
Администрирование

сервера NGINX

Димитрий Айвалиотис

Mastering NGINX

Dimitri Aivaliotis

An in-depth guide to configuring NGINX for any

situation, including numerous examples and reference

tables describing each directive

Администрирование

сервера NGINX

Москва, 2015

Димитрий Айвалиотис

Подробное руководство по настройке NGINX

в любой ситуации, с многочисленными примерами

и справочными таблицами для всех директив

УДК 004.738.5:004.42Nginx
ББК 32.973.202
 А36

 Айвалиотис Д.
А36 Администрирование сервера NGINX. – М.: ДМК Пресс,

2015. – 288 с.: ил.

 ISBN 978-5-94074-162-4

NGINX – это высокопроизводительный сервер, который реализует
функции прокси для веб-серверов и почтовых серверов и потребляет очень
мало системных ресурсов. В Интернете хватает руководств по его настрой-
ке и примеров конфигураций, но при этом трудно понять, как правильно
настроить NGINX для конкретных нужд.

Эта книга расчистит мутные воды конфигурирования NGINX и научит
вас настраивать его для решения различных задач. Попутно вы узнаете,
что означают некоторые покрытые мраком параметры, и поймете, как раз-
работать конфигурацию, отвечающую именно вашим целям.

Вначале дается краткий обзор процедуры компиляции NGINX и
описывается формат конфигурационного файла. Затем автор переходит
к модулям и рассказывает о многочисленных настройках, позволяющих
использовать NGINX в качестве обратного прокси-сервера. Завершается
книга обсуждением поиска и устранения неполадок.

Издание предназначено для системных администраторов или инжене-
ров, имеющих опыт эксплуатации веб-серверов.

 УДК 004.738.5 :004.42Nginx
 ББК 32.973.202

Все права защищены. Любая часть этой книги не может быть воспроиз-
ведена в какой бы то ни было форме и какими бы то ни было средствами без
письменного разрешения владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но, по-
скольку вероятность технических ошибок все равно существует, издательство
не может гарантировать абсолютную точность и правильность приводимых
сведений. В связи с этим издательство не несет ответственности за возможные
ошибки, связанные с использованием книги.

ISBN 978-1-84951-744-7 (анг.) Copyrigth © 2013 Packt Publishing

ISBN 978-5-94074-162-4 (рус.) © Оформление, ДМК Пресс, 2015

Содержание

Об авторе ... 10

О рецензентах .. 11

Предисловие ... 14

Глава 1. Установка NGINX и сторонних модулей 19

Установка NGINX с помощью менеджера пакетов 19

CentOS ... 20

Debian ... 21

Сборка NGINX из исходного кода ... 21

Подготовка среды для сборки ... 22

Компиляция исходного кода ... 22

Настройка для работы в качестве веб-сервера

или почтового сервера .. 24

Параметры configure для почтового прокси-сервера 24

Параметры configure для определения путей 25

Включение модулей .. 26

Отключение неиспользуемых модулей 28

Поиск и установка сторонних модулей 30

Полный пример ... 31

Резюме ... 32

Глава 2. Руководство по настройке 33

Основы формата конфигурационного файла 33

Глобальные конфигурационные параметры NGINX 34

Включаемые файлы ... 35

Секция с описанием HTTP-сервера ... 36

Клиентские директивы .. 36

6 Содержание

Директивы, относящиеся к вводу-выводу 38

Директивы, относящиеся к хэш-таблицам 39

Директивы, относящиеся к сокетам 40

Пример конфигурации .. 40

Секция с описанием виртуального сервера 41

Местоположения – где, когда и как .. 45

Секция с описанием почтового сервера 48

Полный пример конфигурации .. 49

Резюме ... 50

Глава 3. Почтовый модуль ... 51

Простая служба проксирования .. 51

Служба POP3 .. 53

Служба IMAP ... 54

Служба SMTP .. 55

Использование SSL/TLS ... 56

Полный пример конфигурации почтового модуля 58

Служба аутентификации .. 60

Использование в связке с memcached 67

Интерпретация журналов .. 70

Ограничения операционной системы 72

Резюме ... 73

Глава 4. NGINX как обратный прокси-сервер 75

Введение в технологию обратного проксирования 76

Модуль proxy ... 77

Унаследованные серверы с куками 81

Модуль upstream ... 82

Кэширование соединений .. 83

Алгоритмы балансировки нагрузки 84

Типы проксируемых серверов ... 85

Единственный проксируемый сервер 85

Несколько проксируемых серверов 86

Проксируемые серверы, работающие по протоколу,

отличному от HTTP .. 87

Проксируемые серверы memcached 88

Проксируемые серверы FastCGI 88

Проксируемые серверы SCGI ... 89

Проксируемые серверы uWSGI 89

7Содержание

Преобразование конфигурации с «if» в более современную

форму ... 89

Использование документов с описанием ошибок

для обработки ошибок проксирования 93

Определение истинного IP-адреса клиента 94

Резюме ... 95

Глава 5. Обратное проксирование,

дополнительные вопросы .. 97

Безопасность за счет разделения ... 98

Шифрование трафика по протоколу SSL 98

Аутентификация клиентов по протоколу SSL 100

Блокирование трафика на основе

IP-адреса отправителя ... 103

Обеспечение масштабируемости за счет изоляции

компонентов приложения .. 105

Оптимизация производительности обратного

прокси-сервера .. 108

Буферизация .. 108

Кэширование .. 111

Сохранение .. 116

Сжатие ... 117

Резюме ... 120

Глава 6. NGINX как HTTP-сервер 121

Архитектура NGINX .. 121

Базовый модуль HTTP ... 122

Директива server .. 123

Протоколирование ... 124

Поиск файлов ... 127

Разрешение имен ... 129

Взаимодействие с клиентами ... 131

Установка предельных значений для предотвращения

недобросовестного использования 133

Ограничение доступа .. 136

Потоковая передача мультимедийных файлов 140

Предопределенные переменные ... 141

Использование NGINX совместно с PHP-FPM 143

Пример конфигурации для Drupal .. 147

8 Содержание

Интеграция NGINX и uWSGI .. 152

Пример конфигурации для Django 153

Резюме ... 155

Глава 7. NGINX для разработчика 156

Интеграция с механизмом кэширования 156

Приложения без кэширования .. 157

Кэширование в базе данных ... 158

Кэширование в файловой системе 161

Динамическое изменение содержимого 164

Модуль addition ... 164

Модуль sub ... 165

Модуль xslt.. 166

Включение на стороне сервера ... 167

Принятие решений в NGINX ... 170

Создание безопасной ссылки ... 173

Генерация изображений .. 174

Отслеживание посетителей сайта ... 178

Предотвращение случайного выполнения кода 179

Резюме ... 180

Глава 8. Техника устранения неполадок 181

Анализ журналов ... 181

Форматы записей в журнале ошибок 181

Примеры записей в журнале ошибок 183

Настройка расширенного протоколирования 186

Отладочное протоколирование ... 186

Переключение двоичного файла во время выполнения 186

Использование журналов доступа для отладки 193

Типичные ошибки конфигурирования 194

Использование if вместо try_files 195

Использование if для ветвления по имени хоста 196

Неоптимальное использование контекста server 196

Ограничения операционной системы 198

Ограничение на количество файловых дескрипторов 198

Сетевые лимиты ... 200

Проблемы с производительностью 201

Использование модуля Stub Status .. 203

Резюме ... 204

9Содержание

Приложение A. Справочник директив 205

Приложение B. Руководство по правилам

переписывания .. 254

Введение в модуль rewrite ... 254

Создание новых правил переписывания 259

Преобразование правил из формата Apache 261

Рекомендация 1: заменить проверки существования

каталогов и файлов директивой try_files 261

Рекомендация 2: заменить сравнение с REQUEST_URI

секцией location .. 262

Рекомендация 3: заменить сравнение с HTTP_ HOST

секцией server .. 263

Рекомендация 4: заменить RewriteCond проверкой

переменной в директиве if .. 264

Резюме ... 265

Приложение С. Сообщество NGINX 266

Список рассылки ... 266

IRC-канал .. 266

Веб-ресурсы ... 267

Как правильно составить отчет об ошибке 267

Резюме ... 268

Приложение D. Сохранение сетевых настроек

в Solaris .. 269

Предметный указатель ... 272

Об авторе

Димитрий Айвалиотис работает системным архитектором в компа-
нии, предоставляющей хостинг в Цюрихе, Швейцария. Начав карье-
ру с построения вычислительной сети на базе Linux для школы, он
затем занимался созданием инфраструктуры высокодоступных сдво-
енных центров обработки данных для банков и онлайновых порта-
лов. Решая проблемы заказчиков (в течение десяти лет), он открыл
для себя NGINX и с тех пор использует эту программу в качестве
веб-сервера, прокси-сервера и для организации потоковой передачи
мультимедийных данных.

Димитрий с отличием закончил бакалавриат физического фа-
культета Политехнического института Ренсселера, а затем полу-
чил степень магистра по информационно-управляющим системам
в Университете штата Флорида.

Это его первая книга.

Я благодарен Джону Блэкуэллу и Филу Марголису, прочитавшим
ранние варианты рукописи. Их советы и критические замечания ока-
зались очень полезны и позволили сделать книгу лучше. Хочу также
поблагодарить технических рецензентов за конструктивную критику
и указание на допущенные мной ошибки. Все оставшиеся ошибки –
целиком моя вина.

Коллектив издательства Packt Publishing немало способствовал
претворению этого проекта в жизнь. Их вера в меня как в писателя
не давала мне впасть в отчаяние в тяжкие моменты, когда казалось,
что все сроки будут сорваны.

Сотрудники компании NGINX, Inc. помогли заполнить пробелы
в моем понимании внутренних механизмов работы NGINX. Без них
я бы не смог написать эту книгу.

Отдельная благодарность семье. Мои жена и дети вынуждены
были мириться с тем, что я тратил немало времени на сочинение
книги. Я высоко ценю их терпение на протяжении этого непростого
периода.

О рецензентах

Ясир Аднан (Yasir Adnan) живет в столице Бангладеш Дакке. Он
изучает информатику и одновременно работает вольнонаемным
программистом. Ему доводилось разрабатывать мобильные и веб-
приложения, но в настоящее время он занимается в основном мо-
бильными. С ним можно связаться по адресу yasiradnan@outlook.com.

Андрей Алексеев – соучредитель высокотехнологичной компа-
нии NGINX, Inc., стоящей за разработкой веб-сервера NGINX. До
прихода в NGINX, Inc. в начале 2011 года Андрей работал в ин-
тернет-индустрии в отделах информационно-коммуникационных
технологий различных предприятий. Андрей получил диплом инже-
нера-электроника в Санкт-Петербургском государственном электро-
техническом университете и окончил курс по программе MBA для
руководителей в школе менеджмента Университета Антверпена.

Антонио П. П. Альмейда (Antonio P. P. Almeida) (@perusio) увлек-
ся NGINX и высокопроизводительными веб-технологиями еще с тех
пор, как пытался разрабатывать приложения для Drupal на мало-
мощном ноутбуке на базе процессора Centrino с частотой 1,3 ГГц.
Из-за прожорливости Apache он был просто вынужден обратиться
к NGINX. Он научился выжимать из NGINX максимум возможно-
го в приложениях самых разных типов и, в частности, освоил все
тонкости языка настройки NGINX. Антонио живет в Париже. По-
мимо NGINX, у него есть и другие пристрастия: малоизвестная му-
зыка позднего итальянского средневековья, кино и желание сделать
Drupal еще лучше.

Райнер Даффнер (Rainer Duffner) окончил Университет приклад-
ных наук в Констанце, Германия, по специальности «информацион-
ные системы» и в настоящее время работает системным инженером
в компании EveryWare AG, где помогает заказчикам извлечь макси-
мум пользы из выделенных серверов на платформах FreeBSD, Linux

12 О рецензентах

и Solaris. Он живет в небольшом городке близ Цюриха и в свободное
время катается на горном велосипеде в окрестностях Цюриха и по
швейцарским горам.

Я благодарен Димитрию за возможность принять участие в ре-
цензировании этой замечательной книги. Ее значение невозможно
переоценить.

Посвящаю своему отцу, который всегда говорил,
что я могу добиться любой цели, которую поставил перед собой.

Предисловие

NGINX – это высокопроизводительный веб-сервер, потребляющий
очень мало системных ресурсов. В Сети немало руководств по его
настройке и примеров конфигураций. Задача этой книги – очистить
мутные воды конфигурирования NGINX. По ходу дела вы научи-
тесь настраивать NGINX для решения различных задач, узнаете, что
означают некоторые покрытые мраком параметры, и поймете, как
разработать конфигурацию, отвечающую вашим целям.

Вам больше не потребуется копировать фрагменты найденного
где-то конфигурационного скрипта, потому что вы будете знать, как
создать файл, делающий в точности то, что нужно. Это умение до-
стигается не сразу, по пути встретится немало ухабов, но благода-
ря приведенным в этой книге советам вы сможете свободно писать
конфигурационные файлы NGINX самостоятельно. А если что-то
пойдет наперекосяк, то сумеете найти причину ошибки сами или,
по крайней мере, попросить помощи без чувства вины за то, что не
пытались найти ответ своими силами.

Эта книга построена по модульному принципу – так, чтобы мак-
симально облегчить поиск нужной информации. Все главы более-
менее независимы. Можете сразу переходить к интересующему
вас вопросу. Если складывается ощущение, что пропущено что-то
важное, вернитесь назад и прочитайте предшествующие главы. Они
организованы так, чтобы можно было строить конфигурационный
файл постепенно.

О содержании книги

В главе 1 «Установка NGINX и сторонних модулей» объясняется,
как установить NGINX в различных операционных системах и как
затем добавить сторонние модули.

В главе 2 «Руководство по настройке» рассказывается о формате
конфигурационного файла NGINX. Вы узнаете, для чего предназна-

15

чены различные контексты, как задавать глобальные параметры и
что такое «местоположение».

Глава 3 «Почтовый модуль» посвящена модулю проксирования
почты, здесь рассматриваются все аспекты его настройки. Включен
пример службы аутентификации.

В главе 4 «NGINX как обратный прокси-сервер» вводится поня-
тие обратного проксирования и описывается использование NGINX
в этой роли.

В главе 5 «Обратное проксирование, дополнительные вопросы»
более глубоко рассматривается использование NGINX в качестве
обратного прокси-сервера для решения проблем масштабирования
и производительности.

В главе 6 «NGINX как HTTP-сервер» описывается использование
различных модулей, включенных в NGINX для решения типичных
задач веб-сервера.

В главе 7 «NGINX для разработчика» показано, как интегриро-
вать NGINX с приложением для ускорения доставки содержимого
пользователям.

В главе 8 «Техника устранения неполадок» рассматриваются ти-
пичные ошибки при настройке и способы их отладки, а также дают-
ся рекомендации по оптимизации производительности.

Приложение A «Справочник директив» содержит удобный спра-
вочник по директивам настройки – как описанным в книге, так и
ранее не упоминавшимся.

В приложении B «Руководство по правилам переписывания»
описано, как работать с модулем переписывания URL в NGINX, и
приведено несколько простых шагов преобразования правил перепи-
сывания из формата Apache в формат NGINX.

Приложение C «Сообщество NGINX» включает перечень сетевых
ресурсов, где можно найти дополнительные сведения.

В приложении D «Сохранение сетевых настроек в Solaris» по-
дробно рассказано о том, что необходимо для сохранения измене-
ний различных сетевых параметров в операционной системе Solaris
версии 10 и старше.

Что необходимо для чтения этой книги

В каждой главе, где используются примеры кода, приведены ин-
струкции по установке. По существу, требуется следующее.

  Среда сборки: компилятор, файлы-заголовки и еще кое-что
по мелочи.

Что необходимо для чтения этой книги

16 Предисловие

  NGINX: последняя версия должна подойти.
  Ruby: лучше всего взять дистрибутив с сайта https://rvm.io.
  Perl: стандартная версия годится.

На кого рассчитана эта книга

Книга рассчитана на опытных системных администраторов и
системных инженеров, знающих, как производятся установка и на-
стройка серверов под конкретные нужды. Предварительного зна-
комства с NGINX не требуется.

Графические выделения

В этой книге используются различные шрифты для обозначения
типа информации. Ниже приведено несколько примеров с поясне-
ниями.

Фрагменты кода внутри абзаца выделяются следующим образом:
«NGINX попытается собрать библиотеку статически, если при
запуске скрипта configure указан параметр --with-<library>=<path>».

Кусок кода выглядит так:

$ export BUILD_DIR=`pwd`

$ export NGINX_INSTALLDIR=/opt/nginx

$ export VAR_DIR=/home/www/tmp

$ export LUAJIT_LIB=/opt/luajit/lib

$ export LUAJIT_INC=/opt/luajit/include/luajit-2.0

Чтобы привлечь внимание к участку внутри куска кода, он вы-
деляется полужирным шрифтом:

$ export BUILD_DIR=`pwd`

$ export NGINX_INSTALLDIR=/opt/nginx

$ export VAR_DIR=/home/www/tmp

$ export LUAJIT_LIB=/opt/luajit/lib

$ export LUAJIT_INC=/opt/luajit/include/luajit-2.0

Входная и выходная информация командных утилит выглядит
так:

$ mkdir $HOME/build

$ cd $HOME/build && tar xzf nginx-<version-number>.tar.gz

Новые термины и важные фрагменты выделяются полужирным
шрифтом. Например, элементы графического интерфейса в меню

17

или диалоговых окнах выглядят в книге так: «Нажатие кнопки Next
приводит к переходу на следующий экран».

Предупреждения и важные примечания выглядят так.

 Советы и рекомендации выглядят так.

Отзывы

Мы всегда рады отзывам читателей. Расскажите нам, что вы думае-
те об этой книге – что вам понравилось или, быть может, не понра-
вилось. Читательские отзывы важны для нас, так как помогают вы-
пускать книги, из которых вы черпаете максимум полезного для себя.

Чтобы отправить обычный отзыв, просто пошлите письмо на
адрес feedback@packtpub.com, указав название книги в качестве темы.

Если вы являетесь специалистом в некоторой области и хотели бы
стать автором или соавтором книги, познакомьтесь с инструкция ми
для авторов по адресу www.packtpub.com/authors.

Поддержка клиентов

Счастливым обладателям книг Packt мы можем предложить ряд
услуг, которые позволят извлечь из своего приобретения максимум
пользы.

Загрузка кода примеров

Вы можете скачать код примеров ко всем книгам издательства
Packt, купленным на сайте http://www.PacktPub.com. Если книга была
куплена в другом месте, зайдите на страницу http://www.PacktPub.com/
support, зарегистрируйтесь, и мы отправим файлы по электронной
почте.

Опечатки

Мы проверяли содержимое книги со всей тщательностью, но
какие-то ошибки все же могли проскользнуть. Если вы найдете
в нашей книге ошибку в тексте или в коде, пожалуйста, сообщите

Опечатки

18 Предисловие

нам о ней. Так вы избавите других читателей от разочарования и
поможете нам сделать следующие издания книги лучше. При обна-
ружении опечатки просьба зайти на страницу http://www.packtpub.com/
support, выбрать книгу, щелкнуть по ссылке errata submission form
и ввести информацию об опечатке. Проверив ваше сообщение, мы
поместим информацию об опечатке на нашем сайте или добавим ее
в список замеченных опечаток в разделе Errata для данной книги.
Список подтвержденных опечаток можно просмотреть, выбрав на-
звание книги на странице http://www.packtpub.com/support.

Нарушение авторских прав

Незаконное размещение защищенного авторским правом мате-
риала в Интернете – проблема для всех носителей информации.
В издательстве Packt мы относимся к защите прав интеллектуальной
собственности и лицензированию очень серьезно. Если вы обнару-
жите незаконные копии наших изданий в любой форме в Интернете,
пожалуйста, незамедлительно сообщите нам адрес или название веб-
сайта, чтобы мы могли предпринять соответствующие меры.

Просим отправить ссылку на вызывающий подозрение в пират-
стве материал по адресу copyright@packtpub.com.

Мы будем признательны за помощь в защите прав наших авторов
и содействие в наших стараниях предоставлять читателям полезные
сведения.

Вопросы

Если вас смущает что-то в этой книге, вы можете связаться с на-
ми по адресу questions@packtpub.com, и мы сделаем все возможное для
решения проблемы.

Глава 1. Установка NGINX
и сторонних модулей

Первоначально NGINX задумывался как HTTP-сервер. Он созда-
вался для решения проблемы C10K, описанной Дэниэлом Кегелем
(Daniel Kegel) на странице http://www.kegel.com/c10k.html, – про-
ектирование веб-сервера, способного обрабатывать одновременно
10 000 соединений. NGINX может это делать за счет основанного
на событиях механизма обработки соединений и для достижения
цели использует зависящий от ОС механизм событий.

Прежде чем переходить к настройке NGINX, ее необходимо уста-
новить. В этой главе описывается, как установить саму NGINX и где
взять дополнительные модули. NGINX по природе своей является
модульной программой, и существует обширное сообщество раз-
работчиков сторонних модулей, расширяющих функциональность
основного сервера. Эти модули прикомпилируются к серверу и
установятся вместе с ним.

В этой главе:
  Установка NGINX с помощью менеджера пакетов.
  Сборка NGINX из исходного кода.
  Настройка для работы в качестве веб-сервера или почтового

сервера.
  Включение модулей.
  Поиск и установка сторонних модулей.
  Полный пример.

Установка NGINX с помощью

менеджера пакетов

 Для установки достаточно простой команды менеджера пакетов:
  Linux (дистрибутивы на основе Debian)
sudo apt-get install nginx

20 Установка NGINX и сторонних модулей

  Linux (дистрибутивы на основе rpm)
sudo yum install nginx

  FreeBSD
sudo pkg_install -r nginx

 Команда sudo применяется для получения привилегий су-

перпользователя (‘root’). Если ваша операционная систе-

ма поддерживает управление доступом на основе ролей

(RBAC – Role-based access control) , то для достижения

той же цели следует использовать другую команду, напри-

мер pfexec.

Описанные команды устанавливают NGINX в стандартные места,
зависящие от операционной системы. Это предпочтительный метод
установки в случае, когда использование пакетов ОС – непреложное
требование.

Команда, разрабатывающая ядро NGINX, предлагает также дво-
ичные файлы стабильной версии на странице http://nginx.org/en/
download.html. Если в дистрибутиве отсутствует пакет nginx (как, на-
пример, в CentOS), то можно установить заранее откомпилирован-
ные и протестированные двоичные файлы, как описано ниже.

CentOS

Добавьте репозиторий NGINX в конфигурацию yum , создав сле-
дующий файл:

sudo vi /etc/yum.repos.d/nginx.repo

[nginx]

name=nginx repo

baseurl=http://nginx.org/packages/centos/6/$basearch/

gpgcheck=0

enabled=1

Затем выполните следующую команду для установки nginx:

sudo yum install nginx

На странице с указанным выше URL имеются также инструкции
по установке пакета nginx-release.

21

Debian

Скачайте ключ подписания NGINX – http://nginx.org/keys/nginx_
signing.key – и добавьте его в связку ключей apt:

sudo apt-key add nginx_signing.key

Добавьте репозиторий nginx.org в конец файла /etc/apt/sources.
list:

vi /etc/apt/sources.list

deb http://nginx.org/packages/debian/ squeeze nginx

deb-src http://nginx.org/packages/debian/ squeeze nginx

Установите nginx, выполнив такие команды:

sudo apt-get update

sudo apt-get install nginx

Если среди пакетов, прилагаемых к операционной системе, нет
nginx или версия, включенная в пакет, устарела и не умеет делать
того, что вам нужно, или пакеты, размещенные на сайте nginx.org, не
отвечают вашим потребностям, или вы хотите использовать версию
NGINX для разработчиков, то остается единственная возможность –
собрать NGINX из исходного кода.

Сборка NGINX из исходного кода

 Существуют две ветви кода NGINX – стабильная и разрабаты-
ваемая. Именно в последней находятся все новые функции, кото-
рые интегрируются и тестируются перед включением в стабильную
версию. Выпуск разрабатываемой версии сопровождается таким
же контролем качества и прогоном функциональных тестов, как и
выпуск стабильной версии, поэтому ту и другую можно использо-
вать в производственных системах. Основное различие между ними
связано с поддержкой сторонних модулей. В разрабатываемой вер-
сии внутренний API может измениться, тогда как в стабильной он
фиксирован, поэтому обратная совместимость сторонних модулей
гарантируется только для стабильных версий.

Сборка NGINX из исходного кода

22 Установка NGINX и сторонних модулей

Подготовка среды для сборки

Для сборки NGINX из исходного кода система должна отвечать
определенным требованиям. Кроме компилятора, понадобятся биб-
лиотеки OpenSSL и PCRE (Perl Compatible Regular Expressions)
и файлы-заголовки для них – если вы хотите иметь поддержку для
SSL и модуля переписывания URL соответственно. В некоторых
дистрибутивах эти требования удовлетворены изначально. Если же
это не так, то вам предстоит найти и установить подходящий пакет
либо скачать исходный код, распаковать его в какой-то каталог и
сообщить об этом каталоге скрипту конфигурирования NGINX.

NGINX попытается собрать библиотеку статически, если при
запуске скрипта configure указан параметр --with-<library>=<path>.
Это бывает полезно, если вы хотите, чтобы NGINX не зависел от то-
го, что установлено в системе, или требуется добиться от двоичного
файла nginx максимальной производительности. Если используются
функции внешних библиотек, доступные лишь начиная с некото-
рой версии (например, расширение TLS Next Protocol Negotiation
– согласование следующего протокола, – появившееся в версии
OpenSSL 1.0.1), то указывайте путь к распакованному исходному
коду именно этой версии.

Существуют и другие необязательные пакеты для поддержки той
или иной функциональности, в том числе алгоритмов хэширования
MD5 и SHA-1 , библиотеки сжатия zlib и библиотеки libatomic . Алго-
ритмы хэширования применяются во многих местах NGINX, в част-
ности для вычисления хэш-кода URI, играющего роль ключа кэша.
Библиотека zlib используется для сжатия отправляемого клиенту
содержимого. Если доступна библиотека atomic_ops , то NGINX будет
использовать атомарные операции обновления памяти для реализа-
ции быстрого алгоритма блокировки памяти.

Компиляция исходного кода

NGINX можно скачать со страницы http://nginx.org/en/download.
html. Там вы найдете исходный код обеих ветвей в форматах .tar.gz
и .zip. Распакуйте архив во временный каталог:

$ mkdir $HOME/build

$ cd $HOME/build && tar xzf nginx-<version-number>.tar.gz

Произведите конфигурирование, выполнив команду:

23

$ cd $HOME/build/nginx-<version-number> && ./configure

После чего соберите программу:

$ make && sudo make install

При самостоятельной сборке двоичного файла nginx вы можете
включить только то, что вам нужно, например указать, от имени ка-
кого пользователя должен работать NGINX, или задать подразуме-
ваемые по умолчанию места расположения журналов, чтобы их не
нужно было явно прописывать в конфигурационном файле. В таб-
лице ниже приведены параметры configure, которые позволяют из-
менить способ сборки двоичного файла. Эти параметры не зависят
от того, какие модули NGINX подключаются.

Общие параметры configure

Параметр Описание

--prefix=<path> Корень дерева установки. Все остальные пути

указываются относительно этого корня

--sbin-path=<path> Путь к двоичному файлу nginx. Если не задан, то файл

создается в каталоге prefix

--conf-path=<path> Путь к каталогу, в котором nginx ищет свой конфигура-

ционный файл, если тот не указан в командной строке

--error-log-path=<path> Путь к каталогу, в который nginx записывает журнал

ошибок, если не задан иным способом

--pid-path=<path> Путь к каталогу, в котором создается pid-файл

главного процесса, обычно /var/run

--lock-path=<path> Путь к файлу, управляющему взаимоблокировкой

разделяемой памяти

--user=<user> Пользователь, от имени которого запускаются

рабочие процессы

--group=<group> Группа, от имени которой запускаются рабочие

процессы

--with-file-aio Включает асинхронный ввод-вывод для FreeBSD 4.3+

и Linux 2.6.22+

--with-debug Включает отладочное протоколирование.

Не рекомендуется для производственных систем

Можно также задать оптимизации, отсутствующие в готовом па-
кете. Ниже перечислены некоторые особенно полезные параметры.

Сборка NGINX из исходного кода

24 Установка NGINX и сторонних модулей

Параметры configure, предназначенные для оптимизации

Параметр Описание

--with-cc=<path> Если требуется использовать компилятор C, путь

к которому не входит в переменную окружения PATH

--with-cpp=<path> Путь к соответствующему препроцессору

--with-cc-opt=<options> Здесь можно задать путь к необходимым включаемым

файлам (передается флагу -I<path>), уровень опти-

мизации (-O4) или указать, что нужно компилировать

64-разрядную версию

--with-ld-opt=<options> Компоновщику передается путь к библиотекам

(-L<path>) и путь поиска во время выполнения

(-R<path>)

--with-cpu-opt=<cpu> Позволяет задать сборку для конкретного семейства

процессоров

Настройка для работы в качестве

веб-сервера или почтового сервера

Среди высокопроизводительных веб-серверов NGINX отличает-
ся еще и тем, что проектировался для работы в качестве почтово-
го прокси-сервера. В зависимости от поставленной задачи NGINX
можно настроить для ускорения работы другого веб-сервера, для ра-
боты в качестве веб-сервера, для работы в качестве почтового прок-
си-сервера или для всего сразу. Иногда удобно иметь один пакет,
который можно установить на любой сервер внутри организации,
и задать роль NGINX в конфигурационном файле. А иногда – для
работы в высокопроизводительных средах, где каждый килобайт на
учете, – лучше подготовить урезанный двоичный файл.

Параметры configure для почтового

прокси-сервера

В таблице ниже перечислены параметры configure, имеющие от-
ношение к почтовому модулю.

Параметры configure, относящиеся к модулю mail

Параметр Описание

--with-mail Активируется модуль mail, который по умолчанию

выключен

--with-mail_ssl_module Этот модуль необходим для проксирования почто-

вых сообщений, в которых используется SSL/TLS

25

Параметр Описание

--without-mail_pop3_module При включенном модуле mail модуль POP3 можно

отключить

--without-mail_imap_module При включенном модуле mail модуль IMAP можно

отключить

--without-mail_smtp_module При включенном модуле mail модуль SMTP можно

отключить

--without-http Этот параметр полностью отключает модуль http;

используйте, только если собираетесь компилиро-

вать поддержку mail

Для типичного почтового прокси-сервера я рекомендую такие
параметры configure:

$./configure --with-mail --with-mail_ssl_module

--with-openssl=$ {BUILD_DIR}/openssl-1.0.1c

В настоящее время протокол SSL/TLS необходим практически
в любой почтовой системе, отказ от него на прокси-сервере лишит
пользователей ожидаемой функциональности. Я советую прикомпи-
лировать OpenSSL статически, чтобы не зависеть от наличия биб-
лиотеки OpenSSL в операционной системе. Разумеется, переменную
BUILD_DIR, упоминаемую в приведенной выше команде, необходимо
предварительно определить.

Параметры configure для определения

путей

В таблице ниже перечислены параметры configure, относящиеся
к модулю http, – от активации модуля Perl до задания путей к вре-
менным каталогам.

Параметры configure, относящиеся к модулю HTTP

Параметр Описание

--without-http-cache Если за NGINX стоит другой сервер, то можно

настроить NGINX так, чтобы содержимое

кэшировалось локально. Этот параметр

отключает кэш

--with-http_perl_module Систему конфигурирования NGINX можно

расширить, разрешив писать код на Perl.

Этот параметр активирует соответствующий

модуль (но при этом снижается производи-

тельность)

Настройка для работы в качестве веб-сервера или почтового сервера

26 Установка NGINX и сторонних модулей

Параметр Описание

--with-perl_modules_path=<path> Этот параметр определяет путь к дополни-

тельным Perl-модулям, необходимым встро-

енному интерпретатору Perl. Его можно задать

также в конфигурационном файле

--with-perl=<path> Путь к интерпретатору Perl (версии не ниже

5.6.1), если он отсутствует в списке путей по

умолчанию

--http-log-path=<path> Подразумеваемый по умолчанию путь

к журналу доступа HTTP

--http-client-body-temp-

path=<path>

В этом каталоге временно сохраняется тело

запроса, полученного от клиента. Если вклю-

чен модуль WebDAV, рекомендуется размещать

этот каталог в той же файловой системе, где

содержимое будет храниться в конечном итоге

--http-proxy-temp- path=<path> В этом каталоге хранятся временные файлы,

когда NGINX используется в качестве прокси-

сервера

--http-fastcgi-temp-

path=<path>

Каталог для временных файлов FastCGI

--http-uwsgi-temp-path=

<path>

Каталог для временных файлов uWSGI

--http-sсgi-temp-path=

<path>

Каталог для временных файлов SСGI

Включение модулей

 Помимо модулей http и mail, в дистрибутив NGINX включен еще
целый ряд модулей. По умолчанию они не активированы, но это
можно сделать, указав при запуске configure параметр --with-<имя-
модуля>_module.

Параметры configure, относящиеся к прочим модулям

Параметр Описание

--with-http_ssl_module Если требуется шифровать HTTP-трафик, то есть

обрабатывать URL-адреса, начинающиеся с https,

то необходимо задать этот параметр (при этом не-

обходима библиотека OpenSSL)

--with-http_realip_module Если NGINX расположен за балансировщиком на-

грузки L7 или иным устройством, которое передает

IP-адрес клиента в HTTP-заголовке, то необходимо

включить этот модуль. Он позволяет корректно

обрабатывать ситуации, когда разные клиенты по

видимости имеют один и тот же IP-адрес

27

Параметр Описание

--with-http_addition_

module

Этот модуль производит преобразование

XML-ответов, основываясь на одной или

нескольких таблицах стилей XSLT (при этом

необходимы библиотеки libxml2 и libxslt)

--with-http_image_filter_

module

Этот модуль работает как фильтр изображений,

обрабатывая их до передачи клиенту (при этом

необходима библиотека libgd)

--with-http_geoip_module При наличии этого модуля в конфигурационных

блоках можно устанавливать различные перемен-

ные, которые позволяют принимать решения в за-

висимости от местоположения клиента, опреде-

ляемого по его IP-адресу (при этом необходимы

библиотека MaxMind GeoIP и соответствующие

откомпилированные файлы базы данных)

--with-http_sub_module Этот модуль реализует подстановочный фильтр,

который заменяет одну присутствующую в ответе

строку другой

--with-http_dav_module Если этот модуль включен, то распознаются дирек-

тивы в конфигурационном файле, относящиеся

к использованию WebDAV. Включайте этот модуль

только при необходимости, поскольку его непра-

вильная настройка создает угрозы безопасности

--with-http_flv_module Этот модуль обеспечивает псевдопотоковую

передачу видеофайлов в формате Flash

--with-http_mp4_module Этот модуль обеспечивает псевдопотоковую

передачу видеофайлов в формате H.264/AAC

--with-http_gzip_static_

module

Этот модуль поддерживает передачу

предварительно сжатых статических файлов

для ресурсов, URL-адреса которых задаются

без указания суффикса .gz

--with-http_gunzip_static_

module

Этот модуль реализует распаковку сжатого

содержимого для клиентов, которые

не поддерживают сжатия в формате gzip

--with-http_random_index_

module

Этот модуль следует включать, если вы хотите

возвращать индексный файл, случайно выбранный

среди всех файлов в некотором каталоге

--with-http_secure_link_

module

Этот модуль реализует механизм хэширования

ссылки на URL-адрес, так что вычислить реальную

ссылку сможет только клиент, знающий правильный

пароль

--with-http_stub_status_

module

Этот модуль позволит собирать статистику от

самого NGINX. Полученную информацию можно

представить в графическом виде с помощью

пакета RRDtool или аналогичной программы

Включение модулей

28 Установка NGINX и сторонних модулей

Как видите, все эти модули дополняют функциональность модуля
http. Само их включение на этапе компиляции никак не отражается
на производительности во время выполнения. Снижение возможно,
только если эти модули упомянуты в конфигурационном файле.

Для ускорения и проксирования веб-сервера я рекомендую за-
давать такие параметры configure:

$./configure --with-http_ssl_module --with-http_realip_module --with-http_geoip_

module --with-http_stub_status_module --with-openssl=${BUILD_ DIR}/openssl-1.0.1c

А для работы в качестве веб-сервера – такие:

$./configure --with-http_stub_status_module

Различие в том, «каким боком» NGINX обращен к клиенту. В ро-
ли веб-ускорителя NGINX является также оконечной точкой для
SSL-запросов и обрабатывает запросы от клиентов, находящихся за
прокси-сервером, определяя, откуда в действительности поступил
запрос и принимая соответствующие решения. В роли веб-сервера
необходима только стандартная функциональность обслуживания
запросов на файлы.

Я рекомендую всегда включать модуль stub_status, поскольку он
позволяет получать статистические данные о работе NGINX.

Отключение неиспользуемых модулей

 Существует также ряд относящихся к http модулей, которые по
умолчанию включены, но могут быть деактивированы путем зада-
ния параметра --without-<имя-модуля>_module. Если вам эти модули не
нужны, можете со спокойной душой отключить их.

Параметры configure, относящиеся к модулю HTTP

Параметр Описание

--without-http_charset_module Модуль charset отвечает за установку заголовка

Content-Type, а также за преобразование

из одной кодировки в другую

--without-http_gzip_module Модуль gzip работает как выходной фильтр,

сжимая отправляемые клиенту данные

--without-http_ssi_module Этот модуль обрабатывает запросы с включе-

нием на стороне сервера (Server Side Include).

Если включен модуль Perl, то становится доступ-

на дополнительная команда SSI – perl

29

Параметр Описание

--without-http_userid_module Модуль userid позволяет NGINX устанавливать

куки, служащие для идентификации клиента.

Впоследствии для отслеживания действий кли-

ента можно использовать переменные $uid_set

и $uid_got

--without-http_access_module Этот модуль контролирует доступ к ресурсам,

основываясь на IP-адресе клиента

--without-http_auth_basic_
module

Этот модуль ограничивает доступ с помощью

простой схемы аутентификации (HTTP Basic

Authentication)

--without-http_autoindex_
module

Модуль autoindex наделяет NGINX способностью

генерировать страницу с содержимым катало-

гов, в которых нет индексного файла

--without-http_geo_module Этот модуль позволяет устанавливать значе-

ния конфигурационных переменных, исходя из

IP-адреса клиента, а затем принимать на этой

основе те или иные решения

--without-http_map_module Модуль map позволяет сопоставлять одной пере-

менной другую

--without-http_split_clients_
module

Этот модуль создает переменные, которые

можно использовать для проведения

A/B-тестирования

--without-http_referer_module Этот модуль позволяет NGINX блокировать

запросы, исходя из HTTP-заголовка Referer

--without-http_rewrite_module Модуль rewrite позволяет заменять URI, исходя

из различных условий

--without-http_proxy_module Модуль proxy позволяет NGINX передавать

запросы другому серверу или группе серверов

--without-http_fastcgi_module Этот модуль позволяет NGINX передавать

запросы серверу FastCGI

--without-http_uwsgi_module Этот модуль позволяет NGINX передавать

запросы серверу uWSGI

--without-http_scgi_module Этот модуль позволяет NGINX передавать

запросы серверу SCGI

--without-http_memcached_
module

Этот модуль позволяет NGINX взаимодейство-

вать с сервером memcached, сохраняя ответы

на запросы в переменной

--without-http_limit_conn_
module

Этот модуль позволяет NGINX устанавливать

ограничения на количество соединений, осно-

вываясь на каких-то условиях, чаще всего на

IP-адресе

--without-http_limit_req_

module

Этот модуль позволяет NGINX ограничить

частоту запросов, ассоциированных с каким-то

условием

Включение модулей

30 Установка NGINX и сторонних модулей

Параметр Описание

--without-http_empty_gif_

module

Этот модуль порождает прозрачное изображе-

ние в формате GIF размером 11 пиксель

--without-http_browser_module Этот модуль позволяет определять настройки

в зависимости от заголовка User-Agent

в запросе. В результате анализа номера

версии в этом заголовке устанавливаются

определенные переменные

--without-http_upstream_ip_

hash_module

Этот модуль определяет группу серверов, кото-

рые можно использовать в сочетании с различ-

ными модулями проксирования

Поиск и установка сторонних модулей

 Как и во многих проектах с открытым исходным кодом, вокруг
NGINX сформировалось активное сообщество разработчиков. Бла-
годаря модульной структуре NGINX сообщество имеет возможность
разрабатывать и публиковать модули, обеспечивающие дополни-
тельную функциональность. Таких модулей немало, поэтому, пре-
жде чем приступать к разработке собственного, имеет смысл позна-
комиться с тем, что есть.

Процедура установки стороннего модуля очень проста.
1. Найдите интересующий вас модуль (на сайте https://github.com

или http://wiki.nginx.org/3rdPartyModules).
2. Скачайте модуль.
3. Распакуйте архив с исходным кодом.
4. Прочитайте файл README, если он имеется. Проверьте, нет

ли дополнительных зависимостей.
5. Сконфигурируйте NGINX так, чтобы она использовала модуль

./configure -add-module=<path>.
В результате получится двоичный файл nginx, в который включе-

на функциональность добавленного модуля.
Помните, что многие сторонние модули носят эксперименталь-

ный характер. Перед тем как использовать модуль в производствен-
ной системе, протестируйте его. И не забывайте, что в разрабатывае-
мые версии NGINX могут быть внесены такие изменения API, что
сторонние модули перестанут работать.

Особо отметим модуль ngx_lua , который позволяет использовать
в качестве скриптового языка конфигурирования Lua вместо Perl.
По сравнению с perl, у этого модуля есть важное достоинство: он не

31

блокирует выполнение программы и тесно интегрирован с другими
сторонними модулями. Полная инструкция по установке приведена
на странице http://wiki.nginx.org/HttpLuaModule#Installation. В следую-
щем разделе мы на примере этого модуля продемонстрируем про-
цедуру установки стороннего модуля.

Полный пример

Составив представление о том, что можно сконфигурировать, вы
можете построить двоичный файл, точно отвечающий вашим по-
требностям. В примере ниже задаются префикс путей, пользователь,
группа, некоторые пути, отключаются одни модули, включаются
другие и добавляются два сторонних модуля.

$ export BUILD_DIR=`pwd`

$ export NGINX_INSTALLDIR=/opt/nginx

$ export VAR_DIR=/home/www/tmp

$ export LUAJIT_LIB=/opt/luajit/lib

$ export LUAJIT_INC=/opt/luajit/include/luajit-2.0

$./configure \

 --prefix=${NGINX_INSTALLDIR} \

 --user=www \

 --group=www \

 --http-client-body-temp-path=${VAR_DIR}/client_body_temp \

 --http-proxy-temp-path=${VAR_DIR}/proxy_temp \

 --http-fastcgi-temp-path=${VAR_DIR}/fastcgi_temp \

 --without-http_uwsgi_module \

 --without-http_scgi_module \

 --without-http_browser_module \

 --with-openssl=${BUILD_DIR}/../openssl-1.0.1c \

 --with-pcre=${BUILD_DIR}/../pcre-8.32 \

 --with-http_ssl_module \

 --with-http_realip_module \

 --with-http_sub_module \

 --with-http_flv_module \

 --with-http_gzip_static_module \

 --with-http_gunzip_module \

 --with-http_secure_link_module \

 --with-http_stub_status_module \

 --add-module=${BUILD_DIR}/ngx_devel_kit-0.2.17 \

 --add-module=${BUILD_DIR}/ngx_lua-0.7.9

После многочисленных сообщений о том, что скрипт configure на-
шел в вашей системе, печатается такая сводка:

Полный пример

32 Установка NGINX и сторонних модулей

Configuration summary

+ using PCRE library: /home/builder/build/pcre-8.32

+ using OpenSSL library: /home/builder/build/openssl-1.0.1c

+ md5: using OpenSSL library

+ sha1: using OpenSSL library

+ using system zlib library

nginx path prefix: "/opt/nginx"

nginx binary file: "/opt/nginx/sbin/nginx"

nginx configuration prefix: "/opt/nginx/conf"

nginx configuration file: "/opt/nginx/conf/nginx.conf"

nginx pid file: "/opt/nginx/logs/nginx.pid"

nginx error log file: "/opt/nginx/logs/error.log"

nginx http access log file: "/opt/nginx/logs/access.log"

nginx http client request body temporary files: "/home/www/tmp/client_body_temp"

nginx http proxy temporary files: "/home/www/tmp/proxy_temp"

nginx http fastcgi temporary files: "/home/www/tmp/fastcgi_temp"

Как видим, configure нашел все, что мы просили, и подтвердил
указанные пути. Теперь можно собрать и установить nginx, как объ-
яснялось в начале этой главы.

Резюме

В этой главе мы познакомились с различными модулями NGINX.
Собирая двоичный файл самостоятельно, вы можете включить толь-
ко ту функциональность, которая вам необходима. Сборка и уста-
новка программ – дело, вам знакомое, поэтому вы не потратите мно-
го времени на подготовку среды сборки и предварительную установ-
ку зависимостей. Подгоняя NGINX под свои нужды, не стесняйтесь
включать или выключать те или иные модули.

Далее мы дадим общий обзор настройки NGINX, чтобы вы по-
няли, как подходить к этой задаче.

Глава 2. Руководство
по настройке

Формат конфигурационного файла NGINX прост и логичен. По-
нимание его устройства и назначения отдельных секций – одно из
условий самостоятельного составления конфигурационных фай-
лов. В этой главе мы постараемся достичь данной цели, рассмотрев
следую щие вопросы.

  Основы формата конфигурационного файла.
  Глобальные конфигурационные параметры NGINX.
  Включаемые файлы.
  Секция с описанием HTTP-сервера.
  Секция с описанием виртуального сервера.
  Местоположения – где, когда и как.
  Секция с описанием почтового сервера.
  Полный пример конфигурации.

Основы формата конфигурационного

файла

 Конфигурационный файл NGINX состоит из секций. Секции
устроены следующим образом:

<секция> {

 <директива> <параметры>;

}

Обратите внимание, что строки, содержащие директивы, оканчи-
ваются точкой с запятой (;). Это признак конца строки. Фигурные
скобки вводят новый конфигурационный контекст, но мы будем на-
зывать такие контексты просто «секциями».

34 Руководство по настройке

Глобальные конфигурационные

параметры NGINX

 В глобальной секции задаются параметры, оказывающие влияние
на сервер в целом. Его формат отличается от описанного выше. Гло-
бальная секция может включать как конфигурационные директивы,
например user и worker_processes, так и секции, например events. Гло-
бальная секция не заключается в фигурные скобки.

В таблице ниже приведены наиболее распространенные директи-
вы, задаваемые в глобальном контексте.

Глобальные конфигурационные директивы

Директива Описание

user Пользователь и группа, от имени которых исполняются ра-

бочие процессы. Если группа опущена, то подразумевается

группа, имя которой совпадает с именем пользователя

worker_processes Количество рабочих процессов, создаваемых сразу после

запуска. Эти процессы обрабатывают запросы на соедине-

ния со стороны клиентов. Сколько процессов задать, зави-

сит от сервера и в первую очередь от дисковой подсистемы

и сетевой инфраструктуры. Если решаются в основном

счетные задачи, то рекомендуется задавать этот параметр

равным количеству процессорных ядер, а если задачи,

требующие интенсивного ввода-вывода, – то умножать это

количество на коэффициент от 1,5 до 2

error_log Это файл, в который записываются сообщения об ошиб-

ках. Если ни в каком другом контексте директивы error_log

нет, то в этом файле будут регистрироваться вообще все

ошибки. Второй параметр директивы обозначает уровень

сообщений, попадающих в журнал (debug, info, notice, warn,

error, crit, alert, emerg). Сообщения уровня debug выводятся,

только если программа была сконфигурирована с парамет-

ром --with-debug

pid Файл, в котором хранится идентификатор главного процес-

са. Переопределяет значение, заданное на этапе конфигу-

рирования и компиляции

use Определяет метод обработки соединения. Переопределяет

значение, заданное при компиляции, и если использует-

ся, то должна содержаться в контексте events. Обычно не

нуждается в переопределении, разве что в случае, когда

значение по умолчанию приводит к ошибкам

35

Директива Описание

worker_connections Эта директива задает максимальное число соединений,

одновременно открытых в одном рабочем процессе. Сюда

входят, в частности, соединения с клиентами и с прокси-

руемыми серверами (но не только). Особенно важно это

для обратных прокси-серверов – чтобы достичь указанного

количества одновременно открытых соединений, может по-

надобиться настройка на уровне операционной системы

Ниже приведен простой пример задания описанных директив.

мы хотим, чтобы nginx работала от имени пользователя ‘www’

user www;

рабочая нагрузка счетная и имеется 12 процессорных ядер

worker_processes 12;

явно задаем путь к обязательному журналу ошибок

error_log /var/log/nginx/error.log;

явно задаем путь к pid-файлу

pid /var/run/nginx.pid;

создаем конфигурационный контекст для модуля ‘events’

events {

 # мы работаем в системе Solaris и обнаружили, что при использовании

 # подразумеваемого по умолчанию механизма обработки соединений nginx

 # со временем перестает отвечать на запросы, поэтому переходим на

 # следующий по качеству механизм

 use /dev/poll;

 # произведение этого числа и значения worker_processes

 # показывает, сколько может быть одновременно открыто соединений

 # для одной пары IP:порт

 worker_connections 2048;

}

Глобальная секция должна находиться в начале конфигурацион-
ного файла nginx.conf .

Включаемые файлы

Включать файлы можно в любое место конфигурационного файла.
Их цель – сделать файл более удобным для восприятия и обеспечить
повторное использование некоторых частей. Включаемые файлы

Включаемые файлы

36 Руководство по настройке

должны быть синтаксически корректны с точки зрения записи ди-
ректив и блоков. Для включения файла нужно указать путь к нему:

include /opt/local/etc/nginx/mime.types;

Метасимволы в пути позволяют включить сразу несколько файлов:

include /opt/local/etc/nginx/vhost/*.conf;

Если указан неполный путь, то NGINX считает, что путь задан
относительно главного местоположения конфигурационного файла.

Проверить правильность конфигурационного файла можно, за-
пустив NGINX следующим образом:

nginx -t -c <path-to-nginx.conf>

При этом на наличие ошибок проверяются и все включаемые
файлы.

Секция с описанием HTTP-сервера

 Секция (или конфигурационный контекст), описывающая HTTP-
сервер, доступна, только если при конфигурировании NGINX не был
задан параметр --without-http, отключающий модуль HTTP. В этой
секции описываются все аспекты работы с модулем HTTP – именно
с ним вы чаще всего будете иметь дело.

Поскольку конфигурационных директив, относящихся к работе с
HTTP-соединениями, много, мы разобьем их на несколько катего-
рий и будем рассматривать каждую категорию в отдельности.

Клиентские директивы

 Директивы из этой категории относятся к самому соединению
с клиентом, а также описывают некоторые аспекты поведения для
клиентов разных типов.

Клиентские директивы модуля HTTP

Директива Описание

chunked_transfer_encoding Позволяет отключить специфицированный

в стандарте HTTP/1.1 механизм поблочной

передачи данных (chunked transfer encoding)

в ответе клиенту

37

Директива Описание

client_body_buffer_size Задает размер буфера для чтения тела запроса

клиента. По умолчанию для буфера выделяются

две страницы памяти. Увеличение размера

позволяет предотвратить запись во временный

файл на диске

client_body_in_file_only Используется для отладки или последующей

обработки тела запроса клиента. Если значение

равно on, то тело запроса принудительно

записывается в файл

client_body_in_single_buffer Заставляет NGINX сохранить все тело запроса

клиента в одном буфере, чтобы уменьшить

количество операций копирования

client_body_temp_path Определяет путь к каталогу для сохранения

файлов с телами запросов клиентов

client_body_timeout Задает время между последовательными

операциями чтения тела запроса клиента

client_header_buffer_size Задает размер буфера для чтения заголовка

запроса клиента, если он превышает подразуме-

ваемую по умолчанию величину 1 КБ

client_header_timeout Время, отведенное на чтение всего заголовка

запроса

client_max_body_size Максимальный размер тела запроса клиента.

В случае превышения отправляется ответ 413

(Request Entity Too Large)

keepalive_disable Запрещает соединения типа keep-alive для

некоторых браузеров

keepalive_requests Определяет, сколько запросов можно принять по

одному соединению типа keep-alive, прежде чем

закрывать его

keepalive_timeout Определяет, сколько времени соединение типа

keep-alive может оставаться открытым. Можно

задать второй параметр, используемый для

формирования заголовка ответа «Keep-Alive»

large_client_header_buffers Задает максимальное число и размер

буферов для чтения большого заголовка запроса

клиента

msie_padding Разрешает или запрещает добавлять коммента-

рии в ответы со статусом больше 400 для увели-

чения размера ответа до 512 байт при работе

с MSIE

msie_refresh Разрешает или запрещает отправлять

MSIE-клиентам ответ Refresh вместо перенаправ-

ления

Секция с описанием HTTP-сервера

38 Руководство по настройке

Директивы, относящиеся к вводу-выводу

 Эти директивы управляют отправкой статических файлов и по-
рядком работы с файловыми дескрипторами.

Директивы модуля HTTP, относящиеся к вводу-выводу

Директива Описание

aio Разрешает использование асинхронного файлового

ввода-вывода. Это возможно во вcех современных

версиях FreeBSD и дистрибутивах Linux. В Free-

BSD директиву aio можно использовать для пред-

варительной загрузки данных для sendfile. В Linux

требуется директива directio, которая автоматически

отключает sendfile

directio Разрешает использовать зависящий от операци-

онной системы флаг при чтении файлов, размер

которых больше или равен указанному. Обязательна

при использовании директивы aio в Linux

directio_alignment Устанавливает выравнивание для directio. Обычно

подразумеваемого по умолчанию значения 512 до-

статочно, но при использовании XFS в Linux рекомен-

дуется увеличить до 4 K

open_file_cache Настраивает кэш, в котором могут храниться

дескрипторы открытых файлов, информация

о существовании каталогов и информация об ошиб-

ках поиска файлов

open_file_cache_errors Разрешает или запрещает кэширование ошибок

поиска файлов в кэше open_file_cache

open_file_cache_min_uses Задаёт минимальное число обращений к файлу

в течение времени, заданного параметром inactive

директивы open_file_cache, необходимое для того,

чтобы дескриптор файла оставался в кэше открытых

дескрипторов

open_file_cache_valid Задает время между последовательными про-

верками актуальности данных, хранящихся в кэше

open_file_cache

postpone_output Задает минимальный размер порции данных, отправ-

ляемых клиенту. Если возможно, данные не будут от-

правляться, пока не накопится указанное количество

read_ahead Если возможно, ядро будет сразу считывать из файла

столько байтов, сколько указано в параметре size.

Поддерживается в текущих версиях FreeBSD и Linux

(в Linux параметр size игнорируется)

39

Директива Описание

sendfile Разрешает использовать системный вызов sendfile

(2) для прямого копирования из одного файлового

дескриптора в другой

sendfile_max_chunk Задает максимальный размер данных, который

можно скопировать за один вызов sendfile (2). Без

этого ограничения одно быстрое соединение может

целиком захватить рабочий процесс

Директивы, относящиеся к хэш-таблицам

 Директивы из этой категории управляют выделением статиче-
ской памяти для определенных переменных. NGINX вычисляет
минимально необходимый размер при запуске и после изменения
конфигурации. Как правило, достаточно настроить только один из
параметров *_hash_max_size с помощью соответствующей директи-
вы. NGINX выдает предупреждение при попытке задать сразу не-
сколько таких параметров. Переменным вида *_hash_bucket_size по
умолчанию присваивается значение, кратное размеру строки кэша
процессора, чтобы минимизировать количество обращений к кэшу,
необходимое для чтения записи. Поэтому изменять их не рекомен-
дуется. Дополнительные сведения см. на странице http://nginx.org/
en/docs/hash.html.

Директивы модуля HTTP, относящиеся к хэш-таблицам

Директива Описание

server_names_hash_bucket_size Задает размер кластера в хэш-таблицах имен

серверов

server_names_hash_max_size Задает максимальный размер хэш-таблиц

имен серверов

types_hash_bucket_size Задает размер кластера в хэш-таблицах

типов

types_names_hash_max_size Задает максимальный размер хэш-таблиц

типов

variables_hash_bucket_size Задает размер кластера в хэш-таблицах

прочих переменных

variables_names_hash_max_size Задает максимальный размер хэш-таблиц

прочих переменных

Секция с описанием HTTP-сервера

40 Руководство по настройке

Директивы, относящиеся к сокетам

 Эти директивы описывают установку различных параметров
TCP-со кетов, создаваемых NGINX.

Директивы модуля HTTP, относящиеся к сокетам

Директива Описание

lingering_close Определяет, следует ли оставлять соединение

открытым в ожидании дополнительных данных от

клиента

lingering_time Связана с директивой lingering_close и определяет,

сколько времени держать сокет открытым для

обработки дополнительных данных

lingering_timeout Также связана с директивой lingering_close

и определяет, сколько времени держать соединение

открытым в ожидании дополнительных данных

reset_timedout_connection Если значение этой директивы равно on, то сокеты,

для которых истек тайм-аут, сбрасываются немед-

ленно, в результате чего освобождается выделенная

для них память. По умолчанию сокет остается в со-

стоянии FIN_WAIT1. На соединения типа keep-alive эта

директива не распространяется, они всегда закры-

ваются обычным образом

send_lowat Если значение отлично от нуля, то NGINX пытается

минимизировать количество операций отправки

данных через клиентские сокеты. В Linux, Solaris

и Windows эта директива игнорируется

send_timeout Задает тайм-аут между двумя последовательными

операциями записи при передаче ответа клиенту

tcp_nodelay Разрешает или запрещает использование

пара метра TCP_NODELAY для соединений типа

keep-alive

tcp_nopush Учитывается только при использовании директивы

sendfile. Разрешает NGINX отправлять заголовки

ответа одним пакетом, а также передавать файл

полными пакетами

Пример конфигурации

 Ниже приведен пример конфигурационной секции модуля HTTP:

http {

 include /opt/local/etc/nginx/mime.types;

 default_type application/octet-stream;

41

 sendfile on;

 tcp_nopush on;

 tcp_nodelay on;

 keepalive_timeout 65;

 server_names_hash_max_size 1024;

}

Этот контекстный блок должен располагаться после всех глобаль-
ных директив в файле nginx.conf.

Секция с описанием виртуального

сервера

 По соглашению в контексте, начинающемся ключевым словом
server, находится описание «виртуального сервера». Так называется
логический набор ресурсов, сопоставленный со значением директи-
вы server_name. Виртуальные серверы отвечают на запросы по про-
токолу HTTP и потому входят в состав секции http.

Виртуальный сервер определяется сочетанием директив listen и
server_name. Директива listen задает комбинацию IP-адреса и номера
порта либо путь к сокету в домене UNIX:

listen address[:port];

listen port;

listen unix:path;

Директива listen однозначно описывает привязку совета в NGINX.
Дополнительно в ней могут присутствовать следующие параметры.

Параметры директивы listen

Параметр Описание Примечание

default_server Означает, что данный сервер

будет сервером по умолчанию

для указанной пары адрес:порт

setfib Задает таблицу маршрутизации

FIB для прослушивающего

сокета

Поддерживается только

в ОС FreeBSD. Игнорируется

для сокетов в домене UNIX

backlog Задает параметр backlog

в системном вызове listen()

По умолчанию равен –1

в FreeBSD и 511 на всех

остальных платформах

rcvbuf Задает параметр SO_RCVBUF

для прослушивающего сокета

Секция с описанием виртуального сервера

42 Руководство по настройке

Параметр Описание Примечание

sndbuf Задает параметр SO_SNDBUF

для прослушивающего сокета

accept_filter Задает имя фильтра приема:

dataready или httpready

Поддерживается только

в ОС FreeBSD

deferred Задает параметр

TCP_DEFER_ACCEPT, означающий,

что требуется отложить вызов

accept()

Поддерживается только

в ОС Linux

bind Означает, что для данной пары

адрес:порт нужен отдельный

вызов bind()

Отдельный вызов bind()

производится без специаль-

ного указания, если

для сокета заданы какие-то

другие специальные

параметры

ipv6only Устанавливает значение

параметра IPV6_V6ONLY

Можно установить только

один раз при запуске.

