OpenlLDAP

http /S www OpenLDAP. o

OpenLDAP Software 2.4 Administrator's Guide

OpenLDAP Software 2.4 Administrator's Guide

Table of Contents

1 o) (o) o) 1173 1L £ USSP S SRR 1
Preface 1
(70757 5 14 | AU S SRR 1

Scope Of thiS DIOCUIMENL.coiuiiiiiiiee ettt ettt sb et e bt e bt e bt e s bt e sbe e bt e bt e sbeesbeesbeesseanaes 1
ACKNOWIEAGIMENES.eeiiiiiiiiiiieeiee ettt ettt ettt e et bb e e bt e e bt e e sabeesabeesabeeeabeesabeeenbaeenanes 2
ATNEIAINIEIES. ..ottt ettt ettt ettt ettt e bt e esateesabeesabeeeabeesabeeeabae e bbeebbeebteesabeesabeesabeeeabeesabeeenbaeenanes 2

ADOUL thiS AOCUIMENL ...ttt ettt e st e bt e st eshtesbeesaeesbtesbeesaeesatesbeesaeanseennes 3

1. Introduction to OpenLDAP Directory Services 3
1.1. What iS @ dir€CIOTY SEIVICEZ...ccutitietieieeieeiteeteet et et et e et e bt e bt e bt e sbeesbeesbe e bt ebeenbeesbeesbeesbeenseennes 3

1.2, WHhat 18 LIDAP ...ttt sttt b e st sb e s bbbt bt et e nbesbeemeens 6

1.3. When should T use LDAPY......cui ettt ettt st sttt 6

1.4. When should I not use LIDAPY.....couuii ettt ettt 6

1.5. HOW d0es LDAP WOTKT.....cooiiiiiiiiiiieeeee ettt ettt sttt st e e e 7

1.6. What about X.5007......c..eeiiitettet ettt ettt e bt e bt e bt e sbeesbeesbeesbe e bt e bt e bt e sbeesaeesaeens 7

1.7. What is the difference between LDAPvV2 and LDAPV37.......ooiiiiiiiiiiiieeeeeeeeeee e 7

1.8. LDAP VS RDBMS ...ttt sttt ettt sttt et bbbt bt et sb e st enbesbeemeens 9

1.9. What is slapd and what can it dOZ..........cccueviririiiriininieieneneetecse ettt 11

2. A Quick-Start Guide 15
3. The Big Picture - Configuration Choices 15
3.1, LOCAl DITECLOTY SEIVICE.....eeitiietiiaiieeniteenitee ettt eteeette ettt e st e st e esabeesabeeeabeeenbeeesbbeenaseesabeesabeesbaeenee 15

3.2. Local Directory Service with Referrals..........ccccoeiiiiiiiiiiiiiiiieet et 15

3.3. Replicated DIr€CtOrY SEIVICE......cecuieiieiieteeie et et ettt ettt ete e te et eate et e eatesateeabesabeenteeneesateeaeeeas 16

3.4. Distributed Local DIr€CtOry SEIVICE.......ccoueruiriiieiieieeiieie et ete ettt ettt eteeteebeeeeeeeseeeeeens 17

4. Building and Installing OpenLDAP Software 17
4.1. Obtaining and Extracting the SOftWare............cccoeiiiiiiiiiiieeee e 17

4.2, PrereqUISIte SOTEWATE.eeiuiiiieie ettt ettt ettt ettt et et e te e bt e bt e be e bt e teenbeenbeenbeenbeensean 17

4.2.1. Transport Layer SECUIILY......cueeiuteiiieieeieete ettt ettt ettt ettt ettt et aeesteebeesbeebeebeeneeas 18

4.2.2. Simple Authentication and Security Layer..........ccecoieiiriieiiinieeiieeeieeeee e 18

4.2.3. Kerberos AuthentiCation SEIVICE.........c.eerueerueerieerteeiteeiieeieeieesteeteeteebeeseeesteesbeenbeenbeebeeneeas 18

4.2.4. Database SOTEWATE.......cueeiiiiieieete ettt ettt ettt ettt et e be et e bt e bt e bt eteebeebeebeebeeneean 19

425, TRICAAS. c..eeeiteeeeetee ettt ettt et ettt bt e sbb e e s bt e e s bt e e sabeesabeesabeeebae e bt e e nabeenares 19

4.2.6. TCP WIAPPETS....cveueeuieieniieitetenteetteitentee et et st stteateste bt s bt e be s bt sbeestenbesbeeseetesbesueensensesbeeneens 19

4.3. RUNNING CONMTIZUIE.eeeuiieiieiieie ettt ettt ettt ettt ettt et et e te e te e bt e bt e be e beenteenbeenbeenbeenseensean 20

4.4, BUuilding the SOFtWATE........c.eeiiiiiiiiiee ettt ettt ettt ettt et ete e be e be e bt ebeeneean 20

4.5. TeStiNg the SOTEWATE........cccuieiieieeie ettt ettt ettt et e e te e bt e bt e bt e bt e teenbeebeebeenbeensean 20

4.6. Installing the SOTEWATE.........cccuiiiiiie ettt ettt ettt et beebe e beebe e beeneeas 23

5. Configuring slapd 23
5.1, Configuration LaYOUL..........cccuiiiiiiiieie ettt ettt ettt ettt et e e e bt e teebeebeebeebeeneean 25

5.2, Configuration DITECHIVES.ieitiiieiieeie ettt ettt ettt ettt e te e bt e bt e be e be e teebeebeebeenbeensean 26

5.2, 1. CIIECONTIG ..ttt ettt ettt ettt ettt e e et e e bt e bt e bt e bt e te e be e bt e beebeentean 27

5.2.2. CIEMOAUIE.......eueiii ettt ettt ettt et e e et e e bt e bt e bt e bt e teebe e beebeebeentean 28

5.2.3. CIIESCREINIA ..ottt ettt et a e e e e e e et aeeeseseeeeeeeesaeeeaaaeaaaenens 29

OpenLDAP Software 2.4 Administrator's Guide

Table of Contents

5. Configuring slapd
5.2.4. Backend-SpecifiC DIT@CHIVES......cccuieitieiieiieie ettt ettt ettt ettt ettt ettt b e b e b eneeas 30
5.2.5. Database-specific DIT@CIIVES........c.eeiuieriieiieieeie ettt ettt ettt et ettt e b b eeas 34
5.2.6. BDB and HDB Database DIreCtiVes.........cecuerueririrrienieririenieneneeteniesieeeestesieseeesesiesieeneens 38
5.3. Configuration EXAMPIE........cc.eeiuiiiiiiiiieiieieeie ettt ettt ettt ettt ettt et et e bt e beeneean 40
5.4. Converting old style slapd.conf(5) file to cn=config format..............ccecceeruiererneinienneenieieeeens 43
6. The slapd Configuration File. 43
6.1. Configuration File FOrmat..........ccciiiiiiiiiiii ettt et ettt et 44
6.2. Configuration File DITECLIVES.......c.cecuiiiieiieiieie ettt ettt ettt et ettt et et ste e 44
6.2.1. GlODAL DITECHIVES.c..eeutiiiiieiietertieiietente ettt ettt ettt sttt et sb et e b sbesbe e e e b sbeebeenee 46
6.2.2. General Backend DITECHIVES.....c..couevieriiriirieienenteteie ettt ettt e s 47
6.2.3. General Database DITECHIVES.......covevveriiririerienieitetete ettt et sttt 51
6.2.4. BDB and HDB Database DITECtVES........cccuevuiririeriiniiniieienienienieerenie st sve e 52
6.3. Configuration File EXamPIe.........ccoociiiiiiiiiiiiiiiei ettt ettt et e 55
7. Running slapd 55
7.1. Command-Line OPIONS.cccueeueeiieeiieeteettete et et et e bt e bt e bt e bt e te e te e bt ebeebeebeeteebeebeeseenseensean 57
7.2, SATtING SIAPA. ...ttt ettt ettt e b e e bt ettt e te e be e bt e bt e beetean 57
7.3, STOPPING SIAPA.....eoeiiiiiiie ettt ettt et n 59
8. Access Control 59
81, INITOAUCTION ...ttt ettt sttt st ettt sttt b e bt et et sbeebt et e sbeebe et e bt saeennen 59
8.2. Access Control via Static CONfIGUIALION.cueeiiiiirieiieeie ettt sttt 60
8.2.1. What t0 CONLIOL ACCESS T0.....erueiriiiriiriiieiirieete ettt sttt 61
8.2.2. WhO O Srant ACCESS 0. ..eeiuuiiiiiieiiiieniiee it ette ettt e ettt e sttt e sttt e sabeesabeeebeeebeeebeeenbaeesabeesabeenn 62
8.2.3. The ACCESS 10 GIANL......eeuiiiuiiiiiieiieeiieeie ettt ettt e st e et e e et e e satesatesabesatesatesstesatesaeesaeesaeesneenas 62
8.2.4. Access Control EValUation..........coeoeeieriririenieninieienie ettt ettt 63
8.2.5. Access Control EXamPIES.c.eeeiiiiriiiniiiniieeiee ettt sttt et et 64
8.3. Access Control via Dynamic Configuration..............cocueevueeierirnienienie ettt st 65
8.3.1. What tO CONLIOLl ACCESS Q... eueeuritiriietitirieetete sttt ettt ettt et et sttt sae b esaeaesbeeaeene 66
8.3.2. WhO O SIant ACCESS 0. ..eeeuuiieiiieiiiienitentteetteette ettt ettt ettt e sttt e sabeesbeeebeeebbeebaeenbaeesabeesabeenn 67
8.3.3. The ACCESS 10 GIANL......eeuiieuiiiiiieiie ettt ettt et e et e e et e e ate st e satesatesate s st e s beesatesaeesaeesaeasaeanas 67
8.3.4. Access Control EValUAtiON..........coeveeiiriinirierienienietesie ettt ettt 68
8.3.5. Access Control EXamPIEs.cocveriiriiiiiniiiienieneeeeceesee et 69
8.3.6. AcCesS CONLIOl OTAETINGcc.viruierieeiieieeie ettt ettt st e st e st esaeesaeesaeesaeeeas 70
8.4. Access Control Common EXamples..........cooviiiriiiiiiiniiiiiiiieiceeeetee ettt 70
B4 1. BASIC ACLS...cuiiiiiiiieiieiestecetet ettt sttt sttt sttt s b e b e 71
8.4.2. Matching Anonymous and Authenticated USETS..........cccueruerierierienienieete sttt 71
8.4.3. CoNtrolling rOOtAN ACCESS . ..ceiuuiriiriieiieieeie et ette ettt et sitesite et e st e st e s atesatesaeesatesaeesaeenas 72
8.4.4. Managing access With GIOUPS.......c.eeuieuiriirieeie ettt ettt sttt st e st e st e saeesas 73
8.4.5. Granting access to a subset Of attriDULES.cocueriiiiiiiiiiie e 73
8.4.6. Allowing a user write to all entries below theirs..........ccooceveiiiiiiiiniiie e 74
8.4.7. ALIOWING @NLIY CTEALION. ... cerueiruieeiieeieeiteeiteettesiteeite et e esteettesatesatesatesatesstesseesatesaeesaeesneesneenas 75
8.4.8. Tips for using regular expressions in Access Control............coeceviiriiiniiinienienieniesieeee 76
8.4.9. Granting and Denying access based on security strength factors (sSf).........cocceveevvenenennnne. 76
8.4.10. When things aren't wWorking as eXpected...........eevurrierierierienie ettt 77
8.5. Sets - Granting rights based on relationShips..........cevierieriiriiiiie e 77

OpenLDAP Software 2.4 Administrator's Guide

Table of Contents

8. Access Control

8.5.1. GIOUPS Of GIOUPS....eeutieueieutieiieeiteete ettt et e e site st e et e eatesatesatesatesatesatesaeesseesatesaeesatesaeesneenas 78
8.5.2. Group ACLS Without DN SYNEAX.....ccc.cocuiriiriirieniirieneeetenee st 79
8.5.3. FOIIOWING TEIETEICES. ... ueiueeieeiiieeiie ettt sttt ettt e st e st e et e st esatesaeesaeesaeesaeenais 81

9. Limits 81
0.1 TITOAUCTION ...ttt ettt ettt ettt et e bt e bt et e e te e te e bt eabeembeenbeenteenbeenbeenbeenseensean 81
9.2. Soft and Hard HIMIES.....ccc.eeiuieiieieee ettt ettt ettt et ettt et e bt e teebeebeebeenbeeneean 81
0.3, GLODAL LIIMLS. ..ttt ettt ettt ettt et ettt ettt et et e bttt e bt e e e be e bt eabeembeenbeenteenbeenbeenbeenseensean 82
9.4, Per-Database LAMIILScecuieiieieiie ettt ettt et ettt et e te et e bt e bt et e e be e teenbeebeebeenbeennean 82
9.4.1. Specify who the limits apPLly T0......cccueriririeriininieiencneteee ettt 82
9.4.2. SPecify tiMe HIMILS.......coiriiriiiirtieieteee ettt ettt ettt sbe st enesae e eaeens 83
9.4.3. SPECIfYINg S1Z€ HIMLS...c..erveruieiiiiriieteniieteet ettt ettt ettt ettt sbe st e s e neesueeaeens 83
9.4.4. Size limits and Paged ReSUILS.........ccceririiiiiiininiiieceeceeeeetceec ettt 83
9.5. Example Limit CONfIGUIATIONS.cccuertiririeniirtinieetente sttt ettt ettt et te st sbeeste b sbeeaeenee 84
9.5.1. Simple Global LIMILS...c..coutiiiriiniiriieiiiiniteteteneeeetest ettt sttt ettt see s eaeens 84
9.5.2. Global Hard and Soft LAMItS........c.cecuierieeriieieeieesie ettt e es 84
9.5.3. Giving specific users larger MItS.........ccceecveririniirienininieeeeeeteeee et 84
9.5.4. Limiting who can do paged SEarches...........cocevirieieniniriieniineneetceeeeeeeseetee e 84
9.6. Further INfOrmation.............oeouieiiiieeie ettt et ettt et et e teebe e beebeebeeneean 85
10. Database Creation and Maintenance Tools 85
10.1. Creating a database OVer LDARP........cc.ooiiiiiiee ettt 86
10.2. Creating a database Off-1INe..........cccueeruiriiiiiieie ettt ettt ettt et e teeeeeaeeens 87
10.2.1. The slapadd ProgramL.......cccccovueiriiiiiiiieeiie ettt ettt st ettt e st esbeeeseteesaees 88
10.2.2. The SIapINdeX PIOZTAIL....c..eeiiutiiriiiiiieeiieeriteenteestee st et e ettt esbteesabeesabeesabeesbeesbeeenseeenaees 88
10.2.3. The SIApCAt PIrOZTAIL.eeeiuiiiriieeiiieeite ettt ettt st ettt e e bt e e st e sabeesabeesabeesabaeenseeenares 88
10.3. The LDIF text entry fOIrmMAL.........ccceeerierierinietitenienetetente ettt sieestestesbe st ete bt sbeeseentesbesaeennes 91
11. Backends. 91
11.1. Berkeley DB Backends........coc.ooiieiiiiiiieiiieeieceeee ettt 91
L1 T 1. OVEIVIEW. ..ttt ettt ettt ettt ettt et e st e st e et e s bt e e bt e e sabeesabeesabeesabeesabaeensbeenanes 91
11.1.2. back-bdb/back-hdb Configuration.............cccceveeeerierinieiienininiereneneeeee et 91
11.1.3. Further INFOrmMation..........ccueeiuiiiieieeie ettt ettt ettt et e 91
TL2ULDAP. ..ttt ettt et bttt h e et b e s bt et b e e bttt nb et ennen 91
L1.2.1. OVEIVIEW...eeiitiiiiiiieite ettt ettt ettt ettt ettt e sat e st e st e st e sttt e bt e e sabeesabeesabeesabeesabaeensbeenanas 92
11.2.2. back-1dap COnfiguration...........cecueruerereerienineeteieniteieetete sttt sttt sbe b e b b eaeenee 93
11.2.3. Further INFOrMAation..........ccuieuiiiieieeie ettt ettt et et et et e 93
T30 LDIE ettt ettt bbb bt et b e she et b e e bbbt it ennen 93
L1301, OVEIVIEW...eiitiieiiiieite ettt ettt ettt ettt et e st e st e st e sttt ettt e sabeesabeesabeesabeeeabaeenbbeenanes 93
11.3.2. back-1dif CONfIGUIALION.covirtirieieniirieetenieee ettt ettt ettt sbe e b b e 94
11.3.3. Further INFOrmMation..........ccueeuiiiieieeie ettt ettt et ettt ettt 94
L1 LMDttt sttt et sttt b e st b e s bbbttt nb et ennen 94
L1.A 1. OVEIVIEW....eiitiiiiiiieite et ettt ettt ettt ettt e sat e st e st e st e sttt e bt e e sabeesabeesabeesabeeeabaeensbeenanes 94
11.4.2. back-mdb ConfigUIAtion.c..cecuertirirerriiriireetetertt ettt ettt sbesbe e b b eaeenee 94
11.4.3. Further INFOrMation.........cocuieiiiiieieeie ettt ettt ettt et ettt et 94
11,5 MEAGITECIOTY. .ottt sttt ettt ettt et et b ettt sb et e b s b s bt et et e s bt ebe et e bt ebeemnentenbeeaeennen 95
L1.5.1. OVEIVIEW. ettt ettt ettt ettt ettt e sat e st e st e st e sttt e bt e e sabeesabeesabeesabeeeabaeenbbeenans 95

OpenLDAP Software 2.4 Administrator's Guide

Table of Contents

11. Backends

11.5.2. back-meta CONfiGUIALION....c..co.ertirtirierieetetieieet ettt ettt sttt ettt sbe b b e b b eae e 95
11.5.3. Further INFOrmMation............oooiiiiuriiiiiiiiieiiiiee ettt e e e e e e e e e s eanaaneeeas 95

| ST (o) 4 VLo SRR PRRRRRRRRRNE 95
L1.0.1. OVEIVIEW. .. iioueeeieiie ettt e e e ettt e e e e e e e e e e e s seeasaaeeeeesseeaaaeeeeesssssassaeeeessssnnneaneeeas 95
11.6.2. back-monitor ConfiUIALION..........couirirerriiriinierteienttete ettt ettt sbeebe e nbe b eaeene 96
11.6.3. Further INFOrmation............oooiiiiuiiiiiiiiiieeiiee ettt e e e et e e e e e e eanaaeeeeas 96
L1 7 INULL ettt e e e e et e e e e e e et a et e e e e saaaaaeeeeeeeeaaaarereeeseannraareeeeseennaaes 96
L1771 OVEIVIEW. ..ottt ettt e e e ettt e e e e s et e e e e s seeabaaeeeeesseesaaeeeeeesesaasaeeeessssnnneenneeas 97
11.7.2. back-null CONfIGUIALION.ccuertiriiiinierieeteteeieet ettt ettt ettt sbesbe e nbe b eaeenee 97
11.7.3. Further INFOrmation............oooiiiiuiiiiiiiiiieiiieee et e e e et e e e e e eanaaneeeas 97

T 1.8 PASSW. ...ttt e e e e e e et e e e e e e e et e e ettt eeeeeeeeaeaeaeasae s s aaaaaaa——————————————————————————. 97
T1.8.1. OVEIVIEW. ... iieeeeieeieieeeeeeeee ettt e e e e ettt e e e e e et ae e e e e s seeasaaeeeeessesnaaeeeeessssasaseeeessssnaneeneeeas 97
11.8.2. back-passwd CONFIGUIALION......ccueruiriereeieniinieeitetentt ettt sttt ettt sbe e b b eaeenee 98
11.8.3. Further INFOrmMation............oooiiiiuiiiiiiiiiieieeieee et e e e e e e e e e e eananeeeeas 98
L1.9. PEII/SIHELL......eeeeeeiieeeeeeeeeee ettt e e e e e e e e s eeeaaae e e e e e e e saaateeeeessessnaareeeessennanes 98
L1.9.1. OVEIVIEW. ..ottt e e e e et e e e e e e e e e e s seesaaeeeeesseenaaeeeeessesaasaeeeeesssnanaeneeeas 98
11.9.2. back-perl/back-shell COnfiUIAtion........cccouirerierieninieienierierteene et 98
11.9.3. Further INFOrmMation............ooiiiiiiiiiiieiiiieiiiiee et e e e e e e e e e e e ennanneeeas 98

L1 T0: REIAY. ettt et ettt ettt et et et e et et e eat e et e eateeateeateeateenteenteenteens 99
L1.10. 1. OVEIVIEW....ceeeeieeiee ettt e ettt e e e e e e e e e s s e et aae e e e e s s eeaaaeeeeeesssaataeeeeesssnnneaeeeeas 99
11.10.2. back-relay ConfigUIration..........cccoerereerierinerienientieitetente sttt st sttt sbe b eeensesbeeneenee 99
11.10.3. Further INfOrmation............cooveouiiiieiiiieiiiieee et e et e e e e e eaaaa e e e e e s sananneeeas 99

L1 1T SQLa e et e ettt e e et e e ettt e e eeataeeeeeta e e e eetaeeeaaaeeeeaabeeeeataeeeetreeeeaaraeeans 99
| O 0 17 % (= /RSSO 99
11.11.2. back-Sql Configuration..........ccceereerieeriienieienitestteri ettt ettt st st e s 101
11.11.3. Further INfOrmation............ccooiiiuiiiiiiiiiiiieieee ettt e et e e e e e enaaeeeeeseesnanes 103

12. Overlays 104
12,1, ACCESS LOZEING....eeiiiiiiiiiiiiti ettt ettt ettt ettt e sbb e a e s bt e s bt e e bt e ebbeebaeesabeesabeesabeeas 104
L2.1. 1. OVEIVIEW. .ottt ettt e e e ettt e e e e e et e e e e e e seenbaaeeeeesesssataeeeeesssnnnaaseesessssnnenes 104
12.1.2. Access Logging Configuration..........eeceerierierienieniieniiesiiesite ettt st st esaee s 105
12.1.3. Further INfOrmation............oooiiiiiiiiiiiiiiieeeeeee ettt e et e e e e saaaee e e e s e senaaes 105
12.2. AUAIE LOZEING ..ttt ettt ettt b e b e b e sb e s bt e sbtesbeesheesbeesbeesbeesaeesaeesaeenns 106
12.2.1. OVEIVIEW. ..o iiieiieeieee ettt ettt e e e e ettt e e e e e e et e e e e e e s sesnbaaeeeeessesaateeeeeesssnnnasseesessssnnnnes 106
12.2.2. Audit Logging Configuration.........ccoeerierierierienieniiesiiesiie ettt sttt e s aee e 107
12.2.3. Further INfOrmation............coooiiiiiiiiiiiiiieeiieee ettt e et e e e e e eaaae e e e s e eenaaes 107
1230 CRAIMIIIG . ..e ettt ettt ettt ettt et e e s bt e bt e bt e bt e sb e e s bt e eb e e e bt e bt e sbtesbeesbeesbeessbesbeesbeesaeesaeesneenes 107
12.3.1. OVEIVIEW...ciiieeeieeieeee ettt ettt e e e et e e e e e e et aa e e e e e s seenbaaeeeeessessatseseeesssnnsasseesessssnnnnes 107
12.3.2. Chaining CONfiGUIATIONcciuieitieriieitiertierttert et te sttt et te st e st e sbte st esbtesatesbeesaeesaeesneesas 108
12.3.3. Handling Chaining EITOTS........cctiiiiiiiiiaieiesiest ettt e 108
12.3.4. Read-Back of Chained ModifiCatiOns.............ccovvveuiveieieiiiiiiieeeeeeeeeireeeeeeeeeeiaeeeeeeeeeennnes 108
12.3.5. Further INfOrmation............ooooiiiiiiiiiiiiiieeiieeee et e et e e e e e eaaaee e e e s e eenaaes 108
124, COMNSITAINES. .. evvvveeieeeeeiiieeeee e ettt e e e e e et e e e e e e eeaaaeeeeeeseesateeeeesesasaaeeeeesssssasasseesessssssaseeeesssnnnrees 108
J2.4.1. OVEIVIEW. ..o iieiieeieee ettt ettt e e e e et e e e e e e eaaa e e e e e s sessaaeeeeessssssatsereessssnnsaaseesesssnnnnees 109
12.4.2. Constraint ConfigUIAtION........c.ceouerirertertirieitetenie ettt sieeteste st ettt b eeeneesbeeaeennes 109
12.4.3. Further INfOrmation............ooooiiiiiiiiiiiii ittt e et e e e e s saaaee e e e e s eenaaes 109
12.5. Dynamic DIr€CtOry SEIVICES.....c..couirtrteriiririetentenieetestentesitetentesteestetenseeseessensesueeseensesiesaeensens 109

OpenLDAP Software 2.4 Administrator's Guide

Table of Contents

12. Overlays
12,5, 1. OVEIVIBW. ..ttt ettt e bt e bt e bt e bt e bt e sb e e s bt e sbe e bt e bt e sbtesbtesbtesbeeebeesbtasbtesbeesaeesneesneennes 109
12.5.2. Dynamic Directory Service Configuration..........c.cceeeereerienienienienienieste e see e 111
12.5.3. Further INFOrmMation.........ccc.eeiuieiiiriiiieie ettt ettt st st e st s 111
12.6. DYNAMIC GIOUPS....ceiutieritiiiiiieiie ettt eniteesitte et e st e ettt ettt esabeesbbeesateesabeesabeeebteanbaeenbaeesabeesabeesabeens 111
12,6, 1. OVEIVIBW.eeuteeutietietteste ettt et e s bt e sbe e bt et e e bt e s bt e sbe e bt e eb e e b tesbtesbteshtesbeesntasstesbeesatesneesneesas 111
12.6.2. Dynamic Group CONfiguration.........ceerueerierienienieniieniiesitesitesitesitesitesitesiteseeeseeesaeesaee e 111
12.7. DYNAIMIC LASES...euttiutiitieieeste ettt ettt ettt et e st e bt e sb e b e sbte s bt e sbeesbeesbeesstesbeesbtesaeesaeesaeenaes 111
L2.7. 1. OVEIVIBW. ..eeitienteeteett ettt et et e s bt e bt e bt et e e bt e s bt e s bt e bt e bt esbtesbtesbteshtesbeesbtasstesbtesaeesneesneennes 111
12.7.2. Dynamic List CONfIGUIATION.ceittiitiiitieriieiieriestiertterit ettt ettt st et e s e 113
12.7.3. Further INFOrmMation.........coo.eiiieiieiieieesiete ettt sttt sttt e s e s 113
12.8. Reverse Group Membership Maintenance...........ccoeereereeniienienienieneesitesitesite e sieeseeesiee s 113
L2.8. 1. OVEIVIBW. . .eutteuteetieteestt et et et e s bt e bt e bt e bt e bt e sbeesbe e bt e bt e b tesbtesbtesbteeseesutasstesbeesaeesneesneenas 113
12.8.2. Member Of CONfigUIAtiON..........ceieiruieriienieriieniesttestte ettt et et eseesatesate bt e seeesaeeeneesas 114
12.8.3. Further INFOrmMation.........ccc.eeiuierieiieieeie ettt sttt st st 114
12.9. The Proxy Cache ENZINE.........ccccriririiiiiniiiieiinienieeteescsteteste sttt ettt 115
12.9. 1. OVEIVIBW. ...eeutieuiieteetteett ettt et e bt e bt e bt e b e e bt e sbeesbe e bt e bt e sbtesbeesbeeshtesseesbtasstesbeesaeesneesneenas 115
12.9.2. Proxy Cache Configuration...........c..coeeeerieriinienienininieienie et eieeeenie e ere e 117
12.9.3. Further INFOrmMAation.........cocueiiuieiieiieiieie ettt sttt sttt e s 117
12.10. PaSSWOId POLICIES.c..eeiuieiiiiieiiei ettt sttt et sa e s btesbee et e it e et e eas 117
T2.10.1. OVEIVIEW...eutiiiietietiettesteete et et et e bt e bt e bt e sbeesbeesb e e sbeesbtesbtesbtesbeesseesstesstesbtesstesaeesneenaes 118
12.10.2. Password Policy ConfigUuration............ccoevieeevienenerienieneneeieneneeeeteniesieeeeneesieeneennes 119
12.10.3. Further Information...........cooeoiiiiierieiee ettt sttt st st s 120
12.11. Referential INte@Iit........ceeeertiertietieieerteeettest ettt ettt e st e st e bt e sb e sbeesbtesatesaeesaeeeas 120
L2, 111, OVEIVIEW...eutieuiieiieieett ettt et ettt et e bt et e bt e s bt e bt e ebeesbtesbtesbtesbtesbeesbtesstesbeesaeesaeesneenas 120
12.11.2. Referential Integrity Configuration...........ccoeereerienienienienieste ettt 121
12.11.3. Further InfOrmation...........cooeeiiiiiinieiee ettt sttt st st e s 121
12,12, REUIT COAE....cnuiiiiiiiiiiiieiie ettt ettt ettt ettt ettt e sbb e sa e st e s bt e e bt e e bbeebaeesabeesabeesabeeas 121
T2.12.1. OVEIVIEW...euttiuiietietteete ettt et e s bt e bt e bt e bt e bt e s bt e sbtesbeeebeesbtesbtesbtesbtesseesstesstesbeesaeesaeesneenes 121
12.12.2. Return Code Configuration...........ceeeereerienienienieniiesieesitesite st et e siee st siee st e saee e 122
12.12.3. Further InfOrmation...........cooeoiiiiierieieieces ettt ettt st 122
12.13. REWIIE/REIMAP.eeueieiieieeteeieet ettt ettt e bt b e sb e s bt e st e sbeesbeesb b e sbtesaeesaeesaeesaeeeaes 122
L2131, OVEIVIEW...eoutieueietieteett ettt et et et b et e e bt e s bt e sb e e bt e ebe e b tesbtesbteebtesseesneesbeesbeesaeesaeesneannes 122
12.13.2. Rewrite/Remap Configuration...........cceerueerierienieniienieniesitesite et esee st seeesite s 122
12.13.3. Further Information...........coceoiiiiieriiieeee ettt ettt st st 122
12,14, SYNC PrOVIARL. .. .eiuiiiiieieete ettt ettt sb e s bt e s bt e bt e s bt e s bt esbtesbeesaeesaeesaeeeaes 123
L2.14. 1. OVEIVIEW. ..eeutiiuiieiietteeieeetee it e sttt et e bt e bt e bt e s bt e sbe e bt e sbeesbtesbtesbtesbtesseesbtesstesbeesaeesaeesneennes 123
12.14.2. Sync Provider Configuration...........eeceerierienienieniieniiesiiesite ettt sttt 123
12.14.3. Further InfOrmation...........coceoiiiiiinieiee ettt sttt st 123
12.15. TranSIuCENE PrOXY.....cooouiiiiiiiiieetiettett ettt ettt st ettt enbaeesabeesabeesabee s 123
L2.15. 1. OVEIVIEW...euttiuiieieeieett ettt et ettt et e bt e bt e s bt e sbe e bt e bt e sbtesbtesbtesbteestesntesstesbeesaeesaeesneenaes 123
12.15.2. Translucent Proxy Configuration..............ceoeerierienienienienienie ettt 125
12.15.3. Further InfOrmation...........cocieiiiiieniiiee ettt sttt st st e s e 125
12.16. AtrDULE UNIQUEINESS.eeteitietietieteesteesttesttesttenttesteesteesteesbeesbtesbeesbeesbeesbeesstesbeesseesaeesaeesaeenaes 125
L2.16.1. OVEIVIEW...cutiiiiiieeieeeteesteett et et este et e bt e bt e st e e sb e e bt e sbeesbtesbtesbtesbtesseesatasstesbeesatesaeesneenaes 125
12.16.2. Attribute Uniqueness CONfiguration.............cevierierienienienienieniesteste et st e 126
12.16.3. Further InfOrmation...........coceeiiiiienieiee ettt sttt st st 127
12,17, ValUE SOTTNE......eeuiiiiteieeettete ettt ettt et et e bt e st e e s bt e sbee s bt e sbtesbeesbeesbeesbeesstesbtesbeesaeesaeesneenas 127

OpenLDAP Software 2.4 Administrator's Guide

Table of Contents

12. Overlays
L2171 OVETVIBW. .ottt ettt ettt ettt et ettt sttt et sbe et e bt bt ebe e besbe et enaesbeeaeennes 127
12.17.2. Value Sorting Configuration..........c.eereereerierienienieniiesitesitesitesieesieesitesieesieeseeesaeesneesas 128
12.17.3. Further Information...........coceeeierinirieniiniieeer ettt 128
12.18. OVErlay STACKING. .. ccoueetieiietieitet ettt ettt e sb e st e e sbeesbe e s bt e sbeesbeesaeesaeeeaeeeas 128
T2.18. 1. OVETVIBW. .ttt ettt sttt ettt ettt bt ettt sbe et e bt s bt ebt et bt s bt et enaesbeeaeennes 128
12.18.2. EXQMPIE SCENATIOS.c..eerveririieiieniinieeitetentieieeteste sttt st sieetestesbeeseessenbesbeesneneesbeeaeennes 129
13. Schema Specification 129
13.1. Distributed Schema FIlES.........cccciiririiriinirieieieneeteescseetce ettt saeeeens 129
13.2. EXtENding SCREMA.c..eiiiiiiiiiieieteee ettt sttt et e st e st e st e st 130
13.2.1. ODbJect IAENTTIOTS . ..eeuveeteetieiiesie ettt ettt ettt ettt b et e bt e bt e s bt e saeeeaeesneeeas 131
13.2.2. Naming EIEMENLS.......eoiuiiiiiiiieiieiieiteeettet ettt ettt ettt ettt et e st esatesbtesbeesaeesaeesneesas 131
13.2.3. Local SChema file.........cocuevuiriiriiiiiinieetcienieeeet ettt 131
13.2.4. Attribute Type SPeCifiCation........cceerueeruieriirieniieniieeiierieete ettt 134
13.2.5. Object Class SPeCIfiCatiON.......cc.eeruirrieerienieniiertiestteritestt et te sttt et e st et esitesbee st e saeesaeeeas 135
13.2.6. OID MACTOS.....cueeuieiiriieiteienieeiteitente sttt ettt ettt et sbe et e b st sbeestenbesbeebeesse bt sbeesaenaesbeeneennes 137
14. Security Considerations 137
T4 1. NEIWOTK SECULTLY.....ueitieiieitietieteet ettt ettt ettt e bt e bt e b e s bt e s bt e sbeesbeesbeesbeesstesbeesbeesatesaeesaeenaes 137
14.1.1. SeleCtiVe LIStEIING. ... eeiueertieitierieeitteeteeet ettt et ettt sb e bt e sbtesbtesbtesatesatesbeesaeesaeesneesas 137
T4.1.2. TP FIT@WaALL...coiiiiiie ettt st sttt 137
T4.1.3. TCP WIAPPETS....eeiutieeiieeiteeeitte ettt et ebt ettt e sate e st e sabeesabeeebeeesbbeesabeesateesabeesabaeenbeeenne 138
14.2. Data Integrity and Confidentiality ProteCtion...........c.cceveerierienienienienieniesiete e 138
14.2.1. Security Strength FaCOTS.coiuiiiiiiiiiieieiterte ettt sttt st s 138
14.3. Authentication MEthOdS.cocecuiriiririiriinirieteeretee sttt ettt sbe e eaens 138
14.3.1. "simple” MEthO.......cc.ooiiiiiii et 139
14.3.2. SASL MENOM.....cciiriiriiiiiiinieeiceeereetee ettt sttt ettt 139
14,4, PASSWOIA STOTAZE...ccuuveerutieiiieeite ettt ettt ee et e et e ettt ebt e e bt e e sttt e sateesabeesabeeebbeebaeebaeesabeesabeesabeens 140
14.4.1. SSHA password Storage SChEME.coc.eeeriiiiniiiniiiniieeiee ettt st 140
14.4.2. CRYPT password storage SChemE...........ccovuiiniiiiiiiniiiiiiieeieeceseesteesee et 140
14.4.3. MDS5 password StOrage SCHEMIE.c...eeeuiiiritiiniiieniee ettt ettt ettt sbeesbeeenaee e 140
14.4.4. SMDS5 password StOTage SCHEIME.........eeeueerritieniiiniieeeiee ettt ettt et e sbeesbeeenaee e 141
14.4.5. SHA password Storage SChEemE...........ecovueiiiiiiniiiiiiiiiieeiec ettt 141
14.4.6. SASL password Storage SChEME.cccueeiuiiiiirieiieiee ettt 141
14.5. Pass-Through authentiCation............ccieerierierierieniereese ettt sttt st e st e st e et 141
14.5.1. Configuring slapd to use an authentication provider..........cc.cceveerienienienienienie e 142
14.5.2. Configuring saslauthd...........ccoiiiiiiiiiiiiee ettt 142
14.5.3. Testing pass-through authentiCation............ccccevierieiiinienieriete et 145
15. Using SASL 145
15.1. SASL Security ConSidEIatiOns.ccieereeriertiertientterteesieesttesseesitesteesteesteesseesstesstesaeesaeesaeesaeesaes 146
15.2. SASL AURENTICATION. c..coutitirieeiiitinieeitetentt ettt sttt ettt et et sbeese et et ebeessesaesbeesaebeseesaeennens 146
I5.2.1. GSSAPL. ..ttt ettt bttt st bbbt be et bt naes 147
15.2.2. KERBEROS VA ..ottt sttt sttt sttt 148
15.2.3. DIGEST-MDS.......oooiiiiieienteeeeteteete ettt ettt ettt sttt sttt sbe e e b nnes 149
15.2.4, EXTERINALoooitiiiiiteeeteteeeete ettt ettt st sttt sttt sbe et sae st 149
15.2.5. Mapping Authentication IdentitieS.........ceeeeruierierieiienierierterte ettt 150

vi

OpenLDAP Software 2.4 Administrator's Guide

Table of Contents

15. Using SASL

15.2.6. Direct Mapping.......cccceerueereenieeneenieeniieniienieeneesieesieesiee e seeas
15.2.7. Search-based MapPings........ccccevveereenienienienienienee e
15.3. SASL Proxy AUthOriZation........ccceveereenienienienienienee st
15.3.1. Uses of Proxy Authorization............c.cceeeereenieneeneeneeneennen.
15.3.2. SASL Authorization Identities.........c..ceceeverereeveenenenceennenne.
15.3.3. Proxy Authorization Rules..........cc.ccoeceevieniniininnienieneee,

16. Using TLS

16.1. TLS CertifiCatescueerueeruierieeniienieenieenieesieesitesite e siee st e siee e saee s
16.1.1. Server CertifiCates........ocverierierienienienieneeree et
16.1.2. Client Certificates........cceereereereereenienienienee e siee e

16.2. TLS CONfigUIation........cevueeiuieriieriieniienieesieesieesite e sitesieesiee s e
16.2.1. Server Configuration...........coceeveereerienienienienee e
16.2.2. Client Configuration...........ccceereereeneenieneeneeneeseeseeseeneees

17. Constructing a Distributed Directory Service

17.1. Subordinate Knowledge Information...........cccceeeeevieninnieniencnnnen.
17.2. Superior Knowledge Information..........c.cceeeevieneenienienieneeneenen.
17.3. The ManageDsalT Control............cccoooeeriiiniiiiiiiiniienieeneeeeeene

18. Replication

18.1. Replication TeChnology........cccueeruieniieniienienieiesieee et
18.1.1. LDAP Sync Replication..........ccccceveenieniencenienienienieeeeee,
18.2. Deployment AItErnatives..........ceeueerueereerienienienieneeseesee e sieeneees
18.2.1. Delta-syncrepl replication...........ceceereereeneenienieneenieneeee.

18.2.2. N-Way Multi-Master replication

18.2.3. MirrorMode repliCation..........ccccceveereeniencenienienienieseeeeen
18.2.4. Syncrepl Proxy Mode..........cooveiriiiiniiiniiiniienieeeeceieeeeen
18.3. Configuring the different replication types
18.3.1. SYNCIEPL....ceiiiiiiiiiiiieeeeee s
18.3.2. Delta-Syncrepl.......coeeeieerieenieeiieeieeieeieesee e
18.3.3. N-Way Multi-MasSter.......ccceereerierianieniienienie et
18.3.4. MAITOTIMOUE........coieiiiiniieienieniectetesieeteee et
18.3.5. Syncrepl ProXy......cooueerieeiieinieeiiiieieenieeeesee et

19. Maintenance

19.1. Directory BacKups......ccccceverireeiininenienieniineeienteneeeeiesie e
19.2. Berkeley DB LogS.....cceoieiieiieiieieeeecececececseeseee e
19.3. CheCKPOINtINGooiriirieiiniinieeteieete ettt
194, MIZTAtION. c..eutiuieiieienieeitetenie sttt ettt sttt et s eene

20. Monitoring

20.1. Monitor configuration via cn=COnfig(5)......cc.ccerrttriiriiriiiienie ettt ettt
20.2. Monitor configuration via slapd.conf(5)
20.3. Accessing Monitoring Information.............cccccevveenienienieneenennenn,
20.4. Monitor Information..........c..ceeeceevenereeneninenicneneneceneneeeeens

20.4.1. BaCKENAS.....coctiriiiiiriinienieneeeceeeeeee e

157
157
157
157
157
160
163

163
163
164
165

165
165
169
169
169
170
171
172
172
174
176
178
180
187

187
187
189
189
191

191
191
192
193
194
195

Vii

OpenLDAP Software 2.4 Administrator's Guide

Table of Contents

20. Monitoring
20.4.2. CONMNECTIONSeuuteeeertieeuteeuteettesttesttesttesttesutesttesutasseesbeesbeesbeeaseesseesbtanbeesbeesseesseenseenseaseesean 195
20.4.3. DAtADASES ...eeuveerutieetieeite ettt ettt ettt ettt ettt et e st e s bt e e bt e e bt e e s bt e e shbeesateesabeesbaeenbaeenne 196
PR B 1 131 1<) USRS 196
20.4.5. L0ttt bbbttt bt et b e bt bbbt bt et e it bt ennes 196
20.4.6. OPETALIONS. ...cuviveeuretetiritetenterteetete st ettetente s bt eatestesbeestesestesbeeatenbesbeebeensebesbeeusensesbesneensen 197
20.4.77. OVEILAYS ..ottt ettt et a e a e e ne s 197
20.4.8. SASL.nieeteteet ettt ettt sttt h e s bt ettt s h e ebe e bbbt et et b ennes 197
20.4.9. STALISTICS. .euveeuteeuteeiteeiteette et e et e et e st e st e st e e sat e et e e s ttesbtesbeesbeesbeeeheesbee bt e bt e bt e sbeeebee bt e bt ebeebean 197
20.4.10. TRICACS. ..c..veuviveriteieteriteterte sttt sttt ettt ettt ettt et sttt s bt ebe et et sbeeaeetesbeeaeennes 198
201411, TIMC.c.eveeitetieie ettt ettt et ettt bt ettt sbe et et s bt ebe et et sbeeaa et e sbeeaeennes 198
20,412 TLS .ttt ettt ettt ettt st ettt s h e e bbbt h et et be e ennen 198
20,413, WIS c..eeeiuieeitie ettt ettt ettt sttt et e ettt esbt e e sbbeesabeesabee e bt e sbaeesbbeesbbeesabeesabeesabaeenbeeenne 199
21. Tuning, 199
21.1. Performance FaCtOrs.........couiiiiiiiiieietete ettt ettt ettt et b e s bt e bt e bt e b e b eeeas 199
2111 MEIMOTY...ceiiiiiieeiteete ettt sttt ettt et ettt a e a e b b e eneene s 199
2112, DHSKS ettt ettt st et h e e bbbt bttt b e et ennes 199
21.1.3. NetWOrK TOPOIOZY.....coruiiiiiiiiieieeteet ettt 199
21.1.4. Directory Layout DESIZIL........cccuiiiiiiiiieiieeiieeiese ettt ettt be b e b eneeas 200
21.1.5. EXPECLEA USAZE. .. eeeuveeeutiieiieeiiieiiite ettt ettt ettt e st e st eebteesbbeesabeesabeesabeesabaeenbeeenns 200
212, TIACXES. ettt ettt ettt ettt ettt e st e ettt et e bt e bt e e bt e e s ab e e e bt e e bt e e ba e e bb e e bt e e sabeesabee s 200
21.2.1. Understanding how a search WorkS..........ccoooieriiiiiiiiniinieeee et 200
21.2.2. WRAE £0 TNACX.....eeeeiiiieeiieeite ettt sttt sttt e sh e e sbe e s bt e sbeesbe e s bt e bt e sbeesbeesbeesbeenbeeseebean 200
21.2.3. Presence iMAEXINGccooueeutieieeieiieriienitesite et te st testtesttesteesheesttesbeesbeesbeesbeesbeesbeesbeenseenseeseas 200
0 TG TR 074 11T S PSRRI 201
21.3.1. What 10Z 1€VE] 10 USEi...uueiiiiiiiiiiiiie ettt ettt ettt s e s e e e nbae e 201
21.3.2. What t0 WatCh OUL FOL.....c.coiiiiiiiiiie ettt 201
21.3.3. Improving throUZNPUL.........ccciiiiiiiiiie ettt et eeeas 201
P B G Tl 1 11 ¥ OSSPSR 202
21.4.1. Berkeley DB Cache........cooiiiiiiiiiiiiiiieeiec ettt ettt s 204
21.4.2. slapd(8) Entry Cache (CAChESIZE).......cevueeruieriiiiiiiieriiesite sttt 204
21.4.3. IDL Cache (AdICACNESIZE)........ccccuvieieeeiieeeiiie ettt e et e e e 204
21.5. S1aPA(8) TRICAAS. ...ccouveiiitiieiiieite ettt ettt sttt e bb e e ba e e st e sabeesabee s 205
22. Troubleshooting 205
22.1. USET OF SOTEWAIE EITOTS?......eeuieiieeiieeiieetteettesite et e et et e stte st testtesbeesbeesbeesbtesbeesbeesbeesbeenbeenbeebeeneeas 205
222, CRECKIIST. ..ottt ettt ettt sttt s b et b e ebe et bt e be e st et e sbe et ebesaesbeentenn 205
22.3. OPENLIDAP BUZS. ... oottt ettt et e s ae e bt e bt e s bt e s bt e s bt e bt e bt e beenbeebean 206
22.4. 3rd PArty SOTTWAIE ©ITOT.......cceueieuieeiieeiieette et eite et et et e stte st e sttesbeesbee s bt e sbtesbeesbeesbeesbeesbeenbeebeeneeas 206
22.5. How to contact the OpenLIDAP Project..........ccocueiiiiiiiiiiiiniiniestee ettt 206
22.6. HOW tO present YOUT PrODICIML.....cc.uiiiiiiiriiiiiiiiiie ettt ettt et sabee s s 206
22.7. Debug@ing SIapA(8)......eeueeuterieeieeieeee ettt ettt et b e be b aeas 206
PR T O00) 1010015 (o F:1 BN 111075101 o AR PSSRSO 207
A. Changes Since Previous Release. 207
AT NEW GUIAE SECLIOMSueiuiieiiieiieeite ettt ettt e et e et e st e st e saeesatesatesatesaeesaeesatesatesatesaeenaes 207
A.2. New Features and Enhancements in 2.4...........ccooouiiiiiiiiiiiiieieeie ettt 207

viii

OpenLDAP Software 2.4 Administrator's Guide

Table of Contents

A. Changes Since Previous Release

A.2.1. Better cn=config functionality..........cccceeeuiriiriiiiiiieiiee et 208
A.2.2. Better cn=schema functionality...........cccecuiriiriiiiiieiieieeeeee e 208
A.2.3. More sophisticated Syncrepl COnfigurations.............cocueeeereirieriienienieeee et 208
A.2.4. N-Way Multimaster RepliCation.cocuiviiriiiiiiiiieeee ettt 208
A.2.5. Replicating slapd Configuration (syncrepl and cn=config).........cc.cccecuerrurrrurrrieriierieeneennes 208
A.2.6. Push-Mode RepliCAtioN.........coueririiriininieienienieetetencetetet ettt st 209
A.2.7. More extensive TLS configuration CONtroL..........ccccceereerieninienienenenieneneneeeeeseeeenee 209
A.2.8. Performance enhanCements.........cccuevueruereerienienirienienienieeteie ettt sttt s nbe b eseenee 209
A2.9. NEW OVEIIAYS ..ottt st s st 209
A.2.10. New features in eXiSting OVETrlayS.......cccoeuiriiriiiriiieieiieeee ettt 210
A.2.11. New features in SIAPd.........coouiiiiiiieieee ettt s 210
A.2.12. New features in IibIdap.......cocueeiiiiiiiiieee et 210
A.2.13. New clients, tools and tO0] ENNaANCEMENLS.uuuueeeeeeieieeeeeeeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenas 210
A.2.14. NeW DUILA OPHOMS. ..cueiiuiieiiieiie ettt ettt ettt et eat e st esatesaeesaeesaeeeas 210
A.3. Obsolete Features Removed From 2.4...........cocooiiiiiiiiiiiicceececeeeeesee e 210
AL L STUIPA ittt ettt bttt et 210
A2, BACK-LIADIML ..ottt et 211

B. Upgrading from 2.3.x 211
B.1. cn=config OlC™ attrTDULESceeoiiiiiiiieie ettt et sttt st st st e st e s 211
B.2. ACLs: searches require privileges on the search base...........ccoceveeeriiriienieniienieieie e 213
C. Common errors encountered when using OpenLDAP Software 213
C.1. Common causes Of LDAP €ITOTS......c..cocuerieriririiiininitetenieeieetentesie ettt 213
C.1.1. Idap_*: Can't contact LDAP SEIVET........ccoouiiriiiiriiiiiiieiieenteeetee ettt et 213
C.1.2. 1dap_*: NO SUCH ODJECL.....ceiuiiiiiieiiieie ettt ettt st 214
C.1.3. Idap_*: Can't chase referral.............ccoooiiiiiiiiiiie e e e 214
C.1.4. Idap_*: server is unwilling to PerformL..........c.ccoecueriiiiiiiiiiiiiie e 215
C.1.5. Idap_*: INSUFTICIENT ACCESS...ceruueruririieiiiiieeiie ettt ettt ettt sttt s s 215
C.1.6. Idap_*: Invalid DIN SYNEAX....ccceeriiiiiieiiiieeie ettt sttt ettt e s s 215
C.1.7. 1dap_*: Referral hop limit eXceeded..........cceriiriiriiiiiiiiieie e 215
C.1.8. 1dap_*: OPEIAtiONS EITOL.......ceeuteruteeuieeiieeiteeeteeteeiteeteeatesatesatesatesatesseesatesatesseesaeesaeesaeesaeennes 215
C.1.9. 1dap_*: OtheT EITOT.....cceiiiiiiiiieeeeeeee et s 215
C.1.10. 1dap_add/modify: Invalid SYNtaX.........cccuereirieriieeiieieeie ettt ettt 216
C.1.11. 1dap_add/modify: Object class VIOIAtiON.........cccueeuiriiriiriieieeie ettt 217
C.1.12. Idap_add: NO SUCH ODJECL.......ceriiiiieiiiieee ettt s s 217
C.1.13. l1dap add: invalid structural object class chain............coccoeciiiiiiiiiiiniie e 218
C.1.14. 1dap_add: no structuralObjectClass operational attribute.............cccecuereerierierienieneenne. 218
C.1.15. Idap_add/modify/rename: Naming VIOlation..........cocceceevueriineesienenenienieneneeienesieeeenee 219
C.1.16. Idap_add/delete/modify/rename: no global superior knowledge..........cccoceveeruenrirennnene. 219
C.1.17. Idap_bind: INSUTFICIENt ACCESS......eevvirriruiriiniiririeienteeitetete ettt 219
C.1.18. ldap_bind: Invalid credentials............ccccuereiriiriieeiieie ettt e 220
C.1.19. Idap_bind: ProtoCOl €ITOL........cc.cecueriiriirieieniinieetetenteeitetee ettt st 220
C.1.20. ldap_modify: cannot modify Object Class..........cceecuiriiriiriiiiieeie e 220
C.1.21. 1dap_sasl_interactive_Dind_S: ..c...cccecueriiriiiieeieeie ettt s 220
C.1.22. 1dap_sasl_interactive_bind_s: N0 such ODbject........cccoecueriiriiriiiiiiniecieiee e 220
C.1.23. 1dap_sasl_interactive_bind_s: No such attribute.............ccccereeriiiriienienienieeeeee e 221

OpenLDAP Software 2.4 Administrator's Guide

Table of Contents

C. Common errors encountered when using OpenLDAP Software

C.1.24. 1dap_sasl_interactive_bind_s: Unknown authentication method............c.ccceceereeniennennne. 221
C.1.25. 1dap_sasl_interactive_bind_s: Local error (82).........ccoecuereirieriiiniiniecieeeeeie e 221
C.1.26. ldap_search: Partial results and referral received............ocevieriiiniiiniiinineee e 221
C.1.27. 1dap_start_tls: OPETatiOns EITO.......cccuterueerieerieeeiieeeniteeniteenteesbeesbeeenteeesbeeesaseesbeesseeas 221
G2, OhET EITOTS .ceinitiiiiitieite ettt ettt ettt ettt et e e sbt e e sab e e sabeesabeeeabeeebteesabeenanes 221
C.2.1. ber_get_next on fd X failed errno=34 (Numerical result out of range)............c.cccecueeuee.e. 221
C.2.2. ber_get_next on fd X failed errno=11 (Resource temporarily unavailable)...................... 222
C.2.3. daemon: socket() failed errno=97 (Address family not supported)...........cocceceevuerrerrennnenee 222
C.2.4. GSSAPI: gss_acquire_cred: Miscellaneous failure; Permission denied;..............cccocueee... 222
C.2.5. access from unknown denied............coceiiiriiiiiiiieeii et e 223
C.2.6. ldap_read: want=# error=Resource temporarily unavailable...............ccccereerrririnrnnnnnnnn 223
C.2.7. "MAKe LSt TAIIS.....eieuiiiiieiieie ettt sttt sttt st 224
C.2.8. 1dap_*: Internal (implementation specific) error (80) - additional info: entry index
delete fAled.ottt ettt ea 224
C.2.9. Idap_sasl_interactive_bind_s: Can't contact LDAP server (-1)......ccceceveeriininnieniinnennne. 225
D. Recommended OpenLLDAP Software Dependency Versions. 225
D.1. DePendency VETSIONS.........cecueetietirieeieeteeteeteeeteeitesatesatesteestesatesatesatesatesstesaeesaeesatesatesntesaeenaes 227
E. Real World OpenLDAP Deployments and Examples 229
F. OpenLDAP Software Contributions 229
FoL CHENt APIS ..ottt ettt et st sb e st e b e s bt eate e be e ennes 229
oL L 1AAPCH ittt ettt et sttt st sb et s be e 229
FLL2. 1AAPECL. ittt sttt st ettt et be e 229
L2 OVEIIAYS ..ttt sttt st st st s e s s 229
B2 L CLa ittt ettt st be e 229
F.2.2.addpartial........ccccouiiiiiiiiiiiicieeece ettt st s 229
2.3 All0D ettt ettt sb et b e 229
F.2.4. QUIOZIOUD. ..ottt st s st s s s e s 229
F.2.5. comp_mMatChL......oooiiiiiii e e e e 229
2.0, AENYOP ...ttt 229
F.2. 7. dSASCREIMIA.coitiiiiiiiiii ettt sttt et e be e et st e s n 230
F.2.8. 1AStMIOQ. ...ttt et ettt sttt et e st e sabee s 230
2.0, MOPS. et et s e e 230
B2 10 DSSOVianitiiiitiet ettt ettt et e b e st e bt e et e e bt e bt e e st e e sabeesabee s 230
FL2 10, PASSWA ..ttt ettt st st e be e et ee st e sabee s 230
F.2.12. PrOXYOId. .. .ciiiiiiiiieie ettt ettt et e sttt et et e e sateesabee b s 230
F.2.13. SIDKSPW. ..ottt ettt st st 230
B2 1 fACE ettt ettt et ettt ettt e ba e et esabeesabee s 230
B2 LS. USTh ettt et et et ettt e b e et esabeesabee s 230
L3 TOO0IS. et ettt ettt st e ettt e bt e sab e sab e et eabe e e bt e e nabeenats 230
F.3.1. StatiStic LOZ@INE. . .cueieiiiiieieeiie ettt ettt ettt st ettt sat e st e saeesaeeees 230
Fod. SLAPT PIUZINS...c..cueeiiiiiieeiteteneeit ettt ettt st ettt sb e st sbeeaaenaesbe et enees 231
F.4.1. addrdnvalUues.........c.coouiiiiiiiiiii ettt et ettt 233

OpenLDAP Software 2.4 Administrator's Guide

Table of Contents

G. Configuration File Examples. 233
G SIAPA.CONT ..ttt ettt et st s et e st e eat e e st e s aeesaeesatesatesateeaeeeaes 233
G2, 1dAP.CONE ...ttt ettt et st s at e s et e e at e s at e e atesatesatesateeateeaeeeas 233
G.3. @ N-0tNEI.CONE ...ttt et e e et e et e e e beeetaeeabeesabeessbeeessaeensaeenssaensseennnes 235

H. LDAP Result Codes 235
H.1. NON-Er1r0r RESUIL COUES....cciiiuiiiiieiiiieeiiie ettt ettt e e e etee e e ebtee e sabeeeesnbaeesenseaessnnseas 235
H.2. RESUIL COULS.....uviiiiiiiieeiiee ettt ettt e e ettt e e et e e e satee e sabeeeeenbteeesnnsaeeensaaeeanssaesnnsseas 235
HL3. SUCCESS () eiiiiiiiiiiiiiiie ettt e e e ettt e e e e e et tbte e e e e e eeetbbreeeaeeeesstsasaaaeeeasssssasaaseeanssrssesaaaaans 235
H.4. 0peratioNSEITOT (1) .. .ciiiieiieie ettt sttt sttt st st e st e s eas 235
H.5. PIOtOCOIEITOL (2)....eiiuieeiieeiie ettt ettt ettt et s e st e st e satesaeesateeneesaeeeas 236
H.6. timeLimitEXCEEAEA (3)....uviiiiiiiieieiiie ettt e et e e eae e e et e e e etaee e enaaeas 236
H.7. S1ZELIMItEXCEEACA (4)....uveieiieeieeeeeeee ettt et e e e e eete e e e ete e e e eteee e enneas 236
H.8. COMPATEFAISE (5)...ee ettt ettt et et sttt e st e st e eaeeeaeeeas 236
H.O. COMPATETTUE (6)....ceiueeeiiieiieeieeie ettt ettt ettt s e st e s st e st e satesatesatesatesaeeeaes 236
H.10. authMethodNOtSUPPOTIEA (7).c.eveeruieeiiieeiieeite ettt et ettt st sttt et e e e 236
H.11. strongerAUthREqUITEA (8)......cueetiriieieeieeie ettt sttt st st st 236
H.12. 1€f@rTAl (10)..ueeiiiieiie ettt et e e ettt e e e et e e e etae e e eeaaeeeeeateeeeeteeeeenreas 236
H.13. adminLimitEXCEEAed (11)..ccuuiiiiiiiiiiiiie et ettt e e etee e et e e eaaeas 237
H.14. unavailableCritical EXtENSION (12).....ccuiiiiiiiiiieiiie ettt ettt et e eaaas 237
H.15. confidentialityRequired (13).......ccoouirieeiiiiiiieeie ettt st 237
H.16. sasIBINAINPTOZIESS (14)....ccuuiiiieiieieete ettt et ettt st st st 237
H.17. NOSUChAIIDULE (10).....uviiiieiiieeeiiie ettt ettt ettt e et e e et e e e eeate e e eeateeeeeteeeeensreas 237
H.18. undefined AttribUteTYPE (17)....ceeeeieeieeieeieeie ettt ettt st st st s e 237
H.19. inappropriateMatChing (18).........cceririrrieriririieneeteteeee ettt sttt 237
H.20. constraintViolation (19)..........cccuiiiciiiiiiie ittt etee et e etteesreesbeesbeeebeeenbeeeeseessseeennas 237
H.21. attributeOrValueEXiStS (20)......ccccuiiiiiiiiieiiiie ettt et ete e e eeare e e eete e e e eareeeeneeas 237
H.22. invalid AttribDULESYNTAX (21)..cueieuiiiiiiieeie ettt ettt ettt sttt s 237
H.23. NOSUCRODBJECE (32)...ceuteeiieeieeee ettt ettt et ettt st e st e st e st e satesatesatesaeesaeeeas 238
H.24. aliaSProbIem (33).....coiciiiieieeiiee ettt ettt e e ettt e et e e e et e e e e aae e e e tee e e etaeeeeareas 238
H.25. inValidDNSYNEAX (34 uiiiieiiieieete ettt ettt sttt sttt e sate st e snteeaeeeas 238
H.26. aliasDereferencingProblem (30)...........cocuiiiiiiiiiiiiiiie ettt s 238
H.27. inappropriate AUthentication (48).........eeuiiiiiiiiieeie ettt sttt 238
H.28. invalidCredentialS (49).......couiii oottt et e et e e et e e eeaae e e eeatee e e eteeeeenneas 238
H.29. insufficient AccesSRIZNES (S0).....cceriririiiriniriiieneetetee ettt 238
H.30. DUSY (51t sttt et et e s et e eat e s at e eat e e ate e atesatesatesatesateeaeeeas 238
H.31. UNavailable (52).......coiiiiiieieeiiee ettt ettt e et e e ettt e e e e te e e e e tae e e eeaae e e eeateeeeeteeeeenreas 238
H.32. unwillingToPerform (53).......cuoiiiiiieie ettt ettt st st st 238
H.33. IOOPDIEIECT (54)...ueeiieriieeiieeieeeeet ettt sttt st st st s s s s s e s sae 239
H.34. namingViolation (04).......coouieiieieeie ettt ettt sttt st e st st sate st e et et 239
H.35. 0bjectClass VIolation (65).......c.oeouiriiiieeiieieeeete ettt ettt sttt st 239
H.36. notAllowedOnNONLEAT (00)........cccueiiiiiiiiiieiieeiieeeiee et ete et e ertteesreesbeesreeeseeeseeeeseessseesnns 239
H.37. NOtAIIOWEAONRDIN (07).....vviiiiiieiieeiie ettt ettt e et e et eetaeesabeesabeessbeaensaeenseeeneseessseesnns 239
H.38. entry AlreadyEXiStS (08).....c.eouertirtiririeienierieetcienie ettt ettt ettt 239
H.39. objectClassModSProhibited (69)..........ceouiiiiiiiiiiiieeie ettt st e 239
H.40. affectsMUltipIEDSAS (71). .ci ittt ettt st st s s 239
HAT. Other (BO)...ueieeiieeiie ettt ettt e et e et e e s b e e sebeesbeeebeeesbaeessaessseessseaensaeensaeensseensseensses 241

Xi

OpenLDAP Software 2.4 Administrator's Guide

Table of Contents

I. Glossary.

| O T 1S5 & 1 T TSR
[.2. Related OrganizZations.oeueeeeruterienieeie et ete st sitesete st e st e satesbtesbtesbeesaeesaeesaeenaes
1.3, Related ProAUCES.......coooieiieeeeeeeeet ettt e e e e e e e e e e e e e e e eeeeeeeas
L4, RETEIEICES. ...ooiiiieeeeieeeee ettt e ettt e e e s e et e e e e e s e ssaraeeeeeesennneaes

J. Generic configure Instructions.

K. OpenLDAP Software Copyright Notices

K.1. OpenLDAP Copyright NOICE.eevueertieieeieeniieieeiterieesie ettt
K.2. Additional Copyright NOICES........cerueerierrieriieiieieeiteeesie ettt
K.3. University of Michigan Copyright NOtICE.........cccceerierienirnienieieiereeree e

L. OpenLDAP Public License

Xii

Preface

Copyright

Copyright 1998-2012, The OpenLDAP Foundation, All Rights Reserved.

Copyright 1992-1996, Regents of the University of Michigan, All Rights Reserved.

This document is considered a part of OpenLDAP Software. This document is subject to terms of conditions
set forth in OpenLDAP Software Copyright Notices and the OpenLDAP Public License. Complete copies of

the notices and associated license can be found in Appendix K and L, respectively.

Portions of OpenLDAP Software and this document may be copyright by other parties and/or subject to
additional restrictions. Individual source files should be consulted for additional copyright notices.

Scope of this Document

This document provides a guide for installing OpenLDAP Software 2.4 (http://www.openldap.org/software/)
on UNIX (and UNIX-like) systems. The document is aimed at experienced system administrators with basic
understanding of LDAP-based directory services.

This document is meant to be used in conjunction with other OpenLDAP information resources provided with
the software package and on the project's site (http://www.OpenLDAP.org/) on the World Wide Web. The site
makes available a number of resources.

OpenLDAP Resources
Resource URL
Document Catalog http://www.OpenLDAP.org/doc/
Frequently Asked Questions |http://www.OpenLDAP.org/faq/
Issue Tracking System http://www.OpenLDAP.org/its/
Mailing Lists http://www.OpenLDAP.org/lists/
Manual Pages http://www.OpenLDAP.org/software/man.cgi
Software Pages http://www.OpenLDAP.org/software/
Support Pages http://www.OpenLDAP.org/support/

This document is not a complete reference for OpenLDAP software; the manual pages are the definitive
documentation. For best results, you should use the manual pages that were installed on your system with
your version of OpenLDAP software so that you're looking at documentation that matches the code. While the
OpenLDAP web site also provides the manual pages for convenience, you can not assume that they corresond
to the particular version you're running.

