicity, it can also be just content://com.cookbook.datastorage/diaries,
which is used in the next recipe. The UriMatcher class is used in the
ContentProvider interface to ensure that a proper URI is passed.

Recipe: Creating a Custom Content Provider

Having seen how to use a content provider, it is time to integrate one into the diary
project used in previous recipes. This recipe shows how to expose diary entries to
other selected applications. A custom content provider just extends the Android
ContentProvider class, which contains six methods to optionally override:

= query()—Allows third-party applications to retrieve content
= insert()—Allows third-party applications to insert content
= update () —Allows third-party applications to update content
s delete()—Allows third-party applications to delete content

= getType () —Allows third-party applications to read each of the URI structures
supported

= onCreate () —Creates a database instance to help retrieve the content

For example, if other applications are allowed to read only content from the pro-
vider, just onCreate() and query() need to be overridden.

www.it-ebooks.info

http://www.it-ebooks.info/

Content Provider

A custom ContentProvider class is shown in Listing 11.18; it has one URI added
to UriMatcher based on the package com.cookbook.datastorage and the database
table name diaries. The onCreate() method forms a MyDB object with code from
Listing 11.9. It is responsible for the database access. The query() method retrieves
all records from the diaries database, which is passed as the uri argument. In case of a
more specific selection of records, the other arguments of this method would be used.

Listing 11.18 src/com/cookbook/datastorage/DiaryContentProvider.java

package com.cookbook.datastorage;

import android.content.ContentProvider;

import android.content.ContentValues;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.sqglite.SQLiteQueryBuilder;
import android.net.Uri;

import com.cookbook.data.Constants;
import com.cookbook.data.MyDB;

public class DiaryContentProvider extends ContentProvider {

private MyDB dba;

private static final UriMatcher sUriMatcher;

//the code returned for URI match to components

private static final int DIARIES=1;

public static final String AUTHORITY = "com.cookbook.datastorage";

static {
sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
sUriMatcher.addURI(AUTHORITY, Constants.TABLE NAME,

DIARIES);

}

@Override

public int delete(Uri uri, String selection, String[] selectionArgs) {

return 0;

}

public String getType(Uri uri) {return null;}

public Uri insert(Uri uri, ContentValues values) {return nullﬂ

public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {return 0;}

@Override

public boolean onCreate() {
dba = new MyDB(this.getContext());
dba.open();
return false;

}

@Override
public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {
Cursor c=null;
switch (sUriMatcher.match(uri)) {
case DIARIES:

www.it-ebooks.info

309

http://www.it-ebooks.info/

310

Chapter 11 Data Storage Methods

c = dba.getDiaries();
break;
default:
throw new IllegalArgumentException (
"Unknown URI" + uri);

}
c.setNotificationUri(getContext().getContentResolver(), uri);
return c;

The provider needs to be specified in the AndroidManifest.xml file to be acces-
sible, as shown in Listing 11.19.

Listing 11.19 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.cookbook.datastorage"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"
android:label="@string/app name">
<activity android:name=".DataStorage"
android:label="@string/app name">
<intent-filters>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activity>
<activity android:name=".MyPreferences" />
<activity android:name=".Diary"/>
<activity android:name=".DisplayDiaries"/>
<provider android:name="DiaryContentProvider"
android:authorities="com.cookbook.datastorage" />
</applications>
<uses-sdk android:minSdkVersion="7" />
</manifest>

Now the content provider is ready for other applications to use. To test this content
provider, a new Android project can be created called DataStorageTester with main
activity DataStorageTester. This is shown in Listing 11.20. An instance of Content
Resolver is created to query the data from the DataStorage content provider. After a
Cursor 1s returned, the testing function parses the second column of each data entry and
concatenates it into a String to display on the screen using a StringBuilder object.

Listing 11.20 src/com/cookbook/datastorage_tester/DataStorageTester.java

package com.cookbook.datastorage tester;

import android.app.Activity;
import android.content.ContentResolver;

www.it-ebooks.info

http://www.it-ebooks.info/

Content Provider

import android.database.Cursor;
import android.net.Uri;

import android.os.Bundle;
import android.widget.TextView;

public class DataStorageTester extends Activity
TextView tv;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
tv = (TextView) findviewById(R.id.output);
String myUri = "content://com.cookbook.datastorage/diaries";
Uri CONTENT URI = Uri.parse(myUri);
//Get ContentResolver instance
ContentResolver crInstance = getContentResolver();
Cursor c¢ = crlnstance.query(CONTENT URI, null, null, null, null);
startManagingCursor(c);
StringBuilder sb = new StringBuilder();
if (c.moveToFirst()){
do{
sb.append(c.getString(1)).append("\n");

}while(c.moveToNext());

tv.setText (sb.toString());

Inside the main.xml layout file, an ID needs to be added for the Textview output,
as shown in Listing 11.21.

Listing 11.21 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match parent"
android:layout height="match parent"
>

<TextView
android:id="@+id/output"
android:layout width="match parent"
android:layout height="wrap content"
android:text="@string/hello"
/>

</LinearLayout>

Running the testing function displays the diary entry titles, as shown in Fig-
ure 11.5.

www.it-ebooks.info

311

http://www.it-ebooks.info/

312

Chapter 11 Data Storage Methods

M @& 1:58 PM

content provider tester

Figure 11.5 The result of a query in a content
provider to the separate diary application

File Saving and Loading

In addition to the Android-specific data storage methods mentioned previously, the
standard java.io.File Java package is available. This provides for flat file manipula-
tion, such as FileInputStream, FileOutputStream, InputStream, and
OutputStream. An example is reading from and writing to a file:

FileInputStream fis = openFileInput ("myfile.txt");
FileOutputStream fos = openFileOutput ("myfile.txt",
Context.MODE_WORLD_WRITEABLE);

Another example is saving the bitmap camera picture to a PNG file, as follows:

Bitmap takenPicture;

FileOutputStream out = openFileOutput ("mypic.png",
Context.MODE_WORLD_WRITEABLE);

takenPicture.compress (CompressFormat.PNG, 100, out);

out.flush()

out.close();

The files in the resources directories can also be opened. For example, to open
myrawfile.txt located in the res/raw folder, use the following:

InputStream is = this.getResource()

.openRawResource (R.raw.myrawfile.txt);

www.it-ebooks.info

http://www.it-ebooks.info/

File Saving and Loading

Recipe: Using AsyncTask for Asynchronous Processing

To maximize application performance, it is best to ensure that the main thread is not
blocked. Tasks can be offloaded to separate threads that will run in the background.
This recipe uses the AsyncTask class to perform some logic off the main thread.

The AsyncTask class takes three arguments: Params, Progress, and Result. Using
all of them is not required, and in such a case passing Void is acceptable. The four main
methods that are used as logical steps when executed using AsyncTask are as follows:

= onPreExecute () —This method runs on the main thread and is generally used
for setup of the asynchronous task.

= doInBackground () —This method is where the logic of a task is run. A
separate thread is used so that thread blocking does not exist. It uses the
publishProgress() method to pass updates back to the main thread.

» onProgressUpdate () —This method is used during the publishProgress ()
method to update the main thread with visual updates.

= onPostExecute () —This method is called immediately after the
doInBackground() method completes, and it includes a parameter passed from
that method.

Note that when using the AsyncTask class, any threads that are used will be destroyed
when the current view is removed or destroyed.

The code in Listing 11.22 will take a sentence and look for the word meow. As it
processes, the progress bar will be updated.

Listing 11.22 src/com/cookbook/async/MainActivity.java

package com.cookbook.async;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

import android.app.Activity;
import android.os.AsyncTask;
import android.os.Bundle;

import android.view.View;

import android.widget.ProgressBar;
import android.widget.TextView;

public class MainActivity extends Activity {

TextView mainTextView;
ProgressBar mainProgress;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);
mainTextView = (TextView) findViewById(R.id.maintextview);
mainProgress = (ProgressBar) findvViewById(R.id.mainprogress);

www.it-ebooks.info

313

http://www.it-ebooks.info/

314 Chapter 11 Data Storage Methods

private class MyAsyncTask extends AsyncTask<String, Integer, String> {
@Override
protected String doInBackground(String... parameter) {
String result = "";

Pattern pattern = Pattern.compile("meow");
Matcher matcher = pattern.matcher(parameter[0]);

int count = 0;
while (matcher.find()){
count++;
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// Remember to error handle

publishProgress(count + 20);

}

result = "meow was found "+count+" times";

return result;

}

@Override

protected void onProgressUpdate(Integer... progress) {
mainProgress.setProgress (progress([0]);

}

@Override
protected void onPostExecute(String result) {
mainTextView.setText (result);

}

public void executeBAsync(View view) {
MyAsyncTask task = new MyAsyncTask();
task.execute("Meow, meow, meow many times do you have meow?");

}

www.it-ebooks.info

http://www.it-ebooks.info/

12

Location-Based Services

Location—based services (LBSs) enable some of the most popular mobile applications.
Location can be integrated with many functions, such as Internet searching, picture
taking, gaming, and social networking. Developers can leverage the available location
technology to make their applications more relevant and local.

This chapter introduces methods to obtain the device’s location and then track,
geocode, and map it. In addition, there are recipes for overlaying the map with mark-
ers and views.

Location Basics

An application requires the following to access the location services from the Android
system:

= LocationManager—Class providing access to Android system location services

" LocationListener—Interface for receiving notifications from the
LocationManager when the location has changed

= Location—Class representing a geographic location determined at a particular
time

The LocationManager class needs to be initialized with the Android system service
called LOCATION SERVICE. This provides the application with the device’s current
location and movement and can also alert when the device enters or leaves a defined
area. An example of initialization follows:

LocationManager mLocationManager;
mLocationManager = (LocationManager)
getSystemService (Context .LOCATION SERVICE);

After the LocationManager instance is initiated, a location provider needs to be
selected. Different location technologies might be available on the device (such as
Assisted Global Positioning System (AGPS), Wi-Fi, and so on), and a general way to find

www.it-ebooks.info

http://www.it-ebooks.info/

316

Chapter 12 Location-Based Services

a proper location provider is to define the accuracy and power requirements. This can
be done using the Criteria class defined in android.location.Criteria. This enables
the Android system to find the best available location technology for the specified
requirements. Following is an example of selecting a location provider based on criteria:

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY FINE);
criteria.setPowerRequirement (Criteria.POWER_LOW);
String locationprovider =

mLocationManager.getBestProvider(criteria, true);

It 1s also possible to specify the location estimation technology using the location
manager’s getProvider() method. The two most common providers are the satellite-
based GPS (specified by LocationManager.GPS_PROVIDER) and cell-tower/ Wi-Fi
identification (specified by LocationManager.NETWORK_ PROVIDER). The former is
more accurate, but the latter is useful when a direct view of the sky is not available,
such as indoors.

Unless otherwise noted, all recipes in this chapter will use the following two sup-
port files. First, the main layout needs a TextView, as shown in Listing 12.1, for dis-
playing the location data.

Listing 12.1 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent"
>

<TextView
android:id="@+id/tv1"
android:layout width="match parent"
android:layout height="wrap content"
android:text="@string/hello"
/>

</LinearLayout>

Second, permission to use location information needs to be granted in the
AndroidManifest.xml file, as shown in Listing 12.2 (only the package name needs
to be changed for each recipe). For a more accurate location, such as GPS, add the
ACCESS_FINE LOCATION permission. Otherwise, add the ACCESS COARSE LOCATION
permission. It should be noted that ACCESS_FINE LOCATION also enables the same sen-
sors that are used for ACCESS_COARSE_LOCATION.

Listing 12.2 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

www.it-ebooks.info

http://www.it-ebooks.info/

Location Basics

package="com.cookbook.mylocationpackage"
android:versionCode="1"
android:versionName="1.0">
<uses-permission android:name="android.permission.ACCESS_FINE LOCATION"/>

<application android:icon="@drawable/icon"
android:label="@string/app name">
<activity android:name=".MyLocation"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activity>
</applications>
<uses-sdk android:minSdkVersion="4" />

</manifest>

Recipe: Retrieving Last Location

Because it might take time to produce a location estimation, getLastKnownLocation ()
can be called to retrieve the location last saved for a given provider. The location
contains a latitude, longitude, and Coordinated Universal Time (CUT) timestamp.
Depending on the provider, information on altitude, speed, and bearing might also
be included (use getaltitude(), getSpeed(), and getBearing() on the location
object to retrieve these and getExtras() to retrieve satellite information). Latitude
and longitude are displayed to the screen in this recipe. Another option that may be
used is PASSIVE PROVIDER, which is a constant that is a special location provider that
stores the last request for location. The main activity is shown in Listing 12.3.

Listing 12.3 src/com/cookbook/lastlocation/MyLocation.java

package com.cookbook.lastlocation;

import android.app.Activity;

import android.content.Context;

import android.location.Criteria;

import android.location.Location;
import android.location.LocationManager;
import android.os.Bundle;

import android.widget.TextView;

public class MyLocation extends Activity {
LocationManager mLocationManager;

TextView tv;

@Override
public void onCreate(Bundle savedInstanceState) {

www.it-ebooks.info

317

http://www.it-ebooks.info/

318 Chapter 12 Location-Based Services

super.onCreate (savedInstanceState);
setContentView(R.layout.main);
tv = (TextView) findViewById(R.id.tvl);

mLocationManager = (LocationManager)
getSystemService (Context.LOCATION SERVICE);

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY FINE);
criteria.setPowerRequirement (Criteria.POWER_LOW);
String locationprovider =
mLocationManager.getBestProvider(criteria,true);
Location mLocation =
mLocationManager.getLastKnownLocation(locationprovider);

tv.setText("Last location lat:" + mLocation.getLatitude()
+ "long:" + mLocation.getLongitude());

Recipe: Updating Location Upon Change

The LocationListener interface is used to receive notifications when the location has
changed. The location manager’s requestLocationUpdates () method needs to be
called after a location provider is initialized to specify when the current activity is to
be notified of changes. It depends on the following parameters:

= provider—The location provider the application uses

= minTime—The minimum time between updates in milliseconds (although the
system might increase this time to conserve power)

= minDistance—The minimum distance change before updates in meters

= listener—The location listener that should receive the updates

The location listener’s onLocationChanged () method can be overridden to spec-
ify an action to be done with the new location. Listing 12.4 shows how this is put
together for 5 seconds of time and changes of more than 2 meters between updates.
An actual implementation should use larger values between updates to save battery
life. Also note that no heavy processing should be done in the onLocationChanged ()
method. Rather, copy the data and pass it off to a thread.

Listing 12.4 src/com/cookbook/update_location/MyLocation.java

package com.cookbook.update location;

import android.app.Activity;

import android.content.Context;

import android.location.Criteria;

import android.location.Location;

import android.location.LocationListener;

www.it-ebooks.info

http://www.it-ebooks.info/

Location Basics

import android.location.LocationManager;
import android.os.Bundle;
import android.widget.TextView;

public class MyLocation extends Activity implements LocationListener ({
LocationManager mLocationManager;
TextView tv;
Location mLocation;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
tv = (TextView) findViewById(R.id.tvl);

mLocationManager = (LocationManager)
getSystemService (Context.LOCATION SERVICE);

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria.ACCURACY FINE);

criteria.setPowerRequirement (Criteria.POWER_LOW);

String locationprovider =
mLocationManager.getBestProvider(criteria,true);

mLocation =
mLocationManager.getLastKnownLocation(locationprovider);
mLocationManager.requestLocationUpdates (
locationprovider, 5000, 2.0, this);

}

@Override

public void onLocationChanged(Location location) {
mLocation = location;
showupdate();

// These methods are required

public void onProviderDisabled(String arg0) {}

public void onProviderEnabled(String provider) {}

public void onStatusChanged(String a, int b, Bundle c) {}

public void showupdate (){
tv.setText("Last location lat:"+mLocation.getLatitude()
+ "long:" + mLocation.getLongitude());

Note that rather than implementing the LocationListener at the activity level, it
can also be declared as a separate inner class as follows. This can easily be added to any
of the following recipes to provide an update mechanism to the location:

mLocationManager.requestLocationUpdates (

locationprovider, 5000, 2.0, myLocL);

www.it-ebooks.info

319

http://www.it-ebooks.info/

320 Chapter 12 Location-Based Services

private final LocationListener myLocL = new LocationListener(){
@Override
public void onLocationChanged(Location location){
mLocation = location;

showupdate();

// These methods are required

public void onProviderDisabled(String arg0) {}

public void onProviderEnabled(String provider) {}

public void onStatusChanged(String a, int b, Bundle c¢) {}

Recipe: Listing All Enabled Providers

This recipe lists the different location providers available on a given Android device.
One example output is shown in Figure 12.1, but output may be different depending on
the device. The main activity is shown in Listing 12.5. To see a list of possible providers,
the getProviders(true) method is used. To contrast with the previous recipe,
LocationListener is declared as an anonymous inner class without loss of functionality.

' Ml @ 83 pm

37.389W69,-121.905499
{4

EF
57.388074W,-121.8952849000000W

Figure 12.1 Example output of all enabled location
providers at their last known location using an actual
Android device

www.it-ebooks.info

http://www.it-ebooks.info/

Location Basics

Listing 12.5 src/com/cookbook/show_providers/MyLocation.java

package com.cookbook.show providers;
import java.util.List;

import android.app.Activity;

import android.content.Context;

import android.location.Criteria;

import android.location.Location;

import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;

import android.widget.TextView;

public class MyLocation extends Activity {
LocationManager mLocationManager;
TextView tv;
Location mLocation;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
tv = (TextView) findvViewById(R.id.tvl);
mLocationManager = (LocationManager)
getSystemService (Context.LOCATION SERVICE);
Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY FINE);
criteria.setPowerRequirement (Criteria.POWER_LOW);
String locationprovider =
mLocationManager.getBestProvider(criteria,true);

List<String> providers = mLocationManager.getProviders(true);
StringBuilder mSB = new StringBuilder ("Providers:\n");
for(int i = 0; i<providers.size(); i++) {
mLocationManager.requestLocationUpdates(
providers.get(i), 5000, 2.0f, new LocationListener(){

// These methods are required
public void onLocationChanged(Location location) {}
public void onProviderDisabled(String arg0) {}
public void onProviderEnabled(String provider) {}
public void onStatusChanged(String a, int b, Bundle c) {}
i
mSB.append (providers.get(i)).append(": \n");
mLocation =
mLocationManager.getLastKnownLocation(providers.get(i));

if (mLocation != null) {
mSB.append (mLocation.getLatitude()).append(" , ");
mSB.append (mLocation.getLongitude()).append("\n");
} else {

mSB.append ("Location cannot be found");

}
}

tv.setText (mSB.toString());

www.it-ebooks.info

321

http://www.it-ebooks.info/

322

Chapter 12 Location-Based Services

Recipe: Translating a Location to an Address (Reverse Geocoding)

The Geocoder class provides a method to translate from an address into latitude-
longitude coordinates (geocoding) and from latitude-longitude coordinates into an
address (reverse geocoding). Reverse geocoding might produce only a partial address, such
as city and postal code, depending on the level of detail available to the location provider.
This recipe uses reverse geocoding to get an address from the device’s location and
display to the screen, as shown in Figure 12.2. The Geocoder instance needs to be initi-
ated with a context and optionally with a locale if different from the system locale. Here,
it is explicitly set to Locale.ENGLISH. Then the getFromLocation() method provides
a list of addresses associated with the area around the provided location. Here, the maxi-
mum number of returned results is set to one (for instance, the most likely address).

A BHEE0 s2aprm

Figure 12.2 Reverse geocoding example, which
converts latitude-longitude coordinates into an
address

The geocoder returns a list of android.location.Address objects. This translation
to an address depends on a backend service that is not included in the core Android
Framework. The Google Maps API provides a client geocoder service, for example.
However, the translation returns an empty list if no such service exists on the target
device. The address as a list of strings is dumped line by line into a String for display
on the screen. The main activity is shown in Listing 12.6.

Listing 12.6 src/com/cookbook/rev_geocoding/MyLocation.java

package com.cookbook.rev geocoding;
import java.io.IOException;

import java.util.List;
import java.util.Locale;

www.it-ebooks.info

http://www.it-ebooks.info/

import
import
import
import
import
import
import
import
import
import
import

public

Location Basics

android.app.Activity;
android.content.Context;
android.location.Address;
android.location.Criteria;
android.location.Geocoder;
android.location.Location;
android.location.LocationListener;
android.location.LocationManager;
android.os.Bundle;
android.util.Log;
android.widget.TextView;

class MyLocation extends Activity {

LocationManager mLocationManager;
Location mLocation;
TextView tv;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState);

setContentView(R.layout.main);
tv = (TextView) findviewById(R.id.tvl);

mLocationManager = (LocationManager)
getSystemService (Context.LOCATION SERVICE);

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria.ACCURACY FINE);

criteria.setPowerRequirement (Criteria.POWER_LOW);

String locationprovider =
mLocationManager.getBestProvider(criteria,true);

mLocation =
mLocationManager.getLastKnownLocation(locationprovider);

List<Address> addresses;
try {
Geocoder mGC = new Geocoder(this, Locale.ENGLISH);
addresses = mGC.getFromLocation(mLocation.getLatitude(),
mLocation.getLongitude(), 1);
if (addresses != null) {
Address currentAddr = addresses.get(0);
StringBuilder mSB = new StringBuilder("Address:\n");
for(int i=0; i<currentAddr.getMaxAddressLineIndex(); i++) {
mSB.append (currentAddr.getAddressLine(i)).append("\n");

tv.setText (mSB.toString());

} catch(IOException e) {
tv.setText (e.getMessage());
}

}

www.it-ebooks.info

323

http://www.it-ebooks.info/

324

Chapter 12 Location-Based Services

Recipe: Translating an Address to a Location (Geocoding)

This recipe shows how to translate an address to longitude-latitude coordinates, which
is the geocoding process. It is almost the same as the reverse geocoding process used
in the previous recipe, except the getFromLocationName () method is used instead of
getFromLocation(). Listing 12.7 takes a specific address in the String myAddress,
converts it to a location, and then displays it to the screen, as shown in Figure 12.3.

Listing 12.7 src/com/cookbook/geocoding/MyLocation.java

package com.cookbook.geocoding;

import java.io.IOException;
import java.util.List;
import java.util.Locale;

import android.app.Activity;

import android.content.Context;

import android.location.Address;

import android.location.Criteria;

import android.location.Geocoder;

import android.location.Location;

import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;

import android.widget.TextView;

public class MyLocation extends Activity {
LocationManager mLocationManager;
Location mLocation;
TextView tv;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

setContentView(R.layout.main);
tv = (TextView) findvViewById(R.id.tvl);

mLocationManager = (LocationManager)
getSystemService (Context .LOCATION_SERVICE);

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria.ACCURACY FINE);

criteria.setPowerRequirement (Criteria.POWER_LOW);

String locationprovider =
mLocationManager.getBestProvider(criteria,true);

mLocation =
mLocationManager.getLastKnownLocation(locationprovider);

List<Address> addresses;

String myAddress="Seattle,WA";
Geocoder gc = new Geocoder(this);

www.it-ebooks.info

http://www.it-ebooks.info/

Using Google Maps

try {
addresses = gc.getFromLocationName(myAddress, 1);
if(addresses != null) {

Address x = addresses.get(0);
StringBuilder mSB = new StringBuilder("Address:\n");

mSB.append ("latitude: ").append(x.getLatitude());
mSB.append ("\nlongitude: ").append(x.getLongitude());
tv.setText (mSB.toString());

} catch(IOException e) {
tv.setText (e.getMessage());

BHO Q@ 10:01pPm

Figure 12.3 Geocoding example, which converts
an address string into latitude-longitude coordinates

Using Google Maps

Google Maps can be used on the Android system in two ways: user access through a
browser, and application access through the Google Maps API. The Mapview class is a
wrapper around the Google Maps API. To use MapView and version 1 of Google Maps,
the following setup is needed:

1. Download and install the Google API’s SDK as follows:

= Use the Android SDK and AVD manager in Eclipse to download the Google
APL

= Right-click the project that uses the API, and then select Properties.

www.it-ebooks.info

325

http://www.it-ebooks.info/

326

Chapter 12 Location-Based Services

= Select Android, and then select Google API to enable it for this project.

2. Obtain a valid Maps API key to use the Google Maps service as follows (see
http://code.google.com/android/add-ons/google-apis/mapkey.html):

= Use the keytool command to generate an MD5 certificate fingerprint for the
key alias name:

> keytool -list -alias alias name -keystore my.keystore
> result:(Certificate fingerprint (MD5):

94:1E:43:49:87:73:BB:E6:A6:88:D7:20:F1:8E:B5)

= Use the MD5 keystore to sign up for the Google Maps service at http://code
.google.com/android/maps-api-signup.html.

= A Maps API key is provided upon signup. Use this key with Mapview.

3. Include <uses-library android:name="com.google.android.maps" />
in the AndroidManifest.xml file to inform the Android system that the
application uses the com.google.android.maps library from the Google
API’s SDK.

4. Add the android.permission.INTERNET permission to the AndroidManifest.
xml file so the application is allowed to use the Internet to receive data from
the Google Maps service.

5. Include a MapView in the layout XML file.

More specifically, the two supporting files needed for a Google Maps activity follow.
First, the AndroidManifest.xml file needs the proper maps library and permissions,
as shown in Listing 12.8.

Listing 12.8 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.cookbook.using gmaps"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"
android:label="@string/app name">
<activity android:name=".MyLocation"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filters>
</activitys>
<uses-library android:name="com.google.android.maps" />
</application>
<uses-sdk android:minSdkVersion="4" />
<uses-permission android:name="android.permission.INTERNET" />

www.it-ebooks.info

http://code.google.com/android/add-ons/google-apis/mapkey.html
http://code.google.com/android/maps-api-signup.html
http://code.google.com/android/maps-api-signup.html
http://www.it-ebooks.info/

Using Google Maps

<uses-permission android:name="android.permission.ACCESS FINE LOCATION"/>
</manifest>

Second, the layout XML file needs the proper Mapview declared in order to display
the Google map, as shown in Listing 12.9. It can also declare whether the user can
interact with the map by declaring the clickable element, which is false by default.
This is used in the following recipes.

Listing 12.9 res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="match parent"
android:layout height="match parent"
>

<TextView
android:id="@+id/tv1l"
android:layout width="match parent"
android:layout_height="wrap_ content"
android:text="@string/hello"
/>

<com.google.android.maps.MapView
android:id="@+id/mapl"
android:layout width="match parent"
android:layout height="match parent"
android:clickable="true"
android:apiKey="0ZDUMMY13442HjX491CODE44MSsJzfDV1IQ"
/>

</LinearLayout>

Note that there are several changes in Google Maps API version 2:

= Acquiring an API key is now done through the Google API console (https://
code.google.com/apis/console/).

= The following permissions are now required:
android.permission.INTERNET
android.permission.ACCESS_NETWORK_STATE
android.permission.WRITE EXTERNAL_ STORAGE

com.google.android.providers.gsf.permission.READ_GSERVICES

= OpenGL ES version 2 is now required and is obtained by including the following
<uses-features> element:

<uses-feature
android:glEsVersion="0x00020000"

android:required="true"/>

www.it-ebooks.info

327

https://code.google.com/apis/console/
https://code.google.com/apis/console/
http://www.it-ebooks.info/

328 Chapter 12 Location-Based Services

= In the main layout XML file, add the following fragment:
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/map"
android:layout width="match_parent"
android:layout height="match parent"
android:name="com.google.android.gms.maps.MapFragment"/>

= In onCreate (), make sure to use setContentView to the XML file that contains
the fragment. For example:

setContentView(R.layout.main);

For more information about using Google Maps Android API version 2, visit
https://developers.google.com/maps/documentation/android/start.