Игнорируется для сокетов

в домене UNIX

ssl Означает, что этот порт предна-

значен только для соединений

по протоколу HTTPS

Позволяет построить более

компактную конфигурацию

so_keepalive Для прослушивающего сокета

задается режим TCP keepalive

Несмотря на свою простоту, директива server_name позволяет ре-
шить целый ряд задач конфигурирования. По умолчанию ее значе-
ние равно "", то есть секция server без директивы server_name сопо-
ставляется с запросом, в котором отсутствует заголовок Host. Этим
можно воспользоваться, например, для отбрасывания запросов без
этого заголовка:

server {

 listen 80;

 return 444;

}

Нестандартный код ответа HTTP 444, использованный в этом
примере, заставляет NGINX немедленно закрыть соединение.

Помимо обычной строки, NGINX допускает использование в ди-
рективе server_name метасимвола *:

43

  метасимвол можно указывать вместо поддомена: *.example.com;
  метасимвол можно указывать вместо домена верхнего уровня:
www.example.*;

  существует особая форма, которая соответствует поддомену
или самому домену: .example.com (соответствует как *.example.
com, так и example.com).

Параметр директивы server_name может быть и регулярным вы-
ражением, для этого нужно лишь предпослать имени знак тильды
(~):

server_name ~^www\.example\.com$;

server_name ~^www(\d+).example\.(com)$;

Вторая форма применяется для запоминания подвыражений, на
которые затем можно ссылаться (по номеру $1, $2 и т. д.) в после-
дующих директивах.

Чтобы определить, какой виртуальный сервер должен обслужить
данный запрос, NGINX применяется следующий алгоритм.

1. Сопоставить IP-адрес и порт с указанными в директиве listen.
2. Сопоставить заголовок Host со значением директивы server_

name, рассматриваемым как строка.
3. Сопоставить заголовок Host со значением директивы server_

name, рассматриваемым как строка, считая, что в начале нахо-
дится метасимвол *.

4. Сопоставить заголовок Host со значением директивы server_
name, рассматриваемым как строка, считая, что в конце нахо-
дится метасимвол *.

5. Сопоставить заголовок Host со значением директивы server_
name, рассматриваемым как регулярное выражение.

6. Если все попытки сопоставления заголовка Host закончились
неудачей, использовать ту директиву listen, в которой имеется
признак default_server.

7. Если все попытки сопоставления заголовка Host закончились
неудачей и директивы listen с признаком default_server не су-
ществует, использовать первый сервер, в котором директива
listen удовлетворяет условию шага 1.

Эта логика изображена на следующей блок-схеме:

Секция с описанием виртуального сервера

44 Руководство по настройке

45

Признак default_server позволяет обработать запросы, которые
иначе остались бы необработанными. Поэтому рекомендуется всегда
задавать этот признак явно, чтобы не гадать потом, почему запросы
обрабатываются странным образом.

Кроме того, признак default_server полезен, когда требуется скон-
фигурировать несколько виртуальных серверов с одной и той же ди-
рективой listen. Все описанные выше директивы будут одинаковы
для всех подходящих блоков server.

Местоположения – где, когда и как

Директива location может встречаться в секции с описанием вир-
туального сервера и содержит в качестве параметра URI-адрес, по-
ступивший от клиента или в результате внутренней переадресации.
Местоположения могут быть вложенными (с несколькими исклю-
чениями). Их назначение – определить максимально специализиро-
ванную конфигурацию для обработки запроса.

Местоположение задается следующим образом:

location [модификатор] uri {...}

Можно задавать также именованные местоположения:

location @name {…}

Именованное местоположение доступно только при внутренней
переадресации и может быть задано лишь на уровне контекста сер-
вера. При этом сохраняется тот URI, который был перед входом
в блок location.

Модификаторы изменяют обработку местоположения следую-
щим образом:

Модификаторы местоположения

Модификатор Обработка

= Сравнить буквально и завершить поиск

~ Сопоставление с регулярным выражением с учетом регистра

~* Сопоставление с регулярным выражением без учета регистра

^~ Прекратить обработку до сопоставления этого местоположе-
ния с регулярным выражением, если это совпадение с самым
длинным префиксом. Отметим, что это не сопоставление
с регулярным выражением, задача данного модификатора –
как раз предотвратить такое сопоставление

Местоположения – где, когда и как

46 Руководство по настройке

Когда приходит запрос, для указанного в нем URI ищется самое
подходящее местоположение. Происходит это следующим образом.

  Среди местоположений без регулярного выражения ищется
самое специфичное (с самым длинным совпадающим пре-
фиксом), порядок следования местоположений при этом не
учитывается.

  Сопоставление с регулярными выражениями производится
в том порядке, в каком они следуют в конфигурационном фай-
ле. Поиск прекращается при обнаружении первого совпадения.
Далее для обработки запроса используется самое подходящее
местоположение.

Описанное выше сопоставление производится после декодирова-
ния URI; например, строка "%20" в URI совпадает с пробелом " "
в местоположении.

Именованные местоположения можно использовать только при
внутренней переадресации запросов.

В таблице ниже перечислены директивы, которые могут встре-
чаться только внутри местоположения.

Директивы, употребляемые внутри секции location

Директива Описание

alias Определяет путь в файловой системе, соответствующий име-

ни местоположения. Если местоположение задано с помощью

регулярного выражения, то значение alias должно ссылаться на

запомненные подвыражения. alias подставляется вместо части

URI, сопоставившейся с местоположением; оставшаяся часть URI

не изменяется и становится частью пути в файловой системе.

Применение директивы alias чревато ошибками в случае пере-

мещения участков конфигурационного файла, поэтому лучше

использовать директиву root, если только нет необходимости

модифицировать URI для поиска нужного файла

internal Означает, что данное местоположение можно использовать

только для внутренних запросов (переадресации, определен-

ной в других директивах, переписывании запросов, для страниц

ошибок и т. д.)

limit_except Ограничивает применение данного местоположения только ука-

занными глаголами HTTP (GET включает также HEAD)

Кроме того, некоторые директивы, относящиеся к секции http, мо-
гут употребляться и в секции location. Полный перечень см. в при-
ложении A «Справочник по директивам».

47

Директива try_files заслуживает особого упоминания. Хотя ее
можно использовать в контексте server, чаще она встречается в опи-
сании местоположения. Ее задача – поискать перечисленные в пара-
метрах файлы в указанном порядке; как только будет найден первый
файл, поиск прекращается. Обычно этот механизм применяется,
чтобы сопоставить потенциальные файлы с некоторой переменной,
а затем передать обработку именованному местоположению, как по-
казано в следующем примере:

location / {

 try_files $uri $uri/ @mongrel;

}

location @mongrel {

 proxy_pass http://appserver;

}

Здесь если переданному URI не соответствует файл, то неявно
производится попытка найти каталог, а затем обработка перепору-
чается серверу appserver с помощью прокси. О том, как использовать
секции location, директивы try_files и proxy_pass для решения раз-
личных задач, мы будем не раз говорить на страницах этой книги.

Местоположения могут быть вложенными, за исключением сле-
дующих случаев:

  префикс равен "=";
  местоположение именованное.

Рекомендуется вкладывать местоположения, определяемые регу-
лярными выражениями, в местоположения с простой строкой в ка-
честве URI, например:

сначала входим через root

location / {

 # затем ищем самую длинную подстроку

 # отметим, что сопоставление с регулярным выражением не производится

 location ^~ /css {

 # а затем сопоставляем с этим регулярным выражением

 location ~* /css/.*\.css$ {

 }

 }

}

Местоположения – где, когда и как

48 Руководство по настройке

Секция с описанием почтового сервера

Секция с описанием почтового сервера , или конфигурацион-
ный контекст почты, доступна, только если при конфигурировании
NGINX был задан параметр --with-mail. В этой секции описываются
все аспекты работы с почтовым модулем.

Почтовый модуль содержит директивы, определяющие поведение
проксирования соединений с почтовыми серверами. В серверном
контексте могут употребляться те же директивы listen и server_name,
которые мы рассматривали в секции http.

NGINX умеет проксировать протоколы IMAP, POP3 и SMTP.
В таблице ниже перечислены директивы, относящиеся к этому мо-
дулю.

Директивы для модуля mail

Директива Описание

auth_http Задает сервер, который служит для аутентификации

пользователя в протоколах POP3 и IMAP. Функцио-

нальность этого сервера подробно рассматривается

в главе 3

imap_capabilities Определяет, какие возможности протокола IMAP4

поддерживает проксируемый сервер

pop3_capabilities Определяет, какие возможности протокола POP3

поддерживает проксируемый сервер

protocol Определяет, какой протокол поддерживает данный

контекст виртуального сервера

proxy Разрешает или запрещает проксирование почты

proxy_buffer Позволяет задать размер буфера, используемого для

проксирования. По умолчанию размер буфера равен

размеру страницы

proxy_pass_error_message Полезна, если процедура аутентификации на

прок си руемом сервере возвращает осмысленное

сообщение клиенту

proxy_timeout Используется, если тайм-аут должен быть больше

значения по умолчанию – 24 часа

xclient В протоколе SMTP предусмотрена проверка на

основе параметров IP/HELO/LOGIN, которые переда-

ются в команде XCLIENT. Данная директива позволяет

NGINX передать эту информацию серверу

Если NGINX собирался с поддержкой SSL (с параметром --with-
mail_ssl_module), то, помимо вышеописанных, доступны следующие
директивы.

49

Директивы для модуля mail с поддержкой SSL

Директива Описание

ssl Включает или выключает поддержку SSL-транзакций

в этом контексте

ssl_certificate Определяет путь к сертификату (или сертифика-

там) SSL в формате PEM для данного виртуального

сервера

ssl_certificate_key Определяет путь к секретному ключу SSL в формате

PEM для данного виртуального сервера

ssl_ciphers Определяет, какие шифры нужно поддерживать

в этом контексте (в формате OpenSSL)

ssl_prefer_server_ciphers Указывает, что при использовании протоколов SSLv3

и TLSv1 серверные шифры более приоритетны, чем

клиентские

ssl_protocols Определяет, какие протоколы SSL разрешить

ssl_session_cache Определяет параметры кэша сеансов SSL, а также

разрешает или запрещает разделение кэша всеми

рабочими процессами

ssl_session_timeout Определяет, сколько времени клиент может поль-

зоваться одними и теми же параметрами SSL при

условии, что они хранятся в кэше

Полный пример конфигурации

Ниже приведен пример конфигурационного файла, содержащего
секции, рассмотренные в этой главе. Подчеркнем, что его не следует
копировать и использовать «как есть». Скорее всего, он вам не по-
дойдет, а включен лишь для того, чтобы дать представление о том,
как выглядит полный конфигурационный файл.

user www;
worker_processes 12;
error_log /var/log/nginx/error.log;
pid /var/run/nginx.pid;

events {
 use /dev/poll;
 worker_connections 2048;
}

http {
 include /opt/local/etc/nginx/mime.types;
 default_type application/octet-stream;
 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;

Полный пример конфигурации

50 Руководство по настройке

 keepalive_timeout 65;
 server_names_hash_max_size 1024;

 server {
 listen 80;
 return 444;
 }

 server {
 listen 80;
 server_name www.example.com;

 location / {
 try_files $uri $uri/ @mongrel;
 }

 location @mongrel {
 proxy_pass http://127.0.0.1:8080;
 }
 }
}

Резюме

В этой главе мы рассмотрели устройство конфигурационного
файла NGINX. Его модульная структура в какой-то мере отража-
ет структуру самого NGINX. Глобальный конфигурационный блок
описывает все аспекты поведения NGINX в целом. Для каждого про-
токола, поддерживаемого NGINX, имеется отдельная конфигураци-
онная секция. Порядок обработки запросов можно уточнить, описав
виртуальные серверы внутри контекста протокола (http или mail)
таким образом, что запрос будет направляться серверу, обслуживаю-
щему конкретную пару IP-адрес/порт. В контексте http можно затем
определить местоположения, сопоставляемые с URI запроса. Мес-
тоположения могут быть вложенными или упорядоченными иным
способом, это позволяет направить запрос в нужное место файловой
системы или серверу приложений.

Но пока мы ничего не сказали о конфигурировании других мо-
дулей, включаемых в двоичный файл nginx на этапе компиляции.
Мы будем обсуждать эти дополнительные директивы при рассмот-
рении использования модуля для решения конкретной задачи. Мы
также не объяснили, какие переменные NGINX предоставляет для
конфигурирования и как ими пользоваться. Об этом пойдет речь
далее. Данная глава посвящена лишь основам настройки NGINX.

В следующей главе мы рассмотрим настройку почтового модуля
NGINX, который осуществляет проксирование электронной почты.

Глава 3. Почтовый модуль

NGINX проектировался не только для обслуживания веб-запросов,
но и как средство проксирования почтовых служб. В этой главе мы
научимся настраивать NGINX в качестве почтового прокси-сервера
для протоколов POP3, IMAP и SMTP. Мы рассмотрим следующие
вопросы.

  Простая служба проксирования.
  Служба аутентификации.
  Использование в связке с memcached.
  Интерпретация журналов.
  Ограничения операционной системы.

Простая служба проксирования

 Модуль почтового прокси-сервера в NGINX первоначально был
разработан для компании FastMail . Она хотела предоставлять своим
пользователям единственную оконечную точку IMAP, а размещать
реальную почтовую учетную запись на одном из нескольких почто-
вых серверов заднего плана. В то время для проксирования исполь-
зовалась классическая модель Unix, основанная на системном вызо-
ве fork(), то есть для каждого нового соединения порождался новый
процесс. В IMAP соединения существуют очень долго, поэтому и
процессы оказывались долгожителями. В результате прокси-серве-
ры работали крайне медленно, поскольку им приходилось управ-
лять многочисленными процессами, созданными для обслуживания
соединений. Событийная модель процессов NGINX гораздо лучше
отвечала таким требованиям. В качестве почтового прокси-сервера
NGINX может перенаправлять трафик на сколько угодно почтовых
серверов заднего плана, на которых размещаются учетные записи.
Это открывает возможность предоставить клиентам единственную
оконечную точку, а количество реальных серверов масштабировать
с увеличением числа пользователей. На базе данной модели постро-

52 Почтовый модуль

ены как коммерческие, так и открытые решения для электронной
почты, в том числе Atmail и Zimbra .

На рисунке ниже графически представлена описанная схема.

Поступивший запрос обрабатывается в соответствии с протоко-
лом. Почтовый модуль можно настроить по-разному для протоколов
POP3 , IMAP и SMTP . Для каждого протокола NGINX обращается
к службе аутентификации, передавая ей имя пользователя и пароль.
В случае успешной аутентификации соединение проксируется поч-
товому серверу, указанному в ответе, полученном от службы аутен-
тификации. В противном случае соединение с клиентом разрывает-
ся. Таким образом, служба аутентификации определяет, какую из
служб POP3/IMAP/SMTP должен использовать клиент и на каком
сервере. Количество почтовых серверов не ограничено, и NGINX мо-
жет выступать в роли прокси-сервера для всех, предоставляя кли-
ентам единый центральный шлюз.

Прокси-сервер действует от чьего-то имени. В данном случае
NGINX действует от имени почтового клиента, закрывая одно
соединение и открывая другое с проксируемым сервером. Это

53

означает, что прямого соединения между почтовым клиентом
и настоящим сервером почтовых ящиков или ретранслятором
SMTP нет.

 Правила, основанные на информации, содержащейся в со-

единении с клиентом, работать не будут, если только поч-

товая программа не поддерживает расширений, например

XCLIENT для SMTP.

При проектировании архитектуры с участием прокси-сервера нуж-
но иметь в виду важный момент – компьютер, на котором размещен
прокси-сервер, должен поддерживать больше соединений, чем ти-
пичный проксируемый сервер. Такая же вычислительная мощность
и память, как у сервера почтовых ящиков, ему не нужна, но коли-
чество одновременных соединений следует принимать во внимание.

Служба POP3

 Протокол Post Office Protocol – это стандартный протокол Ин-
тернета для доступа к сообщениям, хранящимся на сервере почто-
вых ящиков. Его текущая версия имеет номер 3, отсюда и название
POP3. Обычно почтовый клиент запрашивает у сервера почтовых
ящиков все новые сообщения в одном сеансе, а затем закрывает со-
единение, после чего сервер почтовых ящиков удаляет все сообще-
ния, помеченные как прочитанные.

Чтобы использовать NGINX в роли прокси для POP3, необходи-
мо включить несколько простых директив:

mail {

 auth_http localhost:9000/auth;

 server {

 listen 110;

 protocol pop3;

 proxy on;

 }

}

В этом фрагменте мы включаем почтовый модуль и настраиваем
его для работы со службой POP3, которая запущена на порту 9000
на той же машине. NGINX будет прослушивать порт 110 для всех
локальных IP-адресов, играя роль прокси-сервера для POP3. Об-
ратите внимание, что сами почтовые серверы мы здесь не настраи-

Простая служба проксирования

54 Почтовый модуль

ваем – задача известить NGINX о том, с каким сервером соединить
конкретного клиента, возлагается на службу аутентификации.

Если почтовый сервер поддерживает не все возможности (или вы
хотите явно ограничить их перечень), то NGINX поможет в этом:

mail {

 pop3_capabilities TOP USER;

}

Возможности (capabilities) – это способ объявить о поддержке не-
обязательных команд. В случае POP3 клиент может запросить спи-
сок поддерживаемых возможностей до или после аутентификации,
поэтому важно правильно настроить их в NGINX.

Можно также задать перечень поддерживаемых методов аутен-
тификации:

mail {

 pop3_auth apop cram-md5;

}

Если поддерживается метод аутентификации APOP , то служба
аутентификации должна сообщить NGINX пароль пользователя
в открытом виде, чтобы та смогла сгенерировать MD5-свертку.

Служба IMAP

Протокол Internet Message Access Protocol также является стан-
дартным протоколом Интернета для доступа к сообщениям, храня-
щимся на сервере почтовых ящиков. Он существенно расширяет
функциональность более раннего протокола POP. Как правило, все
сообщения остаются на сервере, поэтому к одному почтовому ящи-
ку может обращаться несколько клиентов. Это также означает, что
с IMAP-сервером заднего плана может быть установлено гораздо
больше долгоживущих соединений, чем с POP3-сервером.

Проксирование соединений с IMAP-сервером настраивается при-
мерно так же, как с POP3-сервером:

mail {

 auth_http localhost:9000/auth;

 imap_capabilities IMAP4rev1 UIDPLUS QUOTA;

 imap_auth login cram-md5;

 server {

55

 listen 143;

 protocol imap;

 proxy on;

 }

}

Отметим, что протокол задавать необязательно, потому что imap
подразумевается по умолчанию. Мы включили его лишь для боль-
шей ясности.

Директивы imap_capabilities и imap_auth работают так же, как их
аналоги для POP3.

Служба SMTP

 Simple Mail Transport Protocol – стандартный протокол Интерне-
та для передачи почтовых сообщений от одного сервера другому или
от клиента серверу. Первоначально в нем не была предусмотрена
аутентификация, но теперь определено расширение SMTP-AUTH.

Выше мы уже познакомились с логикой настройки почтового мо-
дуля. Она несложна и применима также к проксированию SMTP:

mail {

 auth_http localhost:9000/auth;

 smtp_capabilities PIPELINING 8BITMIME DSN;

 smtp_auth login cram-md5;

 server {

 listen 25;

 protocol smtp;

 proxy on;

 }

}

Наш прокси-сервер объявляет о поддержке лишь тех возможно-
стей, которые перечислены в директиве smtp_capabilities, в против-
ном случае он выдаст только список поддерживаемых механизмов
аутентификации, потому что список расширений отправляется кли-
енту в ответ на команду HELO/EHLO. Это может быть полезно при прок-
сировании на несколько SMTP-серверов, поддерживающих различ-
ные возможности. Можно настроить NGINX, так что он будет объ-
являть только о возможностях, поддерживаемых всеми серверами.
Важно указать в списке лишь расширения, которые поддерживает
сам SMTP-сервер.

Простая служба проксирования

56 Почтовый модуль

Поскольку SMTP-AUTH – расширение SMTP, которое необяза-
тельно поддерживается в любой конфигурации, NGINX умеет прок-
сировать SMTP-соединения, которые вообще не аутентифицируют-
ся. В таком случае службе аутентификации доступны только ко-
манды протокола HELO, MAIL FROM и RCPT TO, на основании которых она
должна определить, какому серверу передать соединение с данным
клиентом. В этой ситуации значением директивы smtp_auth должно
быть none.

Использование SSL/TLS

Если организация требует шифровать почтовый трафик или вы
сами хотите обеспечить повышенную защиту, то можете настроить
NGINX так, чтобы использовался протокол TLS , реализовав тем са-
мым спецификации POP3 поверх SSL, IMAP поверх SSL или SMTP
поверх SSL . Для включения поддержки TLS нужно добавить либо
директиву starttls on для поддержки команд STLS/STARTTLS, либо ди-
рективу ssl on для поддержки чистого протокола SSL/TLS. Кроме
того, необходимо добавить директивы ssl_*, адаптированные для
вашего вычислительного центра:

mail {

 # разрешить команду STLS для POP3 и STARTTLS для IMAP и SMTP

 starttls on;

 # отдать приоритет списку шифров сервера, чтобы мы сами определяли

 # уровень защиты

 ssl_prefer_server_ciphers on;

 # использовать только эти протоколы

 ssl_protocols TLSv1 SSLv3;

 # использовать только стойкие наборы шифров,

 # запретив анонимные DH и MD5, и отсортировать по стойкости

 ssl_ciphers HIGH:!ADH:!MD5:@STRENGTH;

 # использовать разделяемый кэш сеансов SSL, общий для всех

 # рабочих процессов

 ssl_session_cache shared:MAIL:10m;

 # сертификат и ключ для этого компьютера

 ssl_certificate /usr/local/etc/nginx/mail.example.com.crt;

 ssl_certificate_key /usr/local/etc/nginx/mail.example.com.key;

}

57

О различиях между соединением с чистым SSL/TLS и переходом
от открытого соединения к зашифрованному с помощью SSL/TLS
см. статью на странице https://www.fastmail.fm/help/technology_ssl_vs_
tls_starttls.html.

 Генерация SSL-сертификата с помощью OpenSSL

 Для тех, кто никогда раньше не генерировал SSL-серти фи-

каты, ниже приведена последовательность шагов.

 Выполнить запрос на создание сертификата:

$ openssl req -newkey rsa:2048 -nodes -out mail.example.com.csr

-keyout mail.example.com.key

 В ответ должен быть напечатан такой текст:

..

..

....+++

....................+++

writing new private key to ‘mail.example.com.key’

You are about to be asked to enter information that will

be incorporated

into your certificate request.

What you are about to enter is what is called a

Distinguished Name or a DN.

There are quite a few fields but you can leave some

blank

For some fields there will be a default value,

If you enter ‘.’, the field will be left blank.

Country Name (2 letter code) [AU]:CH

State or Province Name (full name) [Some-State]:Zurich

Locality Name (eg, city) []:ZH

Organization Name (eg, company) [Internet Widgits Pty

Ltd]:Example Company

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:mail.

example.com

Email Address []:

Please enter the following ‘extra’ attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

 Этот запрос на подписание сертификата (Certificate Signing

Request) (файл mail.example.com.csr) можно отправить для

подписания в удостоверяющий центр, например Verisign или

GoDaddy, либо подписать самостоятельно.

Простая служба проксирования

58 Почтовый модуль

$ openssl x509 -req -days 365 -in mail.example.com.csr

-signkey mail.example.com.key -out mail.example.com.crt

 В ответ будет напечатано:

Signature ok

subject=/C=CH/ST=Zurich/L=ZH/O=Example Company/CN=mail.

example.com

Getting Private key

 Подписанный сертификат показан на рисунке ниже.

 Отметим, что при использовании самоподписанного серти-

фиката клиент, подключающийся к серверу, получит сообще-

ние об ошибке. На производственный сервер следует уста-

навливать только сертификаты, подписанные признанным

удостоверяющим центром.

Полный пример конфигурации

почтового модуля

Доступ к почтовым службам часто осуществляется через один
шлюз. В следующем примере конфигурации NGINX разрешено
обслуживать трафик по протоколам POP3, IMAP и SMTP (в том
числе зашифрованный) через одну службу аутентификации, предо-
ставляя также клиентам возможность использовать команды STLS/
STARTTLS на незашифрованных портах:

59

events {
 worker_connections 1024;
}

mail {
 server_name mail.example.com;
 auth_http localhost:9000/auth;

 proxy on;

 ssl_prefer_server_ciphers on;
 ssl_protocols TLSv1 SSLv3;
 ssl_ciphers HIGH:!ADH:!MD5:@STRENGTH;
 ssl_session_cache shared:MAIL:10m;
 ssl_certificate /usr/local/etc/nginx/mail.example.com.crt;
 ssl_certificate_key /usr/local/etc/nginx/mail.example.com.key;

 pop3_capabilities TOP USER;
 imap_capabilities IMAP4rev1 UIDPLUS QUOTA;
 smtp_capabilities PIPELINING 8BITMIME DSN;

 pop3_auth apop cram-md5;

 imap_auth login cram-md5;

 smtp_auth login cram-md5;

 server {

 listen 25;

 protocol smtp;

 timeout 120000;

 }

 server {

 listen 465;

 protocol smtp;

 ssl on;

 }

 server {

 listen 587;

 protocol smtp;

 starttls on;

 }

 server {

 listen 110;

 protocol pop3;

 starttls on;

 }

 server {

Простая служба проксирования

60 Почтовый модуль

 listen 995;

 protocol pop3;

 ssl on;

 }

 server {

 listen 143;

 protocol imap;

 starttls on;

 }

 server {

 listen 993;

 protocol imap;

 ssl on;

 }

}

Как видите, в начале контекста mail мы объявили имя сервера.
Это сделано для того, чтобы ко всем нашим почтовым службам мож-
но было обращаться по имени mail.example.com. Даже если истинное
имя машины, на которой работает NGINX, другое и у каждого поч-
тового сервера есть собственное имя хоста, мы хотим, чтобы этот
прокси-сервер был единственной точкой, известной пользователям.
Именно это имя будет использоваться всюду, где NGINX должен
представиться, например в начальном приветствии по протоколу
SMTP.

Директива timeout в контексте сервера SMTP нужна для того,
чтобы удвоить значение по умолчанию, поскольку нам известно,
что этот конкретный проксируемый ретранслятор SMTP добавляет
искусственную задержку, чтобы воспрепятствовать рассылке через
него почтового спама.

Служба аутентификации

В предыдущем разделе мы несколько раз упомянули службу
аутентификации, но не сказали, что конкретно она делает. Ког-
да NGINX получает от пользователя запрос по протоколу POP3,
IMAP или SMTP, то первым делом необходимо аутентифицировать
соединение. NGINX не выполняет аутентификацию самостоятель-
но, а отправляет запрос службе аутентификации. Ответ, полученный
от этой службы, NGINX использует, чтобы установить соединение
с проксируемым почтовым сервером.

61

Служба аутентификации может быть написана на любом языке,
лишь бы она была согласована с протоколом аутентификации, уста-
новленным NGINX. Этот протокол похож на HTTP, поэтому напи-
сать свою службу аутентификации несложно.

В запросе NGINX службе аутентификации присутствуют следую-
щие заголовки:

  Host
  Auth-Method
  Auth-User
  Auth-Pass
  Auth-Salt
  Auth-Protocol
  Auth-Login-Attempt
  Client-IP
  Client-Host
  Auth-SMTP-Helo
  Auth-SMTP-From
  Auth-SMTP-To

Смысл их не нуждается в объяснении, и не все заголовки обяза-
тельны. Подробнее мы рассмотрим их, когда будем писать собствен-
ную службу аутентификации.

Для реализации службы аутентификации мы выбрали язык Ruby .
Если его нет на вашей машине, не торопитесь устанавливать. Напи-
санные на Ruby программы очень легко читать, поэтому просто
смот рите на код и комментарии к нему. Адаптация этой программы
к вашей среде и порядок ее запуска выходят за рамки этой кни-
ги. Данный пример приведен лишь в качестве отправной точки для
напи сания необходимой вам службы аутентификации.

 О том, как установить Ruby, подробно написано на сайте

https://rvm.io.

Начнем с рассмотрения запроса.
Сначала мы извлекаем из полученных от NGINX заголовков ин-

тересующие нас значения.

механизм аутентификации

meth = @env[‘HTTP_AUTH_METHOD’]

имя пользователя (login)

user = @env[‘HTTP_AUTH_USER’]

пароль, открытый или зашифрованный в зависимости от используемого

Служба аутентификации

62 Почтовый модуль

механизма аутентификации

pass = @env[‘HTTP_AUTH_PASS’]

в некоторых механизмах аутентификации для шифрования открытого пароля

необходима затравка, но не в нашем примере

salt = @env[‘HTTP_AUTH_SALT’]

проксируемый протокол

proto = @env[‘HTTP_AUTH_PROTOCOL’]

количество попыток должно быть целым числом

attempt = @env[‘HTTP_AUTH_LOGIN_ATTEMPT’].to_i

в нашей реализации не используется, приведено только для справки

client = @env[‘HTTP_CLIENT_IP’]

host = @env[‘HTTP_CLIENT_HOST’]

 Что означает символ @?

 Символ @ в Ruby обозначает переменную класса. Мы ис-

пользуем такие переменные, чтобы было проще передавать

значения из одного места программы в другое. В коде вы-

ше переменная @env ссылается на окружение, передаваемое

в Rack-запрос. Помимо нужных нам HTTP-заголовков, окру-

жение содержит дополнительную информацию о том, как за-

пущена служба.

Разобравшись с тем, как обработать пришедшие от NGINX за-
головки, мы теперь должны что-то сделать с содержащейся в них
информацией и отправить NGINX ответ. Ожидается, что ответ от
службы аутентификации будет содержать следующие заголовки:

  Auth-Status: любое значение, кроме OK, считается ошибкой.
  Auth-Server: IP-адрес, на который проксируется соединение.
  Auth-Port: порт, на который проксируется соединение.
  Auth-User: имя пользователя, которое должно использоваться

для аутентификации на почтовом сервере.
  Auth-Pass: пароль в открытом виде для команды APOP.
  Auth-Wait: сколько секунд ждать перед повторной попыткой

аутен тификации.
  Auth-Error-Code: альтернативный код ошибки для возврата кли-

енту.

Чаще всего используются заголовки Auth-Status, Auth-Server и Auth-
Port. Их присутствия в ответе достаточно, чтобы аутентификация
считалась состоявшейся.

Как видно из показанного ниже фрагмента кода, в зависимости от
ситуации могут включаться и другие заголовки. Сам ответ содержит
только заголовки с подставленными в них значениями.

63

Сначала проверим, не исчерпано ли количество попыток:

вернуть ошибку, если превышено максимальное количество попыток входа

if attempt > @max_attempts

 @res[«Auth-Status»] = «Maximum login attempts exceeded»

 return

end

Если это не так, возвращаем подходящие заголовки, записывая
в них значения, полученные от нашего механизма аутентификации:

@res[“Auth-Status”] = “OK”
@res[“Auth-Server”] = @mailhost
возвращаем порт, соответствующий этому протоколу
@res[“Auth-Port”] = MailAuth::Port[proto]
если используется APOP, то пароль нужно вернуть в открытом виде
if meth == ‘apop’ && proto == ‘pop3’
 @res[“Auth-User”] = user
 @res[“Auth-Pass”] = pass
end

Если попытка аутентификации не удалась, мы должны сообщить
об этом NGINX.

в случае ошибки аутентификации возвращаем соответствующий ответ
@res[«Auth-Status»] = «Invalid login or password»
и устанавливаем время в секундах, которое клиент должен
ждать перед следующей попыткой
@res[«Auth-Wait»] = «3»
Можно также установить код ошибки, который следует вернуть SMTP-клиенту
@res[«Auth-Error-Code»] = «535 5.7.8»

Не все заголовки обязательны; какие именно включать, зависит от
состояния запроса на аутентификацию и (или) возникших ошибок.

 Интересно, что в заголовке Auth-User можно вернуть не то
имя пользователя, которое указано в запросе. Это может
оказаться полезным, например, в случае, когда произво-
дится переход от старого проксируемого сервера, кото-
рый принимал имя пользователя без домена, к новому,
который требует указания домена. Благодаря указанной
возможности NGINX может передавать новому проксируе-
мому серверу модифицированное имя.

База данных для аутентификации может быть произвольной: плос-
кий текстовый файл, каталог LDAP, реляционная СУБД и т. д. Не-

Служба аутентификации

64 Почтовый модуль

обязательно использовать то же хранилище, к которому обращается
сама почтовая служба, однако данные в обоих хранилищах должны
быть синхронизированы во избежание ошибок из-за их расхождения.

В нашем примере данные для аутентификации хранятся в прос-
том хэше:

@auths = { "test:1234" => '127.0.1.1' }

Для проверки пользователя нужно просто произвести поиск
в этом хэше:

возвращается значение, соответствующее ключу'user:pass'

if @auths.key?("#{user}:#{pass}")

 @mailhost = @auths["#{user}:#{pass}"]

 return true

если такого ключа нет, метод возвращает false

else

 return false

end

Объединяя все три части, получаем полный код службы аутен-
тификации:

#!/usr/bin/env rackup

Это простой HTTP-сервер, согласованный с протоколом аутентификации,

который определен почтовым модулем NGINX.

#

require 'logger'

require 'rack'

module MailAuth

настраиваем соответствие протоколов и портов

Port = {

 'smtp' => '25',

 'pop3' => '110',

 'imap' => '143'

}

class Handler

 def initialize

 # настраиваем протоколирование, как для почтовой службы

 @log = Logger.new("| logger -p mail.info")

 # заменяем обычную временную метку именем службы и ее pid’ом

 @log.datetime_format = "nginx_mail_proxy_auth pid: "

 # заголовок "Auth-Server" должен содержать IP-адрес

65

 @mailhost = '127.0.0.1'

 # задаем максимальное число попыток входа

 @max_attempts = 3

 # Для этого примера в качестве 'базы данных' аутентификации мы используем

 # фиксированный хэш.

 # В реальной программе нужно будем заменить его методом, который

 # подключается к каталогу LDAP или к базе данных

 @auths = { "test:1234" => '127.0.1.1' }

 end

После описанной выше инициализации модуля мы сообщаем
Rack, какие запросы хотим обрабатывать, и определяем метод get,
который будет отвечать на запросы от NGINX.

 def call(env)

 # интересующие нас заголовки находятся в окружении

 @env = env

 # настраиваем объекты запроса и ответа

 @req = Rack::Request.new(env)

 @res = Rack::Response.new

 # передаем управление методу, называющемуся так же, как HTTP-метод,

 # которым был отправлен запрос

 self.send(@req.request_method.downcase)

 # возвращаемся сюда, чтобы завершить ответ

 @res.finish

 end

 def get

 # механизм аутентификации

 meth = @env['HTTP_AUTH_METHOD']

 # имя пользователя (login)

 user = @env['HTTP_AUTH_USER']

 # пароль, открытый или зашифрованный в зависимости от используемого

 # механизма аутентификации

 pass = @env['HTTP_AUTH_PASS']

 # в некоторых механизмах аутентификации для шифрования открытого пароля

 # необходима затравка, но не в нашем примере

 salt = @env['HTTP_AUTH_SALT']

 # проксируемый протокол

 proto = @env['HTTP_AUTH_PROTOCOL']

 # количество попыток должно быть целым числом

 attempt = @env['HTTP_AUTH_LOGIN_ATTEMPT'].to_i

 # в нашей реализации не используется, приведено только для справки

 client = @env['HTTP_CLIENT_IP']

 host = @env['HTTP_CLIENT_HOST']

 # вернуть ошибку, если превышено максимальное количество попыток входа

 if attempt > @max_attempts

 @res["Auth-Status"] = "Maximum login attempts exceeded"

Служба аутентификации

66 Почтовый модуль

 return

 end

 # для особого случая smtp-транзакций, не требующих аутентификации,

 # в файле nginx.conf содержится такой фрагмент:

 # smtp_auth none;

 # возможно, понадобится справочная таблица для переадресации

 # некоторых отправителей на определенные SMTP-серверы

 if meth == ‘none’ && proto == ‘smtp’

 helo = @env[‘HTTP_AUTH_SMTP_HELO’]

 # мы хотим выделить адреса из следующих двух заголовков

 from = @env[‘HTTP_AUTH_SMTP_FROM’].split(/: /)[1]

 to = @env[‘HTTP_AUTH_SMTP_TO’].split(/: /)[1]

 @res[«Auth-Status»] = «OK»

 @res[«Auth-Server»] = @mailhost

 # возвращаем порт, соответствующий этому протоколу

 @res[«Auth-Port»] = MailAuth::Port[proto]

 @log.info(«a mail from #{from} on #{helo} for #{to}»)

 # пытаемся выполнить аутентификацию с помощью информации

 # из полученных заголовков

 elsif auth(user, pass)

 @res[«Auth-Status»] = «OK»

 @res[«Auth-Server»] = @mailhost

 # возвращаем порт, соответствующий этому протоколу

 @res[«Auth-Port»] = MailAuth::Port[proto]

 # если используется APOP, то пароль нужно вернуть в открытом виде
 if meth == ‘apop’ && proto == ‘pop3’
 @res[«Auth-User»] = user
 @res[«Auth-Pass»] = pass
 end
 @log.info(«+ #{user} from #{client}»)
 # попытка аутентификации не удалась
 else
 # в случае ошибки аутентификации возвращаем соответствующий ответ
 @res[«Auth-Status»] = «Invalid login or password»
 # и устанавливаем время в секундах, которое клиент должен
 # ждать перед следующей попыткой
 @res[«Auth-Wait»] = «3»
 # Можно также установить код ошибки, который следует вернуть
 # SMTP-клиенту
 @res[«Auth-Error-Code»] = «535 5.7.8»
 @log.info(«! #{user} from #{client}»)
 end

 end

Следующая секция объявлена закрытой (private), поскольку на-
ходящиеся в ней методы может вызывать только сам содержащий
их класс. Метод auth – рабочая лошадка службы аутентификации,
он проверяет корректность имени пользователя и пароля. Метод

67

method_missing служит для обработки недопустимых HTTP-методов
и возвращает ошибку Not Found (Не найдено):

 private

 # наш метод аутентификации; измените в соответствии со своим окружением

 def auth(user, pass)

 # просто возвращает значение, соответствующее ключу ‘user:pass’

 if @auths.key?(«#{user}:#{pass}»)

 @mailhost = @auths[«#{user}:#{pass}»]

 return @mailhost

 # если такого ключа нет, метод возвращает false

 else

 return false

 end

 end

 # на случай, если какой-нибудь другой процесс попытается обратиться к

 # этой службе и отправит запрос методом, отличным от GET

 def method_missing(env)

 @res.status = 404

 end

 end # класс MailAuthHandler

end # модуль MailAuth

И в последней секции настраиваем сервер, так чтобы запросы
к URI /auth маршрутизировались правильному обработчику:

настраиваем каркас Rack

use Rack::ShowStatus

сопоставляем URI /auth наш обработчик аутентификации

map «/auth» do

 run MailAuth::Handler.new

end

Этот код нужно сохранить в файле nginx_mail_proxy_auth.ru и вызы-
вать с флагом -p <port>, который говорит, какой порт он должен про-
слушивать. Дополнительные сведения о каркасе Rack, реализующем
интерфейс к веб-серверу, смотрите на сайте http://rack.github.com.

Использование в связке с memcached

Если клиенты часто обращаются к почтовым службам через ваш
прокси-сервер или службе аутентификации доступно не слишком
много ресурсов, то имеет смысл включить в инфраструктуру слой кэ-

Использование в связке с memcached

68 Почтовый модуль

ширования. Для этой цели мы воспользуемся программой memcached ,
которая будет кэшировать результаты аутентификации в памяти.

NGINX может искать ключ в memcached, но только в контексте
определенного местоположения в модуле http . Поэтому мы должны
реализовать собственный слой кэширования вне NGINX.

Как видно из блок-схемы, мы сначала проверяем, есть ли дан-
ная комбинация имени пользователя и пароля в кэше. Если нет, мы
запрашиваем информацию у службы аутентификации и помещаем
пару ключ-значение в кэш. В противном случае эти данные можно
взять прямо из кэша.

 Компания Zimbra разработала модуль memcached для NGINX,

который делает все то же самое непосредственно в кон-

тексте NGINX. Но пока этот код не включен в официальный

дистрибутив NGINX.

Показанный ниже код дополняет нашу исходную службу аутенти-
фикации слоем кэширования (в данном случае это, пожалуй, пере-
бор, но этот код может служить основой для работы с базой данных
для аутентификации, размещенной в сети).

gem install memcached (зависит от библиотек libsasl2 и gettext)

require ‘memcached’

здесь задаются IP-адрес и порт, на котором работает memcached

@cache = Memcached.new(«localhost:11211»)

69

def get_cache_value(user, pass)

 resp = ‘’

 begin

 # сначала смотрим, есть ли ключ в кэше

 resp = @cache.get(«#{user}:#{pass}»)

 rescue Memcached::NotFound

 # если нет, вызываем метод auth

 resp = auth(user, pass)

 # и сохраняем полученный результат в кэше с ключом ‘user:pass’

 @cache.set(«#{user}:#{pass}»,resp)

 end

 # явно возвращаем ответ вызывающей программе

 return resp

end

Чтобы использовать этот код, необходимо, конечно, установить и
запустить memcached. Для вашей операционной системы, скорее всего,
имеется готовый пакет:

  Linux (на основе Debian)
sudo apt-get install memcached

  Linux (на основе rpm)
sudo yum install memcached

  FreeBSD
sudo pkg_add -r memcached

Для настройки memcached нужно просто указать параметры при
запуске. Никакого конфигурационного файла, читаемого непосред-
ственно memcached, не существует, хотя операционная система может
включать файл, который служит для упрощения передачи парамет-
ров.

Ниже перечислены наиболее важные параметры memcached:
  -l: задает адрес (или адреса), прослушиваемый memcached (по

умолчанию любой). Важно отметить, что в целях безопасности
memcached не должен прослушивать адрес, доступный из Интер-
нета, потому что никакой аутентификации не предусмотрено;

  -m: задаем объем оперативной памяти, отводимой под кэш
(в мегабайтах);

  -c: задает максимальное количество одновременных соедине-
ний (по умолчанию 1024);

  -p: задает порт, прослушиваемый memcached (по умолчанию
11211).

Задав разумные значения этих параметров, остается запустить
memcached.

Использование в связке с memcached

70 Почтовый модуль

Теперь, заменив строку elsif auth(user, pass) строкой elsif get_
cache_ value(user, pass) в файле nginx_mail_proxy_auth.ru, мы получим
службу аутентификации со слоем кэширования, который ускоряет
обработку запросов.

Интерпретация журналов

 Файлы журналов – лучшее средство понять, что происходит,
когда система работает не так, как ожидается. Объем записываемой
в журнал информации зависит от указанного в конфигурационном
файле уровня подробности и от того, был ли NGINX собран с под-
держкой отладки (параметр --enable-debug).

В каждой строке журнала указывается один из уровней серьез-
ности, сконфигурированных в директиве error_log. Определены
следующие уровни (в порядке возрастания серьезности): debug, info,
notice, warn, error, crit, alert и emerg. Если задан некоторый уровень,
то в журнал помещаются сообщения этого и более высоких уровней.
По умолчанию предполагается уровень error.

Для модуля mail обычно задается уровень протоколирования info,
чтобы можно было получать столько информации, сколько возмож-
но без вывода отладочных сообщений. Отладочное протоколирова-
ние в данном случае дало бы только сведения о точках входа в функ-
ции и паролях, указанных для соединений.

 Поскольку почта сильно зависит от правильности функ-

ционирования DNS, многие ошибки могут быть связаны

с некорректными записями DNS или устареванием инфор-

мации в кэше. Если вы подозреваете, что ошибка вызва-

на именно неправильным разрешением имен, то можете

узнать у NGINX, какой IP-адрес был сопоставлен конкрет-

ному доменному имени, включив отладочное протоколи-

рование. К сожалению, для этого понадобится переком-

пилировать двоичный файл nginx, если он изначально не

был скомпилирован с поддержкой отладки.

Ниже описана типичная последовательность записей журнала, от-
носящихся к сеансу по протоколу POP3.

Сначала клиент устанавливает соединение с прокси-сервером:

<timestamp> [info] <worker pid>#0: *<connection id> client <ip address>

connected to 0.0.0.0:110

71

После успешного входа выводится сообщение, содержащее все
сведения о соединении:

<timestamp> [info] <worker pid>#0: *<connection id> client logged in, client:

<ip address>, server: 0.0.0.0:110, login: «<username>», upstream: <upstream

ip>:<upstream port>, [<client ip>:<client port>- <local ip>:110] <=> [<local

ip:<high port>-<upstream ip>:<upstream port>]

Отметим, что часть перед двусторонней стрелкой <=> относится
к стороне клиент–прокси, а часть после стрелки – к стороне прок-
си–почтовый сервер. Эта информация выводится еще раз при за-
вершении сеанса.

<timestamp> [info] <worker pid>#0: *<connection id> proxied session done,

client: <ip address>, server: 0.0.0.0:110, login: «<username>», upstream:

<upstream ip>:<upstream port>, [<client ip>:<client port>- <local ip>:110] <=>

[<local ip:<high port>-<upstream ip>:<upstream port>]

Таким образом, мы видим, какие порты использованы на всех сто-
ронах соединения, что помогает отлаживать потенциальные ошиб-
ки и при необходимости коррелировать записи в этом журнале и
в журнале брандмауэра.

Остальные записи журнала на уровне info относятся к тайм-аутам
и некорректным командам либо ответам, полученным от клиента
или от проксируемого сервера.

На уровне warn обычно выводятся сообщения об ошибках кон-
фигурации:

<timestamp> [warn] <worker pid>#0: *<connection id> «starttls» directive

conflicts with «ssl on»

Многие сообщения, выводимые на уровне error, свидетельствуют
об ошибках при работе со службой аутентификации. Из следую-
щих сообщений понятно, в каком состоянии находилось соединение
в момент ошибки:

<timestamp> [error] <worker pid>#0: *<connection id> auth http server

127.0.0.1:9000 timed out while in http auth state, client: <client ip>, server:

0.0.0.0:25

<timestamp> [error] <worker pid>#0: *<connection id> auth http server

127.0.0.1:9000 sent invalid response while in http auth state, client: <client

ip>, server: 0.0.0.0:25

Интерпретация журналов

72 Почтовый модуль

Если по какой-либо причине на запрос об аутентификации не
получен ответ, соединение разрывается. NGINX не знает, какому
серверу передать запрос клиента, поэтому может только закрыть
соединение с сообщением Internal server error и кодом ответа, за-
висящим от протокола.

В журнал помещается запись, которая может содержать или не
содержать имя пользователя. Ниже показано сообщение для SMTP-
соединения, требующего аутентификации:

<timestamp> [error] <worker pid>#0: *<connection id> auth http server

127.0.0.1:9000 did not send server or port while in http auth state, client:

<client ip>, server: 0.0.0.0:25, login: «<login>»

Отметим, что в двух предыдущих сообщениях информация об
имени пользователя (login) отсутствовала.

Сообщение уровня alert означает, что NGINX не смог устано-
вить ожидаемое значение параметра, но в остальном работает нор-
мально.

Напротив, сообщения уровня emerg означают, что NGINX не смог
запуститься; необходимо либо устранить причину ошибки, либо из-
менить конфигурацию. Если NGINX уже запущен, то он не станет
перезапускать рабочие процессы, пока не будет произведено изме-
нение:

<timestamp> [error] <worker pid>#0: *<connection id> no «http_auth» is defined

for server in /opt/nginx/conf/nginx.conf:32

В данном случае мы должны определить службу аутентификации
с помощью директивы http_auth .

Ограничения операционной системы

 Вы можете оказаться в ситуации, когда NGINX работает не так,
как ожидается, – то соединения рвутся, то в журнале появляются
предупреждения. В этих случаях необходимо хорошо понимать, ка-
кие ограничения налагает на NGINX операционная система и как
настроить ее для оптимальной работы сервера.

У почтового прокси-сервера проблемы чаще всего связаны с огра-
ничением количества соединений. Чтобы понять, что это значит,
следует разобраться, как NGINX обрабатывает запросы на установ-
ление соединения от клиентов. Главный процесс NGINX запускает

73

несколько отдельных рабочих процессов. Каждый процесс способен
обработать фиксированное число соединений, определяемое дирек-
тивой worker_connections. Для каждого проксируемого соединения
NGINX открывает новое соединение с почтовым сервером. Для
любого соединения необходим файловый дескриптор и по одному
TCP-порту из диапазона эфемерных портов для каждой пары (IP-
адрес, порт почтового сервера) (см. объяснение ниже).

Количество открытых файловых дескрипторов в зависимости от
операционной системы настраивается в файле ресурсов или путем
отправки сигнала демону, управляющему ресурсами. Чтобы узнать
текущее значение, введите следующую команду оболочки:

ulimit -n

Если ваши расчеты показывают, что этот порог слишком мал или
в журнале ошибок появляется сообщение worker_connections exceed
open file resource limit, значит, значение необходимо увеличить. Сна-
чала настройте максимальное число открытых файловых дескрипто-
ров на уровне операционной системы – только для пользователя, от
имени которого работает NGINX, или глобально. Затем в директи-
ве worker_rlimit_nofile в главном контексте файла nginx.conf укажите
новое значение. Чтобы измененное значение вступило в силу, до-
статочно послать nginx сигнал перезагрузки конфигурации (HUP);
перезапускать главный процесс при этом не нужно.

Если вы столкнулись с нехваткой TCP-портов, то следует расши-
рить диапазон эфемерных портов. Из этого диапазона операционная
система выбирает порты для исходящих соединений. По умолчанию
может быть всего 5000 портов, но обычно их бывает 16 384. Хоро-
шее описание процедуры расширения этого диапазона в различных
операционных системах приведено на странице http://www.ncftp.com/
ncftpd/doc/misc/ephemeral_ports.html.

Резюме

В этой главе мы показали, как настраивать NGINX для прокси-
рования соединений по протоколам POP3, IMAP и SMTP. Каждый
протокол можно настроить по отдельности, объявив о поддержке тех
или иных возможностей проксируемым сервером. Можно шифро-
вать трафик по протоколу TLS при наличии у сервера подходящего
SSL-сертификата.

Резюме

74 Почтовый модуль

Для функционирования почтового модуля необходима служба
аутентификации, поскольку без нее никакое проксирование невоз-
можно. Мы привели подробный пример такой службы, описав, что
ожидается в запросе и как следует формировать ответ. Опираясь
на этот фундамент, вы сможете написать службу аутентификации,
отвечающую вашим потребностям.

Умение интерпретировать журналы – один из самых важных на-
выков администратора. NGINX формирует достаточно детальные,
хотя и не сразу понятные, журналы. Но зная, в какие моменты жиз-
ни соединения выводятся различные сообщения и в каком состоя-
нии находится NGINX в каждый такой момент, нетрудно понять,
что происходит.

NGINX, как и любая другая программа, работает в контексте
операционной системы. Поэтому крайне важно знать, как ослабить
ограничения, которые ОС налагает на NGINX. Если дальнейшее
ослаб ление невозможно, то следует искать другое архитектурное
решение – увеличить количество серверов, на которых работает
NGINX, или применить какую-то другую технику, позволяющую
уменьшить количество соединений, обрабатываемых одним экзем-
пляром.

В следующей главе мы узнаем, как настроить NGINX для прок-
сирования HTTP-соединений.

Глава 4. NGINX как обратный
прокси-сервер

Обратным прокси-сервером называется веб-сервер, который явля-
ется оконечной точкой соединения с клиентом и открывает новое
соединение с проксируемым сервером от имени клиента. Прокси-
руемый сервер определяется как сервер, с которым NGINX устанав-
ливает соединение для выполнения запроса клиента. Проксируемые
серверы могут принимать разные формы, и для каждой NGINX мож-
но настроить по-разному.

Настройка NGINX, которую мы как раз и изучаем, не всегда
бывает простой. Для решения внешне похожих задач применяют-
ся различные директивы. Некоторые параметры вообще не следует
использовать, поскольку это может привести к неожиданным ре-
зультатам.

Иногда проксируемый сервер не может выполнить запрос. NGINX
умеет доставлять клиенту сообщения об ошибках – непосредственно
от проксируемого сервера, со своего локального диска или путем
переадресации на страницу, размещенную совсем на другом сервере.

В силу самой природы обратного прокси-сервера проксируемый
сервер не получает информацию непосредственно от клиента. Часть
этой информации, например истинный IP-адрес клиента, важна для
отладки и для отслеживания. Ее можно передать проксируемому
серверу в виде заголовков.

Мы рассмотрим эти вопросы, а также дадим обзор некоторых ди-
ректив из модуля прокси-сервера в следующих разделах.

  Введение в технологию обратного проксирования.
  Типы проксируемых серверов.
  Преобразование конфигурации с «if» в более современную

форму.

76 NGINX как обратный прокси-сервер

  Использование документов с описанием ошибок для обработ-
ки ошибок проксирования.

  Определение истинного IP-адреса клиента.

Введение в технологию обратного

проксирования

NGINX может выступать в роли обратного прокси-сервера , кото-
рый является оконечной точкой соединения с клиентом и открывает
новое соединение с проксируемым сервером. По ходу дела запрос
можно проанализировать, исходя из URI-адреса, параметров кли-
ента или иной логики, чтобы лучше обслужить его. Любая часть
исходного URL-запроса при прохождении через обратный прокси-
сервер может быть преобразована.

С точки зрения проксирования, наиболее важна директива proxy_
pass. Она принимает один параметр – URI-адрес, на который следует
передать запрос. Использование proxy_pass с указанием URI заме-
няет request_uri этой частью. Так, в следующем примере /uri будет
заменено на /newuri при передаче запроса проксируемому серверу:

location /uri {

 proxy_pass http://localhost:8080/newuri;

}

Но из этого правила есть два исключения. Во-первых, если мес-
тоположение определено с помощью регулярного выражения, то
преобразование URI не производится. В примере ниже URI /local
будет передан далее без изменения, а не заменен на /foreign, как,
вероятно, хотел автор:

location ~ ^/local {

 proxy_pass http://localhost:8080/foreign;

}

Второе исключение состоит в том, что если внутри местоположе-
ния есть правило переписывания, которое изменяет URI, и затем
NGINX использует этот URI для обработки запроса, то преобра-
зование не производится. В примере ниже проксируемому серверу
передается URI /index.php?page=<match>, где <match> – запомненное
подвыражение в скобках, а не /index, как указано в части URI ди-
рективы proxy_pass:

77

location / {

 rewrite /(.*)$ /index.php?page=$1 break;

 proxy_pass http://localhost:8080/index;

}

Здесь флаг break используется для того, чтобы немедленно

прекратить обработку директив модуля rewrite.

В обоих случаях часть URI после доменного имени в директиве
proxy_pass несущественна, поэтому ее можно опустить без ущерба
для полноты конфигурации:

location ~ ^/local {

 proxy_pass http://localhost:8080;

}

location / {

 rewrite /(.*)$ /index.php?page=$1 break;

 proxy_pass http://localhost:8080;

}

Модуль proxy

В следующей таблице перечислены некоторые наиболее употре-
бительные директивы модуля proxy.

Директивы модуля proxy

Директива Описание

proxy_connect_timeout Максимальное время ожидания соединения

с проксируемым сервером

proxy_cookie_domain Подменяет атрибут domain в заголовке

Set-Cookie от проксируемого сервера; можно

указать строку, регулярное выражение или

ссылку на переменную

proxy_cookie_path Подменяет атрибут path в заголовке Set-Cookie

от проксируемого сервера; можно указать

строку, регулярное выражение или ссылку

на переменную

proxy_headers_hash_bucket_size Максимальный размер имен заголовков

proxy_headers_hash_max_size Общий размер заголовков, полученных

от проксируемого сервера

proxy_hide_header Список заголовков, которые не следует

передавать клиенту

Модуль proxy

78 NGINX как обратный прокси-сервер

Директива Описание

proxy_http_version Версия протокола HTTP, которой следует

придерживаться при взаимодействии

с проксируемым сервером (для соединений

типа keepalive должна быть 1.1)

proxy_ignore_client_abort Если значение равно on, то NGINX не станет

разрывать соединение с проксируемым

сервером, в случае когда клиент разрывает

свое соединение

proxy_ignore_headers Какие заголовки можно игнорировать при

обработке ответа от проксируемого сервера

proxy_intercept_errors Если значение равно on, то NGINX будет

отображать страницу, заданную директивой

error_page, вместо ответа, полученного от

проксируемого сервера

proxy_max_temp_file_size Максимальный размер временного файла,

в который записывается часть ответа, в случае

когда он не умещается целиком в буферах

памяти

proxy_pass Задает URL проксируемого сервера, которому

передается запрос

proxy_pass_header Отменяет сокрытие заголовков, определенных

в директиве proxy_hide_header, разрешая пере-

давать их клиенту

proxy_pass_request_body Если значение равно off, то тело запроса

не передается проксируемому серверу

proxy_pass_request_headers Если значение равно off, то заголовки запроса

не передаются проксируемому серверу

proxy_read_timeout Сколько времени может пройти между двумя

последовательными операциями чтения

данных от проксируемого сервера, прежде

чем соединение будет закрыто. Значение

следует увеличить, если проксируемый сервер

обрабатывает запросы медленно

proxy_redirect Перезаписывает заголовки Location и Refresh,

полученные от проксируемого сервера;

полезно для обхода допущений, принятых

каркасом разработки приложений

proxy_send_timeout Сколько времени может пройти между двумя

последовательными операциями записи

данных на проксируемый сервер, прежде чем

соединение будет закрыто

proxy_set_body Эта директива позволяет изменить тело запро-

са, отправляемое проксируемому серверу

79

Директива Описание

proxy_set_header Перезаписывает заголовки, отправляемые

проксируемому серверу. Может также

применяться для подавления некоторых

заголовков (если в качестве значения указать

пустую строку)

proxy_temp_file_write_size Ограничивает размер данных в одной операции

записи во временный файл, чтобы NGINX

не слишком долго блокировала исполнение

программы при обработке одного запроса

proxy_temp_path Каталог для хранения временных файлов,

получаемых от проксируемого сервера. Может

быть многоуровневым

Ниже многие из перечисленных выше директив собраны воеди-
но. Этот фрагмент можно вставить в конфигурационный файл в то
место, где находится директива proxy_pass.

Содержимое файла proxy.conf:

proxy_redirect off;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

client_max_body_size 10m;

client_body_buffer_size 128k;

proxy_connect_timeout 30;

proxy_send_timeout 15;

proxy_read_timeout 15;

proxy_send_lowat 12000;

proxy_buffer_size 4k;

proxy_buffers 4 32k;

proxy_busy_buffers_size 64k;

proxy_temp_file_write_size 64k;

Мы задали в этих директивах значения, которые, на наш взгляд,
полезны для настройки обратного прокси-сервера.

  В директиве proxy_redirect задано значение off, потому что
переписывать заголовок Location в большинстве случаев не
нужно.

  Заголовок Host устанавливается так, чтобы проксируемый
сервер мог сопоставить запрос с виртуальным сервером или
как-то иначе использовать часть переданного клиентом URL-
адреса, содержащую имя хоста.

Модуль proxy

80 NGINX как обратный прокси-сервер

  Заголовки X-Real-IP и X-Forwarded-For служат аналогичным це-
лям – передать проксируемому серверу информацию об IP-
адресе подключившегося клиента.

 • Переменная $remote_addr, подставляемая в заголовок X-Real-
IP, содержит IP-адрес клиента, определенный NGINX.