Acknowledgments

The OpenLDAP Project is comprised of a team of volunteers. This document would not be possible without
their contribution of time and energy.

http://www.openldap.org/foundation/
http://www.umich.edu/
http://www.openldap.org/software/
http://www.OpenLDAP.org/
http://www.OpenLDAP.org/doc/
http://www.OpenLDAP.org/faq/
http://www.OpenLDAP.org/its/
http://www.OpenLDAP.org/lists/
http://www.OpenLDAP.org/software/man.cgi
http://www.OpenLDAP.org/software/
http://www.OpenLDAP.org/support/
http://www.openldap.org/project/

OpenLDAP Software 2.4 Administrator's Guide

The OpenLDAP Project would also like to thank the University of Michigan LDAP Team for building the
foundation of LDAP software and information to which OpenLDAP Software is built upon. This document is
based upon University of Michigan document: The SLAPD and SLURPD Administrators Guide.

Amendments

Suggested enhancements and corrections to this document should be submitted using the OpenLDAP Issue
Tracking System (http://www.openldap.org/its/).

About this document

This document was produced using the Simple Document Format (SDF) documentation system
(http://search.cpan.org/src/IANC/sdf-2.001/doc/catalog.html) developed by lan Clatworthy. Tools for SDF are
available from CPAN (http://search.cpan.org/search?query=SDF&mode=dist).

http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf
http://www.openldap.org/
http://www.openldap.org/its/
http://search.cpan.org/src/IANC/sdf-2.001/doc/catalog.html
http://cpan.org/
http://search.cpan.org/search?query=SDF&mode=dist

1. Introduction to OpenLDAP Directory Services

This document describes how to build, configure, and operate OpenLDAP Software to provide directory
services. This includes details on how to configure and run the Standalone LDAP Daemon, slapd(8). It is
intended for new and experienced administrators alike. This section provides a basic introduction to directory
services and, in particular, the directory services provided by slapd(8). This introduction is only intended to
provide enough information so one might get started learning about LDAP, X.500, and directory services.

1.1. What is a directory service?

A directory is a specialized database specifically designed for searching and browsing, in additional to
supporting basic lookup and update functions.

Note: A directory is defined by some as merely a database optimized for read access. This definition, at best,
is overly simplistic.

Directories tend to contain descriptive, attribute-based information and support sophisticated filtering
capabilities. Directories generally do not support complicated transaction or roll-back schemes found in
database management systems designed for handling high-volume complex updates. Directory updates are
typically simple all-or-nothing changes, if they are allowed at all. Directories are generally tuned to give quick
response to high-volume lookup or search operations. They may have the ability to replicate information
widely in order to increase availability and reliability, while reducing response time. When directory
information is replicated, temporary inconsistencies between the replicas may be okay, as long as
inconsistencies are resolved in a timely manner.

There are many different ways to provide a directory service. Different methods allow different kinds of
information to be stored in the directory, place different requirements on how that information can be
referenced, queried and updated, how it is protected from unauthorized access, etc. Some directory services
are local, providing service to a restricted context (e.g., the finger service on a single machine). Other services
are global, providing service to a much broader context (e.g., the entire Internet). Global services are usually
distributed, meaning that the data they contain is spread across many machines, all of which cooperate to
provide the directory service. Typically a global service defines a uniform namespace which gives the same
view of the data no matter where you are in relation to the data itself.

A web directory, such as provided by the Open Directory Project <http://dmoz.org>, is a good example of a
directory service. These services catalog web pages and are specifically designed to support browsing and
searching.

While some consider the Internet Domain Name System (DNS) is an example of a globally distributed
directory service, DNS is not browseable nor searchable. It is more properly described as a globally
distributed lookup service.

1.2. What is LDAP?

LDAP stands for Lightweight Directory Access Protocol. As the name suggests, it is a lightweight protocol
for accessing directory services, specifically X.500-based directory services. LDAP runs over TCP/IP or other
connection oriented transfer services. LDAP is an IETF Standard Track protocol and is specified in
"Lightweight Directory Access Protocol (LDAP) Technical Specification Road Map" RFC4510.

http://www.openldap.org/
http://dmoz.org
http://www.ietf.org/
http://www.rfc-editor.org/rfc/rfc4510.txt

OpenLDAP Software 2.4 Administrator's Guide

This section gives an overview of LDAP from a user's perspective.

What kind of information can be stored in the directory? The LDAP information model is based on entries.
An entry is a collection of attributes that has a globally-unique Distinguished Name (DN). The DN is used to
refer to the entry unambiguously. Each of the entry's attributes has a fype and one or more values. The types
are typically mnemonic strings, like "cn" for common name, or "mail" for email address. The syntax of
values depend on the attribute type. For example, a cn attribute might contain the value Babs Jensen. A
mail attribute might contain the value "babs@example.com". A jpegPhoto attribute would contain a
photograph in the JPEG (binary) format.

How is the information arranged? In LDAP, directory entries are arranged in a hierarchical tree-like structure.
Traditionally, this structure reflected the geographic and/or organizational boundaries. Entries representing
countries appear at the top of the tree. Below them are entries representing states and national organizations.

Below them might be entries representing organizational units, people, printers, documents, or just about
anything else you can think of. Figure 1.1 shows an example LDAP directory tree using traditional naming.

c=GB c=ls

C) st=California

The Organisation o=Acme

Organisation Unit

ou=5Sales ou=Marketing

cn=Barbara |enson

Person

Figure 1.1: LDAP directory tree (traditional naming)

The tree may also be arranged based upon Internet domain names. This naming approach is becoming
increasing popular as it allows for directory services to be located using the DNS. Figure 1.2 shows an
example LDAP directory tree using domain-based naming.

OpenLDAP Software 2.4 Administrator's Guide

dc=net <) dc=com dc=DE

dc=example

The Organisation

Organisation Unit
pu=Servers

Person

Figure 1.2: LDAP directory tree (Internet naming)

In addition, LDAP allows you to control which attributes are required and allowed in an entry through the use
of a special attribute called objectClass. The values of the objectClass attribute determine the
schema rules the entry must obey.

How is the information referenced? An entry is referenced by its distinguished name, which is constructed by
taking the name of the entry itself (called the Relative Distinguished Name or RDN) and concatenating the
names of its ancestor entries. For example, the entry for Barbara Jensen in the Internet naming example above
has an RDN of uid=babs and a DN of uid=babs, ou=People, dc=example, dc=com. The full DN
format is described in RFC4514, "LDAP: String Representation of Distinguished Names."

How is the information accessed? LDAP defines operations for interrogating and updating the directory.
Operations are provided for adding and deleting an entry from the directory, changing an existing entry, and
changing the name of an entry. Most of the time, though, LDAP is used to search for information in the
directory. The LDAP search operation allows some portion of the directory to be searched for entries that
match some criteria specified by a search filter. Information can be requested from each entry that matches the
criteria.

For example, you might want to search the entire directory subtree at and below dc=example, dc=com for
people with the name Barbara Jensen, retrieving the email address of each entry found. LDAP lets you
do this easily. Or you might want to search the entries directly below the st=California, c=US entry for
organizations with the string Acme in their name, and that have a fax number. LDAP lets you do this too. The
next section describes in more detail what you can do with LDAP and how it might be useful to you.

How is the information protected from unauthorized access? Some directory services provide no protection,
allowing anyone to see the information. LDAP provides a mechanism for a client to authenticate, or prove its
identity to a directory server, paving the way for rich access control to protect the information the server
contains. LDAP also supports data security (integrity and confidentiality) services.

http://www.rfc-editor.org/rfc/rfc4514.txt

OpenLDAP Software 2.4 Administrator's Guide
1.3. When should | use LDAP?

This is a very good question. In general, you should use a Directory server when you require data to be
centrally managed, stored and accessible via standards based methods.

Some common examples found throughout the industry are, but not limited to:

® Machine Authentication

e User Authentication

¢ User/System Groups

e Address book

¢ Organization Representation
e Asset Tracking

¢ Telephony Information Store
¢ User resource management

® E-mail address lookups

e Application Configuration store
¢ PBX Configuration store

There are various Distributed Schema Files that are standards based, but you can always create your own
Schema Specification.

There are always new ways to use a Directory and apply LDAP principles to address certain problems,
therefore there is no simple answer to this question.

If in doubt, join the general LDAP forum for non-commercial discussions and information relating to LDAP
at: http://www.umich.edu/~dirsvcs/ldap/mailinglist.html and ask

1.4. When should | not use LDAP?

When you start finding yourself bending the directory to do what you require, maybe a redesign is needed. Or
if you only require one application to use and manipulate your data (for discussion of LDAP vs RDBMS,
please read the LDAP vs RDBMS section).

It will become obvious when LDAP is the right tool for the job.

1.5. How does LDAP work?

LDAP utilizes a client-server model. One or more LDAP servers contain the data making up the directory
information tree (DIT). The client connects to servers and asks it a question. The server responds with an
answer and/or with a pointer to where the client can get additional information (typically, another LDAP
server). No matter which LDAP server a client connects to, it sees the same view of the directory; a name
presented to one LDAP server references the same entry it would at another LDAP server. This is an
important feature of a global directory service.

http://www.umich.edu/~dirsvcs/ldap/mailinglist.html

OpenLDAP Software 2.4 Administrator's Guide
1.6. What about X.500?

Technically, LDAP is a directory access protocol to an X.500 directory service, the OSI directory service.
Initially, LDAP clients accessed gateways to the X.500 directory service. This gateway ran LDAP between
the client and gateway and X.500's Directory Access Protocol (DAP) between the gateway and the X.500
server. DAP is a heavyweight protocol that operates over a full OSI protocol stack and requires a significant
amount of computing resources. LDAP is designed to operate over TCP/IP and provides most of the
functionality of DAP at a much lower cost.

While LDAP is still used to access X.500 directory service via gateways, LDAP is now more commonly
directly implemented in X.500 servers.

The Standalone LDAP Daemon, or slapd(8), can be viewed as a lightweight X.500 directory server. That is, it
does not implement the X.500's DAP nor does it support the complete X.500 models.

If you are already running a X.500 DAP service and you want to continue to do so, you can probably stop
reading this guide. This guide is all about running LDAP via slapd(8), without running X.500 DAP. If you are
not running X.500 DAP, want to stop running X.500 DAP, or have no immediate plans to run X.500 DAP,
read on.

It is possible to replicate data from an LDAP directory server to a X.500 DAP DSA. This requires an
LDAP/DAP gateway. OpenLDAP Software does not include such a gateway.

1.7. What is the difference between LDAPv2 and LDAPv3?
LDAPv3 was developed in the late 1990's to replace LDAPv2. LDAPv3 adds the following features to LDAP:

¢ Strong authentication and data security services via SASL

¢ Certificate authentication and data security services via TLS (SSL)
¢ Internationalization through the use of Unicode

¢ Referrals and Continuations

® Schema Discovery

¢ Extensibility (controls, extended operations, and more)

LDAPv2 is historic (RFC3494). As most so-called LDAPv2 implementations (including slapd(8)) do not
conform to the LDAPv?2 technical specification, interoperability amongst implementations claiming LDAPv2
support is limited. As LDAPv2 differs significantly from LDAPv3, deploying both LDAPv2 and LDAPv3
simultaneously is quite problematic. LDAPv2 should be avoided. LDAPv?2 is disabled by default.

1.8. LDAP vs RDBMS

This question is raised many times, in different forms. The most common, however, is: Why doesn't
OpenLDAP use a relational database management system (RDBMS) instead of an embedded key/value store
like LMDB? In general, expecting that the sophisticated algorithms implemented by commercial-grade
RDBMS would make OpenLDAP be faster or somehow better and, at the same time, permitting sharing of
data with other applications.

The short answer is that use of an embedded database and custom indexing system allows OpenLDAP to
provide greater performance and scalability without loss of reliability. OpenLDAP uses LMDB concurrent /

http://www.rfc-editor.org/rfc/rfc3494.txt

OpenLDAP Software 2.4 Administrator's Guide

transactional database software.

Now for the long answer. We are all confronted all the time with the choice RDBMSes vs. directories. It is a
hard choice and no simple answer exists.

It is tempting to think that having a RDBMS backend to the directory solves all problems. However, it is a
pig. This is because the data models are very different. Representing directory data with a relational database
is going to require splitting data into multiple tables.

Think for a moment about the person objectclass. Its definition requires attribute types objectclass, sn and cn
and allows attribute types userPassword, telephoneNumber, seeAlso and description. All of these attributes
are multivalued, so a normalization requires putting each attribute type in a separate table.

Now you have to decide on appropriate keys for those tables. The primary key might be a combination of the
DN, but this becomes rather inefficient on most database implementations.

The big problem now is that accessing data from one entry requires seeking on different disk areas. On some
applications this may be OK but in many applications performance suffers.

The only attribute types that can be put in the main table entry are those that are mandatory and single-value.
You may add also the optional single-valued attributes and set them to NULL or something if not present.

But wait, the entry can have multiple objectclasses and they are organized in an inheritance hierarchy. An
entry of objectclass organizationalPerson now has the attributes from person plus a few others and some
formerly optional attribute types are now mandatory.

What to do? Should we have different tables for the different objectclasses? This way the person would have
an entry on the person table, another on organizationalPerson, etc. Or should we get rid of person and put
everything on the second table?

But what do we do with a filter like (cn=*) where cn is an attribute type that appears in many, many
objectclasses. Should we search all possible tables for matching entries? Not very attractive.

Once this point is reached, three approaches come to mind. One is to do full normalization so that each
attribute type, no matter what, has its own separate table. The simplistic approach where the DN is part of the
primary key is extremely wasteful, and calls for an approach where the entry has a unique numeric id that is
used instead for the keys and a main table that maps DNs to ids. The approach, anyways, is very inefficient
when several attribute types from one or more entries are requested. Such a database, though cumbersomely,
can be managed from SQL applications.

The second approach is to put the whole entry as a blob in a table shared by all entries regardless of the
objectclass and have additional tables that act as indices for the first table. Index tables are not database
indices, but are fully managed by the LDAP server-side implementation. However, the database becomes
unusable from SQL. And, thus, a fully fledged database system provides little or no advantage. The full
generality of the database is unneeded. Much better to use something light and fast, like LMDB.

A completely different way to see this is to give up any hopes of implementing the directory data model. In
this case, LDAP is used as an access protocol to data that provides only superficially the directory data model.
For instance, it may be read only or, where updates are allowed, restrictions are applied, such as making
single-value attribute types that would allow for multiple values. Or the impossibility to add new objectclasses
to an existing entry or remove one of those present. The restrictions span the range from allowed restrictions

8

OpenLDAP Software 2.4 Administrator's Guide

(that might be elsewhere the result of access control) to outright violations of the data model. It can be,
however, a method to provide LDAP access to preexisting data that is used by other applications. But in the
understanding that we don't really have a "directory".

Existing commercial LDAP server implementations that use a relational database are either from the first kind
or the third. I don't know of any implementation that uses a relational database to do inefficiently what BDB
does efficiently. For those who are interested in "third way" (exposing EXISTING data from RDBMS as
LDAP tree, having some limitations compared to classic LDAP model, but making it possible to interoperate
between LDAP and SQL applications):

OpenLDAP includes back-sql - the backend that makes it possible. It uses ODBC + additional
metainformation about translating LDAP queries to SQL queries in your RDBMS schema, providing different
levels of access - from read-only to full access depending on RDBMS you use, and your schema.

For more information on concept and limitations, see slapd-sql(5) man page, or the Backends section. There
are also several examples for several RDBMSes in back-sqgl/rdbms_depend/* subdirectories.

1.9. What is slapd and what can it do?

slapd(8) is an LDAP directory server that runs on many different platforms. You can use it to provide a
directory service of your very own. Your directory can contain pretty much anything you want to put in it.
You can connect it to the global LDAP directory service, or run a service all by yourself. Some of slapd's
more interesting features and capabilities include:

LDAPv3: slapd implements version 3 of Lightweight Directory Access Protocol. slapd supports LDAP over
both IPv4 and IPv6 and Unix IPC.

Simple Authentication and Security Layer: slapd supports strong authentication and data security (integrity
and confidentiality) services through the use of SASL. slapd's SASL implementation utilizes Cyrus SASL
software which supports a number of mechanisms including DIGEST-MDS5, EXTERNAL, and GSSAPL

Transport Layer Security: slapd supports certificate-based authentication and data security (integrity and
confidentiality) services through the use of TLS (or SSL). slapd's TLS implementation can utilize OpenSSL,
GnuTLS, or MozNSS software.

Topology control: slapd can be configured to restrict access at the socket layer based upon network topology
information. This feature utilizes TCP wrappers.

Access control: slapd provides a rich and powerful access control facility, allowing you to control access to
the information in your database(s). You can control access to entries based on LDAP authorization
information, IP address, domain name and other criteria. slapd supports both static and dynamic access
control information.

Internationalization: slapd supports Unicode and language tags.

Choice of database backends: slapd comes with a variety of different database backends you can choose
from. They include MDB, a hierarchical high-performance transactional database backend; BDB, a
high-performance transactional database backend (deprecated); HDB, a hierarchical high-performance
transactional backend (deprecated); SHELL, a backend interface to arbitrary shell scripts; and PASSWD, a
simple backend interface to the passwd(5) file. The MDB backend utilizes LMDB, a high performance

http://asg.web.cmu.edu/sasl/sasl-library.html
http://www.openssl.org/
http://www.gnu.org/software/gnutls/
http://developer.mozilla.org/en/NSS

OpenLDAP Software 2.4 Administrator's Guide

replacement for Oracle Corporation's Berkeley DB. The BDB and HDB backends utilize Oracle Corporation
Berkeley DB. These backends have been deprecated as LMDB provides significantly higher read and write
throughput and data reliability.

Multiple database instances: slapd can be configured to serve multiple databases at the same time. This
means that a single slapd server can respond to requests for many logically different portions of the LDAP
tree, using the same or different database backends.

Generic modules API: If you require even more customization, slapd lets you write your own modules
easily. slapd consists of two distinct parts: a front end that handles protocol communication with LDAP
clients; and modules which handle specific tasks such as database operations. Because these two pieces
communicate via a well-defined C API, you can write your own customized modules which extend slapd in
numerous ways. Also, a number of programmable database modules are provided. These allow you to expose
external data sources to slapd using popular programming languages (Perl, shell, and SQL).

Threads: slapd is threaded for high performance. A single multi-threaded slapd process handles all incoming
requests using a pool of threads. This reduces the amount of system overhead required while providing high
performance.

Replication: slapd can be configured to maintain shadow copies of directory information. This
single-master/multiple-slave replication scheme is vital in high-volume environments where a single slapd
installation just doesn't provide the necessary availability or reliability. For extremely demanding
environments where a single point of failure is not acceptable, multi-master replication is also available. slapd
includes support for LDAP Sync-based replication.

Proxy Cache: slapd can be configured as a caching LDAP proxy service.

Configuration: slapd is highly configurable through a single configuration file which allows you to change
just about everything you'd ever want to change. Configuration options have reasonable defaults, making your
job much easier. Configuration can also be performed dynamically using LDAP itself, which greatly improves
manageability.

10

http://www.oracle.com/
http://www.oracle.com/
http://www.perl.org/

2. A Quick-Start Guide

The following is a quick start guide to OpenLDAP Software 2.4, including the Standalone LDAP Daemon,
slapd(8).

It is meant to walk you through the basic steps needed to install and configure OpenLDAP Software. It should
be used in conjunction with the other chapters of this document, manual pages, and other materials provided
with the distribution (e.g. the INSTALL document) or on the OpenLDAP web site
(http://www.OpenLDAP.org), in particular the OpenLDAP Software FAQ
(http://www.OpenLDAP.org/fag/?file=2).

If you intend to run OpenLDAP Software seriously, you should review all of this document before attempting
to install the software.

Note: This quick start guide does not use strong authentication nor any integrity or confidential protection
services. These services are described in other chapters of the OpenLDAP Administrator's Guide.

1. Get the software
You can obtain a copy of the software by following the instructions on the OpenLDAP Software
download page (http://www.openldap.org/software/download/). It is recommended that new users
start with the latest release.

2. Unpack the distribution
Pick a directory for the source to live under, change directory to there, and unpack the distribution
using the following commands:
gunzip —-c openldap-VERSION.tgz | tar xviB -
then relocate yourself into the distribution directory:
cd openldap-VERSION
You'll have to replace VERSION with the version name of the release.

3. Review documentation
You should now review the COPYRIGHT, LICENSE, README and INSTALL documents provided
with the distribution. The COPYRIGHT and LICENSE provide information on acceptable use,
copying, and limitation of warranty of OpenLDAP Software.

You should also review other chapters of this document. In particular, the Building and Installing
OpenLDAP Software chapter of this document provides detailed information on prerequisite software
and installation procedures.

4. Run configure
You will need to run the provided configure script to configure the distribution for building on
your system. The configure script accepts many command line options that enable or disable
optional software features. Usually the defaults are okay, but you may want to change them. To get a
complete list of options that configure accepts, use the ——he1p option:
./configure —--help
However, given that you are using this guide, we'll assume you are brave enough to just let
configure determine what's best:

11

http://www.openldap.org/software/
http://www.openldap.org/
http://www.OpenLDAP.org
http://www.OpenLDAP.org/faq/?file=2
http://www.openldap.org/software/download/

12

OpenLDAP Software 2.4 Administrator's Guide

./configure

Assuming configure doesn't dislike your system, you can proceed with building the software. If
configure did complain, well, you'll likely need to go to the Software FAQ Installation section
(http://www.openldap.org/fag/?file=8) and/or actually read the Building and Installing OpenLDAP
Software chapter of this document.

. Build the software.

The next step is to build the software. This step has two parts, first we construct dependencies and
then we compile the software:

make depend

make

Both makes should complete without error.

. Test the build.

To ensure a correct build, you should run the test suite (it only takes a few minutes):

make test

Tests which apply to your configuration will run and they should pass. Some tests, such as the
replication test, may be skipped.

. Install the software.

You are now ready to install the software; this usually requires super-user privileges:
su root -c 'make install'

Everything should now be installed under /usr/local (or whatever installation prefix was used by
configure).

. Edit the configuration file.

Use your favorite editor to edit the provided slapd.ldif example (usually installed as
/usr/local/etc/openldap/slapd.1ldif) to contain a MDB database definition of the
form:

dn: olcDatabase=mdb, cn=config

objectClass: olcDatabaseConfig

objectClass: olcMdbConfig

olcDatabase: mdb

OlcDbMaxSize: 1073741824

olcSuffix: dc=<MY-DOMAIN>, dc=<COM>

o0lcRootDN: cn=Manager, dc=<MY-DOMAIN>, dc=<COM>

olcRootPW: secret

olcDbDirectory: /usr/local/var/openldap—-data

olcDbIndex: objectClass eq

Be sure to replace <MY-DOMAIN> and <COM> with the appropriate domain components of your
domain name. For example, for example . com, use:

dn: olcDatabase=mdb, cn=config

objectClass: olcDatabaseConfig

objectClass: olcMdbConfig

olcDatabase: mdb

OlcDbMaxSize: 1073741824

olcSuffix: dc=example,dc=com

olcRootDN: cn=Manager,dc=example,dc=com

olcRootPW: secret

olcDbDirectory: /usr/local/var/openldap—-data

olcDbIndex: objectClass eq

http://www.openldap.org/faq/?file=8

10.

11.

OpenLDAP Software 2.4 Administrator's Guide

If your domain contains additional components, such as eng.uni.edu. eu, use:

dn: olcDatabase=mdb, cn=config

objectClass: olcDatabaseConfig

objectClass: olcMdbConfig

olcDhatabase: mdb

OlcDbMaxSize: 1073741824

olcSuffix: dc=eng,dc=uni,dc=edu,dc=eu

olcRootDN: cn=Manager,dc=eng,dc=uni, dc=edu, dc=eu

olcRootPW: secret

olcDbDirectory: /usr/local/var/openldap—-data

olcDbIndex: objectClass eq

Details regarding configuring slapd(8) can be found in the slapd-config(5) manual page and the
Configuring slapd chapter of this document. Note that the specified olcDbDirectory must exist prior
to starting slapd(8).

. Import the configuration database

You are now ready to import your configration database for use by slapd(8), by running the
command:

su root —-c /usr/local/sbin/slapadd -n 0 -F /usr/local/etc/slapd.d -1
/usr/local/etc/openldap/slapd.ldif

Start SLAPD.

You are now ready to start the Standalone LDAP Daemon, slapd(8), by running the command:

su root —-c /usr/local/libexec/slapd -F /usr/local/etc/slapd.d

To check to see if the server is running and configured correctly, you can run a search against it with
ldapsearch(1). By default, ldapsearch is installed as /usr/local/bin/ldapsearch:
ldapsearch -x -b '' -s base ' (objectclass=*)' namingContexts

Note the use of single quotes around command parameters to prevent special characters from being
interpreted by the shell. This should return:

dn:

namingContexts: dc=example, dc=com

Details regarding running slapd(8) can be found in the slapd(8) manual page and the Running slapd
chapter of this document.

Add initial entries to your directory.
You can use ldapadd(1) to add entries to your LDAP directory. ldapadd expects input in LDIF form.
We'll do it in two steps:

1. create an LDIF file

2. run ldapadd

Use your favorite editor and create an LDIF file that contains:
dn: dc=<MY-DOMAIN>, dc=<COM>

objectclass: dcObject

objectclass: organization

o0: <MY ORGANIZATION>

dc: <MY-DOMAIN>

dn: cn=Manager, dc=<MY-DOMAIN>, dc=<COM>

objectclass: organizationalRole

cn: Manager

Be sure to replace <MY-DOMAIN> and <COM> with the appropriate domain components of your

13

OpenLDAP Software 2.4 Administrator's Guide

domain name. <MY ORGANIZATION> should be replaced with the name of your organization.
When you cut and paste, be sure to trim any leading and trailing whitespace from the example.
dn: dc=example,dc=com

objectclass: dcObject

objectclass: organization

o: Example Company

dc: example

dn: cn=Manager,dc=example, dc=com

objectclass: organizationalRole

cn: Manager

Now, you may run ldapadd(1) to insert these entries into your directory.

ldapadd -x -D "cn=Manager,dc=<MY-DOMAIN>,dc=<COM>" -W -f
example.ldif

Be sure to replace <MY-DOMAIN> and <COM> with the appropriate domain components of your
domain name. You will be prompted for the "secret" specified in slapd.conf. For example, for
example.com, use

ldapadd -x -D "cn=Manager,dc=example,dc=com" -W -f example.ldif
where example. 1dif is the file you created above.

Additional information regarding directory creation can be found in the Database Creation and
Maintenance Tools chapter of this document.

12. See if it works.
Now we're ready to verify the added entries are in your directory. You can use any LDAP client to do
this, but our example uses the ldapsearch(1) tool. Remember to replace dc=example, dc=com
with the correct values for your site:
ldapsearch -x -b 'dc=example,dc=com' ' (objectclass=*)"
This command will search for and retrieve every entry in the database.

You are now ready to add more entries using /dapadd(1) or another LDAP client, experiment with various
configuration options, backend arrangements, etc..

Note that by default, the slapd(8) database grants read access to everybody excepting the super-user (as
specified by the rootdn configuration directive). It is highly recommended that you establish controls to
restrict access to authorized users. Access controls are discussed in the Access Control chapter. You are also
encouraged to read the Security Considerations, Using SASL and Using TLS sections.

The following chapters provide more detailed information on making, installing, and running slapd(8).

14

3. The Big Picture - Configuration Choices

This section gives a brief overview of various LDAP directory configurations, and how your Standalone
LDAP Daemon slapd(8) fits in with the rest of the world.

3.1. Local Directory Service

In this configuration, you run a slapd(8) instance which provides directory service for your local domain only.
It does not interact with other directory servers in any way. This configuration is shown in Figure 3.1.

1. Request
g >

Client Server
2. Response

Figure 3.1: Local service configuration.

Use this configuration if you are just starting out (it's the one the quick-start guide makes for you) or if you
want to provide a local service and are not interested in connecting to the rest of the world. It's easy to
upgrade to another configuration later if you want.

3.2. Local Directory Service with Referrals

In this configuration, you run a slapd(8) instance which provides directory service for your local domain and
configure it to return referrals to other servers capable of handling requests. You may run this service (or
services) yourself or use one provided to you. This configuration is shown in Figure 3.2.

3. New Request Superior
Senver
1. Request
>
Client
2. Referral server
£

Figure 3.2: Local service with referrals

Use this configuration if you want to provide local service and participate in the Global Directory, or you
want to delegate responsibility for subordinate entries to another server.

3.3. Replicated Directory Service

slapd(8) includes support for LDAP Sync-based replication, called syncrepl, which may be used to maintain
shadow copies of directory information on multiple directory servers. In its most basic configuration, the
master is a syncrepl provider and one or more slave (or shadow) are syncrepl consumers. An example

15

OpenLDAP Software 2.4 Administrator's Guide

master-slave configuration is shown in figure 3.3. Multi-Master configurations are also supported.

Consumer
1. Update RFequest 28 5. Prowvider pushes
> \\ chamge o consumenrs
7. Referral %, ifefeshindPersist
o ' Syncrepl mode is used.
T | |
Client : :
— | Ctherwise, consumen’s
3. Mew Request » j,-'l pulls down change on
F rext mfresh when using
< 4. Response 4 Syrcreplin efreshOnly
Provider | rmade.

Figure 3.3: Replicated Directory Services

This configuration can be used in conjunction with either of the first two configurations in situations where a
single slapd(8) instance does not provide the required reliability or availability.

3.4. Distributed Local Directory Service

In this configuration, the local service is partitioned into smaller services, each of which may be replicated,
and glued together with superior and subordinate referrals.

16

4. Building and Installing OpenLDAP Software

This chapter details how to build and install the OpenLDAP Software package including slapd(8), the
Standalone LDAP Daemon. Building and installing OpenLDAP Software requires several steps: installing
prerequisite software, configuring OpenLDAP Software itself, making, and finally installing. The following
sections describe this process in detail.

4.1. Obtaining and Extracting the Software

You can obtain OpenLDAP Software from the project's download page at
http://www.openldap.org/software/download/ or directly from the project's FTP service at
ftp://ftp.openldap.org/pub/OpenLDAP/.

The project makes available two series of packages for general use. The project makes releases as new
features and bug fixes come available. Though the project takes steps to improve stability of these releases, it
is common for problems to arise only after release. The stable release is the latest release which has
demonstrated stability through general use.

Users of OpenLDAP Software can choose, depending on their desire for the latest features versus
demonstrated stability, the most appropriate series to install.

After downloading OpenLDAP Software, you need to extract the distribution from the compressed archive
file and change your working directory to the top directory of the distribution:

gunzip -c¢ openldap-VERSION.tgz | tar xf -
cd openldap-VERSION

You'll have to replace VERSION with the version name of the release.

You should now review the COPYRIGHT, LICENSE, README and INSTALL documents provided with the
distribution. The COPYRIGHT and LICENSE provide information on acceptable use, copying, and limitation
of warranty of OpenLDAP Software. The README and INSTALL documents provide detailed information on
prerequisite software and installation procedures.

4.2. Prerequisite software

OpenLDAP Software relies upon a number of software packages distributed by third parties. Depending on
the features you intend to use, you may have to download and install a number of additional software
packages. This section details commonly needed third party software packages you might have to install.
However, for an up-to-date prerequisite information, the README document should be consulted. Note that
some of these third party packages may depend on additional software packages. Install each package per the
installation instructions provided with it.

4.2.1. Transport Layer Security

OpenLDAP clients and servers require installation of OpenSSL, GnuTLS, or MozNSS TLS libraries to
provide Transport Layer Security services. Though some operating systems may provide these libraries as part
of the base system or as an optional software component, OpenSSL, GnuTLS, and Mozilla NSS often require
separate installation.

17

http://www.openldap.org/
http://www.openldap.org/software/download/
ftp://ftp.openldap.org/pub/OpenLDAP/
http://www.openssl.org/
http://www.gnu.org/software/gnutls/
http://developer.mozilla.org/en/NSS

OpenLDAP Software 2.4 Administrator's Guide

OpenSSL is available from http://www.openssl.org/. GnuTLS is available from
http://www.gnu.org/software/gnutls/. Mozilla NSS is available from http://developer.mozilla.org/en/NSS.

OpenLDAP Software will not be fully LDAPv3 compliant unless OpenLDAP's configure detects a usable
TLS library.

4.2.2. Simple Authentication and Security Layer

OpenLDAP clients and servers require installation of Cyrus SASL libraries to provide Simple Authentication
and Security Layer services. Though some operating systems may provide this library as part of the base
system or as an optional software component, Cyrus SASL often requires separate installation.

Cyrus SASL is available from http://asg.web.cmu.edu/sasl/sasl-library.html. Cyrus SASL will make use of
OpenSSL and Kerberos/GSSAPI libraries if preinstalled.

OpenLDAP Software will not be fully LDAPv3 compliant unless OpenLDAP's configure detects a usable
Cyrus SASL installation.

4.2.3. Kerberos Authentication Service

OpenLDAP clients and servers support Kerberos authentication services. In particular, OpenLDAP supports
the Kerberos V GSS-API SASL authentication mechanism known as the GSSAPI mechanism. This feature
requires, in addition to Cyrus SASL libraries, either Heimdal or MIT Kerberos V libraries.

Heimdal Kerberos is available from http://www.pdc.kth.se/heimdal/. MIT Kerberos is available from
http://web.mit.edu/kerberos/www/.

Use of strong authentication services, such as those provided by Kerberos, is highly recommended.

4.2.4. Database Software

OpenLDAP's slapd(8) MDB primary database backend uses the LMDB software included with the
OpenLDAP source. There is no need to download any additional software to have MDB support.

OpenLDAP's slapd(8) BDB and HDB deprecated database backends require Oracle Corporation's Berkeley
DB. If not available at configure time, you will not be able to build slapd(8) with these deprecated database
backends.

Your operating system may provide a supported version of Berkeley DB in the base system or as an optional
software component. If not, you'll have to obtain and install it yourself. Berkeley DB is available from Oracle
Corporation's Berkeley DB download page if required.

There are several versions available from Oracle Corporation. Berkeley DB version 6.0.20 and later uses a
software license that is incompatible with LDAP technology and should not be used with OpenLDAP.

Note: Please see Recommended OpenLDAP Software Dependency Versions for more information.

18

http://www.openssl.org/
http://www.gnu.org/software/gnutls/
http://developer.mozilla.org/en/NSS
http://asg.web.cmu.edu/sasl/sasl-library.html
http://asg.web.cmu.edu/sasl/sasl-library.html
http://www.pdc.kth.se/heimdal/
http://web.mit.edu/kerberos/www/
http://www.pdc.kth.se/heimdal/
http://web.mit.edu/kerberos/www/
http://www.oracle.com/
http://www.oracle.com/
http://www.oracle.com/
http://www.oracle.com/

OpenLDAP Software 2.4 Administrator's Guide
4.2.5. Threads

OpenLDAP is designed to take advantage of threads. OpenLDAP supports POSIX pthreads, Mach CThreads,
and a number of other varieties. configure will complain if it cannot find a suitable thread subsystem. If
this occurs, please consult the Software| Installation|Platform Hints section of the
OpenLDAP FAQ http://www.openldap.org/faq/.

4.2.6. TCP Wrappers

slapd(8) supports TCP Wrappers (IP level access control filters) if preinstalled. Use of TCP Wrappers or other
IP-level access filters (such as those provided by an IP-level firewall) is recommended for servers containing
non-public information.

4.3. Running configure

Now you should probably run the configure script with the ——he 1p option. This will give you a list of
options that you can change when building OpenLDAP. Many of the features of OpenLDAP can be enabled
or disabled using this method.

./configure --help

The configure script also looks for certain variables on the command line and in the environment. These
include:

Table 4.1: Variables

Variable Description

CcC Specify alternative C Compiler

CFLAGS Specify additional compiler flags
CPPFLAGS [Specify C Preprocessor flags
LDFLAGS [Specify linker flags

LIBS Specify additional libraries
Now run the configure script with any desired configuration options or variables.

./configure [options] [variable=value ...]

As an example, let's assume that we want to install OpenLDAP with BDB backend and TCP Wrappers
support. By default, BDB is enabled and TCP Wrappers is not. So, we just need to specify
-—enable-wrappers to include TCP Wrappers support:

./configure --enable-wrappers

However, this will fail to locate dependent software not installed in system directories. For example, if TCP
Wrappers headers and libraries are installed in /usr/local/include and /usr/local/lib
respectively, the configure script should typically be called as follows:

./configure --enable-wrappers \
CPPFLAGS="-I/usr/local/include" \
LDFLAGS="-L/usr/local/lib -Wl,-rpath, /usr/local/lib"

19

http://www.openldap.org/faq/

OpenLDAP Software 2.4 Administrator's Guide

The configure script will normally auto-detect appropriate settings. If you have problems at this stage,
consult any platform specific hints and check your configure options, if any.

4.4. Building the Software

Once you have run the configure script the last line of output should be:

Please "make depend" to build dependencies

If the last line of output does not match, configure has failed, and you will need to review its output to
determine what went wrong. You should not proceed until configure completes successfully.

To build dependencies, run:
make depend

Now build the software, this step will actually compile OpenLDAP.
make

You should examine the output of this command carefully to make sure everything is built correctly. Note that
this command builds the LDAP libraries and associated clients as well as slapd(8).

4.5. Testing the Software

Once the software has been properly configured and successfully made, you should run the test suite to verify
the build.

make test

Tests which apply to your configuration will run and they should pass. Some tests, such as the replication test,
may be skipped if not supported by your configuration.

4.6. Installing the Software

Once you have successfully tested the software, you are ready to install it. You will need to have write
permission to the installation directories you specified when you ran configure. By default OpenLDAP
Software is installed in /usr/local. If you changed this setting with the ——pre fix configure option, it
will be installed in the location you provided.

Typically, the installation requires super-user privileges. From the top level OpenLDAP source directory,
type:

su root —-c 'make install'
and enter the appropriate password when requested.
You should examine the output of this command carefully to make sure everything is installed correctly. You

will find the configuration files for slapd(8) in /usr/local/etc/openldap by default. See the chapter
Configuring slapd for additional information.

20

OpenLDAP Software 2.4 Administrator's Guide

21

22

OpenLDAP Software 2.4 Administrator's Guide

5. Configuring slapd

Once the software has been built and installed, you are ready to configure slapd(8) for use at your site.

OpenLDAP 2.3 and later have transitioned to using a dynamic runtime configuration engine, slapd-config(5).
slapd-config(5)

¢ is fully LDAP-enabled

® is managed using the standard LDAP operations

e stores its configuration data in an LDIF database, generally in the
/usr/local/etc/openldap/slapd.d directory.

e allows all of slapd's configuration options to be changed on the fly, generally without requiring a
server restart for the changes to take effect.

This chapter describes the general format of the slapd-config(5) configuration system, followed by a detailed
description of commonly used settings.

The older style slapd.conf(5) file is still supported, but its use is deprecated and support for it will be
withdrawn in a future OpenLDAP release. Configuring slapd(8) via slapd.conf(5) is described in the next
chapter.

Refer to slapd(8) for information on how to have slapd automatically convert from slapd.conf(5) to
slapd-config(5).

Note: Although the slapd-config(5) system stores its configuration as (text-based) LDIF files, you should
never edit any of the LDIF files directly. Configuration changes should be performed via LDAP operations,
e.g. ldapadd(1), ldapdelete(1), or ldapmodify(1).

Note: You will need to continue to use the older slapd.conf(5) configuration system if your OpenLDAP
installation requires the use of one or more backends or overlays that have not been updated to use the
slapd-config(5) system. As of OpenLDAP 2.4.33, all of the official backends have been updated. There may
be additional contributed or experimental overlays that also have not been updated.

5.1. Configuration Layout

The slapd configuration is stored as a special LDAP directory with a predefined schema and DIT. There are
specific objectClasses used to carry global configuration options, schema definitions, backend and database
definitions, and assorted other items. A sample config tree is shown in Figure 5.1.

23

OpenLDAP Software 2.4 Administrator's Guide

cn=config
Global config options

cn=module{d} cn=schema olcDatabase={1}bdb
A set of modules System schema A back-bdb instance
cn={0icore cn={1}cosine
Core schema COSIMNE schema

Figure 5.1: Sample configuration tree.

Other objects may be part of the configuration but were omitted from the illustration for clarity.

The slapd-config configuration tree has a very specific structure. The root of the tree is named cn=config
and contains global configuration settings. Additional settings are contained in separate child entries:

¢ Dynamically loaded modules
These may only be used if the ——enable-modules option was used to configure the software.
¢ Schema definitions
The cn=schema, cn=config entry contains the system schema (all the schema that is hard-coded
in slapd).
Child entries of cn=schema, cn=config contain user schema as loaded from config files or added
at runtime.
¢ Backend-specific configuration
¢ Database-specific configuration
Overlays are defined in children of the Database entry.
Databases and Overlays may also have other miscellaneous children.

The usual rules for LDIF files apply to the configuration information: Comment lines beginning with a '#'
character are ignored. If a line begins with a single space, it is considered a continuation of the previous line
(even if the previous line is a comment) and the single leading space is removed. Entries are separated by
blank lines.

The general layout of the config LDIF is as follows:

24

global configuration settings
dn: cn=config

objectClass: olcGlobal

cn: config

<global config settings>

schema definitions

dn: cn=schema, cn=config
objectClass: olcSchemaConfig
cn: schema

OpenLDAP Software 2.4 Administrator's Guide
<system schema>

dn: cn={X}core,cn=schema, cn=config
objectClass: olcSchemaConfig

cn: {X}core

<core schema>

additional user-specified schema

backend definitions

dn: olcBackend=<typeA>, cn=config
objectClass: olcBackendConfig
olcBackend: <typeA>
<backend-specific settings>

database definitions

dn: olcDatabase={X}<typeA>,cn=config
objectClass: olcDatabaseConfig
olcDatabase: {X}<typeA>
<database-specific settings>

subsequent definitions and settings

Some of the entries listed above have a numeric index " { X} " in their names. While most configuration
settings have an inherent ordering dependency (i.e., one setting must take effect before a subsequent one may
be set), LDAP databases are inherently unordered. The numeric index is used to enforce a consistent ordering
in the configuration database, so that all ordering dependencies are preserved. In most cases the index does
not have to be provided; it will be automatically generated based on the order in which entries are created.

Configuration directives are specified as values of individual attributes. Most of the attributes and
objectClasses used in the slapd configuration have a prefix of "olc" (OpenLDAP Configuration) in their
names. Generally there is a one-to-one correspondence between the attributes and the old-style slapd.conf
configuration keywords, using the keyword as the attribute name, with the "olc" prefix attached.

A configuration directive may take arguments. If so, the arguments are separated by whitespace. If an
argument contains whitespace, the argument should be enclosed in double quotes "1ike this". Inthe
descriptions that follow, arguments that should be replaced by actual text are shown in brackets <>.

The distribution contains an example configuration file that will be installed in the
/usr/local/etc/openldap directory. A number of files containing schema definitions (attribute types
and object classes) are also provided in the /usr/local/etc/openldap/schema directory.

5.2. Configuration Directives

This section details commonly used configuration directives. For a complete list, see the slapd-config(5)
manual page. This section will treat the configuration directives in a top-down order, starting with the global
directives in the cn=config entry. Each directive will be described along with its default value (if any) and
an example of its use.

25

OpenLDAP Software 2.4 Administrator's Guide

5.2.1. ch=config

Directives contained in this entry generally apply to the server as a whole. Most of them are system or
connection oriented, not database related. This entry must have the o1cGlobal objectClass.

5.2.1.1. olcldleTimeout: <integer>

Specify the number of seconds to wait before forcibly closing an idle client connection. A value of O, the
default, disables this feature.

5.2.1.2. olcLogLevel: <level>

This directive specifies the level at which debugging statements and operation statistics should be syslogged
(currently logged to the syslogd(8) LOG_LOCALA4 facility). You must have configured OpenLDAP
-—enable-debug (the default) for this to work (except for the two statistics levels, which are always
enabled). Log levels may be specified as integers or by keyword. Multiple log levels may be used and the
levels are additive. To display what levels correspond to what kind of debugging, invoke slapd with —d? or
consult the table below. The possible values for <level> are:

Table 5.1: Debugging Levels

Level | Keyword Description

-1]any enable all debugging

no debugging

(Ox1 trace) trace function calls

(0x4 args) heavy trace debugging

0
1
2|(0x2 packets) |debug packet handling
4
8

(0x8 conns) connection management

16{(0x10 BER) print out packets sent and received

32|(0x20 filter) [search filter processing

64|(0x40 config) [configuration processing

128]|(0x80 ACL) |access control list processing

256|(0x100 stats) |stats log connections/operations/results
512|(0x200 stats2) |stats log entries sent
1024{(0x400 shell) [print communication with shell backends
2048((0x800 parse) [print entry parsing debugging

16384|(0x4000 sync) |syncrepl consumer processing

32768|(0x8000 none) |only messages that get logged whatever log level is set
The desired log level can be input as a single integer that combines the (ORed) desired levels, both in decimal
or in hexadecimal notation, as a list of integers (that are ORed internally), or as a list of the names that are
shown between brackets, such that

olcLogLevel 129
olcLogLevel 0x81
olcLogLevel 128 1
olcLogLevel 0x80 0x1
olcLoglLevel acl trace

26

OpenLDAP Software 2.4 Administrator's Guide

are equivalent.

Examples:
olcLogLevel -1

This will cause lots and lots of debugging information to be logged.
olcLoglLevel conns filter

Just log the connection and search filter processing.
olcLogLevel none

Log those messages that are logged regardless of the configured loglevel. This differs from setting the log
level to 0, when no logging occurs. At least the None level is required to have high priority messages logged.

Default:

olcLogLevel stats

Basic stats logging is configured by default. However, if no olcLogLevel is defined, no logging occurs
(equivalent to a O level).

5.2.1.3. olcReferral <URI>
This directive specifies the referral to pass back when slapd cannot find a local database to handle a request.

Example:

olcReferral: ldap://root.openldap.org

This will refer non-local queries to the global root LDAP server at the OpenLDAP Project. Smart LDAP
clients can re-ask their query at that server, but note that most of these clients are only going to know how to
handle simple LDAP URLSs that contain a host part and optionally a distinguished name part.

5.2.1.4. Sample Entry

dn: cn=config

objectClass: olcGlobal

cn: config

olcIdleTimeout: 30

olcLogLevel: Stats

olcReferral: ldap://root.openldap.org

5.2.2. cn=module

If support for dynamically loaded modules was enabled when configuring slapd, cn=module entries may be
used to specify sets of modules to load. Module entries must have the o1 cModuleList objectClass.

27

OpenLDAP Software 2.4 Administrator's Guide

5.2.2.1. olcModulelLoad: <filename>

Specify the name of a dynamically loadable module to load. The filename may be an absolute path name or a
simple filename. Non-absolute names are searched for in the directories specified by the o1cModulePath
directive.

5.2.2.2. olcModulePath: <pathspec>

Specify a list of directories to search for loadable modules. Typically the path is colon-separated but this
depends on the operating system.

5.2.2.3. Sample Entries

dn: cn=module{0},cn=config

objectClass: olcModulelList

cn: module{0}

olcModuleLoad: /usr/local/lib/smbkb5pwd.la

dn: cn=module{l},cn=config

objectClass: olcModulelist

cn: module{l}

olcModulePath: /usr/local/lib:/usr/local/lib/slapd
olcModulelLoad: accesslog.la

olcModulelLoad: pcache.la

5.2.3. ch=schema

The cn=schema entry holds all of the schema definitions that are hard-coded in slapd. As such, the values in
this entry are generated by slapd so no schema values need to be provided in the config file. The entry must
still be defined though, to serve as a base for the user-defined schema to add in underneath. Schema entries
must have the o1cSchemaConfig objectClass.

5.2.3.1. olcAttributeTypes: <RFC4512 Attribute Type Description>

This directive defines an attribute type. Please see the Schema Specification chapter for information regarding
how to use this directive.

5.2.3.2. olcObjectClasses: <RFC4512 Object Class Description>

This directive defines an object class. Please see the Schema Specification chapter for information regarding
how to use this directive.

5.2.3.3. Sample Entries

dn: cn=schema, cn=config
objectClass: olcSchemaConfig
cn: schema

dn: cn=test,cn=schema, cn=config
objectClass: olcSchemaConfig
cn: test
olcAttributeTypes: (1.1.1

NAME 'testAttr'

EQUALITY integerMatch

28

http://www.rfc-editor.org/rfc/rfc4512.txt
http://www.rfc-editor.org/rfc/rfc4512.txt

OpenLDAP Software 2.4 Administrator's Guide

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)

olcAttributeTypes: (1.1.2 NAME 'testTwo' EQUALITY caselIgnoreMatch
SUBSTR caselIgnoreSubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.44)
olcObjectClasses: (1.1.3 NAME 'testObject'

MAY (testAttr $ testTwo) AUXILIARY)
5.2.4. Backend-specific Directives

Backend directives apply to all database instances of the same type and, depending on the directive, may be
overridden by database directives. Backend entries must have the o1 cBackendConfig objectClass.

5.2.4.1. olcBackend: <type>

This directive names a backend-specific configuration entry. <t ype> should be one of the supported backend

types listed in Table 5.2.

Table 5.2: Database Backends

Types Description
bdb Berkeley DB transactional backend (deprecated)
config |Slapd configuration backend
dnssrv |DNS SRV backend
hdb Hierarchical variant of bdb backend (deprecated)
ldap Lightweight Directory Access Protocol (Proxy) backend
1dif Lightweight Data Interchange Format backend
mdb Memory-Mapped DB backend
meta Meta Directory backend
monitor |Monitor backend
passwd [Provides read-only access to passwd(5)
perl Perl Programmable backend
shell Shell (extern program) backend
sqgl SQL Programmable backend
Example:
olcBackend: bdb

There are no other directives defined for this entry. Specific backend types may define additional attributes for
their particular use but so far none have ever been defined. As such, these directives usually do not appear in
any actual configurations.

5.2.4.2. Sample Entry

dn: olcBackend=bdb,cn=config
objectClass: olcBackendConfig

olcBackend: bdb

29

OpenLDAP Software 2.4 Administrator's Guide

5.2.5. Database-specific Directives

Directives in this section are supported by every type of database. Database entries must have the
olcDatabaseConfig objectClass.

5.2.5.1. olcDatabase: [{<index>}]<type>
This directive names a specific database instance. The numeric {<index>} may be provided to distinguish

multiple databases of the same type. Usually the index can be omitted, and slapd will generate it
automatically. <t ype> should be one of the supported backend types listed in Table 5.2 or the frontend

type.

The frontend is a special database that is used to hold database-level options that should be applied to all
the other databases. Subsequent database definitions may also override some frontend settings.

The config database is also special; both the config and the frontend databases are always created
implicitly even if they are not explicitly configured, and they are created before any other databases.

Example:
olcDatabase: bdb
This marks the beginning of a new BDB database instance.
5.2.5.2. olcAccess: to <what> [by <who> [<accesslevel>] [<control>]]+
This directive grants access (specified by <accesslevel>) to a set of entries and/or attributes (specified by

<what>) by one or more requestors (specified by <who>). See the Access Control section of this guide for
basic usage.

Note: If no olcAccess directives are specified, the default access control policy, to * by * read,
allows all users (both authenticated and anonymous) read access.

Note: Access controls defined in the frontend are appended to all other databases' controls.

5.2.5.3. olcReadonly { TRUE | FALSE }

This directive puts the database into "read-only" mode. Any attempts to modify the database will return an
"unwilling to perform" error. If set on a consumer, modifications sent by syncrepl will still occur.

Default:

olcReadonly: FALSE
5.2.5.4. olcRootDN: <DN>
This directive specifies the DN that is not subject to access control or administrative limit restrictions for

operations on this database. The DN need not refer to an entry in this database or even in the directory. The
DN may refer to a SASL identity.

30

OpenLDAP Software 2.4 Administrator's Guide

Entry-based Example:
olcRootDN: cn=Manager, dc=example, dc=com
SASL-based Example:
0lcRootDN: uid=root, cn=example.com, cn=digest-md5, cn=auth
See the SASL Authentication section for information on SASL authentication identities.
5.2.5.5. olcRootPW: <password>

This directive can be used to specify a password for the DN for the rootdn (when the rootdn is set to a DN
within the database).

Example:
olcRootPW: secret

It is also permissible to provide a hash of the password in RFC2307 form. slappasswd(8) may be used to
generate the password hash.

Example:
olcRootPW: {SSHA}ZKKugbEKJfKSXhUbHG3£G8MDn9j1v4QN
The hash was generated using the command slappasswd -s secret.
5.2.5.6. olcSizeLimit: <integer>
This directive specifies the maximum number of entries to return from a search operation.
Default:
olcSizeLimit: 500
See the Limits section of this guide and slapd-config(5) for more details.
5.2.5.7. olcSuffix: <dn suffix>
This directive specifies the DN suffix of queries that will be passed to this backend database. Multiple suffix
lines can be given, and usually at least one is required for each database definition. (Some backend types, such

as frontend and monitor use a hard-coded suffix which may not be overridden in the configuration.)

Example:

olcSuffix: dc=example, dc=com

Queries with a DN ending in "dc=example,dc=com" will be passed to this backend.

Note: When the backend to pass a query to is selected, slapd looks at the suffix value(s) in each database
definition in the order in which they were configured. Thus, if one database suffix is a prefix of another, it

31

http://www.rfc-editor.org/rfc/rfc2307.txt

OpenLDAP Software 2.4 Administrator's Guide

must appear after it in the configuration.

5.2.5.8. olcSyncrepl

olcSyncrepl: rid=<replica ID>
provider=1ldapl[s]://<hostname>[:port]
[type=refreshOnly|refreshAndPersist]
[interval=dd:hh:mm:ss]
[retry=[<retry interval> <# of retries>]+]
searchbase=<base DN>
[filter=<filter str>]
[scope=sub|one|base]
[attrs=<attr list>]
[attrsonly]
[sizelimit=<limit>]
[timelimit=<1limit>]
[schemachecking=on|off]
[bindmethod=simple|sasl]
[binddn=<DN>]
[saslmech=<mech>]
[authcid=<identity>]
[authzid=<identity>]
[credentials=<passwd>]
[realm=<realm>]
[secprops=<properties>]
[starttls=yes|critical]
[tls_cert=<file>]
[tls_key=<file>]
[tls_cacert=<file>]
[tls_cacertdir=<path>]
[tls_reqgcert=never|allow|try|demand]
[tls_cipher_suite=<ciphers>]
[tls_crlcheck=none|peer|all]
[logbase=<base DN>]
[logfilter=<filter str>]
[syncdata=default|accesslog|changelog]

This directive specifies the current database as a replica of the master content by establishing the current
slapd(8) as a replication consumer site running a syncrepl replication engine. The master database is located at
the replication provider site specified by the provider parameter. The replica database is kept up-to-date
with the master content using the LDAP Content Synchronization protocol. See RFC4533 for more
information on the protocol.

The rid parameter is used for identification of the current syncrepl directive within the replication
consumer server, where <replica ID> uniquely identifies the syncrepl specification described by the
current syncrepl directive. <replica ID> is non-negative and is no more than three decimal digits in
length.

The provider parameter specifies the replication provider site containing the master content as an LDAP
URL The provider parameter specifies a scheme, a host and optionally a port where the provider slapd
instance can be found. Either a domain name or IP address may be used for <hostname>. Examples are
ldap://provider.example.com:389 or ldaps://192.168.1.1:636.If <port>is not given,
the standard LDAP port number (389 or 636) is used. Note that the syncrepl uses a consumer-initiated
protocol, and hence its specification is located at the consumer site, whereas the replica specification is
located at the provider site. syncrepl and replica directives define two independent replication
mechanisms. They do not represent the replication peers of each other.

32

http://www.rfc-editor.org/rfc/rfc4533.txt

OpenLDAP Software 2.4 Administrator's Guide

The content of the syncrepl replica is defined using a search specification as its result set. The consumer slapd
will send search requests to the provider slapd according to the search specification. The search specification
includes searchbase, scope, filter, attrs, attrsonly, sizelimit,and timelimit
parameters as in the normal search specification. The searchbase parameter has no default value and must
always be specified. The scope defaults to sub, the filter defaultsto (objectclass=*), attrs
defaults to " *, +" to replicate all user and operational attributes, and att rsonly is unset by default. Both
sizelimit and timelimit default to "unlimited", and only positive integers or "unlimited" may be
specified.

The LDAP Content Synchronization protocol has two operation types: refreshOnly and
refreshAndPersist. The operation type is specified by the t ype parameter. In the refreshOnly
operation, the next synchronization search operation is periodically rescheduled at an interval time after each
synchronization operation finishes. The interval is specified by the interval parameter. It is set to one day
by default. In the refreshAndPersist operation, a synchronization search remains persistent in the
provider slapd instance. Further updates to the master replica will generate searchResultEntry to the
consumer slapd as the search responses to the persistent synchronization search.

If an error occurs during replication, the consumer will attempt to reconnect according to the retry parameter
which is a list of the <retry interval> and <# of retries> pairs. For example, retry="60 10 300 3" lets the
consumer retry every 60 seconds for the first 10 times and then retry every 300 seconds for the next three
times before stop retrying. + in <# of retries> means indefinite number of retries until success.

The schema checking can be enforced at the LDAP Sync consumer site by turning on the
schemachecking parameter. If it is turned on, every replicated entry will be checked for its schema as the
entry is stored into the replica content. Every entry in the replica should contain those attributes required by
the schema definition. If it is turned off, entries will be stored without checking schema conformance. The
default is off.

The binddn parameter gives the DN to bind as for the syncrepl searches to the provider slapd. It should be a
DN which has read access to the replication content in the master database.

The bindmethod is simple or sasl, depending on whether simple password-based authentication or
SASL authentication is to be used when connecting to the provider slapd instance.

Simple authentication should not be used unless adequate data integrity and confidentiality protections are in
place (e.g. TLS or IPsec). Simple authentication requires specification of binddn and credentials
parameters.

SASL authentication is generally recommended. SASL authentication requires specification of a mechanism
using the saslmech parameter. Depending on the mechanism, an authentication identity and/or credentials
can be specified using authcid and credentials, respectively. The authzid parameter may be used to
specify an authorization identity.

The realm parameter specifies a realm which a certain mechanisms authenticate the identity within. The
secprops parameter specifies Cyrus SASL security properties.

The starttls parameter specifies use of the StartTLS extended operation to establish a TLS session before
authenticating to the provider. If the critical argument is supplied, the session will be aborted if the
StartTLS request fails. Otherwise the syncrepl session continues without TLS. The tls_reqcert setting defaults
to "demand" and the other TLS settings default to the same as the main slapd TLS settings.

33

OpenLDAP Software 2.4 Administrator's Guide

Rather than replicating whole entries, the consumer can query logs of data modifications. This mode of
operation is referred to as delta syncrepl. In addition to the above parameters, the 1logbase and logfilter
parameters must be set appropriately for the log that will be used. The syncdata parameter must be set to
either "accesslog" if the log conforms to the slapo-accesslog(5) log format, or "changelog" if the log
conforms to the obsolete changelog format. If the syncdata parameter is omitted or setto "default"
then the log parameters are ignored.

The syncrepl replication mechanism is supported by the bdb, hdb, and mdb backends.
See the LDAP Sync Replication chapter of this guide for more information on how to use this directive.
5.2.5.9. olcTimeLimit: <integer>

This directive specifies the maximum number of seconds (in real time) slapd will spend answering a search
request. If a request is not finished in this time, a result indicating an exceeded timelimit will be returned.

Default:
olcTimeLimit: 3600
See the Limits section of this guide and slapd-config(5) for more details.

5.2.5.10. olcUpdateref: <URL>

This directive is only applicable in a slave slapd. It specifies the URL to return to clients which submit update
requests upon the replica. If specified multiple times, each URL is provided.

Example:
olcUpdateref: ldap://master.example.net
5.2.5.11. Sample Entries

dn: olcDatabase=frontend, cn=config
objectClass: olcDatabaseConfig
objectClass: olcFrontendConfig
olcDatabase: frontend

olcReadOnly: FALSE

dn: olcDatabase=config,cn=config
objectClass: olcDatabaseConfig
olcDatabase: config

olcRootDN: cn=Manager,dc=example, dc=com

5.2.6. BDB and HDB Database Directives

Directives in this category apply to both the BDB and the HDB database. They are used in an olcDatabase
entry in addition to the generic database directives defined above. For a complete reference of BDB/HDB
configuration directives, see slapd-bdb(5). In addition to the o1cDatabaseConfig objectClass, BDB and
HDB database entries must have the o1cBdbConfig and olcHdbConfig objectClass, respectively.

34

OpenLDAP Software 2.4 Administrator's Guide
5.2.6.1. olcDbDirectory: <directory>

This directive specifies the directory where the BDB files containing the database and associated indices live.

Default:

olcDbDirectory: /usr/local/var/openldap—-data
5.2.6.2. olcDbCachesize: <integer>

This directive specifies the size in entries of the in-memory cache maintained by the BDB backend database
instance.

Default:

olcDbCachesize: 1000
5.2.6.3. olcDbCheckpoint: <kbyte> <min>

This directive specifies how often to checkpoint the BDB transaction log. A checkpoint operation flushes the
database buffers to disk and writes a checkpoint record in the log. The checkpoint will occur if either <kbyte>
data has been written or <min> minutes have passed since the last checkpoint. Both arguments default to zero,
in which case they are ignored. When the <min> argument is non-zero, an internal task will run every <min>
minutes to perform the checkpoint. See the Berkeley DB reference guide for more details.

Example:
olcDbCheckpoint: 1024 10

5.2.6.4. olcDbConfig: <DB_CONFIG setting>

This attribute specifies a configuration directive to be placed in the DB_CONF IG file of the database
directory. At server startup time, if no such file exists yet, the DB_ CONF IG file will be created and the
settings in this attribute will be written to it. If the file exists, its contents will be read and displayed in this
attribute. The attribute is multi-valued, to accommodate multiple configuration directives. No default is
provided, but it is essential to use proper settings here to get the best server performance.

Any changes made to this attribute will be written to the DB_CONF IG file and will cause the database
environment to be reset so the changes can take immediate effect. If the environment cache is large and has
not been recently checkpointed, this reset operation may take a long time. It may be advisable to manually
perform a single checkpoint using the Berkeley DB db_checkpoint utility before using LDAP Modify to
change this attribute.

Example:

olcDbConfig: set_cachesize 0 10485760 0
olcDbConfig: set_lg_bsize 2097512
olcDbConfig: set_lg_dir /var/tmp/bdb-log
olcDbConfig: set_flags DB_LOG_AUTOREMOVE

In this example, the BDB cache is set to 10MB, the BDB transaction log buffer size is set to 2MB, and the
transaction log files are to be stored in the /var/tmp/bdb-log directory. Also a flag is set to tell BDB to delete

35

OpenLDAP Software 2.4 Administrator's Guide

transaction log files as soon as their contents have been checkpointed and they are no longer needed. Without
this setting the transaction log files will continue to accumulate until some other cleanup procedure removes
them. See the Berkeley DB documentation for the db_archive command for details. For a complete list of
Berkeley DB flags please see -
http://www.oracle.com/technology/documentation/berkeley-db/db/api_c/env_set_flags.html

Ideally the BDB cache must be at least as large as the working set of the database, the log buffer size should
be large enough to accommodate most transactions without overflowing, and the log directory must be on a
separate physical disk from the main database files. And both the database directory and the log directory
should be separate from disks used for regular system activities such as the root, boot, or swap filesystems.
See the FAQ-o-Matic and the Berkeley DB documentation for more details.

5.2.6.5. olcDbNosync: { TRUE | FALSE }

This option causes on-disk database contents to not be immediately synchronized with in memory changes
upon change. Setting this option to TRUE may improve performance at the expense of data integrity. This
directive has the same effect as using

olcDbConfig: set_flags DB_TXN_NOSYNC
5.2.6.6. olcDbIDLcacheSize: <integer>

Specify the size of the in-memory index cache, in index slots. The default is zero. A larger value will speed up
frequent searches of indexed entries. The optimal size will depend on the data and search characteristics of the
database, but using a number three times the entry cache size is a good starting point.

Example:

olcDbIDLcacheSize: 3000
5.2.6.7. olcDbIndex: {<attrlist> | default} [pres,eq,approx,sub,none]

This directive specifies the indices to maintain for the given attribute. If only an <attrlist> is given, the
default indices are maintained. The index keywords correspond to the common types of matches that may be
used in an LDAP search filter.

Example:

olcDbIndex: default pres,eq
olcDbIndex: uid

olcDbIndex: cn,sn pres,eq, sub
olcDbIndex: objectClass eq

The first line sets the default set of indices to maintain to present and equality. The second line causes the
default (pres,eq) set of indices to be maintained for the uid attribute type. The third line causes present,
equality, and substring indices to be maintained for cn and sn attribute types. The fourth line causes an
equality index for the objectClass attribute type.

There is no index keyword for inequality matches. Generally these matches do not use an index. However,
some attributes do support indexing for inequality matches, based on the equality index.

36

http://www.oracle.com/technology/documentation/berkeley-db/db/api_c/env_set_flags.html

OpenLDAP Software 2.4 Administrator's Guide

A substring index can be more explicitly specified as subinitial, subany, or subfinal, corresponding
to the three possible components of a substring match filter. A subinitial index only indexes substrings that
appear at the beginning of an attribute value. A subfinal index only indexes substrings that appear at the end
of an attribute value, while subany indexes substrings that occur anywhere in a value.

Note that by default, setting an index for an attribute also affects every subtype of that attribute. E.g., setting
an equality index on the name attribute causes cn, sn, and every other attribute that inherits from name to be
indexed.