Recipe: Adding Google Maps to an Application

To display a Google map, the main activity should extend MapActivity, as shown in
Listing 12.10. It also must point to the layout ID for the map in the main layout XML
file, called map1 here. Note that the isRouteDisplayed() method needs to be imple-
mented, too. The resulting display is shown in Figure 12.4.

Listing 12.10 src/com/cookbook/using_gmaps/MyLocation.java

package com.cookbook.using gmaps;

import android.content.Context;

import android.location.Criteria;

import android.location.Location;
import android.location.LocationManager;
import android.os.Bundle;

import android.widget.TextView;

import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;

public class MyLocation extends MapActivity
LocationManager mLocationManager;
Location mLocation;
TextView tv;

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

setContentView(R.layout.main);
MapView mapView = (MapView) findViewById(R.id.mapl);
tv = (TextView) findViewById(R.id.tvl);

mLocationManager = (LocationManager)
getSystemService (Context .LOCATION SERVICE);

www.it-ebooks.info

https://developers.google.com/maps/documentation/android/start
http://www.it-ebooks.info/

}

Using Google Maps

Criteria criteria = new Criteria();
criteria.setAccuracy(Criteria.ACCURACY FINE);
criteria.setPowerRequirement (Criteria.POWER_LOW);

String locationprovider =
mLocationManager.getBestProvider(criteria,true);

mLocation =
mLocationManager.getLastKnownLocation(locationprovider);

tv.setText("Last location lat:" + mLocation.getLatitude()
+ "long:" + mLocation.getLongitude());

@Override
protected boolean isRouteDisplayed() {

// This method is required
return false;

Recipe: Adding Markers to a Map

The ItemizedOverlay class provides a way to draw markers and overlays on top of
a MapView. It manages a set of OverlayItem elements, such as an image, in a list and

ERXfIA BREIE034prm

mylocation

Figure 12.4 Example of Google Maps used from
inside an application

www.it-ebooks.info

329

http://www.it-ebooks.info/

330

Chapter 12 Location-Based Services

handles the drawing, placement, click handling, focus control, and layout optimiza-

tion for each element. Create a class that extends ItemizedOverlay and override

the following;:

addoverlay() —Adds an OverlayItem to the ArrayList. This calls populate(),
which reads the item and prepares it to be drawn.

createItem() —Called by populate() to retrieve the given OverlayItem.
size () —Returns the number of OverlayItem elements in the ArrayList.
onTap () —Callback method when a marker is clicked.

The newly created class is given in Listing 12.11, and Figure 12.5 shows the result.

Listing 12.11 src/com/cookbook/adding_markers/MyMarkerLayer.java

package com.cookbook.adding markers;

import java.util.ArrayList;

import android.app.AlertDialog;
import android.content.DialogInterface;
import android.graphics.drawable.Drawable;

import com.google.android.maps.ItemizedOverlay;
import com.google.android.maps.OverlayItem;

public class MyMarkerLayer extends ItemizedOverlay {

private ArrayList<OverlayItem> mOverlays =
new ArraylList<OverlayItem>();

public MyMarkerLayer (Drawable defaultMarker) ({
super (boundCenterBottom(defaultMarker));
populate();

public void addOverlayItem(OverlayItem overlay) {
mOverlays.add(overlay);
populate();

@Override

protected OverlayItem createItem(int i) {
return mOverlays.get(i);

}

@Override
public int size() {

return mOverlays.size();
}

@Override
protected boolean onTap(int index) {
AlertDialog.Builder dialog =
new AlertDialog.Builder(MyLocation.mContext);
dialog.setTitle (mOverlays.get (index).getTitle());
dialog.setMessage (mOverlays.get (index).getSnippet());
dialog.setPositiveButton("OK",

www.it-ebooks.info

http://www.it-ebooks.info/

Using Google Maps 331

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int whichButton) {
dialog.cancel();
}

E
dialog.setNegativeButton("Cancel",
new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int whichButton) {
dialog.cancel();
}

K
dialog.show();
return super.onTap (index);

B Ml 43 10:58 PM

(® Google Campus

Iam in Google

=

Figure 12.5 Adding a clickable marker to a map

A few comments on the MyMarkerLayer class that are highlighted in Listing 12.11:

= An OverlaylItem container mOverlays is declared to save all the items passed to
the overlay.

= A binding point for where all overlaid items are attached to the map needs to be

defined before any overlay item is drawn. To specify the bottom center of the
map as that point, boundCenterBottom is added to the class constructor.

= The required methods are overridden: addOverlay(), createltem(), size(),
and onTap (). Here, the onTap () method provides a dialog box when the item is
clicked.

www.it-ebooks.info

http://www.it-ebooks.info/

332 Chapter 12 Location-Based Services

The populate() method is added to the end of the constructor and
addoverlay (). This tells the MyMarkerLayer class to prepare all OverlayItem
elements and draw each one on the map.

Now this ItemizedOverlay can be added to the MapActivity created in the previ-
ous recipe. As highlighted in Listing 12.12, the activity:

Retrieves the existing map overlay items using the getOverlays() method from
MapView. The marker layer is added to this container at the end of the function.

Defines an instance of the MyMarkerLayer to handle the overlay items.

Retrieves the latitude and longitude (in degrees) of the address. This defines the
point of interest using a GeoPoint class. GeoPoint takes input in microdegrees,
so the latitude and longitude need to be multiplied by one million (1E6).

Uses a map controller to animate to the GeoPoint and zoom the view. Also, it
enables user-controlled zoom using setBuiltInZoomControls().

Defines an OverlayItem as a message at the GeoPoint of interest.

Adds the item to the MyMarkerLayer using the addoverlayItem() method. It
then puts the now-defined MyMarkerLayer into the existing overlay list retrieved
in step 1.

Listing 12.12 src/com/cookbook/adding_markers/MyLocation.java

package com.cookbook.adding markers;

import java.io.IOException;
import java.util.List;

import android.content.Context;

import android.graphics.drawable.Drawable;
import android.location.Address;

import android.location.Geocoder;

import android.os.Bundle;

import android.widget.TextView;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;

public class MyLocation extends MapActivity {

TextView tv;

List<Overlay> mapOverlays;
MyMarkerLayer markerlayer;
private MapController mc;
public static Context mContext;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

www.it-ebooks.info

http://www.it-ebooks.info/

Using Google Maps

mContext = this;

setContentView(R.layout.main);

MapView mapView = (MapView) findviewById(R.id.mapl);
tv = (TextView) findViewById(R.id.tvl);

mapOverlays = mapView.getOverlays();
Drawable drawable =

this.getResources().getDrawable (R.drawable.icon);
markerlayer = new MyMarkerLayer(drawable);

List<Address> addresses;
String myAddress="1600 Amphitheatre Parkway, Mountain View, CA";

0;
0;

int geolat
int geolon

Geocoder gc = new Geocoder(this);

try {
addresses = gc.getFromLocationName (myAddress, 1);
if (addresses != null) {

Address x = addresses.get(0);

geolat = (int)(x.getLatitude()*1E6);
geolon = (int)(x.getLongitude()*1E6);

} catch(IOException e) {
tv.setText (e.getMessage());
}

mapView.setBuiltInZoomControls(true);

GeoPoint point = new GeoPoint(geolat,geolon);
mc = mapView.getController();
mc.animateTo(point);

mc.setZoom(3);

OverlayItem overlayitem =

new OverlayItem(point, "Google Campus", "I am at Google");
markerlayer.addOverlayItem(overlayitem);
mapOverlays.add(markerlayer);

}

@Override
protected boolean isRouteDisplayed() { return false; }

Recipe: Adding Views to a Map

Developers can add any View or ViewGroup to the MapView. This recipe shows the
addition of two simple elements to a map: TextView and Button. When the button is
clicked, the text in the TextView changes.

These two views are added to MapView by calling the addview() method with
LayoutParams. Here, the location of the elements is specified in (x,y) screen coor-
dinates, but developers can also provide a GeoPoint class to LayoutParams instead.

www.it-ebooks.info

333

http://www.it-ebooks.info/

334 Chapter 12 Location-Based Services

Listing 12.13 shows the main activity, which also requires the MyMarkerLayer class
defined in the previous recipe (Listing 12.11 with the first line changed to reflect the
proper package). This results in the Mapview shown in Figure 12.6.

Listing 12.13 src/com/cookbook/mylocation/MyLocation.java

package com.cookbook.mylocation;

import java.io.IOException;
import java.util.List;

import android.content.Context;

import android.content.Intent;

import android.graphics.Color;

import android.graphics.drawable.Drawable;
import android.location.Address;

import android.location.Geocoder;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.TextView;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
import com.google.android.maps.Overlay;

public class MyLocation extends MapActivity
TextView tv;
List<Overlay> mapOverlays;
MyMarkerLayer markerlayer;
private MapController mc;
MapView.LayoutParams mScreenlLayoutParams;
public static Context mContext;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
mContext = this;
setContentView(R.layout.main);

MapView mapView = (MapView) findViewById(R.id.mapl);
mc = mapView.getController();
tv = (TextView) findviewById(R.id.tvl);
mapOverlays = mapView.getOverlays();
Drawable drawable =
this.getResources().getDrawable (R.drawable.icon);
markerlayer = new MyMarkerLayer(drawable);

List<Address> addresses;
String myAddress="1600 Amphitheatre Parkway, Mountain View, CA";

int geolat
int geolon

0;
0;

www.it-ebooks.info

http://www.it-ebooks.info/

Using Google Maps 335

Geocoder gc = new Geocoder(this);

try {
addresses = gc.getFromLocationName (myAddress, 1);
if(addresses != null) ({

Address x = addresses.get(0);

StringBuilder mSB = new StringBuilder("Address:\n");
geolat =(int)(x.getLatitude()*1E6);

geolon = (int)(x.getLongitude()*1E6);
mSB.append("latitude: ").append(geolat).append("\n");
mSB.append("longitude: ").append(geolon);

tv.setText (mSB.toString());

} catch(IOException e) {
tv.setText (e.getMessage());

}

int x = 50;
int y = 50;
mScreenLayoutParams =
new MapView.LayoutParams(MapView.LayoutParams.WRAP CONTENT,
MapView.LayoutParams.WRAP CONTENT,
X,y,MapView.LayoutParams.LEFT);

final TextView tv = new TextView(this);
tv.setText("Adding View to Google Map");
tv.setTextColor (Color.BLUE);
tv.setTextSize (20);

mapView.addView(tv, mScreenLayoutParams);

x = 250;
y = 250;
mScreenLayoutParams =
new MapView.LayoutParams(MapView.LayoutParams.WRAP CONTENT,
MapView.LayoutParams.WRAP CONTENT,
X, Y,
MapView.LayoutParams.BOTTOM CENTER);

Button clickMe = new Button(this);
clickMe.setText("Click Me");
clickMe.setOnClickListener (new OnClickListener() {
public void onClick(View v) {
tv.setTextColor (Color.RED);
tv.setText("Let's play");

D

mapView.addView(clickMe, mScreenLayoutParams);

}

@Override
protected boolean isRouteDisplayed() { return false; }

www.it-ebooks.info

http://www.it-ebooks.info/

336

Chapter 12 Location-Based Services

O A BEI®G 10:30Pm

mylocation
Address

a map

Recipe: Setting Up a Proximity Alert

LocationManager provides a method to set a proximity alert. This triggers an alert
when a user enters or leaves a defined area. The area is specified by creating variables
for latitude-longitude coordinates as well as a variable containing the radius in meters.
The alert is specified with a PendingIntent that will be launched whenever a user
enters or leaves the specified area. An expiration time, set in milliseconds, for the alert
can also be defined. An example of how to implement this is shown in Listing 12.14.

Listing 12.14 Creating a Proximity Alert without an Expiration

Figure 12.6 Adding a TextView and a button to

double mlatitude=35.41;
double mlongitude=139.46;

float mRadius=500f; // in meters

long expiration=-1; //-1 never expires or use milliseconds
Intent mIntent = new Intent("You entered the defined area");
PendingIntent mFirelIntent

= PendingIntent.getBroadCast(this, -1, mIntent, 0);

mLocationManager.addProximityAlert (mlatitude, mlongitude,

mRadius, expiration, mFireIntent);

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Little Fluffy Location Library

Using the Little Fluffy Location Library

Dealing with location accuracy as well as maintaining sensible battery usage can at
times be tricky. If a user must leave the GPS on in order to get a location fix, the
application will use a considerable amount of battery power. If an application needs
only a rough estimate of where the user is, some battery power can be saved by using
coarse location. However, many applications benefit from using both coarse and fine
location, and this leaves developers trying to plan how to handle getting a location,
balancing which location method to use (fine or coarse), and how to deal with acquir-
ing the location when the application has been moved into the background without
using more battery power than is necessary.

Kenton Price of Little Fluffy Toys Ltd. has written a library for Android 2.1+ called
Little Fluffy Location Library that has taken these issues into account. Projects that
include his library can tap into a broadcast action that contains a LocationInfo object
with the following fields:

= lastLocationUpdateTimestamp—TIime of the last location update in
milliseconds

= lastLocationBroadcastTimestamp—Time of the last location update broadcast
in milliseconds

= lastLat—Latitude of the last update in degrees
= lastLong—Longitude of the last update in degrees

= lastAccuracy—Accuracy of the last update in meters

In addition, the object also contains the following utility methods:
» refresh—Refreshes all fields with the latest information

= anyLocationDataReceived—Determines if any location data has been received
since the last reboot

= anyLocationDataBroadcast—Determines if any location information has been
broadcast since the last reboot

= hasLatestDataBeenBroadcast—Determines if the data contained in the
LocationInfo object has already been broadcast

= getTimestampAgeInSeconds—Returns how old the last location update is in
seconds

To start using the Little Fluffy Location Library, download the
littleflufffylocationlibrary.jar file from http://code.google.com/p/little-fluffy
-location-library/ and include it in the project by copying it into the /libs folder.
After it has been copied, right-click on the file and choose Build Path — Add to
Build Path.

www.it-ebooks.info

337

http://code.google.com/p/little-fluffy-location-library/
http://code.google.com/p/little-fluffy-location-library/
http://www.it-ebooks.info/

338 Chapter 12 Location-Based Services

Recipe: Adding a Notification with the Little Fluffy
Location Library
To use the Little Fluffy Location Library in a project, add the following permissions to
the manifest:
" ACCESS_FINE_LOCATION

= INTERNET

RECEIVE BOOT COMPLETED
" ACCESS COARSE_LOCATION

» ACCESS_FINE_ LOCATION

The following features should also be added to the manifest:
® Android.hardware.location

= Android.hardware.location.gps

The following elements will also be needed inside the application element:

<service android:name="com.littlefluffytoys.littlefluffylocationlibrary.
w» T ocationBroadcastService" />
<receiver android:name="
wcom.littlefluffytoys.littlefluffylocationlibrary.StartupBroadcastReceiver
w' android:exported="true">
<intent-filter>
<action android:name="android.intent.action.BOOT COMPLETED" />
</intent-filters>
</receivers>
<receiver
wandroid:name="com.littlefluffytoys.littlefluffylocationlibrary.PassivelLocation
w»ChangedReceiver" android:exported="true" />
<receiver android:name=".FluffyBroadcastReceiver">
<intent-filter>
<action
wandroid:name="com.cookbook.fluffylocation.littlefluffylocationlibrary.
= ,0CATION CHANGED" android:exported="true"/>
</intent-filter>

</receivers

The added elements will set up a service as well as a receiver that is used to get data
from the Little Flufty Location Library. The last block will set up a broadcast receiver
that will be used to trigger notifications. Listing 12.15 shows the class that is refer-
enced in the manifest file as the receiver.

www.it-ebooks.info

http://www.it-ebooks.info/

Listing

Using the Little Fluffy Location Library

12.15 /src/com/cookbook/fluffylocation/FluffyBroadcastReceiver.java

package com.cookbook.fluffylocation;

import
import
import
import
import
import
import

import
import

public

android.app.Notification;
android.app.NotificationManager;
android.app.PendingIntent;
android.content.BroadcastReceiver;
android.content.Context;
android.content.Intent;
android.util.Log;

com.littlefluffytoys.littlefluffylocationlibrary.LocationInfo;
com.littlefluffytoys.littlefluffylocationlibrary.LocationLibraryConstants;

class FluffyBroadcastReceiver extends BroadcastReceiver({

@Override
public void onReceive(Context context, Intent intent) {

Log.d("LocationBroadcastReceiver", "onReceive: received location update");

final LocationInfo locationInfo = (LocationInfo) intent
.getSerializableExtra(LocationLibraryConstants
. LOCATION_BROADCAST_EXTRA_LOCATIONINFO) ;

// For API 16+ use Notification.Builder instead of Notification
Notification notification = new Notification(R.drawable.ic launcher,
"Locaton updated " +
locationInfo.getTimestampAgeInSeconds() +
" seconds ago", System.currentTimeMillis());

Intent contentIntent = new Intent(context, MainActivity.class);
PendingIntent contentPendingIntent = PendingIntent.getActivity(context,
0, contentIntent, PendingIntent.FLAG UPDATE_CURRENT);

notification.setLatestEventInfo(context, "Location update broadcast received",
"Timestamped " +
LocationInfo
.formatTimeAndDay(locationInfo.lastLocationUpdateTimestamp, true),
contentPendingIntent);

((NotificationManager) context
.getSystemService (Context.NOTIFICATION SERVICE))
.notify(1234, notification);

Listing 12.15 shows the basic setup for a broadcast receiver. Using the Log.d() method

shows that logging has been put in place to help debug the application.

Something else to take into account is how the notification is built. The notify()

method currently uses a value of 1234; this is an ID that is tied to the notification. If
there already is a global notification port, such as NOTIFICATION PORT, it can be sub-
stituted here. The current notification will work from Gingerbread to Honeycomb;

www.it-ebooks.info

339

http://www.it-ebooks.info/

340

Chapter 12 Location-Based Services

however, the Notification constructor has been deprecated starting with API Level 16
(Jelly Bean). For future development, the Notification constructor must be con-
verted to Notification.Builder.

Now that a receiver is in place, an application class needs to be set up. To do this,
make sure that the application has been named. In the manifest file, the application
element should contain the following property:

android:name="com.cookbook.fluffylocation.FluffyApplication"

The full path to the application class must be referenced. In this example snippet, com.
cookbook.fluffylocation.FluffyApplication was used. Listing 12.16 shows the
class file found in this location.

Listing 12.16 /src/com/cookbook/fluffylocation/FluffyApplication.java

package com.cookbook.fluffylocation;
import com.littlefluffytoys.littlefluffylocationlibrary.LocationLibrary;

import android.app.Application;
import android.util.Log;

public class FluffyApplication extends Application {
@Override
public void onCreate() {
super.onCreate();
// Show debugging information
Log.d("FluffyApplication", "onCreate()");

LocationLibrary.showDebugOutput (true);

// Default call would be the following:
// LocationLibrary.initialiseLibrary(getBaseContext(),
// "com.cookbook.fluffylocation");

// For testing, make request every 1 minute, and force a location update
// if one hasn't happened in the last 2 minutes
LocationLibrary.initializeLibrary(getBaseContext(),

60 * 1000, 2 * 60 * 1000, "com.cookbook.fluffylocation");

Listing 12.16 shows an onCreate () method setting up logging by use of
the Log.d() method as well as enabling extra debug information by using
showDebugOutput (true). This debug information will be useful because it indicates
when the library has been loaded and when information is passed to and from the
application. The call to initialize the Little Flufty Location Library can be seen in
both the comments and near the end of the onCreate () method. The call being used
is overkill for getting location data but for development purposes will inform the user
every minute if new location data has been retrieved. Figure 12.7 shows the Little
Flufty Location Library in use.

www.it-ebooks.info

http://www.it-ebooks.info/

2 -I 45 SAT, JANUARY 5

Location update broadcast re.. 21:45

s

Tir mped 21:45.07, Sat

Tasker
No e profiles

USB debugging connected

Touch to disable USB debugging

Connected as a media device
Touch for other USB o

Using the Little Fluffy Location Library

Figure 12.7 A notification displaying information
gathered from the Little Fluffy Location Library

www.it-ebooks.info

341

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

13

In-App Billing

Creating applications that have the ability to up-sell, allow the purchase of items,

or add functionality can fill an important role in the application’s marketing strategy.
Most users are familiar with “pay-to-win” strategies as well as “gifting” systems. Pay-
to-win systems often allow users to download the application for free but penalize
them with lesser power-ups or limited playing time unless they purchase upgrades.
Gifting systems work on a similar principle, allowing users to purchase items for others
instead of powering up themselves.

Until recently, Google did not have an official support system in place for these
models for the Android Platform, and developers had to create their own system or
integrate with third parties for selling additional services or products. Google has since
changed that and now provides a very robust system for billing integration. This chap-
ter explains how to implement the official in-app billing solution from Google.

Google Play In-App Billing

Google has provided an API that developers can use to add in-app billing to applica-
tions. Only digital goods can be sold; no physical items or tangible goods may be sold
with any version of the API. Items that are sold as an in-app purchase are either owned
by the user (such as premium upgrades) or consumed by the user (such as power-ups
or currency). Purchases made with in-app billing are nonrefundable.

There are currently two versions of the API, although version 2 has been suspended
and Google is urging users to upgrade to version 3. While there is not a final date for
when support for version 2 of the API will be dropped, new developers getting started
with the API should use version 3. In early 2013, it was announced that version 3 of
the API would be upgraded to allow for subscriptions and add support for all features
that were introduced in version 2 of the API. API version 2 requires at least Android 1.6
(API Level 4) and requires Google Play version 3.5. API version 3 requires a minimum
installation of Android 2.2 (API Level 8) with Google Play 3.9.16.

A stipulation for using any version of the Google-provided in-app billing APT is
that an application must be offered in the Google Play store and abide by the terms of

www.it-ebooks.info

http://www.it-ebooks.info/

344

Chapter 13 In-App Billing

service for app distribution. The application must also be able to communicate with
the Google Play servers over a network connection.

Developers who wish to use in-app billing through Google Play must have a mer-
chant account. If a developer account has already been created in the Play market, log
in to the developer console (https://play.google.com/apps/publish/) and find the link
to set up a merchant account at Google Checkout. This page shows step by step how
to set up a merchant account and link it to a developer account. A merchant account
can also be set up directly at the Google Checkout Merchant section (www.google
.com/wallet/merchants.html). While testing in-app billing in an application, an actual
credit card must be used; however, any transactions made will be refunded.

Google 1s currently transitioning the developer console; if the link to add a mer-
chant account cannot be found, add a new application and the link should appear
under the Price and Distribution section.

Recipe: Installing Google’s In-App Billing Service

Google provides a library named the Google Play Billing Library. This library contains
all of the classes and interfaces needed to connect to Google’s in-app billing services.
It can be installed from the Android SDK under the Extras section of the SDK Man-
ager. Figure 13.1 shows where this is located.

Installing the Google Play Billing Library adds some folders and files to the SDK
installation directory, including an in-app billing sample application that can be
used for reference. These items can be found in the SDKInstallationDirectory/
extras/google/play_billing/in-app-billing-v03 or SDKInstallationDirectory/
google-marker-billing/in-app-billing-v03 folder on the filesystem. The file

Packages
& Mame AP Rev. Status €
p [|iz) Android 1.5 (API 3)
4 [Extras
] E@ Android Support Library 11 &b Installed
[] @8 Google AdMob Ads SDK & ¥ Notinstalled
[Google Analytics SDK 2 ; Not installed
[] @@ Google Cloud Messaging for Android Library 3§ Notinstatled
[B8 Google Play services 4§ Not installed
[] @@ Google Play APK Expansion Library 2 ; Net installed
8 Google Play Billing Library 3 B Not installed
1 Google Play Licensing Library 2 ¥ Notinstalled
[] @8 Google USB Driver 7 ¥ Not installed
[6@ Google Web Driver 2 ¥ Not installed
O Intel x86 Emulator Accelerator (HAXM) 2 ‘ Not installed
W
Show: Updates/New Installed [| Obsolete Select New or Updates | Install 1 package...
Sort by: (@ AP level () Repository Deselect All Delete packages...

Figure 13.1 Installing the Google Play Billing Library version 3

www.it-ebooks.info

http://www.google.com/wallet/merchants.html
http://www.google.com/wallet/merchants.html
https://play.google.com/apps/publish/
http://www.it-ebooks.info/

Google Play In-App Billing

IInAppBillingService.aidl can be found in that folder and will need to be included
in any project that includes in-app billing.

After the required files are in the development environment, a public key must
be generated. Log in to the developer console and create a new application. Name
the application and click on the Prepare Store Listing button. On the new page that
appears, there are several tabs on the left side of the screen; locate the Service & APIs
tab and copy the generated public license key for the application.

To experiment with the Google-provided sample application TrivialDrive, create
a new project (using the default options, including naming the activity MainActivity)
and copy the assets of the sample application over the new ones. Then, perform a little
maintenance on the application by refactoring the classes to the chosen package name
and then modifying the application manifest XML to match the package name.

To add in-app billing to an existing application, copy the IInAppBillingService
.aidl file into the src directory of the project. Note that if Eclipse is not being used
as the IDE, the following path needs to be created in the src directory and the
IInAppBillingService.aidl file placed into it:

com/android/vending/billing

To confirm proper installation, build the project and make sure the gen folder con-
tains the IinAppBillingService.java file.

Recipe: Adding In-App Billing to an Activity

To provide in-app billing, an application must be able to communicate with the bill-
ing service. The BILLING permission needs to be added to the application manifest
XML file to ensure this functionality. In addition to any of the other permissions that
the app requires, add the following:

<uses-permission android:name="android.permission.BILLING"/>

To establish a connection from an activity to the Google Play in-app billing service,
create an IabHelper object. Pass TabHelper the current context as well as the public
key that was generated in the developer console for the application. Note that when
using the public key, consider building the string at run-time. This will deter users
from replacing the public key with their own and faking out the service to avoid hav-
ing to pay for items in the application.

After creating the IabHelper object, bind the service by calling the startSetup ()
method on it. This will be passed another method, onIabSetupFinishedListener(),
which is called after some asynchronous setup is complete. An object will be returned
to the method that can be used to determine if setup with the in-app billing servers
was successful. If there is a problem, the message is passed back in the object.

When the activity is closed, remove the binding to the in-app billing service.
Doing so will help with overall system resources and performance. This can be done
by calling the dispose () method on the IabHelper object.

www.it-ebooks.info

345

http://www.it-ebooks.info/

346

Chapter 13 In-App Billing

Listing 13.1 shows boilerplate code for establishing in-app billing through Google
Play.

Listing 13.1 In-App Billing Boilerplate

IabHelper mHelper;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity main);

// Consider building the public key at run-time
String base64EncodedPublicKey = "YourGeneratedPublicKey";

mHelper = new IabHelper(this, base64EncodedPublicKey);

mHelper.startSetup(new IabHelper.OnlabSetupFinishedListener() {
public void onIabSetupFinished(IabResult result) {
if (lresult.isSuccess()) {
// Replace Toast with error-handling logic
Toast.makeText (context, "iab fail: "+result, Toast.LENGTH LONG).show();
return;

}

// iab successful, handle success logic here

Dk
1

@Override
public void onDestroy() {
if (mHelper != null) mHelper.dispose();

mHelper = null;

}

Recipe: Listing Items for In-App Purchase

For users to make an in-app purchase, they need to know what is available for pur-
chase. Items that are available for purchase can be set up in the developer console. Each
item is created with an item number or SKU and can cost between $0.99 and $200.
Once there is at least one item for a user to buy, Google Play can be asked program-
matically to list the items through the in-app billing service.