 • Переменная $proxy_add_x_forwarded_for содержит значение
заголовка X-Forwarded-For из запроса клиента, за которым
следует значение переменной $remote_addr.

  Директива client_max_body_size, строго говоря, не является ди-
рективой модуля proxy, но упомянута здесь, поскольку имеет
прямое отношение к конфигурации прокси-сервера. Если ее
значение слишком мало, то загруженные клиентом файлы не
попадут проксируемому серверу. Задавая значение этой пере-
менной, помните, что размер файла, загружаемого с помощью
веб-формы, обычно оказывается больше, чем видно в файло-
вой системе.

  Директива proxy_connect_timeout определяет, как долго NGINX
будет ждать установления соединения с проксируемым сер-
вером.

  Директивы proxy_read_timeout и proxy_send_timeout задают макси-
мальное время между последовательными операциями чтения
от проксируемого сервера и записи на него.

  Директива proxy_send_lowat применима только в ОС FreeBSD и
определяет, сколько байт должно скопиться в буфере отправки
сокета, чтобы данные были переданы протоколу.

  Директивы proxy_buffer_size , proxy_buffers и proxy_busy_buffers_
size будут подробно рассмотрены в следующей главе. Пока
скажем лишь, что они определяют видимую быстроту реакции
NGINX на запросы пользователя.

  Директива proxy_temp_file_write_size определяет, сколько вре-
мени рабочий процесс может блокировать исполнение при
запи си данных во временный файл: чем больше значение, тем
дольше процесс блокируется.

Эти директивы можно включить в конфигурационный файл, как
показано ниже, и использовать многократно:

location / {

 include proxy.conf;

 proxy_pass http://localhost:8080;

}

81

Если какая-то директива в конкретном случае должна иметь дру-
гое значение, то его можно переопределить после включения файла:

location /uploads {

 include proxy.conf;

 client_max_body_size 500m;

 proxy_connect_timeout 75;

 proxy_send_timeout 90;

 proxy_read_timeout 90;

 proxy_pass http://localhost:8080;

}

В данном случае порядок важен. Если одна и та же директива

встречается в конфигурационном файле (с учетом включае-

мых файлов) несколько раз, то NGINX возьмет последнее

значение.

Унаследованные серверы с куками

 Бывает, что несколько унаследованных приложений необходи-
мо разместить за одной общей оконечной точкой. Унаследованные
приложения написаны в предположении, что они взаимодействуют
непосредственно с клиентом. Они устанавливают в куках собствен-
ное доменное имя и считают, что к ним всегда возможен доступ по
адресу /. Если поместить перед этими серверами новую оконечную
точку, то данные предположения окажутся неверными. В следую-
щем фрагменте конфигурационного файла атрибуты domain и path
в куках переписываются с учетом новой оконечной точки:

server {
 server_name app.example.com;

 location /legacy1 {
 proxy_cookie_domain legacy1.example.com app.example.com;
 proxy_cookie_path $uri /legacy1$uri;
 proxy_redirect default;
 proxy_pass http://legacy1.example.com/;
}

 Значение переменной $uri уже включает начальную косую

черту (/), так что дублировать ее не нужно.

 location /legacy2 {

 proxy_cookie_domain legacy2.example.org app.example.com;

 proxy_cookie_path $uri /legacy2$uri;

Модуль proxy

82 NGINX как обратный прокси-сервер

 proxy_redirect default;
 proxy_pass http://legacy2.example.org/;
 }

 location / {
 proxy_pass http://localhost:8080;
 }
}

Модуль upstream

С модулем proxy тесно связан модуль upstream . Директива upstream
начинает новый контекст, в котором определяется группа прок-
сируемых серверов. Этим серверам можно приписать разные веса
(чем выше вес, тем больше соединений будет передано конкретному
проксируемому серверу), они могут иметь разные типы (TCP или
в домене UNIX). Их даже можно пометить как остановленные на
техническое обслуживание.

В следующей таблице перечислены директивы, допустимые в кон-
тексте upstream.

Директивы модуля upstream

Директива Описание

ip_hash Обеспечивает равномерное распределение клиентских

соединений по всем серверам за счет хэширования IP-адреса

по его сети класса C

keepalive Количество соединений с проксируемыми серверами,

кэшируемых в одном рабочем процессе. При использовании

с HTTP-соединениями значение proxy_http_version должно быть

равно 1.1, а значение proxy_set_header – Connection ""

least_conn Активирует алгоритм балансировки нагрузки, согласно которому

очередной запрос передается серверу с наименьшим числом

активных соединений

server Определяет адрес (доменное имя, или IP-адрес с необяза тель-

ным номером TCP-порта, или путь к сокету в домене UNIX) и

необязательные параметры проксируемого сервера, а именно:

 weight: относительный вес сервера;

 max_fails: максимальное число неудачных попыток установле-

ния связи с сервером в течение времени fail_timeout, после

которого сервер помечается как неработоспособный;

 fail_timeout: время, в течение которого сервер должен отве-

тить на запрос, и время, в течение которого сервер считается

неработоспособным;

 backup: такой сервер получает запрос, только если все осталь-

ные неработоспособны;

 down: помечает сервер как непригодный для обработки запросов

83

Кэширование соединений

 Директива keepalive заслуживает особого упоминания. Она гово-
рит, сколько соединений с проксируемым сервером NGINX должен
держать открытыми в каждом рабочем процессе. Кэш соединений
полезен в случае, когда NGINX должен постоянно держать неко-
торое количество открытых соединений с проксируемым сервером.
Если проксируемый сервер работает по протоколу HTTP, то NGINX
может задействовать механизм постоянных соединений, специфи-
цированный в версии HTTP/1.1, для поддержания таких открытых
соединений.

upstream apache {

 server 127.0.0.1:8080;

 keepalive 32;

}

location / {

 proxy_http_version 1.1;

 proxy_set_header Connection “”;

 proxy_pass http://apache;

}

Здесь мы говорим, что хотели бы держать 32 открытых соедине-
ния с Apache, работающим на порту 8080 сервера localhost. NGINX
должен будет выполнить процедуру квитирования TCP только
для первых 32 соединений в каждом рабочем процессе, а затем
может оставить эти соединения открытыми, не посылая заголовок
Connection со значением close. В директиве proxy_http_version мы ука-
зываем, что хотели бы работать с проксируемым сервером по про-
токолу HTTP/1.1. Мы также очищаем значение заголовка Connection
с помощью директивы proxy_set_header, чтобы не проксировать со-
единения с клиентом самостоятельно.

Если для обслуживания запросов потребуется больше 32 соедине-
ний, то NGINX их, конечно, откроет. Но по достижении порогового
значения NGINX будет закрывать редко используемые соединения,
чтобы общее число открытых соединений оставалось равным 32, как
указано в директиве keepalive.

Этот механизм применим и для проксирования соединений по
протоколам, отличным от HTTP. В примере ниже говорится, что
NGINX должен поддерживать 64 соединения с двумя экземплярами
memcached:

Модуль proxy

84 NGINX как обратный прокси-сервер

upstream memcaches {

 server 10.0.100.10:11211;

 server 10.0.100.20:11211;

 keepalive 64;

}

Изменение алгоритма балансировки нагрузки с подразумеваемого
по умолчанию циклического (round-robin) на ip_hash или least_conn
должно быть задано до директивы keepalive:

upstream apaches {

 least_conn;

 server 10.0.200.10:80;

 server 10.0.200.20:80;

 keepalive 32;

}

Алгоритмы балансировки нагрузки

 Для выбора проксируемого сервера, которому передается очеред-
ной запрос, модуль upstream может применять один из трех алго-
ритмов балансировки нагрузки: циклический, по хэш-коду IP-адреса
или с наименьшим количеством соединений. По умолчанию под-
разумевается циклический (round-robin) алгоритм , для его актива-
ции никакой директивы не нужно. В этом случае выбирается сервер,
следующий за тем, который был выбран для обслуживания преды-
дущего запроса, – с учетом следования серверов в конфигурацион-
ном блоке и их весов. Циклический алгоритм пытается обеспечить
справедливое распределение трафика, основываясь на понятии оче-
редности.

Алгоритм хэширования IP-адреса , активируемый директивой
ip_hash , основан на предположении, что запросы от клиентов с не-
которыми IP-адресами должны попадать одному и тому же прок-
сируемому серверу. В качестве ключа хэширования NGINX берет
первые три октета IPv4-адреса или весь IPv6-адрес. Таким образом,
множеству близких IP-адресов всегда сопоставляется один и тот
же проксируемый сервер. Цель этого механизма – обеспечить не
справедливое распределение, а постоянство связи между клиентом
и обслуживающим его сервером.

Третий из поддерживаемых модулем upstream алгоритмов баланси-
ровки нагрузки, с наименьшим количеством соединений , выбирает-
ся директивой least_conn . Он ставит целью равномерное распределе-

85

ние нагрузки между проксируемыми серверами путем выбора того,
у которого количество активных соединений наименьшее. Различия
в вычислительной мощности проксируемых серверов можно учесть
с помощью параметра weight директивы server. При выборе серве-
ра с наименьшим количеством соединений алгоритм принимает во
внимание вес.

Типы проксируемых серверов

 Проксируемым называется сервер, которому NGINX передает за-
прос на соединение. Он может находиться на другой физической
или виртуальной машине, но это необязательно. Проксируемый сер-
вер может быть демоном, прослушивающим сокет в домене UNIX
на локальной машине, или одним из многих демонов, прослушиваю-
щих порты TCP на другой машине. Это может быть сервер Apache
с модулями для обработки запросов различных типов или сервер
промежуточного уровня Rack, предоставляющий HTTP-интерфейс
к приложениям, написанным на Ruby. В любом случае NGINX мож-
но настроить как прокси-сервер.

Единственный проксируемый сервер

 Веб-сервер Apache часто применяется для обслуживания как ста-
тических файлов, так и интерпретируемых скриптов разных типов.
Наличие в Сети обширной документации и пособий помогает поль-
зователям быстро настроить свою любимую CMS (систему управ-
ления содержимым). К сожалению, из-за ограничений на ресурсы
Apache в типичной конфигурации не может обслужить много одно-
временных запросов. NGINX, напротив, спроектирован для обслу-
живания именно такого трафика и потребляет очень мало ресурсов.
Поскольку большинство CMS заранее сконфигурированы для рабо-
ты с Apache и опираются на использование файла .htaccess для до-
полнительной настройки, то задействовать сильные стороны NGINX
проще всего, используя его в качестве прокси-сервера к экземпляру
Apache:

server {

 location / {

 proxy_pass http://localhost:8080;

 }

}

Типы проксируемых серверов

86 NGINX как обратный прокси-сервер

Это самая простая из всех возможных конфигураций прокси-сер-
вера. NGINX служит оконечной точкой для всех клиентских соеди-
нений и проксирует запросы на порт 8080 на локальном компьюте-
ре. Предполагается, что Apache настроен на прослушивание порта
localhost:8080.

Подобная конфигурация, как правило, дополняется директива-
ми, позволяющими NGINX самостоятельно обслуживать запросы
на статические файлы, а остальные передавать Apache:

server {
 location / {
 try_files $uri @apache;
 }

 location @apache {
 proxy_pass http://127.0.0.1:8080;
 }
}

Директива try_files (относящая к базовому модулю http) по очере-
ди проверяет файлы, пока не найдет совпадение. Так, в показанном вы-
ше примере NGINX сам доставит файлы, которые соответствуют URI
в запросе клиента и находятся в его корневом каталоге. Если файл не
найден, то NGINX передаст запрос Apache для дальнейшей обработки.
Мы воспользовались именованным местоположением, чтобы прокси-
ровать запрос после неудачной попытки найти файл локально.

Несколько проксируемых серверов

 Есть также возможность настроить NGINX так, чтобы передавать
запросы нескольким проксируемым серверам. Для этого следует
объявить контекст upstream, определить в нем несколько серверов и
сослаться на этот контекст в директиве proxy_pass:

upstream app {

 server 127.0.0.1:9000;

 server 127.0.0.1:9001;

 server 127.0.0.1:9002;

}

server {

 location / {

 proxy_pass http://app;

 }

}

87

При такой конфигурации NGINX будет передавать поступающие
запросы циклически трем проксируемым серверам. Это полезно, ког-
да приложение способно в каждый момент времени обрабатывать
только один запрос и мы хотим поручить NGINX взаимодействие
с клиентами, чтобы ни один из серверов приложений не был пере-
гружен. Подобная конфигурация изображена на следующем рисунке:

В разделе «Алгоритмы балансировки нагрузки» выше в этой главе
описаны и другие алгоритмы балансировки нагрузки. Какой из них
выбрать, зависит от конкретных обстоятельств.

Если некоторый клиент должен всегда попадать на один и тот
же проксируемый сервер, то есть требуется обеспечить некое сла-
бое подобие липких сеансов, то следует воспользоваться директивой
ip_hash. В случае когда распределение запросов характеризуется
широким разбросом времени обработки одного запроса, то лучше
выбрать алгоритм least_conn. Подразумеваемый по умолчанию цик-
лический алгоритм хорош для общего случая, когда не требуется
учитывать особенности клиента или проксируемого сервера.

Проксируемые серверы, работающие

по протоколу, отличному от HTTP

 До сих пор мы говорили только о проксируемых серверах, ра-
ботающих по протоколу HTTP. Для них используется директива
proxy_pass. Но, как отмечалось выше в разделе «Кэширование соеди-

Типы проксируемых серверов

88 NGINX как обратный прокси-сервер

нений», NGINX может проксировать запросы серверам различных
типов. Каждому типу соответствует своя директива *_pass.

Проксируемые серверы memcached

Модуль NGINX memcached (по умолчанию включенный) отвечает
за взаимодействие с демоном memcached. При этом клиент не взаимо-
действует с memcached напрямую, то есть NGINX выступает в роли
обратного прокси-сервера. Модуль memcached наделяет NGINX спо-
собностью общаться по протоколу memcached, то есть производить
поиск ключа до передачи запроса серверу приложений.

upstream memcaches {

 server 10.0.100.10:11211;

 server 10.0.100.20:11211;

}

 server {

 location / {

 set $memcached_key «$uri?$args»;

 memcached_pass memcaches;

 error_page 404 = @appserver;

 }

 location @appserver {

 proxy_pass http://127.0.0.1:8080;

 }

}

В директиве memcached_pass переменная $memcached_key использует-
ся для формирования ключа поиска. Если соответствующего зна-
чения не найдено (error_page 404), то запрос передается компьютеру
localhost, на котором предположительно работает сервер, способный
обработать этот запрос и вставить пару ключ-значение в кэш, обслу-
живаемый экземпляром memcached.

Проксируемые серверы FastCGI

Использование сервера FastCGI – широко распространенный
способ запуска PHP-приложений, работающих за сервером NGINX.
Модуль fastcgi компилируется по умолчанию и активируется ди-
рективой fastcgi_pass. В результате NGINX получает возможность
взаимодействовать по протоколу FastCGI с одним или нескольки-
ми проксируемыми серверами. Набор таких серверов определяется
следующим образом:

89

upstream fastcgis {

 server 10.0.200.10:9000;

 server 10.0.200.20:9000;

 server 10.0.200.30:9000;

}

А вот как им передаются запросы к корню:

location / {

 fastcgi_pass fastcgis;

}

Это очень примитивная конфигурация, но принцип использова-
ния FastCGI она демонстрирует. Модуль fastcgi располагает много-
численными директивами и возможностями настройки, которые мы
будем обсуждать в главе 6.

Проксируемые серверы SCGI

 NGINX поддерживает также протокол SCGI за счет встроенно-
го модуля scgi. Принцип такой же, как для модуля fastcgi. NGINX
передает запросы проксируемому серверу, указанному в директиве
scgi_pass.

Проксируемые серверы uWSGI

Протокол uWSGI когда-то был очень популярен в среде разработ-
чиков на языке Python. NGINX поддерживает подключение к прок-
сируемому серверу с приложениями на Python с помощью модуля
uwsgi. Конфигурируется он так же, как модуль fastcgi, только для
указания проксируемого сервера служит директива uwsgi_pass. При-
мер приведен в главе 6.

Преобразование конфигурации с «if»

в более современную форму

Применение директивы if внутри секции location считается
оправданным только в некоторых ситуациях. Ее можно использо-
вать в сочетании с директивами return и rewrite с флагом last или
break, но в остальных случаях лучше избегать. Объясняется это воз-
можностью получить неожиданные результаты. Рассмотрим такой
пример:

Преобразование конфигурации с «if» в более современную форму

90 NGINX как обратный прокси-сервер

location / {

 try_files /img /static @imageserver;

 if ($request_uri ~ «/blog») {

 proxy_pass http://127.0.0.1:9000;

 break;

 }

 if ($request_uri ~ «/tickets») {

 proxy_pass http://tickets.example.com;

 break;

 }

}

location @imageserver {

 proxy_pass http://127.0.0.1:8080;

}

Здесь мы пытаемся определить, какому проксируемому серверу
передать запрос, основываясь на значении переменной $request_uri.
На первый взгляд, конфигурация кажется естественной и разумной,
потому что в простых тестах работает правильно. Однако изобра-
жения не обслуживаются ни из местоположения /img в файловой
системе, ни из местоположения /static там же, ни из именованного
местоположения @imageserver. Директива try_files попросту не рабо-
тает, когда в том же самом местоположении присутствует директива
if. Директива if создает собственное неявное местоположение со
своим обработчиком содержимого, в данном случае – модулем proxy.
Таким образом, внешний обработчик содержимого, в котором на-
ходится директива try_files, вообще никогда не вызывается. Чтобы
добиться желаемого, эту конфигурацию следует переписать иначе.

Подумаем, как NGINX обрабатывает запрос. Найдя соответствие
IP-адресу и порту, NGINX сначала выбирает виртуальный сервер,
основываясь на заголовке Host. Затем он просматривает все опре-
деленные для него местоположения в поисках подходящего URI.
Поэтому, чтобы сконфигурировать селектор на основе URI, лучше
просто определить несколько местоположений, как показано в при-
мере ниже:

location /blog {

 proxy_pass http://127.0.0.1:9000;

}

location /tickets {

 proxy_pass http://tickets.example.com;

91

}

location /img {

 try_files /static @imageserver;

}

location / {

 root /static;

}

location @imageserver {

 proxy_pass http://127.0.0.1:8080;

}

Эта конфигурация иллюстрируется на рисунке ниже.

Вот еще один пример конфигурации с директивами if:

server {

 server_name marketing.example.com communication.example.com

 marketing.example.org communication.example.org marketing.example.net

 communication.example.net;

 if ($host ~* (marketing\.example\.com|marketing\.example\.

 org|marketing\.example\.net)) {

 rewrite ^/$ http://www.example.com/marketing/application.do redirect;

 }

 if ($host ~* (communication\.example\.com|communication\.example\.

Преобразование конфигурации с «if» в более современную форму

92 NGINX как обратный прокси-сервер

 org|communication\.example\.net)) {

 rewrite ^/$ http://www.example.com/comms/index.cgi redirect;

 }

 if ($host ~* (www\.example\.org|www\.example\.net)) {

 rewrite ^/(.*)$ http://www.example.com/$1 redirect;

 }

}

Здесь имеется ряд директив if, сравнивающих значение заго-
ловка Host (или, если его нет, значение server_name) с различными
регулярными выражениями. После обнаружения соответствия URI
переписывается с целью перехода на соответствующий компонент
приложения. Мало того что сопоставление каждого URI с несколь-
кими регулярными выражениями крайне неэффективно, так еще и
нарушается правило «не должно быть if внутри location».

Такую конфигурацию лучше переписать в виде нескольких по-
следовательных контекстов server, в каждом их которых URL под-
меняется адресом соответствующего компонента:

server {

 server_name marketing.example.com marketing.example.org

 marketing. example.net;

 rewrite ^ http://www.example.com/marketing/application.do permanent;

}

server {

 server_name communication.example.com communication.example.org

 communication.example.net;

 rewrite ^ http://www.example.com/comms/index.cgi permanent;

}

server {

 server_name www.example.org www.example.net;

 rewrite ^ http://www.example.com$request_uri permanent;

}

В каждом блоке мы оставили только те имена серверов, которые
относятся к соответствующей директиве rewrite, поэтому директи-
вы if не понадобились. Во всех правилах rewrite мы заменили флаг
redirect флагом permanent, чтобы сообщить браузеру, что это полный
URL-адрес, который нужно запомнить и автоматически использо-

93

вать при следующем обращении к этому домену. В последнем пра-
виле rewrite мы также заменили сопоставление с регулярным вы-
ражением (^/(.*)$) сравнением с готовой переменной $request_uri,
которая содержит ту же информацию, но избавляет от необходимо-
сти сопоставлять строку с регулярным выражением и запоминать
подвыражение в переменной.

Использование документов

с описанием ошибок для обработки

ошибок проксирования

 Бывает, что проксируемый сервер не может обработать запрос.
В таких случаях NGINX можно настроить так, чтобы возвращался
документ, хранящийся на локальном диске.

server {

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root share/examples/nginx/html;

 }

}

Или на внешнем сайте:

server {

 error_page 500 http://www.example.com/maintenance.html;

}

При проксировании на несколько серверов можно определить
дополнительный сервер «последней надежды» (fallback), который
обрабатывает запросы, которые оказались не по зубам другим сер-
верам. Это полезно, когда сервер последней надежды может вернуть
ответ, зависящий от запрошенного URI:

upstream app {

 server 127.0.0.1:9000;

 server 127.0.0.1:9001;

 server 127.0.0.1:9002;

}

server {

 location / {

Использование документов с описанием ошибок

94 NGINX как обратный прокси-сервер

 error_page 500 502 503 504 = @fallback;
 proxy_pass http://app;
 }

 location @fallback {
 proxy_pass http://127.0.0.1:8080;
 }
}

Знак “=” в строке error_page означает, что мы хотим вернуть

код состояния, полученный от последнего параметра, в дан-

ном случае от местоположения @fallback.

В этих примерах рассматриваются случаи, когда код ошибки
равен 500 или больше. NGINX может также возвращать error_page
для кодов ошибки 400 или больше, если значение директивы proxy_
intercept_errors равно on, как в следующем примере:

server {
 proxy_intercept_errors on;
 error_page 400 403 404 /40x.html;

 location = /40x.html {
 root share/examples/nginx/html;
 }
}

 Если в директиве error_page присутствует код ошибки 401, то

аутентификация окажется незавершенной. Это можно делать,

например, в случае, когда сервер аутентификации выведен из

эксплуатации, но в общем случае не рекомендуется.

Определение истинного IP-адреса

клиента

 При использовании прокси-сервера у клиента нет прямого соеди-
нения с проксируемым сервером. Поэтому проксируемый сервер не
может получать информацию непосредственно от клиента. Любую
информацию, в том числе истинный IP-адрес клиента, следует пере-
давать в заголовках. Для этой цели NGINX предоставляет директиву
proxy_set_header :

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

95

В результате IP-адрес клиента передается в каждом из заголовков
X-Real-IP и X-Forwarded-For. Во втором случае принимается во вни-
мание заголовок из запроса клиента. Если в запросе присутствует
заголовок X-Forwarded-For, то IP-адрес клиента будет добавлен в ко-
нец этого заголовка, через запятую. В зависимости от конфигурации
проксируемого сервера необходима одна из этих двух директив. На-
пример, чтобы настроить Apache, так чтобы в его журналах в ка-
честве IP-адреса клиента использовался заголовок X-Forwarded-For,
нужно воспользоваться спецификатором форматирования %{<имя-

заголовка>}i.
Ниже показано, как изменить подразумеваемый по умолчанию

формат «объединенного» (combined) журнала Apache:

LogFormat “%{X-Forwarded-For}i %l %u %t \”%r\” %>s %b \”%{Referer}i\”

\”%{User-Agent}i\”” combined

С другой стороны, если проксируемый сервер требует нестандарт-
ного заголовка, например Client-IP, то и эту задачу легко решить
следующим образом:

proxy_set_header Client-IP $remote_addr;

Точно так же проксируемым серверам можно передавать и другую
информацию, например заголовок Host:

proxy_set_header Host $host;

Резюме

Мы рассмотрели вопрос об использовании NGINX в качестве об-
ратного прокси-сервера. Его эффективная модель обработки соеди-
нений идеальна для прямого взаимодействия с клиентами. Получив
запрос, NGINX может затем открыть новое соединение с одним из
нескольких проксируемых серверов, приняв во внимание сильные и
слабые стороны каждого. Использование директивы if внутри сек-
ции location считается допустимым только в определенных ситуаци-
ях. Поняв, как NGINX обрабатывает запрос, мы можем подготовить
конфигурацию, в большей степени отвечающую решаемой задаче.
Если у NGINX по какой-то причине не получается установить со-
единение с проксируемым сервером, то он может вернуть альтерна-
тивную страницу. Поскольку NGINX служит оконечной точкой для

Резюме

96 NGINX как обратный прокси-сервер

клиентских запросов, проксируемые серверы могут получать инфор-
мацию о клиенте только с помощью заголовков запроса, проксиро-
ванного NGINX. Описанные соображения помогут при написании
конфигурационного файла NGINX, идеально отвечающего вашим
потребностям.

В следующей главе мы рассмотрим более сложные приемы об-
ратного проксирования.

Глава 5. Обратное
проксирование, дополнительные
вопросы

В предыдущей главе мы видели, что обратный прокси-сервер уста-
навливает соединения с проксируемыми серверами от имени клиен-
тов. Сами проксируемые серверы не имеют прямой связи с клиен-
тами. Так сделано по разным причинам, в том числе ради безопас-
ности, масштабируемости и повышения производительности.

Обратный прокси-сервер обеспечивает безопасность, потому что
если бы злоумышленник захотел попасть напрямую на проксируе-
мый сервер, ему нужно было бы сначала взломать обратный прок-
си-сервер. Соединения с клиентом можно шифровать по протоко-
лу HTTPS. Оконечной точкой таких SSL-соединений может быть
обратный прокси-сервер, если проксируемый сервер не может или
не должен предоставлять средства шифрования самостоятельно.
NGINX может выступать в роли терминатора SSL-соединений, а
также реализовывать дополнительные списки управления доступом
и ограничения, зависящие от различных свойств клиента.

Масштабируемость достигается за счет того, что обратный прок-
си-сервер устанавливает параллельные соединения с несколькими
проксируемыми серверами, которые клиентам представляются од-
ним сервером. Если приложению нужна дополнительная вычисли-
тельная мощность, то пул серверов, расположенных за единствен-
ным обратным прокси-сервером, можно расширить.

Обратный прокси-сервер может повысить производительность
приложения несколькими способами. Во-первых, он может кэши-
ровать и сжимать содержимое перед отправкой его клиенту. В роли
обратного прокси-сервера NGINX способен обрабатывать больше
одновременных клиентских соединений, чем типичный сервер при-
ложений. Иногда NGINX конфигурируют так, что он обслуживает

98 Обратное проксирование, дополнительные вопросы

запросы на статическое содержимое из локального дискового кэша,
а проксируемому серверу передает только динамические запросы.
Клиенты могут оставлять соединения с NGINX открытыми, тогда
как сам NGINX закрывает соединения с проксируемыми серверами
немедленно, освобождая тем самым их ресурсы.

Мы обсудим все эти вопросы, а также оставшиеся директивы мо-
дуля proxy в следующих разделах.

  Безопасность за счет разделения.
  Обеспечение масштабируемости за счет изоляции компонен-

тов приложения.
  Оптимизация производительности обратного прокси-сервера.

Безопасность за счет разделения

 Мы можем повысить безопасность, отделив точку, в которой кли-
енты подключаются к приложению. Это одна из основных причин
использования обратного прокси-сервера в архитектуре системы.
Клиент напрямую подключается только к машине, на которой рабо-
тает прокси-сервер. Эту машину необходимо как следует защитить,
чтобы противник не мог найти точку проникновения в систему.

Безопасность – столь обширная тема, что мы лишь вкратце от-
метим, на что обратить внимание.

  Устанавливайте брандмауэр перед обратным прокси-сервером,
открывая доступ только к порту 80 (и 443, если предполагают-
ся также HTTPS-соединения).

  Запускайте NGINX от имени непривилегированного пользо-
вателя (в разных операционных системах он называется www,
webservd или www-data).

  Шифруйте трафик для предотвращения перехвата.

О последней рекомендации мы подробнее поговорим в следую-
щем разделе.

Шифрование трафика по протоколу SSL

 NGINX часто используют как терминатор SSL-соединений – по-
тому что проксируемый сервер не поддерживает SSL или с целью
освободить его от накладных расходов, связанных с обработкой
SSL-соединений. Для этого необходимо откомпилировать двоич-
ный файл nginx с поддержкой SSL (параметр --with_http_ssl_module)
и установить сертификат и ключ SSL.

99

 Подробнее о том, как самостоятельно сгенерировать

сертификат SSL, см. врезку «Генерация SSL-сертификата

с помощью OpenSSL» в главе 3 «Почтовый модуль».

Ниже показан пример конфигурации для разрешения HTTPS-
соединений с сервером www.example.com:

server {

 listen 443 default ssl;

 server_name www.example.com;

 ssl_prefer_server_ciphers on;

 ssl_protocols TLSv1 SSLv3;

 ssl_ciphers RC4:HIGH:!aNULL:!MD5:@STRENGTH;

 ssl_session_cache shared:WEB:10m;

 ssl_certificate /usr/local/etc/nginx/www.example.com.crt;

 ssl_certificate_key /usr/local/etc/nginx/www.example.com.key;

 location / {

 proxy_set_header X-FORWARDED-PROTO https;

 proxy_pass http://upstream;

 }

}

Здесь мы сначала активируем модуль ssl , указав параметр ssl
в директиве listen. Затем мы говорим, что хотим отдать предпочте-
ние серверным, а не клиентским шифрам, чтобы иметь возможность
использовать только шифры, признанные наиболее безопасными.
Это не позволит клиенту предложить нерекомендуемый шифр.
В директиве ssl_session_cache мы задаем режим shared, чтобы все ра-
бочие процессы могли воспользоваться плодами дорогостоящего на-
чального согласования параметров SSL, уже один раз выполненно-
го для некоторого клиента. Несколько виртуальных серверов могут
пользоваться одной и той же директивой ssl_session_cache, если все
они сконфигурированы с одним и тем же именем или эта директива
находится в контексте http. Вторая и третья части значения – имя
кэша и его размер соответственно. Далее заданы сертификат и ключ
для данного хоста. Отметим, что для файла ключа следует устано-
вить права доступа так, чтобы читать его мог только главный про-
цесс. Для заголовка X-FORWARDED-PROTO мы задали значение https, чтобы
приложение, работающее на проксируемом сервере, знало о том, что
исходный запрос был отправлен по протоколу HTTPS.

Безопасность за счет разделения

100 Обратное проксирование, дополнительные вопросы

 Шифры SSL

 Шифры в показанной выше конфигурации выбираются из на-

бора, подразумеваемого в NGINX по умолчанию. В него не

входят шифры вообще без аутентификации (aNULL) и шифры,

в которых используется алгоритм хэширования MD5. Шифр

RC4 помещен в начало набора, поэтому предпочтение отда-

ется шифрам, не подверженным атаке BEAST, которая опи-

сана в документе CVE-2011-3389. Строка @STRENGTH в конце

значения говорит о том, что список шифров следует упоря-

дочить по длине ключа алгоритма шифрования.

Выше мы описали шифрование трафика между клиентом и обрат-
ным прокси-сервером. Но можно также шифровать трафик между
прокси-сервером и проксируемым сервером:

server {

 …

 proxy_pass https://upstream;

}

Обычно это применяется только в системах, где даже внутренняя
сеть считается небезопасной.

Аутентификация клиентов по протоколу SSL

 В некоторых приложениях используется информация, получен-
ная из предъявленного клиентом сертификата SSL, но в системе
с обратным прокси-сервером она непосредственно недоступна. Что-
бы передать ее приложению, необходимо, чтобы NGINX добавил за-
головок:

location /ssl {

 proxy_set_header ssl_client_cert $ssl_client_cert;

 proxy_pass http://upstream;

}

В переменной $ssl_client_cert хранится сертификат клиента
в формате PEM. Мы передаем его проксируемому серверу в одно-
именном заголовке. Далее приложение может использовать эту ин-
формацию, как ему угодно.

Вместо того чтобы передавать проксируемому серверу весь кли-
ентский сертификат, NGINX может самостоятельно проделать часть

101

работы и убедиться, что сертификат хотя бы корректен, то есть
подпи сан известным удостоверяющим центром (УЦ), не отозван и
дата окончания срока действия еще не наступила.

server {
 …

 ssl_client_certificate /usr/local/etc/nginx/ClientCertCAs.pem;
 ssl_crl /usr/local/etc/nginx/ClientCertCRLs.crl;
 ssl_verify_client on;
 ssl_verify_depth 3;

 error_page 495 = @noverify;
 error_page 496 = @nocert;

 location @noverify {
 proxy_pass http://insecure?status=notverified;
 }

 location @nocert {
 proxy_pass http://insecure?status=nocert;
 }

 location / {
 if ($ssl_client_verify = FAILED) {
 return 495;
 }
 proxy_pass http://secured;
 }
}

Показанный выше фрагмент, в котором предварительно прове-
ряется корректность клиентского сертификата SSL, состоит из сле-
дующих частей.

  В аргументе директивы ssl_client_certificate указывается путь
к представленному в формате PEM списку сертификатов кор-
невых УЦ, которые могут подписывать клиентские сертифи-
каты.

  Аргумент директивы ssl_crl определяет путь к списку ото-
званных сертификатов, который публикуется удостоверяю-
щим центром, подписывающим клиентские сертификаты.
Этот список необходимо периодически загружать с помощью
отдельной процедуры.

  Директива ssl_verify_client говорит, что NGINX должна про-
верять корректность SSL-сертификатов, предъявленных кли-
ентами.

Безопасность за счет разделения

102 Обратное проксирование, дополнительные вопросы

  Директива ssl_verify_depth определяет максимальное количест-
во сторон, подписавших сертификат; если их больше, серти-
фикат признается недействительным. SSL-сертификат может
быть подписан одним или несколькими промежуточными УЦ.
Сертификат промежуточного УЦ или сертификат подписав-
шего его корневого УЦ должен присутствовать в пути, ука-
занном в директиве ssl_client_certificate, иначе NGINX сочтет
его недействительным.

  В случае ошибки при проверке клиентского сертификата
NGINX возвращает нестандартный код ошибки 495. Мы опре-
делили для этого кода страницу ошибки error_page, которая
переадресует запрос в именованное местоположение, где он
будет обработан отдельным проксируемым сервером. Мы так-
же включили проверку переменной $ssl_client_verify внутри
корневого местоположения, чтобы для некорректного серти-
фиката возвращался такой же код.

  Если сертификат некорректен, то NGINX возвращает нестан-
дартный код ошибки 496, который мы также перехватываем
с помощью директивы error_page, указывающей на именован-
ное местоположение, где запрос передается отдельному обра-
ботчику ошибок.

Только в том случае, когда клиент предъявил корректный SSL-
сертификат, NGINX передаст запрос проксируемому серверу. При
таком подходе мы можем быть уверены, что проксируемый сервер
получает запросы только от аутентифицированных пользователей.
Это важная часть механизма защиты, реализуемого обратным прок-
си-сервером.

 Начиная с версии 1.3.7, NGINX поддерживает протокол

OCSP для проверки сертификатов клиентов. О том, как

активировать эту функцию, см. описание директив ssl_

stapling* и ssl_trusted_certificate в приложении A.

Если приложению все-таки нужна какая-то информация из кли-
ентского сертификата, например чтобы авторизовать клиента, то
NGINX может передать ее в заголовке:

location / {

 proxy_set_header X-HTTP-AUTH $ssl_client_s_dn;

 proxy_pass http://secured;

}

103

Теперь приложение, работающее на защищенном проксируемом
сервере, может проверить значение в заголовке X-HTTP-AUTH и предо-
ставить клиенту доступ к тем или иным возможностям. Переменная
$ssl_client_s_dn содержит отличительное имя (DN) субъекта, храня-
щееся в клиентском сертификате. Зная его, приложение может спра-
виться с базой данных или поискать пользователя в LDAP-каталоге.

Блокирование трафика на основе

IP-адреса отправителя

 Поскольку обратный прокси-сервер является оконечной точкой
для клиентских соединений, то можно ограничить количество кли-
ентов, исходя из их IP-адресов. Это полезно в случае обнаружения
попытки недобросовестного использования, когда очень много не-
допустимых обращений исходят от клиентов с IP-адресами из неко-
торого ограниченного множества. Как и в языке Perl, решить задачу
можно несколькими способами. Ниже мы обсудим применение для
этой цели модуля GeoIP.

Двоичный файл nginx должен быть откомпилирован с поддержкой
модуля GeoIP (параметр --with-http_geoip_module), а в системе должна
быть установлена библиотека MaxMind GeoIP. Путь к откомпилиро-
ванной базе данных указывается в директиве geoip_country в контек-
сте http. Это самый эффективный способ запретить или разрешить
IP-адреса по коду страны:

geoip_country /usr/local/etc/geo/GeoIP.dat;

Если IP-адрес клиента присутствует в базе данных, то в пере-
менной $geoip_country_code будет находиться двухбуквенный код со-
ответствующей страны по классификатору ISO.

Мы воспользуемся данными, полученными от модуля GeoIP, при-
менив также модуль с похожим названием geo. Модуль geo предо-
ставляет очень простой интерфейс для установки переменных на
основе IP-адреса клиента. Он создает именованный контекст, в кото-
ром первый параметр – проверяемый IP-адрес, а второй – значение,
присваиваемое переменной при обнаружении соответствия. Сочета-
ние обоих модулей позволит нам блокировать IP-адреса из некото-
рых стран, разрешив в то же время доступ с некоторых IP-адресов.

Допустим, мы представляем услугу швейцарским банкам. Мы хо-
тим, чтобы Google мог индексировать открытые разделы сайта, но

Безопасность за счет разделения

104 Обратное проксирование, дополнительные вопросы

при этом разрешить доступ к ним только с IP-адресов в Швейцарии.
Кроме того, мы хотим, чтобы локальная сторожевая служба могла
получить доступ к сайту и удостовериться в его работоспособности.
Мы определяем переменную $exclusions, по умолчанию равную 0.
Если какое-нибудь из сформулированных выше условий выполня-
ется, то переменная получит значение 1, означающее, что доступ к
сайту разрешен:

http {

 # путь к базе данных GeoIP

 geoip_country /usr/local/etc/geo/GeoIP.dat;

 # определяем переменную $exclusions и перечисляем все IP-адреса,

 # которым разрешен доступ, задавая для них значение 1

 geo $exclusions {

 default 0;

 127.0.0.1 1;

 216.239.32.0/19 1;

 64.233.160.0/19 1;

 66.249.80.0/20 1;

 72.14.192.0/18 1;

 209.85.128.0/17 1;

 66.102.0.0/20 1;

 74.125.0.0/16 1;

 64.18.0.0/20 1;

 207.126.144.0/20 1;

 173.194.0.0/16 1;

 }

 server {

 # страна, которой доступ разрешен, - Швейцария, с кодом «CH»

 if ($geoip_country_code = «CH») {

 set $exclusions 1;

 }

 location / {

 # если IP-адрес не принадлежит Швейцарии и не находится в нашем

 # списке, то переменная $exclusions равна “0”, и мы возвращаем

 # HTTP-код “Forbidden”

 if ($exclusions = “0”) {

 return 403;

 }

 # всем остальным клиентам разрешен доступ к проксируемому серверу

 proxy_pass http://upstream;

 }

 }

}

105

Это лишь один из способов решить задачу блокирования доступа
к сайту на основе IP-адреса клиента. Можно также сохранять IP-
адрес в каком-нибудь хранилище ключей и значений, увеличивать
счетчик при каждом запросе и блокировать доступ, если количество
запросов в течение определенного периода превысило пороговое
значение.

Обеспечение масштабируемости

за счет изоляции компонентов

приложения

 Масштабирование приложение бывает двух видов: горизонталь-
ное и вертикальное. Под вертикальным масштабированием понима-
ется наращивание ресурсов компьютера с целью обслужить больше
клиентских запросов. Горизонтальное масштабирование – это рас-
ширение пула доступных машин, обслуживающих клиентов, чтобы
ни одна из них не была перегружена запросами. Этот подход за-
частую является более рентабельным вне зависимости от того, что
представляют собой эти машины – виртуализированные экземпля-
ры, работающие в облаке, или физические компьютеры, размещен-
ные в центре обработки данных. Именно в такой инфраструктуре
NGINX находит свое место в качестве обратного прокси-сервера.

Благодаря чрезвычайно низкому ресурсопотреблению NGINX
идеален в роли брокера клиентских приложений. NGINX обраба-
тывает соединения с клиентами и при этом способен одновременно
обслуживать несколько запросов. В зависимости от конфигурации
NGINX либо возвращает файл из своего локального кэша, либо пе-
редает запрос проксируемому серверу для дальнейшей обработки.
В роли проксируемого может выступать любой сервер, поддерживаю-
щий протокол HTTP. При таком подходе удается обслужить больше
запросов, чем если бы проксируемый сервер отвечал напрямую:

upstream app {

 server 10.0.40.10;

 server 10.0.40.20;

 server 10.0.40.30;

}

Со временем начальный набор проксируемых серверов можно
расширять. Допустим, что количество обращений к сайту настоль-

Обеспечение масштабируемости за счет изоляции

106 Обратное проксирование, дополнительные вопросы

ко увеличилось, что текущий набор перестал с ними справляться.
Если использовать NGINX в качестве обратного прокси-сервера, то
с этой бедой легко справиться, добавив дополнительные проксируе-
мые серверы.

Добавление проксируемых серверов производится следующим
образом:

upstream app {

 server 10.0.40.10;

 server 10.0.40.20;

 server 10.0.40.30;

 server 10.0.40.40;

 server 10.0.40.50;

 server 10.0.40.60;

}

Быть может, настало время переписать приложение или перенес-
ти его на сервер с другим прикладным стеком. Прежде чем перено-
сить все приложение, мы можем поместить один сервер в активный
пул для тестирования в условиях реальной нагрузки с реальными
клиентами. Этому серверу можно передавать меньше запросов, что-
бы смягчить негативную реакцию пользователей в случае возникно-
вения ошибок.

107

Это делается с помощью такой конфигурации:

upstream app {

 server 10.0.40.10 weight 10;

 server 10.0.40.20 weight 10;

 server 10.0.40.30 weight 10;

 server 10.0.40.100 weight 2;

}

С другой стороны, пусть требуется вывести проксируемый сервер
из эксплуатации для проведения планового обслуживания. Если по-
метить его признаком down в конфигурационном файле, то NGINX
перестанет передавать ему запросы, и мы сможем заняться обслу-
живанием:

Обеспечение масштабируемости за счет изоляции

108 Обратное проксирование, дополнительные вопросы

Ниже показано, как это делается:

upstream app {
 server 10.0.40.10;
 server 10.0.40.20;
 server 10.0.40.30 down;
}

Система должна быстро реагировать в случае, когда сервер пере-
стает отвечать на запросы. Для некоторых приложений в директивах
тайм-аута можно задать очень малое время:

location / {
 proxy_connect_timeout 5;
 proxy_read_timeout 10;
 proxy_send_timeout 10;
}

Но будьте осторожны: если ни один проксируемый сервер не
сможет ответить в отведенное время, то NGINX вернет ошибку 504
Gateway Timeout Error .

Оптимизация производительности

обратного прокси-сервера

 NGINX можно по-разному настраивать, чтобы выжать макси-
мум возможного из приложения, для которого оно служит обрат-
ным прокси-сервером. За счет буферизации, кэширования и сжатия
NGINX может существенно ускорить время реакции приложения на
действия клиента.

Буферизация

 Смысл буферизации изображен на следующем рисунке:

109

С точки зрения производительности проксирования, самым важ-
ным фактором является буферизация. По умолчанию NGINX пыта-
ется прочитать от проксируемого сервера столько данных, сколько
возможно, и так быстро, как возможно, прежде чем вернуть ответ
клиенту. Он локально буферизует ответ, чтобы можно было отпра-
вить его клиенту одним разом. Если часть запроса от клиента или
ответа от проксируемого сервера записывается на диск, то произ-
водительность может снизиться. Это компромисс между оператив-
ной и дисковой памятью. Поэтому, настраивая NGINX для работы
в качестве обратного прокси-сервера, так важно уделять внимание
описанным ниже директивам.

Директивы модуля proxy для управления буферизацией

Директива Описание

proxy_buffer_size Размер буфера, используемого для первой части

ответа от проксируемого сервера, в которой находятся

заголовки

proxy_buffering Включает или выключает буферизацию проксиро-

ванного содержимого. Если буферизация выключена,

то ответы отправляются клиенту синхронно сразу

после получения при условии, что параметр proxy_max_

temp_file_size равен 0. Если этот параметр равен 0

и proxy_buffering равно on, то буферизация включена,

но диск при этом не используется

proxy_buffers Количество и размер буферов для хранения ответов

от проксируемых серверов

proxy_busy_buffers_size Суммарный размер буферов, которые могут быть

заняты для отправки ответа клиенту, пока ответ ещё

не прочитан целиком. Обычно устанавливается в два

раза больше, чем размер, указанный в директиве

proxy_buffers

Помимо рассмотренных выше директив, на буферизацию может
оказать влияние проксируемый сервер – путем установки заголовка
X-Accel-Buffering. По умолчанию значение в этом заголовке равно yes,
то есть ответы буферизуются. Задание значения no полезно для при-
ложений, основанных на модели Comet, и в случае потоковой переда-
чи данных по протоколу HTTP, когда буферизовать ответ не нужно.

Измеряя средний размер запросов и ответов, проходящих через
обратный прокси-сервер, можно оптимально настроить размеры бу-
феров. Каждая из директив буферизации относится к одному со-
единению. Принимая во внимание также накладные расходы ОС

Оптимизация производительности обратного прокси-сервера

110 Обратное проксирование, дополнительные вопросы

на установление соединения, мы можем вычислить, сколько одно-
временных соединений с клиентами можно поддержать при имею-
щемся объеме оперативной памяти.

Подразумеваемое по умолчанию значение директивы proxy_buffers
(8 4k или 8 8k в зависимости от операционной системы) рассчитано на
большое число одновременных соединений. Посмотрим, на сколько
именно. На типичной машине, где запущен NGINX, объем памяти
составляет 1 ГБ, и большая ее часть может быть отдана NGINX.
Сколько-то памяти необходимо отвести под кэш файловой системы
и другие нужды, поэтому примем осторожную оценку: 768 МБ.

Восемь буферов по 4 КБ займут 32 768 байтов (8  4  1024) на
каждое активное соединение.

Мы отвели под NGINX 768 МБ, то есть 805 306 368 байтов
(768  1024  1024).

Поделив одно на другое, получаем 805 306 368 / 32 768 =
= 24 576 активных соединений.

Таким образом, в конфигурации по умолчанию NGINX сможет
одновременно обслужить чуть меньше 25 000 соединений в пред-
положении, что буферы постоянно заполнены. Нужно учитывать и
другие факторы, например кэширование содержимого и простаива-
ние соединений, но грубую оценку мы получили.

Если теперь принять показанные ниже средние размеры запроса и
ответа, то окажется, что восьми буферов по 4 КБ недостаточно для
обработки типичного запроса. Мы хотим, чтобы NGINX буферизо-
вал столько полученных от проксируемого сервера данных, сколько
возможно; конечная цель – передать пользователю сразу весь ответ.

  Средний размер запроса: 800 байтов.
  Средний размер ответа: 900 КБ.

 В примерах настройки, приведенных ниже, используется

больше памяти ценой уменьшения количества одновре-

менных активных соединений. Это оптимизации, которые

не следует рассматривать как рекомендации в общем слу-

чае. NGINX уже оптимизирован для обслуживания боль-

шого числа медленных клиентов и нескольких быстрых

проксируемых серверов. В настоящее время наблюдает-

ся смещение в сторону мобильных пользователей, так что

клиентское соединение оказывается существенно медлен-

нее, чем при широкополосном доступе. Поэтому, прежде

чем приступать к оптимизации, нужно хорошо изучить, как

именно пользователи подключаются.

111

Для этого нужно увеличить размеры буферов, чтобы ответ умес-
тился в них целиком:

http {

 proxy_buffers 30 32k;

}

Это, конечно, означает, что количество одновременно обслуживае-
мых пользователей резко уменьшится.

Тридцать буферов по 32 КБ займут 983 040 байтов (30  32 
 1024) на каждое активное соединение.

Мы отвели под NGINX 768 МБ, то есть 805 306 368 байтов
(768  1024  1024).

Поделив одно на другое, получаем 805 306 368 / 983 040 =
= 819,2 активного соединения.

Совсем не много. Уменьшим количество буферов, так чтобы
NGINX начал передавать данные клиенту, продолжая читать ответ
в оставшиеся буферы.

http {

 proxy_buffers 4 32k;

 proxy_busy_buffers_size 64k;

}

Четыре буфера по 32 КБ займут 131 072 байта (4  32  1024) на
каждое активное соединение.

Мы отвели под NGINX 768 МБ, то есть 805 306 368 байтов
(768  1024  1024).

Поделив одно на другое, получаем 805 306 368 / 131 072 =
= 6144 активных соединения.

Что касается самой машины, где работает обратный прокси-
сервер, то мы можем масштабировать ее либо вертикально, доба-
вив память (при объеме ОЗУ 6 ГБ мы получим приблизительно
37 000 соединений), либо горизонтально, поставив за балансиров-
щиком нагрузки столько дополнительных машин с ОЗУ объемом
1 ГБ, сколько необходимо для обслуживания ожидаемого количест-
ва одновременных пользователей.

Кэширование

 Идея кэширования представлена на рисунке ниже.

Оптимизация производительности обратного прокси-сервера

112 Обратное проксирование, дополнительные вопросы

NGINX может кэшировать ответы от проксируемого сервера, так
что при повторном поступлении того же запроса не нужно будет
снова обращаться к серверу. На рисунке показана следующая по-
следовательность операций.

  1a: Клиент отправляет запрос.
  1b: Соответствующий запросу ключ не найден в кэше, поэтому

NGINX обращается к проксируемому серверу.
  1c: Проксируемый сервер отвечает, и NGINX помещает ответ

в кэш.
  1d: Ответ отправляется клиенту.
  2a: Другой клиент отправляет запрос с таким же ключом кэ-

ширования.
  2b: NGINX обслуживает запрос непосредственно из кэша, не

обращаясь за ответом к проксируемому серверу.

Директивы модуля proxy для управления кэшированием

Директива Описание

proxy_cache Определяет размер зоны разделяемой памяти,

отведенной под кэш

proxy_cache_bypass Одна или несколько строковых переменных.

Если хотя бы одна из них непуста и не содержит нуль,

то ответ будет запрошен у проксируемого сервера,

а не взят из кэша

proxy_cache_key Строка, которая используется как ключ для поиска

значения в кэше. Можно использовать переменные,

но следует внимательно следить за тем, чтобы не

кэшировалось несколько копий одного и того же

содержимого

113

Директива Описание

proxy_cache_lock Если эта директива принимает значение on, то

предотв ращается отправка нескольких запросов прок-

 сируемому серверу (или серверам) в случае от сут -

ствия в кэше. NGINX дождется результата первого

запроса, поместит его в кэш и только потом присту-

пит к обслуживанию остальных. Эта блокировка

действует в пределах одного рабочего процесса

proxy_cache_lock_timeout Сколько времени запрос может ждать появления

записи в кэше или освобождения блокировки

proxy_cache_lock

proxy_cache_min_uses Сколько запросов с данным ключом должно

поступить, прежде чем ответ будет помещен в кэш

proxy_cache_path Каталог, в котором хранятся кэшированные ответы,

и зона разделяемой памяти (keys_zone=name:size) для

хранения активных ключей и метаданных ответа.

Необязательные параметры:

 levels: список разделенных двоеточиями длин

имен подкаталогов на каждом уровне (1 или 2);

допускается не более трех уровней вложенности;

 inactive: максимальное время нахождения неак-

тивного запроса в кэше, по прошествии которого

он вытесняется;

 max_size: максимальный размер кэша; по его до-

стижении процесс-диспетчер удаляет элементы,

к которым дольше всего не было обращений;

 loader_files: максимальное количество кэширо-

ванных файлов, метаданные которых загружаются

в кэш на одной итерации процесса-загрузчика;

 loader_sleep: число миллисекунд между итерация-

ми процесса-загрузчика кэша;

 loader_threshold: максимальное время, отведен-

ное на одну итерацию процесса-загрузчика кэша

proxy_cache_use_stale В каких случаях допустимо использовать

устаревшие кэшированные данные, если при

доступе к проксируемому серверу произошла

ошибка. Параметр updating разрешает использовать

кэшированный ответ, если как раз в данный момент

загружаются более свежие данные

proxy_cache_valid Сколько времени считать действительным

кэшированный ответ с кодом 200, 301 или 302. Если

перед параметром time указан необязательный код

ответа, то заданное время относится только к ответу

с таким кодом. Специальный параметр any означает,

что в течение заданного времени следует кэширо-

вать ответ с любым кодом

Оптимизация производительности обратного прокси-сервера

114 Обратное проксирование, дополнительные вопросы

Показанная ниже конфигурация предназначена для кэширования
всех ответов в течение шести часов при общем размере кэша 1 ГБ.
Актуальные элементы, то есть такие, к которым были обращения
на протяжении шестичасового периода тайм-аута, остаются дей-
ствительными сутки. По истечении этого времени у проксируемого
сервера будет запрошен новый ответ. Если проксируемый сервер не
отвечает из-за ошибки, произошел тайм-аут, получен недопустимый
заголовок или кэшированный элемент обновляется, то разрешается
использовать устаревший ответ из кэша. Размер области разделяе-
мой памяти CACHE задан равным 10 МБ, ссылка на него произво-
дится из местоположения, для которого поддерживается кэширова-
ние.

http {

 # размещается в той же файловой системе, что и proxy_cache_path

 proxy_temp_path /var/spool/nginx;

 # из соображений безопасности этим каталогом владеет тот же

 # пользователь, который определен в директиве user (от имени

 # которого запущены рабочие процессы)

 proxy_cache_path /var/spool/nginx keys_zone=CACHE:10m levels=1:2

 inactive=6h max_size=1g;

 server {

 location / {

 # используем include, чтобы загрузить файл с общими параметрами

 include proxy.conf;

 # ссылаемся на определенную выше область разделяемой памяти

 proxy_cache CACHE;

 proxy_cache_valid any 1d;

 proxy_cache_use_stale error timeout invalid_header updating

 http_500 http_502 http_503 http_504;

 proxy_pass http://upstream;

 }

 }

}

При такой конфигурации NGINX создаст ряд подкаталогов в ка-
талоге /var/spool/nginx, которые распределяют кэшированные данные
сначала по последнему символу MD5-свертки URI-адреса, а затем
по следующим двум, считая от конца. Например, ответ на запрос
к URI “/ this-is-a-typical-url” будет храниться в файле:

/var/spool/nginx/3/f1/614c16873c96c9db2090134be91cbf13

115

Помимо директивы proxy_cache_valid, кэшированием ответов
в NGINX управляют еще некоторые заголовки. Значение заголовка
имеет больший приоритет, чем директива.

  Проксируемый сервер может установить заголовок X-Accel-
Expires, управляющий поведением кэширования:

 • целочисленное значение в нем указывает, сколько секунд
хранить ответ в кэше;

 • если значение равно 0, то кэширование этого ответа запре-
щено;

 • значение, начинающееся символом @, интерпретируется как
время в секундах с начала «эпохи». Ответ хранится до на-
ступления этого момента времени.

  У заголовков Expires и Cache-Control одинаковый приоритет.
  Если значение в заголовке Expires определяет момент в буду-

щем, то ответ кэшируется до наступления этого момента.
  Заголовок Cache-Control может принимать следующие значения:

 • no-cache

 • no-store

 • private

 • max-age

  Ответ кэшируется, только если задано значение max-age, кото-
рое должно быть положительным числом, то есть max-age=x, где
x > 0.

  Если присутствует заголовок Set-Cookie, то ответ не кэширует-
ся. Это правило можно отменить, воспользовавшись директи-
вой proxy_ignore_headers:
proxy_ignore_headers Set-Cookie;

  Но при этом не забудьте сделать значение куков частью ключа
proxy_cache_key:
proxy_cache_key «$host$request_uri $cookie_user»;

Однако, поступая так, следует позаботиться о том, чтобы для
одного и того URI-адреса не кэшировалось несколько ответов.
Это может случиться, если для открытого содержимого случайно
установлен заголовок Set-Cookie, который становится частью ключа
доступа к данным. Один из способов обеспечить эффективное ис-
пользование кэша – назначить открытому содержимому отдельное
местоположение. Например, изображения можно хранить в месте
положении /img, для которого определен другой ключ proxy_cache_
key:

Оптимизация производительности обратного прокси-сервера

116 Обратное проксирование, дополнительные вопросы

server {
 proxy_ignore_headers Set-Cookie;

 location /img {
 proxy_cache_key «$host$request_uri»;
 proxy_pass http://upstream;
 }

 location / {
 proxy_cache_key «$host$request_uri $cookie_user»;
 proxy_pass http://upstream;
 }
}

Сохранение

С концепцией кэша тесно связано понятие сохранения. В случае
когда сервер возвращает большие статические файлы, которые ни-
когда не изменяются, то есть нет никаких причин вытеснять запи-
си из кэша, то NGINX предлагает механизм «сохранения» (store),
чтобы ускорить обслуживание таких запросов. NGINX сохраняет
локальные копии заданных вами файлов. Эти файлы остаются на
диске и более не запрашиваются у проксируемого сервера. Если
такой файл изменится на проксируемом сервере, то его сохранен-
ную копию должен будет удалить какой-то внешний процесс, иначе
NGINX продолжит возвращать ее. Поэтому для небольших статиче-
ских файлов использование кэша предпочтительнее.

В следующем примере демонстрируются директивы, применяе-
мые для сохранения копий файлов:

http {
 proxy_temp_path /var/www/tmp;

 server {
 root /var/www/data;

 location /img {
 error_page 404 = @store;
 }

 location @store {
 internal;
 proxy_store on;
 proxy_store_access group:r all:r;
 proxy_pass http://upstream;
 }
 }
}

117

В этой конфигурации определена секция server, в которой корень
root размещен в той же файловой системе, что и путь proxy_temp_path.
Местоположение /img наследует root, обслуживая файлы, располо-
женные в подкаталоге /var/www/data. Если файл не найден (код ошиб-
ки 404), то производится переход к именованному местоположению
@store для запроса файла у проксируемого сервера. Директива proxy_
store означает, что мы хотим сохранять файлы в унаследованном
от root каталоге с правами 0644 (для владельца подразумеваются
права user:rw, а для группы (group) и всех прочих (all) задаются в ди-
рективе proxy_store_access). Это все, что требуется от NGINX для
сохранения локальных копий статических файлов, полученных от
проксируемого сервера.

Сжатие

 Идея сжатия представлена на рисунке ниже.

За счет снижения объема трафика можно уменьшить время пере-
дачи ответа. NGINX умеет сжимать ответ, полученный от проксируе-
мого сервера, до передачи его клиенту. Модуль gzip , по умолчанию
включенный, нередко используется обратным прокси-сервером для
сжатия содержимого, когда это имеет смысл. Для некоторых типов
файлов сжатие не дает ощутимого эффекта. С другой стороны, неко-
торые клиенты плохо реагируют на сжатое содержимое. То и другое
можно учесть при настройке:

http {

 gzip on;

 gzip_http_version 1.0;

 gzip_comp_level 2;

 gzip_types text/plain text/css application/x-javascript text/xml

 application/xml application/xml+rss text/javascript

 application/javascript application/json;

 gzip_disable msie6;

}

Оптимизация производительности обратного прокси-сервера

118 Обратное проксирование, дополнительные вопросы

Здесь мы говорим, что хотим сжимать содержимое с указанными
типами MIME алгоритмом gzip с уровнем сжатия 2, если запрос
поступил по протоколу HTTP версии не ниже 1.0, но только в том
случае, когда пользовательский агент – не Internet Explorer старой
версии. Мы поместили этот фрагмент конфигурации в контекст http,
чтобы он распространялся на все определяемые серверы.