By default, no indices are maintained. It is generally advised that minimally an equality index upon
objectClass be maintained.

olcDbindex: objectClass eq

Additional indices should be configured corresponding to the most common searches that are used on the
database. Presence indexing should not be configured for an attribute unless the attribute occurs very rarely in
the database, and presence searches on the attribute occur very frequently during normal use of the directory.
Most applications don't use presence searches, so usually presence indexing is not very useful.

If this setting is changed while slapd is running, an internal task will be run to generate the changed index
data. All server operations can continue as normal while the indexer does its work. If slapd is stopped before
the index task completes, indexing will have to be manually completed using the slapindex tool.

5.2.6.8. olcDbLinearindex: { TRUE | FALSE }

If this setting is TRUE slapindex will index one attribute at a time. The default settings is FALSE in which
case all indexed attributes of an entry are processed at the same time. When enabled, each indexed attribute is
processed individually, using multiple passes through the entire database. This option improves slapindex
performance when the database size exceeds the BDB cache size. When the BDB cache is large enough, this
option is not needed and will decrease performance. Also by default, slapadd performs full indexing and so a
separate slapindex run is not needed. With this option, slapadd does no indexing and slapindex must be used.

5.2.6.9. olcDbMode: { <octal> | <symbolic> }

This directive specifies the file protection mode that newly created database index files should have. This can
be in the form 0600 or ~rw———————

Default:

olcDbMode: 0600
5.2.6.10. olcDbSearchStack: <integer>

Specify the depth of the stack used for search filter evaluation. Search filters are evaluated on a stack to
accommodate nested AND / OR clauses. An individual stack is allocated for each server thread. The depth of
the stack determines how complex a filter can be evaluated without requiring any additional memory
allocation. Filters that are nested deeper than the search stack depth will cause a separate stack to be allocated
for that particular search operation. These separate allocations can have a major negative impact on server
performance, but specifying too much stack will also consume a great deal of memory. Each search uses
512K bytes per level on a 32-bit machine, or 1024K bytes per level on a 64-bit machine. The default stack
depth is 16, thus 8MB or 16MB per thread is used on 32 and 64 bit machines, respectively. Also the 512KB

37

OpenLDAP Software 2.4 Administrator's Guide

size of a single stack slot is set by a compile-time constant which may be changed if needed; the code must be
recompiled for the change to take effect.

Default:
olcDbSearchStack: 16

5.2.6.11. olcDbShmKey: <integer>

Specify a key for a shared memory BDB environment. By default the BDB environment uses memory
mapped files. If a non-zero value is specified, it will be used as the key to identify a shared memory region
that will house the environment.

Example:
olcDbShmKey: 42

5.2.6.12. Sample Entry

dn: olcDatabase=hdb, cn=config
objectClass: olcDatabaseConfig
objectClass: olcHdbConfig

olcDatabase: hdb

olcSuffix: dc=example, dc=com
olcDbDirectory: /usr/local/var/openldap—-data
olcDbCacheSize: 1000

olcDbCheckpoint: 1024 10

olcDbConfig: set_cachesize 0 10485760 O
olcDbConfig: set_lg_bsize 2097152
olcDbConfig: set_lg_dir /var/tmp/bdb-log
olcDbConfig: set_flags DB_LOG_AUTOREMOVE
olcDbIDLcacheSize: 3000

olcDbIndex: objectClass eq

5.3. Configuration Example

The following is an example configuration, interspersed with explanatory text. It defines two databases to
handle different parts of the X.500 tree; both are BDB database instances. The line numbers shown are
provided for reference only and are not included in the actual file. First, the global configuration section:

example config file - global configuration entry
dn: cn=config

objectClass: olcGlobal

cn: config

olcReferral: ldap://root.openldap.org

o U b W N

Line 1 is a comment. Lines 2-4 identify this as the global configuration entry. The olcReferral : directive
on line 5 means that queries not local to one of the databases defined below will be referred to the LDAP
server running on the standard port (389) at the host root . openldap.oxrg. Line 6 is a blank line,
indicating the end of this entry.

7. # internal schema
8. dn: cn=schema, cn=config
9. objectClass: olcSchemaConfig

38

OpenLDAP Software 2.4 Administrator's Guide

10. cn: schema
11.

Line 7 is a comment. Lines 8-10 identify this as the root of the schema subtree. The actual schema definitions
in this entry are hardcoded into slapd so no additional attributes are specified here. Line 11 is a blank line,
indicating the end of this entry.

12. # include the core schema
13. include: file:///usr/local/etc/openldap/schema/core.ldif
14.

Line 12 is a comment. Line 13 is an LDIF include directive which accesses the core schema definitions in
LDIF format. Line 14 is a blank line.

Next comes the database definitions. The first database is the special frontend database whose settings are
applied globally to all the other databases.

15. # global database parameters

16. dn: olcDatabase=frontend, cn=config
17. objectClass: olcDatabaseConfig

18. olcDatabase: frontend

19. olcAccess: to * by * read

20.

Line 15 is a comment. Lines 16-18 identify this entry as the global database entry. Line 19 is a global access
control. It applies to all entries (after any applicable database-specific access controls). Line 20 is a blank line.

The next entry defines the config backend.

21. # set a rootpw for the config database so we can bind.
22. # deny access to everyone else.

23. dn: olcDatabase=config,cn=config

24. objectClass: olcDatabaseConfig

25. olcDatabase: config

26. 0lcRooOtPW: {SSHA}XKYnrjvGT3wZFQrDD5040US592LxsdLy

27. olcAccess: to * by * none

28.

Lines 21-22 are comments. Lines 23-25 identify this entry as the config database entry. Line 26 defines the
super-user password for this database. (The DN defaults to "cn=config".) Line 27 denies all access to this
database, so only the super-user will be able to access it. (This is already the default access on the config
database. It is just listed here for illustration, and to reiterate that unless a means to authenticate as the
super-user is explicitly configured, the config database will be inaccessible.)

Line 28 is a blank line.
The next entry defines a BDB backend that will handle queries for things in the "dc=example,dc=com"

portion of the tree. Indices are to be maintained for several attributes, and the userPassword attribute is to
be protected from unauthorized access.

29. # BDB definition for example.com
30. dn: olcDatabase=bdb, cn=config
31. objectClass: olcDatabaseConfig
32. objectClass: olcBdbConfig

33. olcDatabase: bdb

39

OpenLDAP Software 2.4 Administrator's Guide

34. olcSuffix: dc=example, dc=com

35. olcDbDirectory: /usr/local/var/openldap—-data
36. olcRootDN: cn=Manager, dc=example, dc=com

37. 0lcRootPW: secret

38. olcDbIndex: uid pres,eq

39. olcDbIndex: cn,sn pres,eq,approx, sub

40. olcDbIndex: objectClass eq

41. olcAccess: to attrs=userPassword

42. by self write

43. by anonymous auth

44 . by dn.base="cn=Admin,dc=example,dc=com" write
45. by * none

46. olcAccess: to *

47 . by self write

48. by dn.base="cn=Admin,dc=example,dc=com" write
49. by * read

50.

Line 29 is a comment. Lines 30-33 identify this entry as a BDB database configuration entry. Line 34
specifies the DN suffix for queries to pass to this database. Line 35 specifies the directory in which the
database files will live.

Lines 36 and 37 identify the database super-user entry and associated password. This entry is not subject to
access control or size or time limit restrictions.

Lines 38 through 40 indicate the indices to maintain for various attributes.

Lines 41 through 49 specify access control for entries in this database. For all applicable entries, the
userPassword attribute is writable by the entry itself and by the "admin" entry. It may be used for
authentication/authorization purposes, but is otherwise not readable. All other attributes are writable by the
entry and the "admin" entry, but may be read by all users (authenticated or not).

Line 50 is a blank line, indicating the end of this entry.
The next entry defines another BDB database. This one handles queries involving the

dc=example, dc=net subtree but is managed by the same entity as the first database. Note that without
line 60, the read access would be allowed due to the global access rule at line 19.

51. # BDB definition for example.net

52. dn: olcDatabase=bdb, cn=config

53. objectClass: olcDatabaseConfig

54. objectClass: olcBdbConfig

55. olcDatabase: bdb

56. olcSuffix: dc=example, dc=net

57. olcDbDirectory: /usr/local/var/openldap-data-net
58. olcRootDN: cn=Manager,dc=example, dc=com

59. olcDbIndex: objectClass eqg

60. olcAccess: to * by users read

5.4. Converting old style slapd.conf(5) file to cn=config format

Before converting to the cn=config format you should make sure that the config backend is properly
configured in your existing config file. While the config backend is always present inside slapd, by default it
is only accessible by its rootDN, and there are no default credentials assigned so unless you explicitly
configure a means to authenticate to it, it will be unusable.

40

OpenLDAP Software 2.4 Administrator's Guide

If you do not already have a database config section, add something like this to the end of
slapd.conf

database config
rootpw VerySecret

Note: Since the config backend can be used to load arbitrary code into the slapd process, it is extremely
important to carefully guard whatever credentials are used to access it. Since simple passwords are vulnerable
to password guessing attacks, it is usually better to omit the rootpw and only use SASL authentication for the
config rootDN.

An existing slapd.conf(5) file can be converted to the new format using slaptest(8) or any of the slap tools:
slaptest -f /usr/local/etc/openldap/slapd.conf -F /usr/local/etc/openldap/slapd.d

Test that you can access entries under cn=conf ig using the default rootdn and the rootpw configured
above:

ldapsearch -x -D cn=config -w VerySecret -b cn=config

You can then discard the old slapd.conf(5) file. Make sure to launch slapd(8) with the -F option to specify the
configuration directory if you are not using the default directory path.

Note: When converting from the slapd.conf format to slapd.d format, any included files will also be integrated
into the resulting configuration database.

41

42

OpenLDAP Software 2.4 Administrator's Guide

6. The slapd Configuration File

This chapter describes configuring slapd(8) via the slapd.conf(5) configuration file. slapd.conf(5) has been
deprecated and should only be used if your site requires one of the backends that hasn't yet been updated to
work with the newer slapd-config(5) system. Configuring slapd(8) via slapd-config(5) is described in the
previous chapter.

The slapd.conf(5) file is normally installed in the /usr/local/etc/openldap directory. An alternate
configuration file location can be specified via a command-line option to slapd(8).

6.1. Configuration File Format

The slapd.conf(5) file consists of three types of configuration information: global, backend specific, and
database specific. Global information is specified first, followed by information associated with a particular
backend type, which is then followed by information associated with a particular database instance. Global
directives can be overridden in backend and/or database directives, and backend directives can be overridden
by database directives.

Blank lines and comment lines beginning with a '#' character are ignored. If a line begins with whitespace, it
is considered a continuation of the previous line (even if the previous line is a comment).

The general format of slapd.conf is as follows:

global configuration directives
<global config directives>

backend definition
backend <typeA>
<backend-specific directives>

first database definition & config directives
database <typeA>
<database-specific directives>

second database definition & config directives
database <typeB>
<database-specific directives>

second database definition & config directives
database <typeA>
<database-specific directives>

subsequent backend & database definitions & config directives

A configuration directive may take arguments. If so, they are separated by whitespace. If an argument
contains whitespace, the argument should be enclosed in double quotes "1ike this".If an argument
contains a double quote or a backslash character *\', the character should be preceded by a backslash character
.

The distribution contains an example configuration file that will be installed in the

/usr/local/etc/openldap directory. A number of files containing schema definitions (attribute types
and object classes) are also provided in the /usr/local/etc/openldap/schema directory.

43

OpenLDAP Software 2.4 Administrator's Guide

6.2. Configuration File Directives

This section details commonly used configuration directives. For a complete list, see the slapd.conf(5) manual
page. This section separates the configuration file directives into global, backend-specific and data-specific
categories, describing each directive and its default value (if any), and giving an example of its use.

6.2.1. Global Directives

Directives described in this section apply to all backends and databases unless specifically overridden in a
backend or database definition. Arguments that should be replaced by actual text are shown in brackets <>.

6.2.1.1. access to <what> [by <who> [<accesslevel>] [<control>]]+
This directive grants access (specified by <accesslevel>) to a set of entries and/or attributes (specified by

<what>) by one or more requestors (specified by <who>). See the Access Control section of this guide for
basic usage.

Note: If no access directives are specified, the default access control policy, access to * by *
read, allows all both authenticated and anonymous users read access.

6.2.1.2. attributetype <RFC4512 Attribute Type Description>

This directive defines an attribute type. Please see the Schema Specification chapter for information regarding
how to use this directive.

6.2.1.3. idletimeout <integer>

Specify the number of seconds to wait before forcibly closing an idle client connection. An idletimeout of 0,
the default, disables this feature.

6.2.1.4. include <filename>
This directive specifies that slapd should read additional configuration information from the given file before

continuing with the next line of the current file. The included file should follow the normal slapd config file
format. The file is commonly used to include files containing schema specifications.

Note: You should be careful when using this directive - there is no small limit on the number of nested
include directives, and no loop detection is done.

6.2.1.5. loglevel <level>

This directive specifies the level at which debugging statements and operation statistics should be syslogged
(currently logged to the syslogd(8) LOG_LOCAL4 facility). You must have configured OpenLDAP
—-—enable-debug (the default) for this to work (except for the two statistics levels, which are always
enabled). Log levels may be specified as integers or by keyword. Multiple log levels may be used and the
levels are additive. To display what numbers correspond to what kind of debugging, invoke slapd with —d? or
consult the table below. The possible values for <integer> are:

Table 6.1: Debugging Levels

44

http://www.rfc-editor.org/rfc/rfc4512.txt

OpenLDAP Software 2.4 Administrator's Guide

Level | Keyword Description
-1|any enable all debugging
0 no debugging
1{(0x1 trace) trace function calls
2|(0x2 packets) |debug packet handling
4((0x4 args) heavy trace debugging
8|(0x8 conns) connection management

16/(0x10 BER)

print out packets sent and received

32|(0x20 filter)

search filter processing

64|(0x40 config)

configuration processing

128|(0x80 ACL)

access control list processing

256|(0x100 stats)

stats log connections/operations/results

512|(0x200 stats2)

stats log entries sent

1024 ((0x400 shell) [print communication with shell backends
2048((0x800 parse) [print entry parsing debugging
16384|(0x4000 sync) |syncrepl consumer processing

32768|(0x8000 none)

only messages that get logged whatever log level is set

The desired log level can be input as a single integer that combines the (ORed) desired levels, both in decimal

or in hexadecimal notation, as a list of integers (that are ORed internally), or as a list of the names that are

shown between brackets, such that

are equivalent.

Examples:

loglevel -1

loglevel 129
loglevel 0x81
loglevel 128 1

loglevel 0x80 0Ox1
loglevel acl trace

This will cause lots and lots of debugging information to be logged.

loglevel conns

filter

Just log the connection and search filter processing.

loglevel none

Log those messages that are logged regardless of the configured loglevel. This differs from setting the log

level to 0, when no logging occurs. At least the None level is required to have high priority messages logged.

Default:

loglevel stats

45

OpenLDAP Software 2.4 Administrator's Guide

Basic stats logging is configured by default. However, if no loglevel is defined, no logging occurs (equivalent
to a 0 level).

6.2.1.6. objectclass <RFC4512 Object Class Description>

This directive defines an object class. Please see the Schema Specification chapter for information regarding
how to use this directive.

6.2.1.7. referral <URI>
This directive specifies the referral to pass back when slapd cannot find a local database to handle a request.

Example:

referral ldap://root.openldap.org
This will refer non-local queries to the global root LDAP server at the OpenLDAP Project. Smart LDAP
clients can re-ask their query at that server, but note that most of these clients are only going to know how to
handle simple LDAP URLs that contain a host part and optionally a distinguished name part.
6.2.1.8. sizelimit <integer>

This directive specifies the maximum number of entries to return from a search operation.

Default:

sizelimit 500
See the Limits section of this guide and slapd.conf(5) for more details.
6.2.1.9. timelimit <integer>

This directive specifies the maximum number of seconds (in real time) slapd will spend answering a search
request. If a request is not finished in this time, a result indicating an exceeded timelimit will be returned.

Default:

timelimit 3600

See the Limits section of this guide and slapd.conf(5) for more details.

6.2.2. General Backend Directives

Directives in this section apply only to the backend in which they are defined. They are supported by every
type of backend. Backend directives apply to all databases instances of the same type and, depending on the
directive, may be overridden by database directives.

6.2.2.1. backend <type>

This directive marks the beginning of a backend declaration. <t ype> should be one of the supported backend
types listed in Table 6.2.

46

http://www.rfc-editor.org/rfc/rfc4512.txt

OpenLDAP Software 2.4 Administrator's Guide
Table 6.2: Database Backends

Types Description

bdb Berkeley DB transactional backend (deprecated)
dnssrv |DNS SRV backend

hdb Hierarchical variant of bdb backend (deprecated)

ldap Lightweight Directory Access Protocol (Proxy) backend
mdb Memory-Mapped DB backend

meta Meta Directory backend

monitor |Monitor backend

passwd [Provides read-only access to passwd(5)

perl Perl Programmable backend

shell Shell (extern program) backend
sgl SQL Programmable backend

Example:

backend mdb

This marks the beginning of a new MDB backend definition.

6.2.3. General Database Directives

Directives in this section apply only to the database in which they are defined. They are supported by every
type of database.

6.2.3.1. database <type>

This directive marks the beginning of a database instance declaration. <t ype> should be one of the
supported backend types listed in Table 6.2.

Example:

database mdb
This marks the beginning of a new MDB database instance declaration.
6.2.3.2. limits <selector> <limit> [<limit> [...]]
Specify time and size limits based on the operation's initiator or base DN.
See the Limits section of this guide and slapd.conf(5) for more details.
6.2.3.3. readonly { on | off }

This directive puts the database into "read-only" mode. Any attempts to modify the database will return an
"unwilling to perform" error. If set on a consumer, modifications sent by syncrepl will still occur.

Default:

47

OpenLDAP Software 2.4 Administrator's Guide

readonly off
6.2.3.4. rootdn <DN>
This directive specifies the DN that is not subject to access control or administrative limit restrictions for
operations on this database. The DN need not refer to an entry in this database or even in the directory. The

DN may refer to a SASL identity.
Entry-based Example:
rootdn "cn=Manager,dc=example,dc=com"
SASL-based Example:
rootdn "uid=root,cn=example.com,cn=digest-md5, cn=auth"
See the SASL Authentication section for information on SASL authentication identities.
6.2.3.5. rootpw <password>

This directive can be used to specifies a password for the DN for the rootdn (when the rootdn is set to a DN
within the database).

Example:

rootpw secret

It is also permissible to provide hash of the password in RFC2307 form. slappasswd(8) may be used to
generate the password hash.

Example:

rootpw {SSHA}ZKKUgbEKJfKSXhUbHG3£G8MDNn9j1v40N
The hash was generated using the command slappasswd —-s secret.

6.2.3.6. suffix <dn suffix>

This directive specifies the DN suffix of queries that will be passed to this backend database. Multiple suffix
lines can be given, and at least one is required for each database definition.

Example:
suffix "dc=example,dc=com"

Queries with a DN ending in "dc=example,dc=com" will be passed to this backend.

Note: When the backend to pass a query to is selected, slapd looks at the suffix line(s) in each database
definition in the order they appear in the file. Thus, if one database suffix is a prefix of another, it must appear
after it in the config file.

48

http://www.rfc-editor.org/rfc/rfc2307.txt

OpenLDAP Software 2.4 Administrator's Guide
6.2.3.7. syncrepl

syncrepl rid=<replica ID>
provider=ldap[s]://<hostname>[:port]
searchbase=<base DN>
[type=refreshOnly|refreshAndPersist]
interval=dd:hh:mm:ss]
retry=[<retry interval> <# of retries>]+]
filter=<filter str>]
scope=sub|one|base]
attrs=<attr list>]
exattrs=<attr list>]
attrsonly]
sizelimit=<limit>]
timelimit=<limit>]
schemachecking=on|off]
network-timeout=<seconds>]
timeout=<seconds>]
bindmethod=simple|sasl]
binddn=<DN>]
saslmech=<mech>]
authcid=<identity>]
authzid=<identity>]
credentials=<passwd>]
realm=<realm>]
secprops=<properties>]
keepalive=<idle>:<probes>:<interval>]
starttls=yes|critical]
tls_cert=<file>]
tls_key=<file>]
tls_cacert=<file>]
tls_cacertdir=<path>]
tls_regcert=never|allow|try|demand]
tls_cipher_suite=<ciphers>]
tls_crlcheck=none|peer|all]
tls_protocol_min=<major>[.<minor>]]
suffixmassage=<real DN>]
logbase=<base DN>]
logfilter=<filter str>]
syncdata=default|accesslog|changelog]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

This directive specifies the current database as a replica of the master content by establishing the current
slapd(8) as a replication consumer site running a syncrepl replication engine. The master database is located at
the replication provider site specified by the provider parameter. The replica database is kept up-to-date
with the master content using the LDAP Content Synchronization protocol. See RFC4533 for more
information on the protocol.

The rid parameter is used for identification of the current syncrepl directive within the replication
consumer server, where <replica ID> uniquely identifies the syncrepl specification described by the
current syncrepl directive. <replica ID> is non-negative and is no more than three decimal digits in
length.

The provider parameter specifies the replication provider site containing the master content as an LDAP
URI. The provider parameter specifies a scheme, a host and optionally a port where the provider slapd
instance can be found. Either a domain name or IP address may be used for <hostname>. Examples are
ldap://provider.example.com:389 or 1daps://192.168.1.1:636.If <port> is not given,
the standard LDAP port number (389 or 636) is used. Note that the syncrepl uses a consumer-initiated

49

http://www.rfc-editor.org/rfc/rfc4533.txt

OpenLDAP Software 2.4 Administrator's Guide

protocol, and hence its specification is located at the consumer site, whereas the replica specification is
located at the provider site. syncrepl and replica directives define two independent replication
mechanisms. They do not represent the replication peers of each other.

The content of the syncrepl replica is defined using a search specification as its result set. The consumer slapd
will send search requests to the provider slapd according to the search specification. The search specification
includes searchbase, scope, filter, attrs, exattrs, attrsonly, sizelimit, and
timelimit parameters as in the normal search specification. The searchbase parameter has no default
value and must always be specified. The scope defaults to sub, the £i1lter defaults to
(objectclass=*), attrs defaults to "*, +" to replicate all user and operational attributes, and
attrsonly is unset by default. Both sizelimit and timelimit default to "unlimited", and only
positive integers or "unlimited" may be specified. The exatt rs option may also be used to specify attributes
that should be omitted from incoming entries.

The LDAP Content Synchronization protocol has two operation types: refreshOnly and
refreshAndPersist. The operation type is specified by the t ype parameter. In the refreshOnly
operation, the next synchronization search operation is periodically rescheduled at an interval time after each
synchronization operation finishes. The interval is specified by the interval parameter. It is set to one day
by default. In the refreshAndPersist operation, a synchronization search remains persistent in the
provider slapd instance. Further updates to the master replica will generate searchResultEntry to the
consumer slapd as the search responses to the persistent synchronization search.

If an error occurs during replication, the consumer will attempt to reconnect according to the retry parameter
which is a list of the <retry interval> and <# of retries> pairs. For example, retry="60 10 300 3" lets the
consumer retry every 60 seconds for the first 10 times and then retry every 300 seconds for the next three
times before stop retrying. + in <# of retries> means indefinite number of retries until success.

The schema checking can be enforced at the LDAP Sync consumer site by turning on the
schemachecking parameter. If it is turned on, every replicated entry will be checked for its schema as the
entry is stored into the replica content. Every entry in the replica should contain those attributes required by
the schema definition. If it is turned off, entries will be stored without checking schema conformance. The
default is off.

The network—t imeout parameter sets how long the consumer will wait to establish a network connection
to the provider. Once a connection is established, the t imeout parameter determines how long the consumer
will wait for the initial Bind request to complete. The defaults for these parameters come from Idap.conf(5).

The binddn parameter gives the DN to bind as for the syncrepl searches to the provider slapd. It should be a
DN which has read access to the replication content in the master database.

The bindmethod is simple or sasl, depending on whether simple password-based authentication or
SASL authentication is to be used when connecting to the provider slapd instance.

Simple authentication should not be used unless adequate data integrity and confidentiality protections are in
place (e.g. TLS or IPsec). Simple authentication requires specification of binddn and credentials
parameters.

SASL authentication is generally recommended. SASL authentication requires specification of a mechanism
using the saslmech parameter. Depending on the mechanism, an authentication identity and/or credentials
can be specified using authcid and credentials, respectively. The authzid parameter may be used to
specify an authorization identity.

50

OpenLDAP Software 2.4 Administrator's Guide

The realm parameter specifies a realm which a certain mechanisms authenticate the identity within. The
secprops parameter specifies Cyrus SASL security properties.

The keepalive parameter sets the values of idle, probes, and interval used to check whether a socket is
alive; idle is the number of seconds a connection needs to remain idle before TCP starts sending keepalive
probes; probes is the maximum number of keepalive probes TCP should send before dropping the connection;
interval is interval in seconds between individual keepalive probes. Only some systems support the
customization of these values; the keepalive parameter is ignored otherwise, and system-wide settings are
used. For example, keepalive="240:10:30" will send a keepalive probe 10 times, every 30 seconds, after 240
seconds of idle activity. If no response to the probes is received, the connection will be dropped.

The starttls parameter specifies use of the StartTLS extended operation to establish a TLS session before
authenticating to the provider. If the critical argument is supplied, the session will be aborted if the
StartTLS request fails. Otherwise the syncrepl session continues without TLS. The tls_reqcert setting defaults
to "demand" and the other TLS settings default to the same as the main slapd TLS settings.

The suffixmassage parameter allows the consumer to pull entries from a remote directory whose DN
suffix differs from the local directory. The portion of the remote entries' DNs that matches the searchbase will
be replaced with the suffixmassage DN.

Rather than replicating whole entries, the consumer can query logs of data modifications. This mode of
operation is referred to as delta syncrepl. In addition to the above parameters, the 1logbase and logfilter
parameters must be set appropriately for the log that will be used. The syncdata parameter must be set to
either "accesslog" if the log conforms to the slapo-accesslog(5) log format, or "changelog" if the log
conforms to the obsolete changelog format. If the syncdata parameter is omitted or setto "default"
then the log parameters are ignored.

The syncrepl replication mechanism is supported by the bdb, hdb, and mdb backends.

See the LDAP Sync Replication chapter of this guide for more information on how to use this directive.

6.2.3.8. updateref <URL>

This directive is only applicable in a slave (or shadow) slapd(8) instance. It specifies the URL to return to
clients which submit update requests upon the replica. If specified multiple times, each URL is provided.

Example:

updateref ldap://master.example.net

6.2.4. BDB and HDB Database Directives

Directives in this category only apply to both the BDB and the HDB database. That is, they must follow a
"database bdb" or "database hdb" line and come before any subsequent "backend" or "database" line. For a
complete reference of BDB/HDB configuration directives, see slapd-bdb(5).

6.2.4.1. directory <directory>

This directive specifies the directory where the BDB files containing the database and associated indices live.

Default:

51

OpenLDAP Software 2.4 Administrator's Guide

directory /usr/local/var/openldap—-data

6.3. Configuration File Example

The following is an example configuration file, interspersed with explanatory text. It defines two databases to
handle different parts of the X.500 tree; both are BDB database instances. The line numbers shown are
provided for reference only and are not included in the actual file. First, the global configuration section:

example config file - global configuration section
include /usr/local/etc/schema/core.schema

referral ldap://root.openldap.org

access to * by * read

Sw N

Line 1 is a comment. Line 2 includes another config file which contains core schema definitions. The
referral directive on line 3 means that queries not local to one of the databases defined below will be
referred to the LDAP server running on the standard port (389) at the host root . openldap.org.

Line 4 is a global access control. It applies to all entries (after any applicable database-specific access
controls).

The next section of the configuration file defines a BDB backend that will handle queries for things in the
"dc=example,dc=com" portion of the tree. The database is to be replicated to two slave slapds, one on truelies,
the other on judgmentday. Indices are to be maintained for several attributes, and the userPassword
attribute is to be protected from unauthorized access.

5. # BDB definition for the example.com
6. database bdb
7. suffix "dc=example,dc=com"
8. directory /usr/local/var/openldap—-data
9. rootdn "cn=Manager,dc=example,dc=com"
10. rootpw secret
11. # indexed attribute definitions
12. index uid pres,eq
13. index cn,sn pres,eq,approx, sub
14. index objectClass eqg
15. # database access control definitions
16. access to attrs=userPassword
17. by self write
18. by anonymous auth
19. by dn.base="cn=Admin, dc=example,dc=com" write
20. by * none
21. access to *
22. by self write
23. by dn.base="cn=Admin,dc=example,dc=com" write
24. by * read

Line 5 is a comment. The start of the database definition is marked by the database keyword on line 6. Line 7
specifies the DN suffix for queries to pass to this database. Line 8 specifies the directory in which the database
files will live.

Lines 9 and 10 identify the database super-user entry and associated password. This entry is not subject to
access control or size or time limit restrictions.

Lines 12 through 14 indicate the indices to maintain for various attributes.

52

OpenLDAP Software 2.4 Administrator's Guide

Lines 16 through 24 specify access control for entries in this database. For all applicable entries, the
userPassword attribute is writable by the entry itself and by the "admin" entry. It may be used for
authentication/authorization purposes, but is otherwise not readable. All other attributes are writable by the
entry and the "admin" entry, but may be read by all users (authenticated or not).

The next section of the example configuration file defines another BDB database. This one handles queries
involving the dc=example, dc=net subtree but is managed by the same entity as the first database. Note
that without line 39, the read access would be allowed due to the global access rule at line 4.

33. # BDB definition for example.net

34. database bdb

35. suffix "dc=example,dc=net"

36. directory /usr/local/var/openldap-data-net
37. rootdn "cn=Manager,dc=example, dc=com"

38. index objectClass eq

39. access to * by users read

53

54

OpenLDAP Software 2.4 Administrator's Guide

7. Running slapd

slapd(8) is designed to be run as a standalone service. This allows the server to take advantage of caching,
manage concurrency issues with underlying databases, and conserve system resources. Running from inetd(8)
is NOT an option.

7.1. Command-Line Options

slapd(8) supports a number of command-line options as detailed in the manual page. This section details a few
commonly used options.

-f <filename>

This option specifies an alternate configuration file for slapd. The default is normally
/usr/local/etc/openldap/slapd.conf.

-F <slapd-config-directory>
Specifies the slapd configuration directory. The defaultis /usr/local/etc/openldap/slapd.d.

If both —f and —F are specified, the config file will be read and converted to config directory format and
written to the specified directory. If neither option is specified, slapd will attempt to read the default config
directory before trying to use the default config file. If a valid config directory exists then the default config
file is ignored. All of the slap tools that use the config options observe this same behavior.

—-h <URLs>

This option specifies alternative listener configurations. The default is 1dap: /// which implies LDAP over
TCP on all interfaces on the default LDAP port 389. You can specify specific host-port pairs or other protocol
schemes (such as 1daps:// or 1dapi://).

URL |Protocol Transport

Idap:/// |LDAP TCP port 389

Idaps:/// |[LDAP over SSL |TCP port 636

Idapi:/// |LDAP IPC (Unix-domain socket)

For example, -h "ldaps:// ldap://127.0.0.1:666" will create two listeners: one for the
(non-standard) 1daps: // scheme on all interfaces on the default 1daps: // port 636, and one for the
standard 1dap:// scheme on the 1ocalhost (loopback) interface on port 666. Hosts may be specified
using using hostnames or IPv4 or IPv6 addresses. Port values must be numeric.

For LDAP over IPC, the pathname of the Unix-domain socket can be encoded in the URL. Note that directory

separators must be URL-encoded, like any other characters that are special to URLs. Thus the socket
/usr/local/var/ldapi must be encoded as

ldapi://%2Fusr%2Flocal%2Fvar%$2Fldapi
Idapi: is described in detail in Using LDAP Over IPC Mechanisms [Chu-LDAPI]

Note that the 1dapi:/// transport is not widely implemented: non-OpenLDAP clients may not be able to use it.

55

http://tools.ietf.org/html/draft-chu-ldap-ldapi-00

OpenLDAP Software 2.4 Administrator's Guide

-n <service-name>

This option specifies the service name used for logging and other purposes. The default service name is
slapd.

-1 <syslog-local-user>

This option specifies the local user for the syslog(8) facility. Values can be LOCALO, LOCAL1, LOCALZ, ...,
and LOCAL7. The default is LOCALA4. This option may not be supported on all systems.

-u user —-g group

These options specify the user and group, respectively, to run as. user can be either a user name or uid.
group can be either a group name or gid.

-r directory

This option specifies a run-time directory. slapd will chroo#(2) to this directory after opening listeners but
before reading any configuration files or initializing any backends.

-d <level> | ?

This option sets the slapd debug level to <level>. When level is a *?' character, the various debugging levels
are printed and slapd exits, regardless of any other options you give it. Current debugging levels are

Table 7.1: Debugging Levels

Level | Keyword Description
-1|any enable all debugging
0 no debugging
1{(0x1 trace) trace function calls
2|(0x2 packets) [debug packet handling
4[(0x4 args) heavy trace debugging
8|(0x8 conns) connection management
16|(0x10 BER) [print out packets sent and received
32|(0x20 filter) [search filter processing
64|(0x40 config) [configuration processing
128]|(0x80 ACL) [access control list processing
256|(0x100 stats) |stats log connections/operations/results
512|(0x200 stats2) |stats log entries sent
1024|(0x400 shell) [print communication with shell backends
2048((0x800 parse) [print entry parsing debugging
16384|(0x4000 sync) |syncrepl consumer processing
32768|(0x8000 none) |only messages that get logged whatever log level is set

You may enable multiple levels by specifying the debug option once for each desired level. Or, since
debugging levels are additive, you can do the math yourself. That is, if you want to trace function calls and
watch the config file being processed, you could set level to the sum of those two levels (in this case, —d 65).
Or, you can let slapd do the math, (e.g. —-d 1 -d 64). Consult <ldap_log.h> for more details.

56

OpenLDAP Software 2.4 Administrator's Guide

Note: slapd must have been compiled with ——enable-debug defined for any debugging information
beyond the two stats levels to be available (the default).

7.2. Starting slapd
In general, slapd is run like this:
/usr/local/libexec/slapd [<option>]*
where /usr/local/libexec is determined by configure and <option> is one of the options described

above (or in slapd(8)). Unless you have specified a debugging level (including level 0), slapd will
automatically fork and detach itself from its controlling terminal and run in the background.

7.3. Stopping slapd

To kill off slapd(8) safely, you should give a command like this
kill -INT ‘“cat /usr/local/var/slapd.pid’

where /usr/local/var is determined by configure.

Killing slapd by a more drastic method may cause information loss or database corruption.

57

58

OpenLDAP Software 2.4 Administrator's Guide

8. Access Control

8.1. Introduction

As the directory gets populated with more and more data of varying sensitivity, controlling the kinds of access
granted to the directory becomes more and more critical. For instance, the directory may contain data of a
confidential nature that you may need to protect by contract or by law. Or, if using the directory to control
access to other services, inappropriate access to the directory may create avenues of attack to your sites
security that result in devastating damage to your assets.

Access to your directory can be configured via two methods, the first using The slapd Configuration File and
the second using the slapd-config(5) format (Configuring slapd).

The default access control policy is allow read by all clients. Regardless of what access control policy is
defined, the rootdn is always allowed full rights (i.e. auth, search, compare, read and write) on everything and

anything.

As a consequence, it's useless (and results in a performance penalty) to explicitly list the rootdn among the
<by> clauses.

The following sections will describe Access Control Lists in greater depth and follow with some examples
and recommendations. See slapd.access(5) for complete details.

8.2. Access Control via Static Configuration

Access to entries and attributes is controlled by the access configuration file directive. The general form of an
access line is:

<access directive> ::= access to <what>
[by <who> [<access>] [<control>]]+
<what> ::= * |

[dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
[filter=<ldapfilter>] [attrs=<attrlist>]

<basic-style> ::= regex | exact

<scope-style> ::= base | one | subtree | children

<attrlist> ::= <attr> [val[.<basic-style>]=<regex>] | <attr> , <attrlist>
<attr> ::= <attrname> | entry | children

<who> ::= * | [anonymous | users | self

| dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
[dnattr=<attrname>]
[group[/<objectclass>[/<attrname>] [.<basic-style>]]=<regex>]
[peername [.<basic-style>]=<regex>]
[sockname [.<basic-style>]=<regex>]
[domain[.<basic-style>]=<regex>]
[sockurl[.<basic-style>]=<regex>]
[set=<setspec>]
[aci=<attrname>]

<access> ::= [self]{<level>|<priv>}

<level> ::= none | disclose | auth | compare | search | read | write | manage
<priv> ::= {=|+|-}{m|lw|r|s|c|x|d|0}+

<control> ::= [stop | continue | break]

59

OpenLDAP Software 2.4 Administrator's Guide

where the <what> part selects the entries and/or attributes to which the access applies, the <who> part
specifies which entities are granted access, and the <access> part specifies the access granted. Multiple
<who> <access> <control> triplets are supported, allowing many entities to be granted different
access to the same set of entries and attributes. Not all of these access control options are described here; for
more details see the slapd.access(5) man page.

8.2.1. What to control access to

The <what> part of an access specification determines the entries and attributes to which the access control
applies. Entries are commonly selected in two ways: by DN and by filter. The following qualifiers select
entries by DN:

to *
to dn[.<basic-style>]=<regex>
to dn.<scope-style>=<DN>

The first form is used to select all entries. The second form may be used to select entries by matching a
regular expression against the target entry's normalized DN. (The second form is not discussed further in this
document.) The third form is used to select entries which are within the requested scope of DN. The <DN> is
a string representation of the Distinguished Name, as described in RFC4514.

The scope can be either base, one, subtree, or children. Where base matches only the entry with
provided DN, one matches the entries whose parent is the provided DN, subt ree matches all entries in the
subtree whose root is the provided DN, and children matches all entries under the DN (but not the entry
named by the DN).

For example, if the directory contained entries named:

0: o=suffix
1: cn=Manager,o=suffix
2: ou=people,o=suffix
3: uid=kdz, ou=people,o=suffix
4: cn=addresses,uid=kdz, ou=people,o=suffix
5: uid=hyc, ou=people,o=suffix
Then:

dn.base="ou=people, o=suffix" match 2;
dn.one="ou=people, o=suffix" match 3, and 5;
dn.subtree="ou=people, o=suffix" match 2, 3, 4, and 5; and
dn.children="ou=people, o=suffix" match 3, 4, and 5.
Entries may also be selected using a filter:

to filter=<ldap filter>

where <ldap filter> is a string representation of an LDAP search filter, as described in RFC4515. For
example:

to filter=(objectClass=person)

Note that entries may be selected by both DN and filter by including both qualifiers in the <what> clause.

60

http://www.rfc-editor.org/rfc/rfc4514.txt
http://www.rfc-editor.org/rfc/rfc4515.txt

OpenLDAP Software 2.4 Administrator's Guide

to dn.one="ou=people,o=suffix" filter=(objectClass=person)

Attributes within an entry are selected by including a comma-separated list of attribute names in the <what>
selector:

attrs=<attribute list>

A specific value of an attribute is selected by using a single attribute name and also using a value selector:

attrs=<attribute> val[.<style>]=<regex>

There are two special pseudo attributes ent ry and children. To read (and hence return) a target entry, the
subject must have read access to the target's entry attribute. To perform a search, the subject must have
search access to the search base's entry attribute. To add or delete an entry, the subject must have write
access to the entry's ent ry attribute AND must have write access to the entry's parent's children
attribute. To rename an entry, the subject must have write access to entry's ent ry attribute AND have
write access to both the old parent's and new parent's children attributes. The complete examples at the
end of this section should help clear things up.

Lastly, there is a special entry selector " * " that is used to select any entry. It is used when no other <what>
selector has been provided. It's equivalent to "dn=. *"

8.2.2. Who to grant access to

The <who> part identifies the entity or entities being granted access. Note that access is granted to "entities"
not "entries." The following table summarizes entity specifiers:

Table 6.3: Access Entity Specifiers

Specifier Entities

* All, including anonymous and authenticated users
anonymous Anonymous (non-authenticated) users

users Authenticated users

self User associated with target entry
dn[.<basic-style>]=<regex> |Users matching a regular expression
dn.<scope-style>=<DN> Users within scope of a DN

The DN specifier behaves much like <what> clause DN specifiers.

Other control factors are also supported. For example, a <who> can be restricted by an entry listed in a
DN-valued attribute in the entry to which the access applies:

dnattr=<dn-valued attribute name>

The dnattr specification is used to give access to an entry whose DN is listed in an attribute of the entry (e.g.,
give access to a group entry to whoever is listed as the owner of the group entry).

Some factors may not be appropriate in all environments (or any). For example, the domain factor relies on IP
to domain name lookups. As these can easily be spoofed, the domain factor should be avoided.

61

OpenLDAP Software 2.4 Administrator's Guide

8.2.3. The access to grant
The kind of <access> granted can be one of the following:

Table 6.4: Access Levels

Level PrivilegesDescription

none = 0|no access

disclose = d|needed for information disclosure on error
auth = dx|needed to authenticate (bind)

compare = cdx|needed to compare

search = scdx|needed to apply search filters

read = rscdx[needed to read search results

write = wr scdx|needed to modify/rename

manage = mwrscdx|needed to manage

Each level implies all lower levels of access. So, for example, granting someone write access to an entry
also grants them read, search, compare, auth and disclose access. However, one may use the
privileges specifier to grant specific permissions.

8.2.4. Access Control Evaluation

When evaluating whether some requester should be given access to an entry and/or attribute, slapd compares
the entry and/or attribute to the <what > selectors given in the configuration file. For each entry, access
controls provided in the database which holds the entry (or the global access directives if not held in any
database) apply first, followed by the global access directives. However, when dealing with an access list,
because the global access list is effectively appended to each per-database list, if the resulting list is
non-empty then the access list will end with an implicit access to * by * none directive. If there are
no access directives applicable to a backend, then a default read is used.

Within this priority, access directives are examined in the order in which they appear in the config file. Slapd
stops with the first <what > selector that matches the entry and/or attribute. The corresponding access
directive is the one slapd will use to evaluate access.

Next, slapd compares the entity requesting access to the <who> selectors within the access directive selected
above in the order in which they appear. It stops with the first <who> selector that matches the requester. This
determines the access the entity requesting access has to the entry and/or attribute.

Finally, slapd compares the access granted in the selected <access> clause to the access requested by the
client. If it allows greater or equal access, access is granted. Otherwise, access is denied.

The order of evaluation of access directives makes their placement in the configuration file important. If one
access directive is more specific than another in terms of the entries it selects, it should appear first in the
config file. Similarly, if one <who> selector is more specific than another it should come first in the access
directive. The access control examples given below should help make this clear.

62

OpenLDAP Software 2.4 Administrator's Guide

8.2.5. Access Control Examples

The access control facility described above is quite powerful. This section shows some examples of its use for
descriptive purposes.

A simple example:

access to * by * read

This access directive grants read access to everyone.

access to *
by self write
by anonymous auth
by * read

This directive allows the user to modify their entry, allows anonymous to authenticate against these entries,
and allows all others to read these entries. Note that only the first by <who> clause which matches applies.
Hence, the anonymous users are granted auth, not read. The last clause could just as well have been "by
users read".

It is often desirable to restrict operations based upon the level of protection in place. The following shows
how security strength factors (SSF) can be used.

access to *
by ssf=128 self write
by ssf=64 anonymous auth
by ssf=64 users read

This directive allows users to modify their own entries if security protections have of strength 128 or better
have been established, allows authentication access to anonymous users, and read access when 64 or better
security protections have been established. If client has not establish sufficient security protections, the
implicit by * none clause would be applied.

The following example shows the use of a style specifiers to select the entries by DN in two access directives
where ordering is significant.

access to dn.children="dc=example, dc=com"
by * search

access to dn.children="dc=com"
by * read

Read access is granted to entries under the dc=com subtree, except for those entries under the
dc=example, dc=com subtree, to which search access is granted. No access is granted to dc=com as
neither access directive matches this DN. If the order of these access directives was reversed, the trailing
directive would never be reached, since all entries under dc=example, dc=com are also under dc=com
entries.

Also note that if no access to directive matches or no by <who> clause, access is denied. That is, every
access to directive ends with an implicit by * none clause. When dealing with an access list, because
the global access list is effectively appended to each per-database list, if the resulting list is non-empty then
the access list will end with an implicit access to * by * none directive. If there are no access
directives applicable to a backend, then a default read is used.

63

OpenLDAP Software 2.4 Administrator's Guide

The next example again shows the importance of ordering, both of the access directives and the by <who>
clauses. It also shows the use of an attribute selector to grant access to a specific attribute and various <who>
selectors.

access to dn.subtree="dc=example,dc=com" attrs=homePhone
by self write
by dn.children="dc=example,dc=com" search
by peername.regex=IP=10\..+ read
access to dn.subtree="dc=example, dc=com"
by self write
by dn.children="dc=example, dc=com" search
by anonymous auth

This example applies to entries in the "dc=example, dc=com" subtree. To all attributes except
homePhone, an entry can write to itself, entries under example . com entries can search by them, anybody
else has no access (implicit by * none) excepting for authentication/authorization (which is always done
anonymously). The homePhone attribute is writable by the entry, searchable by entries under

example . com, readable by clients connecting from network 10, and otherwise not readable (implicit by *
none). All other access is denied by the implicit access to * by * none.

Sometimes it is useful to permit a particular DN to add or remove itself from an attribute. For example, if you
would like to create a group and allow people to add and remove only their own DN from the member
attribute, you could accomplish it with an access directive like this:

access to attrs=member,entry
by dnattr=member selfwrite

The dnattr <who> selector says that the access applies to entries listed in the member attribute. The
selfwrite access selector says that such members can only add or delete their own DN from the attribute,
not other values. The addition of the entry attribute is required because access to the entry is required to access
any of the entry's attributes.

8.3. Access Control via Dynamic Configuration

Access to slapd entries and attributes is controlled by the olcAccess attribute, whose values are a sequence of
access directives. The general form of the olcAccess configuration is:

olcAccess: <access directive>

<access directive> ::= to <what>
[by <who> [<access>] [<control>]]+
<what> ::= * |

[dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
[filter=<ldapfilter>] [attrs=<attrlist>]

<basic-style> ::= regex | exact

<scope-style> ::= base | one | subtree | children

<attrlist> ::= <attr> [val[.<basic-style>]=<regex>] | <attr> , <attrlist>
<attr> ::= <attrname> | entry | children

<who> ::= * | [anonymous | users | self

| dn[.<basic-style>]=<regex> | dn.<scope-style>=<DN>]
dnattr=<attrname>]
group[/<objectclass>[/<attrname>] [.<basic-style>]]=<regex>]
peername [.<basic-style>]=<regex>]
sockname [.<basic-style>]=<regex>]
domain|[.<basic-style>]=<regex>]
sockurl[.<basic-style>]=<regex>]

[
[
[
[
[
[

64

OpenLDAP Software 2.4 Administrator's Guide

[set=<setspec>]
[aci=<attrname>]

<access> ::= [self]{<level>|<priv>}

<level> ::= none | disclose | auth | compare | search | read | write | manage
<priv> ::= {=|+|-}{m|wlr|s|c|x|d|0}+

<control> ::= [stop | continue | break]

where the <what> part selects the entries and/or attributes to which the access applies, the <who> part
specifies which entities are granted access, and the <access> part specifies the access granted. Multiple
<who> <access> <control> triplets are supported, allowing many entities to be granted different
access to the same set of entries and attributes. Not all of these access control options are described here; for
more details see the slapd.access(5) man page.

8.3.1. What to control access to

The <what> part of an access specification determines the entries and attributes to which the access control
applies. Entries are commonly selected in two ways: by DN and by filter. The following qualifiers select
entries by DN:

to *
to dn[.<basic-style>]=<regex>
to dn.<scope-style>=<DN>

The first form is used to select all entries. The second form may be used to select entries by matching a
regular expression against the target entry's normalized DN. (The second form is not discussed further in this
document.) The third form is used to select entries which are within the requested scope of DN. The <DN> is
a string representation of the Distinguished Name, as described in RFC4514.

The scope can be either base, one, subtree, or children. Where base matches only the entry with
provided DN, one matches the entries whose parent is the provided DN, subt ree matches all entries in the
subtree whose root is the provided DN, and children matches all entries under the DN (but not the entry
named by the DN).

For example, if the directory contained entries named:

o=suffix

cn=Manager, o=suffix

ou=people, o=suffix

uid=kdz, ou=people, o=suffix
cn=addresses,uid=kdz, ou=people, o=suffix
uid=hyc, ou=people, o=suffix

g w N PO

Then:

dn.base="ou=people, o=suffix" match 2;
dn.one="ou=people, o=suffix" match 3, and 5;
dn.subtree="ou=people, o=suffix" match 2, 3, 4, and 5; and
dn.children="ou=people, o=suffix" match 3, 4, and 5.

Entries may also be selected using a filter:

to filter=<ldap filter>

65

http://www.rfc-editor.org/rfc/rfc4514.txt

OpenLDAP Software 2.4 Administrator's Guide

where <ldap filter> is a string representation of an LDAP search filter, as described in RFC4515. For
example:

to filter=(objectClass=person)
Note that entries may be selected by both DN and filter by including both qualifiers in the <what> clause.
to dn.one="ou=people,o=suffix" filter=(objectClass=person)

Attributes within an entry are selected by including a comma-separated list of attribute names in the <what>
selector:

attrs=<attribute list>
A specific value of an attribute is selected by using a single attribute name and also using a value selector:
attrs=<attribute> val[.<style>]=<regex>

There are two special pseudo attributes ent ry and children. To read (and hence return) a target entry, the
subject must have read access to the target's entry attribute. To perform a search, the subject must have
search access to the search base's entry attribute. To add or delete an entry, the subject must have write
access to the entry's ent ry attribute AND must have write access to the entry's parent's children
attribute. To rename an entry, the subject must have write access to entry's ent ry attribute AND have
write access to both the old parent's and new parent's children attributes. The complete examples at the
end of this section should help clear things up.

Lastly, there is a special entry selector " *" that is used to select any entry. It is used when no other <what >
selector has been provided. It's equivalent to "dn=. *"

8.3.2. Who to grant access to

The <who> part identifies the entity or entities being granted access. Note that access is granted to "entities"
not "entries." The following table summarizes entity specifiers:

Table 5.3: Access Entity Specifiers

Specifier Entities

* All, including anonymous and authenticated users
anonymous Anonymous (non-authenticated) users

users Authenticated users

self User associated with target entry
dn[.<basic-style>]=<regex> |Users matching a regular expression
dn.<scope-style>=<DN> Users within scope of a DN

The DN specifier behaves much like <what> clause DN specifiers.

Other control factors are also supported. For example, a <who> can be restricted by an entry listed in a
DN-valued attribute in the entry to which the access applies:

dnattr=<dn-valued attribute name>

66

http://www.rfc-editor.org/rfc/rfc4515.txt

OpenLDAP Software 2.4 Administrator's Guide

The dnattr specification is used to give access to an entry whose DN is listed in an attribute of the entry (e.g.,
give access to a group entry to whoever is listed as the owner of the group entry).

Some factors may not be appropriate in all environments (or any). For example, the domain factor relies on IP
to domain name lookups. As these can easily be spoofed, the domain factor should be avoided.

8.3.3. The access to grant
The kind of <access> granted can be one of the following:

Table 5.4: Access Levels

Level Privileges|Description

none =0|no access

disclose =d|needed for information disclosure on error
auth =dx[needed to authenticate (bind)

compare =cdx|needed to compare

search =scdx|needed to apply search filters

read =rscdx|needed to read search results

write =wrscdx|needed to modify/rename

manage =mwrscdx|needed to manage

Each level implies all lower levels of access. So, for example, granting someone write access to an entry
also grants them read, search, compare, auth and disclose access. However, one may use the
privileges specifier to grant specific permissions.

8.3.4. Access Control Evaluation

When evaluating whether some requester should be given access to an entry and/or attribute, slapd compares
the entry and/or attribute to the <what > selectors given in the configuration. For each entry, access controls
provided in the database which holds the entry (or the global access directives if not held in any database)
apply first, followed by the global access directives (which are held in the frontend database definition).
However, when dealing with an access list, because the global access list is effectively appended to each
per-database list, if the resulting list is non-empty then the access list will end with an implicit access to

* by * none directive. If there are no access directives applicable to a backend, then a default read is used.

Within this priority, access directives are examined in the order in which they appear in the configuration
attribute. Slapd stops with the first <what> selector that matches the entry and/or attribute. The
corresponding access directive is the one slapd will use to evaluate access.

Next, slapd compares the entity requesting access to the <who> selectors within the access directive selected
above in the order in which they appear. It stops with the first <who> selector that matches the requester. This

determines the access the entity requesting access has to the entry and/or attribute.

Finally, slapd compares the access granted in the selected <access> clause to the access requested by the
client. If it allows greater or equal access, access is granted. Otherwise, access is denied.

The order of evaluation of access directives makes their placement in the configuration file important. If one
access directive is more specific than another in terms of the entries it selects, it should appear first in the

67

OpenLDAP Software 2.4 Administrator's Guide

configuration. Similarly, if one <who> selector is more specific than another it should come first in the access
directive. The access control examples given below should help make this clear.

8.3.5. Access Control Examples

The access control facility described above is quite powerful. This section shows some examples of its use for
descriptive purposes.

A simple example:

olcAccess: to * by * read

This access directive grants read access to everyone.

olcAccess: to *
by self write
by anonymous auth
by * read

This directive allows the user to modify their entry, allows anonymous to authenticate against these entries,
and allows all others to read these entries. Note that only the first by <who> clause which matches applies.
Hence, the anonymous users are granted auth, not read. The last clause could just as well have been "by
users read".

It is often desirable to restrict operations based upon the level of protection in place. The following shows
how security strength factors (SSF) can be used.

olcAccess: to *
by ssf=128 self write
by ssf=64 anonymous auth
by ssf=64 users read

This directive allows users to modify their own entries if security protections of strength 128 or better have
been established, allows authentication access to anonymous users, and read access when strength 64 or better
security protections have been established. If the client has not establish sufficient security protections, the
implicit by * none clause would be applied.

The following example shows the use of style specifiers to select the entries by DN in two access directives
where ordering is significant.

olcAccess: to dn.children="dc=example, dc=com"
by * search

olcAccess: to dn.children="dc=com"
by * read

Read access is granted to entries under the dc=com subtree, except for those entries under the
dc=example, dc=com subtree, to which search access is granted. No access is granted to dc=com as
neither access directive matches this DN. If the order of these access directives was reversed, the trailing
directive would never be reached, since all entries under dc=example, dc=com are also under dc=com
entries.

Also note that if no o1cAccess: to directive matches or no by <who> clause, access is denied. When
dealing with an access list, because the global access list is effectively appended to each per-database list, if

68

OpenLDAP Software 2.4 Administrator's Guide

the resulting list is non-empty then the access list will end with an implicit access to * by * none
directive. If there are no access directives applicable to a backend, then a default read is used.

The next example again shows the importance of ordering, both of the access directives and the by <who>
clauses. It also shows the use of an attribute selector to grant access to a specific attribute and various <who>
selectors.

olcAccess: to dn.subtree="dc=example,dc=com" attrs=homePhone
by self write
by dn.children=dc=example, dc=com" search
by peername.regex=IP=10\..+ read
olcAccess: to dn.subtree="dc=example,dc=com"
by self write
by dn.children="dc=example, dc=com" search
by anonymous auth

This example applies to entries in the "dc=example, dc=com" subtree. To all attributes except
homePhone, an entry can write to itself, entries under example . com entries can search by them, anybody
else has no access (implicit by * none) excepting for authentication/authorization (which is always done
anonymously). The homePhone attribute is writable by the entry, searchable by entries under

example . com, readable by clients connecting from network 10, and otherwise not readable (implicit by *
none). All other access is denied by the implicit access to * by * none.

Sometimes it is useful to permit a particular DN to add or remove itself from an attribute. For example, if you
would like to create a group and allow people to add and remove only their own DN from the member
attribute, you could accomplish it with an access directive like this:

olcAccess: to attrs=member,entry
by dnattr=member selfwrite

The dnattr <who> selector says that the access applies to entries listed in the member attribute. The
selfwrite access selector says that such members can only add or delete their own DN from the attribute,
not other values. The addition of the entry attribute is required because access to the entry is required to access
any of the entry's attributes.

8.3.6. Access Control Ordering

Since the ordering of ol cAccess directives is essential to their proper evaluation, but LDAP attributes
normally do not preserve the ordering of their values, OpenLDAP uses a custom schema extension to
maintain a fixed ordering of these values. This ordering is maintained by prepending a " {X} " numeric index
to each value, similarly to the approach used for ordering the configuration entries. These index tags are
maintained automatically by slapd and do not need to be specified when originally defining the values. For
example, when you create the settings

olcAccess: to attrs=member,entry
by dnattr=member selfwrite

olcAccess: to dn.children="dc=example,dc=com"
by * search

olcAccess: to dn.children="dc=com"
by * read

when you read them back using slapcat or ldapsearch they will contain

69

OpenLDAP Software 2.4 Administrator's Guide

olcAccess: {0}to attrs=member,entry
by dnattr=member selfwrite

olcAccess: {l}to dn.children="dc=example,dc=com"
by * search

olcAccess: {2}to dn.children="dc=com"
by * read

The numeric index may be used to specify a particular value to change when using Idapmodify to edit the
access rules. This index can be used instead of (or in addition to) the actual access value. Using this numeric
index is very helpful when multiple access rules are being managed.

For example, if we needed to change the second rule above to grant write access instead of search, we could
try this LDIF:

changetype: modify
delete: olcAccess
olcAccess: to dn.children="dc=example,dc=com" by * search

add: olcAccess
olcAccess: to dn.children="dc=example,dc=com" by * write

But this example will not guarantee that the existing values remain in their original order, so it will most
likely yield a broken security configuration. Instead, the numeric index should be used:

changetype: modify
delete: olcAccess
olcAccess: {1}

add: olcAccess
olcAccess: {l}to dn.children="dc=example,dc=com" by * write

This example deletes whatever rule is in value #1 of the o1cAccess attribute (regardless of its value) and
adds a new value that is explicitly inserted as value #1. The result will be

olcAccess: {0O}to attrs=member,entry
by dnattr=member selfwrite
olcAccess: {l}to dn.children="dc=example,dc=com"

by * write
olcAccess: {2}to dn.children="dc=com"
by * read

which is exactly what was intended.

8.4. Access Control Common Examples

8.4.1. Basic ACLs

Generally one should start with some basic ACLs such as:

access to attrs=userPassword
by self =xw
by anonymous auth
by * none

70

OpenLDAP Software 2.4 Administrator's Guide

access to *
by self write
by users read
by * none

The first ACL allows users to update (but not read) their passwords, anonymous users to authenticate against
this attribute, and (implicitly) denying all access to others.

The second ACL allows users full access to their entry, authenticated users read access to anything, and
(implicitly) denying all access to others (in this case, anonymous users).

8.4.2. Matching Anonymous and Authenticated users

"

An anonymous user has a empty DN. While the dn.exact=
an anonymous shorthand which should be used instead.

or dn.regex=""$" could be used, slapd(8)) offers

access to *
by anonymous none
by * read

denies all access to anonymous users while granting others read.

Authenticated users have a subject DN. While dn.regex=".+" will match any authenticated user, OpenLDAP
provides the users short hand which should be used instead.

access to *
by users read
by * none

This ACL grants read permissions to authenticated users while denying others (i.e.: anonymous users).

8.4.3. Controlling rootdn access

You could specify the rootdn in slapd.conf(5) or slapd.d without specifying a rootpw. Then you have to add
an actual directory entry with the same dn, e.g.:

dn: cn=Manager, o=MyOrganization
cn: Manager

sn: Manager

objectClass: person

objectClass: top

userPassword: {SSHA}someSSHAdata

Then binding as the rootdn will require a regular bind to that DN, which in turn requires auth access to that
entry's DN and userPassword, and this can be restricted via ACLs. E.g.:

access to dn.base="cn=Manager,o=MyOrganization"
by peername.regex=127\.0\.0\.1 auth
by peername.regex=192\.168\.0\..* auth
by users none
by * none

71

OpenLDAP Software 2.4 Administrator's Guide
The ACLs above will only allow binding using rootdn from localhost and 192.168.0.0/24.

8.4.4. Managing access with Groups

There are a few ways to do this. One approach is illustrated here. Consider the following DIT layout:

+-dc=example, dc=com
+-—--cn=administrators, dc=example, dc=com
+-—--cn=fred blogs,dc=example, dc=com

and the following group object (in LDIF format):

dn: cn=administrators,dc=example, dc=com

cn: administrators of this region

objectclass: groupOfNames (important for the group acl feature)
member: cn=fred blogs,dc=example,dc=com

member: cn=somebody else,dc=example, dc=com

One can then grant access to the members of this this group by adding appropriate by group clause to an
access directive in slapd.conf(5). For instance,

access to dn.children="dc=example, dc=com"
by self write
by group.exact="cn=Administrators,dc=example,dc=com" write
by * auth

Like by dn clauses, one can also use expand to expand the group name based upon the regular expression
matching of the target, that is, the to dn.regex). For instance,

access to dn.regex="(.+,)?0ou=People, (dc=[",]+,dc=[",]1+)S"
attrs=children,entry,uid
by group.expand="cn=Managers, $2" write
by users read
by * auth

The above illustration assumed that the group members are to be found in the member attribute type of the
groupOfNames object class. If you need to use a different group object and/or a different attribute type then
use the following slapd.conf(5) (abbreviated) syntax:

access to <what>
by group/<objectclass>/<attributename>=<DN> <access>

For example:

access to *
by group/organizationalRole/roleOccupant="cn=Administrator,dc=example,dc=com" write

In this case, we have an ObjectClass organizationalRole which contains the administrator DN's in the
roleOccupant attribute. For instance:

dn: cn=Administrator, dc=example, dc=com

cn: Administrator

objectclass: organizationalRole
roleOccupant: cn=Jane Doe,dc=example, dc=com

72

OpenLDAP Software 2.4 Administrator's Guide

Note: the specified member attribute type MUST be of DN or NameAndOptionalUID syntax, and the
specified object class SHOULD allow the attribute type.

Dynamic Groups are also supported in Access Control. Please see slapo-dynlist(5) and the Dynamic Lists
overlay section.

8.4.5. Granting access to a subset of attributes

You can grant access to a set of attributes by specifying a list of attribute names in the ACL ?o clause. To be
useful, you also need to grant access to the entry itself. Also note how children controls the ability to add,
delete, and rename entries.

mail: self may write, authenticated users may read
access to attrs=mail

by self write

by users read

by * none

cn, sn: self my write, all may read
access to attrs=cn, sn

by self write

by * read

immediate children: only self can add/delete entries under this entry
access to attrs=children
by self write

entry itself: self may write, all may read
access to attrs=entry

by self write

by * read

other attributes: self may write, others have no access
access to *

by self write

by * none

ObjectClass names may also be specified in this list, which will affect all the attributes that are required
and/or allowed by that objectClass. Actually, names in attrlist that are prefixed by @ are directly treated as
objectClass names. A name prefixed by / is also treated as an objectClass, but in this case the access rule
affects the attributes that are not required nor allowed by that objectClass.

8.4.6. Allowing a user write to all entries below theirs

For a setup where a user can write to its own record and to all of its children:

access to dn.regex="(.+,)?(uid=[",]+, 0=Company) $"
by dn.exact,expand="$2" write
by anonymous auth

(Add more examples for above)

73

OpenLDAP Software 2.4 Administrator's Guide

8.4.7. Allowing entry creation

Let's say, you have it like this:

o=<basedn>
ou=domains
associatedDomain=<somedomain>
ou=users
uid=<someuserid>
uid=<someotheruserid>
ou=addressbooks
uid=<someuserid>
cn=<someone>
cn=<someoneelse>

and, for another domain <someotherdomain>:

o=<basedn>
ou=domains
associatedDomain=<someotherdomain>
ou=users
uid=<someuserid>
uid=<someotheruserid>
ou=addressbooks
uid=<someotheruserid>
cn=<someone>
cn=<someoneelse>

then, if you wanted user uid=<someuserid> to ONLY create an entry for its own thing, you could write an

ACL like this:
this rule lets users of "associatedDomain=<matcheddomain>"
write under "ou=addressbook,associatedDomain=<matcheddomain>, ou=domains, o=<basedn>",
i.e. a user can write ANY entry below its domain's address book;
this permission is necessary, but not sufficient, the next
will restrict this permission further
access to dn.regex=""ou=addressbook,associatedDomain=([",]+),ou=domains, o=<basedn>$" attrs=childr:
by dn.regex=""uid=([",]+),ou=users,associatedDomain=$1, ou=domains, o=<basedn>$$" write

74

+H =+

+H= H= H H

by * none

Note that above the "by" clause needs a "regex" style to make sure
it expands to a DN that starts with a "uid=<someuserid>" pattern
while substituting the associatedDomain submatch from the "what" clause.

This rule lets a user with "uid=<matcheduid>" of "<associatedDomain=matcheddomain>"
write (i.e. add, modify, delete) the entry whose DN is exactly

"uid=<matcheduid>, ou=addressbook, associatedDomain=<matcheddomain>, ou=domains, o=<basedn>"
and ANY entry as subtree of it

access to dn.regex=""(.+,)?2uid=([",]+),ou=addressbook,associatedDomain=([",]+),ou=domains, o=<base

by dn.exact,expand="uid=$2, ou=users,associatedDomain=$3, ou=domains, o=<basedn>" write
by * none

OpenLDAP Software 2.4 Administrator's Guide

Note that above the "by" clause uses the "exact" style with the "expand"
modifier because now the whole pattern can be rebuilt by means of the
submatches from the "what" clause, so a "regex" compilation and evaluation
is no longer required.