To query Google Play for the list of items for an application, use the query
InventoryAsync () method and then programmatically determine the logic based on
the returned object. To build on Listing 13.1, add a call to the queryInventory
Async () method in the onCreate () method when the in-app billing setup is com-
plete. The following line could be added after a successful installation:

mHelper.queryInventoryAsync (mCurrentInventoryListener) ;

Listing 13.2 shows how to set up a Listener that is used in the queryInventory
Async () method. The listener is used to listen for the inventory transaction back from

Google Play services.

www.it-ebooks.info

http://www.it-ebooks.info/

Google Play In-App Billing

Listing 13.2 Creating a Listener for Inventory Results

IabHelper.QueryInventoryFinishedListener mGotInventoryListener = new
IabHelper.QueryInventoryFinishedListener() {
public void onQueryInventoryFinished(IabResult result, Inventory inventory) {
if (result.isFailure()) {
Toast.makeText (context, "inventory fail: "+result, Toast.LENGTH_LONG).show();
return;

}

// Inventory has been returned, create logic with it

// Do UI updating logic here

To allow a user to purchase an item from an app, use the launchPurchaseFlow()
method. This method takes five arguments: Activity, product ID (String), request
code value (int), listener to notify (OnIabPurchaseFinishedListener), and a pay-
load (string). Google recommends using the payload for storing customer-identifying
information for purchase verification, although this can be any randomly generated
string. The call to this method appears as follows; it can be called from inside a trig-
gering event such as a button click:

mHelper.launchPurchaseFlow(this, YOUR SKU, 12345
mPurchaseFinishedListener, "R4ndOmbl7+0hs7rlnGz/");

When the order succeeds, a Purchase object is returned. This can be handled simi-
larly to how the queryInventoryaAsync() method was handled; set up logic for the
returned Purchase object inside the Listener. Listing 13.3 gives an example of how
this is done.

Listing 13.3 Completing a Purchase

IabHelper.OnIabPurchaseFinishedListener
mPurchaseFinishedListener = new IabHelper.OnIabPurchaseFinishedListener() {
public void onIabPurchaseFinished(IabResult result, Purchase purchase) {
if (result.isFailure()) {
Toast.makeText (context, "Purchase failed: "+result, Toast.LENGTH_LONG).show();
return;
}

if (purchase.getSku().equals(YOUR SKU)) {
// Do something with this item

} else if (purchase.getSku().equals(ANOTHER SKU)) {
// Do something with this item

}

}
ti

www.it-ebooks.info

347

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

14

Push Messages

Push messaging is a communication method in which a connected client is informed
of an event in a remote system by receiving notifications from that system. As opposed
to pull messages, where the client needs to query the remote system at given time
intervals, pushed messages are triggered by the remote system itself without having
the client ask for a status update. Android supports message push through the Google
Cloud Messaging (GCM) library. GCM is available on all Android devices running
API Level 8 or higher, which should include most active devices. This chapter shows
how to integrate with GCM and how to send and receive messages.

Google Cloud Messaging Setup

Google Cloud Messaging relies on the presence of both the Google Play store and a
logged-in Google user account on the device. For sending messages, an API key is
needed. This key is tied to the Google account that will be used for publishing the
application on the Google Play store later, so be sure to set up an account for this first.

Recipe: Preparing for Google Cloud Messaging

First, an API key must be obtained. To do this, log in to the Google developer account
and go to https://code.google.com/apis/console. A new API project will have to be
created to use GCM. If this is the first API project, click the Create Project button.
Otherwise, click the drop-down at the top left and choose Create. In both cases, enter
a name for the project, such as cookbook. After the project is created, a screen similar
to Figure 14.1 will be shown.

Notice two things in this figure. First, there is a huge list of available APIs to work
with. Finding GCM requires scrolling down quite a bit. Second, the URL has changed
to something like https://code.google.com/apis/console/b/0/?pli=1#project:
123456. Make a note of the number behind #project:. It is the unique project number

www.it-ebooks.info

https://code.google.com/apis/console
https://code.google.com/apis/console/b/0/?pli=1#project:123456
https://code.google.com/apis/console/b/0/?pli=1#project:123456
http://www.it-ebooks.info/

350 Chapter 14 Push Messages

Search Images Maps Play YouTube News Gmail Drive More ¥

Google apis

cookbook v | AI(S4) Active(0) Inactive (53) Google Cloud Platform
Overview .
All services

EI=s Select services for the project.

Team
Service Status Notes

AP Access
® Ad Exchange Buyer API @ OFF Courtesy limit: 1,000 requests/day
% Ad Exchange Seller API @ OFF Courtesy limit: 10,000 requests/day
% AdSense Host API @ Requestaccess.. Courtesy limit: 100,000 requests/day
| AdSense Management API @ OFF Courtesy limit: 10,000 requests/day
=d Analytics API @ @ Courtesy limit: 50,000 requests/day
Q audit API @ OFF Courtesy limit: 10,000 requests/day
% BigQuery API @ OFF Courtesy limit: 10,000 requests/day + Pricing

Blogger API v3 @ Request access Courtesy limit: 10,000 requests/day

5 Books aPI @ Courtesy limit: 1,000 requests/day
E' calendar API @ F Courtesy limit: 10,000 requests/day

(-]

@Mé@w

Q Custom Search API Courtesy limit: 100 requestsiday » Pricing

| DFA Reporting API Courtesy limit: 10,000 requests/day

(-]

2 Drive API Courtesy limit: 500,000 requests/day

(-]

& Drive SDK

(-]

S Enterprise License Manager API Courtesy limit: 10,000 requests/day

(-]

7~ Fresbase API Courtesy limit: 100,000 requests/day

(-]

% Fusion Tables API OFF Courtesy limit: 25,000 requests/day

Figure 14.1 API services overview

and will act as the sender ID later on. The sender ID ensures that GCM sends messages
to the correct app even if more than one application with a channel for push messages
exists on the device.

Now, scroll down to Google Cloud Messaging and set the toggle to oN. Agree to
the terms of service on the next page. To get the actual API key, navigate to the API
Access page from the menu on the left. It should look similar to Figure 14.2.

Click the Create New Server Key... button. A window will appear where the
server’s IP address can be entered if needed. It is OK to leave this blank and just press
Create. There will then be a newly created server key on the API Access screen. Save
this number to a text file or write it down; it will be used to send messages later.

Next, the add-on library must be integrated into the project. Open the Android
SKD Manager, go to the Extras section, and tick the check boxes for Google Cloud
Messaging for Android Library. After installing GCM, the directory ./extras/

www.it-ebooks.info

http://www.it-ebooks.info/

Sending and Receiving Push Messages

Search Images Maps Play YouTube News Gmail Drive More ¥

Google apis
cookbook v |
APl Access
Overview To prevent abuse, Google places limits on API requests. Using a valid OAuth token or API key allows you to
Services
T Authorized APl Access
APl Access OAuth 2.0 allows users to share specific data with you (for example,
Reports contact lists) while keeping their usermames, passwords, and other
Qu information private. A single project may contain up to 20 client IDs.

Learn more

Create an OAuth 2.0 client ID...
Simple APl Access

Use API keys to identify your project when you do not need to access user data. Leam more

Key for browser apps (with referers)

APl key:
Referers: Any referer allowed
Activated on: Feb 20, 2013 9:02 AM
Activated by:
Create new Server key... | Create new Browser key... | Create new Android key... | Create new iOS key...

Code Home - P

Figure 14.2 APl Access page

google/gcm will be found in the Android SDK folder. Gather the .jar files from
both the gecm-client and gecm-server subdirectories and put them in the /libs folder
of the project.

Sending and Receiving Push Messages

In most use cases, push notifications would be sent through a server system, informing
the user or the application about events happening somewhere in the backend systems.
There is, however, no immediate need to send push notifications this way. Because
this book is about Android, and because dealing with servers can be a complex topic
on its own, this method will not be used. Instead, a short ping will be sent to the
GCM endpoint from within the app itself. While sending a push notification to one’s
own device might seem useless, sending it from one phone to another could well be
appealing. Adding this functionality to an application would be easy.

Recipe: Preparing the Manifest

A bunch of permissions are needed in order to send and receive messages. First,
android.permission.INTERNET is needed for all data transfers. A WakeLock is
needed to make sure messages are received even when the receiving device is turned
off or in standby, so add android.permission.WAKE_LOCK. GCM relies on Google
accounts, which means android.permission.GET ACCOUNTS is required to access
them. And to be able to actually receive the messages, a custom permission called com.

www.it-ebooks.info

351

http://www.it-ebooks.info/

352

Chapter 14 Push Messages

google.android.c2dm.permission.RECEIVE, defined by the GCM library, must be
added. (Although the service is now known as GCM, the old name of C2DM still
shows up from time to time, which can be confusing.)

On top of those permissions, one permission, your.package.name.C2D_MES-
SAGE, must be created, where your.package.name is the package name given in the
manifest tag. This permission is not needed if only Android 4.1 and higher is targeted.

Next, a BroadcastReceiver class is needed to receive the messages, and an
IntentService class is needed to handle them. The service is declared as <service
android:name=".receive.GCMService"></services. It is recommended that the ser-
vice name be set to your.package.name.GCMService; doing so will make the GCM
library pick up the service name automatically. Because the service name used here has
an additional subpackage, the part of the BroadcastReceiver class that determines the
service name must be overridden, as will be seen later.

The BroadcastReceiver class is named .receive.GCMBroadcastReceiver and
requires its own permission, com.google.android.c2dm.permission.SEND. The
intent filter holds two actions, RECEIVE and SEND, as well as a category of
your.app.package.

Now all that is needed is to add the rest of the application’s activities and other
components. The full AndroidManifest.xml file for this recipe is given in List-
ing 14.1.

Listing 14.1 AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="cc.dividebyzero.android.cookbook.chapterls"
android:versionCode="1"
android:versionName="1.0">

<uses-sdk android:minSdkVersion="8" android:targetSdkVersion="15" />

<permission
android:name="cc.dividebyzero.android.cookbook.chapterl4.permission.C2D_MESSAGE"
android:protectionLevel="signature" />

<uses-permission
android:name="cc.dividebyzero.android.cookbook.chapterl4.permission.C2D_MESSAGE"

/>

<!-- App receives GCM messages -->

<uses-permission android:name="com.google.android.c2dm.permission.RECEIVE" />
<!-- GCM connects to Google Services -->

<uses-permission android:name="android.permission.INTERNET" />

<!-- GCM requires a Google account -->

<uses-permission android:name="android.permission.GET ACCOUNTS" />

<!-- Keeps the processor from sleeping when a message is received -->
<uses-permission android:name="android.permission.WAKE LOCK" />

<!-- Use this for sending out registration and other messages

to a potential server -->
<uses-permission android:name="android.permission.INTERNET"/>

<application android:label="@string/app name"
android:icon="@drawable/ic_launcher"
android:theme="@style/AppTheme"
>

www.it-ebooks.info

http://www.it-ebooks.info/

Receiving Messages

<receiver
android:name=".receive.GCMBroadcastReceiver"
android:permission="com.google.android.c2dm.permission.SEND" >
<intent-filter>
<action android:name="com.google.android.c2dm.intent .RECEIVE" />
<action android:name="com.google.android.c2dm.intent.REGISTRATION" />
<category android:name="my app package" />
</intent-filters>
</receivers

<activity android:name=".Chapterl4">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".GCMPushReceiver"/>

<service android:name=".receive.GCMService"s</services>
</applications>

</manifest>

Receiving Messages

In order to receive messages, a few things need to be done. First, the device needs to
register itself within GCM. The registration ID must then somehow be given to the
custom server, so that the system knows where to send the messages. Because the mes-
sage is sent from the device itself, this ID can just be saved locally. Then, the code in
place that actually reacts to incoming messages needs to be in place. This leaves three
things that must be added: the BroadcastReceiver class, the IntentService class,
and some boilerplate registration code in the main activity.

Recipe: Adding the BroadcastReceiver Class

The BroadcastReceiver class must extend com.google.android.gcm.GCMBroadcast
Receiver in order to work. The good news is that not much needs to be done here
besides returning the name of the service to start; the rest of this process is handled
by the superclass. Because the service is in a subpackage, GCMService.class.get
CanonicalName () must return. Listing 14.2 shows the complete implementation.

Listing 14.2 GCMBroadcastReceiver.java

public class GCMBroadcastReceiver extends
com.google.android.gcm.GCMBroadcastReceiver {

@Override
protected String getGCMIntentServiceClassName (Context context)

www.it-ebooks.info

353

http://www.it-ebooks.info/

354

Chapter 14 Push Messages

return GCMService.class.getCanonicalName();

Recipe: Adding the IntentService Class

The IntentService class must extend GCMBaseIntentService and implement its
abstract methods. The registered and unregistered event hooks that can be used to send
the registration ID to some backend must be handled. The onError event is handled
just by logging errors to the system log. The onMessage event is given an intent that
holds the actual payload of the push message itself in the "msg" extra. Here, the device
can react to incoming messages in any way that makes sense for the application, for
instance, using the incoming push as a wake-up signal for syncing user data. List-

ing 14.3 provides a simple example by sending plain text messages, which are displayed
in a toast.

Listing 14.3 GCMService

public class GCMService extends GCMBaselntentService {
private static final String LOG_TAG = GCMService.class.getSimpleName();

private Handler mToaster = new Handler(new Handler.Callback() {

@Override
public boolean handleMessage (Message msg) {
Toast.makeText (
GCMService.this,
((String) msg.obj),
Toast.LENGTH_ SHORT
) .show();
return true;

b

@Override

protected void onError(final Context ctx, final String errorMsg) {
android.util.Log.v(LOG_TAG, "error registering device; " + errorMsg);

@Override

protected void onMessage(final Context ctx, final Intent intent) ({
android.util.Log.v (LOG_TAG,
"on Message, Intent="
+ intent.getExtras().toString()
)i
Message msg = mToaster.obtainMessage (

www.it-ebooks.info

http://www.it-ebooks.info/

Receiving Messages

intent.getStringExtra("msg")
)i
mToaster.sendMessage (msg) ;

}

@Override
protected void onRegistered(Context ctx, String gcmRegistrationId) {
android.util.Log.v(LOG_TAG,
"onRegistered: gcmRegistrationId>>"
+ gcmRegistrationId + "<<"
)i

sendRegistrationToServer(gcmRegistrationId);

}

@Override
protected void onUnregistered(Context ctx, String gcmRegistrationId) {

sendDeregistrationToServer(gcmRegistrationId);

private void sendRegistrationToServer(String gcmRegistrationId) {
SharedPreferences.Editor editor = getSharedPreferences(
AppConstants.SHARED PREF,
Context.MODE PRIVATE
).edit();

editor.putString(AppConstants.PREF_REGISTRATION ID, gcmRegistrationId);
editor.commit();

private void sendDeregistrationToServer(String gcmRegistrationId) {
SharedPreferences.Editor editor = getSharedPreferences(
AppConstants.SHARED PREF,
Context.MODE PRIVATE
).edit();

editor.clear();
editor.commit();

Because the service was started from a different thread, the incoming message is

channeled to a handler, which then displays the toast. As the handler can only ever
receive one type of message, it can be created with all default values and the text put
as a string into the message.obj field by calling the following:

mToaster.obtainMessage(l, -1, -1, intent.getStringExtra("msg"));

In the onRegistered method, sendRegistrationToServer (gcmRegistrationId)

is called, and in the onUnregistered method, sendDeregistrationToServer
(string gcmRegistrationId) is called. These two custom private methods should

www.it-ebooks.info

355

http://www.it-ebooks.info/

356

Chapter 14 Push Messages

normally be used to make sure the backend system knows the ID of the device as well
as additional information to tie it to a user account. Because the messages are sent from
the same device that will receive them, there is no communication with the network
here; instead, the registration ID is saved into a sharedpreferences file.

Recipe: Registering a Device
All that is left to do to be able to receive messages is register the device once the app

is started. This is done by calling the private method registerGcM() in the onCreate
method of the main activity, as shown in Listing 14.4.

Listing 14.4 registerGCM()

private void registerGCM() {

GCMRegistrar.checkDevice(this);
GCMRegistrar.checkManifest (this);
final String regId = GCMRegistrar.getRegistrationId(this);

if (regId.equals("")) {
GCMRegistrar.register(this, getString(R.string.sender id));
} else {

android.util.Log.v(LOG_TAG, "Already registered");

}

GCM creates a device ID once and stores it safely on the device, so it is a good idea
always to check if an ID already exists before calling GCMRegistrar.register(..).
The sender_id class is the one obtained at GCM registration. This ID is stored in
an extra XML file in /res/values called sender_id.xml. It is declared as a string
resource, so it gets added to the R.string class. This is shown in Listing 14.5.

The calls checkDevice() and checkManifest() are mandatory and ensure that the
device and application are configured correctly to use GCM. They throw an exception
if the check is not successful.

Listing 14.5 sender_id.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="sender 1d">12345678</string>
</resources>

Sending Messages

Sending a message to a client is done by delivering the target ID and the message pay-
load to the GCM servers. Usually one would do that from an application’s backend
systems. Several libraries for common web languages are available. The Java library

www.it-ebooks.info

http://www.it-ebooks.info/

Sending Messages

will be used here for connecting to the GCM servers directly from the device. A small
activity will be used to read in text and hand it over to the GCM servers by using

an AsyncTask for communication. The gecm-server.jar file obtained while installing
the GCM add-on earlier will be used, so make sure it is in the /libs directory of

the application.

Recipe: Sending Text Messages

Here, simple text messages, read from an input field in the layout, will be sent when-
ever the Send button is pressed. Listing 14.6 shows the very simple layout used.

Listing 14.6 gcm_acv.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:orientation="vertical"
>
<EditText
android:id="@+id/message"
android:layout height="wrap content"
android:layout width="match parent"
/>
<Button
android:id="@+id/message"
android:layout height="wrap content"
android:layout width="match parent"
android:text="send"
android:onClick="sendGCMMessage"
/>

</LinearLayout>

To send the message, an AsyncTask class is used that gets fired in the
sendGCMMessage () method defined as the onClick target in the XML layout. The
message string is read from the text field and the target ID from the shared prefer-
ences, where the service stored the registered device ID. The layout gets loaded in
onCreate. The main activity is shown in full in Listing 14.7.

Listing 14.7 Main Activity

public class GCMPushReceiver extends Activity{
private static final String LOG_TAG = GCMPushReceiver.class.getSimpleName();
private EditText mMessage;

public void onCreate(Bundle savedState) {
super.onCreate (savedState);
setContentView(R.layout.gcm acv);
mMessage = (EditText) findvViewById(R.id.message);

www.it-ebooks.info

357

http://www.it-ebooks.info/

358 Chapter 14 Push Messages

registerGCM();

private void registerGCM() {

GCMRegistrar.checkDevice (this);
GCMRegistrar.checkManifest(this);
final String regId = GCMRegistrar.getRegistrationId(this);

if (regId.equals("")) {
GCMRegistrar.register(this, getString(R.string.sender id));
} else {

android.util.Log.v(LOG_TAG, "Already registered");

}

public void sendGCMMessage(final View view) {
final String message = mMessage.getText().toString();
SendGCMTask sendTask = new SendGCMTask(getApplicationContext());
SharedPreferences sp = getSharedPreferences(
AppConstants.SHARED PREF,
Context.MODE_PRIVATE
)i

final String targetId = sp.getString(
AppConstants.PREF_REGISTRATION_ID,
null
)i

sendTask.execute (message, targetId);

Recipe: Sending Messages with AsyncTask

The good news about using the GCM server library is that developers don’t have to
deal with things like HTTP connections themselves. Instead, they can just initialize a
Sender object with the API key obtained when registering for GCM. The API key is
stored in an extra XML file as a string resource, just like the sender ID, as can be seen
in Listing 14.8.

Listing 14.8 api_key.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="api key">12345678</string>
</resourcess>

The message itself is created by a simple builder pattern. It is then passed to the
sender for processing with sender.sendNoRetry(gcmMessage, targetId). That’s

www.it-ebooks.info

http://www.it-ebooks.info/

Sending Messages

basically all there 1s to it. Some result handling and boilerplate code is needed, which
is shown in Listing 14.9.

Listing 14.9 SendGCMTask.java

public class SendGCMTask extends AsyncTask<String, Void, Booleans {

private static final int MAX RETRY = 5;

private static final String LOG TAG = SendGCMTask.class.getSimpleName();
private Context mContext;

private String mApiKey;

public SendGCMTask(final Context context)
mContext = context;
mApiKey = mContext.getString(R.string.api key);

@Override
protected Boolean doInBackground(String . . . params) {
final String message = params[0];
final String targetId = params[1];
android.util.Log.v(LOG_TAG,
"message>>" + message + '"<< "
+"targetId>>"+ targetId + "<<"
)i

Sender sender = new Sender(mApiKey);
Message gcmMessage = new Message.Builder()
.addData("msg", message)

Jouild();

Result result;

try {
result = sender.sendNoRetry(gcmMessage, targetId);

if (result.getMessageId() != null) ({
String canonicalRegld = result.getCanonicalRegistrationId();

SharedPreferences.Editor editor = mContext
.getSharedPreferences(
AppConstants.SHARED PREF,
Context.MODE_PRIVATE
).edit();
String error = result.getErrorCodeName();

if (canonicalRegId != null)
// Same device has more than one registration ID: update
// database
editor.putString(

www.it-ebooks.info

359

http://www.it-ebooks.info/

360

Chapter 14 Push Messages

AppConstants.PREF _REGISTRATION_ ID,
canonicalRegId
); editor.commit();

} else if (error != null
&& error.equals(Constants.ERROR NOT REGISTERED)) {
// Bpplication has been removed from device: unregister
// database
editor.clear();
editor.commit();

return true;

} catch (IOException e) {
// TODO autogenerated catch block
e.printStackTrace();

return false;

Context is given in the constructor and is needed only to read the API key from
the resource file. The message string and the target device ID are passed to the execute
method from the activity. The corresponding callback can be seen in Listing 14.7.

The Message.Builder.addData(..) method is used to set the message payload.
The key used for setting the string message is the same one used in the service in List-
ing 14.3 to retrieve the string from the incoming push message.

The result of the send method will flag errors by setting the corresponding fields,
and a check is run to see if the .getErrorCodeName () value equals ERROR_NOT
REGISTERED. This means the device is no longer available to receive push messages
(or never was), and its ID should be removed from the database. This is done by clear-
ing the shared preferences. If result.getCanonicalRegistrationId() is not null,
the device has been registered more than once, and the canonical ID should then be

used for sending messages. In that case, the shared preferences are updated to the new
device ID.

www.it-ebooks.info

http://www.it-ebooks.info/

15

Android Native Development

This chapter shows two different strategies for integrating native C code into Android
applications. One strategy is to use Java Native Interface (JNI) to write wrapper
functions in C and then Java to access a library of C code. The other strategy is to
make use of the native activity, which allows an application not to have any Java code
at all.

Android Native Components

When a computationally intensive function is critical to an Android application, it
might be worthwhile to move the intensive computation to native C or C++ for
efficiency. The Android Native Development Kit (NDK) exists to help in the devel-
opment of a native component. The NDK is a companion to the Android SDK and
includes a bundle of libraries that can be used to build C/C++ libraries. Steps to set
up and build an Android native component follow:

1. Download the Android NDK from http://developer.android.com/sdk/ndk/,
which includes detailed documents on usage.

2. Install the Eclipse C/C++ Development Tooling (CDT).

3. Download the Eclipse NDK plugin from https://dl-ssl.google.com/android
/eclipse/.

4. Set the NDK path by going to Eclipse — Window — Preferences
— Android — NDK — set path to NDK.

5. Create an Android project through the normal means.

6. Right-click and select Android Tools — Add Native Support.
7. Give a name to the native library.
8

. Click Finish. The /jni folder, an Android.mk make file, and a stub cpp file
are created.

9. Run Project — Build Project to compile both C and Java files.

www.it-ebooks.info

http://developer.android.com/sdk/ndk/
https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
http://www.it-ebooks.info/

362

Chapter 15 Android Native Development

Using the Eclipse IDE, the native libraries are properly bundled with the application
upon build.

Recipe: Using Java Native Interface

In this recipe, a C program is used to create a numerical factorial function. Then, an
activity in Java calls the C library function and shows the result on the screen. First of
all, the C program is shown in Listing 15.1.

Listing 15.1 jni/cookbook.c

#include <string.h>
#include <jni.h>

jint factorial(jint n){
if(n == 1){
return 1;

}

return factorial(n-1)*n;

}

jint Java com cookbook advance ndk ndk factorial(JNIEnv* env,
jobject this, jint n) {
return factorial(n);

Inside this C program, there is a special type, jint, which is the Java type defined in
C/C++. This provides a way to pass native types to Java. If return values from Java
to C are necessary, a casting can be done. Table 15.1 summarizes the type mapping
between Java and native description.

There are two functions inside the C program. The first factorial function is
used to do actual calculations. The second function, named Java_com cookbook

Table 15.1 Type Mapping between Java and Native

Java Type in C/C++ Native Type Description
jboolean unsigned char Unsigned 8 bits
jbyte signed char Signed 8 bits
jchar unsigned short Unsigned 16 bits
jshort short Signed 16 bits
jint long Signed 32 bits
jfloat float 32 bits

jlong long long _int64 Signed 64 bits
jdouble double 64 bits

www.it-ebooks.info

http://www.it-ebooks.info/

Android Native Components

advance ndk ndk factorial, will be called from within a Java class. The name of
the function should always be defined as the JAVA CLASSNAME METHOD format for
interface.

There are three parameters in the second function: a JNIEnv pointer, a job-
ject pointer, and a Java argument the Java method declares. INIEnv is a Java Native
Interface pointer passed as an argument for each native function. These functions are
mapped to a Java method that is the structure that contains the interface to the Java
Virtual Machine (JVM). It includes the functions necessary to interact with the JVM
and to work with Java objects. In this example, it does not use any Java functions. The
only argument needed for this program is the Java argument jint n.

The make file for the builder is shown in Listing 15.2. It should be placed in the
same location as the C program. It contains a definition of LOCAL_PATH for the builder
and a call to CLEAR VARS to clean up all LOCAL * variables before each build. Then,
LOCAL_MODULE is identified as the name of the custom library
ndkcookbook, which is used to identify the source code files to build. After all these
declarations, it includes BUILD SHARED LIBRARY. This is a generic make file for build-
ing a simple program. More detailed information on the make file format is provided
in the ANDROID-MK.HTML file under the docs/ directory of the NDK.

Listing 15.2 jni/Android.mk

LOCAL PATH := $(call my-dir)
include $(CLEAR_VARS)

LOCAL_MODULE := ndkcookbook
LOCAL_SRC_FILES := cookbook.c

include $(BUILD SHARED LIBRARY)

The next step is to build the native library. With NDK-r4 or higher, calling the
provided build script ndk-build at the NDK root directory of the project builds
the libraries with an associated make file. For older versions, the command make
APP=NAME_OF APPLICATION is needed. After the libraries are built, a lib/ folder is cre-
ated containing the native library libndkcookbook.so. In NDK-r4, it also contains
two GDB files that help with debugging.

The Android activity that uses this library calls System.loadLibrary() to load the
ndkcookbook library. Then, the native function needs to be declared. This is shown
in Listing 15.3. The output is shown in Figure 15.1.

