

Writing High-Performance
.NET Code
by Ben Watson

Copyright © 2018 Ben Watson

Writing High-Performance
.NET Code
by Ben Watson

Copyright © 2018 Ben Watson

.NET
êîä íà ïëàòôîðìå
ïðîèçâîäèòåëüíûé
Âûñîêî-

Áåí Óîòñîí

ББК 32.988.02-018
УДК 004.738.5
У65

	 Уотсон Бен
У65 	� Высокопроизводительный код на платформе .NET. 2-е изд. — СПб.: Питер,

2019. — 416 с.: ил. — (Серия «Для профессионалов»).
	 ISBN 978-5-4461-0911-1

Хотите выжать из вашего кода на .NET максимум производительности? Эта книга развеивает мифы
о CLR, рассказывает, как писать код, который будет просто летать. Воспользуйтесь ценнейшим опытом
специалиста, участвовавшего в разработке одной из крупнейших .NET-систем в мире.

В этом издании перечислены все достижения и улучшения, внесенные в .NET за последние не-
сколько лет, в нем также значительно расширен охват инструментов, содержатся дополнительные
темы и руководства.

16+ (В соответствии с Федеральным законом от 29 декабря 2010 г. № 436-ФЗ.)

	 ББК 32.988.02-018
	 УДК 004.738.5

Права на издание получены по соглашению с Ben Watson. Все права защищены. Никакая часть данной книги не
может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских
прав.

Информация, содержащаяся в данной книге, получена из источников, рассматриваемых издательством как на-
дежные. Тем не менее, имея в виду возможные человеческие или технические ошибки, издательство не может
гарантировать абсолютную точность и полноту приводимых сведений и не несет ответственности за возможные
ошибки, связанные с использованием книги.

Издательство не несет ответственности за доступность материалов, ссылки на которые вы можете найти в этой
книге. На момент подготовки книги к изданию все ссылки на интернет-ресурсы были действующими.

ISBN 978-0990583455 англ.	 © 2018 Ben Watson. All Rights Reserved.
ISBN 978-5-4461-0911-1	 © Перевод на русский язык ООО Издательство «Питер», 2019
	 © Издание на русском языке, оформление ООО Издательство «Питер», 2019
	 © Серия «Для профессионалов», 2019

Краткое содержание

Предисловие... 15

Об авторе.. 19

Благодарности.. 20

От издательства... 21

Введение во второе издание.. 22

Введение... 24

Глава 1. Измерение производительности и инструменты... 41

Глава 2. Управление памятью.. 96

Глава 3. JIT-компиляция...189

Глава 4. Асинхронное программирование...210

Глава 5. Общие подходы к написанию кода и классов..272

Глава 6. Использование среды .NET Framework...313

Глава 7. Счетчики производительности...351

Глава 8. ETW-события...356

Глава 9. Безопасность и анализ кода...374

Глава 10. Формирование команды, нацеленной на достижение высокой
производительности...394

Приложение А. Начало работы над повышением производительности .
приложения...402

Приложение Б. Увеличение производительности на более высоком уровне..............406

Приложение В. Нотация «“O” большое»...409

Приложение Г. Библиография..414

Оглавление

Предисловие... 15

Об авторе.. 19
Контактная информация ... 19

Благодарности.. 20

От издательства... 21

Введение во второе издание.. 22

Введение... 24

Цель этой книги... 24

В чем смысл выбора управляемого кода... 27

Работает ли управляемый код медленнее нативного?... 29

Стоит ли овчинка выделки?.. 31

Я что, теряю контроль?... 31

Работа с CLR, а не против нее.. 32

Уровни оптимизации... 32

Коварная соблазнительность простоты.. 34

Хронология совершенствования производительности .
среды .NET... 36

.NET Core... 38

Учебный исходный код... 39

Глава 1. Измерение производительности и инструменты... 41

Выбор предмета измерения... 41

Преждевременная оптимизация.. 43

Сравнение усредненных и процентных показателей... 44

Эталонное тестирование... 46

Оглавление   7

Полезные инструменты.. 47

Visual Studio... 49

Профилирование центрального процессора.. 51

Профилирование с помощью командной строки... 54

Счетчики производительности... 56

ETW-события... 64

PerfView... 67

Интерфейс и представления данных в PerfView.. 68

Профилировщик CLR Profiler.. 73

Анализатор производительности Windows Performance Analyzer......................... 76

WinDbg.. 78

CLR MD.. 83

Анализаторы IL.. 87

MeasureIt... 88

BenchmarkDotNet.. 89

Оснащение кода инструментами.. 91

Утилиты SysInternals.. 92

База данных.. 94

Другие инструменты... 94

Издержки измерений... 94

Резюме.. 95

Глава 2. Управление памятью.. 96

Выделение памяти.. 96

Операция сборки мусора.. 99

Параметры конфигурации...105

Сравнение сборки мусора в режиме рабочей станции и в режиме сервера......105

Сборка мусора в фоновом режиме...107

Режимы задержки..108

Большие объекты...110

Дополнительные параметры..111

Советы по повышению производительности..113

Сокращайте размеры выделяемой памяти...113

Самое важное правило...114

8   Оглавление

Сокращайте время существования объекта...115

Сбалансируйте выделение..116

Сократите количество ссылок между объектами...116

Избегайте закреплений..117

Избегайте финализаторов..118

Избегайте выделения больших объектов..120

Избегайте копирования буферов...121

Объединяйте долгоживущие и большие объекты в пулы.......................................124

Сокращайте степень фрагментации кучи больших объектов................................131

При определенных обстоятельствах выполняйте принудительную .
полную сборку мусора...131

Уплотняйте кучу больших объектов по требованию..133

Получайте уведомление о намечающейся сборке мусора.......................................133

Применяйте для кэширования слабые ссылки...137

Динамически выделяйте память в стеке..144

Исследование памяти и сборки мусора...145

Счетчики производительности...145

События ETW...147

Как выглядит куча памяти моего приложения...148

Сколько времени занимает сборка мусора...151

Где именно происходит выделение памяти..155

Что за объекты находятся в куче..158

Где именно допущена утечка памяти..165

Каков размер моих объектов..170

Каким объектам выделена память в LOH...173

Какие объекты были закреплены...175

Где происходит фрагментация..177

Фрагментация виртуальной памяти...180

В каком поколении находится объект..182

Какие объекты выжили в поколении gen 0...182

Откуда был сделан явный вызов метода GC.Collect...185

Какие слабые ссылки имеются в моем процессе..186

Какие финализируемые объекты имеются в куче..186

Резюме..187

Оглавление   9

Глава 3. JIT-компиляция...189

Преимущества JIT-компиляции..190

JIT в действии..191

JIT-оптимизации...193

Сокращение времени JIT-компиляции и запуска...194

Оптимизация JIT-компиляции с помощью профилирования (Multicore JIT)........197

Когда следует применять NGEN...197

.NET Native..200

Настраиваемая предварительная подготовка...201

Когда JIT-компиляция не может составить конкуренцию..202

Исследование поведения JIT-компилятора..203

Счетчики производительности...203

ETW-события...204

Какой код подвергся JIT-компиляции...204

На какие методы и модули затрачивается больше всего времени .
при JIT-компиляции...207

Исследование кода, полученного после JIT-компиляции.......................................208

Резюме..209

Глава 4. Асинхронное программирование...210

Пул потоков..212

Библиотека распараллеливания задач..213

Отмена задачи...217

Обработка исключений...218

Дочерние задачи...222

Среда TPL Dataflow...223

Параллельно выполняемые циклы...229

Советы по повышению производительности..232

Избегайте использования блокировок...232

Избегайте конвоев при блокировке и диспетчеризации..233

Использование объектов Tasks для неблокирующего ввода-вывода..................233

async и await...238

О структуре программы...240

Правильно используйте таймеры..242

10   Оглавление

Подберите подходящий размер пула потоков...244

Не прерывайте потоки...245

Не меняйте приоритет потоков...245

Синхронизация потоков и блокировки...246

Нужно ли вообще заботиться о производительности?..246

А нужна ли вообще блокировка?..247

Порядок предпочтения синхронизации...249

Модели памяти...249

Использование volatile при необходимости...251

Использование Monitor (lock)..252

Использование методов Interlocked..255

Асинхронные блокировки..258

Другие механизмы блокировки..260

Конкурентность и коллекции..261

Копирование ресурса для каждого потока..264

Исследование потоков и конфликтов..265

Счетчики производительности...265

ETW-события...266

Получение информации о потоках..267

Визуализация задач и потоков с помощью Visual Studio..268

Использование PerfView для обнаружения конфликта блокировок..................269

Где потоки блокируются на вводе-выводе..270

Резюме..270

Глава 5. Общие подходы к написанию кода и классов..272

Классы и структуры...272

Исключение из правил: изменяемая структура для хранения .
иерархии полей...274

Виртуальные методы и запечатанные классы...276

Свойства..276

Переопределение Equals и GetHashCode для структур...277

Потоковая безопасность..279

Кортежи..279

Диспетчеризация интерфейсов..280

Оглавление   11

Избегайте упаковки...281

Возвращения по ссылке (ref) и локальные значения...282

for или foreach...287

Приведение типов...289

P/Invoke...291

Делегаты...293

Исключения..295

dynamic...297

Отражение...299

Генерация кода...301

Создание шаблонов...301

Создание делегата..302

Аргументы метода..303

Оптимизация...305

Подведение итогов..305

Предварительная обработка..306

Исследование проблем производительности..307

Счетчики производительности...307

ETW-события...307

Поиск инструкций упаковки...308

Обнаружение исключений первого шанса..310

Резюме..311

Глава 6. Использование среды .NET Framework...313

Разберитесь с каждым вызываемым API..314

Множество API для решения одних и тех же задач..314

Коллекции...315

Какие коллекции лучше не использовать...315

Массивы..316

Сравнение ступенчатых и многомерных массивов..317

Обобщенные коллекции..319

Коллекции для многопоточной среды..321

Коллекции для работы с битами..323

Исходный объем...324

12   Оглавление

Сравнение ключей...325

Сортировка...326

Создание собственных типов коллекций..326

Строки...327

Сравнение строк...327

ToUpper и ToLower...328

Объединение..328

Форматирование..329

ToString...330

Избегайте разбора строк..330

Подстроки...331

Избегайте использования API, выдающих исключения при обычных
обстоятельствах...331

Избегайте использования API, выделяющих память .
из кучи больших объектов...332

Применение ленивой инициализации...332

Удивительно высокие издержки от использования перечислений..............................334

Учет времени..335

Регулярные выражения..337

LINQ..339

Чтение и запись файлов..343

Оптимизация настроек HTTP и сетевых соединений...344

SIMD...347

Исследование причин возникновения проблем с производительностью...................348

Резюме..349

Глава 7. Счетчики производительности...351

Использование существующих счетчиков...352

Создание пользовательского счетчика..352

Счетчики усредненных показателей...353

Счетчики мгновенных показателей...354

Дельта-счетчики...354

Процентные счетчики..354

Резюме..355

Оглавление   13

Глава 8. ETW-события...356

Определение событий...357

Потребление пользовательских событий в PerfView...360

Создание собственного слушателя ETW-событий...362

Получение подробных данных об EventSource..367

Потребление событий CLR и системы..368

Пользовательские аналитические расширения PerfView...370

Резюме..373

Глава 9. Безопасность и анализ кода...374

Представление об операционной системе, API и оборудовании...................................374

Ограничение использования API в определенных областях кода................................375

Пользовательские правила FxCop...375

.NET Compiler Code Analyzers...382

Выполняйте централизацию и абстрагирование сложного и важного
для повышения производительности кода..391

Изолируйте неуправляемый и небезопасный код...391

Отдавайте приоритет ясности кода, а не получению высокой .
производительности, пока нет веских причин для обратного..392

Резюме..393

Глава 10. Формирование команды, нацеленной на достижение высокой
производительности...394

Выявление областей, требующих особо высокой производительности......................394

Эффективное тестирование..395

Инфраструктура и автоматизация для оценки производительности..........................396

Доверяйте только конкретным числовым показателям..398

Эффективная система просмотра кода...399

Обучение..400

Резюме..401

Приложение А. Начало работы над повышением производительности .
приложения...402

Определение метрик..402

Анализ использования центрального процессора...402

14   Оглавление

Анализ использования памяти...403

Анализ JIT-компиляции...404

Анализ производительности в асинхронном режиме..404

Приложение Б. Увеличение производительности на более высоком уровне..............406

ASP.NET...406

ADO.NET...407

WPF...408

Приложение В. Нотация «“O” большое»...409

«O» большое...409

Самые распространенные алгоритмы и их сложность..412

Сортировка...412

Графы...412

Поиск..413

Особый случай..413

Приложение Г. Библиография..414

Ценные источники информации...414

Люди и блоги..414

Предисловие

Молодежь не понимает, как ей повезло! Рискуя прослыть старым ворчуном, должен
заметить, что это не пустое утверждение, по крайней мере по отношению к анализу
производительности. Самым очевидным доказательством является то, что в мои
времена не было подобных книг, охватывающих сразу и важные основополагающие
принципы анализа производительности, и практические сложности, с которыми
сталкиваешься в реальном мире. Эта книга — золотая жила, и ее стоит не только
прочитать, но и постоянно перечитывать в процессе работы над повышением про-
изводительности.

Уже более десяти лет я работаю архитектором производительности .NET
Runtime. Проще говоря, моя задача — убедить людей, использующих C# и среду
выполнения кода .NET, что их вполне устраивает производительность созданного
ими кода. Часть этой задачи — поиск мест внутри .NET Runtime или библиотек
этой среды, работающих неэффективно, и внесение в них исправлений, но это
не самое трудное из того, чем приходится заниматься. Сложнее всего то, что в 90 %
случаев производительность приложений определяется не особенностями реа-
лизации среды выполнения (например, качеством генерации кода, компиляцией
ко времени применения, сборкой мусора или функционированием библиотек
классов), а тем, что находится в ведении разработчика приложения (например,
архитектурой приложения, выбором структур данных и алгоритмов и просто
ошибками в коде). Таким образом, моя работа куда больше связана с обучением,
чем с программированием.

Значительная часть работы заключается в проведении бесед и написании
статей, и в основном я консультирую другие команды, которым нужна помощь
в ускорении работы их программ. Именно в такой роли я шесть лет назад впервые
встретился с Беном Уотсоном. Он был тем самым представителем Bing-команды,
который всегда задавал необычные вопросы (и находил ошибки в нашем коде,
а не в своем). Бен явно был нашим, из разряда борцов за высокую производи-
тельность. Вы не представляете, насколько это редкое явление. Наверное, 80 %
программистов пройдут основную часть своего карьерного пути, имея весьма
смутное представление о производительности создаваемого ими кода. Возможно,
10 % проявят достаточное внимание к вопросам производительности по мере ос-
воения работы со средствами анализа, подобными профилировщикам. Тот факт,
что вы читаете эту книгу (и это предисловие!), говорит о том, что вы относитесь

16   Предисловие

к небольшой группе людей, кто реально радеет за высокую производительность
и действительно хочет, чтобы она постоянно повышалась. Бен идет еще дальше:
его не только интересует все, что связано с производительностью, но он также за-
ботится о ее достижении настолько серьезно, что нашел время для написания этой
книги. Он относится к тем специалистам, которые составляют всего 0,0001 % от
их общего количества. Вам предоставлена возможность учиться у самых лучших
профессионалов.

Это весьма важная книга. На своем веку я сталкивался с множеством проблем,
связанных с производительностью, и, как уже упоминалось, в 90 % случаев они
возникали в самом приложении. Это означает, что решение таких проблем в ваших
руках. В качестве предисловия к некоторым моим выступлениям о производитель-
ности я часто привожу следующую аналогию: представьте, что вы уже написали
10 000 строк нового кода для какого-то приложения и вам даже удалось этот код
скомпилировать, но само приложение вы еще не запустили. Какова вероятность
того, что код не содержит ошибок? Основная часть аудитории скажет: ноль. И бу-
дет совершенно права. Все, кто когда-либо занимался программированием, знают,
что обрести уверенность в стабильной работе программы можно, лишь потратив
много времени на эксплуатацию приложения и устранение проблем. Программиро-
вание — занятие непростое, и нужный результат получается путем последователь-
ной доработки кода. Итак, представьте теперь, что вы потратили время на отладку
программы в 10 000 строк, после чего она, казалось бы, заработала как надо. Но
перед вашим приложением стоит весьма непростая цель — достичь высокой произ-
водительности. Какова вероятность того, что у него нет проблем с производитель-
ностью? Программисты — народ неглупый, следовательно, вы быстро поймете,
что она стремится к нулю. Точно так же, как компилятор не в состоянии выявить
множество проблем времени выполнения, обычное функциональное тестирование
не позволяет отследить множество вопросов, связанных с производительностью.
Поэтому определенный объем знаний о производительности необходим всем, что
и предоставляет данная книга.

Еще одна тревожная истина, касающаяся производительности, гласит: самые
трудноустранимые просчеты закладываются в приложение на ранней стадии про-
ектирования. Дело в том, что именно тогда выбирается базовое представление
обрабатываемых данных, и оно накладывает жесткие ограничения на производи-
тельность. Я сбился со счета, сколько раз приходилось консультировать людей, вы-
бравших неудачное представление (например, XML, или JSON, или базу данных)
для данных, играющих важную роль в достижении их приложениями высокой про-
изводительности. Они обращались ко мне за помощью на слишком позднем этапе
производственного цикла, надеясь, что я сотворю чудо, устранив возникшие у них
проблемы с производительностью. Разумеется, я помогал им измерить ее и обыч-
но находил что-то, что можно исправить, но добиться существенных успехов это
не позволяло, поскольку требовалось изменить базовое представление, что в конце
производственного цикла было слишком затратно и рискованно. В результате
конечный продукт работал далеко не так быстро, как мог бы, если бы проблемы
с производительностью осознали своевременно.

Предисловие   17

Как же не дать этому произойти при разработке ваших приложений? У меня есть
два простых правила написания высокопроизводительных приложений, которые
совсем не случайно повторяют правила Бена.

1.	 Иметь план достижения высокой производительности.
2.	 Постоянно проводить измерения, измерения и еще раз измерения.

В реальности пункт «Иметь план достижения высокой производительности»
сводится к стремлению серьезно относиться к вопросам производительности.
Это означает, что нужно определить, какие метрики вы будете использовать
(обычно это затраченное время, иногда что-то другое), и выявить основные опе-
рации, потребляющие наибольшее число ресурсов, охватываемых этой метрикой
(обычно это операции с большими объемами данных, на выполнение которых,
вероятно, уйдет значительная часть времени работы приложения). На самой ран-
ней стадии проекта — перед тем как принять любое серьезное проектировочное
решение — следует подумать о том, какой производительности предполагается
достичь, и измерить этот показатель для какого-либо кода, например созданных
ранее аналогичных приложений или прототипов вашего решения. Это или придаст
вам уверенности в достижимости поставленных целей, или позволит понять, что
добиться желаемого может оказаться нелегко и для поиска более удачного реше-
ния понадобятся глубже проработанные прототипы и проведение более тонких
экспериментов. Я не говорю о каких-то космических технологиях. На реализацию
некоторых планов повышения производительности уходят буквально минуты.
Главное — проделать это на самой ранней стадии проектирования, чтобы планы
достижения высокой производительности могли повлиять на принятие проек-
тировочных решений, подобных форме представления данных, в самом начале
разработки.

Пункт «Постоянно проводить измерения, измерения и еще раз измерения» про-
сто подчеркивает, на что вы будете затрачивать основную часть времени (наряду
с толкованием результатов). Как сказал бы Аластор Муди по прозвищу Бешеный
Глаз (Alastor «Mad-Eye» Moody), нам нужна постоянная бдительность. Произво-
дительность может быть утрачена практически на любом этапе производственного
цикла, от проектирования до поддержки готового продукта, и предотвратить это
можно, только выполняя все новые и новые измерения, не позволяющие выбиться
из колеи. Повторюсь: здесь не нужны космические технологии, должно быть просто
желание делать это постоянно, предпочтительно автоматизировав необходимые
действия.

Это ведь нетрудно, правда? Но есть загвоздка. Как правило, программы сложны
и запускаются на непростом оборудовании с множеством абстракций (напри-
мер, с использованием кэшей памяти, операционных систем, сред выполнения,
сборщиков мусора и т. д.), и совсем не удивительно, что обеспечение высокой
производительности в таких сложных обстоятельствах дается непросто. В деле
ее повышения может быть множество важных деталей. Например, что делать
с ошибками и как поступать при возникновении конфликтующих или, что бывает
чаще, слишком изменчивых результатов измерений. Параллелизм — великолепный

способ повышения производительности многих приложений — также сильно
усложняет анализ производительности и зависит от таких деталей, как диспетче-
ризация центрального процессора, что ранее никогда не бралось в расчет. В итоге
задача обеспечения производительности становится чем-то вроде многослойной
луковицы, которая все больше усложняется, когда снимают слои.

Ценность данной книги в том, что она поможет справиться с этой сложно-
стью. Обеспечение производительности может показаться неподъемной задачей.
Ведь столь многое может быть измерено и существует такое разнообразие инстру-
ментов для проведения этих измерений, что зачастую не вполне понятно, какие
именно измерения наиболее полезны и как правильно соотнести их друг с другом.
Для начала эта книга поможет с решением базовой задачи — обозначением целей,
важных именно для вас. Вас также снабдят небольшим набором инструментов и ме-
трик, ценность которых проверена временем, что позволит вам двигаться дальше
в верном направлении. На этой прочной основе в книге начинается «раздевание
луковицы», позволяющее вникнуть в детали рассматриваемых тем, играющих важ-
ную роль при решении проблем производительности для целого ряда приложений.
К ним относятся управление памятью (сборка мусора), компиляция на лету (just
in time, JIT) и асинхронное программирование. Таким образом, вы получите все
необходимые детали (среды выполнения весьма сложны, и иногда эта сложность
проявляется и серьезно влияет на производительность), к тому же в общей струк-
туре, позволяющей связывать эти детали с тем, что представляет для вас истинный
интерес, — с целями именно вашего приложения.

Теперь дадим слово Бену, и он умело растолкует вам все остальное. Мне же хо-
телось не просветить вас, а мотивировать на чтение книги. Исследование вопросов
повышения производительности — весьма сложная область компьютерной науки,
и без того непростой. Чтобы набраться опыта, нужны время и настойчивость в до-
стижении поставленной цели. Я обращаюсь к читателям не для приукрашивания
действительности, а чтобы сказать, что дело того стоит. Производительность весьма
важна. Я могу практически гарантировать, что при широком использовании вашего
приложения его производительность будет важна. Учитывая важность данного
вопроса, можно считать чуть ли не преступлением то, что крайне мало сведущих
в нем специалистов, обладающих достаточным мастерством для создания высо-
копроизводительных приложений на системной основе. Теперь вы читаете эти
строки, чтобы влиться в ряды элитной группы нашего сообщества. И эта книга
существенно упростит решение данной задачи.

Молодежь не понимает, как ей повезло!

Вэнс Моррисон (Vance Morrison),
Performance Architect

среды выполнения .NET, Microsoft

18   Предисловие

Об авторе

Бен Уотсон (Ben Watson) с 2008 года является программистом компании Microsoft.
В команде, работающей над платформой Bing, он создал на основе платформы .NET
высокопроизводительные серверные приложения, которые способны обрабатывать
большие объемы информации и отличаются высокой скоростью реакции на запро-
сы от тысяч машин и миллионов клиентов. Эти приложения можно отнести к самым
совершенным в мире. На досуге Бен читает, слушает музыку, гуляет и общается
с женой Летицией и детьми Эммой и Мэтью. Они живут недалеко от Сиэтла (штат
Вашингтон, США).

Контактная информация
Бен Уотсон (Ben Watson)

Электронная почта: feedback@writinghighperf.net.
Веб-сайт: http://www.writinghighperf.net.
Блог: http://www.philosophicalgeek.com.
LinkedIn: https://www.linkedin.com/in/benmwatson.
Twitter: https://twitter.com/benmwatson.
Если вам понравится эта книга, пожалуйста, оставьте свой отзыв в вашем лю-

бимом интернет-магазине. Спасибо!

Благодарности

Спасибо моей жене Летиции и нашим детям Эмме и Мэтью за их терпение, любовь
и поддержку в тот период, когда я тратил больше времени не на них, а на подготов-
ку второго издания этой книги. Летиция вложила немало труда в редактирование
и корректуру, придав книге ту последовательность изложения, которой не было бы,
не участвуй она в работе.

Спасибо Клэр Уотсон (Claire Watson) за разработку красивой обложки для
обоих изданий книги.

Я благодарен своему наставнику Майку Магрудеру (Mike Magruder), который,
наверное, чаще, чем кто-либо другой, читал эту книгу. Он был техническим редак-
тором первого издания, а уже будучи на пенсии, нашел время, чтобы вернуться
к подробностям устройства среды .NET во втором издании.

Спасибо читателям предварительной версии книги, чье неоценимое внимание
к ее формулировкам и темам позволило обнаружить опечатки, мои упущения
и многие другие недочеты. Это Абхинав Джайн (Abhinav Jain), Майк Магрудер
(Mike Magruder), Чад Парри (Chad Parry), Брайан Расмуссен (Brian Rasmussen)
и Мэтт Уоррен (Matt Warren). Именно благодаря им книга стала еще лучше.

Благодарю Вэнса Моррисона (Vance Morrison), прочитавшего раннюю версию
книги и написавшего замечательное предисловие к этому изданию.

И наконец, я благодарен всем читателям первого издания, чьи отзывы помогли
сделать второе издание лучше.

От издательства

Ваши замечания, предложения, вопросы отправляйте по адресу comp@piter.com
(издательство «Питер», компьютерная редакция).

Мы будем рады узнать ваше мнение!
На сайте издательства www.piter.com вы найдете подробную информацию о на-

ших книгах.

Введение во второе издание

Со времени выхода первого издания книги Writing High-Performance .NET Code
основы достижения высокой производительности в среде .NET особых изменений
не претерпели. Правила оптимизации сборки мусора остались практически неиз-
менными. JIT-компиляция, прибавив в производительности, в основном сохра-
нила прежнее поведение. Но за это время вышло уже пять доработанных версий
среды .NET, и они заслуживают упоминания там, где это уместно.

За прошедшие годы книга подверглась существенной переработке. В дополне-
ние к рассмотрению новых функциональных возможностей, появившихся в среде
.NET, в ней заполнены досадные пробелы, существовавшие в первом издании.
Практически каждый раздел книги был тем или иным образом переработан: либо
незначительно подкорректирован, либо чуть ли не переписан заново с включе-
нием новых примеров, материалов или объяснений. Изменений так много, что
их полный список занял бы слишком много места, но несколько основных стоит
перечислить.

�� Объем увеличился на 50 %.

�� Учтены отзывы сотен читателей.

�� Появилось новое предисловие от Performance Architect .NET Вэнса Морри-
сона.

�� Приведены десятки новых примеров и фрагментов учебного кода.

�� Обновлены схемы и графики.

�� Добавлен перечень улучшений производительности CLR, выполненных за это
время.

�� Рассмотрено большее количество инструментальных аналитических средств.

�� Значительно расширена область использования Visual Studio для анализа про-
изводительности среды .NET.

�� Добавлены многочисленные примеры анализа с использованием набора API
Microsoft.Diagnostics.Runtime (CLR MD).

�� В некоторые учебные проекты добавлен материал по эталонному тестированию
(бенчмаркингу) и применению популярных сред такого тестирования.

�� Появились новые разделы, посвященные особенностям CLR и .NET Framework,
имеющим отношение к производительности.

�� Больше внимания уделено сборке мусора, добавлена новая информация о со-
ставлении пула, stack-alloc, финализации, слабых ссылках, поиске утечек
памяти и многом другом.

�� Подробнее рассмотрены различные технологии предварительной подготовки
кода.

�� Добавлена информация о TPL и новый раздел о TPL Dataflow.

�� Рассмотрены возвращения по ссылке и локальные переменные.

�� Гораздо подробнее рассмотрены коллекции, включая исходный объем, сорти-
ровку и сравнение ключей.

�� Дан подробный анализ затрат на LINQ.

�� Приведены примеры SIMD-алгоритмов.

�� Показаны приемы создания автоматизированных анализаторов кода и средств
его исправления.

�� Добавлено приложение, в котором даются советы по увеличению производи-
тельности на более высоком уровне для ADO.NET, ASP.NET и WPF.

...И многое другое!
Уверен, что даже тем, кто прочитал первое издание, стоит найти время и озна-

комиться со вторым.

Введение во второе издание   23

Введение

Цель этой книги
.NET — великолепная система для разработки программных продуктов. Она по-
зволяет создавать функциональные взаимосвязанные приложения значительно
быстрее, чем несколько лет назад. Многие из них исправно работают, и это здорово.
Данная среда предлагает приложениям безопасность памяти и типов, мощную би-
блиотеку функционала «из коробки», такие сервисы, как автоматическое выделение
памяти, и многое другое.

Программы, написанные с помощью среды .NET, называются управляемыми
приложениями, поскольку они зависят от среды выполнения и той среды, которая
управляет многими жизненно важными для них задачами, обеспечивая основу
безопасности операционного окружения. В отличие от неуправляемого или ма-
шинного кода, программ, написанных с непосредственным обращением к API
операционной системы, управляемые приложения не могут свободно управлять
своими процессами.

Эта управляющая прослойка между вашей программой и процессором компью-
тера может стать источником беспокойства для разработчиков, предполагающих,
что она способна существенно повысить издержки. Эта книга поможет развеять
тревоги, показав, что полученный результат оправдывает издержки и что пред-
полагаемое снижение производительности практически всегда преувеличивают.
Зачастую проблемы с производительностью, в которых разработчики обвиняют
среду .NET, на самом деле связаны с неудачными шаблонами проектирования и не-
достатком знаний об оптимизации программ под эту среду. Годами наработанные
навыки оптимизации программ, написанных на C++, Java или Python, не всегда
применимы к управляемому коду в среде .NET, и некоторые советы на поверку
оказываются вредными. Иногда ускоренная разработка, допускаемая средой .NET,
может побудить к более быстрому, чем прежде, созданию раздутого, медленного,
плохо оптимизированного кода. Разумеется, существуют и иные причины низ-
кого качества кода: общий недостаток мастерства, дефицит времени, неудачное
проектирование, недостаточный объем человеческих ресурсов в разработке, лень
и т. д. Эта книга, несомненно, избавит от использования пробелов в знании среды
в качестве оправдания, а также попробует помочь разобраться и с другими при-

Цель этой книги   25

чинами неудач. Применяя изложенные в ней принципы, вы научитесь создавать
гибкие, быстрые и эффективные приложения. Истина одна для всех типов кода
и на всех платформах: если требуется высокопроизводительный код, над этим
нужно работать.

Работу над повышением производительности нельзя оставлять напоследок,
особенно в макро- или архитектурном смысле. Чем больше и сложнее ваше прило-
жение, тем на более ранней стадии следует уделять внимание производительности
как его главной составляющей.

Я часто привожу как пример построение хижины в сравнении с возведением
небоскреба. Если создается хижина, неважно, что именно захочется переделать
в будущем. Хотите окно? Просто прорубите дыру в стене. Хотите провести элек-
тричество? Прикрутите провода. Вы абсолютно свободны, придавая строению
завершенный вид, поскольку здесь все просто и почти ничто не зависит друг от
друга.

А вот с небоскребом другая картина. Нельзя принять решение о применении
стальных балок, после того как первые пять этажей уже построены из дерева. Следует
разобраться с требованиями, а также характеристиками строительных материалов,
прежде чем приступать к сооружению из них какой-то крупной конструкции.

Эта книга посвящена главным образом тому, чтобы довести до вас мысль о за-
тратах на строительные материалы и получаемой от них выгоде, из чего вы должны
извлечь уроки, применимые к любому создаваемому проекту.

Это не справочник по языку или руководство. И даже не подробное рассмотре-
ние CLR. Эти темы раскрываются в других источниках (список заслуживающих
внимание книг, блогов и статей приведен в конце издания). Чтобы получить от этой
книги максимальную отдачу, вы должны обладать достаточным опытом работы
в среде .NET.

Здесь приводится множество примеров кода, особенно основных деталей реали-
зации на уровне IL или кода ассемблера. Я призываю не игнорировать эти разделы.
Вам следует попробовать воспроизвести мои результаты, прорабатывая материалы
книги, чтобы лучше понять происходящее.

Эта книга научит вас добиваться максимальной производительности управля-
емого кода, в идеале не жертвуя ни одним из преимуществ среды .NET, а в худшем
случае жертвуя минимальным их числом. Вы освоите рациональные методы про-
граммирования, узнаете, чего следует избегать и, что, наверное, наиболее важно,
как использовать инструментальные средства, находящиеся в свободном доступе,
чтобы без особых затруднений измерить уровень производительности. В учебном
материале будет минимум воды — только самое необходимое. В книге дается имен-
но то, что нужно знать, она актуальна и лаконична, не содержит лишнего. Боль-
шинство глав начинается с общих сведений и предыстории, за которыми следуют
конкретные советы, изложенные наподобие рецепта, а в конце — раздел проведения
пошаговых измерений и отладки для множества разнообразных сценариев.

Попутно погрузимся в конкретные составляющие среды .NET, в частности
в положенную в ее основу общеязыковую среду выполнения (Common Language
Runtime (CLR)), и увидим, как происходит управление памятью вашей машины,

26   Введение

генерируется код, организуется многопоточное выполнение и делается многое
другое. Вам будет показано, как архитектура .NET одновременно и ограничивает
ваше программное средство, и предоставляет ему дополнительные возможности
и как выбор путей программирования может существенно повлиять на общую
производительность приложения. В качестве бонуса я поделюсь с вами история
ми из опыта создания в течение последних девяти лет очень крупных, сложных,
высокопроизводительных .NET-систем в компании Microsoft. Скорее всего, вы
заметите, что в этой книге я в основном обращаю внимание на серверные приложе-
ния, но практически все рассматриваемое в ней применимо и к приложениям для
настольных систем, а также к веб- и мобильным приложениям. В нужных местах
я поделюсь советами именно для этих конкретных платформ.

Понимание основ позволит вам осознать, почему приведенные советы по по-
вышению производительности имеют смысл и работают. Вы станете разбираться
в среде .NET и принципах создания высокопроизводительного кода настолько,
что, столкнувшись с обстоятельствами, не нашедшими отражения в данной книге,
сможете применить приобретенные знания и решить непредвиденные проблемы.

Программирование под управлением среды .NET не является чем-то совер-
шенно иным по сравнению с вашим общим опытом программирования. Вам по-
прежнему понадобится знание алгоритмов, и большинство стандартных конструк-
ций программирования будут выглядеть почти так же, как и раньше. Но здесь речь
пойдет об оптимизации с целью повышения производительности и придется на-
блюдать совершенно иные вещи, отличающиеся от тех, что вы видели при создании
неуправляемого программного кода. Возможно, больше не придется явно вызывать
delete (ура!), но если требуется добиться наивысшей производительности, лучше
сразу поверить в необходимость разобраться в том, как сборщик мусора повлияет
на работу приложения.

Если цель — высокая доступность, то вам придется в известной степени заин-
тересоваться JIT-компиляцией. Используется богатая система типов? Потребует
внимания диспетчеризация интерфейсов. А как насчет API в самой библиотеке
классов .NET Framework? Может ли какой-нибудь из них негативно повлиять на
производительность? Имеются ли более подходящие механизмы синхронизации?
Принимали ли вы во внимание локальность памяти при выборе коллекций или
алгоритмов?

Помимо чистого программирования, будут рассмотрены методы и процессы, по-
зволяющие измерять вашу производительность с течением времени и формировать
культуру достижения высокой производительности, как собственной, так и всей
команды. Нельзя добиться высокой производительности однократно, а потом о ней
забыть. Ее нужно постоянно поддерживать и сохранять, чтобы со временем она
не снизилась. Вклад в высокопроизводительную инфраструктуру в дальнейшем
принесет огромные дивиденды, позволяя автоматизировать основную часть не-
легкой работы.

Суть в том, что уровень оптимальности производительности вашего приложе-
ния прямо пропорционален степени понимания не только собственного кода, но

В чем смысл выбора управляемого кода   27

и среды его выполнения, операционной системы и оборудования. Это касается
любой платформы, которую вы предполагаете использовать.

Все примеры кода в этой книге написаны на C#, базовом IL, а иногда на ассемб
лерном коде x86 или x64, но все приведенные здесь принципы применимы к лю-
бому языку среды .NET. В этой книге предполагается, что вы работаете с .NET 4.5
или более свежей версией, а в некоторых примерах задействуются новые функ-
ции, доступные в более поздних версиях. Я настоятельно рекомендую перейти
на использование самой последней версии, чтобы можно было воспользоваться
новейшими технологиями, функциями, исправлениями ошибок и улучшениями
производительности.

В книге уделяется немного внимания конкретным подразделам .NET, таким как
WPF, WCF, ASP.NET, Windows Forms, Entity Framework, ADO.NET, и многим
другим. Хотя у каждой из этих технологий есть свои проблемы и приемы повы-
шения производительности, издание посвящено фундаментальным сведениям
и методам, которые следует усвоить, чтобы разрабатывать код, пригодный для всех
сценариев в среде .NET. Как только вы овладеете основами, появится возможность
применять приобретенные знания в каждом проекте, над которым ведется работа,
по мере накопления опыта узнавая больше о конкретных областях. В конце книги
приведено небольшое приложение, которое даст вам ряд начальных рекомендаций
по оптимизации приложений ASP.NET, ADO.NET или WPF.

В целом, я надеюсь показать, что инженерная работа над производительно-
стью — это точно такая же инженерная работа, как и любая другая. Производитель-
ность не получить «из коробки» на любой платформе, даже на .NET.

В чем смысл выбора управляемого кода
Для выбора управляемого кода вместо неуправляемого есть множество причин.

�� Безопасность — компилятор и среда выполнения могут обеспечить безопасность
типов (объекты используются только такими, какие они в действительности),
проверку границ, обнаружение переполнения чисел, гарантии защиты от взлома
и многое другое. Куча больше не повреждается из-за нарушений доступа или
неверных указателей.

�� Автоматическое управление памятью — больше не нужны функция delete или
подсчет ссылок.

�� Более высокий уровень абстракции — более высокая производительность
с меньшим количеством ошибок.

�� Расширенные возможности языка — делегаты, безымянные методы, динамиче-
ская типизация и многое другое.

�� Весьма обширная база кода — Framework Class Library, Entity Framework,
Windows Communication Framework, Windows Presentation Foundation, Task
Parallel Library и многое другое.

�� Упрощенная расширяемость — благодаря возможностям отражения (reflection)
значительно упростилось динамическое использование модулей с поздней при-
вязкой, например, в архитектуре расширений.

�� Впечатляющая отладка — исключения несут в себе множество полезной инфор-
мации. У всех объектов имеются связанные с ними метаданные, обеспечива
ющие в отладчике тщательный анализ кучи и стека, зачастую без необходимости
использования PDB (файлов символов).

Все это означает, что вы можете написать больше кода и сделать это быстрее
и с меньшим количеством ошибок. Существенно упростилась диагностика ошибок.
Учитывая все эти преимущества, управляемый код должен стать вашим выбором
по умолчанию.

.NET также подталкивает к применению стандартных средств единой платфор-
мы. В мире неуправляемого кода довольно легко получить фрагментированные
среды разработки с несколькими используемыми платформами (например, STL,
Boost или COM) или несколькими разновидностями интеллектуальных указате-
лей. В .NET смысл наличия такого разношерстного инструментария практически
исчезает.

Хотя конечная цель — получить такой код, который можно, один раз создав,
запускать везде, — вероятно, так и останется несбыточной мечтой, но к ее реаль-
ному воплощению мы все же приближаемся. Есть три основных варианта пере-
носимости.

1.	 Переносимые библиотеки классов позволяют ориентироваться на Рабочий стол
Windows, магазин Windows Store и другие типы приложений с единой библио
текой классов. Не все API доступны на всех платформах, но их вполне доста-
точно, чтобы сэкономить значительные усилия на разработке.

2.	 .NET Core — переносимая версия .NET, способная работать в Windows, Linux
и MacOS. Она может ориентироваться на стандартные ПК, мобильные устрой-
ства, серверы дата-центров или устройства Интернета вещей (IoT) с гибкой
минимизированной средой выполнения .NET. Этот вариант стремительно на-
бирает популярность.

3.	 Использование Xamarin (набора инструментов и библиотек), которое позволяет
нацелиться на платформы Android, iOS, MacOS и Windows с помощью единой
кодовой базы .NET.

С учетом тех огромных преимуществ, которые дает управляемый код, считайте,
что необходимость применения неуправляемого кода потребует серьезных дока-
зательств, если таковые вообще возможно предъявить. Получите ли вы от этого
ожидаемое повышение производительности? Неужели сгенерированный код станет
реальным ограничивающим фактором? Можно ли будет написать быстрый про-
тотип и доказать его состоятельность? Можно ли обойтись без всех возможностей
.NET? Может оказаться, что в сложном неуправляемом приложении вы самостоя-
тельно реализуете некоторые из имеющихся в .NET функций. Вряд ли вам хочется
оказаться в неловком положении, дублируя чью-то работу.

28   Введение

Работает ли управляемый код медленнее нативного?   29

И тем не менее есть веские причины для признания непригодности кода .NET.

�� Необходимость доступа к полному набору инструкций процессора, особенно
для расширенных приложений обработки данных, применяющих инструкции
SIMD. Но ситуация меняется. SIMD-программирование, доступное в среде
.NET, рассматривается в главе 6.

�� Существование большой базы неуправляемого кода. В этом случае можно
рассмотреть возможность использования интерфейса между новым и старым
кодом. Если получится легко разработать понятный API для этого, то поду-
майте о возможности написания всего нового функционала на управляемом
коде и добавления уровня взаимодействия между ним и неуправляемым кодом.
Со временем можно будет перевести неуправляемый код в управляемый.

�� Перекликающаяся с предыдущим пунктом опора на платформозависимые би-
блиотеки или API в коде. Например, до появления управляемой оболочки по-
следние версии функций Windows зачастую будут доступны только в Windows
SDK для C/C++. Управляемых оболочек для некоторых функций просто
не существует.

�� Взаимодействие с оборудованием. Некоторые аспекты взаимодействия с обо-
рудованием будут упрощаться благодаря прямому доступу к памяти и другим
функциям языков более низкого уровня. К таким случаям можно отнести рас-
ширенные возможности видеокарты для игр.

�� Необходимость строгого контроля над структурами данных. Возможности кон-
троля размещения структур в памяти в C/C++ гораздо шире, чем в C#.

Даже если некоторые из перечисленных пунктов — ваш случай, это еще не озна-
чает, что все ваше приложение должно состоять из неуправляемого кода. В одном
и том же приложении можно легко сочетать два типа кода, взяв самое лучшее из
обоих миров.

Работает ли управляемый код
медленнее нативного?
В мире существует множество нелепых стереотипов. К сожалению, один из них —
то, что управляемый код не может быть быстрым. Это не так.

Ближе к истине то, что платформа .NET позволяет с необычайной легкостью соз
давать медленный код, если относиться к работе безалаберно и безответственно.

При создании кода на C#, VB.NET или любом другом языке управляемого кода
компилятор переводит код на языке высокого уровня в код на промежуточном
языке — Intermediate Language (IL) и в метаданные об использованных типах.
Запущенный код проходит компиляцию времени выполнения (just-in-time),
то есть JIT-компиляцию. Таким образом, при первом выполнении метода среда
CLR вызовет для IL-кода JIT-компилятор, чтобы преобразовать его в ассемблер-
ный код (например, x86, x64, ARM). Основная часть оптимизации происходит на

этой стадии. Так что при первом запуске производительность страдает, но после
этого вы всегда получаете скомпилированную версию. Позже будет показано, что
при необходимости можно найти способы обойти снижение производительности
на старте.

Таким образом, устойчивый уровень производительности управляемого при-
ложения определяется двумя факторами:

�� качеством JIT-компилятора;

�� объемом издержек сервисов среды .NET.

Как правило, качество сгенерированного кода не вызывает (за некоторыми ис-
ключениями) никаких нареканий и постоянно улучшается, особенно в последнее
время.

В некоторых же случаях можно увидеть существенные преимущества исполь-
зования управляемого кода.

�� Выделение памяти. В отличие от нативных приложений отсутствует конку-
ренция при выделении памяти в куче. Часть сэкономленного времени затрачи-
вается на сборку мусора, но в зависимости от настроек приложения даже эти
временные затраты можно практически нивелировать. Сведения о поведении
и конфигурации сборки мусора изложены в главе 2.

�� Фрагментация. Усугубляющаяся со временем фрагментация памяти — весьма
распространенная проблема в больших и долго работающих нативных приложе-
ниях. В приложениях .NET эта проблема выражена намного слабее, поскольку
куча в меньшей степени подвержена фрагментации в принципе, но даже если
куча фрагментируется, сборщик мусора уплотнит ее.

�� JIT-компиляция кода. Поскольку код проходит JIT-компиляцию во время вы-
полнения, его расположение в памяти может быть более оптимальным, чем
у нативного кода. Связанные участки кода часто будут располагаться в одном
месте и с большой долей вероятности помещаться на одной странице памяти или
в одной строке кэша процессора. Это уменьшает количество отказов страницы.

На вопрос «Работает ли управляемый код медленнее нативного?» в большин-
стве случаев нужно отвечать решительным «нет». Разумеется, есть такие области,
где управляемый код просто не может преодолеть ограничения безопасности, под
которыми работает. Их гораздо меньше, чем можно себе представить, и большин-
ству приложений отказ от управляемого кода не принесет существенных выгод.
Зачастую разница в производительности преувеличена. В действительности же
состав оборудования и архитектура часто влияют сильнее, чем выбор языка
и платформы.

Гораздо чаще встречается код, управляемый или нативный, который просто
плохо написан. Он, например, не справляется должным образом с управлением
памятью, использует неудачные шаблоны, игнорирует стратегии кэширования
в центральном процессоре или не позволяет достичь высокой производительности
по какой-то другой причине.

30   Введение

Я что, теряю контроль?   31

Стоит ли овчинка выделки?
Как обычно, у каждого варианта есть свои издержки и выгоды. В большинстве
случаев на практике я обнаруживал, что преимущества управляемого кода переве-
шивают затраты. Более того, подойдя к программированию с умом, обычно удается
избежать наибольших затрат и при этом получить преимущества.

Сервисы, предоставляемые средой .NET, не бесплатны с точки зрения произ-
водительности, но затраты ниже ожидаемых. Их не нужно сводить к нулю (соб-
ственно, это и не получится), просто сделайте их настолько низкими, чтобы они
не превышали значимость влияния других факторов в профиле производитель-
ности вашего приложения.

Функциональная особенность Преимущества

Код, проходящий
JIT-компиляцию

Лучшая локализация в памяти, ее пониженное .
потребление

Проверка границ Безопасное обращение к памяти (меньше трудно
обнаруживаемых ошибок)

Затраты на хранение метаданных
типа

Более простая отладка, насыщенные метаданные,
отражение, улучшенная обработка исключений,
упрощение статического анализа

Сборка мусора Быстрое выделение памяти, отсутствие ошибок, .
связанных с вызовом delete, безопасный доступ
к указателям (невозможность нарушений доступа)

Все это может обеспечить и значительные дополнительные выгоды:

�� более высокий уровень стабильности работы программных средств;

�� уменьшение времени простоя;

�� большую гибкость для разработчика.

Я что, теряю контроль?
В качестве аргумента против использования управляемого кода чаще всего приво-
дят то соображение, что возникает ощущение утраты слишком большой доли кон-
троля над выполнением программы. В частности, появляется страх перед сборкой
мусора, которая, кажется, происходит в произвольные и неподходящие моменты.
Но с точки зрения практического применения это не так. Сборка мусора — в боль-
шинстве случаев детерминированная операция, и можно существенно повлиять
на частоту ее запуска, контролируя схемы выделения памяти и области видимости
объектов, а также настраивая конфигурацию сборщика мусора. В нативном коде вы,
конечно, контролируете другие аспекты выполнения программы, но возможность
контроля как таковая определенно никуда не делась.

Работа с CLR, а не против нее
Люди, незнакомые с управляемым кодом, часто относятся к таким вещам, как сбор-
щик мусора или JIT-компилятор, как к чему-то, с чем приходится «разбираться»,
что нужно «терпеть» или «обходить». Это совершенно непродуктивный взгляд.
Какую бы платформу вы ни использовали, вам понадобится целенаправленно ра-
ботать над производительностью, если хотите, чтобы производительность системы
была на высоте. По этой и другим причинам не допускайте ошибок, считая сборку
мусора и JIT-компиляцию проблемами, с которыми вам придется бороться.

Когда вы начнете ценить то, что CLR делает для управления выполнением
вашей программы, вы поймете, что можно добиться существенного повышения про-
изводительности, просто выбрав работу с CLR, а не против нее. Любая платформа
имеет определенные ожидания относительно того, как ее будут использовать,
и .NET не исключение. К сожалению, многие из этих ожиданий заданы неявно,
и API никак не запрещает, да и не может запретить вам принимать неверные ре-
шения, нарушающие эти ожидания.

Бо' льшая часть этой книги посвящена объяснению работы CLR, для того чтобы
решения, которые вы принимаете, как можно более точно соответствовали ее ожи-
даниям. Это особенно актуально, к примеру, для сборки мусора, где весьма четко
очерчены принципы достижения оптимальной производительности. Если игнори-
ровать их, может случиться катастрофа. Гораздо больше шансов добиться успеха,
если подстроиться под среду, а не пытаться заставить ее соответствовать вашим
представлениям или, что еще хуже, полностью отказаться от ее использования.

Отдельные преимущества среды CLR могут в некотором смысле стать обоюдо-
острым мечом. Простота профилирования, обширная документация, насыщенные
метаданные и инструментарий ETW-событий позволяют быстро найти источник
проблем, но при этом проще становится и возложить на нее вину. У нативной про-
граммы могут быть подобные или еще бо' льшие проблемы с выделением памяти
в куче или неэффективным применением потоков, но, поскольку разглядеть их
не так-то просто, нативная платформа избежит обвинений. При использовании
как управляемого, так и нативного кода зачастую сбой дает сама программа, и ее
нужно исправить, чтобы она лучше работала с базовой платформой. Ошибкой
будет утверждать, что легкость обнаружения проблем свидетельствует о том, что
они кроются в самой платформе.

Все это не означает, что CLR никогда не становится причиной проблем, но в пер-
вую очередь нужно искать их в приложении, а не в среде, операционной системе
или оборудовании.

Уровни оптимизации
Оптимизация производительности может означать многое в зависимости от того,
о какой части программного средства идет речь. В контексте .NET-приложений
производительность представляется пятиуровневой (рис. 0.1).

32   Введение

Уровни оптимизации   33

Рис. 0.1. Уровни абстракций, они же приоритеты в работе

Верхний уровень — это архитектура вашей системы, будь то отдельное при-
ложение или массив совместно работающих приложений, охватывающий весь
дата-центр. Именно здесь начинается оптимизация производительности, поскольку
архитектура оказывает наибольшее потенциальное влияние на общую произво-
дительность. Изменение архитектуры приводит к резкому изменению всех слоев,
расположенных ниже, поэтому сначала следует убедиться, что у вас есть право на
это изменение. Только после этого нужно перемещаться вниз по слоям.

Ниже располагается код, то есть алгоритмы, используемые для обработки дан-
ных. Здесь и происходят главные неприятности. На этом уровне встречается основ-
ная масса функциональных ошибок и просчетов, снижающих производительность.
Это простое правило перекликается с аналогичным правилом отладки: опытный
программист всегда будет считать, что ошибочен его собственный код, и не станет
обвинять компилятор, платформу, операционную систему или оборудование. Это,
безусловно, относится и к оптимизации производительности.

Ниже вашего кода находится среда .NET Framework — набор классов, предо-
ставляемых компанией Microsoft или сторонними организациями и предлагающих
стандартные функциональные возможности для обработки строк, коллекций и про-
изводства параллельных вычислений. Там же находятся такие полнофункцио-
нальные подплатформы для разработки определенных классов приложений, как

Windows Communication Framework, Windows Presentation Foundation и т. д. Вам
не удастся избежать использования как минимум некоторой части среды, но при-
менение большинства частей не обязательно. Бо' льшая часть среды реализована
с помощью управляемого кода, точно такой же управляемый код есть и в вашем
собственном приложении. Код среды можно даже прочитать в Интернете по адресу
http://referencesource.microsoft.com/ или из среды Visual Studio.

Под классами среды .NET Framework находится настоящая рабочая лошадка
.NET — среда Common Language Runtime (CLR). Она представляет собой сочета-
ние управляемых и неуправляемых компонентов, обеспечивающих такие сервисы,
как сборка мусора, загрузка типов, JIT-компиляция и множество других деталей
реализации среды .NET.

Еще ниже код, образно говоря, достигает «железа». После того как среда CLR
выполнит JIT-компиляцию кода, вы фактически запускаете ассемблерный код
процессора. Если пробраться в управляемый процесс с помощью отладчика ма-
шинного кода, можно увидеть исполняемый ассемблерный код. В этом заключается
суть управляемого кода — используются обыкновенные машинные ассемблерные
инструкции, выполняемые в контексте особо надежной среды.

Повторю еще раз: при проектировании высокопроизводительных приложений
или их исследовании всегда следует начинать с верхнего уровня и двигаться вниз.
Прежде чем ковыряться в деталях базового кода, убедитесь в целесообразности
структуры и алгоритмов вашей программы. Макрооптимизация практически всегда
выгоднее микрооптимизации.

В этой книге в первую очередь рассматриваются промежуточные уровни —
.NET Framework и CLR. Они содержат «клей», скрепляющий вашу программу,
и часто надежнее всего скрыты от программистов. Но многие из рассматриваемых
инструментов применимы ко всем уровням. В конце книги будут кратко изложены
некоторые практические и эксплуатационные приемы, позволяющие повысить
производительность на всех уровнях системы.

Учтите, что хоть вся приводимая в книге информация и находится в открытом
доступе, но в ней рассматриваются некоторые аспекты внутренних деталей реали-
зации среды CLR. И все они могут быть изменены.

Коварная соблазнительность простоты
C# очень красивый язык. Он понятен, так как корнями уходит в C++ и Java. Его ин-
новационность проявляется в заимствовании особенностей, присущих функцио
нальным языкам, и в том, что вдохновение его разработчики черпают также из
других источников, сохраняя при этом дух C#. Благодаря всему этому в нем удалось
избежать сложностей, присущих большим языкам вроде C++. С ним легко начать
работать, используя самый базовый синтаксис C# и постепенно повышая уровень
своих знаний, чтобы применять более сложные функции.

Начать работать со средой .NET тоже просто. API в большинстве своем органи-
зованы в логические иерархические структуры, позволяющие найти именно то, что
вы ищете. Модель программирования, развитые библиотеки функций и полезный

34   Введение

Коварная соблазнительность простоты   35

механизм IntelliSense в Visual Studio позволяют любому программисту довольно
быстро создавать работающее программное обеспечение.

Но легкость порождает опасность. Мой бывший коллега однажды сказал:
«Управляемый код позволяет посредственным разработчикам очень быстро создать
много плохого кода».

Это можно показать на примере. Однажды мне попался код, который выглядел
примерно так:

Dictionary <string , object > dict =
 new Dictionary <string , object >();
...
foreach(var item in dict)
{
 if (item.Key == "MyKey")
 {
 object val = dict["MyKey"];
 ...
 }
}

Впервые столкнувшись с ним, я был ошеломлен: как мог профессиональный
разработчик не знать, как использовать словарь? Но, подумав, начал понимать, что,
наверное, ситуация была не столь очевидной, как показалось вначале. Вскоре я вы-
двинул теорию, которая могла все объяснить. Проблема заключалась в конструк-
ции foreach. Я считаю, что изначально в коде был применен List<T>, а чем можно
воспользоваться для перебора элементов List<T> или любого перечисляемого типа
коллекции? foreach. Простая гибкая семантика позволяет задействовать эту кон-
струкцию практически для всех типов коллекции. Я предполагаю, что в какой-то
момент разработчик понял, что структура словаря больше подойдет ему по смыслу,
возможно, в других частях кода. Были внесены изменения, но сохранена конструк-
ция foreach, поскольку, как бы то ни было, она все еще работала! За исключением
того, что внутри цикла были уже не значения, а пары «ключ — значение». Ну, это
хотя бы легко исправить...

Теперь понятно, как могла сложиться эта ситуация. Я, возможно, слишком мя-
гок по отношению к первоначальному разработчику, но, если говорить начистоту,
в данной ситуации его мало что оправдывает: код, несомненно, дефектный и свиде-
тельствует о том, насколько несознательно разработчик отнесся к его написанию.
Однако я считаю, что в данном случае синтаксис C# как минимум поспособствовал
этому. Его легкость соблазнила разработчика менее критично отнестись к коду.

Есть множество других примеров совместной работы .NET и C#, значительно
облегчающей действия среднего разработчика: очень просто инициировать вы-
деление памяти, огромный объем кода, скрывающийся за многими функциями
языка, весьма затратная реализация многих, казалось бы, простых API по причине
их обобщенной, универсальной природы и т. д.

Цель этой книги — дать вам знания. Мы все начинаем как посредственные раз-
работчики, но, имея хорошие инструкции, можем миновать эту стадию и начать
действительно понимать создаваемый программный продукт.

Хронология совершенствования
производительности среды .NET
Разработка сред CLR и .NET Framework продолжается по сей день, и со времени
выхода в начале 2002 года версии 1.0 в них были внесены весьма существенные
улучшения. В этом разделе задокументированы некоторые наиболее важные из-
менения, особенно те, что касаются повышения производительности.

�� 1.0 (2002).
�� 1.1 (2003).

yy Появление поддержки IPv6.
yy Появление возможности установки нескольких версий .NET на одном

компьютере и выполнения программ на предопределенной версии плат-
формы.

yy Повышение безопасности.
�� 2.0 (2006).

yy Появление поддержки 64-разрядных систем (как x64, так и уже практически
неактуальной IA-64).

yy Появление типов, допускающих значение null.
yy Появление анонимных методов.
yy Появление итераторов.
yy Появление обобщений и классов обобщенных коллекций.
yy Повышение производительности работы с кодировкой UTF-8.
yy Улучшение класса Semaphore.
yy Улучшения в сборщике мусора (GC):

�� уменьшение фрагментации, вызванной закреплением объектов;
�� уменьшение числа OutOfMemoryExceptions.

�� 3.0 (2006).
yy Введение Windows Presentation Foundation (WPF), Windows Communication

Foundation (WCF), Windows Workflow Foundation (WF).
�� 3.5 (2007).

yy Появление LINQ и методов для работы с LINQ по всей библиотеке классов.
�� 3.5 SP1 (2008).

yy Существенное повышение производительности WPF за счет, кроме всего
прочего, аппаратной отрисовки, улучшения побитового отображения и от-
рисовки текстовых символов.

�� 4.0 (2010).
yy Появление библиотеки параллельных задач (Task Parallel Library).
yy Появление Parallel LINQ (PLINQ).

36   Введение

Хронология совершенствования производительности среды .NET   37

yy Появление диспетчеризации методов с помощью dynamic.
yy Появление именованных и необязательных параметров.
yy Усовершенствование фоновой сборки мусора в режиме рабочей станции.

�� 4.5 (2012).
yy Введение истечения срока ожидания разрешения регулярных выражений.
yy Появление async и await.
yy Усовершенствование GC:

�� появление фоновой сборки мусора в режиме сервера;
�� появление балансировки кучи больших объектов для сборки мусора

в режиме сервера;
�� улучшение поддержки систем более чем с 64 процессорами;
�� появление устойчивого режима с низким уровнем задержки;
�� уменьшение фрагментации LOH;
�� появление поддержки наборов данных, превышающих 2 Гбайт.

yy Появление многоядерной JIT-компиляции для сокращения времени за-
пуска.

yy Добавление WeakReference<T>.
�� 4.5.1 (2013).

yy Появление усовершенствованной поддержки отладки, особенно для ко
да x64.

yy Автоматическое перенаправление привязки сборок.
yy Появление явного уплотнения LOH.

�� 4.5.2 (2014).
yy Улучшение ETW.
yy Улучшение поддержки профилирования.

�� 4.6 (2015).
yy Улучшение 64-разрядной JIT-компиляции (кодовое имя RyuJIT), появле-

ние поддержки инструкций SSE2 и AVX2.
yy Добавление областей No-GC.

�� 4.6.1 (2015).
yy Повышение производительности сборщика мусора.
yy Повышение производительности JIT-компилятора.

�� 4.6.2 (2016).
yy Разрешение использования имен путей длиннее 260 символов.
yy Повышение производительности и надежности JIT-компилятора.
yy Существенное исправление ошибок в EventSource.
yy Улучшения в GC:

�� появление возможности сборки всех объектов, следующих за закреплен-
ными объектами;

�� более эффективное использование свободного пространства gen 2.
�� 4.7 (2017).

yy Повышение производительности JIT-компилятора.
yy Появление дополнительных вариантов конфигурации GC.
yy Появление типа ValueTuple.

�� 4.7.1 (2017).
yy Улучшение сборки мусора за счет скорости выделения памяти в LOH.

Выделение памяти в LOH больше не блокируется развертыванием полной
фоновой сборки мусора.

�� 4.7.2 (2018).
yy Повышение производительности HashSet<T> и ConcurrentDictionary<TKey,
TValue>.

yy Повышение производительности ReaderWriterLockSlim и ManualReset
EventSlim.

yy Повышение производительности сборки мусора.

.NET Core

.NET Core — это кросс-платформенная модульная версия .NET с открытым кодом.
Microsoft выпустила версию 1.0 в июне 2016 года, а версия 2.0 вышла в августе
2017-го. .NET Core можно рассматривать в качестве поднабора полноценной
среды .NET Framework, но эта версия содержит также дополнительные API, не-
доступные в стандартном выпуске. Используя .NET Core, можно создавать при-
ложения для командной строки, приложения универсальной платформы Windows
(UWP), веб-приложения ASP.NET Core и переносимые библиотеки кода. Хотя
на .NET Core была перенесена основная часть стандартной библиотеки классов
среды .NET Framework, в ней отсутствуют многие API. Если требуется выполнить
переход с .NET Framework на .NET Core, может понадобиться существенная ре-
структуризация кода. Особо следует отметить отсутствие поддержки приложений
Windows Forms или WPF1.

Базовый код как для JIT, так и для Garbage Collector совпадает с тем, что име-
ется в полной версии среды .NET Framework. CLR-функции аналогичны в обеих
системах.

Практически все проблемы с производительностью, рассматриваемые в этой
книге, одинаково актуальны для обеих систем, и я не стану отмечать различия
между этими платформами.

1	 Возможно, появится в .Net Core 3. В публично доступной бета-версии это уже есть. —
Примеч. науч. ред.

38   Введение

Учебный исходный код   39

И тем не менее сделаю несколько важных предупреждений.

�� ASP.NET Core — это значительное улучшение ASP.NET, в которой использу-
ется .NET Framework. Если требуется получить высокопроизводительное веб-
приложение, стоит освоить работу с ASP.NET Core.
�� Поскольку .NET Core — это ПО с открытым кодом, данная среда получает

улучшения гораздо быстрее среды .NET Framework. Некоторые из изменений
переносятся обратно в .NET Framework, но гарантировать это невозможно.
�� Работа многих отдельно взятых API была оптимизирована в плане повышения

производительности:
yy улучшены, а в некоторых случаях полностью переделаны такие коллекции,

как List<T>, SortedSet<T>, Queue<T> и др.;
yy в LINQ сократилось количество выделений памяти и инструкций;
yy быстрее стали обрабатываться регулярные выражения и строки;
yy ускорены математические операции над непримитивными типами дан-

ных;
yy повысилась эффективность кодирования строк;
yy быстрее стали работать сетевые API;
yy немного ускорилась работа примитивов для параллельных вычислений.

Изменения коснулись и многого другого...
Однако с .NET Core не работают многие конкретные технологии:

�� приложения WPF;
�� приложения Windows Forms;
�� веб-формы ASP.NET;
�� серверы WCF;
�� C++/CLI (но в .NET Core поддерживается P/Invoke).

К .NET Core многие относятся с пристальным вниманием и любовью. По воз-
можности эту среду следует использовать во всех новых разработках. Ее код от-
крытый, поэтому и вы можете внести в нее свой вклад и сделать ее еще лучше.

Учебный исходный код
В книге часто встречаются ссылки на учебные проекты. Это небольшие изо-
лированные проекты, предназначенные для демонстрации конкретного прин-
ципа. Примеры эти простые, поэтому они не будут адекватно отражать объем
или масштаб проблем с производительностью, которые вы обнаружите в своих
исследованиях. Рассматривайте их как стартовую позицию для приобретения
технологического и исследовательского мастерства, а не как серьезные примеры
типового кода.

Все примеры кода можно загрузить с веб-сайта книги, расположенного по адресу
http://www.writinghighperf.net. Большинство проектов успешно проходят сборку в среде

.NET 4.5, но для некоторых требуется версия 4.7. Чтобы открыть большинство про-
ектов, понадобится как минимум Visual Studio 2015.

В некоторых учебных проектах, инструментах и примерах, приводимых в кни-
ге, используются пакеты NuGet. Они должны автоматически обновляться средой
Visual Studio, но ими можно управлять и индивидуально, щелкнув правой кнопкой
мыши на названии проекта и выбрав пункт меню Manage NuGet References (Управле-
ние ссылками на NuGet).

40   Введение

1 Измерение
производительности
и инструменты

Прежде чем углубиться в специфику CLR и .NET, следует разобраться с измерени-
ем производительности в целом, а также с множеством доступных инструментов.
Эффективность вашей работы обеспечивается исключительно арсеналом исполь-
зуемых инструментов. В этой главе я постараюсь дать вам прочную основу для
освоения и начала применения множества инструментов, рассматриваемых в книге.

Выбор предмета измерения
Перед тем как принять решение о предмете измерения, следует усвоить набор тре-
бований к производительности. Эти требования должны носить довольно общий
характер, чтобы не предписывать конкретную реализацию, но в то же время быть
вполне определенными и поддаваться измерениям. Они должны основываться на
реальных положениях, даже если пока вы не знаете, как добиться их выполне-
ния. Требования станут управлять тем, какие показатели нужно будет собрать.
Перед сбором числовых значений следует разобраться в том, что именно мы
намерены измерять. Звучит это как само собой разумеющееся, но на самом деле
вопрос гораздо шире, чем можно себе представить. Возьмем, к примеру, память.
Разумеется, вам захочется измерить объем потребляемой памяти и свести его
к минимуму. О какой именно памяти идет речь? Частном рабочем наборе? Запро-
шенном объеме памяти? Страничном пуле? Пиковом рабочем наборе? Объеме
кучи .NET-среды? Объеме кучи крупных объектов? Об объемах куч отдельно
взятых процессоров, обеспечивающих их сбалансированность? О каком-то ином
варианте? Нужен ли для отслеживания объема потребляемой памяти по време-
ни усредненный почасовой показатель или же необходим пиковый показатель?
Коррелируется ли объем потребляемой памяти с объемом рабочей нагрузки при
вычислениях? Как видите, навскидку легко набирается десяток и более показа-
телей, относящихся к одной лишь памяти. А мы еще не касались частных куч или
профилирования приложений с целью определения того, какие разновидности
объектов потребляют память!

Характеризуя потребности в измерениях, нужно формулировать запросы как
можно конкретнее.

42   Глава 1  •  Измерение производительности и инструменты

ИСТОРИЯ

В крупном серверном приложении, за работу которого я отвечал, отслеживался
объем частных байтов (дополнительные сведения о различных типах измерений
потребляемой памяти найдете далее, в подразделе «Счетчики производитель-
ности» раздела «Полезные инструменты») в качестве наиболее важной метрики,
чье значение учитывали, когда решали, необходимо ли принимать такие меры, как
перезапуск процесса перед началом крупных, интенсивно потребляющих память
операций. Оказалось, что излишний объем частных байтов со временем свопи-
ровался и не влиял на общее потребление памяти в системе, о чем, собственно,
мы и беспокоились. В систему внесли изменение — стали измерять взамен объем
рабочего набора. Преимущество выразилось в сокращении объема потребляемой
памяти на несколько гигабайтов (как уже говорилось, это было довольно крупное
приложение).

Определившись с предметом измерений, нужно получить четкое представление
о конкретных целях использования каждой метрики. На ранних стадиях разработ-
ки эти цели могут быть не вполне устоявшимися, даже нереальными, и тем не менее
они должны основываться на высокоуровневых требованиях. Главным вначале мо-
жет быть не достижение поставленных целей, а принуждение к созданию системы,
выполняющей автоматические измерения для достижения целей.

Цели должны иметь количественное выражение. В общем виде цель, намеченная
для вашей программы, может задаваться так: она должна быть быстродействую-
щей. Разумеется, должна. Но это далеко не самый удачный показатель, поскольку
быстродействие субъективно и четко сформулированного способа определения
средств достижения этой цели нет. У вас должна быть возможность придать ей
числовое выражение и получить способ его измерения.

Плохой пример: «Пользовательский интерфейс должен быть отзывчивым».
Хороший пример: «Не должно быть операций, способных заблокировать поток

пользовательского интерфейса более чем на 20 мс».
Но одного числового выражения недостаточно. Если рассмотреть предыдущий

пример с памятью, становится понятно, что нужна предельная конкретизация цели.
Плохой пример: «Объем памяти должен быть менее 1 Гбайт».
Хороший пример: «Объем памяти, потребляемый рабочим набором, не должен

превышать 1 Гбайт при пиковой нагрузке 100 запросов в секунду».
Во второй версии цели дается описание конкретных обстоятельств, определя

ющих условия ее достижения. Фактически в ней предлагается вполне приемлемый
сценарий тестирования.

Еще один из основных определяющих факторов, характеризующих ваши
цели, — разновидность создаваемого приложения. Программа, имеющая пользо-
вательский интерфейс, должна неизменно оставаться отзывчивой в потоке этого
интерфейса, независимо от того, что она делает еще. Серверная программа, обраба-
тывающая десятки, сотни или даже тысячи запросов в секунду, должна отличаться

Преждевременная оптимизация   43

невероятной эффективностью в управлении вводом-выводом и синхронизацией,
обеспечивая тем самым максимальную пропускную способность и поддержку
высокого уровня использования вычислительной мощности центрального про-
цессора. Архитектура подобного сервера разрабатывается совершенно иначе, чем
для других приложений. Если архитектура неудачно разработанного приложения
имеет принципиальные изъяны с точки зрения эффективности, исправить ситуа-
цию в процессе его эксплуатации будет крайне трудно.

Важную роль играет и планирование мощностей. При разработке вашей систе-
мы и планировании измерений производительности весьма полезно решить, какой
будет ее оптимальная теоретическая производительность. Если можно исключить
все источники издержек, в том числе сборку мусора, JIT-компиляцию, прерывания
потока и все, что вы считаете таковыми, то что останется для выполнения работы,
для которой приложение предназначено? Какие теоретические ограничения с точ-
ки зрения рабочей нагрузки, потребления памяти, использования центрального
процессора и внутренней синхронизации вы можете определить? Зачастую это
зависит от задействованного оборудования и операционной системы. Например,
при наличии 16-процессорного сервера с 64 Гбайт оперативной памяти с двумя
сетевыми каналами по 10 Гбайт возникает мысль о пороге распараллеливания
и о том, сколько данных можно сохранить в памяти и сколько — передать по каналу
в каждую секунду. Это поможет спланировать нужное количество машин данного
типа, если одной окажется недостаточно.

Преждевременная оптимизация
Возможно, вы знакомы с высказыванием Дональда Кнута (Donald Knuth): «Прежде
временная оптимизация — корень всех зол». Смысл этой цитаты заключается
в определении тех областей вашей программы, которые действительно важно опти-
мизировать. Это отсылает нас к закону Амдала, в котором описывается теоретически
максимальное ускорение работы программного средства путем его оптимизации,
в частности способ применения оптимизации к последовательно выполняемым
программам и выбор оптимизируемых частей программы. Время, потраченное на
микрооптимизацию того кода, который не вносил существенного вклада в общую
неэффективность, по большому счету считается затраченным впустую. Это по-
ложение верно для микрооптимизаций на уровне кода и может быть применимо
и для более высоких уровней вашей архитектуры. Конечно, следует продумывать
создаваемую архитектуру и по мере разработки разбираться в ее ограничениях,
иначе можно упустить что-то важное и сильно затрудняющее работу приложения.
Но многие из этих ограничений на поверку окажутся не столь важны для системы
(или по крайней мере вы пока не сможете оценить их важность). Перепроектировать
существующее приложение с нуля, конечно, можно, но это будет значительно дороже,
чем изначально спроектировать его правильно. При разработке архитектуры круп-
ной системы зачастую единственный способ избежать ловушки преждевременной

44   Глава 1  •  Измерение производительности и инструменты

оптимизации — это применение опыта разработки и изучение архитектуры ана-
логичных или эталонных систем. В любом случае определение целей достижения
производительности должно опережать проектные решения. Производительность,
подобно безопасности и многим другим аспектам разработки программного обе-
спечения, не может играть второстепенную роль и с самого начала должна быть
четко выраженной целью.

Анализ производительности, выполненный в самом начале работы над про-
ектом, отличается от проводимого после написания программы и в ходе ее те-
стирования. Сначала нужно удостовериться, что ваша конструкция поддается
масштабированию, технология теоретически может справиться с намеченными
задачами и вы не наделали грубых архитектурных ошибок, которые будут вечно
вас преследовать. Как только проект доберется до фаз тестирования, разверты-
вания и сопровождения, больше времени будет отводиться на оптимизацию на
микроуровне, анализ конкретных шаблонов в коде, попытки сокращения объемов
потребляемой памяти и т. д.

У вас никогда не будет времени на всеобъемлющую оптимизацию, следователь-
но, начинать ее следует обдуманно. Сначала оптимизируйте самые неэффективные
части программы, чтобы получить наибольшую выгоду. Именно поэтому решающее
значение имеет наличие целей и совершенной системы измерений, в противном
случае вы даже не поймете, с чего нужно начать.

Сравнение усредненных
и процентных показателей
Рассматривая измеряемые числовые метрики, следует решить, какой вид стати-
стических показателей будет наиболее подходящим. Большинство специалистов
изначально полагаются на усредненные показатели. Конечно, в большинстве слу-
чаев они играют важную роль, но не следует сбрасывать со счетов и процентные
показатели (процентили). При наличии требований к доступности вам почти на-
верняка понадобятся цели, выраженные в процентилях, например: «Среднее время
задержки запросов к базе данных должно быть менее 10 мс. А 95%-ный процентиль
задержек запросов к базе данных должен быть менее 100 мс».

Если вам неизвестно это понятие, не расстраивайтесь: в нем нет ничего слож-
ного. Если взять 100 измерений чего угодно и отсортировать их, то 95%-ная за-
пись в списке и является значением 95%-ного процентиля этого набора данных.
95%-ный процентиль свидетельствует о том, что 95 % значений в выборке имеет
это или меньшее значение. Или же 5 % запросов имеют значение выше этого.

Общая формула для вычисления индекса отсортированного списка имеет сле-
дующий вид:

P
100

N,

где P — процентиль; N — длина списка.

Сравнение усредненных и процентных показателей   45

Рассмотрим серию измерений времени паузы при сборке мусора нулевого по-
коления в миллисекундах со следующими значениями (для удобства они были
заранее отсортированы):

1, 2, 2, 4, 5, 5, 8, 10, 10, 11, 11, 11, 15, 23, 24, 25, 50, 87.

Для этой выборки из 18 значений усредненным является 17 мс, но 95%-ный
процентиль намного выше — 50 мс. Если принять во внимание лишь усредненное
значение, то задержки сборщика мусора могут вас и не обеспокоить, но, зная про-
центиль, вы получите более четкую картину происходящего и поймете, что при
некоторых сборках мусора дела обстоят куда хуже.

Здесь также демонстрируется, что медианное значение (50%-ный процентиль)
может значительно отличаться от среднего, которое подвергается весьма сильному
влиянию со стороны значений более высоких процентилей.

Для сервисов с высокой доступностью процентильные значения зачастую
оказываются гораздо важнее, чем для прочих. Чем выше требуемый уровень до-
ступности, тем более высокий процентиль нужно отслеживать. Обычно для этого
достаточно высок 99%-ный процентиль, но, если приходится иметь дело с по-
настоящему огромным валом запросов, важную роль могут сыграть 99,99%-ный,
99,999%-ный или даже более высокий процентиль. Часто требуемый показатель
определяется бизнес-необходимостью, а не техническими соображениями.

Ценность процентилей в том, что они дают представление об ухудшении пока-
зателей во всем контексте выполнения. Даже если усредненный пользовательский
опыт работы или средние показатели обработки запросов вашим приложением
представляются вполне приемлемыми, возможно, показатель 90%-ного процен-
тиля высветит некоторые возможности для внесения усовершенствований. Он
подскажет, что в 10 % случаев работа приложения подвергается влиянию более
негативных обстоятельств, чем в остальных случаях. Отслеживание нескольких
процентилей покажет, насколько быстро происходит деградация. Насколько важен
этот процент пользователей или запросов, решается в конечном счете в бизнес-пло-
скости, и здесь на сцену возвращается закон убывающей доходности: оптимизация
последнего процента может стать чрезвычайно сложным и затратным делом.

Я начал с того, что 95%-ный процентиль показанного ранее набора данных со-
ставлял 50 мс. Технически это так, но в данном случае польза от этой информации
сомнительна, поскольку данных недостаточно, чтобы этот результат имел хоть
какую-то статистическую значимость, и, в сущности, данный показатель может
носить случайный характер. Для определения нужного числа значений в выборке
воспользуйтесь следующим эмпирическим правилом: необходимо, чтобы размер
выборки был на один порядок больше целевого процентиля. Для процентилей в диа-
пазоне 0–99 нужны минимум 100 значений. Для 99,9%-ного процентиля — 1000,
для 99,99%-ного процентиля — 10 000 и т. д. В большинстве случаев это правило
работает, но если вы заинтересованы в определении фактического количества
значений с математической точки зрения, то изучите науку определения объема
выборки глубже.

46   Глава 1  •  Измерение производительности и инструменты

Точнее говоря, потенциальная ошибка зависит от квадратного корня из числа
значений в выборке. Например, 100 значений приводят к диапазону ошибок 90–100,
или 10 % ошибок, 1000 — к диапазону 969–1031, или 3 % ошибок.

Не забудьте принять в расчет другие типы статистических значений: минимум,
максимум, среднее значение, стандартные отклонения и многое другое, в зависимо-
сти от типа измеряемых показателей. Например, чтобы определить статистически
значимые различия между двумя наборами данных, часто используются t-тесты.
Стандартные отклонения применяют для определения вариативности набора
данных.

Эталонное тестирование
Если нужно измерить производительность фрагмента кода, особенно в сравнении
с альтернативным вариантом его реализации, понадобится эталонное тестирование
(бенчмаркинг). Буквальное определение эталона (бенчмарка): это стандарт, с ко-
торым могут сравниваться результаты измерений. В мире разработки программ-
ного обеспечения это означает замеры точного времени, обычно усредняемые по
результатам тысяч или миллионов итераций.

Эталонному тестированию можно подвергать множество разнообразных эле-
ментов программ на разных уровнях, от программ целиком до отдельных методов.
Но чем больше варьируемость тестируемого кода, тем больше прогонов понадо-
бится для получения результата приемлемой точности.

Проведение эталонного тестирования — задача непростая. Требуется опреде-
лить метрики для вашего кода в реалистичных условиях, чтобы получить реа
листичные данные, на основании которых можно предпринимать дальнейшие
действия. Но создание таких условий для получения полезных данных может
оказаться весьма сложным.

Эталонное тестирование наилучшим образом проявляет себя при тестирова-
нии отдельно взятого ресурса, за пользование которым не ведется соперничество.
Классический пример такого ресурса — время центрального процессора. Конечно,
можно протестировать что-нибудь вроде времени доступа по сети или считывания
файлов с SSD, но для этого понадобится изолировать эти ресурсы от внешнего воз-
действия. Современные операционные системы для такого рода изоляции не при-
способлены, но тщательное отслеживание среды окружения повышает вероятность
получения приемлемых результатов.

Тестирование целых программ или подмодулей, скорее всего, потребует ис-
пользования и таких ресурсов, за которые ведется соперничество. К счастью,
широкоформатное тестирование требуется редко. Экспресс-профилирование при-
ложения выявит точки наиболее интенсивного потребления ресурсов, позволяя
сфокусировать внимание на этих областях.

Узкоформатное эталонное микротестирование чаще всего применяется для
оценки времени центрального процессора, затрачиваемого на выполнение кода
отдельно взятых методов, при этом тест зачастую перезапускается миллионы раз
для сбора точной статистики.

Полезные инструменты   47

Кроме аппаратной изолированности, следует рассмотреть и ряд других фак-
торов.

�� Код должен быть предварительно JIT-компилирован. Первоначальный запуск
метода занимает гораздо больше времени, чем последующие запуски.
�� Иные скрытые инициализационные операции. Существуют кэши операционной

системы, кэши файловой системы, кэши CLR-среды, кэши оборудования, про-
цесс генерации кода и масса других стартовых издержек, которые могут влиять
на производительность кода.
�� Изоляция. Если окажется, что в процессе эталонного тестирования запущены

иные «тяжелые» процессы, измерения могут исказиться.
�� Резкие отклонения. Нужно делать скидку на резкие статистические отклонения

в измерениях, которые, вероятно, не следует брать в расчет. Определение того,
что считать резким отклонением, а что — нормой, — задача непростая.
�� Узкая сфокусированность. Время центрального процессора — важный показа-

тель, но не менее важны метрики выделения памяти, ввода-вывода, блокировки
потоков и многие другие.
�� Различие между кодом, предназначенным для выпуска (Release mode), и кодом

для отладки (Debug mode). Эталонное тестирование всегда должно проводить-
ся в отношении кода, предназначенного для выпуска программного продукта,
причем с включением всех механизмов оптимизации.
�� Влияние наблюдателя. Само наблюдение обязательно вносит какие-то изме-

нения в наблюдаемый процесс. Например, измерение времени центрального
процессора или выделение памяти в .NET-среде не обходится без генерирова-
ния дополнительных ETW-событий, чего обычно не происходит в реальных
условиях, и время на эти операции будет включено в общие результаты из-
мерений.

Примеры кода, прилагаемые к книге, часто содержат разработанные на скорую
руку эталонные тесты, но в силу перечисленных факторов их не следует считать
истиной в последней инстанции.

Вместо написания собственных эталонных тестов практически всегда следует
использовать существующую библиотеку, которая успешно справляется со мно-
гими названными нюансами. Несколько возможных вариантов будут рассмотрены
в данной главе чуть позже.

Полезные инструменты
Если самый важный аспект данной книги выразить в одном-единственном правиле,
оно будет звучать так:

«Измерения, измерения и еще раз измерения!»

Вы не узнаете, в чем именно заключаются проблемы с производительностью,
если не проведете точные измерения. Вы наверняка наберетесь опыта, который

48   Глава 1  •  Измерение производительности и инструменты

поможет обоснованно предполагать, где кроются проблемы с производительностью,
исходя из изучения кода или на основе собственной интуиции. Вы даже можете
оказаться правы, но ни в коем случае не поддавайтесь искушению проигнорировать
измерения, кроме как решая самые примитивные проблемы. Аргументы в пользу
этого утверждения носят двойственный характер.

Во-первых, представим, что вы правы и точно выявили причину снижения про-
изводительности. Но ведь вам, возможно, захочется выяснить, насколько ваше при-
ложение улучшилось, не так ли? Бравировать своими навыками куда безопаснее,
имея надежные данные для их подтверждения.

Во-вторых, я даже не могу припомнить, насколько часто ошибался. Вот на-
глядный пример: анализируя объем собственной памяти процесса в сравнении
с управляемой памятью, мы до некоторых пор предполагали, что она форми-
руется в одной конкретной области, куда загружается огромный набор данных.
Но вместо того, чтобы поставить перед разработчиком задачу сокращения объема
потребляемой таким образом памяти, мы провели ряд экспериментов по отклю-
чению загрузки данного компонента. Мы также воспользовались отладчиком
для получения дампа данных обо всех кучах в процессе. К нашему удивлению,
основной объем таинственно поглощаемой памяти приходился на издержки при
загрузке сборок, а не на этот набор данных. Таким образом, мы избежали напрас-
ной траты времени.

Оптимизация производительности бессмысленна, если не использовать специ-
альные инструменты для проведения измерений. Измерение производительно-
сти — непрерывный процесс, который нужно сделать неотъемлемой частью вашего
инструментария разработчика, процесса тестирования и средств мониторинга.
И коль уж ваше приложение требует непрерывного мониторинга для контроля
реализации своей функциональности, то и для контроля производительности,
скорее всего, мониторинг потребуется.

Далее в этой главе рассматриваются различные инструменты, которыми мож-
но воспользоваться для профилирования, мониторинга и отладки при решении
проблем с производительностью. Основное внимание я уделил Visual Studio
и программным средствам, находящимся в свободном доступе, но следует иметь
в виду, что есть множество коммерческих предложений, которые в ряде случаев
могут упростить решение различных аналитических задач. Если в бюджете есть
средства на приобретение платных инструментов, воспользуйтесь ими. Но же-
лаемого результата можно добиться и применяя более доступные инструменты,
рассматриваемые в этой книге, или их аналоги. В первую очередь, их может быть
проще запустить на машинах клиентов или в эксплуатационном окружении. Более
того, будучи немного ближе к «железу», они дадут вам знание и понимание проис-
ходящего на очень глубоком уровне, что поможет как следует разобраться в данных,
независимо от используемого инструментального средства.

Я даю описание основ применения каждого инструмента и базовые инструк-
ции для начала работы с ним. В книге подробно расписаны шаги для действий
по конкретным сценариям, но зачастую с опорой на уже имеющиеся у вас знания
пользовательского интерфейса и основ работы с ним.

Полезные инструменты   49

СОВЕТ

Прежде чем углубляться в освоение конкретных инструментов, примите совет по
поводу работы с ними. При попытке использования незнакомого инструменталь-
ного средства в большом и сложном проекте вам, возможно, это в полной мере
не удастся, и вы будете расстроены или даже получите неверные результаты.
Изучая принципы замера производительности с помощью нового средства, создайте
тестовую программу с хорошо известным вам поведением и воспользуйтесь этим
средством для подтверждения характеристик ее производительности. Таким образом
вы разберетесь в том, как применять инструментальное средство в более сложной
ситуации, и снизите вероятность совершения технических или оценочных ошибок.

Visual Studio
Visual Studio не единственная IDE, но именно ее использует большинство .NET-
программистов, и если вы относитесь к их числу, то, вполне возможно, с нее и нач
нете анализ производительности. Различные редакции Visual Studio поставляются
с различными инструментальными средствами. В этой книге предполагается, что
у вас установлена как минимум профессиональная редакция (Professional), но
я буду давать описание и некоторых средств, входящих в более высокие редакции.
Можете смело пропустить такое описание и двигаться дальше, если у вас не ока-
жется нужной редакции Visual Studio.

Если у вас установлена Visual Studio Professional или более высокая редакция,
можно обратиться к инструментам замера производительности через меню Analyze
(Анализ), в котором следует выбрать пункт Performance Profiler (Профайлер произво-
дительности) (или воспользоваться для этого сочетанием клавиш Alt+F2).

Для стандартных .NET-приложений будут показаны как минимум три варианта,
а также дополнительные варианты, которые зависят от конкретного типа прило-
жения (рис. 1.1).

�� CPU Usage (Использование ЦП) — замеряет уровень потребления функцией
ресурсов центрального процессора.
�� Memory Usage (Использование памяти) — демонстрирует сборку мусора и по-

зволяет получать отображения мгновенного состояния кучи.
�� Performance Wizard (Мастер анализа производительности) — применяет VsPerf.exe

для выполнения на основе ETW анализа использования центрального про-
цессора (путем сбора выборок или инструментирования), выделения памяти
средой .NET и взаимодействия потоков.

Если нужно только проанализировать использование центрального процессора
или просмотреть содержимое кучи, следует воспользоваться первыми двумя ин-
струментами. Мастер анализа производительности Performance Wizard также может
провести анализ использования центрального процессора, но затратит на него чуть
больше времени. Несмотря на то что он в некотором смысле устарел, с его помощью
также можно отследить выделение памяти и распараллеливание потоков.

50   Глава 1  •  Измерение производительности и инструменты

Рис. 1.1. Варианты профилирования в Visual Studio

Для более качественного анализа распараллеливания потоков следует уста-
новить имеющееся в свободном доступе инструментальное средство Concurrency
Visualizer, доступное в качестве дополнительного расширения (меню ToolsExten­
sions and Updates (ИнструментыРасширения и обновления)).

Инструментальные средства Visual Studio относятся к простейшим в при-
менении, но если у вас пока нет нужной версии Visual Studio, то обойдутся они
весьма недешево. К тому же предлагаемые ими функции весьма ограничены и не
отличаются особой гибкостью. Если воспользоваться Visual Studio нельзя или вы
нуждаетесь в более широких возможностях, прочитайте далее описание свободно
распространяемых альтернативных средств. Практически все современные сред-
ства измерения производительности используют в качестве основного механизма
(по крайней мере в ядре Windows 8/Server 2012 и более высоких версиях) события
ETW (Event Tracing for Windows — трассировка событий Windows). Этот способ
позволяет операционной системе исключительно быстро и эффективно реги-
стрировать все интересные события. Любое приложение может генерировать эти
события с помощью очень простых API. В главе 8 рассматриваются механизмы
применения ETW-событий в ваших программах путем определения собственных
событий или интеграции с потоком системных событий. Некоторые инструменты,
например PerfView, могут одновременно собирать произвольные ETW-события,
все их вы можете анализировать по отдельности из одного сеанса сбора. Порой
механизмы анализа производительности Visual Studio представляются мне пред-
назначающимися для этапа разработки, в то время как другие инструменты — для
реальной системы. Ваше мнение может отличаться от моего, и вам следует при-
менять тот инструментарий, от которого ожидаете наибольшей отдачи.

Полезные инструменты   51

Профилирование центрального процессора
В этом разделе будет представлен общий интерфейс профилирования при выборе
опции профилирования ЦП. Другие варианты профилирования (например, для
памяти) будут рассмотрены далее в соответствующих разделах.

Когда выбран вариант CPU Usage (Использование ЦП), появляется окно с гра-
фиком его применения и списком методов, наиболее активно потребляющих его
ресурсы (рис. 1.2).

Рис. 1.2. Окно CPU Usage (Использование ЦП). Шкала времени, общий график использования
и дерево методов, наиболее активно потребляющих ресурсы ЦП

Если нужно углубиться в показатели конкретного метода, следует на его на-
звании сделать двойной щелчок кнопкой мыши — откроется соответствующее ему
окно просмотра Call/Callee (Вызывающий/Вызываемый) (рис. 1.3).

Если этот вариант не даст достаточной информации, обратитесь к мастеру
оценки производительности (рис. 1.4). Для сбора важных событий это средство
ориентируется на приложение VsPerf.exe.

При выборе пункта CPU sampling (Опрос ЦП) выполняется сбор выборок без
прерывания работы программы (рис. 1.5).

52   Глава 1  •  Измерение производительности и инструменты

Рис. 1.3. Диаграмма Call/Callee (Вызывающий/Вызываемый) при исследовании метода в режиме
анализа использования ЦП. Показаны те части метода, которые задействуют ЦП наиболее

интенсивно

Рис. 1.4. Первый экран мастера оценки производительности Performance Wizard

Полезные инструменты   53

Рис. 1.5. Внешний вид отчета о выборке показателей использования ЦП в мастере оценки
производительности Performance Wizard

Хотя внешне интерфейс отличается от того, который появился после выбора
пункта CPU Usage (Использование ЦП), здесь вы также видите общую картину ис-
пользования ЦП с течением времени, ниже которой расположено дерево методов,
наиболее активно потребляющих ресурсы ЦП. Доступны также дополнительные
отчеты. График можно укрупнить, в ответ на это обновится вся остальная анали-
тика. Щелчок на показанном в таблице имени метода приведет к переходу в уже
знакомое окно просмотра функциональных подробностей Function Details (Функцио
нальные подробности) (рис. 1.6).

Ниже сводки, относящейся к вызову функции, будет дан исходный код (если
таковой доступен), где части метода с самым высоким потреблением ресурсов от-
мечены выделением строк.

Другие отчеты:

�� Modules (Модули) — показывает, на какие сборки приходится наибольшее число
выборок;

�� Caller/Callee (Вызывающий/Вызываемый) — альтернатива окну просмотра Function
Details (Функциональные подробности); здесь показываются таблицы выборок
до и после позиции в стеке текущего метода;

�� Functions (Функции) — предоставляет быстрый способ просмотра таблицы всех
функций в процессе;

�� Lines (Строки) — предлагает способ быстрого перехода к наиболее интенсивно
потребляющим ресурсы строкам кода, выполняемого в процессе.