H = =

8.4.8. Tips for using regular expressions in Access Control

Always use dn.regex=<pattern> when you intend to use regular expression matching. dn=<pattern> alone
defaults to dn.exact<pattern>.

Use (.+) instead of (. *) when you want at least one char to be matched. (. *) matches the empty string as well.

Don't use regular expressions for matches that can be done otherwise in a safer and cheaper manner.
Examples:

dn.regex=".*dc=example, dc=com"
is unsafe and expensive:

¢ unsafe because any string containing dc=example,dc=com will match, not only those that end with
the desired pattern; use . *dc=example,dc=com$ instead.

¢ unsafe also because it would allow any attributeType ending with dc as naming attribute for the first
RDN in the string, e.g. a custom attributeType mydc would match as well. If you really need a regular
expression that allows just dc=example,dc=com or any of its subtrees, use
N.+,)?dc=example,dc=com$, which means: anything to the left of dc=..., if any (the question mark
after the pattern within brackets), must end with a comma;

¢ expensive because if you don't need submatches, you could use scoping styles, e.g.

dn.subtree="dc=example, dc=com"
to include dc=example,dc=com in the matching patterns,

dn.children="dc=example, dc=com"
to exclude dc=example,dc=com from the matching patterns, or

dn.onelevel="dc=example,dc=com"
to allow exactly one sublevel matches only.
Always use ” and $ in regexes, whenever appropriate, because ou=(.+),ou=(.+),ou=addressbooks,o=basedn
will match
something=bla,ou=xxx,ou=yyy,ou=addressbooks,o=basedn,ou=addressbooks,o=basedn,dc=some,dc=o0rg
Always use (/%]+) to indicate exactly one RDN, because (.+) can include any number of RDNs; e.g.

ou=(.+),dc=example,dc=com will match ou=My,0=0rg,dc=example,dc=com, which might not be what you
want.

Never add the rootdn to the by clauses. ACLs are not even processed for operations performed with rootdn
identity (otherwise there would be no reason to define a rootdn at all).

75

OpenLDAP Software 2.4 Administrator's Guide

Use shorthands. The user directive matches authenticated users and the anonymous directive matches
anonymous users.

Don't use the dn.regex form for <by> clauses if all you need is scoping and/or substring replacement; use
scoping styles (e.g. exact, onelevel, children or subtree) and the style modifier expand to cause substring
expansion.

For instance,

access to dn.regex=".+,dc=([",]1+),dc=([",]1+)S"
by dn.regex=""[",],ou=Admin, dc=$1,dc=$2S" write

although correct, can be safely and efficiently replaced by

access to dn.regex=".+, (dc=[",]+,dc=[",]1+)S"
by dn.onelevel, expand="ou=Admin, $1" write

where the regex in the <what> clause is more compact, and the one in the <by> clause is replaced by a much
more efficient scoping style of onelevel with substring expansion.

8.4.9. Granting and Denying access based on security strength factors (ssf)

You can restrict access based on the security strength factor (SSF)

access to dn="cn=example,cn=edu"
by * ssf=256 read

0 (zero) implies no protection, 1 implies integrity protection only, 56 DES or other weak ciphers, 112 triple
DES and other strong ciphers, 128 RC4, Blowfish and other modern strong ciphers.

Other possibilities:

transport_ssf=<n>
tls_ssf=<n>
sasl_ssf=<n>

256 is recommended.

See slapd.conf(5) for information on ssf.

8.4.10. When things aren't working as expected

Consider this example:

access to *
by anonymous auth

access to *
by self write

access to *
by users read

76

OpenLDAP Software 2.4 Administrator's Guide

You may think this will allow any user to login, to read everything and change his own data if he is logged in.
But in this example only the login works and an ldapsearch returns no data. The Problem is that SLAPD goes
through its access config line by line and stops as soon as it finds a match in the part of the access rule.(here:
to *)

To get what we wanted the file has to read:

access to *
by anonymous auth
by self write
by users read

The general rule is: "special access rules first, generic access rules last"

See also slapd.access(5), loglevel 128 and slapacl(8) for debugging information.

8.5. Sets - Granting rights based on relationships

Sets are best illustrated via examples. The following sections will present a few set ACL examples in order to
facilitate their understanding.

(Sets in Access Controls FAQ Entry: http://www.openldap.org/fag/data/cache/1133.html)

Note: Sets are considered experimental.

8.5.1. Groups of Groups

The OpenLDAP ACL for groups doesn't expand groups within groups, which are groups that have another
group as a member. For example:

dn: cn=sudoadm, ou=group, dc=example, dc=com

cn: sudoadm

objectClass: groupOfNames

member: uid=john, ou=people,dc=example, dc=com
member: cn=accountadm, ou=group,dc=example, dc=com

dn: cn=accountadm, ou=group, dc=example, dc=com
cn: accountadm

objectClass: groupOfNames

member: uid=mary,ou=people,dc=example, dc=com

If we use standard group ACLs with the above entries and allow members of the sudoadm group to write
somewhere, mary won't be included:

access to dn.subtree="ou=sudoers,dc=example, dc=com"
by group.exact="cn=sudoadm, ou=group, dc=example, dc=com" write
by * read

With sets we can make the ACL be recursive and consider group within groups. So for each member that is a
group, it is further expanded:

access to dn.subtree="ou=sudoers,dc=example,dc=com"
by set="[cn=sudoadm, ou=group, dc=example,dc=com] /member* & user" write

77

http://www.openldap.org/faq/data/cache/1133.html

OpenLDAP Software 2.4 Administrator's Guide

by * read

This set ACL means: take the cn=sudoadm DN, check its member attribute(s) (where the "*" means
recursively) and intersect the result with the authenticated user's DN. If the result is non-empty, the ACL is

considered a match and write access is granted.

The following drawing explains how this set is built:

DMN: en=sudoadm,ou=group,dc=example,dc=com
cn: sudaadm

objectClass: groupOfNames

member; uid=john,ou=people dc=example,dc=com
member: cn=accountadrn,ou=group,dc=example,dc=com .}

DM: cn=accountadm,ou=group,dc=example,dc=com

ch: accauntadm yes!
objectClass: groupOfNames

member: uld=mary,ou=people,dc=example,dc=com —]

maore
member?

mare
member?

maore
member?

OM: vid=john,ou=people,dc=example,dc=com
uid: john
objectClass: person

cn: john no member
givenMame: John here!
sn: 5mith

OM: vid=mary,ou=people,dc=example,dc=com
uid: mary
objectClass: person
on: mary
givenMame: Mary
sn: Smith

no member
here!

Figure X.Y: Populating a recursive group set

First we get the uid=john DN. This entry doesn't have a member attribute, so the expansion stops here.
Now we get to cn=accountadm. This one does have a member attribute, which is uid=mary. The
uid=mary entry, however, doesn't have member, so we stop here again. The end comparison is:

{"uid=john, ou=people, dc=example, dc=com", "uid=mary, ou=people,dc=example,dc=com"} & user

If the authenticated user's DN is any one of those two, write access is granted. So this set will include mary in
the sudoadm group and she will be allowed the write access.

8.5.2. Group ACLs without DN syntax

The traditional group ACLs, and even the previous example about recursive groups, require that the members

are specified as DNs instead of just usernames.

With sets, however, it's also possible to use simple names in group ACLs, as this example will show.

Let's say we want to allow members of the sudoadm group to write to the ou=suders branch of our tree.
But our group definition now is using memberUid for the group members:

dn: cn=sudoadm, ou=group, dc=example, dc=com

cn: sudoadm

objectClass: posixGroup
gidNumber: 1000
memberUid: john

With this type of group, we can't use group ACLs. But with a set ACL we can grant the desired access:

access to dn.subtree="ou=sudoers,dc=example,dc=com"
by set="[cn=sudoadm, ou=group, dc=example, dc=com] /memberUid & user/uid" write

by * read

78

OpenLDAP Software 2.4 Administrator's Guide

We use a simple intersection where we compare the uid attribute of the connecting (and authenticated) user
with the memberUid attributes of the group. If they match, the intersection is non-empty and the ACL will
grant write access.

This drawing illustrates this set when the connecting user is authenticated as
uid=john, ou=people, dc=example, dc=com:

DN: cn=sudoadm,ou=group,dc=example,dc=com DM: uid=john,ou=people,dc=example dc=com

cn: sudoadm r._'_#___,___.—-—h- uid: john

objectClass: posixGroup objectClass: person
gidNumber: 1000 / cn: john
memberlid: john givenMame: John

sn: Smith

lcn=sudoadm, ou=group,dc=example,dc=com]/memberlid & userfuid
Figure X.Y: Sets with memberUid

In this case, it's a match. If it were ma ry authenticating, however, she would be denied write access to
ou=sudoers because her uid attribute is not listed in the group's memberUid.

8.5.3. Following references

We will now show a quite powerful example of what can be done with sets. This example tends to make
OpenLDAP administrators smile after they have understood it and its implications.

Let's start with an user entry:

dn: uid=john, ou=people,dc=example, dc=com

uid: john

objectClass: inetOrgPerson

givenName: John

sn: Smith

cn: john

manager: uid=mary,ou=people,dc=example, dc=com

Writing an ACL to allow the manager to update some attributes is quite simple using sets:

access to dn.exact="uid=john, ou=people,dc=example, dc=com"
attrs=carLicense, homePhone, mobile, pager, telephoneNumber
by self write
by set="this/manager & user" write
by * read

In that set, this expands to the entry being accessed, so that this/manager expands to
uid=mary, ou=people, dc=example, dc=com when john's entry is accessed. If the manager herself is
accessing John's entry, the ACL will match and write access to those attributes will be granted.

So far, this same behavior can be obtained with the dnatt r keyword. With sets, however, we can further
enhance this ACL. Let's say we want to allow the secretary of the manager to also update these attributes. This
is how we do it:

access to dn.exact="uid=john, ou=people,dc=example, dc=com"
attrs=carLicense, homePhone, mobile, pager, telephoneNumber

79

OpenLDAP Software 2.4 Administrator's Guide

by self write

by set="this/manager & user" write

by set="this/manager/secretary & user" write
by * read

Now we need a picture to help explain what is happening here (entries shortened for clarity):

DN: uid=john,ou=people,dc=example,dc=com
uid: john
manager: uid=mary,ou=people,dc=example,dc=com

DN: uid=mary,ou=people,dc=example,dc=com
uid: mary
secretary: uid=jane,ou=people,dc=example,dc=com

DN: uid=jane,ou=people,dc=example,dc=com
uid: jane

Figure X.Y: Sets jumping through entries

In this example, Jane is the secretary of Mary, which is the manager of John. This whole relationship is
defined with the manager and secretary attributes, which are both of the distinguishedName syntax (i.e.,
full DNs). So, when the uid=john entry is being accessed, the this/manager/secretary set
becomes {"uid=jane, ou=people, dc=example, dc=com"} (follow the references in the picture):

this = [uid=john, ou=people,dc=example,dc=com]
this/manager = \
[uid=john, ou=people, dc=example, dc=com] /manager = uid=mary, ou=people, dc=example, dc=com

this/manager/secretary = \
[uid=mary, ou=people,dc=example, dc=com] /secretary = uid=jane, ou=people, dc=example, dc=com

The end result is that when Jane accesses John's entry, she will be granted write access to the specified
attributes. Better yet, this will happen to any entry she accesses which has Mary as the manager.

This is all cool and nice, but perhaps gives too much power to secretaries. Maybe we need to further restrict it.
For example, let's only allow executive secretaries to have this power:

access to dn.exact="uid=john, ou=people,dc=example, dc=com"

attrs=carLicense, homePhone, mobile, pager, telephoneNumber

by self write

by set="this/manager & user" write

by set="this/manager/secretary &
[cn=executive, ou=group, dc=example, dc=com] /member* &
user" write

by * read

It's almost the same ACL as before, but we now also require that the connecting user be a member of the
(possibly nested) cn=executive group.

80

9. Limits

9.1. Introduction

It is usually desirable to limit the server resources that can be consumed by each LDAP client. OpenLDAP
provides two sets of limits: a size limit, which can restrict the number of entries that a client can retrieve in a
single operation, and a time limit which restricts the length of time that an operation may continue. Both types
of limit can be given different values depending on who initiated the operation.

9.2. Soft and Hard limits

The server administrator can specify both soft limits and hard limits. Soft limits can be thought of as being the
default limit value. Hard limits cannot be exceeded by ordinary LDAP users.

LDAP clients can specify their own size and time limits when issuing search operations. This feature has been
present since the earliest version of X.500.

If the client specifies a limit then the lower of the requested value and the hard limit will become the limit for
the operation.

If the client does not specify a limit then the server applies the soft limit.

Soft and Hard limits are often referred to together as administrative limits. Thus, if an LDAP client requests a
search that would return more results than the limits allow it will get an adminLimitExceeded error. Note that
the server will usually return some results even if the limit has been exceeded: this feature is useful to clients

that just want to check for the existence of some entries without needing to see them all.

The rootdn is not subject to any limits.

9.3. Global Limits

Limits specified in the global part of the server configuration act as defaults which are used if no database has
more specific limits set.

In a slapd.conf(5) configuration the keywords are sizelimit and timelimit. When using the slapd
config backend, the corresponding attributes are o1cSizeLimit and olcTimeLimit. The syntax of these

values are the same in both cases.

The simple form sets both soft and hard limits to the same value:

sizelimit {<integer>|unlimited}
timelimit {<integer>|unlimited}

The default sizelimit is 500 entries and the default timelimit is 3600 seconds.

An extended form allows soft and hard limits to be set separately:

sizelimit size[.{soft|hard|unchecked}]=<integer> [...]
timelimit time[.{soft|hard}]=<integer> [...]

81

OpenLDAP Software 2.4 Administrator's Guide

Thus, to set a soft sizelimit of 10 entries and a hard limit of 75 entries:

sizelimit size.soft=10 size.hard=75
The unchecked keyword sets a limit on how many entries the server will examine once it has created an initial
set of candidate results by using indices. This can be very important in a large directory, as a search that

cannot be satisfied from an index might cause the server to examine millions of entries, therefore always make
sure the correct indexes are configured.

9.4. Per-Database Limits

Each database can have its own set of limits that override the global ones. The syntax is more flexible, and it
allows different limits to be applied to different entities. Note that an entity is different from an entry: the term
entity is used here to indicate the ID of the person or process that has initiated the LDAP operation.

In a slapd.conf(5) configuration the keyword is 1imits. When using the slapd config backend, the
corresponding attribute is o1 cLimits. The syntax of the values is the same in both cases.

limits <selector> <limit> [<limit> [...]]
The limits clause can be specified multiple times to apply different limits to different initiators. The server

examines each clause in turn until it finds one that matches the operation's initiator or base DN. If no match is
found, the global limits will be used.

9.4.1. Specify who the limits apply to
The <selector> part of the limits clause can take any of these values:

Table 9.1: Limits Entity Specifiers

Specifier Entities

* All, including anonymous and authenticated users
anonymous Anonymous (non-authenticated) users

users Authenticated users

dn[.<type>][.<style>]=<pattern>] |Entry or entries within a scope that match <pattern>

group[/oc[/at]]l=<pattern> Members of a group
Where

type can be one of self or this and

style can be one of exact, base, onelevel, subtree, children, regex, or anonymous
More information can be found in the slapd.conf(5) or slapd-config(5) manual pages.
9.4.2. Specify time limits

The syntax for time limits is

time[.{soft|hard}]=<integer>

82

OpenLDAP Software 2.4 Administrator's Guide

where integer is the number of seconds slapd will spend answering a search request.
If neither soft nor hard is specified, the value is used for both, e.g.:
limits anonymous time=27
The value unlimited may be used to remove the hard time limit entirely, e.g.:
limits dn.exact="cn=anyuser, dc=example,dc=org" time.hard=unlimited
9.4.3. Specifying size limits
The syntax for size limit is
size[.{soft |hard|unchecked}]=<integer>
where <integer> is the maximum number of entries slapd will return when answering a search request.

Soft, hard, and "unchecked" limits are available, with the same meanings described for the global limits
configuration above.

9.4.4. Size limits and Paged Results

If the LDAP client adds the pagedResultsControl to the search operation, the hard size limit is used by
default, because the request for a specific page size is considered an explicit request for a limitation on the
number of entries to be returned. However, the size limit applies to the total count of entries returned within
the search, and not to a single page.
Additional size limits may be enforced for paged searches.
The size.pr limit controls the maximum page size:

size.pr={<integer>|noEstimate|unlimited}
<integer> is the maximum page size if no explicit size is set. noEst imate has no effect in the current
implementation as the server does not return an estimate of the result size anyway. unlimited indicates that

no limit is applied to the maximum page size.

The size.prtotal limit controls the total number of entries that can be returned by a paged search. By
default the limit is the same as the normal size.hard limit.

size.prtotal={<integer>|unlimited|disabled}

unlimited removes the limit on the number of entries that can be returned by a paged search. disabled
can be used to selectively disable paged result searches.

9.5. Example Limit Configurations

83

OpenLDAP Software 2.4 Administrator's Guide
9.5.1. Simple Global Limits

This simple global configuration fragment applies size and time limits to all searches by all users except
rootdn. It limits searches to 50 results and sets an overall time limit of 10 seconds.

sizelimit 50
timelimit 10

9.5.2. Global Hard and Soft Limits

It is sometimes useful to limit the size of result sets but to allow clients to request a higher limit where needed.
This can be achieved by setting separate hard and soft limits.

sizelimit size.soft=5 size.hard=100
To prevent clients from doing very inefficient non-indexed searches, add the unchecked limit:

sizelimit size.soft=5 size.hard=100 size.unchecked=100

9.5.3. Giving specific users larger limits

Having set appropriate default limits in the global configuration, you may want to give certain users the
ability to retrieve larger result sets. Here is a way to do that in the per-database configuration:

limits dn.exact="cn=anyuser, dc=example,dc=org" size=100000
limits dn.exact="cn=personnel, dc=example, dc=org" size=100000
limits dn.exact="cn=dirsync,dc=example,dc=org" size=100000

It is generally best to avoid mentioning specific users in the server configuration. A better way is to give the
higher limits to a group:

limits group/groupOfNames/member="cn=bigwigs, dc=example, dc=org" size=100000

9.5.4. Limiting who can do paged searches

It may be required that certain applications need very large result sets that they retrieve using paged searches,
but that you do not want ordinary LDAP users to use the pagedResults control. The pr and prtotal limits can
help:

limits group/groupOfNames/member="cn=dirsync, dc=example,dc=org" size.prtotal=unlimited
limits users size.soft=5 size.hard=100 size.prtotal=disabled
limits anonymous size.soft=2 size.hard=5 size.prtotal=disabled

9.6. Further Information

For further information please see slapd.conf(5), ldapsearch(1) and slapd.access(5)

84

10. Database Creation and Maintenance Tools

This section tells you how to create a slapd database from scratch, and how to do trouble shooting if you run
into problems. There are two ways to create a database. First, you can create the database on-line using
LDAP. With this method, you simply start up slapd and add entries using the LDAP client of your choice.
This method is fine for relatively small databases (a few hundred or thousand entries, depending on your
requirements). This method works for database types which support updates.

The second method of database creation is to do it off-line using special utilities provided with slapd(8). This
method is best if you have many thousands of entries to create, which would take an unacceptably long time

using the LDAP method, or if you want to ensure the database is not accessed while it is being created. Note

that not all database types support these utilities.

10.1. Creating a database over LDAP

With this method, you use the LDAP client of your choice (e.g., the ldapadd(1)) to add entries, just like you
would once the database is created. You should be sure to set the following options in the configuration file
before starting slapd(8).

suffix <dn>

As described in the General Database Directives section, this option defines which entries are to be held by
this database. You should set this to the DN of the root of the subtree you are trying to create. For example:

suffix "dc=example, dc=com"

You should be sure to specify a directory where the index files should be created:
directory <directory>

For example:
directory /usr/local/var/openldap—-data

You need to create this directory with appropriate permissions such that slapd can write to it.

You need to configure slapd so that you can connect to it as a directory user with permission to add entries.
You can configure the directory to support a special super-user or root user just for this purpose. This is done
through the following two options in the database definition:

rootdn <dn>
rootpw <passwd>

For example:

rootdn "cn=Manager, dc=example,dc=com"
rootpw secret

These options specify a DN and password that can be used to authenticate as the super-user entry of the

database (i.e., the entry allowed to do anything). The DN and password specified here will always work,
regardless of whether the entry named actually exists or has the password given. This solves the

85

OpenLDAP Software 2.4 Administrator's Guide

chicken-and-egg problem of how to authenticate and add entries before any entries yet exist.

Finally, you should make sure that the database definition contains the index definitions you want:
index {<attrlist> | default} [pres,eq,approx,sub,none]

For example, to index the cn, sn, uid and objectclass attributes, the following index directives could
be used:

index cn, sn,uid pres,eq, approx, sub
index objectClass eqg

This would create presence, equality, approximate, and substring indices for the cn, sn, and uid attributes
and an equality index for the objectClass attribute. Note that not all index types are available with all
attribute types. See The slapd Configuration File section for more information on this option.

Once you have configured things to your liking, start up slapd, connect with your LDAP client, and start
adding entries. For example, to add an organization entry and an organizational role entry using the /dapadd
tool, you could create an LDIF file called entries.1dif with the contents:

Organization for Example Corporation
dn: dc=example,dc=com

objectClass: dcObject

objectClass: organization

dc: example

o: Example Corporation

description: The Example Corporation

Organizational Role for Directory Manager
dn: cn=Manager,dc=example,dc=com
objectClass: organizationalRole

cn: Manager

description: Directory Manager

and then use a command like this to actually create the entry:
ldapadd -f entries.ldif -x -D "cn=Manager,dc=example,dc=com" -w secret

The above command assumes settings provided in the above examples.

10.2. Creating a database off-line

The second method of database creation is to do it off-line, using the slapd database tools described below.
This method is best if you have many thousands of entries to create, which would take an unacceptably long
time to add using the LDAP method described above. These tools read the slapd configuration file and an
input file containing a text representation of the entries to add. For database types which support the tools,
they produce the database files directly (otherwise you must use the on-line method above). There are several
important configuration options you will want to be sure and set in the config file database definition first:

suffix <dn>

As described in the General Database Directives section, this option defines which entries are to be held by
this database. You should set this to the DN of the root of the subtree you are trying to create. For example:

86

OpenLDAP Software 2.4 Administrator's Guide

suffix "dc=example, dc=com"
You should be sure to specify a directory where the index files should be created:
directory <directory>
For example:
directory /usr/local/var/openldap-data
Finally, you need to specify which indices you want to build. This is done by one or more index options.
index {<attrlist> | default} [pres,eq,approx,sub,none]
For example:

index cn, sn,uid pres, eq, approx, sub
index objectClass eq

This would create presence, equality, approximate, and substring indices for the cn, sn, and uid attributes
and an equality index for the objectClass attribute. Note that not all index types are available with all
attribute types. See The slapd Configuration File section for more information on this option.

10.2.1. The slapadd program

Once you've configured things to your liking, you create the primary database and associated indices by
running the slapadd(8) program:

slapadd -1 <inputfile> -f <slapdconfigfile>
[-d <debuglevel>] [-n <integer>|-b <suffix>]

The arguments have the following meanings:
-1 <inputfile>

Specifies the LDIF input file containing the entries to add in text form (described below in the The LDIF text
entry format section).

—-f <slapdconfigfile>
Specifies the slapd configuration file that tells where to create the indices, what indices to create, etc.
-F <slapdconfdirectory>

Specifies a config directory. If both —f and —F are specified, the config file will be read and converted to
config directory format and written to the specified directory. If neither option is specified, an attempt to read
the default config directory will be made before trying to use the default config file. If a valid config directory
exists then the default config file is ignored. If dryrun mode is also specified, no conversion will occur.

-d <debuglevel>

Turn on debugging, as specified by <debuglevel>. The debug levels are the same as for slapd. See the
Command-Line Options section in Running slapd.

87

OpenLDAP Software 2.4 Administrator's Guide

-n <databasenumber>

An optional argument that specifies which database to modify. The first database listed in the configuration
file is 1, the second 2, etc. By default, the first database in the configuration file is used. Should not be used in
conjunction with —b.

-b <suffix>

An optional argument that specifies which database to modify. The provided suffix is matched against a
database suffix directive to determine the database number. Should not be used in conjunction with —n.

10.2.2. The slapindex program

Sometimes it may be necessary to regenerate indices (such as after modifying slapd.conf(5)). This is possible
using the slapindex(8) program. slapindex is invoked like this

slapindex —-f <slapdconfigfile>
[-d <debuglevel>] [-n <databasenumber>|-b <suffix>]

Where the - £, —d, —n and —b options are the same as for the slapadd(1) program. slapindex rebuilds all
indices based upon the current database contents.

10.2.3. The slapcat program

The slapcat program is used to dump the database to an LDIF file. This can be useful when you want to
make a human-readable backup of your database or when you want to edit your database off-line. The
program is invoked like this:

slapcat -1 <filename> —-f <slapdconfigfile>
[-d <debuglevel>] [-n <databasenumber>|-b <suffix>]

where —n or —b is used to select the database in the slapd.conf(5) specified using —£. The corresponding
LDIF output is written to standard output or to the file specified using the —1 option.

10.3. The LDIF text entry format

The LDAP Data Interchange Format (LDIF) is used to represent LDAP entries in a simple text format. This
section provides a brief description of the LDIF entry format which complements /dif(5) and the technical
specification RFC2849.

The basic form of an entry is:

comment

dn: <distinguished name>
<attrdesc>: <attrvalue>
<attrdesc>: <attrvalue>

Lines starting with a '#' character are comments. An attribute description may be a simple attribute type like
cnorobjectClassor1.2.3 (an OID associated with an attribute type) or may include options such as
cn; lang_en_USoruserCertificate;binary.

88

http://www.rfc-editor.org/rfc/rfc2849.txt

OpenLDAP Software 2.4 Administrator's Guide

A line may be continued by starting the next line with a single space or tab character. For example:

dn: cn=Barbara J Jensen,dc=example,dc=
com

cn: Barbara J
Jensen

is equivalent to:

dn: cn=Barbara J Jensen,dc=example,dc=com
cn: Barbara J Jensen

Multiple attribute values are specified on separate lines. e.g.,

cn: Barbara J Jensen
cn: Babs Jensen

If an <attrvalue> contains non-printing characters or begins with a space, a colon (':"), or a less than ('<"),
the <attrdesc> is followed by a double colon and the base64 encoding of the value. For example, the
value "begins with a space" would be encoded like this:

cn:: IGJ1Z21ucyB3aXRoIGEgc3BhY2U=

You can also specify a URL containing the attribute value. For example, the following specifies the
jpegPhoto value should be obtained from the file /path/to/file. jpegq.

cn:< file:///path/to/file. jpeg

Multiple entries within the same LDIF file are separated by blank lines. Here's an example of an LDIF file
containing three entries.

Barbara's Entry

dn: cn=Barbara J Jensen,dc=example,dc=com
cn: Barbara J Jensen

cn: Babs Jensen

objectClass: person

sn: Jensen

Bjorn's Entry

dn: cn=Bjorn J Jensen,dc=example,dc=com

cn: Bjorn J Jensen

cn: Bjorn Jensen

objectClass: person

sn: Jensen

Baseb64 encoded JPEG photo

jpegPhoto:: /9j/4AAQSkZJIRGABAAAAAQABAAD/2wBDABALD
A4MChAODQ4SERATGCgaGBYWGDE jJR000 jM9PDkzODJASFxOQ
ERXRTc4UG1RV19iz2hnPk1lxeXBkeFx1Z2P/2wBDARESEhgVG

Jennifer's Entry

dn: cn=Jennifer J Jensen,dc=example,dc=com
cn: Jennifer J Jensen

cn: Jennifer Jensen

objectClass: person

sn: Jensen

JPEG photo from file

jpegPhoto:< file:///path/to/file. jpeg

89

OpenLDAP Software 2.4 Administrator's Guide

Notice that the jpegPhoto in Bjorn's entry is base 64 encoded and the jpegPhot o in Jennifer's entry is
obtained from the location indicated by the URL.

Note: Trailing spaces are not trimmed from values in an LDIF file. Nor are multiple internal spaces
compressed. If you don't want them in your data, don't put them there.

90

11. Backends

Backends do the actual work of storing or retrieving data in response to LDAP requests. Backends may be
compiled statically into slapd, or when module support is enabled, they may be dynamically loaded.

If your installation uses dynamic modules, you may need to add the relevant moduleload directives to the
examples that follow. The name of the module for a backend is usually of the form:

back_<backend name>.la
So for example, if you need to load the hdb backend, you would configure

moduleload back_hdb.la

11.1. Berkeley DB Backends

11.1.1. Overview

The hdb backend to slapd(8) is a backend for a normal slapd database. It uses the Oracle Berkeley DB (BDB)
package to store data. It makes extensive use of indexing and caching (see the Tuning section) to speed data
access.

hdb is a variant of the original bdb backend which was first written for use with BDB. hdb uses a hierarchical
database layout which supports subtree renames. It is otherwise identical to the bdb behavior, and all the same
configuration options apply.

Note: An hdb database needs a large idlcachesize for good search performance, typically three times the
cachesize (entry cache size) or larger.

Note: The hdb backend has superseded the bdb backend, and both will soon be deprecated in favor of the new
mdb backend. See below.

11.1.2. back-bdb/back-hdb Configuration

MORE LATER
11.1.3. Further Information
slapd-bdb(5)

11.2. LDAP

11.2.1. Overview
The LDAP backend to slapd(8) is not an actual database; instead it acts as a proxy to forward incoming

requests to another LDAP server. While processing requests it will also chase referrals, so that referrals are
fully processed instead of being returned to the slapd client.

91

OpenLDAP Software 2.4 Administrator's Guide

Sessions that explicitly Bind to the back-ldap database always create their own private connection to the
remote LDAP server. Anonymous sessions will share a single anonymous connection to the remote server.
For sessions bound through other mechanisms, all sessions with the same DN will share the same connection.
This connection pooling strategy can enhance the proxy's efficiency by reducing the overhead of repeatedly
making/breaking multiple connections.

The ldap database can also act as an information service, i.e. the identity of locally authenticated clients is
asserted to the remote server, possibly in some modified form. For this purpose, the proxy binds to the remote
server with some administrative identity, and, if required, authorizes the asserted identity.

It is heavily used by a lot of other Backends and Overlays.

11.2.2. back-ldap Configuration

As previously mentioned, slapd-Idap(5) is used behind the scenes by many other Backends and Overlays.
Some of them merely provide a few configuration directive themselves, but have available to the
administrator the whole of the slapd-ldap(5) options.

For example, the Translucent Proxy, which retrieves entries from a remote LDAP server that can be partially
overridden by the defined database, has only four specific translucent- directives, but can be configured using
any of the normal slapd-ldap(5) options. See {[slapo-translucent(5)}} for details.

Other Overlays allow you to tag directives in front of a normal slapd-Ildap(5) directive. For example, the
slapo-chain(5) overlay does this:

"There are very few chain overlay specific directives;, however, directives related to the instances of the ldap
backend that may be implicitly instantiated by the overlay may assume a special meaning when used in
conjunction with this overlay. They are described in slapd-ldap(5), and they also need to be prefixed by
chain-."

You may have also seen the slapd-ldap(5) backend used and described in the Push Based Replication section
of the guide.

It should therefore be obvious that the slapd-Idap(5) backend is extremely flexible and heavily used
throughout the OpenLDAP Suite.

The following is a very simple example, but already the power of the slapd-ldap(5) backend is seen by use of
a uri list:

database ldap

suffix "dc=suretecsystems, dc=com"

rootdn "cn=slapd-ldap"

uri ldap://localhost/ ldap://remotehost ldap://remotehost2

The URI list is space or comma-separated. Whenever the server that responds is not the first one in the list, the
list is rearranged and the responsive server is moved to the head, so that it will be first contacted the next time
a connection needs be created.

This feature can be used to provide a form of load balancing when using MirrorMode replication.

92

OpenLDAP Software 2.4 Administrator's Guide

11.2.3. Further Information

slapd-ldap(5)
11.3. LDIF

11.3.1. Overview

The LDIF backend to slapd(8) is a basic storage backend that stores entries in text files in LDIF format, and
exploits the filesystem to create the tree structure of the database. It is intended as a cheap, low performance
easy to use backend.

When using the cn=config dynamic configuration database with persistent storage, the configuration data is
stored using this backend. See slapd-config(5) for more information

11.3.2. back-Idif Configuration

Like many other backends, the LDIF backend can be instantiated with very few configuration lines:

include ./schema/core.schema

database 1dif
directory ./1dif

suffix "dc=suretecsystems, dc=com"
rootdn "cn=LDIF,dc=suretecsystems, dc=com"
rootpw LDIF

If we add the dcObject for dc=suretecsystems,dc=com, you can see how this is added behind the scenes on
the file system:

dn: dc=suretecsystems, dc=com
objectClass: dcObject
objectClass: organization
dc: suretecsystems

o0: Suretec Systems Ltd

Now we add it to the directory:

ldapadd -x -H ldap://localhost:9011 —-f suretec.ldif -D "cn=LDIF,dc=suretecsystems, dc=com"
adding new entry "dc=suretecsystems, dc=com"

And inside . /1dif we have:

1s ./1dif
dc=suretecsystems,dc=com.1ldif

which again contains:

cat 1dif/dc\=suretecsystems\,dc\=com.1dif
dn: dc=suretecsystems

objectClass: dcObject
objectClass: organization

93

OpenLDAP Software 2.4 Administrator's Guide

dc: suretecsystems

o: Suretec Systems Ltd.

structuralObjectClass: organization

entryUUID: 2134b714-e3al-102c-9al5-f96ee263886d
creatorsName: cn=LDIF,dc=suretecsystems,dc=com
createTimestamp: 200807111426437%

entryCSN: 20080711142643.661124Z#000000#0004#000000
modifiersName: cn=LDIF,dc=suretecsystems, dc=com
modifyTimestamp: 20080711142643%

This is the complete format you would get when exporting your directory using slapcat etc.
11.3.3. Further Information

slapd-1dif(5)
11.4. LMDB

11.4.1. Overview

The mdb backend to slapd(8) is the recommended primary backend for a normal slapd database. It uses
OpenLDAP's own Lightning Memory-Mapped Database (LMDB) library to store data and is intended to
replace the Berkeley DB backends.

It supports indexing like the BDB backends, but it uses no caching and requires no tuning to deliver maximum
search performance. Like hdb, it is also fully hierarchical and supports subtree renames in constant time.

11.4.2. back-mdb Configuration

Unlike the BDB backends, the mdb backend can be instantiated with very few configuration lines:

include ./schema/core.schema

database mdb
directory ./mdb

suffix "dc=suretecsystems, dc=com"
rootdn "cn=mdb, dc=suretecsystems, dc=com"
rootpw mdb

maxsize 1073741824
In addition to the usual parameters that a minimal configuration requires, the mdb backend requires a
maximum size to be set. This should be the largest that the database is ever anticipated to grow (in bytes). The

filesystem must also provide enough free space to accommodate this size.

11.4.3. Further Information

slapd-mdb(5)

11.5. Metadirectory

94

OpenLDAP Software 2.4 Administrator's Guide

11.5.1. Overview

The meta backend to slapd(8) performs basic LDAP proxying with respect to a set of remote LDAP servers,
called "targets". The information contained in these servers can be presented as belonging to a single
Directory Information Tree (DIT).

A basic knowledge of the functionality of the slapd-Idap(5) backend is recommended. This backend has been
designed as an enhancement of the ldap backend. The two backends share many features (actually they also
share portions of code). While the Idap backend is intended to proxy operations directed to a single server, the

meta backend is mainly intended for proxying of multiple servers and possibly naming context masquerading.

These features, although useful in many scenarios, may result in excessive overhead for some applications, so
its use should be carefully considered.

11.5.2. back-meta Configuration

LATER

11.5.3. Further Information

slapd-meta(5)

11.6. Monitor

11.6.1. Overview

The monitor backend to slapd(8) is not an actual database; if enabled, it is automatically generated and
dynamically maintained by slapd with information about the running status of the daemon.

To inspect all monitor information, issue a subtree search with base cn=Monitor, requesting that attributes "+"
and "*" are returned. The monitor backend produces mostly operational attributes, and LDAP only returns
operational attributes that are explicitly requested. Requesting attribute "+" is an extension which requests all
operational attributes.

See the Monitoring section.

11.6.2. back-monitor Configuration

The monitor database can be instantiated only once, i.e. only one occurrence of "database monitor" can occur
in the slapd.conf(5) file. Also the suffix is automatically set to "cn=Monitor".

You can however set a rootdn and rootpw. The following is all that is needed to instantiate a monitor
backend:

include ./schema/core.schema
database monitor

rootdn "cn=monitoring,cn=Monitor"
rootpw monitoring

95

OpenLDAP Software 2.4 Administrator's Guide

You can also apply Access Control to this database like any other database, for example:

access to dn.subtree="cn=Monitor"
by dn.exact="uid=Admin,dc=my, dc=org" write
by users read
by * none

Note: The core. schema must be loaded for the monitor database to work.

A small example of the data returned via ldapsearch would be:

ldapsearch -x -H ldap://localhost:9011 -b 'cn=Monitor'
extended LDIF

#
#
LDAPvV3

base <cn=Monitor> with scope subtree
filter: (objectclass=%*)

requesting: ALL

#

Monitor

dn: cn=Monitor

objectClass: monitorServer

cn: Monitor

description: This subtree contains monitoring/managing objects.

description: This object contains information about this server.

description: Most of the information is held in operational attributes, which
must be explicitly requested.

Backends, Monitor

dn: cn=Backends,cn=Monitor

objectClass: monitorContainer

cn: Backends

description: This subsystem contains information about available backends.

Please see the Monitoring section for complete examples of information available via this backend.

11.6.3. Further Information

slapd-monitor(5)

11.7. Null

11.7.1. Overview
The Null backend to slapd(8) is surely the most useful part of slapd:
¢ Searches return success but no entries.
¢ Compares return compareFalse.
¢ Updates return success (unless readonly is on) but do nothing.
¢ Binds other than as the rootdn fail unless the database option "bind on" is given.

® The slapadd(8) and slapcat(8) tools are equally exciting.

Inspired by the /dev/null device.

96

OpenLDAP Software 2.4 Administrator's Guide

11.7.2. back-null Configuration

This has to be one of the shortest configurations you'll ever do. In order to test this, your slapd. conf file
would look like:

database null
suffix "cn=Nothing"
bind on

bind on means:

Yo

"Allow binds as any DN in this backend's suffix, with any password. The default is "o

To test this backend with Idapsearch:

ldapsearch -x -H ldap://localhost:9011 -D "uid=none,cn=Nothing" -w testing -b 'cn=Nothi
extended LDIF

#
#
LDAPv3

base <cn=Nothing> with scope subtree
filter: (objectclass=*)

requesting: ALL

#

search result
search: 2
result: 0 Success

numResponses: 1
11.7.3. Further Information

slapd-null(5)
11.8. Passwd

11.8.1. Overview

The PASSWD backend to slapd(8) serves up the user account information listed in the system passwd(5) file
(defaulting to /etc/passwd).

This backend is provided for demonstration purposes only. The DN of each entry is
"uid=<username>,<suffix>".

11.8.2. back-passwd Configuration

The configuration using slapd.conf a slightly longer, but not much. For example:

include ./schema/core.schema

database passwd
suffix "cn=passwd"

97

OpenLDAP Software 2.4 Administrator's Guide

Again, testing this with ldapsearch would result in something like:

ldapsearch -x -H ldap://localhost:9011 -b 'cn=passwd'
extended LDIF

#
#
LDAPvV3

base <cn=passwd> with scope subtree
filter: (objectclass=%*)

requesting: ALL

#

passwd

dn: cn=passwd

cn: passwd

objectClass: organizationalUnit

root, passwd

dn: uid=root, cn=passwd
objectClass: person
objectClass: uidObject
uid: root

cn: root

sn: root

description: root

11.8.3. Further Information

slapd-passwd(5)

11.9. Perl/Shell

11.9.1. Overview

The Perl backend to slapd(8) works by embedding a perl(1) interpreter into slapd(8). Any perl database
section of the configuration file slapd.conf(5) must then specify what Perl module to use. Slapd then creates a
new Perl object that handles all the requests for that particular instance of the backend.

The Shell backend to slapd(8) executes external programs to implement operations, and is designed to make it
easy to tie an existing database to the slapd front-end. This backend is primarily intended to be used in
prototypes.

11.9.2. back-perl/back-shell Configuration

LATER

11.9.3. Further Information

slapd-shell(5) and slapd-perl(5)

11.10. Relay

98

OpenLDAP Software 2.4 Administrator's Guide

11.10.1. Overview
The primary purpose of this slapd(8) backend is to map a naming context defined in a database running in the
same slapd(8) instance into a virtual naming context, with attributeType and objectClass manipulation, if

required. It requires the rwm overlay.

This backend and the above mentioned overlay are experimental.

11.10.2. back-relay Configuration

LATER

11.10.3. Further Information

slapd-relay(5)

11.11. SQL

11.11.1. Overview

The primary purpose of this slapd(8) backend is to PRESENT information stored in some RDBMS as an
LDAP subtree without any programming (some SQL and maybe stored procedures can't be considered
programming, anyway ;).

That is, for example, when you (some ISP) have account information you use in an RDBMS, and want to use
modern solutions that expect such information in LDAP (to authenticate users, make email lookups etc.). Or
you want to synchronize or distribute information between different sites/applications that use RDBMSes
and/or LDAP. Or whatever else...

It is NOT designed as a general-purpose backend that uses RDBMS instead of BerkeleyDB (as the standard
BDB backend does), though it can be used as such with several limitations. Please see LDAP vs RDBMS for
discussion.

The idea is to use some meta-information to translate LDAP queries to SQL queries, leaving relational
schema untouched, so that old applications can continue using it without any modifications. This allows SQL
and LDAP applications to interoperate without replication, and exchange data as needed.

The SQL backend is designed to be tunable to virtually any relational schema without having to change
source (through that meta-information mentioned). Also, it uses ODBC to connect to RDBMSes, and is highly
configurable for SQL dialects RDBMSes may use, so it may be used for integration and distribution of data

on different RDBMSes, OSes, hosts etc., in other words, in highly heterogeneous environments.

This backend is experimental.

11.11.2. back-sql Configuration

This backend has to be one of the most abused and complex backends there is. Therefore, we will go through
a simple, small example that comes with the OpenLDAP source and can be found in
servers/slapd/back-sql/rdbms_depend/README

99

OpenLDAP Software 2.4 Administrator's Guide

For this example we will be using PostgreSQL.

First, we add to /etc/odbc. ini a block of the form:

[example] <===
Description = Example for OpenlDAP's back-sqgl
Driver = PostgreSQL
Trace = No
Database = example <===
Servername = localhost
UserName = manager <===
Password = secret <===
Port = 5432
;Protocol = 6.4
ReadOnly = No
RowVersioning = No
ShowSystemTables = No
ShowOidColumn = No
FakeOidIndex = No
ConnSettings =
The relevant information for our test setup is highlighted with '<==="on the right above.

Next, we add to /etc/odbcinst.ini a block of the form:

[PostgreSQL]

Description = ODBC for PostgreSQL
Driver = /usr/lib/libodbcpsqgl.so
Setup = /usr/lib/libodbcpsglS.so
FileUsage =1

We will presume you know how to create a database and user in PostgreSQL and how to set a password. Also,
we'll presume you can populate the 'example' database you've just created with the following files, as found in
servers/slapd/back-sql/rdbms_depend/pgsgl

backsgl_create.sqgl, testdb_create.sqgl, testdb_data.sqgl, testdb_metadata.sqgl
Lastly, run the test:

[root@localhost]# cd $SOURCES/tests
[root@localhost]# SLAPD_USE_SQL=pgsql ./run sql-test000

Briefly, you should see something like (cut short for space):

Cleaning up test run directory leftover from previous run.

Running ./scripts/sqgl-test000-read...

running defines.sh

Starting slapd on TCP/IP port 9011...

Testing SQL backend read operations...

Waiting 5 seconds for slapd to start...

Testing correct bind... dn:cn=Mitya Kovalev,dc=example,dc=com

Testing incorrect bind (should fail)... ldap_bind: Invalid credentials (49)

Filtering original 1ldif...
Comparing filter output...

100

OpenLDAP Software 2.4 Administrator's Guide

>>>>> Test succeeded
The test is basically readonly; this can be performed by all RDBMSes (listed above).
There is another test, sql-test900-write, which is currently enabled only for PostgreSQL and IBM db2.

Using sgql-test000, files in servers/slapd/back-sql/rdbms_depend/pgsql/ and the man
page, you should be set.

Note: This backend is experimental.

11.11.3. Further Information

slapd-sql(5) and servers/slapd/back-sqgl/rdbms_depend/README

101

OpenLDAP Software 2.4 Administrator's Guide

102

12. Overlays

Overlays are software components that provide hooks to functions analogous to those provided by backends,
which can be stacked on top of the backend calls and as callbacks on top of backend responses to alter their
behavior.

Overlays may be compiled statically into slapd, or when module support is enabled, they may be dynamically
loaded. Most of the overlays are only allowed to be configured on individual databases.

Some can be stacked on the frontend as well, for global use. This means that they can be executed after a
request is parsed and validated, but right before the appropriate database is selected. The main purpose is to
affect operations regardless of the database they will be handled by, and, in some cases, to influence the
selection of the database by massaging the request DN.

Essentially, overlays represent a means to:
e customize the behavior of existing backends without changing the backend code and without
requiring one to write a new custom backend with complete functionality
¢ write functionality of general usefulness that can be applied to different backend types
When using slapd.conf(5), overlays that are configured before any other databases are considered global, as
mentioned above. In fact they are implicitly stacked on top of the frontend database. They can also be

explicitly configured as such:

database frontend
overlay <overlay name>

Overlays are usually documented by separate specific man pages in section 5; the naming convention is
slapo-<overlay name>

All distributed core overlays have a man page. Feel free to contribute to any, if you think there is anything

missing in describing the behavior of the component and the implications of all the related configuration

directives.

Official overlays are located in

servers/slapd/overlays/

That directory also contains the file slapover.txt, which describes the rationale of the overlay implementation,
and may serve as a guideline for the development of custom overlays.

Contribware overlays are located in
contrib/slapd-modules/<overlay name>/

along with other types of run-time loadable components; they are officially distributed, but not maintained by
the project.

All the current overlays in OpenLDAP are listed and described in detail in the following sections.

103

OpenLDAP Software 2.4 Administrator's Guide

12.1. Access Logging

12.1.1. Overview

This overlay can record accesses to a given backend database on another database.

This allows all of the activity on a given database to be reviewed using arbitrary LDAP queries, instead of just
logging to local flat text files. Configuration options are available for selecting a subset of operation types to
log, and to automatically prune older log records from the logging database. Log records are stored with audit

schema to assure their readability whether viewed as LDIF or in raw form.

It is also used for delta-syncrepl replication

Note: An accesslog database is unique to a given master. It should never be replicated.

12.1.2. Access Logging Configuration

The following is a basic example that implements Access Logging:

database mdb
suffix dc=example,dc=com
maxsize 85899345920

overlay accesslog

logdb cn=log

logops writes reads

logold (objectclass=person)

database mdb
suffix cn=log
maxsize 85899345920

index regStart eqg
access to *
by dn.base="cn=admin,dc=example,dc=com" read

The following is an example used for delta-syncrepl replication:

database mdb

suffix cn=accesslog

rootdn cn=accesslog

maxsize 85899345920

directory /usr/local/var/openldap-accesslog

index default eqg

index entryCSN, objectClass, reqkEnd, regResult, regStart, regqDN

Accesslog overlay definitions for the primary db

database mdb
suffix dc=example,dc=com
maxsize 85899345920

overlay accesslog

logdb cn=accesslog
logops writes

104

OpenLDAP Software 2.4 Administrator's Guide

logsuccess TRUE
scan the accesslog DB every day, and purge entries older than 7 days
logpurge 07+00:00 01+00:00

An example search result against cn=accesslog might look like:

ghenry@suretec ghenryl# ldapsearch -x -b cn=accesslog

[

extended LDIF

#

LDAPv3

base <cn=accesslog> with scope subtree
filter: (objectclass=*)

requesting: ALL

#

accesslog

dn: cn=accesslog
objectClass: auditContainer
cn: accesslog

20080110163829.000004Z, accesslog

dn: reqgStart=20080110163829.000004Z, cn=accesslog
objectClass: auditModify

regStart: 20080110163829.000004Z

regEnd: 20080110163829.000005%2

regType: modify

regSession: 196696

regAuthzID: cn=admin,dc=suretecsystems,dc=com

regDN: uid=suretec-46022£f8$,ou=Users,dc=suretecsystems, dc=com
regResult: O

regMod: sambaPwdCanChange:— ###CENSORED###

regMod: sambaPwdCanChange:+ ###CENSORED###

regMod: sambaNTPassword:— ###CENSORED###

regMod: sambaNTPassword:+ ###CENSORED###

regMod: sambaPwdLastSet:— ###CENSORED###

regMod: sambaPwdLastSet:+ ###CENSORED###

regMod: entryCSN:= 20080110163829.095157z2#000000#000#000000
regMod: modifiersName:= cn=admin,dc=suretecsystems, dc=com
regMod: modifyTimestamp:= 20080110163829Z

search result
search: 2
result: 0 Success

numResponses: 3
numEntries: 2

12.1.3. Further Information

slapo-accesslog(5) and the delta-syncrepl replication section.

12.2. Audit Logging

The Audit Logging overlay can be used to record all changes on a given backend database to a specified log
file.

105

OpenLDAP Software 2.4 Administrator's Guide

12.2.1. Overview

If the need arises whereby changes need to be logged as standard LDIF, then the auditlog overlay
slapo-auditlog (5) can be used. Full examples are available in the man page slapo-auditlog (5)

12.2.2. Audit Logging Configuration

If the directory is running vi slapd.d, then the following LDIF could be used to add the overlay to the
overlay list in cn=config and set what file the LDIF gets logged to (adjust to suit)

dn: olcOverlay=auditlog,olcDatabase={1}mdb, cn=config
changetype: add

objectClass: olcOverlayConfig

objectClass: olcAuditLogConfig

olcOverlay: auditlog

olcAuditlogFile: /tmp/auditlog.ldif

In this example for testing, we are logging changes to /tmp/auditlog.1ldif

A typical LDIF file created by slapo-auditlog(5) would look like:

add 1196797576 dc=suretecsystems,dc=com cn=admin,dc=suretecsystems, dc=com
dn: dc=suretecsystems, dc=com

changetype: add

objectClass: dcObject

objectClass: organization

dc: suretecsystems

o: Suretec Systems Ltd.

structuralObjectClass: organization

entryUUID: 1606£8£8-£f06e-1029-8289-f0cc9d81le8la
creatorsName: cn=admin,dc=suretecsystems, dc=com
modifiersName: cn=admin, dc=suretecsystems, dc=com
createTimestamp: 20051123130912%

modifyTimestamp: 200511231309127

entryCSN: 20051123130912.000000Z#000001#0004#000000
auditContext: cn=accesslog

end add 1196797576

add 1196797577 dc=suretecsystems,dc=com cn=admin,dc=suretecsystems, dc=com
dn: ou=Groups,dc=suretecsystems, dc=com

changetype: add

objectClass: top

objectClass: organizationalUnit

ou: Groups

structuralObjectClass: organizationalUnit
entryUUID: 160aaa2a-f06e-1029-828a-£f0cc9d8le8la
creatorsName: cn=admin,dc=suretecsystems, dc=com
modifiersName: cn=admin,dc=suretecsystems, dc=com
createTimestamp: 200511231309127

modifyTimestamp: 200511231309127

entryCSN: 20051123130912.000000z#000002#000#000000
end add 1196797577

106

OpenLDAP Software 2.4 Administrator's Guide

12.2.3. Further Information

slapo-auditlog(5)

12.3. Chaining

12.3.1. Overview

The chain overlay provides basic chaining capability to the underlying database.

What is chaining? It indicates the capability of a DSA to follow referrals on behalf of the client, so that
distributed systems are viewed as a single virtual DSA by clients that are otherwise unable to "chase" (i.e.

follow) referrals by themselves.

The chain overlay is built on top of the ldap backend; it is compiled by default when --enable-ldap.

12.3.2. Chaining Configuration

In order to demonstrate how this overlay works, we shall discuss a typical scenario which might be one master
server and three Syncrepl slaves.

On each replica, add this near the top of the slapd.conf(5) file (global), before any database definitions:

overlay chain
chain-uri "ldap://ldapmaster.example.com"
chain-idassert-bind bindmethod="simple"

binddn="cn=Manager, dc=example, dc=com"
credentials="<secret>"
mode="self"

chain-tls start

chain-return-error TRUE

Add this below your syncrepl statement:
updateref "ldap://ldapmaster.example.com/"

The chain-tls statement enables TLS from the slave to the ldap master. The DITs are exactly the same
between these machines, therefore whatever user bound to the slave will also exist on the master. If that DN
does not have update privileges on the master, nothing will happen.

You will need to restart the slave after these slapd.conf changes. Then, if you are using loglevel stats (256),
you can monitor an ldapmodify on the slave and the master. (If you're using cn=config no restart is required.)

Now start an Idapmodify on the slave and watch the logs. You should expect something like:

Sep 6 09:27:25 slavel slapd([29274]: conn=11 fd=31 ACCEPT from IP=143.199.102.216:45181
Sep 6 09:27:25 slavel slapd[29274]: conn=11 op=0 STARTTLS

Sep 6 09:27:25 slavel slapd[29274]: conn=11 op=0 RESULT oid= err=0 text=

Sep 6 09:27:25 slavel slapd[29274]: conn=11 fd=31 TLS established tls_ssf=256 ssf=256
Sep 6 09:27:28 slavel slapd[29274]: conn=11 op=1 BIND dn="uid=userl, ou=people, dc=examg
Sep 6 09:27:28 slavel slapd[29274]: conn=11 op=1 BIND dn="uid=userl,ou=People, dc=examg
Sep 6 09:27:28 slavel slapd[29274]: conn=11 op=1 RESULT tag=97 err=0 text=

Sep 6 09:27:28 slavel slapd[29274]: conn=11 op=2 MOD dn="uid=userl, ou=People, dc=exampl

107

OpenLDAP Software 2.4 Administrator's Guide

Sep 6 09:27:28 slavel slapd[29274]: conn=11 op=2 MOD attr=mail
Sep 6 09:27:28 slavel slapd[29274]: conn=11 op=2 RESULT tag=103 err=0 text=
Sep 6 09:27:28 slavel slapd[29274]: conn=11 op=3 UNBIND
Sep 6 09:27:28 slavel slapd[29274]: conn=11 fd=31 closed
Sep 6 09:27:28 slavel slapd[29274]: syncrepl_entry: LDAP_RES_SEARCH_ENTRY (LDAP_SYNC_MODIFY)
Sep 6 09:27:28 slavel slapd[29274]: syncrepl_entry: be_search (0)
Sep 6 09:27:28 slavel slapd[29274]: syncrepl_entry: uid=userl, ou=People, dc=example, dc=com
Sep 6 09:27:28 slavel slapd[29274]: syncrepl_entry: be_modify (0)

And on the master you will see this:
Sep 6 09:23:57 ldapmaster slapd[2961]: conn=55902 op=3 PROXYAUTHZ dn="uid=userl, ou=people, dc:
Sep 6 09:23:57 ldapmaster slapd[2961]: conn=55902 op=3 MOD dn="uid=userl, ou=People,dc=exampl
Sep 6 09:23:57 ldapmaster slapd[2961]: conn=55902 op=3 MOD attr=mail
Sep 6 09:23:57 ldapmaster slapd[2961]: conn=55902 op=3 RESULT tag=103 err=0 text=

Note: You can clearly see the PROXYAUTHZ line on the master, indicating the proper identity assertion for
the update on the master. Also note the slave immediately receiving the Syncrepl update from the master.

12.3.3. Handling Chaining Errors

By default, if chaining fails, the original referral is returned to the client under the assumption that the client
might want to try and follow the referral.

With the following directive however, if the chaining fails at the provider side, the actual error is returned to
the client.

chain-return-error TRUE

12.3.4. Read-Back of Chained Modifications

Occasionally, applications want to read back the data that they just wrote. If a modification requested to a
shadow server was silently chained to its provider, an immediate read could result in receiving data not yet
synchronized. In those cases, clients should use the dontusecopy control to ensure they are directed to the
authoritative source for that piece of data.

This control usually causes a referral to the actual source of the data to be returned. However, when the

slapo-chain(5) overlay is used, it intercepts the referral being returned in response to the dontusecopy control,
and tries to fetch the requested data.

12.3.5. Further Information
slapo-chain(5)
12.4. Constraints

12.4.1. Overview

This overlay enforces a regular expression constraint on all values of specified attributes during an LDAP
modify request that contains add or modify commands. It is used to enforce a more rigorous syntax when the
underlying attribute syntax is too general.

108

OpenLDAP Software 2.4 Administrator's Guide

12.4.2. Constraint Configuration

Configuration via slapd.conf(5) would look like:

overlay constraint

constraint_attribute mail regex " [[:alnum:]]+@mydomain.coms$
constraint_attribute title uri
ldap:///dc=catalog, dc=example, dc=com?title?sub? (ocbjectClass=titleCataloq)

A specification like the above would reject any mail attribute which did not look like <alpha-numeric
string>@mydomain.com.

It would also reject any title attribute whose values were not listed in the title attribute of any titleCatalog
entries in the given scope.

An example for use with cn=config:

dn: olcOverlay=constraint,olcDatabase={1}mdb, cn=config

changetype: add

objectClass: olcOverlayConfig

objectClass: olcConstraintConfig

olcOverlay: constraint

olcConstraintAttribute: mail regex "[[:alnum:]]+@mydomain.com$

olcConstraintAttribute: title uri ldap:///dc=catalog,dc=example,dc=com?title?sub? (object

12.4.3. Further Information

slapo-constraint(5)
12.5. Dynamic Directory Services

12.5.1. Overview

The dds overlay to slapd(8) implements dynamic objects as per RFC2589. The name dds stands for Dynamic
Directory Services. It allows to define dynamic objects, characterized by the dynamicObject objectClass.

Dynamic objects have a limited lifetime, determined by a time-to-live (TTL) that can be refreshed by means
of a specific refresh extended operation. This operation allows to set the Client Refresh Period (CRP), namely
the period between refreshes that is required to preserve the dynamic object from expiration. The expiration
time is computed by adding the requested TTL to the current time. When dynamic objects reach the end of
their lifetime without being further refreshed, they are automatically deleted. There is no guarantee of
immediate deletion, so clients should not count on it.

12.5.2. Dynamic Directory Service Configuration
A usage of dynamic objects might be to implement dynamic meetings; in this case, all the participants to the
meeting are allowed to refresh the meeting object, but only the creator can delete it (otherwise it will be

deleted when the TTL expires).

If we add the overlay to an example database, specifying a Max TTL of 1 day, a min of 10 seconds, with a
default TTL of 1 hour. We'll also specify an interval of 120 (less than 60s might be too small) seconds

109

http://www.rfc-editor.org/rfc/rfc2589.txt

OpenLDAP Software 2.4 Administrator's Guide

between expiration checks and a tolerance of 5 second (lifetime of a dynamic object will be entryTtl +
tolerance).

overlay dds

dds-max-ttl 1d
dds-min-ttl 10s
dds-default-ttl 1h
dds—-interval 120s

dds—-tolerance 5s

and add an index:

entryExpireTimestamp

Creating a meeting is as simple as adding the following:

dn: cn=0penlLDAP Documentation Meeting, ou=Meetings,dc=example, dc=com
objectClass: groupOfNames

objectClass: dynamicObject

cn: OpenlLDAP Documentation Meeting

member: uid=ghenry, ou=People,dc=example, dc=com

member: uid=hyc, ou=People, dc=example, dc=com

12.5.2.1. Dynamic Directory Service ACLs

Allow users to start a meeting and to join it; restrict refresh to the member; restrict delete to the creator:

access to attrs=userPassword
by self write
by * read

access to dn.base="ou=Meetings,dc=example,dc=com"
attrs=children
by users write

access to dn.onelevel="ou=Meetings, dc=example, dc=com"
attrs=entry
by dnattr=creatorsName write
by * read

access to dn.onelevel="ou=Meetings,dc=example,dc=com"
attrs=participant
by dnattr=creatorsName write
by users selfwrite
by * read

access to dn.onelevel="ou=Meetings,dc=example,dc=com"
attrs=entryTtl

by dnattr=member manage
by * read

In simple terms, the user who created the OpenLDAP Documentation Meeting can add new attendees, refresh
the meeting using (basically complete control):

ldapexop —-x —H ldap://ldaphost "refresh" "cn=OpenLDAP Documentation Meeting, ou=Meetings, dc=exal

110

OpenLDAP Software 2.4 Administrator's Guide

Any user can join the meeting, but not add another attendee, but they can refresh the meeting. The ACLs
above are quite straight forward to understand.

12.5.3. Further Information

slapo-dds(5)
12.6. Dynamic Groups

12.6.1. Overview

This overlay extends the Compare operation to detect members of a dynamic group. This overlay is now
deprecated as all of its functions are available using the Dynamic Lists overlay.

12.6.2. Dynamic Group Configuration

12.7. Dynamic Lists

12.7.1. Overview

This overlay allows expansion of dynamic groups and lists. Instead of having the group members or list
attributes hard coded, this overlay allows us to define an LDAP search whose results will make up the group
or list.

12.7.2. Dynamic List Configuration

This module can behave both as a dynamic list and dynamic group, depending on the configuration. The
syntax is as follows:

overlay dynlist
dynlist-attrset <group-oc> <URL-ad> [member-ad]

The parameters to the dynlist-attrset directive have the following meaning:

® <group-oc>: specifies which object class triggers the subsequent LDAP search. Whenever an entry
with this object class is retrieved, the search is performed.

® <URL-ad>: is the name of the attribute which holds the search URL. It has to be a subtype of
labeledURI. The attributes and values present in the search result are added to the entry unless
member—ad is used (see below).

* member—ad: if present, changes the overlay behavior into a dynamic group. Instead of inserting the
results of the search in the entry, the distinguished name of the results are added as values of this
attribute.

Here is an example which will allow us to have an email alias which automatically expands to all user's emails
according to our LDAP filter:

In slapd.conf(5):

overlay dynlist
dynlist-attrset nisMailAlias labeledURI

111

OpenLDAP Software 2.4 Administrator's Guide

This means that whenever an entry which has the nisMailAlias object class is retrieved, the search
specified in the 1abe1edURT attribute is performed.

Let's say we have this entry in our directory:

cn=all,ou=aliases,dc=example,dc=com

cn: all

objectClass: nisMailAlias

labeledURI: ldap:///ou=People,dc=example,dc=com?mail?one? (objectClass=inetOrgPerson)

If this entry is retrieved, the search specified in Labe1edURI will be performed and the results will be added
to the entry just as if they have always been there. In this case, the search filter selects all entries directly

under ou=People that have the inetOrgPerson object class and retrieves the mai 1l attribute, if it exists.

This is what gets added to the entry when we have two users under ou=People that match the filter:

DN: cn=all,ou=aliases,dc=example,dc=com

cn: all

objectClass: nisMailAlias

labeledURI: |dap:///jou=People,dc=example, dc=com?mail ¥
search one?{ohjectClass=inetOrgPerson)

results mail: john@example.com

mail: mary@example.com ;

Figure X.Y: Dynamic List for all emails

The configuration for a dynamic group is similar. Let's see an example which would automatically populate
an allusers group with all the user accounts in the directory.

In slapd.conf(5):

include /path/to/dyngroup.schema

overlay dynlist
dynlist-attrset groupOfURLs labeledURI member

2. Note: We must include the dyngroup . schema file that defines the
3. groupOfURLs objectClass used in this example.

Let's apply it to the following entry:

cn=allusers, ou=group, dc=example, dc=com

cn: all

objectClass: groupOfURLs

labeledURI: ldap:///ou=people,dc=example, dc=com??one? (objectClass=inetOrgPerson)

The behavior is similar to the dynamic list configuration we had before: whenever an entry with the
groupOfURLs object class is retrieved, the search specified in the 1abeledURT attribute is performed. But

this time, only the distinguished names of the results are added, and as values of the member attribute.

This is what we get:

112

OpenLDAP Software 2.4 Administrator's Guide

DN: cn=allusers,ou=group,dc=example,dc=com

cn: all

objectClass: groupOfURLs

DNs of IaheledUBl: Idap:fﬂqu=People.dc=Example.dc=cnm??
one?{objectClass=inetOrgPerson)

SE‘EI’CHC member: uid=john,ou=people,dc=example,dc=com

results member: uid=mary,ou=people,dc=example,dc=com

Figure X.Y: Dynamic Group for all users

Note that a side effect of this scheme of dynamic groups is that the members need to be specified as full DNs.
So, if you are planning in using this for posixGroups, be sure to use RFC2307bis and some attribute which
can hold distinguished names. The memberUid attribute used in the posixGroup object class can hold
only names, not DNs, and is therefore not suitable for dynamic groups.

12.7.3. Further Information

slapo-dynlist(5)
12.8. Reverse Group Membership Maintenance

12.8.1. Overview

In some scenarios, it may be desirable for a client to be able to determine which groups an entry is a member
of, without performing an additional search. Examples of this are applications using the DIT for access control
based on group authorization.