Listing 15.3 src/com/cookbook/advance/ndk/ndk.java

package com.cookbook.advance.ndk;
import android.app.Activity;

import android.widget.TextView;
import android.os.Bundle;

www.it-ebooks.info

363

http://www.it-ebooks.info/

364 Chapter 15 Android Native Development

public class ndk extends Activity ({

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
TextView tv = new TextView(this);
tv.setText (" native calculation on factorial :"+factorial(30));
setContentView(tv);

}

public static native int factorial(int n);

static {
System.loadLibrary("ndkcookbook");

}

M @ 12:30 AM
Hellojni’"

native calculation on factorial :1409286144

Figure 15.1 Output of the NDK application

Recipe: Using the NativeActivity

NativeActivity is a helper class that handles communication between C code and the
Android Framework. This allows applications to be written using only C. The steps to
create a project using a native activity follow:

1. Create an Android project through the normal means in Eclipse.
2. Right-click and select Android Tools — Add NativeSupport.
3. Give a name to the native library.

4. Press Finish. The /jni folder, an Android.mk make file, and a stub cpp file
are created.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Native Components

5. Edit the manifest to hold a reference to the native activities.
6. Edit the Android.mk file to add libraries if needed.
7. Run Project — Build Project to compile both C and Java files.

To declare a native activity, simply drop it in the AndroidManifest.xml file as
seen in Listing 15.4.

Listing 15.4 AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.cookbook.nativeactivitydemo"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="14"
android:targetSdkVersion="17" />

<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app name"
android:theme="@style/AppTheme"
android:hasCode="true"
>

<activity android:name="android.app.NativeActivity"
android:label="@string/app name"
android:configChanges="orientation|keyboardHidden"
>

<meta-data android:name="android.app.lib name"
android:value="native-activity"
/>
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activitys>

</applications>

</manifest>

The android:name attribute of the activity tag must be set to android.app.Native
Activity. The metadata tag tells the system which library to load. Its android:name
attribute must be set to "android.app.lib name". The android:value attribute of
the metadata tag must be in the filename of the module without the lib prefix and .so
suffix. Filenames must not have spaces in them and must be all lowercase. To ensure
that the compiled native libs are exported and installed properly, set the application
attribute android:hasCode="true".

www.it-ebooks.info

365

http://www.it-ebooks.info/

366

Chapter 15 Android Native Development

There are two ways to implement a native activity. The first way is to use the
native_activity.h header directly, which defines all structs and callbacks needed
to implement the activity. The second and recommended way is to use android_
native_app_glue.h. The app glue interface ensures that callbacks are handled in a
way that does not block the UT thread. Native applications still run in their own vir-
tual machine, and all callbacks to the activity are executed on the application’s main
thread. If those callbacks are handled in a way that blocks the UI thread, the app will
receive Application Not Responding errors. The easiest way to solve this is by using
app glue interfaces. App glue creates another thread that will handle all callbacks and
input events and send them as commands into the code’s main function.

To be able to compile code with app glue, it must be added as a static library to
the Android.mk file. Here, the log library and some OpenGL libs are also added.
Because a native activity is responsible for drawing its own window, EGL will most
likely be used for drawing things on the screen. The Android.mk file is shown in
Listing 15.5.

Listing 15.5 /jni/Android.mk

LOCAL PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := NativeActivityDemo
LOCAL_SRC_FILES := NativeActivityDemo.cpp
LOCAL_LDLIBS := -landroid -llog -1EGL -1GLESv1_CM

LOCAL STATIC LIBRARIES := android native app_ glue

include $(BUILD SHARED LIBRARY)
$(call import-module,android/native app glue)

A native activity needs to have a void android main(struct android_app*
androidapp) function. This will act as the main entry point for starting the activity.
It works very similarly to main functions from Java threads or other common event-
based systems, meaning a main event loop of while (1) is needed to ensure that the
code keeps running until it is stopped from the outside.

The android_app struct is a helper class that handles some of the boilerplate,
needed for running. Its userData field can be used for anything. In this case code it
should hold the current state information of the activity. As the same instance of the
android_app is passed to all the following functions, the state can always be retrieved
from here.

The other two things that need to be set into this struct are two function point-
ers: one for handling input events (such as touch or keyboard events) and one for
handling the activity lifecycle. Because those are defined as static later in the code,
here they can just be passed as pointers. The android main function is shown in
Listing 15.6.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Native Components 367

Listing 15.6 android_main

void android main(struct android app* androidipp) {
struct activity state activity;

// Make sure glue isn't stripped
app_dummy () ;

memset (&activity, 0, sizeof(activity));
androidApp->userData = &activity;
androidApp->onAppCmd = handle lifecycle cmd;
androidApp->onInputEvent = handle input;
activity.androidApp = androidApp;

LOGI("starting");

if (androidApp->savedState != NULL) {
// We are starting with a previous saved state; restore from it
activity.savedState = *(struct saved state*)androidApp->savedState;

}

// Loop waiting for stuff to do

while (1)
// Read all pending events
int ident;
int events;
struct android poll source* source;

// Wait for events
while ((ident=ALooper pollAll(-1, NULL, &events,(void**)&source)) >= 0) {

// Process this event
if (source != NULL)
source->process (androidApp, source);

// Check if the app has exited

if (androidApp->destroyRequested != 0) {
close _display(&activity);
return;

Calling app_dummy () first ensures that app glue is not stripped from the library.
This call should always be in a native activity. The pointers for event handling are
set, the state is saved, and then the event loop is started. If the application is stopped,

www.it-ebooks.info

http://www.it-ebooks.info/

368

Chapter 15 Android Native Development

the android_app->destroyRequested flag will be set, and the loop will have to

be exited.
The activity lifecycle is handled in the handle_lifecycle_cmd function given

to app glue as a pointer. There are integer command constants for all lifecycle events
of an activity, as well as some window-related commands for focus and resizing. The

handle lifecycle cmd function is shown in Listing 15.7.

Listing 15.7 handle_lifecycle_cmd

static void handle lifecycle cmd(struct android app* app, int32 t cmd) {

struct activity state* activity = (struct activity state*)app->userData;

switch (cmd)
case APP_CMD SAVE STATE:
// The system has asked us to save our current state. Do so.

activity->androidApp->savedState = malloc(sizeof(struct saved state));

((struct saved state)activity->androidApp->savedState) =
activity->savedState;

activity->androidApp->savedStateSize = sizeof(struct saved state);

break;

case APP_CMD_INIT WINDOW:

// activity window shown, init display

if (activity->androidApp-s>window != NULL) {
init_display(activity);
draw_frame(activity);

}

break;
case APP_CMD_TERM_WINDOW:
// activity window closed, stop EGL
close display(activity);
break;
case APP_CMD_INPUT CHANGED:

break;

case APP_CMD_START:
//activity onStart event
LOGI("nativeActivity: onStart");
android app pre exec_cmd(app, cmd);
break;

case APP_CMD RESUME:
//activity onResume event
LOGI("nativeActivity: onResume");
android app pre exec_cmd(app, cmd);
break;

case APP_CMD_PAUSE:
//activity onPause event
LOGI("nativeActivity: onPause");
android app pre exec cmd(app, cmd);
break;

case APP_CMD_STOP:
//activity onStop event
LOGI("nativeActivity: onStop");
android app pre exec_cmd(app, cmd);
break;

www.it-ebooks.info

http://www.it-ebooks.info/

Android Native Components

case APP_CMD DESTROY:
//activity onDestroy event
LOGI("nativeActivity: onDestroy");
android_app pre_exec_cmd(app, cmd);
break;

The init and termination events here are acted on only for initializing the EGL dis-
play. All other lifecycle events are just logged to the system log with LOGI ("message").
The call to android app _pre exec_cmd(app, cmd); serves as the replacement for
the mandatory super.onCreate, super.onPause, .., callsin Java code.

The other function needed to react to events is handle input. The function
arguments are a pointer to the app and a pointer to the event. The event type can be
extracted by calling ATnputEvent getType (event), which will return an integer
constant. The coordinates of the touch event are read by calling AMotionEvent
getX(..) or AMotionEvent getY(..), respectively. This is shown in Listing 15.8.

Listing 15.8 handle_input

static int32 t handle input(struct android app* app, AlInputEvent* event) {
struct activity state* activity = (struct activity state*)app->userData;
if (AInputEvent getType(event) == AINPUT EVENT TYPE MOTION) {
activity->savedState.x = AMotionEvent getX(event, 0);
activity->savedState.y = AMotionEvent getY(event, 0);
draw_frame (activity);
return 1;

}

return 0;

It is evident that there is more boilerplate code to be written in C, even if the app
glue library takes away some of it. The benefits of the native activity are that it allows
a whole application to be written purely in C/C++, which makes it ideal for heavy
computation or cross-platform development.

www.it-ebooks.info

369

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

16

Debugging

Debugging software can easily take as long as or longer than the development itself.
Understanding the different ways to debug common problems can save a lot of time
and effort. This chapter introduces the basic approach of debugging Android applica-
tions, and it examines the many tools available. First, the common Eclipse IDE debug-
ging tools are discussed. Then, the Android tools provided from the Android SDK are
discussed. Finally, the tools available on the Android system are discussed. Each appli-
cation is different, so the appropriate debugging methodology depends on the charac-
teristics of the application itself.

Android Test Projects

The Android testing framework gives developers a set of tools that can be used for
application testing. The testing suites for Android are based on JUnit. Those familiar
with JUnit will take comfort in knowing that it can be used to test classes of a project
that do not extend Android components. An Eclipse installation that contains Android
Development Tools (ADT) will already have all of the tools needed to create test
suites. Without Eclipse or ADT, tests can be created using the android command-
line tool.

Test projects are created as stand-alone projects that use instrumentation to connect
to the application that will be tested.

Recipe: Creating a Test Project

It 1s strongly recommended that test projects be created using Eclipse, as all of the
tooling required to set up a test (including directory structure) is built in.

To get started from Eclipse, choose File — New — Other from the menu. In the
wizard that appears, choose the Android section and click on Android Test Project,
then click the Next button. Figure 16.1 shows the New Project wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

372 Chapter 16 Debugging

() New Project - 0 “

Select a wizard <
Create an Android Test Project
—_——
Wizards:
| type filter text |
> [= General
4 [= Android

&2 Android Application Project
]% Android Project from basting Code
% Android 5ample Project
Ji Android Test Project
b= O+
I = Java
[+ (= Baamples

Figure 16.1 New Project wizard

In the Project Name field, choose a name that is suitable to what the test will be for.
This can be as simple as the name of the application to be tested with the word Test
appended to it, or it may be as complex as what type of testing the application will do
and for what project. For this project, the name HelloWorldTest will be used. The
location of where the project will be stored may be changed. Use the default settings
and click the Next button. Figure 16.2 shows the naming step of the project.

The next step of the wizard allows a choice of the target project with which the test
project will be working. If multiple projects are open, make sure to select the right
one. Figure 16.3 shows an example target of MainActivity, which is the only project
open in this Eclipse workspace.

To pick a specific build level as a target, click the Next button and choose from a
list. Figure 16.4 shows the build target portion of the wizard. If there is no specific
build level to test, click the Finish button.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Test Projects

© New Android Test Project - 0

Create Android Project

Select project name and type of project

Project Name: HeIIoWorIdTe;tI

Use default location
Location: Ch\Users\PhilDocuments\workspace-adt\HelloWorldTest Browse...
Working sets
[]Add project to working sets

Warking sets: Select...

@ | < Back || Next > ‘ | Finish ‘ i Cancel

Figure 16.2 Naming the test project

Recipe: Populating Unit Tests on Android

Once a test project has been created, it is time to populate it with the tests to be
run. This is done by adding classes to the test package, which is found under
src/com.yourtargetproject.projectname.test, where com.yourtargetproject.projectname
refers to the package name of the target project. For the superclass, put in
ActivityInstrumentationTestCase2<MainActivitys>, where MainActivity
is the name of the activity in the target project to be used. ActivityInstrumentation
TestCase2 is a testing class that is used to test a single activity.

When the class has been created, use an import for the activity to be tested and
add a test case constructor. The constructor should be set up as follows:

public HelloWorldTest(Class<MainActivitys> activityClass) {

super (activityClass);

www.it-ebooks.info

373

http://www.it-ebooks.info/

374

Chapter 16 Debugging

© New Android Test Project - O

Select Test Target

Choose a project to test

() This project
(®) An existing Android project:

IZ MainActivity

@ | <Back | Net> || Ensh || Cancel

Figure 16.3 Choosing the target project

The setUp() method is used for every test and is used to set variables and run any
cleanup from previous tests. For those familiar with JUnit testing, it is worth mention-
ing that the tearDown () method can also be used. Listing 16.1 is a skeleton that can be
used to create and use the setUp () method:

Listing 16.1 Maintenance Methods Used in Testing

protected void setUp() throws Exception {
super.setUp();

setActivityInitialTouchMode (false);
mActivity = getActivity();
// Test something in the activity by using mActivity.findViewById()

}

protected void tearDown() throws Exception {
super.tearDown();

www.it-ebooks.info

http://www.it-ebooks.info/

Android Test Projects

© New Android Test Project
Select Build Target

Choose an 5DK to target

Build Target
Target Name Vendor Platform API,
[] Android 2.2 Andreid Open Source Project 2.2 8
[] Google APIs Google Inc. 22 8
] Android 23.3 Android Open Source Project 2.3.3 10
[] Google APIs Google Inc. 233 10
[] Android 3.0 Android Open Source Project 3.0 n
[] Google APls Google Inc. 3.0 1
[] Android 3.1 Andreid Open Source Project 3.1 12
[] Google APIs Google Inc. 3.1 12
[] Android 3.2 Android Open Source Project 3.2 13
[] Google APIs Google Inc. 3.2 13
[] Google TV Addon Google Inc. 3.2 13
[] Android 4.0.3 Android Open Source Project 403 15
[] Google APls Google Inc. 403 15
] Android 4.1.2 Android Open Source Project 4.1.2 16
[] Google APls Google Inc. 4.1.2 16
Android 4.2 Android Open Source Project 4.2 7
[] Google APls Google Inc. 4.2 17

@ Mest [Fnsh |[Concel]

Figure 16.4 Selecting a target API level to fine-tune testing

and a summary.

Recipe: Using Robotium

Robotium is a utility that helps developers write and execute various tests. To start

www.it-ebooks.info

Note that setActivityInitialTouchMode (false) must be used in order to use
the setUp() method.

After the test values have been added, the test can be run by right-clicking on the
test project and selecting Run As — Android JUnit Test. This will open up the
JUnit view, which will display how the test performs, including runs, errors, failures,

using it, first download the .jar file from http://code.google.com/p/robotium

375

http://code.google.com/p/robotium
http://www.it-ebooks.info/

376

Chapter 16 Debugging

/downloads/list and then include it in the test project (at the time of writing, the most
current .jar is robotium-solo-3.6_jar).

To include it in a project, create a folder named libs at the root of the project and
put the robotium-solo.3.6.jar file there. In Eclipse, refresh the project to make sure
that the changes have been picked up. Navigate to the folder and right-click on the
robotium-solo.3.6 jar file. In the context menu, click on Build Path — Add to
Build Path.

If the jar file is to be stored in a separate location, open the properties of the test
project and choose Java Build Path and then click on Add (external) Jar. This will
allow finding the .jar file and including it in a project.

After the jar file has been added, open the class file being used for the test project.
Inside this file, add the following import:

import com.jayway.android.robotium.solo.Solo;
Then, add a new variable:
private Solo solo;

The solo object is the main way to interact with Robotium; it contains all of the
methods needed for testing. Then, add the following to the setUp() method:

solo = new Solo(getInstrumentation(), getActivity());

Now that the solo object has been initialized, it can be used in custom functions for
testing.

The following is a sample function taken from the Robotium sample test project
that shows how the solo object is used to perform testing:

public void testMenuSave() throws Exception {

solo.sendKey(Solo.MENU);

solo.clickOnText ("More");
solo.clickOnText ("Prefs");
solo.clickOnText ("Edit File Extensions");

Assert.assertTrue(solo.searchText ("rtf"));

solo.clickOnText ("txt");
solo.clearEditText(2);

solo.enterText (2, "robotium");
solo.clickOnButton("Save");

solo.goBack();

solo.clickOnText ("Edit File Extensions");

Assert.assertTrue(solo.searchText ("application/robotium"));

www.it-ebooks.info

http://www.it-ebooks.info/

Eclipse Built-In Debug Tools

More information about Robotium and an in-depth tutorial can be found at http://
code.google.com/p/robotium/wiki/RobotiumTutorials.

Eclipse Built-In Debug Tools

The Eclipse IDE included with the ADT plugin is a user-friendly development envi-
ronment. It includes a what-you-see-is-what-you-get (WYSIWYG) user interface
and the tools needed to convert resource layout files into the necessary ingredients to
build an Android executable. A step-by-step guide to setting up the configuration is
included in the following recipe. The ADT version of Eclipse (3.7 Indigo as of this
writing) is assumed, although most steps are the same between Eclipse versions.

Recipe: Specifying a Run Configuration

The run configuration is a separate profile for each application. It tells Eclipse how to
run the project and start the activity and whether to install the application on the emula-
tor or a connected device. The ADT automatically creates a run configuration for each
application when it is first created, but it can be customized as described in this recipe.

To create a new run configuration or edit an existing one, select Run — Run
Configurations... (or Debug Configurations...) in Eclipse to launch the Run Con-
figurations menu shown in Figure 16.5. Inside the run configuration, there are three
tabs related to application testing, which contain settings that must be set:

= Android—Specify the project and activity to launch.

= Target—Select the virtual device upon which the application will run. For
the emulator environment, the launch parameters are specified here, such as the
network speed and latency. This allows for a more realistic simulation of the
wireless link conditions to test how the application behaves. Developers can also
choose to wipe out the persistent storage of the emulator with every launch.

» Common—Specify where the run configuration settings are saved and also
whether the configuration is displayed in the Favorite menu.

After these settings are properly set, the application can be run on the target device
with a single click of the Run button. If an actual Android device is not connected to
the host computer or the target chosen is a virtual device, the emulator is launched to
run the application.

Recipe: Using the DDMS

After the application is run on a target, the Dalvik Debug Monitoring Server (DDMS)
can be opened to examine the status of the device, as shown in Figure 16.6. DDMS
can be run from the command line or by selecting Window — Open Perspective
— DDMS in Eclipse.

Inside the DDMS are three panels that provide different kinds of debugging data:

www.it-ebooks.info

377

http://code.google.com/p/robotium/wiki/RobotiumTutorials
http://code.google.com/p/robotium/wiki/RobotiumTutorials
http://www.it-ebooks.info/

378

Chapter 16 Debugging

Create, manage, and run configurations
Android Application @

FEEIEES

Name: |android debug

| type filter text o)
¥ [G] Android Application

android debug Project:

i Android JUnit Test

android debug Browse...
4 Eclipse Application
3l Java Applet Launch Action:
?iz\fa“hppllca[mn (® Launch Default Activity
v Jun
ﬁjl.lnlt Plug-in Test O Launch: | ER |

43 05Gi Framework

Filter matched 9 of 34 items

B Tlrgeq = Cnrnrncn]

() Do Nething

Apply Y Revert

®

(_ Close) Hlﬁ

Figure 16.5 The Run Configurations menu in Eclipse

Devices—Displays the connected Android devices, including emulators and
actual Android devices.

Bottom panel—Contains two tabs: LogCat and Console. The LogCat tab shows
all the logging data from the device in real time. It includes system log messages
and user-generated log messages accessed using the Log class in applications.
The Console tab may be familiar to Eclipse users, as this tab displays SystemOut
messages as well as some errors during compilation or run-time.

Top right panel—Contains six tabs: Threads, Heap, Allocation Tracker, Network
Statistics, File Explorer, and the Emulator Control. These are mostly used to
analyze the process and network bandwidth. The Emulator Control has several
options for controlling voice and data format, network speed, and latency. It

also contains options for creating fake phone calls (for testing), as well as GPS
spoofing options to help with testing locations in the emulator. Clicking the
device in the Devices tab can cause these four tabs to reflect the currently selected
device/emulator’s running values, as shown in Figure 16.7.

www.it-ebooks.info

http://www.it-ebooks.info/

@ DDMS - MainActivity/src/com/ct

File Edit Source Refactor Run

Movigate Search Project Window Help

propert tivity.java - ADT

D-HEE $-0-%- @ F- P JED B -P-oo-o- B % Debug &' ave
" = O1|(%; Threads | B Heap | @ Allocation Tracker | %> Network Statistics |\ File Explorer @ Emulator Control 3
o 7
|GG 0% 2| O | @M 7| Telephonystatus 5
Name Voice: Speads
4 [asus-nexus_7- Online 421 i it
com.cook 24254 8600/ 8700 | ‘ i

Telephony Actions
Incarning rumber
® Voice

SMS.
WMessage:

Call Hang Up

Location Controls

Manual | GPX KML

® Decimal

Sexagesimal
Longitude -122.084005

Latitude

37422006

LogCat | &l Console %

Rt BE~-r5-=0

DDMS
I
Figure 16.6 The DDMS control panel
@ DDMS - MainActivity/src/com,/cookbook/proper ainActivity,java - ADT
File Edit Source Refactor Run Novigate Search Project Window Help
H-REE i %-0~-%~ @&~ P g :A-H-Ce-a- T %5 Debug 8 Java
N B Devices 32 =8 %Tmaadsf Haapf Allacation Tracker f? Metwork Statistics “I File Explorer g ; @ Emulator Control =8
) - .
#8022 ¢ @ m~ RE-+~
Name Name Size Date Time Permissions Info "
4 [asus-nexs 7- Online 221 b > acct 2013-02-05 09:25 drverxr-x
com.cook 24254 2600 / 8700 b = cache 2013-02-08 12:57
» = config 2013-02-05 09:25
&d 2013-02-05 0%:25 > Jsys/ker...
b > data 2013-00-05 02:25
defaultpro 116 1969-12-31 17:00
b dev 2013-02-05 09:25
= etc 2013-02-05 09:25 Irwxnwxrax <> /system..
fstab.grou; 919 1969-12-31 17:00
init 109412 1969-12-31 17:00
initgoldfis 2487 1969-12-31 17.00
initgroupe 14464 1969-12-31 17.00
intgroupe 1718 1969-12-31 1700
init.rc 18247 1969-12-31 17:00
inittracerc 1795 1969-12-31 17:00
initusbrc 3915 1969-12-31 17:00
b = mnt 2013-02-05 0%:25
b G proc 1969-12-31 1700 dr-xr-xr-x v
& LogCat 2 B Consule\l = (=
Saved Filters = B | [search for messages. Accepts Java regexes. Prefix with pics, app, tag: or text ta limit scope. | verbose v H
All messages (ne fikers) (| TS = = "
com.cookbook.propertys| T pPlication = =t
D 02-09 22:01:1... 24254 24260 Ccom.cookbook.propertyani... dalvikvm Debugger has detached; object
D 02-09 24254 24254 com.cookbook.propertyani... 1ibEGL loaded /system/lib/egl/1ibEGL_|
D 02-09 22: 24250 24254 com.cookbook.propercyani... 1iBEGL loaded /system/1ib/egl/1ibGLES
D 02-09 22:0: - 24254 24254 com.cookbook.propertyani... 1ibEGL loaded /system/lib/egl/1ibGLES
D 02-09 22:01:1... 24254 24254 com. kbook. . "LRend T Enabling debug mode 0 v
< > < >
[Jeamorasem [T

Figure 16.7 The

DDMS control panel with the File Explorer, LogCat,
and Devices panels open

www.it-ebooks.info

379

http://www.it-ebooks.info/

380

Chapter 16 Debugging

Recipe: Debugging through Breakpoints

Developers can also run applications in debug mode and insert breakpoints to freeze
an application in run-time. First, the application needs to be launched in debug mode,
which displays the dialog shown in Figure 16.8. If “Yes” is selected, it switches to the
Debug perspective shown in Figure 16.9.

The Debug perspective displays the source file in a window along with some other
windows, including Variables, Breakpoints, Outline, and others. Developers can toggle
a breakpoint by double-clicking in the left-hand margin next to the line where the
code execution should freeze. A breakpoint is set when a small blue circle is present on
that line.

Using breakpoints is a standard debug method for embedded programmers. The
ability to stop at an instruction, step through functions, see variable values in memory,
and modify values in run-time provides a powerful method to chase down compli-
cated bugs and unexpected behavior.

Android SDK Debug Tools

The Android SDK provides multiple stand-alone tools for debugging. The Android
Debug Bridge, LogCat, Hierarchy Viewer, and TraceView tools are discussed in
the following recipes. They can be found in the tools/ directory of the Android
SDK installation.

Recipe: Starting and Stopping the Android Debug Bridge

The Android Debug Bridge (ADB) provides a way to manage the state of an emulator
instance or USB-connected Android device. The ADB is built of three components:
a client, a server, and a daemon. The client component is initiated by the adb shell
script on the development machine. The server component runs as a background pro-

A0 Confirm Perspactive Switch

This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective Is designed 1o support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
managemeant.

Do you want to open this perspective now?

] Remember my decision

(__no) (-

Figure 16.8 The Confirm Perspective Switch dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

Android SDK Debug Tools

cess on the development machine. This server can be started or stopped using one of
the following commands:

> adb start-server

> adb kill-server

The daemon component is a background process that runs on the emulator or
Android device.

Recipe: Using LogCat
LogCat is the real-time logging tool Android provides. It collects all system and appli-
cation log data in circular bufters, which can then be viewed and filtered. It can be
accessed as a stand-alone tool or as part of the DDMS tool.

LogCat can be used in the device after executing the adb shell to log in to the
device or by using the logcat command through the adb:

> [adb] logcat [<option>] ... [<filter-specs>]

All the messages that use the android.util.Log class have an associated tag and
priority. The tag should be meaningful and related to what the activity does. The tag
and priority make the logging data easier to read and filter. Possible tags are:

= vV—Verbose (lowest priority) displays as much information as possible in the logs.
= D—Debug displays errors, information, and variable values.
» I—Info displays information only, such as a connection status.

= W—Warning displays warning messages that are not necessarily errors but deserve
attention.

» E—Error displays errors that occur during run-time.
» F—Fatal displays information only when a crash occurs.

= S—Silent 1s the highest priority, on which nothing is ever printed.

The logcat data has a multitude of information, and filters should be used to avoid
overload by specifying the tag:priority argument to the logcat command:
> adb logcat ActivityManager:V *:S

This shows verbose (V) data on the ActivityManager while silencing (S) all other
log commands.