В таблице ниже перечислены директивы, относящиеся к модулю
gzip.

Директивы модуля gzip

Директива Описание

gzip Разрешает или запрещает сжатие ответов

gzip_buffers Определяет количество и размеры буферов для сжатия ответа

gzip_comp_level Уровень сжатия gzip (1–9)

gzip_disable Регулярное выражение, описывающее те пользовательские

агенты, которые не должны получать сжатое содержимое.

Специальное значение msie6 является сокращением выраже-

ния MSIE [4-6]\., которое исключает MSIE 6.0 … SV1

gzip_min_length Минимальная длина ответа (определяемая заголовком

Content-Length), до которой вопрос о сжатии вообще не

рассматривается

gzip_proxied Разрешает или запрещает сжатие ответа, уже прошедшего

через прокси-сервер. Параметр может принимать одно или

несколько значений из следующего списка:

 off: запретить сжатие;

 expired: разрешить сжатие, если ответ не должен кэширо-

ваться в соответствии с заголовком Expires;

 no-cache: разрешить сжатие, если заголовок Cache-Control

содержит значение no-cache;

 no-store: разрешить сжатие, если заголовок Cache-Control

содержит значение no-store;

 private: разрешить сжатие, если заголовок Cache-Control

содержит значение private;

 no-last-modified: разрешить сжатие, если ответ не содер-

жит заголовка Last-Modified;

 no-etag: разрешить сжатие, если ответ не содержит заго-

ловка ETag;

 auth: разрешить сжатие, если ответ содержит заголовок

Authorization;

 any: разрешить сжатие для любого ответа, если запрос со-

держит заголовок Via

gzip_types Типы MIME (в дополнение к text/html), которые следует

сжимать

gzip_vary Разрешает или запрещает включение в ответ заголовка Vary:

Accept-Encoding, если директива gzip активна

119

Если при включенном сжатии большие файлы обрезаются, то
причина, вероятно, в директиве gzip_buffers. По умолчанию она
принимает значение 32 4k или 16 8k (в зависимости от платформы),
то есть суммарный объем буферов равен 128 КБ. Это означает, что
NGINX не может сжать файл длиннее 128 КБ. Если на страницу
загружается большая несжатая библиотека JavaScript, то вы може-
те столкнуться с этим пределом. В таком случае просто увеличьте
количество буферов, чтобы их общий размер был достаточен для
размещения всего файла.

http {

 gzip on;

 gzip_min_length 1024;

 gzip_buffers 40 4k;

 gzip_comp_level 5;

 gzip_types text/plain application/x-javascript application/json;

}

В примере выше сжимать можно файлы размером до 40  4 
 1024 = 163 840 байтов (160 КБ). Кроме того, мы включили ди-
рективу gzip_min_length, которая разрешает сжимать только файлы,
размер которых больше 1 КБ. Уровень сжатия (gzip_comp_level) 4
или 5 обычно дает хороший компромисс между скоростью сжатия
и размером результирующего файла. Проведение измерений на соб-
ственном оборудовании – лучший способ определить оптимальное
значение.

Помимо сжатия ответов на лету, NGINX умеет доставлять пред-
варительно сжатые файлы – благодаря модулю gzip_static. По
умолчанию этот модуль не компилируется, но его можно включить
с помощью параметра --with-http_gzip_static_module скрипта configure.
У этого модуля имеется единственная собственная директива gzip_
static, но он также понимает следующие директивы модуля gzip,
определяющие, когда проверять предварительно сжатые файлы:

  gzip_http_version

  gzip_proxied

  gzip_disable

  gzip_vary

В следующем примере конфигурации мы разрешаем доставку
предварительно сжатых файлов, если запрос содержит заголовок
Authorization и в ответе присутствует заголовок Expires или Cache-
Control, запрещающий кэширование:

Оптимизация производительности обратного прокси-сервера

120 Обратное проксирование, дополнительные вопросы

http {

 gzip_static on;

 gzip_proxied expired no-cache no-store private auth;

}

Резюме

В этой главе мы видели, как эффективно использовать NGINX
в качестве обратного прокси-сервера. Он может решать три задачи,
вместе или по отдельности: повышение безопасности, масштабируе-
мости и (или) производительности. Безопасность повышается за
счет отделения приложения от конечного пользователя. Для обеспе-
чения масштабируемости NGINX можно использовать в сочетании
с несколькими проксируемыми серверами. А производительность
приложения непосредственно связана с тем, как быстро оно отве-
чает на запросы пользователей. Мы рассмотрели различные способы
повысить быстроту реакции приложения. Чем меньше время ответа,
тем лучше пользователям.

В следующей главе мы займемся вопросом об использовании
NGINX в качестве HTTP-сервера. До сих пор мы говорили только
о работе NGINX в роли обратного прокси-сервера, но он умеет го-
раздо больше.

Глава 6. NGINX как HTTP-сервер

HTTP-сервер – это программа, основная задача которой состоит в до-
ставке веб-страниц клиентам в ответ на их запросы. Происхождение
веб-страницы может быть каким угодно – от простого HTML-файла
на диске до многокомпонентного каркаса, генерирующего зависящее
от пользователя содержимое, которое динамически обновляется с по-
мощью AJAX или WebSocket. NGINX – модульная программа, спо-
собная обслуживать HTTP-запросы любым необходимым способом.

В этой главе мы рассмотрим различные модули, которые в со-
вокупности превращают NGINX в масштабируемый HTTP-сервер.
Обсуждаются следующие вопросы.

  Архитектура NGINX.
  Базовый модуль HTTP.
  Установка предельных значений для предотвращения недобро-

совестного использования.
  Ограничение доступа.
  Потоковая передача мультимедийных файлов.
  Предопределенные переменные.
  Использование NGINX совместно с PHP-FPM.
  Интеграция NGINX и uWSGI.

Архитектура NGINX

 NGINX состоит из одного главного и нескольких рабочих процес-
сов. Все они однопоточные и способны одновременно обслуживать
тысячи соединений. Большая часть работы производится рабочим
процессом, поскольку именно он обрабатывает запросы клиентов.
Чтобы как можно быстрее реагировать на запросы, NGINX исполь-
зует встроенный в операционную систему механизм событий.

Главный процесс NGINX отвечает за чтение конфигурационного
файла, работу с сокетами, запуск рабочих процессов, открытие фай-
лов журналов и компиляции встроенных скриптов на языке Perl.

122 NGINX как HTTP-сервер

Он же реагирует на административные команды, передаваемые с по-
мощью сигналов.

Рабочий процесс NGINX исполняет цикл событий, в котором
обрабатываются входящие соединения. Все модули NGINX испол-
няются в рабочем процессе, то есть там производятся обработка
запросов, фильтрация, обработка соединений с прокси-сервером и
многое другое. Такая модель позволяет операционной системе от-
делять рабочие процессы друг от друга и оптимально планировать
их выполнение на различных процессорных ядрах. Если какие-то
операции, например дискового ввода-вывода, блокируют один ра-
бочий процесс, то нагрузка перемещается на рабочие процессы, ис-
полняемые на других ядрах.

Главный процесс NGINX запускает еще несколько вспомогатель-
ных процессов для выполнения специализированных задач. Среди
них загрузчик кэша и диспетчер кэша . Загрузчик кэша отвечает за
подготовку метаданных, необходимых рабочим процессам для ис-
пользования кэша, а диспетчер кэша – за проверку записей кэша и
удаление тех, для которых истек срок хранения.

NGINX имеет модульную структуру. Главный процесс предостав-
ляет основу для работы всех модулей. Протоколы и обработчики
реализованы в виде отдельных модулей. Из отдельных модулей
выстраивается конвейер обработки запросов. Поступивший запрос
передается по цепочке фильтров, которые его обрабатывают. Один
из таких фильтров предназначен для обработки подзапросов , этот
механизм – одна из самых интересных возможностей NGINX.

С помощью подзапросов NGINX может вернуть ответ на запрос,
URI которого отличается от указанного клиентом. Подзапросы мо-
гут быть вложенными и вызывать другие подзапросы. Фильтры по-
зволяют собрать ответы на несколько подзапросов и составить от
них ответ, отправляемый клиенту. По ходу дела в игру вступают раз-
личные модули. Подробное описание внутренней структуры NGINX
см. на странице http://www.aosabook.org/en/nginx.html.

Далее в этой главе мы рассмотрим модуль http и несколько вспо-
могательных модулей.

Базовый модуль HTTP

Модуль http является центральным в NGINX, он отвечает за взаи-
модействие с клиентами по протоколу HTTP. В главе 2 «Руководство
по настройке» мы уже обсуждали следующие аспекты этого модуля:

123

  клиентские директивы;
  директивы файлового ввода-вывода;
  директивы хэширования;
  директивы работы с сокетами;
  директиву listen ;
  сопоставление запроса с директивами server_name и location.

В этой главе мы рассмотрим оставшиеся директивы, тоже разбив
их на категории.

Директива server

 Директива server открывает новый контекст. Мы уже видели при-
меры ее использования на страницах этой книги. Но пока не удели-
ли достаточного внимания понятию сервера по умолчанию .

В NGINX сервером по умолчанию называется первый из мно-
жества серверов, прослушивающих один и тот же IP-адрес и порт,
указанные в директиве listen. Сервер по умолчанию можно также
назначить с помощью параметра default_server в директиве listen.

Сервер по умолчанию полезен, когда нужно определить набор
директив, общих для всех серверов, прослушивающих один и тот
же IP-адрес и порт:

server {

 listen 127.0.0.1:80;

 server_name default.example.com;

 server_name_in_redirect on;

}

server {

 listen 127.0.0.1:80;

 server_name www.example.com;

}

В этом примере для сервера www.example.com будет действовать та
же директива server_name_in_redirect с параметром on, что и для сер-
вера default.example.com. Это было бы так, даже если бы в описаниях
обоих серверов не было директивы listen, потому что тогда они бы
все равно прослушивали один и тот же IP-адрес и порт (а именно
*:80, подразумеваемые в директиве listen по умолчанию). Однако
наследование не гарантируется. Существует лишь несколько насле-
дуемых директив, и какие именно, меняется от версии к версии.

У сервера по умолчанию есть лучшее применение – обработка
запросов, поступающих на данный IP-адрес и порт, но не имеющих

Базовый модуль HTTP

124 NGINX как HTTP-сервер

заголовка Host. Если вы не хотите, чтобы запросы без заголовка Host
обрабатывал именно сервер по умолчанию, то можете задать в ка-
кой-нибудь секции server пустую директиву server_name. Тогда такие
запросы будут поступать именно этому серверу.

server {

 server_name "";

}

В таблице ниже перечислены директивы, употребляемые в секции
server.

Директивы HTTP-сервера

Директива Описание

port_in_redirect Определяет, нужно ли указывать данный порт

при переадресации средствами NGINX

server Создает новый конфигурационный контекст,

определяющий виртуальный хост. Директива listen

определяет один или несколько IP-адресов и портов,

а директива server_name – значения заголовка Host,

которым этот контекст соответствует

server_name Задает имя виртуального хоста

server_name_in_redirect Разрешает использовать первое из указанных

в ди рек тиве server_name значений при любой

переадре сации, произведенной NGINX в данном

контексте

server_tokens Разрешает или запрещает включение номера

версии NGINX в отправляемые сообщения об ошибках

и заго ловок Server (по умолчанию принимает

значение on)

Протоколирование

В NGINX реализована очень гибкая модель протоколирования.
На каждом уровне конфигурации может быть свой журнал доступа.
Кроме того, на одном уровне можно задавать несколько журналов
доступа с разными форматами с помощью директивы log_format . Эта
директива, которая должна находиться в секции http, позволяет точ-
но указать, что протоколировать.

Поскольку путь к файлу журнала может содержать переменные,
то есть возможность задавать конфигурацию динамически. В при-
мере ниже показано, как это может выглядеть на практике.

125

http {

 log_format vhost ‘$host $remote_addr - $remote_user [$time_local] ‘

 ‘”$request” $status $body_bytes_sent ‘

 ‘”$http_referer” “$http_user_agent”’;

 log_format downloads ‘$time_iso8601 $host $remote_addr ‘

 ‘”$request” $status $body_bytes_sent $request_ time’;

 open_log_file_cache max=1000 inactive=60s;

 access_log logs/access.log;

 server {

 server_name ~^(www\.)?(.+)$;

 access_log logs/combined.log vhost;

 access_log logs/$2/access.log;

 location /downloads {

 access_log logs/downloads.log downloads;

 }

 }

}

В таблице ниже описаны использованные в этом фрагменте ди-
рективы.

Директивы протоколирования из модуля HTTP

Директива Описание

access_log Определяет, куда и как записывать журналы доступа.

Первый параметр – путь к файлу журнала. Путь может

содержать переменные. Специальное значение off

отключает протоколирование. Необязательный второй

параметр определяет директиву log_format, описывающую

формат журнала. Если этот параметр не задан, использу-

ется предопределенный формат. Необязательный третий

параметр задает размер буфера в случае, если запись

в журнал буферизуется. При использовании буферизации

этот размер не должен превосходить длину операции

атомарной записи на диск для конкретной файловой

системы. Если третий параметр равен gzip, то журнал бу-

феризуется и на лету сжимается при условии, что двоич-

ный файл nginx собирался с библиотекой zlib. Последний

параметр flush определяет, сколько времени данные мо-

гут оставаться в буфере в памяти перед сбросом на диск

log_format Определяет состав и формат полей в журнале. Список

переменных, относящихся к журналу, приведен в следую-

щей таблице

Базовый модуль HTTP

126 NGINX как HTTP-сервер

Директива Описание

log_not_found Подавляет запись в журнал сообщений об ошибке 404

(по умолчанию принимает значение on)

log_subrequest Разрешает или запрещает протоколирование

подзапросов в журнале доступа (по умолчанию off)

open_log_file_cache Кэширует дескрипторы тех открытых файлов,

упоминаемых в директивах access_log, в путях к которым

встречаются переменные. Допустимы следующие пара-

метры:

 max: максимальное число дескрипторов в кэше;

 inactive: сколько времени ждать записи в этот журнал,

перед тем как закрыть его;

 min_uses: сколько раз этот дескриптор должен быть ис-

пользован в течение времени inactive, чтобы оставать-

ся открытым;

 valid: NGINX будет часто проверять, по-прежнему ли

этот дескриптор соответствует файлу с именем,

по которому был открыт;

 off: отключает кэширование

В примере ниже журнал сжимается согласно алгоритму gzip
с уровнем 4. Буфер имеет подразумеваемый по умолчанию размер
64 КБ и сбрасывается на диск не реже одного раза в минуту.

access_log /var/log/nginx/access.log.gz combined gzip=4 flush=1m;

Отметим, что при задании сжатия (gzip) параметр log_format также
должен быть задан.

Подразумеваемая по умолчанию директива log_format с именем
combined выглядит следующим образом:

log_format combined ‘$remote_addr - $remote_user [$time_local] ‘

 ‘»$request» $status $body_bytes_sent ‘

 ‘»$http_referer» «$http_user_agent»’;

Как видите, для большей наглядности директиву можно разбить
на строки. На самом форматировании это никак не сказывается.
В описании формата разрешается использовать любые перемен-
ные. В таблице ниже переменные, помеченные звездочкой, можно
использовать только в директиве log_format, а остальные – также
в других местах конфигурационного файла.

127

Переменные, используемые при описании формата журнала

Переменная Значение

$body_bytes_sent Количество отправленных клиенту байтов, исключая

заголовки

$bytes_sent Общее количество отправленных клиенту байтов

$connection Порядковый номер, уникально идентифицирующий

соединение

$connection_requests Количество запросов, поступивших по данному

соединению

$msec Время в секундах с точностью до миллисекунды

$pipe * Был ли запрос обработан конвейером (p) или нет (.)

$request_length * Длина запроса, включая HTTP-метод, URI-адрес, версию

протокола HTTP, заголовки и тело

$request_time Время обработки запроса с точностью до миллисекунды

с момента получения от клиента первого байта запроса

и до момента отправки клиенту последнего байта ответа

$status Код состояния в ответе

$time_iso8601 * Местное время в формате ISO8601

$time_local * Местное время в общепринятом формате журнала

(%d/%b/%Y:%H:%M:%S %z)

В этом разделе мы говорили исключительно о настройке журна-
ла доступа (access_log). Но NGINX может также протоколировать
ошибки. Директива error_log описана в главе 8 «Техника устранения
неполадок».

Поиск файлов

 Чтобы ответить на запрос, NGINX передает его обработчику со-
держимого, определяемому директивой location. Сначала апробиру-
ются безусловные обработчики: perl, proxy_pass, flv, mp4 и т. д. Если
ни один не подходит, то запрос передается одному из следующих
обработчиков в указанном порядке: random index, index, autoindex, gzip_
static, static. Запросы, в которых URI завершается знаком косой
черты, поступают одному из индексных обработчиков. Если модуль
gzip не активирован, то запрос обрабатывается модулем static. Как
эти модули находят файл или каталог в файловой системе, опре-
деляется сочетанием нескольких директив. Директиву root лучше
всего определять внутри сервера по умолчанию или, по крайней
мере, вне директив location, чтобы она относилась ко всему серверу:

Базовый модуль HTTP

128 NGINX как HTTP-сервер

server {

 root /home/customer/html;

 location / {

 index index.html index.htm;

 }

 location /downloads {

 autoindex on;

 }

}

В этом примере возвращаемые файлы следует искать в каталоге
/home/customer/html, который считается корневым. Если клиент ука-
зал только имя домена, NGINX попытается найти файл index.html.
Если такого файла нет, то NGINX будет искать файл index.htm. Если
пользователь укажет в браузере URI-адрес /downloads, то получит
список файлов в этом каталоге в формате HTML. Это упрощает
доступ к сайтам, на которых размещается интересное пользовате-
лям программное обеспечение. NGINX автоматически переписыва-
ет URI каталога, добавляя в конец знак косой черты, а затем вы-
полняет переадресацию по протоколу HTTP. NGINX дописывает
указанный URI в конец корневого каталога, чтобы получить путь
к запрошенному клиентом файлу. Если такого файла не существует,
клиенту возвращается сообщение об ошибке 404 Not Found. Если
вы не хотите, чтобы клиент получал такое сообщение, можете по-
пробовать доставить файл из другого места в файловой системе и
вернуться к универсальной странице, только если все остальные
возможности исчерпаны. Для этой цели можно использовать ди-
рективу try_files:

location / {

 try_files $uri $uri/ backups/$uri /generic-not-found.html;

}

Для пущей безопасности NGINX может проверить путь к файлу,
который собирается доставить, и, если где-то в нем встречается сим-
волическая ссылка, вернуть клиенту сообщение об ошибке:

server {

 root /home/customer/html;

 disable_symlinks if_not_owner from=$document_root;

}

129

Здесь NGINX вернет сообщение «Permission Denied», если в час-
ти пути после /home/customer/html найдена символическая ссылка и
файл, на который она указывает, не принадлежит пользователю с та-
ким же идентификатором.

Описанные только что директивы перечислены в следующей таб-
лице.

Директивы HTTP-сервера, относящиеся к путям

в файловой системе

Директива Описание

disable_symlinks Определяет, должна ли NGINX проверять наличие

символических ссылок в пути к файлу перед его отправкой

клиенту. Распознаются следующие параметры:

 off: отключает проверку символических ссылок (по умол-

чанию);

 on: если какая-нибудь часть пути является символической

ссылкой, доступ запрещается;

 if_not_owner: если какая-нибудь часть пути является сим-

волической ссылкой, которая ведет на файл, принадлежа-

щий другому пользователю, то доступ запрещается;

 from=part: часть пути до part включительно не проверяется

на символические ссылки, а остаток проверяется

в соответствии с режимом, заданным параметром on или

if_not_owner

root Задает путь к «корню документов». При поиске файлов

заданный в запросе URI добавляется в конец этого пути

try_files Проверяет существование файлов, указанных в параметрах.

Если ни один файл, кроме последнего, не найден, то

последний параметр считается «последней надеждой»,

поэтому позаботьтесь о том, чтобы такой файл или

именованное местоположение существовали, либо задайте

возвращаемый код состояния в формате =<status code>

Разрешение имен

 Если вместо IP-адресов проксируемых серверов в директивах
upstream или *_pass используются доменные имена, то NGINX по
умолчанию обращается к механизму разрешения имен, встроен-
ному в операционную систему, за IP-адресом, который необходим
для установления соединения с сервером. Это происходит только
один раз, при первом обращении к проксируемому серверу, и не
происходит вовсе, если в директиве *_pass встречается переменная.
Однако можно сконфигурировать для NGINX отдельный разреши-

Базовый модуль HTTP

130 NGINX как HTTP-сервер

тель. В этом случае можно переопределить время жизни (TTL),
возвращаемое DNS-сервером, и использовать в директивах *_pass
переменные.

server {

 resolver 192.168.100.2 valid=300s;

}

Директивы разрешения имен

Директива Описание

resolver Задает имена одного или нескольких серверов, используемых

для получения IP-адресов по доменным именам.

Необязательный параметр valid переопределяет время TTL,

заданное в записи о доменном имени

Чтобы заставить NGINX каждый раз получать IP-адрес заново,
поместите логическое имя в переменную. Разрешая эту переменную,
NGINX неявно производит поиск IP-адреса в DNS. Но чтобы это
заработало, необходимо включить директиву resolver:

server {
 resolver 192.168.100.2;

 location / {
 set $backend upstream.example.com;
 proxy_pass http://$backend;
 }
}

Разумеется, используя DNS для поиска проксируемого сервера,
мы предполагаем, что разрешитель всегда доступен. Если это не так,
произойдет ошибка шлюза. Чтобы сократить время ожидания от-
вета клиентом, следует присвоить небольшое значение параметру
resolver_timeout. Затем ошибку шлюза можно перехватить в дирек-
тиве error_ page, предназначенной специально для этой цели.

server {
 resolver 192.168.100.2;
 resolver_timeout 3s;
 error_page 504 /gateway-timeout.html;

 location / {
 proxy_pass http://upstream.example.com;
 }
}

131

Взаимодействие с клиентами

 NGINX может взаимодействовать с клиентами разными спосо-
бами. Настраиваются как атрибуты самого соединения (IP-адрес,
тайм-ауты, свойство keepalive и т. д.), так и заголовки для согласо-
вания содержимого. В следующей таблице описаны директивы для
конфигурирования различных заголовков и кодов ответа, которые
служат клиенту указанием либо запросить страницу, либо взять ее
из собственного кэша.

Директивы модуля HTTP для взаимодействия с клиентами

Директива Описание

default_type Определяет подразумеваемый по умолчанию MIME-тип

ответа. Используется в случае, когда MIME-тип файла

не удается сопоставить ни с одним из определенных

в директиве types

error_page Определяет URL-адрес страницы, которую нужно

вернуть, если код ответа попадает в диапазон ошибок.

Необязательный параметр, следующий за знаком =,

позволяет изменить код ответа. Если после знака

равенства не указан код ответа, то он берется из URI-

адреса, при этом соответствующая страница должна

возвращаться каким-то проксируемым сервером

etag Отключает автоматическую генерацию заголовка

ответа ETag для статических ресурсов (по умолчанию on)

if_modified_since Управляет порядком сравнения времени модификации

ответа со значением в заголовке запроса If-Modified-

Since.

 off: заголовок If-Modified-Since игнорируется.

 exact: точное соответствие (по умолчанию).

 before: время модификации ответа меньше или

равно значению в заголовке If-Modified-Since

ignore_invalid_headers Разрешает или запрещает игнорировать заголовки

с недопустимыми именами (по умолчанию on).

Допустимыми считаются имена, содержащие буквы

в кодировке ASCII, цифры, знак минус и, возможно,

знак подчеркивания (определяется директивой

underscores_in_headers)

merge_slashes Разрешает или запрещает удаление идущих подряд

знаков косой черты. Подразумеваемое по умолчанию

значение on означает, что NGINX будет заменять не-

сколько соседних знаков / одним

recursive_error_pages Разрешает производить несколько переадресаций

с помощью директивы error_page (по умолчанию off)

Базовый модуль HTTP

132 NGINX как HTTP-сервер

Директива Описание

types Определяет соответствие между MIME-типами и

расширениями имен файлов. В дистрибутив NGINX

входит файл conf/mime.types, содержащий большинство

соответствий. Как правило, достаточно просто вклю-

чить этот файл директивой include

underscores_in_headers Разрешает или запрещает использование символа

подчеркивания в заголовках запросов от клиентов.

Если оставлено подразумеваемое по умолчанию

значение off, то анализ таких заголовков производится

согласно режиму, заданному в директиве

ignore_invalid_headers

Директива error_page – одна из самых гибких в NGINX. С ее по-
мощью можно вернуть любую страницу в случае возникновения
ошибки. Эта страница может находиться на локальной машине,
а может динамически генерироваться сервером приложений или
даже размещаться совсем на другом сайте.

http {

 # обобщенная страница, возвращаемая при любой ошибке самого сервера

 error_page 500 501 502 503 504 share/examples/nginx/50x.html;

 server {

 server_name www.example.com;

 root /home/customer/html;

 # если файл не найден, то возвращается содержимое файла

 # /home/customer/html/404.html

 error_page 404 /404.html;

 location / {

 # ошибки сервера для этого виртуального хоста переадресуются

 # специальному обработчику в приложении

 error_page 500 501 502 503 504 = @error_handler;

 }

 location /microsite {

 # если не существует файл в области /microsite,

 # то клиенту демонстрируется страница с другого сервера

 error_page 404 http://microsite.example.com/404.html;

 }

 # именованное местоположение, содержащее специальный

 # обработчик ошибок

 location @error_handler {

 # мы задаем здесь тип по умолчанию, чтобы браузер

133

 # корректно отобразил страницу ошибки

 default_type text/html;

 proxy_pass http://127.0.0.1:8080;

 }

 }

}

Установка предельных

значений для предотвращения

недобросовестного использования

Мы создаем сайты, чтобы пользователи на них заходили. Мы хо-
тим, чтобы наши сайты всегда были открыты для добросовестного
доступа. Но это означает, что необходимо принимать меры для огра-
ничения доступа недобросовестным пользователям. Под «недобро-
совестностью» можно понимать разные вещи, например отправку
более одного запроса в секунду одним пользователем или чрезмерно
большое количество соединений, открытых с одного и того же IP-
адреса. Недобросовестность может также принимать форму DDOS-
атаки (распределенная атака типа «отказ от обслуживания»), когда
роботы с различных компьютеров, разбросанных по всему миру, од-
новременно пытаются обращаться к сайту с максимальной частотой.
В этом разделе мы рассмотрим, как противостоять таким недобро-
совестным действиям и обеспечить доступность сайта.

Сначала приведем конфигурационные директивы, предназначен-
ные для этой цели.

Директивы модуля HTTP для задания предельных значений

Директива Описание

limit_conn Определяет зону разделяемой памяти (настраиваемую

с помощью директивы limit_conn_zone) и максимальное

количество соединений с одинаковым значением ключа

limit_conn_log_level Если NGINX ограничивает соединения согласно

директиве limit_conn, то эта директива определяет

уровень протоколирования для сообщения о достижении

пороговой величины

limit_conn_zone В первом параметре задается ключ, к которому относятся

ограничения, указанные в директиве limit_conn. Второй

параметр задает имя зоны разделяемой памяти, в кото-

рой хранится не более указанного числа соединений для

каждого ключа, а также размер этой зоны (name:size)

Установка предельных значений

134 NGINX как HTTP-сервер

Директива Описание

limit_rate Ограничивает скорость (в байтах/с) отдачи содержимого

клиентам. Ограничение действует на уровне соединения,

то есть один клиент может повысить свою пропускную

способность, открыв несколько соединений

limit_rate_after Начинает применять ограничение limit_rate после того,

как передано указанное количество байтов

limit_req Задает ограничение при резком увеличении (всплеске)

количества запросов для указанного ключа в зоне

разделяемой памяти (заданной в директиве limit_req_

zone). Всплеск описывается вторым параметром. Если до

возникновения всплеска задерживать запросы не нужно,

следует включить третий параметр nodelay

limit_req_log_level Если NGINX ограничивает количество запросов согласно

директиве limit_req, то эта директива определяет уровень

протоколирования для сообщения о достижении поро го -

вой величины. Сообщение о применении задержки имеет

уровень, на единицу меньший указанного в этой директиве

limit_req_zone В первом параметре задается ключ, к которому

относятся ограничения, указанные в директиве limit_req.

Второй параметр задает имя зоны разделяемой памяти,

в которой хранится не более указанного числа запросов

для каждого ключа, а также размер этой зоны (name:size).

Третий параметр определяет количество запросов в се-

кунду (r/s) или в минуту (r/m), при превышении которого

начинает применяться ограничение

max_ranges Задает максимальное количество диапазонов, допус-

тимых в запросе с указанием диапазонов байтов. Если

задано значение 0, то поддержка диапазонов байтов

отключается

В примере ниже мы разрешаем не более 10 соединений с одного
IP-адреса. Для нормального доступа к сайту этого должно быть до-
статочно, потому что современные браузеры открывают только два
или три соединения с одним сервером. Однако не забывайте, что для
всех пользователей, находящихся за прокси-сервером, сервер видит
один и тот же IP-адрес. Поэтому следите за появлением в журналах
сообщений об ошибке 503 (Service Unavailable), означающей при-
менение этого ограничения:

http {

 limit_conn_zone $binary_remote_addr zone=connections:10m;

 limit_conn_log_level notice;

 server {

135

 limit_conn connections 10;

 }

}

Ограничение доступа на основе частоты запросов выглядит почти
так же, но работает несколько иначе. Когда мы ограничиваем коли-
чество страниц, запрашиваемых пользователем в единицу времени,
NGINX вставляет задержку после запроса первой страницы и до тех
пор, пока число избыточных запросов не превысит размер всплеска.
Возможно, вы этого не хотите, поэтому NGINX предоставляет воз-
можность подавить задержку с помощью параметра nodelay:

http {

 limit_req_zone $binary_remote_addr zone=requests:10m rate=1r/s;

 limit_req_log_level warn;

 server {

 limit_req zone=requests burst=10 nodelay;

 }

}

 Использование переменной $binary_remote_addr

 В примере выше мы воспользовались переменной $binary_

remote_addr, чтобы узнать, сколько места в памяти отводится

для хранения одного IP-адреса. На 32-разрядных платформах

это 32 байта, на 64-разрядных – 64 байта. Поэтому сконфигури-

рованная зона размером 10m на 32-разрядных платформах спо-

собна хранить 320 000 состояний, а на 64-разрядных – 160 000.

Можно также ограничить потребление полосы пропускания од-
ним клиентом, чтобы несколько недобросовестных пользователей
не заняли всю доступную полосу. Но имейте в виду одну тонкость:
директива limit_rate работает на уровне соединений. Если одному
клиенту разрешено открывать несколько соединений, то он легко
сможет обойти это ограничение:

location /downloads {

 limit_rate 500k;

}

Можно вместо этого разрешить частые запросы при загрузке не-
больших файлов, но ввести ограничение для файлов большего раз-
мера:

Установка предельных значений

136 NGINX как HTTP-сервер

location /downloads {

 limit_rate_after 1m;

 limit_rate 500k;

}

Комбинируя различные ограничения на частоту, можно создать
конфигурацию с очень гибкими ограничениями на действия кли-
ентов:

http {

 limit_conn_zone $binary_remote_addr zone=ips:10m;

 limit_conn_zone $server_name zone=servers:10m;

 limit_req_zone $binary_remote_addr zone=requests:10m rate=1r/s;

 limit_conn_log_level notice;

 limit_req_log_level warn;

 reset_timedout_connection on;

 server {

 # эти ограничения применяются ко всему виртуальному серверу

 limit_conn ips 10;

 # не более 1000 одновременных соединений с одним server_name

 limit_conn servers 1000;

 location /search {

 # здесь мы ограничиваем частоту запросов только для URL /search

 limit_req zone=requests burst=3 nodelay;

 }

 location /downloads {

 # используем limit_conn, чтобы ограничить потребление полосы

 # пропускания одним клиентом, не позволяя обойти ограничение

 limit_conn connections 1;

 limit_rate_after 1m;

 limit_rate 500k;

 }

 }

}

Ограничение доступа

 В предыдущем разделе мы рассмотрели различные способы поста-
вить преграды на пути недобросовестного посетителя сайта, работаю-
щего под управлением NGINX. Теперь посмотрим, как ограничить
доступ ко всему сайту или его частям. Есть два способа ограниче-
ния доступа: с некоторых IP-адресов или некоторым пользователям.

137

Комбинируя эти способы, мы можем разрешить пользователям до-
ступ к сайту либо с определенных IP-адресов, либо при условии
ввода корректного имена и пароля.

В этом нам помогут следующие директивы.

Директивы модуля HTTP для управления доступом

Директива Описание

allow Разрешает доступ с указанного IP-адреса, из указанной

сети или отовсюду (all)

auth_basic Разрешает аутентификацию по схеме HTTP Basic

Authentication. Параметр задает имя области (realm).

Специальное значение off говорит о том, что значение

auth_basic, заданное на родительском уровне, отменяется

auth_basic_user_file Определяет, где находится файл, содержащий тройки

username:password:comment, который используется для

аутен тификации клиентов. Поле password должно быть за-

шифровано алгоритмом crypt. Поле comment необязательно

deny Запрещает доступ с указанного IP-адреса, из указанной

сети или отовсюду (all)

satisfy Разрешает доступ, если все (all) или хотя бы одна

(any) из предыдущих директив разрешает доступ.

Подразумеваемое по умолчанию значение all говорит,

что пользователь должен находиться в определенной

сети и ввести правильный пароль

Чтобы разрешить доступ только клиентам, которые заходят
с определенных IP-адресов, используйте директивы allow и deny сле-
дующим образом:

location /stats {

 allow 127.0.0.1;

 deny all;

}

Здесь мы разрешаем доступ к URI /stats только с локального
компьютера localhost.

Чтобы разрешить доступ только аутентифицированным пользова-
телям, воспользуйтесь директивами auth_basic и auth_basic_user_file:

server {

 server_name restricted.example.com;

 auth_basic «restricted»;

 auth_basic_user_file conf/htpasswd;

}

Ограничение доступа

138 NGINX как HTTP-сервер

Пользователь, желающий зайти на сайт restricted.example.com, дол-
жен будет ввести имя и пароль, присутствующие в файле htpasswd
в подкаталоге conf корневого каталога NGINX. Записи в htpasswd
можно сгенерировать любым инструментом, поддерживающим стан-
дартную для UNIX функцию crypt() . Так, приведенный ниже скрипт
на Ruby генерирует файл нужного формата.

#!/usr/bin/env ruby

разбираем флаги в командной строке

require ‘optparse’

OptionParser.new do |o|

 o.on(‘-f FILE’) { |file| $file = file }

 o.on(‘-u’, «--username USER») { |u| $user = u }

 o.on(‘-p’, «--password PASS») { |p| $pass = p }

 o.on(‘-c’, «--comment COMM (optional)») { |c| $comm = c }

 o.on(‘-h’) { puts o; exit }

 o.parse!

 if $user.nil? or $pass.nil?

 puts o; exit

 end

end

инициализируем массив ASCII-символов, используемый в качестве затравки

ascii = (‘a’..’z’).to_a + (‘A’..’Z’).to_a + (‘0’..’9’).to_a + [“.”, “/”]

$lines = []

begin

 # читаем аутентификационные данные из файла

 File.open($file) do |f|

 f.lines.each { |l| $lines << l }

 end

rescue Errno::ENOENT

 # если файл не найден (при первом использовании), инициализируем массив

 $lines = [“#{$user}:#{$pass}\n”]

end

удаляем редактируемую запись о пользователе из текущего списка

$lines.map! do |line|

 unless line =~ /#{$user}:/

 line

 end

end

шифруем пароль с помощью crypt()

pass = $pass.crypt(ascii[rand(64)] + ascii[rand(64)])

если есть комментарий, вставляем его

139

if $comm
 $lines << “#{$user}:#{pass}:#{$comm}\n”
else
 $lines << “#{$user}:#{pass}\n”
end

записываем новый файл, при необходимости создав его
File.open($file, File::RDWR|File::CREAT) do |f|
 $lines.each { |l| f << l}
end

Сохраните этот код в файле http_auth_basic.rb и выполните его,
указав имя файла (-f), имя пользователя (-u) и пароль (-p). Бу-
дет сгенерирована запись в формате, который понимает директива
NGINX auth_basic_user_file :

$./http_auth_basic.rb -f htpasswd -u testuser -p 123456

Для случая, когда имя и пароль нужно вводить, только если
вход осуществляется не с одного из предопределенных IP-адресов,
в NGINX предусмотрена директива satisfy. В примере ниже задан
параметр any, подходящий для сценария или-или:

server {

 server_name intranet.example.com;

 location / {

 auth_basic «intranet: please login»;

 auth_basic_user_file conf/htpasswd-intranet;

 allow 192.168.40.0/24;

 allow 192.168.50.0/24;

 deny all;

 satisfy any;

}

Если, напротив, требуется, чтобы пользователь мог заходить толь-
ко с определенных IP-адресов и при этом аутентифицировался, то
следует воспользоваться параметром all, который и так подразуме-
вается по умолчанию. Поэтому директиву satisfy можно опустить,
оставив только директивы allow, deny, auth_basic и auth_basic_user_file:

server {

 server_name stage.example.com;

 location / {

 auth_basic «staging server»;

Ограничение доступа

140 NGINX как HTTP-сервер

 auth_basic_user_file conf/htpasswd-stage;

 allow 192.168.40.0/24;

 allow 192.168.50.0/24;

 deny all;

}

Потоковая передача мультимедийных

файлов

 NGINX умеет обслуживать запросы на некоторые типы видео-
файлов. Модули flv и mp4, включенные в базовый дистрибутив, вы-
полняют так называемую псевдопотоковую передачу . Это означает,
что NGINX начнет передачу с того места видеофайла, которое ука-
зано в параметре запроса start.

Для поддержки псевдопотоковой передачи на этапе конфигуриро-
вания сборки необходимо указать флаги --with-http_flv_module (для
Flash Video – FLV) и (или) --with-http_mp4_module (для H.264/AAC).
Тогда в конфигурационном файле можно будет использовать сле-
дующие директивы.

Директивы модуля HTTP для управления потоковой передачей

Директива Описание

flv Активирует модуль flv для данного местоположения

mp4 Активирует модуль mp4 для данного местоположения

mp4_buffer_size Задает начальный размер буфера для доставки MP4-файлов

mp4_max_buffer_

size

Задает максимальный размер буфера для обработки

метаданных MP4

Активация псевдопотоковой передачи FLV для местоположения
сводится к добавлению директивы flv:

location /videos {

 flv;

}

У псевдопотоковой передачи MP4 параметров больше, так как
в формате H.264 имеются метаданные, которые необходимо разби-
рать. Поиск в файле доступен, если проигрыватель обнаружил атом
"moov atom". Поэтому для повышения производительности метадан-
ные должны находиться в начале файла. Если в журнале появляется
сообщение

141

mp4 moov atom is too large

то увеличьте значение параметра mp4_max_buffer_size. Это можно сде-
лать следующим образом:

location /videos {

 mp4;

 mp4_buffer_size 1m;

 mp4_max_buffer_size 20m;

}

Предопределенные переменные

 В конфигурационном файле NGINX могут встречаться пере-
менные, вместо которых на этапе выполнения подставляются их
значения. Помимо пользовательских переменных, создаваемых ди-
рективами set и map, имеются также предопределенные переменные,
устанавливаемые самой NGINX. Их вычисление оптимизировано,
а значения кэшируются на время выполнения запроса. Любую из
таких переменных можно использовать в предложении if или в ди-
рективе proxy_pass. Некоторые полезны при определении нестандарт-
ного формата журнала. Попытка создать свою переменную с таким
же именем, как у предопределенной, приведет к ошибке:

<timestamp> [emerg] <master pid>#0: the duplicate «<variable_name>» variable in

<path-to-configuration-file>:<line-number>

Кроме того, они не предназначены для макрорасширения кон-
фигурационного файла, а используются главным образом во время
выполнения.

В модуле http определены следующие переменные.

Переменные модуля HTTP

Имя переменной Значение

$arg_name Аргумент с именем name, присутствующий в параметрах

запроса

$args Все параметры запроса

$binary_remote_addr IP-адрес клиента в двоичном виде (длина всегда равна

4 байтам)

$content_length Значение заголовка запроса Content-Length

$content_type Значение заголовка запроса Content-Type

Предопределенные переменные

142 NGINX как HTTP-сервер

Имя переменной Значение

$cookie_name Значение куки с именем name

$document_root Значение директивы root или alias для текущего запроса

$document_uri Псевдоним $uri

$host Значение заголовка запроса Host, если таковой при-
сутствует. В противном случае это значение, заданное
в директиве server_name, отвечающей запросу

$hostname Имя хоста, на котором работает NGINX

$http_name Значение заголовка запроса с именем name. Если имя заго -
ловка содержит дефисы, они преобразуются в знаки под-
черкивания. Прописные буквы преобразуются в строчные

$https Для соединений, шифруемых по протоколу SSL,
принимает значение on. В противном случае пустая строка

$is_args Если в запросе есть аргументы, принимает значение ?.
В противном случае пустая строка

$limit_rate Значение, заданное в директиве limit_rate. Если значение
не установлено, то с помощью этой переменной можно
регулировать скорость отдачи содержимого клиентам

$nginx_version Номер версии работающей программы nginx

$pid Идентификатор рабочего процесса

$query_string Псевдоним $args

$realpath_root Значение директивы root или alias для текущего запроса
после разрешения всех символических ссылок

$remote_addr IP-адрес клиента

$remote_port Номер порта клиента

$remote_user При использовании простой схемы аутентификации
по HTTP эта переменная содержит имя пользователя

$request Полный запрос, полученный от клиента, включая метод
HTTP, URI-адрес, версию протокола HTTP, заголовки и тело

$request_body Тело запроса для использования в местоположениях,
обрабатываемых директивой *_pass

$request_body_file Путь к временному файлу, в котором сохранено тело запро-
са. Для гарантированного создания этого файла директи-
ва client_body_in_file_only должна принимать значение on

$request_completion Если запрос получен полностью, принимает значение OK,
иначе пустая строка

$request_filename Путь к файлу для текущего запроса, формируемый
на основе значения директивы root или alias и URI-адреса

$request_method HTTP-метод текущего запроса

$request_uri Полный URI, указанный в запросе, включая аргументы

$scheme Схема текущего запроса: HTTP или HTTPS

$sent_http_name Значение заголовка ответа с именем name. Если имя заго-

ловка содержит дефисы, они преобразуются в знаки под-

черкивания. Прописные буквы преобразуются в строчные

143

Имя переменной Значение

$server_addr Адрес сервера, принявшего запрос

$server_name Значение директивы server_name виртуального сервера,

принявшего запрос

$server_port Номер порта сервера, принявшего запрос

$server_protocol Версия протокола HTTP для текущего запроса

$status Код состояния ответа

$tcpinfo_rtt

$tcpinfo_rttvar

$tcpinfo_snd_cwnd

$tcpinfo_rcv_space

Если система поддерживает опцию сокета TCP_INFO,

то в эти переменные заносится соответствующая

информация

$uri Нормализованный URI текущего запроса

Использование NGINX совместно

с PHP-FPM

 Долгое время Apache считался единственным веб-сервером для
сайтов, написанных на PHP, поскольку его модуль mod_php позволяет
без труда интегрировать PHP непосредственно с веб-сервером. Но
после включения PHP-FPM в ядро PHP появилась альтернатива.
PHP-FPM – это технология исполнения PHP-скриптов под управ-
лением FastCGI-сервера. Главный процесс PHP-FPM берет на себя
заботу о запуске рабочих процессов с учетом нагрузки на сайт; при
необходимости дочерние процессы перезапускаются. Главный про-
цесс взаимодействует с другими службами по протоколу FastCGI.
Подробнее о PHP-FPM можно прочитать на странице http://php.net/
manual/en/install.fpm.php.

В NGINX имеется модуль fastcgi, который может взаимодейство-
вать не только с PHP-FPM, но и с любым сервером, совместимым
с протоколом FastCGI. Он включен по умолчанию, поэтому для
использования NGINX совместно с FastCGI-серверами ничего спе-
циально делать не нужно.

Директивы модуля FastCGI

Директива Описание

fastcgi_buffer_size Размер буфера для первой части ответа

от FastCGI-сервера, в которой находятся заголовки

fastcgi_buffers Количество и размер буферов для получения

ответа от FastCGI-сервера в расчете на одно

соединение

Использование NGINX совместно с PHP-FPM

144 NGINX как HTTP-сервер

Директива Описание

fastcgi_busy_buffers_size Суммарный размер буферов, которые могут быть

заняты для отправки ответа клиенту, пока ответ от

FastCGI-сервера ещё не прочитан целиком. Обыч-

но устанавливается вдвое большим, чем размер,

указанный в директиве fastcgi_buffers

fastcgi_cache Определяет зону разделяемой памяти, используе-
мую для кэширования

fastcgi_cache_bypass Одна или несколько строковых переменных. Если
хотя бы одна из них непуста и не содержит нуль, то
ответ будет запрошен у FastCGI-сервера, а не взят
из кэша

fastcgi_cache_key Строка, которая используется как ключ для поиска
значения в кэше

fastcgi_cache_lock Если включено, то предотвращается отправка
нескольких запросов FastCGI-серверу в случае
отсутствия в кэше

fastcgi_cache_lock_timeout Сколько времени запрос может ждать появления
записи в кэше или освобождения блокировки
fastcgi_cache_lock

fastcgi_cache_min_uses Сколько запросов с данным ключом должно
поступить, прежде чем ответ будет помещен в кэш

fastcgi_cache_path Каталог, в котором хранятся кэшированные ответы,
и зона разделяемой памяти (keys_zone=name:size)
для хранения активных ключей и метаданных
ответа. Необязательные параметры:
 levels: список разделенных двоеточиями длин

имен подкаталогов на каждом уровне (1 или 2);
допускается не более трех уровней вложенности;

 inactive: максимальное время нахождения неак-
тивного запроса в кэше, по прошествии которо-
го он вытесняется;

 max_size: максимальный размер кэша; по его до-
стижении процесс-диспетчер удаляет элементы,
к которым дольше всего не было обращений;

 loader_files: максимальное количество кэширо-
ванных файлов, метаданные которых загружают-
ся в кэш на одной итерации процесса-загрузчика;

 loader_sleep: число миллисекунд между итера-
циями процесса-загрузчика кэша;

 loader_threshold: максимальное время, отведен-
ное на одну итерацию процесса-загрузчика кэша

fastcgi_cache_use_stale В каких случаях допустимо использовать

устаревшие кэшированные данные, если при

доступе к FastCGI-серверу произошла ошибка.

Параметр updating разрешает использовать

кэшированный ответ, если как раз в данный момент

загружаются более свежие данные

145

Директива Описание

fastcgi_cache_valid Сколько времени считать действительным
кэшированный ответ с кодом 200, 301 или 302.
Если перед параметром time указан необязатель-
ный код ответа, то заданное время относится толь-
ко к ответу с таким кодом. Специальный параметр
any означает, что в течение заданного времени
следует кэшировать ответ с любым кодом

fastcgi_connect_timeout Максимальное время, в течение которого NGINX
ожидает установления соединения при отправке
запроса FastCGI-серверу

fastcgi_hide_header Список заголовков, которые не следует передавать
клиенту

fastcgi_ignore_client_
abort

Если значение равно on, то NGINX не станет
разрывать соединение с FastCGI-сервером
в случае, когда клиент разрывает свое соединение

fastcgi_ignore_headers Какие заголовки можно игнорировать
при обработке ответа от FastCGI-сервера

fastcgi_index Задает имя файла, дописываемое в конец строки
$fastcgi_script_name после знака косой черты

fastcgi_intercept_errors Если значение равно on, то NGINX будет отображать
страницу, заданную директивой error_page, вместо
ответа, полученного от FastCGI-сервера

fastcgi_keep_conn Разрешает соединения типа keepalive
с FastCGI-сервером, инструктируя его не закрывать
соединение немедленно

fastcgi_max_temp_file_size Максимальный размер временного файла,
в который записывается часть ответа в случае,
когда он не умещается целиком в буферах памяти

fastcgi_next_upstream Определяет условия, при которых для ответа
будет выбран следующий FastCGI-сервер. Это
не происходит, если клиент уже что-то отправил.
Условия задаются с помощью следующих
параметров:
 error: произошла ошибка при взаимодействии

с FastCGI-сервером;
 timeout: произошел тайм-аут при взаимодей-

ствии с FastCGI-сервером;
 invalid_header: FastCGI-сервер вернул пустой

или недопустимый ответ;
 http_500: FastCGI-сервер вернул ответ с кодом

ошибки 500;
 http_503: FastCGI-сервер вернул ответ с кодом

ошибки 503;
 http_404: FastCGI-сервер вернул ответ с кодом

ошибки 404;
 off: запретить передачу запроса следующему

FastCGI-серверу в случае ошибки

Использование NGINX совместно с PHP-FPM

146 NGINX как HTTP-сервер

Директива Описание

fastcgi_no_cache Одна или несколько строковых переменных. Если

хотя бы одна из них непуста и не содержит нуль, то

NGINX не будет помещать в кэш ответ, полученный

от FastCGI-сервера

fastcgi_param Задает имя и значение параметра, передаваемого

FastCGI-серверу. Если следует передавать только

параметры с непустыми значениями, то необходимо

задать дополнительный параметр if_not_empty

fastcgi_pass Определяет FastCGI-сервер, которому передается

запрос, в виде пары address:port или unix:path

для сокета в домене UNIX

fastcgi_pass_header Отменяет сокрытие заголовков, определенных

в директиве fastcgi_hide_header, разрешая переда-

вать их клиенту

fastcgi_read_timeout Сколько времени может пройти между двумя после-

довательными операциями чтения данных от FastCGI-

сервера, прежде чем соединение будет закрыто

fastcgi_send_timeout Сколько времени может пройти между двумя

последовательными операциями записи данных

на FastCGI-сервер, прежде чем соединение будет

закрыто

fastcgi_split_path_info Задает регулярное выражение с двумя запоминае-

мыми подвыражениями. Первая запомненная стро -

ка становится значением переменной $fastcgi_

script_name, вторая – значением переменной

$fastcgi_path_info. Необходимо только для приложе-

ний, в которых используется переменная PATH_INFO

fastcgi_store Разрешает сохранение полученных от FastCGI-

сервера ответов в файлах на диске. Если параметр

равен on, то в качестве пути к каталогу с сохраняе-

мыми файлами используется значение, заданное

в директиве alias или root. Можно вместо этого

задать строку, определяющую другой каталог

для хранения файлов

fastcgi_store_access Какие права доступа следует задать для новых

файлов, создаваемых в соответствии с директивой

fastcgi_store

fastcgi_temp_file_write_

size

Ограничивает размер данных в одной операции

записи во временный файл, чтобы NGINX

не слишком долго блокировала исполнение

программы при обработке одного запроса

fastcgi_temp_path Каталог для хранения временных файлов,

получаемых от FastCGI-сервера. Может быть

многоуровневым

147

Пример конфигурации для Drupal

Drupal (http://drupal.org) – это популярная платформа с откры-
тым исходным кодом для управления содержимым. Она установле-
на на многих известных сайтах. Как и большинство веб-каркасов на
основе PHP, Drupal обычно работает под Apache с модулем mod_php.
Мы покажем, как настроить NGINX для запуска Drupal.

На сайте https://github.com/perusio/drupal-with-nginx имеется очень
подробная инструкция по настройке Drupal для работы с NGINX.
Она куда детальнее того, что мы можем позволить себе в этой книге,
но некоторые вещи мы все же отметим и остановимся на различиях
между Drupal 6 и Drupal 7:

Определяем переменную $no_slash_uri variable для Drupal 6.

map $uri $no_slash_uri {

 ~^/(?<no_slash>.*)$ $no_slash;

}

server {

 server_name www.example.com;

 root /home/customer/html;

 index index.php;

 # не закрывать соединения с FastCGI-сервером (используется в сочетании с

 # директивой “keepalive” в секции upstream)

 fastcgi_keep_conn on;

 # Местоположение по умолчанию.

 location / {

 ## (Drupal 6) Использовать index.html, если нет index.php.

 location = / {

 error_page 404 =200 /index.html;

 }

 # Обслуживание обычных частных файлов (тех, что обрабатываются Drupal).

 location ^~ /system/files/ {

 include fastcgi_private_files.conf;

 fastcgi_pass 127.0.0.1:9000;

 # Добавить следующую строку, чтобы в журнал ошибок не попадало

 # сообщение об ошибке 404 при доступе к каталогу system/files.

 # Ошибка 404 в данном случае – ожидаемое поведение.

 log_not_found off;

 }

 # Попытка прямого доступа к частным файлам возвращает ошибку 404.

 location ^~ /sites/default/files/private/ {

Пример конфигурации для Drupal

148 NGINX как HTTP-сервер

 internal;
 }

 ## (Drupal 6) При доступе к изображению, сгенерированному imagecache,
 ## пытаемся вернуть его, если оно имеется, иначе переправляем запрос
 ## Drupal для генерации или (перегенерации).
 location ~* /imagecache/ {
 access_log off;
 expires 30d;
 try_files $uri /index.php?q=$no_slash_uri&$args;
 }

 # Обработка изображений в Drupal 7, когда imagecache - часть ядра
 location ~* /files/styles/ {
 access_log off;
 expires 30d;
 try_files $uri @drupal;
 }

Следующие далее настройки модуля Advanced Aggregation отли-
чаются только значением location. Вот как выглядит конфигурация
этого модуля для CSS:

 # Поддержка CSS модулем Advanced Aggregation.
 location ^~ /sites/default/files/advagg_css/ {
 location ~* /sites/default/files/advagg_css/css_ [[:alnum:]]+\.css$ {

А так для JavaScript:

 # Поддержка JS модулем Advanced Aggregation.
 location ^~ /sites/default/files/advagg_js/ {
 location ~* /sites/default/files/advagg_js/js_ [[:alnum:]]+\.js$ {

Далее приведены строки, общие для обеих секций:

 access_log off;

 add_header Pragma ‘’;

 add_header Cache-Control ‘public, max-age=946080000’;

 add_header Accept-Ranges ‘’;

 # Это для Drupal 7

 try_files $uri @drupal;

 ## Это для Drupal 6 (оставить что-то одно)

 try_files $uri /index.php?q=$no_slash_uri&$args;

 }

 }

 # Все статические файлы обслуживаются непосредственно.

149

 location ~* ^.+\.(?:css|cur|js|jpe?g|gif|htc|ico|png|html|x ml)$ {
 access_log off;
 expires 30d;

 # Посылать все сразу.
 tcp_nodelay off;

 # Настроить файловый кэш операционной системы
 open_file_cache max=3000 inactive=120s;
 open_file_cache_valid 45s;
 open_file_cache_min_uses 2;
 open_file_cache_errors off;
 }

 # Обработка файлов PDF и powerpoint.
 location ~* ^.+\.(?:pdf|pptx?)$ {
 expires 30d;
 # Посылать все сразу.
 tcp_nodelay off;
 }

На примере звуковых файлов демонстрируется использование
асинхронного ввода-вывода. Местоположение MP3 выглядит так:

 # MP3-файлы обслуживаются с использованием AIO, если ОС поддерживает.
 location ^~ /sites/default/files/audio/mp3 {
 location ~* ^/sites/default/files/audio/mp3/.*\.mp3$ {

А местоположение для файлов Ogg/Vorbis – так:

 # Ogg/Vorbis-файлы обслуживаются с использованием AIO, если
 # ОС поддерживает.
 location ^~ /sites/default/files/audio/ogg {
 location ~* ^/sites/default/files/audio/ogg/.*\.ogg$ {

Следующие строки являются общими для обоих местоположений:

 directio 4k; # for XFS

 tcp_nopush off;

 aio on;

 output_buffers 1 2M;

 }

 }

 # Псевдопотоковая передача FLV-файлов

 location ^~ /sites/default/files/video/flv {

 location ~* ^/sites/default/files/video/flv/.*\.flv$ {

 flv;

 }

 }

Пример конфигурации для Drupal

150 NGINX как HTTP-сервер

Следующие две секции также похожи. Псевдопотоковая передача
для H264-файлов настраивается так:

 # Псевдопотоковая передача H264-файлов.

 location ^~ /sites/default/files/video/mp4 {

 location ~* ^/sites/default/files/video/mp4/.*\. (?:mp4|mov)$ {

А псевдопотоковая передача для AAC-файлов – так:

 # Псевдопотоковая передача AAC-файлов.

 location ^~ /sites/default/files/video/m4a {

 location ~* ^/sites/default/files/video/m4a/.*\.m4a$ {

Следующие строки являются общими для обеих секций:

 mp4;
 mp4_buffer_size 1M;
 mp4_max_buffer_size 5M;
 }
 }

 # Модуль Advanced Help делает доступным файлы README,
 # предоставленные всеми модулями.
 location ^~ /help/ {
 location ~* ^/help/[^/]*/README\.txt$ {
 include fastcgi_private_files.conf;
 fastcgi_pass 127.0.0.1:9000;
 }
 }

 # Копируем директиву Apache <FilesMatch> для стандартного для Drupal файла
 # .htaccess.
 # Запрещаем доступ ко всем файлам, содержащим код.
 # Возвращаем ошибку 404, чтобы не раскрывать информацию.
 # Также скрываем текстовые файлы.
 location ~* ^(?:.+\.(?:htaccess|make|txt|engine|inc|info|
 install|module|profile|po|sh|.*sql|test|theme|tpl(?:\. php)?|xtmpl)|
 code-style\.pl|/Entries.*|/Repository|/Root|/ Tag|/Template)$ {
 return 404;
 }

 # Сначала пробуем URI и перебрасываем на /index.php?q=$uri&$args,
 # если не найдено.
 try_files $uri @drupal;

 ## (Drupal 6) Сначала пробуем URI и перебрасываем на
 # /index.php?q=$no_slash_uri&$args, если не найдено
 # (оставить что-то одно).
 try_files $uri /index.php?q=$no_slash_uri&$args;

151

 } # конец местоположения по умолчанию

 # Ограничиваем доступ к обязательным файлам PHP. Сужаем

 # область воздействия эксплойтов. Обработка PHP-кода и

 # цикла событий Drupal.

 location @drupal {

 # Включаем конфигурацию FastCGI.

 include fastcgi_drupal.conf;

 fastcgi_pass 127.0.0.1:9000;

 }

 location @drupal-no-args {

 include fastcgi_private_files.conf;

 fastcgi_pass 127.0.0.1:9000;

 }

 ## (Drupal 6)

 ## Ограничиваем доступ к обязательным файлам PHP. Сужаем

 ## область воздействия эксплойтов. Обработка PHP-кода и

 ## цикла событий Drupal.

 ## (оставить что-то одно)

 location = /index.php {

 # Помечен internal в качестве профилактической меры защиты.

 # Прямой доступ к файлу index.php запрещен; доступ возможен только

 # со стороны NGINX из других местоположений или в результате

 # внутренней переадресации.

 internal;

 fastcgi_pass 127.0.0.1:9000;

 }

Все последующие местоположения возвращают 404, чтобы запре-
тить доступ:

 # Запретить доступ к каталогу .git: возвращаем 404, чтобы не

 # раскрывать информацию.

 location ^~ /.git { return 404; }

 # Запретить доступ к каталогу patches.

 location ^~ /patches { return 404; }

 # Запретить доступ к каталогу backup.

 location ^~ /backup { return 404; }

 # Запретить протоколирование обращений к файлу robots.txt в журналах

 # доступа.

 location = /robots.txt {

 access_log off;

 }

Пример конфигурации для Drupal

152 NGINX как HTTP-сервер

 # Поддержка RSS-каналов.

 location = /rss.xml {

 try_files $uri @drupal-no-args;

 ## (Drupal 6: оставить что-то одно)

 try_files $uri /index.php?q=$uri;

 }

 # Поддержка карты сайта в формате XML.

 location = /sitemap.xml {

 try_files $uri @drupal-no-args;

 ## (Drupal 6: оставить что-то одно)

 try_files $uri /index.php?q=$uri;

 }

 # Поддержка favicon. Вернуть прозрачный GIF размером 1x1,

 # если не существует.

 location = /favicon.ico {

 expires 30d;

 try_files /favicon.ico @empty;

 }

 # Возвращает хранящийся в памяти прозрачный GIF размером 1x1.

 location @empty {

 expires 30d;

 empty_gif;

 }

 # Все прочие попытки обратиться к PHP-файлам возвращают 404.

 location ~* ^.+\.php$ {

 return 404;

 }

} # конец серверного контекста

Включаемые директивой include файлы здесь для краткости не
приводятся. Их можно найти в репозитории perusio на сайте GitHub,
упомянутом в начале этого раздела.