The memberof overlay updates an attribute (by default memberOf) whenever changes occur to the
membership attribute (by default member) of entries of the objectclass (by default groupOfNames)
configured to trigger updates.

Thus, it provides maintenance of the list of groups an entry is a member of, when usual maintenance of groups
is done by modifying the members on the group entry.

12.8.2. Member Of Configuration

The typical use of this overlay requires just enabling the overlay for a specific database. For example, with the
following minimal slapd.conf:

include /usr/share/openldap/schema/core.schema
include /usr/share/openldap/schema/cosine.schema

authz-regexp "gidNumber=0\\\+uidNumber=0, cn=peercred, cn=external,cn=auth"
"cn=Manager, dc=example, dc=com"

database mdb

suffix "dc=example, dc=com"

rootdn "cn=Manager, dc=example, dc=com"
rootpw secret

maxsize 85899345920

directory /var/lib/ldap2.4

checkpoint 256 5
index objectClass eq

113

OpenLDAP Software 2.4 Administrator's Guide

index uid eq, sub

overlay memberof
adding the following 1dif:

cat memberof.ldif

dn: dc=example,dc=com
objectclass: domain
dc: example

dn: ou=Group,dc=example,dc=com
objectclass: organizationalUnit
ou: Group

dn: ou=People,dc=example, dc=com
objectclass: organizationalUnit
ou: People

dn: uid=testl, ou=People,dc=example, dc=com
objectclass: account
uid: testl

dn: cn=testgroup, ou=Group,dc=example, dc=com
objectclass: groupOfNames

cn: testgroup

member: uid=testl,ou=People,dc=example, dc=com

Results in the following output from a search on the testl user:

ldapsearch -LL -Y EXTERNAL -H ldapi:/// " (uid=testl)" -b dc=example,dc=com memberOf
SASL/EXTERNAL authentication started

SASL username: gidNumber=0+uidNumber=0, cn=peercred, cn=external, cn=auth

SASL SSF: 0

version: 1

dn: uid=testl, ou=People, dc=example, dc=com
memberOf: cn=testgroup, ou=Group, dc=example,dc=com

Note that the memberOf attribute is an operational attribute, so it must be requested explicitly.
12.8.3. Further Information

slapo-memberof(5)

12.9. The Proxy Cache Engine

LDAP servers typically hold one or more subtrees of a DIT. Replica (or shadow) servers hold shadow copies
of entries held by one or more master servers. Changes are propagated from the master server to replica
(slave) servers using LDAP Sync replication. An LDAP cache is a special type of replica which holds entries
corresponding to search filters instead of subtrees.

114

OpenLDAP Software 2.4 Administrator's Guide

12.9.1. Overview

The proxy cache extension of slapd is designed to improve the responsiveness of the ldap and meta backends.
It handles a search request (query) by first determining whether it is contained in any cached search filter.
Contained requests are answered from the proxy cache's local database. Other requests are passed on to the
underlying ldap or meta backend and processed as usual.

E.g. (shoesize>=9) iscontained in (shoesize>=8) and (sn=Richardson) is contained in
(sn=Richards*)

Correct matching rules and syntaxes are used while comparing assertions for query containment. To simplify
the query containment problem, a list of cacheable "templates" (defined below) is specified at configuration
time. A query is cached or answered only if it belongs to one of these templates. The entries corresponding to
cached queries are stored in the proxy cache local database while its associated meta information (filter,
scope, base, attributes) is stored in main memory.

A template is a prototype for generating LDAP search requests. Templates are described by a prototype search
filter and a list of attributes which are required in queries generated from the template. The representation for
prototype filter is similar to RFC4515, except that the assertion values are missing. Examples of prototype
filters are: (sn=),(&(sn=)(givenname=)) which are instantiated by search filters (sn=Doe) and
(&(sn=Doe)(givenname=John)) respectively.

The cache replacement policy removes the least recently used (LRU) query and entries belonging to only that
query. Queries are allowed a maximum time to live (TTL) in the cache thus providing weak consistency. A
background task periodically checks the cache for expired queries and removes them.

The Proxy Cache paper (http://www.openldap.org/pub/kapurva/proxycaching.pdf) provides design and
implementation details.

12.9.2. Proxy Cache Configuration

The cache configuration specific directives described below must appear after a overlay pcache
directive within a "database meta" or "database ldap" section of the server's slapd.conf(5) file.

12.9.2.1. Setting cache parameters
pcache <DB> <maxentries> <nattrsets> <entrylimit> <period>

This directive enables proxy caching and sets general cache parameters. The <DB> parameter specifies which
underlying database is to be used to hold cached entries. It should be set to mdb, hdb, or bdb. The
<maxentries> parameter specifies the total number of entries which may be held in the cache. The <nattrsets>
parameter specifies the total number of attribute sets (as specified by the pcacheAttrset directive) that
may be defined. The <entrylimit> parameter specifies the maximum number of entries in a cacheable query.
The <period> specifies the consistency check period (in seconds). In each period, queries with expired TTLs
are removed.

12.9.2.2. Defining attribute sets

pcacheAttrset <index> <attrs...>

115

http://www.rfc-editor.org/rfc/rfc4515.txt
http://www.openldap.org/pub/kapurva/proxycaching.pdf

OpenLDAP Software 2.4 Administrator's Guide

Used to associate a set of attributes to an index. Each attribute set is associated with an index number from 0
to <numattrsets>-1. These indices are used by the pcacheTemplate directive to define cacheable templates.

12.9.2.3. Specifying cacheable templates
pcacheTemplate <prototype_string> <attrset_index> <TTL>

Specifies a cacheable template and the "time to live" (in sec) <TTL> for queries belonging to the template. A
template is described by its prototype filter string and set of required attributes identified by <attrset_index>.

12.9.2.4. Example for slapd.conf

An example slapd.conf(5) database section for a caching server which proxies for the
"dc=example, dc=com" subtree held at server 1dap.example.comn.

database ldap

suffix "dc=example, dc=com"
rootdn "dc=example, dc=com"

uri ldap://ldap.example.com/
overlay pcache

pcache mdb 100000 1 1000 100

pcacheAttrset 0 mail postaladdress telephonenumber
pcacheTemplate (sn=) 0 3600

pcacheTemplate (& (sn=) (givenName=)) 0 3600

pcacheTemplate (& (departmentNumber=) (secretary=*)) 0 3600

cachesize 20

directory ./testrun/db.2.a

index objectClass eqg

index cn, sn,uid, mail pres,eq, sub

12.9.2.5. Example for slapd-config

The same example as a LDIF file for back-config for a caching server which proxies for the
"dc=example, dc=com" subtree held at server 1dap.example.com.

dn: olcDatabase={2}1ldap,cn=config
objectClass: olcDatabaseConfig
objectClass: olcLDAPConfig
olcDatabase: {2}1ldap

olcSuffix: dc=example,dc=com
0lcRootDN: dc=example, dc=com
0lcDbURI: "ldap://ldap.example.com"

dn: olcOverlay={0}pcache,olcDatabase={2}1ldap,cn=config
objectClass: olcOverlayConfig

objectClass: olcPcacheConfig

olcOverlay: {O}pcache

olcPcache: mdb 100000 1 1000 100

olcPcacheAttrset: 0 mail postalAddress telephoneNumber

olcPcacheTemplate: " (sn=)" 0 3600 0 0 O
olcPcacheTemplate: " (& (sn=) (givenName=))" 0 3600 0 0 O
olcPcacheTemplate: " (& (departmentNumber=) (secretary=))" 0 3600

dn: olcDatabase={0}mdb,o0lcOverlay={0}pcache,olcDatabase={2}1dap,cn=config
objectClass: olcMdbConfig
objectClass: olcPcacheDatabase

116

OpenLDAP Software 2.4 Administrator's Guide

olcDatabase: {0}mdb

olcDbDirectory: ./testrun/db.2.a
olcDbCacheSize: 20

olcDbIndex: objectClass eq

olcDbIndex: cn,sn,uid,mail pres,eq, sub

12.9.2.5.1. Cacheable Queries

A LDAP search query is cacheable when its filter matches one of the templates as defined in the
"pcacheTemplate” statements and when it references only the attributes specified in the corresponding
attribute set. In the example above the attribute set number O defines that only the attributes: mail
postaladdress telephonenumber are cached for the following pcacheTemplates.

12.9.2.5.2. Examples:

Filter: (& (sn=Richard*) (givenName=jack))
Attrs: mail telephoneNumber

is cacheable, because it matches the template (& (sn=) (givenName=)) and its attributes are contained in
pcacheAttrset 0.

Filter: (& (sn=Richard*) (telephoneNumber))
Attrs: givenName

is not cacheable, because the filter does not match the template, nor is the attribute givenName stored in the
cache

Filter: (] (sn=Richard*) (givenName=jack))

Attrs: mail telephoneNumber
is not cacheable, because the filter does not match the template (logical OR "|"
AND "&")

condition instead of logical

12.9.3. Further Information

slapo-pcache(5)
12.10. Password Policies

12.10.1. Overview

This overlay follows the specifications contained in the draft RFC titled
draft-behera-ldap-password-policy-09. While the draft itself is expired, it has been implemented in several
directory servers, including slapd. Nonetheless, it is important to note that it is a draft, meaning that it is
subject to change and is a work-in-progress.

The key abilities of the password policy overlay are as follows:
¢ Enforce a minimum length for new passwords
® Make sure passwords are not changed too frequently

¢ Cause passwords to expire, provide warnings before they need to be changed, and allow a fixed
number of 'grace' logins to allow them to be changed after they have expired

117

OpenLDAP Software 2.4 Administrator's Guide

® Maintain a history of passwords to prevent password re-use

® Prevent password guessing by locking a password for a specified period of time after repeated
authentication failures

® Force a password to be changed at the next authentication

e Set an administrative lock on an account

¢ Support multiple password policies on a default or a per-object basis.

® Perform arbitrary quality checks using an external loadable module. This is a non-standard extension
of the draft RFC.

12.10.2. Password Policy Configuration

Instantiate the module in the database where it will be used, after adding the new ppolicy schema and loading
the ppolicy module. The following example shows the ppolicy module being added to the database that
handles the naming context "dc=example,dc=com". In this example we are also specifying the DN of a policy
object to use if none other is specified in a user's object.

database mdb
suffix "dc=example,dc=com"
[...additional database configuration directives go here...]

overlay ppolicy
ppolicy_default "cn=default, ou=policies,dc=example, dc=com"

Now we need a container for the policy objects. In our example the password policy objects are going to be
placed in a section of the tree called "ou=policies,dc=example,dc=com":

dn: ou=policies,dc=example,dc=com
objectClass: organizationalUnit
objectClass: top

ou: policies

The default policy object that we are creating defines the following policies:

118

¢ The user is allowed to change his own password. Note that the directory ACLs for this attribute can
also affect this ability (pwdAllowUserChange: TRUE).

¢ The name of the password attribute is "userPassword" (pwdAttribute: userPassword). Note that this is
the only value that is accepted by OpenLDAP for this attribute.

¢ The server will check the syntax of the password. If the server is unable to check the syntax (i.e., it
was hashed or otherwise encoded by the client) it will return an error refusing the password
(pwdCheckQuality: 2).

¢ When a client includes the Password Policy Request control with a bind request, the server will
respond with a password expiration warning if it is going to expire in ten minutes or less
(pwdExpireWarning: 600). The warnings themselves are returned in a Password Policy Response
control.

¢ When the password for a DN has expired, the server will allow five additional "grace" logins
(pwdGraceAuthNLimit: 5).

¢ The server will maintain a history of the last five passwords that were used for a DN (pwdInHistory:
5).

¢ The server will lock the account after the maximum number of failed bind attempts has been exceeded
(pwdLockout: TRUE).

* When the server has locked an account, the server will keep it locked until an administrator unlocks it
(pwdLockoutDuration: 0)

OpenLDAP Software 2.4 Administrator's Guide

® The server will reset its failed bind count after a period of 30 seconds.

® Passwords will not expire (pwdMaxAge: 0).

® Passwords can be changed as often as desired (pwdMinAge: 0).

® Passwords must be at least 5 characters in length (pwdMinLength: 5).

® The password does not need to be changed at the first bind or when the administrator has reset the
password (pwdMustChange: FALSE)

® The current password does not need to be included with password change requests (pwdSafeModify:
FALSE)

® The server will only allow five failed binds in a row for a particular DN (pwdMaxFailure: 5).

The actual policy would be:

dn: cn=default, ou=policies,dc=example,dc=com
cn: default

objectClass: pwdPolicy
objectClass: person
objectClass: top
pwdAllowUserChange: TRUE
pwdAttribute: userPassword
pwdCheckQuality: 2
pwdExpireWarning: 600
pwdFailureCountInterval: 30
pwdGraceAuthNLimit: 5
pwdInHistory: 5
pwdLockout: TRUE
pwdLockoutDuration: 0
pwdMaxAge: 0
pwdMaxFailure: 5
pwdMinAge: 0

pwdMinLength: 5
pwdMustChange: FALSE
pwdSafeModify: FALSE

sn: dummy value

You can create additional policy objects as needed.
There are two ways password policy can be applied to individual objects:

1. The pwdPolicySubentry in a user's object - If a user's object has a pwdPolicySubEntry attribute specifying
the DN of a policy object, then the policy defined by that object is applied.

2. Default password policy - If there is no specific pwdPolicySubentry set for an object, and the password
policy module was configured with the DN of a default policy object and if that object exists, then the policy
defined in that object is applied.

Please see slapo-ppolicy(5) for complete explanations of features and discussion of "Password Management
Issues" at http://www.symas.com/blog/?page_id=66

12.10.3. Further Information

slapo-ppolicy(5)

119

http://www.symas.com/blog/?page_id=66

OpenLDAP Software 2.4 Administrator's Guide

12.11. Referential Integrity

12.11.1. Overview

This overlay can be used with a backend database such as slapd-mdb(5) to maintain the cohesiveness of a
schema which utilizes reference attributes.

Whenever a modrdn or delete is performed, that is, when an entry's DN is renamed or an entry is removed, the
server will search the directory for references to this DN (in selected attributes: see below) and update them
accordingly. If it was a delete operation, the reference is deleted. If it was a modrdn operation, then the
reference is updated with the new DN.

For example, a very common administration task is to maintain group membership lists, specially when users
are removed from the directory. When an user account is deleted or renamed, all groups this user is a member
of have to be updated. LDAP administrators usually have scripts for that. But we can use the refint overlay
to automate this task. In this example, if the user is removed from the directory, the overlay will take care to
remove the user from all the groups he/she was a member of. No more scripting for this.

12.11.2. Referential Integrity Configuration

The configuration for this overlay is as follows:

overlay refint
refint_attributes <attribute [attribute ...]>
refint_nothing <string>

e refint_attributes: this parameter specifies a space separated list of attributes which will have
the referential integrity maintained. When an entry is removed or has its DN renamed, the server will
do an internal search for any of the refint_attributes that point to the affected DN and update
them accordingly. IMPORTANT: the attributes listed here must have the distinguishedName
syntax, that is, hold DNs as values.

¢ refint_nothing: some times, while trying to maintain the referential integrity, the server has to
remove the last attribute of its kind from an entry. This may be prohibited by the schema: for
example, the groupOfNames object class requires at least one member. In these cases, the server
will add the attribute value specified in refint_nothing to the entry.

To illustrate this overlay, we will use the group membership scenario.

In slapd.conf:

overlay refint
refint_attributes member
refint_nothing "cn=admin, dc=example, dc=com"

This configuration tells the overlay to maintain the referential integrity of the membe r attribute. This attribute

is used in the groupOfNames object class which always needs a member, so we add the
refint_nothing directive to fill in the group with a standard member should all the members vanish.

If we have the following group membership, the refint overlay will automatically remove john from the
group if his entry is removed from the directory:

120

OpenLDAP Software 2.4 Administrator's Guide

DN: cn=tech,ou=group,dc=example,dc=com

cn: tech

member: uid=john,ou=people,dc=example,dc=com
member: uid=mary,ou=people,dc=example,dc=com
(...)

DN: uid=john,ou=people,dc=example,dc=com
uid: john
mail: john@example.com

(e0)

Figure X.Y: Maintaining referential integrity in groups

Notice that if we rename (modrdn) the john entry to, say, jsmith, the refint overlay will also rename the
reference in the member attribute, so the group membership stays correct.

If we removed all users from the directory who are a member of this group, then the end result would be a
single member in the group: cn=admin, dc=example, dc=com. This is the refint_nothing

parameter kicking into action so that the schema is not violated.

The rootdn must be set for the database as refint runs as the rootdn to gain access to make its updates. The
rootpw does not need to be set.

12.11.3. Further Information

slapo-refint(5)

12.12. Return Code

12.12.1. Overview

This overlay is useful to test the behavior of clients when server-generated erroneous and/or unusual
responses occur, for example; error codes, referrals, excessive response times and so on.

This would be classed as a debugging tool whilst developing client software or additional Overlays.

For detailed information, please see the slapo-retcode(5) man page.

12.12.2. Return Code Configuration

The retcode overlay utilizes the "return code" schema described in the man page. This schema is specifically
designed for use with this overlay and is not intended to be used otherwise.

Note: The necessary schema is loaded automatically by the overlay.

An example configuration might be:

overlay retcode
retcode-parent "ou=RetCodes,dc=example,dc=com"

121

include

retcode-item
retcode-item
retcode—-item
retcode—-item

OpenLDAP Software 2.4 Administrator's Guide

./retcode.conf

"cn=Unsolicited" 0x00
"cn=Notice of Disconnect" 0x00
"cn=Pre-disconnect" 0x34
"cn=Post-disconnect" 0x34

unsolicited="0"
unsolicited="1.3.6.1.4.1.1466.20036"
flags="pre-disconnect"
flags="post-disconnect"

Note: retcode.conf can be found in the openldap source at: tests/data/retcode.conf

An excerpt of a ret code . conf would be something like:

retcode-item

retcode—-item

retcode—-item
retcode-item
retcode-item
retcode-item
retcode-item
retcode—-item
retcode—-item
retcode-item
retcode-item
retcode-item

"cn=success"
"cn=success w/ delay"

"cn=operationsError"
"cn=protocolError"
"cn=timelLimitExceeded"
"cn=sizelLimitExceeded"
"cn=compareFalse"
"cn=compareTrue"
"cn=authMethodNotSupported"
"cn=strongAuthNotSupported"
"cn=strongAuthRequired"
"cn=strongerAuthRequired"

Please see tests/data/retcode.conf for a complete retcode

12.12.3. Further Information
slapo-retcode(5)
12.13. Rewrite/Remap

12.13.1. Overview

0x00

0x00

0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x07
0x08
0x08

.conf

sleeptime=2

op=search
op=search
op=compare
op=compare

text="same

text="same

as authMethodNotSup

as strongAuthRequire

It performs basic DN/data rewrite and objectClass/attributeType mapping. Its usage is mostly intended to
provide virtual views of existing data either remotely, in conjunction with the proxy backend described in
slapd-ldap(5), or locally, in conjunction with the relay backend described in slapd-relay(5).

This overlay is extremely configurable and advanced, therefore recommended reading is the slapo-rwm(5)

man page.

12.13.2. Rewrite/Remap Configuration

12.13.3. Further Information

slapo-rwm(5)

12.14. Sync Provider

122

OpenLDAP Software 2.4 Administrator's Guide
12.14.1. Overview

This overlay implements the provider-side support for the LDAP Content Synchronization (RFC4533) as well
as syncrepl replication support, including persistent search functionality.

12.14.2. Sync Provider Configuration

There is very little configuration needed for this overlay, in fact for many situations merely loading the
overlay will suffice.

However, because the overlay creates a contextCSN attribute in the root entry of the database which is
updated for every write operation performed against the database and only updated in memorys, it is
recommended to configure a checkpoint so that the contextCSN is written into the underlying database to

minimize recovery time after an unclean shutdown:

overlay syncprov
syncprov-checkpoint 100 10

For every 100 operations or 10 minutes, which ever is sooner, the contextCSN will be checkpointed.
The four configuration directives available are syncprov-checkpoint, syncprov-sessionlog,

syncprov-nopresent and syncprov-reloadhint which are covered in the man page discussing various other
scenarios where this overlay can be used.

12.14.3. Further Information

The slapo-syncprov(5) man page and the Configuring the different replication types section
12.15. Translucent Proxy

12.15.1. Overview

This overlay can be used with a backend database such as slapd-mdb(5) to create a "translucent proxy".

Entries retrieved from a remote LDAP server may have some or all attributes overridden, or new attributes
added, by entries in the local database before being presented to the client.

A search operation is first populated with entries from the remote LDAP server, the attributes of which are
then overridden with any attributes defined in the local database. Local overrides may be populated with the
add, modify, and modrdn operations, the use of which is restricted to the root user of the translucent local
database.

A compare operation will perform a comparison with attributes defined in the local database record (if any)
before any comparison is made with data in the remote database.

12.15.2. Translucent Proxy Configuration

There are various options available with this overlay, but for this example we will demonstrate adding new
attributes to a remote entry and also searching against these newly added local attributes. For more
information about overriding remote entries and search configuration, please see slapo-translucent(5)

123

http://www.rfc-editor.org/rfc/rfc4533.txt

OpenLDAP Software 2.4 Administrator's Guide

Note: The Translucent Proxy overlay will disable schema checking in the local database, so that an entry
consisting of overlay attributes need not adhere to the complete schema.

First we configure the overlay in the normal manner:

include /usr/local/etc/openldap/schema/core.schema

include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/nis.schema

include /usr/local/etc/openldap/schema/inetorgperson.schema
pidfile ./slapd.pid

argsfile ./slapd.args

database mdb

suffix "dc=suretecsystems, dc=com"

rootdn "cn=trans,dc=suretecsystems,dc=com"
rootpw secret

maxsize 85899345920

directory ./openldap-data

index objectClass eq

overlay translucent

translucent_local carlLicense

uri ldap://192.168.X.X:389
lastmod off
acl-bind binddn="cn=admin, dc=suretecsystems,dc=com" credentials="blahblah"

You will notice the overlay directive and a directive to say what attribute we want to be able to search against
in the local database. We must also load the 1dap backend which will connect to the remote directory server.

Now we take an example LDAP group:

itsupport, Groups, suretecsystems.com
dn: cn=itsupport, ou=Groups,dc=suretecsystems, dc=com
objectClass: posixGroup

objectClass: sambaGroupMapping

cn: itsupport

gidNumber: 1000

sambaSID: S-1-5-21-XXX

sambaGroupType: 2

displayName: itsupport

memberUid: ghenry

memberUid: joebloggs

and create an LDIF file we can use to add our data to the local database, using some pretty strange choices of
new attributes for demonstration purposes:

124

[ghenry@suretec test_configs]$ cat test-translucent-add.ldif
dn: cn=itsupport, ou=Groups,dc=suretecsystems, dc=com
businessCategory: frontend-override

carLicense: LIVID

employeeType: special

departmentNumber: 9999999

roomNumber: 41L-535

OpenLDAP Software 2.4 Administrator's Guide

Searching against the proxy gives:

[ghenry@suretec test_configs]$ ldapsearch -x -H ldap://127.0.0.1:9001 " (cn=itsupport)"
itsupport, Groups, OxObjects, suretecsystems.com

dn: cn=itsupport, ou=Groups, ou=0xObjects,dc=suretecsystems, dc=com
objectClass: posixGroup

objectClass: sambaGroupMapping

cn: itsupport

gidNumber: 1003

SAMBASID: S-1-5-21-XXX

SAMBAGROUPTYPE: 2

displayName: itsupport

memberUid: ghenry

memberUid: joebloggs

roomNumber: 41L-535

departmentNumber: 9999999

employeeType: special

carLicense: LIVID

businessCategory: frontend-override

Here we can see that the 5 new attributes are added to the remote entry before being returned to the our client.

Because we have configured a local attribute to search against:

overlay translucent
translucent_local carLicense

we can also search for that to return the completely fabricated entry:
ldapsearch -x -H ldap://127.0.0.1:9001 (carLicense=LIVID)

This is an extremely feature because you can then extend a remote directory server locally and also search
against the local entries.

Note: Because the translucent overlay does not perform any DN rewrites, the local and remote database
instances must have the same suffix. Other configurations will probably fail with No Such Object and other
errors

12.15.3. Further Information

slapo-translucent(5)

12.16. Attribute Uniqueness

12.16.1. Overview

This overlay can be used with a backend database such as slapd-mdb(5) to enforce the uniqueness of some or
all attributes within a subtree.

12.16.2. Attribute Uniqueness Configuration

This overlay is only effective on new data from the point the overlay is enabled. To check uniqueness for
existing data, you can export and import your data again via the LDAP Add operation, which will not be

125

OpenLDAP Software 2.4 Administrator's Guide

suitable for large amounts of data, unlike slapcat.

For the following example, if uniqueness were enforced for the mail attribute, the subtree would be searched
for any other records which also have a mail attribute containing the same value presented with an add,
modify or modrdn operation which are unique within the configured scope. If any are found, the request is
rejected.

Note: If no attributes are specified, for example ldap:///??sub?, then the URI applies to all non-operational
attributes. However, the keyword ignore can be specified to exclude certain non-operational attributes.

To search at the base dn of the current backend database ensuring uniqueness of the mail attribute, we simply
add the following configuration:

overlay unique
unique_uri ldap:///?mail?sub?

For an existing entry of:

dn: cn=gavin,dc=suretecsystems, dc=com
objectClass: top

objectClass: inetorgperson

cn: gavin

sn: henry

mail: ghenry@suretecsystems.com

and we then try to add a new entry of:

dn: cn=robert,dc=suretecsystems, dc=com
objectClass: top

objectClass: inetorgperson

cn: robert

sn: jones

mail: ghenry@suretecsystems.com

would result in an error like so:

adding new entry "cn=robert,dc=example,dc=com"
ldap_add: Constraint violation (19)
additional info: some attributes not unique

The overlay can have multiple URIs specified within a domain, allowing complex selections of objects and
also have multiple unique_uri statements or olcUniqueURI attributes which will create independent

domains.

For more information and details about the strict and ignore keywords, please see the slapo-unique(5) man
page.

12.16.3. Further Information

slapo-unique(5)

126

OpenLDAP Software 2.4 Administrator's Guide

12.17. Value Sorting

12.17.1. Overview

The Value Sorting overlay can be used with a backend database to sort the values of specific multi-valued
attributes within a subtree. The sorting occurs whenever the attributes are returned in a search response.

12.17.2. Value Sorting Configuration

Sorting can be specified in ascending or descending order, using either numeric or alphanumeric sort methods.
Additionally, a "weighted" sort can be specified, which uses a numeric weight prepended to the attribute
values.

The weighted sort is always performed in ascending order, but may be combined with the other methods for
values that all have equal weights. The weight is specified by prepending an integer weight {<weight>} in
front of each value of the attribute for which weighted sorting is desired. This weighting factor is stripped off
and never returned in search results.

Here are a few examples:

loglevel sync stats
database mdb
suffix "dc=suretecsystems, dc=com"

directory /usr/local/var/openldap-data

overlay valsort
valsort—-attr memberUid ou=Groups,dc=suretecsystems,dc=com alpha-ascend

For example, ascend:

sharedemail, Groups, suretecsystems.com

dn: cn=sharedemail, ou=Groups,dc=suretecsystems, dc=com
objectClass: posixGroup

objectClass: top

cn: sharedemail

gidNumber: 517

memberUid: admin

memberUid: dovecot

memberUid: laura

memberUid: suretec

For weighted, we change our data to:

sharedemail, Groups, suretecsystems.com

dn: cn=sharedemail, ou=Groups,dc=suretecsystems, dc=com
objectClass: posixGroup

objectClass: top

cn: sharedemail

gidNumber: 517

memberUid: {4}admin
memberUid: {2}dovecot
memberUid: {l}laura

127

OpenLDAP Software 2.4 Administrator's Guide

memberUid: {3}suretec

and change the config to:

overlay valsort
valsort—-attr memberUid ou=Groups,dc=suretecsystems,dc=com weighted

Searching now results in:

sharedemail, Groups, OxObjects, suretecsystems.com

dn: cn=sharedemail, ou=Groups, ou=0xObjects, dc=suretecsystems, dc=com
objectClass: posixGroup

objectClass: top

cn: sharedemail

gidNumber: 517

memberUid: laura

memberUid: dovecot

memberUid: suretec

memberUid: admin

12.17.3. Further Information

slapo-valsort(5)

12.18. Overlay Stacking

12.18.1. Overview
Overlays can be stacked, which means that more than one overlay can be instantiated for each database, or for
the frontend. As a consequence, each overlays function is called, if defined, when overlay execution is

invoked. Multiple overlays are executed in reverse order (as a stack) with respect to their definition in
slapd.conf (5), or with respect to their ordering in the config database, as documented in slapd-config (5).

12.18.2. Example Scenarios

12.18.2.1. Samba

128

13. Schema Specification

This chapter describes how to extend the user schema used by slapd(8). The chapter assumes the reader is
familiar with the LDAP/X.500 information model.

The first section, Distributed Schema Files details optional schema definitions provided in the distribution and
where to obtain other definitions. The second section, Extending Schema, details how to define new schema
items.

This chapter does not discuss how to extend system schema used by slapd(8) as this requires source code

modification. System schema includes all operational attribute types or any object class which allows or
requires an operational attribute (directly or indirectly).

13.1. Distributed Schema Files

OpenLDAP Software is distributed with a set of schema specifications for your use. Each set is defined in a
file suitable for inclusion (using the include directive) in your slapd.conf(5) file. These schema files are
normally installed in the /usr/local/etc/openldap/schema directory.

Table 8.1: Provided Schema Specifications

File Description
core.schema OpenLLDAP core (required)
cosine.schema Cosine and Internet X.500 (useful)
inetorgperson.schema InetOrgPerson (useful)
misc.schema Assorted (experimental)
nis.schema Network Information Services (FYT)
openldap.schema OpenLDAP Project (experimental)

To use any of these schema files, you only need to include the desired file in the global definitions portion of
your slapd.conf(5) file. For example:

include schema

include /usr/local/etc/openldap/schema/core.schema

include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/inetorgperson.schema

Additional files may be available. Please consult the OpenLDAP FAQ (http://www.openldap.org/faq/).

Note: You should not modify any of the schema items defined in provided files.

13.2. Extending Schema

Schema used by slapd(8) may be extended to support additional syntaxes, matching rules, attribute types, and
object classes. This chapter details how to add user application attribute types and object classes using the
syntaxes and matching rules already supported by slapd. slapd can also be extended to support additional
syntaxes, matching rules and system schema, but this requires some programming and hence is not discussed
here.

129

http://www.openldap.org/faq/

OpenLDAP Software 2.4 Administrator's Guide

There are five steps to defining new schema:

1. obtain Object Identifier

2. choose a name prefix

3. create local schema file

4. define custom attribute types (if necessary)
5. define custom object classes

13.2.1. Object Identifiers

Each schema element is identified by a globally unique Object Identifier (OID). OIDs are also used to identify
other objects. They are commonly found in protocols described by ASN.1. In particular, they are heavily used
by the Simple Network Management Protocol (SNMP). As OIDs are hierarchical, your organization can
obtain one OID and branch it as needed. For example, if your organization were assigned OID 1.1, you could
branch the tree as follows:

Table 8.2: Example OID hierarchy

OID Assignment
1.1 Organization's OID
1.1.1 SNMP Elements
1.1.2 LDAP Elements
1.1.2.1 AttributeTypes
1.1.2.1.1 x-my-Attribute
1.1.2.2 ObjectClasses
1.1.2.2.1 x-my-ObjectClass

You are, of course, free to design a hierarchy suitable to your organizational needs under your organization's
OID. No matter what hierarchy you choose, you should maintain a registry of assignments you make. This can
be a simple flat file or something more sophisticated such as the OpenLDAP OID Registry
(http://www.openldap.org/fag/index.cgi?file=197).

For more information about Object Identifiers (and a listing service) see http://www.alvestrand.no/objectid/.
Under no circumstances should you hijack OID namespace!

To obtain a registered OID at no cost, apply for a OID under the Internet Assigned Numbers Authority
(ORG:IANA) maintained Private Enterprise arc. Any private enterprise (organization) may request a Private
Enterprise Number (PEN) to be assigned under this arc. Just fill out the IJANA form at
http://pen.iana.org/pen/PenApplication.page and your official PEN will be sent to you usually within a few
days. Your base OID will be something like 1.3.6.1.4.1.X where X is an integer.

Note: PENs obtained using this form may be used for any purpose including identifying LDAP schema
elements.

Alternatively, OID name space may be available from a national authority (e.g., ANSI, BSI).

130

http://www.openldap.org/faq/index.cgi?file=197
http://www.alvestrand.no/objectid/
http://www.iana.org/
http://pen.iana.org/pen/PenApplication.page
http://www.ansi.org/
http://www.bsi-global.com/

OpenLDAP Software 2.4 Administrator's Guide

13.2.2. Naming Elements

In addition to assigning a unique object identifier to each schema element, you should provide at least one
textual name for each element. Names should be registered with the IANA or prefixed with "x-" to place in
the "private use" name space.

The name should be both descriptive and not likely to clash with names of other schema elements. In
particular, any name you choose should not clash with present or future Standard Track names (this is assured
if you registered names or use names beginning with "x-"

It is noted that you can obtain your own registered name prefix so as to avoid having to register your names
individually. See RFC4520 for details.

In the examples below, we have used a short prefix 'x—my—". Such a short prefix would only be suitable for a
very large, global organization. In general, we recommend something like 'x—de-Firm-'(German company)
or 'x-com-Example' (elements associated with organization associated with example . com).

13.2.3. Local schema file

The objectclass and attributeTypes configuration file directives can be used to define schema rules
on entries in the directory. It is customary to create a file to contain definitions of your custom schema items.
We recommend you create a file local. schema in
/usr/local/etc/openldap/schema/local.schema and then include this file in your
slapd.conf(5) file immediately after other schema include directives.

include schema

include /usr/local/etc/openldap/schema/core.schema

include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/inetorgperson.schema
include local schema

include /usr/local/etc/openldap/schema/local.schema

13.2.4. Attribute Type Specification

The attributetype directive is used to define a new attribute type. The directive uses the same Attribute Type
Description (as defined in RFC4512) used by the attributeTypes attribute found in the subschema subentry,

e.g.:

attributetype <RFC4512 Attribute Type Description>

where Attribute Type Description is defined by the following ABNF:

AttributeTypeDescription = " (" whsp
numericoid whsp ; AttributeType identifier
["NAME" gdescrs] ; name used in AttributeType
["DESC" qgdstring] ; description
["OBSOLETE" whsp]
["SUP" woid] ; derived from this other
; AttributeType
["EQUALITY" woid ; Matching Rule name
["ORDERING" woid ; Matching Rule name
["SUBSTR" woid] ; Matching Rule name
[

"SYNTAX" whsp noidlen whsp] ; Syntax OID

131

http://www.iana.org/
http://www.rfc-editor.org/rfc/rfc4520.txt
http://www.rfc-editor.org/rfc/rfc4512.txt
http://www.rfc-editor.org/rfc/rfc4512.txt

OpenLDAP Software 2.4 Administrator's Guide

"SINGLE-VALUE" whsp]

[default multi-valued
["COLLECTIVE" whsp]

[

[

default not collective
default user modifiable
default userApplications

"NO-USER-MODIFICATION" whsp]
"USAGE" whsp AttributeUsage]
thp n) n

’
’
’
’

AttributeUsage =
"userApplications" /
"directoryOperation" /
"distributedOperation" / ; DSA-shared

"dSAOperation" ; DSA-specific, value depends on server

where whsp is a space (' '), numericoid is a globally unique OID in dotted-decimal form (e.g. 1. 1. 0), qdescrs
is one or more names, woid is either the name or OID optionally followed by a length specifier (e.g {10}).

For example, the attribute types name and cn are defined in core . schema as:

attributeType (2.5.4.41 NAME 'name'
DESC 'name (s) associated with the object'
EQUALITY caselIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{32768})

attributeType (2.5.4.3 NAME ('cn' 'commonName')
DESC 'common name (s) associated with the object'’
SUP name)

Notice that each defines the attribute's OID, provides a short name, and a brief description. Each name is an
alias for the OID. slapd(8) returns the first listed name when returning results.

The first attribute, name, holds values of directoryString (UTF-8 encoded Unicode) syntax. The
syntax is specified by OID (1.3.6.1.4.1.1466.115.121.1.15 identifies the directoryString syntax). A length
recommendation of 32768 is specified. Servers should support values of this length, but may support longer
values. The field does NOT specify a size constraint, so is ignored on servers (such as slapd) which don't
impose such size limits. In addition, the equality and substring matching uses case ignore rules. Below are
tables listing commonly used syntax and matching rules (slapd(8) supports these and many more).

Table 8.3: Commonly Used Syntaxes

Name OID Description
boolean 1.3.6.1.4.1.1466.115.121.1.7 |boolean value
directoryString 1.3.6.1.4.1.1466.115.121.1.15 |Unicode (UTE-8) string
distinguishedName |1.3.6.1.4.1.1466.115.121.1.12 |[LDAP DN
integer 1.3.6.1.4.1.1466.115.121.1.27 |integer
numericString 1.3.6.1.4.1.1466.115.121.1.36 |numeric string
OID 1.3.6.1.4.1.1466.115.121.1.38 |object identifier
octetString 1.3.6.1.4.1.1466.115.121.1.40 |arbitrary octets
Table 8.4: Commonly Used Matching Rules
Name Type Description

132

OpenLDAP Software 2.4 Administrator's Guide

booleanMatch equality |boolean

caseIgnoreMatch equality |case insensitive, space insensitive
caseIgnoreOrderingMatch ordering |case insensitive, space insensitive
caselgnoreSubstringsMatch substrings |case insensitive, space insensitive
caseExactMatch equality |case sensitive, space insensitive
caseExactOrderingMatch ordering |case sensitive, space insensitive
caseExactSubstringsMatch substrings |case sensitive, space insensitive
distinguishedNameMatch equality |distinguished name
integerMatch equality |integer
integerOrderingMatch ordering |integer
numericStringMatch equality |numerical
numericStringOrderingMatch ordering |numerical
numericStringSubstringsMatch substrings |numerical
octetStringMatch equality |octet string
octetStringOrderingMatch ordering |octet string
octetStringSubstringsMatch ordering |octet st ring
objectIdentiferMatch equality |object identifier

The second attribute, cn, is a subtype of name hence it inherits the syntax, matching rules, and usage of
name. commonName is an alternative name.

Neither attribute is restricted to a single value. Both are meant for usage by user applications. Neither is
obsolete nor collective.

The following subsections provide a couple of examples.
13.2.4.1. x-my-UniqueName

Many organizations maintain a single unique name for each user. Though one could use displayName
(RFC2798), this attribute is really meant to be controlled by the user, not the organization. We could just copy
the definition of di splayName from inetorgperson.schema and replace the OID, name, and
description, e.g:

attributetype (1.1.2.1.1 NAME 'x-my-UniqueName'
DESC 'unigque name with my organization'
EQUALITY caselIgnoreMatch
SUBSTR caselgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE)

However, if we want this name to be used in name assertions, e.g. (name=*Jane*), the attribute could
alternatively be defined as a subtype of name, e.g.:

attributetype (1.1.2.1.1 NAME 'x-my-UniqueName'
DESC 'unigque name with my organization'
SUP name)

133

http://www.rfc-editor.org/rfc/rfc2798.txt

OpenLDAP Software 2.4 Administrator's Guide
13.2.4.2. x-my-Photo

Many organizations maintain a photo of each each user. A x—my—-Phot o attribute type could be defined to
hold a photo. Of course, one could use just use jpegPhoto (RFC2798) (or a subtype) to hold the photo.
However, you can only do this if the photo is in JPEG File Interchange Format. Alternatively, an attribute
type which uses the Octet String syntax can be defined, e.g.:

attributetype (1.1.2.1.2 NAME 'x-my-Photo'
DESC 'a photo (application defined format)'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
SINGLE-VALUE)

In this case, the syntax doesn't specify the format of the photo. It's assumed (maybe incorrectly) that all
applications accessing this attribute agree on the handling of values.

If you wanted to support multiple photo formats, you could define a separate attribute type for each format,
prefix the photo with some typing information, or describe the value using ASN.1 and use the ; binary
transfer option.

Another alternative is for the attribute to hold a URI pointing to the photo. You can model such an attribute
after 1abeledURTI (RFC2079) or simply create a subtype, e.g.:

attributetype (1.1.2.1.3 NAME 'x-my-PhotoURI'
DESC 'URI and optional label referring to a photo'
SUP labeledURI)

13.2.5. Object Class Specification

The objectclasses directive is used to define a new object class. The directive uses the same Object Class
Description (as defined in RFC4512) used by the objectClasses attribute found in the subschema subentry,

e.g.
objectclass <RFC4512 Object Class Description>
where Object Class Description is defined by the following ABNF:

ObjectClassDescription = " (" whsp
numericoid whsp ; ObjectClass identifier
["NAME" gdescrs]
["DESC" qgdstring]
["OBSOLETE" whsp]
[
[

"SUP" oids] ; Superior ObjectClasses
("ABSTRACT" / "STRUCTURAL" / "AUXILIARY") whsp]
; default structural
["MUST" oids] ; AttributeTypes
["MAY" oids] ; AttributeTypes
whsp ") "

where whsp is a space (' '), numericoid is a globally unique OID in dotted-decimal form (e.g. 1.1 .0), qdescrs
is one or more names, and oids is one or more names and/or OIDs.

134

http://www.rfc-editor.org/rfc/rfc2798.txt
http://www.rfc-editor.org/rfc/rfc2079.txt
http://www.rfc-editor.org/rfc/rfc4512.txt
http://www.rfc-editor.org/rfc/rfc4512.txt

OpenLDAP Software 2.4 Administrator's Guide
13.2.5.1. x-my-PhotoObject

To define an auxiliary object class which allows x-my-Photo to be added to any existing entry.

objectclass (1.1.2.2.1 NAME 'x-my-PhotoObject'
DESC 'mixin x-my-Photo'
AUXILIARY
MAY x-my-Photo)

13.2.5.2. x-my-Person

If your organization would like have a private structural object class to instantiate users, you can subclass one
of the existing person classes, such as inetOrgPerson (RFC2798), and add any additional attributes which
you desire.

objectclass (1.1.2.2.2 NAME 'x-my-Person'
DESC 'my person'
SUP inetOrgPerson
MUST (x-my-UniqueName $ givenName)
MAY x-my-Photo)

The object class inherits the required/allowed attribute types of inetOrgPerson but requires
x-my-UniqueName and givenName and allows x-my—Photo.

13.2.6. OID Macros

To ease the management and use of OIDs, slapd(8) supports Object Identifier macros. The
objectIdentifier directive is used to equate a macro (name) with a OID. The OID may possibly be
derived from a previously defined OID macro. The slapd.conf(5) syntax is:

objectIdentifier <name> { <oid> | <name>[:<suffix>] }
The following demonstrates definition of a set of OID macros and their use in defining schema elements:

objectIdentifier myOID 1.1

objectIdentifier mySNMP myOID:1

objectIdentifier myLDAP myOID:2

objectIdentifier myAttributeType myLDAP:1

objectIdentifier myObjectClass myLDAP:2

attributetype (myAttributeType:3 NAME 'x-my-PhotoURI'
DESC 'URI and optional label referring to a photo'
SUP labeledURI)

objectclass (myObjectClass:1 NAME 'x-my-PhotoObject'
DESC 'mixin x-my-Photo'
AUXILIARY
MAY x-my-Photo)

135

http://www.rfc-editor.org/rfc/rfc2798.txt

OpenLDAP Software 2.4 Administrator's Guide

136

14. Security Considerations

OpenLDAP Software is designed to run in a wide variety of computing environments from tightly-controlled
closed networks to the global Internet. Hence, OpenLDAP Software supports many different security
mechanisms. This chapter describes these mechanisms and discusses security considerations for using
OpenLDAP Software.

14.1. Network Security

14.1.1. Selective Listening

By default, slapd(8) will listen on both the IPv4 and IPv6 "any" addresses. It is often desirable to have slapd
listen on select address/port pairs. For example, listening only on the IPv4 address 127.0.0. 1 will disallow
remote access to the directory server. E.g.:

slapd -h ldap://127.0.0.1

While the server can be configured to listen on a particular interface address, this doesn't necessarily restrict
access to the server to only those networks accessible via that interface. To selective restrict remote access, it
is recommend that an IP Firewall be used to restrict access.

See Command-line Options and slapd(8) for more information.

14.1.2. IP Firewall

IP firewall capabilities of the server system can be used to restrict access based upon the client's IP address
and/or network interface used to communicate with the client.

Generally, slapd(8) listens on port 389/tcp for ldap:// sessions and port 636/tcp for ldaps://) sessions. slapd(8)
may be configured to listen on other ports.

As specifics of how to configure IP firewall are dependent on the particular kind of IP firewall used, no
examples are provided here. See the document associated with your IP firewall.

14.1.3. TCP Wrappers

slapd(8) supports TCP Wrappers. TCP Wrappers provide a rule-based access control system for controlling
TCP/IP access to the server. For example, the host_options(5S) rule:

slapd: 10.0.0.0/255.0.0.0 127.0.0.1 : ALLOW
slapd: ALL : DENY

allows only incoming connections from the private network 10.0.0.0 and localhost (127.0.0.1) to
access the directory service.

Note: IP addresses are used as slapd(8) is not normally configured to perform reverse lookups.

It is noted that TCP wrappers require the connection to be accepted. As significant processing is required just
to deny a connection, it is generally advised that IP firewall protection be used instead of TCP wrappers.

137

OpenLDAP Software 2.4 Administrator's Guide

See hosts_access(5) for more information on TCP wrapper rules.

14.2. Data Integrity and Confidentiality Protection

Transport Layer Security (TLS) can be used to provide data integrity and confidentiality protection.
OpenLDAP supports negotiation of TLS (SSL) via both StartTLS and ldaps://. See the Using TLS chapter for
more information. StartTLS is the standard track mechanism.

A number of Simple Authentication and Security Layer (SASL) mechanisms, such as DIGEST-MDS5 and
GSSAPI, also provide data integrity and confidentiality protection. See the Using SASL chapter for more
information.

14.2.1. Security Strength Factors

The server uses Security Strength Factors (SSF) to indicate the relative strength of protection. A SSF of zero
(0) indicates no protections are in place. A SSF of one (1) indicates integrity protection are in place. A SSF
greater than one (>1) roughly correlates to the effective encryption key length. For example, DES is 56, 3DES
is 112, and AES 128, 192, or 256.

A number of administrative controls rely on SSFs associated with TLS and SASL protection in place on an
LDAP session.

security controls disallow operations when appropriate protections are not in place. For example:
security ssf=1 update_ssf=112

requires integrity protection for all operations and encryption protection, 3DES equivalent, for update
operations (e.g. add, delete, modify, etc.). See slapd.conf(5) for details.

For fine-grained control, SSFs may be used in access controls. See the Access Control section for more
information.

14.3. Authentication Methods

14.3.1. "simple" method
The LDAP "simple" method has three modes of operation:

® anonymous,
e unauthenticated, and
e user/password authenticated.

Anonymous access is requested by providing no name and no password to the "simple" bind operation.
Unauthenticated access is requested by providing a name but no password. Authenticated access is requested
by providing a valid name and password.

An anonymous bind results in an anonymous authorization association. Anonymous bind mechanism is
enabled by default, but can be disabled by specifying "disallow bind_anon" in slapd.conf(5).

138

OpenLDAP Software 2.4 Administrator's Guide

Note: Disabling the anonymous bind mechanism does not prevent anonymous access to the directory. To
require authentication to access the directory, one should instead specify "require authc".

An unauthenticated bind also results in an anonymous authorization association. Unauthenticated bind
mechanism is disabled by default, but can be enabled by specifying "allow bind_anon_cred"in
slapd.conf(5). As a number of LDAP applications mistakenly generate unauthenticated bind request when
authenticated access was intended (that is, they do not ensure a password was provided), this mechanism
should generally remain disabled.

A successful user/password authenticated bind results in a user authorization identity, the provided name,
being associated with the session. User/password authenticated bind is enabled by default. However, as this
mechanism itself offers no eavesdropping protection (e.g., the password is set in the clear), it is recommended
that it be used only in tightly controlled systems or when the LDAP session is protected by other means (e.g.,
TLS, IPsec). Where the administrator relies on TLS to protect the password, it is recommended that
unprotected authentication be disabled. This is done using the security directive's simple_lbind option,
which provides fine grain control over the level of confidential protection to require for simple user/password
authentication. E.g., using security simple_bind=56 would require simple binds to use encryption of
DES equivalent or better.

The user/password authenticated bind mechanism can be completely disabled by setting "disallow
bind_simple".

Note: An unsuccessful bind always results in the session having an anonymous authorization association.

14.3.2. SASL method

The LDAP SASL method allows the use of any SASL authentication mechanism. The Using SASL section
discusses the use of SASL.

14.4. Password Storage

LDAP passwords are normally stored in the userPassword attribute. RFC4519 specifies that passwords are
not stored in encrypted (or hashed) form. This allows a wide range of password-based authentication
mechanisms, such as DIGEST—-MD5 to be used. This is also the most interoperable storage scheme.

However, it may be desirable to store a hash of password instead. slapd(8) supports a variety of storage
schemes for the administrator to choose from.

Note: Values of password attributes, regardless of storage scheme used, should be protected as if they were
clear text. Hashed passwords are subject to dictionary attacks and brute-force attacks.

The userPassword attribute is allowed to have more than one value, and it is possible for each value to be
stored in a different form. During authentication, slapd will iterate through the values until it finds one that
matches the offered password or until it runs out of values to inspect. The storage scheme is stored as a prefix
on the value, so a hashed password using the Salted SHA1 (SSHA) scheme looks like:

userPassword: {SSHA}DkMTwBl+a/3DQTxCYEApdUtNXGgdUac3

The advantage of hashed passwords is that an attacker which discovers the hash does not have direct access to

139

http://www.rfc-editor.org/rfc/rfc4519.txt

OpenLDAP Software 2.4 Administrator's Guide

the actual password. Unfortunately, as dictionary and brute force attacks are generally quite easy for attackers
to successfully mount, this advantage is marginal at best (this is why all modern Unix systems use shadow
password files).

The disadvantages of hashed storage is that they are non-standard, may cause interoperability problem, and
generally preclude the use of stronger than Simple (or SASL/PLAIN) password-based authentication
mechanisms such as DIGEST-MD5.

14.4.1. SSHA password storage scheme

This is the salted version of the SHA scheme. It is believed to be the most secure password storage scheme
supported by slapd.

These values represent the same password:

userPassword: {SSHA}DkMTwBl+a/3DQTxCYEApdUtNXGgdUac3
userPassword: {SSHA}dO0Q0626PSHOVU1d7yWpROk6BlpOmtczb

14.4.2. CRYPT password storage scheme

This scheme uses the operating system's crypt(3) hash function. It normally produces the traditional
Unix-style 13 character hash, but on systems with glibc?2 it can also generate the more secure 34-byte MD5
hash.

userPassword: {CRYPT}aUihad99%hmevo
userPassword: {CRYPT}1czBJdDgSS$TmkzUAL8360Mxg/BmIwN. 1

The advantage of the CRYPT scheme is that passwords can be transferred to or from an existing Unix
password file without having to know the cleartext form. Both forms of crypt include salt so they have some
resistance to dictionary attacks.

Note: Since this scheme uses the operating system's crypt(3) hash function, it is therefore operating system
specific.

14.4.3. MD5 password storage scheme

This scheme simply takes the MD5 hash of the password and stores it in base64 encoded form:
userPassword: {MD5}Xr4il0zQ4PCOg3aQ0gbuaQ==

Although safer than cleartext storage, this is not a very secure scheme. The MD5 algorithm is fast, and
because there is no salt the scheme is vulnerable to a dictionary attack.

14.4.4. SMD5 password storage scheme

This improves on the basic MD5 scheme by adding salt (random data which means that there are many
possible representations of a given plaintext password). For example, both of these values represent the same
password:

userPassword: {SMD5}4QWGWZpj9GCmfugEvm8HtZhZS6E=
userPassword: {SMD5}g2/J/7D5E06+0Pdklp5p8YtNFk4=

140

OpenLDAP Software 2.4 Administrator's Guide

14.4.5. SHA password storage scheme

Like the MDS5 scheme, this simply feeds the password through an SHA hash process. SHA is thought to be
more secure than MD35, but the lack of salt leaves the scheme exposed to dictionary attacks.

userPassword: {SHA}5en6G6MezRroT3XKgkdPOmY/BfQ=
14.4.6. SASL password storage scheme

This is not really a password storage scheme at all. It uses the value of the userPassword attribute to delegate
password verification to another process. See below for more information.

Note: This is not the same as using SASL to authenticate the LDAP session.

14.5. Pass-Through authentication

Since OpenLLDAP 2.0 slapd has had the ability to delegate password verification to a separate process. This
uses the sasl_checkpass(3) function so it can use any back-end server that Cyrus SASL supports for checking
passwords. The choice is very wide, as one option is to use saslauthd(8) which in turn can use local files,
Kerberos, an IMAP server, another LDAP server, or anything supported by the PAM mechanism.

The server must be built with the ——enable-spasswd configuration option to enable pass-through
authentication.

Note: This is not the same as using a SASL mechanism to authenticate the LDAP session.

Pass-Through authentication works only with plaintext passwords, as used in the "simple bind" and "SASL
PLAIN" authentication mechanisms. } }

Pass-Through authentication is selective: it only affects users whose userPassword attribute has a value
marked with the "{SASL}" scheme. The format of the attribute is:

userPassword: {SASL}username@realm
The username and realm are passed to the SASL authentication mechanism and are used to identify the
account whose password is to be verified. This allows arbitrary mapping between entries in OpenLDAP and

accounts known to the backend authentication service.

It would be wise to use access control to prevent users from changing their passwords through LDAP where
they have pass-through authentication enabled.

14.5.1. Configuring slapd to use an authentication provider

Where an entry has a "{SASL}" password value, OpenLDAP delegates the whole process of validating that
entry's password to Cyrus SASL. All the configuration is therefore done in SASL config files.

The first file to be considered is confusingly named slapd.conf and is typically found in the SASL library

directory, often /usr/1lib/sasl2/slapd.conf This file governs the use of SASL when talking LDAP
to slapd as well as the use of SASL backends for pass-through authentication. See options.html in the

141

OpenLDAP Software 2.4 Administrator's Guide

Cyrus SASL docs for full details. Here is a simple example for a server that will use saslauthd to verify
passwords:

mech_list: plain
pwcheck_method: saslauthd
saslauthd_path: /var/run/sasl2/mux

14.5.2. Configuring saslauthd

saslauthd is capable of using many different authentication services: see saslauthd(8) for details. A common
requirement is to delegate some or all authentication to another LDAP server. Here is a sample
saslauthd. conf that uses Microsoft Active Directory (AD):

ldap_servers: ldap://dcl.example.com/ ldap://dc2.example.com/

ldap_search_base: cn=Users,DC=ad,DC=example,DC=com
ldap_filter: (userPrincipalName=%u)

ldap_bind_dn: cn=saslauthd, cn=Users,DC=ad,DC=example, DC=com
ldap_password: secret

In this case, saslauthd is run with the 1dap authentication mechanism and is set to combine the SASL realm
with the login name:

saslauthd -a ldap -r

This means that the "username @realm" string from the userPassword attribute ends up being used to search
AD for "userPrincipalName=username @realm" - the password is then verified by attempting to bind to AD
using the entry found by the search and the password supplied by the LDAP client.

14.5.3. Testing pass-through authentication

It is usually best to start with the back-end authentication provider and work through saslauthd and slapd
towards the LDAP client.

In the AD example above, first check that the DN and password that saslauthd will use when it connects to
AD are valid:

ldapsearch -x —-H ldap://dcl.example.com/ \
-D cn=saslauthd, cn=Users, DC=ad, DC=example,DC=com \
-w secret \
_b T \
-s base

Next check that a sample AD user can be found:

ldapsearch -x —-H ldap://dcl.example.com/ \
-D cn=saslauthd, cn=Users,DC=ad,DC=example, DC=com \
-w secret \
-b cn=Users,DC=ad,DC=example,DC=com \
" (userPrincipalName=user@ad.example.com)"

Check that the user can bind to AD:

142

http://asg.web.cmu.edu/sasl/sasl-library.html

OpenLDAP Software 2.4 Administrator's Guide

ldapsearch -x -H ldap://dcl.example.com/ \
-D cn=user,cn=Users, DC=ad,DC=example,DC=com \
-w userpassword \
-b cn=user,cn=Users, DC=ad,DC=example,DC=com \
-s base \
" (objectclass=*)"

If all that works then saslauthd should be able to do the same:

testsaslauthd -u user@ad.example.com -p userpassword
testsaslauthd -u user@ad.example.com -p wrongpassword

Now put the magic token into an entry in OpenLDAP:

userPassword: {SASL}user@ad.example.com

It should now be possible to bind to OpenLDAP using the DN of that entry and the password of the AD user.

143

OpenLDAP Software 2.4 Administrator's Guide

144

15. Using SASL

OpenLDAP clients and servers are capable of authenticating via the Simple Authentication and Security Layer
(SASL) framework, which is detailed in RFC4422. This chapter describes how to make use of SASL in
OpenLDAP.

There are several industry standard authentication mechanisms that can be used with SASL, including
GSSAPI for Kerberos V, DIGEST-MDS5, and PLAIN and EXTERNAL for use with Transport Layer Security
(TLS).

The standard client tools provided with OpenLDAP Software, such as Idapsearch(1) and ldapmodify(1), will
by default attempt to authenticate the user to the LDAP directory server using SASL. Basic authentication
service can be set up by the LDAP administrator with a few steps, allowing users to be authenticated to the
slapd server as their LDAP entry. With a few extra steps, some users and services can be allowed to exploit
SASL's proxy authorization feature, allowing them to authenticate themselves and then switch their identity to
that of another user or service.

This chapter assumes you have read Cyrus SASL for System Administrators, provided with the Cyrus SASL
package (in doc/sysadmin.html) and have a working Cyrus SASL installation. You should use the
Cyrus SASL sample_client and sample_server to test your SASL installation before attempting to
make use of it with OpenLDAP Software.

Note that in the following text the term user is used to describe a person or application entity who is
connecting to the LDAP server via an LDAP client, such as ldapsearch(1). That is, the term user not only
applies to both an individual using an LDAP client, but to an application entity which issues LDAP client
operations without direct user control. For example, an e-mail server which uses LDAP operations to access
information held in an LDAP server is an application entity.

15.1. SASL Security Considerations

SASL offers many different authentication mechanisms. This section briefly outlines security considerations.

Some mechanisms, such as PLAIN and LOGIN, offer no greater security over LDAP simple authentication.
Like LDAP simple authentication, such mechanisms should not be used unless you have adequate security
protections in place. It is recommended that these mechanisms be used only in conjunction with Transport
Layer Security (TLS). Use of PLAIN and LOGIN are not discussed further in this document.

The DIGEST-MDS5 mechanism is the mandatory-to-implement authentication mechanism for LDAPv3.
Though DIGEST-MDS is not a strong authentication mechanism in comparison with trusted third party
authentication systems (such as Kerberos or public key systems), it does offer significant protections against a
number of attacks. Unlike the CRAM-MDS35 mechanism, it prevents chosen plaintext attacks. DIGEST-MDS is
favored over the use of plaintext password mechanisms. The CRAM-MDS5 mechanism is deprecated in favor
of DIGEST-MDS. Use of DIGEST-MDS is discussed below.

The GSSAPI mechanism utilizes GSS-API Kerberos V to provide secure authentication services. The
KERBEROS_V4 mechanism is available for those using Kerberos I'V. Kerberos is viewed as a secure,
distributed authentication system suitable for both small and large enterprises. Use of GSSAPI and
KERBEROS_V4 are discussed below.

145

http://www.rfc-editor.org/rfc/rfc4422.txt
http://asg.web.cmu.edu/sasl/sasl-library.html

OpenLDAP Software 2.4 Administrator's Guide

The EXTERNAL mechanism utilizes authentication services provided by lower level network services such
as Transport Layer Security (TLS). When used in conjunction with TLS X.509-based public key technology,
EXTERNAL offers strong authentication. TLS is discussed in the Using TLS chapter.

EXTERNAL can also be used with the 1dapi:/// transport, as Unix-domain sockets can report the UID
and GID of the client process.

There are other strong authentication mechanisms to choose from, including OTP (one time passwords) and
SRP (secure remote passwords). These mechanisms are not discussed in this document.

15.2. SASL Authentication

Getting basic SASL authentication running involves a few steps. The first step configures your slapd server
environment so that it can communicate with client programs using the security system in place at your site.
This usually involves setting up a service key, a public key, or other form of secret. The second step concerns
mapping authentication identities to LDAP DN's, which depends on how entries are laid out in your directory.
An explanation of the first step will be given in the next section using Kerberos V4 as an example mechanism.
The steps necessary for your site's authentication mechanism will be similar, but a guide to every mechanism
available under SASL is beyond the scope of this chapter. The second step is described in the section
Mapping Authentication Identities.

15.2.1. GSSAPI

This section describes the use of the SASL. GSSAPI mechanism and Kerberos V with OpenLDAP. It will be
assumed that you have Kerberos V deployed, you are familiar with the operation of the system, and that your
users are trained in its use. This section also assumes you have familiarized yourself with the use of the
GSSAPI mechanism by reading Configuring GSSAPI and Cyrus SASL (provided with Cyrus SASL in the
doc/gssapi file) and successfully experimented with the Cyrus provided sample_server and
sample_client applications. General information about Kerberos is available at
http://web.mit.edu/kerberos/www/.

To use the GSSAPI mechanism with slapd(8) one must create a service key with a principal for ldap service
within the realm for the host on which the service runs. For example, if you run slapd on
directory.example.com and your realm is EXAMPLE . COM, you need to create a service key with the
principal:

ldap/directory.example.com@EXAMPLE .COM

When slapd(8) runs, it must have access to this key. This is generally done by placing the key into a keytab
file, /etc/krb5.keytab. See your Kerberos and Cyrus SASL documentation for information regarding
keytab location settings.

To use the GSSAPI mechanism to authenticate to the directory, the user obtains a Ticket Granting Ticket
(TGT) prior to running the LDAP client. When using OpenLDAP client tools, the user may mandate use of
the GSSAPI mechanism by specifying —Y GSSAPI as a command option.

For the purposes of authentication and authorization, slapd(8) associates an authentication request DN of the
form:

uid=<primary[/instance] >, cn=<realm>, cn=gssapi, cn=auth

146

http://web.mit.edu/kerberos/www/

OpenLDAP Software 2.4 Administrator's Guide

Continuing our example, a user with the Kerberos principal kurt @EXAMPLE . COM would have the
associated DN:

uid=kurt, cn=example.com, cn=gssapi, cn=auth
and the principal ursula/admin@FOREIGN.REALM would have the associated DN:
uid=ursula/admin, cn=foreign.realm, cn=gssapi, cn=auth

The authentication request DN can be used directly ACLs and groupOfNames "member" attributes, since it
is of legitimate LDAP DN format. Or alternatively, the authentication DN could be mapped before use. See
the section Mapping Authentication Identities for details.

15.2.2. KERBEROS_V4

This section describes the use of the SASL. KERBEROS_V4 mechanism with OpenLDAP. It will be assumed
that you are familiar with the workings of the Kerberos IV security system, and that your site has Kerberos IV
deployed. Your users should be familiar with authentication policy, how to receive credentials in a Kerberos
ticket cache, and how to refresh expired credentials.

Note: KERBEROS_V4 and Kerberos IV are deprecated in favor of GSSAPI and Kerberos V.

Client programs will need to be able to obtain a session key for use when connecting to your LDAP server.
This allows the LDAP server to know the identity of the user, and allows the client to know it is connecting to
a legitimate server. If encryption layers are to be used, the session key can also be used to help negotiate that
option.

The slapd server runs the service called "ldap", and the server will require a srvtab file with a service key.
SASL aware client programs will be obtaining an "ldap" service ticket with the user's ticket granting ticket
(TGT), with the instance of the ticket matching the hostname of the OpenLDAP server. For example, if your
realm is named EXAMPLE . COM and the slapd server is running on the host named
directory.example.com, the /etc/srvtab file on the server will have a service key

ldap.directory@EXAMPLE.COM

When an LDAP client is authenticating a user to the directory using the KERBEROS_IV mechanism, it will
request a session key for that same principal, either from the ticket cache or by obtaining a new one from the
Kerberos server. This will require the TGT to be available and valid in the cache as well. If it is not present or
has expired, the client may print out the message:

ldap_sasl_interactive_bind_s: Local error
When the service ticket is obtained, it will be passed to the LDAP server as proof of the user's identity. The
server will extract the identity and realm out of the service ticket using SASL library calls, and convert them
into an authentication request DN of the form

uid=<username>, cn=<realm>, cn=<mechanism>, cn=auth

So in our above example, if the user's name were "adamson", the authentication request DN would be:

uid=adamsom, cn=example.com, cn=kerberos_v4, cn=auth

147

OpenLDAP Software 2.4 Administrator's Guide

This authentication request DN can be used directly ACLs or, alternatively, mapped prior to use. See the
section Mapping Authentication Identities for details.

15.2.3. DIGEST-MD5

This section describes the use of the SASL DIGEST-MDS5 mechanism using secrets stored either in the
directory itself or in Cyrus SASL's own database. DIGEST-MDS relies on the client and the server sharing a
"secret", usually a password. The server generates a challenge and the client a response proving that it knows
the shared secret. This is much more secure than simply sending the secret over the wire.