A circular buffer system is used inside Android logging. By default, all information
is logged to the main log buffer. There are two other buffers: one that contains radio/
telephony-related messages and one that contains event-related messages. Different
buffers can be enabled using the -b switch:

> adb logcat -b events

This buffer also shows event-related messages:

www.it-ebooks.info

381

http://www.it-ebooks.info/

Chapter 16 Debugging

382

9sd1103 ul aAndadsiad 8ngag 8yl 69T 24n3i4

Bngap pioipue Bujypune] ﬁ T:12

1Bsu| UrWS _ AquLm 7

o0 [

LUUUL UU S BaqUU psUaEy B B2
0= pai 'asTeF= buTNTOR - WIBTYIIOUOSTIIONI 65
®9p DUTATSI382 — TSUT SASY ATTSUTFSTHIONI 6G
* 5303140 E£19F PASIF DOTTY TWIMILLT DOUAXTATSP OZ
*Z5 / S303Lq0 BLIB P32IF DOTTVH H04 DOWAATAT®P PBZ

€z
&%
ET
z1

LL 9L gl
92191 92-90
9591 92-90
9591 92-90
55131 9230

soessan| om| pid] |

..__h%r

n W_

+|6nqap* p104pun*00g3i00> w03, 03 JabBngap 3oauUD> 03 Buijduaidy [BNGOp PIOJPUD - 629112 LZ-90-8T0Z]
(oo 3uaaur prodpuo=3on } 3usiul :6u134p35 :aaBoubk31a13oy [6ngap plodpun - §2:90:1Z L2-98-0102)
043533 "#214230.43" BNGIp" P10JPUD"300G3003 W03 A31A1320 Bu13upis [Bngap pirodpu - 97:@0:TZ L2-98-0102]

11P3sulas 03 paau oy "pakoldap AppaJip uo1ipaliddy [6ngap ploJpuo - 9z:9@:1z JZ-98-8702]
(z'Z pProdpuy) g S1 UO1SJ4IA IdV 221a9g [Bngap prodpup - Sz:@@:TZ £Z-38-8702]

uswa.1nbas 12431 Idv up Aj10ads jou s20p uO13LD1Iddy ONIN¥VM [Bngep ploJpuo - 5z:99:1Z 22-90-0102]

Boy |

_|v555-40301nua, Jo3pinua Bui3sice Buisn :apop 3aB] 313owo3ny [Bnaap PIOJpUD - 57:80:1Z L7-38-B10Z]
(!

—

De.B[-F+[0000®

ploipuy

O HeEHE[EY

T._wﬁ B 58 20suod 5

Oca™ e &85

U] : (upepoe; @

pion : (3jpung)aleaouo ~ @

Buwis: 6| o

euonEAs @A

suopesepap uodw| =,

maaresy Bngap:plospuensjoogioodwes d

v

£(Bo3)Bu1d041poy3aNIL015 "Bngag
H(u 3ur)erae3sn; jui 21ignd

f(@r)p140320y
(UIDW" 3N0AD] " YIMITATUIFUDIFIS
£(9303535UD3SUTPaADS)a3pad)uo Jadns
} (@3p3590up3sulpanns ajpung)aipaijuo ploa d1iignd -
aprasangs o
/s "P330343 35414 S1 A31A130D 343 UIYM PIT1D) e/
%,014032033593,~603 Bula3s 1ouly 3114nd
} A31a130y Spua3xe@ pla03dp33say sso12 d1ignd

[1:A31a132y " ddo"p1oapun 3uoduld

£Ma1A220.3 *BNgap" p10pUD *300qx000 wod aboyand

R aupnosol g

)

ot
T

(POP0OTZL900E8=P)) EHODEASA

Ooa@3F

TEEE-E__ o

ue
ynsai o
s O 4

53 SRQRUEA =(4

:
v
vdl

TZ§ 2u)| ("133[q0 193[qO)30AUI" PO =
[Pouiaw aAeu] 3|qE|IEAR 10U saU)| (UE3|o0g ‘Ul ‘sSED ‘[sSED ‘sseD ‘[133g0 *133GO)IANENINOALI PO =
£29% @) ([JBurns)urew: praiy 1 Aamy =
£21 ‘2u) (doojuadeo =
66 :2ul (abessap)abessapyeds|p (2 PUEH)HS PEIYLAIADY =
EE0Z 19Ul (36TS5aN)IBESSIWI|PUTY HS PRAIYLAIAIDY =
SZT :2u)| (uau| "Pi02RYAUAIDY S PEIY LANANDY 'PRIYIANANIV)00EZ § 553200 pRIY L AIAIDY =
49 RUl| (U] ' PIIRYAUARIVS PRI LAALVIANAYLRUNT I3 UL PRI LAIMDY =
£292 3u1| (W] PI0IRYAUALY S PRI LAIARIWIAIARIY LD UNE T WICLRd PRI LAIMDY =
£b0T 21| (3]pung ‘AlJANIY) 31221 3UOAIANDY|[E2 UOATIUAWINASY] =
T :3u|| (3]puUNg)3ILaIDUC TLOPREAISI] =
12 12Ul QupELoE RLODEASA =
((eo13EpS21 U] TZ 2U]| 28 JUjodEaIq) papuRdsns) [urew <1>] peasyl gf A

B 28

Y OE[NE D a%k % Bnasa €

t-ebooks.info

http://www.it-ebooks.info/

Android SDK Debug Tools

I/menu_opened(135): 0

I/notification cancel(74): [com.android.phone,1,0]

I/am _finish activity(74):
[1128378040,38,com.android.contacts/.DialtactsActivity,app-request]
I/am_pause_activity(74):
[1128378040,com.android.contacts/.DialtactsActivity]

I/am_on_paused called(135): com.android.contacts.RecentCallsListActivity
I/am_on_paused called(135): com.android.contacts.DialtactsActivity
I/am_resume_activity(74): [1127710848,2,com.android.launcher/.Launcher]
I/am_on_resume_called(135): com.android.launcher.Launcher
I/am_destroy activity(74):
[1128378040,38,com.android.contacts/.DialtactsActivity]

I/power sleep requested(74): 0

I/power screen_state(74): [0,1,468,1]

I/power screen broadcast_send(74): 1

I/screen toggled(74): 0

I/am pause_activity(74): [1127710848,com.android.launcher/.Launcher]

Another example follows:
> adb logcat -b radio

This shows radio/telephony-related messages:

D/RILJ (132): [2981]< GPRS_REGISTRATION_ STATE {1, null, null, 2}
D/RILJ (132): [2982]< REGISTRATION STATE {l, null, null, 2, null, null,
null, null, null, null, null, null, null, null}

D/RILJ (132): [2983]< QUERY NETWORK SELECTION MODE {0}

D/GSM (132): Poll ServiceState done: 01dSS=[0 home T - Mobile T - Mo-
bile 31026 Unknown CSS not supported -1 -1RoamInd: -1DefRoamInd: -1]
newSS=[0 home T - Mobile T - Mobile 31026 Unknown CSS not supported -1 -
1RoamInd: -1DefRoamInd: -1] 0ldGprs=0 newGprs=0 o0ldType=EDGE newType=EDGE
D/RILJ (132): [UNSL]< UNSOL NITZ TIME RECEIVED 10/06/26,21:49:56-28,1

I/GSM (132): NITZ: 10/06/26,21:49:56-28,1,237945599 start=237945602
delay=3

D/RILJ (132): [UNSL]< UNSOL RESPONSE NETWORK STATE CHANGED

D/RILJ (132): [2984]> OPERATOR

D/RILJ (132): [2985]> GPRS_REGISTRATION STATE

D/RILJ (132): [2984]< OPERATOR {T - Mobile, T - Mobile, 31026}

D/RILJ (132): [2986]> REGISTRATION STATE

D/RILJ (132): [2987]> QUERY NETWORK SELECTION MODE

D/RILJ (132): [2985]< GPRS REGISTRATION STATE {1, null, null, 2}
D/RILJ (132): [2986]< REGISTRATION STATE {1, null, null, 2, null, null,

null, null, null, null, null, null, null, null}
D/RILJ (132): [2987]< QUERY NETWORK SELECTION MODE {0}

www.it-ebooks.info

383

http://www.it-ebooks.info/

384

Chapter 16 Debugging

LogCat is useful when using Java-based Android applications. However, when
applications involve native components, it is harder to trace. In this case, the native
components should log to System.out or System.err. By default, the Android system
sends stdout and stderr (system.out and system.err) output to /dev/null. These
can be routed to a log file with the following ADB commands:

> adb shell stop
> adb shell setprop log.redirect-stdio true
> adb shell start

This stops a running emulator/device instance; use the shell command setprop to
enable the redirection of output and restart the instance.

Recipe: Using the Hierarchy Viewer

A useful way to debug and understand the user interface is by using the Hierarchy
Viewer. It provides a visual representation of the layout’s view hierarchy and a mag-
nified inspector of the display (shown in the Pixel Perfect window). Please note that
while the Hierarchy Viewer can still be used, many of the features it contained have
been moved into the Android Debug Monitor, which also contains the DDMS.

The Hierarchy Viewer is accessed using the tool hierarchyviewer. Executing this
program launches the interface shown in Figure 16.10. It displays a list of Android
devices that are currently connected to the development machine. When a device is
selected, a list of running programs on the device is shown. It is then possible to select
the program intended for debug or user interface optimization.

After the program is selected, Load View Hierarchy can be selected to see the View
Tree constructed by the Hierarchy Viewer. It contains four views:

= Tree View pane—A hierarchy diagram of the views on the left
= Tree Overview pane—A bird’s-eye view of the hierarchy diagram
= Properties View pane—A list of the selected view’s properties on the top right

= Layout View pane—A wire-frame drawing of the layout on the bottom right

This is shown in Figure 16.11.

These four views are used to display different information about the hierarchy to
help optimize the UL. When one node of the view is selected, the properties view and
wire-frame view are updated. In an Android system, there is a limitation on the View
Tree that each application can generate. The depth of the tree cannot be deeper than
10 and the width of the tree cannot be broader than 50. In Android 1.5 or earlier, a
stack overflow exception is thrown when the View Tree passes that limit. Although
it is good to know the limitations, a shallow layout tree always makes applications
run faster and smoother. This can be accomplished using merge or RelativeLayout
instead of LinearLayout to optimize the View Tree.

www.it-ebooks.info

http://www.it-ebooks.info/

Android SDK Debug Tools

800 Hierarchy Viewer

emulator-5554 <Focused Window>
com.android.internal.service.wallpaper.imageWallpaper
com.android.launcher/com.android.launcher2.Launcher
com.facebook.android /com.facebook.android.Example
TrackingView

p

Keyguard

Figure 16.10 The Hierarchy Viewer tool

Recipe: Using TraceView

TraceView is a tool to optimize performance. To leverage this tool, the Debug class
needs to be implemented in the application. It creates log files containing the trace
information for analysis. This recipe specifies a factorial method and another method
that calls the factorial method. Listing 16.2 shows the main activity.

Listing 16.2 src/com/cookbook/android/debug/traceview/TestFactorial.java

package com.cookbook.android.debug.traceview;

import android.app.Activity;
import android.os.Bundle;
import android.os.Debug;

www.it-ebooks.info

385

http://www.it-ebooks.info/

386

Chapter 16 Debugging

P00 Hierarchy Viewer
| Refresh Windows || D

| Start Server Load View Hierarchy || Display View | Capture PSD | Invalidate

Operation | Duration (ms)
2.13
0.215
PhoneWindow$ DecorView 11634
#0@43dc8zbs 2
NO_ID | value
LinearLayout
#0@43dc8af0
NO_ID
FrameLayout Framelayout
#0@43dc4bs #1@43dch0ds
NO_ID id/content
TextView LinearLayout
#0@43dcabfo #0@43dchSdo
id/title NO_ID
Button TextView Buttan Button
#2@43dcde08 #1@43dcd6b0 #4243dceeds #3@43dceB50
id/requestButton id/txt id/delete PostButtan id/postButton

Figure 16.11 The Layout View in the Hierarchy Viewer tool

public class TestFactorial extends Activity {
public final String tag="testfactorial";
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.main);
factorial(10);

}

public int factorial(int n) {
Debug.startMethodTracing(tag);
int result=1;
for(int i=1; i<=n; i++) {
result*=1i;
}

Debug.stopMethodTracing();
return result;

www.it-ebooks.info

http://www.it-ebooks.info/

Android SDK Debug Tools

msec: 0.004 max msec: 0.6
B 0 (topleven

r T T T T T T T T T T T 1
4 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5 055 0.6

wen [eeeeslllEEEEE BB

Name Incl % Inclusive Excl % Exclusive

b 140
BL com/c i i ia.factoria ()] 265% 0.158 0.158 140 0.158
12 android/os/Debug.startMethodTracing (Ljava/lang/String; IV 14.2% 0.085 X 0.085 140 0.085

» 113 android/os/Debug.stopMethodTracing OV 11.1% 0.066 - 0.066 140 0.066

Time/Call

Find:

Figure 16.12 The TraceView analysis screen

The factorial() method contains two calls to the Debug class; the trace is started
in a file called testfactorial.trace when startMethodTracing() is called. When
the stopMethodTracing() method is called, the system continues buffering the gen-
erated trace data. After the method factorial(10) returns, the trace file should be
generated and saved in /sdcard/. After the file is generated, it can be retrieved to the
development machine using the following command:

> adb pull /sdcard/testfactorial.trace

The traceview tool in the Android SDK tools folder can then be used to analyze
the trace file:

> traceview testfactorial.trace

After the script command is run, it produces an analysis screen, as shown in Fig-
ure 16.12.

The screen shows a Timeline Panel and a Profile Panel. The Timeline Panel on the
top half of the screen describes when each thread and method started and stopped. The
Profile Panel on the bottom half of the screen provides a summary of what happened
inside the factorial method. When the cursor is moved around in the Timeline Panel,
it displays the time when the tracing started, when the method was called, and when
the tracing ended.

www.it-ebooks.info

387

http://www.it-ebooks.info/

388

Chapter 16 Debugging

The Profile Panel shows a summary of all the time spent in the factorial method.
The panel also shows both the inclusive and exclusive times (in addition to the per-
centage of the total time). Exclusive time is the time spent in the method. Inclusive
time is the time spent in the method plus the time spent in any called functions.

The *.trace file is constructed by a data file and a key file. The data file is used to
hold the trace data. The key file provides a mapping from binary identifiers to thread
and method names. If an older version of TraceView is used, the key file and data file
need to be combined into a trace file manually.

There is another way to generate a graphical call-stack diagram from trace log files
in Android: dmtracedump. This tool requires the installation of the third-party
Graphviz dot utility to create the graphical output.

Recipe: Using lint

lint is a tool that has been included with ADT from version 16 and beyond. This is
run automatically inside Eclipse and is responsible for validating code by highlight-
ing it when it may not function as expected or when it will fail upon compilation. For
developers who are not using Eclipse and would prefer to run lint on projects from
the command line, this can be done by running lint from the tools directory inside
the SDK installation directory.

The following is an example of running lint from the command line. Note that
this was done in the command line of Windows, so the slashes may need to be
adjusted when running on different platforms. Also, when running from the command
prompt, the lines will automatically be broken and may appear exactly as follows:

lint \temp\PropertyAnimation
Scanning PropertyAnimation:
Scanning PropertyAnimation (Phase 2):

src\com\cookbook\propertyanimation\MainActivity.java:32: Error: Call requires API
level 11 (current min is 8): android.animation.ObjectAnimator#ofInt [NewApi]

ValueAnimator va = ObjectAnimator.ofInt(btnShift, "backgroundColor", start,
end) ;

src\com\cookbook\propertyanimation\MainActivity.java:32: Error: Class requires API
level 11 (current min is 8): android.animation.ValueAnimator [NewApi]

ValueAnimator va = ObjectAnimator.ofInt(btnShift, "backgroundColor", start,
end) ;

src\com\cookbook\propertyanimation\MainActivity.java:33: Error: Call requires API
level 11 (current min is 8): android.animation.ValueAnimator#setDuration [NewApi]

va.setDuration(750);

src\com\cookbook\propertyanimation\MainActivity.java:34: Error: Call requires API
level 11 (current min is 8): android.animation.ValueAnimator#setRepeatCount [NewApi]

va.setRepeatCount(1);

www.it-ebooks.info

http://www.it-ebooks.info/

Android SDK Debug Tools

src\com\cookbook\propertyanimation\MainActivity.java:35: Error: Call requires API
level 11 (current min is 8): android.animation.ValueAnimator#setRepeatMode [NewApi]

va.setRepeatMode (ValueAnimator.REVERSE);

src\com\cookbook\propertyanimation\MainActivity.java:36: Error: Call requires API
level 11 (current min is 8): android.animation.ValueAnimator#setEvaluator [NewApi]

va.setEvaluator(new ArgbEvaluator());

src\com\cookbook\propertyanimation\MainActivity.java:36: Error: Call requires API
level 11 (current min is 8): new android.animation.ArgbEvaluator [NewApi]

va.setEvaluator(new ArgbEvaluator());

src\com\cookbook\propertyanimation\MainActivity.java:37: Error: Call requires API
level 11 (current min is 8): android.animation.ValueAnimator#start [NewApi]

va.start();

res\menu\activity main.xml: Warning: The resource R.menu.activity main appears to be
unused [UnusedResources]

res\values\strings.xml:5: Warning: The resource R.string.hello world appears to be
unused [UnusedResources]

<string name="hello world">Hello world!</string>

res\layout\activity main.xml:13: Warning: [I18N] Hardcoded string "Rotate", should
use @string resource [HardcodedText]

android:text="Rotate" />

res\layout\activity main.xml:21: Warning: [I18N] Hardcoded string "Shift", should use
@string resource [HardcodedText]

android:text="Shift" />

res\layout\activity main.xml:29: Warning: [I18N] Hardcoded string "Sling Shot",
should use @string resource [HardcodedText]

android:text="Sling Shot" />

8 errors, 5 warnings

As you can see from this output, this particular project has several errors that will
need to be corrected, as well as five warnings or suggestions for how it could better
follow standards.

Developers may wish to force lint to skip some requirement checks by passing
-disable, followed by what type of errors or warnings are to be skipped. For exam-
ple, if possible unused resources, unused IDs, and hard-coded text were not concerns,
the command could be changed to the following:

lint -disable UnusedResources,Unusedlds,HardcodedText \temp\PropertyAnimation

Due to all of the warnings being disabled, the only thing the command will return
now is the errors that need to be fixed.

www.it-ebooks.info

389

http://www.it-ebooks.info/

390

Chapter 16 Debugging

Android System Debug Tools

Android is built on top of Linux, so many Linux tools can be leveraged. For example,
to show the applications currently running and the resources they are using, the top
command can be used. The following command can be issued at the command line
when a device is connected to a host computer through a USB cable or when the
emulator is running:

> adb shell top

An example output from this command is shown in Figure 16.13.
The top command also shows the percentage of CPU and memory used in the
overall system.

r
User 2%, System 5%, IOW 8%, IRQ 8%
User 7 + Nice @ + Sys 1B + Idle 292 + I0W @ + IRQ @ + SIRQ 1 = 318
PID CPUSs S #THR Vss RSS PCY UID Name
B129 4% R 1 912K 396K fg root top
48 0% S 8 7760K 3e@K fg root /fsbin/adbd
113 2% S 17 121204K 15756K fg radioc com.android.phone
4 2% S 1 BK BK fg root events/@
5 8% S 1 BK BK fg root khelper
6 2% S 1 BK @K fg root suspend
7 8% S 1 BK BK fg root kblockd/@
8 8% S 1 BK BK fg root cqueue
9 2% S 1 BK @K fg root kseriod
10 2% S 1 BK @K fg root kmmed
11 2% S 1 BK BK fg root pdflush
12 2% S 1 BK BK fg root pdflush
13 2% S 1 BK @K fg root kswapd@
14 8% S 1 BK BK fg root aio/B
22 8% S 1 BK BK fg root mtdblockd
23 2% S 1 BK @K fg root kstriped
24 2% S 1 BK @K fg root hid_compat
25 8% S 1 oK 8K fg root rpciod/@
26 2% S 1 BK @K fg root mmecqd
27 2% S 1 740K 316K fg root fsystem/bin/sh
28 2% S 1 B12K 202K fg system /system/bin/servicemanager
29 2% S 3 3740K 306K fg root fsystem/bin/vold
30 2% S 3 3720K 4BRK fo root fsystem/bin/netd
31 2% S 1 BEBK 240K fg root /system/bin/debuggerd
32 8% S 4 5302K 548K fg radio /system/bin/rild
33 8% S 1 B5188K 14192K fg root zygote
34 2% S 5 21744K 1168BK fg media fsystem/bin/mediaserver
35 2% S 1 B12K 348K fg root /system/bin/installd
36 2% S 1 1620K 288K fg keystore fsystem/bin/keystore
37 8% S 1 748K 328K fg root fsystem/bin/sh
38 2% S 1 B4BK 344K fg root fsystem/bin/gqemud
51 2% S 1 796K 312K fg root /system/bin/gemu—props
59 8% S 47 157736K 26216K fg system system_server
1e7 % S 9 112220K 14944K fg app_17 com.android. inputmethod. latin
115 2% S 6 119108K 17712K bg app_16 com.android. launcher
1 0% S 1 312K 228K fg root finit
167 8% S 6 111688K 14576K bg system com.android.settings
183 2% S 6 186268K 14@96K bg app_3@ com.android.alarmclock
188 8% S 7 187172K 147BBK bg app_14 android.process.media
2e8 8% S B 187304K 13628K bg app_22 com.android.defcontainer
243 % S 6 185436K 13436K bg app_7 com.android.protips
256 2% S 6 186592K 14@B4K bg app_12 com.android.music
264 2% S 6 185232K 1342BK bg app_B com. svox. pico
284 2% S 7 186704K 15BBBK bg app_41 com. facebook.android
2918 2% S 6 185B864K 15348K fg app_43 com. cookbook.android.debug.traceview
B128 2% S 1 748K 328K fg root /system/bin/sh
141 8% S 9 121044K 1976BK bg app_@ android.process.acore
2 2% S 1 BK @K fg root kthreadd A
. 3 2% S 1 BK @K fg root ksoftirgd/@ v

Figure 16.13 Sample output from the top command

www.it-ebooks.info

http://www.it-ebooks.info/

Android System Debug Tools 391

Asset Allocations

zip: fdata/apps/com. facebook.android-2.apk:/resources.arsc: 3K
nelsentos-MacBook—Pro:tools nte$./adb shell ps
USER PID PPID VSIZE RSS WCHAN PC NAME

root 1 312 220 c@e9b74c BBRBcadc S Sinit

root 2]]] c@@4e72c poeeeedr S kthreadd

root 3 2]] c@e3fdce epeeeeee S ksoftirgd/se

root 4 2 (]] c@@e4b2c4 BpeRRERR S evenmts/@

root 5 2 '] '] c@d4b2c4 ARRRRAAA S kKhelper

root 6 2 ‘] ‘] c@B4b2c4d pRRRRRRR S suspend

root 7 2]] c@@4b2c4 @@RRRRRR S Kblockd/e

root B 2 '] '] c@B4b2c4 BARRRRARD S cqueue

root 9 2 (] (] c@18179c @eeeeeRd S kseriod

root 18 2]] c@@4b2c4 BoERRARRR S kmmcd

root 11 2]] c@eefc74 eeeepeed S pdflush

root 12 2 '] '] c@eefc74 peepeeed S pdflush

root 13 2 1] 1] c@A744ed AARAARAAR S kswapdd

root 14 2 (] (] c@@4b2c4 @@RRRERR S aics@

root 22 2 e e c@l7ef4B peeeeeed S mtdblockd

root 23 2 4] 4] c@B4b2c4 BRRBRRRR S kstriped

root 24 2 '] '] c@B4b2c4 pRRRRRRR S hid_compat

root 25 2 '] '] cBBab2c4 BOBBRABA S rpciod/@

root 26 2]] c@19d16c @@RRRRRe S mmcod

root 27 1 748 316 c@15Bebd afd@dBac 5 fsystem/bin/sh

system 28 1 B12 292 c@laB4a4 afd@dbdc S ssystem/bin/servicemanager
root 29 1 3740 396 ffffffff afdlelbc 5 fsystem/bin/vold

root 3e 1 3728 408 ffffffff afdlelbc 5 fsystem/bin/netd

root 31 1 6EB 248 c@1b52b4 afd@eddc 5 /system/bin/debuggerd
radio 32 1 5392 548 ffffffff afdlelbc 5 fsystem/bin/rild

root 33 1 B5188 14192 c@A9h74c afdddc74 S zygote

Inedia 34 1 22772 1280 ffffffff afd@db4c S /system/bin/mediaserver
root 35 1 B12 348 c@21B1f4 afd@dBac 5 /system/bin/installd
keystore 36 1 1628 288 cB1b52b4 afd@eddc S fsystem/bin/keystore
root 37 1 748 328 c@@3da3B afd@eTbc 5 fsystem/bin/sh

root kl:] 1 =141} 412 cPBbBfec afdBe8Bc S /system/bin/qemud

root 40 1 3460 252 fEffffff @0@Recc4 S5 /sbinfadbd

root 51 37 796 312 c@21B1f4 afd@dBac S fsystem/bin/gemu—props
system 59 33 157736 26712 ffffffff afdddbdc S system_server

app_17 187 33 118168 15436 ffffffff afdBebBB S com.android.inputmethod.latin
radio 113 33 121204 16004 ffffffff afdlebBB S com.android.phone
app_16 115 33 119100 17844 ffffffff afdBebl®B S com.android.launcher
app_@ 141 33 121044 19936 ffffffff afdBebBB S android.process.acore
system 167 33 111604 15024 ffffffff afdBebBB S com.android.settings
app_30 183 33 186276 14432 ffffffff afdleb@®B S com.android.alarmclock
app_14 198 33 187172 15132 ffffffff afdBebBB S android.process.media
app_22 288 33 187304 13908 ffffffff afd@eb@B S com.android.defcontainer
app_T 243 33 185448 13736 ffffffff afdBebBB S com.android.protips
app_12 256 i3 186596 144B8 ffffffff afdBebBB S com.android.music

app_B 264 33 185232 13772 ffffffff afdleb@B S com.svox.pico

app_41 284 33 186704 16028 ffffffff afdBebBB S com. facebook.android
app_43 2018 33 185864 15784 ffffffff afdleb@B S com. cookbook.android.debug.traceview
root 13187 4@ 748 328 c@@3da3B afd@eibc S fsystem/bin/sh

root 131B8 13187 BBB 332 eeeeeeRd afd@dBac R ps

nelsontos-MacBook—Pro:tools ntos [l

Figure 16.14 Sample output from the ps command

Another important tool is ps, which lists all the processes currently running on the
Android system:

> adb shell ps

An example output from this command is shown in Figure 16.14.
This provides the process ID (PID) and user ID of each running process. Memory
allocation can be seen by using dumpsys:

> adb shell dumpsys meminfo <package name>

An example output from this command is shown in Figure 16.15.

www.it-ebooks.info

http://www.it-ebooks.info/

392

Chapter 16 Debugging

nelsontos—-MacBook-Pro:tools nto$./adb shell dumpsys 2B4

Can't find service: 284

nelsontos-MacBook-Pro:tools nto$./adb shell dumpsys meminfo com.facebook.android
Applications Memory Usage (kB8):

Uptime: 634B6347 Realtime: 63486347

% MEMINFO in pid 2B4 [com.facebook.android] s
native dalvik other total

size: 3852 3719 N/A 7671
allocated: 3325 2621 N/A 5946
free: 42 1898 NSA 1149
{Pss): 788 1878 1838 3BBb
(shared dirty): 1532 4168 1868 6752
{priv dirty): 6B4 1184 788 2576
Objects
Views: a ViewRoots:]
AppContexts:] Activities: 5}
Assets: 2 AssetManagers: 2
Local Binders: 5 Proxy Binders:]
Death Recipients: a
OpenS5L Sockets: 2
SQL
heap:] memorylsed: 5]
pageCachelOverflo: @ largestMemAlloc: 2}

Asset Allocations
zip:/data/app/com. facebook.android-2.apk:/resources.arsc: 3K
nelsontos-MacBook-Pro:tools nto$ [

Figure 16.15 Sample output from the dumpsys command

These commands provide information on Java and native components. This infor-
mation is therefore useful for optimizing and analyzing NDK applications. In addition
to memory information, it includes how many views are used in the process, how
many activities are used, how many application contexts are used, and so on.