Вместо выборки можно снабдить код инструментальными вставками. При этом
в исходный выполняемый код вносятся изменения путем добавления инструкций

54   Глава 1  •  Измерение производительности и инструменты

вокруг каждого вызова метода с целью измерения расходуемого времени. Тем са-
мым можно получить более точные отчетные показатели для очень маленьких бы-
стро выполняемых методов, но при этом существенно возрастут издержки времени
выполнения, а также увеличится объем производимых данных. За исключением
отсутствия графика использования ЦП, отчет по внешнему виду и поведению
напоминает отчет в режиме выборок. Основное отличие интерфейса заключается
в указании времени измерения, а не количества выборок.

Рис. 1.6. Подробности использования ЦП

Профилирование с помощью командной строки
Visual Studio позволяет анализировать использование ЦП, выделение памяти и со-
перничество за ресурсы. Эта среда хорошо проявляет себя в ходе разработки или
запуска комплексных тестов, с помощью которых тщательно проверяется работа
программного продукта. Но для тестирования с целью получения точных срезов
характеристик производительности крупного приложения, запущенного с реаль-
ными данными, она применяется крайне редко. Если нужно получить срез данных
о производительности на машинах, не задействуемых для разработки, скажем, на
машине клиента или в дата-центре, возникает потребность в инструменте, запуска-
емом вне среды Visual Studio.

Для этого существует автономный профилировщик Visual Studio Standalone
Profiler, поставляемый с Visual Studio Professional или более высокими редакция

Полезные инструменты   55

ми Visual Studio. Вам придется установить этот инструмент с соответствующего
носителя отдельно от Visual Studio. В моих ISO-файлах с образами дисков для
2012 Professional и 2015 Professional он находится в каталоге Standalone Profiler.
Для Visual Studio 2017 исполняемый файл — VsPerf.exe, он расположен в каталоге
C:\Program Files (x86)\Microsoft Visual Studio\2017\Enterprise\TeamTools\Performance Tools.

Чтобы с помощью этого инструмента собрать информацию из командной стро-
ки, нужно сделать следующее.

1.	 Перейти в папку установки (или добавить ее в PATH).

2.	 Запустить команду VsPerfCmd.exe /Start:Sample /Output:outputfile.vsp.

3.	 Запустить программу, профиль которой нужно получить.

4.	 Запустить команду VsPerfCmd.exe /Shutdown.

В результате будет создан файл outputfile.vsp, который можно открыть
в Visual Studio.

В программе VsPerfCmd.exe имеется ряд других вариантов использования,
включая все типы профилирования, предлагаемые полной версией Visual Studio.
Кроме самых распространенных, можно также выбрать следующие.

�� Coverage (Покрытие) — сбор информации о покрытии кода.

�� Concurrency (Совместное выполнение) — сбор информации о соперничестве за
ресурсы.

�� Trace (Трассировка) — инструментирование кода для сбора данных о времени
исполнения методов и числе их запусков.

Важно сделать правильный выбор между трассировкой и режимом выборок.
Что именно использовать, зависит от того, что нужно измерить. Режим выборок
должен применяться по умолчанию. При нем процесс прерывается каждые не-
сколько миллисекунд и записываются стеки всех потоков. Это наилучший способ
получения достоверной картины использования ЦП в вашем процессе. Однако он
не дает хороших результатов для вызовов ввода-вывода, не отличающихся зна-
чительной степенью использования ЦП, но все-таки влияющих на общее время
выполнения программы.

Режим трассировки требует внесения изменений в каждый вызов функции,
имеющийся в процессе для записи меток времени. Он характеризуется более
серьезным вторжением в код и существенно замедляет выполнение программы.
Тем не менее он записывает фактическое время, затрачиваемое на выполнение
каждого метода, следовательно, может обеспечить более высокую точность для
менее объемных быстро выполняемых методов.

Режим покрытия не предназначен для анализа производительности, но при-
годится, чтобы увидеть, какие строки кода выполнялись. Это свойство покажет
себя с положительной стороны при запуске тестов для определения объема про-
граммного продукта, охватываемого тестом. Существуют коммерческие средства,
выполняющие эту работу, но можно без особых усилий проделать все само
стоятельно.

56   Глава 1  •  Измерение производительности и инструменты

В режиме совместного выполнения записываются события, протекающие при
конкурентном использовании ресурсов посредством блокировки или примене-
ния какого-то другого объекта синхронизации. Этот режим может сообщить вам,
заблокированы ли ваши потоки, когда возникла конкуренция. Дополнительные
сведения об асинхронном программировании и измерении количества конфликтов
при блокировках в приложении можно получить в главе 4.

Счетчики производительности
Применение счетчиков производительности относится к самым простым спосо-
бам отслеживания производительности вашего приложения и системы в целом.
В Windows имеются сотни счетчиков десятков категорий, в том числе множество
для .NET-технологии. Самый простой способ обращения к ним — через встроенную
в Windows утилиту Performance Monitor (PerfMon.exe) (рис. 1.7).

Рис. 1.7. Основное окно PerfMon, демонстрирующее показания счетчика процессора
для небольшого отрезка времени. Вертикальная линия отображает текущее положение дел,

а график в исходных настройках будет охватывать примерно 100 с

У каждого счетчика есть категория и имя. У многих счетчиков имеются
также экземпляры выбранного счетчика. Например, для процентного счетчика
% Processor Time в категории Process экземплярами являются различные процес-
сы, для которых существуют значения. У некоторых счетчиков имеются также

Полезные инструменты   57

метаэкземпляры, такие как _Total или <Global>, агрегирующие значения по всем
экземплярам.

Соответствующие темам счетчики будут подробно описаны во многих сле-
дующих главах, но существуют и счетчики общего назначения, не относящиеся
к технологии .NET, с которыми вам следует ознакомиться. Это счетчики произ-
водительности практически для любой подсистемы Windows, которые пригодны,
как правило, в любой программе (рис. 1.8).

Рис. 1.8. Один из сотен счетчиков во многих категориях, показывающий все применимые
экземпляры (в данном случае процессы)

Прежде чем продолжить, следует ознакомиться с основной терминологией
операционной системы.

�� Физическая память (Physical Memory) — реальные микросхемы памяти в ком-
пьютере. Напрямую управляет физической памятью только операционная
система.

�� Виртуальная память (Virtual Memory) — логическая организация памяти в за-
данном процессе. Виртуальная память может быть больше физической. Напри-
мер, у 32-разрядных программ объем адресного пространства — 4 Гбайт, даже
если у самого компьютера только 2 Гбайт оперативной памяти. Изначально

58   Глава 1  •  Измерение производительности и инструменты

Windows позволяет программам иметь доступ только к 2 Гбайт, но если у ис-
полняемой программы установлен флаг расширенного адресного пространства,
возможен доступ ко всем 4 Гбайт (на 32-разрядных версиях Windows у про-
грамм с расширенным адресным пространством существует ограничение до-
ступа, определяющее объем 3 Гбайт, а 1 Гбайт зарезервирован для операционной
системы). С появлением Windows 8.1 и Server 2012 64-битные процессы обрели
адресное пространство объемом 128 Тбайт, что существенно превышает име
ющийся лимит физической памяти 4 Тбайт. Часть виртуальной памяти может
находиться в оперативной памяти, а остальное хранится на диске в файле под-
качки (или страничного обмена). Сплошные блоки виртуальной памяти могут
быть не сплошными в физической памяти. Вся адресация памяти в процессе
касается виртуальной памяти.

�� Зарезервированная память (Reserved Memory) — область адресного пространства
виртуальной памяти, зарезервированная для процесса, в силу чего она не будет
выделяться другим запрашивающим память процессам. Зарезервированная
память не может использоваться для удовлетворения запросов на выделение
памяти, поскольку ее ничто не поддерживает, — это просто описание диапазона
адресов памяти.

�� Выделенная память (Committed Memory) — область памяти, имеющая физиче-
ское поддерживающее хранилище. Это может быть оперативная память или
диск.

�� Страница (Page) — организационная единица памяти. Блоки памяти выделя-
ются в виде страницы объемом обычно несколько килобайт.

�� Страничный обмен (Paging) — перемещение страниц между областями вир-
туальной памяти. Страницы перемещаются к другому процессу или от него
(мягкий страничный обмен) или на диск и с диска (жесткий страничный обмен).
Мягкий страничный обмен выполняется очень быстро путем отображения су-
ществующей памяти на виртуальное адресное пространство текущего процесса.
Жесткий страничный обмен подразумевает относительно медленное перемеще-
ние данных на диск или с диска. Чтобы обеспечить хорошую производитель-
ность, программа должна любой ценой избегать такого обмена.

�� Загрузка страницы (Page In) — перемещение страницы из другого места в те-
кущий процесс.

�� Выгрузка страницы (Page Out) — перемещение страницы из текущего процесса
в другое место, например на диск.

�� Переключение контекста (Context Switch) — процесс сохранения и восстанов-
ления состояния потока или процесса. Поскольку обычно число запущенных
потоков превышает число доступных процессов, каждую секунду происходит
множество переключений контекста. Это издержки в чистом виде, поэтому
чем их меньше, тем лучше. Но определить, каким должно быть их оптимальное
абсолютное значение, нелегко.

Полезные инструменты   59

�� Режим ядра (Kernel Mode) — режим, позволяющий операционной системе из-
менять низкоуровневые аспекты аппаратного состояния, например модифици-
ровать конкретные регистры или разрешать/запрещать прерывания. Переход
в режим ядра требует вызова операционной системы и может быть крайне
затратным.

�� Пользовательский режим (User Mode) — непривилегированный режим выполнения
инструкций. В нем невозможно изменить низкоуровневые аспекты системы.

Некоторые из этих терминов будут использоваться по всей книге, особенно
в главе 2, когда речь пойдет о сборке мусора. Дополнительную информацию по
этим темам можно получить в изданиях, посвященных операционной системе, на-
пример в книге Windows Internals о ее внутреннем устройстве (см. библиографию
в конце книги).

В категории счетчиков Process с помощью счетчиков с экземплярами для каждо-
го процесса обрабатывается множество важной информации, включая:

�� % Privileged Time (Процент работы в привилегированном режиме) — количество
времени, затраченного на выполнение привилегированного кода (в режиме ядра);

�� % Processor Time (Процент процессорного времени) — процент, относящийся
к одному процессору, используемому приложением. Если ваше приложение
задействует два логических процессорных ядра по 100 % каждое, показанием
этого счетчика будет число 200;

�� % User Time (Процент пользовательского времени) — количество времени, затра-
ченного на выполнение непривилегированного кода (в режиме пользователя);

�� IO Data Bytes/sec (Ввод-вывод данных в байтах в секунду) — объем ввода-вывода,
выполняемого вашим процессом;

�� Page Faults/sec (Количество отказов страниц в секунду) — общее количество от-
казов страниц в процессе. Отказ страницы возникает, когда страницу памяти
невозможно найти в текущем рабочем наборе. Важно уяснить, что в это число
входят отказы, произошедшие как по программным, так и по аппаратным при-
чинам (соответственно soft page faults и hard page faults). Программный отказ
страницы не наносит особого вреда и может быть вызван тем, что страница
хранится в памяти, но находится за пределами текущего процесса (как, напри-
мер, в случаях с общими DLL-библиотеками). Аппаратный отказ страницы
создает более серьезную проблему и означает, что данные находятся на диске,
но в текущий момент не в оперативной памяти. К сожалению, счетчики про-
изводительности не позволяют отслеживать количество аппаратных отказов
страниц, приходящееся на каждый процесс, но, воспользовавшись счетчиком
Memory\Page Reads/sec, можно увидеть их число для системы в целом. Вы можете
выявить определенную взаимосвязь между общим количеством отказов стра-
ниц и общим количеством страниц, считанных системой (hard faults). Аппа-
ратные отказы страниц можно четко отследить с помощью ETW-трассировки
события Windows Kernel/Memory/Hard Fault;

60   Глава 1  •  Измерение производительности и инструменты

�� Pool Nonpaged Bytes (Пул невыгружаемых байтов, не разбиваемых на страницы) —
обычно это выделенная операционной системой или драйверами память для
структур данных, которые не могут быть выгружены (Paged Out), например
для объектов операционной системы типа потоков или мьютексов, а также не-
которых настраиваемых структур данных;

�� Pool Paged Bytes (Пул выгружаемых байтов, разбиваемых на страницы) — созда-
ется также для структур данных операционной системы, с той лишь разницей,
что они могут быть выгружены (Paged Out);

�� Private Bytes (Приватные байты) — выделенная виртуальная память, принадле-
жащая конкретному процессу (не разделяемая с другими процессами);

�� Virtual Bytes (Виртуальные байты) — выделенная память в адресном пространстве
процесса, часть которой может быть поддержана страничным файлом, возможно
используемая совместно с другими процессами или принадлежащая данному
процессу;

�� Working Set (Рабочий набор) — объем виртуальной памяти, который в настоящее
время находится в физической памяти (обычно в оперативной памяти);

�� Working Set-Private (Приватный рабочий набор) — объем приватных байтов, кото-
рый в данное время находится в физической памяти;

�� Thread Count (Счетчик потоков) — количество потоков в процессе. Может со-
впадать или не совпадать с количеством .NET-потоков. Сведения о счетчиках,
относящихся к .NET-потокам, приводятся в главе 4.

Существует и еще несколько категорий, чья польза зависит от характера прило-
жения. PerfMon можно применять для исследования имеющихся в них конкретных
счетчиков.

�� IPv4/IPv6 — счетчики для датаграмм и фрагментов, относящиеся к интернет-
протоколу.

�� Memory (Память) — общесистемные счетчики памяти, такие как счетчики общего
страничного обмена, доступных байтов, выделенных байтов и многого другого.

�� Objects (Объекты) — сведения об объектах, принадлежащих ядру, таких как со-
бытия, мьютексы, процессы, потоки, семафоры и разделы.

�� Processor (Процессор) — счетчики для каждого логического процессора в системе.

�� System (Система) — переключатели контекста, исправления выравнивания дан-
ных, файловые операции, счетчик процессов, потоки и т. д.

�� TCPv4/TCPv6 — сведения о TCP-подключениях и передачах сегментов.

Как ни странно, но найти в Интернете подробную информацию о счетчиках
производительности весьма непросто, но, на наше счастье, они самодокументиро-
ваны! В нижней части диалогового окна Add Counter (Добавить счетчик), имеюще-
гося в PerfMon, можно установить флажок Show description (Демонстрация описа-
ния), в результате чего будут показаны подробности, относящиеся к выделенному
счетчику.

Полезные инструменты   61

В PerfMon имеется также возможность сбора конкретных счетчиков производи-
тельности в запланированное время и сохранения их данных в журнальных записях
для последующего просмотра или даже выполнения пользователем какого-либо
действия при преодолении счетчиком производительности определенного порога.
Это делается с помощью наборов сборщиков данных — Data Collector Sets, кото-
рые не ограничиваются счетчиками производительности, но могут собирать также
данные конфигурации системы и ETW-события.

Для установки набора сборщиков данных нужно в главном окне PerfMon вы-
полнить следующие действия.

1.	 Раскрыть дерево Data Collector Sets (Наборы сборщиков данных).

2.	 Щелкнуть правой кнопкой мыши на пункте User Defined (Задаваемое пользова-
телем).

3.	 Выбрать New (Создать).

4.	 Выбрать Data Collector Set (Набор сборщиков данных).

5.	 Задать имя набора, установить флажок Create manually (Advanced) (Создать вруч-
ную (Дополнительно)) (рис. 1.9) и нажать кнопку Next (Далее).

Рис. 1.9. Диалоговое окно конфигурации Data Collector Set (Набор сборщиков данных),
предназначенное для создания обычных коллекций счетчиков

6.	 Установить флажок Performance counter (Счетчик производительности) в обла-
сти Create data logs (Создать журналы регистрации данных) (рис. 1.10) и нажать
кнопку Next (Далее).

62   Глава 1  •  Измерение производительности и инструменты

Рис. 1.10. Указания типа сохраняемых данных

7.	 Для выбора счетчиков, которые нужно добавить, нажать кнопку Add (Добавить)
(рис. 1.11).

Рис. 1.11. Выбор собираемых счетчиков

Полезные инструменты   63

8.	 Для задания пути сохранения журнальных записей нажать кнопку Next (Далее),
для выбора информации, относящейся к безопасности, — еще раз кнопку Next
(Далее) (рис. 1.12).

Рис. 1.12. Сохраненный файл отчета. Чтобы перейти к отображению зафиксированных
данных счетчика в виде графика, следует воспользоваться кнопками

инструментальной панели

После этого появится возможность открыть свойства набора собираемой ин-
формации и установить план сбора. Запуск можно произвести вручную, щелкнув
правой кнопкой мыши на узле задания и выбрав в появившемся меню пункт Start
(Начать). В результате будет создан отчет, просмотреть который можно будет
после двойного щелчка на его узле, расположенном в основном дереве в списке
Reports (Отчеты).

Для создания уведомления нужно проделать те же действия, но выбрать в ма-
стере Wizard пункт Performance Counter Alert (Предупреждения счетчика производи-
тельности).

Вероятно, то, что вам нужно проделать со счетчиками производительности,
можно выполнить с использованием рассмотренных здесь функциональных воз-
можностей. Если требуется управлять ими программным способом или создать
собственные счетчики, то за подробностями следует обратиться к главе 7. Анализ
показаний счетчиков производительности можно рассматривать в качестве основы
всей работы по повышению производительности приложения.

64   Глава 1  •  Измерение производительности и инструменты

ETW-события
Механизм трассировки событий Windows (Event Tracing for Windows, ETW)
является в Windows одним из основных строительных блоков для всего диагности-
ческого логирования и имеет отношение не только к производительности. В этом
подразделе будет представлен обзор ETW-событий, а глава 8 научит вас тому, как
создавать и отслеживать ваши собственные события.

События создаются поставщиками. Например, в CLR имеется поставщик
Runtime, создающий большинство интересующих нас событий. Существуют
поставщики практически для каждой подсистемы, имеющейся в Windows, к чис-
лу которых относятся центральный процессор, диск, сеть, брандмауэр, память
и многое-многое другое. Подсистема ETW чрезвычайно эффективна и способна
с минимальными издержками справиться с созданием невероятного количества
событий.

С каждым событием связаны стандартные поля, такие как уровень события
и ключевые слова.

Уровни имеют следующие значения:

�� 0x5 — Verbose (подробный);

�� 0x4 — Informational (информационный);

�� 0x3 — Warning (предупреждение);

�� 0x2 — Error (ошибка);

�� 0x1 — Critical (критический);

�� 0x0 — LogAlways (регистрировать всегда).

Каждый поставщик может определить собственные ключевые слова. Имеющийся
в CLR поставщик Runtime оперирует ключевыми словами для сборщика мусора,
компиляции времени исполнения, безопасности, взаимодействия с COM (Interop),
соперничества за ресурсы и многого другого. Ключевые слова позволяют фильтро-
вать события, которые нужно отслеживать.

У каждого события имеется также собственная структура данных, определенная
его поставщиком, в которой дается описание состояния некоторого поведения.
Например, поставляемые Runtime события сборщика мусора будут содержать
сведения о поколении текущей сборки, о том, происходила ли она в фоновом ре-
жиме, и т. д.

Многие компоненты Windows создают огромное количество событий, опи-
сывающих чуть ли не каждый аспект выполнения приложения на всех уровнях
архитектуры, поэтому вы можете лишь с помощью событий ETW выполнять су-
щественный объем анализа производительности. Это делает ETW очень мощным
инструментом.

Существует немало инструментов, обрабатывающих ETW-события и по-своему,
исходя из своих целей, визуализирующих их. Фактически, начиная с Windows 8,

Полезные инструменты   65

профилирование центрального процессора всегда выполняется с помощью ETW-
событий (рис. 1.13).

Рис. 1.13. Перечень всех событий GC Start (запуск сборки мусора), произошедших за 60 с.
Обратите внимание на разнообразные данные, связанные с событием,

например, на Reason (Причина) и Depth (Глубина)

Чтобы увидеть перечень всех ETW-поставщиков, зарегистрированных в вашей
системе, откройте окно командной строки и запустите в нем следующую команду:

logman query providers

В результате появится весьма объемный поток информации, похожий на сле-
дующий:

Provider GUID

.NET Common Language Runtime {E13C0D23-CCBC-4E12-931B...
ACPI Driver Trace Provider {DAB01D4D-2D48-477D-B1C3...
Active Directory Domain Services: SAM {8E598056-8993-11D2-819E...
Active Directory: Kerberos Client {BBA3ADD2-C229-4CDB-AE2B...
Active Directory: NetLogon {F33959B4-DBEC-11D2-895B...
ADODB.1 {04C8A86F-3369-12F8-4769...
ADOMD.1 {7EA56435-3F2F-3F63-A829...
Application Popup {47BFA2B7-BD54-4FAC-B70B...
Application-Addon-Event-Provider {A83FA99F-C356-4DED-9FD6...
...

66   Глава 1  •  Измерение производительности и инструменты

Можно также получить подробности относительно ключевых слов поставщика:

D:\>logman query providers "Windows Kernel Trace"

Provider GUID
--
Windows Kernel Trace {9E814AAD-3204-11D2-9A82...

Value Keyword Description
--
0x0000000000000001 process Process creations/deletions
0x0000000000000002 thread Thread creations/deletions
0x0000000000000004 img Image load
0x0000000000000008 proccntr Process counters
0x0000000000000010 cswitch Context switches
0x0000000000000020 dpc Deferred procedure calls
0x0000000000000040 isr Interrupts
0x0000000000000080 syscall System calls
0x0000000000000100 disk Disk IO
0x0000000000000200 file File details
0x0000000000000400 diskinit Disk IO entry
0x0000000000000800 dispatcher Dispatcher operations
0x0000000000001000 pf Page faults
0x0000000000002000 hf Hard page faults
0x0000000000004000 virtalloc Virtual memory allocations
0x0000000000010000 net Network TCP/IP
0x0000000000020000 registry Registry details
0x0000000000100000 alpc ALPC
0x0000000000200000 splitio Split IO
0x0000000000800000 driver Driver delays
0x0000000001000000 profile Sample based profiling
0x0000000002000000 fileiocompletion File IO completion
0x0000000004000000 fileio File IO

К сожалению, хорошего онлайн-ресурса, объясняющего, какие именно события
есть у того или иного поставщика, не существует. К числу наиболее распространен-
ных ETW-событий для всех процессов Windows относятся следующие, относящиеся
к категории трассировки ядра операционной системы (Windows Kernel Trace):

�� Memory/Hard Fault (Память/Аппаратный отказ страницы);

�� DiskIO/Read (Дисковый ввод-вывод/Чтение);

�� DiskIO/Write (Дисковый ввод-вывод/Запись);

�� Process/Start (Процесс/Запуск);

�� Process/Stop (Процесс/Остановка);

�� TcpIp/Connect (TcpIp/Подключение);

�� TcpIp/Disconnect (TcpIp/Отключение);

�� Thread/Start (Поток/Запуск);

�� Thread/Stop (Поток/Остановка).

Полезные инструменты   67

Для того чтобы увидеть другие события от этого или же других поставщиков,
можно самостоятельно собрать ETW-события и проанализировать полученный
набор.

Далее я буду упоминать важные события, на которые необходимо обратить внима-
ние при анализе набора записей ETW, в частности создаваемые CLR-поставщиком
Runtime. Подробную документацию по CLR ETW можно найти по адресу https://
docs.microsoft.com/dotnet/framework/performance/etw-events-in-the-common-language-runtime.

PerfView
Собирать и анализировать ETW-события способны многие инструментальные
средства, но PerfView, созданное разработчиком архитектуры производительности
Microsoft .NET (и человеком, написавшим предисловие к данной книге) Вэнсом
Моррисоном (Vance Morrison), одно из самых эффективных. Все ранее показанные
копии экрана с ETW-событиями взяты именно из него.

Средство PerfView создано на основе механизма обработки ETW под названием
TraceEvent, которым вы можете воспользоваться и самостоятельно (см. главу 8).
Реальная польза от применения PerfView кроется в его исключительно эффектив-
ном механизме группировки и свертки стека данных, позволяющем углубиться
в события на нескольких уровнях абстракции.

Из других инструментов, позволяющих проводить анализ ETW, также можно
извлечь немалую пользу, но я зачастую отдаю предпочтение средству PerfView,
и вот почему.

1.	 Оно не требует установки, поэтому легко запускается на любом компьютере.

2.	 У него огромное количество настроек, и можно легко создавать и сохранять
типовые сценарии (скрипты) работы с ним.

3.	 Можно выбрать, за какими событиями следить, с весьма высокой степенью
гранулярности, что, к примеру, позволяет провести многочасовое отслеживание
всего лишь нескольких категорий событий.

4.	 Обычно оно весьма незначительно влияет на отслеживаемые машину или про-
цесс.

5.	 У него имеются несравненные аналитические возможности, проявляющиеся
посредством расширенной группировки и свертки стека данных.

6.	 Можно настроить PerfView под себя, создавая расширения для собственной
аналитики и используя при этом преимущества встроенных средств группи-
ровки и свертки стека данных.

7.	 У него имеется встроенная возможность просмотра исходного кода, включая
исходный код среды .NET Framework.

8.	 Оно обладает сложной аналитикой асинхронных вызовов, задействующих би-
блиотеку параллельно выполняемых задач (Task Parallel Library).

9.	 У него есть поддержка для IIS и ASP.NET.

68   Глава 1  •  Измерение производительности и инструменты

А вот как звучат наиболее распространенные вопросы, на которые я обычно
нахожу ответы с помощью PerfView.

�� На что расходуются ресурсы моего ЦП?
�� На что выделяется основной объем памяти?
�� Какие типы памяти выделяются чаще всего?
�� Чем вызвана сборка мусора в Gen 2?
�� Какова протяженность среднестатистической сборки Gen 0?
�� Каков объем JIT-компиляции, приходящийся на мой код?
�� Какие блокировки чаще всего вызывают соперничество за ресурсы?
�� На что похожа моя управляемая куча?

Для сбора и анализа событий с помощью PerfView нужно выполнить следующие
основные действия.

1.	 Выбрать из меню Collect (Сбор) одноименный пункт.
2.	 В появившемся диалоговом окне указать нужные параметры:

yy раскрыть пункт Advanced Options (Дополнительные параметры), чтобы сузить
круг типов событий, данные которых нужно отследить;

yy установить флажок No V3.X NGEN Symbols (Не использовать символы V3.X
NGEN), если не применяется .NET 3.5;

yy для автоматической остановки сбора по наступлении заданного времени
дополнительно указать значение параметра Max Collect Sec.

3.	 Нажать кнопку Start Collection (Приступить к сбору).
4.	 Если значение Max Collect Sec не используется, по завершении сбора нажать кноп-

ку Stop Collection (Остановить сбор).
5.	 Дождаться обработки событий.
6.	 Выбрать нужное представление из созданного в результате обработки дерева.

При сборе событий PerfView захватывает ETW-события для всех процессов. По
завершении сбора есть возможность отфильтровать события для каждого процесса.

Сбор событий не обходится без издержек. Собирать определенные категории
событий более накладно, чем другие. Например, профилирование ЦП создает
огромную массу событий, поэтому время профилирования нужно строго огра-
ничивать (до 1–2 мин), или же вы получите файлы объемом несколько гигабайт,
которые не сможете проанализировать.

Интерфейс и представления данных в PerfView
Большинство вариантов представления данных в PerfView — это вариации одно-
го-единственного типа, поэтому будет полезно разобраться в том, как он работает.

Средство PerfView является по большому счету агрегатором стека данных и про-
смотрщиком. При записи ETW-событий для каждого из них записывается стек.
В PerfView эти стеки анализируются и показываются в таблице, имеющей общий

Полезные инструменты   69

вид для ЦП, выделения памяти, конфликтов блокировки, выдачи исключений
и большинства других типов событий. Принципы, усвоенные вами при выполне-
нии одного типа исследования, применимы и к другим типам, поскольку анализ
стека одинаков.

Вам также нужно усвоить концепции группировки и свертки. Группировка
превращает несколько источников в единый объект. Например, имеется несколько
DLL-библиотек .NET Framework, а в каждой DLL — конкретная функция, обычно
не представляющая интереса для профилирования. Используя группировку, можно
определить ее шаблон, например System.*!=>LIB, который объединяет все сборки
System.*.dll в одну группу под названием LIB. Это один из исходных шаблонов
группировки, применяемый PerfView. Если, к примеру, нужно свернуть все вызовы
методов в классе TimeZoneInfo, можно воспользоваться группой, которая опреде-
лена следующим образом:

mscorlib.ni!System.TimeZoneInfo*->TIMEZONE

Это заставит появляться записи TIMEZONE во всем вашем стеке вместо любых
методов TimeZoneInfo.

Свертка позволяет скрывать некоторые несущественные подробности распо-
лагающихся ниже уровней кода путем подсчета затрат на его выполнение в вызы-
вающих его узлах. В качестве простого примера вспомните, что выделение памяти
всегда происходит через какой-нибудь внутренний CLR-метод, вызываемый опе-
ратором new. По сути, вам нужно узнать, какие типы несут наибольшую ответствен-
ность за это выделение. Свертка позволяет приписать такие внутренние затраты
порождающим их типам, то есть коду, который вы можете реально контролировать.
Например, в большинстве случаев вам все равно, на какие внутренние операции
затрачивается время внутри String.Format, — вас в первую очередь интересует во-
прос, какие области кода вызывают String.Format. PerfView может свернуть такие
операции в источник вызова (caller), чтобы дать вам более понятное представление
о производительности вашего кода (рис. 1.14–1.17).

Рис. 1.14. Без группировки внутри класса TimeZoneInfo получается несколько уровней вызовов

70   Глава 1  •  Измерение производительности и инструменты

Рис. 1.15. Группировка позволяет скрыть подробности и представить все
в виде одной записи в стеке

Рис. 1.16. Вызов DateTime.Now включает глубокую цепь вызовов
методов TimeZoneInfo

Рис. 1.17. Путем свертки с использованием шаблона mscorlib.ni!System.TimeZoneInfo*
все затраты на вызовы таких методов будут представлены как затраты

на вызов DateTime.Now

В шаблонах свертки могут использоваться группы, определенные вами для
группировки. Например, можно просто указать шаблон свертки LIB, обеспечива
ющий то, что все методы в System.* будут отнесены к методу, который их вызывает
из-за пределов System.*.

Пользовательский интерфейс просмотрщика стека также требует некоторых
кратких пояснений (рис. 1.18).

Полезные инструменты   71

Рис. 1.18. Обычное представление стека в PerfView. В пользовательском интерфейсе имеется
множество параметров фильтрации, сортировки и поиска

Расположенные в верхней части окна элементы управления позволяют упоря-
дочить представление стека несколькими способами. Далее приводится краткая
информация об их использовании, но вы можете щелкнуть на символе ? в заго-
ловках столбцов, вызвав файл справки, содержащий дополнительные сведения:

�� Start (Начало) — время начала исследуемого периода (в микросекундах);

�� End (Конец) — время завершения исследуемого периода (в микросекундах);

�� Find (Найти) — текст для поиска;

�� GroupPats (Шаблоны группировки) — список шаблонов группировки с точкой
с запятой в качестве разделителя;

�� Fold% (Процент свертки) — любой стек, на который приходится доля потре-
бления, меньшая, чем указанный процент, будет свернут в свой родительский
элемент;

�� FoldPats (Шаблоны свертки) — список шаблонов свертки с точкой с запятой
в качестве разделителя;

�� IncPats (Шаблоны включения) — в анализ должны попасть только стеки, соот-
ветствующие данному шаблону. Обычно там содержится имя процесса;

�� ExcPats (Шаблоны исключения) — из анализа будут исключены стеки, соот-
ветствующие данному шаблону. Изначально в этом поле содержится только
процесс Idle.

72   Глава 1  •  Измерение производительности и инструменты

Существует несколько разных вкладок просмотра:

�� By Name (По имени) — показывает каждый узел, будь то тип, метод или группа.
Хорошо подходит для анализа, проводимого снизу вверх;

�� Caller-Callee (Вызывающий — вызываемый) — фокусируется на одном узле, по-
казывая вызывающие и вызываемые этого узла;

�� CallTree (Дерево вызовов) — показывает дерево всех узлов в профиле, начиная
с ROOT. Хорошо подходит для проведения анализа сверху вниз;

�� Callers (Вызывающие) — показывает все вызывающие конкретный узел;

�� Callees (Вызываемые) — показывает все вызванные методы конкретного узла;

�� Notes (Заметки) — позволяет сохранять заметки по исследованию в самих ETL-
файлах.

В табличном представлении имеется несколько столбцов. Для получения до-
полнительной информации следует щелкать кнопкой мыши на их названиях.
Далее представлена краткая информация о наиболее важных столбцах:

�� Name (Имя) — тип, метод или заданное пользователем имя группы;

�� Exc % (Исключающий процент) — процент исключительных затрат. Для отсле-
живания памяти учитывается объем памяти, относящийся только к данному
типу или методу. Для отслеживания ЦП учитывается количество времени ЦП,
относящееся к данному методу;

�� Exc (Исключающее количество) — сумма выборочных измерений только в дан-
ном узле, исключая дочерние узлы. Для отслеживания памяти учитывается
количество байтов, относящихся исключительно к данному узлу. Для отсле-
живания ЦП учитывается количество затраченного здесь времени (в милли-
секундах);

�� Exc Ct (Исключающее количество выборок) — количество выборок только
в данном узле;

�� Inc % (Включающий процент) — процент затрат на данный тип или метод и на
все его дочерние элементы. Всегда не меньше Exc %;

�� Inc (Включающее количество) — затраты на данный узел, включая все дочерние
элементы. При замере использования ЦП учитывается количество времени ЦП,
затраченное в данном узле и во всех его дочерних элементах;

�� Inc Ct (Включающее количество выборок) — количество выборок в данном узле
и во всех его дочерних элементах.

В последующих главах будут даны инструкции по решению конкретных про-
блем с помощью различных типов исследований производительности. Полный
обзор PerfView заслуживает отдельной книги или по крайней мере очень под-
робного справочного файла, который, по счастливой случайности, поставляет-
ся вместе с PerfView. Я настоятельно рекомендую прочитать представленное

Полезные инструменты   73

в нем руководство, как только будет освоено проведение нескольких простых
анализов.

Может сложиться впечатление, что средство PerfView предназначено главным
образом для анализа памяти или ЦП, но не стоит забывать, что фактически это
просто универсальная программа структуризации и объединения стеков данных,
а такие стеки могут поступать от любого ETW-события. Она способна анализи-
ровать ваши источники конфликтов при блокировках, дисковый ввод-вывод или
любое произвольное событие приложения, сохраняя при этом мощь группировок
и сверток.

Профилировщик CLR Profiler
Средство CLR Profiler — это потенциальная альтернатива возможностям анализа
памяти, предоставляемым PerfView, когда требуется получить графическое пред-
ставление кучи и взаимоотношений между объектами. CLR Profiler способен про-
демонстрировать множество подробностей, например:

�� график выделения памяти программой и цепочку методов, ведущих к конкрет-
ному выделению;

�� гистограммы выделенных, перемещенных и финализированных объектов по
размеру и типу;

�� гистограмму объектов по времени существования;

�� хронологию выделения объектов и сборок мусора, показывающую изменения
кучи во времени;

�� графическое представление объектов по их адресам в виртуальной памяти, что
довольно легко может продемонстрировать фрагментацию.

Я редко пользуюсь средством CLR Profiler из-за некоторых присущих ему
ограничений и возраста, но временами оно еще может принести определенную
пользу. У него уникальные средства визуализации, которых нет у других сво-
бодно распространяемых инструментов. Это средство поставляется в виде дво-
ичных файлов для 32- и 64-разрядных систем в сопровождении документации
и исходного кода.

Вот базовая инструкция по использованию CLR Profiler.

1.	 Выберите правильную версию для запуска — 32- или 64-разрядную — в зави-
симости от целевой программы. Профилирование 32-разрядной программы
невозможно выполнить с помощью 64-разрядного профилировщика, и на
оборот.

2.	 Установите флажок Profiling active (Активизация профилирования).

3.	 Дополнительно можно установить флажки Allocations (Распределения) и Calls
(Вызовы).

74   Глава 1  •  Измерение производительности и инструменты

4.	 При необходимости перейдите к настройкам, которые становятся доступными
при выборе пункта меню FileSet Parameters (ФайлУстановка параметров),
чтобы настроить параметры командной строки, рабочий каталог, каталог для
файлов с логами и т. п.

5.	 Нажмите кнопку Start Application (Запустить приложение).

6.	 Перейдите к приложению, профиль которого нужно получить, и нажмите кноп-
ку Open (Открыть).

Это позволит запустить приложение с активизированным профилировщиком.
После профилирования следует выйти из программы или выбрать в CLR Profiler
действие Kill Application (Закрыть приложение). Оно остановит выполнение про-
филируемого приложения и запустит обработку собранных при логировании
записей. Обработка займет довольно много времени, которое зависит от продол-
жительности профилирования (иногда мне приходилось дожидаться ее окончания
более часа).

В ходе профилирования в CLR Profiler можно нажать кнопку Show Heap now (По-
казать кучу сейчас). Это заставит профилировщик получить дамп кучи и открыть
результаты в визуальном представлении взаимодействий объектов. Профилиро-
вание продолжится без какого-либо прерывания, то есть дампы можно получать
множество раз в различные моменты выполнения приложения.

Как только профилирование завершится, будет показан экран основных ре-
зультатов (рис. 1.19).

Рис. 1.19. Главное окно CLR Profiler

Полезные инструменты   75

С этого экрана можно получить доступ к различным представлениям данных из
кучи. Чтобы увидеть некоторые наиболее важные возможности, начните с графика
выделения памяти (Allocation Graph) и хронологии (Time Line) (рис. 1.20). Как только
вы освоитесь с анализом управляемого кода, представления в виде гистограмм
также станут весьма ценным ресурсом.

Рис. 1.20. Представление получившихся в CLR Profiler сводных данных, собранных
в процессе отслеживания

ПРИМЕЧАНИЕ

В целом CLR Profiler проявляет себя неплохо, однако при его использовании
я столкнулся с рядом серьезных проблем. Этот профайлер довольно приверед-
лив. При некорректной настройке перед запуском профилирования он может
выдавать исключения или внезапно прекращать работу. Например, для полу-
чения хоть каких-то данных мне всегда приходилось устанавливать флажки
Allocations (Распределения) и Calls (Вызовы). Кнопку Attach to Process (Прикре-
пить к процессу) следует проигнорировать, так как она работает ненадежно.
Похоже, что CLR Profiler плохо справляется с работой с очень большими при-
ложениями с огромными кучами или большим количеством сборок. Если и вы
столкнетесь с проблемами, лучше, наверное, будет воспользоваться PerfView,
так как он тщательно проработан и обладает исключительной гибкостью
благодаря весьма подробным параметрам командной строки, позволяющим
управлять практически всеми аспектами его поведения. Конечно, это только
мое мнение. В то же время CLR Profiler поставляется с собственным исходным
кодом, следовательно, вы можете исправить его недостатки!

76   Глава 1  •  Измерение производительности и инструменты

Анализатор производительности
Windows Performance Analyzer
Windows Assessment and Deployment Kit (Windows ADK, являющийся частью
Windows SDK) содержит несколько инструментов, помогающих развертывать
операционные системы и приложения на компьютерах. В его составе имеются
инструменты Windows Performance Recorder (средство записи параметров произ-
водительности) и Windows Performance Analyzer (анализатор производительности).
Они обрабатывают ETW-события аналогично тому, как это делает PerfView. Однако
анализатор Windows Performance Analyzer преуспевает в отображении информации
уровня аппаратного обеспечения и операционной системы. Он может показать
также .NET-события, но менее удобен в использовании, чем PerfView.

Для получения результатов отслеживания нужно вызвать Windows Performance
Recorder и запустить запись (рис. 1.21).

Рис. 1.21. Главный интерфейс Windows Performance Recorder. Для настройки на определенные
виды записываемых событий нужно нажать кнопку More Options (Дополнительные настройки)

После записи событий нужно нажать кнопку Save (Сохранить), в результате
чего появится интерфейс, где вы сможете ввести дополнительную информацию
о текущей сессии профилирования, в то время как WPR будет обрабатывать за-
писанные данные в фоновом режиме (рис. 1.22).

Файл записанных данных можно открыть в любом инструментальном сред-
стве, способном проанализировать ETW-события, но здесь есть удобная кнопка,
позволяющая сделать это непосредственно в анализаторе Windows Performance
Analyzer.

Слева на экране Windows Performance Analyzer показан список категорий ресур-
сов. Двойной щелчок на ресурсе позволяет открыть детализированное представле-
ние с графиком и таблицей, содержащей подробности, относящиеся к выбранному
ресурсу (рис. 1.23). Например, детальная информация об использовании памяти
скомпонована таким образом, что вы сможете узнать о соотношении активной
и переданной памяти, пуле страничной памяти, приватных страницах и многом
другом.

Полезные инструменты   77

Рис. 1.22. На завершение процесса может понадобиться несколько минут

Рис. 1.23. Главный интерфейс анализатора Windows Performance Analyzer, отображающий
записанные показатели операционной системы и аппаратного оборудования

78   Глава 1  •  Измерение производительности и инструменты

Поскольку данный инструментарий больше ориентирован на использование
основных ресурсов операционной системы, а не на вопросы, связанные с .NET, я не
стану продолжать его обсуждение, но его возможности следует учесть, столкну
вшись с некоторыми разновидностями проблем с производительностью.

WinDbg
Средство WinDbg представляет собой универсальный отладчик Windows Debugger,
свободно распространяемый компанией Microsoft. Если вы привыкли пользоваться
Visual Studio в качестве основного отладчика, применение этого не отягощенного
излишествами текстового отладчика может показаться довольно сложным. Не под-
давайтесь подобному настроению. Изучив всего несколько команд, вы освоитесь
и вскоре практически откажетесь от использования для отладки Visual Studio,
кроме как в процессе активной разработки приложений.

WinDbg намного мощнее Visual Studio и позволит вам исследовать процесс
множеством недоступных без его применения способов. Он также не отличается
особым потреблением ресурсов и намного легче развертывается на эксплуатаци-
онных серверах или клиентских машинах. Это весьма серьезный аргумент для
того, чтобы освоить WinDbg. Но для управляемого кода сам по себе отладчик
WinDbg не так интересен. Для эффективной работы с управляемыми процес-
сами нужно будет воспользоваться имеющимися в .NET расширениями SOS,
поставляемыми с каждой версией среды .NET Framework. Удобный краткий
вариант справочника по SOS можно найти по адресу https://docs.microsoft.com/
dotnet/framework/tools/sos-dll-sos-debugging-extension. Из Visual Studio тоже можно
воспользоваться библиотекой SOS.dll, но разобраться в этом будет сложнее,
а в знакомстве с WinDbg есть еще и другие преимущества, поэтому я останов-
люсь именно на сценарии использования WinDbg вместе с SOS.

Применяя WinDbg совместно с SOS, можно довольно быстро получить ответы
на следующие вопросы.

�� Сколько объектов каждого типа находится в куче и насколько они велики?

�� Насколько велика каждая из используемых мною куч и какую их долю состав-
ляет свободное пространство (какова степень фрагментации)?

�� Какие объекты пережили сборку мусора?

�� Какие объекты закреплены?

�� Какие потоки расходуют больше всего времени ЦП? Имеется ли среди них по-
ток, застрявший в бесконечном цикле?

Обычно WinDbg не первый используемый мной инструмент (зачастую в этой
роли выступает PerfView), но нередко он становится вторым или третьим, позво-
ляя увидеть то, что сложно заметить, работая с другими инструментами. Поэтому
в данной книге показывать применение WinDbg буду довольно часто, чтобы вы

Полезные инструменты   79

увидели, как нужно исследовать действия вашей программы, даже если другие
инструменты справляются с этим быстрее или лучше (волноваться не стоит, такие
инструменты тоже рассмотрим).

Не пугайтесь текстового интерфейса WinDbg. После использования нескольких
команд, позволяющих заглянуть в ваш процесс, вы быстро освоитесь и по досто-
инству оцените скорость, с которой сможете анализировать программу. Изучение
данной книги и разбор конкретных сценариев позволят понемногу приобрести
нужные знания и навыки.

Чтобы получить WinDbg, следует установить Windows SDK. По желанию
можно выбрать установку только отладчиков.

Чтобы начать работать с WinDbg, разберем в качестве обучающего примера не-
большую программу. Она довольно проста — в ней будет очевидная и легко отлавли-
ваемая утечка памяти. Программу можно найти в сопровождающем книгу исходном
коде в проекте MemoryLeak (доступен по адресу http://www.writinghighperf.net).

using System;
using System.Collections.Generic;
using System.Threading;

namespace MemoryLeak
{
 class Program
 {
 static List<string > times = new List<string >();

 static void Main(string[] args)
 {
 Console.WriteLine("Press any key to exit");
 while (!Console.KeyAvailable)
 {
 times.Add(DateTime.Now.ToString());
 Console.Write('.');
 Thread.Sleep(10);
 }
 }
 }
}

Запустите эту программу и дайте ей поработать несколько минут.
Запустите WinDbg из того места, куда вы его установили. Если это сделано че-

рез Windows SDK, то он должен быть в меню Пуск. Выберите правильную версию
для запуска: x86 (для 32-разрядных процессов) или x64 (для 64-разрядных). Чтобы
появилось диалоговое окно прикрепления к процессу, выберите в меню FileAttach
to Process (ФайлПрикрепить к процессу) или нажмите клавишу F6 (рис. 1.24).

Найдите в этом окне процесс MemoryLeak (возможно, легче будет сделать это,
выбрав опцию сортировки по имени исполняемого файла By Executable). Нажмите
кнопку OK.

80   Глава 1  •  Измерение производительности и инструменты

Рис. 1.24. Окно прикрепления к процессу, появляющееся в WinDbg

WinDbg приостановит процесс (об этом важно знать при отладке реального
производственного процесса) и покажет все загруженные модули. На данном этапе
отладчик станет дожидаться вашей команды. Обычно в первую очередь требуется
загрузить отладочные расширения CLR. Введите следующую команду:

.loadby sos clr

Если она будет выполнена успешно, на экране ничего не появится.
Если же вы получите сообщение об ошибке следующего содержания: Unable to

find module 'clr' (Невозможно найти модуль 'clr'), то, скорее всего, среда CLR еще
не загружена. Так бывает, если программа запущена из WinDbg и тут же вошла
в режим отладки. В таком случае сначала следует установить контрольную точку
на загрузке модуля CLR:

sxe ld clr
g

Первая команда устанавливает контрольную точку на загрузке модуля CLR.
А команда g заставляет отладчик продолжить выполнение. После еще одной оста-
новки CLR должен быть загружен, и теперь вы сможете загрузить SOS с помощью
команды .loadby sos clr в соответствии с предыдущим описанием.

Полезные инструменты   81

С этого момента появится возможность проделать множество действий. Рас-
смотрим несколько пробных команд.

!ProcInfo

В результате выполнения этой команды будет выведена отладочная информа-
ция общего характера о процессе в целом, включая установленные переменные
среды окружения:

Environment
=::=::\
=C:=C:\WINDOWS\system32
...множество переменных среды окружения

Process Times
Process Started at: 2017 Nov 7 22:5:49.44
Kernel CPU time : 0 days 00:00:00.01
User CPU time : 0 days 00:00:00.01
Total CPU time : 0 days 00:00:00.02

Process Memory
WorkingSetSize: 26572 KB PeakWorkingSetSize: 26572 KB
VirtualSize: 717972 KB PeakVirtualSize: 717972 KB
PagefileUsage: 566560 KB PeakPagefileUsage: 566560 KB

44 percent of memory is in use.

Memory Availability (Numbers in MB)

 Total Avail
Physical Memory 4095 4095
Page File 4095 4095
Virtual Memory 4095 3783

А теперь более полезные команды.

g

Эта команда означает go (запуск) и приводит к продолжению выполнения кода.
В ходе выполнения программы никакие команды вводить нельзя.

<Ctrl-Break>

Нажатие этого сочетания клавиш поставит выполняемую программу на паузу.
Ее применяют после команды g (go) для возвращения контроля над отладкой.

.dump /ma d:\memorydump.dmp

Данная команда приведет к созданию полного дампа процесса в выбранном
файле. Это позволит заняться отладкой состояния процесса позже, но, поскольку
это моментальный снимок, разумеется, вы не сможете выполнять отладку хода
дальнейшего выполнения программы.

!DumpHeap -stat

82   Глава 1  •  Измерение производительности и инструменты

DumpHeap показывает сводку данных обо всех управляемых объектах в куче,
включая их размер (только для самого объекта, но не для объектов, на которые
он ссылается), количество и др. Если нужно увидеть в куче каждый объект типа
System.String, наберите команду !DumpHeap -type System.String. Более подробно
она будет рассматриваться при изучении сборки мусора.

~*kb

Это обычная команда WinDbg, не имеющая отношения к SOS. Она выводит
текущий стек для всех потоков, имеющихся в процессе.

Для переключения с текущего потока на другой поток используется команда:

~32s

Она приведет к замене текущего потока на поток 32. Обратите внимание на то,
что номера потоков в WinDbg не совпадают с идентификаторами потоков. WinDbg
нумерует все потоки в процессе, чтобы легче было ссылаться на них, не обращая
внимания на идентификатор, присвоенный операционной системой Windows или
средой .NET.

!DumpStackObjects

Можно также воспользоваться сокращенной версией !dso. Эта команда при-
водит к выводу адреса и типа каждого объекта из всех стековых фреймов для
текущего потока.

Заметьте, что все команды, находящиеся в отладочном расширении SOS, пред-
назначенном для управляемого кода, предваряются символом !.

Для эффективной работы с отладчиком нужно выполнить еще одно действие —
установить используемый вами путь поиска символов, чтобы загрузить общедо-
ступные символы для DLL-библиотек от Microsoft, что даст возможность увидеть
все происходящее на системном уровне. Установите для своей переменной среды
окружения NT SYMBOL PATH следующее значение:

symsrv*symsrv.dll*c:\sym*http://msdl.microsoft.com/download/symbols

Замените фрагмент c:\sym предпочтительным путем локального символьного
кэша и удостоверьтесь в том, что указанный каталог действительно создан. После
установки значения для переменной среды окружения и WinDbg, и Visual Studio
станут использовать этот путь для автоматической загрузки и кэширования обще-
доступных символов для системных DLL-библиотек. В ходе начальной загрузки
визуализация символов может идти довольно медленно, но как только произойдет
их кэширование, скорость существенно возрастет. Для автоматической установки
пути к символам непосредственно на символьный сервер Microsoft и локальный
кэш можно также воспользоваться командой .symfix:

.symfix c:\sym

Если вам не доводилось ранее пользоваться WinDbg, осваивайте его без страха
и сомнений. Запомнив весьма скромный набор команд, вы в кратчайшие сроки до-
бьетесь высокой продуктивности. Истинное мастерство использования WinDbg
придет со временем и с накоплением опыта работы, но, пройдя этот путь, вы ни о чем

Полезные инструменты   83

не пожалеете. Отладчик WinDbg позволяет выполнять разные виды анализа, которые
очень трудны или вовсе невозможны в других отладчиках. Обратите внимание на
раздел «Исследование памяти и сборки мусора» главы 2, в котором рассматривается
решение проблем с памятью и приведено множество примеров применения WinDbg.

CLR MD
Приобретя начальный опыт использования WinDbg и оценки доступных широких
возможностей этого отладчика, вы можете подумать: «Жаль, что я не могу получить
доступ ко всему этому программным путем». К счастью, такая возможность есть!
И ее дает библиотека Microsoft.Diagnostics.Runtime с открытым кодом (называемая
также CLR MD), расположенная по адресу https://github.com/microsoft.clrmd (рис. 1.25).
Она дает доступ ко многим функциональным возможностям, имеющимся в SOS.dll,
путем задействования весьма удобного и легкого в применении API. Библиотека
CLR MD разработана как довольно низкоуровневый API, позволяющий легко
создавать надстройки над ним для предоставления расширенных функциональных
возможностей. Фактически ряд функциональных возможностей PerfView разра-
ботан поверх CLR MD, поэтому, если PerfView не предоставляет вам именно того,
в чем вы нуждаетесь, можете, как говорится, заглянуть под капот этой библиотеки
и «допилить» все, что нужно, самостоятельно.

Рис. 1.25. Проще всего получить библиотеку через пакет NuGet с адреса http://NuGet.org.
Там можно выполнить поиск по строке либо Microsoft.Diagnostics.Runtime, либо CLR MD

В данном подразделе мы кратко рассмотрим инструмент и порядок его исполь-
зования, а конкретные решения проблем можно будет найти в соответствующих
разделах книги.

ПРИМЕЧАНИЕ

Библиотека находится в весьма активной разработке, и между документаци-
ей и текущей реализацией можно будет заметить некоторые расхождения.
Вероятно, API и в дальнейшем продолжит изменяться.

84   Глава 1  •  Измерение производительности и инструменты

Эту библиотеку можно использовать как для прикрепления к действующим
процессам (в качестве отладчика), так и для открытия файлов дампа кучи на диске.
Оба примера будут показаны далее.

Для прикрепления к действующему процессу нужно лишь предоставить иден-
тификатор процесса. В данном примере для удобства явным образом будет запу-
щен новый процесс. Большинство примеров, приводимых в издании и относящих-
ся к CLR MD, взяты из проекта учебного кода AnalyzeProcess, сопровождающего
книгу.

static void Main(string[] args)
{
 // Создадим собственный процесс для тестирования
 var startInfo = new ProcessStartInfo(TargetProcessName);
 startInfo.CreateNoWindow = true;
 startInfo.WindowStyle = ProcessWindowStyle.Hidden;
 var targetProcess = Process.Start(startInfo);
 Thread.Sleep(1000);
 using (DataTarget target = DataTarget.AttachToProcess(
 targetProcess.Id,
 10000, // timeout
 AttachFlag.Invasive))
 {
 PrintDumpInfo(target);

 var clr = target.ClrVersions[0].CreateRuntime();
 }
}

private static void PrintDumpInfo(DataTarget target)
{
 PrintHeader("Target Info");

 Console.WriteLine($"Architecture: {target.Architecture}");
 Console.WriteLine($"Pointer Size: {target.PointerSize}");
 Console.WriteLine("CLR Versions:");
 foreach(var clr in target.ClrVersions)
 {
 Console.WriteLine($"\t{clr.Version}");
 }
}

Эта программа выведет на экран следующую информацию:

Target Info
===========
Architecture: X86
Pointer Size: 4
CLR Versions:
 v4.7.2115.00

Объект clr, полученный после вызова PrintDumpInfo, представляет собой
основной интерфейс для большинства интересующих нас команд. Благодаря его

Полезные инструменты   85

использованию можно, к примеру, осуществить последовательный перебор всех
объектов, имеющихся в куче:

var heap = clr.Heap;
foreach(var obj in heap.EnumerateObjects())
{
 int gen = heap.GetGeneration(obj.Address);
 Console.WriteLine(
 $"0x{obj.Address:x} - {obj.Type.Name}" +
 $" - Generation: {generation}");
}

В результате чего на экран будет выведена следующая информация:

0x30ec8ac - System.Byte[] - Generation: 0
0x30ecca0 - LargeMemoryUsage.B - Generation: 1

Кроме кучи, можно исследовать и код:

foreach(var module in clr.Modules)
{
 foreach (var type in module.EnumerateTypes())
 {
 foreach(var method in type.Methods)
 {
 Console.WriteLine(method.Name);
 }
 }
}

В результате будет выведена следующая информация:

Main
GetNewObject
.cctor
ToString
ToString
Equals

Можно также открыть аварийные дампы. Это дается чуть сложнее, так как при-
ходится получать файл mscordacwks.dll, соответствующий версии (или версиям)
CLR, присутствующим в дампе. При прикреплении к действующему процессу это
не составляет труда, поскольку ее наличие на машине гарантировано. При работе
с дампом с другой машины с потенциально совершенно другой версией CLR ее
нужно получить с этой машины или загрузить с символьного сервера Microsoft.
Как это сделать, показывает следующий код:

{
 ...
 string dacFile =
 GetDacFile(
 dataTarget.ClrVersions[0],
 dataTarget);

86   Глава 1  •  Измерение производительности и инструменты

 var clr = dataTarget.ClrVersions[0].CreateRuntime(dacFile);
 ...
}

private static string GetDacFile(ClrInfo clrInfo ,
 DataTarget target)
{
 string location = clrInfo.LocalMatchingDac;
 if (string.IsNullOrEmpty(location) || !File.Exists(location))
 {
 // попытка загрузки с символьного сервера
 ModuleInfo dacInfo = clrInfo.DacInfo;
 try
 {
 location = target.SymbolLocator.FindBinary(dacInfo);
 }
 catch (WebException)
 {
 return null;
 }
 }
 return location;
}

Этот метод — эквивалент вызова CreateRuntime без аргументов, однако полезно
будет узнать, как это сделать самостоятельно, на случай возникновения специфи-
ческих потребностей.

Примеры эффективности использования данной библиотеки еще будут встре-
чаться в дальнейших главах, но вкратце она способна сделать следующее:

�� перечислить все объекты в куче и дать информацию об их создании, о том, за-
креплены ли они, и т. д.;

�� предоставить инструменты для поиска корней и размеров объектов;

�� перечислить сегменты памяти;

�� выполнить последовательный обход всех методов в процессе;

�� вычислить размер кода на промежуточном языке (IL) и кода аппаратной плат-
формы.

ПРИМЕЧАНИЕ

При использовании этой библиотеки для исследования кода по-настоящему
большой DLL я столкнулся с парой проблем. API в Microsoft.Diagnostics.Runtime
зависят от внутренних API .NET, реализации которых могут быть не максималь-
но эффективными. В одном случае я задействовал файл дампа для вычис-
ления количества JIT-компиляций, произошедших в DLL объемом 500 Мбайт,
имеющей 80 000 типов а также сотни тысяч методов. Я нажал Ctrl+Break по
прошествии примерно 36 часов. Но это единственная DLL, с которой у меня
были проблемы.

Полезные инструменты   87

Анализаторы IL
Существует множество бесплатных и платных продуктов, способных получать
скомпилированную сборку и выполнять ее декомпиляцию в IL, C#, VB.NET или
какой-нибудь другой .NET-язык. К числу наиболее популярных можно отнести
Reflector, ILSpy и dotPeek, но ими список не исчерпывается.

Их ценность заключается в способности показывать внутренние подробности
кода, созданного другими людьми, что представляет интерес при качественном
анализе производительности (рис. 1.26). Я пользуюсь ими чаще всего для изучения
среды .NET Framework, когда хочу увидеть потенциальное влияние на произво-
дительность со стороны различных API.

Рис. 1.26. ILSpy с результатом декомпиляции Enum.HasFlag в C#. Декомпиляторы — весьма
эффективный инструмент для изучения работы и производительности кода, созданного

сторонними разработчиками

Преобразование вашего собственного кода в читаемый IL также представляет
определенную ценность, поскольку может показать многие операции, например
упаковку (boxing), которые не видны в языках высокого уровня.

Код среды .NET Framework рассматривается в главе 6, где приводятся аргумен-
ты в пользу внимательного изучения каждого используемого вами API. Инстру-
менты типа ILSpy, dotPeek и Reflector для этого просто жизненно необходимы,
и вам довольно часто придется прибегать к ним, когда более тесно познакомитесь
с имеющимся кодом. Объем работы, который придется выполнить с применением,

88   Глава 1  •  Измерение производительности и инструменты

казалось бы, простых методов, зачастую будет для вас сюрпризом. Анализ сборок
других разработчиков и компаний может научить вас работать более рационально
на примере более или менее удачного выбора организации, проектного решения
и практики программирования.

Эти инструменты способны показать вам и некоторые другие вещи:

�� ссылки сборки;

�� метаданные сборки, например целевую платформу, архитектуру процессора;

�� IL-код (эта возможность будет использоваться в книге довольно часто);

�� размер кода.

Многие инструменты обладают также поисковыми возможностями, позволя
ющими искать типы, методы, поля или инструкции кода.

MeasureIt
MeasureIt — весьма удобный инструмент для проведения эталонных микротестов,
созданный Вэнсом Моррисоном (Vance Morrison), который является также автором
PerfView. Он показывает относительные затраты ресурсов на различные .NET API
во многих категориях, включая вызовы методов, массивы, делегаты, итерирование,
рефлексию (отражение), P/Invoke и многое другое. Он сравнивает все затраты
с вызовом в качестве эталона пустой статической функции.

Средство MeasureIt в первую очередь полезно для демонстрации влияния про-
ектных решений на производительности на API-уровне. Например, в категории
блокировок оно покажет вам, что ReaderWriteLock работает приблизительно в че-
тыре раза медленнее, чем обычная инструкция lock.

К коду MeasureIt нетрудно добавить собственные эталонные тесты. Это сред-
ство поставляется с находящимся внутри пакетом кода, для его извлечения просто
запустите команду MeasureIt /edit. Изучая этот код, можно усвоить принципы
написания довольно точных эталонных тестов. В комментариях к коду содержатся
подробные объяснения относительно проведения высококачественного анализа, на
которые вам следует обратить пристальное внимание, особенно если вы собирае-
тесь самостоятельно создать простой эталонный тест.

Например, следующий код не позволяет компилятору производить инлайнинг
(inlining):

[MethodImpl(MethodImplOptions.NoInlining)]
public void AnyEmptyFunction()
{
}

Используются в нем и другие трюки, например обход кэшей процессора и вы-
полнение достаточного количества итераций для создания статистически значи-
мых результатов.

Полезные инструменты   89

Средство MeasureIt удобно наличием в нем ряда встроенных измерений самой
среды CLR, которые могут дать вам хорошее представление о базовых затратах.
Если вас интересует проведение эталонного тестирования своего кода, изучите
следующий подраздел.

BenchmarkDotNet
Стандартом в эталонном тестировании .NET может, наверное, послужить проект
с открытым кодом под названием BenchmarkDotNet. Это библиотека, которая
способна справиться как с множеством обычных задач, связанных с эталонным
микротестированием, так и с более развернутыми задачами за счет:

�� атрибутов, облегчающих выбор кода для бенчмаркинга;

�� создания изолированных проектов для каждого тестируемого метода;

�� автоматического вычисления количества итераций, позволяющих достичь
нужной точности;

�� разогрева кода;

�� выполнения статистического анализа;

�� сравнения производительности в нескольких разных средах выполнения кода,
таких как x86, x64, различных версиях JIT, конфигурациях сборщика мусо-
ра и т. д.;

�� анализа работы ЦП, сборки мусора, выделения памяти, JIT и различных аппа-
ратных счетчиков.

Приступить к работе с этим средством очень легко. Рассмотрим простой пример,
в котором сравнивается производительность циклов foreach для массива и для
IEnumerable. Используя простой атрибут, можно позволить библиотеке выполнять
практически всю работу.

using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Running;
using System.Collections.Generic;

namespace BenchmarkTest
{
 public class LoopBenchmarks
 {
 static int[] arr = new int[100];

 public LoopBenchmarks()
 {
 for (int i = 0; i < arr.Length; i++)
 {

90   Глава 1  •  Измерение производительности и инструменты

 arr[i] = i;
 }
 }

 [Benchmark]
 public int ForEachOnArray()
 {
 int sum = 0;
 foreach (int val in arr)
 {
 sum += val;
 }
 return sum;
 }

 [Benchmark]
 public int ForEachOnIEnumerable()
 {
 int sum = 0;
 IEnumerable <int> arrEnum = arr;
 foreach (int val in arrEnum)
 {
 sum += val;
 }
 return sum;
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 var summary = BenchmarkRunner.Run<LoopBenchmarks >();
 }
 }
}

Все это можно запустить самостоятельно с помощью кода из примера Bench
markTest.

В результате будет получен следующий вывод:

Total time: 00:00:43 (43.64 sec)

// * Summary *

BenchmarkDotNet=v0.10.9, OS=Windows 10 Redstone 2 (10.0.15063)
Processor=Intel Core i7-3930K CPU 3.20GHz (Ivy Bridge),
 ProcessorCount=12
Frequency=14318180 Hz, Resolution=69.8413 ns, Timer=HPET
 [Host] : .NET Framework 4.7 (CLR 4.0.30319.42000),
 32bit LegacyJIT-v4.7.2102.0

Полезные инструменты   91

 DefaultJob : .NET Framework 4.7 (CLR 4.0.30319.42000),
 32bit LegacyJIT-v4.7.2102.0
 Method | Mean | Error | StdDev |
--------------------- |----------:|----------:|----------:|
 ForEachOnArray | 53.32 ns | 0.2083 ns | 0.1846 ns |
ForEachOnIEnumerable | 561.69 ns | 7.2943 ns | 6.8231 ns |

// * Hints *
Outliers
 ForEachTest.ForEachOnArray: Default -> 1 outlier was removed

// * Legends *
 Mean : Arithmetic mean of all measurements
 Error : Half of 99.9% confidence interval
 StdDev : Standard deviation of all measurements
 1 ns : 1 Nanosecond (0.000000001 sec)

// ***** BenchmarkRunner: End *****
// * Artifacts cleanup *

Обратите внимание: на выполнение эталонного теста даже такого простого кода
было затрачено 43 с.

Разумеется, есть возможность контролировать выполнение этих тестов с по-
мощью конфигурационных параметров.

Для получения дополнительных сведений можно обратиться по адресу http://
benchmarkdotnet.org. Добавьте это средство к своему проекту непосредственно из
Visual Studio, установив пакет BenchmarkDotNet NuGet.

Оснащение кода инструментами
Привычную отладку, выполняемую через консольный вывод, игнорировать не сто-
ит. Но я рекомендую вместо этого воспользоваться ETW-событиями, подробно
рассмотренными в главе 8.

Временами может принести пользу и строгое хронометрирование выполне-
ния кода. Никогда не задействуйте для измерения производительности свойство
DateTime.Now. Оно слишком медленно работает для этих целей. Вместо него для
замера временных интервалов малых или больших событий с предельной надежно-
стью измерений, низкой погрешностью и минимальными издержками используйте
класс System.Diagnostics.Stopwatch.

var stopwatch = Stopwatch.StartNew();
...do work...
stopwatch.Stop();
TimeSpan elapsed = stopwatch.Elapsed;
long elapsedTicks = stopwatch.ElapsedTicks;

Более подробно работа с временем и его измерениями в .NET рассматривается
в главе 6.

92   Глава 1  •  Измерение производительности и инструменты

Если нужно обеспечить точность и повторяемость результатов ваших соб-
ственных эталонных тестов, изучите исходный код и документацию MeasureIt,
где демонстрируются самые удачные технологии в этой области. Вопреки возмож-
ным ожиданиям, зачастую добиться желаемого весьма непросто и некорректное
проведение эталонного тестирования может оказаться куда вреднее полного от-
каза от него, поскольку повлечет за собой напрасную трату времени на неверные
действия. Лучше воспользоваться библиотекой стороннего производителя вроде
BenchmarkDotNet.

Утилиты SysInternals
Без этого великолепного набора инструментов вряд ли обойдется разработчик,
системный администратор и даже простой любитель. Созданный Марком Русси-
новичем (Mark Russinovich) и Брюсом Когсуэллом (Bryce Cogswell), а ныне при-
надлежащий Microsoft, этот набор предназначен для управления компьютером,
инспектирования процессов, анализа сети и многого другого. В перечень наиболее
предпочтительных, с моей точки зрения, входят следующие инструменты:

�� ClockRes — показывает разрешение системных часов (что также является мак-
симальным разрешением таймера);

�� CoreInfo — связывает логические процессы с физическими процессорами, со-
кетами, кэшами и многим другим;

�� Diskmon — отслеживает всю дисковую активность;

�� DiskView — утилита посекторной работы с жесткими дисками;

�� Handle — показывает, какие файлы открыты какими процессами;

�� ListDLLs — выводит список загруженных DLL-библиотек;

�� NTFSInfo — выдает подробную версию о томах NTFS;

�� PsInfo — показывает операционную систему, диск, пользователя и программную
информацию о системе;

�� ProcDump — гибко настраиваемый создатель дампа процесса;

�� Process Explorer — более удачное средство, чем диспетчер задач Task Manager,
с широким спектром подробностей о каждом процессе (рис. 1.27);

�� Process Monitor — отслеживает в реальном времени активности, связанные
с файлами, реестром и процессами (рис. 1.28);

�� RAMMap — анализирует использование физической памяти во всей системе;

�� SDelete — безопасная утилита удаления файлов;

�� Strings — ищет строки в двоичных файлах;

�� VMMap — анализирует адресное пространство процесса.

В набор входят и десятки других утилит. Сам набор утилит можно загрузить
(по одной или целиком) с сайта по адресу https://docs.microsoft.com/sysinternals/.

Полезные инструменты   93

Рис. 1.27. Process Explorer — усовершенствованная версия диспетчера задач Task Manager,
сообщающая множество подробностей о каждом процессе, а также взаимоотношениях процессов

Рис. 1.28. Process Monitor показывает в реальном времени события, касающиеся файлов,
реестра, процессов, потоков и сети в масштабе всей системы. Эта утилита может пригодиться,
к примеру, чтобы установить: процесс выполняет чтение из конкретного файла и происходит

это в такое-то время

94   Глава 1  •  Измерение производительности и инструменты

База данных
Финальным средством исследования производительности довольно общего плана
является простая база данных — нечто, позволяющее отслеживать производитель-
ность на протяжении длительного времени. В качестве метрик используйте все, что
имеет смысл для вашего проекта, а формат не обязательно должен быть полномас-
штабной реляционной базой данных типа SQL Server (хотя у такой системы есть
определенные преимущества). Он может представлять собой коллекцию отчетов,
сохраняемых в определенный период времени в том формате, который проще чи-
тается, или просто в CSV-файлах с заголовками и значениями. Смысл в том, что
вы должны записать, сохранить его и предусмотреть возможность создания на его
основе отчета.

Когда вам задают вопрос, обладает ли ваше приложение более высокой произ-
водительностью, каков будет наилучший ответ?

Да.
Или таков: за последние шесть месяцев загруженность ЦП мы сократили на

50 %, потребление памяти — на 25 %, а задержки при запросах — на 15 %. Частота
сборки мусора снизилась до одной каждые 10 с (а была каждую секунду!), и время
запуска полностью зависит от загрузки конфигурации (35 с).

Как уже упоминалось, куда лучше хвастаться повышением производительности,
опираясь на надежные данные!

Другие инструменты
Вам может встретиться и множество других инструментов. Существует большое ко-
личество статических анализаторов кода, сборщиков и анализаторов ETW-событий,
декомпиляторов сборок, профайлеров производительности и многого другого.

Перечень, приведенный в данной главе, можно рассматривать как отправную
точку, но при этом иметь в виду, что представленные в нем инструментальные
средства позволяют выполнить весьма значительный объем работы. Иногда может
помочь хорошо продуманная визуализация проблем производительности, но по-
стоянной потребности в ней не будет.

Также со временем вы поймете, что по мере освоения таких технологий, как
счетчики производительности (performance counters) или ETW-события, станет
легче создавать собственные инструменты для выдачи настраиваемых отчетов
или рационального анализа. Многие из рассматриваемых в книге инструментов
в определенной степени поддаются автоматизации.

Издержки измерений
Несмотря на все ваши усилия, измерения производительности не обойдутся без
издержек. Профилирование ЦП замедляет программу, счетчикам производитель-
ности потребуется память и/или дисковое пространство. ETW-события, какими бы
быстрыми они ни были, также не обходятся без издержек.

Резюме   95

Вам придется отслеживать и оптимизировать эти издержки в своем коде точно
так же, как и все другие аспекты программы. Затем нужно будет решить, стоят ли
затраты на измерения в некоторых сценариях того потенциального прироста про-
изводительности, которым придется пожертвовать.

Если нельзя позволить себе вести постоянные измерения, придется доволь-
ствоваться каким-нибудь профилированием. Пока этого в большинстве случаев
будет достаточно для выявления причин возникновения проблем, менять, видимо,
ничего не придется. Но не стоит недооценивать затраты людских ресурсов на из-
мерение производительности вручную: зачастую они могут существенно превысить
стоимость создания системы, способной выполнять измерения в автоматическом
режиме.

Также вы можете иметь специальные сборки своих программных продуктов,
но они способны представлять собой определенную опасность. Такие сборки
не должны превратиться со временем в нечто не отражающее сущность реального
продукта.

Как всегда, когда имеешь дело с программными средствами, нужно находить
баланс между наличием всех желаемых данных и достижением оптимальной про-
изводительности.

Резюме
Самое важное правило достижения высокой производительности — измерения,
измерения и еще раз измерения!

Выясните, какие показатели важны для вашего приложения. Выработайте точ-
ные количественные цели для каждого показателя. Средние значения, конечно,
хороши, но обратите внимание и на процентили, особенно для сервисов, которые
должны быть высокодоступными. Сначала убедитесь, что включаете в свою архи-
тектуру разумные цели достижения производительности и правильно учитываете
влияние архитектуры на производительность. Сперва оптимизируйте те части
программы, которые сильнее всего влияют на производительность. Перед тем как
перейти к микрооптимизациям, сконцентрируйтесь на макрооптимизациях на
алгоритмическом или системном уровне. Если не уверены в достижении высокой
производительности при реализации выбранного алгоритма, воспользуйтесь для
его тестирования средами проведения эталонных тестов.

Обзаведитесь для своей программы высококачественной базой из счетчиков
производительности и ETW-событий. Для анализа и отладки применяйте подходя-
щий рабочий инструмент. Для быстрого решения проблем научитесь пользоваться
наиболее эффективными средствами, например WinDbg и PerfView.

2 Управление
памятью

Сборка мусора и управление памятью станут тем, с чего вы начнете и чем закончите.
Эти два аспекта — бесспорный источник большинства наиболее очевидных проблем
с производительностью, от которых проще всего избавиться, и чтобы все держать
под контролем, за ними нужно постоянно наблюдать. Я говорю «бесспорный ис-
точник», потому что, как будет показано далее, многие проблемы связаны с не-
верным пониманием поведения сборщика мусора и неоправданными ожиданиями
результатов его работы. Производительности, зависящей от задействования памяти,
нужно уделять ничуть не меньше внимания, чем производительности, зависящей
от использования центрального процессора. Это утверждение распространяется
и на производительность неуправляемого кода, но для технологии .NET оно более
характерно и в ее среде с соответствующими проблемами справляться проще. Этот
аспект настолько важен для бесперебойной работы .NET, что наиболее значительная
часть этой книги посвящена именно ему.

Многих сильно беспокоят издержки от сборки мусора. Однако, разобравшись
в том, как работает сборщик мусора, вы сможете довольно просто оптимизировать
свою программу, подстроившись под него. Во введении было показано, что сбор-
щик мусора во многих случаях способен повысить общую производительность
кучи, поскольку он лучше справляется с выделением и фрагментацией памяти.
В большинстве случаев применяемая в технологии .NET стратегия управления
памятью, включая работу сборщика мусора, действительно может принести вашему
приложению не вред, а пользу.

Сборка мусора рассматривается в начале этой книги, поскольку слишком много
понятий, приводимых далее, будет завязано на материале этой главы. Осознание
влияния сборщика мусора на работу вашей программы играет настолько важную
роль в достижении высокой производительности, что затрагивает практически все
остальное.

Выделение памяти
Между характером работы обычных типовых куч и куч, подвергаемых сборке му-
сора в среде CLR, имеется существенная разница. В обычной куче Windows, чтобы
знать, где размещать вновь выделяемые области памяти, ведутся списки свободных
участков памяти. Многие надолго запускаемые приложения с обычным кодом
страдают от фрагментации. Время, затрачиваемое на выделение памяти, постепенно

Выделение памяти   97

увеличивается, поскольку система выделения тратит все больше и больше времени
на просмотр списков незанятых участков в поисках свободного места. Потребление
памяти нарастает, и становится неизбежным перезапуск процесса, чтобы начать
цикл заново. Некоторые обычные программы справляются с данной проблемой за
счет замены исходной реализации malloc своими собственными, усердно старающи-
мися сократить возникающую фрагментацию. В Windows также предоставляются
кучи с низким уровнем фрагментации, используемые внутри среды CLR.

В среде .NET выделение памяти осуществляется довольно просто, поскольку
обычно происходит в конце сегмента памяти и представляет собой не что иное, как
несколько простых инструкций: сложение, уменьшение на единицу и сравнение.
В этих простых случаях нет просматриваемых списков свободных участков и весь-
ма невелика вероятность фрагментации. Кучи со сборщиком мусора действительно
могут быть более эффективными, поскольку объекты, для которых память выде-
лялась в один и тот же момент, скорее всего, будут располагаться в куче недалеко
друг от друга, повышая локальность памяти.

По умолчанию небольшой фрагмент кода сравнит размер объекта, для которого
требуется выделить память, с размером свободного места в небольшом буфере для
выделения памяти. Если окажется, что объект помещается в этот буфер, выделение
будет очень быстрым и пройдет без соперничества за ресурсы. Если же буфер ока-
жется переполненным, запустится система выделения памяти со сборкой мусора
и найдет место для объекта (в данном случае может понадобиться использование
списков свободных участков памяти). После этого будет зарезервирован новый
буфер для выделения памяти для будущих запросов на выделение.

Ассемблерный код этого процесса состоит всего из нескольких инструкций,
которые полезно изучить.

На языке C# это можно продемонстрировать, взяв простейшее выделение
памяти:

class MyObject {
 int x;
 int y;
 int z;
}
static void Main(string[] args)
{
 var x = new MyObject();
}

Так выглядит код, вызывающий выделение памяти:

; Копирование указателя на таблицу методов для класса
; в ecx в качестве аргумента для new().
; Для просмотра этого значения можно воспользоваться командой !dumpmt
mov ecx,3F3838h

; Вызов new
call 003e2100

; Копирование возвращенного значения (адреса объекта) в регистр
mov edi,eax

98   Глава 2  •  Управление памятью

А вот фактическое выделение:

; ПРИМЕЧАНИЕ: большинство адресов в коде удалено из соображений форматирования.
;
; Присваивание eax значения 0x14, размер объекта, для которого выделяется
; память. Значение берется из таблицы методов
mov eax,dword ptr [ecx+4] ds:002b:003f383c=00000014

; Помещение в edx информации о буфере для выделений
mov edx,dword ptr fs:[0E30h]

; edx+40 содержит адрес следующего доступного для выделения байта.
; Прибавление этого значения к желаемому размеру.
add eax,dword ptr [edx+40h]

; Сравнение предполагаемого размера выделения с концом
; буфера для выделений.
cmp eax,dword ptr [edx+44h]

; При выходе за пределы буфера для выделений
; переход к медленному пути
ja 003e211b
; Обновление указателя до следующего свободного байта
; (0x14 байт после старого значения)
mov dword ptr [edx+40h],eax

; Вычитание размера объекта из указателя
; для получения адреса начала нового объекта
sub eax,dword ptr [ecx+4]

; Помещение указателя на таблицу методов
; в первые четыре байта объекта.
; eax теперь указывает на новый объект
mov dword ptr [eax],ecx

; Возвращение к вызывающему коду
ret

; Медленный путь — вызов метода CLR
003e211b jmp clr!JIT_New (71763534)

В целом все вылилось в один непосредственный вызов метода и всего лишь
в девять инструкций во вспомогательном методе. Данный рекорд побить весьма
трудно.

При использовании некоторых конфигурационных параметров, например
серверного режима работы сборщика мусора, конкуренции за ресурсы нет как для
быстрого, так и для медленного пути выделения памяти, поскольку куча имеется
для каждого процессора. В .NET простота выделения памяти достигается за счет
более сложного механизма высвобождения памяти, но сталкиваться напрямую

Операция сборки мусора   99

с этой сложностью вы не обязаны. Нужно только научиться оптимизировать под
нее свой код, что мы и сделаем в данной главе.

Существует немало способов вынудить систему выделения опуститься до ме
дленного пути. Если буфер для выделений недостаточно большой или достигнут
конец сегмента, будет вызван медленный путь. Кроме того, если в распределяемом
объекте реализуется финализатор, сборщику мусора потребуется выполнить много
вспомогательных действий для отслеживания времени существования объекта,
в силу чего он также вызовет медленный путь.

Операция сборки мусора
В механизме принятия решений сборщиком мусора постоянно происходят точеч-
ные улучшения, особенно в условиях более широкого распространения технологии
.NET в высокопроизводительных системах. Поэтому приведенное далее объясне-
ние может содержать детали, которые перестанут быть актуальными в результате
изменений в последующих версиях .NET, но общая картина вряд ли существенно
изменится в ближайшем будущем.

В управляемом процессе два типа куч: неуправляемые и управляемые. Неуправ-
ляемые кучи выделяются с помощью API Windows под названием VirtualAlloc
и используются операционной системой и CLR для неуправляемой памяти. Такова,
например, память для Windows API, для структур данных операционной системы
и даже во многом для самой CLR. Память для всех управляемых .NET-объектов вы-
деляется CLR в управляемой куче, которая называется также GC-кучей, поскольку
находящиеся в ней объекты являются объектами сборки мусора.

Управляемая куча делится на два типа куч: кучу малых объектов и кучу боль-
ших объектов (large object heap, LOH). Каждой из куч назначаются собственные
сегменты, представляющие собой принадлежащие ей блоки памяти. Как куча
малых, так и куча больших объектов могут иметь несколько назначенных им сег-
ментов. Размеры сегментов могут варьироваться в зависимости от конфигурации
и аппаратной платформы.

Конфигурация Размер сегмента
в 32-разрядной
системе

Размер сегмента
в 64-разрядной
системе

GC рабочей станции 16 Мбайт 256 Мбайт

GC сервера 64 Мбайт 4 Гбайт

GC сервера, имеющего более четырех
логических процессоров

32 Мбайт 2 Гбайт

GC сервера, имеющего более восьми
логических процессоров

16 Мбайт 1 Гбайт

100   Глава 2  •  Управление памятью

Сегменты кучи малых объектов далее делятся на поколения. Существует три
поколения с условными названиями gen 0, gen 1 и gen 2. Gen 0 и gen 1 всегда на-
ходятся в одном и том же сегменте, а gen 2 может распространяться на несколько
сегментов, как и куча больших объектов. Сегмент, содержащий gen 0 и gen 1, на-
зывается эфемерным сегментом.

Поначалу куча малых объектов состоит из одного сегмента, а куча больших объ-
ектов представляет собой еще один сегмент (рис. 2.1). Сначала размер gen 2 и gen 1
всего несколько байтов, так как пока что они пустые.

Рис. 2.1. Начальная структура кучи

Жизненный цикл объектов, распределяемых в кучу малых объектов, требует
некоторых пояснений. Среда CLR распределяет все объекты размером менее
85 000 байт в куче малых объектов. Они всегда распределяются в gen 0, обычно
в конец использованного на данный момент пространства. Поэтому, как было по-
казано в начале этой главы, выделение памяти в .NET происходит очень быстро.
Если добиться быстрого распределения не удастся, объекты могут быть размещены
там, куда они способны поместиться в пределах границ поколения gen 0. Если они
не поместятся в имеющееся свободное пространство, система распределения рас-
ширит текущие границы gen 0 для приема нового объекта. Расширение происходит
в конце использованного пространства по направлению к концу сегмента. Если
в результате этого произойдет сдвиг конца сегмента, может запуститься сборка
мусора. Пространство gen 1 остается нетронутым.

Малые объекты (размером менее 85 000 байт) всегда начинают свой жизненный
цикл в gen 0. До тех пор пока они существуют, при каждой сборке сборщик мусора
станет продвигать их в следующие поколения. Сборку мусора в gen 0 и gen 1 иногда
называют эфемерной сборкой.

При сборке мусора может произойти уплотнение — процесс, при котором GC
физически перемещает объекты на новое место, чтобы освободить место в сегменте.
Если уплотнения не случилось, границы просто переопределяются (рис. 2.2).

Рис. 2.2. Структура кучи после сборки мусора

Операция сборки мусора   101

Переместились не отдельные объекты, а линии границ.
Уплотнение может произойти при сборке мусора в любом поколении, и это

довольно затратный процесс, поскольку GC должен исправить все ссылки на
имеющиеся объекты, чтобы они указывали на новое место, для чего может потре-
боваться пауза в работе всех управляемых потоков. Из-за такой затратности сбор-
щик мусора станет выполнять уплотнение, только когда это будет продуктивным
действием, что оценивается на основе некоторых внутренних показателей.

Добравшись до gen 2, объект остается там на весь период своего существования.
Это не означает, что gen 2 постоянно разрастается: если объекты в gen 2 в конечном
итоге уничтожаются и в целом сегменте не будет живых объектов, сборщик мусора
сможет возвратить сегмент операционной системе или просто придержать его для
дальнейшего использования. Уменьшение рабочего множества памяти процесса
в ходе сборки мусора не гарантируется.

А что означает понятие «живой объект»? Если GC может добраться до объекта
через любые известные корни GC, следуя по графу ссылок объектов, значит, объект
живой. Корнем могут быть статические переменные в программе, потоки, имеющие
стеки из всех запущенных методов (таким образом ссылающиеся на локальные
переменные), «сильные» дескрипторы сборщика мусора (например, закрепленные
дескрипторы) и очередь финализатора. Следует учесть, что могут существовать
и такие объекты, к которым уже не ведут никакие корни, но если они находятся
в gen 2, то сборка мусора в поколении gen 0 их не очистит. Им придется дождаться
полной сборки мусора.

Если gen 0 начинает заполнять сегмент, а сборка мусора не может выполнить
достаточное уплотнение, GC выделит новый сегмент. В нем будут помещаться
новое поколение gen 1 и gen 0 до тех пор, пока старый сегмент не окажется пре-
образован в gen 2. Все в старом поколении 0 станет частью нового поколения 1,
а старое поколение 1 будет повышено до поколения 2, которое, что удобно, не при-
дется копировать.

Если поколение gen 2 продолжит разрастаться, оно может распространиться на
несколько сегментов. LOH также может распространиться на несколько сегмен-
тов. Независимо от того, как много в них сегментов, поколения 0 и 1 всегда будут
существовать в одном и том же сегменте. Эти знания о сегментах пригодятся чуть
позже, при попытке выяснить, какие объекты и где находятся в куче.

Куча больших объектов живет по другим правилам. Любой объект размером
не менее 85 000 байт автоматически распределяется в LOH и не проходит через мо-
дель поколений (рис. 2.3). Если перефразировать, он распределяется прямо в gen 2.
Единственные типы объектов, размер которых обычно больше 85 000 байт, — это
массивы и строки. Из соображений производительности в LOH в ходе сборки
мусора автоматическое уплотнение не выполняется, поэтому данная куча лег-
ко фрагментируется. Но начиная с версии .NET 4.5.1 появилась возможность
уплотнить ее по требованию. Как и в gen 2, если в LOH память больше не нужна,
ее можно освободить для других частей кучи. Чуть позже будет показано, что
в идеале желания подвергать память в куче больших объектов сборке мусора во-
обще не возникает.

102   Глава 2  •  Управление памятью

Рис. 2.3. Структура кучи после дальнейшего распределения и сборки мусора, вызвавших
распределение новых сегментов

Для определения самого подходящего места для объектов сборщик мусора в LOH
всегда использует список свободных участков памяти. Некоторые технологии со-
кращения уровня фрагментации в данной куче будут рассмотрены в этой главе.

ПРИМЕЧАНИЕ

Если придется разбираться с объектами в LOH в отладчике, станет видно,
что не только она сама может целиком быть меньше 85 000 байт, но и в нее
могут быть распределены объекты меньшего размера. Эти объекты обычно
распределяются средой CLR, и их можно игнорировать.

Сборка мусора запускается в отношении конкретного поколения и всех ни-
жестоящих поколений. Если сборка проводится в gen 1, то она будет выполнена
и в gen 0. Если мусор собирается в gen 2, то сборка выполняется во всех поколениях
и в куче больших объектов. Когда происходит сборка в gen 0 или gen 1, программа
становится на паузу. Сборка в gen 2 может частично происходить в фоновом потоке,
что зависит от параметров конфигурации.

Сборку мусора можно разделить на четыре этапа.

1.	 Приостановка. Перед сборкой все управляемые потоки в приложении делают
вынужденную паузу. Стоит отметить, что приостановка может происходить
только в определенных безопасных точках кода, например на инструкции ret.
Обычные потоки не приостанавливаются и продолжают работу, пока не перей
дут в управляемый код, тогда они тоже будут приостановлены. При наличии
множества потоков существенная часть времени, отведенного на сборку мусора,
может затрачиваться просто на приостановку потоков.

2.	 Установка маркеров. Стартуя из каждого корня, сборщик мусора следует по
каждой ссылке объекта и маркирует замеченные объекты. В число корней вхо-
дят стеки потоков, закрепленные GC-описатели и статические объекты.

3.	 Уплотнение. Сокращение фрагментации памяти путем перемещения объек-
тов и расположения их рядом друг с другом, а также обновления всех ссылок,
чтобы они указывали на новые места. Все это по мере надобности происходит

Операция сборки мусора   103

в куче малых объектов, и проконтролировать эти действия невозможно. В куче
больших объектов автоматического уплотнения вообще не бывает, но есть воз-
можность проинструктировать сборщик мусора, чтобы он выполнил уплотнение
по требованию.

4.	 Возобновление. Разрешение управляемым потокам возобновить выполнение.

На самом деле на этапе установки маркеров обращаться к каждому объекту
в куче не нужно — обход будет выполняться только в ее целевой части. Напри-
мер, при сборке мусора в gen 0 рассматриваются только объекты из поколения
gen 0, а при сборке мусора в gen 1 маркеры будут устанавливаться как в gen 0,
так и в gen 1. А что касается сборки в поколении gen 2 или в куче целиком, то тут
понадобится обход каждого живого объекта в ней, что превращает это действие
в потенциально весьма затратную работу.

Здесь есть еще одна особенность: объект в более высоком поколении может
послужить корнем для объекта в менее высоком поколении. Для отслеживания
объектов между поколениями в GC используется таблица карточек (card table),
представляющая собой двоичный массив, каждому разряду которого соответствует
некоторый диапазон в куче. Разряд устанавливается в «грязный» (dirty) при за-
писи в память в соответствующем диапазоне. При сборке мусора GC будет также
рассматривать в качестве корней любые объекты, расположенные в «грязном»
диапазоне. Таким образом, GC позволяется просматривать только поднабор объ-
ектов в более высоком поколении, затраты на это меньше, чем на полную сборку
для данного поколения.

У рассмотренного поведения есть два важных последствия.
Во-первых, время, затрачиваемое на сборку мусора, практически полностью

зависит от количества живых объектов в подвергаемом сборке поколении, а не
от того, скольким объектам вы выделили память. Следовательно, если выделить
память под дерево из миллиона объектов и отрезать корневую ссылку перед сле-
дующей сборкой мусора, этот миллион объектов абсолютно ничего не добавит
к времени, затраченному на сборку.

Во-вторых, частота сборки мусора определяется в первую очередь объемом памя-
ти, выделенным конкретному поколению. Как только этот объем пройдет внутренний
порог, для данного поколения будет выполнена сборка мусора. Порог постоянно из-
меняется, и GC подстраивается под поведение вашего процесса. Если сборка мусора
в отношении конкретного поколения продуктивна (при ней происходит продви-
жение множества объектов), она будет происходить чаще, и наоборот. Еще одной
не зависящей от вашего приложения причиной сборки мусора является общий
объем доступной памяти на машине. Если он падает ниже конкретного порога,
сборка мусора может происходить чаще — предпринимается попытка сократить
общий объем кучи.

На основе приведенного описания может сложиться мнение, что сборка мусо-
ра не поддается контролю. Но это далеко не так. Обычно можно манипулировать
поведением GC, управляя применяемыми вами схемами выделения памяти.
Для этого нужно понимать, как работает сборщик мусора, как часто вы выделяете

104   Глава 2  •  Управление памятью

память, насколько хорошо контролируете время существования объектов и какие
параметры конфигурации вам доступны. Давайте более пристально приглядимся
к соответствующим параметрам конфигурации.

Подробная структура кучи. После изучения концепций, на которых основана
работа памяти, обратимся к более подробным схемам кучи, полученным в ходе
сеанса работы с отладчиком посредством команды !eeheap -gc (рис. 2.4–2.6).

Рис. 2.4. Исходная структура кучи некоего приложения с эфемерным сегментом и сегментом
больших объектов. Общий объем кучи составляет около 258 Кбайт, из которых 4 Кбайт используются

непосредственно средой CLR. Поколения gen 1 и gen 2 занимают всего по 12 байт каждое

Рис. 2.5. После выделения множества небольших участков и большого массива памяти
эфемерная куча сохранилась неизменной — все границы остались прежними. А вот LOH

расширилась с 17 Кбайт до более чем 400 Кбайт. Затем произойдет GC

Параметры конфигурации   105

Рис. 2.6. После сборки мусора куча больших объектов осталась неизменной, а в эфемерной куче
произошли существенные модификации. Поколение gen 1 сильно увеличилось, а поколение gen 0

соответственно сжалось

Параметры конфигурации
Среда .NET Framework дает не слишком много готовых способов конфигурирования
сборщика мусора. Можно счесть это меньшим количеством патронов, чтобы вы-
стрелить себе в ногу. Сборщик мусора выполняет конфигурирование и настройку
в основном самостоятельно на основе конфигурации вашего оборудования, доступ-
ных ресурсов и поведения приложения. Несколько предоставляемых параметров
предназначены для самого высокоуровневого поведения и определяются главным
образом типом разрабатываемой вами программы.

Сравнение сборки мусора в режиме рабочей станции
и в режиме сервера
Важнее всего выбрать, что использовать для сборки мусора — режим рабочей стан-
ции или серверный режим.