Cyrus SASL supports several shared-secret mechanisms. To do this, it needs access to the plaintext password
(unlike mechanisms which pass plaintext passwords over the wire, where the server can store a hashed version
of the password).

The server's copy of the shared-secret may be stored in Cyrus SASL's own sasldb database, in an external
system accessed via saslauthd, or in LDAP database itself. In either case it is very important to apply file
access controls and LDAP access controls to prevent exposure of the passwords. The configuration and
commands discussed in this section assume the use of Cyrus SASL 2.1.

To use secrets stored in sasldb, simply add users with the saslpasswd2 command:
saslpasswd2 -c <username>
The passwords for such users must be managed with the saslpasswd2 command.

To use secrets stored in the LDAP directory, place plaintext passwords in the userPassword attribute. It
will be necessary to add an option to slapd. conf to make sure that passwords set using the LDAP
Password Modify Operation are stored in plaintext:

password-hash {CLEARTEXT}

Passwords stored in this way can be managed either with Idappasswd(1) or by simply modifying the
userPassword attribute. Regardless of where the passwords are stored, a mapping will be needed from
authentication request DN to user's DN.
The DIGEST-MDS5 mechanism produces authentication IDs of the form:

uid=<username>, cn=<realm>, cn=digest-md5, cn=auth
If the default realm is used, the realm name is omitted from the ID, giving:

uid=<username>, cn=digest-md5, cn=auth

See Mapping Authentication Identities below for information on optional mapping of identities.

With suitable mappings in place, users can specify SASL IDs when performing LDAP operations, and the
password stored in sasldb or in the directory itself will be used to verify the authentication. For example, the
user identified by the directory entry:

dn: cn=Andrew Findlay+uid=u000997, dc=example, dc=com

objectclass: inetOrgPerson
objectclass: person

148

OpenLDAP Software 2.4 Administrator's Guide

sn: Findlay
uid: u000997
userPassword: secret

can issue commands of the form:

ldapsearch -Y DIGEST-MD5 -U u000997 ...

Note: in each of the above cases, no authorization identity (e.g. —X) was provided. Unless you are attempting
SASL Proxy Authorization, no authorization identity should be specified. The server will infer an
authorization identity from authentication identity (as described below).

15.2.4. EXTERNAL

The SASL EXTERNAL mechanism makes use of an authentication performed by a lower-level protocol:
usually TLS or Unix IPC

Each transport protocol returns Authentication Identities in its own format:
15.2.4.1. TLS Authentication Identity Format

This is the Subject DN from the client-side certificate. Note that DNs are displayed differently by LDAP and
by X.5009, so a certificate issued to

C=gb, 0O=The Example Organisation, CN=A Person
will produce an authentication identity of:
cn=A Person,o=The Example Organisation, c=gb

Note that you must set a suitable value for TLSVerifyClient to make the server request the use of a client-side
certificate. Without this, the SASL EXTERNAL mechanism will not be offered. Refer to the Using TLS
chapter for details.

15.2.4.2. IPC (Idapi:///) Identity Format
This is formed from the Unix UID and GID of the client process:
gidNumber=<number>+uidNumber=<number>, cn=peercred, cn=external, cn=auth

Thus, a client process running as root will be:

gidNumber=0+uidNumber=0, cn=peercred, cn=external, cn=auth

15.2.5. Mapping Authentication Identities

The authentication mechanism in the slapd server will use SASL library calls to obtain the authenticated user's
"username”, based on whatever underlying authentication mechanism was used. This username is in the
namespace of the authentication mechanism, and not in the normal LDAP namespace. As stated in the
sections above, that username is reformatted into an authentication request DN of the form

uid=<username>, cn=<realm>, cn=<mechanism>, cn=auth

149

OpenLDAP Software 2.4 Administrator's Guide

or
uid=<username>, cn=<mechanism>, cn=auth

depending on whether or not <mechanism> employs the concept of "realms". Note also that the realm part
will be omitted if the default realm was used in the authentication.

The ldapwhoami(1) command may be used to determine the identity associated with the user. It is very useful
for determining proper function of mappings.

It is not intended that you should add LDAP entries of the above form to your LDAP database. Chances are
you have an LDAP entry for each of the persons that will be authenticating to LDAP, laid out in your
directory tree, and the tree does not start at cn=auth. But if your site has a clear mapping between the
"username" and an LDAP entry for the person, you will be able to configure your LDAP server to
automatically map a authentication request DN to the user's authentication DN.

Note: it is not required that the authentication request DN nor the user's authentication DN resulting from the
mapping refer to an entry held in the directory. However, additional capabilities become available (see
below).

The LDAP administrator will need to tell the slapd server how to map an authentication request DN to a user's
authentication DN. This is done by adding one or more authz-regexp directives to the slapd.conf(5) file.
This directive takes two arguments:

authz-regexp <search pattern> <replacement pattern>

The authentication request DN is compared to the search pattern using the regular expression functions
regcomp() and regexec(), and if it matches, it is rewritten as the replacement pattern. If there are multiple
authz-regexp directives, only the first whose search pattern matches the authentication identity is used.
The string that is output from the replacement pattern should be the authentication DN of the user or an LDAP
URL. If replacement string produces a DN, the entry named by this DN need not be held by this server. If the
replace string produces an LDAP URL, that LDAP URL must evaluate to one and only one entry held by this
server.

The search pattern can contain any of the regular expression characters listed in regexec(3C). The main
characters of note are dot ".", asterisk "*", and the open and close parenthesis "(" and ")". Essentially, the dot
matches any character, the asterisk allows zero or more repeats of the immediately preceding character or

pattern, and terms in parenthesis are remembered for the replacement pattern.

The replacement pattern will produce either a DN or URL referring to the user. Anything from the
authentication request DN that matched a string in parenthesis in the search pattern is stored in the variable
"$1". That variable "$1" can appear in the replacement pattern, and will be replaced by the string from the
authentication request DN. If there were multiple sets of parentheses in the search pattern, the variables $2,
$3, etc are used.

15.2.6. Direct Mapping

Where possible, direct mapping of the authentication request DN to the user's DN is generally recommended.
Aside from avoiding the expense of searching for the user's DN, it allows mapping to DNs which refer to
entries not held by this server.

150

OpenLDAP Software 2.4 Administrator's Guide

Suppose the authentication request DN is written as:
uid=adamson, cn=example.com, cn=gssapi,cn=auth
and the user's actual LDAP entry is:
uid=adamson, ou=people, dc=example, dc=com
then the following authz-regexp directive in slapd.conf(5) would provide for direct mapping.

authz-regexp
uid=([",1*),cn=example.com, cn=gssapi, cn=auth
uid=$1, ou=people, dc=example, dc=com

An even more lenient rule could be written as

authz-regexp
uid=([",1*),cn=[",]1*,cn=auth
uid=$1, ou=people, dc=example, dc=com

Be careful about setting the search pattern too leniently, however, since it may mistakenly allow persons to
become authenticated as a DN to which they should not have access. It is better to write several strict
directives than one lenient directive which has security holes. If there is only one authentication mechanism in
place at your site, and zero or one realms in use, you might be able to map between authentication identities
and LDAP DN's with a single authz-regexp directive.

Don't forget to allow for the case where the realm is omitted as well as the case with an explicitly specified
realm. This may well require a separate authz—-regexp directive for each case, with the explicit-realm
entry being listed first.

15.2.7. Search-based mappings

There are a number of cases where mapping to a LDAP URL may be appropriate. For instance, some sites
may have person objects located in multiple areas of the LDAP tree, such as if there were an
ou=accounting tree and an ou=engineering tree, with persons interspersed between them. Or, maybe
the desired mapping must be based upon information in the user's information. Consider the need to map the
above authentication request DN to user whose entry is as follows:

dn: cn=Mark Adamson, ou=People,dc=Example, dc=COM
objectclass: person

cn: Mark Adamson

uid: adamson

The information in the authentication request DN is insufficient to allow the user's DN to be directly derived,
instead the user's DN must be searched for. For these situations, a replacement pattern which produces a
LDAP URL can be used in the authz-regexp directives. This URL will then be used to perform an
internal search of the LDAP database to find the person's authentication DN.

An LDAP URL, similar to other URL's, is of the form

ldap://<host>/<base>?<attrs>?<scope>?<filter>

151

OpenLDAP Software 2.4 Administrator's Guide

This contains all of the elements necessary to perform an LDAP search: the name of the server <host>, the
LDAP DN search base <base>, the LDAP attributes to retrieve <attrs>, the search scope <scope> which is
one of the three options "base", "one", or "sub", and lastly an LDAP search filter <filter>. Since the search is
for an LDAP DN within the current server, the <host> portion should be empty. The <attrs> field is also
ignored since only the DN is of concern. These two elements are left in the format of the URL to maintain the

clarity of what information goes where in the string.

Suppose that the person in the example from above did in fact have an authentication username of "adamson"
and that information was kept in the attribute "uid" in their LDAP entry. The authz-regexp directive
might be written as

authz-regexp
uid=([",]*),cn=example.com, cn=gssapi,cn=auth
ldap:///ou=people,dc=example, dc=com??one? (uid=$1)

This will initiate an internal search of the LDAP database inside the slapd server. If the search returns exactly
one entry, it is accepted as being the DN of the user. If there are more than one entries returned, or if there are
zero entries returned, the authentication fails and the user's connection is left bound as the authentication
request DN.

The attributes that are used in the search filter <filter> in the URL should be indexed to allow faster searching.
If they are not, the authentication step alone can take uncomfortably long periods, and users may assume the
server is down.

A more complex site might have several realms in use, each mapping to a different subtree in the directory.
These can be handled with statements of the form:

Match Engineering realm

authz-regexp
uid=([",]*),cn=engineering.example.com, cn=digest-md5, cn=auth
ldap:///dc=eng, dc=example, dc=com??one? (& (uid=$1) (objectClass=person))

Match Accounting realm

authz-regexp
uid=([",].*),cn=accounting.example.com, cn=digest-md5, cn=auth
ldap:///dc=accounting, dc=example, dc=com??one? (& (uid=5$1) (objectClass=person))

Default realm is customers.example.com

authz-regexp
uid=([",1*),cn=digest-md5, cn=auth
ldap:///dc=customers, dc=example, dc=com??one? (& (uid=$1) (objectClass=person))

Note that the explicitly-named realms are handled first, to avoid the realm name becoming part of the UID.
Also note the use of scope and filters to limit matching to desirable entries.

Note as well that aut hz—regexp internal search are subject to access controls. Specifically, the
authentication identity must have auth access.

See slapd.conf(5) for more detailed information.

15.3. SASL Proxy Authorization

152

OpenLDAP Software 2.4 Administrator's Guide

The SASL offers a feature known as proxy authorization, which allows an authenticated user to request that
they act on the behalf of another user. This step occurs after the user has obtained an authentication DN, and
involves sending an authorization identity to the server. The server will then make a decision on whether or
not to allow the authorization to occur. If it is allowed, the user's LDAP connection is switched to have a
binding DN derived from the authorization identity, and the LDAP session proceeds with the access of the
new authorization DN.

The decision to allow an authorization to proceed depends on the rules and policies of the site where LDAP is
running, and thus cannot be made by SASL alone. The SASL library leaves it up to the server to make the
decision. The LDAP administrator sets the guidelines of who can authorize to what identity by adding
information into the LDAP database entries. By default, the authorization features are disabled, and must be
explicitly configured by the LDAP administrator before use.

15.3.1. Uses of Proxy Authorization

This sort of service is useful when one entity needs to act on the behalf of many other users. For example,
users may be directed to a web page to make changes to their personal information in their LDAP entry. The
users authenticate to the web server to establish their identity, but the web server CGI cannot authenticate to
the LDAP server as that user to make changes for them. Instead, the web server authenticates itself to the
LDAP server as a service identity, say,

cn=WebUpdate, dc=example, dc=com

and then it will SASL authorize to the DN of the user. Once so authorized, the CGI makes changes to the
LDAP entry of the user, and as far as the slapd server can tell for its ACLs, it is the user themself on the other
end of the connection. The user could have connected to the LDAP server directly and authenticated as
themself, but that would require the user to have more knowledge of LDAP clients, knowledge which the web
page provides in an easier format.

Proxy authorization can also be used to limit access to an account that has greater access to the database. Such
an account, perhaps even the root DN specified in slapd.conf(5), can have a strict list of people who can
authorize to that DN. Changes to the LDAP database could then be only allowed by that DN, and in order to
become that DN, users must first authenticate as one of the persons on the list. This allows for better auditing
of who made changes to the LDAP database. If people were allowed to authenticate directly to the privileged
account, possibly through the rootpw slapd.conf(5) directive or through a userPassword attribute, then
auditing becomes more difficult.

Note that after a successful proxy authorization, the original authentication DN of the LDAP connection is
overwritten by the new DN from the authorization request. If a service program is able to authenticate itself as
its own authentication DN and then authorize to other DN's, and it is planning on switching to several
different identities during one LDAP session, it will need to authenticate itself each time before authorizing to
another DN (or use a different proxy authorization mechanism). The slapd server does not keep record of the
service program's ability to switch to other DN's. On authentication mechanisms like Kerberos this will not
require multiple connections being made to the Kerberos server, since the user's TGT and "ldap" session key
are valid for multiple uses for the several hours of the ticket lifetime.

15.3.2. SASL Authorization Identities

The SASL authorization identity is sent to the LDAP server via the —X switch for Idapsearch(1) and other
tools, or in the *authzid parameter to the lutil_sasl_defaults() call. The identity can be in one of two forms,

153

OpenLDAP Software 2.4 Administrator's Guide

either
u:<username>
or

dn:<dn>

In the first form, the <username> is from the same namespace as the authentication identities above. It is the
user's username as it is referred to by the underlying authentication mechanism. Authorization identities of
this form are converted into a DN format by the same function that the authentication process used, producing
an authorization request DN of the form

uid=<username>, cn=<realm>, cn=<mechanism>, cn=auth

That authorization request DN is then run through the same authz-regexp process to convert it into a
legitimate authorization DN from the database. If it cannot be converted due to a failed search from an LDAP
URL, the authorization request fails with "inappropriate access". Otherwise, the DN string is now a legitimate
authorization DN ready to undergo approval.

If the authorization identity was provided in the second form, with a "dn : " prefix, the string after the prefix
is already in authorization DN form, ready to undergo approval.

15.3.3. Proxy Authorization Rules

Once slapd has the authorization DN, the actual approval process begins. There are two attributes that the
LDAP administrator can put into LDAP entries to allow authorization:

authzTo
authzFrom

Both can be multivalued. The authzTo attribute is a source rule, and it is placed into the entry associated
with the authentication DN to tell what authorization DNs the authenticated DN is allowed to assume. The
second attribute is a destination rule, and it is placed into the entry associated with the requested authorization
DN to tell which authenticated DNs may assume it.

The choice of which authorization policy attribute to use is up to the administrator. Source rules are checked
first in the person's authentication DN entry, and if none of the authzTo rules specify the authorization is
permitted, the aut hzFrom rules in the authorization DN entry are then checked. If neither case specifies that
the request be honored, the request is denied. Since the default behavior is to deny authorization requests,
rules only specify that a request be allowed; there are no negative rules telling what authorizations to deny.

The value(s) in the two attributes are of the same form as the output of the replacement pattern of a
authz-regexp directive: either a DN or an LDAP URL. For example, if a authzTo value is a DN, that
DN is one the authenticated user can authorize to. On the other hand, if the authzTo value is an LDAP
URL, the URL is used as an internal search of the LDAP database, and the authenticated user can become
ANY DN returned by the search. If an LDAP entry looked like:

dn: cn=WebUpdate, dc=example, dc=com
authzTo: ldap:///dc=example,dc=com??sub? (objectclass=person)

154

OpenLDAP Software 2.4 Administrator's Guide

then any user who authenticated as cn=WebUpdate, dc=example, dc=com could authorize to any other
LDAP entry under the search base dc=example, dc=com which has an objectClass of Person.

15.3.3.1. Notes on Proxy Authorization Rules

An LDAP URL in a authzTo or authzFrom attribute will return a set of DNs. Each DN returned will be
checked. Searches which return a large set can cause the authorization process to take an uncomfortably long
time. Also, searches should be performed on attributes that have been indexed by slapd.

To help produce more sweeping rules for authzFrom and authzTo, the values of these attributes are
allowed to be DNs with regular expression characters in them. This means a source rule like

authzTo: dn.regex:”uid=[",]*,dc=example,dc=com$

would allow that authenticated user to authorize to any DN that matches the regular expression pattern given.
This regular expression comparison can be evaluated much faster than an LDAP search for (uid=*).

Also note that the values in an authorization rule must be one of the two forms: an LDAP URL or a DN (with
or without regular expression characters). Anything that does not begin with "1dap: //" is taken as a DN. It
is not permissible to enter another authorization identity of the form "u: <username>" as an authorization
rule.

15.3.3.2. Policy Configuration

The decision of which type of rules to use, aut hzFrom or authzTo, will depend on the site's situation. For
example, if the set of people who may become a given identity can easily be written as a search filter, then a
single destination rule could be written. If the set of people is not easily defined by a search filter, and the set
of people is small, it may be better to write a source rule in the entries of each of those people who should be
allowed to perform the proxy authorization.

By default, processing of proxy authorization rules is disabled. The authz-policy directive must be set in
the slapd.conf(5) file to enable authorization. This directive can be set to none for no rules (the default), to
for source rules, £ rom for destination rules, or both for both source and destination rules.

Source rules are extremely powerful. If ordinary users have access to write the authzTo attribute in their
own entries, then they can write rules that would allow them to authorize as anyone else. As such, when using
source rules, the authzTo attribute should be protected with an ACL that only allows privileged users to set
its values.

155

OpenLDAP Software 2.4 Administrator's Guide

156

16. Using TLS

OpenLDAP clients and servers are capable of using the Transport Layer Security (TLS) framework to provide
integrity and confidentiality protections and to support LDAP authentication using the SASL EXTERNAL
mechanism. TLS is defined in RFC4346.

Note: For generating certifcates, please reference http://www.openldap.org/fag/data/cache/185.html

16.1. TLS Certificates

TLS uses X.509 certificates to carry client and server identities. All servers are required to have valid
certificates, whereas client certificates are optional. Clients must have a valid certificate in order to
authenticate via SASL EXTERNAL. For more information on creating and managing certificates, see the
OpenSSL, GnuTLS, or MozNSS documentation, depending on which TLS implementation libraries you are
using.

16.1.1. Server Certificates

The DN of a server certificate must use the CN attribute to name the server, and the CN must carry the server's
fully qualified domain name. Additional alias names and wildcards may be present in the
subjectAltName certificate extension. More details on server certificate names are in RFC4513.

16.1.2. Client Certificates

The DN of a client certificate can be used directly as an authentication DN. Since X.509 is a part of the X.500
standard and LDAP is also based on X.500, both use the same DN formats and generally the DN in a user's
X.509 certificate should be identical to the DN of their LDAP entry. However, sometimes the DNs may not be
exactly the same, and so the mapping facility described in Mapping Authentication Identities can be applied to
these DN as well.

16.2. TLS Configuration

After obtaining the required certificates, a number of options must be configured on both the client and the
server to enable TLS and make use of the certificates. At a minimum, the clients must be configured with the
name of the file containing all of the Certificate Authority (CA) certificates it will trust. The server must be
configured with the CA certificates and also its own server certificate and private key.

Typically a single CA will have issued the server certificate and all of the trusted client certificates, so the
server only needs to trust that one signing CA. However, a client may wish to connect to a variety of secure

servers managed by different organizations, with server certificates generated by many different CAs. As
such, a client is likely to need a list of many different trusted CAs in its configuration.

16.2.1. Server Configuration

The configuration directives for slapd belong in the global directives section of slapd.conf(5).

157

http://www.rfc-editor.org/rfc/rfc4346.txt
http://www.openldap.org/faq/data/cache/185.html
http://www.openssl.org/
http://www.gnu.org/software/gnutls/
http://developer.mozilla.org/en/NSS
http://www.rfc-editor.org/rfc/rfc4513.txt

OpenLDAP Software 2.4 Administrator's Guide
16.2.1.1. TLSCACertificateFile <filename>

This directive specifies the PEM-format file containing certificates for the CA's that slapd will trust. The
certificate for the CA that signed the server certificate must be included among these certificates. If the
signing CA was not a top-level (root) CA, certificates for the entire sequence of CA's from the signing CA to
the top-level CA should be present. Multiple certificates are simply appended to the file; the order is not
significant.

16.2.1.2. TLSCACertificatePath <path>

This directive specifies the path of a directory that contains individual CA certificates in separate files. In
addition, this directory must be specially managed using the OpenSSL c_rehash utility. When using this
feature, the OpenSSL library will attempt to locate certificate files based on a hash of their name and serial
number. The c_rehash utility is used to generate symbolic links with the hashed names that point to the actual
certificate files. As such, this option can only be used with a filesystem that actually supports symbolic links.
In general, it is simpler to use the TLSCACertificateFile directive instead.

When using Mozilla NSS, this directive can be used to specify the path of the directory containing the NSS
certificate and key database files. The certutil command can be used to add a CA certificate:

certutil -d <path> -A -n "name of CA cert" -t CT,, —-a —-i /path/to/cacertfile.pem

This command will add a CA certficate stored in the PEM (ASCII) formatted
file named /path/to/cacertfile.pem. -t CT, , means that the certificate is
trusted to be a CA issuing certs for use in TLS clients and servers.

16.2.1.3. TLSCertificateFile <filename>

This directive specifies the file that contains the slapd server certificate. Certificates are generally public
information and require no special protection.

When using Mozilla NSS, if using a cert/key database (specified with TLSCACertificatePath), this
directive specifies the name of the certificate to use:

TLSCertificateFile Server-Cert

If using a token other than the internal built in token, specify the
token name first, followed by a colon:

TLSCertificateFile my hardware device:Server-Cert
Use certutil -L to list the certificates by name:
certutil -d /path/to/certdbdir -L

16.2.1.4. TLSCertificateKeyFile <filename>

This directive specifies the file that contains the private key that matches the certificate stored in the
TLSCertificateFile file. Private keys themselves are sensitive data and are usually password encrypted
for protection. However, the current implementation doesn't support encrypted keys so the key must not be
encrypted and the file itself must be protected carefully.

158

OpenLDAP Software 2.4 Administrator's Guide

When using Mozilla NSS, this directive specifies the name of a file that contains the password for the key for
the certificate specified with TLSCertificateFile. The modutil command can be used to turn off
password protection for the cert/key database. For example, if TLSCACertificatePath specifes
/etc/openldap/certdb as the location of the cert/key database, use modutil to change the password to the empty
string:

modutil -dbdir /etc/openldap/certdb -changepw 'NSS Certificate DB'

You must have the old password, if any. Ignore the WARNING about the running
browser. Press 'Enter' for the new password.

16.2.1.5. TLSCipherSuite <cipher-suite-spec>

This directive configures what ciphers will be accepted and the preference order. <cipher-suite—-spec>
should be a cipher specification for OpenSSL. You can use the command

openssl ciphers -v ALL
to obtain a verbose list of available cipher specifications.

Besides the individual cipher names, the specifiers HIGH, MEDIUM, LOW, EXPORT, and EXPORT40 may be
helpful, along with TL.Sv1, SSLv3, and SSLv2.

To obtain the list of ciphers in GnuTLS use:
gnutls-cli -1

When using Mozilla NSS, the OpenSSL cipher suite specifications are used and translated into the format
used internally by Mozilla NSS. There isn't an easy way to list the cipher suites from the command line. The
authoritative list is in the source code for Mozilla NSS in the file sslinfo.c in the structure

static const SSLCipherSuiteInfo suiteInfol]
16.2.1.6. TLSRandFile <filename>

This directive specifies the file to obtain random bits from when /dev/urandom is not available. If the
system provides /dev/urandom then this option is not needed, otherwise a source of random data must be
configured. Some systems (e.g. Linux) provide /dev/urandom by default, while others (e.g. Solaris)
require the installation of a patch to provide it, and others may not support it at all. In the latter case, EGD or
PRNGD should be installed, and this directive should specify the name of the EGD/PRNGD socket. The
environment variable RANDF ILE can also be used to specify the filename. Also, in the absence of these
options, the . rnd file in the slapd user's home directory may be used if it exists. To use the . rnd file, just
create the file and copy a few hundred bytes of arbitrary data into the file. The file is only used to provide a
seed for the pseudo-random number generator, and it doesn't need very much data to work.

This directive is ignored with GnuTLS and Mozilla NSS.

16.2.1.7. TLSDHParamFile <filename>

This directive specifies the file that contains parameters for Diffie-Hellman ephemeral key exchange. This is
required in order to use DHE-based cipher suites, including all DSA-based suites (i.e.

159

OpenLDAP Software 2.4 Administrator's Guide

TLSCertificateKeyFile points to a DSA key), and RSA when the 'key encipherment' key usage is not
specified in the certificate. Parameters can be generated using the following command

openssl dhparam [-dsaparam] -out <filename> <numbits> or
certtool --generate-dh-params --bits <numbits> --outfile <filename>

This directive is ignored with Mozilla NSS.
16.2.1.8. TLSECName <name>

This directive specifies the curve to use for Elliptic Curve Diffie-Hellman ephemeral key exchange. This is
required in order to use ECDHE-based cipher suites in OpenSSL. The names of supported curves may be
shown using the following command

openssl ecparam —-list_curves

This directive is not used for GnuTLS and is ignored with Mozilla NSS. For GnuTLS the curves may be
specified in the ciphersuite.

16.2.1.9. TLSVerifyClient { never | allow | try | demand }

This directive specifies what checks to perform on client certificates in an incoming TLS session, if any. This
option is set to never by default, in which case the server never asks the client for a certificate. With a
setting of allow the server will ask for a client certificate; if none is provided the session proceeds normally.
If a certificate is provided but the server is unable to verify it, the certificate is ignored and the session
proceeds normally, as if no certificate had been provided. With a setting of t ry the certificate is requested,
and if none is provided, the session proceeds normally. If a certificate is provided and it cannot be verified, the
session is immediately terminated. With a setting of demand the certificate is requested and a valid certificate
must be provided, otherwise the session is immediately terminated.

Note: The server must request a client certificate in order to use the SASL EXTERNAL authentication
mechanism with a TLS session. As such, a non-default TLSVerifyClient setting must be configured
before SASL EXTERNAL authentication may be attempted, and the SASL EXTERNAL mechanism will
only be offered to the client if a valid client certificate was received.

16.2.2. Client Configuration

Most of the client configuration directives parallel the server directives. The names of the directives are
different, and they go into Idap.conf(5) instead of slapd.conf(5), but their functionality is mostly the same.
Also, while most of these options may be configured on a system-wide basis, they may all be overridden by
individual users in their ./daprc files.

The LDAP Start TLS operation is used in LDAP to initiate TLS negotiation. All OpenLDAP command line
tools support a —Z and —Z7Z flag to indicate whether a Start TLS operation is to be issued. The latter flag
indicates that the tool is to cease processing if TLS cannot be started while the former allows the command to
continue.

In LDAPvV2 environments, TLS is normally started using the LDAP Secure URI scheme (1daps://) instead

of the normal LDAP URI scheme (1dap://). OpenLDAP command line tools allow either scheme to used
with the —H flag and with the URT ldap.conf(5) option.

160

OpenLDAP Software 2.4 Administrator's Guide
16.2.2.1. TLS_CACERT <filename>

This is equivalent to the server's TLSCACertificateFile option. As noted in the TLS Configuration
section, a client typically may need to know about more CAs than a server, but otherwise the same
considerations apply.

16.2.2.2. TLS_CACERTDIR <path>

This is equivalent to the server's TLSCACertificatePath option. The specified directory must be
managed with the OpenSSL c_rehash utility as well. If using Mozilla NSS, <path> may contain a cert/key
database.

16.2.2.3. TLS_CERT <filename>

This directive specifies the file that contains the client certificate. This is a user-only directive and can only be
specified in a user's .ldaprc file.

When using Mozilla NSS, if using a cert/key database (specified with TLS_CACERTDIR), this directive
specifies the name of the certificate to use:

TLS_CERT Certificate for Sam Carter

If using a token other than the internal built in token, specify the
token name first, followed by a colon:

TLS_CERT my hardware device:Certificate for Sam Carter
Use certutil -L to list the certificates by name:
certutil -d /path/to/certdbdir -L

16.2.2.4. TLS_KEY <filename>

This directive specifies the file that contains the private key that matches the certificate stored in the
TLS_CERT file. The same constraints mentioned for TLSCertificateKeyFile apply here. This is also a
user-only directive.

16.2.2.5. TLS_RANDFILE <filename>
This directive is the same as the server's TLSRandFile option.
16.2.2.6. TLS_REQCERT { never | allow | try | demand }

This directive is equivalent to the server's TLSVerifyClient option. However, for clients the default
value is demand and there generally is no good reason to change this setting.

161

OpenLDAP Software 2.4 Administrator's Guide

162

17. Constructing a Distributed Directory Service

For many sites, running one or more slapd(8) that hold an entire subtree of data is sufficient. But often it is
desirable to have one slapd refer to other directory services for a certain part of the tree (which may or may
not be running slapd).

slapd supports subordinate and superior knowledge information. Subordinate knowledge information is held
in referral objects (RFC3296).

17.1. Subordinate Knowledge Information

Subordinate knowledge information may be provided to delegate a subtree. Subordinate knowledge
information is maintained in the directory as a special referral object at the delegate point. The referral object
acts as a delegation point, gluing two services together. This mechanism allows for hierarchical directory
services to be constructed.

A referral object has a structural object class of referral and has the same Distinguished Name as the
delegated subtree. Generally, the referral object will also provide the auxiliary object class
extensibleObject. This allows the entry to contain appropriate Relative Distinguished Name values.
This is best demonstrated by example.

If the server a .example.net holds dc=example, dc=net and wished to delegate the subtree
ou=subtree, dc=example, dc=net to another server b.example . net, the following named referral
object would be added to a .example.net:

dn: dc=subtree,dc=example, dc=net

objectClass: referral

objectClass: extensibleObject

dc: subtree

ref: ldap://b.example.net/dc=subtree,dc=example, dc=net

The server uses this information to generate referrals and search continuations to subordinate servers.

For those familiar with X.500, a named referral object is similar to an X.500 knowledge reference held in a
subr DSE.

17.2. Superior Knowledge Information

Superior knowledge information may be specified using the referral directive. The value is a list of URIs
referring to superior directory services. For servers without immediate superiors, such as for
a.example.net in the example above, the server can be configured to use a directory service with global
knowledge, such as the OpenLDAP Root Service (http://www.openldap.org/faq/index.cgi?file=393).

referral ldap://root.openldap.org/

However, as a.example.net is the immediate superior to b . example.net, b.example.net would be
configured as follows:

referral ldap://a.example.net/

163

http://www.rfc-editor.org/rfc/rfc3296.txt
http://www.openldap.org/faq/index.cgi?file=393

OpenLDAP Software 2.4 Administrator's Guide

The server uses this information to generate referrals for operations acting upon entries not within or
subordinate to any of the naming contexts held by the server.

For those familiar with X.500, this use of the ref attribute is similar to an X.500 knowledge reference held in
a Supr DSE.

17.3. The ManageDsalT Control

Adding, modifying, and deleting referral objects is generally done using ldapmodify(1) or similar tools which
support the ManageDsalT control. The ManageDsalT control informs the server that you intend to manage the
referral object as a regular entry. This keeps the server from sending a referral result for requests which
interrogate or update referral objects.
The ManageDsalT control should not be specified when managing regular entries.
The —M option of ldapmodify(1) (and other tools) enables ManageDsalT. For example:

ldapmodify -M —-f referral.ldif -x -D "cn=Manager,dc=example,dc=net" -W

or with ldapsearch(1):

ldapsearch -M -b "dc=example,dc=net" -x " (objectclass=referral)" '*' ref

Note: the ref attribute is operational and must be explicitly requested when desired in search results.

Note: the use of referrals to construct a Distributed Directory Service is extremely clumsy and not well
supported by common clients. If an existing installation has already been built using referrals, the use of the
chain overlay to hide the referrals will greatly improve the usability of the Directory system. A better
approach would be to use explicitly defined local and proxy databases in subordinate configurations to
provide a seamless view of the Distributed Directory.

Note: LDAP operations, even subtree searches, normally access only one database. That can be changed by
gluing databases together with the subordinate/olcSubordinate keyword. Please see slapd.conf(5) and
slapd-config(5).

164

18. Replication

Replicated directories are a fundamental requirement for delivering a resilient enterprise deployment.

OpenLDAP has various configuration options for creating a replicated directory. In previous releases,
replication was discussed in terms of a master server and some number of slave servers. A master accepted
directory updates from other clients, and a slave only accepted updates from a (single) master. The replication
structure was rigidly defined and any particular database could only fulfill a single role, either master or slave.

As OpenLDAP now supports a wide variety of replication topologies, these terms have been deprecated in
favor of provider and consumer: A provider replicates directory updates to consumers; consumers receive
replication updates from providers. Unlike the rigidly defined master/slave relationships, provider/consumer
roles are quite fluid: replication updates received in a consumer can be further propagated by that consumer to
other servers, so a consumer can also act simultaneously as a provider. Also, a consumer need not be an actual
LDAP server; it may be just an LDAP client.

The following sections will describe the replication technology and discuss the various replication options that
are available.

18.1. Replication Technology

18.1.1. LDAP Sync Replication

The LDAP Sync Replication engine, syncrepl for short, is a consumer-side replication engine that enables the
consumer LDAP server to maintain a shadow copy of a DIT fragment. A syncrepl engine resides at the
consumer and executes as one of the slapd(8) threads. It creates and maintains a consumer replica by
connecting to the replication provider to perform the initial DIT content load followed either by periodic
content polling or by timely updates upon content changes.

Syncrepl uses the LDAP Content Synchronization protocol (or LDAP Sync for short) as the replica
synchronization protocol. LDAP Sync provides a stateful replication which supports both pull-based and
push-based synchronization and does not mandate the use of a history store. In pull-based replication the
consumer periodically polls the provider for updates. In push-based replication the consumer listens for
updates that are sent by the provider in realtime. Since the protocol does not require a history store, the
provider does not need to maintain any log of updates it has received (Note that the syncrepl engine is
extensible and additional replication protocols may be supported in the future.).

Syncrepl keeps track of the status of the replication content by maintaining and exchanging synchronization
cookies. Because the syncrepl consumer and provider maintain their content status, the consumer can poll the
provider content to perform incremental synchronization by asking for the entries required to make the
consumer replica up-to-date with the provider content. Syncrepl also enables convenient management of
replicas by maintaining replica status. The consumer replica can be constructed from a consumer-side or a
provider-side backup at any synchronization status. Syncrepl can automatically resynchronize the consumer
replica up-to-date with the current provider content.

Syncrepl supports both pull-based and push-based synchronization. In its basic refreshOnly synchronization
mode, the provider uses pull-based synchronization where the consumer servers need not be tracked and no
history information is maintained. The information required for the provider to process periodic polling
requests is contained in the synchronization cookie of the request itself. To optimize the pull-based

165

http://www.openldap.org/

OpenLDAP Software 2.4 Administrator's Guide

synchronization, syncrepl utilizes the present phase of the LDAP Sync protocol as well as its delete phase,
instead of falling back on frequent full reloads. To further optimize the pull-based synchronization, the
provider can maintain a per-scope session log as a history store. In its refreshAndPersist mode of
synchronization, the provider uses a push-based synchronization. The provider keeps track of the consumer
servers that have requested a persistent search and sends them necessary updates as the provider replication
content gets modified.

With syncrepl, a consumer server can create a replica without changing the provider's configurations and
without restarting the provider server, if the consumer server has appropriate access privileges for the DIT
fragment to be replicated. The consumer server can stop the replication also without the need for provider-side
changes and restart.

Syncrepl supports partial, sparse, and fractional replications. The shadow DIT fragment is defined by a
general search criteria consisting of base, scope, filter, and attribute list. The replica content is also subject to
the access privileges of the bind identity of the syncrepl replication connection.

18.1.1.1. The LDAP Content Synchronization Protocol

The LDAP Sync protocol allows a client to maintain a synchronized copy of a DIT fragment. The LDAP Sync
operation is defined as a set of controls and other protocol elements which extend the LDAP search operation.
This section introduces the LDAP Content Sync protocol only briefly. For more information, refer to
RFC4533.

The LDAP Sync protocol supports both polling and listening for changes by defining two respective
synchronization operations: refreshOnly and refreshAndPersist. Polling is implemented by the refreshOnly
operation. The consumer polls the provider using an LDAP Search request with an LDAP Sync control
attached. The consumer copy is synchronized to the provider copy at the time of polling using the information
returned in the search. The provider finishes the search operation by returning SearchResultDone at the end of
the search operation as in the normal search. Listening is implemented by the refreshAndPersist operation. As
the name implies, it begins with a search, like refreshOnly. Instead of finishing the search after returning all
entries currently matching the search criteria, the synchronization search remains persistent in the provider.
Subsequent updates to the synchronization content in the provider cause additional entry updates to be sent to
the consumer.

The refreshOnly operation and the refresh stage of the refreshAndPersist operation can be performed with a
present phase or a delete phase.

In the present phase, the provider sends the consumer the entries updated within the search scope since the last
synchronization. The provider sends all requested attributes, be they changed or not, of the updated entries.
For each unchanged entry which remains in the scope, the provider sends a present message consisting only of
the name of the entry and the synchronization control representing state present. The present message does not
contain any attributes of the entry. After the consumer receives all update and present entries, it can reliably
determine the new consumer copy by adding the entries added to the provider, by replacing the entries
modified at the provider, and by deleting entries in the consumer copy which have not been updated nor
specified as being present at the provider.

The transmission of the updated entries in the delete phase is the same as in the present phase. The provider
sends all the requested attributes of the entries updated within the search scope since the last synchronization
to the consumer. In the delete phase, however, the provider sends a delete message for each entry deleted from
the search scope, instead of sending present messages. The delete message consists only of the name of the
entry and the synchronization control representing state delete. The new consumer copy can be determined by

166

http://www.rfc-editor.org/rfc/rfc4533.txt

OpenLDAP Software 2.4 Administrator's Guide

adding, modifying, and removing entries according to the synchronization control attached to the
SearchResultEntry message.

In the case that the LDAP Sync provider maintains a history store and can determine which entries are scoped
out of the consumer copy since the last synchronization time, the provider can use the delete phase. If the
provider does not maintain any history store, cannot determine the scoped-out entries from the history store,
or the history store does not cover the outdated synchronization state of the consumer, the provider should use
the present phase. The use of the present phase is much more efficient than a full content reload in terms of
the synchronization traffic. To reduce the synchronization traffic further, the LDAP Sync protocol also
provides several optimizations such as the transmission of the normalized ent ryUUIDs and the transmission
of multiple ent ryUUIDs in a single syncldSet message.

At the end of the refreshOnly synchronization, the provider sends a synchronization cookie to the consumer as
a state indicator of the consumer copy after the synchronization is completed. The consumer will present the
received cookie when it requests the next incremental synchronization to the provider.

When refreshAndPersist synchronization is used, the provider sends a synchronization cookie at the end of the
refresh stage by sending a Sync Info message with refreshDone=TRUE. It also sends a synchronization
cookie by attaching it to SearchResultEntry messages generated in the persist stage of the synchronization
search. During the persist stage, the provider can also send a Sync Info message containing the
synchronization cookie at any time the provider wants to update the consumer-side state indicator.

In the LDAP Sync protocol, entries are uniquely identified by the ent ryUUID attribute value. It can function
as a reliable identifier of the entry. The DN of the entry, on the other hand, can be changed over time and
hence cannot be considered as the reliable identifier. The ent ryUUID is attached to each SearchResultEntry
or SearchResultReference as a part of the synchronization control.

18.1.1.2. Syncrepl Details

The syncrepl engine utilizes both the refreshOnly and the refreshAndPersist operations of the LDAP Sync
protocol. If a syncrepl specification is included in a database definition, slapd(8) launches a syncrepl engine as
a slapd(8) thread and schedules its execution. If the refreshOnly operation is specified, the syncrepl engine
will be rescheduled at the interval time after a synchronization operation is completed. If the
refreshAndPersist operation is specified, the engine will remain active and process the persistent
synchronization messages from the provider.

The syncrepl engine utilizes both the present phase and the delete phase of the refresh synchronization. It is
possible to configure a session log in the provider which stores the ent ryUUIDs of a finite number of entries
deleted from a database. Multiple replicas share the same session log. The syncrepl engine uses the delete
phase if the session log is present and the state of the consumer server is recent enough that no session log
entries are truncated after the last synchronization of the client. The syncrepl engine uses the present phase if
no session log is configured for the replication content or if the consumer replica is too outdated to be covered
by the session log. The current design of the session log store is memory based, so the information contained
in the session log is not persistent over multiple provider invocations. It is not currently supported to access
the session log store by using LDAP operations. It is also not currently supported to impose access control to
the session log.

As a further optimization, even in the case the synchronization search is not associated with any session log,
no entries will be transmitted to the consumer server when there has been no update in the replication context.

167

OpenLDAP Software 2.4 Administrator's Guide

The syncrepl engine, which is a consumer-side replication engine, can work with any backends. The LDAP
Sync provider can be configured as an overlay on any backend, but works best with the back-bdb, back-hdb,
or back-mdb backends.

The LDAP Sync provider maintains a context CSN for each database as the current synchronization state
indicator of the provider content. It is the largest ent ryCSN in the provider context such that no transactions
for an entry having smaller ent ryCSN value remains outstanding. The context CSN could not just be set to
the largest issued ent ryCSN because ent ryCSN is obtained before a transaction starts and transactions are
not committed in the issue order.

The provider stores the context CSN of a context in the context CSN attribute of the context suffix entry.
The attribute is not written to the database after every update operation though; instead it is maintained
primarily in memory. At database start time the provider reads the last saved context CSN into memory and
uses the in-memory copy exclusively thereafter. By default, changes to the context CSN as a result of
database updates will not be written to the database until the server is cleanly shut down. A checkpoint facility
exists to cause the context CSN to be written out more frequently if desired.

Note that at startup time, if the provider is unable to read a context CSN from the suffix entry, it will scan
the entire database to determine the value, and this scan may take quite a long time on a large database. When
a contextCSN value is read, the database will still be scanned for any ent ryCSN values greater than it, to
make sure the context CSN value truly reflects the greatest committed ent ryCSN in the database. On
databases which support inequality indexing, setting an eq index on the ent ryCSN attribute and configuring
contextCSN checkpoints will greatly speed up this scanning step.

If no contextCSN can be determined by reading and scanning the database, a new value will be generated.
Also, if scanning the database yielded a greater ent ryCSN than was previously recorded in the suffix entry's
contextCSN attribute, a checkpoint will be immediately written with the new value.

The consumer also stores its replica state, which is the provider's context CSN received as a synchronization
cookie, in the context CSN attribute of the suffix entry. The replica state maintained by a consumer server is
used as the synchronization state indicator when it performs subsequent incremental synchronization with the
provider server. It is also used as a provider-side synchronization state indicator when it functions as a
secondary provider server in a cascading replication configuration. Since the consumer and provider state
information are maintained in the same location within their respective databases, any consumer can be
promoted to a provider (and vice versa) without any special actions.

Because a general search filter can be used in the syncrepl specification, some entries in the context may be
omitted from the synchronization content. The syncrepl engine creates a glue entry to fill in the holes in the
replica context if any part of the replica content is subordinate to the holes. The glue entries will not be
returned in the search result unless ManageDsalT control is provided.

Also as a consequence of the search filter used in the syncrepl specification, it is possible for a modification to
remove an entry from the replication scope even though the entry has not been deleted on the provider.
Logically the entry must be deleted on the consumer but in refreshOnly mode the provider cannot detect and

propagate this change without the use of the session log on the provider.

For configuration, please see the Syncrepl section.

168

OpenLDAP Software 2.4 Administrator's Guide

18.2. Deployment Alternatives

While the LDAP Sync specification only defines a narrow scope for replication, the OpenLDAP
implementation is extremely flexible and supports a variety of operating modes to handle other scenarios not
explicitly addressed in the spec.

18.2.1. Delta-syncrepl replication
¢ Disadvantages of LDAP Sync replication:

LDAP Sync replication is an object-based replication mechanism. When any attribute value in a replicated
object is changed on the provider, each consumer fetches and processes the complete changed object,
including both the changed and unchanged attribute values during replication. One advantage of this
approach is that when multiple changes occur to a single object, the precise sequence of those changes need
not be preserved; only the final state of the entry is significant. But this approach may have drawbacks when
the usage pattern involves single changes to multiple objects.

For example, suppose you have a database consisting of 102,400 objects of 1 KB each. Further, suppose you
routinely run a batch job to change the value of a single two-byte attribute value that appears in each of the
102,400 objects on the master. Not counting LDAP and TCP/IP protocol overhead, each time you run this job
each consumer will transfer and process 100 MB of data to process 200KB of changes!

99.98% of the data that is transmitted and processed in a case like this will be redundant, since it represents
values that did not change. This is a waste of valuable transmission and processing bandwidth and can cause
an unacceptable replication backlog to develop. While this situation is extreme, it serves to demonstrate a very
real problem that is encountered in some LDAP deployments.

e Where Delta-syncrepl comes in:

Delta-syncrepl, a changelog-based variant of syncrepl, is designed to address situations like the one described
above. Delta-syncrepl works by maintaining a changelog of a selectable depth in a separate database on the
provider. The replication consumer checks the changelog for the changes it needs and, as long as the
changelog contains the needed changes, the consumer fetches the changes from the changelog and applies
them to its database. If, however, a replica is too far out of sync (or completely empty), conventional syncrepl
is used to bring it up to date and replication then switches back to the delta-syncrepl mode.

Note: since the database state is stored in both the changelog DB and the main DB on the provider, it is
important to backup/restore both the changelog DB and the main DB using slapcat/slapadd when restoring a
DB or copying it to another machine.

For configuration, please see the Delta-syncrepl section.

18.2.2. N-Way Multi-Master replication

Multi-Master replication is a replication technique using Syncrepl to replicate data to multiple provider
("Master") Directory servers.

169

OpenLDAP Software 2.4 Administrator's Guide
18.2.2.1. Valid Arguments for Multi-Master replication

e If any provider fails, other providers will continue to accept updates

® Avoids a single point of failure

® Providers can be located in several physical sites i.e. distributed across the network/globe.
® Good for Automatic failover/High Availability

18.2.2.2. Invalid Arguments for Multi-Master replication
(These are often claimed to be advantages of Multi-Master replication but those claims are false):

¢ It has NOTHING to do with load balancing

¢ Providers must propagate writes to all the other servers, which means the network traffic and write
load spreads across all of the servers the same as for single-master.

e Server utilization and performance are at best identical for Multi-Master and Single-Master
replication; at worst Single-Master is superior because indexing can be tuned differently to optimize
for the different usage patterns between the provider and the consumers.

18.2.2.3. Arguments against Multi-Master replication

® Breaks the data consistency guarantees of the directory model

e http://www.openldap.org/fag/data/cache/1240.html

e If connectivity with a provider is lost because of a network partition, then "automatic failover" can
just compound the problem

¢ Typically, a particular machine cannot distinguish between losing contact with a peer because that
peer crashed, or because the network link has failed

e If a network is partitioned and multiple clients start writing to each of the "masters" then
reconciliation will be a pain; it may be best to simply deny writes to the clients that are partitioned
from the single provider

For configuration, please see the N-Way Multi-Master section below

18.2.3. MirrorMode replication

MirrorMode is a hybrid configuration that provides all of the consistency guarantees of single-master
replication, while also providing the high availability of multi-master. In MirrorMode two providers are set up
to replicate from each other (as a multi-master configuration), but an external frontend is employed to direct
all writes to only one of the two servers. The second provider will only be used for writes if the first provider
crashes, at which point the frontend will switch to directing all writes to the second provider. When a crashed
provider is repaired and restarted it will automatically catch up to any changes on the running provider and
resync.

18.2.3.1. Arguments for MirrorMode

® Provides a high-availability (HA) solution for directory writes (replicas handle reads)

® As long as one provider is operational, writes can safely be accepted

¢ Provider nodes replicate from each other, so they are always up to date and can be ready to take over
(hot standby)

¢ Syncrepl also allows the provider nodes to re-synchronize after any downtime

170

http://www.openldap.org/faq/data/cache/1240.html

OpenLDAP Software 2.4 Administrator's Guide
18.2.3.2. Arguments against MirrorMode

e MirrorMode is not what is termed as a Multi-Master solution. This is because writes have to go to just
one of the mirror nodes at a time
® MirrorMode can be termed as Active-Active Hot-Standby, therefore an external server (slapd in proxy
mode) or device (hardware load balancer) is needed to manage which provider is currently active
® Backups are managed slightly differently
¢ If backing up the Berkeley database itself and periodically backing up the transaction log
files, then the same member of the mirror pair needs to be used to collect logfiles until the
next database backup is taken

For configuration, please see the MirrorMode section below

18.2.4. Syncrepl Proxy Mode

While the LDAP Sync protocol supports both pull- and push-based replication, the push mode
(refreshAndPersist) must still be initiated from the consumer before the provider can begin pushing changes.
In some network configurations, particularly where firewalls restrict the direction in which connections can be
made, a provider-initiated push mode may be needed.

This mode can be configured with the aid of the LDAP Backend (Backends and slapd-Idap(8)). Instead of
running the syncrepl engine on the actual consumer, a slapd-ldap proxy is set up near (or collocated with) the
provider that points to the consumer, and the syncrepl engine runs on the proxy.

For configuration, please see the Syncrepl Proxy section.
18.2.4.1. Replacing Slurpd

The old slurpd mechanism only operated in provider-initiated push mode. Slurpd replication was deprecated
in favor of Syncrepl replication and has been completely removed from OpenLDAP 2.4.

The slurpd daemon was the original replication mechanism inherited from UMich's LDAP and operated in
push mode: the master pushed changes to the slaves. It was replaced for many reasons, in brief:

e It was not reliable
¢ It was extremely sensitive to the ordering of records in the replog
¢ It could easily go out of sync, at which point manual intervention was required to resync the
slave database with the master directory
¢ It wasn't very tolerant of unavailable servers. If a slave went down for a long time, the replog
could grow to a size that was too large for slurpd to process
e It only worked in push mode
e |t required stopping and restarting the master to add new slaves
e It only supported single master replication

Syncrepl has none of those weaknesses:

¢ Syncrepl is self-synchronizing; you can start with a consumer database in any state from totally empty
to fully synced and it will automatically do the right thing to achieve and maintain synchronization
¢ It is completely insensitive to the order in which changes occur
¢ It guarantees convergence between the consumer and the provider content without manual
intervention

171

OpenLDAP Software 2.4 Administrator's Guide

¢ It can resynchronize regardless of how long a consumer stays out of contact with the provider
¢ Syncrepl can operate in either direction
e Consumers can be added at any time without touching anything on the provider
e Multi-master replication is supported

18.3. Configuring the different replication types

18.3.1. Syncrepl
18.3.1.1. Syncrepl configuration

Because syncrepl is a consumer-side replication engine, the syncrepl specification is defined in slapd.conf(5)
of the consumer server, not in the provider server's configuration file. The initial loading of the replica content
can be performed either by starting the syncrepl engine with no synchronization cookie or by populating the
consumer replica by loading an LDIF file dumped as a backup at the provider.

When loading from a backup, it is not required to perform the initial loading from the up-to-date backup of the
provider content. The syncrepl engine will automatically synchronize the initial consumer replica to the
current provider content. As a result, it is not required to stop the provider server in order to avoid the replica
inconsistency caused by the updates to the provider content during the content backup and loading process.

When replicating a large scale directory, especially in a bandwidth constrained environment, it is advised to
load the consumer replica from a backup instead of performing a full initial load using syncrepl.

18.3.1.2. Set up the provider slapd
The provider is implemented as an overlay, so the overlay itself must first be configured in slapd.conf(5)
before it can be used. The provider has two primary configuration directives and two secondary directives for
when delta-syncrepl is being used. Because the LDAP Sync search is subject to access control, proper access
control privileges should be set up for the replicated content.
The two primary options to configure are the checkpoint and sessionlog behaviors.
The contextCSN checkpoint is configured by the

syncprov-checkpoint <ops> <minutes>
directive. Checkpoints are only tested after successful write operations. If <ops> operations or more than
<minutes> time has passed since the last checkpoint, a new checkpoint is performed. Checkpointing is
disabled by default.
The session log is configured by the

syncprov-sessionlog <ops>

directive, where <ops> is the maximum number of session log entries the session log can record. All write
operations (except Adds) are recorded in the log.

Note that using the session log requires searching on the entryUUID attribute. Setting an eq index on this
attribute will greatly benefit the performance of the session log on the provider.

172

OpenLDAP Software 2.4 Administrator's Guide

The reloadhint option is configured by the

syncprov-reloadhint <TRUE |FALSE>

directive. It must be set TRUE when using the accesslog overlay for delta-based syncrepl replication support.
The default is FALSE.

The nonpresent option should only be configured if the overlay is being placed on top of a log database, such
as when used with delta-syncrepl.

The nonpresent option is configured by the
syncprov—nopresent <TRUE|FALSE>

directive. This value should only be set TRUE for a syncprov instance on top of a log database (such as one
managed by the accesslog overlay). The default is FALSE.

A more complete example of the slapd.conf(5) content is thus:

database mdb

maxsize 85899345920

suffix dc=example, dc=com

rootdn dc=example, dc=com

directory /var/ldap/db

index objectclass,entryCSN, entryUUID eq

overlay syncprov
syncprov-checkpoint 100 10
syncprov-sessionlog 100

18.3.1.3. Set up the consumer slapd

The syncrepl replication is specified in the database section of slapd.conf(5) for the replica context. The
syncrepl engine is backend independent and the directive can be defined with any database type.

database mdb

maxsize 85899345920

suffix dc=example,dc=com

rootdn dc=example,dc=com

directory /var/ldap/db

index objectclass,entryCSN, entryUUID eqg

syncrepl rid=123
provider=ldap://provider.example.com:389
type=refreshOnly
interval=01:00:00:00
searchbase="dc=example, dc=com"
filter=" (objectClass=organizationalPerson)"
scope=sub
attrs="cn, sn,ou, telephoneNumber,title, 1"
schemachecking=off
bindmethod=simple
binddn="cn=syncuser,dc=example, dc=com"
credentials=secret

173

OpenLDAP Software 2.4 Administrator's Guide

In this example, the consumer will connect to the provider slapd(8) at port 389 of
Idap://provider.example.com to perform a polling (refreshOnly) mode of synchronization once a day. It will
bind as cn=syncuser, dc=example, dc=com using simple authentication with password "secret". Note
that the access control privilege of cn=syncuser, dc=example, dc=com should be set appropriately in
the provider to retrieve the desired replication content. Also the search limits must be high enough on the
provider to allow the syncuser to retrieve a complete copy of the requested content. The consumer uses the
rootdn to write to its database so it always has full permissions to write all content.

The synchronization search in the above example will search for the entries whose objectClass is
organizationalPerson in the entire subtree rooted at dc=example, dc=com. The requested attributes are cn,
sn, ou, telephoneNumber, title, and 1. The schema checking is turned off, so that the consumer
slapd(8) will not enforce entry schema checking when it processes updates from the provider slapd(8).

For more detailed information on the syncrepl directive, see the syncrepl section of The slapd Configuration
File chapter of this admin guide.

18.3.1.4. Start the provider and the consumer slapd

The provider slapd(8) is not required to be restarted. contextCSN is automatically generated as needed: it
might be originally contained in the LDIF file, generated by slapadd (8), generated upon changes in the
context, or generated when the first LDAP Sync search arrives at the provider. If an LDIF file is being loaded
which did not previously contain the contextCSN, the -w option should be used with slapadd (8) to cause it to
be generated. This will allow the server to startup a little quicker the first time it runs.

When starting a consumer slapd(8), it is possible to provide a synchronization cookie as the -c cookie
command line option in order to start the synchronization from a specific state. The cookie is a comma
separated list of name=value pairs. Currently supported syncrepl cookie fields are csn=<csn> and rid=<rid>.
<csn> represents the current synchronization state of the consumer replica. <rid> identifies a consumer
replica locally within the consumer server. It is used to relate the cookie to the syncrepl definition in
slapd.conf(5) which has the matching replica identifier. The <rid> must have no more than 3 decimal digits.
The command line cookie overrides the synchronization cookie stored in the consumer replica database.

18.3.2. Delta-syncrepl
18.3.2.1. Delta-syncrepl Provider configuration

Setting up delta-syncrepl requires configuration changes on both the master and replica servers:

Give the replica DN unlimited read access. This ACL needs to be
merged with other ACL statements, and/or moved within the scope
of a database. The "by * break" portion causes evaluation of
subsequent rules. See slapd.access (5) for details.

access to *

by dn.base="cn=replicator,dc=example,dc=com" read

by * break

#
#
#
#

Set the module path location
modulepath /usr/lib/openldap

Load the mdb backend
moduleload back_mdb.la

Load the accesslog overlay

174

OpenLDAP Software 2.4 Administrator's Guide

moduleload accesslog.la

#Load the syncprov overlay
moduleload syncprov.la

Accesslog database definitions

database mdb

suffix cn=accesslog

rootdn cn=accesslog

directory /var/lib/db/accesslog

maxsize 85899345920

index default eqg

index entryCSN, objectClass, reqkEnd, reqResult, regStart, regqDN

overlay syncprov
syncprov—nopresent TRUE
syncprov-reloadhint TRUE

Let the replica DN have limitless searches
limits dn.exact="cn=replicator,dc=example,dc=com" time.soft=unlimited time.hard=unlimited

Primary database definitions
database mdb

suffix "dc=example,dc=com"

rootdn "cn=manager,dc=example,dc=com"
maxsize 85899345920

Whatever other configuration options are desired

syncprov specific indexing
index entryCSN eqg
index entryUUID eqg

syncrepl Provider for primary db
overlay syncprov
syncprov-checkpoint 1000 60

accesslog overlay definitions for primary db

overlay accesslog

logdb cn=accesslog

logops writes

logsuccess TRUE

scan the accesslog DB every day, and purge entries older than 7 days
logpurge 07+00:00 01+00:00

Let the replica DN have limitless searches
limits dn.exact="cn=replicator,dc=example,dc=com" time.soft=unlimited time.hard=unlimited

For more information, always consult the relevant man pages (slapo-accesslog(5) and slapd.conf(5))

18.3.2.2. Delta-syncrepl Consumer configuration

Replica database configuration
database mdb

suffix "dc=example,dc=com"

rootdn "cn=manager,dc=example,dc=com"
maxsize 85899345920

Whatever other configuration bits for the replica, like indexing
that you want

175

OpenLDAP Software 2.4 Administrator's Guide

syncrepl specific indices
index entryUUID eqg

syncrepl directives

syncrepl rid=0
provider=ldap://ldapmaster.example.com:389
bindmethod=simple
binddn="cn=replicator,dc=example,dc=com"
credentials=secret
searchbase="dc=example, dc=com"
logbase="cn=accesslog"
logfilter=" (& (objectClass=auditWriteObject) (reqResult=0))"
schemachecking=on
type=refreshAndPersist
retry="60 +"
syncdata=accesslog

Refer updates to the master
updateref ldap://ldapmaster.example.com

The above configuration assumes that you have a replicator identity defined in your database that can be used
to bind to the provider. In addition, all of the databases (primary, replica, and the accesslog storage database)
should also have properly tuned DB_CONFIG files that meet your needs.

Note: An accesslog database is unique to a given master. It should never be replicated.

18.3.3. N-Way Multi-Master

For the following example we will be using 3 Master nodes. Keeping in line with
test050-syncrepl-multimaster of the OpenLDAP test suite, we will be configuring slapd(8) via cn=config

This sets up the config database:

dn: cn=config
objectClass: olcGlobal
cn: config
olcServerID: 1

dn: olcDatabase={0}config, cn=config
objectClass: olcDatabaseConfig
olcDatabase: {0O}config

0lcRootPW: secret

second and third servers will have a different olcServerID obviously:

dn: cn=config
objectClass: olcGlobal
cn: config
olcServerID: 2

dn: olcDatabase={0}config,cn=config
objectClass: olcDatabaseConfig

olcDatabase: {O}config
olcRootPW: secret

This sets up syncrepl as a provider (since these are all masters):

176

OpenLDAP Software 2.4 Administrator's Guide

dn: cn=module,cn=config

objectClass: olcModulelList

cn: module

olcModulePath: /usr/local/libexec/openldap
olcModuleload: syncprov.la

Now we setup the first Master Node (replace $URI1, $URI2 and $URI3 etc. with your actual 1dap urls):

dn: cn=config
changetype: modify
replace: olcServerID
olcServerID: 1 SURI1
olcServerID: 2 SURI2
olcServerID: 3 SURI3

dn: olcOverlay=syncprov,olcDatabase={0}config, cn=config
changetype: add

objectClass: olcOverlayConfig

objectClass: olcSyncProvConfig

olcOverlay: syncprov

dn: olcDatabase={0}config, cn=config

changetype: modify

add: olcSyncRepl

olcSyncRepl: rid=001 provider=$URI1 binddn="cn=config" bindmethod=simple
credentials=secret searchbase="cn=config" type=refreshAndPersist
retry="5 5 300 5" timeout=1l

olcSyncRepl: rid=002 provider=$URI2 binddn="cn=config" bindmethod=simple
credentials=secret searchbase="cn=config" type=refreshAndPersist
retry="5 5 300 5" timeout=1

olcSyncRepl: rid=003 provider=$URI3 binddn="cn=config" bindmethod=simple
credentials=secret searchbase="cn=config" type=refreshAndPersist
retry="5 5 300 5" timeout=1l

add: olcMirrorMode

olcMirrorMode: TRUE

Now start up the Master and a consumer/s, also add the above LDIF to the first consumer, second consumer
etc. It will then replicate en=config. You now have N-Way Multimaster on the config database.

We still have to replicate the actual data, not just the config, so add to the master (all active and configured
consumers/masters will pull down this config, as they are all syncing). Also, replace all ${} variables with
whatever is applicable to your setup:

dn: olcDatabase={1}$BACKEND, cn=config

objectClass: olcDatabaseConfig

objectClass: 0lc${BACKEND}Config

olcDatabase: {1}S$BACKEND

olcSuffix: S$BASEDN

olcDbDirectory: ./db

0lcRootDN: S$MANAGERDN

0lcRoOOtPW: S$PASSWD

olcLimits: dn.exact="$MANAGERDN" time.soft=unlimited time.hard=unlimited size.soft=unlimit

olcSyncRepl: rid=004 provider=$URI1 binddn="$MANAGERDN" bindmethod=simple
credentials=$PASSWD searchbase="$BASEDN" type=refreshOnly
interval=00:00:00:10 retry="5 5 300 5" timeout=1

olcSyncRepl: rid=005 provider=$URI2 binddn="$MANAGERDN" bindmethod=simple
credentials=$PASSWD searchbase="$BASEDN" type=refreshOnly
interval=00:00:00:10 retry="5 5 300 5" timeout=1

177

OpenLDAP Software 2.4 Administrator's Guide

olcSyncRepl: rid=006 provider=$URI3 binddn="$MANAGERDN" bindmethod=simple
credentials=$PASSWD searchbase="$BASEDN" type=refreshOnly
interval=00:00:00:10 retry="5 5 300 5" timeout=1

olcMirrorMode: TRUE

dn: olcOverlay=syncprov,olcDatabase={1}${BACKEND},cn=config
changetype: add

objectClass: olcOverlayConfig

objectClass: olcSyncProvConfig

olcOverlay: syncprov

Note: All of your servers' clocks must be tightly synchronized using e.g. NTP http://www.ntp.org/, atomic
clock, or some other reliable time reference.

Note: As stated in slapd-config(5), URLs specified in olcSyncRepl directives are the URLs of the servers from
which to replicate. These must exactly match the URLSs slapd listens on (-2 in Command-Line Options).
Otherwise slapd may attempt to replicate from itself, causing a loop.

18.3.4. MirrorMode

MirrorMode configuration is actually very easy. If you have ever setup a normal slapd syncrepl provider, then
the only change is the following two directives:

mirrormode on
serverID 1

Note: You need to make sure that the serverID of each mirror node is different and add it as a global
configuration option.

18.3.4.1. Mirror Node Configuration
The first step is to configure the syncrepl provider the same as in the Set up the provider slapd section.

Here's a specific cut down example using LDAP Sync Replication in refreshAndPersist mode:

MirrorMode node 1:

Global section
serverID 1
database section

syncrepl directive

syncrepl rid=001
provider=ldap://ldap-sid2.example.com
bindmethod=simple
binddn="cn=mirrormode, dc=example, dc=com"
credentials=mirrormode
searchbase="dc=example, dc=com"
schemachecking=on
type=refreshAndPersist
retry="60 +"

mirrormode on

178

http://www.ntp.org/

OpenLDAP Software 2.4 Administrator's Guide

MirrorMode node 2:

Global section
serverID 2
database section

syncrepl directive

syncrepl rid=001
provider=ldap://ldap-sidl.example.com
bindmethod=simple
binddn="cn=mirrormode, dc=example, dc=comn"
credentials=mirrormode
searchbase="dc=example, dc=com"
schemachecking=on
type=refreshAndPersist
retry="60 +"

mirrormode on

It's simple really; each MirrorMode node is setup exactly the same, except that the serverID is unique, and
each consumer is pointed to the other server.