Recipe: Setting Up GDB Debugging

The GNU Project Debugger (GDB) is a common way to debug programs on Linux.
In Android, a GDB tool is available to debug native libraries. In NDK-r8, every native
library is generated; it also generates gdbserver and gdb.setup. The following com-
mands can be used to install GDB:

> adb shell

> cd /data/

> mkdir myfolder
> exit

> adb push gdbserver /data/myfolder

www.it-ebooks.info

http://www.it-ebooks.info/

Android System Debug Tools

To run GDB, the following command can be used:
> adb shell /data/myfolder/gdbserver host:port <native programs

For example, with a program named myprogram running on an Android device
with IP address 10.0.0.1 and port number 1234, the following command starts the
server:

> adb shell /data/myfolder/gdbserver 10.0.0.1:1234 myprogram
Then, open another terminal and run GDB on the program:

> gdb myprogram

(gdb) set sysroot ../

(gdb) set solib-search-path ../system/lib
(gdb) target remote localhost:1234

At the GDB prompt, the first command sets the root directory of the target image,
the second command sets the search path of shared libraries, and the last command sets
the target. After the target remote localhost:1234 is running, debugging in the GDB
environment can begin. For more information about the GDB project, visit www.gnu
.org/software/gdb/.

www.it-ebooks.info

393

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

A

Using the OpenlIntents
Sensor Simulator

The Openlntents Sensor Simulator is a tool that can be used with the Android
emulator to help with testing applications. It allows simulation of GPS coordinates,
compass directions, orientation, pressure, acceleration, and other factors. It runs as a
stand-alone Java application but requires some programming to interact with a project.

Setting Up the Sensor Simulator

To get started, first download the Openlntents Sensor Simulator from http://code
.google.com/p/openintents/downloads/list?q=sensorsimulator. Once the file is down-
loaded (this appendix uses the file sensorsimulator-2.0-rcl.zip), uncompress it and
run the sensorsimulator.jar file from the bin directory.

Figure A.1 shows what the Sensor Simulator looks like when run.

The next step is to start the emulator, either by launching the AVD Manager from
the console or by launching it from Eclipse. When it has been opened, launch the
desired emulator and wait for it to boot.

Once the emulator has finished booting, an .apk file needs to be installed. This is
done by using the adb command. In the same bin directory that was used to launch
the sensorsimulator.jar file, there will be two .apk files: SensorRecordFrom
Device-2.0-rcl.apk and SensorSimulatorSettings-2.0-rcl.apk. Copy the
SensorSimulatorSettings-2.0-rcl.apk folder to the platform-tools directory
inside the Android SDK installation folder. Once the file has been copied, open a ter-
minal or command prompt and change directories until the platform-tools directory
is reached. A sample path may be as follows:

/users/cookbook/Android/sdk/platform-tools/
Once in the correct directory, run the following command:

adb install SensorSimulatorSettings-2.0-rcl.apk

www.it-ebooks.info

http://code.google.com/p/openintents/downloads/list?q=sensorsimulator
http://code.google.com/p/openintents/downloads/list?q=sensorsimulator
http://www.it-ebooks.info/

A: Using the Openintents Sensor Simulator

SensorSimulator

BN

(® yaw &pitch () roll &pitch () move
“

Sensors | Scenario Simulator | Quick Setiings | Sensors Parameters

i

Choose Device

| medium 2

Basic Orientation

accelerormeter
magnetic field
orientation

Extended Orientation

linear acceleration
aravity

rotation vector
gyroscope

Sensor update: 10.90 ms|
accelerometer: 0.00, 8.49, 4.90

magnetic field: 13.40, -27.66, -38.45

orientation: 340.00, -60.00, 0.00

light: 400.00

gravity 0.00, 8.49, 4.90

Write emulator command port and click on setto
create connection. Possible IP addresses:
10022

10.0.0.1

Sensor Simulator

Environment Sensors

temperature
proximity
pressure

Other Sensors

barcode reader

Figure A.1 Version 2.0 RC1 of Openintents Sensor Simulator

Note that Linux and Mac users will need to execute the command by adding ./ in

front of adb.

The console or command window should roll a few lines of information by but
should end with a success message. If a success message is not received, make sure that
the emulator is running and try again. When the app has been successtully installed, it

will show up as an installed application.

When the Android application is launched, the settings for the IP address and
socket used for communication will be shown. The IP address can be found in the
desktop application in the lower left corner. It is normal to have more than one IP
address available and listed. Figure A.2 shows the initial settings screen on the Android

application when launched.

Settings

Enter the connecti

s below. They are
displayed on the Sen

IP address:

10.0.2.2

Figure A.2

Initial settings screen of the Sensor Simulator

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up the Sensor Simulator 397

@ =

£

(=) yaw & pitch () roll & pitch (_) move

L ']

Figure A.3 Changing the rotation vector of the emulator

To test the connection, click on the Testing tab in the Android application. Next,
click on the Connect button and wait while a connection is established to the desktop
application. When the connection has been made, the settings on the desktop can be
changed, which will change the values in the Android application. Figure A.3 shows
changes made in the desktop application, and Figure A.4 shows the corresponding val-
ues in the Android application.

Testing

[Test the connection to the Sensor Simulator.
Disable the sensors and disconnect after testing.

Disconnect

[Sensor simulator data:

268.00, -2.00, -96.00

light

400.00

proximity

10.00

linear acceleration

0.00, 0.00,0.00

gravity

9.75,0.34,-1.02

rotation vector

-1.00,0.69,0.67 .
S Figure A.4 Changed sensor data taken from values sent

0.00, 0.00,0.00 by the desktop application

www.it-ebooks.info

http://www.it-ebooks.info/

398

A: Using the Openintents Sensor Simulator

Adding the Sensor Simulator to an Application

The Sensor Simulator can also be included in an application to help test applica-
tions when a physical device is not available. To do this, include sensorsimulator-
lib-2.0-rcl.jar in the project. This file is found in the lib folder in the downloaded
sensorsimulator-2.0-rcl.zip file. Copy the file to the libs folder of the project. If
Eclipse is being used, refresh the folder and it should appear. Right-clicking on the
sensorsimulator-lib-2.0-rcl.jar file and choosing Build Path — Add to Build
Path will cause the Sensor Simulator .jar to be automatically referenced and added to
the build path of the project.

Because of the communication needed between the Android application and the
desktop application, the following permission needs to be added to the application
manifest XML:

<uses-permission android:name="android.permission.INTERNET"/>
Next, set up the following imports into the class file:

import org.openintents.sensorsimulator.hardware.Sensor;
import org.openintents.sensorsimulator.hardware.SensorEvent;
import org.openintents.sensorsimulator.hardware.SensorEventListener;

import org.openintents.sensorsimulator.hardware.SensorManagerSimulator;

To access the sensors, instead of using SensorManager in the onCreate () method,
use SensorManagerSimulator. While both use a method of getSystemService (),
the method in SensorManagerSimulator has been modified to take an extra param-
eter. Use the following call:

mSensorManager = SensorManagerSimulator.getSystemService(this, SENSOR SERVICE);

Now that SensorManagerSimulator is being used, connect it by using the
connectSimulator() method:

mSensorManager.connectSimulator();

The application is now bound to take input from the Sensor Simulator. Please note
that if the application is running on a physical device, input from it will be ignored
while the application is wired to the Sensor Simulator.

The following lists the sensors that can be mapped and used with the Sensor
Simulator:

= TYPE ACCELERATOR—The values of movement in an x (right-side), y (top-side),
and z axis (out of the screen) direction

= TYPE LINEAR ACCELERATION—The values of movement along the x, y, and z
axes without the effects of gravity

= TYPE GRAVITY—The direction and magnitude of gravity based on the device
acceleration

www.it-ebooks.info

http://www.it-ebooks.info/

Adding the Sensor Simulator to an Application

TYPE MAGNETIC FIELD—Magnetic field output in microteslas (uT)

TYPE ORIENTATION—The values of yaw (0 to 360 degrees), pitch (-90 to 90),
and roll (-180 to 180)

TYPE TEMPERATURE—The ambient temperature
TYPE LIGHT—The amount of light in SI lux units
TYPE_PRESSURE—The average sea-level pressure in hectopascals

TYPE ROTATION VECTOR—The combined orientation based on both angle and
axis

www.it-ebooks.info

399

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

B

Using the Compatibility Pack

The compatibility pack, or support library, is a set of classes that have been provided
to add support to legacy versions of Android (the minimum API level supported is 4).

Android Support Packages

The support library adds the following packages:

» android.support.v4

android.support

android.support.

android.support
android.support
android.support
android.support

android.support

android.support.

android.support

android.support

V4.
v4.
V4.
4.
V4.
4.

v4

v4

v4

v4

.accessibilityservice
app

content

content.pm

database

net

os

.util

view
.view.accessibility

.widget

Table B.1 shows the class that is included in the android.support.

v4.accessibilityservice package.

Table B.1 android.support.v4.accessibilityservice

Type

Name

Description

Class

AccessibilityServiceInfoCompat A helper class that allows use of

AccessibilityService prior to API
Level 4

www.it-ebooks.info

http://www.it-ebooks.info/

402

B: Using the Compatibility Pack

Table B.2 shows the interfaces, classes, and exceptions that are included in the

android.support.v4.app package.

Table B.2 android.support.v4.app

Type Name Description

Interface FragmentManager.BackStackEntry Represents an entry on the fragment
back stack

Interface FragmentManager. Watches for changes on the back stack

OnBackStackChangedListener

Interface LoaderManager.LoaderCallbacks<D> Allows client interaction with the
manager

Class ActivityCompat A helper class that accesses features
in Activity added after API Level 4

Class DialogFragment Adds the support version of
DialogFragment

Class Fragment Adds the support version of Fragment

Class Fragment.SavedState Saved state information returned from
a fragment through FragmentManager.
saveFragmentInstanceState

Class FragmentActivity A base class for activities that use
Fragment (the support version) and
Loader API calls

Class FragmentManager Adds the support version of
FragmentManager

Class FragmentPagerAdapter A PagerAdapter that manages pages
by using a fragment for each one

Class FragmentTabHost Adds a TabHost that allows the use of
fragments for tab content

Class FragmentTransaction Adds the support version of
FragmentTransaction

Class ListFragment Adds the support version of
ListFragment

Class LoaderManager Adds the support version of
LoaderManager

Class NavUtils A helper class that helps with updated

Android Ul navigation

(continues)

www.it-ebooks.info

http://www.it-ebooks.info/

Table B.2 (Continued)

Android Support Packages

Type Name Description

Class NotificationCompat A helper class that allows access to
features in Notification that were
added after API Level 4

Class NotificationCompat.Action Support version of the Action used
with a notification

Class NotificationCompat. A helper class that creates large-format

BigPictureStyle notifications that also contain a large
image

Class NotificationCompat.BigTextStyle A helper class that creates large noti-
fications with large amounts of text
content

Class NotificationCompat.Builder A builder class that creates
NotificationCompat objects

Class NotificationCompat.InboxStyle A helper class that creates large-format
notifications that also contain a list
(this is limited to five strings)

Class NotificationCompat.Style Allows rich notification styles to be
applied to Notification.Builder
objects

Class ServiceCompat A helper class that accesses service
features

Class ShareCompat A helper class that moves data
between activities

Class ShareCompat.IntentBuilder A helper class for working with sharing
intents by building ACTION SEND and
ACTION SEND MULTIPLE intents and
starting activities

Class ShareCompat.IntentReader A helper class that reads data from the
ACTION_ SEND intent

Class TaskStackBuilder Builds back stacks used in navigation
on Android 3.0+

Class TaskStackBuilderHoneycomb Allows access to the Honeycomb
APIs through an implementation of
TaskStackBuilder

Exception Fragment.InstantiationException Thrown by instantiate (Context,

String, Bundle) during instantiation
when a failure occurs

www.it-ebooks.info

403

http://www.it-ebooks.info/

404

B: Using the Compatibility Pack

Table B.3 shows the interface and classes that are included in the android.

support.v4.content package.

Table B.3 android.support.v4.content

Type Name Description

Interface Loader.OnLoadCompletelListener<D> Determines when a Loader has
finished loading data

Class AsyncTaskLoader<D> The support version of the
AsyncTaskLoader

Class ContextCompat A helper class for using Context in
versions prior to API Level 4

Class CursorLoader The support version of CursorLoader

Class IntentCompat A helper class for using Intent in
versions prior to API Level 4

Class Loader<D> The support version of Loader

Class Loader.ForceLoadContentObserver An implementation that manages con-
nections between a ContentObserver
and Loader for reloading data when
data has changed

Class LocalBroadcastMessage A helper class that registers and sends

broadcast intents to objects

Table B.4 shows the class included in the android.support.v4.content.pm package.

Table B.4 android.support.v4.content.pm

Type

Name

Description

Class

ActivityInfoCompat

A helper class for using ActivityInfo
in versions prior to API Level 4

Table B.5 shows the class included in the android.support.v4.database package.

Table B.5 android.support.v4.database

Type

Name

Description

Class

DatabaseUtilsCompat

A helper class for using Database
Utils in versions prior to API Level 4

Table B.6 shows the classes included in the android.support.v4.net package.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Support Packages

Table B.6 android.support.v4.net

Type Name Description

Class ConnectivityManagerCompat A helper class for using Connectivity
Manager in versions prior to API
Level 16

Class TrafficStatsCompat A helper class for using TrafficStats
in versions prior to API Level 14

Class TrafficStatsCompatIcs An implementation version of Traffic

StatsCompat for use with Ice Cream
Sandwich APIs

Table B.7 shows the interface and class included in the android.support.v4.os package.

Table B.7 android.support.v4.os

Type Name Description

Interface ParcelableCompatCreator Support version of callbacks when
Callbacks<T> using a Parcelable

Class ParcelableCompat A helper class for using Parcelable in

versions prior to API Level 4

Table B.8 shows the classes included in the android.support.v4.util package.

Table B.8 android.support.v4.util

Type Name Description

Class AtomicFile The support version of AtomicFile

Class LongSparseArray<Es> A SparseArray that maps longs to
objects

Class LruCache<K,V> The support version of LruCache

Class SparseArrayCompat<E> The Honeycomb version of SparseArray

that contains the removeAt () method

Table B.9 shows the interfaces and classes included in the android.support.v4.view

package.

Table B.9 android.support.v4.view

Type

Name

Description

Interface

ViewPager.OnPageChangelListener

Interface callback that
responds to changes on a
page

(continues)

www.it-ebooks.info

405

http://www.it-ebooks.info/

406 B: Using the Compatibility Pack

Table B.9 android.support.v4.view (Continued)

Type Name Description

Interface ViewPager.PageTransformer Interface that is invoked when
an attached page is scrolled

Class AccessibilityDelegateCompat Helper class for using view.
AccessibilityDelegate in
versions prior to API Level 4

Class GestureDetectorCompat Detects gestures and events
using MotionEvent

Class KeyEventCompat A helper class for using
KeyEvent in versions prior to
API Level 4

Class MenuCompat A helper class for using Menu

in versions prior to API Level 4

Class MenuItemCompat A helper class for using
Menultem in versions prior to
API Level 4

Class PagerAdapter Provides an adapter for popu-
lating pages contained in a
ViewPager

Class PagerTabStrip Provides an interactive indica-
tor of the current, next, and
previous pages contained in a
ViewPager

Class PagerTitleStrip Provides a noninteractive indi-
cator of the current, next, and
previous pages contained in a
ViewPager

Class VelocityTrackerCompat A helper class for using
VelocityTracking in versions
prior to API Level 4

Class ViewCompat A helper class for using view
in versions prior to API Level 4

Class ViewCompatJB Contains Jelly Bean-specific
view APl access

Class ViewCompatJellyBeanMrl Contains Jelly Bean MR1 view
APl access

(continues)

www.it-ebooks.info

http://www.it-ebooks.info/

Table B.9 android.support.v4.view (Continued)

Android Support Packages

Type Name Description

Class ViewConfigurationCompat A helper class for using
ViewConfiguration in ver-
sions prior to API Level 4

Class ViewGroupCompat A helper class for using
ViewGroup in versions prior to
API Level 4

Class ViewPager Contains a layout manager that
flips through panes of data to
the left and right

Class ViewPager.LayoutParams The parameters of the layout
that are used with views added
to the viewPager

Class ViewPager.SavedState The saved state of viewpPager

Class ViewPager.SimpleOnPageChangeListener An implementation of Vview

Pager.OnPageChange
Listener that contains stub
implementations of contained
methods

Table B.10 shows the classes that are included in the android.support.v4.view.

accessibility package.

Table B.10 android.support.v4.view.accessibility

Type Name Description
Class AccessibilityEventCompat A helper class for using Accessibility
Event in versions prior to API Level 4
Class AccessibilityManagerCompat A helper class for using Accessibility
Manager in versions prior to APl Level 4
Class AccessibilityManagerCompat. A listener for state of accessibility
AccessibilityStateChange
ListenerCompat
Class AccessibilityNodeInfoCompat A helper class for using Accessibility
NodeInfo in versions prior to API
Level 4
Class AccessibilityNodeProviderCompat A helper class for using Accessibility
NodeProvider in versions prior to API
Level 4
Class AccessibilityRecordCompat A helper class for using Accessibility

Record in versions prior to API Level 4

www.it-ebooks.info

407

http://www.it-ebooks.info/

408

B: Using the Compatibility Pack

Table B.11 shows the interfaces and classes that are included in the android.support.

v4.widget package.

Table B.11 android.support.v4.widget

Type Name Description
Interface SimpleCursorAdapter. An interface that defines how a Cursor
CursorToStringConverter is converted to a String (can be used
by external clients)

Interface SimpleCursorAdapter.ViewBinder An interface that binds values from the
Cursor to views (can be used by exter-
nal clients of SimpleCursorAdapter)

Class CursorAdapter The support version of CursorAdapter

Class EdgeEffectCompat A helper class for using EdgeEffect in
versions prior to API Level 4

Class ResourceCursorAdapter The support version of
ResourceCursorAdapter

Class SearchViewCompat A helper class for using Searchview in
versions prior to API Level 4

Class SearchViewCompat. A callback for changes in text in the

OnQueryTextListenerCompat query
Class SimpleCursorAdapter The support version of

SimpleCursorAdapter

Adding the Support Library to a Project

Adding the support library to a project is a fairly simple and straightforward endeavor.
It needs to be downloaded and installed, then added to the build path of the project.
The support library is downloaded through the Android SDK Manager. It can
be found in the Extras folder as Android Support Library. When installed, the
required jar files can be found in the SDKlInstallationFolder/extras/android/
support/VersionNumber/ directory, where SDKInstallationFolder is where the
Android SDK is installed and VersionNumber is the current version of the support
library (at the time of this writing, it is called v4).

To add the .jar to an application, create a folder in the project named libs, copy the
Jar file into the folder, and add the .jar to the build path.

In Eclipse, refresh the project, open the libs folder, and right-click on the support
Jjar. From the context menu, choose Build Path — Add to Build Path. When
finished, make sure to initiate the support library pieces needed by including them as

imports and changing any required include statements to the support versions.

www.it-ebooks.info

http://www.it-ebooks.info/

C

Using a Continuous
Integration System

Continuous integration (CI) systems are generally used as part of the Agile or extreme
programming model. The following lists the general workflow when using CI:

1. Developers check working code into a code repository.
2. The checked-in code is compiled on a build server.

3. Testing is performed (integration, unit, or both).

4. Code is then deployed to staging or production.

There are several options for the project-building process. Using a build system
helps save time and reduces human error when it comes to repetitive building tasks.
Table C.1 lists build tools that are available to help ease the build process.

Build tools help to manage the build process; however, several full integration systems
are available. While they are not strictly necessary, they can drastically reduce integration
time by performing unit and integration testing along with project deployment. They
more than prove their worth when a problem is found before a deployment has rolled
out to production servers by saving the developer from potential customer frustration
and even possible server downtime. Table C.2 lists some common CI systems.

Table C.1 Build Tools Commonly Used with Cl in Android Development

Tool License Description
Apache Ant Apache License Used by the ADT team, this is a widely
(http://ant.apache.org/) version 2.0 used Java-based build system that is

highly configurable and runs from the
command line.

Apache Maven Apache License Maven is a sophisticated build system

(http://maven.apache.org/) version 2.0 that is used for project management,
including the ability to incorporate mul-
tiple projects into the same build system.

www.it-ebooks.info

http://ant.apache.org/
http://maven.apache.org/
http://www.it-ebooks.info/

Table C.2 Common Cl Systems

System

License

Description

Apache Continuum (http://
continuum.apache.org/)

Jenkins
(http://jenkins-ci.org/)

Hudson
(http://hudson-ci.org/)

CruiseControl (http://
cruisecontrol.sourceforge
.net/)

Bamboo (www.atlassian
.com/software/bamboo
/overview)

CircleCl (https://circleci
.com/)

Apache License
version 2.0

MIT License

MIT License

BSD-style

Commercial; price
varies depending on
usage

Commercial; price
varies depending on
usage and features

Continuum is an enterprise-level integration server that offers automated
builds (with support for Ant and Maven); release management; support for
many code repository systems, including CVS, SVN, Git, and ClearCase; and
more.

Open source and built on Java, Jenkins is a popular choice as a Cl system.
Jenkins is an application to help track repetitive processes such as cron
jobs. It can be used for build, test, and deploy monitoring and management.
It has native builds for Windows, Ubuntu/Debian, Red Hat/Fedora/CentOS,
0OS X, openSUSE, FreeBSD, OpenBSD, Solaris/Openindiana, and Gentoo.
Note that Jenkins was originally part of the Hudson project.

As of January 24, 2012, Hudson moved from an Oracle project to be part

of the Eclipse Foundation. Hudson offers many of the same features as
Jenkins, including integration with popular code repository systems such as
CVS, Subversion, Git, ClearCase, and others, as well as extensibility through
a plugin architecture.

A modular build system, CruiseControl allows for integration with popular
build systems such as Ant and Maven, allowing for integration and build
testing.

Created by Atlassian, Bamboo is easily integrated with the JIRA project-
tracking system to help push project builds, testing, and deployment. This
system is offered either as a demand-based (with a scalable usage cost) or
download-based system (with a yearly/monthly fee). It does feature built-in
deployment configurations for Tomcat, JBoss, and SSH/SCP systems.

A new player in Cl systems, CircleCl takes the management and configura-
tion time out of the equation by providing a set of tools used to connect to a
GitHub repository and run builds, tests, and deploys on it. If manually setting
up tests is preferred, CircleCl provides documentation for that as well as how
to overcome common integration hurdles.

www.it-ebooks.info

oty

%)

walsAg uonesgelul snonuiuo) e suisn

http://www.atlassian.com/software/bamboo/overview
http://www.atlassian.com/software/bamboo/overview
http://www.atlassian.com/software/bamboo/overview
https://circleci.com/
https://circleci.com/
http://continuum.apache.org/
http://continuum.apache.org/
http://jenkins-ci.org/
http://hudson-ci.org/
http://cruisecontrol.sourceforge.net/
http://cruisecontrol.sourceforge.net/
http://cruisecontrol.sourceforge.net/
http://www.it-ebooks.info/

D

Android OS Releases

This appendix summarizes the different OS releases and main features that are impor-
tant to developers.

Cupcake: Android OS 1.5, API Level 3, Released April 30, 2009

Linux kernel 2.6.27

Smart virtual (soft) keyboard, support for third-party keyboards
AppWidget framework

LiveFolders

Raw audio recording and playback

Interactive MIDI playback engine

Video recording APIs

Stereo Bluetooth support

Speech recognition via Recognizerlntent (cloud service)

Faster GPS location gathering (using AGPS)

Donut: Android OS 1.6, API Level 4, Released September 15,
2009

Linux kernel 2.6.29

Support for multiple screen sizes
Gesture APIs

Text-to-speech engine

Integrate with the Quick Search Box using the SearchManager

www.it-ebooks.info

http://www.it-ebooks.info/

412 D: Android OS Releases

Eclair: Android OS 2.0, API Level 5, Released October 26, 2009

Android OS 2.0.1, API Level 6, Released December 3, 2009
Android OS 2.1, API Level 7, Released January 12, 2010

= Sync adapter APIs to connect to any backend

= Embed Quick Contact accessible in applications

= Applications can control the Bluetooth connection to devices
= HTML5 support

= Multitouch accessible through the MotionEvent class

= Animated wallpaper support

Froyo: Android OS 2.2, API Level 8, Released May 20, 2010
= Linux kernel 2.6.32
= Just-in-time (JIT) compilation enabled, leading to faster code execution
= Car and desk dock themes
= Better definition of multitouch events
= Cloud-to-device APIs
= Applications can request to be installed on the SD memory card
= Wi-Fi tether support on select devices
= Thumbnail utility for videos and images
= Multiple language support on keyboard input

= Application error reporting for market apps

Gingerbread: Android 0S 2.3, API Level 9, Released December 6,
2010

Android OS 2.3.3, API Level 10, Released February 9, 2011

= Linux kernel 2.6.35

= Support for extra-large screen sizes and resolutions (WXGA and higher)

= Native support for SIP VoIP Internet telephony

= Keyboard improvements

= Enhanced copy/paste functionality

= NFC support

= Audio effects

= New Download Manager

= Support for multiple cameras on the device

= Support for WebM/VP8 video playback and AAC audio encoding

= Improved power management, including application management

www.it-ebooks.info

http://www.it-ebooks.info/

D: Android OS Releases

Switched from YAFFS to ext4 on newer devices
Concurrent garbage collection for increased performance

Native support for more sensors (such as gyroscopes and barometers)

Honeycomb: Android OS 3.0, API Level 11, Released February 22,
2011

Android OS 3.1, API Level 12, Released May 10, 2011
Android OS 3.2, API Level 13, Released July 15, 2011

Linux kernel 2.6.36
Optimized tablet support and new “holographic” user interface

Added System Bar, with quick access to notifications, status, and soft navigation
buttons

Added ActionBar, giving access to contextual options, navigation, widgets, or
other content at the top of the screen

Simplified multitasking through use of Recent Apps in the System Bar
Redesigned keyboard for large screens

Simplified copy/paste interface

Multiple browser tabs instead of new browser windows and “incognito” mode
Hardware acceleration

Support for multicore processors

HTTPS stack improved with Server Name Indication (SNI)
Connectivity for USB accessories

Expanded Recent Apps list

Resizable home screen widgets

Support for external keyboards and pointing devices

Support for FLAC audio playback

Support for connected Wi-Fi connections when the screen is off

Compatibility display mode for apps that have not been optimized for tablet
screen resolutions

Filesystem in Userspace (FUSE; kernel module)

Ice Cream Sandwich: Android OS 4.0, API Level 14, Released
October 19, 2011

Android OS 4.0.3, API Level 15, Released December 16, 2011

Linux kernel 3.0.1
Soft buttons from Android 3.x now available for use on phones

Customizable launcher

www.it-ebooks.info

413

http://www.it-ebooks.info/

414

D: Android OS Releases

Integrated screenshot capture

Ability to access apps directly from lock screen

Improved copy/paste functionality

Better voice integration and continuous, real-time speech-to-text dictation
Face Unlock

New tabbed Chrome browser, allowing up to 16 tabs and automatic syncing of
bookmarks with users’ Chrome bookmarks

New Roboto UI typeface family

Data Usage section in settings to track data limits and disable data when the
quota is passed

Ability to shut down apps that are using data in the background
Refreshed People app with social integration, status updates, and hi-res images

Android Beam, an NFC feature for rapid short-range exchange of bookmarks,
contact info, direction, YouTube videos, and other data