Сборка в режиме рабочей станции устанавливается по умолчанию. В этом слу-
чае вся сборка мусора происходит в том же самом потоке, который его иницииро-
вал, и выполняется с тем же уровнем приоритета. Для несложных приложений, осо-
бенно запускаемых на интерактивных рабочих станциях, где работает множество
управляемых процессов, такой вариант наиболее рационален. Для компьютеров
с одним процессором это единственный возможный вариант, и попытки настроить
какую-либо иную конфигурацию окажутся безрезультатными.

Сборка в режиме сервера приводит к созданию специально выделенного по-
тока для каждого логического процессора или ядра. Такие потоки запускаются

106   Глава 2  •  Управление памятью

с наивысшим уровнем приоритета (THREAD PRIORITY HIGHEST), но всегда содержатся
в приостановленном состоянии, пока не понадобится сборка мусора. Вся сборка
мусора происходит в этих потоках, а не в потоках приложения. После нее они снова
переходят в спящее состояние.

Кроме того, среда CLR создает для каждого процессора отдельную кучу. Внутри
этой кучи имеются кучи малых и больших объектов. С точки зрения вашего прило-
жения это логически одна и та же куча — коду неизвестно, какой куче принадлежат
объекты, и ссылки на них существуют между всеми кучами (все они разделяют
одно и то же адресное пространство).

Наличие нескольких куч дает два преимущества.

�� Сборка мусора происходит в режиме параллельной работы. Каждый GC-поток
выполняет сборку в одной из куч. Тем самым сборка мусора может проходить
значительно быстрее, чем при сборке в режиме рабочей станции.

�� В некоторых случаях выделение памяти может выполняться быстрее, особенно
в куче больших объектов, где память может выделяться сразу во всех кучах.

Есть и другие внутренние различия, например более крупные размеры сегмен-
тов, что может означать более длительные промежутки между сборками мусора.

Конфигурация сборок мусора в режиме сервера находится в файле app.config
внутри элемента <runtime>:

<configuration>
 <runtime>
 <gcServer enabled="true"/>
 </runtime>
</configuration>

Какой из режимов нужно применять — рабочей станции или сервера? Если при-
ложение запускается на машине с несколькими процессорами, предназначенной
только для него, несомненно, следует выбрать серверный режим. Он в большин-
стве ситуаций обеспечит самую короткую задержку. Однако сборка в режиме
сервера предполагает также наличие значительно большего рабочего множества,
следовательно, приближение к ограничениям физической памяти. Чем больше
объектов в памяти, тем больше времени может занять сборка мусора, сводя на нет
преимущества.

В то же время при потребности делить машину между несколькими управля-
емыми процессорами выбор не столь очевиден. Сборка в режиме сервера создает
множество потоков с высоким уровнем приоритета, и если ее выполняют несколько
приложений, они могут отрицательно повлиять друг на друга, вплоть до возникно-
вения конфликтов при диспетчеризации потоков. В таком случае, возможно, стоит
воспользоваться сборкой мусора в режиме рабочей станции.

Если действительно требуется задействовать серверный режим сборки мусора
при нескольких приложениях на одной и той же машине, еще одним вариантом бу-
дет привязка конкурирующих приложений к конкретным процессорам. Среда CLR
создаст кучи только для процессоров, разрешенных для конкретного приложения.

Параметры конфигурации   107

Большинство советов в данной книге применимы к обоим режимам сборки
мусора.

Сборка мусора в фоновом режиме
При сборке мусора в фоновом режиме изменяется порядок обработки сборщиком
мусора поколения gen 2 за счет разрешения ему чаще делать свою работу в фоновом
режиме наряду с выполнением других потоков. Сборка мусора в поколениях gen 0
и gen 1 по-прежнему происходит на первом плане с блокировкой выполнения всех
потоков приложения.

Сборка мусора в фоновом режиме работает за счет наличия выделенного потока
для сборки мусора в поколении 2. Для сборки в режиме сервера будут использо-
ваться еще по одному потоку для каждого логического процессора в дополнение
к потоку, изначально созданному для серверной сборки. Конечно, это означает,
что при использовании сборки в режиме сервера и сборки в фоновом режиме у вас
будет задействовано по два потока на процессор, выделенный для сборки мусора,
но это не вызывает особых опасений. В том, что у процесса множество потоков, нет
ничего особенного, тем более когда большинство из них основную часть времени
ничего не делают. Один поток предназначен для сборки мусора на первом плане
и запускается с наивысшим уровнем приоритета, но основную часть времени он
находится в приостановленном состоянии. Поток для сборки в фоновом режиме
запускается с более низким уровнем приоритета одновременно с потоками ваше-
го приложения и будет приостановлен при активизации потоков сборки мусора,
выполняемых на первом плане, поэтому между одновременно выполняемыми
режимами сборки мусора нет никакой конкуренции.

При использовании сборки мусора в режиме рабочей станции фоновая сборка
включена всегда. Начиная с версии .NET 4.5, она по умолчанию включена и при
серверном режиме сборки мусора, но вы можете ее выключить.

Фоновый режим сборки мусора выключается с помощью следующего параметра
конфигурации:

<configuration>
 <runtime>
 <gcConcurrent enabled="false"/>
 </runtime>
</configuration>

Исходя из своей практики, могу отметить, что причина для выключения сборки
в фоновом режиме вряд ли появится. Отключение обычно приводит к ухудшению
производительности и более частой сборке мусора на первом плане. Если хотите,
чтобы на фоновые потоки сборки мусора вообще не тратилось процессорное время
приложения, но не возражаете против потенциального увеличения времени пол-
ной блокирующей сборки или более частого ее проведения, можете выключить
данный режим. Влияние принятого решения на производительность должно быть
тщательно измерено.

108   Глава 2  •  Управление памятью

Режимы задержки
У сборщика мусора имеется несколько режимов задержки, доступ к большинству
можно получить через свойство GCSettings.LatencyMode. Частая смена режима
крайне нежелательна, но временами она может оказаться полезной.

�� Интерактивный режим является исходным при сборке мусора и используется
при включенном режиме параллельной сборки мусора (который активируется по
умолчанию). Этот режим позволяет проводить сборку мусора в фоновом режиме.

�� Пакетный режим выключает всю одновременную сборку мусора и заставляет
выполнять ее в едином пакете. Он сильно влияет на исполнение программы,
поскольку заставляет ее полностью останавливаться на время сборки мусора.
Регулярно применять его не следует, особенно в программах с пользовательским
интерфейсом.

Есть два режима с низкой задержкой, которыми можно пользоваться в течение
ограниченного времени. Если есть отрезки времени, требующие особенно высокой
производительности, можно заставить сборку мусора не выполняться в поколении
gen 2, где на нее уходит много времени.

�� LowLatency (с низкой задержкой) — только для сборки мусора в режиме рабо-
чей станции, сборка в поколении gen 2 будет подавляться.

�� SustainedLowLatency (стабильный с низкой задержкой) — для сборки мусора
в режиме рабочей станции и серверном режиме. Он будет полностью подавлять
сборку в поколении gen 2, но при этом разрешит фоновую сборку в этом по-
колении. Чтобы этот режим оказался эффективным, нужно включить сборку
мусора в фоновом режиме.

Оба режима существенно увеличат размер управляемой кучи, поскольку уплот-
нения не будет. Если процесс потребляет много памяти, этого следует избегать.

Непосредственно перед входом в один из рассмотренных режимов стоит
принудительно выполнить последнюю полную сборку мусора, вызвав метод
GC.Collect(2, GCCollectionMode.Forced). Как только ваш код выйдет из режима
с низкой задержкой, следует провести еще один сеанс полной принудительной
сборки мусора.

Никогда не нужно пользоваться режимами с низкой задержкой по умолчанию.
Они разработаны для приложений, которые должны исполняться без серьезных
прерываний долгое время, но не 100 % времени. Хорошим примером может по-
служить биржевая торговля. Не хочется, чтобы в часы, когда рынок открыт, проис-
ходила полная сборка мусора. Когда рынок закрывается, этот режим выключается
и до нового открытия рынка выполняется полная сборка мусора.

Включать режим с низкой задержкой допустимо только при выполнении сле-
дующих условий.

�� В обычном режиме работы приложения задержка при полной сборке мусора
недопустима.

Параметры конфигурации   109

�� Приложение использует намного меньше памяти, чем доступно в целом (если
нужен режим с низкой задержкой, следует максимально задействовать физи-
ческую память).

�� Программа способна продержаться до тех пор, пока не выключит режим низкой
задержки, или не перезапустит саму себя, или вручную не выполнит полную
сборку мусора.

�� И наконец, запуская код в среде .NET 4.6, можно объявить области, где сборка
мусора запрещена, воспользовавшись для этого режимом NoGCRegion. Тем самым
будет предпринята попытка ввода сборщика мусора в такой режим, при котором
сборка будет полностью запрещена. Но установить его через это свойство не-
возможно. Вместо этого следует воспользоваться методом TryStartNoGCRegion.

Тут есть некоторые существенные предостережения.

�� При запуске необходимо задать ожидаемый полный объем выделяемой памяти.

�� Запрашиваемый объем не должен превышать размер эфемерного сегмента (ин-
формация о размере сегментов уже приводилась в данной главе).

�� Среда CLR должна иметь возможность немедленно выделить запрашиваемую
память как для кучи малых объектов, так и для кучи больших объектов.

Существует несколько перезагрузок TryStartNoGCRegion. В следующем примере
демонстрируется одна из них со всеми параметрами:

bool success = GC.TryStartNoGCRegion(
 totalSize: 2000000,
 lohSize: 1000000,
 disallowFullBlockingGC: true);

if (success)
{
 try
 {
 // выделение памяти
 }
 finally
 {
 if (GCSettings.LatencyMode == GCLatencyMode.NoGCRegion)
 {
 GC.EndNoGCRegion();
 }
 }
}

Параметр totalSize содержит общее количество байтов, которое предполага-
ется выделить в этом регионе. Параметр lohSize показывает количество, которое
предполагается выделить в куче больших объектов. Разница между totalSize
и lohSize составляет количество, которое предполагается выделить в эфемерной
куче. Оно должно быть меньше или равно размеру эфемерной кучи (приведен

110   Глава 2  •  Управление памятью

в начале этой главы). По умолчанию, если память не может быть выделена средой
CLR, она выполнит полную блокирующую сборку мусора в попытке освободить
пространство памяти. Параметр disallowFullBlockingGC может выключить эту
функциональность.

Только если вызов TryStartNoGCRegion завершится успехом, вы сможете вы-
звать EndNoGCRegion. Вкладывать вызовы TryStartNoGCRegion друг в друга нельзя.

Если выделенная память превысит зарезервированный объем, гарантия больше
не будет действовать и может произойти сборка мусора.

ПРИМЕЧАНИЕ

Абсолютной гарантии работы в режимах с низкой задержкой или без сборки мусора
дать нельзя. Если при дефиците памяти в системе сборщик вынужден выбирать
между выполнением полной сборки и выдачей исключения OutOfMemoryException,
будет выполнена полная сборка, независимо от установленного режима.

Альтернативные режимы задержек используются довольно редко, и следует
дважды подумать, прежде чем применять их: последствия могут оказаться не-
предсказуемыми. Если вы считаете, что они полезны, проделайте тщательные
измерения, чтобы убедиться в своей правоте. Варьируя режимы задержек, можно
вызвать другие проблемы производительности, например выполнение большего
количества эфемерных сборок в поколениях 0 и 1 в попытке справиться с нехват-
кой полных сборок мусора. Может получиться так, что вы поменяете один набор
проблем на другой.

Большие объекты
По умолчанию количество элементов массивов ограничивается величиной
UInt32.MaxValue, а фактический размер — объемом 2 Гбайт. Используя параметры
конфигурации, можно допустить создание более крупных массивов, но максималь-
ное количество элементов при этом останется прежним:

<configuration>
 <runtime>
 <gcAllowVeryLargeObjects enabled="true" />
 </runtime>
</configuration>

Это позволит 64-разрядным процессам использовать массивы, превышающие
по размеру 2 Гбайт. Тем не менее:

�� максимальное количество элементов по-прежнему определяется значением
параметра UInt32.MaxValue (4 294 967 295);
�� максимальный индекс в любом измерении составляет 2 147 483 591 для масси-

вов однобайтовых элементов или 2 146 435 071 для других типов;
�� максимальный размер других объектов не изменяется.

Параметры конфигурации   111

Дополнительные параметры
Некоторые параметры сборки мусора должны быть настроены перед запуском про-
цесса, поскольку они требуются в ходе инициализации среды CLR. Как правило,
необходимость в этих настройках будет возникать крайне редко, и каждый такой
случай требует строгого разбирательства.

Эти настройки конфигурируются через переменные среды окружения, значения
которых устанавливаются в командной строке перед запуском процесса, который
получит копию текущей среды окружения.

Ограничение количества куч
В серверном режиме сборки мусора для каждого процессора создаются куча и как
минимум один поток. Временами вам может потребоваться применить для сборки
мусора меньшее количество процессоров, возможно, в сочетании с изменением
маски привязки процессоров для приложения:

// Ограничение на использование первых 16 процессоров
Process currentProcess = Process.GetCurrentProcess();
long mask = (long)currentProcess.ProcessorAffinity;
mask &= 0xFFFF;
currentProcess.ProcessorAffinity = (IntPtr)mask;

Если приложение запускается с уже примененной маской привязки процес-
соров, сборщик мусора, запущенный в серверном режиме, будет автоматически
ограничивать количество создаваемых им куч и потоков для сборки мусора.

Однако этим также ограничивается количество процессоров, доступных при-
ложению для выполнения основной работы. Если нужно, чтобы приложение ис-
пользовало все процессоры для собственной работы, а сборщик мусора запускался
только на поднаборе таких процессоров, следует установить соответствующее
значение для переменной GCHeapCount, введенной в CoreCLR в середине 2016 года,
или в среде .Net Framework 4.7.

SET COMPLUS_GCHeapCount=<n>

Этот параметр применим только при использовании серверного режима сбор-
ки мусора. Замените <n> значением, меньшим, чем количество задействованных
логических процессоров.

Этим параметром можно воспользоваться, если требуется получить преимуще-
ства, предлагаемые серверным режимом сборки мусора, но необходимо ограничить
количество ЦП, используемых в ходе сборки. Поскольку при серверном режиме
сборка мусора выполняется с высоким уровнем приоритета, наличие потока, прихо-
дящегося на каждое ядро, будет останавливать все остальные процессы, запущенные
на машине. Обычно это соответствует архитектуре и предполагается, что приложе-
ние с серверной сборкой мусора «владеет» машиной, но если некоторые процессоры
требуется освободить, применяется этот параметр. Например, при задействовании
64-процессорного сервера может возникнуть желание использовать параллелизм
и быстрые выделенные потоки сборки мусора, но если нужно быть экономными

112   Глава 2  •  Управление памятью

и не держать другие процессы при сборке мусора на голодном пайке, то наличие
64 куч — это за гранью разумного. Кроме того, если суммарные требования к памяти
более скромны, уменьшится объем издержек на применение памяти.

Отключение привязки потока сборщика мусора
В обычных обстоятельствах при серверном режиме сборки мусора каждый поток
сборщика мусора привязан по запуску к конкретному логическому процессору.
Это означает, что в ходе сборки мусора, по сути, гарантировано следующее: поток
сборки мусора захватит процессор как поток с наивысшим приоритетом.

Используя настройку:

SET COMPLUS_GCNoAffinitize=1

можно отключить привязку, что позволит потокам сборки мусора запускаться на
любом доступном процессоре. Она обеспечит лучшее взаимодействие процесса
сборки мусора в режиме сервера с другими процессами.

Эта настройка спроектирована для хорошей работы совместно с COMPLUS_
GCHeapCount, когда оптимизируется взаимодействие между приложением со сбор-
кой мусора в режиме сервера и другими процессами, запущенными на машине.

Включение данного режима явно объявляет о желании достичь более высокого
уровня взаимодействия при меньшем уровне эксклюзивности. Это означает, что
улучшить производительность приложения за счет данной настройки не получится,
но она может повысить общую производительность системы.

Проверка кучи
При оптимизации кода с целью получения наивысших показателей производи-
тельности, к сожалению, предпринимаются попытки срезать угол, которые могут
привести к ошибкам наподобие повреждения состояния программы или даже самой
структуры кучи. Повреждение кучи в .NET-приложениях — это практически всегда
результат выполнения дефектного неуправляемого кода в том же самом процессе.
Впрочем, такое возможно и в приложениях исключительно с управляемым кодом
и может служить признаком ошибки внутри самой среды CLR. В таком случае
отладка может быть крайне затруднена, поскольку сбой не будет происходить
в каком-то определенном месте.

Для проверки кучи в отладчике можно воспользоваться командой !VerifyHeap:

0:006> !VerifyHeap
object 04b05980: bad member 00000066 at 04B05984
Last good object: 04B057E4.
0:006> !do 04B057E4
Name: System.Int32[]
MethodTable: 62281938
EEClass: 61e09600
Size: 412(0x19c) bytes
Array: Rank 1, Number of elements 100, Type Int32
Fields:
None

Советы по повышению производительности   113

Кроме того, специально довести кучу до состояния, когда будут четко обозна-
чены ее проблемы, может оказаться нелегко. При сборке мусора куча способна на-
ходиться в промежуточном состоянии, поэтому нужно гарантировать выполнение
проверки в тот момент, когда не идет сборка мусора.

Существует несложный способ добиться этого вне отладчика. Можно включить
режим, заставляющий кучу подвергаться проверке до или после каждой сборки
мусора:

SET COMPLUS_HeapVerify=1

Включение режима проверки кучи приведет к снижению производительности,
поскольку каждая сборка мусора теперь будет принудительно проверять кучу, то
есть выполнять процесс, занимающий больше времени в зависимости от размера
используемой кучи. При обнаружении повреждения будет выдано исключение,
а процесс прекращен.

Советы по повышению производительности

Сокращайте размеры выделяемой памяти
Практически само собой разумеется, что уменьшение количества выделяемой памя-
ти влечет за собой уменьшение рабочей нагрузки на сборщик мусора. Можно также
сократить фрагментацию памяти и степень использования ЦП. Для достижения
этой цели нужно проявить творческий подход, но он может конфликтовать с дру-
гими целями разработки.

Дайте критическую оценку каждому объекту и задайте себе следующие во-
просы.

�� Нужен ли вообще этот объект?

�� Если ли у него поля, от которых можно избавиться?

�� Можно ли сократить размер массивов?

�� Можно ли сократить размер базовых элементов, например, с Int64 до Int32?

�� Используются ли некоторые объекты исключительно в крайне редко складыва-
ющихся обстоятельствах, в силу чего могут быть проинициализированы только
по мере надобности?

�� Можно ли преобразовать некоторые классы в структуры, чтобы они размеща-
лись в стеке или существовали в виде части другого объекта и не создавали
издержек, связанных с созданием каждого экземпляра?

�� Не выделяется ли слишком много памяти, притом что задействуются только
небольшие ее части?

�� Нельзя ли получить эту же информацию, но каким-нибудь иным способом?

�� Нельзя ли выделить память заранее?

114   Глава 2  •  Управление памятью

ИСТОРИЯ

На сервере, обрабатывающем запросы пользователей, обнаружилось, что один из
типов частых запросов вызывает выделение памяти, превышающей по размеру
сегмент кучи. Поскольку среда CLR ограничивает максимальный размер сегментов,
а поколение gen 0 должно располагаться в одном сегменте, мы гарантированно
получали сборку мусора при каждом запросе. Ситуация сложилась не из прият-
ных, поскольку для решения данной проблемы существует немного альтернатив,
помимо сокращения размера выделяемой памяти.

Самое важное правило
Существует основное правило для высокопроизводительного программирования,
касающееся сборщика мусора. По сути, сборщик мусора был явно разработан с при-
целом на то, чтобы проводить сборку мусора в поколении gen 0 или не проводить
ее вообще.

Иными словами, нужно стремиться к созданию объектов с экстремально корот-
ким временем существования, чтобы сборщик мусора никогда их не касался, а если
добиться этого невозможно, чтобы они как можно скорее попадали в поколение
gen 2 и оставались там навсегда, никогда не подвергаясь сборке мусора. Это означа-
ет неизменное задействование ссылок на долгоживущие объекты, а зачастую также
создание пула переиспользуемых объектов (особенно это относится к чему-либо
в куче больших объектов).

Сборка мусора становится более затратной в каждом поколении. Нужно, чтобы
она чаще проходила в поколениях gen 0/1 и лишь изредка — в поколении gen 2.
Даже при сборке мусора в поколении gen 2 в фоновом режиме все равно возникнут
затраты процессорного времени, которых могло бы и не быть: процессор должен
применяться для остальной части вашей программы.

ПРИМЕЧАНИЕ

Возможно, вы слышали миф о том, что у вас должно быть десять сборок мусора
в поколении gen 0, приходящихся на каждую сборку в поколении gen 1, и десять
сборок мусора в поколении gen 1, приходящихся на каждую сборку в поколении
gen 2. Это неправда. Поймите: вам нужно, чтобы было множество быстрых сборок
в поколении gen 0 и очень мало весьма затратных сборок — в поколении gen 2.

Следует избегать перехода объектов в поколение gen 1, поскольку со временем
они станут кандидатами на переход в поколение gen 2. Поколение gen 1 служит для
них своеобразным буфером, прежде чем они попадут в поколение gen 2.

В идеале каждый выделяемый объект к моменту появления следующего gen 0
выходит из области видимости. Можно измерить продолжительность этого ин-
тервала и сравнить полученный результат с продолжительностью жизни данных

Советы по повышению производительности   115

в вашем приложении. Порядок использования инструментальных средств для
обнаружения этой информации будет показан в конце главы.

Если вы не привыкли руководствоваться этим правилом, то его выполнение
потребует основательно изменить свои взгляды. Им будет обосновываться прак-
тически каждый аспект вашего приложения, поэтому выработайте привычку при-
менять его как можно раньше и вспоминайте о нем как можно чаще.

Сокращайте время существования объекта
Чем короче время существования объекта, тем меньше вероятность его продвижения
в следующее поколение при сборке мусора. Как правило, не нужно выделять память
под объекты, пока в них не возникнет насущная необходимость. Исключением
могут стать такие высокие затраты на создание объекта, что целесообразнее будет
создать его на ранней стадии, когда он не будет мешать другой работе.

На другом конце жизненного цикла объектов нужно обеспечить, чтобы они как
можно скорее вышли из области видимости. Для локальных переменных этот мо-
мент может настать после их последнего локального использования, даже до завер-
шения метода. Можно лексически сузить его область видимости, воспользовавшись
фигурными скобками { }, но, вероятнее всего, это не будет иметь никакого практи-
ческого значения, поскольку компилятор обычно сам распознает, когда логический
объект больше не применяется. Если в вашем коде операции над объектом разнесены
по разным участкам, постарайтесь сократить время между первым и последним ис-
пользованием, чтобы сборщик мусора смог подобрать объект как можно раньше.

Изредка может возникнуть потребность в явном исключении ссылки на времен-
ный объект путем присвоения ей значения null, если он является элементом или
статическим полем долгоживущего объекта. Это нужно делать только в том случае,
когда требуется воспрепятствовать сборщику мусора в продвижении этого объекта
в следующее поколение. Сначала попробуйте изменить конструкцию, чтобы ссыл-
ка стала локальной переменной, где время существования объекта — не слишком
большая проблема. Если будет принято решение избавиться от поля, присвоив
ему значение null, код может несколько усложниться, поскольку появится боль-
ше проверок на null по всему коду. Кроме того, это может создать противоречия
между эффективностью и постоянной доступностью полного состояния, особенно
при отладке. Один из вариантов обхода данной проблемы заключается в преобра-
зовании объекта, от которого нужно избавиться путем присвоения значения null,
в иную форму. Например, сериализовать иерархию XML-документа в строку или
преобразовать временный объект состояния в сообщение в логе, которое может
более эффективно записать состояние для последующей отладки. Необходимость
в применении этого метода обычно возникает только в отношении больших вре-
менных графов объектов, существующих в полях для удобства.

Еще один способ достижения желаемого баланса кроется в переменном по-
ведении: запустите программу (или ее определенную часть, скажем, только для
конкретного запроса) в режиме, который не присваивает ссылкам значение null,
а сохраняет их как можно дольше для облегчения отладки.

116   Глава 2  •  Управление памятью

Сбалансируйте выделение
Как уже упоминалось в начале главы, сборщик мусора работает, переходя по ссыл-
кам объекта. При сборке мусора в режиме сервера он делает это сразу в нескольких
потоках. Параллелизм стоит использовать как можно чаще, но если один поток
попадает на слишком длинную цепочку вложенных объектов, весь процесс сборки
мусора не завершится, пока не закончит свою работу этот долгоиграющий поток.
Кроме того, если некий поток выделит больше памяти, чем остальные, он будет
инициировать сборку мусора чаще, чем в случае, если бы такие же выделения вы-
полнялись в нескольких кучах.

Нам помогут алгоритмы балансировки нагрузки. Когда сборщик мусора обна-
ружит, что кучи стали разбалансированными, он приступит к принудительному
выделению памяти в разных кучах. Такая функциональная возможность в отноше-
нии куч малых объектов имеется для многих версий среды CLR, но балансировка
куч больших объектов появилась только в версии 4.5. Те ядра, которые закончили
работу по сборке мусора, могут взять на себя работу из других куч.

С появлением у сборщика мусора этих функциональных возможностей про-
блемы с разбалансированностью куч стали менее актуальными. Но если есть подо-
зрения, что сборка выполнятся слишком часто или в работе сборщика возникают
длительные паузы, возможно, стоит проверить код на наличие глубоких древовид-
ных структур объектов или потока, склонного к более частому выделению памяти.

Если найдется какой-нибудь поток, несущий ответственность за подавляющую
часть случаев выделения памяти, найдите способы, позволяющие разделить эту
ответственность между потоками. Убедитесь в использовании объектов Task или
пула потоков, чтобы уравнять возможности обработки разными потоками разных
запросов. Избегайте схемы, при которой один поток обрабатывает очередь запро-
сов и выполняет основную часть выделений памяти, прежде чем передать работу
другим потокам для завершения обработки.

Сократите количество ссылок между объектами
Сборщик мусора потратит больше времени на обход объектов, содержащих мно-
жество ссылок на другие объекты. Большая пауза в работе сборщика зачастую
является признаком большого и сложного графа объектов.

Еще одна опасность заключается в существенном усложнении предсказания
сроков существования объектов, если нельзя легко определить все возможные
ссылки на них. В данном случае упрощение не только является достойной целью
для применения разумных приемов программирования, но и облегчает отладку
и решение проблем производительности.

Следует также понимать, что сделать работу сборщика мусора неэффективной
могут ссылки между объектами разных поколений, в особенности от более старых
объектов к более новым. Если объект, относящийся к поколению 2, ссылается на
объект в поколении 0, то при каждой сборке мусора в поколении 0 часть объектов

Советы по повышению производительности   117

поколения 2 также будет просканирована, чтобы убедиться в том, что ими по-
прежнему удерживается ссылка на объект поколения 0. Это, конечно, менее за-
тратная процедура, чем полная сборка мусора, но все же ненужная работа, если
подобных ссылок можно избежать.

Избегайте закреплений
Закрепление объекта фиксирует его на месте, не позволяя сборщику мусора его
перемещать. Закрепление существует для того, чтобы можно было без опасений
передавать ссылки на управляемую память неуправляемому коду. Чаще всего оно
задействуется для передачи неуправляемому коду массивов или строк, а также
получения непосредственного зафиксированного доступа к структурам данных или
полям. При отсутствии взаимодействия с неуправляемым кодом и небезопасного
кода потребности в закреплении вообще не возникает. Но даже если избегать
явного закрепления вашего собственного кода, есть много часто используемых API,
которые без него все равно не обходятся.

Хотя сами по себе операции закрепления не особо затратны, они отрицательно
влияют на сборку мусора, увеличивая вероятность фрагментации. Сборщик мусора
отслеживает закрепленные объекты, чтобы можно было задействовать свободные
пространства между ними, но слишком большое количество закреплений все же
способно вызвать фрагментацию и разрастание кучи.

Закрепление может быть явным или неявным. Явное закрепление выполняется
с использованием GCHandle типа GCHandleType.Pinned или ключевого слова fixed
и должно находиться внутри кода, помеченного как небезопасный — unsafe. Разница
между применением fixed или GCHandle аналогична разнице между using и явным
вызовом Dispose. Ключевое слово fixed удобнее в использовании, но не может
применяться в асинхронных ситуациях, в то время как GCHandle можно передавать
между функциями и избавиться от него в функции обратного вызова.

Неявное закрепление встречается чаще, но его может быть труднее обнару-
жить и сложнее удалить. Наиболее явным источником закрепления будут любые
объекты, переданные неуправляемому коду через вызов неуправляемого кода —
Platform Invoke (P/Invoke). Это не только ваш собственный код, это могут сделать
и зачастую делают управляемые API, вызывающие обычный, неуправляемый код,
требующий закрепления.

В среде CLR также будут существовать закрепленные объекты в ее собственной
структуре данных, но обычно это не должно вызывать никаких опасений.

В идеале нужно избегать закреплений настолько, насколько это возможно.
Если же это невозможно, придерживайтесь тех же правил, что и для сборки му-
сора: максимально сокращайте время существования. Если объекты закреплены
ненадолго, меньше вероятность, что они повлияют на следующую сборку мусора.
Нужно также избегать одновременного наличия слишком большого количества
закрепленных объектов. Обычно закрепление объектов, находящихся в поколе-
нии gen 2 или в LOH, вполне приемлемо, поскольку эти объекты вряд ли будут

118   Глава 2  •  Управление памятью

куда-нибудь перемещены. Это может привести к стратегии, предусматривающей
либо выделение больших буферов в куче больших объектов и выделение части из
них по мере надобности либо выделение небольших буферов в куче малых объектов
(но тогда перед закреплением надо обеспечить продвижение закрепляемых объек-
тов в поколение gen 2). Для этого от вас понадобятся определенные управляющие
действия, которые могут позволить полностью избежать присутствия закреплен-
ных буферов в ходе сборки мусора в поколении gen 0.

Избегайте финализаторов
Создавать финализатор без особой надобности не стоит. Под финализаторами по-
нимается код, запускаемый на выполнение сборщиком мусора с целью очищения
неуправляемых ресурсов. Финализаторы вызываются из одного потока поочередно
и только после того, как сборщик мусора, закончив работу, объявит объект неисполь-
зуемым. Это означает, что при условии реализации в вашем классе финализатора
вы гарантируете, что он будет оставаться в памяти даже после сборки мусора, при
которой сборщик должен был от него избавиться. Также при этом предусматри-
вается дополнительное выполнение учета при каждой сборке мусора, поскольку
список финализаторов нуждается в постоянном обновлении при перемещении
объекта. Все это снижает общую эффективность сборки мусора и гарантирует, что
ваша программа затратит более весомые ресурсы на очистку объекта.

Но это еще не все. Под объект с финализатором память выделяется медленнее.
Вместо того чтобы пустить распределитель по «быстрому пути», системе приходит-
ся заниматься дополнительным учетом, обеспечивающим отслеживание времени
существования объекта со стороны сборщика мусора.

При реализации финализатора нужно также реализовать интерфейс IDisposable,
чтобы позволить выполнять явную очистку, и сделать в методе Dispose вызов
GC.SuppressFinalize(this), чтобы удалить объект из очереди на финализацию.
При условии вызова Dispose до следующей сборки он вычистит объект должным
образом, исключая необходимость запуска финализатора. Правильное применение
этой схемы показано в следующем примере. Заметьте, что реализовать паттерн
Dispose можно, а зачастую и нужно без реализации финализатора.

class Foo : IDisposable
{
 private bool disposed = false;
 private IntPtr handle;
 private IDisposable managedResource;
 ~Foo() // Финализатор
 {
 Dispose(false);
 }

 public void Dispose()
 {
 Dispose(true);

Советы по повышению производительности   119

 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (this.disposed)
 {
 return;
 }
 if (disposing)
 {
 // Из финализатора это делать небезопасно
 this.managedResource.Dispose();
 }

 // Очистка неуправляемых ресурсов,
 // которую безопасно проводить в финализаторе
 UnsafeClose(this.handle);

 // Если базовый класс является объектом типа IDisposable,
 // необходимо также вызвать base.Dispose(disposing);

 this.disposed = true;
 }
}

Вся логика очистки сконцентрирована в методе Dispose(bool). Весь остальной
код просто вызывает это метод. Переменная disposing показывает, вызвал ли раз-
работчик Dispose явно. Если так и было, значит, использовать Dispose будет без-
опасно для всех ресурсов. Но если этот метод вызван через финализатор, значит,
нет никаких гарантий того, что любые объекты, на которые есть ссылки, все еще
валидны. Следовательно, безопасно в этом методе могут быть очищены только те
неуправляемые ресурсы, которые принадлежат этому объекту явно. В контексте
финализатора о состоянии объектов, на которые ссылается данный объект, может
быть сделано очень мало предположений. Код должен быть простым и затрагивать
только ту память, которая гарантированно принадлежит только этому объекту
и валидна. Обычно это означает, что нельзя работать с любым другим финализи-
руемым (Finalizable) или освобождаемым (Disposable) объектом, кроме случаев,
когда можно гарантировать их валидность.

Сделайте виртуальной только protected-версию Dispose и позвольте ей быть
переопределенной дочерними типами. В поле disposed отслеживается, был ли объект
уже освобожден, позволяя методу Dispose быть вызванным более одного раза.

Методы Dispose и финализаторы никогда не должны выдавать исключения.
Если исключение произойдет в ходе выполнения кода финализатора, процесс будет
прерван. Финализаторы также должны быть очень осторожны, выполняя любого
рода операции ввода-вывода, даже такие простые, как логирование.

Важно реализовать этот паттерн правильно, чтобы гарантировать его коррект-
ную работу с полиморфными типами. Нужно будет принимать решение, следует ли

120   Глава 2  •  Управление памятью

применять на практике финализаторы в отношении базовых типов, которые сами
не имеют неуправляемых ресурсов, но могут иметь производные типы с такими
ресурсами. В некоторых случаях может потребоваться принести производитель-
ность в жертву корректности, но этого следует избегать.

Любой тип, содержащий экземпляры других IDisposable-типов, должен сам
реализовывать IDisposable. Вследствие этого IDisposable может распространиться
по вашим структурам данных. При правильной реализации все ресурсы могут быть
легко освобождены простым вызовом Dispose для корневого IDisposable.

ПРИМЕЧАНИЕ

Наверное, вам уже приходилось слышать, что финализаторы гарантированно
выполнятся. В целом это верно, но есть исключения. При принудительном за-
вершении программы никакой код больше не выполняется и процесс немедленно
прекращается. Поток финализатора активизируется сборкой мусора, следователь-
но, при ее отсутствии финализаоры запущены не будут. Существует также лимит
времени, ограничивающий продолжительность выполнения всех финализаторов
при завершении процесса. Если ваш финализатор находится в конце списка,
он может быть пропущен. Более того, поскольку финализаторы выполняются
последовательно, если внутри следующего финализатора имеется ошибочно до-
пущенный бесконечный цикл, все последующие финализаторы никогда не будут
запущены. Это может привести к утечкам памяти. Исходя из всех этих причин,
не стоит полагаться на финализаторы в надежде достичь состояния завершенной
очистки внешних по отношению к вашему процессу ресурсов.

Избегайте выделения больших объектов
Не все выделенные объекты попадают в одну и ту же кучу. Объекты, превыша
ющие определенный размер, попадают в кучу больших объектов и тут же оказы-
ваются в поколении gen 2. Для понятия «большой объект» после статистического
анализа программ того времени была установлена граница 85 000 байт. Любой
объект этого и большего размера считается большим и попадает в отдельную
кучу.

Выделения объектов в большую кучу следует избегать, насколько это возможно.
И не только из-за того, что сборка мусора из этой кучи обходится дороже, — с ней
выше вероятность возникновения фрагментации, вызывающей со временем без-
граничный рост расхода памяти. Постоянное выделение в кучу больших объектов
посылает сборщику мусора четкий сигнал о необходимости постоянно выполнять
сборки, а в такую ситуацию попадать крайне нежелательно.

Во избежание этих проблем нужен строгий контроль над тем, что именно ваша
программа помещает в кучу больших объектов. Все, что туда попадает, должно
жить в течение всей жизни программы и многократно использоваться по мере не-
обходимости с помощью пула.

Советы по повышению производительности   121

Куча больших объектов не подвергается автоматическому уплотнению, но
начиная с версии .NET 4.5.1 уплотнение можно задать программным путем.
Однако задействовать эту возможность можно только в крайнем случае, поскольку
уплотнение вызовет слишком большую паузу в работе. Прежде чем пояснить, как
это делается, в следующих нескольких разделах поговорим о том, как не попасть
в такую ситуацию.

Избегайте копирования буферов
Копирования данных нужно избегать, где только можно. Предположим, к примеру,
что файловые данные считаны в поток данных в память MemoryStream (предпочти-
тельно с пулом, если нужны большие буферы). После соответствующего выделе-
ния памяти эту ее область нужно рассматривать как предназначенную только для
чтения, и любой компонент, которому нужен доступ к ней, будет читать из одной
и той же копии данных.

Часто требуется возможность получить доступ к поддиапазонам буфера, мас-
сива или диапазона памяти. Сейчас среда .NET предоставляет два способа выпол-
нения этого требования.

Первый вариант, доступный только для массивов, заключается в использовании
структуры ArraySegment<T> для представления лишь части исходного массива.
Этот ArraySegment может быть роздан API независимо от исходного потока данных,
можно даже прикрепить именно к этому сегменту новый MemoryStream. В ходе этого
процесса никакого копирования данных не происходит.

var memoryStream = new MemoryStream(2048);
var segment = new ArraySegment <byte >(memoryStream.GetBuffer(),
 100,
 1024);
...
var blockStream = new MemoryStream(segment.Array,
 segment.Offset,
 segment.Count);

Самая большая проблема при копировании памяти связана не с центральным
процессором, а со сборкой мусора. Если все же потребуется скопировать буфер, по-
пробуйте скопировать его в другой буфер из пула или уже существующий буфер
во избежание нового выделения памяти.

Более новый вариант представления частей уже существующих буферов преду
сматривает использование структуры Span<T>. Чтобы воспользоваться соответствую-
щей библиотекой, следует обзавестись NuGet-пакетом System.Memory и задейство-
вать среду Visual Studio 2017.

Структура Span<T> похожа на массив в том смысле, что она представляет непре-
рывный блок памяти. А разница в том, что можно заключить управляемую память,
неуправляемую память и память стека в одну и ту же абстракцию. Что касается
неуправляемой памяти, эту структуру можно рассматриваться как смарт-оболочку,
выполняющую арифметические действия над указателями.

122   Глава 2  •  Управление памятью

Следующие примеры применения Span<T> взяты из проекта Span в примере
кода, сопровождающего книгу.

В первом примере создаются стандартный байтовый массив в управляемой куче
и извлечение, охватывающее некоторую часть массива (так же легко оно может
охватывать и весь массив).

{
...
 byte[] array = new byte[] {0, 1, 2, 3};
 Span<byte> byteSpan = new Span<byte >(array , 1, 2);
 PrintSpan(byteSpan);
 ...
}

private static void PrintSpan <T>(Span<T> span)
{
 for (int i = 0; i < span.Length; i++)
 {
 ref T val = ref span[i];
 Console.Write(val);
 if (i < span.Length - 1) { Console.Write(", "); }
 }
 Console.WriteLine();
}

Этот код выведет такие данные:

1, 2

В следующем примере для создания оболочки массива, размещенного в стеке,
используется Span<T>:

Unsafe
{
 int* stackMem = stackalloc int[4];
 Span<int> intSpan = new Span<int>(stackMem , 4);
 for (int i=0;i<intSpan.Length;i++)
 {
 intSpan[i] = 13 + i;
 }
 PrintSpan(intSpan);

}

Как видите, для заключения данного массива в оболочку используется точно
такая же семантика и тот же самый вспомогательный метод может быть применен
для вывода значений. Он выведет следующие данные:

13, 14, 15, 16

Очередной пример немного сложнее. Когда происходит выделение из обычной
кучи, нужно указать количество выделяемых байтов, а когда в оболочку Span<T>
заключается неуправляемая память, назначаются типы этой памяти, следовательно,
длина извлечения определяется количеством объектов, а не байтов. Здесь данное

Советы по повышению производительности   123

обстоятельство учитывается перед выделением путем умножения размера жела
емых объектов на их количество:

unsafe
{
 const int ObjectCount = 4;
 int memSize = sizeof(int) * ObjectCount;
 IntPtr hNative = Marshal.AllocHGlobal(memSize);
 Span<int> unmanagedSpan = new Span<int>(hNative.ToPointer(),
 ObjectCount);
 for (int i = 0; i < unmanagedSpan.Length; i++)
 {
 unmanagedSpan[i] = 100 + i;
 }
 PrintSpan(unmanagedSpan);
 Marshal.FreeHGlobal(hNative);
}

Этот код выведет следующие данные:

100, 101, 102, 103

В заключительном примере используется один из методов расширения, вклю-
ченный в библиотеку для преобразования строки в тип ReadOnlySpan<char>. К со-
жалению, взаимосвязи между Span<T> и ReadOnlySpan<T> нет, поскольку в Span<T>
для предотвращения копирования значений применяется семантика возвращений
по ссылке. Это означает, что для вывода значений нужен отдельный вспомогатель-
ный метод.

{
...
 ReadOnlySpan <char> subString =
 "NonAllocatingSubstring".AsSpan().Slice(13);
 PrintSpan(subString);
...
}

private static void PrintSpan <T>(ReadOnlySpan <T> span)
{
 for (int i = 0; i < span.Length; i++)
 {
 T val = span[i];
 Console.Write(val);
 if (i < span.Length - 1) { Console.Write(", "); }
 }
 Console.WriteLine();
}

Вывод этого кода будет выглядеть следующим образом:

S, u, b, s, t, r, i, n, g

Существуют также вспомогательные методы для преобразования массивов
и структур ArraySegment в структуры Span<T>.

124   Глава 2  •  Управление памятью

Объединяйте долгоживущие и большие объекты в пулы
Следует помнить о ранее сформулированном главном правиле: объекты существуют
либо недолго, либо всегда. Они должны или уходить в поколении gen 0, или навсе
гда оставаться в поколении gen 2. Некоторые объекты статичны по своей сути, они
создаются и сохраняются в течение всего жизненного цикла программы естествен-
ным образом. Остальным объектам, очевидно, не нужно оставаться вечными, но их
естественное время существования в контексте вашей программы гарантирует им
жизнь более длительную, чем период сборки мусора в поколении gen 0 (и, может
быть, gen 1). Эти типы объектов — кандидаты на объединение в пулы. Еще одним
серьезным кандидатом на объединение в пулы является любой объект, размещаемый
в куче больших объектов, — обычно имеются в виду коллекции.

Единого способа объединения в пулы не существует, как не существует и стан-
дартного API такого объединения, на который можно было бы положиться. По сути,
вы сами должны разработать способ, работающий для вашего приложения, и вы-
брать конкретные объекты для объединения в пул.

Один из способов, позволяющих отнести объекты к разряду объединяемых
в пул, заключается в превращении управляемого обычным порядком ресурса
(памяти) в нечто, чем придется управлять явным образом. В среде .NET уже есть
шаблон для работы с конечными управляемыми ресурсами, который называется
IDisposable. Правильная реализация этого шаблона нам уже встречалась. Разумная
конструкция предполагает выведение нового типа с реализацией в нем интерфейса
IDisposable, в котором метод Dispose помещает объединяемый объект обратно
в пул. Для пользователей данного типа это будет убедительным сигналом о не-
обходимости особого отношения к этому ресурсу.

Реализация разумной стратегии объединения в пул дается нелегко и может все-
цело зависеть от того, как ваша программа должна его использовать, а также какие
типы объектов нуждаются в объединении. Рассмотрим код, показывающий один
из примеров простого класса объединения в пул, чтобы вы смогли понять, что для
этого нужно. Этот код взят из учебной программы PooledObjects:

interface IPoolableObject : IDisposable
{
 int Size { get; }
 void Reset();
 void SetPoolManager(PoolManager poolManager);
}

class PoolManager
{
 private class Pool
 {
 public int PooledSize { get; set; }
 public int Count { get { return this.Stack.Count; } }
 public Stack <IPoolableObject > Stack { get; private set; }
 public Pool()

Советы по повышению производительности   125

 {
 this.Stack = new Stack <IPoolableObject >();
 }

 }
 const int MaxSizePerType = 10 * (1 << 10); // 10 MB

 Dictionary <Type, Pool> pools =
 new Dictionary <Type, Pool >();

 public int TotalCount
 {
 get
 {
 int sum = 0;
 foreach (var pool in this.pools.Values)
 {
 sum += pool.Count;
 }
 return sum;
 }
 }

 public T GetObject <T>()
 where T : class , IPoolableObject , new()
 {
 Pool pool;
 T valueToReturn = null;
 if (pools.TryGetValue(typeof(T), out pool))
 {
 if (pool.Stack.Count > 0)
 {
 valueToReturn = pool.Stack.Pop() as T;
 }
 }
 if (valueToReturn == null)
 {
 valueToReturn = new T();
 }
 valueToReturn.SetPoolManager(this);
 pool.PooledSize -= valueToReturn.Size;
 return valueToReturn;
 }

 public void ReturnObject <T>(T value)
 where T : class , IPoolableObject , new()
 {
 Pool pool;
 if (!pools.TryGetValue(typeof(T), out pool))
 {
 pool = new Pool();

126   Глава 2  •  Управление памятью

 pools[typeof(T)] = pool;
 }

 if (value.Size + pool.PooledSize <= MaxSizePerType)
 {
 pool.PooledSize += value.Size;
 value.Reset();
 pool.Stack.Push(value);
 }
 }
}

class MyObject : IPoolableObject
{
 private PoolManager poolManager;
 public byte[] Data { get; set; }
 public int UsableLength { get; set; }

 public int Size
 {
 get { return Data != null ? Data.Length : 0; }
 }

 void IPoolableObject.Reset()
 {
 UsableLength = 0;
 }

 void IPoolableObject.SetPoolManager(
 PoolManager poolManager)
 {
 this.poolManager = poolManager;
 }

 public void Dispose()
 {
 this.poolManager.ReturnObject(this);
 }
}

Заставлять объединяемые в пул объекты иметь реализацию специализирован-
ного интерфейса может показаться обременительным, но, помимо удобства, этим
подчеркивается весьма важный факт: чтобы воспользоваться объединением в пул
и повторно применять объекты, вам нужно хорошо в них разобраться и взять их
под контроль. Всякий раз перед возвращением их в пул код должен сбрасывать их
в известное безопасное состояние. Это означает, что бездумно объединять в пулы
сторонние объекты напрямую нельзя. Реализуя собственные объекты со специа
лизированным интерфейсом, вы подаете весьма четкий сигнал о том, что объекты
имеют особый характер. В первую очередь следует опасаться объединения в пулы
объектов из среды .NET Framework.

Советы по повышению производительности   127

Очень сложно объединять в пулы коллекции из-за их особенностей — не хо-
чется разрушать существующее хранилище данных (в конце концов, весь смысл
объединения в пул и заключается в том, чтобы не допустить этого), но при этом
нужно обеспечить возможность обозначения пустой коллекции с доступным про-
странством. К счастью, в большинстве типов коллекций реализуются оба свойства,
обозначающие эти различия, — Length и Capacity. Учитывая опасность объеди-
нения существующих типов коллекций среды .NET в пул, будет лучше, если вы
реализуете собственные типы коллекций, используя стандартные интерфейсы
коллекций, такие как IList<T>, ICollection<T> и т. д. Основное руководство по
созданию ваших собственных типов коллекций изложено в главе 6.

Дополнительной стратегией становится обладание собственными объединя
емыми типами, реализующими в качестве механизма безопасности финализатор.
Если запускается финализатор, это означает, что метод Dispose никогда не вызы-
вался, что является ошибкой. Может быть выбран вариант записи какой-нибудь
информации в лог, аварийного завершения работы или другого оповещения о воз-
никшей проблеме. Но подавать сигналы нужно с особой осторожностью, поскольку
обращение к памяти, которую сборщик мусора признал аннулированной, приведет
к аварии или зависанию.

Следует понимать, что пул, никогда не сбрасывающий объекты, неотличим от
утечки памяти. У вашего пула должен быть конечный размер (либо в байтах, либо
в количестве объектов), при превышении которого он должен сбрасывать объекты
для их очистки сборщиком мусора. В идеале пул должен быть достаточно боль-
шим, чтобы выполнять обычные операции без сброса чего бы то ни было и чтобы
сборщик мусора был необходим только после коротких всплесков необычной
активности. Сброс объектов, содержащихся в пуле, может приводить к продолжи-
тельным, полным сборкам мусора, что зависит от размера и количества объектов.
Важно обеспечить настраиваемость пула под вашу ситуацию.

Обычно я не использую объединение в пул в качестве решения по умолчанию.
Как универсальный этот механизм неэффективен, в нем часто возникают ошибки.
Но может оказаться, что от объединения небольшого количества типов в пулы ваше
приложение получит вполне определенные преимущества.

Практический пример: RecyclableMemoryStream. Однажды я работал над
приложением, управляющим объединением (federation) тысяч сетевых сервер-
ных ресурсов в секунду. В основном оно занималось чтением байтов из сети
или записью их в сеть. Около 90 % выделяемой памяти приходилось на объекты
MemoryStream, которые постоянно то создавались — и под них выделялась па-
мять, — то изменялись в размерах: выполнялись кодировка строк, маршализация,
демаршализация, создание временных буферов и многое другое. В результате на
простую сборку мусора затрачивалось невероятное количество процессорного
времени — почти 25 %! Профилирование памяти и ЦП быстро выявили необхо-
димость найти более приемлемый способ работы с байтами, чем тот, что исполь-
зовался в MemoryStream.

Здесь мы рассмотрим конструкцию и некоторые подробности реализации класса
RecyclableMemoryStream для объединения объектов MemoryStream в пул. Код можно

128   Глава 2  •  Управление памятью

загрузить по адресу https://github.com/Microsoft/Microsoft.IO.RecyclableMemoryStream
или же воспользоваться им непосредственно из Visual Studio с пакетом NuGet.

Требования к новому способу работы были следующими.

�� Полное исключение выделения памяти в куче больших объектов.

�� Сокращение затрат времени на сборку мусора, особенно проводимую в поко-
лении gen 2.

�� Предотвращение утечек памяти с помощью ограничения размера пула.

�� Предотвращение фрагментации памяти.

�� Простота отладки.

�� Возможность оснащения инструментами для выполнения измерений и ведения
логов.

�� Соблюдение семантики Dispose.

�� Максимальная простота процесса замены MemoryStream.

�� Обеспечение потокобезопасности.

Все эти требования были соблюдены, что дало следующий перечень функцио-
нальных свойств и особенностей реализации.

�� Вместо объединения в пулы самих потоков данных объединялись базовые буфе-
ры. Это позволило нам лучше оснащать потоки инструментами и обнаруживать
аномальные шаблоны использования, такие как повторное применение и утечка
потоков (что особенно важно в сценариях с пулами), а также более просто по-
вторно задействовать массивы. Также мы смогли предотвратить фрагментацию,
сделав буферы одинакового размера.

�� Потоки данных стали абстракционной надстройкой над собранными в цепочку
буферами, что позволило им выглядеть как один большой буфер.

�� Хотя сами потоки не потокобезопасны, потокобезопасность обеспечивалась при
выделении и освобождении потока из пула.

�� У каждого потока данных имелся идентификационный тег, который может по-
мочь при отладке неправильного использования пула.

�� Обеспечена возможность получения информации о стеке при выделении потока
для облегчения отладки утечек пула.

�� Разрешены гибкие и настраиваемые ограничения пула, накладывающие огра-
ничения на использование памяти при обработке пиковых нагрузок.

�� Представлены детализированные события и показатели для отслеживания ис-
пользования с течением времени.

Как говорится, дьявол кроется в деталях, поэтому углубимся в подробности
реализации.

Для того чтобы уметь выделять RecyclableMemoryStream, нужно создать дис-
петчер пула, то есть объект RecyclableMemoryStreamManager. Он представляет
собой класс, на самом деле управляющий буферными пулами и отслеживающий

Советы по повышению производительности   129

использование ресурсов. Думайте о нем как о миниатюрной куче внутри кучи
среды CLR. В этом классе устанавливаются все настройки конфигурации, такие
как исходные размеры буферов, максимальный размер кучи и многое другое.
Обычно на каждый процесс имеется один объект-диспетчер, который существует
во время жизни процесса. Но в некоторых особых случаях при возникновении
реальной необходимости не вызовет проблем и применение нескольких объектов
RecyclableMemoryStreamManager.

RecyclableMemoryStreamManager поддерживает две категории буферов: малый
пул (Small Pool) и большой пул (Large Pool). Small Pool состоит из большого
количества буферов одинакового размера. Слово Small в этом названии от-
носится к размеру отдельно взятого буфера, а не всего пула. Буферы в Small
Pool называются блоками, поскольку они объединены для формирования более
длинного потока данных. В Large Pool содержатся более крупные буферы, но
их значительно меньше и они сконструированы с прицелом на менее частое
использование — только когда вызывается GetBuffer. В обоих пулах размеры
буфера делают одинаковыми, чтобы уменьшить вероятность фрагментации кучи
(рис. 2.7).

Рис. 2.7. Пулы в RecyclableMemoryStreamManager с размером блока 128 Кбайт, большой буфер,
кратный 1 Мбайт, и максимальный размер буфера 4 Мбайт

Воспользоваться этой библиотекой довольно просто:

var sourceBuffer = new byte[]{0,1,2,3,4,5,6,7};
var manager = new RecyclableMemoryStreamManager();
using (var stream = manager.GetStream("Test"))
{
 stream.Write(sourceBuffer , 0, sourceBuffer.Length);
}

130   Глава 2  •  Управление памятью

Этот код создает RecyclableMemoryStreamManager с исходными установками,
захватывает поток данных, записывает в него несколько байтов, а затем возвра-
щает пулу блоки этого потока с помощью вызова метода Dispose. В этом примере
конструктору потока данных передается тег Test.

Этот тег не уникален для каждого потока данных, но служит для идентифика-
ции местоположения в коде, где он был выделен, что может помочь при отладке.
Применять теги не обязательно, но они приносят пользу. Внутри системы каждо-
му потоку данных также присваивается уникальный GUID, который служит для
идентификации отдельно взятого потока и может пригодиться при отслеживании
одновременного использования нескольких потоков данных.

Под капотом RecyclableMemoryStream захватит блок у диспетчера. Чем больше
данных записано в поток, тем больше блоков будут объединены в цепочку, а по-
токовые API заставят их выглядеть как один непрерывный блок памяти. По мере
роста длины потока данных общее потребление памяти возрастает только на раз-
мер блока (и это если предположить, что блоки еще не были сохранены в пул).
Это отличается от реализации MemoryStream, где по мере роста длины потока его
емкость удваивается, что делает возможной обширную потерю памяти, с чем можно
мириться в небольшом масштабе, но нельзя в большом.

Пока используются лишь методы Read и Write, задействоваться будут только
блоки. Но иногда возникает необходимость получения одного непрерывного бу-
фера. Для этого служит API GetBuffer, унаследованный от MemoryStream. Когда
вызывается GetBuffer, должен быть возвращен непрерывный блок. Если на данный
момент применяется только один блок, возвращается ссылка на него. Если исполь-
зуются несколько блоков, для удовлетворения запроса задействуется большой пул
и байты копируются из блоков в большой буфер. Если запрошенный буфер больше
максимального размера буфера пула, то для его удовлетворения происходит вы-
деление памяти.

Следует заметить, что возвращенный буфер имеет как минимум такой же
размер, что и содержащиеся в нем данные, но может быть и значительно больше.
Для определения фактического объема содержащихся в нем данных нужно вос-
пользоваться свойством потока данных Length. Иногда недальновидные поль-
зователи библиотеки игнорируют это обстоятельство и записывают огромные
буферы в сеть или файлы. После преобразования потока в буфер со связанной
с ним длиной данных может оказаться полезно обернуть эти данные в структуру
ArraySegment<byte>.

При использовании пулов метод ToArray менее полезен. Он требует возвра-
щения массива точного размера, следовательно, произойдет выделение памяти
(возможно, в куче больших объектов), а также будет выполнено копирование
памяти. Из-за такого неэффективного поведения нужно избегать применения
ToArray.

Я настоятельно рекомендую изучить код, находящийся по ранее приведенной
ссылке: полезно разобраться в том, как библиотека пытается избежать выделения
памяти, не забывая при этом о выполнении остальных требований.

Советы по повышению производительности   131

После реализации этой библиотеки в производственном коде наблюдалось
уменьшение выделения памяти в куче больших объектов на 99 %. Беспокойство по
поводу весьма затратных сборок мусора в поколении gen 2 ушло в прошлое. Время,
затрачиваемое на сборку мусора, снизилось с 25 % до менее чем 1 %.

Сокращайте степень фрагментации
кучи больших объектов
Если полностью избежать выделения памяти в куче больших объектов невозможно,
значит, нужно приложить все силы для того, чтобы избежать фрагментации.

Если вы не проявите должной осмотрительности, куча больших объектов может ра-
сти до бесконечности, что компенсируется списком свободных участков памяти. Чтобы
получить реальную выгоду от пользования этим списком, нужно увеличить вероят-
ность того, что выделение памяти может быть выполнено за счет промежутков в куче.

Один из путей достижения этой цели — обеспечение одинакового размера всех
выделяемых участков памяти, касающихся LOH, или по крайней мере обеспечение
их кратности какому-то стандартному размеру. Нужно избежать разброса размеров
буферов, сделав их все одинаковыми или кратными известному числу, например
1 Мбайт. Тогда, если в какой-то момент сборщик мусора должен будет собрать один
из буферов, высока вероятность того, что при последующем выделении памяти под
новый буфер будет заполнен образовавшийся в результате сборки мусора проме-
жуток, а не выделено новое место в конце кучи.

При определенных обстоятельствах выполняйте
принудительную полную сборку мусора
Почти никогда не следует выполнять принудительную сборку мусора вне обычного
расписания, определенного самим сборщиком мусора. Это нарушит его автомати-
ческую настройку и в целом может существенно ухудшить его поведение. Но для
высокопроизводительных систем есть некоторые соображения, способные заставить
пересмотреть этот совет в особых ситуациях.

Полезно бывает провести принудительную сборку мусора в более оптималь-
ный момент времени, чтобы избежать ее выполнения в неблагоприятный момент
в будущем. Следует отметить, что речь идет только о весьма затратных и в идеале
проводимых крайне редко полных сборках мусора. Сборка мусора в поколениях
gen 0 и gen 1 может и должна происходить довольно часто во избежание слишком
большого увеличения размера поколения gen 0.

Принудительная сборка мусора может быть оправдана в следующих ситуациях.

1.	 Использование режима сборки мусора с низкой задержкой. В этом режиме раз-
мер кучи может расти, и необходимо выбрать подходящий момент для проведе-
ния полной сборки. Режим сборки мусора с низкой задержкой рассматривался
ранее в этой главе.

132   Глава 2  •  Управление памятью

2.	 Образование в расписании работы приложения естественного простоя или
периода без пиковых нагрузок. Это может означать использование режима
с низкой задержкой в условиях, когда этого не требуется.

3.	 Выделение время от времени большого количества памяти с большим временем
существования (в идеале вечной). Есть смысл как можно скорее переместить
эти объекты в поколение gen 2. Если эти объекты заменят другие объекты,
которые теперь станут мусором, от них можно сразу избавиться в ходе прину-
дительной сборки мусора.

4.	 Необходимость в уплотнении кучи больших объектов из-за фрагментации.
Такое уплотнение рассмотрено в специальном разделе.

В ситуациях 1 и 3 не допускается полная сборка мусора в течение конкретного
времени, вместо этого она принудительно проводится в другое время. Ситуация 4
призвана сократить общий размер кучи при существенной фрагментации в LOH.
Если ваш сценарий не относится ни к одной из этих категорий, его следует считать
вредным.

Для проведения полной сборки нужно вызвать метод GC.Collect с поколением,
к которому его нужно применить. Дополнительно можно указать значение аргумен-
та перечисления GCCollectionMode, чтобы сообщить сборщику мусора, должен ли
он самостоятельно принять решение о необходимости сборки. Используются три
значения:

�� Default (По умолчанию) — сейчас эквивалентно значению Forced (Принуди-
тельно);

�� Forced (Принудительно) — команда сборщику мусора немедленно запустить
сборку;

�� Optimized (Оптимально) — разрешение сборщику мусора принимать решение
о том, насколько сейчас благоприятное время для запуска сборки.

GC.Collect(2);
// эквивалент следующей инструкции:
GC.Collect(2, GCCollectionMode.Forced);

ИСТОРИЯ

Рассматриваемая ситуация сложилась на сервере, принимающем запросы поль-
зователей. Каждые несколько часов нам требовалась перезагрузка более чем
1 Гбайт данных, заменяющих существующие данные. Поскольку эта операция
требовала немалых затрат и у нас уже было сокращено количество получаемых
машиной запросов, мы после перезагрузки принудительно провели две полные
сборки мусора. Тем самым были удалены старые данные и гарантировано, что
все распределенное в поколении gen 0 либо подверглось сборке, либо перешло
в поколение gen 2, где оно и должно было оказаться. При возобновлении полной
загруженности запросами уже не проводилась обширная полная сборка мусора,
которая могла бы повлиять на первые запросы.

Советы по повышению производительности   133

Уплотняйте кучу больших объектов по требованию
Даже при объединении в пулы сохраняется вероятность возникновения неподкон-
трольного вам выделения памяти, и со временем куча больших объектов становится
фрагментированной. С выпуском среды .NET 4.5.1 появилась возможность заста-
вить сборщик мусора уплотнить кучу больших объектов при следующей полной
сборке.

GCSettings.LargeObjectHeapCompactionMode =
GCLargeObjectHeapCompactionMode.CompactOnce;

В зависимости от размера кучи больших объектов это может быть весьма
затратная операция, занимающая до нескольких секунд. Может потребоваться
перевести вашу программу в состояние, когда она приостанавливает работу, для
которой предназначена, и инициировать принудительную сборку мусора с помо-
щью метода GC.Collect.

Эта настройка будет действовать только при выполнении следующей полной сбор-
ки мусора. Как только она произойдет, GCSettings.LargeObjectHeapCompactionMode
автоматически переключится на GCLargeObjectHeapCompactionMode.Default.

Из-за высокой затратности данной операции я рекомендую сократить коли-
чество случаев выделения в куче больших объектов до минимально возможного
и объединить в пулы те из них, которые все же приходится выполнять. Это суще-
ственно сократит потребность в уплотнении. Рассматривайте возможность уплот-
нения в качестве крайней меры и только в случае, когда фрагментация и очень
большой размер кучи действительно являются для вас проблемой.

Получайте уведомление о намечающейся сборке мусора
Если ваше приложение ни в коем случае не должно подвергаться воздействию
сборок мусора в поколении gen 2, можно заставить сборщик мусора уведомлять
о приближении полной сборки. Это даст вам возможность приостановить обра-
ботку данных, возможно, за счет увода запросов с машины или какого-либо иного
перевода приложения в наиболее благоприятное состояние.

Может показаться, что механизм уведомлений является ответом на все про-
блемы, касающиеся сборки мусора, но я рекомендую проявлять предельную
осмотрительность. Реализовать подобные уведомления можно, лишь выполнив
максимально возможную оптимизацию в других областях. Получить преимуще-
ства от уведомлений от сборщика мусора можно, только если будут справедливы
следующие утверждения.

1.	 Полная сборка мусора настолько затратна, что вы не в состоянии позволить себе
выдержать одну такую сборку в ходе обычной работы приложения.

2.	 У вас есть возможность полностью отключить выполнение полезной работы
приложением (возможно, в это время данную работу смогут выполнять другие
компьютеры или процессы).

134   Глава 2  •  Управление памятью

3.	 У вас есть возможность быстро отключить работу приложения (то есть на останов-
ку затрачивается меньше времени, чем на фактическое выполнение сборки мусора).

4.	 Сборка мусора в поколении gen 2 происходит настолько редко, чтобы игра стои
ла свеч.

Сборка мусора в поколении gen 2 будет происходить редко только при усло-
вии сведения к минимуму выделения в кучу больших объектов и перемещения
в следующие поколения за пределами gen 0. Поэтому, чтобы выяснить, при каких
именно обстоятельствах можно действительно извлечь пользу от уведомлений от
сборщика мусора, нужно приложить немало усилий.

К сожалению, из-за неопределенности, присущей моменту запуска сборки
мусора, при подписке на уведомление о сборке можно указать лишь прибли-
зительное время, оставшееся до нее, в которое должно сработать уведомление.
Для этого используется число в диапазоне 1–99. При слишком низком значении
показателя уведомление будет получено незадолго до выполнения сборки мусора,
но возникнет риск, что она начнется еще до того, как вы сможете отреагировать на
уведомление. При слишком высоком значении показателя момент сборки мусора
может быть сильно отдален и вы будете получать уведомления слишком часто, что
сделает режим работы крайне неэффективным. Все зависит от частоты выделения
памяти и ее общей загруженности. Заметьте, что указываются два числа: по одному
для порогового значения в поколении gen 2 и порогового значения кучи больших
объектов. Наряду с другими функциями это уведомление выдается сборщиком
по мере возможности. Сборщик не дает никаких гарантий того, что вы сможете
избежать сборки мусора.

Чтобы воспользоваться данным механизмом, выполните следующие общие
действия.

1.	 Вызовите метод GC.RegisterForFullGCNotification с двумя пороговыми значе-
ниями.

2.	 Выполните опрос сборщика мусора с помощью метода GC.WaitForFullGCApproach.
Он может находиться в режиме бесконечного ожидания или принять значение
истечения срока ожидания.

3.	 Если метод WaitForFullGCApproach возвратил значение Success, переведите
приложение в состояние, допускающее полную сборку мусора (например, вы-
ключите на машине режим приема запросов).

4.	 Самостоятельно запустите полную сборку мусора путем вызова метода GC.Collect.

5.	 Вызовите метод GC.WaitForFullGCComplete (тут опять можно дополнительно
указать значение истечения срока ожидания), чтобы дождаться завершения
полной сборки мусора, прежде чем приложение продолжит работу.

6.	 Включите режим приема запросов.

7.	 Когда надобность в получении уведомлений о предстоящей полной сборке
мусора отпадет, вызовите метод GC.CancelFullGCNotification.

Советы по повышению производительности   135

Поскольку в данном сценарии задействован механизм опроса, нужно будет
запустить поток, который сможет периодически проводить проверку. У многих
приложений уже имеются своего рода служебные потоки, выполняющие различные
действия по расписанию. Он вполне мог бы справиться и с этой задачей, или же
можно создать специально выделенный поток.

Рассмотрим полный пример из учебного проекта GCNotification, в котором по-
казано соответствующее поведение в простом тестовом приложении, непрерывно
выделяющем память. Обратитесь к коду, сопровождающему книгу, чтобы самим
попробовать запустить этот пример.

class Program
{
 static void Main(string[] args)
 {
 const int ArrSize = 1024;
 var arrays = new List<byte[]>();

 GC.RegisterForFullGCNotification(25, 25);

 // Запуск отдельного потока для ожидания уведомлений от сборщика мусора
 Task.Run(()=>WaitForGCThread(null));

 Console.WriteLine("Press any key to exit");
 while (!Console.KeyAvailable)
 {
 try
 {
 arrays.Add(new byte[ArrSize]);
 }
 catch (OutOfMemoryException)
 {
 Console.WriteLine("OutOfMemoryException!");
 arrays.Clear();
 }
 }

 GC.CancelFullGCNotification();
 }

 private static void WaitForGCThread(object arg)
 {
 const int MaxWaitMs = 10000;
 while (true)
 {
 // Существует также перезагружаемая версия WaitForFullGCApproach
 // с бесконечным ожиданием
 GCNotificationStatus status =
 GC.WaitForFullGCApproach(MaxWaitMs);

136   Глава 2  •  Управление памятью

 bool didCollect = false;
 switch (status)
 {
 case GCNotificationStatus.Succeeded:
 Console.WriteLine("GC approaching!");
 Console.WriteLine(
 "-- redirect processing to another machine -- ");
 didCollect = true;
 GC.Collect();
 break;
 case GCNotificationStatus.Canceled:
 Console.WriteLine("GC Notification was canceled");
 break;
 case GCNotificationStatus.Timeout:
 Console.WriteLine("GC notification timed out");
 break;
 }

 if (didCollect)
 {
 do
 {
 status = GC.WaitForFullGCComplete(MaxWaitMs);
 switch (status)
 {
 case GCNotificationStatus.Succeeded:
 Console.WriteLine("GC completed");
 Console.WriteLine(
 "-- accept processing on this machine again --");
 break;
 case GCNotificationStatus.Canceled:
 Console.WriteLine(
 "GC Notification was canceled");
 break;
 case GCNotificationStatus.Timeout:
 Console.WriteLine(
 "GC completion notification timed out");
 break;
 }
 // В зацикливании нет необходимости, но оно пригодится,
 // если требуется проверка состояния перед новым ожиданием
 } while (status == GCNotificationStatus.Timeout);
 }
 }
 }
}

Еще одной возможной причиной задействования этого механизма может стать
уплотнение кучи больших объектов, но его можно инициировать на основе исполь-
зования памяти, что может оказаться более приемлемым вариантом.

Советы по повышению производительности   137

Применяйте для кэширования слабые ссылки
Слабыми называются ссылки на объект, которые все же позволяют сборщику мусора
его вычищать. Они являются противоположностью применяемых по умолчанию
сильных ссылок, полностью препятствующих сборке мусора в данном объекте.
Наиболее полезны они для кэширования затратных в создании объектов, которые
хотелось бы иметь под рукой, но при этом иметь возможность удалять в случае по-
явления дефицита памяти. Слабые ссылки — это базовая концепция среды CLR,
доступ к ним можно получить, используя два .NET-класса:

�� WeakReference;

�� WeakReference<T>.

С появлением в .NET 4.5 дженерик-версии слабых ссылок первый из упомя-
нутых классов можно игнорировать. У его API есть слабые стороны, которые
устранены в более новой версии, и здесь речь пойдет только о дженерик-версии.

Рассмотрим пример простого использования:

// Внутренний объект Foo может попасть под сборку мусора в любой момент!
WeakReference <Foo> weakRef = new WeakReference(new Foo());
...
// Создание сильной ссылки на объект,
// теперь уже недоступный для очистки со стороны сборщика мусора
Foo myFoo;
if (weakRef.TryGetTarget(out myFoo))
{
 ...
}

Обратите внимание на то, что ссылка на сам объект WeakReference<T> является
сильной, значит, он не будет изъят во время сборки мусора — слабая ссылка отно-
сится только к внутреннему объекту. Если вы настолько сознательны, работая с па-
мятью, что задействуете WeakReference<T>, то вполне обоснованно можете опасать-
ся постоянного выделения памяти для создания объектов типа WeakReference<T>.
К счастью, можно повторно использовать эти объекты-оболочки путем применения
метода SetTarget для замены внутреннего значения по мере надобности.

Вы по-прежнему можете иметь и другие ссылки на тот же самый объект, как
сильные, так и слабые. Сборка будет происходить лишь в том случае, если оста-
нутся только слабые ссылки на него или их не будет вообще.

Большинству приложений слабые ссылки не требуются, но существует ряд
условий, при которых в этом появляется смысл.

�� Наложение жестких ограничений на использование памяти (например, на мо-
бильных устройствах).

�� Время существования объекта весьма переменчиво. Если это время предска-
зуемо, можно применять сильные ссылки и непосредственно контролировать
время их существования.

138   Глава 2  •  Управление памятью

�� Объект велик, но прост в создании. Слабая ссылка идеально подходит объектам,
которые хорошо бы иметь под рукой, но если их нет, нетрудно их создать или
вовсе без них обойтись. Следует заметить: это также означает, что размеры объ-
ектов должны быть весьма существенными, чтобы в первую очередь оправдать
издержки от использования дополнительных объектов WeakReference<T>.

�� Для объектов потребуются вторичные индексы (см. приведенный далее
пример).

В следующих двух примерах показано применение WeakReference<T> для эф-
фективного кэширования.

Пример: HybridCache
WeakReference<T> находит хорошее применение в качестве части кэша. Объекты на-
чинают удерживаться с помощью сильных ссылок, но по истечении определенного
времени их невостребованности (или возникновения иных условий на ваш выбор)
они могут быть понижены до уровня слабых ссылок и со временем исчезнуть при
сборке мусора.

В следующем примере показан простой кэш, внутри которого происходит управ-
ление двумя уровнями кэширования:

public class HybridCache <TKey, TValue > where TValue : class
{
 class ValueContainer <T>
 {
 public T value;
 public long additionTime;
 public long demoteTime;
 }

 private readonly TimeSpan maxAgeBeforeDemotion;

 // Здесь значения существуют до предельного возраста
 private readonly ConcurrentDictionary <TKey,
 ValueContainer <TValue >>
 strongReferences =
 new ConcurrentDictionary <TKey, ValueContainer <TValue >>();

 // Сюда значения перемещаются по достижении предельного возраста
 private readonly ConcurrentDictionary <
 TKey,
 WeakReference <ValueContainer <TValue >>>
 weakReferences =
 new ConcurrentDictionary <
 TKey,
 WeakReference <ValueContainer <TValue >>>();

 public int Count
 {

Советы по повышению производительности   139

 get
 {
 return this.strongReferences.Count;
 }
 }

 public int WeakCount
 {
 get
 {
 return this.weakReferences.Count;
 }
 }

 public HybridCache(TimeSpan maxAgeBeforeDemotion)
 {
 this.maxAgeBeforeDemotion = maxAgeBeforeDemotion;
 }

 public void Add(TKey key, TValue value)
 {
 RemoveFromWeak(key);
 var container = new ValueContainer <TValue >();
 container.value = value;
 container.additionTime = Stopwatch.GetTimestamp();
 container.demoteTime = 0;
 this.strongReferences.AddOrUpdate(
 key,
 container ,
 (k, existingValue) => container);
 }

 private void RemoveFromWeak(TKey key)
 {
 WeakReference <ValueContainer <TValue >> oldValue;
 weakReferences.TryRemove(key, out oldValue);
 }

 public bool TryGetValue(TKey key, out TValue value)
 {
 value = null;
 ValueContainer <TValue > container;
 if (this.strongReferences.TryGetValue(key, out container))
 {
 AttemptDemotion(key, container);
 value = container.value;
 return true;
 }

 WeakReference <ValueContainer <TValue >> weakRef;
 if (this.weakReferences.TryGetValue(key, out weakRef))

140   Глава 2  •  Управление памятью

 {
 if (weakRef.TryGetTarget(out container))
 {
 value = container.value;
 return true;
 }
 else
 {
 RemoveFromWeak(key);
 }
 }
 return false;
 }

 /// <summary >
 /// Этот метод периодически вызывается из другого потока.
 /// </summary >
 public void DemoteOldObjects()
 {
 var demotionList =
 new List<KeyValuePair <TKey,
 ValueContainer <TValue >>>();
 long now = Stopwatch.GetTimestamp();

 foreach (var kvp in this.strongReferences)
 {
 var age = CalculateTimeSpan(kvp.Value.additionTime ,
 now);
 if (age > this.maxAgeBeforeDemotion)
 {
 demotionList.Add(kvp);
 }
 }

 foreach (var kvp in demotionList)
 {
 Demote(kvp.Key, kvp.Value);
 }
 }
 private void AttemptDemotion(TKey key,
 ValueContainer <TValue > container)
 {
 long now = Stopwatch.GetTimestamp();
 var age = CalculateTimeSpan(container.additionTime , now);
 if (age > this.maxAgeBeforeDemotion)
 {
 Demote(key, container);
 }
 }

 private void Demote(TKey key,
 ValueContainer <TValue > container)

Советы по повышению производительности   141

 {
 ValueContainer <TValue > oldContainer;
 this.strongReferences.TryRemove(key, out oldContainer);
 container.demoteTime = Stopwatch.GetTimestamp();
 var weakRef =
 new WeakReference <ValueContainer <TValue >>(container);
 this.weakReferences.AddOrUpdate(key,
 weakRef ,
 (k, oldRef) => weakRef);
 }

 private static TimeSpan CalculateTimeSpan(long offsetA ,
 long offsetB)
 {
 long diff = offsetB - offsetA;
 double seconds = (double)diff / Stopwatch.Frequency;
 return TimeSpan.FromSeconds(seconds);
 }
}

Пример: вторичный индекс
В этом примере слабые ссылки используются для более эффективного обновления
простой базы данных за счет избавления от немедленных потенциально затратных
обновлений индексов:

class Person
{
 public string Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime Birthday { get; set; }
}

class PersonDatabase
{
 private Dictionary <string , Person > index =
 new Dictionary <string , Person >();
 private Dictionary <DateTime ,
 List<WeakReference <Person >>>
 birthdayIndex =
 new Dictionary <DateTime , List<WeakReference <Person >>>();

 public bool NeedsIndexRebuild { get; private set; }

 public void AddPerson(Person person)
 {
 this.index[person.Id] = person;
 List<WeakReference <Person >> birthdayList;
 if (!this.birthdayIndex.TryGetValue(person.Birthday ,
 out birthdayList))

142   Глава 2  •  Управление памятью

 {
 birthdayIndex[person.Birthday]
 = birthdayList
 = new List<WeakReference <Person >>();
 }

 birthdayList.Add(new WeakReference <Person >(person));
 }

 public void RemovePerson(string id)
 {
 index.Remove(id);
 }

 public bool TryGetById(string id, out Person person)
 {
 return this.index.TryGetValue(id, out person);
 }

 public bool TryGetByBirthday(DateTime birthday ,
 out List<Person > people)
 {
 people = null;
 List<WeakReference <Person >> weakPeople;
 if (this.birthdayIndex.TryGetValue(birthday ,
 out weakPeople))
 {
 var list = new List<Person >(weakPeople.Count);
 foreach(var wp in weakPeople)
 {
 Person person;
 if (wp.TryGetTarget(out person))
 {
 list.Add(person);
 }
 else
 {
 // мы получили нулевой указатель ‑
 // надо перестроить индексы
 this.NeedsIndexRebuild = true;
 }
 }
 if (list.Count > 0)
 {
 people = list;
 return true;
 }
 }
 return false;
 }
}

Советы по повышению производительности   143

Воскрешение объектов
Существует перезагружаемый вариант конструктора WeakReference<T>, получа
ющий булево значение trackResurrection (отслеживать воскрешение):

WeakReference <MyObject > weakRef =
 new WeakReference <MyObject >(myObj , trackResurrection: true);

Воскрешение происходит при совершении в финализаторе класса действий,
подобных следующему:

class MyObject
{
 static MyObject myObj;

 ~MyObject()
 {
 myObj = this;
 }
}

Иначе говоря, берется объект, больше не имеющий на себя ссылок (именно
поэтому и запущен финализатор), и на него снова добавляется ссылка. Этот
прием используется в продвинутых сценариях кэширования, но у него есть ряд
недостатков.

�� Объект был сборщиком мусора повышен до поколения gen 1 и никогда уже
не будет понижен до более раннего поколения.

�� В отношении объекта нужно вызвать метод GC.ReRegisterForFinalizer, иначе
для него еще один запуск финализатора не состоится.

�� Состояние объекта может быть неопределенным. Объекты с нативными ре-
сурсами будут вынуждены их высвободить и станут нуждаться в повторной
инициализации. Работа с точным состоянием объекта может оказаться весьма
непростой.

�� Любые объекты, на которые ссылается воскрешенный объект, также явля
ются воскрешенными. Если у любого из них имеются финализаторы, то
к моменту воскрешения они тоже отработают, еще больше усложняя ваше
состояние.

Если нет реального понимания состояния тех объектов, с которыми ведется
работа, этот прием следует рассматривать как ошибочный. Для повторного ис-
пользования объектов есть более удачные способы.

Если же задействуется данный прием, то методу WeakReference<T> следует со-
общить о разрешении получить более продолжительный доступ к внутреннему
объекту. Если у объекта нет финализатора, этот параметр не действует.

144   Глава 2  •  Управление памятью

Динамически выделяйте память в стеке
Вместо выделения памяти из кучи можно выделять буферы динамических раз-
меров в стеке, используя метод stackalloc. Такое выделение происходит бы-
стрее, чем в куче, и не подвергается сборке мусора. Но есть ряд существенных
оговорок.

�� Это явно небезопасное действие. Вместо управляемого массива вам возвра-
щается указатель на начало буфера, и вы несете ответственность за то, чтобы
не пересечь его границы.

�� Имеются серьезные ограничения на количество выделяемых данных. Управ-
ляемые стеки обычно ограничиваются размером 1 Мбайт (или всего 256 Кбайт
в ASP.NET/IIS). Каждый стековый фрейм забирает часть этого пространства,
и некоторые среды могут иметь очень глубокие стеки.

Чтобы увидеть, как работает stackalloc, рассмотрите программу из примера
StackAlloc, содержащую следующий код:

private static unsafe void DoStackAlloc(int size)
{
 int* buffer = stackalloc int[size];
 for (int i = 0; i < size; i++)
 {
 buffer[i] = i;
 }
}

Остальная часть программы запускает этот код в цикле, запрашивая ввод дан-
ных о количестве выделяемой памяти. Пример такой работы имеет следующий
вид:

Enter size to stackalloc ('q' to exit): 100
Allocated 100-size array
Enter size to stackalloc ('q' to exit): 200
Allocated 200-size array
Enter size to stackalloc ('q' to exit): 100000
Allocated 100000-size array
Enter size to stackalloc ('q' to exit): 1000000

Process is terminated due to StackOverflowException.

У исключения StackOverflowException имеется характерная особенность: ваша
программа не может его перехватить. В коде примера выделение памяти превра-
щается в обработку исключений, но тщетно. При выдаче этого исключения проис-
ходит моментальный выход из вашего приложения. Это исключение можно лишь
перехватить при запуске под управлением отладчика.

Несмотря на присущие ему риски и ограничения, stackalloc считается весьма
ценным инструментом, когда в методах нужны небольшие массивы динамически
задаваемых размеров без затрат на издержки выделения памяти в куче.

Исследование памяти и сборки мусора   145

Исследование памяти и сборки мусора
В этом разделе будут рассмотрены многочисленные советы и приемы, относящие
ся к исследованию всего происходящего в куче, в которой идет сборка мусора. Во
многих случаях одну и ту же информацию можно получить от нескольких инстру-
ментальных средств. Я попробую рассказать об использовании некоторых в каждом
из применяемых сценариев.

Счетчики производительности
Среда .NET предоставляет несколько счетчиков производительности Windows,
относящихся к категории .NET CLR Memory. Все они, за исключением скорости
выделения памяти в байтах в секунду (Allocated Bytes/sec), обновляются в конце
сборки мусора. Если значения застыли, причина этого, скорее всего, в нечастой
сборке мусора.

�� # Bytes in all Heaps (Количество байтов во всех кучах) — суммарный объем всех
куч, за исключением поколения gen 0 (см. далее описание размера кучи поко-
ления 0 (Gen 0 heap size)).

�� # GC Handles (Количество дескрипторов сборщика мусора) — количество задей-
ствованных дескрипторов.

�� # Gen 0 Collections (Количество сборок в поколении gen 0) — совокупное количе-
ство сборок мусора в gen 0 с момента запуска процесса. Следует заметить, что
значение этого счетчика увеличивается также для сборок в поколениях 1 и 2,
поскольку сборка мусора в более высоких поколениях никогда не обходится без
сборки в поколениях более низкого уровня.

�� # Gen 1 Collections (Количество сборок в поколении gen 1) — совокупное количе-
ство сборок в поколении gen 1 с момента запуска процесса. Следует заметить,
что значение этого счетчика увеличивается также для сборок в поколении gen 2,
поскольку сборка мусора в этом поколении не обходится без сборки в gen 1.

�� # Gen 2 Collections (Количество сборок в поколении gen 2) — совокупное количе-
ство сборок в поколении gen 2 с момента запуска процесса.

�� # Induced GC (Количество принудительных сборок мусора) — количество вы-
зовов GC.Collect для явного запуска сборки мусора.

�� # of Pinned Objects (Количество закрепленных объектов) — количество закреплен-
ных объектов, повстречавшихся сборщику мусора в ходе сборки.

�� # of Sink Blocks in use (Количество используемых блоков синхронизации) —
у каждого объекта есть заголовок, в котором может храниться ограничен-
ный объем информации, например хеш-код или сведения о синхронизации.
При возникновении каких-либо конфликтов за использование заголовка соз-
дается блок синхронизации. Эти блоки применяются также для метаданных
взаимодействия (interop). Высокое значение данного счетчика может показать

146   Глава 2  •  Управление памятью

наличие конфликта блокировок. И да, в написании названия счетчика допущена
ошибка (см. описание в PerfMon).

�� # Total committed Bytes (Общее количество выделенных байтов) — количество
байтов, выделенных сборщиком мусора, которое в действительности обеспе-
чивается файлом страничного обмена.

�� # Total reserved Bytes (Общее количество зарезервированных байтов) — коли-
чество байтов, зарезервированных, но еще не выделенных сборщиком мусора.

�� % Time in GC (Процент времени, затрачиваемого на сборку мусора) — процент
времени, затрачиваемого процессором в потоках сборки мусора по сравнению
с другими процессами с момента последней сборки. Этот счетчик не берет в рас-
чет сборку мусора в фоновом режиме.

�� Allocated Bytes/sec (Скорость выделения памяти в байтах в секунду) — количество
байтов, выделенных в GC-куче в секунду. Этот счетчик обновляется не посто-
янно, а только при запуске сборки мусора.

�� Finalization Survivors (Количество выживших из-за финализации) — количество
объектов, подвергаемых финализации, переживших сборку мусора по причине
ожидания финализации, которая случается только в поколении gen 1 (см. также
Promoted Finalization-Memory from Gen 0).

�� Gen 0 heap size (Размер кучи gen 0) — максимальное количество байтов, которое
может быть выделено в gen 0, а не фактическое количество выделенных байтов.

�� Gen 0 Promoted Bytes/Sec (Скорость продвижения объектов из gen 0 в байтах
в секунду) — скорость продвижения из gen 0 в gen 1. Нужно стремиться к све-
дению этого числа к минимуму, что будет свидетельствовать о коротких сроках
задействования памяти.

�� Gen 1 heap size (Размер кучи gen 1) — количество байтов в gen 1 с момента по-
следней сборки мусора.

�� Gen 1 Promoted Bytes/Sec (Скорость продвижения объектов из gen 1 в байтах
в секунду) — скорость продвижения из gen 1 в gen 2. Высокий показатель сви-
детельствует о весьма длительных сроках задействования памяти и наличии
подходящих кандидатов на объединение в пулы.

�� Gen 2 heap size (Размер кучи gen 2) — количество байтов в gen 2 с момента по-
следней сборки мусора.

�� Large Object Heap Size (Размер кучи больших объектов) — количество байтов кучи
больших объектов.

�� Promoted Finalization–Memory from Gen 0 (Финализируемая память, продвинутая из
gen 0) — общее количество байтов, продвинутое в gen 1, поскольку существует
ожидающий финализации объект, находящийся где-то в дереве ссылок объ-
ектов, которым принадлежат эти байты. Это количество не только памяти, не-
посредственно занятой финализируемыми объектами, но и памяти, на которую
указывают любые ссылки, удерживаемые такими объектами.

Исследование памяти и сборки мусора   147

�� Promoted Memory from Gen 0 (Объем памяти, продвинутой из gen 0) — количество
байтов, продвинутых из gen 0 в gen 1 с момента последней сборки.

�� Promoted Memory from Gen 1 (Объем памяти, продвинутой из gen 1) — количество
байтов, продвинутых из gen 1 в gen 2 с момента последней сборки.

События ETW
В среде CLR выдается множество событий, касающихся поведения сборщика
мусора. В большинстве случаев для их анализа можно воспользоваться со-
бранным для вас инструментарием, но все же будет полезно разобраться в том,
как регистрируется данная информация, чтобы вы могли при необходимости
отследить источники конкретных событий и связать их с другими событиями,
происходящими в приложении. Подробный анализ можно выполнить в PerfView
с помощью представления событий (events). Рассмотрим наиболее важные со-
бытия.

�� GCStart_V1 — сборка мусора запущена. Поля:

yy Count — количество сборок, случившихся с момента запуска процесса;

yy Depth — в каком поколении происходит сборка;

yy Reason — что стало причиной запуска сборки;

yy Type — блокирующая, фоновая или блокирующая в ходе фонового выпол-
нения.

�� GCEnd_V1 — сборка мусора завершена. Поля:

yy Count, Depth — те же, что и для GCStart.

�� GCHeapStats_V1 — статистика в конце сборки мусора. Предоставляет мно-
жество полей для описания всех характеристик кучи, таких как размеры
поколений, количество продвинутых байтов, финализация, дескрипторы
и многое другое.

�� GCCreateSegment_V1 — создан новый сегмент. Поля:

yy Address — адрес сегмента;

yy Size — размер сегмента;

yy Type — куча малых или больших объектов.

�� GCFreeSegment V1 — освобожден сегмент. Всего одно поле:

yy Address — адрес сегмента.

�� GCAllocationTick_V2 — выдается при каждом выделении около 100 Кбайт памяти
(суммарно). Поля:

yy AllocationSize — точный размер выделения, инициировавшего событие;

yy Kind — выделение в куче малых или больших объектов.

�� GCFinalizersBegin_V1 — начало работы финализаторов.

148   Глава 2  •  Управление памятью

�� GCFinalizersEnd_V1 — завершение работы финализаторов:

yy Count — количество выполненных финализаторов.

�� GCCreateConcurrentThread_V1 — создание параллельного потока сборки мусора.

�� GCTerminateConcurrentThread_V1 — завершение параллельного потока сборки
мусора.

�� GCSuspendEE_V1 — начало приостановки потоков:

yy Reason — причина инициализации приостановки;

yy Count — показание количества сборок мусора на момент выдачи этого со-
бытия.

�� GCSuspendEEEnd_V1 — потоки приостановлены.

�� GCRestartEEBegin_V1 — потоки начинают возобновлять работу.

�� GCRestartEEEnd_V1 — потоки завершили возобновление работы.

Порядок получаемых событий играет важную роль. Для обычных сборок мусора
любого поколения, выполняемых в фоновом режиме, выдерживается следущий
порядок.

1.	 GCSuspendEE_V1 — начало приостановки потоков.

2.	 GCSuspendEEEnd_V1 — все потоки приостановлены.

3.	 GCStart_V1 — начало сборки мусора.

4.	 GCEnd_V1 — работа сборщика мусора завершена.

5.	 GCRestartEEBegin_V1 — начало возобновления работы потоков.

6.	 GCRestartEEEnd_V1 — работа всех потоков возобновлена. Сборка мусора завер-
шена.

Если вам нужно проанализировать эти события в своих приложениях или ути-
литах, изучите разделы, посвященные TraceEvent и PerfView главы 8, где будет
представлена простая в освоении библиотека. Благодаря анализу и разумному
использованию ETW-событий вы сможете определить, влияет ли на исполнение
вашего приложения сборщик мусора или любой другой источник внешнего воз-
действия.

Как выглядит куча памяти моего приложения
WinDbg может показать несколько различных представлений кучи. Сначала по
сегментам:

!eeheap -gc

Вывод будет выглядеть примерно так:

Number of GC Heaps: 1
generation 0 starts at 0x05824e2c
generation 1 starts at 0x0532100c

Исследование памяти и сборки мусора   149

generation 2 starts at 0x05321000
ephemeral segment allocation context: none
 segment begin allocated size
05320000 05321000 05891ff4 0x570ff4(5705716)
Large object heap starts at 0x06321000
 segment begin allocated size
06320000 06321000 07312c80 0xff1c80(16718976)
07900000 07901000 088ee660 0xfed660(16701024)
08a30000 08a31000 09a1e660 0xfed660(16701024)
09c80000 09c81000 0ac6e660 0xfed660(16701024)
0ac80000 0ac81000 0bc6e540 0xfed540(16700736)
...more segments...
Total Size: Size: 0x213b9d94 (557555092) bytes.

GC Heap Size: Size: 0x213b9d94 (557555092) bytes.

Если в процессе запущена сборка мусора в режиме сервера, то будет выведено
более одной кучи, каждая со своим собственным набором из эфемерного сегмента,
сегмента gen 2 и сегмента больших объектов.

Еще одно представление получается с помощью команды !HeapStat, агрегиру-
ющей все сегменты с разбиением по поколениям для вывода их размеров, включая
свободное пространство.

0:007> !HeapStat
Heap Gen0 Gen1 Gen2 LOH
Heap0 446920 5258784 12 551849376

Free space: Percentage
Heap0 12 1948 0 15936SOH: 0% LOH: 0%

В выведенной на экран информации показано, что на кучу gen 2 приходится
очень мало памяти и количество свободного пространства в ней незначительное
(то есть низкая фрагментация). Аббревиатурой SOH (Small Object Heap) обозна-
чается куча малых объектов — все то, что не относится к сегментам кучи больших
объектов (Large Object Heap).