Интеграция NGINX и uWSGI

 Python WSGI (Web Server Gateway Interface) – спецификация
интерфейса, формализованная в документе PEP-3333 (http://www.
python.org/dev/peps/pep-3333/). Ее цель – описать «стандартный интер-
фейс между веб-серверами и веб-приложениями или каркасами на
языке Python, с тем чтобы повысить переносимость приложения с
одного веб-сервера на другой». Вследствие популярности в сообще-
стве пользователей Python разработаны реализации специ фи кации
WSGI на другие языки. Сервер uWSGI , хотя и не был написан спе-

153

циально для Python, позволяет запускать приложения, отвечающие
этой спецификации. Протокол взаимодействия с сервером uWSGI
называется uwsgi. Дополнительные сведения о сервере uWSGI, в том
числе инструкции по установке, примеры конфигурационных фай-
лов и список поддерживаемых языков, можно найти на страницах
http://projects.unbit.it/uwsgi/ и https://github.com/unbit/uwsgi-docs.

Модуль NGINX uwsgi можно настроить для взаимодействия
с этим сервером с помощью директив, аналогичных рассмотренным
выше директивам fastcgi_*. Большая их часть обладает той же се-
мантикой, что в случае FastCGI, с тем очевидным различием, что их
имена начинаются префиксом uwsgi_ вместо fastcgi_. Однако есть и
несколько исключений – директивы uwsgi_modifier1, uwsgi_modifier2 и
uwsgi_string. Первые две устанавливают, соответственно, первый или
второй модификатор в заголовке пакета uwsgi. А директива uwsgi_
string позволяет NGINX передать произвольную строку серверу
uWSGI или любому другому серверу, совместимому с протоколом
uwsgi и поддерживающему модификатор eval. Модификаторы – это
специфическая особенность протокола uwsgi. Таблица допустимых
модификаторов с описанием их назначения приведена на странице
http://uwsgi-docs.readthedocs.org/en/latest/Protocol.html.

Пример конфигурации для Django

Django (https://www.djangoproject.com/) – это написанный на
Python каркас для быстрой разработки высокопроизводительных
веб-приложений. Он получил широкое распространение, и теперь
для него существуют веб-приложения самых разных видов.

Ниже приведен пример конфигурационного файла, демонстри-
рующего подключение NGINX к нескольким приложениям для
Django, работающим под управлением сервера uWSGI в режиме
Emperor с включенным модулем FastRouter. Дополнительные све-
дения о такой эксплуатации uWSGI – см. ссылки в комментариях.

http {

 # запустить сервер uWSGI, к которому мы будем подключаться

 # uwsgi --master --emperor /etc/djangoapps --fastrouter 127.0.0.1:3017

 # --fastrouter-subscription-server 127.0.0.1:3032

 # см. http://uwsgi-docs.readthedocs.org/en/latest/Emperor.html

 # и http://projects.unbit.it/uwsgi/wiki/Example

 upstream emperor {

 server 127.0.0.1:3017;

 }

Интеграция NGINX и uWSGI

154 NGINX как HTTP-сервер

 server {

 # при задании корня документов используется переменная, чтобы

 # можно было обслуживать несколько сайтов, – отметим, что все

 # статические файлы должны находиться в подкаталоге “static”,

 # а все закачанные пользователями файлы – в подкаталоге “media”

 # см. https://docs.djangoproject.com/en/dev/howto/static-files/

 root /home/www/sites/$host;

 location / {

 # CSS-файлы находятся в подкаталоге “styles”

 location ~* ^.+\.$ {

 root /home/www/sites/$host/static/styles;

 expires 30d;

 }

 # если путь не найден в корне документов, то запрос

 # передается Django, работающему под управлением uWSGI

 try_files $uri @django;

 }

 location @django {

 # переменная $document_root должна указывать на код приложения

 root /home/www/apps/$host;

 # файл uwsgi_params входит в состав дистрибутива nginx

 include uwsgi_params;

 # ссылаемся на определенную выше секцию upstream

 # сервер uWSGI работает в режиме Emperor с модулем FastRouter

 uwsgi_param UWSGI_FASTROUTER_KEY $host;

 uwsgi_pass emperor;

 }

 # файл robots.txt находится в подкаталоге “static”

 # задание точного соответствия ускоряет поиск

 location = /robots.txt {

 root /home/www/sites/$host/static;

 access_log off;

 }

 # еще одно точное соответствие

 location = /favicon.ico {

 error_page 404 = @empty;

 root /home/www/sites/$host/static;

 access_log off;

 expires 30d;

 }

 # генерируем пустое изображение, на которое есть ссылка выше

 location @empty {

155

 empty_gif;

 }

 # попытка напрямую обратиться к файлу с расширением ‘.py’

 # приводит к ошибке 404 (Not Found)

 location ~* ^.+\.py$ {

 return 404;

 }

 }

}

При такой конфигурации можно динамически обслуживать не-
сколько сайтов, ничего не меняя в настройках.

Резюме

В этой главе мы рассмотрели директивы NGINX, описывающие
порядок обслуживания запросов по протоколу HTTP. Эту функ-
циональность предоставляет не только сам модуль http, но и ряд
вспомогательных модулей, необходимых для нормальной работы
NGINX. По умолчанию эти модули включены. Комбинирование
директив, принадлежащих разным модулям, позволяет построить
конфигурацию, отвечающую нашим требованиям. Мы показали,
как NGINX ищет файлы, соответствующие запрошенному URI. Мы
обсудили различные директивы, управляющие взаимодействием
HTTP-сервера с клиентами, и узнали о различных способах при-
менения директивы error_page. Мы убедились, что NGINX позволяет
ограничивать доступ, основываясь на потреблении полосы пропус-
кания, скорости отдачи содержимого и количестве соединений.

Мы также видели, как разрешить доступ только с определенных
IP-адресов или пользователям, прошедшим аутентификацию. Мы
рассмотрели средства протоколирования NGINX и разобрались, как
включать в журналы лишь интересующую нас информацию. Мы
также бегло остановились на псевдопотоковой передаче. NGINX
предоставляет ряд переменных, которые можно использовать в кон-
фигурационном файле. Была описана возможность использования
модуля fastcgi для подключения к PHP-FPM-приложениям и мо-
дуля uwsgi для взаимодействия с сервером uWSGI. В примерах бы-
ло продемонстрировано применение директив, обсуждавшихся как
в этой, так и в других главах.

В следующей главе мы познакомимся с модулями, которые по-
могают интегрировать NGINX c собственным приложением.

Резюме

Глава 7. NGINX
для разработчика

До сих пор мы рассматривали настройку NGINX для решения раз-
личных задач. Но пока ни слова не было сказано о том, что NGINX
предлагает разработчикам приложений. Существует несколько спо-
собов интегрировать NGINX с приложением. Мы обсудим их в сле-
дующих разделах.

  Интеграция с механизмом кэширования.
  Динамическое изменение содержимого.
  Включение на стороне сервера.
  Принятие решений в NGINX.
  Создание безопасной ссылки.
  Генерация изображений.
  Отслеживание посетителей сайта.
  Предотвращение случайного выполнения кода.

Интеграция с механизмом кэширования

 NGINX великолепно справляется с обслуживанием статического
содержимого. Он спроектирован для поддержки свыше 100 000 од-
новременных соединений при минимальном потреблении системных
ресурсов. Интеграция динамического веб-приложения с таким заме-
чательным сервером может резко повысить его производительность.
Возможно, мы не сумеем поддержать так много одновременных со-
единений, но уменьшить время реакции системы на действия поль-
зователя мы все-таки сможем.

О кэшировании мы рассказывали в главе 5 «Обратное прокси-
рование, дополнительные вопросы». В этом разделе мы более по-
дробно остановимся на интеграции механизма кэширования NGINX
с веб-приложением. Возможно, ваше приложение уже умеет что-то
кэшировать. Быть может, оно записывает заранее сформированные

157

страницы в базу данных, чтобы не выполнять накладную процедуру
построения страницы снова и снова. Или, что еще лучше, сохраняет
сформированные страницы в файловой системе, позволяя NGINX
проявить свои поразительные способности в деле обслуживания
статических файлов. Какой бы механизм кэширования ни исполь-
зовался в вашем приложении (даже если его нет вовсе), NGINX по-
зволит интегрировать его с сервером.

Приложения без кэширования

Даже если приложение вообще ничего не кэширует, NGINX все
равно может ускорить время реакции. Поскольку модули proxy и
fastcgi пользуются механизмом кэширования, то вам остается настро-
ить кэширование для своего приложения с помощью директив proxy_
cache_* или fastcgi_cache_*. Директивы proxy_cache_* описаны в разделе
«Кэширование» главы 5, а директивы fastcgi_cache_* – в главе 6.

Здесь мы расскажем о том, как ваше приложение может попро-
сить NGINX кэшировать отдельные страницы. Для этого нужно от-
править NGINX определенные заголовки. Можно использовать как
стандартные заголовки Expires или Cache-Control, так и специальный
заголовок X-Accel-Expires , который NGINX интерпретирует само-
стоя тельно и не передает клиенту. Этот заголовок позволяет прило-
жению точно управлять временем кэширования файла и, в частно-
сти, прекратить кэширование объектов, которые обычно находятся
в кэше очень долго.

Предположим, что имеется новостное приложение, страницы ко-
торого загружаются слишком медленно. Причин может быть много,
но анализ показал, что каждая страница всякий раз строится заново,
что сопровождается чтением содержимого из базы данных. Поэто-
му, когда заходит пользователь, приложение должно подключить-
ся к базе данных, выполнить несколько SQL-запросов, разобрать
результаты и только потом отправить сформированную страницу.
Из-за многочисленных связей с системой, стоящей за этим веб-
приложением, изменить архитектуру и реализовать более разумную
стратегию построения страниц не так-то просто.

С учетом имеющихся ограничений вы решаете остановиться на
следующей стратегии кэширования.

  Лицевая страница должна кэшироваться одну минуту, посколь-
ку содержит часто изменяющийся список ссылок на статьи.

  Каждая статья кэшируется один день, поскольку, будучи опуб-
ликована, она уже не изменяется, но вместе с тем мы не хотим

Интеграция с механизмом кэширования

158 NGINX для разработчика

забивать кэш старыми данными, которые придется удалять
ввиду нехватки места.

  Изображения кэшируются столько времени, сколько возмож-
но, поскольку они хранятся в базе данных и извлекать их от-
туда накладно.

Для поддержки этой стратегии мы сконфигурируем NGINX сле-
дующим образом:

http {
 # настраиваем две зоны памяти для ключей и метаданных и пути к
 # каталогам, в которых будут храниться сами кэшированные объекты
 proxy_cache_path /var/spool/nginx/articles keys_zone=ARTICLES:16m
levels=1:2 inactive=1d;
 proxy_cache_path /var/spool/nginx/images keys_zone=IMAGES:128m levels=1:2
inactive=30d;

 # но оба каталога находятся в той же файловой системе,
 # что и proxy_temp_path
 proxy_temp_path /var/spool/nginx;

 server {
 location / {
 # здесь находится список статей
 proxy_cache_valid 1m;
 }

 location /articles {
 # URL каждой статьи начинается с «/articles»
 proxy_cache_valid 1d;
 }

 location /img {
 # URL любого изображения начинается с «/img»
 proxy_cache_valid 10y;
 }
}

Тем самым наши требования удовлетворены. Мы реализовали кэ-
ширование для унаследованной системы, которая кэширования не
поддерживала.

Кэширование в базе данных

 Если приложение кэширует сформированные страницы в ба-
зе данных, то, скорее всего, будет нетрудно хранить их в кэше
memcached. NGINX может обслуживать запросы непосредственно
из этого кэша. Такая логика показана на рисунке ниже.

159

Интерфейс очень прост, но может быть настолько гибким, на-
сколько необходимо. NGINX ищет ключ в хранилище. Если находит,
то возвращает значение клиенту. Построение правильного ключа –
задача настройки, которую мы обсудим ниже. Сохранение ассоции-
рованного с ключом значения – задача не NGINX, а приложения.

Решить, какой ключ использовать, не слишком сложно. Для не-
персонализированных ресурсов лучше всего использовать сам URI.
Ключ записывается в переменную $memcached_key :

location / {
 set $memcached_key $uri;
 memcached_pass 127.0.0.1:11211;
}

Если для построения страницы приложение читает аргументы за-
проса, то их нужно включать и в ключ $memcached_key:

location / {
 set $memcached_key «$uri?$args»;
 memcached_pass 127.0.0.1:11211;
}

Если ключ не найден, то NGINX нужны какие-то средства для за-
проса страницы у приложения. Хочется надеяться, что приложение
затем поместит пару ключ-значение в кэш memcached, чтобы сле-
дующий запрос можно было обслужить из памяти. NGINX вернет
ошибку «Not Found», если ключ отсутствует в memcached, поэтому
самый правильный способ переадресовать запрос приложению –

Интеграция с механизмом кэширования

160 NGINX для разработчика

воспользоваться директивой error_page и завести специальное место-
положение для обработки запроса. Мы должны включить сюда же
коды ошибок «Bad Gateway» и «Gateway Timeout» на случай, если
memcached не отвечает на запрос о наличии ключа:

server {
 location / {
 set $memcached_key “$uri?$args”;
 memcached_pass 127.0.0.1:11211;
 error_page 404 502 504 = @app;
 }

 location @app {
 proxy_pass 127.0.0.1:8080;
 }
}

Напомним, что, увидев знак равенства (=) в аргументах директи-
вы error_page, NGINX подставит код, возвращенный страницей, ко-
торая указана в последнем аргументе. Это позволяет преобразовать
ошибку в нормальный ответ.

В таблице ниже описаны директивы, относящиеся к модулю
memcached, который включается в nginx по умолчанию:

Директивы модуля memcached

Директива Описание

memcached_buffer_size Размер буфера для ответа от memcached.

Этот ответ синхронно отправляется клиенту

memcached_connect_timeout Максимальное время, в течение которого NGINX

ожидает установления соединения при отправке

запроса серверу memcached

memcached_next_upstream Определяет условия, при которых для ответа будет

выбран следующий сервер memcached. Условия

задаются с помощью следующих параметров:

 error: произошла ошибка при взаимодействии

с сервером memcached;

 timeout: произошел тайм-аут при взаимодействии

с сервером memcached;

 invalid_response: сервер memcached вернул

пустой или недопустимый ответ;

 not_found: ключ отсутствует в кэше memcached;

 off: запретить передачу запроса следующему

серверу memcached

memcached_pass Определяет имя или адрес сервера memcached и

его порт. Можно также указывать группу серверов,

объявленную в контексте upstream

161

Директива Описание

memcached_read_timeout Сколько времени может пройти между двумя после -

довательными операциями чтения данных от серве -

ра memcached, прежде чем соединение будет закрыто

memcached_send_timeout Сколько времени может пройти между двумя после-

довательными операциями записи данных на сервер

memcached, прежде чем соединение будет закрыто

Кэширование в файловой системе

 Предположим, что приложение записывает сформированные стра-
ницы в файлы. Поскольку вы знаете, сколько времени файл остается
актуальным, то можете настроить NGINX так, чтобы он отправлял
клиенту вместе с файлом заголовки, содержащие инструкции самому
клиенту и прокси-серверам на пути к нему о том, как долго хранить
файл в кэше. Там самым вы разрешите использовать локальный кэш
клиента, не изменив ни единой строки кода в приложении.

Для этого следует настроить заголовки Expires и Cache-Control. Это
стандартные HTTP-заголовки, которые понимают клиенты и прок-
си-серверы. В приложение никаких изменений вносить не нужно,
достаточно прописать эти заголовки в конфигурационном блоке
NGINX для соответствующего местоположения. NGINX упрощает
эту задачу, предоставляя директивы expires и add_header.

Директивы для модификации заголовков

Директива Описание

add_header Добавляет заголовок в ответ с кодом состояния 200, 204, 206,

301, 302, 303, 304 или 307

expires Добавляет или изменяет заголовки Expires и Cache-Control. Может

быть задан необязательный параметр modified, за которым

следует время (параметр time) или одно из ключевых слов:

epoch, max либо off. Если присутствует только time, то значением

в заголовке Expires будет текущее время плюс время, указан-

ное в параметре time. Значение в заголовке Cache-Control будет

равно max-age=t, где t – время в секундах, указанное в качестве

аргумента. Если параметру time предшествует параметр modified,

то в заголовок Expires записывается время модификации файла

плюс время, указанное в параметре time. Если параметр time

содержит знак @, то указанное время интерпретируется как

время суток; например, @12h – это полдень. Параметр epoch

соответствует абсолютному времени Thu, 01 Jan 1970 00:00:01 GMT.

Если задан параметр max, то в заголовок Expires записывается

значение Thu, 31 Dec 2037 23:55:55 GMT, а Cache-Control устанавли-

вается на 10 лет. Отрицательное значение времени приводит

к записи в Cache-Control значения no-cache

Интеграция с механизмом кэширования

162 NGINX для разработчика

Зная, как поступать с файлами, которые генерирует ваше при-
ложение, вы можете правильно настроить эти заголовки. Возьмем
в качестве примера приложение, для которого главная страница
должна кэшироваться 5 минут, все JavaScript и CSS-файлы – 24 ча-
са, все HTML-страницы – 3 дня, а изображения – так долго, как
возможно.

server {

 root /home/www;

 location / {

 # index.html сопоставляется явно, так что регулярное выражение

 # *.html ниже не будет соответствовать главной странице

 location = /index.html {

 expires 5m;

 }

 # для файлов с расширениями .js или .css (Javascript и CSS)

 location ~* /.*\.(js|css)$ {

 expires 24h;

 }

 # все страницы с расширением .html

 location ~* /.*\.html$ {

 expires 3d;

 }

 }

 # все изображения находятся в отдельном местоположении (/img)

 location /img {

 expires max;

 }

}

Чтобы понять, как при такой конфигурации устанавливаются за-
головки, посмотрим, как выглядит каждое местоположение в браузе-
ре. В любом современном браузере имеется встроенное или подклю-
чаемое дополнительно средство для просмотра заголовков запроса
и ответа. На снимках экрана ниже показано, как заголовки ответов
для разных местоположений отображаются в Chrome.

163

  Главная страница (index.html): в заголовке Expires установлено
время, которое на 5 минут позже того, что указано в заголовке
Date. Параметр max-age в заголовке Cache-Control равен 300 секунд.

  CSS-файл: в заголовке Expires установлено время, которое на
24 часа позже того, что указано в заголовке Date. Параметр max-
age в заголовке Cache-Control равен 86 400 секунд.

  HTML-файл: в заголовке Expires установлено время, которое
на 3 дня позже того, что указано в заголовке Date. Параметр
max-age в заголовке Cache-Control равен 259 200 секунд.

Интеграция с механизмом кэширования

164 NGINX для разработчика

Поместив всего лишь одну директиву expires в нужное место, мы
можем настроить кэширование файлов в течение необходимого вре-
мени.

Динамическое изменение содержимого

Иногда бывает полезно подвергнуть дополнительной обработке
данные, поступившие от приложения. Быть может, мы хотели бы
добавить на страницу строку, показывающую, какой фронтальный
сервер доставил эту страницу клиенту. Или каким-либо образом
преобразовать уже сформированную страницу. NGINX предлагает
три модуля, которые могут быть в этом смысле полезны: addition,
sub и xslt.

Модуль addition

Модуль addition работает как фильтр, который добавляет текст
до и (или) после ответа. По умолчанию он не компилируется, по-
этому если вам нужна эта функция, то ее надо включить на этапе
конфигурирования с помощью параметра --with-http_addition_module.

Этот фильтр ссылается на подзапрос, результат которого добав-
ляется в начало или в конец ответа:

server {

 root /home/www;

 location / {

 add_before_body /header;

  Изображение: в заголовке Expires установлено время Thu, 31
Dec 2037 23:55:55 GMT. Параметр max-age в заголовке Cache-Control
равен 315 360 000 секунд.

165

 add_after_body /footer;

 }

 location /header {

 proxy_pass http://127.0.0.1:8080/header;

 }

 location /footer {

 proxy_pass http://127.0.0.1:8080/footer;

 }

}

Директивы модуля addition перечислены в таблице ниже.

Директивы модуля addition

Директива Описание

add_before_body Поместить результат обработки подзапроса перед телом

ответа

add_after_body Поместить результат обработки подзапроса после тела ответа

addition_types Указывается список MIME-типов ответа (в дополнение

к text/html), для которых производится добавление.

Звездочка (*) означает все MIME-типы

Модуль sub

Модуль sub работает как фильтр, который заменяет один текст
другим. По умолчанию он не компилируется, поэтому если вам нуж-
на эта функция, то ее надо включить на этапе конфигурирования
с помощью параметра --with-http_sub_module.

Работать с ним несложно. В директиве sub_filter задается заме-
няемая и заменяющая строка, а фильтр ищет первую строку без уче-
та регистра и подставляет вместо нее вторую:

location / {

 sub_filter </head> ‘<meta name=»frontend» content=»web3»></head>’;

}

Здесь мы «на проходе» через NGINX добавили новый тег meta
в заголовок страницы.

Можно также искать все совпадения. Для этого добавьте дирек-
тиву sub_ filter_once , указав в ней параметр off. Это может быть,
например, полезно для замены всех относительных ссылок на стра-
нице абсолютными:

Динамическое изменение содержимого

166 NGINX для разработчика

location / {

 sub_filter_once off;

 sub_filter ‘<img src=»img/’ ‘<img src=»/img/’;

}

Если искомая строка содержит пробелы или кавычки, то ее не-
обходимо заключить в кавычки, чтобы NGINX распознал ее всю как
первый параметр.

NGINX автоматически применяет директиву sub_filter к любому
HTML-файлу. Если же требуется выполнить подстановку в файлах
других типов, например JavaScript или CSS, то следует указать со-
ответствующий MIME-тип с помощью директивы sub_filter_types .

location / {

 sub_filter_types text/css;

 sub_filter url(img/ ‘url(/img/’;

}

 Поскольку тип text/html подразумевается по умолчанию,
добавлять его не нужно – он не пропадет, если указать
дополнительные MIME-типы. Это справедливо для всех
директив задания MIME-типов, встречающихся в NGINX.

Все вышеупомянутые директивы сведены в следующую таблицу.

Директивы модуля sub

Директива Описание

sub_filter Задает заменяемую строку (без учета регистра) и заменяю-

щую строку. Заменяющая строка может содержать

переменные

sub_filter_once Если параметр равен off, то директива sub_filter применяет-

ся ко всем вхождениям заменяемой строки

sub_filter_types Указывается список MIME-типов ответа (в дополнение

к text/html), для которых производится замена. Звездочка (*)

означает все MIME-типы

Модуль xslt

Модуль xslt работает как фильтр, который преобразует XML-
документ с помощью таблиц стилей XSLT. По умолчанию он не ком-
пилируется, поэтому если вам нужна эта функция, то необходимо
установить библиотеки libxml2 и libxslt и включить модуль на этапе
конфигурирования с помощью параметра --with-http_xslt_module.

167

Для использования модуля xslt следует определить DTD-схему,
в которой объявлены знаковые сущности. После этого задается одна
или несколько таблиц стилей XSLT для обработки XML-документа
вместе с параметрами:

location / {
 xml_entities /usr/local/share/dtd/entities.dtd;
 xsl_stylesheet /usr/local/share/xslt/style1.xslt;
 xsl_stylesheet /usr/local/share/xslt/style2.xslt theme=blue;
}

Директивы модуля xslt перечислены в следующей таблице.

Директивы модуля xslt

Директива Описание

xml_entities Путь к файлу DTD-схемы, где объявлены знаковые сущности,

на которые есть ссылки в обрабатываемом XML-файле

xslt_param Параметры, передаваемые в таблицы стилей; значениями

являются выражения XPath

xslt_string_
param

Параметры, передаваемые в таблицы стилей; значениями

являются строки

xslt_
stylesheet

Путь к таблице стилей XSLT, применяемой для преобра зова ния

XML-ответа. Можно передать параметры в виде списка пар ключ-

значение

xslt_types Указывается список MIME-типов ответа (в дополнение к text/xml),

для которых производится замена. Звездочка (*) означает все

MIME-типы. Если результатом преобразования является HTML-

документ, то его MIME-тип будет заменен на text/html

Включение на стороне сервера

Модуль ssi также является фильтром, причем одним из самых
гибких. Он разрешает использовать технологию Server Side Includes
для встраивания логики обработки в веб-страницу. Поведение моду-
ля управляется следующими директивами.

Директивы модуля ssi

Директива Описание

ssi Разрешает обработку SSI-файлов

ssi_silent_errors Подавляет сообщение, которое обычно выводится в случае

ошибки во время обработки SSI

ssi_types Указывается список MIME-типов ответа (в дополнение

к text/html), для которых обрабатываются команды SSI.

Звездочка (*) означает все MIME-типы

Включение на стороне сервера

168 NGINX для разработчика

Команды SSI, поддерживаемые NGINX, приведены в таблице ни-
же. Все они устроены по одному образцу:

<!--# команда параметр1=значение1 параметр2=значение2 … -->

Команды SSI

Команда Аргумент Пояснение

block Определяет секцию, на которую можно сослаться в коман-
де include. Заканчивается командой <!--# endblock -->

name Имя блока

config Устанавливает глобальные параметры, используемые
во время обработки SSI

errmsg Задает строку, которая используется как сообщение об
ошибке обработки SSI. По умолчанию [an error occurred
while processing the directive]

timefmt Строка, передаваемая функции strftime() для фор-
матирования временных меток в других командах. По
умолчанию %A, %d-%b-%Y %H:%M:%S %Z

echo Выводит значение переменной

var Имя выводимой переменной

encoding Метод кодирования переменной. Допустимы значения
none, url и entity. По умолчанию entity

default Значение, которое выводится, если переменная не опре-
делена. Если не задано, по умолчанию выводится none

if Вычисляет условие. Если true, то следующий далее
блок включается. Глубина вложенности цепочки if,
elsif, else и endif не более единицы

Expr Вычисляемое логическое выражение:
 существование переменной (expr=»$var»);
 сравнение (expr=»$var = text» или expr=»$var != text»);
 сопоставление с регулярным выражением

(expr=»$var = /regexp/» или expr=»$var != /regexp/»)

include Выводит результат подзапроса

file Имя включаемого файла

virtual URI подзапроса, результат которого включается

stub Блок, включаемый вместо пустого тела или в случае
ошибки при обработке

wait Если этот параметр присутствует, то при наличии на
одной странице нескольких команд include они будут
обрабатываться последовательно

set Если подзапрос, указанный в параметре virtual,

ссылается на местоположение с директивой proxy_pass

или memcached_pass, то его результат можно сохранить

в переменной, имя которой указано в параметре set

169

Команда Аргумент Пояснение

set Создает переменную и присваивает ей значение

var Имя переменной

value Значение переменной

SSI-файл – это не что иное, как обычный HTML-файл с коман-
дами, помещенными внутрь комментариев. Таким образом, если для
какого-то местоположения, содержащего такой файл, модуль ssi не
активирован, то HTML-часть тем не менее будет отрисована, хотя
страница окажется неполной.

Ниже приведен пример SSI-файла, в котором подзапросы ис-
пользуются для формирования верхнего и нижнего колонтитулов,
а также меню:

<html>

 <head>

 <title>*** Тестовая страница SSI ***</title>

 <link rel=»stylesheet» href=»/css/layout.css» type=»text/css»/>

 <!--# block name=»boilerplate» -->

 <p>...</p>

 <!--# endblock -->

 </head>

 <body>

 <div id=»header»>

 <!--# include virtual=»/render/header?page=$uri» stub=»boilerplate» -->

 </div>

 <div id=»menu»>

 <!--# include virtual=»/render/menu?page=$uri» stub=»boilerplate» -->

 </div>

 <div id=»content»>

 <p>Здесь находится содержимое страницы.</p>

 </div>

 <div id=»footer»>

 <!--# include virtual=»/render/footer?page=$uri» stub=»boilerplate» -->

 </div>

 </body>

</html>

Команда stub применяется для отрисовки содержимого по умол-
чанию в случае, когда при обработке подзапроса произошла ошибка.

Если этих команд недостаточно для реализации задуманной логи-
ки, то можно воспользоваться модулем perl, который предоставляет
встроенный интерпретатор языка Perl, – его должно хватить для
решения практически любой задачи обработки или конфигуриро-
вания.

Включение на стороне сервера

170 NGINX для разработчика

Принятие решений в NGINX

 Иногда мы ловим себя на попытке использовать конфигураци-
онные директивы NGINX совершенно непредусмотренными спосо-
бами. С этим часто приходится сталкиваться в конфигурациях, где
производится много проверок в попытке эмулировать некую логи-
ческую цепочку. В этом случае лучше воспользоваться встроенным
в NGINX модулем perl. Он предоставляет в ваше распоряжение всю
гибкость языка Perl для создания нужной конфигурации.

Модуль perl по умолчанию не компилируется, поэтому для его
включения необходимо указать на этапе конфигурирования па-
раметр --with-http_perl_module. Кроме того, сам интерпретатор Perl
должен быть откомпилирован с флагами -Dusemultiplicity=yes (или
-Dusethreads=yes) и -Dusemymalloc=no. Когда NGINX перезагружает кон-
фигурационный файл, происходит некоторая утечка памяти в модуле
perl, и последний параметр в какой-то мере сглаживает эту проблему.

После включения в nginx встроенного интерпретатора Perl стано-
вятся доступны следующие директивы.

Директивы модуля perl

Директива Описание

perl Активирует обработчик Perl в данном местоположении.

В аргументе указывается имя обработчика или строка,

содержащая полный код подпрограммы

perl_modules Определяет дополнительные пути поиска Perl-модулей

perl_require Задает имя Perl-модуля, который должен загружаться при каж-

дом изменении конфигурационного файла NGINX. Может встре-

чаться несколько раз, если требуется указать несколько модулей

perl_set Устанавливает Perl-обработчик, который присваивает значение

переменной. В аргументе указывается имя обработчика или

строка, содержащая полный код подпрограммы

В Perl-скриптах, используемых в конфигурационном файле
NGINX, доступен объект $r, представляющий запрос. У этого объ-
екта имеются следующие методы:

  $r->args: аргументы запроса;
  $r->filename: имя файла, на который ссылается URI;
  $r->has_request_body(handler): этот обработчик вызывается, если

у запроса имеется тело;
  $r->allow_ranges: разрешает использование в ответе диапазонов

байтов;

171

  $r->discard_request_body: отбрасывает тело запроса;
  $r->header_in(header): значение в указанном заголовке запроса;
  $r->header_only: говорит NGINX, что клиенту нужно вернуть

только заголовки;
  $r->header_out(header, value): записывает в указанный заголовок

ответа указанное значение;
  $r->internal_redirect(uri): производит внутреннюю переадреса-

цию на указанный URI, после того как Perl-обработчик закон-
чит выполнение;

  $r->print(text): помещает в ответ клиенту указанный текст;
  $r->request_body: тело запроса, если оно умещается в памяти;
  $r->request_body_file: тело запроса, если оно сохранено во вре-

менном файле;
  $r->request_method: HTTP-метод запроса;
  $r->remote_addr: IP-адрес клиента;
  $r->flush: немедленно отправляет данные клиенту;
  $r->sendfile(name[, offset[, length]]): отправляет клиенту ука-

занный файл, после того как Perl-обработчик закончит вы-
полнение (можно задать необязательное смещение от начала
и длину);

  $r->send_http_header([type]): отправляет клиенту заголовки от-
вета (можно задать необязательный тип содержимого);

  $r->status(code): устанавливает в ответе HTTP-код состояния;
  $r->sleep(milliseconds, handler): взводит таймер на указанное ко-

личество миллисекунд. После срабатывания таймера NGINX
выполнит обработчик, а до этого времени продолжает обра-
ботку других запросов;

  $r->unescape(text): декодирует URI-кодированный текст;
  $r->uri: URI, указанный в запросе;
  $r->variable(name[, value]): либо возвращает именованную, ло-

кальную для запроса переменную, либо присваивает ей ука-
занное значение.

Модуль perl можно использовать также в сочетании с SSI.
В коман де SSI можно следующим образом указать код, написан-
ный на Perl:

<!--# perl sub=»module::function» arg=»parameter1» arg=»parameter2» ... -->

Рассмотрим пример работы с модулем perl. Наша цель – пере-
дать запрос проксируемому серверу, определяемому первой буквой

Принятие решений в NGINX

172 NGINX для разработчика

указанного в запросе URI-адреса. Это можно было бы сделать, опре-
делив несколько местоположений в NGINX, но при использовании
Perl-обработчика конфигурация получается короче.

Первый шаг – определить действия в Perl-обработчике:

upstreammapper.pm

имя пакета

package upstreammapper;

включаем определения методов объекта запроса в nginx

use nginx;

эта подпрограмма вызывается из nginx

sub handler {

 my $r = shift;

 my @alpha = («a»..»z»);

 my %upstreams = ();

 # не мудрствуя лукаво, описываем соответствие между буквой и

 # IP-адресом, последний октет которого изменяется от 10 до 35

 foreach my $idx (0..$#alpha) {

 $upstreams{ $alpha[$idx] } = $idx + 10;

 }

 # создаем массив, содержащий все символы URI-адреса

 my @uri = split(//,$r->uri);

 # чтобы можно было использовать первую букву в качестве ключа

 my $ip = «10.100.0.» . $upstreams{ $uri[1] };

 return $ip;

}

1;

__END__

Теперь настраиваем NGINX так, чтобы этот модуль использовал-
ся для определения подходящего сервера:

http {

 # путь относительно главного конфигурационного файла

 perl_modules perl/lib;

 perl_require upstreammapper.pm;

 # результат, возвращенный обработчиком, сохраняется в переменной $upstream

 perl_set $upstream upstreammapper::handler;

173

Передаем запрос нужному проксируемому серверу:

 location / {

 include proxy.conf;

 proxy_pass http://$upstream;

 }

}

Это очень простой пример реализации логики конфигурирования
в Perl-обработчике. Но точно так же можно решить и другие по-
добные задачи.

 Perl-обработчик должен быть максимально сфокусирован

на решении конкретной задачи. Пока NGINX ожидает его

завершения, весь рабочий процесс, в котором обрабаты-

вается данный запрос, блокирован. Поэтому ввод-вывод и

обращения к DNS следует выполнять вне Perl-обработчика.

Создание безопасной ссылки

Иногда требуется защитить часть содержимого сайта, но под-
ключать для этого механизм полноценной аутентификации не хо-
чется. Один из способов решить задачу – воспользоваться модулем
secure_link . Для его включения в NGINX необходимо на этапе кон-
фигурирования задать параметр --with-http_secure_link. В результате
становятся доступными директива secure_link_secret и переменная
$secure_link.

Принцип работы модуля secure_link заключается в вычислении
MD5-свертки ссылки, конкатенированной с секретным словом. Если
свертка совпадает с указанной в URI, то в переменную $secure_link
записывается часть URI после свертки. В противном случае пере-
менная $secure_link будет содержать пустую строку.

Одно из возможных применений – сгенерировать страницу со
ссылками на скачиваемые файлы, используя секретное слово. Это
слово записывается в конфигурационный файл NGINX и позволяет
проверить, разрешен ли доступ к ссылкам. И слово, и сама страни-
ца время от времени меняются, чтобы воспрепятствовать доступу
по сохраненной ссылке в будущем. Этот сценарий иллюстрируется
в примере ниже.

Сначала выбираем секретное слово – supersecret. Затем генериру-
ем MD5-свертки интересующих нас ссылок:

Создание безопасной ссылки

174 NGINX для разработчика

$ echo -n «alphabet_soup.pdfsupersecret» | md5sum
8082202b04066a49a1ae8da9ec4feba1 -
$ echo -n «time_again.pdfsupersecret» | md5sum
5b77faadb4f5886c2ffb81900a6b3a43 -

Теперь можно поместить ссылки в HTML-разметку:

<a href=»/downloads/8082202b04066a49a1ae8da9ec4feba1/alphabet_soup.
pdf»>alphabet soup
time
again

Эти ссылки действительны, только если в директиве secure_link_
secret в конфигурационном файле указано то же секретное слово,
которое использовалось для генерации сверток:

доступ к ресурсам, URI-адреса которых начинаются с /downloads/, защищен
location /downloads/ {
 # это строка, с помощью которой генерировались свертки
 secure_link_secret supersecret;

 # запретить доступ, если свертки не совпадают
 if ($secure_link = «») {
 return 403;
 }
 try_files /downloads/$secure_link =404;
}

Чтобы убедиться, что ссылка без свертки не работает, добавим на
HTML-страницу еще одну ссылку:

bare link

Попытка перейти по ней приводит к ошибке «403 Forbidden », как
и ожидалось.

 Описанная выше техника с применением модуля secure_

link – лишь один из способов решения поставленной задачи.

Даже в самой NGINX имеется альтернативный подход, опи-

санный на странице http://wiki.nginx.org/HttpSecureLinkModule.

Генерация изображений

 Вместо того чтобы самостоятельно писать модуль манипулирова-
ния изображениями, вы можете поручить NGINX некоторые прос-
тые преобразования: поворот, изменение размера или обрезание.

175

Чтобы воспользоваться этой функциональностью, необходимо
установить библиотеку libgd и откомпилировать модуль image_filter,
задав на этапе конфигурирования параметр --with-http_image_filter_
module. В результате становятся доступными директивы, перечислен-
ные в таблице ниже.

Библиотека GD (libgd) предназначена для манипулирова-

ния изображениями и написана на C. Она нередко исполь-

зуется в сочетании с такими языками программирования,

как PHP или Perl, с целью генерации изображений для веб-

сайтов. В NGINX модуль image_filter обращается к libgd для

создания простого механизма изменения размера изобра-

жений, который будет рассмотрен в примере ниже.

Директивы модуля image_filter

Директива Описание

empty_gif Порождает прозрачный GIF размером 11 для данного

местоположения

image_filter Преобразует изображение в соответствии с одним

из следующих параметров:

 off: отключить преобразование изображений;

 test: проверяет, что ответ представлен в формате GIF,

JPEG или PNG. В противном случае возвращается

ошибка 415 (Unsupported Media Type);

 size: выводит информацию об изображении в формате

JSON;

 rotate: поворачивает изображение против часовой

стрелки на угол 90, 180 или 270 градусов;

 resize: пропорционально уменьшает изображение до

указанных размеров. Если требуется уменьшить только

по одному измерению, то в качестве второго можно

указать «–». При использовании в сочетании с rotate

поворот производится сначала. В случае ошибки

возвращается код 415 (Unsupported Media Type);

 crop: уменьшает изображение до размера большей

из двух заданных сторон и обрезает лишние края

по другой стороне. Если требуется уменьшить только

по одному измерению, то в качестве второго можно

указать “-”. При использовании в сочетании с rotate

поворот производится сначала. В случае ошибки

возвращается код 415 (Unsupported Media Type)

image_filter_

buffer

Размер буфера для обработки изображений. Если

потребуется больше памяти, сервер вернет ошибку 415

(Unsupported Media Type)

Генерация изображений

176 NGINX для разработчика

Директива Описание

image_filter_jpeg_

quality

Качество результирующего изображения в формате JPEG.

Не рекомендуется указывать значение больше 95

image_filter_

sharpen

Повышает резкость результирующего изображения

на указанный процент

image_filter_

transparency

Определяет, сохранять ли прозрачность при обработке

изображений в форматах PNG и GIF. Подразумеваемое по

умолчанию значение on означает сохранение прозрачности

Отметим, что директива empty_gif не является частью модуля
image_filter, а включается в NGINX по умолчанию.

С помощью этих директив мы можем следующим образом по-
строить механизм изменения размера изображений:

location /img {
 try_files $uri /resize/$uri;
}

location ~* /resize/(?.<name>.*)_(?<width>[[:digit:]]*)
x(?<height>[[:digit:]]*)\.(?<extension>gif|jpe?g|png)$ {
 error_page 404 = /resizer/$name.$extension?width=$width&height=$ height;
}

location /resizer {
 image_filter resize $arg_width $arg_height;
}

Здесь мы сначала пытаемся вернуть изображение, запрошенное
в URI. Если файла с таким именем нет, то мы переходим в местопо-
ложение /resize, где определено регулярное выражение, выделяю щее
из имени файла требуемый размер изображения. Обратите внима-
ние на именованные запоминаемые группы, позволяющие создавать
переменные с осмысленными именами. Затем выделенные размеры
передаются в местоположение /resizer, так что мы имеем исходное
имя файла в URI, а ширину и высоту – в виде именованных аргу-
ментов.

Теперь все это можно объединить с директивой proxy_store или
proxy_cache, чтобы сохранить изображение с новыми размерами.
Тогда при следующем обращении к тому же URI «дергать» модуль
image_filter не понадобится:

server {

 root /home/www;

 location /img {

177

 try_files $uri /resize/$uri;
 }

 location /resize {
 error_page 404 = @resizer;
 }

 location @resizer {
 internal;
 proxy_pass http://localhost:8080$uri;
 proxy_store /home/www/img$request_uri;
 proxy_temp_path /home/www/tmp/proxy_temp;
 }
}

server {
 listen 8080;
 root /home/www/img;

 location ~* /resize/(?.<name>.*)_(?<width>[[:digit:]]*)
 x(?<height>[[:digit:]]*)\.(?<extension>gif|jpe?g|png)$ {
 error_page 404 = /resizer/$name.$extension?width=$width&heigh t=$height;
 }

 location /resizer {
 image_filter resize $arg_width $arg_height;
 }
}

Из таблицы директив модуля image_filter видно, что любая ошиб-
ка приводит к возврату кода 415. Мы можем перехватить этот код
и вернуть в этом случае пустой GIF, так что пользователь все-таки
получит изображение, а не сообщение об ошибке:

location /thumbnail {
 image_filter resize 90 90;
 error_page 415 = @empty;
}

location = @empty {
 access_log off;
 empty_gif;
}

На параметре size модуля image_filter стоит остановиться особо.
Если в некотором местоположении указан этот параметр, то воз-
вращается не само изображение, а сведения о нем. Это может быть
полезно, когда приложению нужно получить метаданные изображе-
ния, перед тем как производить изменение размера или обрезание:

Генерация изображений

178 NGINX для разработчика

location /img {
 image_filter size;
}

Результатом является JSON-объект такого вида:

{ «img» : { «width»: 150, «height»: 200, «type»: «png» } }

Отслеживание посетителей сайта
 Модуль userid предлагает ненавязчивый способ отслеживать по-

сетителей сайта. Он устанавливает куки, идентифицирующие уни-
кальных клиентов. Значение куки сохраняется в переменной $uid_set.
Когда пользователь снова зайдет на сайт со все еще действитель-
ными куки, значение куки можно будет получить из переменной
$uid_got. Ниже приведен пример использования.

http {
 log_format useridcomb ‘$remote_addr - $uid_got [$time_local] ‘
 ‘”$request” $status $body_bytes_sent ‘
 ‘”$http_referer” “$http_user_agent”’;
 server {
 server_name .example.com;
 access_log logs/example.com-access.log useridcomb;

 userid on;
 userid_name uid;
 userid_domain example.com;
 userid_path /;
 userid_expires 365d;
 userid_p3p ‘policyref=”/w3c/p3p.xml”, CP=”CUR ADM OUR NOR STA NID”’;
 }
}

Все эти директивы перечислены в таблице ниже.

Директивы модуля userid

Директива Описание

userid Активирует модуль в соответствии со следующими

параметрами:

 on: устанавливает куки версии 2 и записывает в журнал

полученные куки;

 v1: устанавливает куки версии 1 и записывает в журнал

полученные куки;

 log: отключает установку куков, но продолжает записывать

их в журнал;

 off: отключает как установку, так и протоколирование куков

179

Директива Описание

userid_domain Настраивает записываемый в куки домен

userid_expires Задает срок хранения куки. Если указано значение max,

то устанавливается дата 31 Dec 2037 23:55:55 GMT

userid_name Задает имя куки (по умолчанию uid)

userid_p3p Настраивает заголовок P3P для сайтов, которые объявляют

свою политику конфиденциальности, следуя протоколу

Platform for Privacy Preferences Project

userid_path Задает путь, указываемый в куки

userid_service Идентификатор службы, которая устанавливает куки. На-

пример, для куки версии 2 по умолчанию подразумевается

IP-адрес сервера, установившего куки

Предотвращение случайного

выполнения кода

 Иногда при разработке конфигурационного файла можно слу-
чайно включить не то, что предполагалось. Рассмотрим, к примеру,
такой конфигурационный блок:

location ~* \.php {

 include fastcgi_params;

 fastcgi_pass 127.0.0.1:9000;

}

На первый взгляд, мы здесь просто передаем все запросы к PHP-
файлам FastCGI-серверу, который отвечает за их разработку. И все
было бы хорошо, если бы PHP обрабатывала только файлы, являю-
щиеся частью приложения. Однако из-за различий в способе компи-
ляции и настройки PHP так бывает не всегда. Это может оказаться
проблемой, если загружаемые пользователями файлы попадают в ту
же часть файловой системы, где находятся PHP-файлы.

Можно запретить пользователям загружать файлы с расширени-
ем .php, разрешив только расширения .jpg, .png и .gif. Но злонаме-
ренный пользователь мог бы загрузить графический файл с внедрен-
ным PHP-кодом и заставить FastCGI-сервер выполнить этот код,
передав URI, в котором указано имя загруженного файла.

Чтобы избежать этого, нужно либо присвоить параметру PHP cgi.
fix_pathinfo значение 0, либо модифицировать конфигурацию сле-
дующим образом:

Предотвращение случайного выполнения кода

180 NGINX для разработчика

location ~* \.php {

 try_files $uri =404;

 include fastcgi_params;

 fastcgi_pass 127.0.0.1:9000;

}

Здесь мы с помощью директивы try_files проверяем существо-
вание файла, перед тем как передавать запрос FastCGI-серверу для
обработки PHP-приложением.

Не забывайте анализировать конфигурацию на предмет

соответствия поставленным целям. Если имеется всего

несколько файлов, то, быть может, лучше явно перечис-

лить, какие PHP-файлы разрешено исполнять, чем описы-

вать секцию location регулярным выражением и добавлять

директивы try_files.

Резюме

NGINX предлагает различные способы интеграции приложения
с высокопроизводительным веб-сервером. Мы рассмотрели несколь-
ко таких возможностей как для унаследованных, так и для вновь
разрабатываемых приложений. Кэширование играет важную роль
в любом современном веб-приложении. В NGINX реализованы пас-
сивные и активные механизмы кэширования с целью более быстрого
возврата веб-страниц.

Мы также показали, как с помощью NGINX изменить ответ, до-
бавив или заменив текст. NGINX поддерживает также технологию
включения на стороне сервера – SSI. Мы видели, как команды SSI
вставляются в обычную HTML-разметку. Затем мы рассмотрели
мощные возможности встроенного в NGINX интерпретатора Perl.
С помощью стандартных средств NGINX возможно также выпол-
нять преобразование изображений. Мы обсудили установку уни-
кальных куков для отслеживания посетителей веб-сайта. И заверши-
ли главу предостережением – как предотвратить непреднамеренное
выполнение кода. В общем и целом, используя NGINX в качестве
веб-сервера, разработчик получает немало полезных инструментов.

В следующей главе мы поговорим о технике поиска неполадок и
объясним, как поступать, когда что-то идет вразрез с ожиданиями.

Глава 8. Техника устранения
неполадок

Наш мир несовершенен. Вопреки самым лучшим намерениям и тща-
тельному планированию иногда что-то идет не так, как мы рассчи-
тывали. Тогда нужно на шаг отступить и выяснить, что случилось.
Если с первого взгляда причина неясна, то придется обратиться
к методикам исследования проблемы. Процедура, позволяющая по-
нять, в чем состоит ошибка и как ее исправить, и называется устра-
нением неполадок.

В этой главе мы рассмотрим различные приемы устранения не-
поладок при работе с NGINX:

  Анализ журналов.
  Настройка расширенного протоколирования.
  Типичные ошибки конфигурирования.
  Ограничения операционной системы.
  Проблемы с производительностью.
  Использование модуля Stub Status.

Анализ журналов

 Прежде чем приступать к длительному сеансу отладки, пытаясь
понять, в чем причина проблемы, полезно заглянуть в журналы.
Час то в них можно найти ключ, который поможет проследить ис-
токи ошибки и исправить ее. Но сообщения в файле error_log иногда
выглядят загадочно, поэтому обсудим формат журнальных записей
и на примерах покажем, как их интерпретировать.

Форматы записей в журнале ошибок

 Для записи в журнал error_log в NGINX применяются две разные
функции. Форматы в них устроены следующим образом:

182 Техника устранения неполадок

<временная метка> [уровень-протоколирования] <pid главного/
рабочего процесса>#0: сообщение

Например:

2012/10/14 18:56:41 [notice] 2761#0: using inherited sockets from «6;»

Это пример информационного сообщения (уровень протоколи-
рования notice). В нем говорится, что процесс nginx заменил испол-
нявшийся ранее и успешно унаследовал сокеты от старого процесса.

В случае ошибки порождается сообщение такого вида:

2012/10/14 18:50:34 [error] 2632#0: *1 open() «/opt/nginx/html/blog» failed

(2: No such file or directory), client: 127.0.0.1, server: www. example.com,

request: «GET /blog HTTP/1.0», host: «www.example.com»

В зависимости от ошибки может быть выведено либо сообщение
операционной системы (как в данном случае), либо сообщение са-
мого NGINX. В этом сообщении можно выделить следующие ком-
поненты:

  временная метка (2012/10/14 18:50:34);
  уровень протоколирования (error);
  идентификатор рабочего процесса (2632);
  номер соединения (1);
  системный вызов (open);
  аргумент системного вызова (/opt/nginx/html/blog);
  сообщение об ошибке, возвращенное системным вызовом

(2: No such file or directory);
  IP-адрес клиента, который отправил запрос, приведший

к ошибке (127.0.0.1);
  сервер, обслуживавший данный запрос (www.example.com);
  сам запрос (GET /blog HTTP/1.0);
  заголовок Host запроса (www.example.com).

Ниже приведен пример критической ошибки:

2012/10/14 19:11:50 [crit] 3142#0: the changing binary signal is ignored: you

should shutdown or terminate before either old or new binary’s process

Критическая ошибка означает, что NGINX не смог выполнить за-
прошенного действия. Если в этот момент NGINX еще не работал,
значит, он и не запустился.

Ниже приведен пример сообщения о чрезвычайной ошибке:

183

2012/10/14 19:12:05 [emerg] 3195#0: bind() to 0.0.0.0:80 failed (98: Address

already in use)

Чрезвычайная ошибка также означает, что NGINX не смог сде-
лать то, о чем его просили. Если это произошло при попытке запу-
ска, NGINX не запустился, а если во время работы в ответ на требо-
вание перечитать конфигурационный файл – значит, запрошенное
изменение не выполнено.

 Если вас интересует, почему после модификации кон-

фигурационного файла ничего не изменилось, загляните

в журнал ошибок. Скорее всего, NGINX обнаружил ошибку

в файле и не применил изменения.

Примеры записей в журнале ошибок

 Ниже приведены примеры сообщений об ошибках, взятые из
реальных журналов. После каждого примера дается краткое пояс-
нение. Отметим, что в ваших журналах текст сообщения может от-
личаться в связи с улучшениями в новых версиях NGINX.

2012/11/29 21:31:34 [error] 6338#0: *1 upstream prematurely closed connection

while reading response header from upstream, client: 127.0.0.1, server: ,

request: «GET / HTTP/1.1», upstream: «fastcgi://127.0.0.1:8080», host: «www.

example.com»

Это сообщение можно интерпретировать двояко. Возможно, в сер-
вере, с которым мы взаимодействуем, некорректно реализован про-
токол FastCGI. Но, быть может, мы по ошибке направили трафик
HTTP-серверу вместо FastCGI-сервера. В последнем случае пробле-
му можно решить простым изменением конфигурации (включить
директиву fastcgi_pass вместо proxy_pass или правильно задать адрес
FastCGI-сервера).

Это сообщение может также означать, что проксируемый сервер
просто слишком долго генерировал ответ. Причин может быть мас-
са, но на стороне NGINX решение очевидно: увеличить тайм-аут.
В зависимости от того, какой модуль устанавливал соединение,
нужно будет изменить подразумеваемое по умолчанию значение
60s в директиве proxy_read_timeout или fastcgi_read_timeout (или еще
в какой-то директиве вида *_read_timeout).

Анализ журналов

184 Техника устранения неполадок

2012/11/29 06:31:42 [error] 2589#0: *6437 client intended to send too large

body: 13106010 bytes, client: 127.0.0.1, server: , request: «POST /upload_file.

php HTTP/1.1», host: «www.example.com», referrer: «http:// www.example.com/

file_upload.html»

Здесь все просто. NGINX сообщает, что не смог закачать слишком
большой файл. Чтобы решить проблему, нужно увеличить значение
в директиве client_body_size. Имейте в виду, что из-за кодирования
объем закачиваемых данных может процентов на 30 превышать раз-
мер самого файла (поэтому, если вы собираетесь разрешить пользо-
вателям закачивать файлы размером до 12 МБ, задавайте значение
16m).

2012/10/14 19:51:22 [emerg] 3969#0: «proxy_pass» cannot have URI part in

location given by regular expression, or inside named location, or inside «if»

statement, or inside «limit_except» block in /opt/nginx/conf/nginx. conf:16

Здесь мы видим, что NGINX не запустился из-за ошибки в кон-
фигурационном файле. В чем дело, описано очень подробно. Проб-
лема в том, что в директиве proxy_pass присутствует URL, которого
в этом месте быть не должно. NGINX даже сообщает, в какой строке
(16) какого файла (/opt/nginx/conf/nginx.conf) произошла ошибка.

2012/10/14 18:46:26 [emerg] 2584#0: mkdir() «/home/www/tmp/proxy_temp» failed

(2: No such file or directory)

В этом примере NGINX не запустился, потому что не смог сде-
лать то, о чем его просили. В директиве proxy_temp_path указано, где
сохранять временные файлы при проксировании. Если NGINX не
сможет создать такой каталог, то не запустится, поэтому лучше соз-
дайте требуемый каталог заранее.

2012/10/14 18:46:54 [emerg] 2593#0: unknown directive «client_body_temp_ path»

in /opt/nginx/conf/nginx.conf:6

А вот это сообщение озадачивает. Мы знаем, что директива client_
body_temp_path существует, но NGINX почему-то не распознает ее. Но,
поразмыслив, как NGINX обрабатывает конфигурационный файл,
мы понимаем, что сообщение имеет смысл. NGINX построен по мо-
дульному принципу. Каждый модуль отвечает за обработку своего
конфигурационного контекста. Отсюда можно сделать вывод, что
эта директива оказалась вне контекста модуля, который ее понимает.

185

2012/10/16 20:56:31 [emerg] 3039#0: «try_files» directive is not allowed here

in /opt/nginx/conf/nginx.conf:16

Иногда NGINX подсказывает, что не так. В примере выше NGINX
распознал директиву try_files , но говорит, что она находится не там,
где надо. И при этом любезно сообщает, в каком месте конфигура-
ционного файла произошла ошибка, так что найти ее не составит
труда.

2012/10/16 20:56:42 [emerg] 3043#0: host not found in upstream «tickets.

example.com» in /opt/nginx/conf/nginx.conf:22

Это чрезвычайное сообщение показывает, насколько сильно
NGINX зависит от DNS, если в конфигурационном файле употреб-
ляются доменные имена. Если NGINX не может разрешить имена,
встречающиеся в директивах upstream, proxy_pass, fastcgi_pass или
иных директивах вида *_pass, то он не запускается. Поэтому так
важен порядок инициализации различных подсистем при загрузке
операционной системы. Позаботьтесь о том, чтобы к моменту запуска
NGINX подсистема разрешения доменных имен уже была запущена.

2012/10/29 18:59:26 [emerg] 2287#0: unexpected «}» in /opt/nginx/conf/ nginx.conf:40

Это сообщение означает, что NGINX не смог закрыть конфи-
гурационный контекст. Что-то предшествующее указанной строке
помешало NGINX сформировать полный контекст, заключенный
в фигурные скобки. Обычно так бывает, когда предыдущая строка
не заканчивается точкой с запятой, поэтому NGINX считает про-
читанный символ } частью незавершенной строки.

2012/10/28 21:38:34 [emerg] 2318#0: unexpected end of file, expecting «}» in /

opt/nginx/conf/nginx.conf:21

Это сообщение тесно связано с предыдущим и означает, что
NGINX дошел до конца конфигурационного файла, но не нашел
парную закрывающую скобку. Такая ошибка случается, когда скобки
{ и } не сбалансированы. Текстовый редактор, отслеживающий соот-
ветственные скобки, поможет понять, какая отсутствует. Вниматель-
но следите, куда вставляете отсутствующую скобку; если допустить
ошибку, то можно получить совершенно не то, что ожидалось.

2012/10/29 18:50:11 [emerg] 2116#0: unknown «exclusion» variable

Анализ журналов

186 Техника устранения неполадок

Это пример использования необъявленной переменной; сообще-
ние означает, что переменная $exclusion встретилась в конфигураци-
онном файле до директивы set, map или geo, в которой определено ее
значение. Возможно, все объясняется простой опечаткой, например
была определена переменная $exclusions, но по ошибке в ссылке фи-
гурирует имя $exclusion.

2012/11/29 21:26:51 [error] 3446#0: *2849 SSL3_GET_FINISHED:digest check failed

Это означает, что нужно запретить повторное использование се-
ансов SSL. Сделать это можно, задав в директиве proxy_ssl_session_
reuse значение off.

Настройка расширенного

протоколирования

 При нормальных обстоятельствах мы хотим, чтобы журналы бы-
ли как можно меньше. Обычно нас интересует, к каким URI-адресам
обращались клиенты, когда это происходило и – в случае ошибки –
сообщение о ней. Если же требуется больше информации, то при-
дется включить отладочное протоколирование.

Отладочное протоколирование

 Для активации отладочного протоколирования на этапе конфи-
гурирования следует задать флаг --with-debug--with-debug . Поскольку
делать это в производственной системе, которая должна работать
максимально быстро, не рекомендуется, то нужно подготовить два
варианта двоичного файла nginx: один для производственной систе-
мы и другой – откомпилированный точно с такими же параметрами
и флагом --with-debug, – который можно будет подставить вместо
первого, когда возникает необходимость в отладке.

Переключение двоичного файла во время

выполнения

 NGINX может переключать двоичный файл во время выполне-
ния. Заменив один файл nginx другим – то ли для перехода на новую
версию, то ли вследствие желания изменить состав включенных мо-
дулей, – мы можем приступить к процедуре переключения.