Support of WebP images

Hardware acceleration of the Ul

Wi-Fi Direct

1080p video recording for stock Android devices

Android VPN Framework (AVF) and TUN (without TAP) kernel module (prior
to 4.0, VPN software required a rooted device)

Jelly Bean: Android OS 4.1, API Level 16, Released July 9, 2012
Android OS 4.2, API Level 17, Released November 13, 2012

Linux kernel 3.0.31

Vsync timing for all drawing and animations performed by the Android
Framework, as well as triple buffering in the graphics pipeline

Enhanced accessibility

Bidirectional text and other language support
User-installable keyboard maps

Expandable notifications

Ability to turn off notifications on an app-specific basis

Shortcuts and widgets can automatically be rearranged or resized to allow new
items to fit on home screens

Bluetooth data transfer for Android Beam
Offline voice dictation

Tablets with smaller screens now use an expanded version of the interface layout
and home screens used by phones

www.it-ebooks.info

http://www.it-ebooks.info/

D: Android OS Releases

Improved voice search
Multichannel audio

USB audio

Audio chaining for gapless playback

Stock Android browser is replaced with mobile version of Google Chrome on
devices with 4.1 preinstalled

Google Now search application

Ability for other launchers to add widgets from the app drawer without requiring
root access

Photo Sphere panorama photos

Lock screen improvements, including widget support and swipe to camera
Notification power controls

“Daydream” screen saver, showing information when idle or docked
Multiple user accounts (tablets only)

Support for wireless display with Miracast

Increased number of extended notifications and Actionable Notifications for more
apps

SELinux

Always-on VPN

Premium SMS confirmation

Phonelike launcher for small tablets in Android 4.1 extended to larger tablets

Added Bluetooth gamepads and joysticks as supported HID devices

www.it-ebooks.info

415

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

A

AAC ELD (enhanced low-delay AAC), 200
AAC LC audio format, 200
Accelerometers

accessibility of, 221

determining device rotational attitude,
227-230

screen orientation and, 34

three-axis accelerometers, 9—10, 227—
230

Accessibility

checklist for, 189-190

TalkBack and, 189-190

using features of, 189-191
Accessory mode, USB devices and, 248-249
Action bars

creating, 154-156

example on device running Gingerbread,
158-159

example on phone running Jelly Bean,
157

example on tablet running Ice Cream
Sandwich, 156

ActionBarSherlock

bridging API levels prior to ver. 11, 154,
156-159

using themes of, 158
Active-matrix organic LED (AMOLED) displays, 4, 7
Activities
creating runnable activities, 55-56
creating with Eclipse IDE, 22-24
fragments of, 35-36

Index

multiple activities. see Multiple activities
restoring activity information, 34-35
saving relevant information, 34-35
using loaders, 89-91

Activity lifecycle functions
example of service lifecycle flowchart, 71
flowchart, 32
forcing screen orientation, 34
forcing single task mode, 31-34
restoring activity information, 34-35
saving activity information, 34-35
using fragments, 35-36
using functions, 31
using NativeActivity, 366-369

ADB. see Android Debug Bridge (ADB)

ADK. see Android Accessory Development Kit
(ADK)

AdMob, 18, 19
ADT. see Android Development Tools (ADT)
ADT Bundle, 12-13, 371, 377

AIDL. see Android Interface Definition Language
(AIDL)

AK8976A package (AKM), 9

Alert dialog boxes, for user options, 64-65

Alerts
big-picture style notification, 67-68
dialog boxes for user options, 64—65
example of message alert, 51
inbox-style notification, 69

proximity alerts and Google Maps, 336

www.it-ebooks.info

http://www.it-ebooks.info/

418

Alerts

Alerts (continued)

showing status bar pending notifications,
65-69

using Toast to show brief screen message,
63-64

Amazon, 6

Amazon Appstore, 6, 20

Amazon MP3, 6

Amazon Video, 6

AMOLED displays, 4, 7

AMR-NB audio format, 200

Android, Inc., 1

Android Accessory Development Kit (ADK), 249

Android Asset Packaging Tool (aapt), 26

Android Beam, 243, 267, 414, 438

Android Debug Bridge (ADB)
accessing devices with, 15-16
starting and stopping, 380381
using over wireless connection, 249

Android Development Tools (ADT)
creating test suites, 2, 371
downloading ADT Bundle, 12-13
using lint tool with, 388-390

Android Interface Definition Language (AIDL)
bridging between applications, 94
data types supported by, 94
example of output, 97

implementing remote procedure call,
94-95

RPC between processes with different
user IDs, 99

Android Native Development Kit (NDK)
activity lifecycle, 366369
app glue interfaces, 366-369
building native library, 363
downloading, 361
example of output, 364
initial steps, 361-362

type mapping between Java and Native,
362

using Java Native Interface, 362-364

using NativeActivity, 364-369
version 4, GDB debugging files, 363
Android operating system (0S), overview
application design, 11
aspects of SDK, 12—16
devices, 7-8
dichotomies of, 2
evolution of, 1-2
features of, 10—11
Google Play, 1620
hardware differences, 6—10
maintaining forward compatibility, 11-12
robustness, 12
support packages, 401-408
types of devices, 2—6
Android OS Emulator Controls
within DDMS, 380
listing of, 15
Android OS releases, listing of

Cupcake (Android OS 1.5, API
Level 3, released 4/30/09), 411

Donut (Android OS 1.6, API Level 4,
released 9/15/09), 411

Eclair (Android OS 2.0, API Level 5,
released 10/26/09), 412

Froyo (Android OS 2.2, API Level 8,
released 5/20/10), 412

Gingerbread (Android OS 2.3, API Level
9, released 12/6/10), 412—413

Honeycomb (Android OS 3.0, API Level
11, released 2/22/11), 413

Ice Cream Sandwich (Android OS 4.0,
API Level 14, released 10/19/11),
413-414

Jelly Bean (Android OS 4.1, API Level 16,
released 7/9/12), 414—415

Android package, manifest file and, 26-28
Android Support Library, 156-157, 401-408
Android Virtual Devices (AVD)

emulator functions, 15

managing, 325, 395
ANDROID-MK.HTML file, 363

www.it-ebooks.info

http://www.it-ebooks.info/

Android.support.v4.accessibilityservice package,
401

Android.support.v4.app package, 402-403
Android.support.v4.content package, 404
Android.support.v4.content.pm package, 404
Android.support.v4.database package, 404
Android.support.v4.net package, 405
Android.support.v4.os package, 405
Android.support.v4.util package, 405
Android.support.v4.view package, 405-407
Android.support.v4.view.accessibility package, 407
Android.support.v4.widget package, 408
Animation

advanced user interface techniques,
183-189

creating mail animation, 184-186
resource directories, 109
using property animations, 187-189
ANR-WB audio format, 200
Apache Ant, 30, 409-410
Apache Continuum, 410
Apache License, 294-297, 409-410
Apache Maven, 156, 409-410
API key, 349, 358
App glue interfaces, 366-369
App Widgets. see also Standard graphical widgets
and broadcast receivers, 85—87

creating text display on home screen,
85-87

Google’s design guidelines for, 11
minimum update time, 85
multiprocessing and, 10
Views and ViewGroups and, 112-113
AppBrain, 20
Apple, Inc., 1
Application basics
activity lifecycle functions, 31-36
alerts, 63—69

Android packages and manifest file,
26-28

Attributes

App Widgets, 85-87

autogenerated content, 25-26
broadcast receivers, 82—87
components of application, 21, 22
creating projects and activities, 22-24

current context in anonymous inner class,
39

directory structure, 2426
implementing list of choices, 44—45

implicit intents for creating activities,
45-46

launching activity for result using speech-
to-text functionality, 42—44

launching additional activity from event,
38-41, 42

multiple activities, 36—49
overview of, 21-22

passing primitive data types between
activities, 47—49

renaming parts of application, 2829
services, 69—82
threads, 51-58
using buttons and TextView, 37-38
using library projects, 29-31
Application design, 11
Application settings. see Settings
Archos, 5-7
Asahi Kasei Microsystems (AKM), 9
Asus, 6
AsyncTask

advanced threading techniques,
91-93

background operations and, 268-269

pulling JSON data from remote locations,
272

sending push messages with, 358-360

using for asynchronous processing,
313-314

Attributes
colors, 110-111

dimensions, 110

www.it-ebooks.info

419

http://www.it-ebooks.info/

Attributes

Attributes (continued)

EditText and text manipulation, 124,
127-128

fonts, 110, 124-127

string, 110

TextView and text manipulation, 125
Audio

adding media and updating paths, 217

choosing and playing back audio files,
207-209

frameworks for, 206
manipulating raw audio, 211-215
multimedia techniques, 206217
recording audio files, 210
registering files to system, 217

supported media types (Android 4.1),
200-201

using HTTP POST to retrieve web data,
267-269

using sound resources efficiently, 215—
217

Auto-capitalization, text entry and, 129

Autogenerated content, project structure and,
25-26

Automobiles, Android systems and, 6
Autoresponse SMS, 257-263

AVD. see Android Virtual Devices (AVD)
AVD Manager, 13-15, 325, 395

B

BACK key, KeyEvent and, 145-148
Backward compatibility, 12, 147
The Baidu App store, 20
Bamboo (CI system), 410
Battery power
broadcast receivers and, 82
customer reviews and, 17

Little Fluffy Location Library and,
337-341

of Motorola phones, 5

multiprocessing and, 10

updating of widgets and, 85—-87
WakeLocks and, 74
Berne Convention, 16
Big-picture style notification alert, 67-68
Billing integration. see In-app billing (Google Play)
BitMapFactory, 199, 202-205
Bluetooth (BT)
accessing wireless networks, 241-242
activating, 237

checking for device connectivity to,
251-253

discovering available devices, 237-238
opening sockets, 238-241

overview of API functionality and
permissions, 236

pairing with bonded Bluetooth devices,
238

for smartphones, 3

using device vibration, 241
BMP image format, 200
Bosch Sensortec, 10
Broadcast receivers

App Widgets, 85-87

checking status of network connectivity,
253-255

creating App Widgets and, 85-87
features of, 82—83

Little Fluffy Location Library
notifications, 338-340

push messages and, 351, 353
SMS functionality and, 257-263

starting service when camera button

pressed, 83—85
Browsers. see Web browsers
Button press

launching activity for result using speech-
to-text functionality, 42—44

as trigger event for multiple activities,
37-38

Buttons

aligned horizontally using LinearLayout,
116-119

www.it-ebooks.info

http://www.it-ebooks.info/

customizing for custom views, 177-182
thumb buttons on seek bars, 141-143
using buttons and TextView, 37-38

using image buttons in table layout,
130-134

using property animations for, 187189
using radio buttons, 130, 137-138
using toggle buttons, 136-137

widget, defined, 130

C

Calendar application, 191

Callback methods, 145-146. see also Event
handlers and event listeners

CallLog, 307

Camera key, KeyEvent and, 146-147

Cameras
customizing hardware interface, 222-226
hardware interface, 221-226

Capacitive touchscreen technology, 8

Capella Microsystems, Inc., 10

C/C++
building libraries using NDK, 361-370

integrating native C code with Java
Native Interface, 362-364

C/C++ Development Tooling (CDT) (Eclipse),
361-362

Check box widgets, 130, 134-137
Choices, creating list of, 44-45
CircleCl, 410
Client-side Bluetooth sockets, 238-241
Clock timers, 58-60
CMOS image sensor cameras, 3
Colors
possible values for UT attributes, 110-111

setting and changing text attributes,
124-127

Com.cookbook.data package
creating personal diary, 303-306

as separate SQLite database package,
297-300

Custom views

using separate data storage, 300-303
Compatibility pack

adding support library to projects, 408

Android support packages, 401-408
Connectivity manager

determining network interfaces, 251-253

using to access wireless networks,
241-242

Contacts
fragments and screen displays, 191
types of objects for, 307

Content providers
accessing, 308, 310

creating custom content provider,

308-312
native Android databases as, 306-307
optional override methods, 308
unique URI, 308
using loaders, 89-91
Context menus
building of, 148-152
examples of, 153
Continuous integration (Cl) systems
Apache Ant and, 30, 409-410
Apache Maven and, 156, 409-410
listing of common systems, 410
workflow steps, 409
Coordinated Universal Time (UTC) timestamp, 317
Copyright, 16-18
Countdown timers, 60-61
CruiseControl (Cl system), 410

Cupcake (Android OS 1.5, API Level 3, released
4/30/09)

creating action bars, 156

creating and retrieving shared preferences,

288
features for developers, 411
mapping the SEARCH key, 159-161

CursorLoader, advanced threading techniques,
89-91

Custom views, 177-182

www.it-ebooks.info

421

http://www.it-ebooks.info/

422

Daemon

Daemon, 381

Daemon threads, 57

Dalvik Debug Monitor Server (DDMS)
within Android Debug Monitor, 384
debugging through breakpoints, 380

example of Confirm Perspective Switch
dialog box, 381

example of control panel, 379
example of Debug perspective, 382
installing, 13
LogCat and, 381
tracking memory allocation, 12
types of debugging data, 380
using DDMS, 378-380
Data storage methods
content providers, 306-312
file saving and loading, 312314
shared preferences, 287-297
SQLite Database, 297-306
Databases. see also SQLite Database
using AsyncTask, 91-93
using CursorLoader, 89-91
DataStorageTester, 310-311
DDMS. see Dalvik Debug Monitor Server (DDMS)
Debugging
Android SDK tools, 380-390
Android system tools, 390-393
Android test projects, 371-377
creating a test project, 371-373
Eclipse built-in tools, 377-380
leveraging Linux tools, 390-393
NDK-r4 and building native libraries, 363
populating unit tests on Android, 373-376
setting up GDB debugging, 391-393

starting and stopping Android Debug
Bridge, 380-381

using Hierarchy Viewer, 384-386
using lint, 388-390

using LogCat, 381, 383-384
using Robotium, 376-377
using TraceView, 386-388

when developing with USB device
plugged in, 249

Design, importance of, 11

Design guidelines (Google), 11

Developers
charging for applications, 18—19
in-field error reports from users to, 2
interactions with users via Google Play, 17
managing updates and reviews, 19
quality design, 11

Devices, running Android
common features, 2—3
hardware differences, 6—10
HTC models, 3, 5
Motorola models, 4, 5, 9
Samsung models, 4-6
tablets, 5—6, 7

Dialog fragments, 196-198

Diary entries, 300-306

Dimensions

controlling width/height of UT elements,
115-119

possible values for UI attributes, 110
of tablet screens, 112

Directory structure
autogenerated content, 25-26
user-generated files, 24-25

Donut (Android OS 1.6, API Level 4, released
9/15/09)

creating action bars, 156

creating and retrieving shared preferences,
288

features for developers, 411

mapping the SEARCH key, 159-161
DPAD, KeyEvent and, 146-147
Droid Incredible, 5
Droid RAZR MAXX, 4, 5

www.it-ebooks.info

http://www.it-ebooks.info/

Droid X, 5
Drop-down menus, 130, 138-140

E

Earth
gravitational field, 227-230
magnetic field, 227-230

Eclair (Android OS 2.0, API Level 5, released
10/26/09)

creating action bars, 156

creating and retrieving shared preferences,
288

features for developers, 412

introduction of separate callback method,
147

mapping the SEARCH key, 159-161
Eclipse, debugging processes

adding test case constructor, 374-375

with ADT Bundle installation, 371, 377

choosing test targets, 373, 374

creating test projects, 371-373

example of New Project wizard, 372

maintenance methods in testing, 375-376

naming test projects, 372, 373

specifying run configurations, 377-378

using DDMS, 378-380, 382

using lint, 388-390

using Robotium for executing tests,
376-377

Eclipse Integrated Development Environment (IDE)
adding Support Library, 156157
with ADT Bundle installation, 13
Android SDK plugin for, 12

building layouts in graphical layout editor,
113-115

built-in debugging tools, 377-380

C/C++ Development Tooling (CDT),
361-362

creating projects and activities, 22-24
example of layout builder, 114

project directory structure, 25

EXtensible Markup Language (XML) files

renaming parts of application, 28—29
signing and publishing, 16
EditText
attributes, 127-128
autoresponse SMS and, 258-259
creating forms, 129-130
integrating with Twitter, 277-280
login page and, 291-293
RPCs and, 95-99
using HTTP GET and, 264-267
Emulator
ADB managing of, 381
changing rotation vector of, 397
configuring with SDK, 13-15

debugging and, 377-378, 380-381, 384,
390-391

drawbacks of, 221

as Eclipse plugin, 2
Emulator Controls, 15, 380
Hierarchy Viewer and, 115

using Openlntents Sensor Simulator for
testing applications, 395-399

Enabled location providers, 320-321

End user license agreement (EULA), 16-17,
294-297

Engine control unit (ECU), 6

EULA (end user license agreement), 16-17,
294-297

Event handlers and event listeners
building menus, 148—152
creating action bars, 154-156
defining menus in XML, 152-154

intercepting physical key press, 145—
148

listening for fling gestures, 163—-165
reacting to touch events, 161-163
using ActionBarSherlock, 154, 156-159
using multitouch, 165-168
using SEARCH key, 159-161

Evernote, 276

EXtensible Markup Language (XML) files. see XML

www.it-ebooks.info

423

http://www.it-ebooks.info/

Facebook

Facebook
documentation, 284

integrating into Android applications,
284-285

Scribe and, 276
tutorial, 285
virtual goods sales, 18
Facebook Android PacKage (APK), 284
Fernandez, Pablo, 276
Filenames, formatting of, 93, 109, 185, 365
FLAC audio format, 201
Flash drives, 6
Flash memory, 3
Flat file manipulation
opening resource directories, 312-313

using AsyncTask for asynchronous
processing, 313-314

Fling gestures, 163-165

Fonts
attributes, 110, 124-127
dimensions attributes, 125

setting and changing in Ul elements,
124-127

for web content, 264
Foreground services, activating, 77-80
Forms, creating and text manipulation, 129-130
Forward compatibility
rules for maintaining, 11-12
SDK versions and, 28
Fragments
of activities, 35-36

advanced user interface techniques,
191-198

displaying multiple fragments at once,
191-196

using bundles for serializing arguments,
36

using dialog fragments, 196-198
using loaders, 89-91

Frame-by-frame animation

advanced user interface techniques,
183-189

resource directories, 109

Free limited application versions (Google Play),
18-19

Froyo (Android OS 2.2, API Level 8, released
5/20/10)

creating action bars, 156

creating and retrieving shared preferences,
288

features for developers, 412
mapping the SEARCH key, 159-161

G

Galaxy Nexus, 4, 5

Galaxy Note, 5

Galaxy Note 2, 4, 5

Galaxy S3, 5

Galaxy Tab, 6

Gaming, 6, 315

GCM. see Google Cloud Messaging (GCM)
Geocoding, 324-325

Gesture Builder project, 168-171
Gestures

advanced user interface libraries and,
168-171

customizing, 10

using fling gestures, 163-165
Getjar, 20
GIF image format, 200
Gifting systems, 343

Gingerbread (Android OS 2.3, API Level 9,
released 12/6/10)

accessory mode, 248

adding notifications using Little Fluffy
Location Library, 339-340

creating action bars, 156, 158-159

creating and retrieving shared preferences,
288

features for developers, 412—-413

www.it-ebooks.info

http://www.it-ebooks.info/

mapping the SEARCH key, 159-161
Global Positioning System (GPS) navigation
in automobiles, 6
battery power usage, 337
debugging and, 380
forward compatibility and, 11
proprietary software, 2
satellite-based, 316
simulation testing, 395
GNU C libraries, 2
GNU Project Debugger (GDB)
example of output, 392
installing, 392
within NDK-r4, 363
running, 392-393
setting up, 391-393
website address, 393
Google
acquisition of Android, Inc., 1
acquisition of Motorola Mobility, 5
Android SDK website links, 1213
assistance to third-party developers, 2
design guidelines, 11
partnership with Asus, 6

Google API console, acquiring API key from, 327,
349

Google Checkout
Google Play requirement, 16
merchant accounts, 344
not available in some countries, 18
Google Chrome browser, 414-415

Google Cloud Messaging (GCM), 349. see also
Push messages, using Google Cloud Messaging
library

Google Maps
adding markers to map, 329-333
adding to applications, 328—-329
adding views to map, 333-336
Android API version 2, 327-328

download and setup requirements,
325-326

Handlers (messages between threads)

location-based services and, 322, 325-336
maps library and permissions, 326-327
setting up proximity alert, 336

Google Nexus 4, 4

Google Now, 159, 415

Google Play
alternatives to, 20
in-app billing, 343-347
end user license agreements, 16—17
improving visibility of application, 17
managing reviews and updates, 19
market differentiation of application, 18
maxSdkVersion used as filter by, 28
merchant accounts, 344
monetizing applications, 18-19
signing requirement, 16
TalkBack download, 189

Google Play Billing Library, 344-345

Google search Representational State Transfer
(REST) API

example of search result, 268

using HTTP GET to retrieve data,
264-268

Google TV, 177, 199
Google Wallet, 18

GPS navigation. see Global Positioning System
(GPS) navigation

Graphic designers, 11

Graphviz dot utility, 388
Gravitational field of Earth, 227-230
Gyroscopes, 227

H

H.263 video format, 201

H.264 AVC video format, 201

Handlers (messages between threads)
push messages and, 355

running time-consuming initialization
and, 61-63

scheduling runnable task from main
thread, 58—60

www.it-ebooks.info

425

http://www.it-ebooks.info/

426

Handlers (messages between threads)

Handlers (messages between threads) (continued)
using countdown timers, 60—61

using messengers in remote processes,
99-105

Hard keyboards, 10-11

Hardware interface
Bluetooth, 236-242
cameras, 221-226

getting device’s rotational attitude,
227-230

near field communication, 243-248
sensors, 227-231

telephony, 231-236

universal serial bus, 248-249

using temperature and light sensors,
230-231

HE-AACv1 (AAC+) audio format, 200
HE-AACv2 (enhanced AAC+) audio format, 200

Height, controlling dimensions of Ul elements,
115-119

Hierarchy Viewer
for debugging, 381, 384-386
example of interface, 385
viewing layouts with, 115, 116, 386
Holo theme, 25, 154
HOME key, KeyEvent and, 146-147

Honeycomb (Android OS 3.0, API Level 11,
released 2/22/11)

adding notifications using Little Flufty
Location Library, 339-340

animating buttons, 187

creating action bars, 154, 156

creating and retrieving shared preferences,

288-289

features for developers, 413
mapping the SEARCH key, 159-161
project directory structure, 24-25
using fragments, 36

Host mode, USB devices and, 248-249

HRC One, 4

HTC, 3-5

HTC Dream (G1), 3,9
HTC EVO 3D, 3,5

HTC EVO 4G, 5, 9

HTC Magic, 3

HTTP GET, 264-267
HTTP POST, 267-269
Hudson (CI system), 410

Ice Cream Sandwich (Android OS 4.0, API Level
14, released 10/19/11)

access to device owner profiles, 275

creating and retrieving shared preferences,
288-289

example of action bar, 156
features for developers, 413—414
mapping the SEARCH key, 159-161
project directory structure, 24
IEEE standard 802.14.1, 236
Image buttons, in table layout, 130-134
Image resource directories, 109
Images
example of scrambled image, 206

loading and displaying for manipulation,
202-206

multimedia techniques, 199-206
saving bitmap picture to PNG file, 312
supported media types (Android 4.1), 200

using HTTP POST to retrieve web data,
267-269

ImageView, using AsyncTask, 92-93
Implicit intents for creating activity, 45-46
In-app billing (Google Play)
adding to activities, 345-346
boilerplate code for, 346
completing purchase, 347

creating listener for inventory results,
346-347

installing, 344-345

listing items for in-app purchase in
developer console, 346347

www.it-ebooks.info

http://www.it-ebooks.info/

storing customer-identifying information,
347

versions of, 343
In-app purchases, 18-19
Inbox-style notification alert, 69
IntentService
for background tasks, 80—82
using with Result Receiver, 105
Internal pause flag, 53-55
Internet browsers. see Web browsers
Inter-process communication (IPC) protocol
AIDL interface functions, 94-95, 97

implementing remote procedure calls,
94-99

sharing threads between two applications
using binders vs., 57-58

using messengers, 99-105
using ResultReceiver, 105-107
IPad, 5, 6

IPC. see Inter-process communication (IPC)
protocol

IPhone, 1
1Qon, 6

Java
capturing text entry at run-time, 129
colors of items, 111
fragments and, 193-196

OAuth module and integrating with
Twitter, 276—283

programmatic layout, drawbacks of,
120-121

referencing resources, 2628

Relative Layout rules for possible
children, 120

TextView attributes, 125
Java Native Interface (JNI)
integrating native C code with, 362-364

type mapping between Java and Native,
362

Landscape screen mode

Java Virtual Machine (JVM), 363

JavaScript Object Notation. see JSON (JavaScript
Object Notation)

Jelly Bean (Android OS 4.1, API Level 16, released
7/9/12)

adding notifications using Little Fluffy
Location Library, 340

creating and retrieving shared preferences,
288-289

example of action bar, 157
features for developers, 414—415

introduction of hard-coded SEARCH
key, 159

supported media types, 200-201
Jenkins (Cl system), 410
JNI. see Java Native Interface (JNI)
JPEG image format, 200
JSON (JavaScript Object Notation)
defined, 251
parsing JSON data, 271-273

using HTTP GET to retrieve web data,
264-267

website address, 264-267
JUnit, 13, 371, 375-376
JVM (Java Virtual Machine), 363

K

Keyboards
KeyEvent and, 146
and screen orientation, 34
types of, 10-11
KeyEvents, physical keys for, 145-146
Kickstarter projects, 6
Kindle Fire, 6

L

Labels for resource directories, 110

Landscape screen mode
forcing to stay constant, 34
XML layouts for, 112

www.it-ebooks.info

427

http://www.it-ebooks.info/

428

Language values directories

Language values directories, 111
Last location, retrieving, 317-318

Latitude-longitude coordinates. see also Location-
based services (LBS)

Little Fluffy Location Library and, 337
proximity alerts and Google Maps, 336

Layout. see User interface layout; Views and
ViewGroups

LBS. see Location-based services (LBS)
Libraries
advanced user interface libraries, 168—176

Android Support Library, 156—157,
401-408

Google Cloud Messaging library, 349-360
library projects, overview of, 29-31
Little Fluffy Location Library, 337-341

Open Graphics Library for Embedded
Systems (OpenGL ES), 171-176, 327,
366

third-party for integrating with Twitter,
275-276

Light sensors, 230-231
LinearLayout, 116-119
LinkedlIn, 276
Lint, for debugging, 388-390
Linux OS systems