С помощью команды !VMMap выводится информация об областях виртуальных
адресов и применяемых к ним уровнях защиты:

0:000> !VMMap
Start Stop Length AllocProtect Protect State Type
00000000-00f5ffff 00f60000 NA Free
00f60000-00f60fff 00001000 ExWrCp Rd Commit Image
00f61000-00f61fff 00001000 ExWrCp Reserve Image
00f62000-00f62fff 00001000 ExWrCp Rd Commit Image
00f63000-00f63fff 00001000 ExWrCp Reserve Image
00f64000-00f64fff 00001000 ExWrCp Rd Commit Image
00f65000-00f65fff 00001000 ExWrCp Reserve Image
00f66000-00f66fff 00001000 ExWrCp Rd Commit Image
00f67000-00f67fff 00001000 ExWrCp Reserve Image
...

150   Глава 2  •  Управление памятью

С помощью команды !VMStat данная информация будет обобщена по состоя-
нию — State:

0:000> !VMStat
TYPE MINIMUM MAXIMUM AVERAGE BLK COUNT TOTAL
==== ======= ======= ======= ========= =====
Free:
Small 8K 64K 43K 30 1,315K
Medium 84K 996K 332K 10 3,323K
Large 1,152K 2,090,816K 204,209K 17 3,471,563K
Summary 8K 2,090,816K 60,986K 57 3,476,203K

Reserve:
Small 4K 64K 34K 34 1,183K
Medium 68K 1,012K 299K 56 16,779K
Large 1,376K 32,768K 12,073K 7 84,515K
Summary 4K 32,768K 1,056K 97 102,479K

Commit:
Small 4K 64K 12K 204 2,575K
Medium 68K 964K 347K 44 15,307K
Large 1,048K 16,332K 12,716K 47 597,671K
Summary 4K 16,332K 2,086K 295 615,555K

Private:
Small 4K 64K 19K 88 1,716K
Medium 68K 1,012K 285K 57 16,267K
Large 1,376K 32,768K 15,215K 41 623,851K
Summary 4K 32,768K 3,450K 186 641,835K

Mapped:
Small 4K 64K 25K 8 204K
Medium 68K 1,004K 374K 6 2,247K
Large 1,540K 18,320K 5,442K 5 27,211K
Summary 4K 18,320K 1,561K 19 29,663K

Image:
Small 4K 64K 12K 142 1,839K
Medium 68K 964K 366K 37 13,571K
Large 1,048K 15,712K 3,890K 8 31,124K
Summary 4K 15,712K 248K 187 46,535K

Входящее в SysInternals средство VMMap также может дать хорошую сводку
всех сегментов процесса. После выбора процесса нужно выделить в таблице строч-
ку, относящуюся к управляемой куче, — Managed Heap, и будет показан список всех
сегментов, задействованных в процессе (рис. 2.8).

Исследование памяти и сборки мусора   151

Рис. 2.8. Средство VMMap способно разделить на части все разнообразие областей памяти,
использованных в процессе, включая сегменты GC-кучи

Сколько времени занимает сборка мусора
Сборщик мусора записывает множество событий, связанных с его операциями. Для
эффективного анализа этих событий можно воспользоваться средством PerfView.

Чтобы увидеть статистику, относящуюся к сборке мусора, запустите программу
из примера AllocateAndRelease.

Запустите PerfView и выполните следующие действия.

1.	 Выберите в меню Collect (Сбор) пункт Collect (Alt+C).

2.	 Раскройте пункт Advanced Options (Дополнительные параметры). При желании
можно выключить все категории событий, кроме сборки мусора (GC Only),
но сейчас просто оставьте без изменений исходные установки, поскольку GC-
события включены в .NET-события.

3.	 Установите флажок No V3.X NGEN Symbols (Не использовать символы V3.X
NGEN) — это ускорит разрешение символов.

4.	 Нажмите кнопку Start (Пуск).

5.	 Подождите несколько минут, в течение которых будут измеряться параметры
активности процесса. Рассуждения по поводу количества собираемых выборок

152   Глава 2  •  Управление памятью

можно найти в главе 1 (если сборка выполняется более нескольких минут, мо-
жет потребоваться отключить события центрального процессора).

6.	 Нажмите кнопку Stop Collection (Остановить сбор).

7.	 Подождите окончания объединения файлов.

8.	 В получившемся дереве просмотра выполните двойной щелчок на узле GCStats,
в результате чего откроется новое представление.

9.	 Найдите раздел для вашего процесса.

Для каждого процесса вы найдете набор данных и таблиц со сводной информа-
цией о поведении сборщика мусора.

В верхней части каждого раздела имеется список элементов, предоставляющих
общую информацию.

Элемент, предоставляющий
общую информацию о сборке
мусора

Описание

CommandLine Точная командная строка, которая запустила процесс

Runtime Version Выполняемая версия CLR

CLR Startup Flags Флаги, контролирующие поведение сборщика мусора,
например CONCURRENT_GC или SERVER_GC

Total CPU Time Общее время в миллисекундах, потраченное на выпол-
нение процесса за время профилирования

Total GC CPU Time Общее время, потраченное на сборку мусора

Total Allocs Количество случаев выделения памяти

GC CPU MSec/MB Alloc Время в миллисекундах, которое сборщик потратил
на обработку 1 Мбайт памяти

Total GC Pause Время в миллисекундах, в течение которого процесс
был на паузе из-за сборки мусора

% Time paused for Garbage
Collection

Время на паузе из-за сборки мусора как процент от
общего процессорного времени

% CPU Time spent Garbage
Collecting

Процент времени, которое процессор провел, собирая
мусор. Может отличаться от предыдущего показателя,
если запущен серверный режим сборки мусора

Max GC Heap Size Максимальный размер кучи, подвергнутой сборке
мусора, за время профилирования

Peak Process Working Set Максимальный размер рабочего множества за время
профилирования

Peak Virtual Memory Usage Максимальный размер зарезервированной виртуаль-
ной памяти за время профилирования

Исследование памяти и сборки мусора   153

Столбец таблицы
обобщенной информации
о сборке мусора

Описание

Gen Поколение, включая ALL (Все), где все сборки мусора объ-
единяются в единый статистический набор

Count Количество сборок

Max Pause Наибольшее время паузы в сборке мусора в миллисекундах

Max Peak MB Максимальный размер поколения в куче

Max Alloc MB/sec Пиковая скорость выделения

Total Pause Суммарное время всех пауз в миллисекундах

Total Alloc MB Объем выделенной памяти

Alloc MB/MSec GC Объем выделенной памяти за миллисекунду времени сбор-
ки мусора. Это показатель эффективности сборки мусора.
Чем он выше, тем эффективнее сборка мусора (то есть тем
меньше она влияет на выполнение программы)

Survived MB/MSec GC Объем выжившей памяти за миллисекунду времени сборки
мусора. Это еще один показатель эффективности сборки му-
сора. Большее значение свидетельствует о выживании более
существенного объема памяти

Mean Pause Среднее время пауз в миллисекундах

Induced Количество явных вызовов сборки мусора (GC.Collect)

Столбец таблицы
подробной информации
о сборке мусора

Описание

GC Index Порядок, в котором произошла сборка мусора

Pause Start Отметка времени в миллисекундах от начала профилирова-
ния до начала выполнения сборки мусора

Trigger Reason Причина, по которой выполнялась сборка мусора

Gen Поколение и буква кода, показывающая тип сборки мусора.
Поколение обозначается цифрой в диапазоне 0–2. N обозна-
чает NonConcurrent (Последовательная), B — Background
(Фоновая), F — Foreground (Первого плана), I — Induced
(Вынужденная), i — Induced, not forced (Вынужденная, но
не принудительная)

Suspend Msec Количество миллисекунд, понадобившееся для приостанов-
ки запущенных потоков

Pause Msec Общее время приостановки процесса для сборки мусора

Продолжение 

154   Глава 2  •  Управление памятью

Столбец таблицы
подробной информации
о сборке мусора

Описание

% Pause Time Процент времени на сборку мусора со времени предыдущей
сборки

% GC Процент времени ЦП, затраченного на сборку мусора

Gen0 Alloc MB Объем выделенной памяти в нулевом поколении со времени
предыдущей сборки мусора

Gen0 Alloc Rate MB/sec Скорость выделения памяти в нулевом поколении со време-
ни предыдущей сборки мусора

Peak MB Пиковый размер кучи в ходе сборки мусора

After MB Размер кучи после завершения сборки мусора

Ratio Peak/After Эффективность. Чем выше показатель, тем лучше

Promoted MB Объем памяти, пережившей сборку мусора

Gen0 MB Размер нулевого поколения после завершения данной .
сборки мусора

Gen0 Survival Rate % Процент объектов в нулевом поколении, переживших .
сборку мусора

Gen 0 Frag % Процент свободной памяти в нулевом поколении

Gen 1 MB Размер первого поколения после завершения данной сборки
мусора

Gen1 Survival Rate % Процент объектов в первом поколении, переживших сборку
мусора

Gen1 Frag % Процент свободной памяти в первом поколении

Gen2 MB Размер второго поколения после завершения данной сборки
мусора

Gen2 Survival Rate % Процент объектов во втором поколении, переживших .
сборку мусора

Gen2 Frag % Процент свободной памяти во втором поколении

LOH MB Размер LOH после завершения данной сборки мусора

LOH Survival Rate % Процент объектов в LOH, переживших сборку мусора

LOH Frag % Процент свободной памяти в LOH

Finalizable Surv MB Размер финализируемых объектов, переживших сборку
мусора

Pinned Obj Количество закрепленных объектов, продвинутых данной
сборкой мусора. Чем показатель меньше, тем лучше

(Продолжение)

Исследование памяти и сборки мусора   155

Под ним будет находиться таблица сводной информации обо всех поколениях
сборки мусора (рис. 2.9).

Рис. 2.9. Таблица GCStats для программ из примера AllocateAndRelease. В ней показаны
количество выполненных сборок мусора, а также интересная статистика, включая среднее

и максимальное время пауз и скорости выделения памяти

Ниже этой таблицы будут еще более подробные таблицы с перечислением кон-
кретных случаев сборки мусора в различных категориях, например Pauses > 200 MSec
(Паузы более 200 мс), LOH Allocation Pause (due to background GC) > 200 MSec (Пауза вы-
деления в LOH, вызванная фоновой сборкой мусора, превышающая 200 мс), Gen 2
(Поколение 2) и All GC Events (Все события, относящиеся к сборке мусора).

Как видите, информации, касающейся каждого GC-события, которой можно
воспользоваться для анализа производительности сборки мусора, предостаточно.

Где именно происходит выделение памяти
Среда Visual Studio может отслеживать выделение памяти в .NET через выборки
событий ETW. Следует заметить, что это в корне отличается от работы профили-
ровщика Memory Usage. По сути, этот отчет является инструментом для анализа
дампа кучи, в котором показаны моментальные состояния объектов в куче и ссыл-
ки на объекты, которым они принадлежат, вплоть до корня. Отчет о выделении
.NET-памяти в Performance Wizard, в свою очередь, использует ETW-события
чтобы понять, какими именно методами было фактически произведено выделе-
ние памяти, независимо от того, чьими в конечном итоге стали ссылки (рис. 2.10).
Это средство использует ETW-событие GCAllocationTick_V2, выдаваемое средой
CLR после каждых выделенных 100 Кбайт.

Щелчок на имени метода вновь перенесет вас в уже известное представление
Function Details. Только в данном случае будет показано выделение памяти, а не время
центрального процессора (рис. 2.11).

У этого отчета имеется множество других представлений, позволяющих углу-
биться в различные измерения. Особый интерес вызывает представление Allocation.
Вот что в нем будет показано после щелчка на названии типа в главном сводном
представлении (рис. 2.12).

156   Глава 2  •  Управление памятью

Рис. 2.10. Отчет о профилировании памяти (Memory Profiling Report), показывающий, какими
методами выделен основной объем памяти, а также какие типы стали потребителями основных

объемов памяти

Рис. 2.11. Подробности о функциях, вызывающих выделение памяти. Здесь показано, какие
вызываемые методы, а также строки в исходном коде ответственны за выделение памяти

Исследование памяти и сборки мусора   157

Рис. 2.12. Сводка выделений памяти по типу, а не по стеку методов

Это представление агрегировано типу и показывает, какие методы каждого
конкретного типа выделяли память наиболее часто.

Как альтернатива с той же целью может использоваться PerfView, который
способен показать ту же самую информацию, что и Visual Studio, и даже больше,
но его интерфейс не настолько совершенен.

1.	 С помощью PerfView можно собрать либо .NET-события, либо события, отно-
сящиеся исключительно к сборке мусора (GC Only).

2.	 По завершении сборки откройте представление GC Heap Alloc Stacks (Стеки рас-
пределений в GC-куче) и выберите из списка процессов нужный процесс (для
простого примера воспользуйтесь программой AllocateAndRelease).

3.	 На вкладке By Name (По имени) будут видны типы, отсортированные по общему
размеру выделенной памяти. Двойной щелчок на названии типа перенесет вас
на вкладку Callers (Вызывающие), где будут показаны стеки, в которых произо-
шло это выделение.

Дополнительная информация о применении интерфейса PerfView для полу-
чения более весомой отдачи от представления дана в главе 1.

Воспользовавшись изложенной информацией, вы сможете найти стеки для всех
распределений, произошедших в тестовой программе, и относительную частоту их
реализации. Например, в моем случае выделение памяти под строки составляет
примерно 59,5 % от всех случаев выделения памяти (рис. 2.13).

Кроме того, можно воспользоваться профилировщиком CLR Profiler, который
способен найти ту же информацию и отобразить ее несколькими способами.

После сбора информации и открытия окна Summary (Сводка) нажмите кнопку
Allocation Graph (Диаграмма выделений), чтобы открыть графическое представление
связей между выделением памяти для объектов и методами, ответственными за
это (рис. 2.14).

Объекты, которым наиболее часто требуется выделение памяти, — это наиболее
вероятные инициаторы запуска сборки мусора. Сокращение числа случаев выде-
ления памяти приведет к снижению частоты сборки мусора.

158   Глава 2  •  Управление памятью

Рис. 2.13. Представление GC Heap Alloc Stacks, показывающее наиболее распространенные
случаи выделения памяти в вашем процессе. Запись LargeObject — это псевдоузел, двойной

щелчок на нем покажет фактические объекты, распределенные в LOH

Рис. 2.14. Визуальное отображение стеков выделения объектов, предоставляемое
профилировщиком CLR Profiler, быстро указывает вам на объекты, которым нужно уделить

наиболее пристальное внимание

Что за объекты находятся в куче
Все инструментальные средства, упоминаемые в данном разделе, будут использо-
вать программу из примера LargeMemoryUsage, код которой показан далее:

class Program
{
 const int ArraySize = 1000;
 static object[] staticArray = new object[ArraySize];

Исследование памяти и сборки мусора   159

 static void Main(string[] args)
 {
 var localArray = new object[ArraySize];

 var rand = new Random();
 for (int i = 0; i < ArraySize; i++)
 {
 staticArray[i] = GetNewObject(rand.Next(0, 4));
 localArray[i] = GetNewObject(rand.Next(0, 4));
 }

 Console.WriteLine("Examine heap now. Press any key to exit.");
 Console.ReadKey();

 // Это помешает сборщику мусора вычистить из памяти массив localArray,
 // прежде чем вы сделаете снимок его состояния
 Console.WriteLine(staticArray.Length);
 Console.WriteLine(localArray.Length);
}

private static Base GetNewObject(int type)
{
 Base obj = null;
 switch (type)
 {
 case 0: obj = new A(); break;
 case 1: obj = new B(); break;
 case 2: obj = new C(); break;
 case 3: obj = new D(); break;
 }
 return obj;
 }
}

class Base
{
 private byte[] memory;
 protected Base(int size) { this.memory = new byte[size]; }
}

class A : Base { public A() : base(1000) { } }
class B : Base { public B() : base(10000) { } }
class C : Base { public C() : base(100000) { } }
class D : Base { public D() : base(1000000) { } }

Эта простая программа всего лишь выделяет память для случайного количества
объектов различных классов и ожидает от вас анализа кучи, прежде чем завершить
свою работу.

Существует несколько способов анализа данной кучи, начиная с самого низко-
уровневого.

160   Глава 2  •  Управление памятью

С помощью WinDbg можно выполнить команду !DumpHeap, чтобы просто полу-
чить дамп памяти с перечислением каждого отдельно взятого объекта в куче:

0:007> !DumpHeap
Address MT Size
02aa1000 00b2ac70 10 Free
02aa100c 00b2ac70 10 Free
02aa1018 00b2ac70 10 Free
02aa1024 71911eac 84
02aa1078 71912000 84
02aa10cc 71912044 84
02aa1120 71912088 84
02aa1174 719120cc 84
02aa11c8 719120cc 84
02aa121c 71912104 12
02aa1228 71911d64 14

В столбце MT указывается адрес таблицы методов Method Table, что, по сути,
эквивалентно классу.

Для получения информации о конкретном объекте можно вывести его дамп:

0:007> !DumpObj /d 02bb8cf4
Name: LargeMemoryUsage.A
MethodTable: 00de4f6c
EEClass: 00de196c
Size: 12(0xc) bytes
File: D:\SampleCode\...\LargeMemoryUsage.exe
Fields:
 MT Field Offset Type VT Attr Value Name
719160e8 4000003 4 System.Byte[] 0 instance 02bb8d00 memory

Сбор дампов для каждого объекта в куче обычно выдает громадный объем
информации. К счастью, можно слегка отфильтровать вывод, например, по типу:

0:007> !DumpHeap -type LargeMemoryUsage.A
Address MT Size
02aaba98 00de4f6c 12
02ab82cc 00de4f6c 12
02ab86cc 00de4f6c 12
02ab8acc 00de4f6c 12

Вывод можно отфильтровать так, чтобы отображались только объекты, находя-
щиеся внутри указанного диапазона в куче (если, конечно, у вас есть адреса начала
и конца этого диапазона):

!DumpHeap -type LargeMemoryUsage.A 02aaba98 02ab86cc

Существуют дополнительные параметры DumpHeap, позволяющие выполнять
более изощренную фильтрацию результатов.

DumpHeap Описание параметра

-min Отображение объектов размером не менее заданного

-max Отображение объектов размером не более заданного

Исследование памяти и сборки мусора   161

DumpHeap Описание параметра

-startatLowerBound Запуск сканирования кучи с указанного адреса (это должен быть
адрес объекта)

-type Проверка присутствия аргумента как подстроки в названии типа

-mt Отображение объектов с заданным адресом таблицы методов.
Это более точный способ получения вывода конкретного типа объ-
ектов по сравнению с -type, где аргумент может соответствовать
различным типам

-short Вывод только адресов объектов

-strings Отображение сводных данных о строках в куче

-stat Отображение только статистической сводки

В WinDbg имеется элементарный скриптовый язык, однако расширенный ана-
лиз кучи может вызвать затруднения. В этом случае для анализа объектов можно
воспользоваться средствами библиотеки CLR MD:

private static void PrintGen0Objects(ClrRuntime clr)
{
 var heap = clr.Heap;

 foreach(var obj in heap.EnumerateObjects())
 {
 Console.WriteLine($"0x{obj.Address:x} - {obj.Type.Name}");
 }
}

Поскольку тут имеется программный доступ к тем же свойствам объекта, что
и в WinDbg, то можно как выполнить фильтрацию по тем же критериям, так и при-
думать более сложные критерии для поиска и анализа найденных объектов.

До сих пор рассматривались способы анализа каждого отдельно взятого объекта.
Конечно же, это пригодится при отладке, но зачастую, анализируя общее поведение,
требуется рассматривать все объекты в совокупности.

Начиная с выпуска Visual Studio 2013 Premium Edition (Enterprise Edition начи-
ная с Visual Studio 2015), эта среда имеет анализатор управляемой кучи (рис. 2.15).
Доступ к нему можно получить, открыв дамп управляемой памяти и выбрав пункт
Debug Managed Memory (Отладка управляемой памяти).

Здесь можно выполнить три действия.

1.	 Просмотреть все экземпляры данного типа после двойного щелчка на его названии.

2.	 Просмотреть различные корни объектов (благодаря чему они существуют).

3.	 Просмотреть, на какие другие типы имеются ссылки из выделенного типа.

У профилировщика производительности (Performance Profiler) имеется также
функция получения моментальных образов кучи в ходе выполнения программы.
Для доступа к ней нужно выбрать в меню пункты AnalyzePerformance ProfilerMemory
Usage (АнализПрофилировщик производительностиИспользование памяти).

162   Глава 2  •  Управление памятью

Вывод будет представлять собой график использования памяти в сопоставлении
со сборками мусора (рис. 2.16). При запущенном анализе можно получать момен-
тальные образы кучи в любом месте.

Рис. 2.16. График, показывающий совокупное использование памяти, сборки мусора
и моментальные образы кучи

Рис. 2.15. Новые версии Visual Studio включают это отображение анализатора кучи,
работающее на основе дампов управляемой памяти

Исследование памяти и сборки мусора   163

Щелкнув на размере или количестве объектов в моментальном образе, можно
перейти к таблице всех объектов, имеющихся в куче, и их путей к корню (благодаря
чему они существуют) (рис. 2.17).

Рис. 2.17. Представление моментального образа кучи в Visual Studio.
Здесь показаны различные пути к корню каждого типа объекта в совокупности

или с конкретными экземплярами

Каждый моментальный образ также позволяет вам просматривать только те
объекты, которые изменились со времени создания предыдущего моментального
образа, помогая с анализом выполняемых случаев выделения памяти.

Эти функции предоставляют весьма простой, но полезный обзор кучи. Если
требуются более серьезные средства анализа, я рекомендую воспользоваться сред-
ством PerfView. Оно не покажет отдельно взятые объекты, но его возможности
отображения взаимоотношений объектов не имеют себе равных.

Чтобы воспользоваться этой функцией PerfView, нужно выполнить следующие
действия.

1.	 В меню Memory (Память) выбрать пункт Take Heap Snapshot (Получить момен-
тальный образ кучи). Следует отметить, что при этом процесс не становится на
паузу, если только не установлен флажок Freeze (Заморозить), но на произво-
дительность процесса оказывается весьма существенное влияние.

2.	 Выделить нужный процесс в появившемся диалоговом окне.

3.	 Щелкнуть на пункте Dump GC Heap (Получить дамп GC-кучи).

4.	 Дождаться завершения сбора, после чего закрыть окно.

5.	 Открыть файл в дереве файлов PerfView (после закрытия окна сбора он может
открыться в автоматическом режиме).

164   Глава 2  •  Управление памятью

Должна появиться таблица, похожая на изображенную на рис. 2.18.
Здесь сразу видно, что на D приходится 88 % памяти программы — 462 Мбайт

в 924 объектах. Можно также увидеть, что на локальные переменные затрачено до
258 Мбайт памяти, а на объект staticArray — 263 Мбайт.

Рис. 2.18. Полученный посредством PerfView срез самых больших объектов в куче

Средство PerfView в своем роде уникально тем, что позволяет контролировать
вклад подчиненных объектов в размер их родительских объектов. Это достига-
ется конфигурацией свертки. Можно указать процент свертки, ниже которого
вся память привязывается к родительскому объекту, или шаблон свертки, чтобы
определить, какие конкретно типы объектов всегда свертываются в свои родитель-
ские объекты (они фактически исчезают из анализа). Подробности использования
PerfView можно найти в главе 1.

Можно также получить графическое представление такой же информации с по-
мощью профилировщика CLR Profiler (рис. 2.19). Для захвата выборки из кучи
нужно в ходе выполнения программы нажать кнопку Show Heap Now (Показать кучу
прямо сейчас).

Рис. 2.19. Профилировщик CLR Profiler выдает ту же самую информацию, что и PerfView,
но в графическом формате

Исследование памяти и сборки мусора   165

Где именно допущена утечка памяти
Утечка памяти возможна во множестве случаев. Все подразделы раздела «Ис-
следование памяти и сборки мусора» этой главы могут помочь вам сузить круг
соответствующих проблем. Есть несколько общих путей возможной утечки памяти
в управляемых приложениях.

�� Для объектов сохраняются непредвиденные ссылки, не дающие их вычистить
сборщиком мусора.

�� Полная сборка мусора осуществляется крайне редко и сохраняет в процессе
много памяти, которая не используется иным образом и не имеет корня. Обычно
это не проблема и, можно сказать, соответствует изначальному замыслу.

�� Высока степень фрагментации, особенно в поколении gen 2 или в куче больших
объектов.

�� Эффективной сборке мусора мешает большое количество закрепленных объек-
тов. Диагностирование экстремальных ситуаций с закреплением объектов будет
рассмотрено в данной главе чуть позже.

В среде Visual Studio (изданий Premium или Enterprise) можно открыть дамп
кучи и выполнить отладку управляемой кучи. При щелчке на типе расположенные
ниже вкладки позволят увидеть, какие другие типы ссылаются на рассматриваемые
объекты.

Для более подробного анализа можно воспользоваться средством PerfView
(рис. 2.20).

1.	 Выберите в меню Memory (Память) пункт Take Heap Snapshot (Получить момен-
тальный образ кучи).

2.	 Выберите в открывшемся диалоговом окне анализируемый процесс и нажмите
кнопку Dump GC Heap (Дамп GC-кучи). В дополнение к этому можно заморозить
процесс или запустить принудительную сборку мусора до получения момен-
тального образа.

3.	 После создания моментального образа нажмите кнопку Close (Закрыть).

Как только моментальный образ будет создан, на левой панели появится файл.
Чтобы открыть представление типов в куче, нужно дважды щелкнуть на его на-
звании. Этим представлением можно манипулировать точно так же, как и всеми
другими стековыми представлениями в PerfView (например, использовать объ-
единение в группы, свертку и фильтрацию). На записи, обозначающей тип, можно
сделать двойной щелчок, что приведет к переключению на представление Referred-
From (Имеется ссылка из).

В этом представлении четко показано, что объекты типа D принадлежат пере-
менной staticArray и локальной переменной (они теряют свои имена в ходе ком-
пиляции) (рис. 2.21).

166   Глава 2  •  Управление памятью

Рис. 2.20. В диалоговом окне PerfView под названием Heap Snapshot
отображается управляемая куча для проведения простого анализа

Рис. 2.21. В PerfView показана принадлежность объектов кучи,
что облегчает анализ причин утечки

Из этого можно составить неплохое общее представление о содержимом кучи.
Если взять два дампа, сделанных в разное время, то можно воспользоваться меню
Diff (Различия) для вычисления различий между двумя моментальными образами
(рис. 2.22). Это может дать представление о накоплении не поддающегося сборке
мусора, если таковое имеется.

Рис. 2.22. Если открыть два моментальных образа кучи, их можно сравнить,
чтобы получить представление, показывающее различия

Исследование памяти и сборки мусора   167

Наиболее подходящие для обобщенного анализа средства — Visual Studio
и PerfView. Средство PerfView — это профилировщик на основе выборок, выпол-
няемых даже при анализе кучи, поэтому иногда он выдает искаженное изображение
того, как именно выглядит куча. Если необходимо углубиться в конкретный объект
или получить истинную полную картину, следует начать использовать отладчик
или средства библиотеки CLR MD.

Для получения в WinDbg быстрой сводки, дающей представление о содержи-
мом кучи, нужно запустить команду !DumpHeap -stat (рис. 2.23):

0:023> !DumpHeap -stat
...
71f718f8 8752 525120 System.Reflection.RuntimeMethodInfo
139e5424 15138 544968 System.Collections.Immutable.Sort...
71f7ffe4 11294 573796 System.Object[]
1370f7d0 4605 626280 Microsoft.VisualStudio.Compositio...
13707114 6190 990400 Microsoft.VisualStudio.Compositio...
1370f24c 5482 1227968 Microsoft.VisualStudio.Compositio...
71f8419c 4799 4684529 System.Byte[]
71f7fbf0 108732 8303452 System.String
00586810 30707 72014878 Free

Рис. 2.23. Представление Heap Diff аналогично всем стековым представлениям в PerfView,
но числа будут показывать отличия целевого моментального образа от базового

Команда выдаст немало выходной информации. Обычно я прокручиваю ее до
конца сводки об объектах, чтобы посмотреть на самых последних потребителей
пространства кучи. Заметьте, что после сводки об объектах выводится список объ-
ектов, появляющихся после свободных блоков, и вам нужно прокрутить выходную
информацию чуть выше этой позиции.

168   Глава 2  •  Управление памятью

Если проделать это пару раз между периодами свободного исполнения програм-
мы, в ходе которых, предположительно, произойдет утечка, можно получить пред-
ставление о том, какие объекты поглощают память. Если вы увидите увеличение
размера Free, значит, либо не происходит сборка мусора, либо куча фрагментиро-
вана. Порядок диагностирования фрагментации будет рассмотрен чуть позже.

Недостаток WinDbg заключается в сложности получения общей картины при-
надлежности объектов, особенно для таких весьма часто используемых объектов,
как System.Byte[] или System.String. Для этого, как сказано ранее, лучше вос-
пользоваться средством PerfView.

Если нужно проанализировать отдельно взятый объект, сначала следует по-
лучить его адрес. Для получения адресов объектов воспользуйтесь командой
!DumpStackObjects или задействуйте !DumpHeap для поиска в куче интересующих
вас объектов, как в следующем примере:

0:004> !DumpHeap -type LargeMemoryUsage.C
 Address MT Size
021b17f0 007d3954 12
021b664c 007d3954 12
...

Statistics:
 MT Count TotalSize Class Name
007d3954 475 5700 LargeMemoryUsage.C
Total 475 objects

Получив адреса объектов, можно воспользоваться командой !gcroot:

0:003> !gcroot 02ed1fc0
HandleTable:
 012113ec (pinned handle)
 -> 03ed33a8 System.Object[]
 -> 02ed1fc0 System.Random

Found 1 unique roots (run '!GCRoot -all' to see all roots).

Команда !gcroot зачастую ведет себя прилично, но может пропустить некоторые
случаи, в частности, если ваш объект уходит корнями в более старое поколение.
Для этого нужно будет воспользоваться командой !findroots.

Чтобы эта команда сработала, сначала нужно установить точку останова в сбор-
щике мусора непосредственно перед намечающейся сборкой, задав выполнение
следующих команд:

!findroots -gen 0
g

Эти команды устанавливают точку останова непосредственно перед моментом
выполнения следующей сборки мусора в поколении gen 0. Затем эффект команд
утрачивается, и придется запускать команду еще раз для прерывания выполнения
на следующей сборке мусора.

Исследование памяти и сборки мусора   169

Как только выполнение кода будет прервано, следует найти интересующий вас
объект и выполнить с его адресом следующую команду:

!findroots 027624fc

Если объект уже находится в более старшем поколении, чем поколение теку-
щей сборки мусора, будет выведена примерно следующая информация о том, что
данный объект выживет при сборке мусора, поскольку он находится в поколении,
которое старше оцениваемого поколения:

Object 027624fc will survive this collection:
 gen(0x27624fc) = 1 > 0 = condemned generation.

Если сам объект находится в поколении, попадающем в текущий момент под
сборку мусора, но имеет корни в старшем поколении, будет выведена примерно
следующая информация:

older generations::Root: 027624fc (object)->
 023124d4(System.Collections.Generic.List'1
 [[System.Object, mscorlib]])

Если это слишком утомительно, можно создать собственную команду !gcroot
с помощью средств библиотеки CLR MD.

const string TargetType = "LargeMemoryUsage.D";

private static void PrintRootsOfObjects(ClrRuntime clr)
{
 PrintHeader("Roots of Object");

 Dictionary <ulong , ClrObject > childToParents =
 new Dictionary <ulong , ClrObject >();
 var heap = clr.Heap;

 // Поиск произвольного объекта в демонстрационных целях
 ClrObject targetObject = FindObjectOfType(clr, TargetType);

 if (targetObject.Address == 0)
 {
 Console.WriteLine(
 $"Could not find any objects of type {TargetType}");
 return;
 }

 // Анализ всех объектов, построение карты ссылок
 foreach (var obj in heap.EnumerateObjects())
 {
 foreach (var objRef in obj.EnumerateObjectReferences())
 {
 childToParents[objRef.Address] = obj;
 }
 }

170   Глава 2  •  Управление памятью

 // Подъем по цепочке ссылок
 ClrObject currentObj = targetObject;
 int indentSize = 0;
 while(true)
 {
 Console.Write(new string(' ', indentSize));
 Console.WriteLine(
 $"0x{currentObj.Address:x} - {currentObj.Type.Name}");

 ClrObject parentObject;
 if (!childToParents.TryGetValue(currentObj.Address ,
 out parentObject))
 {
 break;
 }
 currentObj = parentObject;
 indentSize += 4;
 }
}

private static ClrObject FindObjectOfType(ClrRuntime clr,
 string typeName)
{
 foreach (var obj in clr.Heap.EnumerateObjects())
 {
 if (obj.Type.Name == TargetType)
 {
 return obj;
 }
 }
 return new ClrObject();
}

Выполнение кода приведет к выводу примерно такой информации:

Roots of Object
===============
0x2e46bfc - LargeMemoryUsage.D
 0x2e43428 - System.Object[]

Каков размер моих объектов
Вычисление размера объекта — вопрос неоднозначный. Подразумевается ли при этом
размер всех полей в этом объекте? Если в нем имеется ссылка на другой объект,
такой как массив, его тоже нужно брать в расчет? Что если два объекта ссылаются
друг на друга?

К счастью, большинство инструментальных средств, показывающих размер
объекта, придерживаются алгоритма с использованием следующих понятий.

1.	 Исключающим считается размер объекта и всех его полей. Объекты, на которые
имеются ссылки, не включаются, но сами ссылки на такие объекты, четырех-
или восьмибайтные, берутся в расчет.

Исследование памяти и сборки мусора   171

2.	 Включающим является размер объекта и всех объектов, на которые имеется
ссылка в данном объекте.

3.	 Ссылки на объекты учитываются, пока они не закончатся или пока не встретит-
ся уже пройденная ссылка. Тем самым исключается двойной подсчет.

Для получения размеров объектов в Visual Studio воспользуйтесь профилиров-
щиком Memory Usage (Использование памяти) (рис. 2.24).

1.	 Пройдите по пунктам меню AnalyzePerformance profiler (АнализПрофилиров
щик производительности) или нажмите сочетание клавиш Alt+F2.

2.	 Выберите пункт Memory Usage (Использование памяти).

3.	 Запустите на выполнение целевую программу.

4.	 В нужный момент получите мгновенный образ кучи.

5.	 Завершите профилирование или выполнение целевой программы.

Рис. 2.24. Имеющийся в Visual Studio профилировщик Memory Usage может показать совокупные
или индивидуальные размеры объектов, в том числе тех, на которые есть ссылки

Если нужная детализация не достигнута, проверьте, отключены ли настройки
табличного представления Collapse Small Objects (Свернуть малые объекты) и Just My
Code (Только мой код).

В WinDbg есть две SOS-команды, способные показать такую же информацию.
Команда !DumpObj может показать исключающий размер объекта:

0:007> !DumpObj /d 058e8230
Name: LargeMemoryUsage.D
MethodTable: 035d4e74
EEClass: 035d1870
Size: 12(0xc) bytes
File: D:\HighPerformanceDotNetBook\...\LargeMemoryUsage.exe
Fields:
 MT Field Offset Type VT Attr Value Name
71b54080 4000003 4 System.Byte[] 0 instance 2a895510 memory

172   Глава 2  •  Управление памятью

Как видите, она не принимает в расчет принадлежащий объекту массив байтов.
Чтобы учесть его, нужно воспользоваться командой !ObjSize:

0:007> !ObjSize 058e8230
sizeof(058e8230) = 1000028 (0xf425c) bytes (LargeMemoryUsage.D)

Если запустить команду !ObjSize без параметров, она выведет список всех по-
токов и GC-дескрипторов, собрав воедино размеры объектов, уходящих корнями
в каждый из них:

0:007> !ObjSize
...
Thread 5580 (LargeMemoryUsage.Program.Main(System.String[])
 [D:\HighPerformanceDotNetBook\...\Program.cs @ 29]):
 ebp+1c: 012ff37c -> <exec cmd="!DumpObj /d 05383448">
 05383448</exec>: 283846000 (0x10eb2570) bytes (System.Object[])
...
Handle (pinned): 035b13ec -> 06383510: 286744176 (0x11175e70) bytes
 (System.Object[])
Handle (pinned): 035b13f0 -> 06382500: 8864 (0x22a0) bytes
 (System.Object[])
Handle (pinned): 035b13f4 -> 063822e0: 640 (0x280) bytes
 (System.Object[])
Handle (pinned): 035b13f8 -> 0538121c: 12 (0xc) bytes
 (System.Object)
Handle (pinned): 035b13fc -> 06381020: 8440 (0x20f8) bytes
 (System.Object[])

Можно подсчитать этот размер и с помощью средств библиотеки CLR MD.
Для этого придется самостоятельно проделать работу по обходу объектов:

private static void PrintObjectSize(ClrRuntime clr)
{
 PrintHeader("Object Size");

 var obj = FindObjectOfType(clr, TargetType);
 Console.WriteLine($"0x{obj.Address:x} - {obj.Type.Name}");
 var heap = clr.Heap;
 // Стек для подсчетов
 Stack <ulong > stack = new Stack <ulong >();

 HashSet <ulong > considered = new HashSet <ulong >();

 int count = 0;
 ulong size = 0;
 stack.Push(obj.Address);

 while (stack.Count > 0)
 {
 var objAddr = stack.Pop();
 if (considered.Contains(objAddr))

Исследование памяти и сборки мусора   173

 continue;

 considered.Add(objAddr);

 ClrType type = heap.GetObjectType(objAddr);
 if (type == null)
 {
 continue;
 }

 count++;
 size += type.GetSize(objAddr);

 type.EnumerateRefsOfObject(objAddr ,
 delegate (ulong child ,
 int offset)
 {
 if (child != 0 && !considered.Contains(child))
 stack.Push(child);
 });
 }
 Console.WriteLine($"Object Size: {obj.Size}");
 Console.WriteLine($"Full size: {size}");
}

Выводимая информация будет примерно такой:

Object Size
===========
0x4636c24 - LargeMemoryUsage.D
Object Size: 12
Full size: 1000024

Если интересны только совокупные размеры объектов, эта информация может
быть получена с помощью средства PerfView, позволяющего объединять подчинен-
ные объекты несколькими способами для подробнейшего анализа. Такая работа
с этим средством была рассмотрена в предыдущем разделе.

Каким объектам выделена память в LOH
Понимать, каким именно объектам выделена память в куче больших объектов,
очень важно для обеспечения эффективной работы системы. Ключевое правило,
рассмотренное ранее в данной главе, гласит, что все объекты должны либо вычи-
щаться при сборке мусора в поколении gen 0, либо жить вечно.

Большие объекты попадают под очистку только при весьма затратной сборке
мусора в поколении gen 2, что изначально нарушает упомянутое ранее правило.

Чтобы определить, какие объекты находятся в LOH, нужно воспользоваться
средством PerfView и придерживаться приведенных ранее инструкций для полу-
чения трассировки событий сборки мусора. В полученном представлении GC Heap

174   Глава 2  •  Управление памятью

Alloc Stacks (Стеки выделения памяти в GC-куче) на вкладке By Name (По имени)
вы найдете специально созданный PerfView узел LargeObject. В результате двойного
щелчка на этом узле будет выполнен переход в представление Callers (Вызыва
ющие), показывающий, какие у LargeObject имеются вызывающие. В нашем при-
мере к ним относятся все массивы Int32. После двойного щелчка на них будет
показано место в коде, вызвавшее выделение памяти (рис. 2.25).

Рис. 2.25. Средство PerfView может показать большие объекты и их типы со стеками,
вызвавшими выделение памяти для них

Средства библиотеки CLR MD могут также сообщить о том, какие объекты на-
ходятся в куче больших объектов.

private static void PrintLOHObjects(ClrRuntime clr)
{
 PrintHeader("LOH Objects (limit:10)");

 int objectCount = 0;
 const int MaxObjectCount = 10;
 if (clr.Heap.CanWalkHeap)
 {
 foreach (var segment in clr.Heap.Segments)
 {
 if (segment.IsLarge)
 {
 for (ulong objAddr = segment.FirstObject;
 objAddr != 0;
 objAddr = segment.NextObject(objAddr))
 {
 var type = clr.Heap.GetObjectType(objAddr);
 if (type == null)
 {
 continue;
 }
 var obj = new ClrObject(objAddr , type);
 if (++objectCount > MaxObjectCount)
 {
 break;
 }

Исследование памяти и сборки мусора   175

 Console.WriteLine(
 $"{obj.Address} {obj.Type.Name}");
 }
 }
 }
 }
}

Какие объекты были закреплены
Ранее уже говорилось, что счетчик производительности сообщит о количестве
закрепленных объектов, попавшихся сборщику мусора в ходе сборки, но это не по-
может вам определить, какие именно объекты были закреплены.

Рассмотрим пример из проекта Pinning, где закрепление производится путем
явного использования инструкций fixed и вызова ряда Windows API.

Для просмотра закрепленных объектов нужно воспользоваться WinDbg с ко-
мандой !gchandles:

0:010> !gchandles
 Handle Type Object Size Data Type
...
003511f8 Strong 01fa5dbc 52 System.Threading.Thread
003511fc Strong 01fa1330 112 System.AppDomain
003513ec Pinned 02fa33a8 8176 System.Object[]
003513f0 Pinned 02fa2398 4096 System.Object[]
003513f4 Pinned 02fa2178 528 System.Object[]
003513f8 Pinned 01fa121c 12 System.Object
003513fc Pinned 02fa1020 4420 System.Object[]
003514fc AsyncPinned 01fa3d04 64
 System.Threading.OverlappedData

Присутствие множества закрепленных объектов System.Object[] — обычная
ситуация. Эти массивы используются внутри среды CLR для статистики и других
закрепленных объектов. В показанном ранее случае можно увидеть один дескрип-
тор AsyncPinned. В данном примере этот объект относится к FileSystemWatcher.

К сожалению, отладчик не укажет причину закрепления, но зачастую у вас будет
возможность изучить закрепленный объект и проследить за тем, какой объект за
него отвечает.

В следующем сеансе работы с WinDbg показано отслеживание таких ссылок на
объект с целью поиска объектов более высокого уровня, который может дать ключ
к истокам закрепленного объекта. Посмотрите, получится ли у вас пройти по цепочке
ссылок на объекты, начиная с адреса показанного ранее дескриптора AsyncPinned.

0:010> !do 01fa3d04
Name: System.Threading.OverlappedData
MethodTable: 64535470
EEClass: 646445e0
Size: 64(0x40) bytes
File: C:\windows\Microsoft.Net\...\mscorlib.dll
Fields:

176   Глава 2  •  Управление памятью

 MT Field Offset Type VT Attr Value Name
64927254 4000700 4 System.IAsyncResult 0 instance 020a7a60 m_asyncResult
64924904 4000701 8 ...ompletionCallback 0 instance 020a7a70 m_iocb
...
0:010> !do 020a7a70
Name: System.Threading.IOCompletionCallback
MethodTable: 64924904
EEClass: 6463d320
Size: 32(0x20) bytes
File: C:\windows\Microsoft.Net\...\mscorlib.dll
Fields:
 MT Field Offset Type VT Attr Value Name
649326a4 400002d 4 System.Object 0 instance 01fa2bcc _target
...
0:010> !do 01fa2bcc
Name: System.IO.FileSystemWatcher
MethodTable: 6a6b86c8
EEClass: 6a49c340
Size: 92(0x5c) bytes
File: C:\windows\Microsoft.Net\...\System.dll
Fields:
 MT Field Offset Type VT Attr Value Name
649326a4 400019a 4 System.Object 0 instance 00000000 __identity
6a699b44 40002d2 8 ...ponentModel.ISite 0 instance 00000000 site
...

Отладчик предоставляет вам максимальные возможности, но все же он, мягко
выражаясь, несколько трудоемок в применении. Вместо него можно воспользовать-
ся средством PerfView, способным упростить многие рутинные задачи. В трасси-
ровке PerfView будет показано представление под названием Pinning at GC Time Stacks
(Стеки закрепленных на время сборки мусора), где можно увидеть стеки объектов,
закрепленных в ходе всех наблюдаемых сборок (рис. 2.26).

Рис. 2.26. Средство PerfView выводит информацию о типах объектов,
закрепленных при сборках мусора, а также их вероятном происхождении

К проблеме изучения закрепленных объектов можно подойти также путем из-
учения дыр свободного пространства, созданных в различных кучах, о чем пойдет
речь в следующем подразделе.

Исследование памяти и сборки мусора   177

Где происходит фрагментация
Фрагментация возникает при наличии свободных блоков памяти внутри сегментов,
содержащих используемые блоки памяти. Она может происходить на нескольких
уровнях: внутри сегмента GC-кучи или на уровне виртуальной памяти для всего
процесса. Фрагментация становится проблемой при слишком большом количестве
небольших свободных блоков памяти, непригодных для последующего выделения.

Фрагментация в поколении gen 0 обычно не вызывает никаких вопросов, если
только нет серьезных проблем с закреплением, когда закрепленных объектов слиш-
ком много и каждый блок свободной памяти слишком мал для удовлетворения
любого нового выделения памяти. Такое положение дел вызовет разрастание кучи
малых объектов и увеличение количества сборок мусора.

Обычно фрагментация создает проблему в поколении gen 2 или в куче боль-
ших объектов, особенно когда не используется сборка мусора в фоновом режиме.
Степень фрагментации может показаться слишком большой, возможно, даже 50 %,
но это не обязательно говорит о проблеме. Нужно брать в расчет размер всей кучи,
и если он вполне приемлем и со временем не увеличивается, то, вполне вероятно,
никаких действий предпринимать не нужно.

В первую очередь требуется узнать, есть ли фрагментация вообще. Если вос-
пользоваться командой !HeapStat, средство WinDbg может показать процент
свободного пространства кучи, служащий признаком фрагментации:

0:023> !HeapStat
Heap Gen0 Gen1 Gen2 LOH
Heap0 2870384 2423640 93212392 9692760

Free space: Percentage
Heap0 177940 21480 65552412 6324464 SOH: 66% LOH: 65%

В результате выполнения этой команды выводятся сведения о каждой куче
и сообщается процент свободного пространства как в куче малых, так и в куче
больших объектов. Что касается фрагментации в куче больших объектов, зачастую
вероятных виновников можно найти, посмотрев на то, какие объекты находятся
в куче больших объектов, и изучив их размеры и относящийся к ним код. Приемы
обнаружения были рассмотрены ранее в этой главе.

Сводку типов и объектов, примыкающих к свободным блокам, можно получить
с помощью команды !DumpHeap -stat. В самом конце сводных данных о куче будет
выведена примерно следующая информация:

Fragmented blocks larger than 0.5 MB:
 Addr Size Followed by
16b61000 1.7MB 16d08948 System.Byte[]
16d08d7c 1.7MB 16ec4aa4 System.Byte[]
16f530c4 6.0MB 1755fb10 System.Byte[]
175e978c 0.6MB 17680ae0 System.Byte[]
176b9694 1.8MB 1787fff4 System.Byte[]
1e461000 1.5MB 1e5d7300 System.Byte[]
1e5d7734 1.4MB 1e74660c System.Byte[]
1e746a40 2.4MB 1e9a20d8 System.Byte[]

178   Глава 2  •  Управление памятью

Если нужна подробная информация о фрагментации, включая то, какие именно
объекты вызвали появление областей свободного пространства, можно воспользо-
ваться другими командами WinDbg.

Список свободных блоков можно получить с помощью команды !DumpHeap
-type Free:

0:010> !DumpHeap -type Free
 Address MT Size
02371000 008209f8 10 Free
0237100c 008209f8 10 Free
02371018 008209f8 10 Free
023a1fe8 008209f8 10 Free
023a3fdc 008209f8 22 Free
023abdb4 008209f8 574 Free
023adfc4 008209f8 46 Free
023bbd38 008209f8 698 Free
023bdfe0 008209f8 18 Free
023d19c0 008209f8 1586 Free
023d3fd8 008209f8 26 Free
023e578c 008209f8 2150 Free
...

А с помощью команды !eeheap -gc можно выяснить, в каком из сегментов кучи
находится каждый блок:

0:010> !eeheap -gc
Number of GC Heaps: 1
generation 0 starts at 0x02371018
generation 1 starts at 0x0237100c
generation 2 starts at 0x02371000
ephemeral segment allocation context: none
 segment begin allocated size
02370000 02371000 02539ff4 0x1c8ff4(1871860)
Large object heap starts at 0x03371000
 segment begin allocated size
03370000 03371000 03375398 0x4398(17304)
Total Size: Size: 0x1cd38c (1889164) bytes.

GC Heap Size: Size: 0x1cd38c (1889164) bytes.

Следующая команда выведет дамп всех объектов, находящихся в данном сег-
менте или в узком диапазоне вокруг свободного пространства:

0:010> !DumpHeap 0x02371000 02539ff4
 Address MT Size
02371000 008209f8 10 Free
0237100c 008209f8 10 Free
02371018 008209f8 10 Free
02371024 713622fc 84
02371078 71362450 84
023710cc 71362494 84

Исследование памяти и сборки мусора   179

02371120 713624d8 84
02371174 7136251c 84
023711c8 7136251c 84
0237121c 71362554 12
...

Это весьма утомительный, выполняемый вручную процесс, но он когда-нибудь
может пригодиться, и вы должны понять, как это делается. Для получения вы-
ходной информации можно написать сценарий, генерирующий команды WinDbg
на основе предыдущего вывода, но профилировщик CLR Profiler может показать
вам ту же самую информацию в графическом, сводном виде, которого может быть
вполне достаточно для удовлетворения ваших потребностей (рис. 2.27).

Рис. 2.27. Профилировщик CLR Profiler может показать визуальное представление кучи,
позволяющее увидеть, какие типы объектов следуют за свободными блоками памяти.

Здесь свободные блоки памяти граничат с блоками SystemByte[] и множеством других типов

Средство PerfView может также в представлении GCStats сообщить, когда про-
изошла фрагментация. Посмотрите на данные столбца Frag % (Процент фрагмен-
тации). Разумеется, сообщений о точной причине возникновения фрагментации
вы там не найдете.

Библиотека CLR MD дает возможность создавать собственные инструменталь-
ные средства, позволяющие получать данные о фрагментации. У каждого объекта
ClrObject есть свойство Type, которое обладает булевым свойством IsFree, пока-
зывающим, представляет ли этот тип свободное пространство кучи.

180   Глава 2  •  Управление памятью

Фрагментация виртуальной памяти
Может произойти также фрагментация виртуальной памяти, способная вызвать сбой
неуправляемого распределения из-за невозможности найти достаточно большой диа-
пазон, удовлетворяющий запросу. Сюда может быть включено распределение нового
сегмента GC-кучи, а это будет означать сбой управляемого выделения памяти.

Чтобы получить визуальное представление вашего процесса, можно восполь-
зоваться средством VMMap, являющимся частью инструментария SysInternals.
В нем куча будет поделена на управляемую, неуправляемую и свободную области.
При выборе части Free (Свободная) будут показаны свободные сегменты (рис. 2.28).
Если максимальный размер не соответствует запрошенному вами размеру памяти,
будет выдано исключение OutOfMemoryException.

Рис. 2.28. Средство VMMap показывает большой объем информации, относящейся к памяти,
включая размер всех свободных блоков в адресном диапазоне. В данном случае размер самого

большого блока — более 1,1 Гбайт, что немало!

Исследование памяти и сборки мусора   181

Средство VMMap имеет также представление о фрагментации, которое в состоя
нии показать, где именно эти блоки размещаются в общем пространстве процесса
(рис. 2.29).

Рис. 2.29. Представление о фрагментации, имеющееся у средства VMMap, где показано
свободное пространство в контексте других сегментов

Эту же информацию можно извлечь в WinDbg:

!address -summary

Эта команда приводит к выводу следующей информации:

...
-- Largest Region by Usage -- Base Address -- Region Size --
Free 26770000 49320000 (1.144 Gb)
...

С помощью следующей команды можно получить информацию о конкретных
блоках:

!address -f:Free

Ее выполнение даст примерно такой вывод:

BaseAddr EndAddr+1 RgnSize Type State Protect Usage
--
 0 150000 150000 MEM_FREE PAGE_NOACCESS Free

182   Глава 2  •  Управление памятью

Виртуальной фрагментации сильнее подвержены 32-разрядные процессы, где
для вашей программы изначально действует ограничение всего на 2 Гбайт адресного
пространства. Самым явным симптомом служит исключение OutOfMemoryException.
Проще всего исправить ситуацию, преобразовав ваше приложение в 64-разрядный
процесс с адресным пространством 129 Тбайт. Если это невозможно, единственным
вариантом остается повышение эффективности выделения памяти. Нужно сделать
кучи более компактными и, возможно, реализовать крупные пулы.

В каком поколении находится объект
Эту информацию можно извлечь из собственного кода вашего приложения,
воспользовавшись методом GC.GetGeneration и передав ему интересующий вас
объект.

В WinDbg после получения адреса интересующего вас объекта (скажем, из
вывода команды !DumpStackObjects или !DumpHeap) нужно воспользоваться коман
дой !gcwhere:

0:003> !gcwhere 02ed1fc0
Address Gen Heap segment begin allocated size
02ed1fc0 1 0 02ed0000 02ed1000 02fe5d4c 0x14(20)

При применении библиотеки CLR MD можно воспользоваться методом
ClrHeap.GetGeneration:

foreach(var obj in heap.EnumerateObjects())
{
 int gen = heap.GetGeneration(obj.Address);
}

Какие объекты выжили в поколении gen 0
Проще всего это выяснить, перечислив все объекты, находящиеся в той части кучи,
которая относится к gen 1 или gen 2.

С помощью библиотеки CLR MD это можно сделать, использовав минимум
кода:

foreach(var obj in heap.EnumerateObjects())
{
 int gen = heap.GetGeneration(obj.Address);
 if (gen > 0)
 {
 // проведение анализа
 }
}

Перебор всех объектов в большой куче был бы крайне неэффективным. Если,
к примеру, интерес представляет только куча поколения gen 1, это можно сделать
немного рациональнее, пройдя кучу посегментно.

Исследование памяти и сборки мусора   183

private static void PrintGen1ObjectsByHeapSegment(ClrRuntime clr)
{
 PrintHeader("Gen1 Objects by Heap Segment");
 if (clr.Heap.CanWalkHeap)
 {
 foreach(var segment in clr.Heap.Segments)
 {
 // Поколения gen 0 и gen 1 содержатся только в эфемерном сегменте
 if (segment.IsEphemeral)
 {
 // Получение диапазона поколения gen 1
 ulong start = segment.Gen1Start;
 ulong end = start + segment.Gen1Length;
 Console.WriteLine(
 $"Segment Info: Start: {start}, End {end}");

 for (ulong objAddr = segment.FirstObject;
 objAddr != 0;
 objAddr = segment.NextObject(objAddr))
 {
 if (objAddr >= start && objAddr < end)
 {
 var type =
 clr.Heap.GetObjectType(objAddr);
 if (type == null)
 {
 continue;
 }
 var obj = new ClrObject(objAddr , type);
 Console.WriteLine(
 $"{obj.Address} {obj.Type.Name}");
 }
 }

 break;
 }
 }
 }
}

С другой стороны, возможно, при отладке вам потребуется узнать, какие объ-
екты пережили конкретную сборку мусора. Например, может быть, вы работаете
в среде отладчика, остановили выполнение кода в контрольной точке и хотите
узнать, что произойдет после следующей сборки мусора. В WinDbg это сделать
можно, но для этого придется немного потрудиться.

Выполните в WinDbg следующие команды:

!FindRoots -gen 0
g

С их помощью перед началом следующей сборки мусора в поколении gen 0 бу-
дет установлена контрольная точка. Как только на ней будет прервано выполнение

184   Глава 2  •  Управление памятью

кода, можно будет отправить нужные вам команды для получения дампа объектов
в куче, например такую:

!DumpHeap

Будет создан дамп каждого объекта в куче, что может дать чересчур объемный
результат. При желании можно добавить параметр –stat, чтобы вывести лишь
сводную информацию о найденных объектах — их количестве, размерах и типах.
Но если нужно ограничить анализ только поколением gen 0, команда !DumpHeap
позволяет указать диапазон адресов. Вспомните описание сегментов памяти
(приведено в начале главы) и то, что поколение gen 0 находится в конце сегмента
(рис. 2.30).

Рис. 2.30. Базовая структура сегмента

Для получения перечня куч и сегментов можно воспользоваться командой
eeheap -gc:

0:003> !eeheap -gc
Number of GC Heaps: 1
generation 0 starts at 0x02ef0400
generation 1 starts at 0x02ed100c
generation 2 starts at 0x02ed1000
ephemeral segment allocation context: none
 segment begin allocated size
02ed0000 02ed1000 02fe5d4c 0x114d4c(1133900)
Large object heap starts at 0x03ed1000
 segment begin allocated size
03ed0000 03ed1000 041e2898 0x311898(3217560)
Total Size: Size: 0x4265e4 (4351460) bytes.

GC Heap Size: Size: 0x4265e4 (4351460) bytes.

Эта команда выведет данные о каждом поколении и каждом сегменте. Сегмент,
содержащий gen 0 и gen 1, называется эфемерным. Команда !eeheap сообщает, где
начинается поколение gen 0. Для получения его конечного адреса нужно просто
найти сегмент, содержащий адрес начала. Каждый сегмент содержит несколько
адресов и длину. В показанном ранее примере эфемерный сегмент начинается
с адреса 02ed0000 и заканчивается адресом 02fe5d4c. Следовательно, диапазон по-
коления gen 0 в этой куче — 02ef0400–02fe5d4c.

После того как вы об этом узнали, команде !DumpHeap можно задать ограничения
и вывести только объекты, которые относятся к поколению gen 0:

!DumpHeap 02ef0400 02fe5d4c

Исследование памяти и сборки мусора   185

После этого нужно сравнить результат своих действий с тем, что получится
сразу же по завершении сборки мусора. Сделать это чуть сложнее. Нужно устано-
вить контрольную точку на внутренний метод CLR. Этот метод вызывается, когда
среда CLR готова возобновить выполнение управляемого кода. Если используется
сборка мусора в режиме рабочей станции, следует выполнить вызов:

bp clr!WKS::GCHeap::RestartEE

А для сборки мусора в режиме сервера выполните следующий вызов:

bp clr!SVR::GCHeap::RestartEE

После установки контрольных точек нужно продолжить выполнение кода
(с помощью клавиши F5 или команды g). Как только сборка мусора завершится,
выполнение программы опять прервется и можно будет повторно отправить ко-
манды !eeheap -gc и !DumpHeap.

Теперь у вас будет два набора выходных данных, и их можно сравнить, чтобы
увидеть изменения и те объекты, которые остались после сборки мусора. Исполь-
зовав другие команды и приемы, показанные в этом разделе, можно увидеть, кто
удерживает ссылку на конкретный объект.

ПРИМЕЧАНИЕ

Нужно понимать, что при сборке мусора в режиме сервера имеется несколько куч.
Для подобного анализа следует повторить команды для каждой из них. Команда
!eeheap выведет информацию для каждой кучи в процессе.

Откуда был сделан явный вызов метода GC.Collect
То, что код явно вызывает метод GC.Collect, называется принудительной сборкой
мусора, и есть счетчики и ETW-события, выявляющие соответствующую инфор-
мацию. Но они ничего не скажут вам о том, откуда именно был вызван метод.
Можно без особого труда отследить собственный код в Visual Studio или в любом
современном текстовом редакторе, но если ничего не получится, то, чтобы увидеть,
как ваша программа добирается до этого метода, придется устанавливать точку
останова на самом методе GC.Collect.

В WinDbg нужно установить управляемую точку останова на методе Collect
класса GC:

!bpmd mscorlib.dll System.GC.Collect

Затем продолжить выполнение кода. Как только оно дойдет до точки останова,
следует изучить трассировку стека, чтобы увидеть, откуда именно пошел вызов
явной сборки мусора:

!DumpStack

186   Глава 2  •  Управление памятью

Какие слабые ссылки имеются в моем процессе
Поскольку слабые ссылки — это один из типов GC-дескриптора, для их поиска
можно в WinDbg воспользоваться командой !gchandles:

0:003> !gchandles
 Handle Type Object Size Data Type
006b12f4 WeakShort 022a3c8c 100 System.Diagnostics.Tracing...
006b12fc WeakShort 022a3afc 52 System.Threading.Thread
006b10f8 WeakLong 022a3ddc 32 Microsoft.Win32.UnsafeNati...
006b11d0 Strong 022a3460 48 System.Object[]
...

Handles:
 Strong Handles: 11
 Pinned Handles: 5
 Weak Long Handles: 1
 Weak Short Handles: 2

Короткие слабые дескрипторы Weak Short являются обычными слабыми ссыл-
ками, которыми можно воспользоваться. В длинных слабых дескрипторах Weak
Long отслеживается, был ли финализируемый объект восстановлен (для объектов
без финализаторов всегда используются короткие дескрипторы). Воскрешение
может произойти, когда объект был финализирован и вместо того, чтобы позволить
сборщику мусора его вычистить, вы решили его повторно задействовать, прямо
в финализаторе присвоив этот объект новой ссылке. Это может быть связано со
сценариями объединения в пулы. Конечно, объединение в пулы возможно и без
финализации, и, учитывая все сложности работы с воскрешением, его нужно из-
бегать, отдавая предпочтение использованию предсказуемых методов.

Какие финализируемые объекты имеются в куче
WinDbg-команда !FinalizeQueue покажет все объекты, зарегистрированные для
финализации, а также сводку их типов:

0:042> !FinalizeQueue
SyncBlocks to be cleaned up: 0
Free-Threaded Interfaces to be released: 0
MTA Interfaces to be released: 0
STA Interfaces to be released: 0

generation 0 has 13 finalizable objects (288603b4->288603e8)
generation 1 has 6 finalizable objects (2886039c->288603b4)
generation 2 has 57247 finalizable objects (28828520->2886039c)
Ready for finalization 0 objects (288603e8->288603e8)
Statistics for all finalizable objects
 (including all objects ready for finalization):

Резюме   187

 MT Count TotalSize Class Name
72753184 1 12 System.WeakReference'1...
6df6bea8 1 12 System.Windows.Forms.VisualStyles...
6df68c44 1 12 System.Windows.Forms.ImageList...
584582f0 1 12 System.WeakReference'1...
58443158 1 12 Microsoft.Build.BackEnd.Components...
...

Если нужно увидеть сводку объектов, готовых к финализации, можно запустить
на выполнение следующую команду:

!FinalizeQueue -detail

Она покажет список имен типов, которые в данный момент доступны для
финализации. Если нужно получить конкретные объекты, относящиеся к этой
категории, можно воспользоваться диапазоном адресов, полученным в выходных
данных для вывода дампа всех объектов в диапазоне готовых к финализации:

!DumpHeap 288603e8 288606c4

При использовании библиотеки CLR MD можно для перечисления всех
финализируемых объектов воспользоваться методом EnumerateFinalizab
leObjectAddresses:

private static void PrintFinalizableObjects(ClrRuntime clr)
{
 foreach (var objAddr in
 clr.Heap.EnumerateFinalizableObjectAddresses())
 {
 ClrType type = clr.Heap.GetObjectType(objAddr);
 if (type == null)
 {
 continue;
 }
 ClrObject obj = new ClrObject(objAddr , type);
 // Выполнение с этим объектом каких-либо действий ...
 }
}

К сожалению, так вы не сможете получить сведения о готовности этих объектов
к финализации.

Резюме
Чтобы действительно оптимизировать свои приложения, нужно как можно тща-
тельнее разобраться со сборкой мусора. Следует выбрать правильные настройки
конфигурации для приложения, например сборку мусора в режиме сервера, если
приложение является единственным запущенным на машине, но проявить осто-
рожность при использовании расширенных настроек. Необходимо обеспечить

188   Глава 2  •  Управление памятью

кратковременность существования объектов, низкую интенсивность выделения
памяти и объединение в пулы объектов, которые должны существовать дольше
средней частоты сборки мусора, или же в противном случае их вечную жизнь в по-
колении gen 2. Чтобы избежать распределений в кучах, можно применить метод
stackalloc, но делать это следует осмотрительно.

По возможности откажитесь от закреплений и финализаторов. Чтобы можно
было избежать полной сборки мусора, все объекты из LOH должны объединяться
в пулы и сохраняться вечно. Сокращайте фрагментацию LOH, сохраняя объекты
одинакового размера и по мере необходимости уплотняя кучу. Рассмотрите воз-
можность использования уведомлений о сборке мусора, чтобы запретить полную
сборку мусора, которая может повлиять на работу приложения, если начнется
в неподходящий момент.

Сборщик мусора — предсказуемый компонент, его операции можно контро-
лировать, более тщательно управляя интенсивностью выделения памяти под
объекты и их сроками существования. Согласившись с применением сборщика
мусора среды .NET, вы не отказываетесь от контроля, но он требует деликатности.

3 JIT-компиляция

.NET-код распространяется в виде сборок на языке Microsoft Intermediate Language
(MSIL, или для краткости просто IL). Этот язык — что-то вроде языка ассемблера,
но более простой. Если захотите глубже изучить IL или другие CLR-стандарты,
поищите информацию в Интернете, задав в строке поиска ECMA C# CLI standards.

При выполнении ваша управляемая программа загружает CLR-среду, которая
приступает к выполнению некоего кода-обертки. Весь этот код машинный. При
первом вызове из вашей сборки управляемого метода он фактически запускает за-
глушку, выполняющую код компилятора времени использования (just-in-time (JIT)
compiler), который преобразует IL для данного метода в аппаратные инструкции
машины. Этот процесс называется компиляцией времени использования (just-in-
time compilation, JITting) или JIT-компиляцией. Заглушка заменяется получен-
ным результатом, и при следующем вызове этого же метода инструкции на языке
ассемблера вызываются напрямую. Это означает, что при первом вызове любого
метода всегда возникает провал производительности. В большинстве случаев он
невелик и его можно проигнорировать. После этого каждый раз код выполняется
напрямую и не несет никаких издержек (рис. 3.1).

Рис. 3.1. Схема компиляции в IL и JIT-компиляции

Хотя весь код в методе в ходе JIT-компиляции будет преобразован в ассем-
блерные инструкции, некоторые фрагменты могут быть помещены в «холодные»

190   Глава 3  •  JIT-компиляция

секции памяти отдельно от пути обычного выполнения метода. Таким образом, эти
редко выполняемые пути не станут вытеснять другой код из «горячих» секций, по-
зволяющих повысить общую производительность, поскольку часто выполняемый
код хранится в памяти, тогда как «холодные» страницы могут быть сброшены на
диск. Поэтому выполнение редко востребуемых путей, например обработка ошибок
и исключений, может обойтись очень дорого.

В большинстве случаев прогон метода через JIT-компиляцию понадобится
всего один раз. Исключение — использование в методе аргументов обобщенного
(универсального) типа. Если какой-либо из типов-аргументов значим, то новый код
должен быть сгенерирован для каждого типа. Если же все типы-аргументы отно-
сятся к ссылочным, генерируется только одна копия кода аппаратной платформы,
поскольку, несмотря на разные типы, каждая ссылка в машинном коде выглядит
как стандартный указатель (4 или 8 байт). Учтите, что это не означает, что сами
типы при этом одинаковы, — система типов сохраняет целостность, и, к примеру,
List<string> по-прежнему отличается от List<Regex>. Это просто означает, что
реализация машинного кода методов не должна заботиться об этих различиях
и поэтому дублирующий код не создается.

Затраты на JIT-компиляцию следует принять в расчет, если затраты на перво-
начальное создание машинного кода важны для вашего приложения или его
пользователей. В большинстве приложений уделяется внимание только произво-
дительности в уже установившемся режиме работы, но если нужна экстремально
высокая доступность, JIT-компиляция должна стать предметом оптимизации.
В таком случае правильным решением может стать применение генератора образов
в машинном коде (NGEN). В этой главе речь пойдет об использовании генератора
и обоснованности этого действия.

Преимущества JIT-компиляции
Код, подвергнутый компиляции времени использования, имеет ряд существенных
преимуществ над откомпилированным неуправляемым кодом.

1.	 Оптимальная локальность ссылок. Совместно используемый код зачастую будет
находиться на одной и той же странице памяти или линии кэширования про-
цессора, исключая весьма затратную обработку ошибок отсутствия страницы
и относительно затратные обращения к основной памяти.

2.	 Потенциально уменьшенное использование памяти. В среде CLR возникают
издержки на задействование управляемых DLL-библиотек и их метаданных,
но в ней компилируются только фактически применяемые методы.

3.	 Замещения вызовов между сборками. Коды методов из других DLL-библиотек,
включая .NET Framework, могут быть вставлены вместо их вызовов в ваше при-
ложение, что способно существенно сэкономить время выполнения.

JIT в действии   191

Оптимизация под конкретное оборудование также дает преимущество, но на
практике оно выражается в виде лишь нескольких фактических оптимизаций
под конкретные платформы. Тем не менее возможность ориентироваться с одним
и тем же кодом на несколько платформ встречается все чаще, и, по всей вероят-
ности, в будущем мы увидим более агрессивную оптимизацию под конкретные
платформы.

Основной объем оптимизации в среде .NET выполняется не в компиляторе языка
(преобразование кода C#/VB.NET в код IL), а на лету в JIT-компиляторе.

JIT в действии
Увидеть на практике преобразование кода из IL в ассемблер довольно легко. Рас-
смотрим программу из примера JitCall, в которой показана закулисно проводимая
JIT-адаптация кода под платформу:

static void Main(string[] args)
{
 int val = A();
 int val2 = A();
 Console.WriteLine(val + val2);
}

[MethodImpl(MethodImplOptions.NoInlining)]
static int A()
{
 return 42;
}

У этого метода есть атрибут MethodImplOptions.NoInlining. Он предназначен для
того, чтобы принудительно оставить вызов метода даже в оптимизированном коде.
Если его не будет, вызов подвергнется полной оптимизации так же, как и сложение,
после чего останется только константа, помещенная в аргумент метода WriteLine:

029D0450 mov ecx ,54h
029D0455 call 72B2CE9C
029D045A ret

Нам нужно посмотреть на поведение JIT в отношении простого метода, поэтому
применение атрибута MethodImplOptions.NoInlining — это простой способ сохра-
нить этот метод доступным для анализа.

Чтобы посмотреть, что произойдет, сначала получим дизассемблированный
код метода Main. Приступить к этому действию не так-то просто. Сначала нужно
запустить программу и прервать ее выполнение до выполнения Main.

1.	 Запустите WinDbg.

2.	 Выполните переход FileOpen Executable (ФайлОткрыть исполняемый) (Ctrl+E).

192   Глава 3  •  JIT-компиляция

3.	 Перейдите к двоичному коду JitCall. Убедитесь, что выбрана версия двоичного
кода Release, в противном случае ассемблерный код будет выглядеть совершен-
но иначе, чем напечатано здесь.

4.	 Отладчик немедленно прервет выполнение.
5.	 Запустите команду sxe ld clrjit. Это приведет к остановке выполнения кода

в отладчике после загрузки clrjit.dll. Нам это нужно, так как после загрузки
можно будет установить точку останова на методе Main до его выполнения.

6.	 Запустите команду g.
7.	 Программа станет выполняться, пока не будет загружен файл библиотеки

clrjit.dll, и появится вывод, похожий на следующий:

ModLoad: 6fe50000 6fecd000
 C:\Windows\Microsoft.NET\Framework\v4.0.30319\clrjit.dll

Затем перейдите к методу Main.

1.	 Запустите команду .loadby sos clr.
2.	 Запустите команду !bpmd JitCall Program.Main. Она установит точку останова

в начале функции Main.
3.	 Запустите команду g.
4.	 WinDbg прервет выполнение кода точно внутри метода Main. Появится вывод,

похожий на следующий:

(11b4.10f4): CLR notification exception
 - code e0444143 (first chance)
JITTED JitCall!JitCall.Program.Main(System.String[])
Setting breakpoint: bp 007A0050
 [JitCall.Program.Main(System.String[])]
Breakpoint 0 hit

Наконец-то мы оказались в нужном месте. Откройте окно дизассемблера
Disassembly (Alt+7). Может быть интересно посмотреть и на содержимое окна ре-
гистров Registers (Alt+4). Дизассемблированный код Main выглядит следующим
образом:

push ebp
mov ebp,esp
push edi
push esi

; Вызов A
call dword ptr ds:[0E537B0h] ds:002b:00e537b0=00e5c015
mov edi,eax
call dword ptr ds:[0E537B0h]
mov esi,eax

call mscorlib_ni+0x340258 (712c0258)
mov ecx,eax
add edi,esi
mov edx,edi

JIT-оптимизации   193

mov eax,dword ptr [ecx]
mov eax,dword ptr [eax+38h]

; Вызов Console.WriteLine
call dword ptr [eax+14h]
pop esi
pop edi
pop ebp
ret

Имеется два вызова на один и тот же указатель (конкретные значения, которые
вы увидите, будут отличаться). Это вызов функции A. Установите точки останова
на обе строки и запустите пошаговое выполнение кода, добираясь при этом до вы-
зовов. После первого вызова указатель 0E537B0h будет обновлен.

Пройдя при пошаговом режиме выполнения в первый вызов A, можно увидеть,
что там немного больше кода, чем содержит обычный переход jmp к CLR-методу
ThePreStub. Здесь нет возвращения из этого метода, поскольку возвращение вы-
полнит ThePreStub.

mov al,3
jmp 00e5c01d
mov al,6
jmp 00e5c01d
(00e5c01d) movzx eax,al
shl eax,2
add eax,0E5379Ch
jmp clr!ThePreStub (72102af6)

Во втором вызове A будет видно, что адрес функции в исходном указателе был
обновлен и код в новом месте уже больше похож на настоящий метод. Обратите
внимание на то, что 2Ah (наше постоянное десятичное значение 42 из исходного
кода) было присвоено и возвращено через регистр eax:

012e0090 55 push ebp
012e0091 8bec mov ebp,esp
012e0093 b82a000000 mov eax,2Ah
012e0098 5d pop ebp
012e0099 c3 ret

Для большинства приложений эти затраты на предварительную подготов-
ку не столь существенны, но есть определенные типы кода, рассматриваемые
в нескольких следующих разделах, на которые требуется много времени при
JIT-компиляции.

JIT-оптимизации
JIT-компилятор будет выполнять ряд стандартных оптимизаций, например встра-
ивание методов и исключение проверки диапазона массивов, но теперь вам следует
узнать, что есть нечто способное помешать ему оптимизировать ваш код. Некото-
рым из этих методов посвящены части главы 5. Следует заметить: JIT-компилятор

194   Глава 3  •  JIT-компиляция

работает в ходе выполнения приложения, поэтому время, затрачиваемое им на
оптимизацию, ограничено. Несмотря на это, он способен выполнить множество
важных улучшений.

Один из самых больших классов оптимизации — встраивание методов, при ко-
тором код из тела метода помещается в то место, откуда он вызывается, исключая
в первую очередь вызов метода. Встраивание очень важно для небольших часто
вызываемых методов, когда издержки на вызов функции превышают издержки на
выполнение самого кода функции.

Встраиванию препятствует все перечисленное далее:

�� виртуальные методы;

�� интерфейсы с различными реализациями в одном месте вызова (диспетчериза-
ция интерфейсов будет рассматриваться в главе 5);

�� циклы;

�� обработка исключений;

�� рекурсия;

�� тела методов, превышающие 32 байта кода на языке IL. Чтобы узнать размеры
методов, можно воспользоваться инструментами анализа IL, рассмотренными
в главе 1.

С момента выхода .Net 4.6 была выпущена новая версия JIT-компилятора. Ранее
известная как RyuJIT, она показала существенно повышенную производительность
генерации кода, а также повышенное качество сгенерированного кода, особенно
64-разрядного.

Остерегайтесь вызовов свойств или методов внутри циклов. В большинстве
случаев оптимизировать такие вызовы JIT-компилятор не способен. Нужно по-
заботиться о минимально возможной затратности выполнения кода тел циклов
и провести эту оптимизацию самостоятельно. Если метод или свойство могут быть
вызваны за пределами цикла, то так обычно и нужно делать, сохраняя результат
в локальной переменной.

Сокращение времени JIT-компиляции
и запуска
Другой важный фактор — количество времени, затрачиваемое JIT-компилятором
на генерацию кода. Здесь все сводится в основном к объему кода, который нужно
обработать JIT-компилятором.

Например, большие методы будут проходить JIT-компиляцию дольше, чем
небольшие. Если есть один большой метод с большим количеством ветвлений, он
потребует полноценных затрат по JIT-компиляции, даже если основная часть его

Сокращение времени JIT-компиляции и запуска    195

кода никогда не будет выполнена. Разбиение такого метода на несколько более
мелких методов может снизить предварительные расходы на JIT-компиляцию.

На необходимость генерации большого объема кода могут повлиять также
свойства языка и API. В частности, обратите внимание на следующие ситуации:

�� интегрированные в язык запросы — LINQ;

�� ключевое слово dynamic;

�� async и await;

�� регулярные выражения;

�� генерация кода;

�� многие типы сериализаторов.

Для всех них характерно то, что от вас, возможно, скрыто и фактически выпол-
няется гораздо больше кода, чем кажется при взгляде на исходный код. Для JIT-
компиляции скрытого кода может потребоваться значительное время. В частности,
что касается регулярных выражений и сгенерированного кода, весьма вероятно
возникновение типовой ситуации, при которой появятся большие повторяющиеся
блоки кода.

Чаще всего вы будете явно использовать генерацию кода для достижения своих
целей, но есть некоторые области платформы .NET Framework, где это происходит
без вашего вмешательства, — в первую очередь регулярные выражения и XML-
сериализация. Перед выполнением регулярные выражения опционально могут
быть преобразованы в конечный автомат на IL в динамической сборке, а затем
пройти JIT-компиляцию. Сначала это займет много времени, но затем позволит
сэкономить его при повторных выполнениях (при условии, что вы сделали регу-
лярное выражение статическим). Обычно этой опцией стоит воспользоваться, воз-
можно отложив до того момента, когда в этом появится реальная необходимость,
чтобы дополнительная компиляция не повлияла на время запуска приложения.
Регулярные выражения могут также запустить в JIT-компиляции сложные алго-
ритмы, занимающие больше времени, чем обычно (многие из них были улучшены
в версии JIT-компилятора, которая была поставлена в .NET 4.6). Здесь, как и во
всех других случаях, рассмотренных в этой книге, единственный способ достоверно
узнать что-то — измерение. Более подробно регулярные выражения рассматрива-
ются в главе 6.

Несмотря на то что генерация кода имеет прямое отношение к потенциальному
обострению неприятностей, связанных с JIT-компиляцией, в главе 5 будет пока-
зано, что генерация кода в другом контексте способна избавить вас от некоторых
других проблем низкой производительности.

Синтаксическая простота технологии LINQ может дать неверное представление
о количестве кода, фактически запускаемого для каждого запроса. За ней могут
скрываться также создание делегатов, выделение памяти и многое другое. Простые

196   Глава 3  •  JIT-компиляция

LINQ-запросы могут не создать особых проблем, но, как и в большинстве случаев,
все требует конкретных измерений.

Основная проблема, связанная с динамическим кодом, опять-таки заключается
в том объеме кода, в который он преобразуется. Чтобы увидеть, на что похож ди-
намический код, если сбросить все покровы, перейдите к главе 5.

Помимо JIT, есть и другие факторы, способные повысить затраты на «пер-
вичный разогрев», например ввод-вывод. Поэтому, прежде чем предположить,
что JIT-компиляция — это единственная проблема, нужно провести тщательные
исследования. Каждая сборка влечет за собой затраты, связанные с обращениями
к диску для чтения файла, внутренними издержками в структурах данных среды
CLR и загрузкой типов.

Вы можете сократить затраты на ввод-вывод, объединяя множество мелких
сборок в одну большую, но на загрузку типов, наверное, потребуется столько же
времени, сколько и на JIT-компиляцию.

При больших объемах JIT-компиляции нужно посмотреть на стеки, содержа-
щие вызовы метода PreStubWorker и других методов, которые в итоге оказываются
внутри библиотеки clrjit.dll (рис. 3.2).

Рис. 3.2. Выполняемое в PerfView профилирование центрального процессора
покажет любые вызванные JIT-заглушки

Чуть позже в этой главе будет продемонстрировано, как PerfView может по-
казать, какие именно методы попали под JIT-компиляцию и сколько времени она
заняла для каждого из них.

Когда следует применять NGEN   197

Оптимизация JIT-компиляции с помощью
профилирования (Multicore JIT)
В .NET 4.5 был добавлен API, предписывающий среде .NET создать профиль запуска
вашего приложения и сохранить результаты на диске для применения в будущем.
При последующих запусках этот профиль используется для начала генерации кода
сборки еще до того, как он будет выполнен. Это происходит в специально выде-
ленном потоке независимо от потоков выполнения вашего собственного кода, по-
этому данная функция называется многоядерной JIT-компиляцией (Multicore JIT).
Сохраненные профили позволяют сгенерированному коду получать те же самые
преимущества локальности, что и при JIT-компиляции. Профили обновляются
автоматически при каждом выполнении вашей программы.

Для использования этой опции нужно просто вызвать в начале программы
следующий код:

ProfileOptimization.SetProfileRoot(@"C:\MyAppProfile");
ProfileOptimization.StartProfile("default");

Заметьте, что корневая папка профиля уже должна существовать и вы должны
дать своим профилям имя. Это пригодится, если у вашего приложения имеются
разные режимы с совершенно разными профилями выполнения.

При использовании этой функции совместно с собственным профилирова-
нием производительности при запуске имейте в виду следующее: примененная
оптимизация внесет изменения в результаты измерений. В зависимости от на-
правления поисков может потребоваться временное отключение многоядерной
JIT-компиляции.

Когда следует применять NGEN
Если затраты на запуск или предварительную подготовку приложения к работе
слишком высоки и упомянутая ранее оптимизация за счет профилирования не от-
вечает вашим требованиям к уровню производительности, то вполне резонным
может стать применение NGEN.

Аббревиатура NGEN означает Native Image Generator — генератор образов в ма-
шинном коде. По сути, его работа заключается в преобразовании вашей сборки на
языке IL в образ в машинном коде путем запуска JIT-компилятора и сохранения
результатов в кэше образов сборок в машинном коде. Это сокращает время запуска
и уменьшает общий объем JIT-компиляции. Этот образ в машинном коде не нужно
путать с машинным кодом в понятии неуправляемого кода. Несмотря на то что
теперь образ представляет собой по большей части код на языке ассемблера, он
по-прежнему остается управляемой сборкой, поскольку должен запускаться под
управлением среды CLR.

198   Глава 3  •  JIT-компиляция

Если исходная сборка была названа foo.dll, NGEN создаст файл foo.ni.dll
и поместит его в кэш образа в машинном языке. Как только поступит запрос на
загрузку foo.dll, среда CLR проверит кэш на наличие соответствующего файла
с элементом расширения .ni, а этот файл — на полное соответствие файлу на
языке IL. При этом используется комбинация отметок времени, имен и GUID-
идентификаторов, чтобы быть совершенно уверенными в том, что будет загружен
правильный файл.

При всей ценности генератора NGEN у него имеется ряд недостатков. Во-первых,
теряется локальность ссылок, поскольку весь код в сборке размещается после-
довательно независимо от того, как он фактически выполняется. Вдобавок мо-
гут быть утрачены определенные оптимизационные решения, например кросс-
ассемблерные замещения вызовов. Большую часть этих оптимизационных
решений можно восстановить, если у NGEN есть одновременный доступ ко
всем сборкам. Кроме того, образы в машинном коде должны обновляться при
каждом изменении, что не требует больших усилий, но добавляет еще один этап
к развертыванию. NGEN может работать очень медленно, а образы в машинном
коде могут быть существенно больше своих управляемых двойников. Иногда JIT
будет выдавать лучше оптимизированный код, особенно для наиболее часто вы-
полняемых путей. Принимая решение об использовании NGEN, следует помнить
основополагающее правило производительности: измерение, измерение, измере-
ние! Советы по измерению затрат на JIT-компиляцию в вашем приложении даны
в конце главы.

Большинство фрагментов кода с обобщенными типами может быть успешно
обработано NGEN-генератором, но случается, что компилятор не способен заранее
определить правильные обобщенные типы. Этот код в ходе выполнения программы
все равно попадет под JIT-компиляцию. И конечно, предварительно обработать
NGEN-генератором те фрагменты кода, которые полагаются на динамическую за-
грузку или генерацию типов, просто невозможно.

Чтобы обработать сборку NGEN-генератором в режиме работы с командной
строкой, нужно выполнить следующую команду:

D:\>ngen install ReflectionExe.exe

1> Compiling assembly D:\...\ReflectionExe.exe (CLR v4.0.30319) ...
2> Compiling assembly ReflectionInterface, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=null (CLR v4.0.30319) ...

Из выходной информации следует, что фактически обработаны два файла.
NGEN-генератор будет автоматически обращаться к каталогу целевого файла и вы-
полнять NGEN-обработку всех найденных зависимостей. Он делает это по умол-
чанию, позволяя коду эффективно совершать вызовы между сборками, например
вставлять небольшие методы. Такое поведение можно подавить с помощью флага
/NoDependencies, но в ходе выполнения программы это может серьезно ударить по
производительности.

Когда следует применять NGEN   199

Чтобы удалить принадлежащий сборке образ в машинном коде из имеюще-
гося в компьютере кэша образов в машинном коде, можно запустить следующую
команду:

D:\>ngen uninstall ReflectionExe.exe

Uninstalling assembly D:\...\ReflectionExe.exe

Проверить создание образа в машинном коде можно путем вывода на экран
кэша образов в машинном коде:

D:\>ngen display ReflectionExe
NGEN Roots:
D:\Book\ReflectionExe\bin\Release\ReflectionExe.exe
NGEN Roots that depend on "ReflectionExe":
D:\Book\ReflectionExe\bin\Release\ReflectionExe.exe
Native Images:
ReflectionExe, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=null

Можно также вывести на экран все образы в машинном коде из кэша, запустив
следующую команду:

ngen display.

Следует заметить, что файл образа в машинном коде всегда больше по размеру,
чем версия того же файла на чистом управляемом IL-языке. IL-версия полностью
содержится внутри образа в машинном коде, кроме этого, код x86/x64 может быть
более пространным, чем код на языке IL. К примеру, размер использованного ра-
нее файла ReflectionExe.exe — 5632 байта, а образ в машинном коде в GAC-кэше
занимает 11 264 байта. Мне приходилось наблюдать четырехкратное увеличение
размера файла в зависимости от объема метаданных и типа кода, присутствующего
в управляемых сборках.

Оптимизация NGEN-образов. Ранее уже говорилось, что одной из потерь от
использования NGEN является локальность ссылок. С появлением .NET 4.5 по-
явилась возможность в значительной степени устранить эту проблему, задействуя
инструментальное средство Managed Profile Guided Optimization (MPGO). Как
и при оптимизации JIT с помощью профилирования, это средство запускается
вручную для профилирования пусковой стадии вашего приложения или нужного
сценария. Затем профиль будет использоваться NGEN-генератором для создания
образа в машинном коде с лучшей оптимизацией для наиболее часто применяемых
цепочек функций.

Средство MPGO включено в среду Visual Studio 2012 и выше. Чтобы им вос-
пользоваться, нужно запустить следующую команду:

Mpgo.exe -scenario MyApp.exe -assemblyList *.* -OutDir c:\Optimized

Она заставит MPGO работать с некоторыми сборками среды, после чего будет
выполнен код файла MyApp.exe. Теперь приложение находится в режиме обучения.

200   Глава 3  •  JIT-компиляция

Нужно поработать с приложением в приближенном к реальному режиме, а затем
закрыть его. В результате в каталоге C:\Optimized должна быть создана оптими-
зированная сборка.

Чтобы получить преимущества от использования оптимизированной сборки,
для нее нужно запустить NGEN:

Ngen.exe install C:\Optimized\MyApp.exe

В результате в кэше образов в машинном коде будут созданы оптимизированные
образы. Они будут применены при следующем запуске приложения.

Для эффективного использования средства MPGO вам потребуется включить
его в свою систему сборки, чтобы получаемое на его выходе было включено в по-
ставку вашего приложения.

.NET Native
При создании приложений универсальной платформы Windows (Universal Windows
Platform) можно воспользоваться средством .NET Native, представляющим собой
компилятор, преобразующий ваше скомпилированное управляемое приложение
в машинный код, подобно NGEN, но со следующими преимуществами.

�� Использование более нового компилятора, основанного на собственном ком-
пиляторе Visual C++.

�� Получение автономных приложений. После компиляции устраняется зависи-
мость от среды CLR. Эта среда сокращается до простой DLL-библиотеки, по-
ставляемой с вашим приложением. Любой фактически применяемый код среды
статически скомпонован с внутренним кодом исполняемого файла.

Компилятор создает CLR в DLL, запуская в вашем коде механизм сокращения
зависимостей. Неформально этот процесс называется тряской дерева. Им анали-
зируются ваш код, конфигурация, XAML-файлы, типовые аргументы и многое
другое, чтобы определить все, что может быть запущено. В результате получаются
быстродействующие компактные приложения, запускаемые с незначительной за-
держкой.

Тем не менее у этой технологии имеется ряд недостатков, обусловленных
в основном требованием запрета JIT-компиляции:

�� отсутствие отражения;

�� отсутствие динамической загрузки сборок или вызова кода;

�� отсутствие сериализации и десериализации;

�� отсутствие COM-взаимодействия (обычный P/Invoke работает);

�� в настоящий момент работает только для универсальной платформы Windows.

Чтобы воспользоваться .NET Native, нужно создать новое приложение уни-
версальной платформы Windows в Visual Studio. Сборки конечных версий будут
автоматически компоноваться с помощью .NET Native (рис. 3.3).

Настраиваемая предварительная подготовка   201

Рис. 3.3. Приложения универсальной платформы Windows позволяют указывать
на необходимость использования .NET Native. Изначально для сборок конечных версий

это средство применимо

Настраиваемая предварительная подготовка
Если другие упомянутые в этой главе приемы не срабатывают, можно взять дело
в свои руки и создать систему для предварительной подготовки вашего кода путем
его выполнения перед выполнением приложения в производственном сцена-
рии. Выполнение каждого метода станет причиной проведения JIT-компиляции.
Это весьма популярный метод для онлайн-сценариев, где жизненно важная роль
отводится физическому времени. Могут быть внутренние периоды ожидания в не-
сколько миллисекунд или же клиент, отказывающийся от услуг через несколько
секунд. При наличии большой кодовой базы первый запрос (или первые множество
запросов) может потерпеть полный провал из-за JIT-компиляции.

Если JIT-компилятору предстоит большой объем работы, профильной опти-
мизации может оказаться недостаточно. Перед тем как она сможет справиться
с реальной рабочей нагрузкой, возможно, понадобится просто выполнить код
в тестовом или автономном режиме.

Прежде чем решать, насколько данный подход будет правильным, было бы не-
плохо ответить самому себе на ряд наводящих вопросов.

1.	 Спроектирован ли ваш код таким образом, чтобы его можно было с легкостью
вызвать в ходе выполнения сценария предварительной подготовки?

2.	 Сколько времени уходит на предварительную подготовку? Позволительно ли
вашему приложению тратить больше времени на запуск?

3.	 Если предстоит предварительно подготовить большой объем кода, можно ли
выполнить JIT-компиляцию в параллельном режиме?

4.	 Если для предварительной подготовки требуются данные, нельзя ли их сгене-
рировать автоматически?

202   Глава 3  •  JIT-компиляция

5.	 Безопасны ли данные, используемые при предварительной подготовке (то есть
не относятся ни к производственной среде, ни к потребителям и могут быть
повторно использованы)?

6.	 Воздействует ли ваш код предварительной подготовки на другие системы?
Даже если приложение способно занять 32 ядра сплошной JIT-компиляцией,
не сможет ли это негативно повлиять на работу внешних систем?

7.	 Не повлияет ли код предварительной подготовки на измерения? Нужно свести
это влияние к минимуму, разделив показатели или по-иному настроив их, чтобы
исключить данные, относящиеся к предварительной подготовке.

Чтобы ответить на некоторые из этих вопросов, может понадобиться про-
тотипирование. Предварительная подготовка не должна быть чем-то особо
выдающимся, но, скорее всего, отнести ее к весьма тривиальной задаче тоже
не получится.

Вряд ли при предварительной подготовке для JIT-компиляции будет вы-
зван каждый отдельный фрагмент необходимого кода, но если такой подготовке
подвергнется значительный процент кода (достаточный, чтобы позже избежать
ошибок или задержек), результат можно будет считать вполне приемлемым.

Когда JIT-компиляция не может составить
конкуренцию
JIT-компиляция подходит для большинства приложений. Когда возникают во-
просы к производительности, то по сравнению с качеством или скоростью не-
посредственно генерации кода обычно имеются проблемы более высокого по-
рядка. Но есть ряд областей, где имеется пространство для улучшения качества
JIT-компиляции.

Одна из основных ситуаций, при которой JIT-компилятор не будет так же
хорош, как компилятор, создающий машинный код, относится к прямому до-
ступу к собственной памяти по сравнению с доступом к управляемому массиву.
Прежде всего непосредственный доступ к собственной памяти обычно означает
возможность избежать копирования содержимого памяти, сопровождающего
ее маршалинг в управляемый код. И хоть существуют способы скрыть это с при-
менением, к примеру, класса UnmanagedMemoryStream, оборачивающего буфер соб-
ственной памяти в Stream, фактически вы просто создаете небезопасный доступ
к памяти.