18.3.4.1.1. Failover Configuration

There are generally 2 choices for this; 1. Hardware proxies/load-balancing or dedicated proxy software, 2.
using a Back-LDAP proxy as a syncrepl provider

A typical enterprise example might be:

Data Center A i Data Center B
Mirroriiode [‘- —j 1__‘———______ L _____——-"r; :j Mirraridode
T ; -
———
e Each LB péinis to T,
Load Balancer (N the same Mimoriods SR = Baiancer
MNode at any time.
Chaining Overlay ~_» L ________..f I -
"_______..-' ' HH'“—-.‘ Jil____.--- ~—
r. .] [—— I N I _.] I]
L [- : . _— - .
. i o Feplica Pool
Replica Ponl ‘““‘-»h ______.,-"'-* ‘“"-»R -
Ta oy & 504 of total writes Ty A
G O SN
Load Baknoer ajl"'lm IJ#-SITE Lozl Biakaroar Clients
— A : - s
e - """'\-\-.._____ ‘T i
2 8 L L=
[—
h ' Clients S

Figure X.Y: MirrorMode in a Dual Data Center Configuration

179

OpenLDAP Software 2.4 Administrator's Guide

18.3.4.1.2. Normal Consumer Configuration

This is exactly the same as the Set up the consumer slapd section. It can either setup in normal syncrepl
replication mode, or in delta-syncrepl replication mode.

18.3.4.2. MirrorMode Summary

You will now have a directory architecture that provides all of the consistency guarantees of single-master
replication, while also providing the high availability of multi-master replication.

18.3.5. Syncrepl Proxy

Push Based Replication
(replacing slurpd)

Primary directory also
contains back-ldap
databases that replicate
from the Master directory
and push out changes to

Master/Provider

the replicas
/ __.-_ Replicas are readonly, but
— .:-_—_—--.'ﬁ [S— 1 referrals can be handled
’ - [] by clients or using the
~ S) chaining overlay.

Replicas
Figure X.Y: Replacing slurpd

The following example is for a self-contained push-based replication solution:

FHAFFHE A A R
Standard OpenLDAP Master/Provider
FHEF A A A R R R R

include /usr/local/etc/openldap/schema/core.schema

include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/nis.schema

include /usr/local/etc/openldap/schema/inetorgperson.schema
include /usr/local/etc/openldap/slapd.acl

modulepath /usr/local/libexec/openldap
moduleload back_mdb.la

180

OpenLDAP Software 2.4 Administrator's Guide

moduleload syncprov.la
moduleload back_monitor.la
moduleload Dback_ldap.la

pidfile /usr/local/var/slapd.pid
argsfile /usr/local/var/slapd.args
loglevel sync stats

database mdb

suffix "dc=suretecsystems, dc=com"
directory /usr/local/var/openldap—-data
maxsize 85899345920

checkpoint 1024 5

index objectClass eq

rest of indexes

index default sub

rootdn "cn=admin, dc=suretecsystems, dc=com"
rootpw testing

syncprov specific indexing
index entryCSN eq
index entryUUID eqg

syncrepl Provider for primary db
overlay syncprov
syncprov-checkpoint 1000 60

Let the replica DN have limitless searches
limits dn.exact="cn=replicator,dc=suretecsystems,dc=com" time.soft=unlimited time.hard=

database monitor
database config
rootpw testing

SR i i
Consumer Proxy that pulls in data via Syncrepl and pushes out via slapd-ldap
FH A 4

database ldap
ignore conflicts with other databases, as we need to push out to same suffix
hidden on

suffix "dc=suretecsystems, dc=com"
rootdn "cn=slapd-ldap"

uri ldap://localhost:9012/
lastmod on

We don't need any access to this DSA
restrict all

acl-bind bindmethod=simple
binddn="cn=replicator,dc=suretecsystems, dc=com"

credentials=testing

syncrepl rid=001
provider=ldap://localhost:9011/

181

OpenLDAP Software 2.4 Administrator's Guide

binddn="cn=replicator,dc=suretecsystems, dc=com"
bindmethod=simple

credentials=testing
searchbase="dc=suretecsystems, dc=com"
type=refreshAndPersist

retry="5 5 300 5"

overlay syncprov
A replica configuration for this type of setup could be:

FHAF A A R A R S
Standard OpenLDAP Slave without Syncrepl
S i i i

include /usr/local/etc/openldap/schema/core.schema

include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/nis.schema

include /usr/local/etc/openldap/schema/inetorgperson.schema
include /usr/local/etc/openldap/slapd.acl

modulepath /usr/local/libexec/openldap
moduleload back_mdb.la

moduleload syncprov.la

moduleload back_monitor.la

moduleload back_ldap.la

pidfile /usr/local/var/slapd.pid

argsfile /usr/local/var/slapd.args

loglevel sync stats

database mdb

suffix "dc=suretecsystems, dc=com"
directory /usr/local/var/openldap-slave/data
maxsize 85899345920

checkpoint 1024 5

index objectClass eqg

rest of indexes

index default sub

rootdn "cn=admin, dc=suretecsystems, dc=com"
rootpw testing

Let the replica DN have limitless searches
limits dn.exact="cn=replicator,dc=suretecsystems,dc=com" time.soft=unlimited time.hard=unlimi-

updatedn "cn=replicator,dc=suretecsystems,dc=comn"

Refer updates to the master
updateref ldap://localhost:9011

database monitor
database config
rootpw testing

182

OpenLDAP Software 2.4 Administrator's Guide

You can see we use the updatedn directive here and example ACLs
(usr/local/etc/openldap/slapd.acl) for this could be:

Give the replica DN unlimited read access. This ACL may need to be
merged with other ACL statements.

access to *
by dn.base="cn=replicator,dc=suretecsystems,dc=com" write
by * break

access to dn.base=""
by * read

access to dn.base="cn=Subschema"
by * read

access to dn.subtree="cn=Monitor"
by dn.exact="uid=admin,dc=suretecsystems,dc=com" write
by users read
by * none

access to *
by self write
by * read

In order to support more replicas, just add more database ldap sections and increment the syncrepl rid number
accordingly.

Note: You must populate the Master and Slave directories with the same data, unlike when using normal
Syncrepl

If you do not have access to modify the master directory configuration you can configure a standalone ldap
proxy, which might look like:

183

Master/Provider

=

OpenLDAP Software 2.4 Administrator's Guide

Push Based Replication
(replacing slurpd)

Primary directory is a standard
OpenLDAP Master, Idap proxy using
Syncrepl pulls in changes from the

Standalone ‘
LDAP Proxy master and pushes out to replicas.
\ — Useful if you don't have access to
L original master.
R Replicas are readonly, but
[.'___ = [4'.__:_'." S »I Leferl'_rals can be han:led
y clients or using the
L___J k,___,j ./ chaining overlay.

Replicas

Figure X.Y: Replacing slurpd with a standalone version

The following configuration is an example of a standalone LDAP Proxy:

184

include
include
include
include

include
modulepath

moduleload
moduleload

/usr/local/etc/openldap/schema/core.schema
/usr/local/etc/openldap/schema/cosine.schema
/usr/local/etc/openldap/schema/nis.schema
/usr/local/etc/openldap/schema/inetorgperson.schema

/usr/local/etc/openldap/slapd.acl
/usr/local/libexec/openldap

syncprov.la
back_ldap.la

FH A R R
Consumer Proxy that pulls in data via Syncrepl and pushes out via slapd-ldap

FH A A R R A R R R R R R R R 1 4

database

ldap

ignore conflicts with other databases, as we need to push out to same suffix

hidden
suffix
rootdn
uri

lastmod

on
"dc=suretecsystems, dc=com"
"cn=slapd-ldap"
ldap://localhost:9012/

on

We don't need any access to this DSA

restrict

all

OpenLDAP Software 2.4 Administrator's Guide

acl-bind bindmethod=simple
binddn="cn=replicator,dc=suretecsystems, dc=com"
credentials=testing

syncrepl rid=001
provider=ldap://localhost:9011/
binddn="cn=replicator,dc=suretecsystems, dc=com"
bindmethod=simple
credentials=testing
searchbase="dc=suretecsystems, dc=com"
type=refreshAndPersist
retry="5 5 300 5"

overlay syncprov

As you can see, you can let your imagination go wild using Syncrepl and slapd-ldap(8) tailoring your
replication to fit your specific network topology.

185

OpenLDAP Software 2.4 Administrator's Guide

186

19. Maintenance

System Administration is all about maintenance, so it is only fair that we discuss how to correctly maintain an
OpenLDAP deployment.

19.1. Directory Backups

Backup strategies largely depend on the amount of change in the database and how much of that change an
administrator might be willing to lose in a catastrophic failure. There are two basic methods that can be used:

1. Backup the Berkeley database itself and periodically back up the transaction log files:

Berkeley DB produces transaction logs that can be used to reconstruct changes from a given point in time. For
example, if an administrator were willing to only lose one hour's worth of changes, they could take down the
server in the middle of the night, copy the Berkeley database files offsite, and bring the server back online.
Then, on an hourly basis, they could force a database checkpoint, capture the log files that have been
generated in the past hour, and copy them offsite. The accumulated log files, in combination with the previous
database backup, could be used with db_recover to reconstruct the database up to the time the last collection
of log files was copied offsite. This method affords good protection, with minimal space overhead.

2. Periodically run slapcat and back up the LDIF file:

Slapcat can be run while slapd is active. However, one runs the risk of an inconsistent database- not from the
point of slapd, but from the point of the applications using LDAP. For example, if a provisioning application
performed tasks that consisted of several LDAP operations, and the slapcat took place concurrently with those
operations, then there might be inconsistencies in the LDAP database from the point of view of that
provisioning application and applications that depended on it. One must, therefore, be convinced something
like that won't happen. One way to do that would be to put the database in read-only mode while performing
the slapcat. The other disadvantage of this approach is that the generated LDIF files can be rather large and
the accumulation of the day's backups could add up to a substantial amount of space.

You can use slapcat(8) to generate an LDIF file for each of your slapd(8) back-bdb or back-hdb databases.
slapcat -f slapd.conf -b "dc=example,dc=com"
For back-bdb and back-hdb, this command may be ran while slapd(8) is running.

MORE on actual Berkeley DB backups later covering db_recover etc.

19.2. Berkeley DB Logs

Berkeley DB log files grow, and the administrator has to deal with it. The procedure is known as log file
archival or log file rotation.

Note: The actual log file rotation is handled by the Berkeley DB engine.

Logs of current transactions need to be stored into files so that the database can be recovered in the event of
an application crash. Administrators can change the size limit of a single log file (by default 10MB), and have
old log files removed automatically, by setting up DB environment (see below). The reason Berkeley DB

187

OpenLDAP Software 2.4 Administrator's Guide

never deletes any log files by default is that the administrator may wish to backup the log files before removal
to make database recovery possible even after a catastrophic failure, such as file system corruption.

Log file names are 1og . XXXXXXXXXX (X is a digit). By default the log files are located in the BDB backend
directory. The db_archive tool knows what log files are used in current transactions, and what are not.
Administrators can move unused log files to a backup media, and delete them. To have them removed
automatically, place set_flags DB_LOG_AUTOREMOVE directive in DB_CONF IG.

Note: If the log files are removed automatically, recovery after a catastrophic failure is likely to be
impossible.

The files with names __db. 001, ___db. 002, etc are just shared memory regions (or whatever). These ARE
NOT 'logs', they must be left alone. Don't be afraid of them, they do not grow like logs do.

To understand the db_archive interface, the reader should refer to chapter 9 of the Berkeley DB guide. In
particular, the following chapters are recommended:

¢ Database and log file archival -
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/archival.html

® Log file removal -
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/logfile.html

® Recovery procedures -
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/recovery.html

¢ Hot failover -
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/hotfail.html

¢ Complete list of Berkeley DB flags -
http://www.oracle.com/technology/documentation/berkeley-db/db/api_c/env_set_flags.html

Advanced installations can use special environment settings to fine-tune some Berkeley DB options (change
the log file limit, etc). This can be done by using the DB_ CONF IG file. This magic file can be created in BDB
backend directory set up by slapd.conf(5). More information on this file can be found in File naming chapter.
Specific directives can be found in C Interface, look for DB_ENV->set_XXXX calls.

Note: options set in DB_CONF IG file override options set by OpenLDAP. Use them with extreme caution.
Do not use them unless You know what You are doing.

The advantages of DB_CONF IG usage can be the following:

¢ to keep data files and log files on different mediums (i.e. disks) to improve performance and/or
reliability;

¢ to fine-tune some specific options (such as shared memory region sizes);

¢ to set the log file limit (please read Log file limits before doing this).

To figure out the best-practice BDB backup scenario, the reader is highly recommended to read the whole

Chapter 9: Berkeley DB Transactional Data Store Applications. This chapter is a set of small pages with
examples in C language. Non-programming people can skip these examples without loss of knowledge.

188

http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/archival.html
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/logfile.html
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/recovery.html
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/hotfail.html
http://www.oracle.com/technology/documentation/berkeley-db/db/api_c/env_set_flags.html

OpenLDAP Software 2.4 Administrator's Guide
19.3. Checkpointing
MORE/TIDY

If you put "checkpoint 1024 5" in slapd.conf (to checkpoint after 1024kb or 5 minutes, for example), this does
not checkpoint every 5 minutes as you may think. The explanation from Howard is:

'In OpenLDAP 2.1 and 2.2 the checkpoint directive acts as follows - *when there is a write operation*, and
more than <check> minutes have occurred since the last checkpoint, perform the checkpoint. If more than
<check> minutes pass after a write without any other write operations occurring, no checkpoint is performed,

so it's possible to lose the last write that occurred.”

In other words, a write operation occurring less than "check" minutes after the last checkpoint will not be
checkpointed until the next write occurs after "check" minutes have passed since the checkpoint.

This has been modified in 2.3 to indeed checkpoint every so often; in the meantime a workaround is to invoke
"db_checkpoint" from a cron script every so often, say 5 minutes.

19.4. Migration

The simplest steps needed to migrate between versions or upgrade, depending on your deployment type are:

1. Stop the current server when convenient
2. slapcat the current data out

3. Clear out the current data directory (/usr/local/var/openldap-data/) leaving DB_CONFIG in
place

4. Perform the software upgrades
5. slapadd the exported data back into the directory
6. Start the server
Obviously this doesn't cater for any complicated deployments like MirrorMode or N-Way Multi-Master, but

following the above sections and using either commercial support or community support should help. Also
check the Troubleshooting section.

189

OpenLDAP Software 2.4 Administrator's Guide

190

20. Monitoring

slapd(8) supports an optional LDAP monitoring interface you can use to obtain information regarding the
current state of your slapd instance. For instance, the interface allows you to determine how many clients are
connected to the server currently. The monitoring information is provided by a specialized backend, the
monitor backend. A manual page, slapd-monitor(5) is available.

When the monitoring interface is enabled, LDAP clients may be used to access information provided by the
monitor backend, subject to access and other controls.

When enabled, the monitor backend dynamically generates and returns objects in response to search requests
in the cn=Monitor subtree. Each object contains information about a particular aspect of the server. The
information is held in a combination of user applications and operational attributes. This information can be
access with ldapsearch(1), with any general-purpose LDAP browser, or with specialized monitoring tools.
The Accessing Monitoring Information section provides a brief tutorial on how to use Idapsearch(1) to access
monitoring information, while the Monitor information section details monitoring information base and its
organization.

While support for the monitor backend is included in default builds of slapd(8), this support requires some
configuration to become active. This may be done using either cn=config or slapd.conf(5). The former is
discussed in the Monitor configuration via cn=config section of this of this chapter. The latter is discussed in
the Monitor configuration via slapd.conf(5) section of this chapter. These sections assume monitor backend is
built into slapd (e.g., ——enable-monitor=yes, the default). If the monitor backend was built as a module
(e.g., ——enable-monitor=mod, this module must loaded. Loading of modules is discussed in the
Configuring slapd and The slapd Configuration File chapters.

20.1. Monitor configuration via cn=config(5)

This section has yet to be written.

20.2. Monitor configuration via slapd.conf(5)

Configuration of the slapd.conf(5) to support LDAP monitoring is quite simple.

First, ensure core.schema schema configuration file is included by your slapd.conf(5) file. The monitor
backend requires it.

Second, instantiate the monitor backend by adding a database monitor directive below your existing database
sections. For instance:

database monitor
Lastly, add additional global or database directives as needed.

Like most other database backends, the monitor backend does honor slapd(8) access and other administrative
controls. As some monitor information may be sensitive, it is generally recommend access to cn=monitor be
restricted to directory administrators and their monitoring agents. Adding an access directive immediately
below the database monitor directive is a clear and effective approach for controlling access. For instance, the
addition of the following access directive immediately below the database monitor directive restricts access to

191

OpenLDAP Software 2.4 Administrator's Guide

monitoring information to the specified directory manager.

access to *
by dn.exact="cn=Manager,dc=example,dc=com
by * none

More information on slapd(8) access controls, see The access Control Directive section of the The slapd
Configuration File chapter and slapd.access(5).

After restarting slapd(8), you are ready to start exploring the monitoring information provided in
cn=config as discussed in the Accessing Monitoring Information section of this chapter.

One can verify slapd(8) is properly configured to provide monitoring information by attempting to read the
cn=monitor object. For instance, if the following ldapsearch(1) command returns the cn=monitor object
(with, as requested, no attributes), it's working.

ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -W \
-b 'cn=Monitor' -s base 1.1

Note that unlike general purpose database backends, the database suffix is hardcoded. It's always
cn=Monitor. So no suffix directive should be provided. Also note that general purpose database backends,
the monitor backend cannot be instantiated multiple times. That is, there can only be one (or zero) occurrences
of database monitor in the server's configuration.

20.3. Accessing Monitoring Information

As previously discussed, when enabled, the monitor backend dynamically generates and returns objects in
response to search requests in the cn=Monitor subtree. Each object contains information about a particular
aspect of the server. The information is held in a combination of user applications and operational attributes.
This information can be accessed with ldapsearch(1), with any general-purpose LDAP browser, or with
specialized monitoring tools.

This section provides a provides a brief tutorial on how to use Ildapsearch(1) to access monitoring
information.

To inspect any particular monitor object, one performs search operation on the object with a baseObject scope
and a (objectClass=*) filter. As the monitoring information is contained in a combination of user
applications and operational attributes, the return all user applications attributes (e.g., ' * ') and all operational
attributes (e.g., ' +"') should be requested. For instance, to read the cn=Monitor object itself, the
ldapsearch(1) command (modified to fit your configuration) can be used:

ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -W \
-b 'cn=Monitor' -s base ' (objectClass=*)"' '*'"' '4!

When run against your server, this should produce output similar to:

dn: cn=Monitor

objectClass: monitorServer
structuralObjectClass: monitorServer
cn: Monitor

creatorsName:

modifiersName:

createTimestamp: 200612082235587

192

OpenLDAP Software 2.4 Administrator's Guide

modifyTimestamp: 200612082235587%

description: This subtree contains monitoring/managing objects.

description: This object contains information about this server.

description: Most of the information is held in operational attributes, which
must be explicitly requested.

monitoredInfo: OpenlLDAP: slapd 2.4 (Dec 7 2006 17:30:29)

entryDN: cn=Monitor

subschemaSubentry: cn=Subschema

hasSubordinates: TRUE

To reduce the number of uninteresting attributes returned, one can be more selective when requesting which
attributes are to be returned. For instance, one could request the return of all attributes allowed by the
monitorServer object class (e.g., @objectClass) instead of all user and all operational attributes:

ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -W \
-b 'cn=Monitor' -s base ' (objectClass=*)' '@monitorServer'

This limits the output as follows:

dn: cn=Monitor

objectClass: monitorServer

cn: Monitor

description: This subtree contains monitoring/managing objects.

description: This object contains information about this server.

description: Most of the information is held in operational attributes, which
must be explicitly requested.

monitoredInfo: OpenlLDAP: slapd 2.X (Dec 7 2006 17:30:29)

To return the names of all the monitoring objects, one performs a search of cn=Monitor with subtree scope
and (objectClass=*) filter and requesting no attributes (e.g., 1. 1) be returned.

ldapsearch -x -D 'cn=Manager,dc=example,dc=com' -W -b 'cn=Monitor' -s sub 1.1

If you run this command you will discover that there are many objects in the cn=Monitor subtree. The
following section describes some of the commonly available monitoring objects.

20.4. Monitor Information

The monitor backend provides a wealth of information useful for monitoring the slapd(8) contained in set of
monitor objects. Each object contains information about a particular aspect of the server, such as a backends, a
connection, or a thread. Some objects serve as containers for other objects and used to construct a hierarchy of
objects.

In this hierarchy, the most superior object is {cn=Monitor}. While this object primarily serves as a container
for other objects, most of which are containers, this object provides information about this server. In
particular, it provides the slapd(8) version string. Example:

dn: cn=Monitor
monitoredInfo: OpenlLDAP: slapd 2.X (Dec 7 2006 17:30:29)

Note: Examples in this section (and its subsections) have been trimmed to show only key information.

193

OpenLDAP Software 2.4 Administrator's Guide
20.4.1. Backends

The cn=Backends, cn=Monitor object, itself, provides a list of available backends. The list of available
backends all builtin backends, as well as backends loaded by modules. For example:

dn: cn=Backends, cn=Monitor
monitoredInfo: config
monitoredInfo: 1dif
monitoredInfo: monitor
monitoredInfo: bdb
monitoredInfo: hdb

This indicates the config, ldif, monitor, bdb, and hdb backends are available.

The cn=Backends, cn=Monitor object is also a container for available backend objects. Each available
backend object contains information about a particular backend. For example:

dn: cn=Backend 0, cn=Backends,cn=Monitor
monitoredInfo: config

monitorRuntimeConfig: TRUE

supportedControl: 2.16.840.1.113730.3.4.2
seeAlso: cn=Database 0,cn=Databases,cn=Monitor

dn: cn=Backend 1,cn=Backends,cn=Monitor
monitoredInfo: 1dif

monitorRuntimeConfig: TRUE
supportedControl: 2.16.840.1.113730.3.4.2

dn: cn=Backend 2, cn=Backends, cn=Monitor
monitoredInfo: monitor

monitorRuntimeConfig: TRUE

supportedControl: 2.16.840.1.113730.3.4.2
seeAlso: cn=Database 2,cn=Databases,cn=Monitor

dn: cn=Backend 3, cn=Backends, cn=Monitor
monitoredInfo: bdb

monitorRuntimeConfig: TRUE
supportedControl: 1.3.6.1.1.12
supportedControl: 2.16.840.1.113730.3.4.2

supportedControl: 1.3.6.1.4.1.4203.666.5.2
supportedControl: 1.2.840.113556.1.4.319
supportedControl: 1.3.6.1.1.13.1
supportedControl: 1.3.6.1.1.13.2
supportedControl: 1.3.6.1.4.1.4203.1.10.1
supportedControl: 1.2.840.113556.1.4.1413
supportedControl: 1.3.6.1.4.1.4203.666.11.7.2

seeAlso: cn=Database 1,cn=Databases,cn=Monitor

dn: cn=Backend 4, cn=Backends,cn=Monitor
monitoredInfo: hdb

monitorRuntimeConfig: TRUE
supportedControl: 1.3.6.1.1.12
supportedControl: 2.16.840.1.113730.3.4.2

supportedControl: 1.3.6.1.4.1.4203.666.5.2
supportedControl: 1.2.840.113556.1.4.319
supportedControl: 1.3.6.1.1.13.1
supportedControl: 1.3.6.1.1.13.2
supportedControl: 1.3.6.1.4.1.4203.1.10.1
supportedControl: 1.2.840.113556.1.4.1413

194

OpenLDAP Software 2.4 Administrator's Guide
supportedControl: 1.3.6.1.4.1.4203.666.11.7.2
For each of these objects, monitorInfo indicates which backend the information in the object is about. For

instance, the cn=Backend 3, cn=Backends, cn=Monitor object contains (in the example)
information about the bdb backend.

Attribute Description

monitoredInfo Name of backend

supportedControl |supported LDAP control extensions

seeAlso Database objects of instances of this backend
20.4.2. Connections

The main entry is empty; it should contain some statistics on the number of connections.

Dynamic child entries are created for each open connection, with stats on the activity on that connection (the
format will be detailed later). There are two special child entries that show the number of total and current
connections respectively.

For example:

Total Connections:

dn: cn=Total, cn=Connections, cn=Monitor
structuralObjectClass: monitorCounterObject
monitorCounter: 4

entryDN: cn=Total, cn=Connections, cn=Monitor
subschemaSubentry: cn=Subschema
hasSubordinates: FALSE

Current Connections:

dn: cn=Current, cn=Connections, cn=Monitor
structuralObjectClass: monitorCounterObject
monitorCounter: 2

entryDN: cn=Current, cn=Connections, cn=Monitor
subschemaSubentry: cn=Subschema
hasSubordinates: FALSE

20.4.3. Databases

The main entry contains the naming context of each configured database; the child entries contain, for each
database, the type and the naming context.

For example:

dn: cn=Database 2,cn=Databases,cn=Monitor
structuralObjectClass: monitoredObject
monitoredInfo: monitor

monitorIsShadow: FALSE

monitorContext: cn=Monitor

readOnly: FALSE

entryDN: cn=Database 2,cn=Databases,cn=Monitor
subschemaSubentry: cn=Subschema

195

OpenLDAP Software 2.4 Administrator's Guide

hasSubordinates: FALSE

20.4.4. Listener

It contains the description of the devices the server is currently listening on:

dn: cn=Listener 0,cn=Listeners,cn=Monitor
structuralObjectClass: monitoredObject
monitorConnectionLocalAddress: IP=0.0.0.0:389
entryDN: cn=Listener 0,cn=Listeners,cn=Monitor
subschemaSubentry: cn=Subschema
hasSubordinates: FALSE

20.4.5. Log

It contains the currently active log items. The Log subsystem allows user modify operations on the description
attribute, whose values MUST be in the list of admittable log switches:

Trace
Packets
Args
Conns
BER
Filter
Config
ACL
Stats
Stats2
Shell
Parse
Sync

These values can be added, replaced or deleted; they affect what messages are sent to the syslog device.
Custom values could be added by custom modules.

20.4.6. Operations

It shows some statistics on the operations performed by the server:

Initiated
Completed

and for each operation type, i.e.:

Bind
Unbind
Add
Delete
Modrdn
Modify
Compare
Search
Abandon
Extended

196

OpenLDAP Software 2.4 Administrator's Guide

There are too many types to list example here, so please try for yourself using Monitor search example

20.4.7. Overlays

The main entry contains the type of overlays available at run-time; the child entries, for each overlay, contain

the type of the overlay.
It should also contain the modules that have been loaded if dynamic overlays are enabled:

Overlays, Monitor

dn: cn=Overlays,cn=Monitor
structuralObjectClass: monitorContainer
monitoredInfo: syncprov

monitoredInfo: accesslog

monitoredInfo: glue

entryDN: cn=Overlays,cn=Monitor
subschemaSubentry: cn=Subschema
hasSubordinates: TRUE

20.4.8. SASL

Currently empty.

20.4.9. Statistics

It shows some statistics on the data sent by the server:

Bytes

PDU
Entries
Referrals

e.g.

Entries, Statistics, Monitor

dn: cn=Entries,cn=Statistics,cn=Monitor
structuralObjectClass: monitorCounterObject
monitorCounter: 612248

entryDN: cn=Entries,cn=Statistics,cn=Monitor
subschemaSubentry: cn=Subschema
hasSubordinates: FALSE

20.4.10. Threads

It contains the maximum number of threads enabled at startup and the current backload.

e.g.

Max, Threads, Monitor

dn: cn=Max,cn=Threads, cn=Monitor
structuralObjectClass: monitoredObject
monitoredInfo: 16

entryDN: cn=Max,cn=Threads,cn=Monitor
subschemaSubentry: cn=Subschema
hasSubordinates: FALSE

197

OpenLDAP Software 2.4 Administrator's Guide
20.4.11. Time

It contains two child entries with the start time and the current time of the server.

e.g.
Start time:

dn: cn=Start,cn=Time, cn=Monitor
structuralObjectClass: monitoredObject
monitorTimestamp: 20061205124040%2
entryDN: cn=Start,cn=Time, cn=Monitor
subschemaSubentry: cn=Subschema
hasSubordinates: FALSE

Current time:

dn: cn=Current,cn=Time, cn=Monitor
structuralObjectClass: monitoredObject
monitorTimestamp: 200612071206247%2
entryDN: cn=Current,cn=Time, cn=Monitor
subschemaSubentry: cn=Subschema
hasSubordinates: FALSE

20.4.12. TLS

Currently empty.

20.4.13. Waiters

It contains the number of current read waiters.

e.g.
Read waiters:

dn: cn=Read,cn=Waiters,cn=Monitor
structuralObjectClass: monitorCounterObject
monitorCounter: 7

entryDN: cn=Read,cn=Waiters,cn=Monitor
subschemaSubentry: cn=Subschema
hasSubordinates: FALSE

Write waiters:

dn: cn=Write,cn=Waiters,cn=Monitor
structuralObjectClass: monitorCounterObject
monitorCounter: 0

entryDN: cn=Write,cn=Waiters,cn=Monitor
subschemaSubentry: cn=Subschema
hasSubordinates: FALSE

Add new monitored things here and discuss, referencing man pages and present examples

198

21. Tuning

This is perhaps one of the most important chapters in the guide, because if you have not tuned slapd(8)
correctly or grasped how to design your directory and environment, you can expect very poor performance.

Reading, understanding and experimenting using the instructions and information in the following sections,
will enable you to fully understand how to tailor your directory server to your specific requirements.

It should be noted that the following information has been collected over time from our community based
FAQ. So obviously the benefit of this real world experience and advice should be of great value to the reader.

21.1. Performance Factors

Various factors can play a part in how your directory performs on your chosen hardware and environment. We
will attempt to discuss these here.

21.1.1. Memory
Scale your cache to use available memory and increase system memory if you can.

See Caching for BDB cache tuning hints. Note that LMDB uses no cache of its own and has no tuning
options, so the Caching section can be ignored when using LMDB.

21.1.2. Disks

Use fast filesystems, and conduct your own testing to see which filesystem types perform best with your
workload. (On our own Linux testing, EXT2 and JFS tend to provide better write performance than everything
else, including newer filesystems like EXT4, BTRFS, etc.)

Use fast subsystems. Put each database and logs on separate disks (for BDB this is configurable via
DB_CONFIG):

Data Directory
set_data_dir /data/db

Transaction Log settings
set_lg_dir /logs

21.1.3. Network Topology
http://www.openldap.org/fag/data/cache/363.html

Drawing here.

21.1.4. Directory Layout Design

Reference to other sections and good/bad drawing here.

199

OpenLDAP Software 2.4 Administrator's Guide

21.1.5. Expected Usage

Discussion.

21.2. Indexes

21.2.1. Understanding how a search works

If you're searching on a filter that has been indexed, then the search reads the index and pulls exactly the
entries that are referenced by the index. If the filter term has not been indexed, then the search must read every
single entry in the target scope and test to see if each entry matches the filter. Obviously indexing can save a
lot of work when it's used correctly.

21.2.2. What to index

You should create indices to match the actual filter terms used in search queries.
index cn,sn,givenname,mail eqg

Each attribute index can be tuned further by selecting the set of index types to generate. For example,
substring and approximate search for organizations (0) may make little sense (and isn't like done very often).
And searching for userPassword likely makes no sense what so ever.

General rule: don't go overboard with indexes. Unused indexes must be maintained and hence can only slow
things down.

See slapd.conf(8) and slapdindex(8) for more information

21.2.3. Presence indexing

If your client application uses presence filters and if the target attribute exists on the majority of entries in
your target scope, then all of those entries are going to be read anyway, because they are valid members of the
result set. In a subtree where 100% of the entries are going to contain the same attributes, the presence index
does absolutely NOTHING to benefit the search, because 100% of the entries match that presence filter.

So the resource cost of generating the index is a complete waste of CPU time, disk, and memory. Don't do it
unless you know that it will be used, and that the attribute in question occurs very infrequently in the target
data.

Almost no applications use presence filters in their search queries. Presence indexing is pointless when the
target attribute exists on the majority of entries in the database. In most LDAP deployments, presence

indexing should not be done, it's just wasted overhead.

See the Logging section below on what to watch out for if you have a frequently searched for attribute that is
unindexed.

21.3. Logging

200

OpenLDAP Software 2.4 Administrator's Guide

21.3.1. What log level to use

The default of loglevel stats (256) is really the best bet. There's a corollary to this when problems *do* arise,
don't try to trace them using syslog. Use the debug flag instead, and capture slapd's stderr output. syslog is too
slow for debug tracing, and it's inherently lossy - it will throw away messages when it can't keep up.

Contrary to popular belief, loglevel 0 is not ideal for production as you won't be able to track when problems
first arise.

21.3.2. What to watch out for

The most common message you'll see that you should pay attention to is:
"<= bdb_equality_candidates: (foo) index_param failed (18)"

That means that some application tried to use an equality filter (foo=<somevalue>) and attribute foo does not
have an equality index. If you see a lot of these messages, you should add the index. If you see one every
month or so, it may be acceptable to ignore it.

The default syslog level is stats (256) which logs the basic parameters of each request; it usually produces 1-3
lines of output. On Solaris and systems that only provide synchronous syslog, you may want to turn it off
completely, but usually you want to leave it enabled so that you'll be able to see index messages whenever

they arise. On Linux you can configure syslogd to run asynchronously, in which case the performance hit for
moderate syslog traffic pretty much disappears.

21.3.3. Improving throughput
You can improve logging performance on some systems by configuring syslog not to sync the file system
with every write (man syslogd/syslog.conf). In Linux, you can prepend the log file name with a "-" in

syslog.conf. For example, if you are using the default LOCAL4 logging you could try:

LDAP logs
LOCAL4.* -/var/log/ldap

For syslog-ng, add or modify the following line in syslog-ng.conf:
options { sync(n); };

where n is the number of lines which will be buffered before a write.

21.4. Caching

We all know what caching is, don't we?

In brief, "A cache is a block of memory for temporary storage of data likely to be used again" -
http://en.wikipedia.org/wiki/Cache

There are 3 types of caches, BerkeleyDB's own cache, slapd(8) entry cache and IDL (IDL) cache.

201

http://en.wikipedia.org/wiki/Cache

OpenLDAP Software 2.4 Administrator's Guide
21.4.1. Berkeley DB Cache
There are two ways to tune for the BDB cachesize:
(a) BDB cache size necessary to load the database via slapadd in optimal time
(b) BDB cache size necessary to have a high performing running slapd once the data is loaded

For (a), the optimal cachesize is the size of the entire database. If you already have the database loaded, this is
simply a

du -c -h *.bdb
in the directory containing the OpenLDAP (/usr/local/var/openldap-data) data.
For (b), the optimal cachesize is just the size of the id2entry.bdb file, plus about 10% for growth.
The tuning of DB_CONFIG should be done for each BDB type database instantiated (back-bdb, back-hdb).

Note that while the BDB cache is just raw chunks of memory and configured as a memory size, the slapd(8)
entry cache holds parsed entries, and the size of each entry is variable.

There is also an IDL cache which is used for Index Data Lookups. If you can fit all of your database into
slapd's entry cache, and all of your index lookups fit in the IDL cache, that will provide the maximum
throughput.

If not, but you can fit the entire database into the BDB cache, then you should do that and shrink the slapd
entry cache as appropriate.

Failing that, you should balance the BDB cache against the entry cache.

It is worth noting that it is not absolutely necessary to configure a BerkeleyDB cache equal in size to your
entire database. All that you need is a cache that's large enough for your "working set."

That means, large enough to hold all of the most frequently accessed data, plus a few less-frequently accessed
items.

For more information, please see:
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/am_conf/cachesize.html

21.4.1.1. Calculating Cachesize

The back-bdb database lives in two main files, dn2id.bdb and id2entry.bdb. These are B-tree
databases. We have never documented the back-bdb internal layout before, because it didn't seem like
something anyone should have to worry about, nor was it necessarily cast in stone. But here's how it works
today, in OpenLDAP 2.4.

A B-tree is a balanced tree; it stores data in its leaf nodes and bookkeeping data in its interior nodes (If you

don't know what tree data structures look like in general, Google for some references, because that's getting
far too elementary for the purposes of this discussion).

202

http://www.oracle.com/technology/documentation/berkeley-db/db/ref/am_conf/cachesize.html

OpenLDAP Software 2.4 Administrator's Guide

For decent performance, you need enough cache memory to contain all the nodes along the path from the root
of the tree down to the particular data item you're accessing. That's enough cache for a single search. For the
general case, you want enough cache to contain all the internal nodes in the database.

db_stat -d

will tell you how many internal pages are present in a database. You should check this number for both dn2id
and id2entry.

Also note that id2entry always uses 16KB per "page", while dn2id uses whatever the underlying filesystem
uses, typically 4 or 8KB. To avoid thrashing, your cache must be at least as large as the number of internal
pages in both the dn2id and id2entry databases, plus some extra space to accommodate the actual leaf data

pages.

For example, in my OpenLDAP 2.4 test database, I have an input LDIF file that's about 360MB. With the
back-hdb backend this creates a dn2id.bdb that's 68MB, and an id2entry that's S00MB. db_stat tells me that
dn2id uses 4KB pages, has 433 internal pages, and 6378 leaf pages. The id2entry uses 16KB pages, has 52
internal pages, and 45912 leaf pages. In order to efficiently retrieve any single entry in this database, the cache
should be at least

(433+1) * 4KB + (52+41) * 16KB in size: 1736KB + 848KB =~ 2.5MB.

This doesn't take into account other library overhead, so this is even lower than the barest minimum. The
default cache size, when nothing is configured, is only 256KB.

This 2.5MB number also doesn't take indexing into account. Each indexed attribute results in another database
file. Earlier versions of OpenLDAP kept these index databases in Hash format, but from OpenLDAP 2.2
onward the index databases are in B-tree format so the same procedure can be used to calculate the necessary
amount of cache for each index database.

For example, if your only index is for the objectClass attribute and db_stat reveals that objectClass.bdb has
339 internal pages and uses 4096 byte pages, the additional cache needed for just this attribute index is

(339+1) * 4KB =~ 1.3MB.

With only this index enabled, I'd figure at least a 4MB cache for this backend. (Of course you're using a single
cache shared among all of the database files, so the cache pages will most likely get used for something other
than what you accounted for, but this gives you a fighting chance.)

With this 4MB cache I can slapcat this entire database on my 1.3GHz PIII in 1 minute, 40 seconds. With the
cache doubled to 8MB, it still takes the same 1:40s. Once you've got enough cache to fit the B-tree internal
pages, increasing it further won't have any effect until the cache really is large enough to hold 100% of the
data pages. I don't have enough free RAM to hold all the 800MB id2entry data, so 4MB is good enough.
With back-bdb and back-hdb you can use "db_stat -m" to check how well the database cache is performing.

For more information on db_stat:
http://www .oracle.com/technology/documentation/berkeley-db/db/utility/db_stat.html

203

http://www.oracle.com/technology/documentation/berkeley-db/db/utility/db_stat.html

OpenLDAP Software 2.4 Administrator's Guide
21.4.2. slapd(8) Entry Cache (cachesize)

The slapd(8) entry cache operates on decoded entries. The rationale - entries in the entry cache can be used
directly, giving the fastest response. If an entry isn't in the entry cache but can be extracted from the BDB
page cache, that will avoid an I/O but it will still require parsing, so this will be slower.

If the entry is in neither cache then BDB will have to flush some of its current cached pages and bring in the
needed pages, resulting in a couple of expensive 1/Os as well as parsing.

The most optimal value is of course, the entire number of entries in the database. However, most directory
servers don't consistently serve out their entire database, so setting this to a lesser number that more closely
matches the believed working set of data is sufficient. This is the second most important parameter for the
DB.

As far as balancing the entry cache vs the BDB cache - parsed entries in memory are generally about twice as
large as they are on disk.

As we have already mentioned, not having a proper database cache size will cause performance issues. These
issues are not an indication of corruption occurring in the database. It is merely the fact that the cache is
thrashing itself that causes performance/response time to slowdown.

21.4.3. IDL Cache (idlcachesize)

Each IDL holds the search results from a given query, so the IDL cache will end up holding the most
frequently requested search results. For back-bdb, it is generally recommended to match the "cachesize"
setting. For back-hdb, it is generally recommended to be 3x"cachesize".

{NOTE: The idlcachesize setting directly affects search performance}

21.5. slapd(8) Threads

slapd(8) can process requests via a configurable number of threads, which in turn affects the in/out rate of
connections.

This value should generally be a function of the number of "real" cores on the system, for example on a server
with 2 CPUs with one core each, set this to 8, or 4 threads per real core. This is a "read" maximized value.
The more threads that are configured per core, the slower slapd(8) responds for "read" operations. On the flip
side, it appears to handle write operations faster in a heavy write/low read scenario.

The upper bound for good read performance appears to be 16 threads (which also happens to be the default
setting).

204

22. Troubleshooting

If you're having trouble using OpenLDAP, get onto the OpenLDAP-Software mailing list, or:
® Browse the list archives at http://www.openldap.org/lists/#archives
e Search the FAQ at http://www.openldap.org/fag/
e Search the Issue Tracking System at http://www.openldap.org/its/

Chances are the problem has been solved and explained in detail many times before.

22.1. User or Software errors?

More often than not, an error is caused by a configuration problem or a misunderstanding of what you are
trying to implement and/or achieve.

We will now attempt to discuss common user errors.

22.2. Checklist

The following checklist can help track down your problem. Please try to use if before posting to the list, or in
the rare circumstances of reporting a bug.

1. Use the slaptest tool to verify configurations before starting slapd

2. Verify that slapd is listening to the specified port(s) (389 and 636, generally) before trying the
ldapsearch

3. Can you issue an ldapsearch?

4. If not, have you enabled complex ACLs without fully understanding them?

5. Do you have a system wide LDAP setting pointing to the wrong LDAP Directory?
6. Are you using TLS?

7. Have your certificates expired?

22.3. OpenLDAP Bugs

Sometimes you may encounter an actual OpenLDAP bug, in which case please visit our Issue Tracking
system http://www.openldap.org/its/ and report it. However, make sure it's not already a known bug or a
common user problem.

® bugs in historic versions of OpenLDAP will not be considered;

¢ bugs in released versions that are no longer present in the Git master branch, either because they have
been fixed or because they no longer apply, will not be considered as well;

205

http://www.openldap.org/lists/#archives
http://www.openldap.org/faq/
http://www.openldap.org/its/
http://www.openldap.org/its/

OpenLDAP Software 2.4 Administrator's Guide

® bugs in distributions of OpenLDAP software that are not related to the software as provided by
OpenLDAP will not be considered; in those cases please refer to the distributor.

Note: Our Issue Tracking system is NOT for OpenLDAP Support, please join our mailing Lists:
http://www.openldap.org/lists/ for that.

The information you should provide in your bug report is discussed in our FAQ-O-MATIC at
http://www.openldap.org/fag/data/cache/59.html

22.4. 3rd party software error
The OpenLDAP Project only supports OpenLDAP software.

You may however seek commercial support (http://www.openldap.org/support/) or join the general LDAP
forum for non-commercial discussions and information relating to LDAP at:
http://www.umich.edu/~dirsvcs/Idap/mailinglist.html

22.5. How to contact the OpenLDAP Project

® Mailing Lists: http://www.openldap.org/lists/
® Project: http://www.openldap.org/project/
e [ssue Tracking: http://www.openldap.org/its/

22.6. How to present your problem

22.7. Debugging slapd(8)

After reading through the above sections and before e-mailing the OpenLDAP lists, you might want to try out
some of the following to track down the cause of your problems:

¢ Loglevel stats (256) is generally a good first loglevel to try for getting information useful to list
members on issues

¢ Running slapd -d -1 can often track down fairly simple issues, such as missing schemas and incorrect
file permissions for the slapd user to things like certs

® Check your logs for errors, as discussed at http://www.openldap.org/fag/data/cache/358.html

22.8. Commercial Support

The firms listed at http://www.openldap.org/support/ offer technical support services catering to OpenLDAP
community.

The listing of any given firm should not be viewed as an endorsement or recommendation of any kind, nor as
otherwise indicating there exists a business relationship or an affiliation between any listed firm and the
OpenLDAP Foundation or the OpenLDAP Project or its contributors.

206

http://www.openldap.org/lists/
http://www.openldap.org/faq/data/cache/59.html
http://www.openldap.org/support/
http://www.umich.edu/~dirsvcs/ldap/mailinglist.html
http://www.openldap.org/lists/
http://www.openldap.org/project/
http://www.openldap.org/its/
http://www.openldap.org/faq/data/cache/358.html
http://www.openldap.org/support/

A. Changes Since Previous Release

The following sections attempt to summarize the new features and changes in OpenLDAP software since the
2.3.x release and the OpenLDAP Admin Guide.

A.1. New Guide Sections

In order to make the Admin Guide more thorough and cover the majority of questions asked on the
OpenLDAP mailing lists and scenarios discussed there, we have added the following new sections:

® When should I use LDAP?

® When should I not use LDAP?

e LDAP vs RDBMS

® Access Control

¢ Backends

¢ Overlays

® Replication

® Maintenance

® Monitoring

¢ Tuning

¢ Troubleshooting

¢ Changes Since Previous Release

e Upgrading from 2.3.x

e Common errors encountered when using OpenLDAP Software
e Recommended OpenLDAP Software Dependency Versions
¢ Real World OpenLDAP Deployments and Examples

e OpenLDAP Software Contributions

¢ Configuration File Examples

¢ LDAP Result Codes

¢ Glossary

Also, the table of contents is now 3 levels deep to ease navigation.

A.2. New Features and Enhancements in 2.4

A.2.1. Better cn=config functionality

There is a new slapd-config(5) manpage for the cn=config backend. The original design called for
auto-renaming of config entries when you insert or delete entries with ordered names, but that was not
implemented in 2.3. It is now in 2.4. This means, e.g., if you have

olcDatabase={1}mdb, cn=config
olcSuffix: dc=example, dc=com

and you want to add a new subordinate, now you can ldapadd:

olcDatabase={1l}mdb, cn=config
olcSuffix: dc=foo,dc=example,dc=com

207

OpenLDAP Software 2.4 Administrator's Guide

This will insert a new back-mdb database in slot 1 and bump all following databases down one, so the original
back-mdb database will now be named:

olcDatabase={2}mdb, cn=config
olcSuffix: dc=example,dc=com

A.2.2. Better cn=schema functionality

In 2.3 you were only able to add new schema elements, not delete or modify existing elements. In 2.4 you can
modify schema at will. (Except for the hardcoded system schema, of course.)

A.2.3. More sophisticated Syncrepl configurations

The original implementation of Syncrepl in OpenLDAP 2.2 was intended to support multiple consumers
within the same database, but that feature never worked and was removed from OpenLDAP 2.3; you could
only configure a single consumer in any database.

In 2.4 you can configure multiple consumers in a single database. The configuration possibilities here are
quite complex and numerous. You can configure consumers over arbitrary subtrees of a database (disjoint or
overlapping). Any portion of the database may in turn be provided to other consumers using the Syncprov
overlay. The Syncprov overlay works with any number of consumers over a single database or over arbitrarily
many glued databases.

A.2.4. N-Way Multimaster Replication

As a consequence of the work to support multiple consumer contexts, the syncrepl system now supports full
N-Way multimaster replication with entry-level conflict resolution. There are some important constraints, of
course: In order to maintain consistent results across all servers, you must maintain tightly synchronized
clocks across all participating servers (e.g., you must use NTP on all servers).

The entryCSNs used for replication now record timestamps with microsecond resolution, instead of just
seconds. The delta-syncrepl code has not been updated to support multimaster usage yet, that will come later
in the 2.4 cycle.

A.2.5. Replicating slapd Configuration (syncrepl and ch=config)

Syncrepl was explicitly disabled on cn=config in 2.3. It is now fully supported in 2.4; you can use syncrepl to
replicate an entire server configuration from one server to arbitrarily many other servers. It's possible to clone
an entire running slapd using just a small (less than 10 lines) seed configuration, or you can just replicate the
schema subtrees, etc. Tests 049 and 050 in the test suite provide working examples of these capabilities.

A.2.6. Push-Mode Replication

In 2.3 you could configure syncrepl as a full push-mode replicator by using it in conjunction with a back-ldap
pointed at the target server. But because the back-ldap database needs to have a suffix corresponding to the
target's suffix, you could only configure one instance per slapd.

In 2.4 you can define a database to be "hidden", which means that its suffix is ignored when checking for

name collisions, and the database will never be used to answer requests received by the frontend. Using this
"hidden" database feature allows you to configure multiple databases with the same suffix, allowing you to set

208

OpenLDAP Software 2.4 Administrator's Guide

up multiple back-ldap instances for pushing replication of a single database to multiple targets. There may be
other uses for hidden databases as well (e.g., using a syncrepl consumer to maintain a *local* mirror of a
database on a separate filesystem).

A.2.7. More extensive TLS configuration control

In 2.3, the TLS configuration in slapd was only used by the slapd listeners. For outbound connections used by
e.g. back-Idap or syncrepl their TLS parameters came from the system's ldap.conf file.

In 2.4 all of these sessions inherit their settings from the main slapd configuration, but settings can be
individually overridden on a per-config-item basis. This is particularly helpful if you use certificate-based
authentication and need to use a different client certificate for different destinations.

A.2.8. Performance enhancements

Too many to list. Some notable changes - ldapadd used to be a couple of orders of magnitude slower than
"slapadd -q". It's now at worst only about half the speed of slapadd -q. Some comparisons of all the 2.x
OpenLDAP releases are available at http://www.openldap.org/pub/hyc/scale2007.pdf

That compared 2.0.27, 2.1.30, 2.2.30, 2.3.33, and CVS HEAD). Toward the latter end of the "Cached Search
Performance" chart it gets hard to see the difference because the run times are so small, but the new code is
about 25% faster than 2.3, which was about 20% faster than 2.2, which was about 100% faster than 2.1, which
was about 100% faster than 2.0, in that particular search scenario. That test basically searched a 1.3GB DB of
380836 entries (all in the slapd entry cache) in under 1 second. i.e., on a 2.4GHz CPU with DDR400
ECC/Registered RAM we can search over 500 thousand entries per second. The search was on an unindexed
attribute using a filter that would not match any entry, forcing slapd to examine every entry in the DB, testing
the filter for a match.

Essentially the slapd entry cache in back-bdb/back-hdb is so efficient the search processing time is almost
invisible; the runtime is limited only by the memory bandwidth of the machine. (The search data rate
corresponds to about 3.5GB/sec; the memory bandwidth on the machine is only about 4GB/sec due to ECC
and register latency.)

A.2.9. New overlays

¢ slapo-constraint (Attribute value constraints)
® slapo-dds (Dynamic Directory Services, RFC 2589)
¢ slapo-memberof (reverse group membership maintenance)

A.2.10. New features in existing Overlays

® slapo-pcache
¢ Inspection/Maintenance
0 the cache database can be directly accessed via LDAP by adding a specific control to
each LDAP request; a specific extended operation allows to consistently remove
cached entries and entire cached queries
¢ Hot Restart
0 cached queries are saved on disk at shutdown, and reloaded if not expired yet at
subsequent restart
e slapo-rwm can safely interoperate with other overlays

209

http://www.openldap.org/pub/hyc/scale2007.pdf

OpenLDAP Software 2.4 Administrator's Guide

® Dyngroup/Dynlist merge, plus security enhancements
¢ added dgldentity support (draft-haripriya-dynamicgroup)

A.2.11. New features in slapd
® monitoring of back-{b,h}db: cache fill-in, non-indexed searches,
e session tracking control (draft-wahl-ldap-session)
e subtree delete in back-sql (draft-armijo-ldap-treedelete)
e sorted values in multivalued attributes for faster matching

¢ lightweight dispatcher for greater throughput under heavy load and on multiprocessor machines. (33%
faster than 2.3 on AMD quad-socket dual-core server.)

A.2.12. New features in libldap

e ldap_sync client API (LDAP Content Sync Operation, RFC 4533)

A.2.13. New clients, tools and tool enhancements
e ldapexop for arbitrary extended operations

e Complete support of controls in request/response for all clients
¢ LDAP Client tools now honor SRV records

A.2.14. New build options

® Support for building against GnuTLS

A.3. Obsolete Features Removed From 2.4

These features were strongly deprecated in 2.3 and removed in 2.4.

A.3.1. Slurpd

Please read the Replication section as to why this is no longer in OpenLDAP

A.3.2. back-ldbm

back-ldbm was both slow and unreliable. Its byzantine indexing code was prone to spontaneous corruption, as
were the underlying database libraries that were commonly used (e.g. GDBM or NDBM). back-bdb and
back-hdb are superior in every aspect, with simplified indexing to avoid index corruption, fine-grained
locking for greater concurrency, hierarchical caching for greater performance, streamlined on-disk format for
greater efficiency and portability, and full transaction support for greater reliability.

210

B. Upgrading from 2.3.x

The following sections attempt to document the steps you will need to take in order to upgrade from the latest
2.3.x OpenLDAP version.

The normal upgrade procedure, as discussed in the Maintenance section, should of course still be followed
prior to doing any of this.

B.1. ch=config olc* attributes

Quite a few olc* attributes have now become obsolete, if you see in your logs entries like below, just remove
them from the relevant 1dif file.

olcReplicationInterval: value #0: <olcReplicationInterval> keyword is obsolete (ignc

B.2. ACLs: searches require privileges on the search base

Search operations now require "search" privileges on the "entry" pseudo-attribute of the search base. While
upgrading from 2.3.x, make sure your ACLs grant such privileges to all desired search bases.

For example, assuming you have the following ACL:
access to dn.sub="ou=people,dc=example,dc=com" by * search
Searches using a base of "dc=example,dc=com" will only be allowed if you add the following ACL:

access to dn.base="dc=example,dc=com" attrs=entry by * search

Note: The slapd.access(5) man page states that this requirement was introduced with OpenLDAP 2.3.
However, it is the default behavior only since 2.4.

ADD MORE HERE

211

OpenLDAP Software 2.4 Administrator's Guide

212

C. Common errors encountered when using
OpenLDAP Software

The following sections attempt to summarize the most common causes of LDAP errors when using
OpenLDAP

C.1. Common causes of LDAP errors

C.1.1. Idap_*: Can't contact LDAP server

The Can't contact LDAP server error is usually returned when the LDAP server cannot be contacted. This
may occur for many reasons:

e the LDAP server is not running; this can be checked by running, for example,
telnet <host> <port>
replacing <host> and <port> with the hostname and the port the server is supposed to listen on.
¢ the client has not been instructed to contact a running server; with OpenLDAP command-line tools

this is accomplished by providing the -H switch, whose argument is a valid LDAP url corresponding
to the interface the server is supposed to be listening on.

C.1.2. Idap_*: No such object

The no such object error is generally returned when the target DN of the operation cannot be located. This
section details reasons common to all operations. You should also look for answers specific to the operation
(as indicated in the error message).
The most common reason for this error is non-existence of the named object. First, check for typos.
Also note that, by default, a new directory server holds no objects (except for a few system entries). So, if you
are setting up a new directory server and get this message, it may simply be that you have yet to add the object
you are trying to locate.
The error commonly occurs because a DN was not specified and a default was not properly configured.
If you have a suffix specified in slapd.conf eg.

suffix "dc=example, dc=com"
You should use

ldapsearch -b 'dc=example,dc=com' ' (cn=jane*)'

to tell it where to start the search.

The —-b should be specified for all LDAP commands unless you have an Idap.conf(5) default configured.

213

OpenLDAP Software 2.4 Administrator's Guide
See ldapsearch(1), ldapmodify(1)

Also, slapadd(8) and its ancillary programs are very strict about the syntax of the LDIF file.

Some liberties in the LDIF file may result in an apparently successful creation of the database, but accessing
some parts of it may be difficult.

One known common error in database creation is putting a blank line before the first entry in the LDIF file.
There must be no leading blank lines in the LDIF file.

It is generally recommended that ldapadd(1) be used instead of slapadd(8) when adding new entries your
directory. slapadd(8) should be used to bulk load entries known to be valid.

Another cause of this message is a referral ({ SECT:Constructing a Distributed Directory Service} }) entry to
an unpopulated directory.

Either remove the referral, or add a single record with the referral base DN to the empty directory.
This error may also occur when slapd is unable to access the contents of its database because of file
permission problems. For instance, on a Red Hat Linux system, slapd runs as user 'ldap’. When slapadd is run

as root to create a database from scratch, the contents of /var/1ib/1ldap are created with user and group
root and with permission 600, making the contents inaccessible to the slapd server.

C.1.3. Idap_*: Can't chase referral
This is caused by the line

referral ldap://root.openldap.org
In slapd.conf, it was provided as an example for how to use referrals in the original file. However if your
machine is not permanently connected to the Internet, it will fail to find the server, and hence produce an error
message.

To resolve, just place a # in front of line and restart slapd or point it to an available ldap server.

See also: ldapadd(1), ldapmodify(1) and slapd.conf(5)

C.1.4. Idap_*: server is unwilling to perform

slapd will return an unwilling to perform error if the backend holding the target entry does not support the
given operation.

The password backend is only willing to perform searches. It will return an unwilling to perform error for all
other operations.

The shell backend is configurable and may support a limited subset of operations. Check for other errors
indicating a shortage of resources required by the directory server. i.e. you may have a full disk etc

214

OpenLDAP Software 2.4 Administrator's Guide

C.1.5. Idap_*: Insufficient access

This error occurs when server denies the operation due to insufficient access. This is usually caused by
binding to a DN with insufficient privileges (or binding anonymously) to perform the operation.

You can bind as the rootdn/rootpw specified in slapd.conf(5) to gain full access. Otherwise, you must bind to
an entry which has been granted the appropriate rights through access controls.

C.1.6. Idap_*: Invalid DN syntax

The target (or other) DN of the operation is invalid. This implies that either the string representation of the DN
is not in the required form, one of the types in the attribute value assertions is not defined, or one of the values
in the attribute value assertions does not conform to the appropriate syntax.

C.1.7. Idap_*: Referral hop limit exceeded

This error generally occurs when the client chases a referral which refers itself back to a server it already
contacted. The server responds as it did before and the client loops. This loop is detected when the hop limit is
exceeded.

This is most often caused through misconfiguration of the server's default referral. The default referral should
not be itself:

That is, on ldap://myldap/ the default referral should not be Idap://myldap/ (or any hostname/ip which is
equivalent to myldap).

C.1.8. Idap_*: operations error

In some versions of slapd(8), operationsError was returned instead of other.

C.1.9. Idap_*: other error

The other result code indicates an internal error has occurred. While the additional information provided with
the result code might provide some hint as to the problem, often one will need to consult the server's log files.

C.1.10. Idap_add/modify: Invalid syntax

This error is reported when a value of an attribute does not conform to syntax restrictions. Additional
information is commonly provided stating which value of which attribute was found to be invalid. Double
check this value and other values (the server will only report the first error it finds).

Common causes include:

e extraneous whitespace (especially trailing whitespace)
¢ improperly encoded characters (LDAPv3 uses UTF-8 encoded Unicode)
e empty values (few syntaxes allow empty values)

For certain syntax, like OBJECT IDENTIFIER (OID), this error can indicate that the OID descriptor (a "short
name") provided is unrecognized. For instance, this error is returned if the objectClass value provided is
unrecognized.

215

OpenLDAP Software 2.4 Administrator's Guide
C.1.11. Idap_add/modify: Object class violation
This error is returned with the entry to be added or the entry as modified violates the object class schema
rules. Normally additional information is returned the error detailing the violation. Some of these are detailed
below.
Violations related to the entry's attributes:
Attribute not allowed
A provided attribute is not allowed by the entry's object class(es).
Missing required attribute
An attribute required by the entry's object class(es) was not provided.
Violations related to the entry's class(es):
Entry has no objectClass attribute
The entry did not state which object classes it belonged to.
Unrecognized objectClass
One (or more) of the listed objectClass values is not recognized.
No structural object class provided
None of the listed objectClass values is structural.
Invalid structural object class chain
Two or more structural objectClass values are not in same structural object class chain.
Structural object class modification
Modify operation attempts to change the structural class of the entry.
Instanstantiation of abstract objectClass.
An abstract class is not subordinate to any listed structural or auxiliary class.
Invalid structural object class
Other structural object class problem.

No structuralObjectClass operational attribute

This is commonly returned when a shadow server is provided an entry which does not contain the
structuralObjectClass operational attribute.

216

OpenLDAP Software 2.4 Administrator's Guide

Note that the above error messages as well as the above answer assumes basic knowledge of LDAP/X.500
schema.

C.1.12. Idap_add: No such object

The "ldap_add: No such object" error is commonly returned if parent of the entry being added does not exist.
Add the parent entry first...

For example, if you are adding "cn=bob,dc=domain,dc=com" and you get:
ldap_add: No such object

The entry "dc=domain,dc=com" likely doesn't exist. You can use ldapsearch to see if does exist:
ldapsearch -b 'dc=domain,dc=com' -s base ' (objectclass=*)"

If it doesn't, add it. See A Quick-Start Guide for assistance.

Note: if the entry being added is the same as database suffix, it's parent isn't required. i.e.: if your suffix is
"dc=domain,dc=com", "dc=com" doesn't need to exist to add "dc=domain,dc=com".

This error will also occur if you try to add any entry that the server is not configured to hold.

For example, if your database suffix is "dc=domain,dc=com" and you attempt to add "dc=domain2,dc=com",

"dc=com", "dc=domain,dc=org", "o=domain,c=us", or an other DN in the "dc=domain,dc=com" subtree, the
server will return a "No such object" (or referral) error.

slapd(8) will generally return "no global superior knowledge" as additional information indicating its return
noSuchObject instead of a referral as the server is not configured with knowledge of a global superior server.

C.1.13. Idap add: invalid structural object class chain

This particular error refers to the rule about STRUCTURAL objectclasses, which states that an object is of
one STRUCTURAL class, the structural class of the object. The object is said to belong to this class, zero or
more auxiliaries classes, and their super classes.

While all of these classes are commonly listed in the objectClass attribute of the entry, one of these classes is
the structural object class of the entry. Thus, it is OK for an objectClass attribute to contain inetOrgPerson,
organizationalPerson, and person because they inherit one from another to form a single super class chain.
That is, inetOrgPerson SUPs organizationPerson SUPs person. On the other hand, it is invalid for both
inetOrgPerson and account to be listed in objectClass as inetOrgPerson and account are not part of the same
super class chain (unless some other class is also listed with is a subclass of both).

To resolve this problem, one must determine which class will better serve structural object class for the entry,
adding this class to the objectClass attribute (if not already present), and remove any other structural class

from the entry's objectClass attribute which is not a super class of the structural object class.

Which object class is better depends on the particulars of the situation. One generally should consult the
documentation for the applications one is using for help in making the determination.

217

OpenLDAP Software 2.4 Administrator's Guide

C.1.14. Idap_add: no structuralObjectClass operational attribute

Idapadd(1) may error:

adding new entry "uid=XXX, ou=People,o=campus,c=ru"
ldap_add: Internal (implementation specific) error (80)
additional info: no structuralObjectClass operational attribute

when slapd(8) cannot determine, based upon the contents of the objectClass attribute, what the structural class
of the object should be.

C.1.15. Idap_add/modify/rename: Naming violation

OpenLDAP's slapd checks for naming attributes and distinguished values consistency, according to RFC
4512.

Naming attributes are those attributeTypes that appear in an entry's RDN; distinguished values are the values
of the naming attributes that appear in an entry's RDN, e.g, in

cn=Someonet+mail=someonelexample.com, dc=example, dc=com
the naming attributes are cn and mail, and the distinguished values are Someone and someone @example.com.
OpenLDAP's slapd checks for consistency when:

¢ adding an entry
¢ modifying an entry, if the values of the naming attributes are changed
¢ renaming an entry, if the RDN of the entry changes

Possible causes of error are:

¢ the naming attributes are not present in the entry; for example:

dn: dc=example,dc=com
objectClass: organization

o: Example

note: "dc: example" is missing

¢ the naming attributes are present in the entry, but in the attributeType definition they are marked as:
¢ collective
¢ operational
¢ obsolete

¢ the naming attributes are present in the entry, but the distinguished values are not; for example:

dn: dc=example,dc=com

objectClass: domain

dc: foobar

note: "dc" is present, but the value is not "example"

e the naming attributes are present in the entry, with the distinguished values, but the naming attributes:

¢ do not have an equality field, so equality cannot be asserted
¢ the matching rule is not supported (yet)

218

OpenLDAP Software 2.4 Administrator's Guide

¢ the matching rule is not appropriate
e the given distinguished values do not comply with their syntax
e other errors occurred during the validation/normalization/match process; this is a catchall: look at
previous logs for details in case none of the above apply to your case.

In any case, make sure that the attributeType definition for the naming attributes contains an appropriate
EQUALITY field; or that of the superior, if they are defined based on a superior attributeType (look at the
SUP field). See RFC 4512 for details.

C.1.16. Idap_add/delete/modify/rename: no global superior knowledge

If the target entry name places is not within any of the databases the server is configured to hold and the
server has no knowledge of a global superior, the server will indicate it is unwilling to perform the operation
and provide the text "no global superior knowledge" as additional text.

Likely the entry name is incorrect, or the server is not properly configured to hold the named entry, or, in
distributed directory environments, a default referral was not configured.

C.1.17. Idap_bind: Insufficient access

Current versions of slapd(8) requires that clients have authentication permission to attribute types used for
authentication purposes before accessing them to perform the bind operation. As all bind operations are done
anonymously (regardless of previous bind success), the auth access must be granted to anonymous.

In the example ACL below grants the following access:

® t0O anonymous users:
¢ permission to authenticate using values of userPassword
* to authenticated users:
¢ permission to update (but not read) their userPassword
¢ permission to read any object excepting values of userPassword

All other access is denied.

access to attr=userPassword
by self =w
by anonymous auth
access *
by self write
by users read

C.1.18. Idap_bind: Invalid credentials

The error usually occurs when the credentials (password) provided does not match the userPassword held in
entry you are binding to.