ADT Bundle for, 13

Android debugging processes and,
390-393

setting up GDB debugging, 391-393
using Openlntents Sensor Simulator for
testing applications, 396

using Ton command, 390-391
Listeners. see Event handlers and event listeners
Little Fluffy Location Library

adding notifications, 338

downloading, 337

example of notification, 341

location-based services and, 337-341
LiveFolder, 307

Loader API, advanced threading techniques,
89-91

Location-based services (LBS)
accuracy and power requirements, 316
application requirements, 315
listing all enabled providers, 320-321

permission to use location information,
316-317

retrieving last location, 317-318

specifying location estimation technology,

316

translating a location to address (reverse
geocoding), 322323

translating an address to location
(geocoding), 324-325

updating location upon change, 318-320
using Google Maps, 322, 325-336

using Little Flutfy Location Library,
337-341

LogCat
from DDMS control panel, 379, 380
for debugging, 381, 383-384
for listening for phone states, 234
owner profiles and, 275

when developing with USB device
plugged in, 249

Login page, 291-293

M

Mac OS systems
ADT Bundle for, 13
retina display, 6

using Openlntents Sensor Simulator for
testing applications, 396

Magnetic field of Earth, 227-230
Magnetometers, 9, 221, 227-230, 252

Mail animation, 184-186

Make file format, 363

Manifest files, overview of, 26-28

Margins, Ul elements and, 116

Market differentiation of application, 18
MaxSdkVersion used as filter by Google Play, 28
MD5 certificate fingerprints, 326

www.it-ebooks.info

http://www.it-ebooks.info/

Media button, KeyEvent and, 146

Media playback, launching secondary threads and,
52-55

MediaPlayer
manipulating raw audio, 211

ringtone song as secondary thread and,
52-55

using for audio playback, 207-209
using for video playback, 217-219
MediaStore, 217, 307
Memory
activity lifecycle and, 32
audio files and, 215-216
flash drives, 6
flash memory, 3
foreground services and, 77
manipulating audio and, 206, 211-213
manipulating images and, 199, 202-204
tracking memory allocation, 12, 390-391

using sound resources efficiently and,
215217

MENU key, KeyEvent and, 146-147
Menus
building of, 148-152
creating spinners, 113-114, 130, 138-140
defining menus in XML, 152-154
examples of, 153
resource directories, 109
Messengers, in remote processes, 99-105
Micro Secure Digital (microSD) card slot, 3
Micro-electro-mechanical systems (MEMS), 227
Microprocessor unit (MPU), 3
MIDI audio format, 201
MIT License, 410
Mobile advertisement, 18-19
Monetizing applications (Google Play), 18-19
Motion events, 165
Motorola
Android smartphones, 4, 5, 9
app market, 20

Network-based applications

Motorola Droid, 9
MP3 audio format, 201
MPEG-4 SP video format, 201
Multimedia techniques
audio, 206217
images, 199-206

supported media types (Android 4.1),
200-201

video, 217-219
Multiple activities
implementing list of choices, 44—45

implementing remote procedure call
between, 94-99

launching activity for result using speech-
to-text functionality, 42—44

launching additional activity from event,
38-41, 42

overview of, 3637

passing primitive data types between
activities, 47—49

using buttons and TextView, 37-38
Multiprocessing, App Widgets and, 10
Multitouch, 10, 165-168

N

National Semiconductor, 9
NativeActivity, 364-369

NDEF (NFC Data Exchange Format messages),
243

NDK. see Android Native Development Kit (NDK)
Near field communication (NFC)

hardware interface, 243-248

reading NFC tags, 243-245

within Samsung smartphones, 5

writing to unprotected NFC tags,
245-248

Network-based applications
checking for connectivity, 251-253
reacting to network state, 251-255
receiving connectivity changes, 253-255

social networking, 275-285

www.it-ebooks.info

429

http://www.it-ebooks.info/

430

Network-based applications

Network-based applications (continued)
using SMS, 255-263
using web content, 263-274
Nexus 7, 6
Nexus 10, 6
Nexus One, 3,5
NFC. see Near field communication (NFC)

NFC Data Exchange Format (NDEF) messages,
243

0)

OAuth module for Java, and integrating with
Twitter, 276-283

One X+, 3

Open Graphics Library for Embedded Systems
(OpenGL ES)

for drawing 3D images, 171-176

libraries for communication between C
code and Android Framework, 366

version 2, 327
Open Handset Alliance, 1
Open source, defined, 2
Openlintents Sensor Simulator
adding to application, 398-399
downloading, 395
Initial Settings screen, 396
permissions, 398
setting up, 395-397
Opera Mobile Apps Store, 20
Option menus, 148-152
Opto Semiconductor, 9

0S releases and API level. see Android 0S
releases, listing of

OUYA console, 6

Owner profiles of devices, 275

P

Padding, Ul elements and, 116
Partial WakeLock, 74-75

Passwords

creating private key and, 16
NFC requirements and, 243
shared preferences and, 287, 289293
Pay-to-win applications, 18, 343
PCM/WAVE audio format, 201
PDU (protocol description unit), 260
Pebble watch, 6
Pending notification alerts, 65-69
Phablets, 5
Phone numbers, dialing, 235-236
Phone state listener events, 234-235
Physical key press, intercepting, 145-148
Physical keyboards, 10-11
PNG image format, 200
Portrait screen mode
forcing to stay constant, 34
XML layouts for, 112
Power key, KeyEvent and, 146-147

Preferences framework, shared preferences
interface and, 288-291

Price, Kenton, 337
Pricing of applications (Google Play), 18-19
Private keys
for OAuth, 276
signing applications with, 16
Progress bar widget, 123, 130, 140-141
Projects. see also Test projects
Android Asset Packaging Tool (aapt), 26
autogenerated content, 25-26
creating with Eclipse IDE, 22-24
directory structure, 24-26
user-generated files, 24-26
Protocol description unit (PDU), 260
Proximity alerts

creating alerts without expiration time,

336
using Google Maps and, 336

Push messages, using Google Cloud Messaging
library

adding Broadcast receiver class, 353

www.it-ebooks.info

http://www.it-ebooks.info/

adding IntentService class, 354-356
API Access page, 351

API service overview screen, 349-350,
350

boilerplate code for, 359-360
obtaining API key, 349

permissions, 351

preparing for setup, 349-351
preparing the manifest, 351-353
receiving messages, 353-356
registering a device, 356

sending messages, 351-353, 356-360

sending messages with AsyncTask,
357-360

sending text messages, 357-358
storing API key, 358

Q

Qualcomm, Snapdragon platform, 3-4

R

Radio button widgets, 130, 137-138
RAM, 3
Raw audio, manipulating, 211-215
RAZR MAXX HD, 5
Recording audio files, 210
Referencing resources

Java files, 2628

XML files, 2628
Relative Layout view, 119-120

Remote procedure calls. see RPCs (remote
procedure calls)

Renaming parts of application, 28-29
Research In Motion, 1
Resistive touchscreen technology, 7-8
Resource directories
language values directories, 111
listing of, 109
opening, 312

Screen orientation

specitying alternate resources, 111-112
user interface layout attributes, 110-111

REST. see Google search Representational State
Transfer (REST) API

Restoring activity information, 34-35
ResultReceiver

holds IPC binders to direct calls across
multiple processes, 105-107

using IntentService with, 105
Reverse geocoding, 322-323
Reviews by users, managing (Google Play), 19
RFCOMM (Bluetooth transport protocol), 238
Robotium

downloading and tutorials, 377

for executing tests, 376377
Robustness, 12
Roewe, 6
ROM. see Flash memory
Rotational attitude, expressing, 227-230
RPCs (remote procedure calls)

example of output of AIDL application,
97

implementing between two activities,
94-99

using AIDL between processes with
different user IDs, 99

RTTTL files, launching secondary threads for
ringtone song, 52-55

Runnable activities
creating, 55-56

scheduling tasks from main thread using
handlers, 58—60

S

Saab, 6

Safari browser, 263

Samsung, 4-6

Satellite-based GPS, 316

Saving activity information, 34-35
Screen layout resource directories, 109

Screen orientation

www.it-ebooks.info

431

http://www.it-ebooks.info/

432

Screen orientation

Screen orientation (continued)
forcing to stay constant, 34
keyboard slide-out events and, 34
XML layouts for, 112

Screen resolution, 111

Screens
AMOLED displays, 7
light sensors and, 230231
specifications of, 8
of tablets, 112
TFT LCDs, 7
touchscreens, 7-8, 10

Scribe, 276

SDK. see Software Development Kit (SDK)

SDRAM/RAM (synchronous dynamic random
access memory), 3

SEARCH key
KeyEvent and, 146—148

using with event handlers and event
listeners, 159161

SearchRecentSuggestions, 307
Secondary threads
launching ringtone song, 52—55

updating layouts from separate thread,
121-124

when accessing web data, 268
Seek bar widgets, 130, 141-143
Self-contained services

adding WakeLocks, 74

creating, 70-74

Sensors. see also Openintents Sensor Simulator

light sensors, 230-231
SDK supported sensors, listing, 227
smartphones as sensor hubs, 810
temperature sensors, 230-231
types of, 9
Server-side Bluetooth sockets, 238-241
Services

adding WakeLocks to self-contained
service, 74—77

creating self-contained, 70-74

defined, 69

lifecycle flowchart, 71

scenarios of, 70

using an IntentService, 80—-82

using foreground services, 77—-80
Settings

as content provider native database, 307

forward compatibility and, 11, 28

Hierarchy Viewer and, 115

shared preferences interface and, 287—
293

Shanghai Automotive Industry Corporation, 6
Shared preferences
adding an EULA, 294-297

changing the UI based on stored data,
290-293

creating and retrieving, 288
as data storage method, 287297
login page, 290-293
using the preferences framework, 288—
290, 291
Short message service (SMS)

autoresponse SMS based on received
SMS, 257-263

located in android.telephony package,
257-263

networked-based applications and,
255-263

push messages and, 357-358
retrieving protocol description unit, 260

setting messages to 140 characters or less,
257,275

Single task mode, forcing, 31-34
SlideMe, 20
Smartphones. see also Telephony
models of, 3, 4
sensors and, 8—10, 227-231
SMS. see Short message service (SMS)
Snapdragon platform, 3
Social networking

integrating with Facebook, 18, 276,
284-285

www.it-ebooks.info

http://www.it-ebooks.info/

integrating with Twitter, 275-283

networked-based applications and,
275-285

reading owner profile of devices, 275
Soft keyboards, 10-11, 128-129
Software Development Kit (SDK)
Android Debug Bridge (ADB), 15-16
configuring emulators, 14-15
debugging tools, 14—16, 380-390
downloading support library, 408
installing, 12-13
OS releases and API level, 14, 411-415
release 14 includes library projects, 29
signing and publishing, 16
supported sensors in, 227
upgrading, 12-13
Spacing, Ul elements and, 116-119
Speech-to-text functionality, 42-44
Spelling corrections, 129
Spinner widgets, 113-114, 130, 138-140
SQLite Database
creating personal diaries, 303-306

creating separate database packages,
297-300

ListView of diary entries, 307
using separate database packages, 300-303
ST Microelectronics, 9
Standard graphical widgets. see also App Widgets
creating spinners, 130, 138-140
using check boxes, 134-136

using image buttons in table layout,
130-134

using progress bars, 123, 130, 140-141
using radio buttons, 137-138
using seek bars, 130, 141-143
using toggle buttons, 136-137
Standby, adding WakelLocks, 74
Status bar pending notification alerts, 65-69
Storage. see Data storage methods
Strings, 110

Telephony

Submenus
building of, 148-152
examples of, 153
Support packages

android.support.v4.accessibilityservice
package, 401

android.support.v4.app package, 402—
403

android.support.v4.content package, 404

android.support.v4.content.pm package,

404

android.support.v4.database package,
404

android.support.v4.net package, 405
android.support.v4.os package, 405
android.support.v4.util package, 405

android.support.v4.view package,
405—407

android.support.v4.view.accessibility
package, 407

android.support.v4.widget package, 408
Surface acoustic touchscreen technology, 8

Synchronous dynamic random access memory
(SDRAM/RAM), 3

SyncStateContract, 307

T

Table Layout, using image buttons in, 130-134

Tablets
Android, listing of, 7
fragments and screen displays, 191
overview of, 5—6
screen dimensions for, 112
using fragments, 35
TalkBack
downloading, 189
voice synthesis service, 189-190
Telephony
dialing phone numbers, 235-236
hardware interface, 231-236
listening for phone states, 234-235

www.it-ebooks.info

433

http://www.it-ebooks.info/

434

Telephony

Telephony (continued)
permissions, 234
using telephony manager, 231-233
Telephony manager, 231-233
Temperature sensors, 230-231
Test projects
creating using Eclipse, 371-373
debugging and, 371-377
Text attributes, 124-127
Text entry
auto-capitalization, 129
spelling correction, 129
for user input, 127-129
using soft keyboards, 128—129
word suggestions, 129
Text manipulation, of Ul elements
creating forms, 129-130
providing text entry, 127-129

setting and changing text attributes,
124-127

Text messages. see Short message service (SMS)
TextView
attributes, 125

showing results of multiple activities,
37-38

Thin-film transistor (TFT) LCDs, 7
Third-party application stores, 18, 20
Thread priorities, setting of, 56-57
Threading techniques, advanced
AxyncTask, 91-93

implementing remote procedure call,
94-99

inter-process communication (IPC)
protocol, 94-107

loaders, 89-91

using CursorLoader, 89-91

using messengers, 99-105

using ResultReceiver, 105-107
Threads

canceling, 57

creating runnable activities, 55-56
handlers, 58—63

launching secondary threads, 5255
overview of, 51

setting thread priorities, 56-57

sharing between two applications, 57-58

updating layouts from separate thread,
121-124

3-bit TNF field, 243

3D images, 171-176

Three-axis accelerometers, 9-10, 227-230
Three-axis magnetometers, 9, 227-230
Thumb buttons, 141-143

Time-consuming initialization, using handlers and,
61-63

Toggle button widgets, 136-137
Top command for debugging, 390-391
Touch events, 10, 161-163
Touchscreen technology, 7-8, 10
TraceView

example of analysis screen, 388

for optimizing performance, 381,
386-388

specifying factorial method, 386—
387

trace log files and, 386-388
Trackball, KeyEvent and, 146
TV screens, using fragments, 35
Tween animation

advanced user interface techniques,
183-189

resource directories, 109
Twitter
features of, 275

integrating into Android applications,
275-283

registering applications with, 276
Scribe and, 276

third-party libraries for integrating with,
275-276

Twitter4), 276, 283

www.it-ebooks.info

http://www.it-ebooks.info/

U

Uniform resource identifier (URI)
implicit intents and, 45-46
NEFC tags and, 243

requirement for content providers,
308-309

Universal serial bus (USB) devices
accessory mode, 248-249
ADB managing of, 248-249, 381
Android devices as emulators and, 14
hardware interface, 248-249

Updates, managing (Google Play), 19

URI. see Uniform resource identifier (URI)

User input methods, 7-8, 127-129

User interface events
advanced user interface libraries, 168—176
building menus, 148—152
creating action bars, 154-156
defining menus in XML, 152-154

event handlers and event listeners,
145-164

intercepting physical key press, 145-148
listening for fling gestures, 163-165
reacting to touch events, 161-163
using ActionBarSherlock, 156-159
using multitouch, 165-168
using SEARCH key, 159-161
User interface layout
general attributes, 110-111
resource directories, 109—112
text manipulation, 124-130
views and ViewGroups, 112124
widgets. see Standard graphical widgets
User interface libraries, advanced
drawing 3D images, 171-176
using gestures, 168—171
User interface techniques, advanced
accessing accessibility features, 189-191

animation, 183—189

WakelLocks

custom views, 177—-182

fragments, 191-198
UserDictionary, 307-308
Username objects, 291-293

UUID (universally unique identifier), opening
Bluetooth sockets and, 239-240

\Y

Vibration, in Bluetooth devices, 241

Video

multimedia techniques, 217-219
playback using MediaPlayer, 219
supported media types (Android 4.1), 201

using HTTP POST to retrieve web data,
267-269

using VideoView, 217-219
VideoView, 217-219
Views and ViewGroups
building layouts in Eclipse editor, 113-115

controlling width/height of Ul elements,
115-119

custom views, 177-182
declaring programmatic layout, 120-121

example of horizontally placed widgets,
113

setting Relative Layout and layout ID,
119-120

updating layouts from separate thread,
121-124

Vimeo, 276

Virtual goods sales, 18

Visibility of applications (Google Play), 17
Volume key, KeyEvent and, 146-147
Vorbis audio format, 201

VP8 video format, 201

W

WakeLocks

adding to self-contained services, 74—
77

www.it-ebooks.info

435

http://www.it-ebooks.info/

WakelLocks

WakeLocks (continued)
comparison of types, 75
push messages and, 351
Web browsers
customizing, 263-264
Google Chrome browser, 414—415
Google Maps and, 325
incognito mode, 413

native Android databases as content
provider, 306

Safari browser, 263
Web content
customizing web browsers, 263264

networked-based applications and,
263-274

parsing JSON data, 271-273
parsing XML data, 273-274

using an HTTP GET to retrieve web
data, 264-267

using HTTP POST to retrieve data,
267-269

using WebViews, 269-271
WebKit, 263-264
WEBP image format, 200
WebViews, 269-271

What-you-see-is-what-you-get (WYSIWYG) user

interface, 377

Widgets. see App Widgets; Standard graphical

widgets

Width, controlling dimensions of Ul elements,
115-119

Wi-Fi (802.11)
cell tower identification, 316

checking for device connectivity to,
251-253, 255

debugging and, 249
smartphones and, 3
tablets and, 5

WiMAX (802.16e-2005), 5
Windows OS systems
ADT Bundle for, 13
integrating with Facebook, 284
SDK drivers for, 14
using lint tool with, 388-390
Wireless networks, 241-242
Word suggestions, text entry and, 129

Wrist watches, with Android systems, 6

X

X Windows, 2
XML
arbitrary filenames, 109
colors of items, 111
creating animation with, 187-189
defining layouts for screen types, 112
defining menus, 152—154
EditText attributes, 128
Google Maps and, 327
labels and text of items, 110

measurements and dimensions of items,
110

parsing XML data, 273-274
project user-generated files, 24—25
referencing resources, 26—28

Relative Layout rules for possible
children, 120

with resource descriptors, 109
resource directories, 109

shared preferences interface and, 287
TextView attributes, 125

using HTTP GET to retrieve web data,
264-267

Y

Yamamoto, Yusuke, 276

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	Preface
	About the Authors
	1 Overview of Android
	The Evolution of Android
	The Dichotomy of Android
	Devices Running Android
	HTC Models
	Motorola Models
	Samsung Models
	Tablets
	Other Devices

	Hardware Differences on Android Devices
	Screens
	User Input Methods
	Sensors

	Features of Android
	Multiprocess and App Widgets
	Touch, Gestures, and Multitouch
	Hard and Soft Keyboards

	Android Development
	Designing Applications Well
	Maintaining Forward Compatibility
	Ensuring Robustness

	Software Development Kit (SDK)
	Installing and Upgrading
	Software Features and API Level
	Emulator and Android Device Debug
	Using the Android Debug Bridge
	Signing and Publishing

	Google Play
	End User License Agreement
	Improving App Visibility
	Differentiating an App
	Charging for an App
	Managing Reviews and Updates
	Alternatives to Google Play

	2 Application Basics: Activities and Intents
	Android Application Overview
	Recipe: Creating a Project and an Activity
	Directory Structure of Project and Autogenerated Content
	Android Package and Manifest File
	Recipe: Renaming Parts of an Application
	Recipe: Using a Library Project

	Activity Lifecycle
	Recipe: Using Activity Lifecycle Functions
	Recipe: Forcing Single Task Mode
	Recipe: Forcing Screen Orientation
	Recipe: Saving and Restoring Activity Information
	Recipe: Using Fragments

	Multiple Activities
	Recipe: Using Buttons and TextView
	Recipe: Launching a Second Activity from an Event
	Recipe: Launching an Activity for a Result Using Speech to Text
	Recipe: Implementing a List of Choices
	Recipe: Using Implicit Intents for Creating an Activity
	Recipe: Passing Primitive Data Types between Activities

	3 Threads, Services, Receivers, and Alerts
	Threads
	Recipe: Launching a Secondary Thread
	Recipe: Creating a Runnable Activity
	Recipe: Setting a Thread’s Priority
	Recipe: Canceling a Thread
	Recipe: Sharing a Thread between Two Applications

	Messages between Threads: Handlers
	Recipe: Scheduling a Runnable Task from the Main Thread
	Recipe: Using a Countdown Timer
	Recipe: Handling a Time-Consuming Initialization

	Alerts
	Recipe: Using Toast to Show a Brief Message on the Screen
	Recipe: Using an Alert Dialog Box
	Recipe: Showing Notification in the Status Bar

	Services
	Recipe: Creating a Self-Contained Service
	Recipe: Adding a WakeLock
	Recipe: Using a Foreground Service
	Recipe: Using an IntentService

	Broadcast Receivers
	Recipe: Starting a Service When the Camera Button Is Pressed

	App Widgets
	Recipe: Creating an App Widget

	4 Advanced Threading Techniques
	Loaders
	Recipe: Using a CursorLoader

	AsyncTasks
	Recipe: Using an AsyncTask

	Android Inter-Process Communication
	Recipe: Implementing a Remote Procedure Call
	Recipe: Using Messengers
	Recipe: Using a ResultReceiver

	5 User Interface Layout
	Resource Directories and General Attributes
	Recipe: Specifying Alternate Resources

	Views and ViewGroups
	Recipe: Building Layouts in the Eclipse Editor
	Recipe: Controlling the Width and Height of UI Elements
	Recipe: Setting Relative Layout and Layout ID
	Recipe: Declaring a Layout Programmatically
	Recipe: Updating a Layout from a Separate Thread

	Text Manipulation
	Recipe: Setting and Changing Text Attributes
	Recipe: Providing Text Entry
	Recipe: Creating a Form

	Other Widgets: From Buttons to Seek Bars
	Recipe: Using Image Buttons in a Table Layout
	Recipe: Using Check Boxes and Toggle Buttons
	Recipe: Using Radio Buttons
	Recipe: Creating a Spinner
	Recipe: Using a Progress Bar
	Recipe: Using a Seek Bar

	6 User Interface Events
	Event Handlers and Event Listeners
	Recipe: Intercepting a Physical Key Press
	Recipe: Building Menus
	Recipe: Defining Menus in XML
	Recipe: Creating an Action Bar
	Recipe: Using ActionBarSherlock
	Recipe: Using the SEARCH Key
	Recipe: Reacting to Touch Events
	Recipe: Listening for Fling Gestures
	Recipe: Using Multitouch

	Advanced User Interface Libraries
	Recipe: Using Gestures
	Recipe: Drawing 3D Images

	7 Advanced User Interface Techniques
	Android Custom View
	Recipe: Customizing a Button

	Android Animation
	Recipe: Creating an Animation
	Recipe: Using Property Animations

	Accessibility
	Recipe: Using Accessibility Features

	Fragments
	Recipe: Displaying Multiple Fragments at Once
	Recipe: Using Dialog Fragments

	8 Multimedia Techniques
	Images
	Recipe: Loading and Displaying an Image for Manipulation

	Audio
	Recipe: Choosing and Playing Back Audio Files
	Recipe: Recording Audio Files
	Recipe: Manipulating Raw Audio
	Recipe: Using Sound Resources Efficiently
	Recipe: Adding Media and Updating Paths

	Video
	Recipe: Using the VideoView
	Recipe: Video Playback Using the MediaPlayer

	9 Hardware Interface
	Camera
	Recipe: Customizing the Camera

	Other Sensors
	Recipe: Getting a Device’s Rotational Attitude
	Recipe: Using the Temperature and Light Sensors

	Telephony
	Recipe: Using the Telephony Manager
	Recipe: Listening for Phone States
	Recipe: Dialing a Phone Number

	Bluetooth
	Recipe: Turning on Bluetooth
	Recipe: Discovering Bluetooth Devices
	Recipe: Pairing with Bonded Bluetooth Devices
	Recipe: Opening a Bluetooth Socket
	Recipe: Using Device Vibration
	Recipe: Accessing the Wireless Network

	Near Field Communication (NFC)
	Recipe: Reading NFC Tags
	Recipe: Writing NFC Tags

	Universal Serial Bus (USB)

	10 Networking
	Reacting to the Network State
	Recipe: Checking for Connectivity
	Recipe: Receiving Connectivity Changes

	Using SMS
	Recipe: Autosending an SMS Based on a Received SMS

	Using Web Content
	Recipe: Customizing a Web Browser
	Recipe: Using an HTTP GET
	Recipe: Using HTTP POST
	Recipe: Using WebViews
	Recipe: Parsing JSON
	Recipe: Parsing XML

	Social Networking
	Recipe: Reading the Owner Profile
	Recipe: Integrating with Twitter
	Recipe: Integrating with Facebook

	11 Data Storage Methods
	Shared Preferences
	Recipe: Creating and Retrieving Shared Preferences
	Recipe: Using the Preferences Framework
	Recipe: Changing the UI Based on Stored Data
	Recipe: Adding an End User License Agreement

	SQLite Database
	Recipe: Creating a Separate Database Package
	Recipe: Using a Separate Database Package
	Recipe: Creating a Personal Diary

	Content Provider
	Recipe: Creating a Custom Content Provider

	File Saving and Loading
	Recipe: Using AsyncTask for Asynchronous Processing

	12 Location-Based Services
	Location Basics
	Recipe: Retrieving Last Location
	Recipe: Updating Location Upon Change
	Recipe: Listing All Enabled Providers
	Recipe: Translating a Location to an Address (Reverse Geocoding)
	Recipe: Translating an Address to a Location (Geocoding)

	Using Google Maps
	Recipe: Adding Google Maps to an Application
	Recipe: Adding Markers to a Map
	Recipe: Adding Views to a Map
	Recipe: Setting Up a Proximity Alert

	Using the Little Fluffy Location Library
	Recipe: Adding a Notification with the Little Fluffy Location Library

	13 In-App Billing
	Google Play In-App Billing
	Recipe: Installing Google’s In-App Billing Service
	Recipe: Adding In-App Billing to an Activity
	Recipe: Listing Items for In-App Purchase

	14 Push Messages
	Google Cloud Messaging Setup
	Recipe: Preparing for Google Cloud Messaging

	Sending and Receiving Push Messages
	Recipe: Preparing the Manifest

	Receiving Messages
	Recipe: Adding the BroadcastReceiver Class
	Recipe: Adding the IntentService Class
	Recipe: Registering a Device

	Sending Messages
	Recipe: Sending Text Messages
	Recipe: Sending Messages with AsyncTask

	15 Android Native Development
	Android Native Components
	Recipe: Using Java Native Interface
	Recipe: Using the NativeActivity

	16 Debugging
	Android Test Projects
	Recipe: Creating a Test Project
	Recipe: Populating Unit Tests on Android
	Recipe: Using Robotium

	Eclipse Built-In Debug Tools
	Recipe: Specifying a Run Configuration
	Recipe: Using the DDMS
	Recipe: Debugging through Breakpoints

	Android SDK Debug Tools
	Recipe: Starting and Stopping the Android Debug Bridge
	Recipe: Using LogCat
	Recipe: Using the Hierarchy Viewer
	Recipe: Using TraceView
	Recipe: Using lint

	Android System Debug Tools
	Recipe: Setting Up GDB Debugging

	A: Using the OpenIntents Sensor Simulator
	Setting Up the Sensor Simulator
	Adding the Sensor Simulator to an Application

	B: Using the Compatibility Pack
	Android Support Packages
	Adding the Support Library to a Project

	C: Using a Continuous Integration System
	D: Android OS Releases
	Cupcake: Android OS 1.5, API Level 3, Released April 30, 2009
	Donut: Android OS 1.6, API Level 4, Released September 15, 2009
	Eclair: Android OS 2.0, API Level 5, Released October 26, 2009
	Froyo: Android OS 2.2, API Level 8, Released May 20, 2010
	Gingerbread: Android OS 2.3, API Level 9, Released December 6, 2010
	Honeycomb: Android OS 3.0, API Level 11, Released February 22, 2011
	Ice Cream Sandwich: Android OS 4.0, API Level 14, Released October 19, 2011
	Jelly Bean: Android OS 4.1, API Level 16, Released July 9, 2012

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