При передаче байтов в управляемый буфер код, обращающийся к буферу, бу-
дет проходить контроль границ. Во многих случаях такой контроль может быть
оптимизирован, но это не гарантируется. Управляемый буфер можно обернуть
в указатель и выполнять небезопасный доступ для обхода некоторых из проверок.

Если окажется, что в данном случае неуправляемый код действительно более
эффективен, можно попробовать провести маршалинг всего набора данных в не-

Исследование поведения JIT-компилятора   203

управляемую функцию посредством вызова платформы (P/Invoke), выполнить
вычисления с помощью DLL-библиотеки C++, имеющей высокую степень опти-
мизации, а затем возвратить результаты управляемому коду. При этом необходимо
профилирование, чтобы понять, стоит ли тратиться на передачу данных.

Зрелые компиляторы C++ могут проявить себя с наилучшей стороны и при
других типах оптимизации, например при встраивании кода или оптимальном ис-
пользовании регистров, но, скорее всего, это изменится при выходе последующих
версий JIT-компилятора.

Задействуя приложения с очень большим объемом манипуляций с массивами
или матрицами, вам придется искать компромисс между производительностью
и безопасностью, но, честно говоря, работая с большинством приложений, вам
не придется беспокоиться о проверке границ, так как она не приведет к существен-
ным издержкам. Кроме того, если выполняется большой объем математических
операций, одним из возможных вариантов станет применение инструкций типа
«одна инструкция — множество данных» (Single Instruction, Multiple Data, SIMD),
которые стали доступны JIT-компилятору в среде .NET 4.6. Примеры их исполь-
зования найдете в главе 6.

Исследование поведения JIT-компилятора
Счетчики производительности
Среда CLR публикует несколько счетчиков в категории .NET CLR Jit. В их числе:

�� # of IL Bytes Jitted (Количество байтов кода IL, подвергшихся JIT-компиляции);

�� # of Methods Jitted (Количество методов, подвергшихся JIT-компиляции);

�� % Time in Jit (Процент времени, затраченного на JIT-компиляцию);

�� IL Bytes Jitted /sec (Количество байтов кода IL, подвергшихся JIT-компиляции за 1 с);

�� Standard Jit Failures (Стандартные сбои JIT-компиляции);

�� Total # of IL Bytes Jitted (Общее количество байтов кода IL, подвергшихся JIT-
компиляции).

Названия всех этих счетчиков, за исключением Standard Jit Failures, говорят сами
за себя. Сбои могут случаться, только если код на языке IL не прошел проверку
или возникла внутренняя ошибка JIT-компилятора.

Существует также категория для загрузки, тесно связанная с JIT-компиляцией,
которая называется .NET CLR Loading. В число счетчиков этой категории входят:

�� % Time Loading (Процент времени, затраченного на загрузку);

�� Bytes in Loader Heap (Количество байтов в куче загрузчика);

�� Total Assemblies (Общее количество сборок);

�� Total Classes Loaded (Общее количество загруженных классов).

204   Глава 3  •  JIT-компиляция

ETW-события
Используя ETW-события, можно получить детализированную информацию о про-
изводительности каждого метода, проходящего JIT-компиляцию в вашем процессе,
включая размер IL-кода, размер машинного кода и количество времени, потрачен-
ного на JIT-компиляцию.

�� MethodJittingStarted. Проходит JIT-компиляция метода. Поля включают:

yy MethodID — уникальный идентификатор метода;

yy ModuleID — уникальный идентификатор модуля, которому принадлежит
метод;

yy MethodILSize — размер IL-кода метода;

yy MethodNameSpace — полное имя класса, которому принадлежит метод;

yy MethodName — имя метода;

yy MethodSignature — разделенный запятыми список имен типов из сигнатуры
метода.

�� MethodLoad V1. Метод прошел JIT-компиляцию и был загружен. Для обобщен-
ных и динамических методов эта версия не используется. Поля включают:

yy MethodID — уникальный идентификатор для этого метода;

yy ModuleID — уникальный идентификатор для модуля, которому принадлежит
этот метод;

yy MethodSize — размер скомпилированного ассемблерного кода после JIT-
компиляции;

yy MethodStartAddress — стартовый адрес метода;

yy MethodFlags — флаги метода:

�� 0x1 — динамический метод;

�� 0x2 — обобщенный метод;

�� 0x4 — прошедший JIT-компиляцию (если отсутствует, значит, метод был
сгенерирован с помощью NGEN);

�� 0x8 — вспомогательный метод.

�� MethodLoadVerbose V1. Обобщенный или динамический метод прошел JIT-
компиляцию и был загружен. Обладает в основном такими же полями, как
и MethodLoad V1 и MethodJittingStarted.

Какой код подвергся JIT-компиляции
Если нужно провести ревизию кода в вашем процессе, например, чтобы посмотреть,
какая сборка использует больше всего памяти после JIT-компиляции, следует
изучить размеры IL и машинного кода всех методов процесса.

Исследование поведения JIT-компилятора   205

Задействуя библиотеку CLR MD, можно проанализировать каждый имеющийся
в процессе метод, увидев размер IL-кода, а также размер машинного кода, полу-
ченного в результате JIT-компиляции из IL-кода. Рассмотрим метод, выводящий
на экран десять самых больших методов процесса:

class MethodSize
{
 public string Module { get; set; }
 public string TypeName { get; set; }
 public string Name { get; set; }
 public ulong ILSize { get; set; }
 public ulong NativeSize { get; set; }
}

const string TargetProcessName = "LargeMemoryUsage.exe";

private static void PrintTop10BiggestMethods(ClrRuntime clr)
{
 PrintHeader("Top 10 Methods");
 List<MethodSize > methods = new List<MethodSize >();

 for (int i = 0; i < clr.Modules.Count; i++)
 {
 // Рассматриваются только наши собственные методы

 var module = clr.Modules[i];

 if (!module.FileName.EndsWith(TargetProcessName))
 {
 continue;
 }
 string filename = Path.GetFileName(module.FileName);

 foreach (var type in module.EnumerateTypes())
 {
 for (var iMethod = 0;
 iMethod < type.Methods.Count;
 iMethod++)
 {
 ulong ilSize = 0;
 ulong nativeSize = 0;

 var method = type.Methods[iMethod];

 if (method.IL != null)
 {
 ilSize += (ulong)method.IL.Length;

 if (method.ILOffsetMap != null)
 {
 for (var iOffset = 0;

206   Глава 3  •  JIT-компиляция

 iOffset < method.ILOffsetMap.Length;
 iOffset++)
 {
 var entry = method.ILOffsetMap[iOffset];
 var size = entry.EndAddress -
 entry.StartAddress;
 nativeSize += size;
 }
 }
 }
 var methodSize = new MethodSize()
 {
 Module = filename ,
 TypeName = type.Name,
 Name = method.Name,
 ILSize = ilSize ,
 NativeSize = nativeSize
 };
 methods.Add(methodSize);
 }
 }
 }

 methods.Sort((a, b) =>
 {
 return -a.NativeSize.CompareTo(b.NativeSize);
 });

 Console.WriteLine(
 "Module , Type, Method , IL Size, Native Size");
 Console.WriteLine(
 "--");
 for (int i=0;i<Math.Min(10, methods.Count);i++)
 {
 var method = methods[i];
 Console.WriteLine(
 $"{method.Module}, {method.TypeName}, {method.Name}, " +
 "{method.ILSize}, {method.NativeSize}");
 }
}

Этот код выведет информацию, похожую на следующую:

Top 10 Methods
==============
Module, Type, Method, IL Size, Native Size
--
LargeMemoryUsage.exe,LargeMemoryUsage.Program,Main,116,348
LargeMemoryUsage.exe,LargeMemoryUsage.Program,GetNewObject,67,250
LargeMemoryUsage.exe,LargeMemoryUsage.Base,.ctor,21,113
LargeMemoryUsage.exe,LargeMemoryUsage.Program,.cctor,16,88

Исследование поведения JIT-компилятора   207

LargeMemoryUsage.exe,LargeMemoryUsage.C,.ctor,14,70
LargeMemoryUsage.exe,LargeMemoryUsage.D,.ctor,14,69
LargeMemoryUsage.exe,LargeMemoryUsage.B,.ctor,14,69
LargeMemoryUsage.exe,LargeMemoryUsage.A,.ctor,14,69
LargeMemoryUsage.exe,LargeMemoryUsage.D,ToString,12,51
LargeMemoryUsage.exe,LargeMemoryUsage.C,ToString,12,51

На какие методы и модули затрачивается больше всего
времени при JIT-компиляции
В целом время, требующееся на JIT-компиляцию, прямо пропорционально коли-
честву IL-инструкций в методе, но все усложняется тем, что время загрузки типов
также может быть включено в это время, особенно при первом применении модуля.
В некоторых типичных ситуациях в JIT-компилятор могут быть включены слож-
ные алгоритмы, на выполнение которых нужно больше времени. Для получения
подробной информации об активности JIT-компилятора в вашем процессе можно
воспользоваться средством PerfView. Если собрать стандартные .NET-события,
будет получено особое представление, названное JITStats. Далее приводится часть
той информации, которая выводится при использовании данного приема для про-
екта из примера PerfCountersTypingSpeed.

Name JitTime msec Num Methods IL Size Native Size

PerfCountersTypingSpeed.exe 12,9 8 1,756 3,156

JitTime msec IL Size Native Size Method Name

9,7 22 45 PerfCountersTypingSpeed.Program.Main()

0,3 176 313 PerfCountersTypingSpeed.Form1..ctor()

1,4 1,236 2,178 PerfCountersTypingSpeed.Form1.Initialize-
Component()

0,8 107 257 PerfCountersTypingSpeed.Form1.CreateCus-
tomCategories()

0,3 143 257 PerfCountersTypingSpeed.Form1.timerTick(class
System.Object,class System.EventArgs)

0,1 23 27 PerfCountersTypingSpeed.Form1.
OnKeyPress(class System.Object,class .
System.Windows.Forms.KeyPressEventArgs)

0,2 19 36 PerfCountersTypingSpeed.Form1.OnClo
sing(classSystem.ComponentModel.Cancel
EventArgs)

0,1 30 43 PerfCountersTypingSpeed.Form1.Dispose(bool)

208   Глава 3  •  JIT-компиляция

Единственным методом, на который при JIT-компиляции уходит больше вре-
мени, чем можно было бы предположить, исходя из размера его IL-кода, является
Main. В этом нет ничего удивительного, поскольку именно на него приходятся
самые высокие затраты на загрузку.

Исследование кода, полученного после JIT-компиляции
Воспользовавшись WinDbg или Visual Studio, можно без особого труда увидеть
дизассемблированный код вокруг местоположения текущей инструкции и с этого
места перейти в какое-либо другое место. Находясь в Visual Studio на точке оста-
нова, щелкните правой кнопкой мыши где-нибудь на исходном коде и выберите
в контекстном меню пункт Go to disassembly (Перейти к дизассемблированному
коду).

Легко получить аннотированный дамп дизассемблированного кода непосред-
ственно в конкретном методе в WinDbg, воспользовавшись командой !U. Для этого
нужно получить указатель структуры MethodDesc:

0:000> !DumpStack
OS Thread Id: 0x5580 (0)
Current frame: ntdll!NtDeviceIoControlFile+0xc
ChildEBP RetAddr Caller, Callee
...
012ff2e4 7217c50a (MethodDesc 716f0d54 +0xe6
 System.Console.ReadKey(Boolean)), calling 71995a48
012ff374 039b0514 (MethodDesc 035d4d64 +0x9c
 LargeMemoryUsage.Program.Main(System.String[])),
 calling (MethodDesc 716f0d54 +0 System.Console.ReadKey(Boolean))
012ff398 72cceb16 clr!CallDescrWorkerInternal+0x34
...

Отсюда мы воспользуемся значением MethodDesc для метода Main, 035d4d64:

0:000> !U 035d4d64
Normal JIT generated code
LargeMemoryUsage.Program.Main(System.String[])
Begin 039b0478, size bc

D:\...\LargeMemoryUsage\Program.cs @ 16:
039b0478 55 push ebp
039b0479 8bec mov ebp,esp
039b047b 57 push edi
039b047c 56 push esi
039b047d 53 push ebx
039b047e 83ec10 sub esp,10h
039b0481 b9926a6371 mov ecx,offset
 mscorlib_ni!System.Collections.IStructuralEquatable.Equals+0x99
 (71636a92)
039b0486 bae8030000 mov edx,3E8h

Резюме   209

039b048b e8202dc1ff call 035c31b0
 (JitHelp: CORINFO_HELP_NEWARR_1_OBJ)
039b0490 8945e4 mov dword ptr [ebp-1Ch],eax

D:\...\LargeMemoryUsage\Program.cs @ 18:
039b0493 b9dc7eb471 mov ecx,offset
 mscorlib_ni+0x517edc (71b47edc) (MT: System.Random)
039b0498 e82b2cc1ff call 035c30c8
 (JitHelp: CORINFO_HELP_NEWSFAST)
039b049d 8bf0 mov esi,eax
039b049f e8dc70326f call clr!SystemNative::GetTickCount
 (72cd7580)
039b04a4 8bd0 mov edx,eax
039b04a6 8bce mov ecx,esi
039b04a8 e817d40c6e call mscorlib_ni+0x44d8c4 (71a7d8c4)
 (System.Random..ctor(Int32), mdToken: 060010dc)
...

Резюме
Чтобы свести влияние JIT-компиляции к минимуму, следует тщательно изучить
любые области объемного сгенерированного кода, возникшие при использовании
регулярных выражений, генерации кода, динамических переменных или любого
другого источника. Задействуйте профильную оптимизацию для сокращения
времени запуска приложения путем предварительной JIT-компиляции наиболее
востребованного кода в параллельном режиме. Убедитесь, что применяется послед-
няя версия .NET, чтобы воспользоваться преимуществами улучшений, внесенных
в JIT-компилятор.

Для стимуляции встраивания функций следует избегать виртуальных методов, ци-
клов, обработки исключений, рекурсий или больших тел методов. Но не стоит жерт-
вовать целостностью приложения ради излишней оптимизации в данной области.

Продумайте, как использовать NGEN-генератор для больших приложений
или в ситуациях, когда затраты на JIT-компиляцию при запуске приложения не-
допустимы. Для оптимизации образов в машинном коде предваряйте применение
NGEN запуском средства MPGO.

Чтобы создать приложения Windows Store, воспользуйтесь средством .NET Native.
Если ничто не сработает, создайте для своего приложения особую стратегию

предварительной подготовки, которая бы задействовала самые востребованные
пути, прежде чем они реально понадобятся.

4 Асинхронное
программирование

Многопоточные программы повсеместно применяются в современных компью-
терах, включая небольшие устройства вроде сотовых телефонов и многоядерных
процессоров, поэтому навык их эффективной разработки критически важен для
любого программиста.

Есть три причины использования нескольких потоков.

1.	 Нежелание блокировать основной поток пользовательского интерфейса фоно-
вой работой.

2.	 Объем работы настолько велик, что нельзя позволить себе тратить попусту
время центрального процессора в ожидании завершения ввода-вывода.

3.	 Желание воспользоваться всеми имеющимися в вашем распоряжении процес-
сорами.

Первая причина связана не столько с производительностью, сколько с жела-
нием не раздражать конечного пользователя. Вторая и третья целиком относятся
к эффективности использования вычислительных ресурсов.

Компьютерные процессоры фактически достигли максимума с точки зрения
чистой тактовой частоты. Основной метод, который в обозримом будущем станет
применяться для достижения более высокой пропускной способности при вычисле-
ниях, — распараллеливание. Работа сразу нескольких процессоров имеет решающее
значение для создания высокопроизводительного приложения, особенно для серве-
ров, обрабатывающих множество одновременно поступающих запросов.

Есть несколько способов параллельного выполнения кода в среде .NET. Например,
можно вручную запустить поток и передать ему метод на выполнение. Это неплохо
подходит для довольно продолжительных методов, но для многого другого непосред-
ственная работа с потоками весьма неэффективна. Если, к примеру, нужно выполнить
множество коротких задач, издержки на диспетчеризацию отдельно взятых потоков
легко смогут превысить затраты на фактическое выполнение кода. Чтобы разобрать-
ся в причинах этого, следует узнать порядок диспетчеризации потоков в Windows.

Каждый процессор способен одновременно выполнять только один поток.
Когда настает момент диспетчеризации потока для процессора, системе Windows
требуется выполнить переключение контекста. В ходе этого ядро Windows со-
храняет текущее состояние потока процессора во внутреннем объекте потока
операционной системы, выбирает нужный поток из готовых потоков с наивысшей
степенью приоритета, переносит контекстную информацию потока из объекта по-
тока в процессор и в завершение запускает поток на выполнение. Если Windows

Глава 4  •  Асинхронное программирование   211

переключается на поток из другого процесса, затраты увеличиваются, поскольку
выгружается все адресное пространство.

Затем поток выполнит код для выделенного ему кванта времени, составляюще-
го несколько тактовых интервалов (на современных многопроцессорных системах
тактовый интервал длится примерно 15 мс и не может быть просто изменен, что,
собственно, и не рекомендуется делать). Когда происходит возврат с вершины
стека, или поток входит в состояние ожидания, или истекает квант времени, дис-
петчер выбирает для выполнения другой готовый поток. Это может быть тот же
самый поток или другой поток, в зависимости от конкуренции за процессорное
время. Поток может войти в состояние ожидания, если он блокируется на любой
разновидности ввода-вывода, или же он добровольно входит в это состояние путем
вызова метода Thread.Sleep.

ПРИМЕЧАНИЕ

У системы Windows Server более высокий показатель кванта времени, чем у версии
Windows для настольных систем, следовательно, потоки запускаются на более
длительный период времени, прежде чем будет выполнено переключение кон-
текста. Этот параметр отчасти контролируется в параметрах производительности
(Performance Options) расширенных настроек системы (Advanced System Settings).
Установка для этой настройки значения Background services (Фоновые службы)
(рис. 4.1) приведет к увеличению для системы исходного кванта времени потока,
возможно, за счет времени реагирования программы на внешние события. Эти на-
стройки сохраняются в реестре, но непосредственно манипулировать ими не стоит.

Рис. 4.1. Решение о том, чему на машине отдать приоритет: фоновым задачам
или задачам переднего плана

212   Глава 4  •  Асинхронное программирование

Пул потоков
Создание новых потоков — весьма затратная процедура. Она требует размещения
в ядре, передачи памяти для пространства стека, роста количества переключе-
ний контекста и, возможно, запуска кода инициализации в нескольких DLL-
библиотеках для каждого потока. Так как эти затраты неизбежны, не следует,
к примеру, создавать поток для обработки каждого отдельно взятого запроса. К по-
токам нужно относиться как к объединенному в пул общему ресурсу. Как только
потоки становятся доступными, они могут повторно использоваться для следу-
ющей части работы. К счастью, среда .NET облегчает эту задачу и предоставляет
управляемый пул потоков для каждого управляемого процесса. Этот пул содержит
список потоков, сохраняя их в работоспособном состоянии на период невостре-
бованности. Чтобы воспользоваться пулом, нужно поставить метод в очередь на
выполнение:

static void Main()
{
 ThreadPool.QueueUserWorkItem(new WaitCallback(MyFunc),
 "my data");
}

private static void MyFunc(Object obj)
{
 var data = obj as string;
 // выполнение реальной работы
}

Эти потоки создаются по мере необходимости и сохраняются для того, чтобы
удовлетворить возникающие впоследствии потребности и избежать затрат на их
повторное создание. Программа экономит на создании и удалении, и почти всегда
у нее есть поток, готовый к обработке возникающих асинхронных задач.

В системе имеется два пула.

1.	 Пул рабочих потоков занимается задачами, связанными с работой центрального
процессора и назначением потоков различным ядрам.

2.	 Пул потоков ввода-вывода выполняет асинхронный ввод-вывод с оборудования,
например, когда происходит возвращение данных с устройств хранения или из
сети.

Пул потоков проделывает сложную работу. Ему нужно обеспечить наличие
доступного потока для обработки любых возникающих задач, а также умеренное
количество запущенных потоков, чтобы оно не оказывало катастрофического влия
ния на производительность. Пул стремится оптимизироваться под пропускную
способность, соответствующую количеству задач, выполняемых за единицу вре-
мени. Этот показатель может балансировать между слишком малым количеством
потоков (недостаточным для выполняемой работы) и слишком большим их числом
(вызывающим чрезмерную конкуренцию за ресурсы).

Библиотека распараллеливания задач   213

В мире без конкуренции идеально было бы, чтобы один процессор выполнял
один поток. Но большинство задач, выполняемых потоками, далеки от совершен-
ства и подвержены блокировкам либо для выполнения ввода-вывода, либо при
потреблении некоторых других ресурсов. Поэтому имеет смысл для пула потоков
выполнять диспетчеризацию большего количества потоков на одно ядро, обеспечи-
вая тем самым его достаточную занятость. Но если ядро окажется перегруженным,
увеличившееся количество потоков повлечет за собой повышение издержек пула
на работу с ними и процессор может начать тратить больше времени на переклю-
чение, чем на какие-либо другие дела (точнее, это может произойти независимо от
источника потоков, но самым распространенным источником является пул). Это
весьма тонкий баланс.

Основной способ соблюдения такого баланса пулом потоков — использование
стандартного алгоритма Hill Climbing (восхождение к вершине), основанного на са-
морегуляции для подстройки с течением времени. Пул занимается диспетчеризаци-
ей потоков на выполнение и через определенные интервалы времени отслеживает
свою пропускную способность (количество завершенных задач за установленный
интервал). Он продолжит добавлять потоки, пока будет отмечать падение пропуск-
ной способности, после чего приступит к удалению потоков. Поскольку пропускная
способность может изменяться из-за типологии рабочей нагрузки, этот подход
приводит к слишком частым малопредсказуемым спорадическим изменениям
числа потоков. Поэтому пул потоков рассматривает пропускную способность как
непрерывный сигнал и применяет к нему преобразование Фурье, которое умень-
шает влияние небольших колебаний. Даже когда пул потоков прекращает диспет-
черизацию такого большого количества потоков, он может сохранить некоторые
из них в памяти, чтобы позднее избежать нового выделения памяти для потоков
(именно поэтому и делает его пулом).

Пул потоков должен выбираться для диспетчеризации потоков в первую оче-
редь, но бывают случаи, когда это решение неприемлемо. Например, оно не будет
оптимальным для потоков, требующих конкретных уровней приоритета или выпол-
няющих долговременные задачи. При большом количестве задач, на выполнение
которых уходит несколько сотен миллисекунд, пул потоков будет неэффективен.
Могут также возникать ситуации, когда требуется выделенный поток для выполне-
ния конкретной задачи, как долговременной, так и нет. Для таких случаев следует
создавать собственный поток и управлять им.

Библиотека распараллеливания задач
Если ваша программа состоит из чистых задач центрального процессора, время
выполнения которых существенно превышает продолжительность кванта потока,
то вполне приемлемым, хотя, как выяснится в дальнейшем, и не необходимым,
будет непосредственное создание и применение потоков. Но если ваш код состоит
из множества небольших задач, на которые вряд ли уйдет столько времени, непо-
средственное использование потоков будет неэффективным, поскольку программа

214   Глава 4  •  Асинхронное программирование

будет тратить существенно большее количество времени на переключение кон-
текстов, чем на выполнение собственного кода. Хотя, как сказано в предыдущем
разделе, вы можете непосредственно воспользоваться пулом потоков, так делать
больше не рекомендуется. Вместо этого как для продолжительных, так и для не-
продолжительных действий можно применить объект Task.

В .NET 4.0 была введена абстракция потоков под названием Task, которая
служит частью библиотеки распараллеливания задач (Task Parallel Library, TPL),
являющейся в большинстве случаев наиболее предпочтительным способом до-
стижения параллелизма в .NET. TPL предоставляет широкие возможности для
управления запуском вашего кода, позволяя определить, что случилось при воз-
никновении ошибки, давая возможность выстроить условную последовательность
из нескольких методов и открывая многие другие возможности.

В своей внутренней структуре TPL задействует имеющийся в .NET пул по-
токов, но делает это более эффективно, последовательно выполняя несколько
Task-делегатов в одном и том же потоке, прежде чем возвратить поток в пул.
Такая возможность возникает благодаря рациональному использованию делега-
тов. Тем самым оказывается эффективно обойденной проблема расточительного
расхода кванта потока на одну небольшую задачу, который является причиной
слишком большого количества переключений контекста.

TPL представляет собой большой всеобъемлющий набор API, но освоить
его легко. Основной принцип заключается в том, что вы передаете делегат име
ющемуся в классе Task методу Start. Вы также можете дополнительно вызвать
в отношении объекта Task метод ContinueWith и передать второй делегат, вы-
полняемый, как только первоначальная задача завершится. Освоить различные
варианты выполнения и продолжения важно для достижения наивысшей про-
изводительности с наименьшими издержками. В этом разделе для расстановки
ориентиров будут кратко рассмотрены наиболее распространенные способы
управления задачами.

Выполнять объекты Task можно как с вычислениями, связанными с процес-
сором, так и с задачами ввода-вывода. Все приводимые здесь примеры покажут
чистую обработку данных центральным процессором. А чуть позже в этой главе
вы увидите раздел, посвященный эффективному выполнению задач ввода-вывода.

Следующий пример кода можно найти в проекте Tasks, он демонстрирует соз-
дание объекта Task для каждого процессора. Когда каждый объект Task завершает
свое выполнение, он ставит в очередь на выполнение Task-продолжение, в котором
есть ссылка на метод обратного вызова.

class Program
{
 static Stopwatch watch = new Stopwatch();
 static int pendingTasks;
 static void Main(string[] args)
 {
 const int MaxValue = 1000000000;

 watch.Restart();

Библиотека распараллеливания задач   215

 int numTasks = Environment.ProcessorCount;
 pendingTasks = numTasks;
 int perThreadCount = MaxValue / numTasks;
 int perThreadLeftover = MaxValue % numTasks;

 var tasks = new Task<long >[numTasks];

 for (int i = 0; i < numTasks; i++)
 {
 int start = i * perThreadCount;
 int end = (i + 1) * perThreadCount;
 if (i == numTasks - 1)
 {
 end += perThreadLeftover;
 }
 tasks[i] = Task<long >.Run(() =>
 {
 long threadSum = 0;
 for (int j = start; j <= end; j++)
 {
 threadSum += (long)Math.Sqrt(j);
 }
 return threadSum;
 });
 tasks[i].ContinueWith(OnTaskEnd);
 }
 }

 private static void OnTaskEnd(Task<long> task)
 {
 Console.WriteLine("Thread sum: {0}", task.Result);
 if (Interlocked.Decrement(ref pendingTasks) == 0)
 {
 watch.Stop();
 Console.WriteLine("Tasks: {0}", watch.Elapsed);
 }
 }
}

Если Task-продолжение является быстро выполняемым коротким фрагментом
кода, следует указать, что оно запускается в том же самом потоке, что и владеющая
им задача. В экстремально многопоточной системе это жизненно важный момент,
поскольку на выстраивание в очередь объектов Task для выполнения в отдельном
потоке, использование которого может повлечь за собой переключение контекста,
может уйти впустую слишком много времени.

task.ContinueWith(OnTaskEnd ,
TaskContinuationOptions.ExecuteSynchronously);

Если Task-продолжение вызывается из потока ввода-вывода, использовать
TaskContinuationOptions.ExecuteSynchronously не стоит, поскольку можно занять
этой задачей поток ввода-вывода, который вам нужен для извлечения данных из

216   Глава 4  •  Асинхронное программирование

сети. И как всегда, вам придется поэкспериментировать и тщательно измерить
результаты. Зачастую более эффективными для потока ввода-вывода оказываются
быстрое продолжение работы и отказ от дополнительной диспетчеризации.

Если нужно выполнить долговременную задачу, следует передать методу Task.Fac
tory.StartNew флаг TaskCreationOptions.LongRunning. Существует также версия
этого флага для продолжений:

var task = Task.Factory.StartNew(action ,
 TaskCreationOptions.LongRunning);
task.ContinueWith(OnTaskEnd , TaskContinuationOptions.LongRunning);

Продолжения — это неоспоримое достоинство TPL. Можно выполнять всевоз-
можные сложные действия, выходящие за рамки вопросов повышения произво-
дительности, и некоторые из них я здесь вкратце упомяну.

В рамках одной задачи Task можно выполнить несколько продолжений:

Task task = ...
task.ContinueWith(OnTaskEnd);
task.ContinueWith(OnTaskEnd2);

OnTaskEnd и OnTaskEnd2 никак не связаны между собой и выполняются неза-
висимо друг от друга и, насколько это возможно, параллельно.

В то же время можно выстроить продолжения в цепочку:

Task task = ...
task.ContinueWith(OnTaskEnd).ContinueWith(OnTaskEnd2);

Продолжения, выстроенные в цепочку, последовательно зависят друг от друга.
Когда выполнение задачи завершается, запускается OnTaskEnd. Когда завершается
выполнение и этой задачи, выполняется OnTaskEnd2.

Продолжениям может предписываться выполнение только после успешного
завершения предыдущей задачи (или ее сбоя, или прекращения и т. д.):

Task task = ...
task.ContinueWith(OnTaskEnd ,
 TaskcontinuationOptions.OnlyOnRanToCompletion);
task.ContinueWith(OnTaskEnd ,
 TaskContinuationOptions.NotOnFaulted);

Продолжение можно вызвать, только когда завершится выполнение нескольких
Task-объектов или любого из них:

Task[] tasks = ...
Task.Factory.ContinueWhenAll(tasks , OnAllTaskEnded);
Task.Factory.ContinueWhenAny(tasks , OnAnyTaskEnded);

Использование этих API существенно упрощает обеспечение того, что большие
участки вашей программы останутся на 100 % асинхронными, без вызова блокиро-
вок или ненужных точек синхронизации.

Библиотека распараллеливания задач   217

Отмена задачи
Отмена уже запущенной задачи Task требует организации взаимодействия.
Принудительно завершать выполнение потока не рекомендуется, и Task Parallel
Library не дает вам доступа к исходному потоку, не говоря уже о прерывании его
работы. Надо отметить, что при непосредственном применении объекта Thread
может быть вызван метод Abort, но это небезопасно и так делать не рекомендуется.
Просто действуйте так, будто этого API не существует. Прерывание выполнения
потока может оставить объекты синхронизации в неизвестных состояниях, со-
вместно используемое состояние может быть повреждено, и асинхронные опера-
ции могут никогда не завершиться.

Чтобы отменить Task, делегату следует передать объект CancellationToken, и за-
тем он сможет опросить токен, чтобы определить, нужно ли ему завершать работу.
В следующем примере показано также применение лямбда-выражения в качестве
Task-делегата.

Этот код можно найти в проекте TaskCancellation:

static void Main(string[] args)
{
 var tokenSource = new CancellationTokenSource();
 CancellationToken token = tokenSource.Token;

 Task task = Task.Run(() =>
 {
 while (true)
 {
 // выполнение реальной работы ...
 if (token.IsCancellationRequested)
 {
 Console.WriteLine("Cancellation requested");
 return;
 }
 Thread.Sleep(100);
 }
 }, token);

 Console.WriteLine("Press any key to exit");

 Console.ReadKey();

 tokenSource.Cancel();

 task.Wait();

 Console.WriteLine("Task completed");
}

218   Глава 4  •  Асинхронное программирование

Обработка исключений
Если в ходе выполнения Task выдает исключение, то происходящее в дальнейшем
зависит от того, как вы управляете самой задачей и результатом ее выполнения.
Примитивный способ заключается в простом получении доступа к свойству Result.
Если результата нет по причине выдачи задачей Task исключения, то поток, обра-
щающийся к свойству Result или явным образом вызывающий метод Wait, получит
исключение AggregateException.

var task = Task<int>.Factory.StartNew(() =>
{
 int x = 42;
 int y = 0;
 return x / y;
});
task.Wait(); // исключение здесь!
int result = task.Result;

Если явное ожидание не задается, но при этом имеется продолжение, возникает
аналогичная проблема:

Task<int>.Factory.StartNew(() =>
{
 int x = 42;
 int y = 0;
 return x / y;
}).ContinueWith(task =>
{
 int val = task.Result; // исключение здесь!
});

Существует несколько решений этой проблемы. Так, доступ к Result можно
заключить в обработчик исключений:

Task<int>.Factory.StartNew(() =>
{
 int x = 42;
 int y = 0;
 return x / y;
}).ContinueWith(task =>
{
 try
 {
 // безопасная обработка результата
 int val = task.Result;
 }
 catch(AggregateException ex)
 {
 LogException(ex);
 }
});

Библиотека распараллеливания задач   219

Но чуть позже мы узнаем, что выдача исключений крайне нежелательна. Класс
Task предоставляет несколько свойств для определения состояния задачи:

�� IsCanceled — задача отменена;

�� IsFaulted — выдано исключение, доступ к которому можно получить через
свойство Exception;

�� IsCompleted — соответствует истине, если задача считается завершенной из-за
ошибки, отмены или успешного окончания;

�� IsCompletedSuccessfully — соответствует истине, если задача считается завер-
шенной без ошибки или отмены.

Свойством IsFaulted можно воспользоваться, чтобы выяснить, есть ли необ-
работанные исключения:

Task<int>.Factory.StartNew(() =>
{
 int x = 42;
 int y = 0;
 return x / y;
}).ContinueWith(task =>
{
 if (task.IsFaulted)
 {
 LogException(task.Exception);
 }
 else
 {
 // безопасная обработка результата
 int val = task.Result;
 }
});

Незамеченные исключения задачи Task. А что произойдет, если вы не об-
работаете исключение в задаче Task? До выпуска .NET 4.5 то, что исключение
задачи Task было оставлено без обработки, приводило к сбою процесса. Когда
исключение остается незамеченным, объект, который знает о нем, будет помещен
в очередь финализации. При следующем запуске финализаторов сборщик мусора
выдаст исключение. Это вызовет трудности с определением фактического стека
вызовов, при котором произошло исключение, поскольку исключение на этот
момент будет иметь стек, берущий начало в потоке финализации. Вам нужно
будет докопаться до исключений, включенных в свойство InnerExceptions, при-
надлежащее объекту AggregateException, чтобы увидеть реальные исключения
и извлечь из них стеки.

Если нужно просто увидеть стандартный строковый дамп дерева исключений,
можно в отношении AggregateException вызвать метод ToString. В дампе будут
содержаться и все вложенные исключения.

220   Глава 4  •  Асинхронное программирование

Если требуется более тонкое управление логированием исключений, можно
воспользоваться методом, похожим на следующий, который правильно выполняет
обработку AggregateException:

public static class ExceptionUtils
{
 public static void LogException(System.Exception exception)
 {
 LogExceptionRecursive(exception , 0, null);
 }

 private static void LogExceptionRecursive(System.Exception ex,
 int recursionLevel)
 {
 if (ex == null)
 {
 return;
 }
 if (recursionLevel >= 10)
 {
 // Обрезание рекурсии в целях безопасности
 return;
 }

 Console.WriteLine(
 $"Type: {ex.GetType()}, Message: {ex.Message}," +
 $" Stack: {ex.StackTrace}, Level: {recursionLevel}");
 var aggEx = ex as AggregateException;
 if (aggEx != null && aggEx.InnerExceptions != null)
 {
 foreach (var inner in aggEx.InnerExceptions)
 {
 LogExceptionRecursive(inner , recursionLevel + 1);
 }
 }
 else if (ex.InnerException != null)
 {
 LogExceptionRecursive(ex.InnerException ,
 recursionLevel + 1);
 }
 }
}

В каких случаях можно утверждать, что наблюдение за исключениями ведется?

�� При вызове метода Wait в отношении задачи Task.

�� При обращении к свойству Result.

�� При обращении к свойству Exception.

С выпуском .NET 4.5 исходное поведение незамеченных исключений в задачах
изменилось. По умолчанию они больше не вызывают выдачи исключения из потока
финализатора. Это решение было принято, так как в платформе .NET Framework все

Библиотека распараллеливания задач   221

более широко стала использоваться библиотека Task Parallel и требовалось избе-
жать сбоев в множестве программных продуктов после обновления .NET.

Несмотря на это, как правило, нежелательно позволять исключениям быть
«проглоченными» таким образом. Данная ситуация свидетельствует о серьезных
проблемах, которые ваше приложение игнорирует, — неопределенном состоянии,
способном привести к возникновению впоследствии трудно обнаруживаемых
ошибок или даже к повреждению данных. К счастью, прежнее поведение можно
восстановить простым переключением конфигурации:

<configuration>
 <runtime>
 <ThrowUnobservedTaskExceptions enabled="true"/>
 </runtime>
</configuration>

Эти настройки нужно включить во все новые проекты, чтобы гарантированно
избежать выполнения своей программы после выдачи необработанного исклю-
чения. Следующий вопрос заключается в действенном способе перехвата и реги-
страции этих исключений. Если ничего не делать, операционная система выполнит
захват мини-дампа, из которого можно будет исследовать исключения, но если
ваши потребности этим не ограничиваются, нужно установить обработчик необ-
работанных исключений.

static void Main()
{
 AppDomain.CurrentDomain.UnhandledException
 += OnUnhandledException;
}

private static void OnUnhandledException(
 object sender ,
 UnhandledExceptionEventArgs e)
{

 var ex = e.ExceptionObject as Exception;
 if (ex != null)
 {
 ExceptionUtils.LogException(ex,
 Events.Log.UnhandledException,
 true);
 }
 else if (e.ExceptionObject != null)
 {
 var type = e.ExceptionObject.GetType().ToString();
 Console.WriteLine(
 $"Non-exception object: {type} - {e.ExceptionObject}");
 }
 else
 {
 Console.WriteLine("Unknown object");
 }
}

222   Глава 4  •  Асинхронное программирование

Дочерние задачи
Когда задачи создаются из другой задачи, то они по умолчанию независимы друг
от друга. В следующем примере создается дочерняя задача, выполняющая произ-
вольный код. Как родительская, так и дочерняя задачи выполняют вывод в кон-
соль, но они совершенно не связаны друг с другом и любая из них может вернуть
управление и завершиться первой.

Task.Factory.StartNew(() =>
{
 Task childTask = Task.Factory.StartNew(() =>
 {
 Console.WriteLine("Inside child");
 });

}).ContinueWith(task => Console.WriteLine("Parent done"));

Обычно это то, что вам нужно, поскольку при этом обеспечивается строгая асин-
хронность — весьма полезная привычка в подобных ситуациях, но есть возможность
создать более крепкие взаимоотношения между родительской и дочерней задачами.
Один из способов заключается в том, чтобы заставить родительскую задачу ждать
завершения дочерней (или полагаться на значение ее свойства Result):

Task.Factory.StartNew(() =>
{
 Task childTask = Task.Factory.StartNew(() =>
 {
 Console.WriteLine("Inside child");
 });

 // Явно заданное ожидание!
 childTask.Wait();
}).ContinueWith(task => Console.WriteLine("Parent done"));

Это далеко не идеальное решение, поскольку оно вводит блокирующий вызов
в процесс, бывший до этого асинхронным, что нарушает главное правило эффек-
тивности асинхронных программ. Альтернативное решение — передача флага
TaskCreationOptions.AttachedToParent, сообщающего родительской задаче, что
она не может завершиться до окончания работы всех ее дочерних задач:

Task.Factory.StartNew(() =>
{
 Task childTask = Task.Factory.StartNew(() =>
 {
 Console.WriteLine("Inside child");
 }, TaskCreationOptions.AttachedToParent);
}).ContinueWith(task => Console.WriteLine("Parent done"));

Этот вариант подойдет, если необходимо обеспечить согласованность между
задачами, но все же он вносит новые сложности, от которых нужно избавляться.

Среда TPL Dataflow   223

Прежде всего, родительские задачи способны не дать дочерним прикрепляться
к себе:

Task.Factory.StartNew(() =>
{
 Task childTask = Task.Factory.StartNew(() =>
 {
 // выполнение реальной работы
 }, TaskCreationOptions.AttachedToParent);
}, TaskCreationOptions.DenyChildAttach);

В данном случае предпочтения родительской задачи соблюдаются, а запрос до-
черней на прикрепление игнорируется. Поведение будет таким же, как и в первом
примере данного раздела. При запуске задачи через вызов Task.Run по умолчанию
устанавливается флаг TaskCreationOptions.DenyChildAttach вместо используемого
здесь вызова метода Task.Factory.StartNew.

Нужно также обрабатывать исключения. Исключение в прикрепленной дочер-
ней задаче автоматически передается в родительскую задачу, чтобы обработкой
занимался метод продолжения родительской задачи или любой поток, ожида
ющий результата выполнения задачи. Открепленная дочерняя задача, выдающая
исключение, должна обрабатываться точно так же, как и любой другой код внутри
родительской задачи, — с проверкой ее свойства Exception или с заключением про-
верки свойства Result в обработчик исключений.

Отмена также немного усложняется. Чтобы упростить ситуацию, нужно вос-
пользоваться одним и тем же объектом CancellationToken для всех задач в иерар-
хии родителей и потомков. Когда поступает сигнал об отмене, все происходящее
далее определяется тем, где и когда случилась отмена.

�� Родительская задача отменена до запуска дочерней. Дочерняя вообще не за-
пускается.

�� Родительская задача отменена после запуска дочерней. Дочерняя задача вы-
полняется, пока в ней не произойдет проверка на отмену.

�� Отменяется прикрепленная дочерняя задача. Исключение TaskCanceledExcep
tion передается родительской задаче и будет включено в принадлежащее ей
исключение AggregateException.

Среда TPL Dataflow
Многие приложения задействуют конвейер обработки данных, где части данных
проходят через различные стадии преобразования и анализа. Для повышения
эффективности, производительности и максимального использования ресурсов
было бы идеально сделать эти стадии асинхронными, что позволило бы одновремен-
но обрабатывать сразу несколько частей данных в конвейере. Такую систему можно
было бы спроектировать с самостоятельным применением Task Parallel Library, но

224   Глава 4  •  Асинхронное программирование

это повлечет за собой образование сложной системы продолжений, синхронизации
и координации. Есть другой вариант — воспользоваться средой TPL Dataflow.

ПРИМЕЧАНИЕ

Среда TPL Dataflow распространяется через NuGet-пакет Microsoft.Tpl.Dataflow.
С платформой .NET Framework она не поставляется.

С помощью TPL Dataflow создаются блоки обработки, соединяемые в конвей-
ер или сеть. У вас есть возможность управлять распараллеливанием вычислений
каждого блока, и каждый блок может быть выполнен в асинхронном режиме.
Блоки передают друг другу сообщения, которые являются простыми объектами,
объявляемыми с помощью спецификаторов типа. Блок может быть связан с не-
сколькими источниками или несколькими целевыми объектами. Вся обработка
может происходить в асинхронном режиме.

Важно отметить, что применение TPL Dataflow не делает автоматически вашу
программу быстрее. Данное средство скорее упрощает достижение высокой произ-
водительности для данного алгоритмического решения, используя преимущества
TPL и принимая на себя задачу создания большей части рутинного кода, что по-
зволяет вам сконцентрироваться на важной логике приложения.

Прежде чем рассмотреть простой пример, исследуем типы блоков, которые вы
можете создать. Существует несколько заранее созданных блоков, предоставляе-
мых вам средой TPL Dataflow.

Тип блока TPL Dataflow Описание

BufferBlock<T> FIFO-очередь сообщений

BroadcastBlock<T> Отправляет последнее сообщение всем .
целевым объектам

WriteOnceBlock<T> Аналогичен BroadcastBlock, но может .
установить значение только один раз

ActionBlock<T> Выполняет делегат для входных данных, .
выходных данных не производит

TransformBlock<TInput, TOutput> Выполняет делегат, который может .
возвращать тип, отличный от принятого

TransformManyBlock<TInput,TOutput> Аналогичен TransformBlock, но может выдать
несколько выходных данных для каждого
входа

BatchBlock<T> Преобразует несколько входных данных
в один массив на выходе

Собственные типы блоков можно создавать путем реализации интерфейсов
ISourceBlock<TOutput> и/или ITargetBlock<TInput>.

Среда TPL Dataflow   225

Пример использования TPL Dataflow. Чтобы увидеть, как блоки TPL Dataflow
работают вместе, создадим простой пример конвейера обработки текста. Это при-
ложение обрабатывает каталог текстовых файлов и анализирует частоту появления
всех слов в каждом файле. После обработки делаются определенные шаги, объ-
единяющие данные анализа и отсеивающие некоторые общие, не представляющие
интереса слова.

Вот как выглядит создание конвейера, возвращающее ссылку на первый блок:

private static readonly HashSet <string > IgnoreWords =
 new HashSet <string >() { "a", "an", "the", "and", "of", "to" };
private static readonly Regex WordRegex =
 new Regex("[a-zA-Z]+", RegexOptions.Compiled);

private static ITargetBlock <string > CreateTextProcessingPipeline(
 string inputPath ,
 out Task completionTask)
{
 int fileCount = Directory.GetFiles(inputPath , "*.txt").Length;

 var getFilenames = new TransformManyBlock <string , string >(
 path =>
 {
 return Directory.GetFiles(path, "*.txt");
 });

 var getFileContents = new TransformBlock <string , string >(
 async (filename) =>
 {
 Console.WriteLine("Begin: getFileContents");
 using (var streamReader = new StreamReader(filename))
 {
 return await streamReader.ReadToEndAsync();
 }
 Console.WriteLine("End: getFileContents");
 }, new ExecutionDataflowBlockOptions
 {
 MaxDegreeOfParallelism = Environment.ProcessorCount
 }
);
 var analyzeContents =
 new TransformBlock <string , Dictionary <string , ulong >>(
 contents =>
 {
 Console.WriteLine("Begin: analyzeContents");
 var frequencies =
 new Dictionary <string , ulong >(
 10000, StringComparer.OrdinalIgnoreCase);

 var matches = WordRegex.Matches(contents);
 foreach (Match match in matches)
 {
 ulong currentValue;

226   Глава 4  •  Асинхронное программирование

 if (!frequencies.TryGetValue(match.Value ,
 out currentValue))
 {
 currentValue = 0;
 }
 frequencies[match.Value] = currentValue + 1;
 }
 Console.WriteLine("End: analyzeContents");
 return frequencies;
 }, new ExecutionDataflowBlockOptions
 {
 MaxDegreeOfParallelism = Environment.ProcessorCount
 }
);

 var eliminateIgnoredWords =
 new TransformBlock <Dictionary <string , ulong >,
 Dictionary <string , ulong >>(
 input =>
 {
 foreach(var word in IgnoreWords)
 {
 input.Remove(word);
 }
 return input;
 });

 var batch =
 new BatchBlock <Dictionary <string , ulong >>(fileCount);
 // Это единая точка синхронизации —
 // вся обработка сходится на ней
 var combineFrequencies =
 new TransformBlock <Dictionary <string , ulong >[],
 List<KeyValuePair <string , ulong >>>(
 inputs =>
 {
 Console.WriteLine("Begin: combiningFrequencies");
 var sortedList = new List<KeyValuePair <string , ulong >>();
 var combinedFrequencies = new Dictionary <string , ulong >(
 10000, StringComparer.OrdinalIgnoreCase);

 foreach (var input in inputs)
 {
 foreach (var kvp in input)
 {
 ulong currentFrequency;
 if (!combinedFrequencies.TryGetValue(
 kvp.Key,
 out currentFrequency))
 {
 currentFrequency = 0;
 }
 combinedFrequencies[kvp.Key] = currentFrequency +

Среда TPL Dataflow   227

 kvp.Value;
 }
 }
 foreach(var kvp in combinedFrequencies)
 {
 sortedList.Add(kvp);
 }
 sortedList.Sort((a, b) =>
 {
 return -a.Value.CompareTo(b.Value);
 });
 Console.WriteLine("End: combineFrequencies");

 return sortedList;
 }, new ExecutionDataflowBlockOptions()
 {
 MaxDegreeOfParallelism = 1
 }
);
 var printTopTen = new ActionBlock <List<KeyValuePair <string ,
 ulong >>>(
 input =>
 {
 for (int i=0;i<10;i++)
 {
 Console.WriteLine(
 $"{input[i].Key} - {input[i].Value}");
 }
 getFilenames.Complete();
 });

 // Присоединение блоков
 getFilenames.LinkTo(getFileContents);
 getFileContents.LinkTo(analyzeContents);
 analyzeContents.LinkTo(eliminateIgnoredWords);
 eliminateIgnoredWords.LinkTo(batch);
 batch.LinkTo(combineFrequencies);
 combineFrequencies.LinkTo(printTopTen);

 completionTask = getFilenames.Completion;

 return getFilenames;
}

Чтобы воспользоваться конвейером (рис. 4.2), нужно просто извлечь ссылку на
блок и отправить в него сообщение:

Task completionTask;
ITargetBlock <string > startBlock =
 CreateTextProcessingPipeline(args[0], out completionTask);

startBlock.Post(args[0]);

completionTask.Wait();

228   Глава 4  •  Асинхронное программирование

Рис. 4.2. Графическое представление конвейера

Параллельно выполняемые циклы   229

Данные, выведенные в консоль, показывают, что часть блоков выполняется
одновременно, в то время как другие блоки выполняются последовательно после
завершения выполнения предыдущих блоков, и что разные типы блоков могут
чередоваться:

Begin: getFileContents
Begin: getFileContents
Begin: getFileContents
Begin: getFileContents
Begin: analyzeContents
Begin: getFileContents
Begin: getFileContents
Begin: getFileContents
Begin: analyzeContents
Begin: getFileContents
Begin: getFileContents
Begin: getFileContents
Begin: getFileContents
Begin: getFileContents
Begin: getFileContents
Begin: analyzeContents
Begin: analyzeContents
End: analyzeContents
Begin: analyzeContents
End: analyzeContents
Begin: analyzeContents
End: analyzeContents
Begin: analyzeContents
End: analyzeContents
Begin: analyzeContents
End: analyzeContents

Begin: analyzeContents
End: analyzeContents
Begin: analyzeContents
End: analyzeContents
Begin: analyzeContents
End: analyzeContents
Begin: analyzeContents
End: analyzeContents
Begin: analyzeContents
End: analyzeContents
End: analyzeContents
End: analyzeContents
End: analyzeContents
Begin: combiningFrequencies
End: combineFrequencies
I - 7693
you - 5188
in - 4266
My - 4237
that - 4158
is - 3790
NOT - 3209
FOR - 3201
d - 3117
IT - 2947

Параллельно выполняемые циклы
В одном из примеров в разделе «Библиотека распараллеливания задач» показана
схема, используемая так часто, что для параллельного выполнения циклов суще-
ствует специальный API:

const int MaxValue = 1000;
long sum = 0;
Parallel.For(0, MaxValue , (i) =>
 {
 Interlocked.Add(ref sum, (long)Math.Sqrt(i));
 });

Кроме того, имеется версия foreach для обработки обобщенных коллекций
IEnumerable<T>:

var urls = new List<string >
{
 @"http://www.microsoft.com",

230   Глава 4  •  Асинхронное программирование

 @"http://www.bing.com",
 @"http://msdn.microsoft.com"
};
var results = new ConcurrentDictionary <string ,string >();
var client = new System.Net.WebClient();

Parallel.ForEach(urls, url => results[url] =
 client.DownloadString(url));

Если нужно прервать обработку цикла, делегату цикла можно передать объект
ParallelLoopState. Есть два варианта остановки цикла:

�� Break — циклу предписывается не выполнять никаких итераций, которые бу-
дут последовательно больше текущей итерации. Если для цикла Parallel.For
вызвать ParallelLoopState.Break на i-й итерации, то любым итерациям мень-
ше i запуск будет по-прежнему разрешен, но любым итерациям больше i — за-
прещен. Этот же механизм работает в отношении цикла Parallel.ForEach, но
каждому элементу присваивается индекс, который с точки зрения программы
может иметь произвольное значение. Обратите внимание на то, что, если тре-
бует логика кода цикла, вызов Break возможно осуществить на нескольких
итерациях;

�� Stop — циклу предписывается больше не выполнять никаких итераций.

В следующем примере Break применяется для остановки цикла в произвольном
месте:

Parallel.ForEach(urls, (url, loopState) =>
{
 if (url.Contains("bing"))
 {
 loopState.Break();
 }
 results[url] = client.DownloadString(url);
});

Применяя параллельно выполняемые циклы, следует добиться того, чтобы
каждая итерация цикла работала по возможности только с локальным состоянием.
Если цикл тратит все свое время, будучи заблокированным на синхронном доступе
к переменной, совместно используемой всеми потоками, то лишиться всех пре-
имуществ параллельных вычислений очень легко. Если необходимо применить
совместно используемое состояние, следует гарантировать, что время работы,
выполняемой в ходе итерации, будет существенно больше периода ожидания при
синхронизации доступа к этому состоянию.

Еще одной проблемой параллельно выполняемых циклов является вызов деле-
гата для каждой итерации, на что может впустую затрачиваться время, если произ-
водимая работа не превышает затрат на вызов делегата или метода (см. главу 5).

Обе проблемы могут быть решены за счет использования класса Partitioner
(разбивающий на части), преобразующего диапазон в набор объектов Tuple (кор-

Параллельно выполняемые циклы   231

теж), в каждом из которых содержится описание поддиапазона, через который
проходит итерация в исходной коллекции.

В следующем примере показано, насколько сильным может оказаться негатив-
ное влияние синхронизации на эффективность параллельных вычислений:

static void Main(string[] args)
{
 Stopwatch watch = new Stopwatch();
 const int MaxValue = 1000000000;

 long sum = 0;

 // Простой цикл For
 watch.Restart();
 sum = 0;
 Parallel.For(0, MaxValue , (i) =>
 {
 Interlocked.Add(ref sum, (long)Math.Sqrt(i));
 });
 watch.Stop();
 Console.WriteLine("Parallel.For: {0}", watch.Elapsed);
 // Разбитый цикл For
 var partitioner = Partitioner.Create(0, MaxValue);
 watch.Restart();
 sum = 0;
 Parallel.ForEach(partitioner ,
 (range) =>
 {
 long partialSum = 0;
 for (int i = range.Item1; i < range.Item2; i++)
 {
 partialSum += (long)Math.Sqrt(i);
 }
 Interlocked.Add(ref sum, partialSum);
 });
 watch.Stop();
 Console.WriteLine("Partitioned Parallel.For: {0}",
 watch.Elapsed);
}

Этот код можно найти в учебном проекте ParallelLoops. При запуске на моей
машине он выдал следующую информацию:

Parallel.For: 00:01:47.5650016
Partitioned Parallel.For: 00:00:00.8942916

Показанная ранее схема разбиения статическая в том смысле, что, как только
разделы определены, делегат выполняется для каждого диапазона и, если выпол-
нение одного из них завершится раньше, не будет делаться никаких попыток ново-
го разбиения, чтобы снабдить работой другой процессор. Статические разделы
можно создавать для любых коллекций IEnumerable<T> и без указания диапазона,
но тогда делегат будет вызываться для каждого элемента, а не для поддиапазона.

232   Глава 4  •  Асинхронное программирование

Эту проблему можно обойти, создав свой вариант Partitioner, который может ока-
заться весьма сложным. Дополнительные сведения и очень большие примеры можно
найти в статье Стивена Туба (Stephen Toub) Custom Parallel Partitioning With .NET 4.

Советы по повышению производительности
Избегайте использования блокировок
Для достижения наивысшей производительности нужно, чтобы ваша программа ни-
когда не тратила впустую один ресурс, дожидаясь доступности другого. Чаще всего
такие обстоятельства принимают форму блокирования текущего потока в ожидании
завершения некой операции ввода-вывода. В данной ситуации возможен один из
двух результатов.

1.	 Поток окажется заблокирован в состоянии ожидания, не будет планироваться
на выполнение и вызовет запуск другого потока. Это может привести к созда-
нию нового потока для выполнения ожидающих рабочих элементов или задач,
если все текущие потоки уже задействованы или заблокированы.

2.	 Поток дойдет до объекта синхронизации, который в ожидании сигнала может
войти в пустой цикл на несколько миллисекунд. Если он не будет получен во-
время, поток войдет в состояние, описанное в п. 1.

В обоих случаях происходит ненужное увеличение пула потоков и, возможно,
ресурс центрального процессора впустую затрачивается на циклы в блокировках.
Попадать в такую ситуацию нежелательно.

Блокировка и другие виды непосредственной синхронизации потоков относятся
к легко обнаруживаемым явным блокирующим вызовам. Но иногда бывает непо-
нятно, что к блокировке могут приводить и другие вызовы методов. С ними часто
связаны различного рода операции ввода-вывода, поэтому нужно убедиться в том,
что любые взаимодействия с сетью, файловой системой, базами данных или любы-
ми другими сервисами с высокой степенью задержек выполняются в асинхронном
режиме. К счастью, среда .NET существенно облегчает эту задачу, позволяя задей-
ствовать объекты Task.

При использовании любого API ввода-вывода — для сети, файловой системы,
базы данных или чего-то еще — следует убедиться, что он возвращает Task, в про-
тивном случае он будет весьма подозрителен и, вполне вероятно, станет выполнять
блокировку при вводе-выводе. Следует заметить, что устаревшие API будут воз-
вращать IASyncResult и обычно начинаются с префикса Begin-. Как бы то ни было,
найдите API, возвращающий вместо этого Task, или воспользуйтесь методом
Task.FactoryFromAsync, чтобы поместить эти методы внутрь объектов Task, чтобы
добиться согласования с собственным интерфейсом программирования.

Метод Task.Wait следует применять лишь изредка или вовсе отказаться от
него. Вместо этого воспользуйтесь продолжениями. Ожидание в отношении Task
является разновидностью более масштабной проблемы блокирующих вызовов.

Советы по повышению производительности   233

Избегайте конвоев при блокировке
и диспетчеризации
Общим ограничением для приложений пользовательских интерфейсов является
возможность изменения состояния пользовательского интерфейса только из одного
потока, который зачастую называют потоком диспетчера. Это означает, что даже
если нужно, чтобы некую фоновую работу выполняли сразу несколько потоков,
то, чтобы сообщить о любых видимых изменениях, они должны переводить свою
работу обратно в поток пользовательского интерфейса.

В платформе WPF это имеет примерно следующий вид:

// В фоновом рабочем потоке
Application.Current.Dispatcher.BeginInvoke(
 DispatcherPriority.Background ,
 () => this.statusBar.Value = "Complete");

Если в приложении пользовательского интерфейса есть постоянно занимающее
ся этим множество потоков, можно в итоге начать блокировать пользовательский
интерфейс из-за множественных обновлений. В таких случаях понадобится либо
переосмыслить сами изменения пользовательского интерфейса, либо ввести уро-
вень обобщения, где можно было бы собрать в пакет несколько обновлений и разом
обновить все части пользовательского интерфейса.

Это похоже на проблему конвоя при блокировке, где соперничество за один
заблокированный ресурс настолько высоко, что на пустые циклы или ожидание
освобождения блокировки затрачивается больше времени, чем на выполнение ра-
боты. В обоих случаях нужно пересмотреть стратегию асинхронной работы, чтобы
снизить число конфликтов на отдельно взятом ресурсе.

Использование объектов Tasks
для неблокирующего ввода-вывода
В .NET 4.5 к классу Stream были добавлены –Async-методы, поэтому весь обмен
данными на Stream-основе может довольно легко стать полностью асинхронным.
Рассмотрим простой пример:

int chunkSize = 4096;
var buffer = new byte[chunkSize];

var fileStream = new FileStream(filename , FileMode.Open,
 FileAccess.Read, FileShare.Read, chunkSize , useAsync: true);
var task = fileStream.ReadAsync(buffer , 0, buffer.Length);
task.ContinueWith((readTask) =>
 {
 int amountRead = readTask.Result;
 fileStream.Dispose();
 Console.WriteLine("Async(Simple) read {0} bytes", amountRead);
});

234   Глава 4  •  Асинхронное программирование

Больше уже не получится воспользоваться синтаксисом using для очистки
IDisposable-объектов, таких как Stream-объекты. Вместо этого нужно передать
такие объекты методу продолжения, чтобы обеспечить их очистку в каждом из
путей исполнения.

На самом деле этот пример требует дополнения. В реальном сценарии для
получения полноценного содержимого зачастую приходится выполнять множе-
ственные считывания потока. Подобное может произойти, если файлы больше
предоставленного вами буфера или если работа ведется с сетевыми потоками, а не
с файлами. В таком случае байты еще даже не дошли до вашей машины. Чтобы
справиться с подобной ситуацией в асинхронном режиме, следует продолжать
считывание потока, пока от него не поступит сообщение о том, что данных больше
не осталось.

Еще одной шероховатостью является то, что теперь вам нужны два уровня Task-
объектов. Верхний уровень предназначен для общего чтения — той части, которой
интересуется вызывающая программа. Нижестоящий уровень представляет собой
набор Task-объектов для каждой отдельной порции фрагментированного считы-
вания.

Подумаем, для чего это нужно. Первое асинхронное считывание возвратит Task.
Если это вернуть вызывающему коду для ожидания или продолжения, то он про-
должит выполнение после первого чтения. А на самом деле нужно было бы, чтобы
он продолжил выполнение после завершения считываний. Это означает, что эту
первую задачу Task вызывающему коду возвращать нельзя. Нужна фиктивная за-
дача Task, которая завершится, как только будут выполнены все считывания.

Чтобы все это проделать, следует воспользоваться классом TaskComple
tionSource<T>, способным создать фиктивную задачу Task, предназначенную для
возвращения. Когда серия из асинхронных считываний завершится, вызовите
в отношении TaskCompletionSource метод TrySetResult, что заставит объект этого
класса запустить связанный с ним ожидающий код или код продолжения.

В следующем примере показано расширение предыдущего примера и проде-
монстрировано использование TaskCompletionSource:

private static Task<int> AsynchronousRead(string filename)
{
 int chunkSize = 4096;
 var buffer = new byte[chunkSize];
 var tcs = new TaskCompletionSource <int >();

 var fileContents = new MemoryStream();
 var fileStream = new FileStream(filename , FileMode.Open,
 FileAccess.Read, FileShare.Read, chunkSize , useAsync: true);
 fileContents.Capacity += chunkSize;

 var task = fileStream.ReadAsync(buffer , 0, buffer.Length);
 task.ContinueWith(
 readTask =>
 ContinueRead(readTask , fileStream ,
 fileContents , buffer , tcs));

Советы по повышению производительности   235

 return tcs.Task;
}

private static void ContinueRead(Task<int> task,
 FileStream stream ,
 MemoryStream fileContents ,
 byte[] buffer ,
 TaskCompletionSource <int> tcs)
{
 if (task.IsCompleted)
 {
 int bytesRead = task.Result;
 fileContents.Write(buffer , 0, bytesRead);
 if (bytesRead > 0)
 {
 // Не все байты считаны, поэтому
 // выполнение еще одного асинхронного вызова
 var newTask = stream.ReadAsync(buffer , 0, buffer.Length);
 newTask.ContinueWith(
 readTask =>
 ContinueRead(readTask , stream ,
 fileContents , buffer , tcs));
 }
 else
 {
 // Все сделано, освобождение ресурсов
 // и завершение задачи высшего уровня.
 tcs.TrySetResult((int)fileContents.Length);
 stream.Dispose();
 fileContents.Dispose();
 }
 }
}

Заметьте, что ни от кого не требуется дожидаться установки результата для
объекта Task — отсутствие какой-либо упорядоченной зависимости является весь-
ма важным требованием асинхронного программирования.

Адаптируйте модель асинхронного программирования к задачам
В асинхронных методах старого стиля, присутствующих в среде .NET Framework,
есть методы с префиксами Begin- и End-. Они вполне работоспособны, и их можно
без особого труда заключить в Task, чтобы получить согласованный интерфейс, как
в следующем примере, взятом из учебного проекта TaskFromAsync:

const int TotalLength = 1024;
const int ReadSize = TotalLength / 4;

static Task<string > GetStringFromFileBetter(string path)
{
 var buffer = new byte[TotalLength];

236   Глава 4  •  Асинхронное программирование

 var stream = new FileStream(
 path,
 FileMode.Open,
 FileAccess.Read,
 FileShare.None,
 buffer.Length ,
 FileOptions.DeleteOnClose | FileOptions.Asynchronous);

 var task = Task<int>.Factory.FromAsync(
 stream.BeginRead ,
 stream.EndRead ,
 buffer ,
 0,
 ReadSize , null);

 var tcs = new TaskCompletionSource <string >();

 task.ContinueWith(readTask => OnReadBuffer(readTask ,
 stream , buffer , 0, tcs));
 return tcs.Task;
}

static void OnReadBuffer(Task<int> readTask ,
 Stream stream ,
 byte[] buffer ,
 int offset ,
 TaskCompletionSource <string > tcs)
{
 int bytesRead = readTask.Result;
 if (bytesRead > 0)
 {
 var task = Task<int>.Factory.FromAsync(
 stream.BeginRead ,
 stream.EndRead ,
 buffer ,
 offset + bytesRead ,
 Math.Min(buffer.Length - (offset + bytesRead), ReadSize),
 null);

 task.ContinueWith(
 callbackTask => OnReadBuffer(
 callbackTask ,
 stream ,
 buffer ,
 offset + bytesRead ,
 tcs));
 }
 else
 {
 tcs.TrySetResult(Encoding.UTF8.GetString(buffer , 0, offset));
 }
}

Советы по повышению производительности   237

Метод FromAsync принимает два аргумента в виде принадлежащих потоку
методов BeginRead и EndRead, а также целевой буфер для хранения данных. Он вы-
полнит методы и после завершения работы метода EndRead вызовет продолжение,
возвращая управление вашему коду, который в данном примере закрывает поток
и возвращает преобразованное содержимое файла.

Используйте эффективный ввод-вывод
То, что ко всем вызовам ввода-вывода применяются приемы асинхронного про-
граммирования, еще не означает, что от выполняемого ввода-вывода вы получаете
максимально возможную отдачу. Устройства ввода-вывода обладают разными воз-
можностями, скоростями и особенностями, в силу чего приемы программирования
зачастую приходится приспосабливать под них.

В показанном ранее примере для чтения и записи на диск был выбран буфер
16 Кбайт. Подходящее ли это значение? Если принять во внимание размеры буфе-
ров на жестких дисках и скорость работы твердотельных накопительных устройств,
возможно, и нет. Чтобы определить меру эффективного деления данных ввода-
вывода на части, нужно поэкспериментировать. Чем меньше буферы, тем больше
издержки. Чем буферы больше, тем дольше придется дожидаться результатов,
позволяющих приступить к работе. Правила, применяемые к дискам, не подойдут
для сетевых устройств, и наоборот.

Но важнее всего то, что для наиболее эффективного использования ввода-
вывода программа нуждается в особой структуре. Если часть вашей программы
когда-либо оказывается заблокированной в ожидании завершения ввода-вывода,
то время ожидания не расходуется на обработку полезных данных с помощью ЦП
или как минимум приводит к пустым тратам пула потоков. В ожидании завершения
операций ввода-вывода нужно проделывать как можно больше другой работы.

Кроме того, следует заметить, что асинхронный ввод-вывод и выполнение
синхронного ввода-вывода на другом потоке в корне отличаются друг от друга.
В первом случае управление фактически передается операционной системе и обо-
рудованию и нигде никакой код в системе не блокируется, пока управление не бу-
дет возвращено. Если же выполняется синхронный ввод-вывод в другом потоке,
происходит просто блокировка потока, который мог бы проделывать другую рабо-
ту, по-прежнему ожидая возвращения от операционной системы. Это может быть
допустимо в ситуации, не требующей высокой производительности (например, при
выполнении фонового ввода-вывода в программе пользовательского интерфейса
вместо основного потока), но не рекомендуется.

Иными словами, код следующего примера нерационален и противоречит целям
асинхронного ввода-вывода:

Task.Run(()=>
{
 using (var inputStream = File.OpenRead(filename))
 {
 byte[] buffer = new byte[16384];

238   Глава 4  •  Асинхронное программирование

 // Вызов метода синхронного ввода-вывода —
 // это приведет к блокировке потока
 var input = inputStream.Read(buffer , 0, buffer.Length);
 ...
 }
});

Дополнительные советы по эффективному вводу-выводу, осуществляемому
с помощью API среды .NET Framework применительно к доступу к дискам или
сетям, даны в главе 6.

async и await
В .NET 4.5 появилось два новых ключевых слова, позволяющих во многих ситуа-
циях упростить код: async и await. При совместном использовании они превращают
ваш TPL-код в нечто похожее на простой линейный синхронный код. Но «под
капотом» фактически применяются Task-объекты и продолжения.

Следующий пример взят из учебного проекта AsyncAwait:

static Regex regex = new Regex("<title >(.*)</title >",
 RegexOptions.Compiled);

private static async Task<string > GetWebPageTitle(string url)
{
 System.Net.Http.HttpClient client =
 new System.Net.Http.HttpClient();
 Task<string > task = client.GetStringAsync(url);

 // теперь нам нужен результат, поэтому используем await
 string contents = await task;
 Match match = regex.Match(contents);
 if (match.Success)
 {
 return match.Groups[1].Captures[0].Value;
 }
 return string.Empty;
}

Чтобы увидеть, в чем заключается эффективность этого синтаксиса, рас-
смотрим пример посложнее, где выполняются одновременное считывание из
одного файла и запись в другой файл с попутным сжатием данных на выходе.
Для выполнения этой задачи было бы не слишком трудно воспользоваться
Task-объектами напрямую, но посмотрим, как просто все будет выглядеть, когда
применяется синтаксис async-await. Следующий код взят из учебного проекта
CompressFiles.

Сначала для сравнения посмотрим на синхронную версию:

private static void SyncCompress(IEnumerable <string > fileList)
{
 byte[] buffer = new byte[16384];

Советы по повышению производительности   239

 foreach (var file in fileList)
 {
 using (var inputStream = File.OpenRead(file))
 using (var outputStream = File.OpenWrite(file+".compressed"))
 using (var compressStream = new GZipStream(outputStream ,
 CompressionMode.Compress))
 {
 int read = 0;
 while ((read = inputStream.Read(buffer ,
 0,
 buffer.Length)) > 0)
 {
 compressStream.Write(buffer , 0, read);
 }
 }
 }
}

Чтобы превратить этот код в асинхронный, нужно лишь добавить ключевые
слова async и await и изменить методы Read и Write на ReadAsync и WriteAsync со-
ответственно:

private static async Task AsyncCompress(
 IEnumerable <string > fileList)
{
 byte[] buffer = new byte[16384];
 foreach (var file in fileList)
 {
 using (var inputStream = File.OpenRead(file))
 using (var outputStream = File.OpenWrite(file+".compressed"))
 using (var compressStream =
 new GZipStream(outputStream,
 CompressionMode.Compress))
 {
 int read = 0;
 while ((read = await inputStream.ReadAsync(buffer, 0,
 buffer.Length)) > 0)
 {
 await compressStream.WriteAsync(buffer, 0, read);
 }
 }
 }
}

Похоже на то, что этот код будет заблокирован в ожидании результата чтения из
файла, но не стоит путать await со словом wait («ожидать») — при всей схожести
они заведомо разные. Все, что предшествует ключевому слову await, происходит
в вызывающем потоке. А все, что следует за этим словом, является продолже-
нием. В вашем коде await может применяться в любом методе, возвращающем
Task<T>, при условии, что этот метод помечен ключевым словом async. При ис-
пользовании данных ключевых слов компилятор займется нелегкой работой

240   Глава 4  •  Асинхронное программирование

по преобразованию вашего кода в структуру, подобную той, что задействовалась
в прежних примерах с TPL.

Важно отметить, что ключевое слово await использовано в инструкции using.
Шаблон проектирования Dispose корректно работает с async и await, что суще-
ственно упрощает код.

Пара ключевых слов async-await может заметно упростить код, но в некото-
рых ситуациях, основанных на использовании Task, применить ее невозможно.
Например, если завершение Task носит недетерминированный характер или
у вас должно быть несколько уровней Task-объектов и задействуются объекты
TaskCompletionSource<T>, то пара async-await может не вписаться в эту схему.

ИСТОРИЯ

С проблемой детерминированности мне пришлось столкнуться при реализации
функции повторного запуска в качестве надстройки над имеющейся в .NET функ-
цией HTTP-клиента, которая целиком поддерживает использование Task. Работа
началась с простого класса-оболочки HTTP-клиента, и я изначально воспользо-
вался async-await, поскольку при этом код упрощался. Но, когда пришло время
реализовать функцию повторного запуска, я сразу понял, что застрял, поскольку
упустил контроль над моментом завершения задач. В своей реализации я хотел
отправлять повторный запрос, пока не вышло время ожидания ответа на первый
запрос. Я хотел возвратить вызывающему коду результат того запроса, который
завершится первым. К сожалению, пара async-await не справляется с недетерми-
нированной ситуацией произвольного выбора из нескольких дочерних ожидаемых
Task-объектов. Один из способов разрешить данную ситуацию — использовать ранее
рассмотренный метод ContinueOnAny. В качестве альтернативы можно применить
метод TaskCompletionSource, чтобы самому проконтролировать завершение задачи
Task верхнего уровня. В рассматриваемой ситуации я выбрал последний вариант.

О структуре программы
Вспомните важную интересную деталь, упомянутую в предыдущем разделе: все
инструкции await должны находиться в методах с пометкой async, следовательно,
такие методы должны возвращать Task-объекты. Технически при условии непо-
средственного использования Task-объектов ограничений такого рода не суще-
ствует, но сохраняется тот же принцип написания кода. Применение асинхронного
программирования похоже на полезный вирус, заражающий вашу программу на
всех уровнях. Начавшись в одной части, он будет идти вверх по уровням вызовов
функций как можно выше.

Разумеется, используя Task-объекты напрямую, можно создать следующий
(весьма неудачный) пример:

Task<string > task = Task<string >.Run(()=> { ... });
task.Wait();

Советы по повышению производительности   241

Но если выполняется чуть менее тривиальная многопоточная работа, такой
подход полностью разрушает масштабируемость вашего приложения. Да, конечно,
можно вставить какую-то работу между созданием задачи и вызовом ожидания
Wait, но это нивелирует смысл применения данного механизма. Отказываться
от ожидания для объектов Task нужно практически всегда, так как это приводит
к пустому использованию потока, который при иных обстоятельствах мог бы вы-
полнять полезную работу. Пустое выполнение потока может вызвать увеличение
количества переключений контекста и увеличить издержки от использования пула
потоков, поскольку для того, чтобы справиться с доступными рабочими элемента-
ми, потребуется больше потоков.

Если довести идею полного отказа от ожиданий до логического завершения,
можно прийти к пониманию: весьма возможно и даже вполне вероятно, что прак-
тически весь код вашей программы окажется в каком-либо продолжении. Если за-
думаться, в этом есть интуитивно понятный смысл. Программа пользовательского
интерфейса практически ничего не делает, пока пользователь не щелкнет кнопкой
мыши или не наберет что-нибудь, воспользовавшись клавиатурой — она реагирует
на ввод посредством механизма событий. Серверная программа действует анало-
гично, но вместо мыши или клавиатуры ввод-вывод осуществляется посредством
сети или файловой системы.

В результате высокопроизводительное приложение может представляться
разрозненным, поскольку логика программы будет разбита вами на основе границ
ввода-вывода. Чем раньше вы это спланируете, тем лучше будет. Очень важно
установить небольшое число стандартных шаблонов, применяемых в большинстве
или даже во всех ваших программах, например таких.

�� Определите, где находятся задачи Task и методы продолжения. Используется ли
отдельный метод или лямбда-выражение? Зависит ли это от его размера?

�� Если для продолжений задействуются методы, установите стандартный пре-
фикс, например, OnMyTaskEnd.

�� Стандартизируйте обработку ошибок. Есть ли у вас одно продолжение, обрабатыва-
ющее все ошибки, отмены и обычные завершения? Или же используются отдель-
ные методы для обработки каждого из этих исходов и TaskContinuationOptions —
для их выборочного выполнения?

�� Решите, чем именно нужно воспользоваться — парой ключевых слов async-
await или непосредственно Task-объектами.

�� Если приходится вызывать старомодные асинхронные методы Begin.../End...,
заключите их в Task-объекты, чтобы, как сказано ранее, добиться стандартиза-
ции обработки.

�� Не чувствуйте себя обязанными использовать все функции TPL. Некоторые из
них в большинстве ситуаций применять не рекомендуется (например, задачи
AttachedToParent). Примите за стандарт минимальный набор функций, с кото-
рым вы в состоянии справиться.

242   Глава 4  •  Асинхронное программирование

Асинхронное программирование, в отличие от стандартного, синхронного,
с линейными процедурами и вызовами, — это совершенно иная разновидность
программирования. Оно требует развития нового мышления, непримиримо отно-
сящегося к ожиданиям и блокирующим вызовам и рассматривающего структуру
программы в понятиях независимых частей, лишь временами объединяемых для
синхронизации. Выработка мышления такого типа может занять некоторое время.
Начните с малого и постепенно сформируйте у себя такое мышление.

Правильно используйте таймеры
Чтобы спланировать выполнение метода через определенный промежуток време-
ни и, возможно, через равномерные промежутки времени после этого, восполь-
зуйтесь классом System.Threading.Timer. Не следует применять механизмы вроде
Thread.Sleep, блокирующие поток на определенное время, хотя, как будет показано
далее, в некоторых ситуациях этот прием может пригодиться.

В следующем примере показано, как задействовать таймер путем указания ме-
тода обратного вызова и передачи ему двух значений времени ожидания. Первое
значение представляет собой время до первого запуска таймера, а второе — частоту
повторений после запуска таймера. Для обоих значений можно указать бесконеч-
ность Timeout.Infinite, выражающуюся числом –1. Здесь задается однократный
запуск таймера после 15 мс:

private System.Threading.Timer timer;

public void Start()
{
 this.timer = new Timer(TimerCallback,
 null,
 15,
 Timeout.Infinite);
}

private void TimerCallback(object state)
{
 // Выполнение полезной работы
}

Не создавайте слишком много таймеров. Все объекты Timer обслуживаются
одним потоком из пула потоков. Слишком большое количество экземпляров Timer
вызовет задержки при выполнении их обратных вызовов. Когда придет время, по-
ток таймера спланирует рабочий элемент в пуле потоков, и он будет принят следу-
ющим доступным потоком. Если имеется большое количество задач, выстроенных
в очередь рабочих элементов, или высока загруженность центрального процессора,
то обратные вызовы объектов Timer будут неточны. Фактически гарантируется,
что они никогда не будут точнее счетчика тиков таймера операционной системы,
установленного по умолчанию на 15,625 мс. Это то же самое значение, которое
определяет продолжительность кванта потока. Установка меньшего времени ожи-

Советы по повышению производительности   243

дания не приведет к желаемому результату. Есть несколько вариантов установки
точности выше 15 мс.

1.	 Уменьшить разрешение таймера операционной системы. Этот шаг может уве-
личить загруженность центрального процессора и сильно повлиять на срок
службы батареи, но в ряде ситуаций оказывается вполне оправданным. Следует
заметить, что подобное изменение может иметь далеко идущие последствия на-
подобие возрастания частоты переключений контекста, повышения издержек
системы и ухудшения производительности в других областях.

2.	 Использовать цикл с таймером с высоким разрешением (см. главу 6) для изме-
рения прошедшего времени. Это также увеличит затраты времени центрального
процессора и расход энергии, но будет носить более локализованный характер.

3.	 Вызвать Thread.Sleep. Поток приостановится, и не будет гарантировано воз-
обновление его работы в желаемое время. В системах с высокой степенью за-
груженности вполне возможно, что поток будет переключен из контекста и вы
получите его назад значительно позже истечения желаемого интервала.

Когда используется объект Timer, нужно помнить о классическом состоянии
гонки (race condition). Рассмотрим следующий код:

private System.Threading.Timer timer;

public void Start()
{
 this.timer = new Timer(TimerCallback,
 null,
 15,
 Timeout.Infinite);
}

private void TimerCallback(object state)
{
 // Выполнение полезной работы
 this.timer.Dispose();
}

Этот код настраивает объект Timer на выполнение функции обратного вызо-
ва за 15 мс. Обратный вызов просто удаляет объект таймера, завершив с ним
работу. Также код вполне может выдать в TimerCallback исключение NullRe
ferenceException. Причина в том, что с высокой степенью вероятности функция
обратного вызова будет выполнена еще до того, как в методе Start полю this.timer
будет присвоен объект Timer. К счастью, это легко исправить:

this.timer = new Timer(TimerCallback,
 null,
 Timeout.Infinite ,
 Timeout.Infinite);
this.timer.Change(15, Timeout.Infinite);

244   Глава 4  •  Асинхронное программирование

ПРИМЕЧАНИЕ

В проекте, над которым я однажды работал, для отслеживания задержек для
каждого узла в диаграмме зависимостей назначался объект System.Threading.Ti­
mer. Пока диаграммы были небольшими, все шло хорошо. Как только они стали
достигать размеров в несколько тысяч узлов, сотни которых были запущены
одновременно, стали наблюдаться весьма существенные конфликты блокировок
и нестабильное поведение в отношении задержек. Вся конструкция стала непри-
емлемой и весьма затратной. Вместо нее мы разработали собственную систему
отслеживания задержек, основанную на опросе через определенные интервалы
времени, то есть, по сути, свели конструкцию к использованию одного таймера,
проверяющего все запущенные узлы с приемлемой частотой.

Если целевой метод нужно запустить только один раз, то есть без повторя
ющихся сценариев, можно воспользоваться Task.Delay, чтобы спланировать одно-
кратный запуск делегата в будущем:

var task = Task.Delay(1000).ContinueWith(_ =>
 {
 Console.WriteLine("After delay");
 });

Подберите подходящий размер пула потоков
Со временем пул потоков настраивается самостоятельно, но в самом начале у него
нет истории и запускаться он будет в исходном состоянии. Если ваш программный
продукт исключительно асинхронный и значительно задействует центральный
процессор, он может пострадать от непомерно высоких затрат на начальный запуск
в ожидании создания и доступности еще большего количества потоков. Быстрее
достичь устойчивого состояния поможет подстройка пусковых параметров так,
чтобы с момента запуска приложения в вашем распоряжении имелось определенное
число готовых потоков:

const int MinWorkerThreads = 25;
const int MinIoThreads = 25;
ThreadPool.SetMinThreads(MinWorkerThreads, MinIoThreads);

Здесь следует действовать осторожно. При использовании Task-объектов их
диспетчеризация будет осуществляться на основе числа доступных для этого по-
токов. При слишком большом их количестве Task-объекты могут подвергнуться
излишней диспетчеризации, что как минимум приведет к снижению эффектив-
ности применения центрального процессора из-за более частого переключения
контекста. Если же рабочая нагрузка будет не столь высока, пул потоков сможет
перейти к использованию алгоритма, способного уменьшить количество потоков,
доведя его до числа ниже заданного.

Советы по повышению производительности   245

Можно также установить максимальное их количество, воспользовавшись ме-
тодом SetMaxThreads, но данный прием подвержен аналогичным рискам.

Чтобы выяснить нужное количество потоков, оставьте этот параметр в покое
и проанализируйте свое приложение в устойчивом состоянии, воспользовавшись
методами ThreadPool.GetMaxThreads и ThreadPool.GetMinThreads или счетчиками
производительности, которые покажут количество потоков, задействованных
в процессе.

Не прерывайте потоки
Прерывание работы потоков без согласования с работой других потоков — довольно
опасная процедура. Потоки должны очищать себя сами, и вызов для них метода
Abort не позволяет закрыть их без негативных последствий. При уничтожении по-
тока части приложения оказываются в неопределенном состоянии. Было бы лучше
выполнить аварийный выход из программы, но в идеале нужен чистый перезапуск.

Для безопасного завершения работы потока нужно воспользоваться каким-то
совместно используемым состоянием, и сама функция потока должна проверить
это состояние, чтобы определить, когда должна завершиться его работа. Безопас-
ность должна достигаться за счет согласованности.

Вообще, стоит всегда задействовать Task-объекты — API для прерывания задачи
Task не предоставляется. Чтобы получить возможность согласованно завершить
работу потока, нужно, как отмечалось ранее, воспользоваться маркером отмены
CancellationToken.

Не меняйте приоритет потоков
В общем, изменение приоритета потоков — затея крайне неудачная. В Windows дис-
петчеризация потоков выполняется в соответствии с уровнями их приоритетов. Если
высокоприоритетные потоки всегда готовы к запуску, то низкоприоритетные будут
обойдены вниманием и довольно редко станут получать шанс на запуск. Повышая
приоритет потока, вы говорите, что его работа должна иметь приоритет над всей осталь-
ной работой, включая другие процессы. Это небезопасно для стабильной системы.

Лучше понизить приоритет потока, если в нем выполняется что-то, что может
подождать завершения выполнения задач обычной приоритетности. Одной из ве-
ских причин понижения приоритета потока может быть обнаружение вышедшего
из-под контроля потока, выполняющего бесконечный цикл. Безопасно прервать
работу потока невозможно, поэтому единственный способ вернуть данный поток
и ресурсы процессора — перезапуск процесса. До тех пор пока не появится воз-
можность закрыть поток и сделать это чисто, понижение приоритета вышедшего
из-под контроля потока будет вполне разумным средством минимизации послед-
ствий. Следует заметить, что даже потокам с пониженным приоритетом все же со
временем гарантируется запуск: чем дольше они будут обделены запусками, тем

246   Глава 4  •  Асинхронное программирование

выше будет устанавливаемый системой Windows их динамический приоритет.
Исключение составляет приоритет простоя THREAD_‑PRIORITY_IDLE, при котором
операционная система спланирует выполнение потока только в том случае, когда
ей в буквальном смысле будет больше нечего запускать.

Могут найтись и вполне оправданные причины для повышения приоритета по-
тока, например необходимость быстро реагировать на редкие ситуации. Но пользо-
ваться такими приемами следует весьма осмотрительно. Диспетчеризация потоков
в Windows осуществляется независимо от процессов, которым они принадлежат,
поэтому высокоприоритетный поток из вашего процесса будет запускаться в ущерб
не только другим вашим потокам, но и всем потокам из других приложений, за-
пущенных в вашей системе.

Если применяется пул потоков, то любые изменения приоритетов сбрасыва-
ются при каждом возвращении потока в пул. Если при использовании библиотеки
Task Parallel продолжить управлять базовыми потоками, следует иметь в виду, что
в одном и том же потоке до его возвращения в пул могут запускаться несколько
задач.

Синхронизация потоков и блокировки
Как только разговор заходит о нескольких потоках, возникает необходимость их
синхронизации. Синхронизация заключается в обеспечении доступа только одного
потока к совместно используемому состоянию, например к полю класса. Обычно
синхронизация потоков выполняется с помощью таких объектов синхронизации,
как Monitor, Semaphore, ManualResetEvent и т. д. Иногда их неформально называют
блокировками, а процесс синхронизации в конкретном потоке — блокировкой.

Одна из основополагающих истин, касающихся блокировок, заключается
в следующем: они никогда не повышают производительность. В лучшем случае —
при наличии хорошо реализованного примитива синхронизации и отсутствии
конкуренции — блокировка может быть нейтральной. Она приводит к остановке
выполнения полезной работы другими потоками и к тому, что время центрального
процессора расходуется впустую, увеличивает время контекстного переключения
и вызывает другие негативные последствия. С этим приходится мириться из-за
того, что правильность намного важнее простой производительности. Быстро ли
вычислен неверный результат, не играет никакой роли!

Прежде чем приступить к решению проблемы использования аппарата блоки-
ровки, рассмотрим наиболее фундаментальные принципы.

Нужно ли вообще заботиться о производительности?
Сперва обоснуйте необходимость повышения производительности. Это возвращает
нас к принципам, рассмотренным в главе 1. Не для всего кода вашего приложения
производительность одинаково важна. Не весь код должен подвергаться оптими-
зации n-й степени. Как правило, все начинается с «внутреннего цикла» — кода,

Синхронизация потоков и блокировки   247

выполняемого наиболее часто или наиболее критического для производительно-
сти, — и распространяется во все стороны, пока затраты не превысят получаемую
выгоду. В коде есть множество областей, гораздо менее важных с точки зрения
производительности. В такой ситуации, если нужна блокировка, спокойно при-
меняйте ее.

А теперь следует проявить осмотрительность. Если ваш некритический фраг-
мент кода выполняется в потоке из пула потоков и вы надолго его блокируете, пул
потоков может начать вставлять большее количество потоков, чтобы справиться
с другими запросами. Если один-два потока делают это время от времени, ничего
страшного. Но если подобные вещи проделывает множество потоков, может воз-
никнуть проблема, поскольку из-за этого без пользы расходуются ресурсы, которые
должны выполнять реальную работу. Неосмотрительность при запуске программы
со значительной постоянной нагрузкой может вызвать негативное воздействие на
систему даже из тех ее частей, для которых неважна высокая производительность,
из-за лишних переключений контекста или необоснованного задействования пула
потоков. Как и во всех других случаях, для оценки ситуации нужно выполнять
измерения.

А нужна ли вообще блокировка?
Самый эффективный механизм блокировки — тот, которого нет. Если можно вообще
избавиться от необходимости синхронизации потоков, это будет наилучшим способом
получить высокую производительность. Это идеал, достичь которого не так-то про-
сто. Обычно это означает, что нужно обеспечить отсутствие изменяемого совместно
используемого состояния, — каждый запрос, проходящий через ваше приложение,
может быть обработан независимо от другого запроса или каких-то централизован-
ных изменяемых (посредством чтения-записи) данных. Такая возможность будет
оптимальным сценарием достижения высокой производительности.

И все же будьте осторожны. С реструктуризацией легко переборщить и пре-
вратить код в беспорядочную мешанину, в которой никто, включая вас самих,
не сможет разобраться. Не стоит заходить слишком далеко, если только высокая
производительность не окажется действительно критическим фактором и ее нельзя
будет добиться иным образом. Превратите код в асинхронный и независимый, но
так, чтобы он оставался понятным.

Если несколько потоков просто выполняют чтение из переменной (и нет ни-
каких намеков на запись в нее со стороны какого-либо потока), синхронизация
не нужна. Все потоки могут иметь неограниченный доступ. Это автоматически
распространяется на такие неизменяемые объекты, как строки или значения неиз-
меняемых типов, но может относиться к любому типу объектов, если гарантировать
неизменяемость его значения в ходе чтения несколькими потоками.

Если есть несколько потоков, ведущих запись в какую-нибудь совместно ис-
пользуемую переменную, посмотрите, нельзя ли устранить потребность в синхро-
низированном доступе путем перехода к применению локальной переменной. Если
можно создать для работы временную копию, необходимость в синхронизации

248   Глава 4  •  Асинхронное программирование

отпадет. Это особенно важно для повторяющегося синхронизированного доступа.
От повторного доступа к совместно используемой переменной нужно перейти к по-
вторному доступу к локальной переменной, следующему за однократным доступом
к совместно используемой переменной, как в следующем простом примере добав-
ления элементов к совместно используемой несколькими потоками коллекции.

object syncObj = new object();
var masterList = new List<long >();
const int NumTasks = 8;
Task[] tasks = new Task[NumTasks];

for (int i = 0; i < NumTasks; i++)
{
 tasks[i] = Task.Run(()=>
 {
 for (int j = 0; j < 5000000; j++)
 {
 lock (syncObj)
 {
 masterList.Add(j);
 }
 }
 });
}
Task.WaitAll(tasks);

Этот код можно преобразовать следующим образом:

object syncObj = new object();
var masterList = new List<long >();
const int NumTasks = 8;
Task[] tasks = new Task[NumTasks];

for (int i = 0; i < NumTasks; i++)
{
 tasks[i] = Task.Run(()=>
 {
 var localList = new List<long >();
 for (int j = 0; j < 5000000; j++)
 {
 localList.Add(j);
 }
 lock (syncObj)
 {
 masterList.AddRange(localList);
 }
 });
}
Task.WaitAll(tasks);

На моей машине второй вариант кода выполняется более чем в два раза быстрее
первого.

Синхронизация потоков и блокировки   249

В конечном счете изменяемое совместно используемое состояние — принципи-
альный враг производительности. Оно требует синхронизации для безопасности
данных, что ухудшает производительность. Если в вашей конструкции есть хоть
малейшая возможность избежать блокировки, то вы близки к реализации идеаль-
ной многопоточной системы.

Порядок предпочтения синхронизации
Принимая решение о необходимости какой-либо разновидности синхронизации,
следует понимать, что не все они имеют одинаковые характеристики производи-
тельности или поведения. В большинстве ситуаций требуется просто использовать
блокировку, и обычно это и должно быть исходным вариантом. Применение чего-
то иного, чем блокировка, для обоснования дополнительной сложности требует
интенсивных измерений. В целом рассмотрим механизмы синхронизации в сле-
дующем порядке.

1.	 lock/класс Monitor — сохраняет простоту, доступность кода для понимания
и обеспечивает хороший баланс производительности.

2.	 Полное отсутствие синхронизации. Избавьтесь от совместно использу
емых изменяемых состояний, проведите реструктуризацию и оптимизацию.
Это труднее, но если получится, то в основном будет работать лучше, чем при-
менение блокировки (кроме случаев, когда допущены ошибки или ухудшена
архитектура).

3.	 Простые методы взаимной блокировки Interlocked — в некоторых сценариях
могут оказаться более подходящими, но, как только ситуация начнет услож-
няться, перейдите к использованию блокировки lock.

И наконец, если действительно можно будет доказать пользу от их применения,
задействуйте более замысловатые, сложные блокировки (имейте в виду: они редко
оказываются настолько полезными, как вы ожидаете):

�� асинхронные блокировки (будут рассмотрены далее в этой главе);

�� все остальные.