187

1. Послать работающему главному процессу NGINX сигнал USR2,
по которому тот запускает новый главный процесс. В резуль-
тате PID-файл процесса будет переименован с добавлением
суффикса .oldbin (например, /var/run/nginx.pid.oldbin):
kill -USR2 `cat /var/run/nginx.pid`

 В этот момент у нас есть два главных процесса NGINX, каж-
дый со своим набором рабочих процессов для обработки по-
ступающих запросов:
root 1149 0.0 0.2 20900 11768 ?? Is Fri03PM 0:00.13 nginx: master

process /usr/local/sbin/nginx

www 36660 0.0 0.2 20900 11992 ?? S 12:52PM 0:00.19 nginx: worker process

(nginx)

www 36661 0.0 0.2 20900 11992 ?? S 12:52PM 0:00.19 nginx: worker process

(nginx)

www 36662 0.0 0.2 20900 12032 ?? I 12:52PM 0:00.01 nginx: worker process

(nginx)

www 36663 0.0 0.2 20900 11992 ?? S 12:52PM 0:00.18 nginx: worker process

(nginx)

root 50725 0.0 0.1 18844 8408 ?? I 3:49PM 0:00.05 nginx: master process

/usr/local/sbin/nginx

www 50726 0.0 0.1 18844 9240 ?? I 3:49PM 0:00.00 nginx: worker process

(nginx)

www 50727 0.0 0.1 18844 9240 ?? S 3:49PM 0:00.01 nginx: worker process

(nginx)

www 50728 0.0 0.1 18844 9240 ?? S 3:49PM 0:00.01 nginx: worker process

(nginx)

www 50729 0.0 0.1 18844 9240 ?? S 3:49PM 0:00.01 nginx: worker process

(nginx)

2. Послать старому главному процессу NGINX сигнал WINCH, по
которому тот прекращает прием новых запросов и уничтожает
свои рабочие процессы по мере того, как они заканчивают об-
работку начатых запросов.
kill -WINCH `cat /var/run/nginx.pid.oldbin`

 В ответ мы получаем такие сообщения:
root 1149 0.0 0.2 20900 11768 ?? Ss Fri03PM 0:00.14 nginx: master

process /usr/local/sbin/nginx

root 50725 0.0 0.1 18844 8408 ?? I 3:49PM 0:00.05 nginx: master process

/usr/local/sbin/nginx

www 50726 0.0 0.1 18844 9240 ?? I 3:49PM 0:00.00 nginx: worker process

(nginx)

www 50727 0.0 0.1 18844 9240 ?? S 3:49PM 0:00.01 nginx: worker process

(nginx)

Настройка расширенного протоколирования

188 Техника устранения неполадок

www 50728 0.0 0.1 18844 9240 ?? S 3:49PM 0:00.01 nginx: worker process

(nginx)

www 50729 0.0 0.1 18844 9240 ?? S 3:49PM 0:00.01 nginx: worker process

(nginx)

3. Послать старому главному процессу NGINX сигнал QUIT, после
того как все его рабочие процессы завершились. После этого
остается только новый nginx, который обрабатывает все запросы:
kill -QUIT `cat /var/run/nginx.pid.oldbin`

Если в новом двоичном файле обнаружится какая-то ошибка, то
мы можем вернуться к старому, если еще не успели послать ему
сигнал QUIT:

kill -HUP `cat /var/run/nginx.pid.oldbin`

kill -QUIT `cat /var/run/nginx.pid`

Если новый главный процесс все еще работает, ему можно по-
слать сигнал TERM для принудительного завершения:

kill -TERM `cat /var/run/nginx.pid`

Аналогично новые рабочие процессы, продолжающие работать,
могут быть остановлены сигналом KILL .

Некоторые операционные системы автоматически выпол-

няют процедуру замены исполняемого файла после мо-

дернизации пакета nginx.

Запустив nginx с поддержкой отладки, мы можем настроить от-
ладочное протоколирование:

user www;

events {
 worker_connections 1024;
}

error_log logs/debug.log debug;

http {
 …
}

Директиву error_log мы поместили в главный контекст конфигу-
рации NGINX, чтобы ее действие распространялось на все дочерние

189

контексты, где эта директива не переопределена. Можно включить
несколько директив error_log с разными уровнями протоколирова-
ния, указывающих на разные файлы. Помимо debug, в директиве
error_log могут быть заданы следующие параметры:

  debug_core

  debug_alloc

  debug_mutex

  debug_event

  debug_http

  debug_imap

Каждый из них предназначен для отладки одного модуля NGINX.
Имеет также смысл сконфигурировать отдельный журнал оши-

бок для каждого виртуального сервера, тогда в него будут попадать
ошибки, относящиеся только к этому серверу. Эту идею можно обоб-
щить на модули core и http:

error_log logs/core_error.log;

events {

 worker_connections 1024;

}

http {

 error_log logs/http_error.log;

 server {

 server_name www.example.com;

 error_log logs/www.example.com_error.log;

 }

 server {

 server_name www.example.org;

 error_log logs/www.example.org_error.log;

 }

}

Следуя этому образцу, мы можем отлаживать конкретный вир-
туальный сервер, если задача состоит именно в этом.

server {

 server_name www.example.org;

 error_log logs/www.example.org_debug.log debug_http;

}

Настройка расширенного протоколирования

190 Техника устранения неполадок

Ниже приведен пример отладочных сообщений для одного запро-
са, когда задан уровень debug_http. Распечатка перемежается коммен-
тариями.

<timestamp> [debug] <worker pid>#0: *<connection number> http cl:-1 max:1048576

На ранней стадии обработки запроса активируется модуль rewrite:

<timestamp> [debug] <worker pid>#0: *<connection number> rewrite phase: 3

<timestamp> [debug] <worker pid>#0: *<connection number> post rewrite phase: 4

<timestamp> [debug] <worker pid>#0: *<connection number> generic phase: 5

<timestamp> [debug] <worker pid>#0: *<connection number> generic phase: 6

<timestamp> [debug] <worker pid>#0: *<connection number> generic phase: 7

Проверяются ограничения доступа:

<timestamp> [debug] <worker pid>#0: *<connection number> access phase: 8

<timestamp> [debug] <worker pid>#0: *<connection number> access: 0100007F

FFFFFFFF 0100007F

Далее разбирается директива try_files. Путем конкатенации строки
(http script copy) и переменной (http script var), указанных в парамет-
рах этой директивы, конструируется относительный путь к файлу:

<timestamp> [debug] <worker pid>#0: *<connection number> try files phase: 11

<timestamp> [debug] <worker pid>#0: *<connection number> http script copy: “/”

<timestamp> [debug] <worker pid>#0: *<connection number> http script var:

“ImageFile.jpg”

Результат вычисления конкатенируется с путем, заданным в ди-
рективе alias или root для данного местоположения, в результате
чего получается полный путь:

<timestamp> [debug] <worker pid>#0: *<connection number> trying to use file: «/

ImageFile.jpg» «/data/images/ImageFile.jpg»

<timestamp> [debug] <worker pid>#0: *<connection number> try file uri: «/

ImageFile.jpg»

Обрабатывается содержимое найденного файла:

<timestamp> [debug] <worker pid>#0: *<connection number> content phase: 12

<timestamp> [debug] <worker pid>#0: *<connection number> content phase: 13

<timestamp> [debug] <worker pid>#0: *<connection number> content phase: 14

<timestamp> [debug] <worker pid>#0: *<connection number> content phase: 15

<timestamp> [debug] <worker pid>#0: *<connection number> content phase: 16

191

http filename ниже – это полный путь к отправляемому файлу:

<timestamp> [debug] <worker pid>#0: *<connection number> http filename: “/data/

images/ImageFile.jpg”

Модуль static принимает дескриптор этого файла:

<timestamp> [debug] <worker pid>#0: *<connection number> http static fd: 15

Временно сохраненное тело ответа больше не нужно:

<timestamp> [debug] <worker pid>#0: *<connection number> http set discard body

Имея всю информацию о файле, NGINX может сконструировать
заголовки ответа:

<timestamp> [debug] <worker pid>#0: *<connection number> HTTP/1.1 200 OK
Server: nginx/<version>
Date: <Date header>
Content-Type: <MIME type>
Content-Length: <filesize>
Last-Modified: <Last-Modified header>
Connection: keep-alive
Accept-Ranges: bytes

На следующей фазе применяются активные фильтры, которые
могут производить различные преобразования:

<timestamp> [debug] <worker pid>#0: *<connection number> http write filter: l:0

f:0 s:219

<timestamp> [debug] <worker pid>#0: *<connection number> http output filter «/

ImageFile.jpg?file=ImageFile.jpg»

<timestamp> [debug] <worker pid>#0: *<connection number> http copy filter: «/

ImageFile.jpg?file=ImageFile.jpg»

<timestamp> [debug] <worker pid>#0: *<connection number> http postpone filter

«/ImageFile.jpg?file=ImageFile.jpg» 00007FFF30383040

<timestamp> [debug] <worker pid>#0: *<connection number> http write filter: l:1

f:0 s:480317

<timestamp> [debug] <worker pid>#0: *<connection number> http write filter

limit 0

<timestamp> [debug] <worker pid>#0: *<connection number> http write filter

0000000001911050

<timestamp> [debug] <worker pid>#0: *<connection number> http copy filter: -2

«/ImageFile.jpg?file=ImageFile.jpg»

<timestamp> [debug] <worker pid>#0: *<connection number> http finalize request:

-2, «/ImageFile.jpg?file=ImageFile.jpg» a:1, c:1

<timestamp> [debug] <worker pid>#0: *<connection number> http run request: «/

ImageFile.jpg?file=ImageFile.jpg»

Настройка расширенного протоколирования

192 Техника устранения неполадок

<timestamp> [debug] <worker pid>#0: *<connection number> http writer handler:

«/ImageFile.jpg?file=ImageFile.jpg»

<timestamp> [debug] <worker pid>#0: *<connection number> http output filter «/

ImageFile.jpg?file=ImageFile.jpg»

<timestamp> [debug] <worker pid>#0: *<connection number> http copy filter: «/

ImageFile.jpg?file=ImageFile.jpg»

<timestamp> [debug] <worker pid>#0: *<connection number> http postpone filter

«/ImageFile.jpg?file=ImageFile.jpg» 0000000000000000

<timestamp> [debug] <worker pid>#0: *<connection number> http write filter: l:1

f:0 s:234338

<timestamp> [debug] <worker pid>#0: *<connection number> http write filter

limit 0

<timestamp> [debug] <worker pid>#0: *<connection number> http write filter

0000000000000000

<timestamp> [debug] <worker pid>#0: *<connection number> http copy filter: 0 «/

ImageFile.jpg?file=ImageFile.jpg»

<timestamp> [debug] <worker pid>#0: *<connection number> http writer output

filter: 0, «/ImageFile.jpg?file=ImageFile.jpg»

<timestamp> [debug] <worker pid>#0: *<connection number> http writer done: «/

ImageFile.jpg?file=ImageFile.jpg»

После того как все фильтры отработали, обработка запроса за-
вершается:

<timestamp> [debug] <worker pid>#0: *<connection number> http finalize request:

0, «/ImageFile.jpg?file=ImageFile.jpg» a:1, c:1

Обработчик keepalive смотрит, оставить ли соединение открытым:

<timestamp> [debug] <worker pid>#0: *<connection number> set http keepalive

handler

<timestamp> [debug] <worker pid>#0: *<connection number> http close request

Запрос обработан, можно поместить запись о нем в журнал:

<timestamp> [debug] <worker pid>#0: *<connection number> http log handler

<timestamp> [debug] <worker pid>#0: *<connection number> hc free:

0000000000000000 0

<timestamp> [debug] <worker pid>#0: *<connection number> hc busy:

0000000000000000 0

<timestamp> [debug] <worker pid>#0: *<connection number> tcp_nodelay

Клиент закрыл соединение, и NGINX – тоже:

<timestamp> [debug] <worker pid>#0: *<connection number> http keepalive handler

<timestamp> [info] <worker pid>#0: *<connection number> client <IP address>

closed keepalive connection

<timestamp> [debug] <worker pid>#0: *<connection number> close http connection: 3

193

Как видите, информации немало. Если вы никак не можете по-
нять, почему некоторая конфигурация не работает, изучение отла-
дочного журнала может оказаться очень кстати. Из него видно, в ка-
ком порядке работают фильтры и какие обработчики вызывались
для обслуживания запроса.

Использование журналов доступа

для отладки

 Когда я только учился программировать и не мог найти источ-
ник ошибки, мой друг советовал «понаставить printf’ы». Именно так
ему удавалось быстрее всего разобраться в проблеме. А смысл со-
вета заключался в том, чтобы печатать сообщения в каждой точке
ветвления программы, тогда было бы видно, по какому пути шло
выполнение и где логика дала сбой.

Ту же идею можно применить и к настройке NGINX. Только
вместо printf() мы используем директивы log_format и access_log
для визуализации и анализа порядка обработки запроса. Директи-
ва log_format позволяет увидеть значения переменных в различных
точках конфигурации:

http {
 log_format sentlog ‘[$time_local] «$request» $status $body_bytes_ sent ‘;
 log_format imagelog ‘[$time_local] $image_file $image_type ‘
‘$body_bytes_sent $status’;
 log_format authlog ‘[$time_local] $remote_addr $remote_user ‘
‘”$request” $status’;
}

Используя несколько директив access_log, мы можем посмотреть,
какие местоположения вызываются в различные моменты времени.
Настроив свой журнал доступа для каждого местоположения, легко
понять, какие не используются вовсе. Любое изменение в таком мес-
тоположении не повлияет на обработку запроса. Первыми следует
изучить местоположения, расположенные выше в иерархии.

http {

 log_format sentlog ‘[$time_local] «$request» $status $body_bytes_ sent ‘;

 log_format imagelog ‘[$time_local] $image_file $image_type ‘

‘$body_bytes_sent $status’;

 log_format authlog ‘[$time_local] $remote_addr $remote_user ‘

‘»$request» $status’;

 server {

Настройка расширенного протоколирования

194 Техника устранения неполадок

 server_name .example.com;

 root /home/www;

 location / {

 access_log logs/example.com-access.log combined;

 access_log logs/example.com-root_access.log sentlog;

 rewrite ^/(.*)\.(png|jpg|gif)$ /images/$1.$2;

 set $image_file $1;

 set $image_type $2;

 }

 location /images {

 access_log logs/example.com-images_access.log imagelog;

 }

 location /auth {

 auth_basic «authorized area»;

 auth_basic_user_file conf/htpasswd;

 deny all;

 access_log logs/example.com-auth_access.log authlog;

 }

 }

}

В этом примере в каждое местоположение включена директива
access_log, и для каждого журнала доступа задан свой формат в ди-
рективе log_format. Заглянув в журнал доступа, мы сможем опреде-
лить, какие запросы в какие местоположения попадали. Если в фай-
ле example.com-images_access.log не оказалось ни одной записи, значит,
ни один запрос не достиг местоположения /images. Сравнив содержи-
мое различных файлов, нетрудно понять, правильные ли значения
присвоены переменным. Например, если переменные $image_file и
$image_ type пусты, то соответствующие им в формате imagelog места
окажутся незаполненными в журнале доступа.

Типичные ошибки конфигурирования

 Следующий шаг при поиске неполадок – разобраться, достигает
ли конфигурация поставленных перед ней целей. Интернет вот уже
много лет пестрит конфигурациями для NGINX. Зачастую они бы-
ли написаны для прежних версий и решали какую-то конкретную
задачу. Увы, эти конфигурации копируют бездумно, не понимая,

195

для чего они предназначены. Иногда существует более правильный
способ решить ту же задачу, воспользовавшись более современными
средствами.

Использование if вместо try_files

 Рассмотрим, к примеру, случай, когда требуется доставить пользо-
вателю статический файл, если он есть в файловой системе, а в про-
тивном случае передать запрос FastCGI-серверу:

server {

 root /var/www/html;

 location / {

 if (!-f $request_filename) {

 include fastcgi_params;

 fastcgi_pass 127.0.0.1:9000;

 break;

 }

 }

}

Так обычно решалась эта задача до появления директивы try_
files в версии NGINX 0.7.27. Сейчас такая конфигурация считает-
ся ошибкой, потому что if используется внутри location. В разделе
«Преобразование конфигурации с 'if' в более современную форму»
из главы 4 было объяснено, почему это может иметь неожиданные
последствия и даже стать причиной аварийного завершения про-
граммы. Правильное решение выглядит так:

server {

 root /var/www/html;

 location / {

 try_files $uri $uri/ @fastcgi;

 }

 location @fastcgi {

 include fastcgi_params;

 fastcgi_pass 127.0.0.1:9000;

 }

}

Директива try_files смотрит, существует ли файл, и, если нет,
передает запрос FastCGI-серверу. Никакие if при этом не нужны.

Типичные ошибки конфигурирования

196 Техника устранения неполадок

Использование if для ветвления по имени

хоста

 Не счесть примеров конфигураций, в которых if используется
для переадресации запросов на основе HTTP-заголовка Host. В этом
случае конфигурация работает как селектор, вычисляемый для каж-
дого запроса:

server {

 server_name .example.com;

 root /var/www/html;

 if ($host ~* ^example\.com) {

 rewrite ^/(.*)$ http://www.example.com/$1 redirect;

 }

}

Вместо того чтобы тратить ресурсы на вычисление if для каждого
запроса, не проще ли воспользоваться обычной процедурой NGINX
маршрутизации запросов к подходящему виртуальному серверу?
Тогда переадресацию можно поместить туда, где ей место, и при-
том без всякого rewrite:

server {

 server_name example.com;

 return 301 $scheme://www.example.com;

}

server {

 server_name www.example.com;

 root /var/www/html;

 location / {

 …

 }

}

Неоптимальное использование контекста

server

Еще одно место, где некритичное копирование фрагментов час-
то приводит к некорректной конфигурации, – это контекст server.
В нем описывается виртуальный сервер (все, что адресуется с по-
мощью имени, указанного в директиве server_name). Но эта идея в ко-
пируемых фрагментах не находит должного отражения.

197

Часто приходится видеть директивы root и index в каждой секции
location:

server {

 server_name www.example.com;

 location / {

 root /var/www/html;

 index index.php index.html index.htm;

 }

 location /ftp{

 root /var/www/html;

 index index.php index.html index.htm;

 }

}

Это может стать причиной ошибок при добавлении нового место-
положения, если забыть скопировать туда эти директивы или ско-
пировать их неправильно. Смысл директив root и index заключается
соответственно в том, чтобы указать корень документов для вир-
туального сервера и файлы, которые следует поискать, когда в URI-
адресе указан только каталог. Любая секция location наследует эти
значения от контекста server.

server {

 server_name www.example.com;

 root /var/www/html;

 index index.php index.html index.htm;

 location / {

 ...

 }

 location /ftp{

 ...

 }

}

Здесь мы указали, что все файлы находятся в каталоге /var/www/
html и его подкаталогах, и в любом местоположении следует искать
файлы index.php, index.html и index.htm именно в таком порядке.

Типичные ошибки конфигурирования

198 Техника устранения неполадок

Ограничения операционной системы

 Обычно операционная система – последнее место, которое мы по-
дозреваем, сталкиваясь с ошибкой. Мы предполагаем, что человек,
который устанавливал систему, оптимизировал ее под нашу рабочую
нагрузку и протестировал в похожих условиях. Часто это не так.
Бывает, что приходится копаться в настройках самой операционной
системы, чтобы найти узкое место.

Что касается NGINX, то обращать внимание нужно прежде всего
на два потенциальных источника проблем: ограничение на коли-
чество файловых дескрипторов и сетевые лимиты .

Ограничение на количество файловых

дескрипторов

 В NGINX файловые дескрипторы применяются несколькими спо-
собами. Прежде всего дескриптор необходим для каждого соедине-
ния с клиентом. Для каждого исходящего соединения (а они обя-
зательно присутствуют, когда NGINX играет роль прокси-сервера)
требуется уникальная пара (IP-адрес, номер TCP-порта), которая
также представляется файловым дескриптором. Дескриптор нужен
и тогда, когда NGINX возвращает статический файл или ответ из
своего кэша. Как видите, количество потребных дескрипторов может
быстро возрастать с увеличением количества одновременных поль-
зователей. Однако общее число дескрипторов, доступных NGINX,
ограничено операционной системой.

В типичной UNIX-системе к суперпользователю (с именем root)
и к обычному пользователю применяются различные лимиты, по-
этому приведенную ниже команду следует запускать от имени того
непривилегированного пользователя, под которым работает NGINX
(заданного либо с помощью параметра --user на этапе конфигуриро-
вания, либо в директиве user в конфигурационном файле).

ulimit -n

Эта команда показывает, сколько файловых дескрипторов до-
ступно данному пользователю. Обычно их 1024 или того меньше.
Поскольку мы знаем, что NGINX будет основным потребителем
дескрипторов на данной машине, то можем существенно увеличить
этот предел. Насколько именно, зависит от операционной системы.
Делается это следующим образом:

199

  Linux
vi /etc/security/limits.conf

www-run hard nofile 65535

$ ulimit -n 65535

  FreeBSD
vi /etc/sysctl.conf

kern.maxfiles=65535

kern.maxfilesperproc=65535

kern.maxvnodes=65535

/etc/rc.d/sysctl reload

  Solaris
projadd -c «increased file descriptors»

-K «process.max-file-descriptor=(basic,65535,deny)» resource.file

usermod -K project=resource.file www

Показанные команды увеличивают максимальное число файло-
вых дескрипторов, доступных новому процессу, запущенному от
имени пользователя www. Указанное значение будет действовать и
после перезагрузки ОС.

Следующие две команды увеличивают число файловых дескрип-
торов, доступных работающему процессу NGINX:

prctl -r -t privileged -n process.max-file-descriptor -v 65535 -i process

`pgrep nginx`

prctl -x -t basic -n process.max-file-descriptor -i process `pgrep nginx`

Все вышеописанные методы изменяют лимиты операционной
системы, но NGINX об этом ничего не узнает, пока мы не зададим
количество файловых дескрипторов в директиве worker_rlimit_nofile:

worker_rlimit_nofile 65535;

worker_processes 8;

events {

 worker_connections 8192;

}

После этого нужно послать главному процессу nginx сигнал HUP:

kill -HUP `cat /var/run/nginx.pid`

Ограничения операционной системы

200 Техника устранения неполадок

Теперь NGINX сможет обслуживать свыше 65 000 одновремен-
ных клиентов, соединений с проксируемыми серверами и локаль-
ных статических или кэшированных файлов. Столько рабочих про-
цессов (директива worker_processes) имеет смысл запускать, только
если машина действительно оснащена восемью процессорными
ядрами или рабочая нагрузка подразумевает большой объем ввода-
вывода. В противном случае уменьшите значение worker_processes,
сделав его равным количеству ядер, и увеличьте worker_connections,
так чтобы произведение обоих чисел было приблизительно равно
65 000.

Разумеется, можно довести общее количество файловых дескрип-
торов и worker_connections до величины, имеющей смысл для кон-
кретного состава оборудования и решаемых задач. NGINX в состоя-
нии обслужить миллионы одновременных соединений при условии
правильного задания лимитов операционной системы и конфигура-
ционных параметров.

Сетевые лимиты

 Очутившись в ситуации нехватки сетевых буферов, вы, скорее
всего, сможете только зайти с консоли – и то если повезет. Это бы-
вает, когда к NGINX поступает так много клиентских соединений,
что все сетевые буферы оказываются заняты. Процедура увеличе-
ния количества сетевых буферов также зависит от операционной
системы:

  FreeBSD
vi /boot/loader.conf

kern.ipc.nmbclusters=262144

  Solaris
ndd -set /dev/tcp tcp_max_buf 16777216

Если NGINX работает как прокси-сервер – почтовый или HTTP, –
то ему необходимо открывать много соединений с проксируемыми
серверами. Чтобы увеличить число соединений, необходимо до мак-
симума расширить диапазон эфемерных TCP-портов.

  Linux
vi /etc/sysctl.conf

net.ipv4.ip_local_port_range = 1024 65535

sysctl -p /etc/sysctl.conf

201

  FreeBSD
vi /etc/sysctl.conf

net.inet.ip.portrange.first=1024

net.inet.ip.portrange.last=65535

/etc/rc.d/sysctl reload

  Solaris
ndd -set /dev/tcp tcp_smallest_anon_port 1024

ndd -set /dev/tcp tcp_largest_anon_port 65535

Разобравшись с основными параметрами, можно переходить к на-
стройке более специфичных параметров, относящихся к произво-
дительности. Они описаны в следующем разделе.

Проблемы с производительностью

 Проектируя приложение и настраивая для него NGINX, мы,
естественно, рассчитываем на высокую производительность . Если
же в этом плане возникают какие-то проблемы, то необходимо вы-
яснить, в чем причина. Возможно, дело в самом приложении. А воз-
можно, в конфигурации NGINX. Мы должны научиться определять
источник проблемы.

Работая в качестве прокси-сервера, NGINX задействует главным
образом сеть. Если на сетевом уровне имеются какие-то ограни-
чения, то NGINX не сможет работать оптимально. Процедура на-
стройки сети зависит от операционной системы и от самой сети,
в которой эксплуатируется NGINX, поэтому следует проводить ее
с учетом конкретных условий.

Один из важных параметров, относящихся к производительности
сети, – размер очереди TCP-соединений системного вызова listen.
Чем больше это значение, тем больше можно обслужить клиентов.
Каким должно быть оптимальное значение и как его задать, зависит
от операционной системы.

  Linux
vi /etc/sysctl.conf

net.core.somaxconn = 3240000

sysctl -p /etc/sysctl.conf

  FreeBSD
vi /etc/sysctl.conf

kern.ipc.somaxconn=4096

/etc/rc.d/sysctl reload

Проблемы с производительностью

202 Техника устранения неполадок

  Solaris
ndd -set /dev/tcp tcp_conn_req_max_q 1024

ndd -set /dev/tcp tcp_conn_req_max_q0 4096

Следующий интересный параметр – размеры буферов приема и
отправки. Приведенные ниже значения показаны только для приме-
ра – они могут стать причиной повышенного потребления памяти,
так что применяйтесь к своей ситуации и тестируйте.

  Linux
vi /etc/sysctl.conf

net.ipv4.tcp_wmem = 8192 87380 1048576

net.ipv4.tcp_rmem = 8192 87380 1048576

sysctl -p /etc/sysctl.conf

  FreeBSD
vi /etc/sysctl.conf

net.inet.tcp.sendspace=1048576

net.inet.tcp.recvspace=1048576

/etc/rc.d/sysctl reload

  Solaris
ndd -set /dev/tcp tcp_xmit_hiwat 1048576

ndd -set /dev/tcp tcp_recv_hiwat 1048576

Можно также изменить размеры буферов непосредственно в кон-
фигурационном файле NGINX, тогда они будут действовать толь-
ко с NGINX. Это желательно, когда на машине работает несколько
служб, но требуется, чтобы именно NGINX мог получить максимум
отдачи от имеющихся сетевых возможностей:

server {

 listen 80 sndbuf=1m rcvbuf=1m;

}

Настройка сети может оказать существенное влияние на про-
изводительность. Однако рекомендуется изменять по одному па-
раметру за раз и замерять результаты после изменения. Оптими-
зировать производительность можно на стольких разных уровнях,
что краткое введение в этой главе не дает полного представления
о предмете. Для интересующихся этой тематикой есть немало книг
и сетевых ресурсов.

203

Как сделать измененные сетевые параметры постоян-

ными в Solaris

 Выше мы изменяли некоторые параметры TCP в командной

строке. В случае Linux и FreeBSD эти изменения сохраняются

и после перезагрузки ОС, потому что записываются в конфи-

гурационный файл (например, /etc/sysctl.conf). Но в Solaris

ситуация иная. Эти изменения никуда не записываются и по-

тому не сохраняются при перезагрузке.

 Начиная с версии Solaris 10, предоставляется уникальный

каркас управления службами (Service Management Frame-

work – SMF), позволяющий к тому же задавать порядок их

запуска при загрузке ОС. (Это, конечно, чрезмерно упрощен-

ное описание, каркас SMF умеет гораздо больше.) Чтобы на-

стройки TCP сохранялись, необходимо написать манифест

SMF и соответствующий скрипт.

 Подробности см. в приложении D «Сохранение сетевых на-

строек в Solaris».

Использование модуля Stub Status

 В состав NGINX входит модуль самодиагностики, который вы-
водит статистические данные о работе программы. Этот модуль
называется Stub Status и активируется заданием параметра --with-
http_stub_status_module на этапе конфигурирования.

Чтобы увидеть статистику, порождаемую этим модулем, необхо-
димо включить директиву stub_status, задав в ней значение on. Для
этого модуля следует создать отдельную секцию location, чтобы
можно было применить список ACL:

location /nginx_status {

 stub_status on;

 access_log off;

 allow 127.0.0.1;

 deny all;

}

Обращение к этому URI с компьютера localhost (например, curl
http://localhost/nginx_status) возвращает ответ такого вида:

Active connections: 2532

server accepts handled requests

 1476737983 1476737983 3553635810

Reading: 93 Writing: 13 Waiting: 2426

Использование модуля Stub Status

204 Техника устранения неполадок

Мы видим, что открыто 2532 соединения, и в настоящий момент
для 93 соединений NGINX читает заголовки запроса, а 13 находятся
в состоянии, когда NGINX либо читает тело запроса, либо обрабаты-
вает запрос, либо отправляет ответ клиенту. Остальные 2426 соеди-
нений имеют тип keepalive и находятся в состоянии ожидания. С мо-
мента запуска процесс nginx принял и обработал 1 476 737 983 со-
единения, то есть ни одно не было закрыто сразу после приема.
Всего было обработано 3 553 635 810 запросов, то есть в среднем
по 2,4 запроса в одном соединении.

Эти данные можно передать в какую-нибудь программу обработ-
ки метрик и представить в графическом виде. Существуют модули,
подключаемые к системам Munin , Nagios , collectd и другим, кото-
рые для сбора статистики обращаются к модулю stub_status. Со вре-
менем, имея достаточно данных, вы сможете обнаружить какие-то
тенденции и коррелировать их с теми или иными факторами. На
графиках должны быть видны всплески количества запросов, а так-
же изменения в настройках операционной системы.

Резюме

Когда вводится в эксплуатацию новая программа, проблемы воз-
никают на самых разных уровнях. Некоторые ошибки можно «от-
ловить» и устранить в тестовой среде, другие проявляются только
в условиях реальной нагрузки. Для поиска причин ошибок NGINX
предлагает очень подробные журналы с различными уровнями про-
токолирования. Некоторые сообщения допускают несколько ин-
терпретаций, но общий принцип понятен. Экспериментируя с раз-
личными конфигурациями и наблюдая за появляющимися сообще-
ниями, можно научиться интерпретировать записи в журнале. На
работу NGINX оказывает влияние операционная система, которая
накладывает определенные ограничения, когда параметры заданы по
умолчанию в расчете на наличие многих пользователей. Для опти-
мизации параметров с учетом реальных условий полезно понимать,
что происходит на уровне TCP. И в завершение краткого обзора
поиска и устранения неполадок мы показали, какую информацию
возвращает модуль stub_status. Эти данные полезны, когда требуется
составить общее представление о том, как работает NGINX.

Далее идут приложения. В первом из них перечислены все кон-
фигурационные директивы NGINX с указанием значений по умол-
чанию и контекста, в котором можно употреблять директиву.

Приложение A. Справочник
директив

В этом приложении перечислены все конфигурационные директи-
вы, встречавшиеся на страницах этой книги. Для полноты приве-
дены также некоторые директивы, которые мы не рассматривали.
Дополнительно для каждой директивы указывается контекст, в ко-
тором она может употребляться. Если у директивы есть значение
по умолчанию, оно также указывается. Директивы описаны по со-
стоянию в версии NGINX 1.3.9. Актуальный список можно найти
по адресу http://nginx.org/en/docs/dirindex.html.

Справочник директив

Директива Описание
Контекст/

Умолчание

accept_mutex Сериализует обращения к методу

accept() для новых соединений со

стороны рабочих процессов

Допустимый

контекст: events

По умолчанию: on

accept_mutex_delay Сколько времени рабочий процесс

может ждать возможности принимать

новые соединения, если в данный мо-

мент этим занимается другой рабочий

процесс

Допустимый

контекст: events

По умолчанию:

500ms

206 Приложение А

Директива Описание
Контекст/

Умолчание

access_log Определяет, куда и как записывать

журналы доступа. Первый

параметр – путь к файлу журнала.

Путь может содержать переменные.

Специальное значение off отключает

протоколирование. Необязательный

второй параметр определяет

директиву log_format, описывающую

формат журнала. Если этот параметр

не задан, используется предопреде-

ленный формат. Необязательный

третий параметр задает размер

буфера в случае, если запись в журнал

буферизуется. При использовании

буферизации этот размер не должен

превосходить длину операции

атомарной записи на диск для

конкретной файловой системы. Если

третий параметр равен gzip, то журнал

буферизуется и на лету сжимается

при условии, что двоичный файл

nginx собирался с библиотекой zlib.

Последний параметр flush опреде-

ляет, сколько времени данные могут

оставаться в буфере в памяти перед

сбросом на диск

Допустимые

контексты: http,

server, location, if

в location, limit_

except

По умолчанию: logs/

access.log combined

add_after_body Поместить результат обработки

подзапроса после тела ответа

Допустимый

контекст: location

По умолчанию: -

add_before_body Поместить результат обработки

подзапроса перед телом ответа

Допустимый кон-

текст: location

По умолчанию: -

add_header Добавляет заголовок в ответ с кодом

состояния 200, 204, 206, 301, 302, 303,

304 или 307

Допустимые

контексты: http,

server, location

По умолчанию: -

addition_types Указывается список MIME-типов

ответа (в дополнение к text/html), для

которых производится добавление.

Звездочка (*) означает все MIME-типы

Допустимые

контексты: http,

server, location

По умолчанию: text/

html

207Справочник директив

Директива Описание
Контекст/

Умолчание

aio Разрешает использование асинхронного

файлового ввода-вывода. Это возможно

во вcех современных версиях FreeBSD и

дистрибутивах Linux. Во FreeBSD директиву

aio можно использовать для предваритель-

ной загрузки данных для sendfile. В Linux

требуется директива directio, которая авто-

матически отключает sendfile

Допустимые

контексты: http,

server, location

По умолчанию: off

alias Определяет путь в файловой системе, соот-

ветствующий имени местоположения. Если

местоположение задано с помощью регуляр-

ного выражения, то значение alias должно

ссылаться на запомненные подвыражения

Допустимый кон-

текст: location

По умолчанию: -

allow Разрешает доступ с указанного IP-адреса, из

указанной сети или отовсюду (all)

Допустимые

контексты: http,

server, location,

limit_except

По умолчанию:

logs/access.log

combined

ancient_

browser

Подстроки, при обнаружении которых

в заголовке User-Agent браузер считается

устаревшим. В результате в переменную

$ancient_browser записывается значение, за-

данное в директиве ancient_browser_value

Допустимые

контексты: http,

server, location

По умолчанию: -

ancient_

browser_

value

Значение, присваемое переменной $ancient_

browser

Допустимые

контексты: http,

server, location

По умолчанию: 1

auth_basic Разрешает аутентификацию по схеме HTTP

Basic Authentication. Параметр задает имя

области (realm). Специальное значение off

означает, что значение auth_basic, заданное

на родительском уровне, отменяется

Допустимые

контексты: http,

server, location,

limit_except

По умолчанию: off

auth_basic_

user_file

Определяет, где находится файл, содер-

жащий тройки username:password:comment,

который используется для аутентификации

клиентов. Поле password должно быть за-

шифровано алгоритмом crypt. Поле comment

необязательно

Допустимые

контексты: http,

server, location,

limit_except

По умолчанию: -

208 Приложение А

Директивы Описание
Контекст/

Умолчание

auth_http Задает сервер, который служит для

аутентификации пользователя в про-

токолах POP3 и IMAP

Допустимые кон-

тексты: mail, server

По умолчанию: -

auth_http_header Включает дополнительный заголовок

(первый параметр) с указанным значе-

нием (второй параметр)

Допустимые кон-

тексты: mail, server

По умолчанию: -

auth_http_timeout Максимальное время ожидания ответа

от сервера аутентификации

Допустимые кон-

тексты: mail, server

По умолчанию: 60s

autoindex Разрешает автоматическую генерацию

страницы с содержимым каталога

Допустимые кон-

тексты: http, server,

location

По умолчанию: off

autoindex_exact_

size

Определяет, следует ли указывать раз-

меры файлов в каталоге в байтах или

округлять до килобайт, мегабайт или

гигабайт

Допустимые кон-

тексты: http, server,

location

По умолчанию: on

autoindex_

localtime

Какое время последней модификации

файла указывать на странице с со-

держимым каталога: местное (on) или

UTC (off)

Допустимые кон-

тексты: http, server,

location

По умолчанию: off

break Завершает обработку директив мо-

дуля rewrite, находящихся в том же

контексте

Допустимые

контексты: server,

location, if

По умолчанию: -

charset Добавляет указанную кодировку

в заголовок ответа Content-Type. Если

кодировка отличается от указанной

в директиве source_charset, то произ-

водится перекодирование

Допустимые кон-

тексты: http, server,

location, if

в location

По умолчанию: off

charset_map Задает таблицу перекодирования

из одной кодировки в другую. Коды

символов записываются в шестнадца-

теричном виде. В файлах conf/koi-win,

conf/koi-utf и conf/win-utf хранятся

соответственно таблицы перекодиро-

вания из koi8-r в windows-1251, из koi8-r

в utf-8 и из windows-1251 в utf-8

Допустимый кон-

текст: http

По умолчанию: -

209Справочник директив

Директивы Описание
Контекст/

Умолчание

charset_types Список MIME-типов ответа (поми-

мо text/html), для которых будет

производиться перекодирование

Допустимые контексты:

http, server, location

По умолчанию: text/

html, text/xml,

text/plain, text/vnd.

wap.wml,

application/xjavascript,

application/rss+xml

chunked_transfer_

encoding

Позволяет отключить

специфицированный в стандарте

HTTP/1.1 механизм поблочной

передачи данных (chunked transfer

encoding) в ответе клиенту

Допустимые контексты:

http, server, location

По умолчанию: on

client_body_buffer

_size

Задает размер буфера для

чтения тела запроса клиента.

По умолчанию для буфера

выделяются две страницы

памяти. Увеличение размера

позволяет предотвратить запись

во временный файл на диске

Допустимые контексты:

http, server, location

По умолчанию: 8k|16k

(в зависимости от плат-

формы)

client_body_in_

file_only

Используется для отладки или

последующей обработки тела

запроса клиента. Если значение

равно on, то тело запроса

принудительно записывается

в файл. Значение clean приводит

к удалению файлов после завер-

шения обработки запроса

Допустимые контексты:

http, server, location

По умолчанию: off

client_body_in_

single_buffer

Заставляет NGINX сохранить

все тело запроса клиента

в одном буфере, чтобы

уменьшить количество операций

копирования

Допустимые контексты:

http, server, location

По умолчанию: off

client_body_temp_

path

Определяет путь к каталогу для

сохранения файлов с телами

запросов клиентов. Второй,

третий и четвертый параметры

(если заданы) определяют

иерархию подкаталогов в виде

количества знаков в имени

подкаталога

Допустимые контексты:

http, server, location

По умолчанию: client_

body_temp

210 Приложение А

Директивы Описание
Контекст/

Умолчание

client_body_

timeout

Задает время между

последовательными операциями

чтения тела запроса клиента.

В случае превышения клиент

получает сообщение об ошибке

408 (Request Timeout)

Допустимые контексты:

http, server, location

По умолчанию: 60s

client_header_

buffer_size

Задает размер буфера для чтения

заголовка запроса клиента, если

он превышает подразумеваемую

по умолчанию величину 1 КБ

Допустимые контексты:

http, server

По умолчанию: 1k

client_header_

timeout

Время, отведенное на чтение

всего заголовка запроса. В случае

превышения клиент получает

сообщение об ошибке 408 (Request

Timeout)

Допустимые контексты:

http, server

По умолчанию: 60s

client_max_body_

size

Максимальный размер тела за-

проса клиента. В случае превы-

шения отправляется ответ 413

(Request Entity Too Large)

Допустимые контексты:

http, server, location

По умолчанию: 1m

connection_pool_

size

Позволяет производить точную

настройку выделения памяти под

конкретные соединения

Допустимые контексты:

http, server

По умолчанию: 256

create_full_put_

path

Разрешает создание промежу-

точных каталогов при работе

с WebDAV

Допустимые контексты:

http, server, location

По умолчанию: off

daemon Определяет, будет ли nginx запус-

каться в режиме демона

Допустимый контекст:

main

По умолчанию: on

dav_access Устанавливает права доступа

к создаваемым файлам и катало-

гам. Если задан параметр group

или all, то user можно опустить

Допустимые контексты:

http, server, location

По умолчанию: user:rw

dav_methods Разрешает указанные HTTP- и

WebDAV-методы. При использова-

нии метода PUT сначала создается

временный файл, а затем он пере-

именовывается. Поэтому реко-

мендуется указывать в директиве

client_body_ temp_path ту файловую

систему, в которой должен нахо-

диться загруженный файл. Время

модификации таких файлов можно

задать в заголовке Date

Допустимые контексты:

http, server, location

По умолчанию: off

211Справочник директив

Директивы Описание
Контекст/

Умолчание

debug_connection Включает отладочное протоколи-

рование для клиентов, соответ-

ствующих значению этой директи-

вы. Может встречаться несколько

раз. Для отладки сокетов в доме-

не UNIX следует указать unix:

Допустимый контекст:

events

По умолчанию: -

debug_points В случае обнаружения внутренней

ошибки процесс либо создает

core-файл (abort), либо

останавливается (stop) с целью

последующего подключения

системного отладчика

Допустимые контексты:

main

По умолчанию: -

default_type Определяет подразумеваемый

по умолчанию MIME-тип ответа.

Используется в случае, когда

MIME-тип файла не удается

сопоставить ни с одним из

определенных в директиве types

Допустимые контексты:

http, server, location

По умолчанию: text/

plain

deny Запрещает доступ с указанного

IP-адреса, из указанной сети или

отовсюду (all)

Допустимые контексты:

http, server, location,

limit_except

По умолчанию: -

directio Разрешает использовать

зависящий от операционной

системы флаг при чтении файлов,

размер которых больше или равен

указанному. Обязательна при

использовании директивы aio

в Linux

Допустимые контексты:

http, server, location

По умолчанию: off

directio_alignment Устанавливает выравнивание

для directio. Обычно подразуме-

ваемого по умолчанию значения

512 достаточно, но при использо-

вании XFS в Linux рекомендуется

увеличить до 4K

Допустимые контексты:

http, server, location

По умолчанию: 512

disable_symlinks См. таблицу «Директивы HTTP-

сервера, относящиеся к путям

в файловой системе» в разделе

«Поиск файлов» главы 6 «NGINX

как HTTP-сервер»

Допустимые контексты:

http, server, location

По умолчанию: off

empty_gif Порождает прозрачный GIF

размером 11 для данного

местоположения

Допустимый контекст:

location

По умолчанию: -

212 Приложение А

Директивы Описание
Контекст/

Умолчание

env Определяет переменные

окружения, которые используются

в следующих случаях:

 • наследование во время обнов-

ления NGINX на лету;

 • в модуле perl;

 • предоставление в распоряже-

ние рабочих процессов.

Если задать только имя пере-

менной, то будет взято значение

из окружения nginx. Чтобы при-

своить переменной значение,

следует воспользоваться формой

var=value.

N.B. Переменная NGINX является

внутренней, пользователь не

должен ее устанавливать

Допустимый контекст:

main

По умолчанию: TZ

error_log Это файл, в который записыва-

ются сообщения об ошибках.

Если ни в каком другом контексте

директивы error_log нет, то в этом

файле будут регистрировать-

ся вообще все ошибки. Второй

параметр директивы обозначает

уровень сообщений, попадаю-

щих в журнал (debug, info, notice,

warn, error, crit, alert, emerg).

Сообщения уровня debug выводят-

ся, только если программа была

сконфигурирована с параметром

--with-debug

Допустимые контек-

сты: main, http, server,

location

По умолчанию: logs/

error.log error

error_page Определяет URL-адрес страницы,

которую нужно вернуть, если

код ответа попадает в диапазон

ошибок. Необязательный

параметр, следующий за знаком

=, позволяет изменить код ответа.

Если после знака равенства не

указан код ответа, то он берется

из URI-адреса, при этом соот-

ветствующая страница должна

возвращаться каким-то прокси-

руемым сервером

Допустимые контексты:

http, server, location, if

в location

По умолчанию: -

213Справочник директив

Директивы Описание
Контекст/

Умолчание

etag Отключает автоматическую

генерацию заголовка ответа ETag

для статических ресурсов

Допустимые контексты:

http, server, location

По умолчанию: on

events Определяет новый контекст,

в котором задаются директивы

обработки соединений

Допустимый контекст:

main

По умолчанию: -

expires См. таблицу «Директивы для

модификации заголовков» в раз-

деле «Кэширование в файловой

системе» главы 7 «NGINX для раз-

работчика»

Допустимые контексты:

http, server, location

По умолчанию: off

fastcgi_bind Определяет адрес исходящих со-

единений с FastCGI-сервером

Допустимые контексты:

http, server, location

По умолчанию: -

fastcgi_buffer_

size

Размер буфера для первой

части ответа от FastCGI-сервера,

в которой находятся заголовки

Допустимые контексты:

http, server, location

По умолчанию: 4k|8k (в за-

висимости от платформы)

fastcgi_buffers Количество и размер буферов

для получения ответа от FastCGI-

сервера в расчете на одно

соединение

Допустимые контексты:

http, server, location

По умолчанию: 4k|8k (в за-

висимости от платформы)

fastcgi_busy_

buffers_size

Суммарный размер буферов,

которые могут быть заняты для

отправки ответа клиенту, пока

ответ от FastCGI-сервера ещё не

прочитан целиком. Обычно уста-

навливается вдвое большим, чем

размер, указанный в директиве

fastcgi_buffers

Допустимые контексты:

http, server, location

По умолчанию: 4k|8k (в за-

висимости от платформы)

fastcgi_cache Определяет зону разделяемой

памяти, используемую для кэши-

рования

Допустимые контексты:

http, server, location

По умолчанию: off

fastcgi_cache_

bypass

Одна или несколько строковых

переменных. Если хотя бы одна

из них непуста и не содержит

нуль, то ответ будет запрошен

у FastCGI-сервера, а не взят из

кэша

Допустимые контексты:

http, server, location

По умолчанию: -

fastcgi_cache_

key

Строка, которая используется как

ключ для поиска значения в кэше

Допустимые контексты:

http, server, location

По умолчанию: -

214 Приложение А

Директивы Описание
Контекст/

Умолчание

fastcgi_cache_

lock

Если включено, то предотв ра-

щается отправка нескольких

запросов FastCGI-серверу

в случае отсутствия в кэше

Допустимые контексты:

http, server, location

По умолчанию: off

fastcgi_cache_

lock_timeout

Сколько времени запрос может

ждать появления записи в кэше

или освобождения блокировки

fastcgi_cache_lock

Допустимые контексты:

http, server, location

По умолчанию: 5s

fastcgi_cache_

min_uses

Сколько запросов с данным

ключом должно поступить, прежде

чем ответ будет помещен в кэш

Допустимые контексты:

http, server, location

По умолчанию: 1

fastcgi_cache_

path

См. таблицу «Директивы

модуля FastCGI для управления

потоковой передачей» в разделе

«Использование NGINX совместно

с PHP-FPM» главы 6 «NGINX как

HTTP-сервер»

Допустимые контексты:

http, server, location

По умолчанию: -

fastcgi_cache_

use_stale

В каких случаях допустимо

использовать устаревшие

кэшированные данные,

если при доступе к FastCGI-

серверу произошла ошибка.

Параметр updating разрешает

использовать кэшированный

ответ, если как раз в данный

момент загружаются более

свежие данные

Допустимые контексты:

http, server, location

По умолчанию: off

fastcgi_cache_

valid

Сколько времени считать действи-

тельным кэшированный ответ

с кодом 200, 301 или 302. Если пе-

ред параметром time указан необя-

зательный код ответа, то задан-

ное время относится только к от-

вету с таким кодом. Специальный

параметр any означает, что в тече-

ние заданного времени следует

кэшировать ответ с любым кодом

Допустимые контексты:

http, server, location

По умолчанию: -

fastcgi_connect_

timeout

Максимальное время, в течение

которого NGINX ожидает установ-

ления соединения при отправке

запроса FastCGI-серверу

Допустимые контексты:

http, server, location

По умолчанию: 60s

fastcgi_hide_

header

Список заголовков, которые не

следует передавать клиенту

Допустимые контексты:

http, server, location

По умолчанию: -

215Справочник директив

Директивы Описание
Контекст/

Умолчание

fastcgi_ignore_
client_abort

Если значение равно on, то

NGINX не станет разрывать

соединение с FastCGI-сервером

в случае, когда клиент разрывает

свое соединение

Допустимые контексты:

http, server, location

По умолчанию: off

fastcgi_ignore_
headers

Какие заголовки можно

игнорировать при обработке

ответа от FastCGI-сервера

Допустимые контексты:

http, server, location

По умолчанию: -

fastcgi_index Задает имя файла, дописываемое

в конец строки $fastcgi_script_

name после знака косой черты

Допустимые контексты:

http, server, location

По умолчанию: -

fastcgi_intercept_
errors

Если значение равно on, то

NGINX будет отображать

страницу, заданную директивой

error_page, вместо ответа, полу-

ченного от FastCGI-сервера

Допустимые контексты:

http, server, location

По умолчанию: off

fastcgi_keep_conn Разрешает соединения типа

keepalive с FastCGI-сервером,

инструктируя его не закрывать

соединение немедленно

Допустимые контексты:

http, server, location

По умолчанию: off

fastcgi_max_temp_
file_size

Максимальный размер

временного файла, в который

записывается часть ответа

в случае, когда он не умещается

целиком в буферах памяти

Допустимые контексты:

http, server, location

По умолчанию: 1024m

fastcgi_next_
upstream

См. таблицу «Директивы

модуля FastCGI для управления

потоковой передачей» в раз-

деле «Использование NGINX

совместно с PHP-FPM» главы 6

«NGINX как HTTP-сервер»

Допустимые контексты:

http, server, location

По умолчанию: error
Timeout

fastcgi_no_cache Одна или несколько строковых

переменных. Если хотя бы

одна из них непуста и не

содержит нуль, то NGINX не

будет помещать в кэш ответ,

полученный от FastCGI-сервера

Допустимые контексты:

http, server, location

По умолчанию: -

fastcgi_param Задает имя и значение

параметра, передаваемого

FastCGI-серверу. Если следует

передавать только параметры

с непустыми значениями,

то необходимо задать

дополнительный параметр

if_not_empty

Допустимые контексты:

http, server, location

По умолчанию: -

216 Приложение А

Директивы Описание
Контекст/

Умолчание

fastcgi_pass Определяет FastCGI-сервер,

которому передается запрос,

в виде пары address:port или

unix:path для сокета в домене

UNIX

Допустимые контексты:

http, server, location

По умолчанию: -

fastcgi_pass_header Отменяет сокрытие заголов-

ков, определенных в директиве

fastcgi_hide_header, разрешая

передавать их клиенту

Допустимые контексты:

http, server, location

По умолчанию: -

fastcgi_read_timeout Сколько времени может

пройти между двумя

последовательными

операциями чтения данных от

FastCGI-сервера, прежде чем

соединение будет закрыто

Допустимые контексты:

http, server, location

По умолчанию: 60s

fastcgi_send_lowat Эта директива предназначена

только для FreeBSD. Если

значение отлично от нуля,

то при взаимодействии с

проксируемым сервером NGINX

будет использовать либо флаг

NOTE_LOWAT метода kqueue, либо

параметр сокета SO_SNDLOWAT с

указанным размером. В Linux,

Solaris и Windows игнорируется

Допустимые контексты:

http, server, location

По умолчанию: 0

fastcgi_send_timeout Сколько времени может

пройти между двумя

последовательными

операциями записи данных на

FastCGI-сервер, прежде чем

соединение будет закрыто

Допустимые контексты:

http, server, location

По умолчанию: 60s

fastcgi_split_path_

info

Задает регулярное выражение

с двумя запоминаемыми

подвыражениями. Первая

запомненная строка становится

значением переменной

$fastcgi_script_name, вто-

рая – значением переменной

$fastcgi_path_info

Допустимые контексты:

location

По умолчанию: -

217Справочник директив

Директивы Описание
Контекст/

Умолчание

fastcgi_store Разрешает сохранение

полученных от FastCGI-сервера

ответов в файлах на диске.

Если параметр равен on, то

в качестве пути к каталогу

с сохраняемыми файлами ис-

пользуется значение, заданное

в директиве alias или root.

Можно вместо этого задать

строку, определяющую другой

каталог для хранения файлов

Допустимые контексты:

http, server, location

По умолчанию: off

fastcgi_store_access Какие права доступа следует

задать для новых файлов,

создаваемых в соответствии

с директивой fastcgi_store

Допустимые контексты:

http, server, location

По умолчанию: user:rw

fastcgi_temp_file_

write_size

Ограничивает размер данных

в одной операции записи во

временный файл, чтобы NGINX

не слишком долго блокировала

исполнение программы при

обработке одного запроса

Допустимые контексты:

http, server, location

По умолчанию: 8k|16k

(в зависимости от плат-

формы)

fastcgi_temp_path Каталог для хранения

временных файлов,

получаемых от FastCGI-

сервера. Может быть

многоуровневым. Второй,

третий и четвертый параметры

(если заданы) определяют

иерархию подкаталогов в виде

количества знаков в имени

подкаталога

Допустимые контексты:

http, server, location

По умолчанию: fastcgi_

temp

flv Активирует модуль flv для

данного местоположения

Допустимый контекст:

location

По умолчанию: -

218 Приложение А

Директивы Описание
Контекст/

Умолчание

geo Определяет новый контекст,

в котором переменной

присваивается значение,

зависящее от IP-адреса,

находящегося в другой

переменной. Если другая

переменная не задана, берется

IP-адрес из переменной $remote_

addr. Формат определения кон-

текста следующий:

geo [$address-variable]

$variable_to-be-set { … }

Распознаются следующие пара-

метры:

 • delete: удалить указанную сеть;

 • default: в переменную будет

записано это значение, если

нет подходящего IP-адреса;

 • include: включает файл с опре-

делениями соответствий

между адресом и значением

переменной;

 • proxy: определяет адреса

(индивидуальные или целой

подсети), при запросе с ко-

торых будет использоваться

IP-адрес, взятый из заголовка

запроса X-Forwarded-For;

 • proxy-recursive: используется

вместе с параметром proxy и

означает, что если заголовок

X-Forwarded-For содержит не-

сколько значений, то следует

брать последнее;

 • ranges: если присутствует, то

означает, что следующие далее

адреса заданы в виде диапа-

зонов

Допустимый контекст:

http

По умолчанию: -

219Справочник директив

Директивы Описание
Контекст/

Умолчание

geoip_city Путь к базе данных GeoIP,

содержащей сооответствия

между IP-адресами и городами.

Становятся доступны следующие

переменные:

 • $geoip_city_country_ code: двух-

буквенный код страны;

 • $geoip_city_country_ code3: трех-

буквенный код страны;

 • $geoip_city_country_ name: на-

звание страны;

 • $geoip_region: название регио-

на страны;

 • $geoip_city: название города;

 • $geoip_postal_code: почтовый

индекс

Допустимый контекст: http

По умолчанию: -

geoip_country Путь к базе данных GeoIP,

содержащей сооответствия

между IP-адресами и странами.

Становятся доступны следующие

переменные:

 • $geoip_city_country_ code: двух-

буквенный код страны;

 • $geoip_city_country_ code3: трех-

буквенный код страны;

 • $geoip_city_country_ name: на-

звание страны

Допустимый контекст: http

По умолчанию: -

geoip_org Путь к базе данных GeoIP,

содержащей сооответствия

между IP-адресами и

организациями. Становится

доступна следующая переменная:

$geoip_org: название организации

Допустимый контекст: http

По умолчанию: -

geoip_proxy Определяет адреса (индивидуаль-

ные или целой подсети), при

запросе с которых будет исполь-

зоваться IP-адрес, взятый из за-

головка запроса X-Forwarded-For

Допустимый контекст: http

По умолчанию: -

220 Приложение А

Директивы Описание
Контекст/

Умолчание

geoip_proxy_

recursuve

Используется вместе с директи-

вой geopip_proxy и означает, что

если заголовок X-Forwarded-For

содержит несколько значений, то

следует брать последнее

Допустимый контекст:

http

По умолчанию: off

gunzip Разрешает или запрещает рас-

паковку сжатых алгоритмом gzip

файлов в случае, когда клиент не

поддерживает gzip

Допустимые контексты:

http, server, location

По умолчанию: off

gunzip_buffers Задает количество и размер бу-

феров для распаковки ответа

Допустимые контексты:

http, server, location

По умолчанию: 32 4k|16

8k (в зависимости от

платформы)

gzip Разрешает или запрещает сжатие

ответов

Допустимые контексты:

http, server, location, if

в location

По умолчанию: off

gzip_buffers Определяет количество и

размеры буферов для сжатия

ответа

Допустимые контексты:

http, server, location

По умолчанию: 32 4k|16

8k (в зависимости от

платформы)

gzip_comp_level Уровень сжатия gzip (1–9) Допустимые контексты:

http, server, location

По умолчанию: 1

gzip_disable Регулярное выражение,

описывающее те

пользовательские агенты,

которые не должны получать

сжатое содержимое. Специальное

значение msie6 является сокра-

щением выражения MSIE [4-6]\.,

которое исключает MSIE 6.0 … SV1

Допустимые контексты:

http, server, location

По умолчанию: -

gzip_http_version Минимальная версия протокола

HTTP в запросе, до которой

вопрос о сжатии вообще не

рассматривается

Допустимые контексты:

http, server, location

По умолчанию: 1.1

gzip_min_length Минимальная длина ответа

(определяемая заголовком

Content-Length), до которой

вопрос о сжатии вообще не

рассматривается

Допустимые контексты:

http, server, location

По умолчанию: 20

221Справочник директив

Директивы Описание
Контекст/

Умолчание

gzip_proxied См. таблицу «Директивы модуля

gzip» в разделе «Сжатие» главы 5

«Обратное проксирование,

дополнительные вопросы»

Допустимые контексты:

http, server, location

По умолчанию: off

gzip_static Разрешает или запрещает про-

верку наличия предварительного

сжатого файла, который можно

было бы доставить клиенту, под-

держивающему gzip

Допустимые контексты:

http, server, location

По умолчанию: off

gzip_types Типы MIME (в дополнение к text/

html), которые следует сжимать.

Задание * разрешает все типы

MIME

Допустимые контексты:

http, server, location

По умолчанию: text/html

gzip_vary Разрешает или запрещает

включение в ответ заголовка Vary:

Accept-Encoding, если активна ди-

ректива gzip или gzip_static

Допустимые контексты:

http, server, location

По умолчанию: off

http Определяет конфигурационный

контекст, в котором задаются

директивы HTTP-сервера

Допустимый контекст:

main

По умолчанию: -

if См. таблицу «Директивы модуля

rewrite» в разделе «Введение

в модуль rewrite» в приложении B

«Руководство по правилам

переписывания»

Допустимые контексты:

server, location

По умолчанию: -

if_modified_since Управляет порядком сравнения

времени модификации ответа со

значением в заголовке запроса

If-Modified-Since.

 • off: заголовок If-Modified-Since

игнорируется.

 • exact: точное соответствие (по

умолчанию).

 • before: время модификации

ответа меньше или равно зна-

чению в заголовке If-Modified-

Since

Допустимые контексты:

http, server, location

По умолчанию: exact

222 Приложение А

Директивы Описание
Контекст/

Умолчание

ignore_invalid_

headers

Разрешает или запрещает

игнорировать заголовки с

недопустимыми именами (по

умолчанию on). Допустимыми

считаются имена, содержащие

буквы в кодировке ASCII, цифры,

знак минус и, возможно, знак

подчеркивания (определяется

директивой underscores_in_headers)

Допустимые контек-

сты: http, server

По умолчанию: on

image_filter См. таблицу «Директивы модуля

image_filter» в разделе «Генерация

изображений» главы 7 «NGINX для

разработчика»

Допустимый контекст:

location

По умолчанию: -

image_filter_

buffer

Размер буфера для обработки

изображений. Если потребуется

больше памяти, сервер вернет

ошибку 415 (Unsupported Media Type)

Допустимые кон-

тексты: http, server,

location

По умолчанию: 1M

image_filter_jpeg_

quality

Качество результирующего

изображения в формате JPEG.