The error can also occur when the bind DN specified is not known to the server.
Check both! In addition to the cases mentioned above you should check if the server denied access to

userPassword on selected parts of the directory. In fact, slapd always returns "Invalid credentials" in case of
failed bind, regardless of the failure reason, since other return codes could reveal the validity of the user's

219

OpenLDAP Software 2.4 Administrator's Guide

name.

To debug access rules defined in slapd.conf, add "ACL" to log level.

C.1.19. Idap_bind: Protocol error
There error is generally occurs when the LDAP version requested by the client is not supported by the server.

The OpenLDAP Software 2.x server, by default, only accepts version 3 LDAP Bind requests but can be
configured to accept a version 2 LDAP Bind request.

Note: The 2.x server expects LDAPv3 [RFC4510] to be used when the client requests version 3 and expects a
limited LDAPvV3 variant (basically, LDAPv3 syntax and semantics in an LDAPv2 PDUs) to be used when
version 2 is expected.

This variant is also sometimes referred to as LDAPv2+, but differs from the U-Mich LDAP variant in a
number of ways.

C.1.20. Idap_modify: cannot modify object class

This message is commonly returned when attempting to modify the objectClass attribute in a manner
inconsistent with the LDAP/X.500 information model. In particular, it commonly occurs when one tries to
change the structure of the object from one class to another, for instance, trying to change an 'apple' into a
'‘pear’ or a 'fruit' into a 'pear’.

Such changes are disallowed by the slapd(8) in accordance with LDAP and X.500 restrictions.

C.1.21. Idap_sasl_interactive_bind_s: ...

If you intended to bind using a DN and password and get an error from ldap_sasl_interactive_bind_s, you

likely forgot to provide a '-x' option to the command. By default, SASL authentication is used. -x' is necessary
to select "simple" authentication.

C.1.22. Idap_sasl_interactive_bind_s: No such Object

This indicates that LDAP SASL authentication function could not read the Root DSE. The error will occur
when the server doesn't provide a root DSE. This may be due to access controls.

C.1.23. Idap_sasl_interactive_bind_s: No such attribute

This indicates that LDAP SASL authentication function could read the Root DSE but it contained no
supportedSASLMechanism attribute.

The supportedSASLmechanism attribute lists mechanisms currently available. The list may be empty because
none of the supported mechanisms are currently available. For example, EXTERNAL is listed only if the
client has established its identity by authenticating at a lower level (e.g. TLS).

Note: the attribute may not be visible due to access controls

220

OpenLDAP Software 2.4 Administrator's Guide

Note: SASL bind is the default for all OpenLDAP tools, e.g. Idapsearch(1), ldapmodify(1). To force use of
"simple" bind, use the "-x" option. Use of "simple" bind is not recommended unless one has adequate
confidentiality protection in place (e.g. TLS/SSL, IPSEC).

C.1.24. Idap_sasl_interactive_bind_s: Unknown authentication method

This indicates that none of the SASL authentication supported by the server are supported by the client, or that
they are too weak or otherwise inappropriate for use by the client. Note that the default security options
disallows the use of certain mechanisms such as ANONYMOUS and PLAIN (without TLS).

Note: SASL bind is the default for all OpenLDAP tools. To force use of "simple" bind, use the "-x" option.
Use of "simple" bind is not recommended unless one has adequate confidentiality protection in place (e.g.
TLS/SSL, IPSEC).

C.1.25. Idap_sasl_interactive_bind_s: Local error (82)

Apparently not having forward and reverse DNS entries for the LDAP server can result in this error.

C.1.26. Idap_search: Partial results and referral received

This error is returned with the server responses to an LDAPv2 search query with both results (zero or more
matched entries) and references (referrals to other servers). See also: ldapsearch(1).

If the updatedn on the replica does not exist, a referral will be returned. It may do this as well if the ACL
needs tweaking.

C.1.27. Idap_start_tls: Operations error

Idapsearch(1) and other tools will return

ldap_start_tls: Operations error (1)
additional info: TLS already started

When the user (though command line options and/or ldap.conf(5)) has requested TLS (SSL) be started twice.
For instance, when specifying both "-H ldaps://server.do.main" and "-ZZ".

C.2. Other Errors

C.2.1. ber_get_next on fd X failed errno=34 (Numerical result out of range)

This slapd error generally indicates that the client sent a message that exceeded an administrative limit. See
sockbuf_max_incoming and sockbuf_max_incoming_auth configuration directives in slapd.conf(5).

C.2.2. ber_get_next on fd X failed errno=11 (Resource temporarily
unavailable)

This message is not indicative of abnormal behavior or error. It simply means that expected data is not yet
available from the resource, in this context, a network socket. slapd(8) will process the data once it does

221

OpenLDAP Software 2.4 Administrator's Guide
becomes available.
C.2.3. daemon: socket() failed errno=97 (Address family not supported)
This message indicates that the operating system does not support one of the (protocol) address families which

slapd(8) was configured to support. Most commonly, this occurs when slapd(8) was configured to support
IPv6 yet the operating system kernel wasn't. In such cases, the message can be ignored.

C.2.4. GSSAPI: gss_acquire_cred: Miscellaneous failure; Permission denied;

This message means that slapd is not running as root and, thus, it cannot get its Kerberos 5 key from the
keytab, usually file /etc/krb5.keytab.

A keytab file is used to store keys that are to be used by services or daemons that are started at boot time. It is
very important that these secrets are kept beyond reach of intruders.

That's why the default keytab file is owned by root and protected from being read by others. Do not mess with
these permissions, build a different keytab file for slapd instead, and make sure it is owned by the user that

slapd runs as.

To do this, start kadmin, and enter the following commands:

addprinc -randkey ldap/ldap.example.com@EXAMPLE.COM
ktadd -k /etc/openldap/ldap.keytab ldap/ldap.example.com@EXAMPLE.COM

Then, on the shell, do:

chown ldap:ldap /etc/openldap/ldap.keytab
chmod 600 /etc/openldap/ldap.keytab

Now you have to tell slapd (well, actually tell the gssapi library in Kerberos 5 that is invoked by Cyrus SASL)
where to find the new keytab. You do this by setting the environment variable KRB5_KTNAME like this:

export KRB5_KTNAME="FILE:/etc/openldap/ldap.keytab"

Set that environment variable on the slapd start script (Red Hat users might find /etc/sysconfig/ldap a perfect
place).

This only works if you are using MIT kerberos. It doesn't work with Heimdal, for instance.

In Heimdal there is a function gsskrb5_register_acceptor_identity() that sets the path of the keytab file you
want to use. In Cyrus SASL 2 you can add

keytab: /path/to/file
to your application's SASL config file to use this feature. This only works with Heimdal.

C.2.5. access from unknown denied

This related to TCP wrappers. See hosts_access(5) for more information. in the log file: "access from
unknown denied" This related to TCP wrappers. See hosts_access(5) for more information. for example: add

222

OpenLDAP Software 2.4 Administrator's Guide

the line "slapd: .hosts.you.want.to.allow" in /etc/hosts.allow to get rid of the error.

C.2.6. Idap_read: want=# error=Resource temporarily unavailable

This message occurs normally. It means that pending data is not yet available from the resource, a network
socket. slapd(8) will process the data once it becomes available.

C.2.7. make test' fails

Some times, “make test' fails at the very first test with an obscure message like

make test

make[l]: Entering directory " /ldap_files/openldap-2.4.6/tests'

make[2]: Entering directory " /ldap_files/openldap-2.4.6/tests'
Initiating LDAP tests for BDB...

Cleaning up test run directory leftover from previous run.
Running ./scripts/all...

>>>>> Executing all LDAP tests for bdb

>>>>> Starting test000-rootdse

running defines.sh

Starting slapd on TCP/IP port 9011...

Using ldapsearch to retrieve the root DSE...

Waiting 5 seconds for slapd to start...
./scripts/test000-rootdse: line 40: 10607 Segmentation fault $SLAPD —-f S$CONF1l -h $SURI1 -d $

Waiting 5 seconds for slapd to start...

Waiting 5 seconds for slapd to start...

Waiting 5 seconds for slapd to start...

Waiting 5 seconds for slapd to start...

Waiting 5 seconds for slapd to start...
./scripts/test000-rootdse: kill: (10607) - No such pid
ldap_sasl_bind_s: Can't contact LDAP server (-1)

>>>>> Test failed

>>>>> . /scripts/test000-rootdse failed (exit 1)

make[2]: *** [bdb-yes] Error 1

make[2]: Leaving directory " /ldap_files/openldap-2.4.6/tests’
make[1l]: *** [test] Error 2

make[l]: Leaving directory " /ldap_files/openldap-2.4.6/tests’
make: *** [test] Error 2

or so. Usually, the five lines

Waiting 5 seconds for slapd to start...

indicate that slapd didn't start at all.

In tests/testrun/slapd.1.log there is a full log of what slapd wrote while trying to start. The log level can be
increased by setting the environment variable SLAPD_DEBUG to the corresponding value; see loglevel in

slapd.conf(5) for the meaning of log levels.

A typical reason for this behavior is a runtime link problem, i.e. slapd cannot find some dynamic libraries it
was linked against. Try running 1dd(1) on slapd (for those architectures that support runtime linking).

There might well be other reasons; the contents of the log file should help clarifying them.

223

OpenLDAP Software 2.4 Administrator's Guide

Tests that fire up multiple instances of slapd typically log to tests/testrun/slapd.<n>.log, with a distinct <n>
for each instance of slapd; list tests/testrun/ for possible values of <n>.

C.2.8. Idap_*: Internal (implementation specific) error (80) - additional info:
entry index delete failed

This seems to be related with wrong ownership of the BDB's dir (/var/lib/Idap) and files. The files must be
owned by the user that slapd runs as.

chown -R ldap:ldap /var/lib/ldap

fixes it in Debian

C.2.9. Idap_sasl_interactive_bind_s: Can't contact LDAP server (-1)
Using SASL, when a client contacts LDAP server, the slapd service dies immediately and client gets an error :
SASL/GSSAPI authentication started ldap_sasl_interactive_bind_s: Can't contact LDAP server (-1)
Then check the slapd service, it stopped.
This may come from incompatible of using different versions of BerkeleyDB for installing of SASL and
installing of OpenLDAP. The problem arises in case of using multiple version of BerkeleyDB. Solution: -

Check which version of BerkeleyDB when install Cyrus SASL.

Reinstall OpenLDAP with the version of BerkeleyDB above.

224

D. Recommended OpenLDAP Software Dependency

Versions

This appendix details the recommended versions of the software that OpenLDAP depends on.

Please read the Prerequisite software section for more information on the following software dependencies.

D.1. Dependency Versions

Table 8.5: OpenLDAP Software Dependency Versions

Feature Software Version
Transport Layer Security:
OpenSSL 0.9.7+
GnuTLS 2.12.0
MozNSS 3.12.9
Simple Authentication and Security Layer | Cyrus SASL 2.1.21+
Kerberos Authentication Service:
Heimdal Version
MIT Kerberos |Version
Threads:
POSIX pthreads [Version
Mach CThreads [Version
TCP Wrappers Name Version

225

http://www.openssl.org/
http://www.gnu.org/software/gnutls/
http://developer.mozilla.org/en/NSS
http://asg.web.cmu.edu/sasl/sasl-library.html
http://www.pdc.kth.se/heimdal/
http://web.mit.edu/kerberos/www/

OpenLDAP Software 2.4 Administrator's Guide

226

E. Real World OpenLDAP Deployments and Examples

Examples and discussions

227

OpenLDAP Software 2.4 Administrator's Guide

228

F. OpenLDAP Software Contributions

The following sections attempt to summarize the various contributions in OpenLDAP software, as found in
openldap_src/contrib

F.1. Client APIs
Intro and discuss

F.1.1. Idapc++

Intro and discuss

F.1.2. Idaptcl
Intro and discuss
F.2. Overlays

F.2.1. acl

Plugins that implement access rules. Currently only posixGroup, which implements access control based on
posixGroup membership.

F.2.2. addpartial

Treat Add requests as Modify requests if the entry exists.

F.2.3. allop

Return operational attributes for root DSE even when not requested, since some clients expect this.

F.2.4. autogroup

Automated updates of group memberships.

F.2.5. comp_match

Component Matching rules (RFC 3687).

F.2.6. denyop

Deny selected operations, returning unwillingToPerform.

F.2.7. dsaschema

Permit loading DS A-specific schema, including operational attrs.

229

OpenLDAP Software 2.4 Administrator's Guide
F.2.8. lastmod

Track the time of the last write operation to a database.

F.2.9. nops

Remove null operations, e.g. changing a value to same as before.

F.2.10. nssov

Handle NSS lookup requests through a local Unix Domain socket.

F.2.11. passwd

Support additional password mechanisms.

F.2.12. proxyOld

Proxy Authorization compatibility with obsolete internet-draft.

F.2.13. smbk5pwd

Make the PasswordModify Extended Operation update Kerberos keys and Samba password hashes as well as
userPassword.

F.2.14. trace

Trace overlay invocation.

F.2.15. usn

Maintain usnCreated and usnChanged attrs similar to Microsoft AD.

F.3. Tools

Intro and discuss

F.3.1. Statistic Logging

statslog

F.4. SLAPI Plugins

Intro and discuss

230

OpenLDAP Software 2.4 Administrator's Guide

F.4.1. addrdnvalues

More

231

OpenLDAP Software 2.4 Administrator's Guide

232

G. Configuration File Examples
G.1. slapd.conf
G.2. Idap.conf

G.3. a-n-other.conf

233

OpenLDAP Software 2.4 Administrator's Guide

234

H. LDAP Result Codes

For the purposes of this guide, we have incorporated the standard LDAP result codes from Appendix A. LDAP
Result Codes of RFC4511, a copy of which can be found in doc/ rfc of the OpenLDAP source code.

We have expanded the description of each error in relation to the OpenLDAP toolsets. LDAP extensions may

introduce extension-specific result codes, which are not part of RFC4511. OpenLDAP returns the result codes
related to extensions it implements. Their meaning is documented in the extension they are related to.

H.1. Non-Error Result Codes

These result codes (called "non-error” result codes) do not indicate an error condition:

success (0),
compareFalse (5),
compareTrue (6),
referral (10), and
saslBindInProgress (14).

The success, compareTrue, and compareFalse result codes indicate successful completion (and, hence, are
referred to as "successful" result codes).

The referral and saslBindInProgress result codes indicate the client needs to take additional action to
complete the operation.

H.2. Result Codes

Existing LDAP result codes are described as follows:

H.3. success (0)

Indicates the successful completion of an operation.

Note: this code is not used with the Compare operation. See compareFalse (5) and compareTrue (6).

H.4. operationsError (1)

Indicates that the operation is not properly sequenced with relation to other operations (of same or different
type).

For example, this code is returned if the client attempts to StartTLS (RFC4511 Section 4.14) while there are
other uncompleted operations or if a TLS layer was already installed.

H.5. protocolError (2)

Indicates the server received data that is not well-formed.

235

http://www.rfc-editor.org/rfc/rfc4511.txt
http://www.rfc-editor.org/rfc/rfc4511.txt

OpenLDAP Software 2.4 Administrator's Guide

For Bind operation only, this code is also used to indicate that the server does not support the requested
protocol version.

For Extended operations only, this code is also used to indicate that the server does not support (by design or
configuration) the Extended operation associated with the requestName.

For request operations specifying multiple controls, this may be used to indicate that the server cannot ignore

the order of the controls as specified, or that the combination of the specified controls is invalid or
unspecified.

H.6. timeLimitExceeded (3)

Indicates that the time limit specified by the client was exceeded before the operation could be completed.

H.7. sizeLimitExceeded (4)

Indicates that the size limit specified by the client was exceeded before the operation could be completed.

H.8. compareFalse (5)

Indicates that the Compare operation has successfully completed and the assertion has evaluated to FALSE or
Undefined.

H.9. compareTrue (6)

Indicates that the Compare operation has successfully completed and the assertion has evaluated to TRUE.

H.10. authMethodNotSupported (7)

Indicates that the authentication method or mechanism is not supported.

H.11. strongerAuthRequired (8)

Indicates the server requires strong(er) authentication in order to complete the operation.

When used with the Notice of Disconnection operation, this code indicates that the server has detected that an
established security association between the client and server has unexpectedly failed or been compromised.

H.12. referral (10)

Indicates that a referral needs to be chased to complete the operation (see RFC4511 Section 4.1.10).

H.13. adminLimitExceeded (11)

Indicates that an administrative limit has been exceeded.

236

http://www.rfc-editor.org/rfc/rfc4511.txt

OpenLDAP Software 2.4 Administrator's Guide

H.14. unavailableCriticalExtension (12)

Indicates a critical control is unrecognized (see RFC4511 Section 4.1.11).

H.15. confidentialityRequired (13)

Indicates that data confidentiality protections are required.

H.16. sasIBindInProgress (14)

Indicates the server requires the client to send a new bind request, with the same SASL mechanism, to
continue the authentication process (see RFC4511 Section 4.2).

H.17. noSuchAttribute (16)

Indicates that the named entry does not contain the specified attribute or attribute value.

H.18. undefinedAttributeType (17)

Indicates that a request field contains an unrecognized attribute description.

H.19. inappropriateMatching (18)

Indicates that an attempt was made (e.g., in an assertion) to use a matching rule not defined for the attribute
type concerned.

H.20. constraintViolation (19)

Indicates that the client supplied an attribute value that does not conform to the constraints placed upon it by
the data model.

For example, this code is returned when multiple values are supplied to an attribute that has a
SINGLE-VALUE constraint.

H.21. attributeOrValueExists (20)

Indicates that the client supplied an attribute or value to be added to an entry, but the attribute or value already
exists.

H.22. invalidAttributeSyntax (21)

Indicates that a purported attribute value does not conform to the syntax of the attribute.

H.23. noSuchObiject (32)

Indicates that the object does not exist in the DIT.

237

http://www.rfc-editor.org/rfc/rfc4511.txt
http://www.rfc-editor.org/rfc/rfc4511.txt

OpenLDAP Software 2.4 Administrator's Guide
H.24. aliasProblem (33)

Indicates that an alias problem has occurred. For example, the code may used to indicate an alias has been
dereferenced that names no object.

H.25. invalidDNSyntax (34)
Indicates that an LDAPDN or RelativeLDAPDN field (e.g., search base, target entry, ModifyDN newrdn,

etc.) of a request does not conform to the required syntax or contains attribute values that do not conform to
the syntax of the attribute's type.

H.26. aliasDereferencingProblem (36)

Indicates that a problem occurred while dereferencing an alias. Typically, an alias was encountered in a
situation where it was not allowed or where access was denied.

H.27. inappropriate Authentication (48)

Indicates the server requires the client that had attempted to bind anonymously or without supplying
credentials to provide some form of credentials.

H.28. invalidCredentials (49)

Indicates that the provided credentials (e.g., the user's name and password) are invalid.

H.29. insufficientAccessRights (50)

Indicates that the client does not have sufficient access rights to perform the operation.

H.30. busy (51)

Indicates that the server is too busy to service the operation.

H.31. unavailable (52)

Indicates that the server is shutting down or a subsystem necessary to complete the operation is offline.

H.32. unwillingToPerform (53)

Indicates that the server is unwilling to perform the operation.

H.33. loopDetect (54)

Indicates that the server has detected an internal loop (e.g., while dereferencing aliases or chaining an
operation).

238

OpenLDAP Software 2.4 Administrator's Guide

H.34. namingViolation (64)

Indicates that the entry's name violates naming restrictions.

H.35. objectClassViolation (65)

Indicates that the entry violates object class restrictions.

H.36. notAllowedOnNonLeaf (66)

Indicates that the operation is inappropriately acting upon a non-leaf entry.

H.37. notAllowedOnRDN (67)

Indicates that the operation is inappropriately attempting to remove a value that forms the entry's relative
distinguished name.

H.38. entryAlreadyExists (68)

Indicates that the request cannot be fulfilled (added, moved, or renamed) as the target entry already exists.

H.39. objectClassModsProhibited (69)

Indicates that an attempt to modify the object class(es) of an entry's 'objectClass' attribute is prohibited.

For example, this code is returned when a client attempts to modify the structural object class of an entry.

H.40. affectsMultipleDSAs (71)

Indicates that the operation cannot be performed as it would affect multiple servers (DSAs).

H.41. other (80)

Indicates the server has encountered an internal error.

239

OpenLDAP Software 2.4 Administrator's Guide

240

l. Glossary

I.1. Terms

Term Definition

3DES Triple DES

ABNF Augmented Backus-Naur Form

ACDF Access Control Decision Function

ACE ASCII Compatible Encoding

ASCII American Standard Code for Information Interchange
ACID Atomicity, Consistency, Isolation, and Durability
ACI Access Control Information

ACL Access Control List

AES Advance Encryption Standard

ABI Application Binary Interface

API Application Program Interface

ASN.1 Abstract Syntax Notation - One

AVA Attribute Value Assertion

AuthcDN Authentication DN

Authcld Authentication Identity

AuthzDN Authorization DN

AuthzId Authorization Identity

BCP Best Current Practice

BDB Berkeley DB (Backend)

BER Basic Encoding Rules

BNF Backus-Naur Form

C The C Programming Language

CA Certificate Authority

CER Canonical Encoding Rules

CLDAP Connection-less LDAP

CN Common Name

CRAM-MDS5 SASL MD5 Challenge/Response Authentication Mechanism
CRL Certificate Revocation List

DAP Directory Access Protocol

DC Domain Component

DER Distinguished Encoding Rules

DES Data Encryption Standard

DIB Directory Information Base

DIGEST-MD5 SASL Digest MD5 Authentication Mechanism
DISP Directory Information Shadowing Protocol
DIT Directory Information Tree

241

DNS

DN

DOP
DSAIT
DSA
DSE
DSP

DS

DUA
EXTERNAL
FAQ
FTP

FYI
GSER
GSS-API
GSSAPI
HDB

I-D

IAS
IDNA
IDN

ID

IDL

IP

IPC
IPsec
IPv4
IPv6

ITS
JPEG
Kerberos
LBER
LDAP
LDAP Sync
LDAPv3
LDIF
LMDB
MD5
MDB
MIB
MODDN
MODRDN

242

OpenLDAP Software 2.4 Administrator's Guide

Domain Name System

Distinguished Name

Directory Operational Binding Management Protocol
DSA Information Tree

Directory System Agent

DSA-specific Entry

Directory System Protocol

Draft Standard

Directory User Agent

SASL External Authentication Mechanism
Frequently Asked Questions

File Transfer Protocol

For Your Information

Generic String Encoding Rules

Generic Security Service Application Program Interface
SASL Kerberos V GSS-API Authentication Mechanism
Hierarchical Database (Backend)
Internet-Draft

International Alphabet 5

Internationalized Domain Names in Applications
Internationalized Domain Name

Identifier

Index Data Lookups

Internet Protocol

Inter-process communication

Internet Protocol Security

Internet Protocol, version 4

Internet Protocol, version 6

Issue Tracking System

Joint Photographic Experts Group
Kerberos Authentication Service
Lightweight BER

Lightweight Directory Access Protocol
LDAP Content Synchronization

LDAP, version 3

LDAP Data Interchange Format

Lightning Memory-Mapped Database
Message Digest 5

Memory-Mapped Database (Backend)
Management Information Base

Modify DN

Modify RDN

NSSR
OID
OSI
OTP
PDU
PEM
PEN
PKCS
PKI
PKIX
PLAIN
POSIX
PS
RDN
RFC
RPC
RXER
SASL
SDF
SDSE
SHA1
SLAPD
SLURPD
SMTP
SNMP
SQL
SRP
SSF
SSL
STD
TCP
TLS
ucCsS
UDP
UID
Unicode
UNIX
URI
URL
URN
UTEF-8
UTR

OpenLDAP Software 2.4 Administrator's Guide

Non-specific Subordinate Reference
Object Identifier

Open Systems Interconnect

One Time Password

Protocol Data Unit

Privacy Enhanced eMail

Private Enterprise Number

Public Key Cryptosystem

Public Key Infrastructure

Public Key Infrastructure (X.509)

SASL Plaintext Password Authentication Mechanism
Portable Operating System Interface
Proposed Standard

Relative Distinguished Name

Request for Comments

Remote Procedure Call

Robust XML Encoding Rules

Simple Authentication and Security Layer
Simple Document Format

Shadowed DSE

Secure Hash Algorithm 1

Standalone LDAP Daemon

Standalone LDAP Update Replication Daemon
Simple Mail Transfer Protocol

Simple Network Management Protocol
Structured Query Language

Secure Remote Password

Security Strength Factor

Secure Socket Layer

Internet Standard

Transmission Control Protocol

Transport Layer Security

Universal Multiple-Octet Coded Character Set
User Datagram Protocol

User Identifier

The Unicode Standard

Unix

Uniform Resource Identifier

Uniform Resource Locator

Uniform Resource Name

8-bit UCS/Unicode Transformation Format
Unicode Technical Report

243

UUID
WWWwW
X.500
X.509
XED
XER
XML
syncrepl

OpenLDAP Software 2.4 Administrator's Guide

Universally Unique Identifier
World Wide Web
X.500 Directory Services

X.509 Public Key and Attribute Certificate Frameworks

XML Enabled Directory

XML Encoding Rules
Extensible Markup Language
LDAP Sync-based Replication

1.2. Related Organizations

Name
ANSI
BSI

COSINE

CPAN
Cyrus
FSF

GNU

IAB
IANA
IEEE
IESG
IETF
IRTF

ISO

ISOC

ITU

OLF

OLP
OpenSSL
RFC Editor
Oracle
UM
UMLDAP

Long
American National Standards Institute
British Standards Institute

Co-operation and Open Systems
Interconnection in Europe

Comprehensive Perl Archive Network
Project Cyrus

Free Software Foundation

GNU Not Unix Project

Internet Architecture Board

Internet Assigned Numbers Authority
Institute of Electrical and Electronics Engineers
Internet Engineering Steering Group
Internet Engineering Task Force
Internet Research Task Force
International Standards Organisation
Internet Society

International Telephone Union
OpenLDAP Foundation

OpenLDAP Project

OpenSSL Project

RFC Editor

Oracle Corporation

University of Michigan

University of Michigan LDAP Team

|.3. Related Products

Name

SDF

Cyrus

Cyrus SASL
Git

244

Jump

Jump
http://www.ansi.org/
http://www.bsi-global.com/

http://cpan.org/
http://cyrusimap.web.cmu.edu/
http://www.fsf.org/
http://www.gnu.org/
http://www.iab.org/
http://www.iana.org/
http://www.ieee.org
http://www.ietf.org/iesg/
http://www.ietf.org/
http://www.irtf.org/
http://www.iso.org/
http://www.isoc.org/
http://www.itu.int/
http://www.openldap.org/foundation/
http://www.openldap.org/project/
http://www.openssl.org/
http://www.rfc-editor.org/
http://www.oracle.com/
http://www.umich.edu/

http://www.umich.edu/~dirsvcs/ldap/ldap.html

http://search.cpan.org/src/IANC/sdf-2.001/doc/catalog.html

http://cyrusimap.web.cmu.edu/generalinfo.html

http://asg.web.cmu.edu/sasl/sasl-library.html

http://git-scm.com/

http://www.ansi.org/
http://www.ansi.org/
http://www.bsi-global.com/
http://www.bsi-global.com/
http://cpan.org/
http://cpan.org/
http://cyrusimap.web.cmu.edu/
http://cyrusimap.web.cmu.edu/
http://www.fsf.org/
http://www.fsf.org/
http://www.gnu.org/
http://www.gnu.org/
http://www.iab.org/
http://www.iab.org/
http://www.iana.org/
http://www.iana.org/
http://www.ieee.org
http://www.ieee.org
http://www.ietf.org/iesg/
http://www.ietf.org/iesg/
http://www.ietf.org/
http://www.ietf.org/
http://www.irtf.org/
http://www.irtf.org/
http://www.iso.org/
http://www.iso.org/
http://www.isoc.org/
http://www.isoc.org/
http://www.itu.int/
http://www.itu.int/
http://www.openldap.org/foundation/
http://www.openldap.org/foundation/
http://www.openldap.org/project/
http://www.openldap.org/project/
http://www.openssl.org/
http://www.openssl.org/
http://www.rfc-editor.org/
http://www.rfc-editor.org/
http://www.oracle.com/
http://www.oracle.com/
http://www.umich.edu/
http://www.umich.edu/
http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://search.cpan.org/src/IANC/sdf-2.001/doc/catalog.html
http://search.cpan.org/src/IANC/sdf-2.001/doc/catalog.html
http://cyrusimap.web.cmu.edu/generalinfo.html
http://cyrusimap.web.cmu.edu/generalinfo.html
http://asg.web.cmu.edu/sasl/sasl-library.html
http://asg.web.cmu.edu/sasl/sasl-library.html
http://git-scm.com/
http://git-scm.com/

OpenLDAP Software 2.4 Administrator's Guide

GNU http://www.gnu.org/software/
GnuTLS http://www.gnu.org/software/gnutls/
Heimdal http://www.pdc.kth.se/heimdal/
JLDAP http://www.openldap.org/jldap/
MIT Kerberos http://web.mit.edu/kerberos/www/
MozNSS http://developer.mozilla.org/en/NSS
OpenLDAP http://www.openldap.org/
OpenLDAP FAQ http://www.openldap.org/faq/
OpenLDAP ITS http://www.openldap.org/its/
OpenLDAP Software http://www.openldap.org/software/
OpenSSL http://www.openssl.org/

Perl http://www.perl.org/

UMLDAP http://www.umich.edu/~dirsvcs/ldap/ldap.html

|.4. References

Reference Document Status Jump

The SLAPD and
SLURPD

UM-GUIDE 0] http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf

Administrators
Guide

Definition of an
X.500 Attribute
Type and an Object
Class to Hold
Uniform Resource
Identifers

RFC2079 PS http://www.rfc-editor.org/rfc/rfc2079.txt

Use of Language
Codes in LDAP

An Approach for
Using LDAP as a
Network Information
Service

Lightweight
Directory Access
Protocol (v3):
Extensions for
Dynamic Directory
Services
Definition of the
RFC2798 inetOrgPerson I http://www.rfc-editor.org/rfc/rfc2798.txt
LDAP Object Class
Using Digest
RFC2831 Authentication asa PS http://www.rfc-editor.org/rfc/rfc2831.txt
SASL Mechanism

RFC2849 The LDAP Data PS http://www.rfc-editor.org/rfc/rfc2849.txt

RFC2296 PS http://www.rfc-editor.org/rfc/rfc2296.txt

RFC2307 http://www.rfc-editor.org/rfc/rfc2307.txt

RFC2589 PS http://www.rfc-editor.org/rfc/rfc2589.txt

245

http://www.gnu.org/software/
http://www.gnu.org/software/
http://www.gnu.org/software/gnutls/
http://www.gnu.org/software/gnutls/
http://www.pdc.kth.se/heimdal/
http://www.pdc.kth.se/heimdal/
http://www.openldap.org/jldap/
http://www.openldap.org/jldap/
http://web.mit.edu/kerberos/www/
http://web.mit.edu/kerberos/www/
http://developer.mozilla.org/en/NSS
http://developer.mozilla.org/en/NSS
http://www.openldap.org/
http://www.openldap.org/
http://www.openldap.org/faq/
http://www.openldap.org/faq/
http://www.openldap.org/its/
http://www.openldap.org/its/
http://www.openldap.org/software/
http://www.openldap.org/software/
http://www.openssl.org/
http://www.openssl.org/
http://www.perl.org/
http://www.perl.org/
http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf
http://www.umich.edu/~dirsvcs/ldap/doc/guides/slapd/guide.pdf
http://www.rfc-editor.org/rfc/rfc2079.txt
http://www.rfc-editor.org/rfc/rfc2079.txt
http://www.rfc-editor.org/rfc/rfc2296.txt
http://www.rfc-editor.org/rfc/rfc2296.txt
http://www.rfc-editor.org/rfc/rfc2307.txt
http://www.rfc-editor.org/rfc/rfc2307.txt
http://www.rfc-editor.org/rfc/rfc2589.txt
http://www.rfc-editor.org/rfc/rfc2589.txt
http://www.rfc-editor.org/rfc/rfc2798.txt
http://www.rfc-editor.org/rfc/rfc2798.txt
http://www.rfc-editor.org/rfc/rfc2831.txt
http://www.rfc-editor.org/rfc/rfc2831.txt
http://www.rfc-editor.org/rfc/rfc2849.txt
http://www.rfc-editor.org/rfc/rfc2849.txt

RFC3088

RFC3296

RFC3384

RFC3494

RFC4013

RFC4346

RFC4422

RFC4510

RFC4511

RFC4512

RFC4513

246

OpenLDAP Software 2.4 Administrator's Guide

Interchange Format

OpenLDAP Root
Service

Named Subordinate
References in LDAP

Lightweight
Directory Access

X

PS

Protocol (version 3) 1

Replication
Requirements
Lightweight
Directory Access
Protocol version 2
(LDAPV2) to
Historic Status
SASLprep:
Stringprep Profile

for User Names and

Passwords

The Transport Layer

Security (TLS)

Protocol, Version 1.1

Simple

Authentication and

Security Layer
(SASL)

Lightweight
Directory Access
Protocol (LDAP):
Technical
Specification
Roadmap
Lightweight
Directory Access
Protocol (LDAP):
The Protocol
Lightweight
Directory Access
Protocol (LDAP):
Directory

Information Models

Lightweight
Directory Access
Protocol (LDAP):
Authentication
Methods and
Security
Mechanisms

I

PS

PS

PS

PS

PS

PS

http://www.rfc-editor.org/rfc/rfc3088.txt

http://www.rfc-editor.org/rfc/rfc3296.txt

http://www.rfc-editor.org/rfc/rfc3384.txt

http://www .rfc-editor.org/rfc/rfc3494.txt

http://www.rfc-editor.org/rfc/rfc4013.txt

http://www .rfc-editor.org/rfc/rfc4346.txt

http://www.rfc-editor.org/rfc/rfc4422.txt

http://www.rfc-editor.org/rfc/rfc4510.txt

http://www.rfc-editor.org/rfc/rfc4511.txt

http://www.rfc-editor.org/rfc/rfc4512.txt

http://www.rfc-editor.org/rfc/rfc4513.txt

http://www.rfc-editor.org/rfc/rfc3088.txt
http://www.rfc-editor.org/rfc/rfc3088.txt
http://www.rfc-editor.org/rfc/rfc3296.txt
http://www.rfc-editor.org/rfc/rfc3296.txt
http://www.rfc-editor.org/rfc/rfc3384.txt
http://www.rfc-editor.org/rfc/rfc3384.txt
http://www.rfc-editor.org/rfc/rfc3494.txt
http://www.rfc-editor.org/rfc/rfc3494.txt
http://www.rfc-editor.org/rfc/rfc4013.txt
http://www.rfc-editor.org/rfc/rfc4013.txt
http://www.rfc-editor.org/rfc/rfc4346.txt
http://www.rfc-editor.org/rfc/rfc4346.txt
http://www.rfc-editor.org/rfc/rfc4422.txt
http://www.rfc-editor.org/rfc/rfc4422.txt
http://www.rfc-editor.org/rfc/rfc4510.txt
http://www.rfc-editor.org/rfc/rfc4510.txt
http://www.rfc-editor.org/rfc/rfc4511.txt
http://www.rfc-editor.org/rfc/rfc4511.txt
http://www.rfc-editor.org/rfc/rfc4512.txt
http://www.rfc-editor.org/rfc/rfc4512.txt
http://www.rfc-editor.org/rfc/rfc4513.txt
http://www.rfc-editor.org/rfc/rfc4513.txt

RFC4514

RFC4515

RFC4516

RFC4517

RFC4518

RFC4519

RFC4520

RFC4533

Chu-LDAPI

OpenLDAP Software 2.4 Administrator's Guide

Lightweight

Directory Access
Protocol (LDAP):

String PS
Representation of
Distinguished
Names
Lightweight
Directory Access
Protocol (LDAP):
String
Representation of
Search Filters
Lightweight
Directory Access
Protocol (LDAP): PS
Uniform Resource
Locator

Lightweight

Directory Access
Protocol (LDAP): PS
Syntaxes and

Matching Rules
Lightweight

Directory Access
Protocol (LDAP): PS
Internationalized

String Preparation
Lightweight

Directory Access
Protocol (LDAP): PS
Schema for User
Applications

TANA
Considerations for BCP
LDAP

The Lightweight
Directory Access
Protocol (LDAP)
Content
Synchronization
Operation

Using LDAP Over

IPC Mechanisms D

http://www.rfc-editor.org/rfc/rfc4514.txt

http://www.rfc-editor.org/rfc/rfc4515.txt

http://www.rfc-editor.org/rfc/rfc4516.txt

http://www.rfc-editor.org/rfc/rfc4517.txt

http://www.rfc-editor.org/rfc/rfc4518.txt

http://www.rfc-editor.org/rfc/rfc4519.txt

http://www.rfc-editor.org/rfc/rfc4520.txt

http://www.rfc-editor.org/rfc/rfc4533.txt

http://tools.ietf.org/html/draft-chu-ldap-1dapi-00

247

http://www.rfc-editor.org/rfc/rfc4514.txt
http://www.rfc-editor.org/rfc/rfc4514.txt
http://www.rfc-editor.org/rfc/rfc4515.txt
http://www.rfc-editor.org/rfc/rfc4515.txt
http://www.rfc-editor.org/rfc/rfc4516.txt
http://www.rfc-editor.org/rfc/rfc4516.txt
http://www.rfc-editor.org/rfc/rfc4517.txt
http://www.rfc-editor.org/rfc/rfc4517.txt
http://www.rfc-editor.org/rfc/rfc4518.txt
http://www.rfc-editor.org/rfc/rfc4518.txt
http://www.rfc-editor.org/rfc/rfc4519.txt
http://www.rfc-editor.org/rfc/rfc4519.txt
http://www.rfc-editor.org/rfc/rfc4520.txt
http://www.rfc-editor.org/rfc/rfc4520.txt
http://www.rfc-editor.org/rfc/rfc4533.txt
http://www.rfc-editor.org/rfc/rfc4533.txt
http://tools.ietf.org/html/draft-chu-ldap-ldapi-00
http://tools.ietf.org/html/draft-chu-ldap-ldapi-00

OpenLDAP Software 2.4 Administrator's Guide

248

J. Generic configure Instructions

Basic Installation

These are generic installation instructions.

The “configure' shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a "Makefile' in each directory of the package.
It may also create one or more "~ .h' files containing system-dependent
definitions. Finally, it creates a shell script “config.status' that
you can run in the future to recreate the current configuration, a file
‘config.cache' that saves the results of its tests to speed up
reconfiguring, and a file “config.log' containing compiler output
(useful mainly for debugging “configure').

If you need to do unusual things to compile the package, please try
to figure out how “configure' could check whether to do them, and mail
diffs or instructions to the address given in the "README' so they can
be considered for the next release. If at some point “config.cache'
contains results you don't want to keep, you may remove or edit it.

The file "configure.in' is used to create “configure' by a program
called "autoconf'. You only need "configure.in' if you want to change

it or regenerate "configure' using a newer version of “autoconf'.

The simplest way to compile this package is:

1. “cd' to the directory containing the package's source code and type

‘./configure' to configure the package for your system. If you're
using “csh' on an old version of System V, you might need to type
“sh ./configure' instead to prevent ‘csh' from trying to execute
‘configure' itself.

Running "configure' takes awhile. While running, it prints some
messages telling which features it is checking for.

2. Type "make' to compile the package.

3. Optionally, type “make check' to run any self-tests that come with
the package.

4. Type "make install' to install the programs and any data files and
documentation.

5. You can remove the program binaries and object files from the
source code directory by typing "‘make clean'. To also remove the
files that “configure' created (so you can compile the package for
a different kind of computer), type “make distclean'. There is
also a ‘make maintainer-clean' target, but that is intended mainly
for the package's developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.

Compilers and Options

Some systems require unusual options for compilation or linking that
the “configure' script does not know about. You can give “configure'

249

OpenLDAP Software 2.4 Administrator's Guide

initial values for variables by setting them in the environment. Using
a Bourne-compatible shell, you can do that on the command line like
this:

CC=c89 CFLAGS=-02 LIBS=-lposix ./configure

Or on systems that have the “env' program, you can do it like this:
env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure

Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you must use a version of “make' that
supports the "VPATH' wvariable, such as GNU "make'. “cd' to the
directory where you want the object files and executables to go and run
the “configure' script. “configure' automatically checks for the
source code in the directory that “configure' is in and in ~..'.

If you have to use a "make' that does not supports the *VPATH'
variable, you have to compile the package for one architecture at a time
in the source code directory. After you have installed the package for
one architecture, use "make distclean' before reconfiguring for another
architecture.

Installation Names

By default, "make install' will install the package's files in
“/usr/local/bin', " /usr/local/man', etc. You can specify an
installation prefix other than ' /usr/local' by giving ‘configure' the
option "—-prefix=PATH'.

You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
give “configure' the option "~--exec-prefix=PATH', the package will use
PATH as the prefix for installing programs and libraries.

Documentation and other data files will still use the regular prefix.

In addition, if you use an unusual directory layout you can give
options like "~—--bindir=PATH' to specify different values for particular
kinds of files. Run "configure --help' for a list of the directories
you can set and what kinds of files go in them.

If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving “configure' the

option '~ —--program-prefix=PREFIX' or '~—--program-suffix=SUFFIX'.

Optional Features

Some packages pay attention to ~--enable-FEATURE' options to
‘configure', where FEATURE indicates an optional part of the package.
They may also pay attention to "—--with-PACKAGE' options, where PACKAGE
is something like “gnu-as' or "x' (for the X Window System). The
"README' should mention any "~ —-enable-' and "~--with-' options that the
package recognizes.

For packages that use the X Window System, ~configure' can usually

find the X include and library files automatically, but if it doesn't,
you can use the “configure' options "--x-includes=DIR' and

250

OpenLDAP Software 2.4 Administrator's Guide

‘——x-libraries=DIR' to specify their locations.

Specifying the System Type

There may be some features “configure' can not figure out
automatically, but needs to determine by the type of host the package
will run on. Usually “configure' can figure that out, but if it prints
a message saying it can not guess the host type, give it the
"——host=TYPE' option. TYPE can either be a short name for the system
type, such as “sun4d', or a canonical name with three fields:

CPU-COMPANY-SYSTEM

See the file “config.sub' for the possible values of each field. If
‘config.sub' isn't included in this package, then this package doesn't
need to know the host type.

If you are building compiler tools for cross—-compiling, you can also
use the "--target=TYPE' option to select the type of system they will
produce code for and the "—--build=TYPE' option to select the type of
system on which you are compiling the package.

Sharing Defaults

If you want to set default values for "configure' scripts to share,
you can create a site shell script called "config.site' that gives
default values for variables like "CC', “cache_file', and "prefix'.
‘configure' looks for "PREFIX/share/config.site' if it exists, then
"PREFIX/etc/config.site' if it exists. Or, you can set the
"CONFIG_SITE' environment variable to the location of the site script.
A warning: not all ‘configure' scripts look for a site script.

Operation Controls

‘configure' recognizes the following options to control how it
operates.

‘——cache-file=FILE'
Use and save the results of the tests in FILE instead of
*./config.cache'. Set FILE to "~ /dev/null' to disable caching, for
debugging “configure'.

"——help'
Print a summary of the options to "configure', and exit.

‘-—quiet’

‘—-—-silent’

g
Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to ' /dev/null' (any error

messages will still be shown).

‘——-srcdir=DIR'
Look for the package's source code in directory DIR. Usually
‘configure' can determine that directory automatically.

‘——version'
Print the version of Autoconf used to generate the “configure'
script, and exit.

251

OpenLDAP Software 2.4 Administrator's Guide

‘configure' also accepts some other, not widely useful, options.

252

K. OpenLDAP Software Copyright Notices
K.1. OpenLDAP Copyright Notice

Copyright 1998-2012 The OpenLDAP Foundation.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted only as
authorized by the OpenLDAP Public License.

A copy of this license is available in file LICENSE in the top-level directory of the distribution or,
alternatively, at <http://www.OpenLDAP.org/license.html>.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Individual files and/or contributed packages may be copyright by other parties and their use subject to
additional restrictions.

This work is derived from the University of Michigan LDAP v3.3 distribution. Information concerning this
software is available at <http://www.umich.edu/~dirsvcs/ldap/ldap.html>.

This work also contains materials derived from public sources.

Additional information about OpenLDAP software can be obtained at <http://www.OpenLDAP.org/>.

K.2. Additional Copyright Notices

Portions Copyright 1998-2012 Kurt D. Zeilenga.
Portions Copyright 1998-2006 Net Boolean Incorporated.
Portions Copyright 2001-2006 IBM Corporation.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted only as
authorized by the OpenLDAP Public License.

Portions Copyright 1999-2008 Howard Y.H. Chu.
Portions Copyright 1999-2008 Symas Corporation.
Portions Copyright 1998-2003 Hallvard B. Furuseth.
Portions Copyright 2007-2011 Gavin Henry.

Portions Copyright 2007-2011 Suretec Systems Limited.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
this notice is preserved. The names of the copyright holders may not be used to endorse or promote products
derived from this software without their specific prior written permission. This software is provided "as is"
without express or implied warranty.

253

http://www.OpenLDAP.org/license.html
http://www.umich.edu/~dirsvcs/ldap/ldap.html
http://www.OpenLDAP.org/

OpenLDAP Software 2.4 Administrator's Guide
K.3. University of Michigan Copyright Notice

Portions Copyright 1992-1996 Regents of the University of Michigan.
All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is preserved and that
due credit is given to the University of Michigan at Ann Arbor. The name of the University may not be used
to endorse or promote products derived from this software without specific prior written permission. This
software is provided as is" without express or implied warranty.

254

L. OpenLDAP Public License

The OpenLDAP Public License
Version 2.8, 17 August 2003

Redistribution and use of this software and associated documentation
("Software"), with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions in source form must retain copyright statements
and notices,

2. Redistributions in binary form must reproduce applicable copyright
statements and notices, this list of conditions, and the following
disclaimer in the documentation and/or other materials provided
with the distribution, and

3. Redistributions must contain a verbatim copy of this document.

The OpenLDAP Foundation may revise this license from time to time.
Each revision is distinguished by a version number. You may use
this Software under terms of this license revision or under the
terms of any subsequent revision of the license.

THIS SOFTWARE IS PROVIDED BY THE OPENLDAP FOUNDATION AND ITS
CONTRIBUTORS " "AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE OPENLDAP FOUNDATION, ITS CONTRIBUTORS, OR THE AUTHOR(S)

OR OWNER(S) OF THE SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The names of the authors and copyright holders must not be used in
advertising or otherwise to promote the sale, use or other dealing

in this Software without specific, written prior permission. Title

to copyright in this Software shall at all times remain with copyright
holders.

OpenlDAP is a registered trademark of the OpenLDAP Foundation.
Copyright 1999-2003 The OpenlDAP Foundation, Redwood City,

California, USA. All Rights Reserved. Permission to copy and
distribute verbatim copies of this document is granted.

Home | Catalog

© Copyright 2011, OpenLDAP Foundation, info@OpenLDAP.org

255

http://www.openldap.org/
http://www.OpenLDAP.org/foundation/
mailto:info@OpenLDAP.org

OpenLDAP Software 2.4 Administrator's Guide

256

	Table of Contents
	Preface
	Copyright
	Scope of this Document
	Acknowledgments
	Amendments
	About this document

	1. Introduction to OpenLDAP Directory Services
	1.1. What is a directory service?
	1.2. What is LDAP?
	1.3. When should I use LDAP?
	1.4. When should I not use LDAP?
	1.5. How does LDAP work?
	1.6. What about X.500?
	1.7. What is the difference between LDAPv2 and LDAPv3?
	1.8. LDAP vs RDBMS
	1.9. What is slapd and what can it do?

	2. A Quick-Start Guide
	3. The Big Picture - Configuration Choices
	3.1. Local Directory Service
	3.2. Local Directory Service with Referrals
	3.3. Replicated Directory Service
	3.4. Distributed Local Directory Service

	4. Building and Installing OpenLDAP Software
	4.1. Obtaining and Extracting the Software
	4.2. Prerequisite software
	4.2.1. Transport Layer Security
	4.2.2. Simple Authentication and Security Layer
	4.2.3. Kerberos Authentication Service
	4.2.4. Database Software
	4.2.5. Threads
	4.2.6. TCP Wrappers

	4.3. Running configure
	4.4. Building the Software
	4.5. Testing the Software
	4.6. Installing the Software

	5. Configuring slapd
	5.1. Configuration Layout
	5.2. Configuration Directives
	5.2.1. cn=config
	5.2.2. cn=module
	5.2.3. cn=schema
	5.2.4. Backend-specific Directives
	5.2.5. Database-specific Directives
	5.2.6. BDB and HDB Database Directives

	5.3. Configuration Example
	5.4. Converting old style slapd.conf(5) file to cn=config format

	6. The slapd Configuration File
	6.1. Configuration File Format
	6.2. Configuration File Directives
	6.2.1. Global Directives
	6.2.2. General Backend Directives
	6.2.3. General Database Directives
	6.2.4. BDB and HDB Database Directives

	6.3. Configuration File Example

	7. Running slapd
	7.1. Command-Line Options
	7.2. Starting slapd
	7.3. Stopping slapd

	8. Access Control
	8.1. Introduction
	8.2. Access Control via Static Configuration
	8.2.1. What to control access to
	8.2.2. Who to grant access to
	8.2.3. The access to grant
	8.2.4. Access Control Evaluation
	8.2.5. Access Control Examples

	8.3. Access Control via Dynamic Configuration
	8.3.1. What to control access to
	8.3.2. Who to grant access to
	8.3.3. The access to grant
	8.3.4. Access Control Evaluation
	8.3.5. Access Control Examples
	8.3.6. Access Control Ordering

	8.4. Access Control Common Examples
	8.4.1. Basic ACLs
	8.4.2. Matching Anonymous and Authenticated users
	8.4.3. Controlling rootdn access
	8.4.4. Managing access with Groups
	8.4.5. Granting access to a subset of attributes
	8.4.6. Allowing a user write to all entries below theirs
	8.4.7. Allowing entry creation
	8.4.8. Tips for using regular expressions in Access Control
	8.4.9. Granting and Denying access based on security strength factors (ssf)
	8.4.10. When things aren't working as expected

	8.5. Sets - Granting rights based on relationships
	8.5.1. Groups of Groups
	8.5.2. Group ACLs without DN syntax
	8.5.3. Following references

	9. Limits
	9.1. Introduction
	9.2. Soft and Hard limits
	9.3. Global Limits
	9.4. Per-Database Limits
	9.4.1. Specify who the limits apply to
	9.4.2. Specify time limits
	9.4.3. Specifying size limits
	9.4.4. Size limits and Paged Results

	9.5. Example Limit Configurations
	9.5.1. Simple Global Limits
	9.5.2. Global Hard and Soft Limits
	9.5.3. Giving specific users larger limits
	9.5.4. Limiting who can do paged searches

	9.6. Further Information

	10. Database Creation and Maintenance Tools
	10.1. Creating a database over LDAP
	10.2. Creating a database off-line
	10.2.1. The slapadd program
	10.2.2. The slapindex program
	10.2.3. The slapcat program

	10.3. The LDIF text entry format

	11. Backends
	11.1. Berkeley DB Backends
	11.1.1. Overview
	11.1.2. back-bdb/back-hdb Configuration
	11.1.3. Further Information

	11.2. LDAP
	11.2.1. Overview
	11.2.2. back-ldap Configuration
	11.2.3. Further Information

	11.3. LDIF
	11.3.1. Overview
	11.3.2. back-ldif Configuration
	11.3.3. Further Information

	11.4. LMDB
	11.4.1. Overview
	11.4.2. back-mdb Configuration
	11.4.3. Further Information

	11.5. Metadirectory
	11.5.1. Overview
	11.5.2. back-meta Configuration
	11.5.3. Further Information

	11.6. Monitor
	11.6.1. Overview
	11.6.2. back-monitor Configuration
	11.6.3. Further Information

	11.7. Null
	11.7.1. Overview
	11.7.2. back-null Configuration
	11.7.3. Further Information

	11.8. Passwd
	11.8.1. Overview
	11.8.2. back-passwd Configuration
	11.8.3. Further Information

	11.9. Perl/Shell
	11.9.1. Overview
	11.9.2. back-perl/back-shell Configuration
	11.9.3. Further Information

	11.10. Relay
	11.10.1. Overview
	11.10.2. back-relay Configuration
	11.10.3. Further Information

	11.11. SQL
	11.11.1. Overview
	11.11.2. back-sql Configuration
	11.11.3. Further Information

	12. Overlays
	12.1. Access Logging
	12.1.1. Overview
	12.1.2. Access Logging Configuration
	12.1.3. Further Information

	12.2. Audit Logging
	12.2.1. Overview
	12.2.2. Audit Logging Configuration
	12.2.3. Further Information

	12.3. Chaining
	12.3.1. Overview
	12.3.2. Chaining Configuration
	12.3.3. Handling Chaining Errors
	12.3.4. Read-Back of Chained Modifications
	12.3.5. Further Information

	12.4. Constraints
	12.4.1. Overview
	12.4.2. Constraint Configuration
	12.4.3. Further Information

	12.5. Dynamic Directory Services
	12.5.1. Overview
	12.5.2. Dynamic Directory Service Configuration
	12.5.3. Further Information

	12.6. Dynamic Groups
	12.6.1. Overview
	12.6.2. Dynamic Group Configuration

	12.7. Dynamic Lists
	12.7.1. Overview
	12.7.2. Dynamic List Configuration
	12.7.3. Further Information

	12.8. Reverse Group Membership Maintenance
	12.8.1. Overview
	12.8.2. Member Of Configuration
	12.8.3. Further Information

	12.9. The Proxy Cache Engine
	12.9.1. Overview
	12.9.2. Proxy Cache Configuration
	12.9.3. Further Information

	12.10. Password Policies
	12.10.1. Overview
	12.10.2. Password Policy Configuration
	12.10.3. Further Information

	12.11. Referential Integrity
	12.11.1. Overview
	12.11.2. Referential Integrity Configuration
	12.11.3. Further Information

	12.12. Return Code
	12.12.1. Overview
	12.12.2. Return Code Configuration
	12.12.3. Further Information

	12.13. Rewrite/Remap
	12.13.1. Overview
	12.13.2. Rewrite/Remap Configuration
	12.13.3. Further Information

	12.14. Sync Provider
	12.14.1. Overview
	12.14.2. Sync Provider Configuration
	12.14.3. Further Information

	12.15. Translucent Proxy
	12.15.1. Overview
	12.15.2. Translucent Proxy Configuration
	12.15.3. Further Information

	12.16. Attribute Uniqueness
	12.16.1. Overview
	12.16.2. Attribute Uniqueness Configuration
	12.16.3. Further Information

	12.17. Value Sorting
	12.17.1. Overview
	12.17.2. Value Sorting Configuration
	12.17.3. Further Information

	12.18. Overlay Stacking
	12.18.1. Overview
	12.18.2. Example Scenarios

	13. Schema Specification
	13.1. Distributed Schema Files
	13.2. Extending Schema
	13.2.1. Object Identifiers
	13.2.2. Naming Elements
	13.2.3. Local schema file
	13.2.4. Attribute Type Specification
	13.2.5. Object Class Specification
	13.2.6. OID Macros

	14. Security Considerations
	14.1. Network Security
	14.1.1. Selective Listening
	14.1.2. IP Firewall
	14.1.3. TCP Wrappers

	14.2. Data Integrity and Confidentiality Protection
	14.2.1. Security Strength Factors

	14.3. Authentication Methods
	14.3.1. "simple" method
	14.3.2. SASL method

	14.4. Password Storage
	14.4.1. SSHA password storage scheme
	14.4.2. CRYPT password storage scheme
	14.4.3. MD5 password storage scheme
	14.4.4. SMD5 password storage scheme
	14.4.5. SHA password storage scheme
	14.4.6. SASL password storage scheme

	14.5. Pass-Through authentication
	14.5.1. Configuring slapd to use an authentication provider
	14.5.2. Configuring saslauthd
	14.5.3. Testing pass-through authentication

	15. Using SASL
	15.1. SASL Security Considerations
	15.2. SASL Authentication
	15.2.1. GSSAPI
	15.2.2. KERBEROS_V4
	15.2.3. DIGEST-MD5
	15.2.4. EXTERNAL
	15.2.5. Mapping Authentication Identities
	15.2.6. Direct Mapping
	15.2.7. Search-based mappings

	15.3. SASL Proxy Authorization
	15.3.1. Uses of Proxy Authorization
	15.3.2. SASL Authorization Identities
	15.3.3. Proxy Authorization Rules

	16. Using TLS
	16.1. TLS Certificates
	16.1.1. Server Certificates
	16.1.2. Client Certificates

	16.2. TLS Configuration
	16.2.1. Server Configuration
	16.2.2. Client Configuration

	17. Constructing a Distributed Directory Service
	17.1. Subordinate Knowledge Information
	17.2. Superior Knowledge Information
	17.3. The ManageDsaIT Control

	18. Replication
	18.1. Replication Technology
	18.1.1. LDAP Sync Replication

	18.2. Deployment Alternatives
	18.2.1. Delta-syncrepl replication
	18.2.2. N-Way Multi-Master replication
	18.2.3. MirrorMode replication
	18.2.4. Syncrepl Proxy Mode

	18.3. Configuring the different replication types
	18.3.1. Syncrepl
	18.3.2. Delta-syncrepl
	18.3.3. N-Way Multi-Master
	18.3.4. MirrorMode
	18.3.5. Syncrepl Proxy

	19. Maintenance
	19.1. Directory Backups
	19.2. Berkeley DB Logs
	19.3. Checkpointing
	19.4. Migration

	20. Monitoring
	20.1. Monitor configuration via cn=config(5)
	20.2. Monitor configuration via slapd.conf(5)
	20.3. Accessing Monitoring Information
	20.4. Monitor Information
	20.4.1. Backends
	20.4.2. Connections
	20.4.3. Databases
	20.4.4. Listener
	20.4.5. Log
	20.4.6. Operations
	20.4.7. Overlays
	20.4.8. SASL
	20.4.9. Statistics
	20.4.10. Threads
	20.4.11. Time
	20.4.12. TLS
	20.4.13. Waiters

	21. Tuning
	21.1. Performance Factors
	21.1.1. Memory
	21.1.2. Disks
	21.1.3. Network Topology
	21.1.4. Directory Layout Design
	21.1.5. Expected Usage

	21.2. Indexes
	21.2.1. Understanding how a search works
	21.2.2. What to index
	21.2.3. Presence indexing

	21.3. Logging
	21.3.1. What log level to use
	21.3.2. What to watch out for
	21.3.3. Improving throughput

	21.4. Caching
	21.4.1. Berkeley DB Cache
	21.4.2. slapd(8) Entry Cache (cachesize)
	21.4.3. IDL Cache (idlcachesize)

	21.5. slapd(8) Threads

	22. Troubleshooting
	22.1. User or Software errors?
	22.2. Checklist
	22.3. OpenLDAP Bugs
	22.4. 3rd party software error
	22.5. How to contact the OpenLDAP Project
	22.6. How to present your problem
	22.7. Debugging slapd(8)
	22.8. Commercial Support

	A. Changes Since Previous Release
	A.1. New Guide Sections
	A.2. New Features and Enhancements in 2.4
	A.2.1. Better cn=config functionality
	A.2.2. Better cn=schema functionality
	A.2.3. More sophisticated Syncrepl configurations
	A.2.4. N-Way Multimaster Replication
	A.2.5. Replicating slapd Configuration (syncrepl and cn=config)
	A.2.6. Push-Mode Replication
	A.2.7. More extensive TLS configuration control
	A.2.8. Performance enhancements
	A.2.9. New overlays
	A.2.10. New features in existing Overlays
	A.2.11. New features in slapd
	A.2.12. New features in libldap
	A.2.13. New clients, tools and tool enhancements
	A.2.14. New build options

	A.3. Obsolete Features Removed From 2.4
	A.3.1. Slurpd
	A.3.2. back-ldbm

	B. Upgrading from 2.3.x
	B.1. cn=config olc* attributes
	B.2. ACLs: searches require privileges on the search base

	C. Common errors encountered when using OpenLDAP Software
	C.1. Common causes of LDAP errors
	C.1.1. ldap_*: Can't contact LDAP server
	C.1.2. ldap_*: No such object
	C.1.3. ldap_*: Can't chase referral
	C.1.4. ldap_*: server is unwilling to perform
	C.1.5. ldap_*: Insufficient access
	C.1.6. ldap_*: Invalid DN syntax
	C.1.7. ldap_*: Referral hop limit exceeded
	C.1.8. ldap_*: operations error
	C.1.9. ldap_*: other error
	C.1.10. ldap_add/modify: Invalid syntax
	C.1.11. ldap_add/modify: Object class violation
	C.1.12. ldap_add: No such object
	C.1.13. ldap add: invalid structural object class chain
	C.1.14. ldap_add: no structuralObjectClass operational attribute
	C.1.15. ldap_add/modify/rename: Naming violation
	C.1.16. ldap_add/delete/modify/rename: no global superior knowledge
	C.1.17. ldap_bind: Insufficient access
	C.1.18. ldap_bind: Invalid credentials
	C.1.19. ldap_bind: Protocol error
	C.1.20. ldap_modify: cannot modify object class
	C.1.21. ldap_sasl_interactive_bind_s: ...
	C.1.22. ldap_sasl_interactive_bind_s: No such Object
	C.1.23. ldap_sasl_interactive_bind_s: No such attribute
	C.1.24. ldap_sasl_interactive_bind_s: Unknown authentication method
	C.1.25. ldap_sasl_interactive_bind_s: Local error (82)
	C.1.26. ldap_search: Partial results and referral received
	C.1.27. ldap_start_tls: Operations error

	C.2. Other Errors
	C.2.1. ber_get_next on fd X failed errno=34 (Numerical result out of range)
	C.2.2. ber_get_next on fd X failed errno=11 (Resource temporarily unavailable)
	C.2.3. daemon: socket() failed errno=97 (Address family not supported)
	C.2.4. GSSAPI: gss_acquire_cred: Miscellaneous failure; Permission denied;
	C.2.5. access from unknown denied
	C.2.6. ldap_read: want=# error=Resource temporarily unavailable
	C.2.7. `make test' fails
	C.2.8. ldap_*: Internal (implementation specific) error (80) - additional info: entry index delete failed
	C.2.9. ldap_sasl_interactive_bind_s: Can't contact LDAP server (-1)

	D. Recommended OpenLDAP Software Dependency Versions
	D.1. Dependency Versions

	E. Real World OpenLDAP Deployments and Examples
	F. OpenLDAP Software Contributions
	F.1. Client APIs
	F.1.1. ldapc++
	F.1.2. ldaptcl

	F.2. Overlays
	F.2.1. acl
	F.2.2. addpartial
	F.2.3. allop
	F.2.4. autogroup
	F.2.5. comp_match
	F.2.6. denyop
	F.2.7. dsaschema
	F.2.8. lastmod
	F.2.9. nops
	F.2.10. nssov
	F.2.11. passwd
	F.2.12. proxyOld
	F.2.13. smbk5pwd
	F.2.14. trace
	F.2.15. usn

	F.3. Tools
	F.3.1. Statistic Logging

	F.4. SLAPI Plugins
	F.4.1. addrdnvalues

	G. Configuration File Examples
	G.1. slapd.conf
	G.2. ldap.conf
	G.3. a-n-other.conf

	H. LDAP Result Codes
	H.1. Non-Error Result Codes
	H.2. Result Codes
	H.3. success (0)
	H.4. operationsError (1)
	H.5. protocolError (2)
	H.6. timeLimitExceeded (3)
	H.7. sizeLimitExceeded (4)
	H.8. compareFalse (5)
	H.9. compareTrue (6)
	H.10. authMethodNotSupported (7)
	H.11. strongerAuthRequired (8)
	H.12. referral (10)
	H.13. adminLimitExceeded (11)
	H.14. unavailableCriticalExtension (12)
	H.15. confidentialityRequired (13)
	H.16. saslBindInProgress (14)
	H.17. noSuchAttribute (16)
	H.18. undefinedAttributeType (17)
	H.19. inappropriateMatching (18)
	H.20. constraintViolation (19)
	H.21. attributeOrValueExists (20)
	H.22. invalidAttributeSyntax (21)
	H.23. noSuchObject (32)
	H.24. aliasProblem (33)
	H.25. invalidDNSyntax (34)
	H.26. aliasDereferencingProblem (36)
	H.27. inappropriateAuthentication (48)
	H.28. invalidCredentials (49)
	H.29. insufficientAccessRights (50)
	H.30. busy (51)
	H.31. unavailable (52)
	H.32. unwillingToPerform (53)
	H.33. loopDetect (54)
	H.34. namingViolation (64)
	H.35. objectClassViolation (65)
	H.36. notAllowedOnNonLeaf (66)
	H.37. notAllowedOnRDN (67)
	H.38. entryAlreadyExists (68)
	H.39. objectClassModsProhibited (69)
	H.40. affectsMultipleDSAs (71)
	H.41. other (80)

	I. Glossary
	I.1. Terms
	I.2. Related Organizations
	I.3. Related Products
	I.4. References

	J. Generic configure Instructions
	K. OpenLDAP Software Copyright Notices
	K.1. OpenLDAP Copyright Notice
	K.2. Additional Copyright Notices
	K.3. University of Michigan Copyright Notice

	L. OpenLDAP Public License