Конкретные обстоятельства могут диктовать применение некоторых из этих
технологий или же препятствовать этому. Например, объединение нескольких
методов Interlocked вряд ли превзойдет по эффективности одну инструкцию lock.

Модели памяти
Прежде чем рассматривать детали синхронизации потоков, нужно провести краткий
экскурс в мир моделей памяти. Под моделью памяти понимается действующий
в системе (оборудовании или программном обеспечении) набор правил, которым
определяется порядок возможного переупорядочения компилятором или процес-
сором операций чтения и записи между несколькими потоками. Вносить в модель

250   Глава 4  •  Асинхронное программирование

какие-либо изменения вы не можете, но разбираться в ней, чтобы получить пра-
вильный код в любых ситуациях, крайне важно.

Модель памяти считается жесткой, если в ней имеются абсолютные ограни-
чения на переупорядочение, не позволяющие компилятору или оборудованию
выполнять масштабную оптимизацию. Мягкая модель дает компилятору и процес-
сору намного больше свободы по переупорядочению инструкций чтения и записи
с целью получения лучшей производительности. Большинство платформ — это
что-то среднее между абсолютно жесткими и совершенно мягкими.

Стандартом ECMA определяется минимальный набор правил, которым должна
следовать среда CLR. Им задается весьма мягкая модель памяти, но конкретно
взятая реализация среды CLR фактически может иметь в виде надстройки более
жесткую модель.

Более жесткая модель памяти может диктоваться также конкретной архитек-
турой процессора. Например, архитектура x86/x64 обладает относительно жест-
кой моделью памяти, которая будет автоматически препятствовать одним видам
переупорядочения и допускать другие. В то же время архитектура ARM имеет
относительно мягкую модель памяти. JIT-компилятор отвечает за обеспечение
правильного порядка выдачи не только машинных инструкций, но и специальных
инструкций, гарантирующих, что процессор не станет переупорядочивать инструк-
ции таким способом, который нарушит модель памяти, используемую в среде CLR.
Выполнение этих инструкций может быть недешевым, и это еще один аргумент
в пользу полного уклонения от синхронизации.

Разница между архитектурами x86/x64 и ARM существенно влияет на ваш
код, тем более когда в нем есть ошибки в синхронизации потоков. Поскольку JIT-
компилятор, запущенный на ARM, более свободен при переупорядочении опера-
ций чтения и записи, чем он же, но запущенный на x86/x64, конкретные классы
ошибок синхронизации могут остаться незамеченными на x86/x64 и становятся
очевидными только при портировании на ARM.

В некоторых случаях среда CLR будет помогать скрывать эти различия из
соображений совместимости, но на практике лучше не допускать ошибок в коде,
чтобы его можно было задействовать в более мягкой модели памяти. Самое важное
требование в данном случае — правильное применение совместно используемого
потоками изменчивого (volatile) состояния. Ключевое слово volatile служит для
JIT-компилятора сигналом, что для этой переменной важен порядок. На платфор-
ме x86/x64 оно приведет к соблюдению правил упорядочения инструкций, а на
платформе ARM — также к появлению дополнительных инструкций, выдаваемых
для соблюдения правильной семантики на уровне оборудования. Если пренебречь
ключевым словом volatile, стандарт ECMA допустит полное переупорядочение
этих инструкций, что может вызвать появление ошибок.

Еще один способ обеспечения правильного порядка обращения к совместно
используемому состоянию заключается в применении класса Interlocked или
в содержании всех обращений внутри полной блокировки lock.

Синхронизация потоков и блокировки   251

Всеми этими методами синхронизации создается так называемый барьер памя-
ти. Любые операции чтения, происходящие до этого места в коде, не могут быть
переупорядочены после барьера, а любые операции записи не могут быть переупо-
рядочены, чтобы оказаться перед барьером. В этом случае обновления переменных
происходят правильно и видны всем центральным процессорам.

Использование volatile при необходимости
Рассмотрим классический пример неправильной реализации блокировки с двой-
ной проверкой, пытающейся создать эффективную защиту от вызова несколькими
потоками метода DoCompletionWork. Она старается предотвратить имеющие потен-
циально высокие издержки конкурирующие вызовы lock в общем случае, где нет
необходимости вызова DoCompletionWork.

private bool isComplete = false;
private object syncObj= new object();
// Неверная реализация!
private void Complete()
{
 if (!isComplete)
 {
 lock (syncObj)
 {
 if (!isComplete)
 {
 DoCompletionWork();
 isComplete = true;
 }
 }
 }
}

Хоть инструкция lock и создаст эффективную защиту блока, который размещен
внутри нее, но одновременно с этим находящаяся снаружи проверка isComplete,
не имеющая никакой защиты, будет доступна сразу нескольким потокам. К сожа-
лению, обновления этой переменной могут не работать, поскольку оптимизация,
позволенная компилятору моделью памяти, приводит к тому, что сразу несколь-
ко потоков видят значение false даже после того, как другой поток установил
для нее значение true. Но фактически все еще хуже: вполне возможно, значение
isComplete будет установлено в true до завершения DoCompletionWork(), а это
значит, что состояние программы может оказаться неправильным, если другие по-
токи выполняют проверку и совершают действия на основе значения переменной
isComplete. А почему бы в любом случае не использовать блокировку вокруг до-
ступа к isComplete? Можно, конечно, но такое решение приведет к более высокой
конкуренции и повлечет за собой неоправданно высокие издержки.

252   Глава 4  •  Асинхронное программирование

Чтобы исправить ситуацию, нужно проинструктировать компилятор таким
образом, чтобы гарантировать правильный порядок доступа к этой переменной.
Это делается с помощью ключевого слова volatile. При этом единственным не-
обходимым изменением будет следующее:

private volatile bool isComplete = false;

Разъясним получившийся результат: volatile используется для обеспечения
правильного хода выполнения программы, а не для повышения производительно-
сти. В большинстве случаев это не оказывает заметного положительного или от-
рицательного влияния на производительность. Если есть возможность, примените
данное ключевое слово: в любом сценарии с высоким уровнем конфликтов доступа
это лучше, чем задействовать lock, и именно поэтому полезно будет использовать
шаблон блокировки с двойной проверкой.

Блокировка с двойной проверкой часто задействуется при реализации шаблона
«Одиночка» (Singleton), когда первый поток, использующий значение, должен
его инициализировать. Этот шаблон инкапсулируется в .NET с помощью класса
Lazy<T>, внутри которого применяется шаблон блокировки с двойной проверкой.
Вместо собственной реализации шаблона лучше отдать предпочтение Lazy<T>.
Более подробно работа с Lazy<T> рассмотрена в главе 6.

Использование Monitor (lock)
Проще всего защитить любую область кода с помощью объекта Monitor, у которого
в C# есть эквивалент в виде ключевого слова.

Код:

object obj = new object();
bool taken = false;
try
{
 Monitor.Enter(obj, ref taken);
}
finally
{
 if (taken)
 {
 Monitor.Exit(obj);
 }
}

является эквивалентом следующего:

object obj = new object();

lock(obj)
{
 ...
}

Синхронизация потоков и блокировки   253

Значение параметра taken устанавливается в true, если не выдается исключе-
ние. Это гарантировано и позволяет правильно вызывать метод Exit.

Если не будет веских аргументов в пользу использования других, более слож-
ных механизмов блокировки, то при прочих равных условиях следует отдавать
предпочтение Monitor/lock. Monitor представляет собой гибридную блокировку,
при которой сначала предпринимается попытка прокрутки цикла в течение не-
которого времени, прежде чем код войдет в состояние ожидания и отдаст поток.
Это делает его идеальным для тех мест, где предвидится небольшой или быстро
проходящий конфликт.

У Monitor имеется также более гибкий API, который может пригодиться, если
есть необязательная работа, которую необходимо выполнить, когда немедленное
получение блокировки невозможно:

object obj = new object();
bool taken = false;
try
{
 Monitor.TryEnter(obj, ref taken);
 if (taken) // выполнение работы, требующей блокировки
 {...}
 else // выполнение чего-нибудь еще
 {...}
}
finally
{
 if (taken)
 {
 Monitor.Exit(obj);
 }
}

В данном случае возврат из TryEnter происходит сразу, вне зависимости от того,
получена блокировка или нет. Чтобы узнать, что делать дальше, можно проверить
значение переменной taken. Существуют также переопределения, принимающие
значение времени ожидания.

Какой объект блокировать
В качестве аргумента класс Monitor получает объект синхронизации1. Этому ме-
тоду можно передать любой объект ссылочного типа. Ссылочные типы требуются
по той причине, что, в отличие от типов значений, каждый такой объект содержит
в качестве части своей структуры памяти блок синхронизации. Дополнительные
сведения о структуре объекта приводятся в главе 5. При выборе используемого
объекта нужно проявлять осмотрительность. Если будет передан явно видимый
объект, для другой части кода появится возможность также им воспользоваться

1	 Неточность у автора: классы не могут получать аргументы, могут только методы. Не ука-
зано, о каком методе речь. Вероятнее всего, это Enter. — Примеч. науч. ред.

254   Глава 4  •  Асинхронное программирование

как объектом синхронизации, даже если в синхронизации между двумя этими раз-
делами кода нет необходимости. Если будет передан сложный объект, то, беря на
себя блокировку, вы рискуете функциональностью в этом классе. Обе эти ситуации
могут ухудшить производительность или, того хуже, вызвать взаимные блокировки.

Чтобы избежать этого, стоит почти всегда, как показано в ранее приведенных
примерах, выделять конкретно под блокировку простой закрытый объект.

В то же время в некоторых ситуациях явные объекты синхронизации могут
создавать проблемы, особенно при очень большом количестве объектов и весьма
обременительных издержках, связанных с дополнительным полем в классе. В та-
ком случае можно найти какой-нибудь другой безопасный объект, способный по-
служить объектом синхронизации, или, что еще лучше, переструктурировать код,
чтобы в первую очередь отпала необходимость в блокировке.

Есть такие классы объектов, которые ни в коем случае не следует применять
в качестве объекта синхронизации для Monitor. К их числу относятся любой
MarshalByRefObject (прокси-объект, который не станет защищать базовый ресурс),
строковые объекты (они изолируются и совместно используются непредсказу
емым образом), System.Type, или значимый тип (он будет упаковываться всякий
раз при выполнении на нем блокировки, не допуская какой-либо синхронизации
вообще).

Убедитесь, что вы не злоупотребляете совместным использованием объектов
синхронизации между различными сценариями блокировки. Требуется, чтобы
один и тот же объект синхронизации применяли только те сценарии, которые
вступают в конфликт. Если есть несколько независимых сценариев, не мешающих
друг другу, не задействуйте повторно один и тот же объект, а воспользуйтесь двумя
разными объектами блокировки, гарантируя тем самым лучшие возможности для
масштабирования.

Область действия блокировки
При реализации блокировки вокруг какого-нибудь кода следует решить, сколько
кода в нее заключить. В общем виде ответ должен быть таким: как можно меньше
(как правило). Войти, проделать работу, выйти.

Чем меньше кода охватывает блокировка, тем меньше потенциальная возмож-
ность конфликта блокировки. Однако не стоит впадать в крайности. Если вы об-
наружите, что множество раз в одном и том же потоке устанавливаете и снимаете
блокировку, то издержки на используемый механизм блокировки могут превысить
расходы на выполнение работы внутри блокировки. Такое запросто может случить-
ся в двух типах весьма распространенных сценариев: при обращении к коллекциям
и в циклах.

Что касается коллекций, примите во внимание то, как производится доступ
к элементам. Будет ли эффективнее ставить блокировку на каждый отдельно взя-
тый доступ? Или лучше ставить блокировку на более высоком уровне, выполнять
все обращения, а затем снимать ее?

Синхронизация потоков и блокировки   255

Те же соображения применимы и для циклов. Если ставите блокировку на
каждую итерацию цикла, выполните измерения и посмотрите, не лучше ли будет
просто поставить блокировку на весь цикл.

Использование методов Interlocked
Рассмотрим следующий код с блокировкой, гарантирующий, что метод Complete
может выполняться только одним потоком:

private bool isComplete = false;
private object completeLock = new object();

private void Complete()
{
 lock(completeLock)
 {
 if (isComplete)
 {
 return;
 }

 DoCompletionWorkHere();

 isComplete = true;
 }
}

Для того чтобы определить, войти ли в метод, вам нужны два поля и несколь-
ко строк кода — это выглядит нерационально. Вместо этого вызовите метод
Interlocked.Increment:

private int isComplete = 0;

private void Complete()
{
 if (Interlocked.Increment(ref isComplete) == 1)
 {
 DoCompletionWorkHere();
 }
}

Или же рассмотрим немного иную ситуацию, где Complete может быть вызван
несколько раз, но вам требуется войти в него только один раз на основании некоего
внутреннего состояния.

enum State { Executing , Done };
private int state = (int)State.Executing;

private void Complete()
{
 if (Interlocked.CompareExchange (ref state , (int)State.Done,

256   Глава 4  •  Асинхронное программирование

 (int)State.Executing) == (int)State.Executing)
 {
 DoCompletionWorkHere();
 }
}

При первом выполнении Complete будет сравнивать значение переменной state
со значением State.Executing и, если они окажутся равны, заменит значение state
значением State.Done. Выполняющий этот код следующий поток станет сравни-
вать значение state со значением State.Executing, при этом результат не будет
истинным и CompareExchange возвратит State.Done, что не позволит выполнить
тело инструкции if.

Методы Interlocked преобразуются в одну инструкцию процессора и являются
атомарными. Они хорошо подходят для подобного рода простой синхронизации.
Существует несколько методов Interlocked, которые можно использовать для
простой синхронизации, и все они выполняют операцию атомарно.

�� Add — складывает два целочисленных значения, заменяя первое из них суммой
и возвращая сумму.

�� CompareExchange — принимает значения A, B и C. Сравнивает значения A и C
и, если они равны, заменяет значение A значением B, затем возвращает исходное
значение. Смотрите далее код примера LockFreeStack.

�� Increment — прибавляет единицу к значению и возвращает новое значение.

�� Decrement — вычитает единицу из значения и возвращает новое значение.

�� Exchange — устанавливает для переменной указанное значение и возвращает
исходное значение.

У всех этих методов есть несколько переопределений для различных типов
данных.

Операции Interlocked — это барьеры памяти, поэтому они выполняются не так
быстро, как простая запись в бесконфликтном сценарии. Вообще-то не стоит
рассчитывать, что они значительно быстрее простого lock-сценария, но простое
эталонное тестирование в учебном проекте InterlockedVsLock покажет все же не-
которое весьма незначительное преимущество.

При всей своей простоте методы Interlocked позволяют реализовывать более
эффективные подходы, такие как структуры данных без блокировок (lock-free).
Однако следует серьезно вас предостеречь: при реализации подобных собственных
структур данных будьте максимально осмотрительны. Привлекательные слова «без
блокировок» могут ввести в заблуждение. На самом деле они являются синонимом
выражения «с повторением операции до достижения правильного результата».
Как только начнут происходить многочисленные вызовы методов Interlocked,
весьма вероятно, что в первую очередь по эффективности они уступят простому
lock, даже если предположить, что ваш код на 100 % корректен (скорее всего, это
не так). Превратить его в правильный или высокоэффективный может быть очень
трудно. Реализация подобной структуры данных хорошо подходит для обучения,

Синхронизация потоков и блокировки   257

но в реальном коде в первую очередь стоит выбирать использование встроенных
.NET-коллекций. При реализации собственной коллекции, ориентированной
на безопасное выполнение в нескольких потоках, следует приложить максимум
усилий, чтобы убедиться, что она не только на 100 % правильная функционально,
но и работает лучше тех вариантов, которые имеются в .NET. Задействуя методы
Interlocked, убедитесь, что они предоставляют больше преимуществ, чем простая
блокировка lock. Ситуации, где такой подход оправдан, складываются крайне
редко.

В качестве примера (см. исходный код проекта LockFreeStack) приведу про-
стую реализацию стека, использующую методы Interlocked для поддержки без-
опасности потоков без применения более строгих механизмов блокировки:

class LockFreeStack <T>
{
 private class Node
 {
 public T Value;
 public Node Next;
 }

 private Node head;

 public void Push(T value)
 {
 var newNode = new Node() { Value = value };

 while (true)
 {
 newNode.Next = this.head;
 if (Interlocked.CompareExchange(ref this.head,
 newNode ,
 newNode.Next)
 == newNode.Next)
 {
 return;
 }
 }
 }

 public T Pop()
 {
 while (true)
 {
 Node node = this.head;
 if (node == null)
 {
 return default(T);
 }
 if (Interlocked.CompareExchange(ref this.head,
 node.Next, node)

258   Глава 4  •  Асинхронное программирование

 == node)
 {
 return node.Value;
 }
 }
 }
}

В этом фрагменте кода показана общая схема с реализацией структур данных
или более сложной логики с использованием методов Interlocked — зацикли-
вание. Код с циклом постоянно тестирует результаты операции до ее успешного
завершения. В большинстве сценариев будет выполнено весьма незначительное
количество итераций.

При всей простоте и относительной быстроте выполнения методов Interlocked
вам зачастую придется ставить под защиту все более крупные области кода, что
не принесет желаемого результата или как минимум сделает код громоздким
и сложным.

Асинхронные блокировки
С выходом .NET 4.5 появился ряд интересных функциональных возможностей,
которые в будущем могут распространиться на другие типы. В классе SemaphoreSlim
имеется метод WaitAsync, возвращающий Task. Вместо блокировки на ожидании
можно спланировать для задачи Task метод продолжения, который запустится, как
только семафор позволит ей это сделать. Здесь нет входа в режим ядра и нет бло-
кировки. Когда пропадут конфликты из-за блокировки, метод продолжения будет
спланирован как обычная задача Task в пуле потоков. Его использование ничем
не будет отличаться от применения любой другой задачи Task.

Чтобы вы посмотрели, как это работает, приведу пример, использующий стан-
дартные блокирующие механизмы ожидания. Этот учебный код из проекта
WaitAsync, включенного в сборник учебного кода, не отличается особой сложно-
стью, но показывает, как потоки передают управление через семафор:

class Program
{
 static SemaphoreSlim semaphore = new SemaphoreSlim(1);
 const int WaitTimeMs = 1000;

 static void Main(string[] args)
 {
 Task.Run((Action)Func1);
 Task.Run((Action)Func2);
 Console.ReadKey();
 }

 static void Func1()
 {

Синхронизация потоков и блокировки   259

 while (true)
 {
 semaphore.Wait();
 Console.WriteLine("Func1");
 semaphore.Release();
 Thread.Sleep(WaitTimeMs);
 }
 }

 static void Func2()
 {
 while (true)
 {
 semaphore.Wait();
 Console.WriteLine("Func2");
 semaphore.Release();
 Thread.Sleep(WaitTimeMs);
 }
 }
}

Каждый поток входит в бесконечный цикл, ожидая завершения другим потоком
своей операции цикла. Когда вызывается метод Wait, этот поток блокируется до
высвобождения семафора. В высоконагруженной программе блокировка станет
крайне нерационально использовать ресурсы и способна сократить возможности
обработки данных и увеличит пул потоков. Если блокировка продлится довольно
долго, может произойти переход в режим ядра, что приведет к еще большей пустой
трате времени.

Чтобы воспользоваться WaitAsync, замените методы следующими реализа-
циями:

static void AsyncFunc1()
{
 semaphore.WaitAsync().ContinueWith(_ =>
 {
 Console.WriteLine("AsyncFunc1");
 semaphore.Release();
 Thread.Sleep(WaitTimeMs);
 }).ContinueWith(_ => AsyncFunc1());
}

static void AsyncFunc2()
{
 semaphore.WaitAsync().ContinueWith(_ =>
 {
 Console.WriteLine("AsyncFunc2");
 semaphore.Release();
 Thread.Sleep(WaitTimeMs);
 }).ContinueWith(_ => AsyncFunc2());
}

260   Глава 4  •  Асинхронное программирование

Заметьте, что вместо цикла появилась цепочка продолжений, которые будут
осуществлять обратный вызов в эти методы. Логически это носит рекурсивный
характер, но фактически так не получается, поскольку каждое продолжение за-
пускает новый стек с новой задачей Task.

Если применяется WaitAsync, никаких блокировок не происходит, но даром это
не обходится. Издержки возникают за счет повышения объема диспетчеризации
задач и вызовов функций. Если программа выполняет диспетчеризацию слишком
большого количества Task-объектов, возрастающие нагрузки планирования могут
свести на нет выигрыш, полученный в результате отказа от вызова блокировок.
Если ваши блокировки крайне непродолжительны и заключаются просто в хо-
лостом ходу без входа в режим ядра или выполняются крайне редко, то, может
быть, лучше просто провести блокировку на несколько микросекунд, использовав
стандартный метод lock. Но если под блокировкой требуется выполнить довольно
продолжительную задачу, рассматриваемый вариант может оказаться предпо-
чтительным, поскольку издержки от новой задачи Task окажутся меньше времени
блокировки процессора в случае выбора иного варианта. Здесь понадобятся тща-
тельные измерения и проведение различных экспериментов.

Если эта схема вас заинтересовала, обратите внимание на серию статей Стивена
Туба (Stephen Toub), посвященных примитивам асинхронной координации, под
общим названием Building Async Coordination Primitives (Parts 1–7), в которых рас-
сматривается больше типов и схем.

Другие механизмы блокировки
Существует множество механизмов блокировки, которыми можно воспользоваться,
но предпочтение стоит отдавать как можно меньшему количеству. Как и во многих
других областях, особенно в вычислениях с использованием нескольких потоков,
чем проще такие механизмы, тем лучше.

Самый простой способ гарантировать вызов метода только из одного потока —
его оформление параметром MethodImplOptions.Synchronized. Его можно приме-
нять к статическим методам или методам экземпляров:

[MethodImplAttribute(MethodImplOptions.Synchronized)]
public void DoSomething(int arg)
{
 ...
}

Однако это очень грубый инструмент, потребность в использовании подобных
слабоориентированных средств возникает крайне редко. Как правило, лучше по-
ставить блокировку на более узкую область внутри метода.

Если известно, что блокировка крайне непродолжительна (десятки циклов)
и требуется обеспечить невозможность ее вхождения в состояние ожидания, можно
воспользоваться SpinLock. Он просто будет прокручивать пустой цикл, пока не раз-
решится конфликтная ситуация. В большинстве случаев наилучшим исходным

Синхронизация потоков и блокировки   261

выбором станет Monitor, который входит сначала в пустой цикл, а затем, если не-
обходимо, в ожидание:

private SpinLock spinLock = new SpinLock();

private void DoWork()
{
 bool taken = false;
 try
 {
 spinLock.Enter(ref taken);
 // Выполнение полезной работы
 }
 finally
 {
 if (taken)
 {
 spinLock.Exit();
 }
 }
}

Вообще-то следует по возможности избегать использования других блоки-
рующих механизмов. Обычно они не настолько производительны, как простой
Monitor. Объекты, подобные ReaderWriterLockSlim, Semaphore, Mutex, или другие
пользовательские объекты синхронизации применяются в определенных местах,
зачастую они сложны и подвержены ошибкам.

Нужно полностью исключить использование ReaderWriterLock — этот метод
не рекомендован к применению.

Если существует –Slim-версия объекта синхронизации, ей нужно отдавать
предпочтение перед не-Slim-версией. Все –Slim-версии являются гибридными
блокировками, а это означает, что в них реализованы некие формы пустых циклов,
предшествующих входу в режим ядра, который существенно замедляет работу.
‑Slim-блокировки намного лучше подходят при низком уровне конфликтов не-
большой продолжительности.

Например, имеются оба класса, ManualResetEvent и ManualResetEventSlim, и есть
класс AutoResetEvent, но нет класса AutoResetEventSlim. Для получения точно та-
кого же эффекта можно воспользоваться SemaphoreSlim со значением 1 параметра
initialCount.

Конкурентность и коллекции
Существует несколько коллекций, предоставляемых .NET, которые допускают одно-
временное обращение из нескольких потоков. Все они находятся в пространстве
имен System.Collections.Concurrent, и к их числу относятся:

�� ConcurrentBag<T> — неупорядоченная коллекция;
�� ConcurrentDictionary<TKey, TValue> — пары «ключ — значение»;

262   Глава 4  •  Асинхронное программирование

�� ConcurrentQueue<T> — очередь по принципу «первым пришел — первым ушел»;

�� ConcurrentStack<T> — стек («последним пришел — первым ушел»).

Большинство из них реализованы внутренним образом с использованием при-
митивов синхронизации Interlocked или Monitor, и я рекомендую проэкзаменовать
их реализации с помощью инструмента отражения IL.

Несмотря на удобство коллекций, следует проявлять осмотрительность — ка
ждое отдельно взятое обращение к одной из них не обходится без синхронизации.
Зачастую при повышенной конфликтности обращений ресурсы расходуются чрез-
мерно, что может навредить производительности. Если не обойтись без «слишком
болтливых» схем обращения к коллекциям для чтения-записи, эта низкоуровневая
синхронизация может быть целесообразной.

В этом разделе рассмотрим несколько альтернатив для коллекций с парал-
лельным доступом, которые могут упростить ваши требования к блокировкам.
Коллекции в целом, включая перечисленные здесь, в частности для описания
уникальных для этих коллекций API, правильное освоение которых может вызвать
затруднения, рассматриваются в главе 6.

Блокировка на более высоком уровне
Если приходится иметь дело с параллельным обновлением или чтением многих
значений, то, по всей видимости, нужно будет воспользоваться коллекцией, не рас-
считанной на параллельное обращение, и управлять блокировкой самостоятельно
на более высоком уровне (или же найти способ, при котором синхронизация вообще
не понадобится, — в следующем разделе есть одна идея на этот счет).

Уровень раздробленности в вашем механизме синхронизации оказывает огром-
ное влияние на общую эффективность. Во многих случаях выполнение пакетных
обновлений под одной блокировкой окажется лучше установки блокировки для
каждого отдельного небольшого обновления. Выполняя неформальное тести-
рование, я понял, что элемент вставляется в коллекцию ConcurrentDictiona
ry<TKey,TValue> примерно в два раза медленнее, чем в стандартную коллекцию
Dictionary<TKey, TValue>.

В своем приложении вам придется проводить измерения и взвешивать все за
и против.

Также следует заметить, что иногда придется ставить блокировку на более вы-
соком уровне, чтобы гарантировать соблюдение ограничений, присущих контексту.
Рассмотрим классический пример банковского перевода между двумя счетами.
Баланс обоих счетов должен, разумеется, изменяться в индивидуальном порядке,
но транзакция имеет смысл только в том случае, если эти действия рассматрива-
ются как единое целое. Транзакции базы данных являются взаимосвязанными.
Сама по себе вставка одной строки может быть атомарной операцией, но чтобы
гарантировать целостность операций, может понадобиться использовать транзак-
ции, чтобы обеспечить атомарность на более высоком уровне.

Синхронизация потоков и блокировки   263

Замена всей коллекции
Если ваши данные предназначены в основном для чтения, тогда, получая доступ
к ним, смело можно воспользоваться коллекцией, не предназначенной для обеспече-
ния безопасности при параллельных обращениях. Когда наступает время обновления
коллекции, можно создать абсолютно новую коллекцию и по окончании ее загрузки
однократно заменить исходную ссылку, как в следующем примере:

private volatile Dictionary <string , MyComplexObject > data = new
 Dictionary <string , MyComplexObject >();

public Dictionary <string , MyComplexObject > Data
{
 get
 {
 return data;
 }
}

private void UpdateData()
{
 var newData = new Dictionary <string , MyComplexObject >();
 newData["Foo"] = new MyComplexObject();
 ...
 data = newData;
}

Обратите внимание на использование ключевого слова volatile, которое гаран-
тирует, что данные не обновятся, пока не будет полностью построена коллекция
newData, а после обновления она станет действительной во всех потоках.

Если потребителю этого класса несколько раз необходим доступ к свойству Data
и нужно, чтобы этот объект не был заменен новым, он может создать локальную
копию ссылки и задействовать ее вместо исходного свойства:

private void CreateReport(DataSource source)
{
 Dictionary <string , MyComplexObject > data = source.Data;

 foreach(var kvp in data)
 {
 ...
 }
}

Это ненадежная стратегия. Она немного усложняет ваш код и рассеивает от-
ветственность за правильное применение структуры данных. Может потребоваться
предупредить остальную часть программы с помощью специальной семантики об
использовании этой структуры данных. Следует также учитывать баланс между
такой заменой и затратами на возможную полную сборку мусора при выделении

264   Глава 4  •  Асинхронное программирование

памяти для новой коллекции. Эта схема может пригодиться для многих сценариев
при соблюдении условия, что перезаписывать коллекцию придется нечасто и что
вы справитесь со случающейся время от времени полной сборкой мусора. О том,
как избежать полной сборки мусора, говорилось в главе 2.

Копирование ресурса для каждого потока
Если имеется непотокобезопасный ресурс, активно используемый несколькими
потоками, можно рассмотреть вариант его оборачивания в объект ThreadLocal<T>.

Вот классический пример, использующий непотокобезопасный класс Random:

private static readonly ThreadLocal <Random > threadLocalRand
 = new ThreadLocal <Random >(()=>new Random());

static void Main(string[] args)
{
 int[] results = new int[100];

 Parallel.For(0, 5000,
 i =>
 {
 var randomNumber = threadLocalRand.Value.Next(100);
 Interlocked.Increment(ref results[randomNumber]);
 });
}

Конструктор ThreadLocal<T> получает объект Func<T>, позволяющий указать
фабричный метод. Он будет вызван при первом использовании переменной в по-
токе, перед тем как объект вам возвращается.

ThreadLocal<T> доступен в .Net 4 и последующих версиях. Если по каким-то
причинам необходимо воспользоваться более ранней версией .Net, существует
альтернатива — атрибут [ThreadStatic]. Его можно применять только к статиче-
ским переменным.

Вот тот же самый пример, реализованный с использованием [ThreadStatic] (он
взят из учебного проекта MultiThreadRand):

[ThreadStatic]
static Random threadStaticRand;

static void Main(string[] args)
{
 int[] results = new int[100];

 Parallel.For(0, 5000,
 i =>
 {
 // статическое поле данного потока не инициализировано
 if (threadStaticRand == null)
 {

Исследование потоков и конфликтов   265

 threadStaticRand = new Random();
 }
 var randomNumber = threadStaticRand.Next(100);
 Interlocked.Increment(ref results[randomNumber]);
 });
}

Всегда нужно исходить из того, что статические объекты с пометкой [ThreadStatic]
во время первого использования не инициализированы —.NET инициализи-
рует только первый из них. У остальных будут исходные значения (обычно
null). Из-за таких ограничений для применения [ThreadStatic] мало оснований,
и в большинстве случаев следует отдавать предпочтение ThreadLocal<T>.

Важно отметить, что при использовании [ThreadStatic] и ThreadLocal<T>
скорость выполнения кода ниже, чем когда применяются переменные, не учи-
тывающие работу с несколькими потоками. Везде, где только можно, следует от-
давать предпочтение стандартным переменным, но эти две возможности следует
рассматривать в качестве простого способа превращения совместно используемого
ресурса, нуждающегося в блокировке, в необщий ресурс, которому не требуется
синхронизация.

Исследование потоков и конфликтов
Одним из наиболее сложных типов отладки является поиск проблем, связанных
с многопоточностью. Тот, кто в первую очередь прикладывает усилия к получению
правильного кода, впоследствии получает огромные дивиденды в виде времени,
сэкономленного на отладке.

В то же время источники конфликтов в .NET можно обнаружить без особых за-
труднений, и для этого есть ряд хороших современных инструментальных средств,
которые могут помочь в проведении общего анализа в многопоточных сценариях.

Счетчики производительности
В категории Process (Процесс) имеется счетчик Thread Count (Количество потоков).

В категории Synchronization (Синхронизация) можно найти следующие счетчики:

�� Spinlock Acquires/sec — количество захватов спинлоков (циклических блокировок)
в секунду;

�� Spinlock Contentions/sec — количество конфликтов за спинлок в секунду;

�� Spinlock Spins/sec — количество итераций циклов ожидания освобождения спин-
лока в секунду.

В пункте System (Система) есть счетчик Context Switches/sec (Количество приклю-
чений контекста в секунду). Каким должно быть его идеальное значение, понять
довольно трудно — можно встретить множество противоречивых мнений (мне в ка-
честве нормы обычно попадалось значение 300, а значение 1000 считалось слишком

266   Глава 4  •  Асинхронное программирование

высоким). Поэтому я предполагаю, что вы будете рассматривать данный счетчик
в основном как относительный и отслеживать динамику изменения его значения:
резкое увеличение будет свидетельствовать о наличии проблем в приложении.

В .NET в категории .NET CLR LocksAndThreads предоставляется несколько счетчи-
ков, включая:

�� # of current logical Threads — показывает количество управляемых потоков в про-
цессе;

�� # of current physical Threads — показывает количество потоков операционной си-
стемы, выделенных процессу для выполнения управляемых потоков, исключая
те, которые используются только средой CLR;

�� Contention Rate/sec — показывает уровень конкуренции в секунду. Важен для об-
наружения «горячих» блокировок, требующих реструктуризации или удаления;

�� Current Queue Length — подсчитывает количество потоков, заблокированных рас-
сматриваемой блокировкой.

ETW-события
Среди следующих событий наиболее полезны ContentionStart V1 и ContentionStop.
Остальные могут представлять интерес, когда уровень параллельности выполнения
кода неожиданно изменяется и нужно узнать, как ведет себя пул потоков.

�� ContentionStart V1 — конфликт начался. Для гибридных блокировок фаза пу-
стого цикла в расчет не принимается, учитывается только момент вхождения
в реальное заблокированное состояние. В число полей входит:

yy Flags — 0 для управляемого, 1 для обычного.

�� ContentionStop — конфликт закончился.

�� ThreadPoolWorkerThreadStart — поток пула потоков запущен. В число полей
входят:

yy ActiveWorkerThreadCount — количество доступных рабочих потоков, как вы-
полняющих работу, так и ожидающих ее;

yy RetiredWorkerThreadCount — количество рабочих потоков, удерживаемых
в резерве на случай востребованности в дальнейшем большего количества
потоков.

�� ThreadPoolWorkerThreadStop — завершение выполнения потока пула потоков.
Поля те же, что и для ThreadPoolWorkerThreadStart.

�� IOThreadCreate V1 — был создан поток ввода-вывода. В число полей входит:

yy Count — количество потоков ввода-вывода в пуле.

Дополнительные сведения о ETW-событиях, имеющих отношение к потокам,
можно получить по адресу https://docs.microsoft.com/dotnet/framework/performance/
thread-pool-etw-events.

Исследование потоков и конфликтов   267

Получение информации о потоках
Показать запущенные потоки, позволить выборочно поставить их на паузу и про-
должить выполнение (или, в терминологии Visual Studio, заморозить и растопить)
могут большинство отладчиков.

В WinDbg получить подробную информацию об управляемых потоках можно
с помощью команд !Threads и !ThreadState:

0:007> !Threads
ThreadCount: 3
UnstartedThread: 0
BackgroundThread: 2
PendingThread: 0
DeadThread: 0
Hosted Runtime: no

 ID OSID ThreadOBJ State GC Mode GC Alloc Context Domain ...
0 1 5580 034578a0 2a020 Preemptive 058ECED4:00000000 0344d1e0...
5 2 4bb8 034675c8 2b220 Preemptive 00000000:00000000 0344d1e0...
6 3 42b0 03486658 21220 Preemptive 00000000:00000000 0344d1e0...

0:007> !ThreadState 2a020
 Legal to Join
 CoInitialized
 In Multi Threaded Apartment
 Fully initialized

Команда !ThreadState -special покажет потоки, принадлежащие среде CLR,
и то, чем они занимаются:

0:000> !Threads -special
ThreadCount: 3
UnstartedThread: 0
BackgroundThread: 2
PendingThread: 0
DeadThread: 0
Hosted Runtime: no

 ID OSID ThreadOBJ State GC Mode GC Alloc Context Domain ...
0 1 5580 034578a0 2a020 Preemptive 058ECED4:00000000 0344d1e0...
5 2 4bb8 034675c8 2b220 Preemptive 00000000:00000000 0344d1e0...
6 3 42b0 03486658 21220 Preemptive 00000000:00000000 0344d1e0...

 OSID Special thread type
 4 4c30 DbgHelper
 5 4bb8 Finalizer
 6 42b0 GC

В данном случае можно увидеть поток финализатора и поток сборщика мусора
(предположительно фоновый поток сборки мусора, поскольку в данном приложе-
нии используется сборка мусора в режиме рабочей станции).

268   Глава 4  •  Асинхронное программирование

Визуализация задач и потоков с помощью Visual Studio
В Visual Studio имеется дополнительное инструментальное средство Concurrency
Visualizer (визуализатор параллелизма). Его работа основана на использовании
ETW-событий с их показом в графической форме, чтобы у вас была точная карти-
на того, чем в приложении занимаются все Task-объекты и потоки. Оно сообщает
вам о том, когда Task делегирует «старт» и «стоп», о том, что поток заблокирован,
о выполнении работы центральным процессором, об ожидании в ходе операций
ввода-вывода и о многом другом (рис. 4.3).

Рис. 4.3. В имеющемся в Visual Studio представлении Thread Times потоки, задачи, время
центрального процессора, время блокировки, прерывания и многое другое объединяются

в единую кореллированную шкалу времени

Важно отметить, что захват информации такого рода может существенно
снизить производительность приложения, ведь событие будет записываться при
каждом изменении состояния потока, что происходит очень часто.

На момент написания книги средство Concurrency Analyzer было недоступно1
для Visual Studio 2017, но если нужно, то для сбора этих данных можно воспользо-
ваться предоставляющим лишь базовые возможности Profiling Wizard. Запустите
Profiling Wizard (из меню AnalyzePerformance Profiler (АнализПрофилировщик
производительности)) и выберите параллельные вычисления (рис. 4.4).

1	 Выпущен не так давно как опциональное расширение (плагин). Можно найти по адресу
https://marketplace.visualstudio.com/items?itemName=Diagnostics.ConcurrencyVisualize
r2017#overview. — Примеч. науч. ред.

Исследование потоков и конфликтов   269

Рис. 4.4. Базовый анализатор параллелизма. Здесь показано, какие обработчики и потоки
наиболее конфликтны

Использование PerfView для обнаружения
конфликта блокировок
Отличной альтернативой Visual Studio, особенно при анализе производственных
нагрузок, является PerfView. Чтобы увидеть это средство в действии, можно вос-
пользоваться учебной программой HighContention. Запустите программу и собери-
те .NET-события, применив PerfView. Как только будет готов для просмотра файл
с расширением .etl, откройте представление Any Stacks (Любые стеки), найдите
запись Event Microsoft-Windows-DotNETRuntime/Contention/Start и сделайте на ней двой-
ной щелчок кнопкой мыши. В результате откроется представление стека вашего
процесса и будут показаны стеки, содействующие конкуренции потоков (рис. 4.5).

Рис. 4.5. PerfView показывает, какие стеки приводят к повышенной конкуренции для всех
управляемых объектов синхронизации. В данном случае можно увидеть, что конкуренция исходит

из безымянного метода внутри Main

270   Глава 4  •  Асинхронное программирование

Где потоки блокируются на вводе-выводе
Средство PerfView можно применять для сбора информации о потоках, например
о том, когда они входят в различные состояния. Тем самым предоставляется более
точная информация о затраченном вашей программой реальном времени, если она
не использует центральный процессор. Но следует помнить, что включение этого
параметра существенно замедляет работу программы.

В имеющемся в PerfView диалоговом окне Collection (Сбор) установите флажок
Thread Times (Замеры времени для потоков), а также другие флажки, применяемые
по умолчанию (Kernel, .NET и CPU-события).

После завершения сбора данных в дереве результатов будет показан узел Thread
Times (Время потока). Раскройте его и посмотрите на вкладку By Name (По име-
ни). В верхней части увидите две основные категории: BLOCKED_TIME и CPU_TIME
(рис. 4.6). Дважды щелкните на BLOCKED_TIME, чтобы увидеть вызывающие объекты
для этой группы.

Рис. 4.6. Стек в PerfView для времени блокировки,
установленной вызовом метода TextReader.ReadLine

Резюме
Когда нужно избежать блокировки потока пользовательского интерфейса, рас-
параллелить работу по нескольким центральным процессорам или не допустить
потерь мощности центрального процессора из-за блокировки потоков в ожидании
завершения операций ввода-вывода, воспользуйтесь асинхронным кодом, например
async и await (или непосредственно Task-объектами). Задействуйте Task-объекты
вместо чистых потоков. Не создавайте ожиданий на Task-объектах, а планируйте
продолжение, выполняемое по завершении задачи. Упрощайте синтаксис Task с по-
мощью async и await. Рассматривайте возможность использования TPL Dataflow
для соответствующих бизнес-задач.

Никогда не устанавливайте блокировку на операции ввода-вывода. Всегда при-
меняйте асинхронные API при чтении из Stream-объектов и записи в них. Для дис-

Резюме   271

петчеризации функций обратного вызова по завершении операций ввода-вывода
используйте продолжения.

Старайтесь избегать блокировок, даже если для этого придется существенно
реструктурировать код. При необходимости задействуйте как можно более простую
блокировку. Для небольших или редко конфликтующих разделов применяйте lock/
Monitor и воспользуйтесь в качестве объекта синхронизации закрытым полем. Для
простых изменений состояния берите методы Interlocked. При наличии критиче-
ски важного раздела с высоким уровнем конкуренции, имеющей место более чем
несколько миллисекунд, рассмотрите возможность применения схем асинхронной
блокировки, подобных SemaphoreSlim.

5 Общие подходы к написанию
кода и классов

В этой главе речь пойдет об общих принципах, используемых при написании кода
и типов, не рассматриваемых больше нигде в данной книге. В .NET содержатся
функции для большого числа сценариев, и хотя многие из них как минимум ней-
тральны по отношению к производительности, некоторые, несомненно, не позво-
ляют достичь ее высокого уровня. И мы должны решить, каким будет правильный
подход в конкретной ситуации.

Если свести все, что будет рассмотрено в этой и следующей главах, к одному-
единственному принципу, то он звучит так: глубокая оптимизация кода с целью
повышения производительности часто будет противоречить абстракциям кода.

Это означает, что, стараясь достичь очень высокой производительности, вам
нужно усвоить подробности реализации на всех уровнях и, возможно, положиться
на них. О многих из них поговорим в данной главе.

Классы и структуры
Экземпляры класса всегда размещаются в куче, и обращение к ним происходит по-
средством разыменования указателя. Затраты на их передачу между методами невы-
соки, поскольку это просто копия указателя (4 или 8 байт). Однако у объекта также
имеются фиксированные издержки: 8 байт для 32-разрядных процессов и 16 байт
для 64-разрядных. Эти издержки включают указатель на таблицу методов и поле
блока синхронизации, используемое для достижения нескольких целей. Однако
если посмотреть на объект, не имеющий полей, в отладчике, можно обнаружить,
что его длина показана как 12 байт (32 разряда) или 24 байта (64 разряда). Почему
так происходит? .NET выровняет все объекты в памяти, и это эффективные мини-
мальные размеры объектов.

Структура, также известная как тип значения, вообще не имеет издержек, и объ-
ем используемой ею памяти — это сумма размеров всех ее полей. Если структура
объявлена в качестве локальной переменной в методе, она располагается в стеке.
Если структура объявлена в качестве части класса, память структуры станет частью
схемы памяти класса и, следовательно, будет существовать в куче. При передаче
структуры методу происходит ее побайтовое копирование. Поскольку она не на-
ходится в куче, память, выделенная под структуру, никогда не будет подвергаться

Классы и структуры   273

сборке мусора. При этом, если безостановочно выделять память под большие струк-
туры, при наличии очень глубоких стеков можно столкнуться с ограничениями на
размер стека (что весьма возможно при использовании некоторых сред).

Таким образом, требуется найти компромисс. Вы можете встретить различные
суждения по поводу максимально рекомендуемого размера структуры, но я не
стал бы ориентироваться на конкретное число. В большинстве случаев стоит при-
держиваться весьма скромных размеров структур, особенно если они куда-нибудь
передаются. С другой стороны, вы также можете передавать структуры по ссылке,
поэтому их размер не обязательно для вас актуален. Единственным способом
узнать, приносит ли это вам выгоду, является изучение схемы использования па-
мяти и собственное профилирование.

В некоторых случаях получается огромная разница в эффективности. Хотя
издержки, связанные с объектом, могут не показаться слишком большими, рас-
смотрим массив объектов и сравним его с массивом структур. Предположим, что
в структуре содержится 16 байт данных, длина массива составляет 1 000 000 и все
это в 32-разрядной системе.

Для массива объектов общее использование памяти составит:

8 байт (издержки, связанные с массивом) + (4 байта (размер указателя) ·
· 1 000 000) + (8 байт (издержки) + 16 байт (данные)) · 1 000 000 = 28 Мбайт.

Для массива структур результат будет совершенно другим:

8 байт (издержки, связанные с массивом) + (16 байт (данные) · 1 000 000) =
= 16 Мбайт.

При задействовании 64-разрядного процесса массив объектов занимает более
40 Мбайт, а массив структур по-прежнему требует только 16 Мбайт.

Очевидно, что в массиве структур сопоставимый объем данных потребляет
меньше памяти. Вдобавок к издержкам ссылочных типов провоцируется и более
частая сборка мусора — просто по причине более интенсивного использования
памяти.

Кроме использования пространства памяти возникает также вопрос об эффектив-
ности работы центрального процессора. У процессоров имеется несколько уровней
кэширования. Те кэши, что ближе всех к процессору, весьма невелики, но работают
исключительно быстро и оптимизированы под последовательный доступ.

В памяти массива структур имеется множество последовательно идущих зна-
чений. Обращение к элементу в массиве структур осуществляется очень просто.
Найденная нужная запись уже содержит требуемое значение. Это может означать
существенную разницу во временах доступа при последовательном переборе
большого массива. Если при этом значение уже находится в кэше центрального
процессора, к нему можно получить доступ на порядок быстрее, чем при его на-
хождении в оперативной памяти.

Чтобы обратиться к записи в массиве объектов, нужны доступ к памяти мас-
сива, а затем разыменование указателя на запись, находящуюся где-то в куче.

274   Глава 5  •  Общие подходы к написанию кода и классов

Последовательный перебор массивов объектов приводит к разыменовыванию
дополнительного указателя, прыжкам по всей куче и более частому вытеснению
данных из кэша центрального процессора, что ведет к потенциальной потере воз-
можности использовать кэш для более ценных данных.

Во многих случаях в пользу структур в первую очередь говорит отсутствие из-
держек как для центрального процессора, так и для памяти. При рациональном ис-
пользовании они могут дать вам существенный прирост производительности за счет
более совершенного размещения в памяти, отсутствия накладных расходов на сборку
мусора, и в силу того, что структуры вполне естественно находятся в стеке, побудить
вас к применению модели программирования, в которой нет совместно использу
емого изменяемого состояния. Из-за этих естественных ограничений следует всерьез
рассмотреть возможность сделать все ваши структуры неизменяемыми. Однако
если потребуется изменить поля внутри структуры, которая является свойством
другого класса, обратите внимание на функциональную возможность возврата по
ссылке (ref), рассматриваемую далее в этой главе. Задействуя эту новую функцию
в C#7, можно избежать копирования структур, снижающего производительность.

Исключение из правил: изменяемая структура
для хранения иерархии полей
Ранее уже говорилось, что не следует создавать большие структуры, чтобы не тра-
тить много времени на их копирование. Но все же большие, изменяемые структуры
иногда используются для хранения иерархии полей. Рассмотрим объект, отсле-
живающий множество подробностей некоего коммерческого процесса, например
множество меток времени:

class Order
{
 public DateTime ReceivedTime {get;set;}
 public DateTime AcknowledgeTime {get;set;}
 public DateTime ProcessBeginTime {get;set;}
 public DateTime WarehouseReceiveTime {get;set;}
 public DateTime WarehouseRunnerReceiveTime {get;set;}
 public DateTime WarehouseRunnerCompletionTime {get;set;}
 public DateTime PackingBeginTime {get;set;}
 public DateTime PackingEndTime {get;set;}
 public DateTime LabelPrintTime {get;set;}
 public DateTime CarrierNotifyTime {get;set;}
 public DateTime ProcessEndTime {get;set;}
 public DateTime EmailSentToCustomerTime {get;set;}
 public DateTime CarrerPickupTime {get;set;}

 // множество других данных...
}

Классы и структуры   275

Чтобы упростить код, было бы неплохо выделить все эти показатели времени
в их собственные подструктуры, по-прежнему доступные через класс Order по-
средством кода, похожего на следующий:

Order order = new Order();
Order.Times.ReceivedTime = DateTime.UtcNow;

Все они могут быть помещены в собственный класс:

class OrderTimes
{
 public DateTime ReceivedTime {get;set;}
 public DateTime AcknowledgeTime {get;set;}
 public DateTime ProcessBeginTime {get;set;}
 public DateTime WarehouseReceiveTime {get;set;}
 public DateTime WarehouseRunnerReceiveTime {get;set;}
 public DateTime WarehouseRunnerCompletionTime {get;set;}
 public DateTime PackingBeginTime {get;set;}
 public DateTime PackingEndTime {get;set;}
 public DateTime LabelPrintTime {get;set;}
 public DateTime CarrierNotifyTime {get;set;}
 public DateTime ProcessEndTime {get;set;}
 public DateTime EmailSentToCustomerTime {get;set;}
 public DateTime CarrerPickupTime {get;set;}
}

class Order
{
 public OrderTimes Times;
}

Но при этом возникают дополнительные издержки — 12 байт или 24 байта —
для каждого объекта Order. Если нужно передать объект OrderTimes различным
методам целиком, возможно, в этом и есть смысл, но почему просто не передать
ссылку на весь объект Order как таковой? Если параллельно обрабатываются ты-
сячи объектов Order, это может вызвать более частые сборки мусора. Кроме того,
добавятся дополнительные разыменования ссылок.

Вместо этого превратите OrderTimes в структуру. Обращение к отдельным
свойствам структуры OrderTimes через свойство класса Order (order.Times.Re
ceivedTime) не приводит к копированию структуры (в .NET выполняет оптимиза-
цию этого вполне осмысленного сценария). Таким образом, структура OrderTimes
становится частью схемы памяти для класса Order почти так же, как было без под-
структуры, и вы получаете более понятный код.

Суть этого приема заключается в том, чтобы рассматривать поля структуры
OrderTimes, как если бы они были полями объекта Order. Вам не нужно передавать
структуру OrderTimes как некую сущность туда и сюда саму по себе — это всего
лишь организационный механизм.

276   Глава 5  •  Общие подходы к написанию кода и классов

Виртуальные методы и запечатанные классы
Не помечайте в самом начале методы ключевым словом virtual на всякий случай.
Но если в вашей программе virtual-методы необходимы для целостности архитек-
туры, вам не следует отступать от намеченного пути, удаляя их.

Указание для методов ключевого слова virtual препятствует проведению JIT-
компилятором определенных оптимизаций, в частности встраиванию их кода. Ме-
тоды могут встраиваться только в том случае, если компилятор точно знает, какой
метод будет вызван. Обозначение метода ключевым словом virtual устраняет эту
определенность, хотя есть и иные факторы, приводящие к невозможности данной
оптимизации, которые проявятся с большей вероятностью (они рассмотрены
в главе 3).

virtual-методы тесно связаны с запечатыванием классов:

public sealed class MyClass {}

Класс с пометкой sealed заявляет, что никакие другие классы не могут от него
наследоваться. Теоретически JIT может воспользоваться этой информацией для
более активного встраивания, но пока не пользуется этой возможностью. Несмотря
на это, следует изначально помечать классы ключевым словом sealed и не при-
менять без необходимости ключевое слово virtual. Таким образом, код получит
возможность извлечь преимущества из любых имеющихся на данный момент
и вероятных будущих усовершенствований JIT-компилятора.

Создавая библиотеку классов для использования во множестве различных
ситуаций, особенно вне своей организации, нужно быть более осмотрительными.
В таком случае наличие виртуальных API может оказаться важнее производи-
тельности, так как это позволяет гарантировать достаточную степень переисполь-
зуемости и настраиваемости. Но, разрабатывая часто изменяемый код, который
применяется только для решения задач внутри организации, следуйте дорогой
большей производительности.

Свойства
При обращении к свойствам следует проявлять осторожность. Синтаксически свой-
ства похожи на поля, но на самом деле это фактически вызовы функций. Считается
хорошим тоном реализовать свойства по возможности в более легкой манере,
но если бы все было так просто и без особых затрат, как и при доступе к полям,
то свойств бы не было. Главным образом их существование обусловлено тем, что
нужно дать людям возможность добавлять проверочные и иные дополнительные
функции для доступа к значению поля или его изменения.

Если доступ к свойству находится в цикле, то JIT, возможно, встроит вызыва-
емый код, но это не гарантируется.

Если сомневаетесь, проверьте код свойств, к которым происходит обращение
в критических для производительности областях, и примите соответствующее
решение.

Классы и структуры   277

Переопределение Equals и GetHashCode
для структур
Важная часть использования структур — переопределение методов Equals и Get
HashCode. Если этого не сделать, в ход пойдут исходные версии, которые не слишком
хороши для достижения высокой производительности. Понять, что они малопри-
годны, можно, посмотрев на код для метода ValueType.Equals с помощью про-
смотрщика IL. Он включает рефлексию для всех полей структуры. Есть разве что
оптимизация для допускающих поблочный маршалинг типов (непреобразуемые
типы, blittable). У таких типов одинаковое отображение в памяти как в управляемом,
так и в неуправляемом коде. Количество таких типов ограничено примитивными
числовыми типами (например, Int32, UInt64, но не Decimal, который не является
примитивом) и IntPtr/UIntPtr. Если структура состоит исключительно из непре-
образуемых типов, то реализация Equals может выполнять эквивалент побайтового
сравнения памяти по всей структуре. В противном случае нужно всегда собствен-
норучно реализовывать Equals.

Если просто переопределить Equals(object other), то производительность
все равно получится ниже необходимой, потому что этот метод включает в себя
приведение и упаковку типов значений. Вместо этого нужно реализовать метод
Equals(T other), где T — тип вашей структуры. Именно для этого предназначен
интерфейс IEquatable<T>, и все структуры должны его реализовывать. В ходе
компиляции компилятор по возможности отдаст предпочтение более строго типи-
зированной версии. Пример показан в следующем фрагменте кода:

struct Vector : IEquatable <Vector >
{
 public int X { get; }
 public int Y { get; }
 public int Z { get; }

 public int Magnitude { get; }

 public Vector(int x, int y, int z, int magnitude)
 {
 this.X = x;
 this.Y = y;
 this.Z = z;
 this.Magnitude = magnitude;
 }

 public override bool Equals(object obj)
 {
 if (obj == null)
 {
 return false;
 }
 if (obj.GetType() != this.GetType())

278   Глава 5  •  Общие подходы к написанию кода и классов

 {
 return false;
 }
 return this.Equals((Vector)obj);
 }

 public bool Equals(Vector other)
 {
 return this.X == other.X
 && this.Y == other.Y
 && this.Z == other.Z
 && this.Magnitude == other.Magnitude;
 }

 public override int GetHashCode()
 {
 return X ^ Y ^ Z ^ Magnitude;
 }
}

Если тип реализует метод IEquatable<T>, обобщенные коллекции среды .NET
обнаружат его присутствие и воспользуются им для выполнения более эффектив-
ных поиска и сортировки.

Стоит также реализовать для значимых типов операторы == и != и сделать так,
чтобы они вызывали уже существующий метод Equals<T>.

Все эти методы следует реализовывать оптимально. В них должно быть мини-
мальное количество операций и не должно быть повторений и выделений памяти.
Они будут вызываться во многих непредвиденных ситуациях. Для работы с боль-
шими коллекциями их нужно приспособить под вызовы миллионы раз в секунду.
Кроме того, во многих коллекциях, чтобы очень быстро сузить диапазон записей,
необходимых для проверки равенства, используется метод GetHashCode. Если вы-
числение хеш-кода порождает слишком большое количество коллизий, то потенци-
ально более затратный метод Equals будет вызываться слишком часто.

Если ваш тип пригоден для сортировки, нужно также реализовать интерфейс
IComparable<T>, чтобы позволить методу Sort некоторых типов коллекций исполь-
зовать его автоматически.

Даже если вам никогда не приходится сравнивать структуры или помещать
их в коллекции, я все же предлагаю реализовать эти методы. Ведь нельзя знать
наперед, как они будут использоваться, а на создание этих методов уйдет всего
несколько минут времени и немного байтов IL, которые даже никогда не будут
подвергнуты JIT-компиляции.

Переопределение Equals и GetHashCode для классов не настолько важно, по-
скольку по умолчанию они определяют равенство лишь на основе их ссылок на
объекты. Пока это предположение вполне резонно для ваших объектов, можно
оставить методы в исходной реализации.

Кортежи   279

Потоковая безопасность
О потоковой безопасности классов вспоминают довольно редко — если только
для этого есть веские основания. Соответствующие средства редко встречаются за
пределами классов коллекций, и, как будет показано при их рассмотрении, даже
здесь этот вопрос требует тщательной проработки.

В большинстве случаев синхронизация должна происходить на более высоком
уровне, а сам класс может ничего не знать о ней. Это придает наибольшую гибкость
повторному использованию класса.

Исключение — статические классы. Они имеют только глобальное состояние,
поэтому нужно с самого начала позаботиться об их потоковой безопасности, если
не будет причин для обратного.

Более подробно синхронизация потоков рассматривалась в главе 4.

Кортежи
Обобщенный класс System.Tuple можно использовать для создания простых струк-
тур данных, обходясь без явных именованных классов. Кортеж представляет собой
ссылочный тип, следовательно, на него распространяются все издержки, связанные
с классами. С выходом .NET 4.7 и C# 7 появилась версия кортежей значимого
типа System.ValueTuple. Именно ей в большинстве случаев следует отдавать пред-
почтение, при этом выбирать между конструкциями на основе ссылочного или
значимого типа нужно, руководствуясь теми же соображениями, которые были
изложены ранее.

var tuple = new ValueTuple <int, string >(1, "Ben");
int id = tuple.Item1;

Для объявления кортежей можно наряду с новым типом воспользоваться но-
выми элементами синтаксиса языка:

(int, string) tuple = (1, "Ben");
int id = tuple.Item1;

Вместо использования свойств с именами Item теперь им можно давать на-
звания:

(int id, string name) tuple = (1, name: "Ben");
int id = tuple.id;

Этот синтаксис можно применять в качестве возвращаемого методом значения
или в качестве типа параметра — все это эквивалентно использованию ValueTuple.
Если посмотреть на эти значения в отладчике, то нельзя будет увидеть имена
свойств, которые, возможно, были задействованы, а только Item1, Item2 и т. д.

280   Глава 5  •  Общие подходы к написанию кода и классов

Диспетчеризация интерфейсов
При первом вызове метода через интерфейс среда .NET должна определить, какой ме-
тод какого типа вызывать. Сначала будет вызвана заглушка, которая находит нужный
метод объекта, реализующего этот интерфейс. Когда такое случится несколько раз,
среда CLR распознает, что вызывался один и тот же конкретный тип, и этот непрямой
вызов через заглушку будет сокращен до заглушки, состоящей всего из нескольких
ассемблерных инструкций, совершающих прямой вызов нужного метода. Эта группа
инструкций называется мономорфной заглушкой, поскольку в ее ведении только вы-
зов метода для одного типа. Это идеальный вариант для ситуаций, когда при вызове
метода интерфейса неизменно вызываются конкретные методы одного и того же типа.

Мономорфная заглушка способна определить, когда она перестала быть верной.
Если вдруг место вызова станет использовать объект другого типа, то в конечном
итоге среда CLR заменит заглушку другой мономорфной заглушкой для нового типа.

Если ситуация осложнится еще больше и придется иметь дело с несколькими ме-
нее предсказуемыми типами (например, при наличии массива интерфейсного типа,
но с несколькими конкретными типами в этом массиве), заглушка будет заменена по-
лиморфной заглушкой, использующей для выбора вызываемого метода хеш-таблицу.
Поиск в таблице выполняется довольно быстро, но все же работа идет медленнее,
чем при задействовании мономорфной заглушки. К тому же размер хеш-таблицы
очень ограничен, и при наличии слишком большого числа типов, возможно, придется
вернуться к общему механизму поиска типа. Это может обойтись весьма дорого.

Заглушки создаются для каждого места вызова, то есть непосредственно там,
откуда вызываются методы. Каждое место вызова при необходимости обновляется,
причем независимо от других мест вызова.

В случае, когда производительность этого механизма является поводом для
беспокойства, есть два варианта действий.

�� Постарайтесь не вызывать эти объекты через общий интерфейс.
�� Выберите общий базовый интерфейс и замените его абстрактным базовым

классом.

Такая проблема возникает нечасто, но с ней можно столкнуться при наличии
слишком большой иерархии типов с повсеместной реализацией общего интерфейса
и вызове методов через этот корневой интерфейс. Для вас все это проявилось бы
в виде высокого и необъяснимого объема задействованности центрального про-
цессора на месте вызова этих методов.

ИСТОРИЯ

В ходе разработки крупной системы мы знали, что у нас потенциально будут тысячи
типов, которые, скорее всего, стали бы производными общего типа. Мы знали, что
будет пара мест, где потребуется обращение к ним из базового типа. Поскольку
в команде был специалист, понимающий потенциальные проблемы диспетче-
ризации интерфейсов на подобных масштабах, мы решили использовать общий
базовый абстрактный класс вместо интерфейса.

Избегайте упаковки   281

Для более глубокого изучения диспетчеризации интерфейсов обратитесь к за-
писи блога Вэнса Моррисона (Vance Morrison) на эту тему под названием Digging
into interface calls in the .NET Framework: Stub-based dispatch.

Избегайте упаковки
Упаковка представляет собой процесс заключения значимого типа, например
примитива или структуры, в объект, который находится в куче, что позволяет
передавать его методам, требующим ссылок на объект. В результате распаковки
получается исходное значение в первозданном виде.

Упаковка тратит процессорное время на связанное с объектом выделение
памяти, копирование и приведение типа, но куда существеннее то, что это приво-
дит к увеличению нагрузки на сборку мусора в куче. Небрежность по отношению
к упаковке может привести к слишком большому количеству выделений памяти,
каждое из которых придется обрабатывать сборщику мусора.

Явная упаковка происходит при каждом подобном действии:

int x = 32;
object o = x;

На языке IL это выглядит так:

IL_0001: ldc.i4.s 32
IL_0003: stloc.0
IL_0004: ldloc.0
IL_0005: box [mscorlib]System.Int32
IL_000a: stloc.1

Это означает, что найти большинство источников упаковки в вашем коде до-
вольно легко — нужно просто воспользоваться ILDASM для преобразования всего
IL-кода в текст и выполнить поиск.

Зачастую случайная упаковка получается при использовании API, получающих
в качестве параметра object или object[]. Наиболее известными примерами могут
послужить String.Format или устаревшие коллекции, сохраняющие только ссылки
на объекты, и от них нужно полностью избавиться по этой и ряду других причин
(см. главу 6).

Упаковка может произойти также при присваивании структуре ссылки на ин-
терфейс, например:

interface INameable
{
 string Name { get; set; }
}

struct Foo : INameable
{
 public string Name { get; set; }
}

void TestBoxing()

282   Глава 5  •  Общие подходы к написанию кода и классов

{
 Foo foo = new Foo() { Name = "Bar" };
 // Это подвергается упаковке!
 INameable nameable = foo;
 ...
}

Если вы сами захотите протестировать этот код, учтите, что в случае, когда
упакованная переменная фактически не используется, компилятор в целях опти-
мизации удалит инструкцию упаковки, поскольку она никогда не задействуется.
Как только будет вызван какой-нибудь метод или же значение будет использовано
иным образом, инструкция упаковки окажется в IL.

Нужно знать еще об одном эффекте применения упаковки, который становится
виден в результате выполнения следующего кода:

int val = 13;
object boxedVal = val;
val = 14;

Каким будет значение boxedVal в результате?
Упаковка похожа на использование ссылок-псевдонимов, но на самом деле

происходит копирование значения и между двумя значениями больше нет ника-
кой связи. В данном примере переменная val меняет значение на 14, но в boxedVal
сохраняется ее исходное значение 13.

Иногда выполнение упаковки можно отловить в профиле центрального процес-
сора, но вызовы упаковки часто встраиваются в код, так что это весьма ненадеж-
ный метод ее поиска. Признаками чрезмерной упаковки в профиле центрального
процессора могут послужить интенсивные выделения памяти через ключевое
слово new.

При большом количестве упакованных структур и невозможности избавиться
от них нужно, вероятно, просто преобразовать структуру в класс, что может в целом
потребовать меньших затрат.

И наконец, следует заметить, что передача значения по ссылке — это не упа-
ковка. Изучите IL и увидите, что упаковки не произошло. Методу передан адрес
значимого типа.

Возвращения по ссылке (ref)
и локальные значения
В C# 7 появились новые элементы синтаксиса языка, позволяющие гораздо проще
получать прямой доступ к памяти в безопасном коде. Этими же преимуществами
можно было пользоваться и ранее с помощью доступа через указатель к закрытым
полям в небезопасном коде, но стандартный способ программирования, как будет
показано далее в этом разделе, обычно приводил бы к копированию значений.

Возвращения по ссылке (ref) и локальные значения   283

Используя возвращение по указателю, можно получить преимущества от примене-
ния совершенно безопасного кода, использования правильных абстракций, а также
повысить производительность в результате прямого доступа к памяти.

В качестве примера рассмотрим локальную ссылку ref на существующее зна-
чение:

int value = 13;
ref int refValue = value;

refValue = 14;

Что окажется в переменной value после выполнения последней строки кода?
В ней будет 14, поскольку refValue фактически ссылается на место в памяти зна-
чения переменной value.

Этой функциональной возможностью можно воспользоваться для получения
ссылки на закрытые данные класса:

class Vector
{
 private int magnitude;
 public ref int Magnitude {
 get { ref return this.magnitude; } }
}

class Program
{
 void TestMagnitude()
 {
 Vector v = new Vector;
 ref int mag = ref v.Magnitude;
 mag = 3;

 int nonRefMag = v.Magnitude;
 mag = 4;

 Console.WriteLine($"mag: {mag}");
 Console.WriteLine($"nonRefMag: {nonRefMag}");
 }
}

Каким будет вывод этой программы?

4
3

Первым присваиванием изменяется значение под указателем. Нам интересно
присваивание, касающееся nonRefMag. Несмотря на то что Magnitude является
свойством с возвращением по ссылке, поскольку оно не вызывалось через ref,
переменная nonMagRef просто получит копию значения, как будто Magnitude было

284   Глава 5  •  Общие подходы к написанию кода и классов

обычным свойством. Таким образом nonRefMag сохраняет первоначально получен-
ное значение, несмотря на то что память базового класса была изменена. Запомните,
что способ вызова метода не менее важен, чем способ его объявления.

Можно также использовать ref для ссылки на конкретное место в массиве. Сле-
дующий пример является методом, обнуляющим среднюю позицию в массиве.
Добиться этого без ref будет можно примерно так:

private static void ZeroMiddleValue(int[] arr)
{
 int midIndex = GetMidIndex(arr);
 arr[midIndex] = 0;
}

private static int GetMidIndex(int[] arr)
{
 return arr.Length / 2;
}

Версия с использованием ref очень похожа:

private static void RefZeroMiddleValue(int[] arr)
{
 ref int middle = ref GetRefToMiddle(arr);
 middle = 0;
}

private static ref int GetRefToMiddle(int[] arr)
{
 return ref arr[arr.Length / 2];
}

Функциональные возможности возвращения по ссылке позволяют применять
ранее недопустимые операции наподобие помещения метода в левую часть при-
сваивания:

GetRefToMiddle(arr) = 0

Поскольку GetRefToMiddle возвращает ссылку, а не значение, допустимо что-
нибудь ей присваивать.

Глядя на эти простые примеры, сложно понять, где же здесь большой прирост
производительности. Для небольших фрагментов с одноразовым применением
его и нет. Прирост дадут повторяющиеся ссылки на одно и то же место в памяти,
позволяющие избегать математических вычислений смещения в массиве или
не копировать значения.

Более эффектным примером послужит использование возвращения по ссылке
для того, чтобы избежать копирования значений структуры, когда не получается
использовать неизменяемую структуру. Рассмотрим следующие определения:

struct Point3d
{
 public double x;

Возвращения по ссылке (ref) и локальные значения   285

 public double y;
 public double z;

 public string Name { get; set; }
}

class Vector
{
 private Point3d location;
 public Point3d Location { get; set; }
 public ref Point3d RefLocation
 { get { return ref this.location; } }
 public int Magnitude { get; set; }
}

Предположим, что нужно изменить расположение location на начало коор-
динат (0, 0, 0). Без возвращения по ссылке пришлось бы скопировать структуру,
используя свойство Location, установить ее поля в 0, после чего вызвать set-метод
(сеттер), чтобы значение попало в нужное место:

private static void SetVectorToOrigin(Vector vector)
{
 Point3d location = vector.Location;
 pt.x = 0;
 pt.y = 0;
 pt.z = 0;
 vector.Location = pt;
}

Используя возращение по ссылке, копирования можно избежать:

private static void RefSetVectorToOrigin(Vector vector)
{
 ref Point3d location = ref vector.RefLocation;
 location.x = 0;
 location.y = 0;
 location.z = 0;
}

Разница в эффективности будет зависеть от размера структуры — чем она боль-
ше, тем медленнее будет выполняться не-ref-версия этого метода.

Проект RefReturn, включенный в исходный код книги, содержит простой эта-
лонный тест показанного ранее кода, дающий на выходе следующую информацию:

Benchmarks:
SetVectorToOrigin: 40ms
RefSetVectorToOrigin: 20ms

Если к структуре добавить всего несколько полей, разница станет заметнее:

Benchmarks:
SetVectorToOrigin: 470ms
RefSetVectorToOrigin: 20ms

286   Глава 5  •  Общие подходы к написанию кода и классов

Углубившись в ассемблерный код, можно увидеть, что в неэффективной версии
имеются инструкции для копирования, а также вызов метода:

02E005A8 push esi
02E005A9 cmp al,byte ptr [ecx+24h]
02E005AC lea esi,[ecx+24h]
02E005AF mov eax,dword ptr [esi+18h]
02E005B2 fldz
02E005B4 fldz
02E005B6 fldz
02E005B8 lea esi,[ecx+24h]
02E005BB fxch st(2)
02E005BD fstp qword ptr [esi]
02E005BF fstp qword ptr [esi+8]
02E005C2 fstp qword ptr [esi+10h]
02E005C5 lea edx,[esi+18h]
02E005C8 call 72BDDCB8
02E005CD pop esi
02E005CE ret

А вот в версии с использованием возвращения по ссылке содержится всего лишь
установка значений, а в качестве бонуса приведу все во встроенном виде:

02E005E0 cmp byte ptr [ecx],al
02E005E2 lea eax,[ecx+8]
02E005E5 fldz
02E005E7 fstp qword ptr [eax]
02E005E9 fldz
02E005EB fstp qword ptr [eax+8]
02E005EE fldz
02E005F0 fstp qword ptr [eax+10h]
02E005F3 ret

Возможность использовать возвращение по ссылке регламентируют строгие
правила.

�� Результат обычного метода (то есть метода без возвращения по ссылке) не мо-
жет быть присвоен локальной ссылочной переменной. Но значения, возвра-
щенные по ссылке, могут быть неявно скопированы в нессылочные перемен-
ные.

�� Нельзя возвратить ссылку на локальную переменную. Чтобы избежать недо-
пустимого обращения к памяти, последняя должна оставаться за пределами
локальной области видимости.

�� После инициализации ссылочной переменной нельзя присваивать новое место
в памяти.

�� Методы структуры не могут возвращать по ссылке поля экземпляров.

�� Эту функциональную возможность нельзя использовать с методами async.

for или foreach   287

Вряд ли вы будете часто пользоваться этой функцией, но иногда в ней возникает
потребность, особенно в перечисленных далее ситуациях:

�� при изменении полей в структуре, выставленной через свойство;

�� при прямом доступе к расположению массива;

�� при повторяющемся доступе к одному и тому же месту в памяти.

for или foreach
Инструкция foreach обеспечивает весьма удобный способ последовательного пере-
бора любого перечисляемого типа коллекции, от массивов до словарей.

Разницу в последовательном переборе коллекций с использованием циклов
for и foreach можно увидеть, применив инструментальное средство MeasureIt,
которое упоминалось в главе 1. Стандартные циклы for во всех случаях работают
существенно быстрее. Но при выполнении собственного простого теста можно,
в зависимости от сценария, увидеть одинаковую производительность. В некото-
рых случаях среда .NET преобразует простые инструкции foreach в стандартные
циклы for.

Посмотрите на учебный проект ForEachVsFor, в котором есть такой код:

int[] arr = new int[100];
for (int i = 0; i < arr.Length; i++)
{
 arr[i] = i;
}

int sum = 0;
foreach (int val in arr)
{
 sum += val;
}

sum = 0;
IEnumerable <int> arrEnum = arr;
foreach (int val in arrEnum)
{
 sum += val;
}

После его сборки и последующей декомпиляции с использованием инструмента
отражения IL вы увидите, что первая инструкция foreach скомпилировалась в виде
цикла for. Код IL имеет следующий вид:

// loop start (head: IL_0034)
IL_0024: ldloc.s CS$6$0000
IL_0026: ldloc.s CS$7$0001
IL_0028: ldelem.i4

288   Глава 5  •  Общие подходы к написанию кода и классов

IL_0029: stloc.3
IL_002a: ldloc.2
IL_002b: ldloc.3
IL_002c: add
IL_002d: stloc.2
IL_002e: ldloc.s CS$7$0001
IL_0030: ldc.i4.1
IL_0031: add
IL_0032: stloc.s CS$7$0001
IL_0034: ldloc.s CS$7$0001
IL_0036: ldloc.s CS$6$0000
IL_0038: ldlen
IL_0039: conv.i4
IL_003a: blt.s IL_0024
// end loop

Здесь присутствует довольно много сохранений, загрузок, добавлений, а также
ветвление — все довольно просто. Но как только мы приведем массив к типу
IEnumerable<int> и проделаем с ним то же самое, затраты существенно возрастут:

IL_0043: callvirt instance class
 [mscorlib]System.Collections.Generic.IEnumerator '1<!0>
 class [mscorlib]System.Collections.Generic.IEnumerable '1<int32 >
 ::GetEnumerator()
IL_0048: stloc.s CS$5$0002
.try
{
 IL_004a: br.s IL_005a
 // loop start (head: IL_005a)
 IL_004c: ldloc.s CS$5$0002
 IL_004e: callvirt instance !0 class [mscorlib]
 System.Collections.Generic.IEnumerator '1<int32 >
 ::get_Current()
 IL_0053: stloc.s val
 IL_0055: ldloc.2
 IL_0056: ldloc.s val
 IL_0058: add
 IL_0059: stloc.2
 IL_005a: ldloc.s CS$5$0002
 IL_005c: callvirt instance bool
 [mscorlib]System.Collections.IEnumerator::MoveNext()
 IL_0061: brtrue.s IL_004c
 // end loop

 IL_0063: leave.s IL_0071
} // end .try
finally
{
 IL_0065: ldloc.s CS$5$0002
 IL_0067: brfalse.s IL_0070

 IL_0069: ldloc.s CS$5$0002

Приведение типов   289

 IL_006b: callvirt instance void
 [mscorlib]System.IDisposable::Dispose()

 IL_0070: endfinally
} // end handler

У нас появилось четыре вызова виртуального метода, пара try-finally и не
показанное здесь выделение памяти для переменной локального нумератора, от-
слеживающего состояние перебора. На это затрачивается намного больше ресур-
сов, чем на простой цикл for, больше времени центрального процессора и больше
памяти!

Следует помнить, что исходная структура данных по-прежнему является мас-
сивом (что допускает использование цикла for), но мы все запутали приведением
к типу IEnumerable. Отсюда можно вынести важный урок — один из тех, что упо-
минался в начале главы, — всесторонняя оптимизация производительности зача-
стую сводит на нет попытки использовать программные абстракции. Инструкция
foreach является абстракцией цикла, а IEnumerable является абстракцией коллек-
ции. В сочетании они диктуют поведение, которое не дает произвести простую
оптимизацию, использующую цикл for для перебора массива.

Приведение типов
В большинстве случаев приведения типов следует избегать. Зачастую оно свиде-
тельствует о недостаточной проработке архитектуры классов, но временами без него
не обойтись. Например, довольно часто потребность в приведении типов возникает
при выполнении преобразований между беззнаковыми и знаковыми целыми чис-
лами из-за специфичных требований некоторых API. Приведение типов объектов
должно происходить гораздо реже.

Приведение типов объектов без затрат не обходится, но они сильно разнятся
в зависимости от связи объектов. Приведение типа объекта к типу его родитель-
ского объекта относительно дешево. Приведение типа родительского объекта
к допустимому типу дочернего объекта обходится намного дороже, и чем глубже
иерархия, тем выше затраты. Приведение типа к интерфейсу обходится дороже,
чем приведение к конкретному типу.

А вот недопустимое приведение следует исключить. Иначе будет выдано исклю-
чение типа InvalidCastException, которое на несколько порядков больше затрат
на фактическое приведение типов.

Посмотрите на код учебного проекта CastingPerf (находится в сопроводитель-
ном исходном коде), где выполняется эталонное тестирование нескольких разно-
видностей приведения типов. После запуска одного теста на моем компьютере на
выходе была получена следующая информация:

No cast: 1.00x
Up cast (1 gen): 1.00x
Up cast (2 gens): 1.00x

290   Глава 5  •  Общие подходы к написанию кода и классов

Up cast (3 gens): 1.00x
Down cast (1 gen): 1.25x
Down cast (2 gens): 1.37x
Down cast (3 gens): 1.37x
Interface: 2.73x
Invalid Cast: 14934.51x
as (success): 1.01x
as (failure): 2.60x
is (success): 2.00x
is (failure): 1.98x

Оператор is является приведением типа, тестирующим результат и возвра-
щающим булево значение. Оператор as похож на стандартное приведение типа,
но возвращает null, если выполнить приведение не удалось. Показанные ранее
результаты говорят о том, что приведение выполняется значительно быстрее вы-
дачи исключения.

Никогда не используйте следующую схему, в которой выполняются два при-
ведения типа:

if (a is Foo)
{
 Foo f = (Foo)a;
}

Вместо нее примените для приведения типов as и кэшируйте результат, после
чего проверяйте возвращаемое значение:

Foo f = a as Foo;
if (f != null)
{
 ...
}

Если придется выполнять проверку сразу для нескольких типов, наиболее часто
встречающийся тип нужно поставить первым.

ПРИМЕЧАНИЕ

Мне регулярно приходится сталкиваться с одним весьма неприятным приведением
типов, связанным с использованием MemoryStream.Length, тип которого — long.
Большинство задействующих его API используют ссылку на исходный буфер (из-
влекаемый методом MemoryStream.GetBuffer), смещение и длину, тип которой
зачастую int, то есть возникает необходимость приведения long к нижестоящему
типу. Приведение типов подобного рода весьма распространено, и его не из-
бежать.

Следует заметить, что не все приведения типов являются явными. В зависи-
мости от реализации классов могут встречаться и неявные приведения типов,
в результате которых могут происходить выделения памяти.

P/Invoke   291

P/Invoke
Вызов платформы P/Invoke используется для совершения вызовов из управляемо-
го кода в неуправляемые платформенно-ориентированные методы. Это влечет за
собой ряд фиксированных издержек плюс затраты на маршализацию аргументов.
Под маршализацией понимается преобразование типов из одного формата в другой.

Внутренняя реализация P/Invoke довольно изощрена, что необходимо для его
корректной работы. Примерный план его работы выглядит следующим образом.

1.	 Подстроить переменные фрейма стека.
2.	 Установить текущий фрейм стека.
3.	 Отключить сборку мусора для текущего потока.
4.	 Выполнить целевой код.
5.	 Снова включить сборку мусора.
6.	 Проверить, не запущена ли текущая сборка мусора, и при необходимости оста-

новить поток.
7.	 Перенастроить переменные фрейма стека на их предыдущие значения.

Используя программу MeasureIt, упомянутую в главе 1, можно посмотреть
результаты сравнительного эталонного тестирования затрат на вызов P/Invoke
и вызов обычной управляемой функции. На моем компьютере вызов P/Invoke за-
нимал в 6–10 раз больше времени, чем вызов пустого статического метода. Не стоит
вызывать через P/Invoke метод в коротком цикле, если есть его управляемый эк-
вивалент, и определенно следует избегать совершения множественных переходов
между неуправляемым и управляемым кодом. Но одиночные вызовы P/Invoke
не настолько затратны, чтобы запрещать их во всех случаях.

Есть несколько способов минимизации затрат на совершение вызовов P/Invoke.

1.	 Избегайте использования слишком «болтливых» интерфейсов. Совершайте
один вызов, способный работать с большим количеством данных, в ходе ко-
торого время, затрачиваемое на обработку данных, существенно превышает
фиксированные издержки на P/Invoke-вызов.

2.	 Как можно чаще задействуйте непреобразуемые (blittable) типы. Вспомните
обсуждение структур: к ним относятся типы, имеющие одинаковые двоичные
значения как в управляемом, так и в неуправляемом коде, — в основном это
числовые типы и типы указателей. Они являются наиболее эффективными
аргументами для передачи, поскольку процесс маршализации по своей сути
сводится к копированию памяти.

3.	 Избегайте вызовов ANSI-версий API Windows. Например, CreateProcess
фактически является макрокомандой, разрешаемой в одну из двух настоящих
функций — CreateProcessA для ANSI-строк и CreateProcessW для Unicode-
строк. Какая из версий будет получена, определяется настройками компиляции
кода соответствующей платформы. Вам нужно гарантировать, что всегда будут
вызваны Unicode-версии API, поскольку все .NET-строки уже имеют формат

292   Глава 5  •  Общие подходы к написанию кода и классов

Unicode и в случае возникновения здесь несоответствия не обойдется без за-
тратного и, возможно, не обходящегося без потерь преобразования.

4.	 Избавьтесь от ненужных закреплений. Примитивы вообще никогда не закре-
пляются, а уровень маршализации будет автоматически закреплять строки
и массивы примитивов. Если не требуется закреплять что-либо еще, избегай-
те продолжительных закреплений объекта, сводя их к минимуму. Сведения
о негативном влиянии закреплений на сборку мусора можно найти в главе 2.
При использовании закреплений вам придется выдержать баланс потребности
в непродолжительности закрепления и уклонении от излишне «болтливых»
интерфейсов. Во всех случаях возврат из неуправляемого кода должен проис-
ходить как можно быстрее.

5.	 Если нужно переместить большой объем данных в неуправляемый код, рас-
смотрите возможность закрепления буфера и непосредственной работы с ним
из нативного кода. Буфер будет закреплен в памяти, но если функция работает
довольно быстро, эффективность может оказаться выше, чем при копировании
большого объема данных. Если есть возможность гарантировать присутствие
буфера в поколении gen 2 или в куче больших объектов, тогда закрепление
будет намного меньшей проблемой, поскольку сборке мусора вряд ли вообще
понадобится куда-либо перемещать объект.

6.	 Снабдите параметры импортированного метода атрибутами In и Out. Это под-
скажет среде CLR, в каком направлении маршализировать каждый аргумент.
Для многих типов, например целочисленных, это может определяться неявно,
то есть вам не придется давать каких-либо конкретных указаний. Но для строк
и массивов нужно давать явные установки, чтобы избежать ненужной марша-
лизации в ненужном направлении.

Отключение проверок безопасности для надежного кода. Для кода, пользу
ющегося абсолютным доверием, можно сократить расходы на P/Invoke, отключив
ряд проверок безопасности в объявлениях методов P/Invoke:

[DllImport("kernel32.dll", SetLastError=true)]
[System.Security.SuppressUnmanagedCodeSecurity]
static extern bool GetThreadTimes(IntPtr hThread,
 out long lpCreationTime,
 out long lpExitTime,
 out long lpKernelTime,
 out long lpUserTime);

Атрибут SuppressUnmanagedCodeSecurity объявляет, что, запуская метод, можно
ему полностью доверять. Это может вызвать получение предупреждений Code
Analysis (FxCop), поскольку тем самым отключается довольно значительная часть
модели безопасности, имеющейся в среде .NET. Отключать ее можно только при
соблюдении следующих условий.

1.	 Ваше приложение запускает только код, пользующийся доверием.
2.	 Входные данные тщательно очищены или запускаются в доверенной среде.
3.	 Вы обеспечили, чтобы публичные API не делали вызовов P/Invoke.

Делегаты   293

Таким образом, если вы действительно можете отключить проверки безопас-
ности, можно несколько увеличить производительность, как показано в выходных
данных MeasureIt.

Имя Значение

PInvoke: 10 FullTrustCall() (10 call average) [count=1000 scale=10.0] 6945

PInvoke: PartialTrustCall() (10 call average) [count=1000 scale=10.0] 17778

Запуск метода, пользующегося полным доверием, может протекать в 2,5 раза
быстрее, чем прочих.

Делегаты
С использованием делегатов связаны два вида затрат: на их создание и вызов.
К счастью, практически при любых обстоятельствах их вызов сравним с вызовом
метода. Но делегаты — это объекты, и их создание может быть весьма затратным.
Хотелось бы понести эти затраты только один раз, а результат кэшировать. Рассмо-
трим следующий код:

private delegate int MathOp(int x, int y);
private static int Add(int x, int y) { return x + y; }
private static int DoOperation(MathOp op, int x, int y)
 { return op(x, y); }

Какой из следующих циклов быстрее?
Вариант 1:

for (int i = 0; i < 10; i++)
{
 DoOperation(Add, 1, 2);
}

Вариант 2:

MathOp op = Add;
for (int i = 0; i < 10; i++)
{
 DoOperation(op, 1, 2);
}

Похоже, что во втором варианте создается лишь псевдоним функции Add с ис-
пользованием локальной переменной-делегата, но фактически это приводит к едва
заметным изменениям в поведении при выделении памяти! Это станет понятно,
если рассмотреть IL-код для соответствующих циклов.

Вариант 1:

// loop start (head: IL_0020)
IL_0004: ldnull
IL_0005: ldftn int32 DelegateConstruction.Program
 ::Add(int32 , int32)

294   Глава 5  •  Общие подходы к написанию кода и классов

IL_000b: newobj instance void DelegateConstruction.Program/MathOp
 ::.ctor(object , native int)
IL_0010: ldc.i4.1
IL_0011: ldc.i4.2
IL_0012: call int32 DelegateConstruction.Program
 ::DoOperation(
 class DelegateConstruction.Program/MathOp ,
 int32 , int32)
...

И хотя в варианте 2 производится такое же выделение памяти, оно происходит
за пределами цикла:

L_0025: ldnull
IL_0026: ldftn int32 DelegateConstruction.Program
 ::Add(int32 , int32)
IL_002c: newobj instance void DelegateConstruction.Program/MathOp
 ::.ctor(object , native int)
...
// loop start (head: IL_0047)
IL_0036: ldloc.1
IL_0037: ldc.i4.1
IL_0038: ldc.i4.2
IL_0039: call int32 DelegateConstruction.Program
 ::DoOperation(class DelegateConstruction.Program/MathOp ,
 int32 , int32)
...

Обратите внимание на то, что команда newobj сместилась вверх, теперь она
располагается выше запуска цикла. Ключевым в данном вопросе является то, что
делегаты построены на объектах, подобных другим объектам .Net. Это же относится
и к встроенному классу Func. Следовательно, если вы хотите избежать повторного
выделения памяти под объекты-делегаты, ссылка на них должна делаться из тако-
го места, которое, как показано в приведенном ранее примере, вызывается только
один раз.

Есть способ обойти все это простым приемом — использованием лямбда-вы-
ражений.

Рассмотрим, что произойдет в следующем примере:

for (int i = 0; i < 10; i++)
{
 DoOperation((x,y) => Add(x,y), 1, 2);
}

Вот полученный код IL:

IL_004c: ldc.i4.0
IL_004d: stloc.3
IL_004e: br.s IL_007f
// loop start (head: IL_007f)
 IL_0050: ldsfld class DelegateConstruction.Program/MathOp
 DelegateConstruction.Program/'<>c'::'<>9__3_0'

Исключения   295

 IL_0055: dup
 IL_0056: brtrue.s IL_006f

 IL_0058: pop
 IL_0059: ldsfld class DelegateConstruction.Program/'<>c'
 DelegateConstruction.Program/'<>c'::'<>9'
 IL_005e: ldftn instance int32
 DelegateConstruction.Program/'<>c'
 ::'<Main>b__3_0'(int32 , int32)
 IL_0064: newobj instance void
 DelegateConstruction.Program/MathOp
 ::.ctor(object , native int)
 IL_0069: dup
 IL_006a: stsfld class DelegateConstruction.Program/MathOp
 DelegateConstruction.Program/'<>c'::'<>9__3_0'

 IL_006f: ldc.i4.1
 IL_0070: ldc.i4.2
 IL_0071: call int32 DelegateConstruction.Program
 ::DoOperation(class DelegateConstruction.Program/MathOp ,
 int32 , int32)
 ...
// end loop

Заметьте, что выделение памяти для делегата вернулось в цикл. Но посмотрите
на строку IL 0056 — вы обнаружите там инструкцию brtrue. В этой строке выполня-
ется проверка на существование кэшированного делегата. Если он существует, вы-
деление памяти будет пропущено и осуществлен непосредственный переход к вы-
полнению операции. В цикле по-прежнему есть ряд дополнительных инструкций,
но это все же лучше, чем выполнять выделение памяти при каждом проходе цикла.

Эквивалентом предыдущего примера является следующий синтаксис:

for (int i = 0; i < 10; i++)
{
DoOperation((x,y) => { return Add(x, y); }, 1, 2);
}

Эти примеры можно найти в учебном проекте DelegateConstruction.

Исключения
Заключение кода в блок try не приводит в среде .NET к особым затратам, но выдача
исключений обходится очень дорого. Причина главным образом в весьма подробном
состоянии, содержащемся в .NET-исключениях, куда входит и полный обзор стека.
Исключения должны быть зарезервированы для действительно исключительных
ситуаций, где производительность сама по себе не особо важна.

Никогда не следует полагаться на обработку исключений для отлавливания
простых ошибок, которые более эффективно могут быть обработаны кодом без
использования исключений. Намного лучше иметь проверочный код, способный

296   Глава 5  •  Общие подходы к написанию кода и классов

на простые проверки и возвращение ошибок вместо выдачи исключений. Это озна
чает, что следует тщательно прорабатывать архитектуру API, чтобы обеспечить
эффективность обработки ошибок.

Чтобы увидеть разрушительное влияние на производительность, которое может
оказать выдача исключений, обратитесь к учебному проекту ExceptionCost. Его вы-
ходные данные должны быть похожими на следующие:

Empty Method: 1x
Exception (depth = 1): 8525.1x
Exception (depth = 2): 8889.1x
Exception (depth = 3): 8953.2x
Exception (depth = 4): 9261.9x
Exception (depth = 5): 11025.2x
Exception (depth = 6): 12732.8x
Exception (depth = 7): 10853.4x
Exception (depth = 8): 10337.8x
Exception (depth = 9): 11216.2x
Exception (depth = 10): 10983.8x
Exception (catchlist, depth = 1): 9021.9x
Exception (catchlist, depth = 2): 9475.9x
Exception (catchlist, depth = 3): 9406.7x
Exception (catchlist, depth = 4): 9680.5x
Exception (catchlist, depth = 5): 9884.9x
Exception (catchlist, depth = 6): 10114.6x
Exception (catchlist, depth = 7): 10530.2x
Exception (catchlist, depth = 8): 10557.0x
Exception (catchlist, depth = 9): 11444.0x
Exception (catchlist, depth = 10): 11256.9x

Эти данные свидетельствуют о трех простых фактах.

1.	 Метод, который выдает исключение, работает в тысячи раз медленнее простого
пустого метода.

2.	 Чем глубже стек для выданного исключения, тем медленнее он становится (хотя
все и так работает настолько медленно, что это уже неважно).

3.	 Влияние того, что инструкций catch несколько, небольшое, но все же ощутимое,
поскольку приходится искать единственную нужную инструкцию.

Хотя перехват исключений способен выполняться без особых затрат, обраще-
ние к свойству StackTrace в объекте Exception может обойтись очень дорого, так
как в результате этого происходит восстановление стека из указателей и перевод
его в читаемый текст. В высокопроизводительных приложениях может оказаться
полезным сделать логирование стеков исключений опциональным через параметр
конфигурации и включать его только при необходимости. Заметьте, что повторная
выдача существующего исключения из обработчика исключений обходится так же
дорого, как и выдача нового исключения.

Повторю еще раз: выдача исключений должна обусловливаться по-настоящему
исключительными обстоятельствами. Использование исключений как повседневная
практика может иметь разрушительные последствия для производительности.

dynamic   297

dynamic
Конечно, это должно быть понятно и без особых напоминаний, но все же проясню
ситуацию: любой код, в котором используется ключевое слово dynamic или среда
Dynamic Language Runtime (DLR), изначально не может быть оптимален. Настройка
производительности зачастую сводится к избавлению от абстракций, в то время
как использование DLR является добавлением еще одного очень большого уровня
абстракций. Конечно, у нее есть своя область применения, но быстродействующие
системы к ней не относятся.