Не рекомендуется указывать

значение больше 95

Допустимый контекст:

http, server, location

По умолчанию: 75

image_filter_

sharpen

Повышает резкость

результирующего изображения на

указанный процент

Допустимые контексты:

http, server, location

По умолчанию: 0

image_filter_

transparency

Определяет, сохранять ли

прозрачность при обработке

изображений в форматах PNG

и GIF. Подразумеваемое по

умолчанию значение on означает

сохранение прозрачности

Допустимые контексты:

http, server, location

По умолчанию: on

imap_auth Задает поддерживаемый

механизм аутентификации.

Допустимы значения (одно или

несколько) из следующего списка:

login, plain, cram-md5

Допустимые контек-

сты: mail, server

По умолчанию: plain

imap_capabilities Определяет, какие возможности

протокола IMAP4 поддерживает

проксируемый сервер

Допустимые контек-

сты: mail, server

По умолчанию: IMAP4

IMAP4rev1 UIDPLUS

imap_client_buffer Задает размер буфера для чтения

команд IMAP

Допустимый контекст:

mail, server

По умолчанию: 4k|8k

(в зависимости от

платформы)

223Справочник директив

Директивы Описание
Контекст/

Умолчание

include Путь к файлу, содержащему

дополнительные конфигура-

ционные директивы. Может быть

задан в виде маски, которой

отвечает несколько файлов

Допустимый контекст:

любой

По умолчанию: -

index Определяет, какой файл возвра -

щать клиенту в ответ на URI, завер-

шающийся знаком /. Можно

указать несколько значений

Допустимые контексты:

http, server, location

По умолчанию: index.

html

internal Означает, что данное местопо-

ложение можно использовать

только для внутренних запросов

(переадресации, определенной

в других директивах, переписы-

вания, страниц ошибок и т. д.)

Допустимые контексты:

location

По умолчанию: -

ip_hash Обеспечивает равномерное

распределение клиентских

соединений по всем серверам за

счет хэширования IP-адреса по

его сети класса C

Допустимый контекст:

upstream

По умолчанию: -

keepalive Количество соединений

с проксируемыми серверами,

кэшированных в одном рабочем

процессе. При использовании

с HTTP-соединениями значение

proxy_http_version должно быть

равно 1.1, а значение proxy_set_

header – Connection «»

Допустимый контекст:

upstream

По умолчанию: -

keepalive_disable Запрещает соединения типа

keep-alive для некоторых

браузеров

Допустимые контексты:

http, server, location

По умолчанию: msie6

keepalive_requests Определяет, сколько запросов

можно принять по одному

соединению типа keep-alive,

прежде чем закрывать его

Допустимые контексты:

http, server, location

По умолчанию: 100

keepalive_timeout Определяет, сколько времени

соединение типа keep-alive мо-

жет оставаться открытым. Мож-

но задать второй параметр,

используемый для формирова-

ния заголовка ответа «Keep-Alive»

Допустимые контексты:

http, server, location

По умолчанию: 75s

large_client_

header_buffers

Задает максимальное число и

размер буферов для чтения боль-

шого заголовка запроса клиента

Допустимые контексты:

http, server

По умолчанию: 4 8k

224 Приложение А

Директивы Описание
Контекст/

Умолчание

least_conn Активирует алгоритм

балансировки нагрузки,

согласно которому очередной

запрос передается серверу

с наименьшим числом активных

соединений

Допустимый контекст:

upstream

По умолчанию: -

limit_conn Определяет зону разделяемой

памяти (настраиваемую с

помощью директивы limit_conn_

zone) и максимальное количест-

во соединений с одинаковым

значением ключа

Допустимые контексты:

http, server, location

По умолчанию: -

limit_conn_log_

level

Если NGINX ограничивает

соединения согласно директиве

limit_conn, то эта директива

определяет уровень протоколи-

рования для сообщения о дости-

жении пороговой величины

Допустимые контексты:

http, server, location

По умолчанию: error

limit_conn_zone В первом параметре задается

ключ, к которому относятся

ограничения, указанные

в директиве limit_conn. Второй

параметр задает имя зоны раз-

деляемой памяти, в которой

хранится не более указанного

числа соединений для каждого

ключа, а также размер этой зоны

(name:size)

Допустимый контекст: http

По умолчанию: -

limit_except Ограничивает HTTP-методы,

доступные внутри секции

location (GET включает также HEAD)

Допустимый контекст:

location

По умолчанию: -

limit_rate Ограничивает скорость

(в байтах/с) отдачи содержимого

клиентам. Ограничение

действует на уровне соединения,

то есть один клиент может

повысить свою пропускную

способность, открыв несколько

соединений

Допустимые контексты:

http, server, location, if

в location

По умолчанию: 0

limit_rate_

after

Начинает применять

ограничение limit_rate после

того, как передано указанное

количество байтов

Допустимые контексты:

http, server, location, if

в location

По умолчанию: 0

225Справочник директив

Директивы Описание
Контекст/

Умолчание

limit_req Задает ограничение при резком

увеличении (всплеске) количества

запросов для указанного ключа

в зоне разделяемой памяти

(заданной в директиве limit_req_

zone). Всплеск описывается вторым

параметром. Если до возникнове-

ния всплеска задерживать запросы

не нужно, следует включить третий

параметр nodelay

Допустимые контексты:

http, server, location

По умолчанию: -

limit_req_log_

level

Если NGINX ограничивает

количество запросов согласно

директиве limit_req, то эта дирек-

тива определяет уровень про-

токолирования для сообщения

о достижении пороговой величины.

Сообщение о применении задержки

имеет уровень, на единицу меньший

указанного в этой директиве

Допустимые контексты:

http, server, location

По умолчанию: -

limit_req_zone В первом параметре задается ключ,

к которому относятся ограничения,

указанные в директиве limit_req.

Второй параметр задает имя зоны

разделяемой памяти, в которой

хранится не более указанного числа

запросов для каждого ключа, а так-

же размер этой зоны (name:size).

Третий параметр определяет

количество запросов в секунду (r/s)

или в минуту (r/m), при превышении

которого начинает применяться

ограничение

Допустимый контекст:

http

По умолчанию: -

limit_zone Директива устарела. Использовать

вместо нее limit_conn_zone

Допустимый контекст:

http

По умолчанию: -

lingering_close Определяет, следует ли оставлять

соединение открытым в ожидании

дополнительных данных от клиента

Допустимые контексты:

http, server, location

По умолчанию: on

lingering_time Связана с директивой lingering_

close и определяет, сколько времени

держать соединение открытым для

обработки дополнительных данных

Допустимые контексты:

http, server, location

По умолчанию: 30s

226 Приложение А

Директивы Описание
Контекст/

Умолчание

lingering_timeout Также связана с директивой

lingering_close и определяет,

сколько времени держать

соединение открытым

в ожидании дополнительных

данных

Допустимые контексты:

http, server, location

По умолчанию: 5s

listen (http) См. таблицу «Параметры дирек-

тивы listen» в разделе «Секция

с описанием виртуального

сервера» главы 2 «Руководство

по настройке»

Допустимый контекст:

server

По умолчанию: 80 |

*:8000

listen (mail) Директива listen в NGINX одно-

значно идентифицирует привяз-

ку к сокету и принимает следую-

щий параметр:

 • bind: выполнять отдельный

вызов bind() для данной пары

address:port

Допустимый контекст:

server

По умолчанию: -

location Определяет новый контекст на

основе URI запроса

Допустимые контексты:

server, location

По умолчанию: -

lock_file Префикс имени файлов-

блокировок. На некоторых

платформах для реализации

директивы accept_mutex и сериа-

лизации доступа к памяти может

понадобиться файл-блокировка

Допустимый контекст:

main

По умолчанию: logs/

ngnix.lock.

log_format Определяет состав и формат

полей в журнале

Допустимый контекст:

http

По умолчанию:

combined

$remote_addr

- $remote_user

[$time_local],

«$request»

$status

$body_bytes_

sent, «$http_

referer»»$http_

user_agent»’

log_not_found Подавляет запись в журнал

сообщений об ошибке 404

Допустимые контексты:

http, server, location

По умолчанию: on

227Справочник директив

Директивы Описание
Контекст/

Умолчание

log_subrequest Разрешает или запрещает

протоколирование подзапросов

в журнале доступа

Допустимые контексты:

http, server, location

По умолчанию: off

mail Определяет конфигурационный

контекст, в котором задаются

директивы почтового сервера

Допустимый контекст:

main

По умолчанию: -

map Определяет новый контекст,

в котором некоторой

переменной присваивается

значение, зависящее от

значения исходной переменной.

Формат определения контекста

следующий:

map $source-variable

$variable-to-be-set {…}

Сопоставляемая строка (или

строки) может также быть регу-

лярным выражением. В контек-

сте распознаются следующие

параметры:

 • default: задает значение

переменной по умолчанию

в случае, если значение

исходной переменной не

сопоставилось ни с одной из

заданных строк или регуляр-

ных выражений;

 • hostnames: означает, что

в качестве исходных значений

можно использовать маску

для первой или последней

части имени хоста;

 • include: включает файл,

содержащий соответствия

между строками и значениями

Допустимый контекст:

http

По умолчанию: -

map_hash_bucket_

size

Размер кластера в хэш-таблицах

для директивы map

Допустимый контекст: http

По умолчанию: 32|64|128

map_hash_max_size Максимальный размер хэш-

таблиц для директивы map

Допустимый контекст: http

По умолчанию: 2048

master_process Определяет, нужно ли запускать

рабочие процессы

Допустимый контекст: main

По умолчанию: on

228 Приложение А

Директивы Описание
Контекст/

Умолчание

max_ranges Задает максимальное количе-

ство диапазонов, допустимых

в запросе с указанием диапазо-

нов байтов. Если задано значе-

ние 0, то поддержка диапазонов

байтов отключается

Допустимые контексты:

http, server, location

По умолчанию: -

memcached_bind Определяет адрес исходящих

соединений с сервером mem-

cached

Допустимые контексты:

http, server, location

По умолчанию: -

memcached_buffer_

size

Размер буфера для ответа от

memcached. Этот ответ синхрон-

но отправляется клиенту

Допустимые контексты:

http, server, location

По умолчанию: 4k|8k

memcached_connect_

timeout

Максимальное время, в течение

которого NGINX ожидает

установления соединения при

отправке запроса серверу mem-

cached

Допустимые контексты:

http, server, location

По умолчанию: 60s

memcached_gzip_flag Задает значение, которое,

будучи найдено в ответе от

сервера memcached, приведет

к записи значения gzip в

заголовок Content-Encoding

Допустимые контексты:

http, server, location

По умолчанию: -

memcached_next_

upstream

См. таблицу «Директивы модуля

memcached» в разделе «Кэши-

рование в базе данных» главы 7

«NGINX для разработчика»

Допустимые контексты:

http, server, location

По умолчанию: error

timeout

memcached_pass Определяет имя или адрес

сервера memcached и его

порт. Можно также указывать

группу серверов, объявленную

в контексте upstream

Допустимые контексты:

location, if в location

По умолчанию: -

memcached_read_

timeout

Сколько времени может

пройти между двумя

последовательными операциями

чтения данных от сервера mem-

cached, прежде чем соединение

будет закрыто

Допустимые контексты:

http, server, location

По умолчанию: 60s

memcached_send_

timeout

Сколько времени может

пройти между двумя

последовательными операциями

записи данных на сервер mem-

cached, прежде чем соединение

будет закрыто

Допустимые контексты:

http, server, location

По умолчанию: 60s

229Справочник директив

Директивы Описание
Контекст/

Умолчание

merge_slashes Разрешает или запрещает

удаление идущих подряд знаков

косой черты. Подразумеваемое

по умолчанию значение on озна-

чает, что NGINX будет заменять

несколько соседних знаков /

одним

Допустимые контексты:

http, server

По умолчанию: on

min_delete_depth Разрешает методу WebDAV DELETE

удалять файлы при условии, что

число элементов в пути запроса

не меньше заданного

Допустимые контексты:

http, server, location

По умолчанию: 0

modern_browser Задает параметры browser и

version, которые в совокупности

определяют, что этот браузер

следует считать современным,

и в этом случае в переменную

$modern_browser записывается

значение, указанное в директи-

ве modern_browser_value. Пара-

метр browser может принимать

следующие значения: msie,

gecko, opera, safari, konqueror.

Альтернативно можно задать

параметр unlisted, который

означает, что браузер, не най-

денный ни в одном из списков

ancient_browser и modern_browser

или не приславший заголовок

User-Agent, следует считать со-

временным

Допустимые контексты:

http, server, location

По умолчанию: -

modern_browser_

value

Значение, записываемое

в переменную $modern_browser

Допустимые контексты:

http, server, location

По умолчанию: 1

mp4 Активирует модуль mp4 в данной

секции location

Допустимый контекст:

location

По умолчанию: -

mp4_buffer_size Задает начальный размер

буфера для доставки MP4-

файлов

Допустимые контексты:

http, server, location

По умолчанию: 512K

mp4_max_buffer_size Задает максимальный размер

буфера для обработки

метаданных MP4

Допустимые контексты:

http, server, location

По умолчанию: 10M

230 Приложение А

Директивы Описание
Контекст/

Умолчание

msie_padding Разрешает или запрещает до-

бавлять комментарии в ответы со

статусом больше 400 для увеличе-

ния размера ответа до 512 байт при

работе с MSIE

Допустимые контексты:

http, server, location

По умолчанию: on

msie_refresh Разрешает или запрещает отправ-

лять MSIE-клиентам ответ Refresh

вместо перенаправления

Допустимые контексты:

http, server, location

По умолчанию: off

multi_accept Инструктирует рабочий процесс

принимать сразу все новые со-

единения. Игнорируется в случае

использования метода обработки

соединений kqueue, так как данный

метод сам сообщает число новых

соединений, ожидающих приёма

Допустимый контекст:

events

По умолчанию: off

open_file_cache Настраивает кэш, в котором могут

храниться дескрипторы открытых

файлов, информация о существо-

вании каталогов и информация об

ошибках поиска файлов

Допустимые контексты:

http, server, location

По умолчанию: off

open_file_cache_

errors

Разрешает или запрещает кэши-

рование ошибок поиска файлов

в кэше open_file_cache

Допустимые контексты:

http, server, location

По умолчанию: off

open_file_cache_

min_uses

Задаёт минимальное число обра-

щений к файлу в течение времени,

заданного параметром inactive

директивы open_file_cache, необхо-

димое для того, чтобы дескриптор

файла оставался в кэше открытых

дескрипторов

Допустимые контексты:

http, server, location

По умолчанию: 1

open_file_cache_

valid

Задает время между последова-

тельными проверками актуаль-

ности данных, хранящихся в кэше

open_file_cache

Допустимые контексты:

http, server, location

По умолчанию: 60s

open_log_file_

cache

См. таблицу «Директивы

протоколирования из модуля HTTP»

из раздела «Протоколирование»

главы 6 «NGINX как HTTP-сервер»

Допустимые контексты:

http, server, location

По умолчанию: off

optimize_server_

names

Директива устарела. Использовать

вместо нее server_name_in_redirect

Допустимые контексты:

http, server

По умолчанию: off

231Справочник директив

Директивы Описание
Контекст/

Умолчание

override_

charset

Определяет, следует ли осуществлять

перекодирование из кодировки, ука-

занной в заголовке Content-Type ответа,

который получен от сервера, заданного

в директиве proxy_pass или fastcgi_pass.

Если ответ является результатом под-

запроса, то перекодирование в коди-

ровку главного запроса производится

безусловно

Допустимые контексты:

http, server, location, if

в location

По умолчанию: off

pcre_jit Разрешает или запрещает JIT-

компиляцию совместимых с Perl

регулярных выражений, известных

на этапе конфигурирования. Чтобы

воспользоваться этой оптимизацией,

необходимо включить поддержку JIT-

компиляции в библиотеке PCRE

Допустимый контекст:

main

По умолчанию: off

perl Активирует обработчик Perl в данном

местоположении. В аргументе

указывается имя обработчика или

строка, содержащая полный код

подпрограммы

Допустимые контексты:

location, limit_except

По умолчанию: -

perl_modules Определяет дополнительные пути

поиска Perl-модулей

Допустимый контекст:

http

По умолчанию: -

perl_require Задает имя Perl-модуля, который

должен загружаться при каждом

изменении конфигурационного файла

NGINX. Может встречаться несколько

раз, если требуется указать несколько

модулей

Допустимый контекст:

http

По умолчанию: -

perl_set Устанавливает Perl-обработчик,

который присваивает значение

переменной. В аргументе

указывается имя обработчика или

строка, содержащая полный код

подпрограммы

Допустимый контекст:

http

По умолчанию: -

pid Файл, в котором хранится идентифи-

катор главного процесса. Переопре-

деляет значение, заданное на этапе

конфигурирования и компиляции

Допустимый контекст:

main

По умолчанию: nginx.

pid

pop3_auth Задает поддерживаемый механизм

аутентификации. Допустимы значения

(одно или несколько) из следующего

списка: plain, apop, cram-md5

Допустимые контексты:

mail, server

По умолчанию: plain

232 Приложение А

Директивы Описание
Контекст/

Умолчание

pop3_capabilities Определяет, какие возможности

протокола POP3 поддерживает

проксируемый сервер

Допустимые контексты:

mail, server

По умолчанию: TOP USER

UIDL

port_in_redirect Определяет, нужно ли указывать

данный порт при переадресации

средствами NGINX

Допустимые контексты:

http, server, location

По умолчанию: on

postpone_output Задает минимальный размер

порции данных, отправляемых

клиенту. Если возможно, данные

не будут отправляться, пока не

накопится указанное количество

Допустимые контексты:

http, server, location

По умолчанию: 1460

protocol Определяет, какой протокол

поддерживает данный контекст

виртуального сервера. Может

принимать значения imap, pop3,

smtp

Допустимый контекст:

server

По умолчанию: -

proxy Разрешает или запрещает

проксирование почты

Допустимый контекст:

server

По умолчанию: -

proxy_bind Определяет адрес исходящих

соединений с проксируемым

сервером

Допустимые контексты:

http, server, location

По умолчанию: -

proxy_buffer Позволяет задать размер

буфера, используемого для

проксирования. По умолчанию

размер буфера равен размеру

страницы

Допустимые контексты:

mail, server

По умолчанию: 4k|8k

(в зависимости от плат-

формы)

proxy_buffer_size Размер буфера для первой

части ответа от проксируемого

сервера, в которой находятся

заголовки

Допустимые контексты:

http, server, location

По умолчанию: 4k|8k

(в зависимости от плат-

формы)

proxy_buffering Разрешает или запрещает

буферизацию проксированного

содержимого. Если буферизация

выключена, то ответы

отправляются клиенту синхронно

по мере получения

Допустимые контексты:

http, server, location

По умолчанию: on

233Справочник директив

Директивы Описание
Контекст/

Умолчание

proxy_buffers Количество и размер буферов

для хранения ответов от

проксируемых серверов

Допустимые контексты:

http, server, location

По умолчанию: 8 4k|8k

(в зависимости от плат-

формы)

proxy_busy_buffers_

size

Суммарный размер буферов,

которые могут быть заняты для

отправки ответа клиенту, пока

ответ ещё не прочитан цели-

ком. Обычно устанавливается

в два раза больше, чем раз-

мер, указанный в директиве

proxy_buffers

Допустимые контексты:

http, server, location

По умолчанию: 8k|16k

(в зависимости от плат-

формы)

proxy_cache Определяет размер зоны

разделяемой памяти,

отведенной под кэш

Допустимые контексты:

http, server, location

По умолчанию: off

proxy_cache_bypass Одна или несколько строковых

переменных. Если хотя бы одна

из них непуста и не содержит

нуль, то ответ будет запрошен

у проксируемого сервера, а не

взят из кэша

Допустимые контексты:

http, server, location

По умолчанию: -

proxy_cache_key Строка, которая используется

как ключ для поиска значения

в кэше. Можно использовать

переменные, но следует

внимательно следить за

тем, чтобы не кэшировалось

несколько копий одного и того

же содержимого

Допустимые контексты:

http, server, location

По умолчанию:

$scheme$proxy_

host$request_uri

proxy_cache_lock Если эта директива

принимает значение on, то

предотвращается отправка

нескольких запросов

проксируемому серверу (или

серверам) в случае отсутствия

в кэше

Допустимые контексты:

http, server, location

По умолчанию: off

proxy_cache_lock_

timeout

Сколько времени запрос может

ждать появления записи в кэше

или освобождения блокировки

proxy_cache_lock

Допустимые контексты:

http, server, location

По умолчанию: 5s

234 Приложение А

Директивы Описание
Контекст/

Умолчание

proxy_cache_min_

uses

Сколько запросов с данным

ключом должно поступить,

прежде чем ответ будет

помещен в кэш

Допустимые контексты:

http, server, location

По умолчанию: 1

proxy_cache_path См. таблицу «Директивы

модуля proxy для управления

кэшированием» в разделе

«Кэширование в файловой

системе» главы 5 «Обратное

проксирование, дополнительные

вопросы»

Допустимый контекст:

http

По умолчанию: _

proxy_cache_use_

stale

В каких случаях допустимо

использовать устаревшие

кэшированные данные, если

при доступе к проксируемому

серверу произошла ошибка.

Параметр updating разрешает

использовать кэшированный

ответ, если как раз в данный

момент загружаются более

свежие данные

Допустимые контексты:

http, server, location

По умолчанию: off

proxy_cache_valid Сколько времени считать

действительным кэшированный

ответ с кодом 200, 301 или 302.

Если перед параметром time ука-

зан необязательный код ответа,

то заданное время относится

только к ответу с таким кодом.

Специальный параметр any озна-

чает, что в течение заданного

времени следует кэшировать

ответ с любым кодом

Допустимые контексты:

http, server, location

По умолчанию: -

proxy_connect_

timeout

Максимальное время ожидания

соединения с проксируемым

сервером

Допустимые контексты:

http, server, location

По умолчанию: 60s

proxy_cookie_domain Подменяет атрибут domain

в заголовке Set-Cookie от

проксируемого сервера; можно

указать строку, регулярное

выражение или ссылку на

переменную

Допустимые контексты:

http, server, location

По умолчанию: off

235Справочник директив

Директивы Описание
Контекст/

Умолчание

proxy_cookie_path Подменяет атрибут path

в заголовке Set-Cookie от

проксируемого сервера; можно

указать строку, регулярное

выражение или ссылку на

переменную

Допустимые контексты:

http, server, location

По умолчанию: off

proxy_headers_hash_

bucket_size

Максимальный размер имен

заголовков (ни одно имя не

может быть длиннее указанной

в этой директиве величины)

Допустимые контексты:

http, server, location

По умолчанию: 64

proxy_headers_hash_

max_size

Общий размер заголовков,

полученных от проксируемого

сервера

Допустимые контексты:

http, server, location

По умолчанию: 512

proxy_hide_header Список заголовков, которые не

следует передавать клиенту

Допустимые контексты:

http, server, location

По умолчанию: -

proxy_http_version Версия протокола

HTTP, которой следует

придерживаться при

взаимодействии

с проксируемым сервером

(для соединений типа keepalive

должна быть 1.1)

Допустимые контексты:

http, server, location

По умолчанию: 1.0

proxy_ignore_client_

abort

Если значение равно on, то

NGINX не станет разрывать

соединение с проксируемым

сервером в случае, когда клиент

разрывает свое соединение

Допустимые контексты:

http, server, location

По умолчанию: off

proxy_ignore_headers Какие заголовки можно

игнорировать при обработке

ответа от проксируемого

сервера

Допустимые контексты:

http, server, location

По умолчанию: -

proxy_intercept_

errors

Если значение равно on, то

NGINX будет отображать

страницу, заданную директивой

error_page, вместо ответа,

полученного от проксируемого

сервера

Допустимые контексты:

http, server, location

По умолчанию: off

proxy_max_temp_file_

size

Максимальный размер

временного файла, в который

записывается часть ответа

в случае, когда он не умещается

целиком в буферах памяти

Допустимые контексты:

http, server, location

По умолчанию: 1024m

236 Приложение А

Директивы Описание
Контекст/

Умолчание

proxy_next_upstream Определяет условия, при

которых для ответа будет выбран

следующий проксируемый

сервер. Это не происходит, если

клиент уже что-то отправил.

Условия задаются с помощью

следующих параметров:

 • error: произошла ошиб-

ка при взаимодействии

с проксируемым сервером;

 • timeout: произошел тайм-

аут при взаимодействии

с проксируемым сервером;

 • invalid_header: проксируемый

сервер вернул пустой или

недопустимый ответ;

 • http_500: проксируемый

сервер вернул ответ с кодом

ошибки 500;

 • http_503: проксируемый

сервер вернул ответ с кодом

ошибки 503;

 • http_504: проксируемый

сервер вернул ответ с кодом

ошибки 504;

 • http_404: проксируемый

сервер вернул ответ с кодом

ошибки 404;

 • off: запретить переда-

чу запроса следующему

проксируемому серверу

в случае ошибки

Допустимые кон-

тексты: http, server,

location

По умолчанию: error

timeout

proxy_no_cache Определяет условия, при

которых ответ не сохраняется

в кэше. Одна или несколько

строковых переменных. Если

хотя бы одна из них непуста и

не содержит нуль, то ответ не

кэшируется

Допустимые кон-

тексты: http, server,

location

По умолчанию: -

237Справочник директив

Директивы Описание
Контекст/

Умолчание

proxy_pass Определяет проксируемый сервер,

которому передается запрос в виде

URL

Допустимые контексты:

location, if в location,

limit_except

По умолчанию: -

proxy_pass_

error_

message

Полезна, если процедура

аутентификации на проксируемом

сервере возвращает осмысленное

сообщение клиенту

Допустимые контексты:

mail, server

По умолчанию: off

proxy_pass_

header

Отменяет сокрытие заголовков,

определенных в директиве proxy_

hide_header, разрешая передавать

их клиенту

Допустимые контексты:

http, server, location

По умолчанию: -

proxy_pass_

request_

body

Если значение равно off, то

тело запроса не передается

проксируемому серверу

Допустимые контексты:

http, server, location

По умолчанию: on

proxy_pass_

request_

headers

Если значение равно off, то заго-

ловки запроса не передаются

проксируемому серверу

Допустимые контексты:

http, server, location

По умолчанию: on

proxy_read_

timeout

Сколько времени может пройти

между двумя последовательными

операциями чтения данных от

проксируемого сервера, прежде

чем соединение будет закрыто.

Значение следует увеличить,

если проксируемый сервер

обрабатывает запросы медленно

Допустимые контексты:

http, server, location

По умолчанию: 60s

proxy_redirect Перезаписывает заголовки

Location и Refresh, полученные от

проксируемого сервера; полезно

для обхода допущений, принятых

каркасом разработки приложений

Допустимые контексты:

http, server, location

По умолчанию: default

proxy_send_lowat Если значение отлично от нуля,

NGINX попытается минимизировать

количество операций записи по

соединению с проксируемым

сервером. В Linux, Solaris и

Windows игнорируется

Допустимые контексты:

http, server, location

По умолчанию: 0

proxy_send_

timeout

Сколько времени может пройти

между двумя последовательными

операциями записи данных на

проксируемый сервер, прежде чем

соединение будет закрыто

Допустимые контексты:

http, server, location

По умолчанию: 60s

238 Приложение А

Директивы Описание
Контекст/

Умолчание

proxy_set_body Эта директива позволяет

изменить тело запроса,

отправляемое проксируемому

серверу

Допустимые контексты:

http, server, location

По умолчанию: -

proxy_set_header Перезаписывает заголовки,

отправляемые проксируемому

серверу. Может также

применяться для подавления

некоторых заголовков (если

в качестве значения указать

пустую строку)

Допустимые контексты:

http, server, location

По умолчанию: Host

$proxy_host, Connection

close

proxy_ssl_session_

reuse

Определяет, можно ли повторно

использовать SSL-сеансы при

проксировании

Допустимые контексты:

http, server, location

По умолчанию: on

proxy_store Разрешает сохранение

полученных от проксируемого

сервера ответов в файлах на

диске. Если параметр равен on,

то в качестве пути к каталогу

с сохраняемыми файлами ис-

пользуется значение, заданное

в директиве alias или root. Мож-

но вместо этого задать строку,

определяющую другой каталог

для хранения файлов

Допустимые контексты:

http, server, location

По умолчанию: off

proxy_store_access Какие права доступа следует

задать для новых файлов,

создаваемых в соответствии

с директивой proxy_store

Допустимые контексты:

http, server, location

По умолчанию: user:rw

proxy_temp_file_

write_size

Ограничивает размер данных

в одной операции записи во

временный файл, чтобы NGINX

не слишком долго блокировал

исполнение программы при

обработке одного запроса

Допустимые контексты:

http, server, location

По умолчанию: 8k|16k

(в зависимости от плат-

формы)

proxy_temp_path Каталог для хранения временных

файлов, получаемых от

проксируемого сервера. Может

быть многоуровневым. Второй,

третий и четвертый параметры

(если заданы) определяют

иерархию подкаталогов в виде

количества знаков в имени

подкаталога

Допустимые контексты:

http, server, location

По умолчанию: proxy_

temp

239Справочник директив

Директивы Описание
Контекст/

Умолчание

proxy_timeout Используется, если тайм-аут

должен быть больше значения по

умолчанию – 24 часа

Допустимые контексты:

mail, server

По умолчанию: 24h

random_index Активирует выбор случайного

файла для отправки

пользователю, если URI

заканчивается знаком /

Допустимый контекст:

location

По умолчанию: off

read_ahead Если возможно, ядро будет сразу

считывать из файла столько бай-

тов, сколько указано в параметре

size. Поддерживается в текущих

версиях FreeBSD и Linux (в Linux

параметр size игнорируется)

Допустимые контексты:

http, server, location

По умолчанию: 0

real_ip_header Задает название заголовка, зна-

чение которого рассматривается

как IP-адрес клиента, когда дирек-

тива set_real_ip_from соответству-

ет IP-адресу отправителя

Допустимые контексты:

http, server, location

По умолчанию: X-Real-IP

real_ip_recursive Означает, что в случае, когда за-

головок real_ip_header содержит

несколько адресов, использовать

нужно последний

Допустимые контексты:

http, server, location

По умолчанию: off

recursive_error_
pages

Разрешает производить

несколько переадресаций

с помощью директивы error_page

Допустимые контексты:

http, server, location

По умолчанию: off

referer_hash_
bucket_size

Размер кластера в хэш-таблице

допустимых рефереров

Допустимые контексты:

server, location

По умолчанию: 64

referer_hash_max_
size

Максимальный размер хэш-

таблицы допустимых рефереров

Допустимые контексты:

server, location

По умолчанию: 2048

request_pool_size Позволяет производить точную

настройку выделения памяти под

конкретные запросы

Допустимые контексты:

http, server

По умолчанию: 4k

reset_timedout_
connection

Если значение этой директивы

равно on, то сокеты, для которых

истек тайм-аут, сбрасываются

немедленно, в результате чего

освобождается выделенная для

них память. По умолчанию сокет

остается в состоянии FIN_WAIT1.

На соединения типа keep-alive эта

директива не распространяется,

они всегда закрываются обычным

образом

Допустимые контексты:

http, server, location

По умолчанию: off

240 Приложение А

Директивы Описание
Контекст/

Умолчание

resolver Задает имена одного или нескольких

серверов, используемых для получения

IP-адресов по доменным именам.

Необязательный параметр valid

переопределяет время TTL, заданное

в запи си о доменном имени

Допустимые контексты:

http, server, location

По умолчанию: -

resolver_

timeout

Задает тайм-аут разрешения имен Допустимые контексты:

http, server, location

По умолчанию: 30s

return Прекращает обработку и возвращает

указанный код клиенту. При возврате

нестандартного кода 444 соединение

закрывается без отправки заголовков

ответа. Если помимо кода указывается

еще и текст, то он помещается

в тело ответа. Если же вместо текста

указан URL-адрес, то он становится

значением заголовка Location. Если

указан URL-адрес без кода, то

подразумевается код 302

Допустимые контексты:

server, location, if

По умолчанию: -

rewrite См. таблицу «Директивы модуля

rewrite» в разделе «Введение в модуль

rewrite» в приложении B «Руководство

по правилам переписывания»

Допустимые контексты:

server, location, if

По умолчанию: -

rewrite_log Разрешает или запрещает записывать

в error_log на уровне notice результаты

перезаписи URL

Допустимые контексты:

http, server, if в server,

location, if в location

По умолчанию: off

root Задает путь к корню документов. Для

поиска файлов строка, указанная

в URL-адресе, дописывается в конец

этого значения

Допустимые контексты:

http, server, location, if

в location

По умолчанию: html

satisfy Разрешает доступ, если все (all) или

хотя бы одна (any) из директив access

или auth_basic разрешает доступ.

Подразумеваемое по умолчанию

значение all говорит, что пользователь

должен находиться в определенной

сети и ввести правильный пароль

Допустимые контексты:

http, server, location

По умолчанию: all

241Справочник директив

Директивы Описание
Контекст/

Умолчание

satisfy_any Директива устарела.

Использовать директиву satisfy

с параметром any

Допустимые контексты:

http, server, location

По умолчанию: off

secure_link_secret Затравка для вычисления MD5-

свертки ссылки

Допустимый контекст:

location

По умолчанию: -

send_lowat Если значение отлично от нуля, то

NGINX пытается минимизировать

количество операций отправки

данных через клиентские сокеты.

В Linux, Solaris и Windows эта

директива игнорируется

Допустимые контексты:

http, server, location

По умолчанию: 0

send_timeout Задает тайм-аут между двумя

последовательными операциями

записи при передаче ответа

клиенту

Допустимые контексты:

http, server, location

По умолчанию: 60s

sendfile Разрешает использовать си-

стемный вызов sendfile (2) для

прямого копирования из одного

файлового дескриптора в другой

Допустимые контексты:

http, server, location, if

в location

По умолчанию: off

sendfile_max_chunk Задает максимальный размер

данных, который можно скопиро-

вать за один вызов sendfile (2).

Без этого ограничения одно бы-

строе соединение может целиком

захватить рабочий процесс

Допустимые контексты:

http, server, location

По умолчанию: 0

server (http) Создает новый конфигура-

ционный контекст, в котором

определяется виртуальный хост.

Директива listen определяет IP-

адрес(а) и порт(ы). В директиве

server_name перечисляются значе-

ния заголовков Host, сопоставляе-

мые с этим контекстом

Допустимый контекст:

http

По умолчанию: -

server (upstream) См. таблицу «Директивы модуля

upstream» в разделе «Модуль

upstream» главы 4 «NGINX как об-

ратный прокси-сервер»

Допустимый контекст:

upstream

По умолчанию: -

server (mail) Создает новый конфигурацион-

ный контекст, в котором опреде-

ляется почтовый сервер. Директи-

ва listen определяет IP-адрес(а)

и порт(ы). В директиве server_name

указывается имя сервера

Допустимый контекст:

mail

По умолчанию: -

242 Приложение А

Директивы Описание
Контекст/

Умолчание

server_name

(http)

Задает имя, на которое отвечает

данный виртуальный хост

Допустимый контекст:

server

По умолчанию: «»

server_name

(mail)

Задает имя сервера, используе-

мое в следующих случаях:

 • приветствие в протоколе

POP3/SMTP;

 • затравка для аутентификации

по методу SASL CRAM-MD5;

 • имя в команде EHLO, когда

для взаимодействия с прок-

сируемым SMTP-сервером

используется xclient

Допустимые контексты:

mail, server

По умолчанию: hostname

server_name_in_

redirect

Разрешает использовать первое

из указанных в директиве

server_name значений при любой

переадресации, произведенной

NGINX в данном контексте

Допустимые контексты:

http, server, location

По умолчанию: off

server_names_

hash_bucket_size

Размер кластера в хэш-таблице

имен серверов

Допустимый контекст: http

По умолчанию: 32|64|128

(в зависимости от про-

цессора)

server_names_

hash_max_size

Максимальный размер хэш-

таблицы имен серверов

Допустимый контекст: http

По умолчанию: 512

server_tokens Разрешает или запрещает

включение номера версии NGINX

в отправляемые сообщения об

ошибках и заголовок Server

Допустимые контексты:

http, server, location

По умолчанию: on

set Присваивает значение указанной

переменной

Допустимые контексты:

server, location, if

По умолчанию: -

set_real_ip_from Задает один или несколько

адресов, для которых IP-адрес

клиента будет извлекаться

из заголовка, указанного

в директиве real_ip_header.

Значение unix: говорит, что та-

ким образом следует трактовать

все сокеты в домене UNIX

Допустимые контексты:

http, server, location

По умолчанию: -

smtp_auth Задает поддерживаемый

механизм аутентификации

SASL-клиента. Может принимать

одно или несколько значений из

списка login, plain и cram-md5

Допустимые контексты:

mail, server

По умолчанию: login,

plain

243Справочник директив

Директивы Описание
Контекст/

Умолчание

smtp_capabilities Определяет, какие возможности

поддерживает проксируемый

SMTP-сервер

Допустимые контексты:

mail, server

По умолчанию: -

so_keepalive Для соединения с проксируемым

сервером задается режим TCP

keepalive

Допустимые контексты:

mail, server

По умолчанию: off

source_charset Определяет кодировку ответа.

Если она отличается от указан-

ной в директиве charset, то про-

изводится перекодирование

Допустимые контексты:

http, server, location, if

в location

По умолчанию: -

split_clients Создает контекст, в котором

определены переменные для

A/B-тестирования. Строка,

заданная в первом параметре,

хэшируется согласно алгоритму

MurmurHash2. Затем переменной,

заданной во втором параметре,

присваивается значение, зави-

сящее от того, в какой диапазон

попадает хэш первой строки.

Веса задаются либо в процентах,

либо в виде символа *

Допустимый контекст:

http

По умолчанию: -

ssi Разрешает обработку

SSI-файлов

Допустимые контексты:

http, server, location, if

в location

По умолчанию: off

ssi_min_file_chunk Задаёт минимальный размер

файла, начиная с которого имеет

смысл посылать его с помощью

системного вызова sendfile (2)

Допустимые контексты:

http, server, location

По умолчанию: 1k

ssi_silent_errors Подавляет сообщение, которое

обычно выводится в случае

ошибки во время обработки SSI

Допустимые контексты:

http, server, location

По умолчанию: off

ssi_types Указывается список MIME-

типов ответа (в дополнение

к text/html), для которых

обрабатываются команды SSI.

Звездочка (*) означает все

MIME-типы

Допустимые контексты:

http, server, location

По умолчанию: text/html

ssi_value_length Задаёт максимальную длину

значений параметров в командах

SSI

Допустимые контексты:

http, server, location

По умолчанию: 256

244 Приложение А

Директивы Описание
Контекст/

Умолчание

ssl (http) Включает или выключает под-

держку SSL-транзакций в этом

контексте

Допустимые контексты:

http, server

По умолчанию: off

ssl (mail) Определяет, следует ли под-

держивать в этом контексте

транзакции SSL/TLS

Допустимые контексты:

mail, server

По умолчанию: off

ssl_certificate

(http)

Путь к SSL-сертификату

в формате PEM для данного

виртуального сервера. Если

требуются промежуточные

сертификаты, то их необходимо

поместить в тот же файл после

основного сертификата в нуж-

ном порядке (корневой – по-

следним)

Допустимые контексты:

http, server

По умолчанию: -

ssl_certificate

(mail)

Путь к SSL-сертификату (или

сертификатам) в формате

PEM для данного виртуального

сервера

Допустимые контексты:

mail, server

По умолчанию: -

ssl_certificate_key

(http)

Путь к файлу, содержащему сек-

ретный ключ SSL-сертификата

Допустимые контексты:

http, server

По умолчанию: -

ssl_certificate_key

(mail)

Путь к файлу, содержащему

секретный ключ SSL в формате

PEM для данного виртуального

сервера

Допустимые контексты:

mail, server

По умолчанию: -

ssl_ciphers Определяет, какие шифры нужно

поддерживать в этом контексте

(в формате OpenSSL)

Допустимые контексты:

http, server

По умолчанию:

HIGH:!aNULL:!MD5

ssl_client_

certificate

Путь к файлу, содержащему

сертификат(ы) в формате PEM

общеизвестных удостоверяю-

щих центров, подписывающих

сертификаты клиентов

Допустимые контексты:

http, server

По умолчанию: -

ssl_crl Путь к файлу, содержащему

список отозванных

сертификатов (CRL) в формате

PEM

Допустимые контексты:

http, server

По умолчанию: -

ssl_dhparam Путь к файлу с параметрами

для шифров с обменом EDH-

ключами

Допустимые контексты:

http, server

По умолчанию: -

245Справочник директив

Директивы Описание
Контекст/

Умолчание

ssl_engine Задает аппаратный ускоритель

SSL

Допустимый контекст:

main

По умолчанию: -

ssl_prefer_

server_

ciphers (http)

Указывает, что при использова-

нии протоколов SSLv3 и TLSv1

серверные шифры более прио-

ритетны, чем клиентские

Допустимые контексты:

http, server

По умолчанию: off

ssl_prefer_

server_

ciphers (mail)

Указывает, что при использова-

нии протоколов SSLv3 и TLSv1

серверные шифры более прио-

ритетны, чем клиентские

Допустимые контексты:

mail, server

По умолчанию: off

ssl_protocols

(http)

Определяет, какие протоколы

SSL разрешить

Допустимые контексты:

http, server

По умолчанию: SSLv3,

TLSv1, TLSv1.1, TLSv1.2

ssl_protocols

(mail)

Определяет, какие протоколы

SSL разрешить

Допустимые контексты:

mail, server

По умолчанию: SSLv3,

TLSv1, TLSv1.1, TLSv1.2

ssl_session_cache

(http)

Определяет тип и размер кэша

параметров сеансов SSL. Допус-

тимы следующие типы кэша:

 • off: клиентам сообщается, что

сеансы повторно не исполь-

зуются;

 • none: клиентам сообщается,

что сеансы используются по-

вторно, но на самом деле это

не так;

 • builtin: встроенный

в OpenSSL кэш используется

только одним рабочим про-

цессом; размер кэша задает-

ся в сессиях;

 • shared: кэш разделяется

всеми рабочими процессами,

задаются имя кэша и размер

сессии в мегабайтах

Допустимые контексты:

http, server

По умолчанию: none

246 Приложение А

Директивы Описание
Контекст/

Умолчание

ssl_session_cache

(mail)

Определяет тип и размер кэша

параметров сеансов SSL. Допус-

тимы следующие типы кэша:

 • off: клиентам сообщается, что

сеансы повторно не исполь-

зуются;

 • none: клиентам сообщается,

что сеансы используются по-

вторно, но на самом деле это

не так;

 • builtin: встроенный

в OpenSSL кэш используется

только одним рабочим про-

цессом; размер кэша задает-

ся в сессиях;

 • shared: кэш разделяется

всеми рабочими процессами,

задаются имя кэша и размер

сессии в мегабайтах

Допустимые контексты:

mail, server

По умолчанию: none

ssl_session_timeout

(http)

Определяет, сколько времени

клиент может пользоваться

одними и теми же параметрами

SSL при условии, что они хранят-

ся в кэше

Допустимые контексты:

http, server

По умолчанию: 5m

ssl_session_timeout

(mail)

Определяет, сколько времени

клиент может пользоваться

одними и теми же параметрами

SSL при условии, что они хранят-

ся в кэше

Допустимые контексты:

mail, server

По умолчанию: 5m

ssl_stapling Разрешает подшивку (stapling)

ответов по протоколу OCSP. Сер-

тификат издателя сертификата

сервера должен находиться

в файле, который указан в ди-

рективе ssl_trusted_certificate.

Необходимо также указать

DNS-сервер, который может

разрешить доменное имя OCSP-

сервера

Допустимые контексты:

http, server

По умолчанию: off

ssl_stapling_file Путь к файлу в формате DER, со-

держащему подшиваемый ответ

OCSP-сервера

Допустимые контексты:

http, server

По умолчанию: -

ssl_stapling_

responder
URL-адрес OCSP-сервера. В на-

стоящее время поддерживаются

только URL со схемой http://

Допустимые контексты:

http, server

По умолчанию: -

247Справочник директив

Директивы Описание
Контекст/

Умолчание

ssl_stapling_

verify

Разрешает верификацию ответов

OCSP-сервера

Допустимые контексты:

http, server

По умолчанию: -

ssl_trusted_

certificate

Если включён режим ssl_stapling,

то задает путь к файлу с SSL-

сертификатами в формате PEM

удостоверяющих центров, которые

подписывают клиентские серти-

фикаты и ответы OCSP

Допустимые контексты:

http, server

По умолчанию: -

ssl_verify_client Включает проверку клиентских

SSL-сертификатов. Если задан

параметр optional, то клиентский

сертификат запрашивается и при

его наличии проверяется. Если

задан параметр optional_no_ca, то

клиентский сертификат запраши-

вается, но не требуется, чтобы он

был подписан доверенным УЦ

Допустимые контексты:

http, server

По умолчанию: off

ssl_verify_depth Какое максимальное число подпи-

савших сторон следует проверить,

прежде чем объявить сертификат

недействительным

Допустимые контексты:

http, server

По умолчанию: 1

starttls Определяет, поддерживаются ли

команды STLS/STARTTLS и (или) тре-

буются ли они для взаимодействия

с данным сервером

Допустимые контексты:

mail, server

По умолчанию: off

sub_filter Задает заменяемую строку (без

учета регистра) и заменяющую

строку. Заменяющая строка может

содержать переменные

Допустимые контексты:

http, server, location

По умолчанию: -

sub_filter_once Если параметр равен off, то

директива sub_filter применяется

ко всем вхождениям заменяемой

строки

Допустимые контексты:

http, server, location

По умолчанию: on

sub_filter_types Указывается список MIME-типов

ответа (в дополнение к text/html),

для которых производится замена.

Звездочка (*) означает все MIME-

типы

Допустимые контексты:

http, server, location

По умолчанию: text/

html

tcp_nodelay Разрешает или запрещает

использование параметра TCP_

NODELAY для соединений типа

keep-alive

Допустимые контексты:

http, server, location

По умолчанию: on

248 Приложение А

Директивы Описание
Контекст/

Умолчание

tcp_nopush Учитывается только при

использовании директивы

sendfile. Разрешает NGINX

отправлять заголовки ответа

одним пакетом, а также

передавать файл полными

пакетами

Допустимые контексты:

http, server, location

По умолчанию: off

timeout Сколько времени NGINX

будет ждать установления

соединения с проксируемым

сервером

Допустимые контексты:

mail, server

По умолчанию: 60s

timer_resolution Определяет, как часто

вызывать функцию

gettimeofday(). По умолчанию

она вызывается при каждом

получении события от ядра

Допустимый контекст:

main

По умолчанию: -

try_files Проверяет существование

файлов, указанных в

параметрах. Если ни один

файл, кроме последнего,

не найден, то последний

параметр считается

«последней надеждой»,

поэтому позаботьтесь

о том, чтобы такой

файл или именованное

местоположение

существовали

Допустимые контексты:

server, location

По умолчанию: -

types Определяет соответствие

между MIME-типами и

расширениями имен файлов.

В дистрибутив NGINX входит

файл conf/mime.types, со-

держащий большинство

соответствий. Как правило,

достаточно просто включить

этот файл директивой include

Допустимые контексты:

http, server, location

По умолчанию:

text/html html;

image/gif gif;

image/jpeg jpg;

types_hash_bucket_size Размер кластера хэш-

таблицы MIME-типов

Допустимые контексты:

http, server, location

По умолчанию: 32|64|128

(в зависимости от про-

цессора)

249Справочник директив

Директивы Описание
Контекст/

Умолчание

types_hash_max_

size

Максимальный размер хэш-

таблицы MIME-типов

Допустимые контексты:

http, server, location

По умолчанию: 1024

underscores_in_

headers

Разрешает или запрещает

использование символа

подчеркивания в заголовках

запросов от клиентов. Если

оставлено подразумеваемое

по умолчанию значение off,

то анализ таких заголовков

производится согласно режиму,

заданному в директиве ignore_

invalid_headers

Допустимые контексты:

http, server

По умолчанию: off

uninitialized_

variable_warn

Следует ли помещать

в журнал сообщения о

неинициализированных

переменных

Допустимые контексты:

http, server, location, if

По умолчанию: on

upstream Открывает именованный

контекст, в котором определена

группа серверов

Допустимый контекст: http

По умолчанию: -

use Задает способ обработки

соединений. Эта директива

переопределяет режим,

заданный при компиляции, и

если используется, то должна

находиться в контексте events.

Она особенно полезна, если

обнаруживается, что со

временем режим по умолчанию

начинает приводить к ошибкам

Допустимый контекст:

events

По умолчанию: -

user Пользователь и группа, от имени

которых исполняются рабочие

процессы. Если группа опущена,

то подразумевается группа, имя

которой совпадает с именем

пользователя

Допустимый контекст: main

По умолчанию: nobody

nobody

250 Приложение А

Директивы Описание
Контекст/

Умолчание

userid Активирует модуль

в соответствии со следующими

параметрами:

 • on: устанавливает куки версии

2 и записывает в журнал

полученные куки;

 • v1: устанавливает куки версии

1 и записывает в журнал

полученные куки;

 • log: отключает установку

куков, но продолжает

записывать их в журнал;

 • off: отключает как установку,

так и протоколирование куков

Допустимые контексты:

http, server, location

По умолчанию: off

userid_domain Настраивает записываемый

в куки домен

Допустимые контексты:

http, server, location

По умолчанию: none

userid_expires Задает срок хранения куки.

Если указано значение max, то

устанавливается дата 31 Dec 2037

23:55:55 GMT

Допустимые контексты:

http, server, location

По умолчанию: -

userid_mark Задает первый символ

окончания base64-

представления куки с именем

userid_name

Допустимые контексты:

http, server, location

По умолчанию: off

userid_name Задает имя куки Допустимые контексты:

http, server, location

По умолчанию: uid

userid_p3p Настраивает заголовок P3P для

сайтов, которые объявляют свою

политику конфиденциальности,

следуя протоколу Platform for

Privacy Preferences Project

Допустимые контексты:

http, server, location

По умолчанию: -

userid_path Задает путь, указываемый в куки Допустимые контексты:

http, server, location

По умолчанию: /

userid_service Идентификатор службы, которая

устанавливает куки. Например,

для куки версии 2 по умолчанию

подразумевается IP-адрес

сервера, установившего куки

Допустимые контексты:

http, server, location

По умолчанию: IP-адрес

сервера

251Справочник директив

Директивы Описание
Контекст/

Умолчание

valid_referers Определяет, при каких

значениях заголовка Referer

переменная $invalid_referer

будет содержать пустую строку.

В остальных случаях в эту

переменную будет записана

1. Параметр может принимать

одно или несколько значений из

следующего списка:

 • none: заголовка Referer нет;

 • blocked: заголовок Referer

присутствует, но пуст, или со-

держит URL без схемы;

 • server_names: в заголовке

Referer указано одно из имен,

перечисленных в директиве

server_name;

 • произвольная строка: задает

имя сервера в заголовке

Referer, возможно с префик-

сом URI и знаком * в начале

или в конце;

 • регулярное выражение:

сопоставляется с частью ука-

занного в заголовке Referer

значения после схемы

Допустимые контексты:

server, location

По умолчанию: -

variables_hash_

bucket_size

Размер кластера хэш-таблицы

переменных

Допустимый контекст:

http

По умолчанию: 64

variables_hash_max_

size

Максимальный размер хэш-

таблицы переменных

Допустимые контексты:

http, server, location

По умолчанию: 512

worker_aio_requests Количество открытых

асинхронных операций ввода-

вывода в одном рабочем

процессе при использовании

aio в режиме epoll

Допустимый контекст:

events

По умолчанию: 32

worker_connections Задает максимальное число

соединений, одновременно

открытых в одном рабочем

процессе. Сюда входят, в част-

ности, соединения с клиентами

и с проксируемыми серверами

(но не только)

Допустимый контекст:

events

По умолчанию: 512

252 Приложение А

Директивы Описание
Контекст/

Умолчание

worker_cpu_

affinity

Привязывает рабочие процессы

к группам процессоров, как опи-

сано в битовой маске. Доступна

только в ОС FreeBSD и Linux

Допустимый контекст:

main

По умолчанию: -

worker_priority Задает приоритет планирования

для рабочих процессов. Работает

как команда nice – отрицательные

значения означают более высокий

приоритет

Допустимый контекст:

main

По умолчанию: 0

worker_processes Количество рабочих процессов,

создаваемых сразу после запуска.

Эти процессы обрабатывают за-

просы на соединения со стороны

клиентов. Правильный выбор зна-

чения – сложная задача, но для

начала можно взять количество

процессорных ядер

Допустимый контекст:

main

По умолчанию: 1

worker_rlimit_core Изменяет ограничение на размер

файла core для рабочих процессов

Допустимый контекст:

main

По умолчанию: -

worker_rlimit_

nofile

Изменяет ограничение на коли-

чество файлов, открытых в рабо-

чем процессе

Допустимый контекст:

main

По умолчанию: -

worker_rlimit_

sigpending

Изменяет ограничение на размер

очереди сигналов для рабочего

процесса при использовании ме-

тода обработки соединений rtsig

Допустимый контекст:

main

По умолчанию: -

working_directory Текущий каталог для рабочих про-

цессов. Чтобы рабочие процессы

могли создавать файлы core,

в этот каталог должна быть раз-

решена запись

Допустимый контекст:

main

По умолчанию: -

xclient В протоколе SMTP предусмотрена

проверка на основе параметров

IP/HELO/LOGIN, которые передаются

в команде XCLIENT. Данная дирек-

тива позволяет NGINX передать

эту информацию серверу

Допустимые контек-

сты: mail, server

По умолчанию: on

xml_entities Путь к файлу DTD-схемы, где

объявлены знаковые сущности,

на которые есть ссылки

в обрабатываемом XML-файле

Допустимые кон-

тексты: http, server,

location

По умолчанию: -

253Справочник директив

Директивы Описание
Контекст/

Умолчание

xslt_param Параметры, передаваемые

в таблицы стилей; значениями

являются выражения XPath

Допустимые контексты:

http, server, location

По умолчанию: -

xslt_string_param Параметры, передаваемые

в таблицы стилей; значениями

являются строки

Допустимые контексты:

http, server, location

По умолчанию: -

xslt_stylesheet Путь к таблице стилей

XSLT, применяемой для

преобразования XML-ответа.

Можно передать параметры

в виде списка пар ключ-значение

Допустимый контекст:

location

По умолчанию: -

xslt_types Указывается список MIME-типов

ответа (в дополнение к text/

xml), для которых производится

замена. Звездочка (*) означает

все MIME-типы. Если результа-

том преобразования является

HTML-документ, то его MIME-тип

будет заменен на text/html

Допустимые контексты:

http, server, location

По умолчанию: text/xml

Приложение B. Руководство
по правилам переписывания

Это приложение является введением в модуль NGINX rewrite и мо-
жет использоваться как руководство по созданию новых правил и
преобразованию правил переписывания из формата Apache в фор-
мат NGINX. Мы обсудим следующие вопросы.

  Введение в модуль rewrite.
  Создание новых правил переписывания.
  Преобразование правил из формата Apache.

Введение в модуль rewrite

 Модуль rewrite в NGINX представляет собой простой сопоста-
витель с регулярными выражениями в сочетании с виртуальной
стековой машиной. Первая часть любого правила переписывания –
это регулярное выражение. Некоторые его части можно заключить
в круглые скобки, это будут «запоминаемые подвыражения», на
которые впоследствии можно сослаться с помощью позиционных
переменных. Значение позиционной переменной зависит от поряд-
ка следования соответствующего ей запоминаемого подвыражения.
Позиционные переменные обозначаются числами, так что $1 ссы-
лается на значение первого запомненного подвыражения, $2 – на
значение второго и т. д. Рассмотрим, например, такое регулярное
выражение:

^/images/([a-z]{2})/([a-z0-9]{5})/(.*)\.(png|jpg|gif)$

Первая позиционная переменная $1 ссылается на строку из двух
букв, которая следует сразу за строкой /images/ в начале URI-адреса.
Вторая позиционная переменная $2 ссылается на строку из пяти
символов – строчных букв и цифр от 0 до 9. Третья позиционная

255Руководство по правилам переписывания

переменная $3 предположительно является именем файла. И по-
следняя переменная, выделяемая этим регулярным выражением, $4,
содержит одну из строк png, jpg или gif, находящуюся в самом конце
URI.

Вторая часть правила переписывания – это переписанный URI-
адрес запроса. Он может содержать позиционные переменные, выде-
ленные регулярным выражением, а также любые другие переменные,
допустимые на данном уровне конфигурационного файла NGINX:

/data?file=$3.$4

Если этот URI не соответствует ни одному местоположению,
определенному в конфигурации NGINX, то он возвращается клиен-
ту в заголовке Location с кодом состояния 301 (Moved Permanently)
или 302 (Found), означающим, что требуется переадресация (посто-
янная или временная). Код состояния можно указать и явно, если
третий параметр директивы равен permanent или redirect.

Третьим параметром правила переписывания может быть также
ключевое слово last или break , означающее, что никаких других ди-
ректив модуля rewrite обрабатывать не надо. Флаг last инструктиру-
ет NGINX искать местоположение, соответствующее переписанному
URI.

rewrite ‘^/images/([a-z]{2})/([a-z0-9]{5})/(.*)\.(png|jpg|gif)$’

/data?file=$3.$4 last;

Флаг break может употребляться и в качестве самостоятельной
директивы, чтобы прекратить обработку директивы модуля rewrite
внутри блока if или в другом контексте, где модуль rewrite активен.
Во фрагменте кода ниже предполагается, что какой-то внешний ме-
тод записывает в переменную $bwhog непустое и ненулевое значение
в случае, когда клиент потребляет слишком большую часть полосы
пропускания. Тогда директива limit_rate принудительно понизит
скорость передачи. Директива break в данном случае включена по-
тому, что блок if находится внутри модуля rewrite, и мы не хотим
обрабатывать другие директивы этого модуля.

if ($bwhog) {

 limit_rate 300k;

 break;

}

256 Приложение В

Еще один способ прекратить обработку директив модуля rewrite
состоит в том, чтобы с помощью директивы return вернуть управ-
ление главному модулю http, обрабатывающему запрос. Это может
означать, что NGINX возвращает информацию непосредственно
клиенту, но чаще return употребляется в сочетании с error_page , что-
бы либо представить клиенту отформатированную HTML-страницу,
либо активировать другой модуль, который завершит обработку за-
проса. В директиве return можно указать только код состояния, код
состояния с текстом или код состояния с URI-адресом. Если в ка-
честве единственного параметра указан URI-адрес, подразумевает-
ся код состояния 302. Если за кодом состояния следует текст, то
он становится телом ответа. Если же после кода состояния указан
URI-адрес, то он становится значением заголовка Location, то есть
адресом, на который переадресуется клиент.

Пусть, например, мы хотим задать короткий текст сообщения о
том, что в некотором местоположении не найден файл. Местопо-
ложение опишем со знаком равенства, то есть будем сравнивать на
точное совпадение:

location = /image404.html {

 return 404 «image not found\n»;

}

На любое обращение к этому URI-адресу будет возвращен ответ
с кодом 404 и текстом image not found\n. Таким образом, мы могли
бы использовать местоположение /image404.html в конце директивы
try_files или как страницу ошибки для графических файлов.

Помимо директив, относящихся собственно к переписыванию
URI, модуль rewrite включает также директиву set, которая создает
переменные и присваивает им значения. Это полезно для разных
целей: от создания флагов при выполнении некоторых условий до
передачи именованных аргументов в другое местоположение и про-
токолирования произведенных действий.