При использовании ключевого слова dynamic все, что похоже на простой и понят-
ный код, таковым уж точно не окажется. Рассмотрим простой искусственный пример:

static void Main(string[] args)
{
 int a = 13;
 int b = 14;

 int c = a + b;

 Console.WriteLine(c);
}

Код IL для него также выглядит довольно просто:

.method private hidebysig static
 void Main (
 string[] args
) cil managed
{
 // Method begins at RVA 0x2050
 // Code size 17 (0x11)
 .maxstack 2
 .entrypoint
 .locals init (
 [0] int32 a,
 [1] int32 b,
 [2] int32 c
)

 IL_0000: ldc.i4.s 13
 IL_0002: stloc.0
 IL_0003: ldc.i4.s 14
 IL_0005: stloc.1
 IL_0006: ldloc.0
 IL_0007: ldloc.1
 IL_0008: add
 IL_0009: stloc.2
 IL_000a: ldloc.2
 IL_000b: call void [mscorlib]System.Console::WriteLine(int32)
 IL_0010: ret
} // end of method Program::Main

298   Глава 5  •  Общие подходы к написанию кода и классов

А теперь просто сделаем эти int-значения динамичными:

static void Main(string[] args)
{
 dynamic a = 13;
 dynamic b = 14;

 dynamic c = a + b;

 Console.WriteLine(c);
}

В целях экономии пространства я не стану здесь показывать код IL, но вот как
выглядит его обратная конвертация в код C#:

private static void Main(string[] args)
{
object a = 13;
object b = 14;
if (Program.<Main>o__SiteContainer0.<>p__Site1 == null)
{
 Program.<Main>o__SiteContainer0.<>p__Site1 =
 CallSite <Func<CallSite , object , object , object >>.
 Create(Binder.BinaryOperation(CSharpBinderFlags.None,
 ExpressionType.Add,
 typeof(Program),
 new CSharpArgumentInfo[]
 {
 CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.None,
 null),
 CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.None,
 null)
 }));
}
object c = Program.<Main>o__SiteContainer0.
 <>p__Site1.Target(Program.<Main>o__SiteContainer0.<>p__Site1 ,
 a, b);
if (Program.<Main>o__SiteContainer0.<>p__Site2 == null)
{
 Program.<Main>o__SiteContainer0.<>p__Site2 =
 CallSite <Action <CallSite , Type, object >>.
 Create(Binder.InvokeMember(
 CSharpBinderFlags.ResultDiscarded ,
 "WriteLine",
 null,
 typeof(Program),
 new CSharpArgumentInfo[]
 {
 CSharpArgumentInfo.Create(
 CSharpArgumentInfoFlags.UseCompileTimeType |
 CSharpArgumentInfoFlags.IsStaticType ,
 null),

Отражение   299

 CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.None,
 null)
 }));
}
Program.<Main>o__SiteContainer0.<>p__Site2.Target(
 Program.<Main>o__SiteContainer0.<>p__Site2 ,
 typeof(Console), c);
}

Даже вызов WriteLine сложен. Простой и понятный код превратился в ме-
шанину из выделений памяти, делегатов, динамического вызова методов и этих
странных объектов CallSite. Применение этих объектов — это прием DLR по
замене стандартных вызовов методов динамически типизированными вызовами.
Он создает оболочку для сложного кэша, чтобы исключить необходимость весьма
тяжелого отражения при каждом вызове метода. Но это по-прежнему обходится
весьма дорого.

JIT-статистика вполне предсказуема.

Версия Время JIT-компиляции,
мс

Размер кода IL,
байт

Размер кода платформы,
байт

Int 0,5 17 25

Dynamic 10,9 209 389

Я не хочу напрасно грешить на DLR. Это прекрасная среда для быстрой разра-
ботки и создания сценариев. Она открывает широкие возможности для взаимодей-
ствия динамических языков и среды .NET, но при этом не отличается быстротой
работы.

Отражение
Отражением называется процесс программного сквозного перебора загруженных
типов и изучения их метаданных. Оно может осуществляться также в отношении ди-
намически загруженных .NET-сборок в ходе выполнения программы и выполнения
методов найденных типов. При любых обстоятельствах этот процесс не отличается
быстротой. Метаданные .NET-сборок организованы в основном не для повышения
эффективности выполнения программы, а для загрузки, отладки и обеспечения
доступа со стороны автономно работающих средств.

Получение информации обо всех типах в сборке в целом весьма эффективно —
в любом случае это просто статичные метаданные о вашем процессе. К примеру,
далее показан код, реализующий последовательный перебор всех типов в испол-
няемой сборке и выводящий имена методов этих типов:

foreach(var type in Assembly.GetExecutingAssembly().GetTypes())
{
 Console.WriteLine(type.Name);

300   Глава 5  •  Общие подходы к написанию кода и классов

 foreach(var method in type.GetMethods())
 {
 Console.WriteLine("\t" + method.Name);
 }
}

Эффективность уменьшается, как только начинаются динамическое выделение
памяти и выполнение кода на основе этих метаданных. Чтобы показать, как в целом
отражение работает в этом сценарии, рассмотрим простой код из учебного проекта
ReflectionExe, загружающий в динамическом режиме сборку-«расширение»:

var assembly = Assembly.Load(extensionFile);

var types = assembly.GetTypes();
Type extensionType = null;
foreach (var type in types)
{
 var interfaceType = type.GetInterface("IExtension");
 if (interfaceType != null)
 {
 extensionType = type;
 break;
 }
}

object extensionObject = null;
if (extensionType != null)
{
 extensionObject = Activator.CreateInstance(extensionType);
}

В данный момент для выполнения кода в нашем расширении есть два варианта
дальнейших действий. Чтобы остановиться на использовании чистого отражения,
можно извлечь объект MethodInfo для метода, требующего выполнения, а затем
вызвать этот метод:

MethodInfo executeMethod = extensionType.GetMethod("Execute");
executeMethod.Invoke(extensionObject , new object[] { 1, 2 });

Это очень медленный вариант, работающий примерно в 100 раз медленнее при-
ведения типа объекта к интерфейсу и его непосредственного выполнения:

IExtension extensionViaInterface = extensionObject as IExtension;
extensionViaInterface.Execute(1, 2);

По возможности следует выполнять код именно таким образом, а не по-
лагаться исключительно на MethodInfo.Invoke. Если же нет возможности вос-
пользоваться общим интерфейсом, внимательно прочтите следующий раздел,
посвященный генерации кода для выполнения загруженных в динамическом
режиме сборок, позволяющей существенно ускорить работу по сравнению с при-
менением отражения.

Генерация кода   301

Генерация кода
Если придется иметь дело с динамически загружаемыми типами, например с мо-
делью расширений или подключаемых модулей, нужно тщательно измерить про-
изводительность при взаимодействии с этими типами. В идеале взаимодействие
с ними можно организовать через общий интерфейс и обойти стороной большинство
проблем, связанных с динамически загружаемым кодом. Если воспользоваться
этим подходом невозможно, то для обхода проблем с производительностью при
вызове динамически загружаемого кода используйте методику, о которой пойдет
речь в данном разделе.

В среде .NET Framework поддерживаются выделение памяти под динамиче-
ский тип и вызов метода такого типа путем применения методов Activator.Cre
ateInstance и MethodInfo.Invoke соответственно. Вот пример:

Assembly assembly = Assembly.Load("Extension.dll");
Type type = assembly.GetType("DynamicLoadExtension.Extension");
object instance = Activator.CreateInstance(type);

MethodInfo methodInfo = type.GetMethod("DoWork");
bool result = (bool)methodInfo.Invoke(instance , new object[]
 { argument });

Если этот прием используется от случая к случаю, волноваться не о чем, но если
требуется выделить память под большой объем динамически загружаемых объ-
ектов или совершить множество динамических вызовов функций, он может стать
по-настоящему узким местом вашей программы. Метод Activator.CreateInstance
не только отнимает много времени у центрального процессора, но и может вызвать
ненужные выделения памяти, добавляющие работы сборщику мусора. При задей-
ствовании значимых типов в качестве либо параметров функции, либо возвраща-
емого значения, как в приведенном ранее примере, возникает также вероятность
упаковки.

Старайтесь скрывать эти обращения за интерфейсом, известным как расши-
рению, так и исполняющей программе, о чем говорилось в предыдущем разделе.
Если этот прием не сработает, может подойти вариант с генерацией кода. К счастью,
сгенерировать код для выполнения этой задачи не составляет особого труда.

Создание шаблонов
Чтобы выяснить, какой именно код нужно сгенерировать, воспользуйтесь в ка-
честве примера шаблоном, чтобы сгенерировать IL, который вам впоследствии
надо будет воспроизвести. Пример такого подхода приведен в учебных проектах
DynamicLoadExtension и DynamicLoadExecutor. В проекте DynamicLoadExecutor
выполняется динамическая загрузка расширения, а затем выполняется метод
DoWork. В проекте DynamicLoadExecutor обеспечивается подходящее размещение
DynamicLoadExtension.dll. Это достигается заданием шагов после сборки (post-build

302   Глава 5  •  Общие подходы к написанию кода и классов

steps) и конфигурированием зависимостей при сборке решения вместо зависимо-
стей на уровне проекта, чтобы гарантировать реальную динамическую загрузку
и выполнение кода.

Начните с создания объекта расширения. Чтобы разработать шаблон, сначала
разберитесь с тем, чего именно следует добиться. Вам требуется метод без параме-
тров, возвращающий экземпляр нужного типа. Программа не будет знать о типе
Extension, поэтому данный метод будет просто возвращать его в виде объекта.
Этот метод похож на следующий:

object CreateNewExtensionTemplate()
{
 return new DynamicLoadExtension.Extension();
}

Взгляните на код IL, который будет выглядеть следующим образом:

IL_0000: newobj instance void
 [DynamicLoadExtension]DynamicLoadExtension.Extension
 ::.ctor()
IL_0005: ret

Создание делегата
Теперь можно создать экземпляр типа System.Reflection.Emit.DynamicMethod,
программным способом добавив к нему несколько IL-инструкций, и присвоить его
делегату, которым в дальнейшем можно повторно воспользоваться для создания
новых объектов Extension.

private static T GenerateNewObjDelegate <T>(Type type)
 where T:class
{
 // Создание нового, не имеющего параметров
 // (что задается использованием Type.EmptyTypes)
 // динамического метода.
 var dynamicMethod = new DynamicMethod("Ctor_" + type.FullName ,
 type,
 Type.EmptyTypes ,
 true);
 var ilGenerator = dynamicMethod.GetILGenerator();

 // Поиск конструктора для создаваемого типа
 var ctorInfo = type.GetConstructor(Type.EmptyTypes);
 if (ctorInfo != null)
 {
 ilGenerator.Emit(OpCodes.Newobj , ctorInfo);
 ilGenerator.Emit(OpCodes.Ret);
 object del = dynamicMethod.CreateDelegate(typeof(T));
 return (T)del;
 }
 return null;
}

Генерация кода   303

Можно заметить, что производимый код IL точно соответствует нашему ша-
блонному методу.

Чтобы воспользоваться данным кодом, нужно загрузить сборку расширения,
извлечь подходящий тип и передать его методу-генератору:

Type type = assembly.GetType("DynamicLoadExtension.Extension");
Func<object > creationDel =
 GenerateNewObjDelegate <Func<object >>(type);
object extensionObj = creationDel();

Создав делегат, его можно поместить в кэш для повторного использования
(возможно, снабдив ключом, в качестве которого можно выбрать объект Type, или
применив какую-нибудь схему, подходящую вашему приложению).

Аргументы метода
Сгенерировать вызов метода DoWork можно с помощью этого же приема. Он лишь
немного усложнится из-за необходимости приведения типа и аргументов метода.
IL — стековый язык, поэтому аргументы функции перед ее вызовом должны быть
помещены в стек в нужном порядке. Первым аргументом для вызова метода экзем-
пляра должен быть скрытый параметр метода this, представляющий собой объект,
в контексте которого работает данный метод. Примечательно, что из-за исключи-
тельного использования стека в языке IL этот язык не имеет никакого отношения
к тому, как JIT-компилятор преобразует вызовы функций в ассемблерный код, где
зачастую аргументы функции хранятся в регистрах процессора.

Как и при создании объекта, сначала следует создать шаблонный метод для ис-
пользования в качестве основы для IL. Поскольку этот метод придется вызывать
просто с параметром object (это все, чем мы будем располагать в программе), в пара-
метрах функции расширение указывается как object. Это означает, что перед вызовом
DoWork его придется приводить к нужному типу. В шаблоне информация о типе
задана жестко, в генераторе же придется получать ее программным способом.

static bool CallMethodTemplate(object extensionObj ,
 string argument)
{
 var extension = (DynamicLoadExtension.Extension)extensionObj;
 return extension.DoWork(argument);
}

Получившийся IL-код для этого шаблона выглядит следующим образом:

.locals init (
 [0] class [DynamicLoadExtension]DynamicLoadExtension.Extension
 extension
)
IL_0000: ldarg.0
IL_0001: castclass
 [DynamicLoadExtension]DynamicLoadExtension.Extension
IL_0006: stloc.0
IL_0007: ldloc.0

304   Глава 5  •  Общие подходы к написанию кода и классов

IL_0008: ldarg.1
IL_0009: callvirt instance bool
 [DynamicLoadExtension]DynamicLoadExtension.Extension
 ::DoWork(string)
IL_000e: ret

Обратите внимание на объявление локальной переменной. В ней сохраняется
результат приведения типа. Позже будет показано, что ее можно убрать для опти-
мизации. Этот IL-код можно напрямую преобразовать в DynamicMethod:

private static T GenerateMethodCallDelegate <T>(
 MethodInfo methodInfo ,
 Type extensionType ,
 Type returnType ,
 Type[] parameterTypes) where T : class
{
 var dynamicMethod = new DynamicMethod(
 "Invoke_" + methodInfo.Name,
 returnType ,
 parameterTypes ,
 true);
 var ilGenerator = dynamicMethod.GetILGenerator();

 ilGenerator.DeclareLocal(extensionType);
 // параметр this, принадлежащий объекту
 ilGenerator.Emit(OpCodes.Ldarg_0);
 // приведение к нужному типу
 ilGenerator.Emit(OpCodes.Castclass , extensionType);
 // фактический аргумент метода
 ilGenerator.Emit(OpCodes.Stloc_0);
 ilGenerator.Emit(OpCodes.Ldloc_0);
 ilGenerator.Emit(OpCodes.Ldarg_1);
 ilGenerator.EmitCall(OpCodes.Callvirt , methodInfo , null);
 ilGenerator.Emit(OpCodes.Ret);

 object del = dynamicMethod.CreateDelegate(typeof(T));
 return (T)del;
}

Чтобы сгенерировать динамический метод, требуется MethodInfo, который
можно найти в объекте Type для расширения. Кроме того, нужны Type возвраща
емого объекта и Type-объекты всех параметров метода, включая подразумеваемый
параметр this (совпадающий с extensionType).

Чтобы воспользоваться нашим делегатом, его нужно просто вызвать:

Func<object , string , bool> doWorkDel =
 GenerateMethodCallDelegate <
 Func<object , string , bool >>(
 methodInfo , type, typeof(bool),
 new Type[]
 { typeof(object), typeof(string) });

bool result = doWorkDel(extension , argument);

Генерация кода   305

Оптимизация
Со своей задачей этот метод вполне справляется, но присмотритесь к тому, что он
делает, и вспомните природу IL-инструкций, основанную на использовании стека.
Этот метод работает следующим образом.

1.	 Объявляет локальную переменную.

2.	 Помещает arg0 (this-указатель) в стек (Ldarg_0).

3.	 Приводит arg0 к нужному типу и помещает результат в стек (Castclass).

4.	 Извлекает верхнее содержимое стека и сохраняет его в локальной переменной
(Stloc_0).

5.	 Помещает локальную переменную в стек (Ldloc_0).

6.	 Помещает arg1 (аргумент string) в стек (Ldarg_1).

7.	 Вызывает метод DoWork (Callvirt).

8.	 Возвращает управление.

Здесь бросается в глаза явная избыточность, в частности, с локальной перемен-
ной. В стеке имеется приведенный к нужному типу объект, мы его извлекаем от-
туда, после чего снова помещаем в стек. Этот код IL можно оптимизировать, просто
удалив все, что имеет отношение к локальной переменной. Вполне возможно, что
все это в любом случае будет оптимизировано JIT-компилятором самостоятельно,
но оптимизация все же не повредит, а даже поможет, если динамических методов
сотни или тысячи и все они должны пройти JIT-компиляцию.

Еще одну оптимизацию можно обнаружить, осознав, что код операции callvirt
может быть заменен простым кодом операции call, поскольку нам известно, что
здесь нет виртуальных методов. Теперь код IL приобрел следующий вид:

var ilGenerator = dynamicMethod.GetILGenerator();

// параметр this, принадлежащий объекту
ilGenerator.Emit(OpCodes.Ldarg_0);
// приведение к нужному типу
ilGenerator.Emit(OpCodes.Castclass , extensionType);
// фактический аргумент метода
ilGenerator.Emit(OpCodes.Ldarg_1);
ilGenerator.EmitCall(OpCodes.Call, methodInfo , null);
ilGenerator.Emit(OpCodes.Ret);

Подведение итогов
А как у сгенерированного кода обстоят дела с производительностью? Вот как вы-
глядит один из тестовых прогонов:

==CREATE INSTANCE==
Direct ctor: 1.0x
Activator.CreateInstance: 14.6x

306   Глава 5  •  Общие подходы к написанию кода и классов

Codegen: 3.0x

==METHOD INVOKE==
Direct method: 1.0x
MethodInfo.Invoke: 17.5x
Codegen: 1.3x

Сравнивая с непосредственными вызовами методов, можно заметить, что при-
менение методов отражения дает худшие результаты. Сгенерированный код не вы-
правляет ситуацию полностью, но очень близок к этому. Эти числовые показатели
относятся к вызову функции, которая фактически ничего не делает, следовательно,
они представляют собой чистые издержки на вызов функции. Назвать такую ситуа
цию вполне реалистичной нельзя. Если добавить какую-то минимальную работу
(анализ строк и вычисление квадратного корня), числовые показатели немного
изменятся:

==CREATE INSTANCE==
Direct ctor: 1.0x
Activator.CreateInstance: 9.3x
Codegen: 2.0x

==METHOD INVOKE==
Direct method: 1.0x
MethodInfo.Invoke: 3.0x
Codegen: 1.0x

Эти результаты наглядно демонстрируют, что если вы сейчас полагаетесь на
использование Activator.CreateInstance или MethodInfo.Invoke, то вы можете
получить существенные преимущества, перейдя на подход с генерацией кода.

ИСТОРИЯ

Мне пришлось работать над проектом, где эти приемы сократили издержки ис-
пользования центрального процессора на вызов динамически загружаемого кода
с более чем 10 % до примерно 0,1 %.

Генерацию кода можно задействовать и для решения других задач. Если в вашем
приложении выполняется большая работа по преобразованию строк или использу-
ется какая-либо машина состояний, то этот функционал будет вполне подходящим
кандидатом на применение генерации кода. Средой .NET этот прием используется
в ходе работы с регулярными выражениями и XML-сериализацией.

Предварительная обработка
Если какая-то часть вашего приложения занимается чем-то исключительно важным
с точки зрения производительности, нужно убедиться в том, что в ней не делается
ничего постороннего или не тратится впустую время на обработку, которую можно
было бы выполнить заранее. Если данные требуется преобразовать до того, как они

Исследование проблем производительности   307

будут задействованы в ходе выполнения программы, убедитесь в том, что преобра-
зования по максимуму делаются заранее и даже, если это возможно, в автономном
процессе.

Иными словами, если что-то можно обработать предварительно, значит, так
и нужно сделать. При этом для определения той доли обработки, которую реаль-
но сделать автономной, могут понадобиться творческий подход и нетривиальное
мышление, но дело того стоит. С точки зрения повышения производительности это
станет формой 100%-ной оптимизации за счет полного удаления кода.

Исследование проблем производительности
Каждая из тем, затрагиваемых в данной главе, требует особого подхода к решению
проблем производительности. Можно воспользоваться инструментами, известными
из предыдущих глав. Профилирование центрального процессора выявит затратные
методы Equals, неудачное итерирование в цикле, низкую производительность мар-
шализации в рамках организации взаимодействия компонентов и другие области
неэффективной работы.

Трассировка памяти укажет на упаковку при выделении памяти под объекты,
а общая трассировка .NET-событий покажет, где были выданы исключения, даже
если они уже отловлены и обработаны.

Счетчики производительности
В категорию .NET CLR Interop включены следующие счетчики.

�� # of CCWs — количество COM-вызываемых оболочек, или количество управля-
емых объектов, на которые имеется ссылка из неуправляемых COM-объектов.

�� # of marshalling — количество случаев, когда производилась маршализация ар-
гументов и возвращаемых значений заглушкой P/Invoke. Если эта заглушка
оказывается встроенной (для малозатратных вызовов), значение не инкремен-
тируется. Данной метрикой удобно пользоваться для того, чтобы отследить,
насколько серьезно нагружены ваши вызовы P/Invoke.

�� # of Stubs — количество заглушек, созданных JIT-компилятором, для маршалин-
га аргументов в P/Invoke или COM.

ETW-события
�� ExceptionThrown V1 — выданное исключение. Неважно, было это исключение

обработано или нет. Поля включают:

yy Exception Type — тип исключения;

yy Exception Message — свойство Message из объекта исключения;

yy EIPCodeThrow — указатель на инструкцию в том месте, откуда выдано ис-
ключение;

308   Глава 5  •  Общие подходы к написанию кода и классов

yy ExceptionHR — значение HRESULT исключения;
yy ExceptionFlags (флаги исключения):

�� 0x01 — имеет внутреннее исключение;
�� 0x02 — вложенное исключение;
�� 0x04 — повторно выданное исключение;
�� 0x08 — исключение поврежденного состояния;
�� 0x10 — CLS-совместимое исключение.

Поиск инструкций упаковки
Просканировать код на наличие упаковки совсем не трудно, поскольку в IL есть
конкретная инструкция под названием box. Чтобы найти ее в отдельно взятом ме-
тоде или классе, воспользуйтесь одним из многих доступных IL-декомпиляторов
и выберите просмотр IL-кода.

Обнаружить упаковку во всей сборке проще с помощью средства ILDASM, ко-
торое поставляется вместе с Windows SDK и располагает весьма богатым набором
параметров командной строки.

Следующий пример используется для анализа файла Boxing.exe и выводит код
IL в файл output.txt:

ildasm.exe /out=output.txt Boxing.exe

Обратите внимание на учебный проект Boxing, в котором показываются
разные способы провоцирования упаковки. Если запустить ILDASM в отношении
Boxing.exe, на выходе получится следующий код:

.method private hidebysig static void Main(string[] args)
 cil managed
{
.entrypoint
// Code size 98 (0x62)
.maxstack 3
.locals init ([0] int32 val,
 [1] object boxedVal ,
 [2] valuetype Boxing.Program/Foo foo,
 [3] class Boxing.Program/INameable nameable ,
 [4] int32 result ,
 [5] valuetype Boxing.Program/Foo '<>g__initLocal0')
IL_0000: ldc.i4.s 13
IL_0002: stloc.0
IL_0003: ldloc.0
IL_0004: box [mscorlib]System.Int32
IL_0009: stloc.1
IL_000a: ldc.i4.s 14
IL_000c: stloc.0
IL_000d: ldstr "val: {0}, boxedVal:{1}"
IL_0012: ldloc.0
IL_0013: box [mscorlib]System.Int32
IL_0018: ldloc.1

Исследование проблем производительности   309

IL_0019: call string [mscorlib]System.String::Format(string ,
 object ,
 object)
IL_001e: pop
IL_001f: ldstr "Number of processes on machine: {0}"
IL_0024: call class [System]System.Diagnostics.Process[]
 [System]System.Diagnostics.Process::GetProcesses()
IL_0029: ldlen
IL_002a: conv.i4
IL_002b: box [mscorlib]System.Int32
IL_0030: call string [mscorlib]System.String::Format(string ,
 object)
IL_0035: pop
IL_0036: ldloca.s '<>g__initLocal0'
IL_0038: initobj Boxing.Program/Foo
IL_003e: ldloca.s '<>g__initLocal0'
IL_0040: ldstr "Bar"
IL_0045: call instance void Boxing.Program/Foo
 ::set_Name(string)
IL_004a: ldloc.s '<>g__initLocal0'
IL_004c: stloc.2
IL_004d: ldloc.2
IL_004e: box Boxing.Program/Foo
IL_0053: stloc.3
IL_0054: ldloc.3
IL_0055: call void Boxing.Program::UseItem(
 class Boxing.Program/INameable)
IL_005a: ldloca.s result
IL_005c: call void Boxing.Program::GetIntByRef(int32&)
IL_0061: ret
} // end of method Program::Main

Также обнаружить упаковку можно опосредованно — с помощью PerfView.
При трассировке центрального процессора обнаруживаются интенсивные вызовы
функции JIT_new (рис. 5.1).

Рис. 5.1. Упаковка проявляется при трассировке ЦП в использовании метода JIT_New —
стандартного метода выделения памяти

310   Глава 5  •  Общие подходы к написанию кода и классов

Чуть менее очевидным способом упаковку можно обнаружить и при изучении
трассировки выделений памяти, поскольку вам известно, что значимые типы и при-
митивы вообще не потребуют таких выделений (рис. 5.2).

Рис. 5.2. В данной трассировке можно увидеть, что память для объекта типа Int32 была
выделена с помощью метода new, что не может восприниматься как должное

Если действовать более прямолинейно, то любой упакованный объект можно
найти в самой куче, воспользовавшись CLR MD:

private static void PrintBoxedObjects(ClrRuntime clr)
{
 foreach (var obj in clr.Heap.EnumerateObjects())
 {
 if (obj.IsBoxed)
 {
 Console.WriteLine(
 $"0x{obj.Address:x} - {obj.Type.Name}");
 }
 }
}

Обнаружение исключений первого шанса
Исключениями первого шанса (first-chance exceptions) на языке отладчика назы-
ваются исключения, которые выявились до вызова или обнаружения любых воз-
можных обработчиков исключений. Исключениями второго шанса считаются те,
что обнаружены после безуспешного поиска обработчиков. Исключение второго
шанса, скорее всего, приведет к сбою процесса.

WinDbg прервет работу на исключении второго шанса по умолчанию, а управ-
лять прерыванием его работы на исключениях первого шанса можно с помощью

Резюме   311

команды sx. Обработка исключений первого шанса в отношении CLR-исключений
отключается командой:

sxd clr

А для повторного включения используется команда:

sxe clr

Средство PerfView может легко показать, какие исключения были выданы, не-
зависимо от того, были они отловлены или нет (рис. 5.3).

1.	 Соберите в PerfView .NET-события. Подойдут установки по умолчанию, но цен-
тральный процессор исследовать не понадобится, поэтому снимите его флажок,
если нужно, чтобы профилирование заняло всего несколько минут.

2.	 По завершении сбора дважды щелкните кнопкой мыши на узле Exception Stacks
(Стеки исключений).

3.	 Выберите из списка нужный процесс.

4.	 Представление By Name (По имени) покажет список главных исключений. Пред-
ставление CallTree (Дерево вызовов) покажет стек для выбранного в данный
момент исключения.

Рис. 5.3. PerfView позволяет легко отыскать, откуда пришли исключения

Резюме
Следует помнить, что углубленная оптимизация с целью повышения производи-
тельности противоречит программным абстракциям. Нужно понять, как ваш код
будет транслирован в код IL, код ассемблера и машинные операции. Потратьте
время, чтобы разобраться с каждым из этих уровней.

Когда объем данных относительно невелик, воспользуйтесь вместо классов
структурами, если хотите свести к минимуму издержки или же использовать

312   Глава 5  •  Общие подходы к написанию кода и классов

массивы данных и получить оптимальную локальность в памяти. Рассмотрите
возможность сделать структуры неизменяемыми и всегда реализовывайте для них
Equals, GetHashCode и IEquatable<T>. Избегайте упаковки значимых типов и при-
митивов, защищая их от присваивания ссылкам на объекты.

Для безопасного непосредственного доступа к памяти при обращении к полям
используйте возвращение по ссылке.

Сохраняйте высокую скорость последовательного перебора путем отказа от
приведения типов коллекций к IEnumerable. И вообще по возможности избегайте
приведения типов, особенно тех экземпляров, для которых при этом могут выда-
ваться исключения.

Сводите к минимуму вызовы P/Invoke, отправляя за один вызов как можно
больше данных. Стремитесь сделать закрепления в памяти максимально скоро-
течными.

Если возникнет потребность в интенсивном применении Activator.Crea
teInstance или MethodInfo.Invoke, попробуйте задействовать вместо них генера-
цию кода.

6 Использование среды
.NET Framework

В предыдущей главе рассматривались общие приемы и трудности программиро-
вания на .NET, в особенности те, которые имеют отношение к специфике языка.
В этой главе речь пойдет о том, на что стоит обратить внимание при использовании
обширной библиотеки кода, которая поставляется со средой .NET. Рассмотреть
все многообразие подсистем и классов, являющихся частью .NET Framework,
не представляется возможным, но целью этой главы является обеспечение вас
инструментарием, необходимым для исследования приемов повышения произ-
водительности, и предоставление сведений о самых распространенных шаблонах,
применения которых следует избегать.

Среда .NET Framework создавалась с прицелом на самую широкую аудиторию
(фактически под всех разработчиков из всех областей) и задумывалась как универ-
сальная среда, предоставляющая стабильный, правильный, надежный код, который
способен справиться с множеством ситуаций. В ней как таковой не делается упор
на исключительную производительность, и во внутренних циклах вашего кода
найдется немало моментов, требующих доработки. Среда .NET должна работать
для всех и везде, выстраивая предположения о вызывающем коде. Зачастую особое
значение придается правильности и надежности, а не скорости и эффективности.
Но в своем коде нередко можно добиться более впечатляющих успехов, осмыслив
собственные ограничения и допущения и соответствующим образом адаптировав
код. Это утверждение не дает вам права на переписывание класса string в новом
проекте, но осведомляет вас об ограничениях среды в сочетании с критическими
областями производительности вашего собственного кода.

Чтобы обойти недостатки среды .NET Framework или любой библиотеки сто-
роннего производителя, может понадобиться проявить смекалку. Вот некоторые
из возможных подходов.

�� Воспользуйтесь альтернативным API с меньшими издержками.

�� Переконструируйте свое приложение, чтобы реже вызывать API.

�� Заново реализуйте некоторые API, добившись от них более высокой произво-
дительности.

�� Для выполнения тех же задач перейдите к взаимодействию с API конкретной
системы, предположив, что издержки на маршализацию будут ниже.

314   Глава 6  •  Использование среды .NET Framework

Разберитесь с каждым вызываемым API
Ведущий принцип этой главы: необходимо понимать код, выполняющийся при
каждом вызове API.

Говорить о контроле производительности равнозначно тому, чтобы утверждать,
что вы знаете код, который выполняется на каждом критическом пути программы.
Непонятной библиотеки сторонних разработчиков во внутреннем цикле вашей
программы быть не должно — это будет означать потерю контроля.

Доступ к исходному коду каждого вызываемого метода у вас будет не всегда (хотя
всегда будет доступ к коду на уровне ассемблера!), но обычно все Windows API снаб-
жаются качественной документацией. В среде .NET можно воспользоваться одним
из многочисленных инструментов просмотра IL-кода, позволяющих увидеть, что
делает эта среда (такая простота изучения не распространяется на саму среду CLR,
которая, несмотря на свою доступность в качестве части ядра .NET Core, написана
в основном на компактном, изобилующем макросами машинном коде).

Нужно привыкать к исследованию кода среды на предмет обнаружения чего-
либо вам незнакомого. Чем более производительность важна для вас, тем больше
вопросов вы должны задавать по поводу реализации сторонних API. Не забывайте,
что ваша привередливость должна быть прямо пропорциональна требующейся
скорости работы приложения.

Далее в главе рассматриваются несколько общих областей, к которым следует
отнестись внимательно, а также некоторые конкретные общие классы, использу
емые каждой программой.

Множество API для решения одних и тех же задач
Временами встречаются ситуации, в которых можно выбирать, какой из множества
API для решения одних и тех же задач использовать. Наглядным примером может
послужить разбор XML. Конечно, разбирать XML — это никогда не быстрая работа,
но, в зависимости от вашего сценария, некоторые из имеющихся вариантов решения
этой задачи могут вам подойти лучше других. В среде .NET есть по крайней мере
девять различных средств разбора XML:

�� XmlTextReader;

�� XmlValidatingReader;

�� XDocument;

�� XmlDocument;

�� XPathNavigator;

�� XPathDocument;

�� LINQ-to-XML;

�� DataContractSerializer;

�� XmlSerializer.

Коллекции   315

Какой из них взять, зависит от таких факторов, как простота использования,
продуктивность, целесообразность применения для данной задачи и производи-
тельность. Парсер XmlTextReader работает очень быстро, но он однонаправленный
и не выполняет проверку. XmlDocument очень удобен, поскольку обладает полностью
загруженной моделью объекта, но относится к самым медленным.

Этот подход приемлем как к разбору XML, так и к другим ситуациям с вы-
бором API: не все варианты будут равноценны и рациональны с точки зрения
достижения высокой производительности. Какие-то будут работать быстрее, но
потреблять больше памяти. Какие-то обойдутся весьма скромным объемом памя-
ти, но не позволят выполнять определенные операции. Придется определить набор
нужных вам качеств и измерить производительность, чтобы выявить тот API, ко-
торый обеспечивает разумный баланс функциональности и производительности.
Необходимо создать прототипы для всех вариантов и провести их профилирование
путем запуска на тестовых данных.

Коллекции
В .NET предоставляются свыше 20 встроенных типов коллекций, включая обоб-
щенные версии многих популярных структур данных и версии, предназначенные
для параллельной работы. Многим программам понадобится только лишь исполь-
зование комбинации из существующих коллекций, а потребность в создании своих
собственных будет возникать крайне редко.

Выбор коллекций зависит от множества факторов, включая семантическое
значение предоставляемого API (помещение и извлечение, постановка в очередь
и удаление из нее, добавление и удаление и т. д.), лежащий в основе механизм хра-
нения и локальность кэша, скорость проведения различных операций с коллекцией,
таких как Add и Remove, и необходимость синхронизации доступа к коллекции (или
ее отсутствие). Все эти факторы могут существенно повлиять на производитель-
ность вашей программы.

Какие коллекции лучше не использовать
Некоторые коллекции все еще присутствуют в среде .NET Framework, но только
из соображений обратной совместимости. Их никогда не следует использовать
в новом коде. К их числу относятся:

�� ArrayList;
�� Hashtable;
�� Queue;
�� SortedList;
�� Stack;
�� ListDictionary;
�� HybridDictionary.

316   Глава 6  •  Использование среды .NET Framework

Причинами, по которым нужно избегать их применения, являются преобразова-
ния типов и упаковка. В этих коллекциях хранятся ссылки на экземпляры Object,
поэтому вам обязательно потребуется приведение к фактическому типу объекта.

Еще более вредна упаковка. Предположим, что нужно воспользоваться кол-
лекцией ArrayList, состоящей из значимых типов Int32. Каждое значение будет
в индивидуальном порядке упаковано и сохранено в куче. Вместо перебора после-
довательного массива памяти для доступа к каждому целочисленному значению
каждая ссылка в массиве потребует разыменования указателя, обращения к куче
(возможно, подрывая локальность), а затем операции распаковки для получения
внутреннего значения. Это ужасно. Вместо этого лучше воспользоваться массивом,
не меняющим свой размер, или одним из классов обобщенной коллекции.

В ранних версиях .NET присутствовало несколько коллекций, ориентированных
на строковые значения, которые теперь в силу эффективности обобщенных коллек-
ций устарели. В их числе StringCollection, StringDictionary, NameValueCollection
и OrderedDictionary. Их использование не обязательно приведет к возникновению
проблем с производительностью как таковой, но нет никакой необходимости даже
брать их в расчет, пока не придется воспользоваться существующим API, требу
ющим их применения.

Массивы
Самой простой и, наверное, наиболее часто используемой коллекцией является
старый добрый массив Array. Массивы являются идеальной коллекцией в силу
своей компактности, задействования одного последовательного блока памяти,
улучшающего локальность кэша процессора при обращении к нескольким элемен-
там (при условии использования значимых типов, ведь ссылочные типы будут
по-прежнему приводить к переходам к другим местам кучи).

Обращение к ним занимает константное время, а их копирование выполняется
быстро. Но изменение их размера будет означать выделение памяти под новый
массив и копирование старых значений в новый объект. В качестве надстройки над
массивами создаются многие более сложные структуры данных.

Общее требование — возможность передачи сегмента из состава массива.
Одним из способов является копирование требуемых значений в новый массив
нужного размера, но это влечет за собой дополнительные расходы ресурсов цен-
трального процессора и памяти. Лучше заиметь структуру, которая просто ссыла-
ется на соответствующую часть массива. И хорошо, что в среде .NET уже есть такие
структуры — ArraySegment<T> и Span<T>:

byte[] fileContents = File.ReadAllBytes("foo.bin");
ArraySegment <byte> header = new ArraySegment <byte >(fileContents,
 1,
 24);
ProcessHeader(header);

Многие API .NET, способные работать с массивами, зачастую будут иметь
версию, непосредственно принимающую либо ArraySegment<T>, либо ссылку на

Коллекции   317

массив, смещение и количество элементов. При создании собственных API, работа-
ющих с массивами, разумно будет предусмотреть разработку версии, совместимой
с ArraySegment<T>.

Похожими свойствами обладает и структура Span<T>, но она может представлять
подсегменты, собранные из нескольких типов непрерывной памяти (она подробно
рассмотрена в главе 2).

Сравнение ступенчатых и многомерных массивов
В среде .NET есть два способа выделения памяти под многомерные массивы.

�� Многомерные массивы — один объект с несколькими индексами:

const int Size = 50;

private int[,,] multiArray;

void Init()
{
 this.multiArray = new int[Size, Size, Size];
}

�� Ступенчатые массивы — массивы массивов (то есть множество объектов),
у каждого из которых один индекс:

private const int Size = 50;

private int[][][] jaggedArray;

public void GlobalSetup()
{
 this.jaggedArray = new int[Size][][];
 for (int i = 0; i < Size; i++)
 {
 this.jaggedArray[i] = new int[Size][];
 for (int j = 0; j < Size; j++)
 {
 this.jaggedArray[i][j] = new int[Size];
 }
 }
}

Выглядят они в целом равнозначно, но устроено все по-разному. Показан-
ный ранее код инициализации не дает реальной картины этого различия, поэто-
му рассмотрим код, выполняющий обход всех значений и изменяющий каждую
запись.

public void Negate_JaggedArray()
{
 for (int i = 0; i < Size; i++)
 {
 for (int j = 0; j < Size; j++)

318   Глава 6  •  Использование среды .NET Framework

 {
 for (int k = 0; k < Size; k++)
 {
 this.jaggedArray[i][j][k] *= -1;
 }
 }
 }
}

public void Negate_MultiArray()
{
 for (int i = 0; i < Size; i++)
 {
 for (int j = 0; j < Size; j++)
 {
 for (int k = 0; k < Size; k++)
 {
 this.multiArray[i, j, k] *= -1;
 }
 }
 }
}

Код выглядит очень похожим, но посмотрим на показанный далее код IL, пред-
назначенный только для внутреннего цикла. Как ступенчатый массив он вполне
оправдывает наши ожидания:

IL_000c: ldarg.0
IL_000d: ldfld int32[][][] ArrayPerf.ArrayPerfTest::jaggedArray
IL_0012: ldloc.0
IL_0013: ldelem.ref
IL_0014: ldloc.1
IL_0015: ldelem.ref
IL_0016: ldloc.2
IL_0017: ldelema [mscorlib]System.Int32
IL_001c: dup
IL_001d: ldind.i4
IL_001e: ldc.i4.m1
IL_001f: mul
IL_0020: stind.i4
IL_0021: ldloc.2
IL_0022: ldc.i4.1
IL_0023: add
IL_0024: stloc.2

Это просто серия обращений к памяти, немного математических вычислений
и сохранения данных. Посмотрим для контраста на код для выполнения тех же
изменений в многомерном массиве:

IL_000c: ldarg.0
IL_000d: ldfld int32[0..., 0..., 0...]
 ArrayPerf.ArrayPerfTest::multiArray

Коллекции   319

IL_0012: ldloc.0
IL_0013: ldloc.1
IL_0014: ldloc.2
IL_0015: call instance int32& int32[0..., 0..., 0...]::
 Address(int32 , int32 , int32)
IL_001a: dup
IL_001b: ldind.i4
IL_001c: ldc.i4.m1
IL_001d: mul
IL_001e: stind.i4
IL_001f: ldloc.2
IL_0020: ldc.i4.1
IL_0021: add
IL_0022: stloc.2

В основном он такой же, за исключением бросающегося в глаза вызова метода,
расположенного в центральной части. Различия, которые могут быть вызваны этим
обстоятельством, продемонстрированы в проекте ArrayPerf, взятом из сопрово-
ждающего книгу исходного кода.

Метод Значение, мкс Ошибка, мкс Стандартное отклонение
(StdDev), мкс

Negate_JaggedArray 281,0 1,7812 1,6661

Negate_MultiArray 439,6 0,2280 0,1780

Из-за этого вызова метода на обход элементов многомерного массива затра-
чивается намного больше времени. Теоретически характер размещения в памяти
многомерных массивов и возможность последовательного размещения в ней всех
значений должны дать некоторые преимущества, но из этого обстоятельства не из-
влекается никакой практической выгоды и, по правде говоря, оснований для при-
менения многомерных массивов при любых обстоятельствах слишком мало.

Обобщенные коллекции
К обобщенным коллекциям относятся следующие классы:

�� Dictionary<TKey, TValue>;

�� HashSet<T>;

�� LinkedList<T>;

�� List<T>;

�� Queue<T>;

�� SortedDictionary<TKey, TValue>;

�� SortedList<TKey, TValue>;

�� SortedSet<T>;

�� Stack<T>.

320   Глава 6  •  Использование среды .NET Framework

С появлением этих коллекций все необобщенные версии становятся непригод-
ными к использованию. Предпочтение всегда стоит отдавать именно обобщенным
версиям. Их использование влечет за собой избавление от издержек на упаковку
или приведение типов и обеспечит более приемлемую локальность в памяти зна-
чимых типов (особенно для List-подобных структур, реализуемых с помощью
массивов).

Сами эти коллекции, однако, могут весьма существенно различаться по про-
изводительности. Например, отношения «ключ — значение» хранятся во всех
коллекциях Dictionary, SortedDictionary и SortedList, но характеристики вставки
и поиска в них сильно разнятся.

Решая вопросы производительности в ходе работы с коллекциями (если кон-
кретнее, то рассматривая алгоритмы работы с коллекциями), полезно было бы
иметь под рукой абстрактный способ сравнения. Для этого в компьютерных тех-
нологиях используется нотация «“O” большое». Если вкратце, «O» большое
дает описание производительности в понятиях размерности задачи. Например,
O(n) означает линейное время — нужное время напрямую коррелируется с раз-
мерностью задачи. Линейный поиск в неупорядоченном списке будет обозначен
O(n). O(1) означает постоянное время — размерность задачи не имеет значения,
на операцию, например поиск в хеш-таблице, всегда затрачивается одно и то же
время. Более подробные сведения и дополнительные примеры использования
«O» большого можно найти в приложении В.

�� Dictionary реализована в виде хеш-таблицы, время вставки и извлечения — O(1).

�� SortedDictionary реализована в виде двоичного дерева поиска, и время вставки
и извлечения характеризуется описанием O(log n).

�� SortedList реализована в виде отсортированного массива. Время извлечения —
O(log n), а время вставки в худшем случае может быть O(n). Если вставлять
произвольные элементы, может потребоваться часто изменять размеры и пере-
мещать существующие элементы. Идеальным случаем будет вставка всех эле-
ментов по порядку, а затем использование этой коллекции для быстрого поиска.

Среди трех коллекций самые скромные потребности в памяти у SortedList.
У других двух намного более существенное время произвольного доступа к памяти,
но в среднем они смогут гарантировать лучшее время вставки. Какой из коллекций
воспользоваться, во многом зависит от требований вашего приложения.

Разница между HashSet и SortedSet аналогична разнице между Dictionary
и SortedDictionary.

�� HashSet использует хеш-таблицу, время ее операций вставки и удаления — O(1).

�� SortedSet применяет двоичное дерево поиска, время ее операций вставки и уда-
ления — O(log n).

У коллекции List вставка — O(1), удаление и поиск — O(n). В коллекциях Stack
и Queue доступно только добавление или удаление с одного из их концов, поэтому
все операции имеют время O(1).

Коллекции   321

У LinkedList вставка и удаление имеют время O(1), но обычно его не стоит
применять для больших чисел и элементарных типов, поскольку это повлечет за
собой для каждой новой добавляемой записи выделение памяти под новый объект
LinkedListNode<T>,что может привести к большим издержкам.

Чтобы дать представление о различиях требуемых размеров хранилища для
каждой упомянутой коллекции, я запустил тестовую программу, добавляющую
в каждую структуру 1000 четырехбайтовых целочисленных значений, и восполь-
зовался командой !ObjSize в WinDbg, чтобы увидеть разницу в используемом
пространстве:

�� List — 4036 байт;

�� Stack — 4036 байт;

�� Queue — 4044 байта;

�� SortedList — 8076 байт;

�� Dictionary — 22 144 байта;

�� LinkedList — 24 028 байт;

�� SortedSet — 24 044 байта;

�� SortedDictionary — 28 076 байт;

�� HashSet — 30 972 байта.

Как видите, коллекции List, Stack и Queue практически идеальны с точки зре-
ния требуемой памяти — 4000 байт чистых данных плюс минимальные издержки,
а у остальных — различные показатели накладных расходов.

При выборе структуры данных сначала выберите ту из них, которая имеет наи-
более подходящий с точки зрения функциональности логический смысл. Если она
демонстрирует приемлемую производительность, значит, выбор оказался удачным.
В противном случае проанализируйте, обладают ли другие коллекции более вы-
годными характеристиками времени вставки или получения элементов для вашего
сценария, а также приемлемы ли их требования к размеру хранилища.

Коллекции для многопоточной среды
Классы коллекций для многопоточной среды могут безопасно использоваться
множеством потоков без дополнительных средств их синхронизации. Все эти
классы находятся в пространстве имен System.Collections.Concurrent, и все они
определены как обобщенные типы:

�� ConcurrentBag<T> (Bag — это мультимножество, оно аналогично множеству
(Set), но допускает дубликаты);

�� ConcurrentDictionary<TKey, TValue>;

�� ConccurentQueue<T>;

�� ConcurrentStack<T>.

322   Глава 6  •  Использование среды .NET Framework

Большинство из них внутри реализовано с использованием примитивов син-
хронизации Interlocked или Monitor. Разным методам требуются разные уровни
синхронизации, поэтому нужно проявлять осмотрительность. Например, при вы-
зове Count, IsEmpty, ToArray() и TryUpdate() в отношении ConcurrentDictionary
всегда применяется блокировка. Их реализацию можно и нужно изучать, задей-
ствуя средство для отражения IL. Поскольку каждый API защищен механизмом
синхронизации, часто обращаться к нему может быть накладно. Как упоминалось
в главе 4, возможно, рациональнее отказаться от использования коллекции для
многопоточной среды и выполнить синхронизацию на более высоком уровне.

Обратите внимание на API для вставки записей в эти коллекции и их удаления
оттуда. У всех интерфейсов имеются Try-методы, которые могут не выполнить опе-
рацию, если другой поток выполнит аналогичную операцию раньше, и из-за этого
возникнет конфликт. Например, у ConcurrentStack есть метод TryPop, возвраща-
ющий булево значение, показывающее, была ли возможность получить значение
их стека. Если другой поток получит последнее значение, метод TryPop текущего
потока возвратит значение false.

В ConcurrentDictionary есть несколько методов, заслуживающих особого вни-
мания. Можно вызвать TryAdd для добавления к словарю ключа и значения или
TryUpdate для обновления существующего значения. Нередко в таких сценариях
оказывается в принципе безразлично, имеется ли в коллекции этот ключ или нет,
так как это никак не влияет на логику приложения. Для таких случаев существует
метод AddOrUpdate, выполняющий либо добавление, либо обновление, но вместо
непосредственной передачи нового значения требуется передать ему два делегата:
один для добавления и один — для обновления. Если ключа не существует, будет
вызван первый делегат с ключом в качестве параметра и он должен будет вернуть
значение. Если ключ существует, то с ним и с существующим значением в качестве
параметров вызывается второй делегат и он должен вернуть новое значение — это
может совпадать с существующим значением. Следует обратить внимание на кэ-
ширование делегатов, рассмотренное в главе 5.

В любом случае метод AddOrUpdate возвратит новое значение, но важно понять,
что это не обязательно значение, установленное вызовом AddOrUpdate из текущего
потока! Эти методы безопасны при использовании в многопоточной среде, но
не атомарны. Вполне возможно, что с тем же ключом данный метод вызывался из
другого потока и в первый поток будет возвращено значение из второго потока.

Существует также переопределение метода, в котором нет делегата для добав-
ления записи — вы просто передаете ему значение.

Полезно изучить простой пример:

dict.AddOrUpdate(
 // Ключ, попытка добавления которого предпринимается
 0,
 // Делегат для вызова при добавлении —
 // возвращение строкового значения на основе ключа
 key => key.ToString(),
 // Делегат для вызова, когда ключ уже присутствует, —
 // обновление существующего значения

Коллекции   323

 (key, existingValue) => existingValue);

dict.AddOrUpdate(
 // Ключ, попытка добавления которого предпринимается
 0,
 // Значение для добавления, если оно новое
 "0",
 // Делегат для вызова, когда ключ уже присутствует, —
 // обновление существующего значения
 (key, existingValue) => existingValue);

Наличие этих делегатов вместо простой передачи значения объясняется тем, что
во многих случаях создание значения для заданного ключа — слишком затратная
операция и не хотелось бы, чтобы этим одновременно занимались сразу два потока.
Делегат дает вам возможность просто использовать существующее значение вме-
сто пересоздания новой копии. Тем не менее следует заметить, что не существует
гарантии однократного вызова делегатов. К тому же, если требуется предоставить
синхронизацию при создании или обновлении значения, ее нужно добавлять в сами
делегаты — коллекция этим заниматься не будет.

Родственным для AddOrUpdate является метод GetOrAdd, который ведет себя
почти так же:

string val1 = dict.GetOrAdd(
 // Ключ для извлечения
 0,
 // Делегат для создания значения, если его нет
 k => k.ToString());

string val2 = dict.GetOrAdd(
 // Ключ для извлечения
 0,
 // Значение для добавления, если такого значения нет
 "0");

Из этого следует извлечь урок: обращаться с коллекциями для многопоточной
среды нужно бережно. У них имеются особые требования и своеобразное поведение
для предоставления гарантий безопасности и эффективности, и, чтобы правильно
и успешно использовать их, нужно хорошо понимать, как они используются в кон-
тексте вашей программы. Из-за семантики, связанной с применением делегатов
и потребностью в обслуживании согласованной структуры данных, вполне может
оказаться, что при работе с этими структурами данных выполняется куда больше
кода, чем кажется.

Коллекции для работы с битами
Есть и еще небольшая группа специализированных коллекций, поставляемых со
средой .NET, но большинство из них ориентированы на работу со строками или хра-
нение экземпляров класса Object, так что их смело можно игнорировать. Заметные
исключения — коллекции BitArray и BitVector32.

324   Глава 6  •  Использование среды .NET Framework

BitArray представляет собой массив двоичных значений. Она позволяет уста-
навливать отдельные биты и выполнять в отношении всего массива булевы
операции. Если требуются только 32-разрядные данные, следует воспользоваться
коллекцией BitVector32, работа с которой выполняется быстрее и с меньшими
издержками, поскольку это структура (представляющая собой чуть более чем про-
стую надстройку над Int32).

Исходный объем
Большинство коллекций для хранения данных используют более простую струк-
туру. Зачастую это массив или набор массивов. По мере наполнения коллекции
этим массивам могут понадобиться перевыделение памяти и копирование данных.
Можно запросто попасть в нелепую ситуацию, когда основное время будет расхо-
доваться просто на изменение размера структур данных.

Благо большинство коллекций, подверженных данной проблеме, предостав-
ляют параметр конструктора, задающий объем предварительно выделяемой
памяти. Я рекомендую почаще задействовать его, даже в тех случаях, когда вы
не можете точно знать объем, к которому придете в итоге. И, как правило, пока
не окажутся существенно превышены требования к используемому объему, это
позволит сэкономить ресурсы, так как будет предотвращено повторяющееся
перевыделение памяти. В любом случае нужно все измерить с помощью про-
филировщика.

Коллекция Исходный объем Возможность
перевыделения памяти

ConcurrentDictionary<TKey, TValue> 31 Да

Dictionary<TKey, TValue> 0 Да

HashSet<T> 0 Да

List<T> 0 Да

Queue<T> 0 Да

SortedDictionary<TKey, TValue>* 0 Нет

SortedList<T> 0 Да

SortedSet<T> 0 Нет

Stack<T> 0 Да

Для HashSet при первой вставке будет выделена область памяти, чей размер
будет простым числом. SortedSet и SortedDictionary реализованы как двоичные
деревья, инкапсулирующие отдельно взятые узлы, память под которые выделяется
по мере необходимости.

Коллекции   325

Сравнение ключей
Структуры данных с ключом (например, Dictionary<TKey, TValue>) обычно так-
же принимают в качестве параметра «сравнитель» (comparer), позволяющий вам
определить, как сравнивать ключи.

В разделе «Строки» будет показано, что почти всегда для сравнения ключей
стоит использовать наиболее подходящую по смыслу стратегию сравнения, даже
если на вычисления затрачивается больше вычислительных ресурсов. Типичным
примером может послужить работа со строками и чувствительность к регистрам
символов.

Мне приходилось сталкиваться с кодом, подобным следующему, когда автор
не знал, как правильно проверять ключи:

var keytoLookup = "myKey";
var dict = new Dictionary <string , object >();
...
foreach(var kvp in dict)
{
 if (kvp.Key.ToUpper() == keyToLookup.ToUpper())
 {
 ...
 }
}

Это приводит к очень частой сборке мусора, нерациональному использованию
памяти и неоправданному расходованию ресурсов центрального процессора. Нуж-
но также избегать применения методов LINQ, упрощающих поиск подобного рода.

Решить проблему можно двумя способами.

1.	 Ограничить ключи исходного набора данных, избавив их от необходимости
выполнять сравнение без учета регистра символов. Это позволит обойтись без
выделения памяти, а также получить самый экономный вариант сравнения.

2.	 Передать объект сравнения конструктору Dictionary<TKey, TValue>, который
может использоваться для выполнения более точных операций сравнения
и поиска. Класс StringComparer через статические свойства предоставляет ряд
готовых к использованию «сравнителей».

var keytoLookup = "myKey";
var dict = new Dictionary <string , object >(
 StringComparer.OrdinalIgnoreCase);
...
object val;
if (dict.TryGetValue(keyToLookup , out val))
{
 ...
}

Теперь словарь может быть правильно использован по назначению.

326   Глава 6  •  Использование среды .NET Framework

Сортировка
И еще одно важное замечание: если вам когда-нибудь придется воспользоваться
собственными типами (особенно структурами) в качестве значений в списках
и эти значения по своей природе могут быть упорядочены, вам нужно реализовать
интерфейс IComparable<T>.

struct MyType : IComparable <MyType >
{
 public string Name { get; set; }

 public int CompareTo(MyType other)
 {
 return this.Name.CompareTo(other.Name);
 }
}

Если же значение может быть отсортировано произвольным способом (как в слу-
чае с объектом Person, сортировать который можно по дате рождения или фамилии),
то лучше и вовсе обойтись без такой реализации во избежание путаницы.

Создание собственных типов коллекций
Довольно редко, но все же иногда мне требуется создать с нуля собственные типы
коллекций. Если у встроенных типов отсутствует нужная семантика, то в качестве
подходящей абстракции следует создать собственный тип. При этом нужно при-
держиваться следующих общих рекомендаций.

1.	 Реализуйте везде, где это имеет смысл, стандартные интерфейсы коллекций:

yy IEnumerable<T>;

yy ICollection<T>;

yy IList<T>;

yy IDictionary<TKey, TValue>.

2.	 Решая вопрос о внутреннем хранении данных, учитывайте, как в будущем кол-
лекция будет использоваться. Если для нее будет характерен последовательный
доступ, обратите внимание на такие вещи, как локальность ссылок и поддержка
массивов.

3.	 Нужно ли вам добавлять синхронизацию в саму коллекцию? Или создать вер-
сию коллекции для применения в многопоточной среде?

4.	 Разберитесь в сложности выполнения алгоритмов добавления, вставки, обнов-
ления, поиска и удаления. Изучите описание сложности через «O» большое,
рассмотренное в приложении В.

5.	 Реализуйте API, имеющие семантический смысл, например, Pop для стеков,
Dequeue для очередей.

Строки   327

Строки
В среде .NET со строками связаны две проблемы.

1.	 Строки неизменяемы.

2.	 Нам требуется их изменять.

Эти два обстоятельства порождают большинство проблем.
Под неизменяемостью подразумевается, что после создания и до сборки мусора

строки существуют в неизменном виде. Следовательно, любые изменения строки
приводят к созданию новой строки. Быстрые высокоэффективные программы
обычно вообще не изменяют строки. Если задуматься, строки представляют тексто-
вые данные, главным образом предназначенные для восприятия человеком. Если
ваша программа не предназначена для отображения или обработки текста, строки
должны, насколько это возможно, рассматриваться как непрозрачные большие
двоичные объекты данных. Если есть выбор, предпочтение всегда нужно отдавать
нестроковому представлению данных.

Сравнение строк
Наилучшее сравнение строк — то, которое никогда не произойдет. Если получится,
воспользуйтесь перечисляемыми типами или какими-нибудь другими числовыми
данными для принятия решений. Если все же придется воспользоваться строками,
старайтесь делать так, чтобы они были короткими, и использовать по возможности
самый простой алфавитный набор.

Существует множество способов сравнения строк: просто по байтовым значени-
ям, с учетом текущей культуры, без учета регистра символов и т. д. Пользоваться
нужно самым простым из возможных способом.

Например, способ:

String.Compare(a, b, StringComparison.Ordinal);

быстрее способа:

String.Compare(a, b, StringComparison.OrdinalIgnoreCase);

который быстрее способа:

String.Compare(a, b, StringComparison.CurrentCulture);

При обработке таких программно сгенерированных строк, как, например,
настройки конфигурации или какой-либо другой тесно связанный программ-
ный контракт, можно ограничиться обычными сравнениями с учетом регистра
символов.

При всех сравнениях строк должны использоваться перегрузки методов, явно
включающие перечисление StringComparison. Пренебрежение этим должно счи-
таться ошибкой.

328   Глава 6  •  Использование среды .NET Framework

И наконец, метод String.Equals — это частный случай String.Compare, его
нужно использовать, когда порядок сортировки неважен. В большинстве случаев
он не будет быстрее, но все-таки лучше передает смысл вашего кода.

ToUpper и ToLower
Старайтесь избегать вызовов методов, подобных ToLower и ToUpper, особенно для
сравнения строк. Вместо этого воспользуйтесь одним из вариантов IgnoreCase
для метода String.Compare.

Этот способ, конечно, имеет некоторые недостатки, но не столь серьезные. С од-
ной стороны, верно, что проведение сравнения строк с учетом регистра символов
выполняется быстрее, однако это все-таки не повод для использования ToUpper
или ToLower, так как при этом гарантированно будет обработан каждый символ,
в то время как операция сравнения зачастую может принять решение при пер-
вой же встрече несовпадающего символа и даже быстрее, если строки отличаются
по длине. Кроме того, такой подход приводит к созданию новой строки, выделению
памяти и повышению нагрузки на сборщик мусора. Так что просто не используйте
его, насколько это возможно.

Объединение
Для простого объединения (конкатенации) известного на момент компиляции
количества строк обычно можно воспользоваться оператором + или методом
String.Concat. Зачастую это более эффективно в смысле расхода ресурсов цен-
трального процессора и памяти, чем применение StringBuilder. Есть также метод
String.Join, но суть его заключается в использовании StringBuilder:

string result = a + b + c + d + e + f;

Когда ситуация становится более динамичной, все усложняется и зависит от
таких факторов, как количество строк и их длина, и от возможности предваритель-
ной инициализации буфера результатов. В таком случае нужно применить класс
StringBuilder, в котором для построения строки перед ее превращением в объект
String используются объединенные в пул символьные буферы.

В сопровождающем книгу учебном коде есть проект StringConcatPerf, в котором
проводится эталонное тестирование ряда методов конкатенации.

В качестве эталона сравниваются десять текстовых строк, каждая длиной десять
литералов. На каждую итерацию уходит около 0,001 нс. С нелитералами время
разбивается следующим образом.

�� Количество = 10, длина = 1:

yy StringBuilder (неинициализированный) — 99 нс;

yy StringBuilder (инициализированный) — 125 нс;

yy String.Concat — 176 нс.

Строки   329

�� Количество = 10, длина = 10:

yy String.Concat — 195 нс;

yy StringBuilder (инициализированный) — 246 нс;

yy StringBuilder (неинициализированный) — 402 нс.

�� Количество = 100, длина = 1:

yy StringBuilder (инициализированный) — 771 нс;

yy StringBuilder (неинициализированный) — 895 нс;

yy String.Concat — 1714 нс.

�� Количество = 100, длина = 10:

yy StringBuilder (инициализированный) — 1721 нс;

yy String.Concat — 1943 нс;

yy StringBuilder (неинициализированный) — 2243 нс.

Как видите, относительная производительность сильно зависит от входных
характеристик. Разница между инициализированным и неинициализированным
StringBuilder заключается в том, что в первом случае конструктору передается
аргумент для предварительного выделения необходимого объема памяти:

var sb = new StringBuilder(1024); // предварительная инициализация
var sb2 = new StringBuilder(); // исходный 16-символьный буфер

По возможности нужно выполнять предварительную инициализацию объема
памяти для StringBuilder, чтобы он был по крайней мере не меньше необходимо-
го, что позволит избежать повторного выделения дополнительных буферов. Надо
отметить, что StringBuilder выделяет дополнительные буферы в виде выстро-
енных в цепочку областей памяти, и это позволяет во многом избежать проблем
с копированием, но все же не отличается высокой эффективностью использования
центрального процессора и памяти и может вызвать выделение объема памяти,
превышающего фактические потребности.

Форматирование
String.Format считается весьма затратным методом. Вдобавок к разбору формати-
руемой строки он выполняет упаковку аргументов значимого типа, потенциально
вызывает пользовательские средства форматирования и выделяет больше памяти,
чем необходимо для получающейся в результате строки. Не применяйте его без
особой необходимости. Старайтесь не использовать его в простых ситуациях, по-
хожих на следующую:

string message = String.Format(
 "The file {0} was {1} successfully.",
 filename ,
 operation);

330   Глава 6  •  Использование среды .NET Framework

Вместо этого нужно выполнить простую конкатенацию:

string message = "The file " + filename + " was " + operation
 + " successfully";

Приберегите применение String.Format для тех случаев, когда производитель-
ность не играет особой роли или спецификация форматирования намного сложнее
(например, указано количество десятичных знаков для числового значения с двой-
ной точностью).

В учебном проекте StringConcatPerf выдаются числовые показатели нескольких
эталонных тестов для сравнения String.Format и String.Concat:

�� String.Concat — 225 нс;
�� String.Format — 440 нс.

На создание строки с помощью String.Format уходит почти вдвое больше вре-
мени, чем на создание той же строки с помощью String.Concat. Для выполнения
поставленной задачи следует использовать самые простые и наименее затратные
средства.

ToString
Для многих классов вызов ToString следует применять крайне осмотрительно.
При удачном стечении обстоятельств будет возвращена уже существующая строка.
Другие классы выполнят кэширование строки сразу же после ее создания. Напри-
мер, класс IPAddress кэширует свою строку, но сам процесс ее генерации крайне
затратен — он включает в себя использование StringBuilder, форматирования и упа-
ковки. Другие типы могут создавать новую строку при каждом вызове. Это способно
стать весьма расточительным действием для центрального процессора и повлиять
на частоту сборки мусора.

При разработке собственных классов следует учесть особенности сценариев
будущих вызовов принадлежащего вашему классу метода ToString. При его частых
вызовах нужно обеспечить, чтобы строка генерировалась как можно реже. Если же
это всего лишь вспомогательный метод для отладки, то вполне вероятно, что детали
его реализации не имеют значения.

ToString зачастую вызывается средствами регистрации событий и различными
вспомогательными методами форматирования строк наподобие String.Format
и Console.WriteLine и родственными им функциями в других классах. Постарай-
тесь убедиться в том, что ваши собственные классы сконструированы с учетом этих
обстоятельств. Некоторые классы должны создавать строку только для отладки.

Избегайте разбора строк
По возможности конструируйте свою систему таким образом, чтобы не возникало
необходимости в разборе строк. Если данные должны преобразовываться из строк,
нельзя ли сделать это в автономном режиме или в ходе запуска приложения?
Обработка строк зачастую требует больших ресурсов центрального процессора,

Избегайте использования API, выдающих исключения   331

периодически повторяется и создает большую нагрузку на память. Всего этого
следует избегать.

Если требуется провести разбор в ходе выполнения приложения, воспользуй-
тесь методами, не выдающими исключений при сбоях. Например, не задействуйте
метод Int32.Parse, поскольку он станет выдавать исключение FormatException.
Вместо него примените метод Int32.TryParse, который просто возвратит значение
false. Подобные варианты API имеются у многих основных .NET-типов.

Подстроки
Класс String имеет различные методы для возвращения частей строк в виде
новой строки. Они приводят к выделению памяти под новые объекты. Если есть
возможность оперировать подпорцией в форме массива символов, рассмотрите
вероятность использования структуры ReadOnlySpan<T> в соответствии с описа-
нием, рассмотренным в главе 2, для представления части базового массива, как
в следующем примере:

{
...
 ReadOnlySpan <char> subString =
 "NonAllocatingSubstring".AsSpan().Slice(13);
 PrintSpan(subString);
...
}

private static void PrintSpan <T>(ReadOnlySpan <T> span)
{
 for (int i = 0; i < span.Length; i++)
 {
 T val = span[i];
 Console.Write(val);
 if (i < span.Length - 1) { Console.Write(", "); }
 }
 Console.WriteLine();
}

Этот код выведет следующее:

S, u, b, s, t, r, i, n, g

Избегайте использования API, выдающих
исключения при обычных обстоятельствах
В главе 5 говорилось, что исключения обходятся слишком дорого. Поэтому их
применение нужно оставить для по-настоящему исключительных ситуаций. К со-
жалению, ряд широко распространенных API игнорируют это основное положение.

У многих основных типов имеется метод Parse, который выдаст исключение
FormatException, когда введенная строка находится в нераспознаваемом формате.

332   Глава 6  •  Использование среды .NET Framework

В качестве примера можно привести методы Int32.Parse, DateTime.Parse и т. д.
Вместо них стоит применять метод TryParse, возвращающий при сбое разбора
булево значение.

В качестве еще одного примера можно привести класс System.Net.HttpWebRe
quest, выдающий исключение при получении от сервера ответа с кодом, отлич-
ным от 200. К счастью, это странное поведение было исправлено в классе Sys
tem.Net.Http.HttpClient в версии .NET 4.5.

Избегайте использования API,
выделяющих память из кучи
больших объектов
Вспомним материал главы 2, где говорилось, что, как правило, единственное, что
может быть достаточно большим для выделения памяти в куче больших объектов, —
это массивы. Если ваш собственный код выделяет под них память, то они, конечно
же, должны быть собраны в пул.

К сожалению, есть такие API .NET, которые также приводят к выделениям па-
мяти из кучи больших объектов. Единственный способ избежать применения таких
API — профилирование выделения памяти в куче с помощью PerfView, которое
покажет области кода, выделяющие память подобным образом. Совсем избежать
этого не удастся, поэтому нужно просто быть в курсе, что существуют API .NET,
которые будут так делать. Например, вызов метода Process.GetProcesses гаран-
тированно приведет к выделению памяти в куче больших объектов. Вы можете
избежать повторных LOH-распределений, используя кэширование результатов,
вызывая этот метод реже или полностью его игнорируя и извлекая нужную ин-
формацию путем взаимодействия непосредственно с API Win32.

Некоторые API будут объединять в пул создаваемые ими большие объекты во
избежание повторного выделения памяти в куче больших объектов (так, к при-
меру, делает метод StringBuilder), но вам нужно будет проанализировать их код,
чтобы обнаружить именно такую особенность работы. Чтобы двигаться в правиль-
ном направлении, достаточно выполнять профилирование и отталкиваться от его
результатов.

Применение ленивой инициализации
Если в вашей программе применяется большой или затратный для создания объект,
используемый крайне редко или вообще не используемый в ходе того или иного
вызова, то можно воспользоваться классом Lazy<T> в качестве оболочки для лени-
вой инициализации. Как только произойдет обращение к свойству Value, сразу же
будет инициализирован реальный объект — на основе параметров конструктора,
использованных при создании объекта Lazy<T>.

Применение ленивой инициализации   333

Если процесс создания объекта окажется сложнее, конструктору можно пере-
дать Func<T>.

var lazyObject = new Lazy<MyExpensiveObject >();
...
if (needRealObject)
{
 MyExpensiveObject realObject = lazyObject.Value;
 ...
}

Если конструкция сложнее, конструктору можно передать Func<T>:

var myObject = new Lazy<MyExpensiveObject >(
 () => Factory.CreateObject("A"));
...
MyExpensiveObject realObject = myObject.Value

Здесь Factory.CreateObject — фиктивный метод, создающий объект типа
MyExpensiveObject.

Если к myObject.Value обращаются сразу из нескольких потоков, вполне воз-
можно, что каждому из них понадобится инициализировать этот объект. По умол-
чанию Lazy<T> предназначен для работы в многопоточной среде, и только одному
потоку будет разрешено выполнить делегат, порождающий объект, и установить
значение свойства Value. Изменить эту особенность можно с помощью перечисле-
ния LazyThreadSafetyMode. У него имеется три значения:

�� None — безопасность не обеспечивается ни одному из потоков. В этом случае мо-
жет быть важно обеспечить обращение к объекту Lazy<T> только из одного потока;
�� ExecutionAndPublication — вызов порождающего делегата и установка значе-

ния свойства Value разрешены только одному потоку. Если конструктор Lazy
применяется без этого параметра, это значение используется по умолчанию;
�� PublicationOnly — вызов порождающего делегата доступен нескольким пото-

кам, но только один будет инициализировать свойство Value.

Lazy<T> следует задействовать вместо вашего собственного синглтона и реали-
заций шаблона блокировки с двойной проверкой.

При наличии большого количества объектов и, значит, при весомых из-
держках от использования Lazy<T> можно воспользоваться статическим методом
EnsureInitialized класса LazyInitializer. Здесь для обеспечения однократности
присваивания ссылки на объект используются методы Interlocked, но они не га-
рантируют однократность вызова порождающего делегата. В отличие от Lazy<T>
метод EnsureInitialized вы должны вызвать самостоятельно:

static MyObject[] objects = new MyObject[1024];
static void EnsureInitialized(int index)
{
 LazyInitializer.EnsureInitialized(ref objects[index],
 () => ExpensiveCreationMethod(index));
}

334   Глава 6  •  Использование среды .NET Framework

Обратите внимание на то, что за счет применения здесь делегата произойдет
дополнительное выделение памяти для объекта делегата вдобавок к выделению,
которое выполняется методом ExpensiveCreationMethod.

Удивительно высокие издержки
от использования перечислений
Возможно, для вас окажется неожиданностью то, что методы, работающие со значе-
ниями перечисления (Enum) — по сути своей целочисленными, — отличаются очень
высокими издержками. К сожалению, из-за требований, связанных с безопасностью
типов, многие простые операции обходятся дороже, чем вы ожидаете.

Возьмем, к примеру, метод Enum.HasFlag. Скорее всего, вы представляете себе
его реализацию примерно так:

public static bool HasFlag(Enum value , Enum flag)
{
 return (value & flag) != 0;
}

К сожалению, в реальности все выглядит скорее так:

// Код C#, сгенерированный ILSpy
public bool HasFlag(Enum flag)
{
 if (flag == null)
 {
 throw new ArgumentNullException("flag");
 }
 if (!base.GetType().IsEquivalentTo(flag.GetType()))
 {
 throw new ArgumentException("Enum types do not match",
 new object[]
 {
 flag.GetType(),
 base.GetType()
 }));
 }
 return this.InternalHasFlag(flag);
}

Это хороший пример побочных эффектов использования фреймворка общего
назначения. Если контролировать всю кодовую базу, можно улучшить код, сделать
более рациональным с точки зрения производительности путем определенных
допущений и принудительных ограничений, недоступных среде .NET Framework.
Если окажется, что проверять наличие флага приходится часто, реализуйте про-
верку самостоятельно:

[Flags]
enum Options

Учет времени   335

{
 Read = 0x01,
 Write = 0x02,
 Delete = 0x04
}

...

private static bool HasFlag(Options option , Options flag)
{
 return (option & flag) != 0;
}

Метод Enum.ToString также крайне затратен для перечислений Enum, имеющих
атрибут [Flags]. Один из вариантов удешевления его использования — кэширо-
вание всех вызовов ToString для этого типа Enum в простом Dictionary<EnumType,
String>. Или можно вообще избавиться от записи этих строк и добиться более
высокой производительности, применив фактическое числовое значение и авто-
номное преобразование в строки.

В качестве любопытного упражнения посмотрите, как много кода вызывается
при использовании Enum.IsDefined. И опять следует заметить, что существующая
реализация вполне приемлема, когда чистая производительность не играет боль-
шой роли, но если обнаружится, что это действительно узкое место в программе,
можно испытать настоящий ужас!

ИСТОРИЯ

Я обнаружил проблемы с производительностью, связанные с Enum, в самых жест-
ких обстоятельствах — сразу после выпуска программы. В ходе обычного профи-
лирования центрального процессора я заметил, что существенная доля времени
ЦП — более 3 % — затрачивалась на Enum.HasFlag и Enum.ToString. Удаление
всех вызовов HasFlag и использование Dictionary для кэшированных строк сделало
издержки пренебрежимо малыми.

Учет времени
Под временем подразумеваются две вещи:

�� абсолютное дневное время;
�� временной интервал (как много времени уходит на что-то).

Для абсолютного времени в среде .NET имеется структура общего назначения
DateTime. Но вызов DateTime.Now — довольно затратная операция, так как нужно
учесть информацию о часовом поясе. Вместо этого следует рассмотреть возмож-
ность использования более эффективного свойства DateTime.UtcNow.

Но даже вызов DateTime.UtcNow может оказаться слишком накладным для вас,
если требуется отслеживать множество отметок времени. В таком случае получите

336   Глава 6  •  Использование среды .NET Framework

время только один раз, а затем отслеживайте смещения, перестраивая абсолютное
время в автономном режиме с помощью показанной далее технологии измерения
промежутка времени.

Для измерения интервалов времени в .NET есть структура TimeSpan. Если вы-
честь одну структуру DateTime из другой, будет получена структура TimeSpan.

Но если нужно измерить очень небольшие промежутки времени с минималь-
ными издержками, воспользуйтесь системным счетчиком производительности
с помощью метода System.Diagnostics.Stopwatch, который возвратит 64-раз-
рядное число, показывающее количество тактов с момента подачи напряжения
на центральный процессор. Для вычисления реальной разницы во времени бе-
рутся два показания количества тактов, одно вычитается из другого, а результат
делится на частоту счетчика тиков системного таймера. Следует заметить, что
эта частота не обязательно связана с частотой процессора. Большинство совре-
менных процессоров часто меняют свою частоту, но на частоту счетчика тиков
это не влияет.

Класс Stopwatch можно использовать следующим образом:

var stopwatch = Stopwatch.StartNew();
//...выполнение работы...
stopwatch.Stop();
TimeSpan elapsed = stopwatch.Elapsed;
long elapsedTicks = stopwatch.ElapsedTicks;

Существуют также статические методы получения отметки времени и частоты
часов, которые могут оказаться удобнее при отслеживании большого количе-
ства отметок времени и желании избежать издержек от создания нового объекта
Stopwatch для каждого интервала:

long receiveTime = Stopwatch.GetTimestamp();
long parseTime = Stopwatch.GetTimestamp();
long startTime = Stopwatch.GetTimestamp();
long endTime = Stopwatch.GetTimestamp();

double totalTimeSeconds = (endTime - receiveTime) /
 Stopwatch.Frequency;

И наконец, не следует забывать, что значения, полученные с помощью метода
Stopwatch.GetTimestamp, действительны только для текущего сеанса выполнения
и только для вычисления относительной разницы во времени.

Сочетая два типа времени, можно понять, как вычисляются смещения отно-
сительно базового объекта DateTime для получения новых значений абсолютного
времени:

DateTime start = DateTime.Now;
long startTime = Stopwatch.GetTimestamp();
long endTime = Stopwatch.GetTimestamp();

double diffSeconds = (endTime - startTime) / Stopwatch.Frequency;
DateTime end = start.AddSeconds(diffSeconds);

Регулярные выражения   337

Регулярные выражения
Регулярные выражения являются способом поиска строки с применением расши-
ренного синтаксиса соответствия шаблону.

К числу простых примеров можно отнести следующий код:

Regex regex = new Regex("<value >(.*)</value >");

Здесь выполняется поиск любого текста между XML-тегами <value>. Регуляр-
ные выражения могут быть очень сложными и трудными для понимания, пока
не будет как следует усвоен их синтаксис и не изучены способы их разбиения на
вполне понятные блоки.

Примером более сложного на вид выражения будет:

static Regex regex =
 new Regex("\$\s*[-+]?([0-9]{0,3}(,[0-9]{3})*(\.[0-9]+)?)");

С его помощью извлекаются значения в долларовом выражении в виде $-34.19,
$52 и т. п.

Регулярные выражения не отличаются быстротой обработки. Внутри среды
.NET создается машина, внутреннее состояние которой предназначено для обхода
введенной строки и поиска ее соответствия символам шаблона. К сопутствующим
издержкам относятся следующие.

�� Возможная продолжительность времени вычисления. Она зависит от введенно-
го текста и шаблона для поиска соответствий. Создавать регулярные выражения
с низкой производительностью совсем не трудно. Минимальные различия выра-
жений могут дать существенную разницу в скорости обработки, их оптимизация
является обширной темой для изучения.

�� Генерирование сборки. При определенных настройках при создании вами объ-
екта Regex на лету создается сборка, хранящаяся в памяти. Она повышает про-
изводительность в ходе выполнения программы, но само ее создание обходится
довольно дорого.

�� Возможное повышение издержек на JIT-компиляцию. Код, сгенерированный
из регулярного выражения, может быть очень длинным и содержать типично
довольно «напряжные» для JIT-компилятора фрагменты. Хорошо, что послед-
ние версии JIT-компилятора существенно усовершенствованы в этой области.

Что касается среды .NET, то для повышения эффективности использования
Regex можно проделать следующее.

�� Обеспечить работу актуальных версий .NET и применение к ним исправлений.
В частности, в среде .NET 4.6 имеется новый JIT-компилятор, существенно
повышающий производительность синтаксического разбора регулярного вы-
ражения.

�� Вместо использования статических методов создать переменную экземпляра
Regex. Статические методы в любом случае создадут такой экземпляр внутри

338   Глава 6  •  Использование среды .NET Framework

себя, но вы не сможете воспользоваться им повторно. Они больше подходят для
одноразового применения.

�� Создать объект Regex с флагом RegexOptions.Compiled. Без этого флага ре-
гулярные выражения интерпретируются. А скомпилированные выражения
вычисляются намного быстрее за счет того, что основные затраты приходятся
на инициализацию из-за выдачи кода в сборку в памяти, которая потом под-
вергается JIT-компиляции. От компиляции выражений стоит отказаться, если
вы постоянно используете новые форматы, а старые крайне редко применяются
повторно. Это приведет к захламлению процесса массой дополнительного кода.

�� Не заниматься созданием объектов Regex снова и снова. Создайте один объект,
сохраните его и используйте многократно для проверки соответствия вновь
введенным строкам. Никогда не следуйте подобному подходу:

class Foo
{
 private static void Evaluate(string[] inputs)
 {
 for (int i = 0; i < inputs.Length; i++)
 {
 Regex regex = new Regex("<value >(.*)</value >",
 RegexOptions.Compiled);
 Match match = regex.Match(input);
 ...
 }
 }
}

Вместо этого сделайте следующее:

class Foo
{
 private static readonly Regex regex =
 new Regex("<value >(.*)</value >",
 RegexOptions.Compiled);

 private static void Evaluate(string[] inputs)
 {
 for (int i = 0; i < inputs.Length; i++)
 {
 Match match = regex.Match(input);
 ...
 }
 }
}

Может также потребоваться задать время ожидания сложных выражений:

Regex regex = new Regex("<value >(.*)</value >",
 RegexOptions.Compiled ,
 TimeSpan.FromSeconds(5));

LINQ   339

Можно также задать глобальное время ожидания, настроив домен приложения:

AppDomain.CurrentDomain.SetData("REGEX_DEFAULT_MATCH_TIMEOUT",
 TimeSpan.FromSeconds(10));

В качестве альтернативы регулярным выражениям можно найти или соз-
дать собственную библиотеку синтаксического анализа для таких очень простых
и имеющих небольшое количество вариантов шаблонов, как даты или телефонные
номера.

LINQ
Самая большая опасность, связанная с интегрированными в язык запросами
(Language Integrated Query, LINQ), заключается в потенциальном сокрытии от
вас кода — того самого, который невозможно принять в расчет, поскольку его нет
в исходном файле!

В качестве иллюстрации рассмотрим весьма простой пример в виде метода, вы-
полняющего сдвиг всех значений в массиве, отвечающих конкретному условию1,
на определенное число:

public static int[] ShiftLinq(int[] vals, int shiftAmount)
{
 var temp = from n in vals select n + shiftAmount;
 return temp.ToArray();
}

Во внешнем виде ничто не настораживает, но многое здесь происходит закулис-
но. Посмотрим на код IL, в который все это переводится:

.method public hidebysig static
 int32[] ShiftLinq (
 int32[] vals,
 int32 shiftAmount
) cil managed
{
 // Method begins at RVA 0x209c
 // Code size 37 (0x25)
 .maxstack 3
 .locals init (
 [0] class LinqCost.Program/'<>c__DisplayClass1_0'
)

 IL_0000: newobj instance void LinqCost.Program
 /'<>c__DisplayClass1_0'::.ctor()
 IL_0005: stloc.0
 IL_0006: ldloc.0
 IL_0007: ldarg.1

1	 В примере нет условия, но у автора есть упоминание этого условия. — Примеч. науч. ред.

340   Глава 6  •  Использование среды .NET Framework

 IL_0008: stfld int32
 LinqCost.Program/'<>c__DisplayClass1_0'
 ::shiftAmount
 IL_000d: ldarg.0
 IL_000e: ldloc.0
 IL_000f: ldftn instance int32
 LinqCost.Program/'<>c__DisplayClass1_0'
 ::'<ShiftLinq >b__0'(int32)
 IL_0015: newobj instance void class
 [mscorlib]System.Func '2<int32 , int32 >
 ::.ctor(object , native int)
 IL_001a: call class [mscorlib]
 System.Collections.Generic.IEnumerable '1<!!1>
 [System.Core]System.Linq.Enumerable
 ::Select <int32 , int32 >(class
 [mscorlib]System.Collections.Generic.IEnumerable '1
 <!!0>, class [mscorlib]System.Func '2<!!0, !!1>)
 IL_001f: call !!0[]
 [System.Core]System.Linq.Enumerable
 ::ToArray <int32 >(
 class [mscorlib]
 System.Collections.Generic.IEnumerable '1<!!0>)
 IL_0024: ret
} // end of method Program::ShiftLinq

Как видите, здесь 37 байт кода IL, включая два выделения памяти для объектов
замыканий и делегатов, а также два вызова метода. Некоторые из вызовов методов
в дальнейшем будут вызывать выделение памяти. В довершение всего финальный
вызов ToArray в самом конце получает аргумент IEnumerable<T>, а это означает, что
в зависимости от исходной коллекции о длине массива ничего не известно, пока
не будет достигнут его конец. Это влечет за собой изменение размера и копирова-
ние до самого конца, а затем финальное копирование в массив точно определенного
размера. Что это означает для вас, зависит от потребностей вашей программы.
Несомненно, все это намного затратнее альтернативной реализации:

public static void Shift(int[] vals, int shiftAmount)
{
 for (int i = 0; i < vals.Length; i++)
 {
 vals[i] += shiftAmount;
 }
}

Вместо синтаксиса запроса здесь используется обычный цикл for с инструк-
цией if. Все это переводится в следующий код IL:

.method public hidebysig static
 void Shift (
 int32[] vals,
 int32 shiftAmount

LINQ   341

) cil managed
{
 // Method begins at RVA 0x20d0
 // Code size 27 (0x1b)
 .maxstack 3
 .locals init (
 [0] int32
)

 IL_0000: ldc.i4.0
 IL_0001: stloc.0
 IL_0002: br.s IL_0014
 // loop start (head: IL_0014)
 IL_0004: ldarg.0
 IL_0005: ldloc.0
 IL_0006: ldelema
 [mscorlib]System.Int32
 IL_000b: dup
 IL_000c: ldind.i4
 IL_000d: ldarg.1
 IL_000e: add
 IL_000f: stind.i4
 IL_0010: ldloc.0
 IL_0011: ldc.i4.1
 IL_0012: add
 IL_0013: stloc.0

 IL_0014: ldloc.0
 IL_0015: ldarg.0
 IL_0016: ldlen
 IL_0017: conv.i4
 IL_0018: blt.s IL_0004
 // end loop

 IL_001a: ret
} // end of method Program::Shift

Полученный код IL меньше на 27 байт, но важнее всего абсолютное отсутствие
выделений памяти или вызовов методов.

Если присмотреться, в версии кода для цикла можно заметить весьма примеча-
тельную хитрость: в ней исходный массив изменяется, а в LINQ-версии создается
новый массив. Это сделано преднамеренно. LINQ подталкивает вас к созданию
новых объектов, а не к повторному использованию уже существующих. Такое
случается довольно часто, поскольку в LINQ весьма интенсивно используется
интерфейс IEnumerable<T>, являющийся интерфейсом самого низкого уровня,
который может быть реализован коллекцией. Это означает невозможность приме-
нения семантики, более подходящей для конкретной структуры данных, и потерю
при обработке некоторой доли производительности. Впрочем, существуют методы,

342   Глава 6  •  Использование среды .NET Framework

которые будут проверять наличие других интерфейсов, подобных ICollection или
IList, и по возможности нужно использовать именно такие методы. В LINQ так-
же принят довольно функциональный, неизменяемый взгляд на данные. Это нас
учит тому, что инструментальные средства зачастую навязывают ограничения на
архитектуру и производительность.

А как все-таки изменилась производительность? Вот показатели, полученные
в результате эталонного тестирования.

Метод Среднее,
нс

Ошибка,
нс

Стандартное
отклонение
(StdDev), нс

Поколение
gen 0

Выделения
памяти, байт

ShiftLinq 286,78 1,8867 1,7648 0,0448 236

Shift 12,38 0,1568 0,1390 — 0

LINQ-версия в 20 раз затратнее более простой версии, и из-за выделений памяти
в ней выше вероятность сборки мусора.

Я хочу уточнить, что LINQ — неплохая технология и ее есть где применить.
Временами она чрезвычайно полезна, и многие LINQ-запросы вполне произ-
водительны, но LINQ также может весьма интенсивно использовать делегаты,
интерфейсы и временное выделение памяти под объекты, если чрезмерно увле-
каться временными динамическими объектами, объединениями или сложными
условиями where.

Применяя Parallel LINQ, зачастую можно добиться существенного ускорения,
но следует иметь в виду, что при этом объем проделываемой работы не сокраща-
ется, а перераспределяется на несколько процессоров. Это может быть вполне
приемлемо для приложения, предназначенного главным образом для выполнения
в одном потоке и нуждающегося в экономии времени при LINQ-запросе. Но если
программа создается для сервера, задействующего для обработки данных все
ядра, распределение LINQ среди этих же самых процессоров по большому счету
не принесет никакой выгоды и даже может навредить. В таком случае, возможно,
разумнее выполнять задачу без использования LINQ, а подобрать что-нибудь более
эффективное.

Если вы подозреваете о том, что возникла некая неучтенная сложность, запусти-
те PerfView и посмотрите на представление JITStats, чтобы увидеть размеры кода IL
и показатель времени, затраченного на JIT-компиляцию методов, применяющих
LINQ. Также обратите внимание на использование центрального процессора этими
методами после их JIT-компиляции.

Стоит отметить, что в LINQ в .NET Core внесено несколько эффективных усо-
вершенствований, таких как сокращение общего количества выделений памяти,
уход от выделений памяти для делегатов и повсеместное улучшение алгоритмов
при использовании коллекций известных размеров (в обход проблемы, связанной
с IEnumerable), что может компенсировать некоторые из рассмотренных здесь за-
трат, но не все.

Чтение и запись файлов   343

В завершение следует сказать, что для выполнения поставленной задачи нужно
подбирать соответствующий ей инструментарий и LINQ вполне может подойти для
большинства компонентов ваших программных продуктов и обеспечить удобную
работу, но оказаться совершенно непригодным для других их частей. Там, где про-
исходит выделение памяти и интенсивно используется центральный процессор,
нужно проводить измерения, и обычно код, активно применяющий LINQ, можно
без особых усилий преобразовать во что-то другое. При этом всегда следует ори-
ентироваться на результаты профилирования.

Чтение и запись файлов
В классе File есть ряд весьма удобных методов, таких как Open, OpenRead, OpenText
и OpenWrite. Они вполне подходят для тех случаев, когда не нужно добиваться особо
высокой производительности.

При выполнении большого объема дискового ввода-вывода следует обращать
внимание на тип доступа к диску: произвольный, последовательный или требу
ющий того, чтобы запись на устройство произошла на физическом уровне, пре-
жде чем приложение будет уведомлено о завершении ввода-вывода. Для такого
уровня детализации следует воспользоваться классом FileStream и перегрузкой
конструктора, принимающей перечисление FileOptions. Используя логическое
ИЛИ, можно скомбинировать множество флагов, но не все возможные комби-
нации валидны. Применение этого параметра необязательно, но он может дать
подсказки операционной или файловой системе, позволяющие оптимизировать
доступ к файлу:

using (var stream = new FileStream(
 @"C:\foo.txt",
 FileMode.Open,
 FileAccess.Read,
 FileShare.Read,
 16384 /* Buffer Size*/,
 FileOptions.SequentialScan | FileOptions.Encrypted))
{
...
}

Доступны следующие значения:

�� None — без дополнительных настроек;

�� Asynchronous — показывает намерения провести чтение файла или запись в него
в асинхронном режиме. Устанавливать этот флаг не обязательно для фактиче-
ского выполнения асинхронных чтения и записи, но, если его не указать, ввод-
вывод низкого уровня будет выполняться в синхронном режиме без портов
завершения ввода-вывода (поток по-прежнему будет выполняться асинхронно).
Существуют также переопределения конструктора FileStream, которые будут
получать булев параметр, чтобы задать выполнение асинхронного доступа;

344   Глава 6  •  Использование среды .NET Framework

�� DeleteOnClose — заставляет операционную систему удалять файл при закрытии
его последнего дескриптора. Используется для временных файлов;

�� Encrypted — вызывает шифрование файла с применением регистрационных
данных текущей учетной записи;

�� RandomAccess — дает подсказку файловой системе оптимизировать кэширование
для произвольного доступа;

�� SequentialScan — дает подсказку файловой системе о том, что чтение файла
будет производиться последовательно;

�� WriteThrough — приводит к игнорированию кэширования и непосредственному
переходу к постоянному хранилищу устройства. Обычно параметр замедляет
выполнение ввода-вывода. Этому флагу будет подчиняться кэш файловой си-
стемы, но у многих устройств хранения данных есть собственная кэш-память,
и они могут проигнорировать этот флаг и отрапортовать об успешном заверше-
нии еще до записи данных в постоянное хранилище.

Произвольный доступ негативно отражается на работе любого устройства, будь
то жесткий диск или ленточный накопитель, нуждающийся в поиске требуемой по-
зиции. С точки зрения производительности последовательный доступ предпочти-
тельнее. Впрочем, многие современные компьютеры оборудованы твердотельными
накопителями (SSD), для которых разница между произвольным и последователь-
ным доступом либо минимальна, либо вовсе отсутствует.

Большинству приложений не стоит беспокоиться о конкретном стиле ввода-
вывода, пока они полностью не исчерпают возможности устройств, к которым
обращаются. Как только это произойдет, придется принимать в расчет тип оборудо-
вания, а также разновидность выполняемого доступа и соответствующим образом
использовать вышеупомянутые флаги.