В примере ниже демонстрируются некоторые из этих идей и при-
менение соответствующих директив.

http {

 # специальный формат журнала, в котором используются переменные,

 # определяемые ниже

 log_format imagelog ‘[$time_local] ‘ $image_file ‘ ‘ $image_type ‘ ‘ $body_

bytes_sent ‘ ‘ $status;

257Руководство по правилам переписывания

 # мы хотим включить отладку правил переписывания, чтобы убедиться,

 # что правило работает, как задумано

 rewrite_log on;

 server {

 root /home/www;

 location / {

 # определяем, в какой журнал должны записываться отладочные

 # сообщения, касающиеся правил переписывания

 error_log logs/rewrite.log notice;

 # Наше правило, в котором используются запоминаемые подвыражения

 # и позиционные переменные. Обратите внимание на кавычки вокруг

 # регулярного выражения – они необходимы, потому что фигурные

 # скобки {} встречаются в самом выражении.

 rewrite ‘^/images/([a-z]{2})/([a-z0-9]{5})/(.*)\. (png|jpg|gif)$’ /

data?file=$3.$4;

 # Обратите внимание на отсутствие параметра ‘last’ в выражении выше.

 # Если бы мы включили его, то переменные не были бы созданы, потому

 # NGINX прекратила бы обработку директив модуля rewrite.

 # Здесь устанавливаются переменные, используемые в формате

 # журнала ‘imagelog’

 set $image_file $3;

 set $image_type $4;

 }

 location /data {

 # мы хотим протоколировать обращения ко всем изображениям в

 # этом журнале со специальным форматом, чтобы потом было проще

 # выделить тип и размер

 access_log logs/images.log imagelog;

 root /data/images;

 # можно было бы воспользоваться определенными ранее переменными

 # $image-*, но ссылка на аргумент выглядит понятнее

 try_files /$arg_file /image404.html;

 }

 location = /image404.html {

 # специальное сообщение об ошибке для несуществующих графических

 # файлов

 return 404 «image not found\n»;

 }

 }

}

258 Приложение В

В таблице ниже перечислены все директивы модуля rewrite, рас-
сматриваемые в этом разделе.

Директивы модуля rewrite

Директива Описание

break Завершает обработку директив модуля rewrite, находящихся

в текущем контексте

if Вычисляет условие, и если оно истинно, то выполняет

следующие далее директивы модуля rewrite:

if (условие) { … }

Допустимые условия:

 имя переменной: false, если значение пусто или является

строкой, которая начинается символом 0;

 сравнение строк: с использованием операторов = и !=;

 сопоставление с регулярным выражением: с использованием

операторов ~ (с учетом регистра), ~* (без учета регистра) и

соответствующих операторов отрицания !~ и !~*;

 существование файла: с использованием операторов -f и ! -f;

 существование каталога: с использованием операторов -d

и ! -d;

 существование файла, каталога или символической ссылки:

с использованием операторов -e и ! -e;

 исполнимость файла: с использованием операторов -x и ! -x

return Прекращает обработку и возвращает клиенту указанный код. Не-

стандартный код 444 означает закрытие соединения без отправ-

ки заголовков ответа. Если с кодом дополнительно ассоциирован

текст, то он помещается в тело ответа. Если же за кодом следует

URL-адрес, то он становится значением заголовка Location. При

наличии одного лишь URL-адреса, без кода, подразумевается

код 302

rewrite Подменяет URI-адрес, сопоставившийся с регулярным выраже-

нием, заданным в первом параметре, строкой из второго пара-

метра. В качестве необязательного третьего параметра может

быть задан один из следующих флагов:

 • last : прекращает обработку директив модуля rewrite и ищет

местоположение, соответствующее измененному URI-адресу;

 • break : прекращает обработку директив модуля rewrite;

 • redirect : возвращает код временной переадресации (302);

используется, если URI не начинается схемой;

 • permanent : возвращает код постоянной переадресации (301)

rewrite_log Разрешает или запрещает записывать в error_log на уровне

notice результаты обработки директив модуля rewrite

set Присваивает значение указанной переменной

unitialized_
variable_
warn

Определяет, нужно ли записывать в журнал предупреждения

о неинициализированных переменных

259Руководство по правилам переписывания

Создание новых правил переписывания

 Создавая новое правило с нуля, подумайте, чего точно вы хотите
добиться. Задайте себе следующие вопросы.

  Как устроены мои URL-адреса?
  Можно ли попасть на некоторую страницу несколькими спо-

собами?
  Хочу ли я запоминать части URL в переменных?
  Буду ли я осуществлять переадресацию на сайт, находящий-

ся на другом сервере, или могу снова наткнуться на свое же
правило?

  Хочу ли я заменять аргументы в строке запроса?

Уяснить, как устроены URL-адреса, можно путем анализа структу-
ры сайта или веб-приложения. Если на некоторую страницу можно
попасть несколькими способами, то создайте правило переписыва-
ния, которое отправит клиенту код постоянной переадресации. Имея
эту информацию, вы сможете построить каноническое представле-
ние сайта или приложения. Это не только поможет навести порядок
в URL, но и позволит проще находить ваш сайт в Интернете.

Например, пусть имеется контроллер home, обрабатывающий адре-
са по умолчанию, и пусть попасть на тот же контроллер можно через
индексную страницу. Таким образом, при переходе по любому из
следующих URL пользователь получит одну и ту же информацию:

/

/home

/home/

/home/index

/home/index/

/index

/index.php

/index.php/

Было бы эффективнее переадресовать запросы, содержащие имя
контроллера и (или) индексную страницу, на корень:

rewrite ^/(home(/index)?|index(\.php)?)/?$ $scheme://$host/ permanent;

Мы воспользовались переменными $scheme и $host, потому что
производим постоянную переадресацию (код 301) и хотим, чтобы
NGINX построила URL с теми же параметрами, которые были в ис-
ходном URL.

260 Приложение В

Чтобы поместить в журнал отдельные части URL, можно было
бы включить в регулярное выражение выделяющие их запоминае-
мые подвыражения, затем скопировать позиционные переменные
в именованные, на которые уже сослаться в определении формата
журнала. Подобный пример мы видели в предыдущем разделе. Ком-
поненты выделяются следующим образом:

log_format imagelog ‘[$time_local] ‘ $image_file ‘ ‘ $image_type ‘ ‘ $body_

bytes_sent ‘ ‘ $status;

rewrite ‘^/images/([a-z]{2})/([a-z0-9]{5})/(.*)\.(png|jpg|gif)$’ /

data?file=$3.$4;

set $image_file $3;

set $image_type $4;

access_log logs/images.log imagelog;

Если правило переписывания завершается внутренней переадре-
сацией или инструктирует клиента обратиться к местоположению,
в котором определено само это правило, то следует позаботиться
о том, чтобы не зациклиться. Например, в контексте server правило
можно определить с флагом last, но при определении в местополо-
жении, на которое оно ссылается, необходимо использовать флаг
break.

server {

 rewrite ^(/images)/(.*)\.(png|jpg|gif)$ $1/$3/$2.$3 last;

 location /images/ {

 rewrite ^(/images)/(.*)\.(png|jpg|gif)$ $1/$3/$2.$3 break;

 }

}

Передача дополнительных аргументов в командной строке – одна
из целей, преследуемых при создании правил переписывания. Од-
нако если исходные аргументы следует отбросить, а использовать
только те, что определены в правиле, то в конце списка новых ар-
гументов нужно поставить знак ?.

rewrite ^/images/(.*)_(\d+)x(\d+)\.(png|jpg|gif)$ /resizer/$1.$4?width

=$2&height=$3? last;

261Руководство по правилам переписывания

Преобразование правил из формата

Apache

 Созданию правил переписывания для наделенного развитой
функциональностью модуля Apache mod_rewrite посвящено немало
ресурсов в Интернете. Для преобразования правил, записанных
в формате Apache, в формат, понятный NGINX, нужно придержи-
ваться нескольких простых рекомендаций.

Рекомендация 1: заменить проверки

существования каталогов и файлов

директивой try_files

 Встретив правило переписывания для Apache такого вида:

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ index.php?q=$1 [L]

преобразуйте его в следующий фрагмент конфигурации NGINX:

try_files $uri $uri/ /index.php?q=$uri;

Эти правила говорят, что в случае, когда заданному в URI име-
ни не соответствует ни файл, ни каталог на диске, запрос следует
переадресовать файлу index.php в корне текущего контекста, передав
в аргументе q исходный URI-адрес.

Пока в NGINX не появилась директива try_files, не было никако-
го другого выбора, кроме как проверять существование файла или
каталога:

if (!-e $request_filename) {

 rewrite ^/(.*)$ /index.php?q=$1 last;

}

Не делайте этого. В Интернете можно встретить советы посту-
пать именно таким образом, но они либо были даны очень давно,
либо скопированы из устаревших конфигурационных файлов. Хотя
директива try_files принадлежит базовому модулю http и, строго го-
воря, не может считаться правилом переписывания, указанную за-
дачу она решает гораздо эффективнее, так как именно для этого и
создавалась.

262 Приложение В

Рекомендация 2: заменить сравнение

с REQUEST_URI секцией location

 В Apache правила переписывания часто помещают в файлы
.htaccess , так как исторически сложилось, что пользователи долж-
ны были иметь доступ к этим файлам. Типичный администратор
коллективного хостинга вряд ли даст пользователю прямой доступ
к конфигурационному контексту виртуального хоста, описывающе-
го его сайт, но зато позволит помещать практически любую инфор-
мацию в файл .htaccess. Это и привело к нынешней ситуации, когда
файлы .htaccess забиты правилами переписывания.

Хотя в Apache тоже имеется директива Location, она редко ис-
пользуется для сопоставления с URI, потому что может встречаться
либо в конфигурации главного сервера, либо в конфигурации вир-
туального хоста и нигде более. Поэтому-то мы то и дело натыкаем-
ся на правила переписывания, в которых производится сравнение
с REQUEST_URI:

RewriteCond %{REQUEST_URI} ^/niceurl

RewriteRule ^(.*)$ /index.php?q=$1 [L]

В NGINX для этой цели лучше использовать местоположение:

location /niceurl {
 include fastcgi_params;
 fastcgi_index index.php;
 fastcgi_pass 127.0.0.1:9000;
}

Разумеется, директивы в контексте location всецело зависят от
вашего сайта, но принцип остается в силе – сопоставление с URI
лучше производить с помощью местоположений.

То же относится и к директивам RewriteRule с неявным REQUEST_URI.
Как правило, они просто преобразуют URI из старого формата в но-
вый. Так, в примере ниже show.do больше не нужен:

RewriteRule ^/controller/show.do$ http://example.com/controller [L,R=301]

Такое правило транслируется в следующий фрагмент конфигу-
рации NGINX:

location = /controller/show.do {

 rewrite ^ http://example.com/controller permanent;

}

263Руководство по правилам переписывания

Чтобы не создавать слишком много местоположений при преоб-
разовании директив RewriteRule, следует помнить, что регулярные
выражения переносятся без изменений.

Рекомендация 3: заменить сравнение

с HTTP_ HOST секцией server

 Эта рекомендация тесно связана с предыдущей; мы рассматри-
ваем конфигурации, в которых нужно добавить либо удалить из
доменного имени часть www. Такие правила переписывания нередко
встречаются в файлах .htaccess или в виртуальных хостах с пере-
груженными ServerAlias:

RewriteCond %{HTTP_HOST} !^www

RewriteRule ^(.*)$ http://www.example.com/$1 [L,R=301]

Здесь мы транслируем URL без www в начале доменного имени
в URL, содержащий www:

server {

 server_name example.com;

 rewrite ^ http://www.example.com$request_uri permanent;

}

В противоположном случае, когда требуется убрать www, мы встре-
чаемся с таким правилом:

RewriteCond %{HTTP_HOST} ^www

RewriteRule ^(.*)$ http://example.com/$1 [L,R=301]

Оно транслируется в следующую конфигурацию NGINX:

server {

 server_name www.example.com;

 rewrite ^ http://example.com$request_uri permanent;

}

Контекст server для переадресованного варианта не показан, по-
тому что к переписыванию он отношения не имеет.

Тот же принцип применим и в случаях, когда нужно не просто
распознать наличие или отсутствие www. Его можно использовать
всегда, когда в условии RewriteCond встречается %{HTTP_HOST}. В NGINX
для этого лучше заводить контексты server, по одному для каждого
проверяемого условия.

264 Приложение В

Пусть, например, имеется такая конфигурация Apache с несколь-
кими сайтами:

RewriteCond %{HTTP_HOST} ^site1

RewriteRule ^(.*)$ /site1/$1 [L]

RewriteCond %{HTTP_HOST} ^site2

RewriteRule ^(.*)$ /site2/$1 [L]

RewriteCond %{HTTP_HOST} ^site3

RewriteRule ^(.*)$ /site3/$1 [L]

Она транслируется в конфигурацию, где производится сравнение
с именем хоста и для каждого хоста задается своя директива root.

server {

 server_name site1.example.com;

 root /home/www/site1;

}

server {

 server_name site2.example.com;

 root /home/www/site2;

}

server {

 server_name site3.example.com;

 root /home/www/site3;

}

По существу, это виртуальные хосты, так что и описывать их
в конфигурационном файле следует соответственно.

Рекомендация 4: заменить RewriteCond

проверкой переменной в директиве if

 Эта рекомендация применяется после рекомендаций 1–3. Если
после их применения остались еще какие-то условия, то для про-
верки переменных можно использовать директиву if. Любой HTTP-
переменной соответствует переменная NGINX, имя которой образо-
вано путем перевода имени исходной переменной в нижний регистр
и добавления префикса $http_. Дефисы (-) при этом следует заме-
нить знаками подчеркивания (_).

Следующий пример (взятый из документации Apache по моду-
лю mod_rewrite на странице http://httpd.apache.org/docs/2.2/mod/mod_

rewrite.html) позволяет вернуть пользователю ту или иную страницу
в зависимости от заголовка User-Agent:

265Руководство по правилам переписывания

RewriteCond %{HTTP_USER_AGENT} ^Mozilla

RewriteRule ^/$ /homepage.max.html [L]

RewriteCond %{HTTP_USER_AGENT} ^Lynx

RewriteRule ^/$ /homepage.min.html [L]

RewriteRule ^/$ /homepage.std.html [L]

Эквивалентная конфигурация NGINX выглядит следующим об-
разом:

if ($http_user_agent ~* ^Mozilla) {

 rewrite ^/$ /homepage.max.html break;

}

if ($http_user_agent ~* ^Lynx) {

 rewrite ^/$ /homepage.min.html break;

}

index homepage.std.html;

Конечно, специальные переменные, доступные только в модуле
Apache mod_rewrite, в NGINX проверить невозможно.

Резюме

В этом приложении мы рассмотрели модуль NGINX rewrite.
С ним ассоциировано лишь несколько директив, но это не мешает
создавать достаточно сложные конфигурации. Хочется надеяться,
что пошаговое рассмотрение процедуры создания новых правил
убедило вас, что это не так уж трудно. Но для написания сколь-
ко-нибудь сложных правил необходимо уверенное владение регу-
лярными выражениями. В конце мы обсудили, как преобразовать
правила переписывания из формата Apache в конфигурацию, понят-
ную NGINX. Попутно мы обнаружили, что многие задачи, которые
в Apache решаются с помощью правил переписывания, в NGINX
можно решить по-другому.

Приложение С. Сообщество
NGINX

 Ныне NGINX поддерживается не только полным жизни сообще-
ством, но и компанией. Игорь Сысоев, автор NGINX, в 2011 году
стал одним из учредителей компании NGINX, Inc., которая пред-
лагает профессиональную поддержку организациям, использующим
NGINX. Но и он сам, и другие разработчики NGINX не отдалились
от сообщества. В этом приложении приводится краткий обзор обще-
доступных сетевых ресурсов. Рассматриваются следующие вопросы:

  Список рассылки.
  IRC-канал.
  Веб-ресурсы.
  Как правильно составить отчет об ошибке.

Список рассылки

Список рассылки по адресу nginx@nginx.org поддерживается с 2005
года. Чтобы понять, как эффективнее всего поставить этот список
себе на пользу, подпишитесь на него и посмотрите, какие в нем зада-
ют вопросы и как на них отвечают. Прежде чем задавать вопрос, по-
ищите ответ в Сети. Имеется также список ЧАВО по адресу http://
wiki.nginx.org/Faq. Покопайтесь в архивах на сайте http://mailman.
nginx.org/pipermail/nginx/ – быть может, кто-то недавно задавал ана-
логичный вопрос. Повторять недавно рассматривавшийся вопрос
зазорно, к тому же это раздражает читателей списка рассылки.

IRC-канал

IRC-канал #nginx на сайте irc.freenode.net – ресурс для тех, кто
хочет познакомиться с разработчиками и немедленно получить по-
лезный ответ на короткий вопрос. Но при посещении канала соблю-

267Сообщество NGINX

дайте этикет IRC. Длинные куски текста – конфигурационные фай-
лы или вывод компилятора – следует размещать на каком-нибудь
стороннем сайте, а в канале оставлять только URL. Дополнительные
сведения об этом канале можно найти по адресу http://wiki.nginx.
org/IRC.

Веб-ресурсы

 Вики по адресу http://wiki.nginx.org уже много лет является по-
лезным ресурсом. Здесь вы найдете полный справочник по дирек-
тивам, список модулей и много примеров конфигураций. Однако
помните, что это вики, поэтому информация не обязательно точна,
актуальна или отвечает вашей конкретной ситуации. В этой кни-
ге мы неоднократно видели, что, прежде чем предлагать решение,
очень важно ясно понять, чего мы хотим достичь.

Компания NGINX, Inc. публикует официальную справочную
документацию по адресу http://nginx.org/en/docs/. Там же имеются
краткое введение в NGINX, различные пособия и описания всех
модулей и директив.

Как правильно составить отчет

об ошибке

 Обращаясь за помощью, нужно знать, как правильно составить
отчет об ошибке. Ответ придет гораздо быстрее, если вы сможете
описать проблему ясно и так, чтобы ее можно было воспроизвести.
В этом разделе мы покажем, как это сделать.

Самое трудное в отчете об ошибке – определить, в чем состоит
проблема. Сначала подумайте, чего вы добиваетесь. Формулируйте
задачу четко и кратко, например:

Я хочу, чтобы все запросы к имени subdomain.example.com обслуживались сервером

server1.

Не пишите в таком духе:

Когда я обращаюсь к subdomain.example.com, все запросы обслуживаются из локаль-

ной файловой системы, а не проксируются на server1.

Улавливаете разницу? В первом случае вы четко формулируете
цель, а во втором описываете результат, а не исходную задачу.

268 Приложение С

Определив, в чем проблема, опишите, как ее воспроизвести:

Обращение к http://subdomain.example.com/serverstatus дает «404 File Not Found».

Теперь всякий, кто займется вашей проблемой, будет знать, на
что смотреть. И как доказать, что проблема решена, – неработавший
пример должен заработать.

Далее полезно описать, в какой среде наблюдалась проблема. Не-
которые ошибки проявляются только в определенных операцион-
ных системах и при компоновке с конкретной версией той или иной
библиотеки.

В отчет следует также включить все конфигурационные файлы,
необходимые для воспроизведения проблемы. Если файл имеется
в каком-нибудь архиве ПО, достаточно ссылки на него.

Прежде чем отправлять отчет об ошибке, перечитайте его. Часто
обнаруживается, что какой-то информации не хватает. А иногда ока-
зывается, что для решения проблемы достаточно было всего лишь
четко сформулировать ее.

Резюме

В этом приложении мы рассказали о сообществе, сложившемся
вокруг NGINX. Мы познакомились с основными игроками и с до-
ступными сетевыми ресурсами. Мы также узнали, как правильно
составить отчет об ошибке, который поможет найти решение проб-
лемы.

Приложение D. Сохранение
сетевых настроек в Solaris

 В главе 8 «Техника устранения неполадок» мы видели, как изменить
различные настройки сети в разных операционных системах. В этом
приложении описываются детали, имеющие отношение к ОС Solaris
версии 10 и выше.

Следующий скрипт запускается каркасом Service Management
Framework (SMF), чтобы установить сетевые параметры с помощью
программы ndd. Сохраните его в файле /lib/svc/method/network-tuning.
sh и сделайте исполняемым.

vi /lib/svc/method/network-tuning.sh

Ниже приведено содержимое файла /lib/svc/method/network-tuning.
sh:

#!/sbin/sh

Set the following values as desired

ndd -set /dev/tcp tcp_max_buf 16777216

ndd -set /dev/tcp tcp_smallest_anon_port 1024

ndd -set /dev/tcp tcp_largest_anon_port 65535

ndd -set /dev/tcp tcp_conn_req_max_q 1024

ndd -set /dev/tcp tcp_conn_req_max_q0 4096

ndd -set /dev/tcp tcp_xmit_hiwat 1048576

ndd -set /dev/tcp tcp_recv_hiwat 1048576

chmod 755 /lib/svc/method/network-tuning.sh

В приведенном ниже манифесте определена служба настройки
сети и сказано, что скрипт нужно выполнить на этапе загрузки. Об-
ратите внимание на атрибут transient, который говорит SMF, что
это запускаемый однократно скрипт, а не постоянно работающий
демон.

270 Приложение D

<?xml version=»1.0»?>

<!DOCTYPE service_bundle SYSTEM «/usr/share/lib/xml/dtd/service_ bundle.dtd.1»>

<service_bundle type=’manifest’ name=’SUNW:network_tuning’>

 <service

 name=’site/network_tuning’

 type=’service’

 version=’1’>

 <create_default_instance enabled=’true’ />

 <single_instance />

 <dependency

 name=’usr’

 type=’service’

 grouping=’require_all’

 restart_on=’none’>

 <service_fmri value=’svc:/system/filesystem/minimal’ />

 </dependency>

 <!-- Run ndd commands after network/physical is plumbed. -->

 <dependency

 name=’network-physical’

 grouping=’require_all’

 restart_on=’none’

 type=’service’>

 <service_fmri value=’svc:/network/physical’ />

 </dependency>

 <!-- but run the commands before network/initial -->

 <dependent

 name=’ndd_network-initial’

 grouping=’optional_all’

 restart_on=’none’>

 <service_fmri value=’svc:/network/initial’ />

 </dependent>

 <exec_method

 type=’method’

 name=’start’

 exec=’/lib/svc/method/network-tuning.sh’

 timeout_seconds=’60’ />

 <exec_method

 type=’method’

 name=’stop’

 exec=’:true’

 timeout_seconds=’60’ />

 <property_group name=’startd’ type=’framework’>

 <propval name=’duration’ type=’astring’ value=’transient’ />

 </property_group>

 <stability value=’Unstable’ />

 <template>

271Сохранение сетевых настроек в Solaris

 <common_name>

 <loctext xml:lang=’C’>

 Network Tunings

 </loctext>

 </common_name>

 </template>

 </service>

</service_bundle>

Сохраните этот код в файле /var/svc/manifest/site/network-tuning.
xml и импортируйте его такой командой:

svccfg import /var/svc/manifest/site/network-tuning.xml

Служба намеренно сделана простой, так как предназначена только
для демонстрации. Интересующийся читатель может узнать о SMF
из страниц руководства в Solaris и из сетевых ресурсов.

272 Предметный указатель

Символы
@STRENGTH, строка, 100
$arg_name, переменная, 141
$args, переменная, 141
$binary_remote_addr,
переменная, 135, 141
$body_bytes_sent, переменная, 127
$bwhog, переменная, 255
$bytes_sent, переменная, 127
$connection_requests,
переменная, 127
$connection, переменная, 127
$content_length, переменная, 141
$content_type, переменная, 141
$cookie_name, переменная, 142
$document_root, переменная, 142
$document_uri, переменная, 142
$hostname, переменная, 142
$host, переменная, 142
$http_name, переменная, 142
$https, переменная, 142
$is_args, переменная, 142
$limit_rate, переменная, 142
$memcached_key, переменная, 159
$msec, переменная, 127
$nginx_version, переменная, 142
$pid, переменная, 142
$pipe *, переменная, 127
$query_string, переменная, 142
$realpath_root, переменная, 142
$remote_addr, переменная, 142
$remote_port, переменная, 142
$remote_user, переменная, 142
$request_body_file, переменная, 142

$request_body, переменная, 142
$request_completion,
переменная, 142
$request_filename, переменная, 142
$request_length *, переменная, 127
$request_method, переменная, 142
$request_time, переменная, 127
$request_uri, переменная, 142
$request, переменная, 142
$scheme, переменная, 142
$sent_http_name, переменная, 142
$server_addr, переменная, 143
$server_name, переменная, 143
$server_port, переменная, 143
$server_protocol, переменная, 143
$ssl_client_cert, переменная, 100
$status, переменная, 127, 143
$tcpinfo_rcv_space, переменная, 143
$tcpinfo_rttvar, переменная, 143
$tcpinfo_rtt, переменная, 143
$tcpinfo_snd_cwnd, переменная, 143
$time_iso8601 *, переменная, 127
$time_local *, переменная, 127
$uri, переменная, 143
403 Forbidden, ошибка, 174
504 Gateway Timeout Error,
ошибка, 108
--conf-path=<path>, параметр, 23
--error-log-path=<path>, параметр, 23
--group=<group>, параметр, 23
.htaccess, файл, 262
--http-client-body-temp-
path=<path>, пар, 26
--http-fastcgi-temp-path=<path>,

Предметный указатель

273Предметный указатель

параметр, 26
--http-log-path=<path>, параметр, 26
--http-proxy-temp-path=<path>,
параметр, 26
--http-sсgi-temp-path=<path>,
параметр, 26
--http-uwsgi-temp-path=<path>,
параметр, 26
--lock-path=<path>, параметр, 23
--pid-path=<path>, параметр, 23
--prefix=<path>, параметр, 23
--sbin-path=<path>, параметр, 23
--user=<user>, параметр, 23
--with-cc-opt=<options>,
параметр, 24
--with-cc=<path>, параметр, 24
--with-cpp=<path>, параметр, 24
--with-cpu-opt=<cpu>, параметр, 24
--with-debug, параметр, 23, 186
--with-file-aio, параметр, 23
--with-http_addition_module, пара-
метр, 27
--with-http_dav_module,
параметр, 27
--with-http_flv_module, параметр, 27
--with-http_geoip_module,
параметр, 27
--with-http_gunzip_static_module,
параметр, 27
--with-http_gzip_static_module,
параметр, 27
--with-http_image_filter_module,
параметр, 27
--with-http_mp4_module,
параметр, 27
--with-http_perl_module,
параметр, 25
--with-http_random_index_module,
параметр, 27
--with-http_realip_module,
параметр, 26
--with-http_secure_link_module,
параметр, 27
--with-http_ssl_module, параметр, 26
--with-http_stub_status_module,
параметр, 27

--with-http_sub_module,
параметр, 27
--with-ld-opt=<options>,
параметр, 24
--with-mail_ssl_module,
параметр, 24
--with-mail, параметр, 24
--without-http_access_module,
параметр, 29
--without-http_auth_basic_module,
параметр, 29
--without-http_autoindex_module,
параметр, 29
--without-http_browser_module,
параметр, 30
--without-http-cache, параметр, 25
--without-http_charset_module,
параметр, 28
--without-http_empty_gif_module,
параметр, 30
--without-http_fastcgi_module,
параметр, 29
--without-http_geo_module,
параметр, 29
--without-http_gzip_module,
параметр, 28
--without-http_limit_conn_module,
параметр, 29
--without-http_limit_req_module,
параметр, 29
--without-http_map_module,
параметр, 29
--without-http_memcached_module,
параметр, 29
--without-http_proxy_module,
параметр, 29
--without-http_referer_module,
параметр, 29
--without-http_rewrite_module,
параметр, 29
--without-http_scgi_module,
параметр, 29
--without-http_split_clients_module,
параметр, 29
--without-http_ssi_module,
параметр, 28

274 Предметный указатель

--without-http_upstream_ip_hash_
module, параметр, 30
--without-http_userid_module,
параметр, 29
--without-http_uwsgi_module,
параметр, 29
--without-http, параметр, 25
--without-mail_imap_module,
параметр, 25
--without-mail_pop3_module,
параметр, 25
--without-mail_smtp_module,
параметр, 25
--with-perl_modules_path=<path>,
параметр, 26
--with-perl=<path>, параметр, 26

A
accept_filter, параметр, 42
accept_mutex_delay, директива, 205
accept_mutex, директива, 205
access_log, директива, 125, 193, 206
add_after_body, директива, 165, 206
add_before_body,
директива, 165, 206
add_header, директива, 161, 206
addition_types, директива, 165, 206
addition, модуль, 164
aio, директива, 38, 207
alias, директива, 46, 207
allow, директива, 137, 207
ancient_browser_value,
директива, 207
ancient_browser, директива, 207
Apache, документация по модулю
mod_rewrite, 264
Apache, правила переписывания

замена RewriteCond проверкой
переменной в директиве if, 264
замена проверки существования
директивой try_files, 261
замена сравнения
с HTTP_ HOST секцией
server, 263

замена сравнения
с REQUEST_ URI секцией
location, 262
общие сведения, 261

APOP, метод аутентификации, 54
Atmail, 52
atomic_ops, библиотека, 22
auth_basic_user_file,
директива, 137, 139, 207
auth_basic, директива, 137, 207
auth_http_header, директива, 208
auth_http_timeout, директива, 208
auth_http, директива, 48, 208
auth, метод, 66
autoindex_exact_size, директива, 208
autoindex_localtime, директива, 208
autoindex, директива, 208
autoindex, модуль, 29

B
backlog, параметр, 41
bind, параметр, 42
block, команда, 168
break, директива, 208, 258
break, флаг, 77, 255, 258

C
CACHE, 114
charset_map, директива, 208
charset_types, директива, 209
charset, директива, 208
charset, модуль, 28
chunked_transfer_encoding,
директива, 36, 209
client_body_buffer_size,
директива, 37, 209, 210
client_body_in_file_only,
директива, 37, 209
client_body_in_single_buffer,
директива, 37, 209
client_body_max_body_size,
директива, 210
client_body_temp_path,
директива, 37, 209

275Предметный указатель

client_body_timeout,
директива, 37, 210
client_header_buffer_size,
директива, 37
client_header_timeout, директива, 37
client_max_body_size, директива, 37
collectd, 204
config, команда, 168
connection_pool_size, директива, 210
create_full_put_path, директива, 210
crypt(), функция, 138

D
daemon, директива, 210
dav_access, директива, 210
dav_methods, директива, 210
DDOS-атака, 133
debug_connection, директива, 211
debug_points, директива, 211
default_server, параметр, 41
default_type, директива, 131, 211
deferred, параметр, 42
deny, директива, 137, 211
directio_alignment,
директива, 38, 211
directio, директива, 38, 211
disable_symlinks, директива, 129, 211
Django, 153
Drupal, 147

пример конфигурации, 147

E
echo, команда, 168
empty_gif, директива, 175, 211
env, директива, 212
error_log, директива, 34, 70, 181, 212
error_page, директива, 102, 131,
132, 160, 212, 256
etag, директива, 131, 213
events, директива, 213
expires, директива, 161, 213

F
fastcgi_bind, директива, 213

fastcgi_buffer_size,
директива, 143, 213
fastcgi_buffers, директива, 143, 213
fastcgi_busy_buffers_size,
директива, 144, 213
fastcgi_cache_bypass,
директива, 144, 213
fastcgi_cache_key,
директива, 144, 213
fastcgi_cache_lock_timeout,
директива, 144, 214
fastcgi_cache_lock,
директива, 144, 214
fastcgi_cache_min_uses,
директива, 144, 214
fastcgi_cache_path,
директива, 144, 214
fastcgi_cache_use_stale,
директива, 144, 214
fastcgi_cache_valid,
директива, 145, 214
fastcgi_cache, директива, 144, 213
fastcgi_connect_timeout,
директива, 145, 214
fastcgi_hide_header,
директива, 145, 214
fastcgi_ignore_client_abort,
директива, 145, 215
fastcgi_ignore_headers,
директива, 145, 215
fastcgi_index, директива, 145, 215
fastcgi_intercept_errors,
директива, 145, 215
fastcgi_keep_conn,
директива, 145, 215
fastcgi_max_temp_file_size,
директива, 145, 215
fastcgi_next_upstream,
директива, 145, 215
fastcgi_no_cache, директива, 146, 215
fastcgi_param, директива, 146, 215
fastcgi_pass_header,
директива, 146, 216
fastcgi_pass, директива, 146, 216
fastcgi_read_timeout,
директива, 146, 216

276 Предметный указатель

fastcgi_send_lowat, директива, 216
fastcgi_send_timeout,
директива, 146, 216
fastcgi_split_path_info,
директива, 146, 216
fastcgi_store_access,
директива, 146, 217
fastcgi_store, директива, 146, 217
fastcgi_temp_file_write_size,
директива, 146, 217
fastcgi_temp_path,
директива, 146, 217
FastCGI, проксируемые серверы, 88
FastMail, 51
flv, директива, 140, 217
FreeBSD, 203

менеджер пакетов, 20

G
GD, библиотека, 175
geoip_city, директива, 219
geoip_country, директива, 219
geoip_org, директива, 219
geoip_proxy_recursuve,
директива, 220
geoip_proxy, директива, 219
geo, директива, 218
gunzip_buffers, директива, 220
gunzip, директива, 220
gzip_buffers, директива, 118, 220
gzip_comp_level, директива, 118, 220
gzip_disable, директива, 118, 220
gzip_http_version, директива, 220
gzip_min_length, директива, 118, 220
gzip_proxied, директива, 118, 221
gzip_static, директива, 221
gzip_types, директива, 118, 221
gzip_vary, директива, 118, 221
gzip, директива, 118, 220
gzip, модуль, 28, 117

директивы, 118

H
Host, заголовок, 79
http_auth, директива, 72

http, директива, 221
http, модуль, 68, 122

взаимодействие с клиентами, 131
директива server, 123
модель протоколирования, 124
параметры configure, 25
поиск файлов, 127
разрешение имен, 129

HTTP-сервер, 121

I
if_modified_since, директива, 131, 221
if, директива, 89, 141, 221, 258

ветвление по имени хоста, 196
использование вместо
try_files, 195

if, команда, 168
ignore_invalid_headers,
директива, 131, 222
image_filter_buffer,
директива, 175, 222
image_filter_jpeg_quality,
директива, 176, 222
image_filter_sharpen,
директива, 176, 222
image_filter_transparency,
директива, 176, 222
image_filter, директива, 175, 222
IMAP, 52
imap_auth, директива, 55, 222
imap_capabilities,
директива, 48, 55, 222
imap_client_buffer, директива, 222
include, директива, 223
include, команда, 168
index, директива, 223
internal, директива, 46, 223
ip_hash, директива, 82, 84, 223
ipv6only, параметр, 42
IRC-канал, 266

K
keepalive_disable, директива, 37, 223
keepalive_requests,
директива, 37, 223

277Предметный указатель

keepalive_timeout, директива, 37, 223
keepalive, директива, 82, 83, 223
keepalive-соединения, 83, 204
KILL, сигнал, 188

L
large_client_header_buffers,
директива, 37, 223
large_client_header_buffers,
директива, 37
last, флаг, 255, 258
least_conn, директива, 82, 84, 224
libatomic, библиотека, 22
limit_conn_log_level,
директива, 133, 224
limit_conn_zone, директива, 133, 224
limit_conn, директива, 133, 224
limit_except, директива, 46, 224
limit_rate_after, директива, 134, 224
limit_rate_log_level, директива, 134
limit_rate_zone, директива, 134
limit_rate, директива, 134, 224
limit_req_log_level, директива, 225
limit_req_zone, директива, 225
limit_req, директива, 134, 225
limit_zone, директива, 225
lingering_close, директива, 40, 225
lingering_timeout, директива, 40, 226
lingering_time, директива, 40, 225
Linux, 203
Linux, менеджер пакетов, 19
listen (http), директива, 226
listen (mail), директива, 226
listen, директива, 41, 99, 123
location, директива, 45, 226
lock_file, директива, 226
log_format, директива, 124, 125,
126, 193, 226
log_not_found, директива, 126, 226
log_subrequest, директива, 126, 227

M
mail, директива, 227
map_hash_bucket_size,
директива, 227

map_hash_max_size, директива, 227
map, директива, 227
map, модуль, 29
master_process, директива, 227
max_ranges, директива, 134, 228
MD5, 22
memcached

интеграция, 68
параметры, 69

memcached_bind, директива, 228
memcached_buffer_size,
директива, 160, 228
memcached_connect_timeout,
директива, 160, 228
memcached_gzip_flag, директива, 228
memcached_next_upstream,
директива, 160, 228
memcached_pass,
директива, 88, 160, 228
memcached_read_timeout,
директива, 161, 228
memcached_send_timeout,
директива, 161, 228
memcached, модуль директивы, 160
merge_slashes, директива, 131, 229
min_delete_depth, директива, 229
modern_browser_value,
директива, 229
modern_browser, директива, 229
mod_rewrite, модуль, 261
mp4_buffer_size, директива, 140, 229
mp4_max_buffer_size,
директива, 140, 229
mp4, директива, 140, 229
msie_padding, директива, 37, 230
msie_refresh, директива, 37, 230
multi_accept, директива, 230
Munin, 204

N
Nagios, 204
NGINX

актуальный список директив, 205
архитектура, 121
включение модулей, 26

278 Предметный указатель

глобальные конфигурационные
параметры, 34
документация в Сети, 267
интеграция с uWSGI, 152
использование совместно
с PHP-FPM, 143
ключ подписания, 21
конфигурационный файл, 33
модуль rewrite, 254
общие сведения, 19, 51
отключение неиспользуемых
модулей, 28
параметры configure

модуль http, 25
модуль mail, 24
общие, 23

предопределенные
переменные, 141
принятие решений, 170
сборка из исходного кода, 21
сообщество, 266
сторонние модули, поиск
и установка, 30
установка с помощью менеджера
пакетов, 19
формат конфигурационного
файла, 33
ЧАВО, 266

nginx.conf, конфигурационный
файл, 35
ngx_lua, сторонний модуль, 30

O
open_file_cache_errors,
директива, 38, 230
open_file_cache_valid,
директива, 38, 230
open_file_cache, директива, 38, 230
open_file_min_uses,
директива, 38, 230
open_log_file_cache,
директива, 126, 230
OpenSSL, генерация
SSL-сертификата, 57
optimize_server_names,
директива, 230

override_charset, директива, 231

P
pcre_jit, директива, 231
PCRE (Perl Compatible Regular
Expressions), библиотека, 22
PEP-3333, 152
perl_modules, директива, 170, 231
perl_require, директива, 170, 231
perl_set, директива, 170, 231
perl, директива, 170, 231
permanent, флаг, 258
PHP-FPM, технология, 143
pid, директива, 34, 231
Platform for Privacy Preferences
Project, 179
POP3, 52, 53
pop3_auth, директива, 231
pop3_capabilities, директива, 48, 232
port_in_redirect, директива, 124, 232
postpone_output, директива, 38, 232
printf(), функция, 193
protocol, директива, 48, 232
proxy_bind, директива, 232
proxy_buffering, директива, 109, 232
proxy_buffer_size,
директива, 80, 109, 232
proxy_buffers, директива, 80, 109, 233
proxy_buffer, директива, 48, 232
proxy_busy_buffers_size,
директива, 80, 109, 233
proxy_cache_bypass,
директива, 112, 233
proxy_cache_key, директива, 112, 233
proxy_cache_lock_timeout,
директива, 113, 233
proxy_cache_lock,
директива, 113, 233
proxy_cache_min_uses,
директива, 113, 234
proxy_cache_path,
директива, 113, 234
proxy_cache_use_stale,
директива, 113, 234
proxy_cache_valid,
директива, 113, 234

279Предметный указатель

proxy_cache, директива, 112, 233
proxy_connect_timeout,
директива, 77, 80, 234
proxy_cookie_domain,
директива, 77, 234
proxy_cookie_path,
директива, 77, 235
proxy_headers_hash_bucket_size,
директива, 77, 235
proxy_headers_hash_max_size,
директива, 77, 235
proxy_hide_header,
директива, 77, 235
proxy_http_version,
директива, 78, 235
proxy_ignore_client_abort,
директива, 78, 235
proxy_ignore_headers,
директива, 78, 235
proxy_intercept_errors,
директива, 78, 235
proxy_max_temp_file_size,
директива, 78, 235
proxy_next_upstream, директива, 236
proxy_no_cache, директива, 236
proxy_pass_error_message,
директива, 48, 237
proxy_pass_header, директива, 78, 237
proxy_pass_request_body,
директива, 78, 237
proxy_pass_request_headers,
директива, 78, 237
proxy_pass, директива, 78, 237
proxy_read_timeout,
директива, 78, 80, 237
proxy_redirect, директива, 78, 237
proxy_send_lowat, директива, 80, 237
proxy_send_timeout,
директива, 78, 80, 237
proxy_set_body, директива, 78, 238
proxy_set_header,
директива, 79, 94, 238
proxy_ssl_session_reuse,
директива, 238
proxy_store_access, директива, 238
proxy_store, директива, 117, 238

proxy_temp_file_write_size,
директива, 79, 238
proxy_temp_path,
директива, 79, 184, 238
proxy_timeout, директива, 48, 239
proxy, директива, 48, 232
proxy, модуль

директивы, 77
общие сведения, 29, 51
унаследованные серверы
с куками, 81

R
random_index, директива, 239
RBAC (Role-based access control), 20
rcvbuf, параметр, 41
read_ahead, директива, 38, 239
real_ip_header, директива, 239
real_ip_recursive, директива, 239
recursive_error_pages,
директива, 131, 239
redirect, флаг, 258
referer_hash_bucket_size,
директива, 239
referer_hash_max_size,
директива, 239
request_pool_size, директива, 239
reset_timedout_connection,
директива, 40, 239
resolver_timeout, директива, 240
resolver, директива, 130, 240
return, директива, 240, 256, 258
rewrite_log, директива, 240, 258
RewriteRule, 262
rewrite, директива, 240, 258
rewrite, модуль, 29, 190, 254

директивы, 258
root, директива, 129, 240
Ruby, 61

S
satisfy_any, директива, 241
satisfy, директива, 137, 240
SCGI модуль, 29, 89
secure_link_secret,
директива, 173, 241

280 Предметный указатель

secure_link, модуль, 173
sendfile_max_chunk,
директива, 39, 241
sendfile, директива, 39, 241
send_lowat, директива, 40, 241
send_timeout, директива, 40, 241
server (http), директива, 241
server (mail), директива, 241
server_name (http), директива, 242
server_name_in_redirect,
директива, 124, 242
server_name (mail), директива, 242
server_names_hash_bucket_size,
директива, 39, 242
server_names_hash_max_size,
директива, 39, 242
server_name, директива, 42, 124
server_tokens, директива, 124, 242
server (upstream), директива, 241
server, директива, 82, 123, 124
setfib, параметр, 41
set_real_ip_from, директива, 242
set, директива, 242, 258
set, команда, 169
SHA-1, 22
SMTP, 52, 55
smtp_auth, директива, 56, 242
smtp_capabilities, директива, 243
sndbuf, параметр, 42
so_keepalive, директива, 243
so_keepalive, параметр, 42
Solaris, сохранение сетевых
настроек, 269
source_charset, директива, 243
split_clients, директива, 243
ssi_min_file_chunk, директива, 243
SSI (Server Side Includes), 167
ssi_silent_errors, директива, 167, 243
ssi_types, директива, 167, 243
ssi_value_length, директива, 243
ssi, директива, 167, 243
ssi, модуль директивы, 167
SSL

аутентификация клиентов, 100
общие сведения, 56
шифрование трафика, 98

ssl_certificate (http), директива, 244

ssl_certificate_key (http),
директива, 244
ssl_certificate_key (mail),
директива, 244
ssl_certificate_key, директива, 49
ssl_certificate (mail), директива, 244
ssl_certificate, директива, 49
ssl_ciphers, директива, 49, 244
ssl_client_certificate, директива, 244
ssl_crl, директива, 101, 244
ssl_dhparam, директива, 244
ssl_engine, директива, 245
ssl (http), директива, 244
ssl (mail), директива, 244
ssl_prefer_server_ciphers (http),
директива, 245
ssl_prefer_server_ciphers (mail),
директива, 245
ssl_prefer_server_ciphers,
директива, 49
ssl_protocols (http), директива, 245
ssl_protocols (mail), директива, 245
ssl_protocols, директива, 49
ssl_session_cache (http)
директива, 245
ssl_session_cache (mail)
директива, 246
ssl_session_cache, директива, 49
ssl_session_timeout (http),
директива, 246
ssl_session_timeout (mail),
директива, 246
ssl_session_timeout, директива, 49
ssl_stapling_file, директива, 246
ssl_stapling_responder,
директива, 246
ssl_stapling_verify, директива, 247
ssl_stapling, директива, 246
ssl_trusted_certificate, директива, 247
ssl_verify_client, директива, 101, 247
ssl_verify_depth, директива, 102, 247
ssl, директива, 49
ssl, модуль, 99
ssl, параметр, 42
SSL-сертификат, генерация с по-
мощью SSL, 57
starttls, директива, 247

281Предметный указатель

Stub Status, модуль, 203
sub_filter_once, директива, 165,
166, 247
sub_filter_types, директива, 166, 247
sub_filter, директива, 166, 247
sub, модуль, 165

директивы, 166
sudo, команда, 20

T
tcp_nodelay, директива, 40, 247
tcp_nopush, директива, 40, 248
timeout, директива, 60, 248
timer_resolution, директива, 248
TLS, 56
try_files, директива, 47, 86, 128,
129, 185, 190, 195, 248, 261
types_hash_bucket_size,
директива, 39, 248
types_hash_max_size,
директива, 39, 249
types, директива, 132, 248

U
underscores_in_headers,
директива, 132, 249
uninitialized_variable_warn,
директива, 249
upstream, директива, 249
upstream, модуль, 82

алгоритмы балансировки
нагрузки, 84
директивы, 82
соединения типа keepalive, 83

userid_domain, директива, 179, 250
userid_expires, директива, 179, 250
userid_mark, директива, 250
userid_name, директива, 179, 250
userid_p3p, директива, 179, 250
userid_path, директива, 179, 250
userid_service, директива, 179, 250
userid, директива, 178, 250
userid, модуль, 29

директивы, 178
user, директива, 34, 249

use, директива, 34, 249
uWSGI, интеграция с NGINX, 152

V
valid_referers, директива, 251
variables_hash_bucket_size,
директива, 39, 251
variables_hash_max_size,
директива, 39, 251

W
worker_aio_requests, директива, 251
worker_connections,
директива, 35, 73, 251
worker_cpu_affinity,
директива, 252
worker_priority, директива, 252
worker_processes, директива, 34, 252
worker_rlimit_core, директива, 252
worker_rlimit_nofile,
директива, 73, 199, 252
worker_rlimit_sigpending,
директива, 252
working_directory, директива, 252
WSGI (Web Server Gateway
Interface), 152

X
X-Accel-Expires, заголовок, 157
xclient, директива, 48, 252
XCLIENT, расширение SMTP, 53
xml_entities, директива, 167, 252
xslt_param, директива, 167, 253
xslt_string_param,
директива, 167, 253
xslt_stylesheet, директива, 167, 253
xslt_types, директива, 167, 253
xslt, модуль, 166

директивы, 167

Y
yum, добавление репозитория
NGINX, 20

282 Предметный указатель

Z
Zimbra, 52, 68
zlib, библиотека, 22

А
Аутентификация клиентов
по протоколу SSL, 100

Б
Безопасная ссылка, создание, 173
Безопасность за счет разделения, 98
Буферизация, 108

В
Веб-ресурсы, 267

Г
Главный процесс, 121
Глобальные конфигурационные
параметры NGINX

error_log, 34
pid, 34
use, 34
user, 34
worker_connections, 35
worker_processes, 34

Д
Двоичный файл, переключение
во время выполнения, 186
Директива listen, параметры

accept_filter, 42
backlog, 41
bind, 42
default_server, 41
deferred, 42
ipv6only, 42
rcvbuf, 41
setfib, 41
sndbuf, 42
so_keepalive, 42
ssl, 42

Директивы HTTP-сервера
port_in_redirect, 124
server, 124
server_name, 124
server_name_in_redirect, 124
server_tokens, 124

Директивы для задания
предельных значений, 133

limit_conn, 133
limit_conn_log_level, 133
limit_conn_zone, 133
limit_rate, 134
limit_rate_after, 134
limit_req, 134
limit_req_log_level, 134
limit_req_log_zone, 134
max_ranges, 134

Директивы модуля addition
add_after_body, 165
add_before_body, 165
addition_types, 165

Директивы модуля FastCGI
fastcgi_buffers, 143
fastcgi_buffer_size, 143
fastcgi_busy_buffers_size, 144
fastcgi_cache, 144
fastcgi_cache_bypass, 144
fastcgi_cache_key, 144
fastcgi_cache_lock, 144
fastcgi_cache_lock_timeout, 144
fastcgi_cache_min_uses, 144
fastcgi_cache_path, 144
fastcgi_cache_use_stale, 144
fastcgi_cache_valid, 145
fastcgi_connect_timeout, 145
fastcgi_hide_header, 145
fastcgi_ignore_client_abort, 145
fastcgi_ignore_headers, 145
fastcgi_index, 145
fastcgi_intercept_errors, 145
fastcgi_keep_conn, 145
fastcgi_max_temp_file_size, 145
fastcgi_next_upstream, 145
fastcgi_no_cache, 146
fastcgi_param, 146
fastcgi_pass, 146

283Предметный указатель

fastcgi_pass_header, 146
fastcgi_read_timeout, 146
fastcgi_send_timeout, 146
fastcgi_split_path_info, 146
fastcgi_store, 146
fastcgi_store_access, 146
fastcgi_temp_file_write_size, 146
fastcgi_temp_path, 146

Директивы модуля gzip, 118
gzip, 118
gzip_buffers, 118
gzip_comp_level, 118
gzip_disable, 118
gzip_min_length, 118
gzip_proxied, 118
gzip_types, 118
gzip_vary, 118

Директивы модуля image_filter, 175
empty_gif, 175
image_filter, 175
image_filter_buffer, 175
image_filter_jpeg_quality, 176
image_filter_sharpen, 176
image_filter_transparency, 176

Директивы модуля memcached
memcached_buffer_size, 160
memcached_connect_timeout, 160
memcached_next_upstream, 160
memcached_pass, 160
memcached_read_timeout, 161
memcached_send_timeout, 161

Директивы модуля perl
perl, 170
perl_modules, 170
perl_require, 170
perl_set, 170

Директивы модуля proxy
proxy_connect_timeout, 77
proxy_cookie_domain, 77
proxy_cookie_path, 77
proxy_headers_hash_bucket_
size, 77
proxy_headers_hash_max_size, 77
proxy_hide_header, 77
proxy_http_version, 78
proxy_ignore_client_abort, 78

proxy_ignore_headers, 78
proxy_intercept_errors, 78
proxy_max_temp_file_size, 78
proxy_pass, 78
proxy_pass_header, 78
proxy_pass_request_body, 78
proxy_pass_request_headers, 78
proxy_read_timeout, 78
proxy_redirect, 78
proxy_send_timeout, 78
proxy_set_body, 78
proxy_set_header, 79
proxy_temp_file_write_size, 79
proxy_temp_path, 79

Директивы модуля rewrite
break, 258
if, 258
return, 258
rewrite, 258
rewrite_log, 258
set, 258
unitialized_variable_warn, 258

Директивы модуля ssi
ssi, 167
ssi_silent_errors, 167
ssi_types, 167

Директивы модуля sub
sub_filter, 166
sub_filter_once, 166
sub_filter_types, 166

Директивы модуля upstream
ip_hash, 82
keepalive, 82
least_conn, 82
server, 82

Директивы модуля userid, 179
userid, 178
userid_expires, 179
userid_name, 179
userid_p3p, 179
userid_path, 179
userid_service, 179

Директивы модуля xslt
xml_entities, 167
xslt_param, 167
xslt_string_param, 167

284 Предметный указатель

xslt_stylesheet, 167
xslt_types, 167

Директивы, относящиеся
к вводу-выводу, 38

aio, 38
directio, 38
directio_alignment, 38
open_file_cache, 38
open_file_cache_errors, 38
open_file_cache_valid, 38
postpone_output, 38
read_ahead, 38
sendfile, 39
sendfile_max_chunk, 39

Директивы, относящиеся
к сокетам

lingering_close, 40
lingering_time, 40
lingering_timeout, 40
reset_timedout_connection, 40
send_lowat, 40
send_timeout, 40
tcp_nodelay, 40
tcp_nopush, 40

Директивы, относящиеся
к хэш-таблицам

server_names_hash_bucket_
size, 39
server_names_hash_max_size, 39
types_hash_bucket_size, 39
types_names_hash_max_size, 39
variables_hash_bucket_size, 39
variables_names_hash_max_
size, 39

Директивы протоколирования
access_log, 125
log_format, 125
log_not_found, 126
log_subrequest, 126
open_log_file_cache, 126

Диспетчер кэша, 122
Документы с описанием ошибок,
использование для обработки
ошибок проксирования, 93
Доступа ограничение, 136
Дэниэл Кегель, 19

Ж
Журнал ошибок

примеры записей, 183
форматы, 181

Журналы
анализ, 181
интерпретация, 70
общие сведения, 70

Журналы доступа, использование
для отладки, 193

З
Загрузчик кэша, 122

И
Изображения, генерация, 174

К
Клиент, определение IP-адреса, 94
Клиентские директивы, секция
http, 36

chunked_transfer_encoding, 36
client_body_buffer_size, 37
client_body_in_file_only, 37
client_body_in_single_
buffer, 37
client_body_temp_path, 37
client_body_timeout, 37
client_header_buffer_size, 37
client_header_timeout, 37
client_max_body_size, 37
keepalive_disable, 37
keepalive_requests, 37
keepalive_timeout, 37
large_client_header_buffers, 37
msie_padding, 37
msie_refresh, 37

Кэширование
в базе данных, 158
в файловой системе, 161
интеграция с, 156
концепция сохранения, 116
общие сведения, 111, 156

285Предметный указатель

М
Масштабируемость, 97

изоляция компонентов
приложения, 105

Менеджер пакетов, установка
NGINX, 19
Модули, отключение
неиспользуемых, 29

--without-http_auth_module, 29
--without-http_autoindex_
module, 29
--without-http_browser_
module, 30
--without-http_charset_module, 28
--without-http_empty_gif_
module, 30
--without-http_fastcgi_module, 29
--without-http_geo_module, 29
--without-http_gzip_module, 28
--without-http_limit_conn_
module, 29
--without-http_limit_req_
module, 29
--without-http_map_module, 29
--without-http_memcached_
module, 29
--without-http_proxy_module, 29
--without-http_referer_module, 29
--without-http_rewrite_module, 29
--without-http_scgi_module, 29
--without-http_split_clients_
module, 29
--without-http_ssi_module, 28
--without-http_upstream_ip_
hash_module, 30
--without-http_userid_module, 29
--without-http_uwsgi_module, 29

Мультимедийные файлы
потоковая передача, 140

О
Обратный прокси-сервер, 75, 76

оптимизация
производительности, 108

буферизация, 108

кэширование, 111
сжатие, 117

Ограничения на количество
файловых дескрипторов, 198
Операционная система,
ограничения, 72

на количество файловых
дескрипторов, 198
сетевые лимиты, 200

Отладочное протоколирование, 186
Отслеживание посетителей
сайта, 178
Отчет об ошибке, составление, 267
Ошибки конфигурирования, 194

использование if вместо
try_files, 195
использование if для ветвления
по имени хоста, 196

П
Параметры configure, модуль http

--http-client-body-temp-
path=<path>, 26
--http-fastcgi-temp-path=
<path>, 26
--http-log_path=<path>, 26
--http-proxy-temp-path=
<path>, 26
--http-scgi-temp-path=<path>, 26
--http-uwsgi-temp-path=
<path>, 26
--with-http_perl_module, 25
--without-http-cache, 25
--with-perl_modules_
path=<path>, 26
--with-perl=<path>, 26

Параметры configure, модуль mail
--with-mail, 24
--with-mail_imap_module, 25
--with-mail_pop3_module, 25
--with-mail_smtp_module, 25
--with-mail_ssl_module, 24
--without-http, 25

Параметры configure, прочие
модули

--with-http_addition_module, 27

286 Предметный указатель

--with-http_dav_module, 27
--with-http_flv_module, 27
--with-http_geoip_module, 27
--with-http_gunzip_module, 27
--with-http_image_module, 27
--with-http_mp4_module, 27
--with-http_secure_link_
module, 27
--with-http_ssl_module, 26
--with-http_stub_status_
module, 27
--with-http_sub_module, 27
--with-realip_module, 26

Подзапросы, 122
Поиск и устранение неполадок

анализ журналов, 181
использование модуля Stub
Status, 203
ограничения операционной
системы, 198
ошибки конфигурирования, 194
проблемы
с производительностью, 201
расширенное
протоколирование, 186

Поиск файлов, 127
Правила переписывания,
создание, 259
Предопределенные переменные
NGINX

$arg_name, 141
$args, 141
$binary_remote_addr, 141
$content_length, 141
$content_type, 141
$cookie_name, 142
$document_root, 142
$document_uri, 142
$host, 142
$hostname, 142
$http_name, 142
$https, 142
$is_args, 142
$limit_rate, 142
$nginx_version, 142
$pid, 142

$query_string, 142
$realpath_root, 142
$remote_addr, 142
$remote_port, 142
$remote_user, 142
$request, 142
$request_body, 142
$request_body_file, 142
$request_completion, 142
$request_filename, 142
$request_method, 142
$request_uri, 142
$scheme, 142
$sent_http_name, 142
$server_addr, 143
$server_name, 143
$server_port, 143
$server_protocol, 143
$status, 143
$tcpinfo_rcv_space, 143
$tcpinfo_rttvar, 143
$uri, 143

Принятие решений в NGINX, 170
Производительность,
проблемы, 201
Проксируемые серверы

единственный, 85
не-HTTP, 87
несколько, 86
общие сведения, 75
типы, 85

Псевдопотоковая передача, 140

Р
Рабочий процесс, 122
Расширенное протоколирование,
настройка, 186

С
Секция с описанием HTTP-сервера

директивы, относящиеся
к вводу-выводу, 38
директивы, относящиеся
к сокетам, 40

287Предметный указатель

директивы, относящиеся
к хэш-таблицам, 39
клиентские директивы, 36
общие сведения, 36
пример конфигурации, 40

Секция с описанием виртуального
сервера, 41
Секция с описанием почтового
сервера, 48
Сервер по умолчанию, 123
Сетевые лимиты, 198, 200
Сжатие, 117
Случайное выполнение кода,
предотвращение, 179
С наименьшим количеством
соединений, алгоритм
балансировки, 84
Список рассылки, 266

Т
Трафик

блокирование по IP-адресу
отправителя, 103
шифрование, 98

У
Унаследованные серверы,
с куками, 81

Х
Хэширования, алгоритм, 22

IP-адреса, 84

Ц
Циклический алгоритм
балансировки нагрузки, 84

Ш
Шифры SSL, 100

Книги издательства «ДМК Пресс» можно заказать
в торгово-издательском холдинге «Планета Альянс» наложенным платежом,

выслав открытку или письмо по почтовому адресу:
115487, г. Москва, 2-й Нагатинский пр-д, д. 6А.

При оформлении заказа следует указать адрес (полностью),
по которому должны быть высланы книги;

фамилию, имя и отчество получателя.
Желательно также указать свой телефон и электронный адрес.

Эти книги вы можете заказать и в интернет-магазине: www.alians-kniga.ru.
Оптовые закупки: тел. (499) 782-38-89.

Электронный адрес: books@alians-kniga.ru.

Димитрий Айвалиотис

Администрирование сервера NGINX

 Главный редактор Мовчан Д. А.
dmkpress@gmail.com

 Верстка Чаннова А. А.
 Корректор Синяева Г. И.
 Дизайн обложки Мовчан А. Г.

Формат 6090 1/16.
Гарнитура «Петербург». Печать офсетная.

Усл. печ. л. 18. Тираж 100 экз.

Веб-сайт издательства: www.дмк.рф