Оптимизация настроек HTTP и сетевых соединений
Если приложение выполняет исходящие HTTP-вызовы, то для оптимизации пере-
дачи данных по сети существует ряд изменяемых настроек. Но изменения нужно
вносить осторожно, поскольку их эффективность сильно зависит от топологии
вашей сети и от серверов на другой стороне соединения. Также следует учитывать,
где именно находятся целевые конечные точки — в контролируемом вами дата-
центре или где-то на просторах Интернета. Чтобы разобраться, есть ли польза от
этих настроек, нужно все тщательно измерить.

Чтобы изменения по умолчанию касались всех конечных точек, внесите по-
правки в следующие статические свойства класса ServicePointManager:

�� DefaultConnectionLimit — количество соединений, приходящихся на конечную
точку. Более высокое значение этого параметра может увеличить общую про-

Оптимизация настроек HTTP и сетевых соединений   345

пускную способность, если сетевые соединения и обе конечные точки могут
с этим справиться;

�� Expect100Continue — когда клиент инициирует команду POST или PUT, она,
прежде чем приступить к отправке данных, обычно ожидает от сервера сиг-
нал на продолжение 100-Continue. Это позволяет серверу отклонять запрос,
прежде чем будут отправлены данные, экономя при этом пропускную способ-
ность. Если вы контролируете обе конечные точки и к вам данная ситуация
неприменима, то для улучшения ситуации с задержками это свойство нужно
отключить;

�� UseNagleAlgorithm — оптимизация по алгоритму Nagle, описание которой на-
ходится в RFC 896 по адресу https://tools.ietf.org/html/rfc896.html, представляет
собой способ сокращения издержек, связанных с передаваемыми по сети паке-
тами, путем объединения множества мелких пакетов в один большой. Из этого
можно извлечь пользу за счет сокращения общих издержек на передачу данных
по сети, но это может привести также к задержкам сетевой передачи пакетов.
Для современных сетей это свойство обычно должно быть отключено. Можете
поэкспериментировать с его отключением и посмотреть, насколько сократится
время реагирования.

Некоторые из этих настроек могут также применяться к отдельным объектам
ServicePoint, чем можно воспользоваться в случае, когда требуется изменять
настройки для отдельных конечных точек, возможно, чтобы различать локаль-
ные конечные точки дата-центра и конечные точки в Интернете. В дополнение
к перечисленным ранее класс ServicePoint позволяет контролировать следующие
параметры:

�� ConnectionLeaseTimeout — указывает максимальное время в миллисекундах
для поддержания активного подключения в рабочем состоянии. Чтобы актив-
ность была бесконечной, для этого параметра следует установить значение –1.
Эта настройка пригодится для соблюдения баланса нагрузки, когда понадо-
бится периодически заставлять соединение закрываться, чтобы процесс пере-
подключался к разным машинам. Установка для этого параметра значения 0
приведет к закрытию соединения после каждого запроса. Такой вариант
не рекомендуется, поскольку создание нового HTTP-соединения обходится
слишком дорого;

�� ConnectionLimit — указывает максимальное количество подключений к данной
конечной точке;

�� MaxIdleTime — указывает максимальное время в миллисекундах, в течение
которого соединение может оставаться открытым, находясь в режиме простоя.
Чтобы соединение оставалось открытым бесконечно долго, независимо от на-
личия или отсутствия активности, этому параметру нужно присвоить значение
Timeout.Infinite;

346   Глава 6  •  Использование среды .NET Framework

�� ReceiveBufferSize — размер буфера, используемого для получения запросов.
По умолчанию он составляет 8 Кбайт. Если приходится регулярно получать
большие запросы, можно воспользоваться более объемным буфером;

�� SupportsPipelining — разрешение нескольким запросам отправляться без ожи-
дания ответа, прежде чем отправить последующий запрос. При этом ответы на
такие запросы отсылаются в порядке очередности. Дополнительные сведения
можно найти в спецификации RFC 2616 по адресу https://tools.ietf.org/html/rfc2616
(стандарт HTTP/1.1).

Можно также заставить отдельно взятый HTTP-запрос закрыть текущее соеди-
нение (после отправки ответа на этот запрос), установив для заголовка KeepAlive
значение false.

ИСТОРИЯ

Все данные должны передаваться в оптимальной кодировке. Выполняя про-
филирование внутренней системы, мы заметили чрезвычайно высокий уровень
выделения памяти и использования центрального процессора для конкретного
компонента. Проведя некоторые исследования, мы выяснили, что он получал
HTTP-ответ, преобразовывал полученные байты в строку в кодировке Base64,
раскодировал ее в большой двоичный объект (blob) и в конце выполнял десериа-
лизацию blob-объекта в строго типизированный объект. Это приводило к пустым
затратам пропускной способности на ненужную перекодировку blob-объекта
в строку и к неоправданному расходу ресурсов центрального процессора из-за
применения нескольких уровней кодирования, а вдобавок становилось причиной
более высоких затрат времени на сборку мусора с выделением памяти для не-
скольких больших объектов. Урок заключается в том, что следует отправлять
только нужные данные, оформив их как можно компактнее. Использование Base64
в наше время вряд ли принесет пользу, особенно для внутренних компонентов.
Независимо от того, какой ввод-вывод выполняется, файловый или сетевой, стре-
митесь к идеалу при кодировании данных. Например, если нужно прочитать ряд
целых чисел, не тратьте впустую время центрального процессора, память, дис-
ковое пространство и пропускную способность сети, заключая его в формат XML.

Еще одно предостережение касается принципа, обозначенного в начале этой
главы: среда .NET Framework является фреймворком общего назначения. Встро-
енный HTTP-клиент в целом весьма хорош и вполне приемлем для загрузки со-
держимого из Интернета, но может не подойти для всех приложений, в частности,
при сильной чувствительности приложения к задержкам в высоких процентилях
и особенно при наличии запросов внутри дата-центра. Если вас беспокоит 95-й
или 99-й процентиль задержек HTTP-запросов, то, возможно, чтобы добрать не-
достающую производительность, придется создавать собственный HTTP-клиент
поверх API WinHTTP. Чтобы сделать все правильно, оправдав потраченные
усилия, необходим соответствующий опыт и в работе с HTTP, и в использовании
многопоточности в среде .NET.

SIMD   347

SIMD
Свойство процессоров, которое называется Single-Instruction, Multiple-Data (один
поток команд, несколько потоков данных), позволяет выполнять один набор опера-
ций над несколькими фрагментами данных. Большинство современных процессоров
платформ x64 как от компании Intel, так и от компании AMD поддерживают эти
инструкции, критически важные для параллельных вычислений, требующихся
в таких областях, как компьютерные игры, научные и математические вычисления.
Последний на момент написания книги JIT-компилятор (4.7.1) допускает ограни-
ченное использование этих инструкций и регистров, главным образом посредством
NuGet-пакета System.Numerics.Vectors.

Рассмотрим, к примеру, алгоритм поиска минимального значения в массиве.
Простой последовательный алгоритм будет иметь следующий вид:

int min = int.MaxValue;
for (int i = 0; i < sourceArray.Length; i++)
{
 if (sourceArray[i] < min)
 {
 min = sourceArray[i];
 }
}

Эквивалентная ему SIMD-версия значительно сложнее:

var minVector = new Vector <int>(int.MaxValue);
int i = 0;
// обработка массива порциями, равными длине вектора
for (i=0; i < Length - Vector <int>.Count; i += Vector <int>.Count)
{
 Vector <int> subArray = new Vector <int>(this.sourceArray , i);
 minVector = Vector.Min(subArray , minVector);
}

// получение минимума из минимального вектора и оставшихся элементов
int min = Int32.MaxValue;
for (int j = 0; j < Vector <int>.Count; j++)
{
 min = Math.Min(min, minVector[j]);
}
for (i = 0; i < sourceArray.Length; i++)
{
 min = Math.Min(min, sourceArray[i]);
}

Поскольку Vector использует аппаратные регистры, длина определяется обо-
рудованием и является статической величиной, поэтому в приведенном ранее
примере задействуется статическое свойство Vector<int>.Count. На моей машине
SIMD-версия работает не быстрее не-SIMD-версии. Но для другого алгоритма

348   Глава 6  •  Использование среды .NET Framework

ситуация совершенно иная. Здесь алгоритм масштабирует массив, применяя цело-
численное значение. Версия, не использующая SIMD, выглядит очень просто:

for(int i=0; i < this.sourceArray.Length; i++)
{
 this.destinationArray[i] = this.sourceArray[i] * ScaleFactor;
}

А SIMD-версия, пожалуй, еще проще:

this.destinationVector = this.sourceVector * ScaleFactor;

В этом случае получается огромная разница в производительности. Вот некото-
рые результаты проведения эталонного тестирования для обоих типов алгоритмов.

Метод Среднее, нс Ошибка, нс Стандартное отклонение (StdDev), нс

Min NonSIMD 4,312 0,1615 0,4761

Min SIMD 8,645 0,0342 0,0320

Scale NonSIMD 4,764 0,0201 0,0188

Scale SIMD 2,363 0,0052 0,0046

Здесь видно, что масштабирование вектора выполняется более чем в два раза
быстрее по сравнению с работой версии, не использующей SIMD.

Гарантировать, что любая произвольно взятая SIMD-версия алгоритма обеспе-
чит более быструю работу, чем ее не-SIMD-эквивалент, невозможно. Правильное
применение алгоритмов может зависеть от контекста, оборудования, особенностей
вашего центрального процессора и схем памяти. Использование SIMD-инструкций
сопряжено с дополнительными издержками, и весь смысл состоит в том, чтобы
эти потери не превышали выгоды, получаемой от ускорения работы, достигаемо-
го благодаря параллельным вычислениям. Обычно эффективность применения
алгоритма на SIMD-основе зависит от того, насколько удастся ограничить вы-
полнение всех операций с данными работой исключительно со структурой Vector
или другими структурами данных из System.Numerics.Vectors. Это эквивалентно
выполнению вычислений непосредственно на компьютерном оборудовании. Когда
значения переносятся из структуры Vector в стандартные структуры данных среды
.NET, преимущества, получаемые от параллельных вычислений и аппаратного
ускорения, утрачиваются.

Исследование причин возникновения проблем
с производительностью
Многие приемы поиска проблем с производительностью среды .NET Framework
точно такие же, как и применяемые при их поиске в вашем собственном коде. Когда
с помощью инструментальных средств выполняется профилирование использо-
вания центрального процессора, выделений памяти, исключений, конфликтных

Резюме   349

ситуаций и многого другого, тогда в среде выявляются проблемные участки кода
аналогично тому, как они выявляются в вашем собственном коде.

Следует заметить, что PerfView создаст из большинства составляющих среды
единую группу, и может понадобиться изменить настройки отображения, чтобы
получить более понятную картину производительности элементов среды.

Счетчики производительности. В среде .NET множество категорий счетчиков
производительности. В главах 2–4, где давалось описание сборки мусора, JIT-
компиляции и асинхронного программирования, также приводились подробные
сведения о соответствующих счетчиках производительности, специфичных для
рассматриваемых в этих главах тем. В среде .NET есть также счетчики произво-
дительности для следующих категорий:

�� .NET CLR Data — относящиеся к SQL-клиентам, пулам соединений и командам;
�� .NET CLR Exceptions — относящиеся к частоте выдачи исключений;
�� .NET CLR Interop — относящиеся к вызову машинного кода из управляемого

кода;
�� .NET CLR Networking — относящиеся к соединениям и объему переданных дан-

ных;
�� .NET CLR Remoting — относящиеся к количеству удаленных вызовов, выделениям

памяти под объекты, каналам и многому другому;
�� .NET CLR Data Provider for SqlServer/Oracle — для различных клиентов баз данных

.NET.

В зависимости от конфигурации своей системы вы можете увидеть более широ-
кий или узкий перечень счетчиков по сравнению с представленным здесь.

Резюме
Точно так же, как и при работе с любым другим фреймворком, вы должны разо-
браться с подробностями реализации используемых API. Ничего не берите на веру.

Будьте осмотрительны при выборе классов коллекций. Учитывайте семантику
API, локальность памяти, сложность алгоритмов и использование пространства
при выборе коллекции. Отдавайте предпочтение ступенчатым, а не многомерным
массивам. Полностью исключите устаревшие необобщенные коллекции вроде
ArrayList и HashTable. Пользуйтесь коллекциями для многопоточной среды, только
если нужна синхронизация большинства или всех обращений. Обратите внима-
ние на исходный объем, сравнение ключей и возможность сортировки коллекций
и хранящихся в них объектов.

Уделите особое внимание использованию строк и избегайте создания излишних
строк. Отдавайте предпочтение более простым, а не сложным API вроде String.Format.
Работая с подстроками, по возможности пользуйтесь ReadOnlySpan<T>.

Избегайте использования API, выдающих исключения в обычных обстоятель-
ствах, провоцирующих выделение памяти в кучи больших объектов или имеющих
более затратную реализацию, чем вы ожидаете.

350   Глава 6  •  Использование среды .NET Framework

Применяя регулярные выражения, убедитесь в том, что повторно не создаются
одни и те же Regex-объекты, и всерьез рассматривайте возможность их компиляции,
устанавливая флаг RegexOptions.Compiled.

Обратите внимание на тип выполняемого ввода-вывода и воспользуйтесь подхо-
дящими флагами при открытии файлов, чтобы дать операционной системе возмож-
ность оптимизировать производительность в вашу пользу. Для сетевых вызовов
отключите Nagling и Expect100Continue. Передавайте только строго необходимые
данные и избегайте использования лишних уровней кодирования.

Прекращайте применять API отражения для выполнения динамически загру-
жаемого кода. Вызывайте такой код через общие интерфейсы или посредством
делегатов, созданных с помощью автоматической генерации кода.

Если производятся значительные манипуляции над массивами и матрицами,
задействуйте NuGet-пакет System.Numerics.Vectors, чтобы получить преимущества
SIMD-команд.

7 Счетчики
производительности

Счетчики производительности играют важную роль для отслеживания общей
производительности вашего приложения с течением времени. Если вы отвечаете
за отслеживание и повышение производительности системы, счетчики произ-
водительности помогут справиться с этой задачей. Хотя они могут (и должны)
применяться для мониторинга показателей в реальном времени, дополнительную
пользу можно получить, если сохранять их в базе данных для анализа на протяже-
нии длительного периода. Это позволит оценить влияние на производительность
приложения, оказываемое выпусками новых версий, моделями использования
приложения и другими событиями.

Счетчики производительности могут потребляться вашим собственным кодом
для самомониторинга, архивирования или автоматического анализа данных. Мож-
но также создать и зарегистрировать собственные счетчики, которые затем станут
доступными для мониторинга подобным образом. Соотнесение показателей поль-
зовательских счетчиков вашей программы с показаниями системных счетчиков
для приложения зачастую позволяет очень быстро отыскать источник проблем.

Счетчики производительности являются Windows-управляемыми объектами,
отслеживающими значения с течением времени. Это могут быть произвольные
числа, результаты подсчетов, скорости, промежутки времени и другие разно-
видности данных. У каждого счетчика есть связанные с ним категория и имя.
У большинства счетчиков есть также экземпляры, являющиеся конкретными под-
разделами по логическим дискретным признакам. Например, счетчик % Processor
Time в категории Processor имеет экземпляры для каждого запущенного в данный
момент процесса. Многие счетчики также имеют метаэкземпляры, такие как _Total
или <Global>, объединяющие данные, получаемые от всех экземпляров. Многие
компоненты Windows создают собственные счетчики производительности, и CLR
не исключение. Существуют сотни счетчиков, доступных для отслеживания
почти каждого аспекта производительности программы. Они рассматривались
в предыдущих главах этой книги. Чтобы увидеть все имеющиеся в системе эк-
земпляры счетчиков производительности, воспользуйтесь, как описано в главе 1,
утилитой PerfMon.exe, поставляемой с Windows. В данной главе рассматривается
программный доступ к таким счетчикам как с точки зрения их потребления, так
и для создания собственных счетчиков.

352   Глава 7  •  Счетчики производительности

Использование существующих счетчиков
Чтобы воспользоваться счетчиком, нужно создать экземпляр класса Performan
ceCounter, снабжая его необходимыми для отслеживания категорией и именем.
Дополнительно можно указать имя экземпляра и машины. Рассмотрим пример,
прикрепляющий объект счетчика к счетчику % Processor Time:

PerformanceCounter cpuCtr = new PerformanceCounter("Process",
 "% Processor Time", process.ProcessName);

Для извлечения значений нужно периодически вызывать в отношении объекта
счетчика метод NextValue:

float value = cpuCtr.NextValue();

В документации по API рекомендуется вызывать NextValue не чаще одного раза
в секунду, чтобы дать счетчику достаточно времени для следующего считывания.
Простой пример, показывающий использование нескольких встроенных и поль-
зовательских счетчиков, вы найдете в сопровождающем книгу учебном проекте
PerfCountersTypingSpeed.

Создание пользовательского счетчика
Для создания собственного пользовательского счетчика следует получить экзем-
пляр класса CounterCreationData, предоставив ему имя и тип. Этот экземпляр
добавляется к коллекции, которая затем добавляется к категории:

const string CategoryName = "PerfCountersTypingSpeed";
if (!PerformanceCounterCategory.Exists(CategoryName))
{
 var counterDataCollection = new CounterCreationDataCollection();
 var wpmCounter = new CounterCreationData();
 wpmCounter.CounterType =
 PerformanceCounterType.RateOfCountsPerSecond32;
 wpmCounter.CounterName = "WPM";
 counterDataCollection.Add(wpmCounter);

 try
 {
 // Создание категории
 PerformanceCounterCategory.Create(
 CategoryName ,
 "Demo category to show how to create and consume counters",
 PerformanceCounterCategoryType.SingleInstance ,
 counterDataCollection);
 }
 catch (SecurityException)
 {
 // Обработка ошибки — нет прав на применение данного изменения!
 }
}

Создание пользовательского счетчика   353

Для создания пользовательского счетчика вы должны иметь разрешение Per
formanceCounterPermission. На практике это означает, что новые счетчики обычно
следует создавать с программой установки, которая может запускаться с по-
вышенными разрешениями. В среде .NET предоставляется класс Performan
ceCounterInstaller, в который могут заключаться несколько экземпляров класса
CounterCreationData, после чего эти счетчики будут установлены с поддержкой
отката и удаления.

Как описано далее, существует множество счетчиков, сгруппированных в не-
сколько категорий. Кроме того, для некоторых счетчиков определены 32- и 64-раз-
рядные размеры. Можете воспользоваться наиболее подходящими из них для
данных, которые записываете.

Счетчики усредненных показателей
Соответствующие счетчики показывают среднее значение двух последних изме-
рений:

�� AverageCount64 — количество обработок во время операции;

�� AverageTimer32 — продолжительность обработки операции;

�� CountPerTimeInterval32/64 — средняя длина очереди для ресурса;

�� SampleCounter — подсчет количества операций, выполненных за секунду.

Чтобы определить, сколько операций было выполнено с момента последнего
обновления счетчика, счетчики AverageCount64 и AverageTimer32 нуждаются в по-
мощи второго счетчика, AverageBase. Счетчик AverageBase должен быть проини-
циализирован сразу же после счетчика, к которому он применяется. Совместное
создание этих двух счетчиков показано в следующем коде:

var counterDataCollection = new CounterCreationDataCollection();

// Фактический усредняющий счетчик
var bytesPerTx = new CounterCreationData();
bytesPerTx.CounterType = PerformanceCounterType.AverageCount64;
bytesPerTx.CounterName = "BytesPerTransmission";
counterDataCollection.Add(bytesPerTx);

// Базовый счетчик, помогающий выполнить вычисления
var bytesPerTxBase = new CounterCreationData();
bytesPerTxBase.CounterType = PerformanceCounterType.AverageBase;
bytesPerTxBase.CounterName = "BytesPerTransmissionBase";
counterDataCollection.Add(bytesPerTxBase);

PerformanceCounterCategory.Create(
 "Network Statistics",
 "Network statistics demo counters",
 PerformanceCounterCategoryType.SingleInstance ,
 counterDataCollection);

354   Глава 7  •  Счетчики производительности

Для установки значений каждый счетчик меняется на количество подсчитыва-
емых объектов и на количество операций, связанных с этими объектами. В нашем
примере все это делается довольно просто:

bytesPerTx.IncrementBy(request.Length);
bytesPerTxBase.IncrementBy(1);

Счетчики мгновенных показателей
Это самые простые счетчики. Они отражают значение последней выборки.

�� NumberOfItems32/64 — показывает последнее значение простого количества.
�� NumberOfItemsHEX32/64 — показывает то же самое, что и NumberOfItems32/64, но

отображенное в шестнадцатеричном формате.
�� RawFraction — с базовым счетчиком RawBase показывает процент от общего

количества. Значение общего количества присваивается базовому счетчику,
а поднабор этого общего количества — данному счетчику. В качестве примера
можно привести показатель использования диска в процентах.

Дельта-счетчики
Дельта-счетчики показывают разницу между последними двумя значениями счет-
чика.

�� CounterDelta32/64 — показывает разницу между последними двумя записан-
ными значениями.
�� ElapsedTime — показывает время от запуска компонента или процесса до на-

стоящего момента. Этим можно воспользоваться, например, для отслеживания
рабочего времени вашего приложения. После инициализации этому счетчику
не предоставляются никакие новые значения.
�� RateOfCountsPerSecond32/64 — среднее количество операций, выполненных за

секунду.

Процентные счетчики
Процентные счетчики демонстрируют процент использования ресурса. В некоторых
случаях этот процент может быть больше 100. Рассмотрим многопроцессорную
систему: процент использования центрального процессора может быть взят от-
носительно одного ядра. Каждый экземпляр счетчика представляет показатели
одного из ядер. Если одновременно задействуются несколько ядер, процентный
показатель может быть больше 100.

�� CounterTimer — показывает процент времени активности компонента в общем
времени выборки.
�� CounterTimerInverse — показывает то же самое, что и CounterTimer, за исклю-

чением того, что измеряется время, в течение которого компонент неактивен,

Резюме   355

и затем вычитается из 100 %. Иными словами, у него будет такое же значение,
как и у CounterTimer, но оно получается обратным образом.
�� CounterMultiTimer — показывает то же самое, что и CounterTimer, но суммиру-

ет активное время всех экземпляров, что может дать процентный показатель
больше 100.
�� CounterMultiTimerInverse — показатель берется из нескольких экземпляров, но

выводится из времени пребывания в неактивном состоянии.
�� CounterMultiTimer100Ns — вместо тактов системного счетчика производитель-

ности использует такты с интервалом 100 нс.
�� CounterMultiTimer100NsInverse — похож на счетчик CounterMultiTimer100Ns,

но применяет обратную логику.
�� SampleFraction — показывает отношение подмножества значений и общего ко-

личества значений. Для отслеживания общего количества значений использует
базовый счетчик.
�� Timer100Ns — показывает время активности компонента в процентах от общего

времени выборки при проведении измерений с шагом по 100 нс.
�� Timer100NsInverse — похож на счетчик Timer100Ns, но применяет обратную

логику.

Всем счетчикам, название которых начинается с CounterMulti-, требуется, как
и ранее рассмотренному счетчику AverageCount64, задействовать CounterMultiBase.
При создании собственных счетчиков производительности следует учесть, что их
не нужно обновлять слишком часто. Стоит взять за правило делать это максимум
раз в секунду, поскольку данные никогда не будут предоставляться чаще. Если
нужно создавать большие объемы данных о производительности, куда более под-
ходящим будет вариант использования ETW-событий.

Резюме
Счетчики производительности — это основные строительные блоки анализа про-
изводительности. Вашей программе совсем не обязательно создавать собственные
счетчики, но если в ней есть отдельные операции, фазы или элементы, влияющие
на производительность, подумайте об этом.

Рассмотрите возможность автоматизированного получения и анализа показа-
телей счетчиков через API среды .NET, чтобы обеспечить архивирование и посто-
янную реакцию на состояние производительности системы.

8 ETW-события

В предыдущей главе рассматривались счетчики производительности, которые
великолепно подходят для отслеживания общей производительности вашего при-
ложения. Но они не могут предоставить информацию о конкретном событии или
операции, проводимой в приложении. Для этого необходимо логировать данные
для каждой операции отдельно. При включении меток времени появляется воз-
можность отслеживать производительность в программе подробнейшим образом.

Для среды .NET существует множество библиотек логирования. Среди них есть
как такие популярные, например log4net, так и бесчисленное множество сторонних
решений. Я же настоятельно рекомендую использовать библиотеку Event Tracing
для Windows, обладающую целым рядом преимуществ.

1.	 Она встроена в операционную систему.

2.	 Работает очень быстро и хорошо вписывается в высокопроизводительные сце-
нарии. Хотя это не обходится без затрат, особенно в некоторых сценариях.
Максимальными они могут стать в крупных многопоточных приложениях,
записывающих большое количество событий. Собственная система событий
может также понадобиться играм, интенсивно использующим ресурсы.

3.	 В ней имеется автоматическая буферизация.

4.	 В ходе выполнения приложения вы можете включать и выключать потребление
и выдачу событий в динамическом режиме.

5.	 В ней есть высокоизбирательный механизм фильтрации.

6.	 Она предоставляет возможность объединять события из нескольких источни-
ков в один поток логов для всестороннего анализа.

7.	 ETW-события выдаются всеми подсистемами операционной системы и сре-
ды .NET.

8.	 События не только имеют строковое отображение, но и делятся по типам и по-
рядку следования.

PerfView и многие другие инструменты профилирования — не что иное, как
замысловатые ETW-анализаторы. Например, в главе 2 было показано, как вос-
пользоваться PerfView для анализа выделений памяти. Вся информация об этом
поступала из ETW-событий среды CLR.

Определение событий   357

В этой главе будут исследованы способы определения и потребления своих
собственных событий. Все классы находятся в пространстве имен System.Diagnos
tics.Tracing и доступны начиная с .NET 4.5.

Можно определить события, помечающие начало и завершение выполнения
вашей программы, различные стадии обрабатываемых запросов, возникающие
ошибки и буквально все что угодно. Вы можете полностью контролировать ин-
формацию, попадающую в событие.

Использование ETW начинается с определения того, что называется постав-
щиками. В понятиях среды .NET это класс с методами, определяющими события,
которые вам нужно регистрировать. Эти методы могут принимать любые име
ющиеся в среде .NET основные типы данных, например строки, целочисленные
значения и многое другое.

События потребляются объектами, названными слушателями (listeners), кото-
рые подписываются на интересующие их события. Если подписчиков у событий
нет, они перестают применяться. Этим обусловливается очень незначительный
средний уровень затрат на обслуживание ETW.

Определение событий
События определяются с помощью класса, который, как в следующем примере,
является производным класса EventSource:

using System.Diagnostics.Tracing;
namespace EtlDemo
{
 [EventSource(Name="EtlDemo")]
 internal sealed class Events : EventSource
 {
 ...
 }
}

Аргумент Name нужен, если требуется, чтобы слушатели находили источник
по имени. Можно также предоставить GUID, но это не обязательно, и если этого
не сделать, его автоматически сгенерирует процедура, спецификация которой имеется
в RFC 4122 (см. https://tools.ietf.org/html/rfc4122). GUID-идентификаторы необходимы,
только если требуется обеспечить уникальный источник событий. Если источник
и слушатель существуют в едином процессе, то вам не нужно даже имя, и объект,
происходящий из EventSource, можно напрямую передать слушателю.

После этого базового определения нужно при задании собственных событий
соблюсти некоторые соглашения. Чтобы их проиллюстрировать, я дам определения
нескольким событиям для очень простой тестовой программы, которую вы найдете
в учебном проекте EtlDemo:

using System.Diagnostics.Tracing;

namespace EtlDemo

358   Глава 8  •  ETW-события

{
 [EventSource(Name="EtlDemo")]
 internal sealed class Events : EventSource
 {

 public static readonly Events Log = new Events();

 public class Keywords
 {
 public const EventKeywords General = (EventKeywords)1;
 public const EventKeywords PrimeOutput = (EventKeywords)2;
 }

 internal const int ProcessingStartId = 1;
 internal const int ProcessingFinishId = 2;
 internal const int FoundPrimeId = 3;

 [Event(ProcessingStartId ,
 Level = EventLevel.Informational ,
 Keywords = Keywords.General)]
 public void ProcessingStart()
 {
 if (this.IsEnabled())
 {
 this.WriteEvent(ProcessingStartId);
 }
 }

 [Event(ProcessingFinishId ,
 Level = EventLevel.Informational ,
 Keywords = Keywords.General)]
 public void ProcessingFinish()
 {
 if (this.IsEnabled())
 {
 this.WriteEvent(ProcessingFinishId);
 }
 }

 [Event(FoundPrimeId ,
 Level = EventLevel.Informational ,
 Keywords = Keywords.PrimeOutput)]
 public void FoundPrime(long primeNumber)
 {
 if (this.IsEnabled())
 {
 this.WriteEvent(FoundPrimeId , primeNumber);
 }
 }
 }
}

Определение событий   359

Первым делом объявляется статическая ссылка Log на экземпляр объявляемо-
го класса. Это типовое действие, поскольку события по своей природе носят, как
правило, глобальный характер и к ним нужен доступ из многих частей вашего кода.
Наличие этой глобальной переменной значительно облегчает жизнь, по сравнению
с необходимостью передачи ссылки на объект, унаследованный от EventSource, все-
му, что в нем нуждается. Этой ссылке можно присвоить любое имя, но для разборчи-
вости нужно придумать стандартное название для всех ваших источников событий.

За этим объявлением следует внутренний класс, в котором определяются некото-
рые значения констант Keywords (ключевые слова), являющихся необязательными
и имеющих произвольные значения, полностью зависящие от вас. Они служат спо-
собом разбиения событий по категориям, имеющим смысл для вашего приложения.
Слушатели могут фильтровать то, что им необходимо, на основе ключевых слов.
Следует заметить, что ключевые слова обрабатываются как битовые флаги, поэтому
им следует присваивать степени числа два в качестве значений. Тогда в слушателях
можно будет легко указать сразу несколько отслеживаемых ключевых слов.

Далее следуют объявления констант для идентификаторов событий. Объявлять
константы не требуется, но они удобны в случае, если и источнику, и слушателю
нужно ссылаться на идентификаторы.

И наконец, за ними идет перечень событий. Они определяются с помощью ме-
тода, возращающего пустое значение (void), получающего любое количество про-
извольных аргументов. Этим методам предшествует атрибут, указывающий иден-
тификатор, уровень события и любые ключевые слова, которые нужно применить.
Можно использовать сразу несколько ключевых слов, объединив их с помощью
логического оператора ИЛИ: Keywords = Keywords.General | Keywords.PrimeOutput.

Существует пять уровней событий:

�� LogAlways — логируется всегда, вне зависимости от каких-либо обстоятельств,
не обращая внимания на установленный уровень логирования;

�� Critical — очень серьезная ошибка, возможно служащая признаком невозмож-
ности восстановления нормальной работы программы;

�� Error — обычная ошибка;

�� Warning — нельзя считать полноценной ошибкой, но кому-то может понадо-
биться среагировать на это событие;

�� Informational — чисто информационное сообщение, не указывает на ошибку;

�� Verbose — во многих ситуациях вообще не должно логироваться. Используется
для отладки конкретных проблемных мест или при запуске в определенных
режимах.

Эти уровни имеют накопительный характер. Указание уровня логирования
означает, что вы будете получать все события этого и всех вышестоящих уровней.
Например, если задан уровень логирования Warning, вы будете также получать со-
бытия для Error, Critical и LogAlways.

Тело события устроено просто. Сначала проверяем, включены ли события
вообще (они могут быть отключены в первую очередь в целях оптимизации

360   Глава 8  •  ETW-события

производительности). Если они включены, вызываем метод WriteEvent, насле-
дуемый из EventSource, с идентификатором события и вашими аргументами.

ПРИМЕЧАНИЕ

Остерегайтесь логирования значений null. Прежние версии системы EventSource
не знали, как их правильно интерпретировать, из-за отсутствия информации
о типе. Это было характерно в основном для строковых значений. Похоже, что
в самых последних версиях среды .NET такие значения обрабатываются правильно,
при этом null-строки без оповещения заменяются пустыми строками. Чтобы про-
явить максимум осторожности, выполните проверку на null и замените на разумное
значение по умолчанию:
[Event(5,
 Level = EventLevel.Informational ,
 Keywords = Keywords.General)]
public void Error(string message)
{
 if (IsEnabled())
 {
 this.WriteEvent(5, message ?? string.Empty);
 }
}

Существует свыше десяти перегрузок метода WriteEvent, принимающих раз-
личные комбинации типов параметров. Если вызову не соответствует ни одна
из перегрузок, используется вариант по умолчанию WriteEvent(int eventId,
params object[] args). Этого метода следует избегать — его выполнение влечет
за собой выделения памяти и отражение с целью выяснения правильного типа
объектов.

Чтобы записать собственные события, в вашем коде нужно просто сделать не-
что подобное:

Events.Log.ProcessingStart();
Events.Log.FoundPrime(7);

Потребление пользовательских событий
в PerfView
Теперь, когда приложение выдает ETW-события, их можно захватить в любом
ETW-слушателе, например PerfView, Windows Performance Analyzer или встро-
енной в Windows утилите PerfMon.

Для захвата событий из пользовательских источников в PerfView нужно по-
местить имя, предварив его символом звездочки (*), в текстовое поле Additional
Providers (Дополнительные поставщики), которое находится в окне Collect (Сбор)
(рис. 8.1).

Потребление пользовательских событий в PerfView   361

Рис. 8.1. Окно Collect в PerfView показывает, куда вводить
дополнительные ETW-поставщики

Вписав в текстовое поле *EtlDemo, вы сообщаете PerfView о необходимости
выполнить рассмотренное ранее в этой главе автоматическое вычисление GUID.
Дополнительную информацию можно увидеть после щелчка на заголовке-ссылке
Additional Providers (Дополнительные поставщики).

Начните собирать выборки, запустите EtlDemo, а затем нажмите кнопку Stop
Collection (Остановить сбор). После того как итоговые события будут записаны,
откройте простой узел Events (События). Будет показан список всех захваченных
событий, включая следующие:

�� EtlDemo/FoundPrime;

�� EtlDemo/ManifestData;

�� EtlDemo/ProcessingStart;

�� EtlDemo/ProcessingFinish.

Если выделить все события в списке и нажать кнопку Update (Обновить), что-
бы актуализировать представление, появится список интересующих вас событий
(рис. 8.2).

В нем пользовательские события показаны в контексте всех остальных захва-
ченных событий. К примеру, можно увидеть JIT-события, предшествующие собы-
тиям FoundPrime. Это намекает, какие огромные возможности дает вам грамотный
ETW-анализ. В контексте сценария вашего собственного приложения можно про-
делать скрупулезные исследования производительности. Простой пример будет
показан в этой главе чуть позже.

362   Глава 8  •  ETW-события

Рис. 8.2. Отсортированный список событий Windows, .NET и приложения

Создание собственного
слушателя ETW-событий
При разработке большинства приложений вам вряд ли потребуется создавать
собственные ETW-слушатели. Почти всегда достаточно определить свои события
и использовать приложение вроде PerfView для их сбора и анализа. Но может по-
надобиться создать слушатель при необходимости иметь собственное средство
логирования или, к примеру, для проведения близкого к реальному времени ана-
лиза событий.

В среде .NET слушатель событий представляет собой класс, производный от клас-
са EventListener. Чтобы показать несколько способов обработки данных о событиях,
я определю базовый класс для обобщенного управления слушателями.

Этому классу нужно знать, какие события должны отслеживаться и по каким
уровням и ключевым словам отфильтровываться, поэтому сначала следует опре-
делить простую структуру для инкапсуляции этой информации:

class SourceConfig
{
 public string Name { get; set; }
 public EventLevel Level { get; set; }
 public EventKeywords Keywords { get; set; }
}

Затем можно определить конструктор слушателя, который будет принимать
коллекцию объектов этого класса (по одному для каждого источника события):

abstract class BaseListener : EventListener
{
 List<SourceConfig > configs = new List<SourceConfig >();
 protected BaseListener(
 IEnumerable <SourceConfig > sources)
 {

Создание собственного слушателя ETW-событий    363

 this.configs.AddRange(sources);

 foreach (var source in this.configs)
 {
 var eventSource = FindEventSource(source.Name);
 if (eventSource != null)
 {
 this.EnableEvents(eventSource ,
 source.Level ,
 source.Keywords);
 }
 }
 }

 private static EventSource FindEventSource(string name)
 {
 foreach (var eventSource in EventSource.GetSources())
 {
 if (string.Equals(eventSource.Name, name))
 {
 return eventSource;
 }
 }
 return null;
 }
}

После сохранения источников во внутренний список выполняется их после-
довательный обход и предпринимается попытка найти существующий источник
события EventSource, совпадающий с нужным нам по именам. Если такой источник
найден, происходит подписка путем вызова унаследованного метода EnableEvents.

Но этого недостаточно. Вполне возможно, что EventSource создан после установки
слушателя. Учитывая это, можно переопределить метод OnEventSourceCreated и про-
вести точно такую же проверку, чтобы понять, представляет ли новый EventSource
для нас интерес:

protected override void OnEventSourceCreated(
 EventSource eventSource)
{
 base.OnEventSourceCreated(eventSource);

 foreach (var source in this.configs)
 {
 if (string.Equals(source.Name, eventSource.Name))
 {
 this.EnableEvents(eventSource ,
 source.Level ,
 source.Keywords);
 }
 }
}

364   Глава 8  •  ETW-события

И последнее, что нужно сделать, — обработать событие OnEventWritten, которое
выдается при каждой записи нового события, сделанной источниками, представ-
ляющими интерес для данного слушателя:

protected override void OnEventWritten(
 EventWrittenEventArgs eventData)
{
 this.WriteEvent(eventData);
}

protected abstract void WriteEvent(
 EventWrittenEventArgs eventData);

В данном случае я просто полагаюсь на абстрактный метод, которому придется
взять на себя всю тяжелую работу.

Обычно определяют несколько типов слушателей, которые выводят данные
о событиях различными способами. Для этого примера я определил один слу-
шатель, который выводит сообщения в консоль, и еще один, который выполняет
логирование в файл.

Класс ConsoleListener имеет следующий вид:

class ConsoleListener : BaseListener
{
 public ConsoleListener(
 IEnumerable <SourceConfig > sources)
 :base(sources)
 {
 }

 protected override void WriteEvent(
 EventWrittenEventArgs eventData)
 {
 string outputString;
 switch (eventData.EventId)
 {
 case Events.ProcessingStartId:
 outputString = string.Format("ProcessingStart ({0})",
 eventData.EventId);
 break;
 case Events.ProcessingFinishId:
 outputString = string.Format("ProcessingFinish ({0})",
 eventData.EventId);
 break;
 case Events.FoundPrimeId:
 outputString = string.Format("FoundPrime ({0}): {1}",
 eventData.EventId ,
 (long)eventData.Payload[0]);
 break;
 default:
 throw new InvalidOperationException("Unknown event");
 }

Создание собственного слушателя ETW-событий    365

 Console.WriteLine(outputString);
 }
}

Свойство EventId определяет, с каким событием вы имеете дело. К сожалению,
получение имени события сложнее, но, как будет показано чуть позже, оно воз-
можно при выполнении некоторой предварительной работы. Свойство Payload
предоставляет вам массив значений, переданных в метод исходного события.

Слушатель FileListener чуть сложнее:

class FileListener : BaseListener
{
 private StreamWriter writer;

 public FileListener(IEnumerable <SourceConfig > sources ,
 string outputFile)
 :base(sources)
 {
 writer = new StreamWriter(outputFile);
 }

 protected override void WriteEvent(
 EventWrittenEventArgs eventData)
 {
 StringBuilder output = new StringBuilder();
 DateTime time = DateTime.Now;
 output.AppendFormat("{0:yyyy-MM-dd-HH:mm:ss.fff} - {1} - ",
 time, eventData.Level);
 switch (eventData.EventId)
 {
 case Events.ProcessingStartId:
 output.Append("ProcessingStart");
 break;
 case Events.ProcessingFinishId:
 output.Append("ProcessingFinish");
 break;
 case Events.FoundPrimeId:
 output.AppendFormat("FoundPrime - {0:N0}",
 eventData.Payload[0]);
 break;
 default:
 throw new InvalidOperationException("Unknown event");
 }
 this.writer.WriteLine(output.ToString());
 }

 public override void Dispose()
 {
 this.writer.Close();

 base.Dispose();
 }
}

366   Глава 8  •  ETW-события

Этот фрагмент кода из проекта EtlDemo показывает способ использования
обоих слушателей и подписывает их на различные ключевые слова и уровни:

var consoleListener = new ConsoleListener(
 new SourceConfig[]
 {
 new SourceConfig(){
 Name = "EtlDemo",
 Level = EventLevel.Informational ,
 Keywords = Events.Keywords.General}
 });

var fileListener = new FileListener(
 new SourceConfig[]
 {
 new SourceConfig(){
 Name = "EtlDemo",
 Level = EventLevel.Verbose ,
 Keywords = Events.Keywords.PrimeOutput}
 },
 "PrimeOutput.txt");

long start = 1000000;
long end = start + 10000;

Events.Write.ProcessingStart();
for (long i = start; i < end; i++)
{
 if (IsPrime(i))
 {
 Events.Write.FoundPrime(i);
 }
}

Events.Write.ProcessingFinish();
consoleListener.Dispose();
fileListener.Dispose();

Сначала создаются два типа слушателей, которые подписываются на различные
наборы событий. Затем регистрируются определенные события и выполняется
программа.

В консоли получается вывод только таких данных:

ProcessingStart (1)
ProcessingFinish (2)

В то же время вывод в файл содержит следующие строки:

2014-03-08-15:21:31.424 - Informational - FoundPrime - 1,000,003
2014-03-08-15:21:31.425 - Informational - FoundPrime - 1,000,033
2014-03-08-15:21:31.425 - Informational - FoundPrime - 1,000,037

Получение подробных данных об EventSource   367

Обработка событий в абсолютно реальном времени невозможна. Во-первых,
получение событий происходит не в тех потоках, в которых они генерируются. Во-
вторых, события из нескольких источников могут быть собраны в одном слушателе,
это предполагает, что в какие-то моменты времени они выстраиваются в очередь.

Получение подробных данных об EventSource
В предыдущих разделах можно было заметить кое-что интересное: наш собственный
слушатель событий не знает имени получаемого им события, а вот PerfView как-то
с этим справляется. Такое возможно благодаря тому, что с каждым EventSource связан
манифест, который представляет собой простое XML-описание источника события.

К счастью, среда .NET упрощает создание этого манифеста из класса EventSource:

string xml =
 EventSource
 .GenerateManifest(typeof(Events), string.Empty);

Вот как выглядит манифест для наших собственных ранее определенных событий:

<instrumentationManifest
 xmlns="http://schemas.microsoft.com/win/2004/08/events">
 <instrumentation
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"
 xmlns:win=...>
 <events xmlns=...>
 <provider name="EtlDemo"
 guid="{458d4a63 -7cc9 -5239-62c4-f8aebbe597ac}"
 resourceFileName=""
 messageFileName=""
 symbol="EtlDemo">
 <tasks>
 <task name="FoundPrime"
 value="65531"/>
 <task name="ProcessingFinish"
 value="65532"/>
 <task name="ProcessingStart"
 value="65533"/>
 </tasks>
 <opcodes>
 </opcodes>
 <keywords>
 <keyword name="General"
 message="$(string.keyword_General)"
 mask="0x1"/>
 <keyword name="PrimeOutput"
 message="$(string.keyword_PrimeOutput)"
 mask="0x2"/>
 </keywords>
 <events>

368   Глава 8  •  ETW-события

 <event value="1"
 version="0"
 level="win:Informational"
 keywords="General"
 task="ProcessingStart"/>
 <event value="2"
 version="0"
 level="win:Informational"
 keywords="General"
 task="ProcessingFinish"/>
 <event value="3"
 version="0"
 level="win:Informational"
 keywords="PrimeOutput"
 task="FoundPrime"
 template="FoundPrimeArgs"/>
 </events>
 <templates>
 <template tid="FoundPrimeArgs">
 <data name="primeNumber"
 inType="win:Int64"/>
 </template>
 </templates>
 </provider>
 </events>
 </instrumentation>
 <localization>
 <resources culture="en-US">
 <stringTable>
 <string id="keyword_General"
 value="General"/>
 <string id="keyword_PrimeOutput"
 value="PrimeOutput"/>
 </stringTable>
 </resources>
 </localization>
</instrumentationManifest>

Чтобы обеспечить возможность исследования используемых вами типов и в ре-
зультате этого создать манифест, средой .NET выполняются очень полезные не-
явные действия. Для системы логирования с расширенными функциональными
возможностями можно проанализировать XML, чтобы получить имена событий
и сравнить их с идентификаторами, а также типами всех аргументов.

Потребление событий CLR и системы
Если нужно потреблять события .NET или другие системные события Windows, сделать
это можно с помощью доступной и очень надежной библиотеки. Это TraceEvent —
тот же самый механизм работы с событиями, который обеспечивает эффектив-
ность применения PerfView. Библиотека была издана в качестве NuGet-пакета

Потребление событий CLR и системы   369

Microsoft.Diagnostics.Tracing.TraceEvent. Она предоставляет довольно простые
средства для обработки многих типов CLR-событий и событий операционной
системы в вашем коде. Можно воспользоваться ею для создания собственного
аналитического инструмента или даже поместить ее в вашу производственную
систему, что позволит ей реагировать на поведение сборщика мусора практически
в реальном масштабе времени.

Вот небольшой пример, отслеживающий в системе Start- и Stop-события сбор-
щика мусора:

using Microsoft.Diagnostics.Tracing.Parsers;
using Microsoft.Diagnostics.Tracing.Session;
using System;
using Microsoft.Diagnostics.Tracing.Parsers.Clr;

namespace GCListener
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Press Ctrl-C to exit");

 using (var session =
 new TraceEventSession("GCListenSession"))
 {
 Console.CancelKeyPress += (a,b) => session.Stop();
 session.EnableProvider(
 ClrTraceEventParser.ProviderGuid ,
 Microsoft.Diagnostics.Tracing.TraceEventLevel.Informational ,
 (ulong)(ClrTraceEventParser.Keywords.GC));

 session.Source.Clr.GCStart += Clr_GCStart;
 session.Source.Clr.GCStop += Clr_GCStop;

 // Это будет работать, пока не будет вызван метод Session.Stop()
 session.Source.Process();
 }
 }

 private static void Clr_GCStart(
 Microsoft.Diagnostics.Tracing.Parsers.Clr.GCStartTraceData
 gcStartData)
 {
 Console.WriteLine(
 $"GCStart: Process: {gcStartData.ProcessID}, " +
 $"Gen: {gcStartData.Depth}, Type: {gcStartData.Type}"
 }

 private static void Clr_GCStop(GCEndTraceData gcEndData)
 {
 Console.WriteLine(

370   Глава 8  •  ETW-события

 $"GCStop: Process: {gcEndData.ProcessID}, " +
 $"Gen: {gcEndData.Depth}");
 }
 }
 }

Вывод будет выглядеть примерно так:

Press Ctrl-C to exit
GCStart: Process: 84592, Gen: 0, Type: NonConcurrentGC
GCStop: Process: 84592, Gen: 0
GCStart: Process: 84592, Gen: 1, Type: NonConcurrentGC
GCStop: Process: 84592, Gen: 1
GCStart: Process: 84592, Gen: 0, Type: NonConcurrentGC
GCStop: Process: 84592, Gen: 0
GCStart: Process: 97844, Gen: 0, Type: NonConcurrentGC
GCStop: Process: 97844, Gen: 0

Пользовательские аналитические
расширения PerfView
Если TraceEvent не способен полностью удовлетворить ваши потребности, мож-
но подстроить под них средство PerfView для автоматизации анализа на более
высоком уровне, воспользовавшись его весьма впечатляющими возможностями
группировки и свертки для создания отфильтрованных, соответствующих вашим
потребностям информационных стеков для вашего приложения.

Чтобы было с чего начать, PerfView поставляется с собственным встроенным
в сам исполняемый файл PerfView образцом проекта для создания расширения.
Чтобы сгенерировать решение-образец, наберите в приглашении командной строки:

PerfView.exe CreateExtensionProject MyProjectName

В результате будут созданы файл решения, файл проекта и файл образца ис-
ходного кода в комплекте с некоторыми образцами кода, позволяющими вам при-
ступить к работе. Вот кое-что из того, что вы можете реализовать.

�� Создать отчет, показывающий, какие сборки используют наибольшее количе-
ство ресурсов ЦПУ. В образце уже есть демонстрационная команда, занима
ющаяся именно этим.

�� Автоматизировать анализ работы центрального процессора, экспортируя XML-
файл, показывающий самые затратные составляющие вашей программы, осно-
вываясь на каких-либо критериях.

�� Создать представление со сложными схемами свертки и группировки, которые
вы часто используете.

�� Создать представление, показывающее выделение памяти для конкретной
операции в программе, где операция определяется вашими собственными поль-
зовательскими ETW-событиями.

Пользовательские аналитические расширения PerfView   371

Задействуя пользовательские расширения и режим командной строки PerfView
(без GUI), можно создать сценарный инструмент профилирования, предостав-
ляющий вам удобные для анализа отчеты о наиболее интересных областях при-
ложения.

Рассмотрим простой пример анализа частоты событий FoundPrime из учебной
программы EtlDemo. Сначала я захватил события с помощью PerfView, собирая
их обычным способом с использованием поставщика *EtlDemo:

public void AnalyzePrimeFindFrequency(string etlFileName)
{
 using (var etlFile = OpenETLFile(etlFileName))
 {
 var events = GetTraceEventsWithProcessFilter(etlFile);

 const int BucketSize = 10000;
 // Каждая запись представляет собой простые числа
 // и время, затраченное на их поиск
 List<double > primesPerSecond = new List<double >();

 int numFound = 0;
 DateTime startTime = DateTime.MinValue;

 foreach (TraceEvent ev in events)
 {
 if (ev.ProviderName == "EtlDemo")
 {
 if (ev.EventName == "FoundPrime")
 {
 if (numFound == 0)
 {
 startTime = ev.TimeStamp;
 }

 var primeNumber = (long)ev.PayloadByName("primeNumber");
 if (++numFound == BucketSize)
 {
 var elapsed = ev.TimeStamp - startTime;
 double rate = BucketSize / elapsed.TotalSeconds;
 primesPerSecond.Add(rate);
 numFound = 0;
 }
 }
 }
 }

 var htmlFileName = CreateUniqueCacheFileName(
 "PrimeRateHtmlReport", ".html");
 using (var htmlWriter = File.CreateText(htmlFileName))
 {
 htmlWriter.WriteLine("<h1>Prime Discovery Rate </h1>");

372   Глава 8  •  ETW-события

 htmlWriter.WriteLine("<p>Buckets: {0}</p>",
 primesPerSecond.Count);
 htmlWriter.WriteLine("<p>Bucket Size: {0}</p>", BucketSize);
 htmlWriter.WriteLine("<p>");
 htmlWriter.WriteLine("<table border=\"1\">");
 for (int i = 0; i < primesPerSecond.Count; i++)
 {
 htmlWriter.WriteLine(
 "<tr><td>{0}</td><td>{1:F2}/sec</td></tr>",
 i,
 primesPerSecond[i]);
 }
 htmlWriter.WriteLine("</table >");
 }

 OpenHtmlReport(htmlFileName , "Prime Discovery Rate");
 }
}

Расширение можно запустить, воспользовавшись следующей командной
строкой:

PerfView userCommand MyProjectName.AnalyzePrimeFindFrequency
 PerfViewData.etl

Все, что следует за именем расширения, передается в метод в качестве аргу-
ментов.

Выводом станет окно в PerfView, которое выглядит как веб-страница, где по-
явится введенная вами информация (рис. 8.3).

Рис. 8.3. HTML-вывод нашего пользовательского анализа ETW

Резюме   373

Следует заметить, что возможность применения расширений официально API
не поддерживается. Во внутренний API PerfView в прошлом вносились существен-
ные изменения, несовместимые с предыдущими версиями и, вполне возможно, это
повторится и в будущем.

Резюме
ETW-события — предпочтительный метод логирования дискретных событий
в приложении. Они идеально подходят как для ведения лога приложения, так и для
отслеживания подробной информации, касающейся производительности.

В большинстве случаев все необходимые инструменты для исследования
могут быть предоставлены PerfView или другими приложениями для анализа
ETW, но если вам нужна специализированная аналитика, воспользуйтесь библио
текой TraceEvent или напишите собственное средство для анализа с помощью
EventListener. Чтобы воспользоваться преимуществами расширенной группировки
и свертки, создайте расширение PerfView.

9 Безопасность
и анализ кода

Разработчики программных продуктов часто говорят, что сначала нужно заставить
код работать, а уж потом заботиться о быстроте его выполнения. Эта книга посвя-
щена главным образом повышению производительности, но данная глава немного
отклоняется от основной темы в сторону решения важных вопросов, не имеющих
прямого отношения к производительности, но способных помочь вам создать
высокопроизводительные масштабируемые приложения. Ежедневная работа по
обеспечению стабильности и надежности кода позволяет избавиться от необхо-
димости существенно изменять его, чтобы повысить производительность. А если
при этом возникают проблемы, становится намного проще понять, что их вызвало.

Представление об операционной системе,
API и оборудовании
При глубокой оптимизации производительности придется отказаться от всевоз-
можных абстракций, вводимых по вашему желанию в программный продукт. Как
уже неоднократно упоминалось в этой книге, вы должны понимать используемые
вами API, чтобы осознанно принимать решения о том, как их применять и при-
менять ли их вообще.

Но одного этого недостаточно. Возьмем, к примеру, многопоточность. Хотя
в различные версии среды .NET поверх потоков были добавлены абстракции, упро-
щающие асинхронное программирование, получить максимальную выгоду от этих
функций можно, лишь досконально разбираясь в том, как они взаимодействуют
с потоками базовой операционной системы и каков используемый ими алгоритм
диспетчеризации потоков. Это справедливо и для отладки операций с памятью. Ис-
следовать кучу сборщика мусора просто, но если имеется очень крупный процесс,
загружающий тысячи типов из сотен сборок, можно столкнуться с проблемами и за
пределами управляемого мира, решение которых потребует от вас представления
о полной структуре памяти.

И наконец, не менее важную роль играет оборудование. В главе, посвященной
JIT-компиляции, уже упоминались такие явления, как локальность ссылок — поме-
щение битов кода и данных, используемых вместе, физически близко друг к другу
в памяти, чтобы они могли эффективно включаться в кэш-память процессора. Если
повезет, ваш код будет ориентирован на одну аппаратную платформу. А если нет, то

Ограничение использования API в определенных областях кода   375

нужно будет разобраться, в чем разница выполнения кода на каждой из платформ.
Увас могут быть разные лимиты памяти, размеры кэша или даже более существен-
ные различия, например совершенно разные модели памяти. Оборудование влияет
также на то, какие могут быть обнаружены проблемы с многопоточностью, — не-
которые платформы будут более снисходительны к небрежной синхронизации,
а другие ее не простят.

Все это нужно сопоставить с тем, что оптимизировать абсолютно все невоз-
можно, — профилирование нужно использовать, чтобы сфокусироваться на тех
областях кода, которые требуют наибольшего внимания. Затрачиваемые усилия
должны быть строго пропорциональны реальной потребности повышения произ-
водительности. В то же время чем лучше вы разбираетесь в строительных блоках,
с которыми работаете, тем меньших времени и усилий потребует весьма затратная
оптимизация производительности.

Ограничение использования API
в определенных областях кода
Позволять всем компонентам активно использовать каждый API среды или систе-
мы нет никакого смысла. Например, при наличии модели обработки, основанной
исключительно на применении задач Task, следует сосредоточиться на этой функ-
циональности и запретить другим компонентам обращаться к чему-либо в про-
странстве имен System.Threading.

Такие правила рода важны, в частности, для систем с моделью расширения.
Обычно требуется, чтобы платформа выполняла весь жесткий опасный код, а на
долю расширений оставались простые действия в соответствующих им областях.

Один из способов предотвратить использование опасных подходов к написанию
кода или преодолеть проблемы заведомо низкой производительности — статиче-
ский анализ кода. В среде .NET есть два основных инструментальных средства для
выполнения этой задачи, которые можно свободно использовать, — FxCop и .NET
Compiler Code Analyzers.

FxCop — более старое средство, оно работает с уже скомпилированными DLL-
библиотеками, а значит, может разбираться только в языке MSIL. А средство .NET
Compiler Code Analyzers (вы могли слышать его прежнее название — Roslyn Code
Analyzers) имеет доступ ко всему дереву синтаксиса в самом компиляторе и может
запускаться в ходе разработки. Я приведу примеры использования обоих средств,
но для всех будущих разработок рекомендую .NET Compiler Code Analyzers.

Пользовательские правила FxCop
FxCop — статический анализатор кода, свободно поставляемый с Visual Studio.
У него есть стандартные правила в таких категориях, как Performance («Про-
изводительность»), Globalization («Глобализация»), Security («Безопасность»)
и др., но вы можете добавить библиотеку собственных правил. Многие правила

376   Глава 9  •  Безопасность и анализ кода

производительности, уже рассмотренные в книге, могут быть представлены в виде
правил FxCop, например:

�� запрет на использование «опасных» пространств имен;
�� запрет на применение типов или API, вызывающих выделения памяти в LOH;
�� запрет на использование API, у которых есть более подходящие альтернативы,

например TryParse взамен Parse;
�� поиск случаев двойного приведения типов;
�� поиск случаев упаковки;
�� применение конкретных правил написания кодов для некоторых типов (напри-

мер, все Regex-объекты должны быть статическими, предназначенными только
для чтения и созданными с установленным флагом RegexOptions.Compiled).

Создавая правила, следует учесть, что FxCop может анализировать только IL
и метаданные. Это средство не понимает код C# или любого другого языка высо-
кого уровня. Поэтому вы не сможете навязать соблюдение статических правил,
зависящих от специфических шаблонов того или иного языка. Написание собствен-
ных правил FxCop дается довольно легко, но официальная документация, регла-
ментирующая эту область, практически отсутствует и вам придется полагаться
на анализ IL своих программ и на интенсивное использование автодополнения
IntelliSense, чтобы продраться через FxCop API. Чем глубже вы будете понимать
язык IL, тем более сложные правила сможете разработать.

Сначала нужно установить FxCop SDK, и это сложнее, чем должно быть. Если
в вашем распоряжении есть Visual Studio Professional или более совершенная вер-
сия, значит, в среде IDE уже имеется переработанное средство Code Analysis (под
ним по-прежнему скрывается средство FxCop). На моей машине соответствующие
файлы размещены в каталоге C:\Program Files (x86)\Microsoft Visual Studio 14.0\
Team Tools\Static Analysis Tools\FxCop.

Если получить доступ к нужной версии Visual Studio невозможно, есть и дру-
гие варианты. Самый простой способ заключается в загрузке этого средства
CodePlex по адресу https://fxcopinstaller.codeplex.com. Если в то время, когда вы чита-
ете книгу, данных строк проекта там уже не будет, попробуйте воспользоваться
Windows 7.1 SDK, в котором, по-видимому, неисправен веб-установщик, но можно
получить ISO-образ, расположенный по адресу: https://www.microsoft.com/download/
details.aspx?id=8442. Загрузите его и извлеките установщик из архива \Setup\
WinSDKNetFxTools\cab1.cab. В этом архиве есть файл, имя которого начинается
с WinSDK_FxCopSetup.exe. Извлеките его, переименуйте в FxCopSetup.exe, и все
будет в порядке.

Проекты, относящиеся к FxCop, можно найти в исходном коде, сопровожда-
ющем эту книгу. Их разместили в собственном файле решения, чтобы не ломать
сборку для остальных учебных проектов. В FxCopRules содержатся правила, ко-
торые будут загружены обработчиком FxCop и запущены в отношении некоторых
целевых сборок. В FxCopViolator содержится класс, имеющий ряд нарушений, на-
личие которых будут проверять правила. Разбирайте эти проекты шаг за шагом по
мере того, как я буду объяснять назначение определенных компонентов.

Ограничение использования API в определенных областях кода   377

Прежде чем приступить к созданию правил, вам может понадобиться отредакти-
ровать файл FxCopRules.csproj, чтобы в нем были указаны правильные пути SDK.
Действующие значения должны быть похожи на такие:

<PropertyGroup>
 <FxCopSdkDir>C:\...\Microsoft Fxcop 10.0</FxCopSdkDir>
</PropertyGroup>
<ItemGroup>
 <Reference Include="$(FxCopSdkDir)\FxCopSdk.dll" />
 <Reference Include="$(FxCopSdkDir)\Microsoft.CCi.dll" />
</ItemGroup>

Обновите значение FxCopSdkDir, чтобы оно указывало на каталог установки
FxCop (по умолчанию он должен находиться в каталоге Program Files (x86)) или
на то место, куда вы поместили соответствующие DLL-библиотеки.

Затем нужно создать файл Rules.xml, содержащий метаданные для каждого
правила. Первое правило будет иметь следующий вид:

<?xml version="1.0" encoding="utf-8" ?>
<Rules FriendlyName="Custom Rules">
 <Rule TypeName="DisallowStaticFieldsRule"
 Category="Custom.Arbitrary"
 CheckId="HP100">
 <Name>Static fields are not allowed</Name>
 <Description>Static fields are not allowed because...
 </Description>
 <Url>http://internaldocumentationsite/FxCop/HP100</Url>
 <Resolution>Make the static field '{0}' either
 readonly or const.
 </Resolution>
 <MessageLevel Certainty="90">Error</MessageLevel>
 <FixCategories>Breaking</FixCategories>
 <Email>feedback@high -perf.net</Email>
 <Owner>Ben Watson</Owner>
 </Rule>
</Rules>

Следует заметить, что атрибут TypeName должен соответствовать имени опре-
деляемого ниже класса с правилом. Этот XML-файл должен быть включен в про-
ект при установленном для параметра Build Action (Действия при сборке) значении
Embedded Resource (Внедренный ресурс).

Каждое определяемое нами правило должно быть производным класса,
предоставляемого FxCop SDK, и содержать общую информацию, такую как
местонахождение XML-манифеста правил. Можно для удобства создать базо-
вый класс для всех ваших правил, обеспечивающих общие функциональные
возможности.

using Microsoft.FxCop.Sdk;
using System.Reflection;

namespace FxCopRules
{
 public abstract class BaseCustomRule : BaseIntrospectionRule

378   Глава 9  •  Безопасность и анализ кода

 {
 // Имя манифеста — это пространство имен, используемое по умолчанию,
 // плюс имя XML-файла правил, указанное без расширения.
 private const string ManifestName = "FxCopRules.Rules";

 // Сборка, в которую внедрен манифест правил
 // (в данном случае это текущая сборка).
 private static readonly Assembly ResourceAssembly =
 typeof(BaseCustomRule).Assembly;
 protected BaseCustomRule(string ruleName)
 :base(ruleName , ManifestName , ResourceAssembly)
 {
 }
 }
}

После этого нужно определить класс, являющийся производным класса
BaseCustomRule и предназначенный для конкретного нарушения, наличие которого
нужно проверить. В первом примере будут запрещены все статические поля, но
разрешены поля const и readonly:

public class DisallowStaticFieldsRule : BaseCustomRule
{
 public DisallowStaticFieldsRule()
 : base(typeof(DisallowStaticFieldsRule).Name)
 {
 }

 public override ProblemCollection Check(Member member)
 {
 var field = member as Field;
 if (field != null)
 {
 // Поиск всех статических данных, не являющихся const или readonly
 if (field.IsStatic && !field.IsInitOnly && !field.IsLiteral)
 {
 // field.FullName является дополнительным аргументом,
 // который будет использоваться для форматирования
 // параметра {0} строки Resolution.
 var resolution = this.GetResolution(field.FullName);
 var problem = new Problem(resolution ,
 field.SourceContext);
 this.Problems.Add(problem);
 }
 }
 return this.Problems;
 }
}

Класс BaseIntrospectionRule предоставляет ряд перегрузок виртуального мето-
да Check с различными типами аргументов, которые можно переопределить, чтобы
обеспечить нужное функционирование. В исходном состоянии эти методы ничего

Ограничение использования API в определенных областях кода   379

не делают. Автодополнение IntelliSense — хорошее подспорье при написании пра-
вил FxCop, и оно показывает наличие следующих методов Check:

�� Check(ModuleNode moduleNode);

�� Check(Parameter parameter);

�� Check(Resource resource);

�� Check(TypeNode typeNode);

�� Check(string namespaceName, TypeNodeCollection types).

Из любого метода можно исследовать отдельные строки кода IL. Вот как вы-
глядит правило, запрещающее изменение регистра строк:

public class DisallowStringCaseConversionRule : BaseCustomRule
{
 public DisallowStringCaseConversionRule()
 : base(typeof(DisallowStringCaseConversionRule).Name)
 { }

 public override ProblemCollection Check(Member member)
 {
 var method = member as Method;
 if (method != null)
 {
 foreach (var instruction in method.Instructions)
 {
 if (instruction.OpCode == OpCode.Call
 || instruction.OpCode == OpCode.Calli
 || instruction.OpCode == OpCode.Callvirt)
 {
 var targetMethod = instruction.Value as Method;
 if (targetMethod != null
 && (targetMethod.FullName == "System.String.ToUpper"
 || targetMethod.FullName == "System.String.ToLower"))
 {
 var resolution = this.GetResolution(method.FullName);
 var problem = new Problem(resolution ,
 method.SourceContext);
 this.Problems.Add(problem);
 }
 }
 }
 }

 return this.Problems;
 }
}

В качестве заключительного примера рассмотрим другой способ, позволя
ющий сообщить средству FxCop о необходимости обхода кода. Вдобавок к ранее
рассмотренным методам Check можно переопределить десятки методов Visit*.

380   Глава 9  •  Безопасность и анализ кода

Они вызываются рекурсивно, проходя через каждый узел в графе программы,
начиная с выбранного узла. Переопределяются только нужные вам методы Visit.
Рассмотрим пример, использующий данный прием для добавления правила, от-
носящегося к созданию объекта Thread:

public class DisallowThreadCreationRule : BaseCustomRule
{
 public DisallowThreadCreationRule()
 : base(typeof(DisallowThreadCreationRule).Name) { }

 public override ProblemCollection Check(Member member)
 {
 var method = member as Method;
 if (method != null)
 {
 VisitStatements(method.Body.Statements);
 }

 return base.Check(member);
 }

 public override void VisitConstruct(Construct construct)
 {
 if (construct != null)
 {
 var binding = construct.Constructor as MemberBinding;
 if (binding != null)
 {
 var instanceInitializer =
 binding.BoundMember as InstanceInitializer;
 if (instanceInitializer.DeclaringType.FullName
 == "System.Threading.Thread")
 {
 var problem = new Problem(this.GetResolution(),
 construct.SourceContext);
 this.Problems.Add(problem);
 }
 }
 }

 base.VisitConstruct(construct);
 }
}

Чтобы воспользоваться этими правилами в Visual Studio, создайте сборку
библиотеки FxCopRules.dll и скопируйте ее в папку Rules, находящуюся в уста-
новочной папке FxCop (путь к моей папке выглядит так: C:\Program Files (x86)\
Microsoft Visual Studio 14.0\Team Tools\Static Analysis Tools\FxCop\Rules).
Перейдите в Visual Studio к свойствам другого проекта (тестирование можно

Ограничение использования API в определенных областях кода   381

провести в учебном проекте FxCopViolator) и просмотрите вкладку Code Analysis
(Анализ кода) (рис. 9.1). В меню Rule Set (Набор правил) можно выбрать набор
пользовательских правил или создать собственный набор, включающий нужные
вам правила.

Рис. 9.1. Настроить правила, требующие применения в Visual Studio, можно с помощью свойств
проекта на вкладке Code Analysis (Анализ кода)

Теперь при сборке проекта с соответствующими правилами будут появляться
сообщения, показывающие, какие из определенных вами правил нарушены. Как
и при работе со стандартными правилами для сборки или анализа кода, вы можете,
дважды щелкнув кнопкой мыши на этих сообщениях, перейти к источнику нару-
шения (рис. 9.2).

Рис. 9.2. Заданные пользователем предупреждения FxCop будут показаны на панели Error List
(Список ошибок), как и другие предупреждения о проблемах при сборке и анализе кода

382   Глава 9  •  Безопасность и анализ кода

В учебный проект включен также пример запуска FxCop с пользовательскими
правилами из командной строки:

>"C:\Program Files (x86)\Microsoft Fxcop 10.0\FxCopCmd.exe"
 /out:.\FxCopOutput.xml /rule:FxCopRules.dll
 /file:FxCopViolator.dll

Microsoft (R) FxCop Command-Line Tool, Version 14.0 (14.0.25420.1)
Copyright (C) Microsoft Corporation, All Rights Reserved.

Loaded fxcoprules.dll...
Loaded FxCopViolator.dll...
Initializing Introspection engine...
Analyzing...
Analysis Complete.
Writing 3 messages...
Writing report to .\FxCopOutput.xml...
Done:00:00:00.8200342

Достаточно изучить работу с FxCop один раз, чтобы в дальнейшем все дава-
лось без особого труда. Самым большим препятствием при создании собственных
правил станет скудость официальной документации. Чтобы получить дополни-
тельные сведения о правилах FxCop, определяемых пользователем, обратитесь
к замечательному обзору, составленному Джейсоном Крейсовати (Jason Kresowaty)
и находящемуся по адресу http://www.binarycoder.net/fxcop/.

.NET Compiler Code Analyzers
В отличие от FxCop, при работе с которым вы столкнетесь с ограниченным понима-
нием кода, .NET Compiler Code Analyzers способен не только взамен анализа кода IL
анализировать код высокого уровня, но и вести его непосредственно из IDE-среды
Visual Studio и даже выдавать предложения и править код. Этот тип анализатора —
более эффективная альтернатива FxCop. В этом подразделе будет продемонстриро-
ван процесс создания двух правил, одно из которых потребует от статических полей
static иметь пометку «только для чтения» (readonly), а второе станет выдавать
предупреждения, препятствующие вызову методов String.ToLower и String.ToUpper.

В Visual Studio 2015 нужно из установщика поставить на компьютер компонент
Visual Studio Extensibility Tools (инструменты расширяемости Visual Studio).
В Visual Studio 2017 у этого компонента немного другое название — Visual Studio
extension development (разработка расширений Visual Studio).

В обеих версиях следует установить инструментарий .NET Compiler Platform
SDK, что можно сделать непосредственно из Visual Studio, пройдя по пунктам меню
FileNew ProjectVisual C#Extensibility (ФайлНовый проектVisual C#Рас
ширяемость) и выбрав в списке типов проектов вариант Download the .NET Compiler
Platform SDK. После завершения установки нужно перезапустить Visual Studio. Затем
для создания собственного анализатора можно выбрать в окне New Project (Новый
проект) вариант Analyzer with Code Fix (NuGet + VSIX).

Ограничение использования API в определенных областях кода   383

Разработанный здесь пример доступен в учебном решении CodeAnalyzers, име-
ющемся в исходном коде книги. Там есть три проекта:

�� SampleCodeAnalyzer.csproj — содержит код для самого анализа и внесения
исправлений;
�� SampleCodeAnalyzer.Test.csproj — модульные тесты для того, чтобы поупраж-

няться с вашим кодом без необходимости отладки в Visual Studio;
�� SampleCodeAnalyzer.Vsix — проект надстройки Visual Studio, позволяющий

анализатору размещаться в самой среде Visual Studio.

Чтобы протестировать анализатор, нужно убедиться, что в качестве проекта
по умолчанию выбран Vsix, и нажать клавишу F5. В результате будет запущен еще
один экземпляр Visual Studio с загруженным анализатором. Чтобы протестировать
анализ кода, здесь можно создать новый проект.

Первый анализатор кода будет обнаруживать любое статическое поле static
и рекомендовать для него установку метки readonly. Кроме того, он будет содер-
жать средство исправления для самостоятельного выполнения этого действия.

Как это делается, можно понять из содержимого файла StaticFieldAnalyzer.cs:

using System.Collections.Immutable;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.Diagnostics;

namespace SampleCodeAnalyzer
{
 [DiagnosticAnalyzer(LanguageNames.CSharp)]
 public class StaticFieldAnalyzer : DiagnosticAnalyzer
 {
 public const string DiagnosticId = "StaticFieldAnalyzer";

 private static readonly LocalizableString Title =
 new LocalizableResourceString(
 nameof(Resources.AnalyzerTitle),
 Resources.ResourceManager,
 typeof(Resources));

 private static readonly LocalizableString MessageFormat =
 new LocalizableResourceString(
 nameof(Resources.AnalyzerMessageFormat),
 Resources.ResourceManager,
 typeof(Resources));

 private static readonly LocalizableString Description =
 new LocalizableResourceString(
 nameof(Resources.AnalyzerDescription),
 Resources.ResourceManager,
 typeof(Resources));

 private const string Category = "Thread Safety";

 private static DiagnosticDescriptor Rule =

384   Глава 9  •  Безопасность и анализ кода

 new DiagnosticDescriptor(DiagnosticId ,
 Title ,
 MessageFormat ,
 Category ,
 DiagnosticSeverity.Info,
 isEnabledByDefault: true,
 description: Description);

 public override ImmutableArray <DiagnosticDescriptor >
 SupportedDiagnostics
 {
 get
 {
 return ImmutableArray.Create(Rule);
 }
 }

 public override void Initialize(AnalysisContext context)
 {
 context.RegisterSymbolAction(AnalyzeFieldSymbol ,
 SymbolKind.Field);
 }

 private void AnalyzeFieldSymbol(
 SymbolAnalysisContext context)
 {
 IFieldSymbol field = (IFieldSymbol)context.Symbol;
 if (field.IsStatic && !field.IsReadOnly)
 {
 var diagnostic = Diagnostic.Create(
 Rule,
 field.Locations[0],
 field.Name);
 context.ReportDiagnostic(diagnostic);
 }
 }
 }
}

Поля в верхней части класса являются стандартными шаблонными метадан-
ными, которые вы должны настроить для каждого правила. Шаблон проекта по
умолчанию помещает эти строки в файл Resources.resx (рис. 9.3), чтобы было
проще их локализовать, но делать это не обязательно.

Метод Initialize сообщает среде Visual Studio, что требуется проанализиро-
вать. В данном случае анализируются только поля, но позже будет показан и другой
вариант. Метод AnalyzeFieldSymbol — именно то место, где протекает действие.
Он вызывается для каждого найденного символа требуемого типа. Код проверяет,
является ли поле статическим (static), но без пометки readonly, и если это так,
выдает новое диагностическое сообщение, появляющееся в пользовательском ин-
терфейсе в виде зеленой волнистой линии, подчеркивающей проблемный символ
(рис. 9.4). Зеленый цвет обусловливается тем, что правило было помечено нами
как DiagnosticSeverity.Info.

Ограничение использования API в определенных областях кода   385

Рис. 9.3. В файле Resources.resx содержатся локализуемые строки для вашего анализатора кода

Рис. 9.4. Правило анализа кода приводит к появлению волнистой линии
под рассматриваемым нами синтаксисом

В некоторых случаях возможно автоматическое исправление кода в соответ-
ствии с вашими рекомендациями. Делать это не обязательно, но все же хорошо,
если эта возможность существует. Файл StaticFieldFixer.cs содержит код для
автоматической реализации исправления — добавления пометки readonly:

using System.Collections.Immutable;
using System.Composition;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CodeFixes;
using Microsoft.CodeAnalysis.CodeActions;
using Microsoft.CodeAnalysis.CSharp;
using Microsoft.CodeAnalysis.CSharp.Syntax;

namespace SampleCodeAnalyzer
{
 [ExportCodeFixProvider(LanguageNames.CSharp,
 Name = nameof(StaticFieldFixer)),
 Shared]
 public class StaticFieldFixer : CodeFixProvider

386   Глава 9  •  Безопасность и анализ кода

 {
 private const string title = "Make readonly";

 public sealed override ImmutableArray <string >
 FixableDiagnosticIds
 {
 get
 {
 return ImmutableArray.Create(
 StaticFieldAnalyzer.DiagnosticId);
 }
 }

 public sealed override FixAllProvider GetFixAllProvider()
 {
 return WellKnownFixAllProviders.BatchFixer;
 }

 public sealed override async Task RegisterCodeFixesAsync(
 CodeFixContext context)
 {
 var root = await context.Document.GetSyntaxRootAsync(
 context.CancellationToken).ConfigureAwait(false);

 var diagnostic = context.Diagnostics.First();
 var diagnosticSpan = diagnostic.Location.SourceSpan;

 // Нахождение идентифицированной при диагностике
 // декларации в типе
 var declaration = root.FindToken(diagnosticSpan.Start)
 .Parent.AncestorsAndSelf()
 .OfType <FieldDeclarationSyntax >()
 .First();

 // Регистрация действия над кодом, которое будет вызывать исправление
 context.RegisterCodeFix(
 CodeAction.Create(
 title: title ,
 createChangedDocument:
 c => MakeReadOnlyAsync(context.Document ,
 declaration ,
 c),
 equivalenceKey: title),
 diagnostic);
 }

 private async Task<Document > MakeReadOnlyAsync(
 Document document ,
 FieldDeclarationSyntax fieldDecl ,
 CancellationToken cancellationToken)
 {

Ограничение использования API в определенных областях кода   387

 // Нахождение поля и обновление его модификаторов
 var newFieldDecl = fieldDecl.AddModifiers(
 SyntaxFactory.Token(
 SyntaxKind.ReadOnlyKeyword));

 var root = await document.GetSyntaxRootAsync();

 // Замена старого узла новым
 var newRoot = root.ReplaceNode(fieldDecl ,
 newFieldDecl);

 var newDocument = document.WithSyntaxRoot(newRoot);

 // Возвращение нового документа, теперь с полем readonly static
 return newDocument;
 }
 }
}

Свойство FixableDiagnosticIds связывает анализатор с этим средством ис-
правления, и теперь среда Visual Studio знает, какое действие может предпринять.
Метод RegisterCodeFixesAsync находит места, где сработала диагностика, и реги-
стрирует делегат, вызываемый для исправления кода. Метод MakeReadOnlyAsync
проделывает реальную работу. Он возвращает объект Document, представляющий
новый кодовый документ после сгенерированных этим методом исправлений.
В данном случае он берет объявление поля и добавляет readonly к списку моди-
фикаторов. Класс SyntaxFactory содержит множество вариантов создания новых
фрагментов кода.

Этот код работает, изменяя отдельные узлы в дереве синтаксиса документа.
Дерево синтаксиса неизменяемое, поэтому внесение любых исправлений приводит
к созданию новой версии возвращаемого вам объекта. Метод MakeReadOnlyAsync по-
следовательно извлекает новые версии поля, узла синтаксиса и документа (рис. 9.5).

Рис. 9.5. Щелчок на значке подсказок Code Tips приводит к отображению варианта
автоматического исправления с предварительным просмотром того, что будет изменено

388   Глава 9  •  Безопасность и анализ кода

Рассмотрим еще один простой пример анализатора, рекомендующего не вы-
зывать методы String.ToLower и String.ToUpper:

using System.Collections.Immutable;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.Diagnostics;
using Microsoft.CodeAnalysis.CSharp;
using Microsoft.CodeAnalysis.CSharp.Syntax;

namespace SampleCodeAnalyzer
{
 [DiagnosticAnalyzer(LanguageNames.CSharp)]
 public class StringToUpperToLowerAnalyzer : DiagnosticAnalyzer
 {
 public const string DiagnosticId =
 "StringToUpperToLowerAnalyzer";

 private static readonly LocalizableString Title =
 new LocalizableResourceString(
 nameof(Resources.ToUpperToLowerAnalyzerTitle),
 Resources.ResourceManager ,
 typeof(Resources));

 private static readonly LocalizableString MessageFormat =
 new LocalizableResourceString(
 nameof(Resources.ToUpperToLowerAnalyzerMessageFormat),
 Resources.ResourceManager ,
 typeof(Resources));

 private static readonly LocalizableString Description =
 new LocalizableResourceString(
 nameof(Resources.ToUpperToLowerAnalyzerDescription),
 Resources.ResourceManager ,
 typeof(Resources));

 private const string Category = "Performance";

 private static DiagnosticDescriptor Rule =
 new DiagnosticDescriptor(DiagnosticId ,
 Title ,
 MessageFormat ,
 Category ,
 DiagnosticSeverity.Warning ,
 isEnabledByDefault: true,
 description: Description);

 public override ImmutableArray <DiagnosticDescriptor >
 SupportedDiagnostics
 {
 get
 {

Ограничение использования API в определенных областях кода   389

 return ImmutableArray.Create(Rule);
 }
 }

 public override void Initialize(AnalysisContext context)
 {
 context.RegisterSyntaxNodeAction(
 AnalyzeNode ,
 SyntaxKind.InvocationExpression);
 }

 private void AnalyzeNode(
 SyntaxNodeAnalysisContext context)
 {
 var invocationExpression =
 (InvocationExpressionSyntax)context.Node;
 var memberAccessExpression =
 invocationExpression.Expression
 as MemberAccessExpressionSyntax;
 var memberName =
 memberAccessExpression?.Name.ToString();
 if (memberName == "ToUpper"
 || memberName == "ToLower")
 {
 var diagnostic = Diagnostic.Create(
 Rule,
 memberAccessExpression.GetLocation());

 context.ReportDiagnostic(diagnostic);
 }
 }
 }
}

Еще одно средство, помогающее разрабатывать анализаторы, — инструмент визуа-
лизации синтаксиса Syntax Visualizer. Его можно установить в Visual Studio, восполь-
зовавшись пунктами меню ToolsExtensions and Updates (ИнструментыРасширения
и обновления). Найдите там .NET Compiler Platform SDK, включающий Syntax
Visualizer. После установки откройте это средство, пройдя по пунктам меню
ViewOther WindowsSyntax Visualizer (ВидДругие окнаСинтаксический визуа-
лизатор). Когда все будет сделано, можно щелкнуть на любом месте в коде файла
и увидеть обновленное дерево синтаксиса (рис. 9.6).

В анализаторах кода можно делать практически все что угодно. Они исключи-
тельно гибки и обеспечивают вам почти полную свободу для анализа собственного
кода (рис. 9.7). Приведу несколько примеров:

�� разбор, компиляция и предварительное выполнение кода по мере его набора
с анализом результатов на основании произвольных правил;

�� анализ строковых литералов на семантическую корректность (например, на недо-
пустимое наличие учетных данных или правильность регулярных выражений);

390   Глава 9  •  Безопасность и анализ кода

Рис. 9.6. С помощью анализаторов кода можно внедрять разумные приемы программирования
с предоставлением информации об этом непосредственно в среде Visual Studio

Рис. 9.7. Средство визуализации синтаксиса может помочь разобраться в структуре кода
при разработке правил его анализа

�� принуждение к соблюдению правил программирования, принятых в вашей
команде или компании;
�� принуждение к соблюдению стандартов производительности, характерных для

вашего программного продукта.

По мере приобретения опыта и получения углубленного представления о ва-
шем собственном коде и способах представления его синтаксиса компилятором
можно будет повторно применять анализаторы для проведения более сложного
и глубокого анализа.

Изолируйте неуправляемый и небезопасный код   391

К счастью, вам не придется все создавать самостоятельно. Есть множество ана-
лизаторов кода, пригодных для повторного использования, включая следующие:

�� Roslyn Analyzers — поставляются с компилятором. Исследование их исходного
кода позволит вам изучить множество особенностей написания анализаторов;

�� Clr Heap Allocation Analyzer — подсвечивает каждый источник выделения па-
мяти в куче, включая неявные выделения;

�� StyleCopAnalyzers — выдают рекомендации по стилю программирования.

Существует также множество других анализаторов.
Все их можно найти с помощью поисковой системы, которой вы пользуетесь.

Выполняйте централизацию и абстрагирование
сложного и важного для повышения
производительности кода
Чтобы упростить поддержку, нужно как можно больше кода, важного для обеспе-
чения высокой производительности, хранить в одном месте, преимущественно за
API, используемыми всеми остальными частями вашего приложения. Например,
если приложение загружает файлы через HTTP, этот код можно заключить в API,
который раскрывает только те части загружаемого, о которых должны знать осталь-
ные части вашей программы (например, запрошенный URL-адрес и загруженное
содержимое). API управляет сложностью HTTP-вызова, а все приложение проходит
через этот API, как только возникает потребность в совершении HTTP-вызова.
Если обнаружится проблема с производительностью, связанная с загрузкой, либо
потребуется обеспечить очередность загрузки или внести другое изменение, то
сделать это «под прикрытием» API будет несложно. Следует помнить, что такие
API должны поддерживать асинхронный характер операции.

Изолируйте неуправляемый и небезопасный код
Есть много причин, по которым нужно избегать использования неуправляемого
кода. Как говорилось во введении, преимущества неуправляемого кода зачастую
преувеличены, зато опасность повреждения памяти вполне реальна.

Короче говоря, если приходится иметь дело с неуправляемым кодом (скажем,
для взаимодействия с устаревшей системой, когда затраты на полный переход всего
интерфейса на управляемый код слишком велики), его нужно изолировать. Сделать
это можно множеством способов, при этом следует стремиться избавиться даже
от случайных системных вызовов откуда бы то ни было в область неуправляемого
кода. Это станет предпосылкой хаоса.

В идеале нужно выделить неуправляемому коду собственный процесс, чтобы
обеспечить строгую изоляцию на уровне операционной системы (рис. 9.8). Если
это невозможно и требуется, чтобы неуправляемый код загружался в тот же самый

392   Глава 9  •  Безопасность и анализ кода

процесс, постарайтесь свести его к минимально возможному количеству DLL-
библиотек и пропускать все вызовы к нему через централизованный API, способ-
ный обеспечить соблюдение стандартных мер безопасности.

Рис. 9.8. Изолируйте небезопасный код в известных областях вашего приложения. Уделяйте им
пристальное внимание

Неуправляемый код вносит в ваш процесс существенный риск. Любые ошиб-
ки, повреждающие память на неуправляемой стороне процесса, могут разрушить
в последнем все что угодно, включая память на управляемой стороне. При этом
утрачиваются гарантии безопасности, предоставляемые средой CLR.

Считайте управляемый код, помеченный как небезопасный, точно таким же, как
неуправляемый код, и изолируйте его в наименьшей области видимости. Нужно
также разрешить использовать небезопасный код в настройках проекта.

Отдавайте приоритет ясности кода,
а не получению высокой производительности,
пока нет веских причин для обратного
Возможность легко читать и поддерживать код важнее его производительности,
пока не возникнут веские причины изменить приоритеты на противоположные.
Осознав необходимость внести глубокие изменения, чтобы повысить производи-
тельность, выполняйте эту работу так, чтобы она была как можно более прозрачной
для вышестоящего кода.

Резюме   393

Если же в угоду производительности код перестал быть ясно читаемым, обе-
спечьте в нем документирование всех своих действий, чтобы вашим последовате-
лям не пришлось «прояснять» для себя вашу утонченную оптимизацию путем ее
упрощения.

Резюме
Чтобы гарантировать безопасность своего кода, нужно иметь представление
о подробностях его реализации на всех уровнях. Для ограничения внешнего
воздействия изолируйте в особых модулях самый рискованный код, особенно
машинный или незащищенный. Откажитесь от проблемных API и шаблонов
программирования и принуждайте к соблюдению разумных стандартов програм-
мирования, поощряя безопасные приемы. Для этого используйте анализаторы
кода или другие инструменты статического анализа. Не приносите ясность кода
или возможность его поддержки в жертву повышению производительности без
веских на то оснований.

10 Формирование
команды, нацеленной
на достижение высокой
производительности

Наиболее интересные программные продукты создают не одиночки. Скорее всего,
вы входите в команду, стремящуюся создать какой-нибудь полезный и высоко-
производительный программный продукт. Если вы числитесь в команде знатоком
способов повышения производительности и даже если это не так, в ваших силах
предпринять ряд действий, чтобы нацелить всех остальных на достижение высоких
результатов в этой сфере.

Основная часть рекомендаций, изложенных в этой книге, предназначена для ор-
ганизации, считающей, что разработка программных продуктов — работа истинного
специалиста. К сожалению, многие люди вынуждены трудиться далеко не в иде-
альных условиях. Если это относится и к вам, не стоит отчаиваться. Возможно, ряд
советов, которые я дам в этой главе, помогут повысить уровень оценки инженеров
и компетентность в вашей компании.

Выявление областей, требующих особо
высокой производительности
Оптимизировать все невозможно по определению. Это возвращает нас к рассмо-
тренным в главе 1 принципам, относящимся к измерениям и поиску областей,
требующих особо высокой производительности. В командной работе нужно прий
ти к согласию относительно того, какие области считать определяющими, а какие
можно не трогать.

Разработчики должны гордиться своим трудом и выполнять работу макси-
мально хорошо, а в программировании не должно быть областей, в которых можно
пустить все на самотек. Но реалии делового мира диктуют ограничения по времени
и человеческим ресурсам, с учетом которых приходится выполнять работу. Исходя
из них, нужно потратить время на выявление критических областей системы —
не забываем: измерение, измерение и еще раз измерение! — и убедиться в том, что
в этих областях к деталям отнеслись с должным вниманием.

Производительность — не единственный показатель оценки кода. На приня-
тие решений должны влиять также возможность поддержки, масштабирования,

Эффективное тестирование   395

обеспечения безопасности, настройки конфигурации и другие важные факторы.
Но подозреваю, что на измерение производительности и ее повышение вы всегда
будете тратить основную часть своего времени.

Эффективное тестирование
Это не книга по тестированию, но без всяких слов понятно, что эффективные те-
сты на всех уровнях существенно повысят вашу уверенность при внесении в код
значительных изменений. Если у вас есть модульные тесты с высокой степенью
охвата кода, то резкое изменение основного алгоритма или структуры данных для
существенного повышения эффективности не должно вас пугать.

Если вы считаете, что производительность для вас важна, то связанные с ней
показатели нужно отслеживать, применяя инструментальные средства и приемы,
рассмотренные в книге. Наряду с функциональными тестами можете проводить
тесты производительности. Они могут быть как простыми, отслеживающими ко-
личество операций, выполняемых компонентом за секунду, так и сложными, оце-
нивающими производительность по тысячам показателей между группой серверов
предварительного выпуска и группой производственных серверов.

Провалы теста производительности следует рассматривать не менее серьезно,
чем провал функционального теста, и они должны становиться блокировщиками
поставок. Скорее всего, окажется, что создать надежные повторяемые тесты про-
изводительности намного сложнее, чем функциональные тесты. Производитель-
ность слишком сильно переплетается с состоянием машины, другим программ-
ным продуктом, историей запущенных процессов и бесчисленным множеством
других переменных. Есть три основных подхода работы с этим шумом, который
непременно проявит себя.

1.	 Устранение шума. «Чистые» машины перезапустите перед тестированием,
проконтролируйте все запущенные процессы, различия в составе оборудования
и многое другое. Этот подход применяется при сравнении производительности
двух машин. Важно также выполнить калибровку путем запуска базового теста
на контрольной и целевой машинах, чтобы убедиться, что при абсолютно оди-
наковой конфигурации оборудования и операционной системы запуск на них
одного и того же теста дает одинаковые показатели. В машины с одинаковой
спецификацией довольно часто закрадывается разница, влияющая на показа-
тели тестов, что будет сбивать вас с толку.

2.	 Запуск широкомасштабных тестов. Если устранять весь шум нецелесообразно,
игнорируйте его и запускайте тесты в масштабе, достаточном для уменьшения
влияния самых значительных источников шума. Это может обойтись весьма
недешево, особенно при крупных инфраструктурах. Чтобы получить статисти-
чески значимый результат, могут понадобиться десятки, сотни или даже тысячи
машин. Если расширить масштабы использования оборудования нельзя, можно
раздвинуть временные рамки и сотни раз перезапускать тесты, но при этом
не учитывается такое же большое количество переменных.

396   Глава 10  •  Формирование команды

3.	 Тестирование производительности в производственном режиме. Этот ва-
риант во многих отношениях предпочтителен. Существует множество разно-
видностей проблем производительности, ничем себя не проявляющих вне
производственной среды или при тестировании в менее крупных масштабах.
Отслеживать производительность в производственном режиме следует обяза-
тельно, тогда почему бы не расширить эту инфраструктуру, включив в нее
A/B-тестирование, анализ выборок запросов, непрерывное профилирование,
мониторинг процесса поставки и иные средства, позволяющие увидеть измене-
ние производительности с течением времени? Любое тестирование в произ-
водственном режиме требует уверенной в себе команды и организации, опыта
работы и достаточных навыков, а также гораздо более развитой инфраструк-
туры обеспечения безопасности, откатов, оповещений и т. д.

В любом случае нужно заняться A/B-тестированием, то есть сравнением
производительности двух сборок, в качестве идеального подконтрольного вам
сценария.

Инфраструктура и автоматизация
для оценки производительности
Для сбора данных о производительности вам, скорее всего, потребуется создать
некую пользовательскую инфраструктуру, инструментарий и автоматизированную
поддержку (все инструментальные средства для чтения показателей уже рассмо-
трены в данной книге). К счастью, почти все полезные средства оценки произво-
дительности в той или иной степени поддерживают скриптование.

Существует множество способов отслеживания производительности, и вам
придется решить, какой из них окажется наилучшим для вашего программного
продукта. Вот несколько мыслей на этот счет.

�� PerfMon. Если все данные представлены в виде счетчиков производитель-
ности и работа выполняется на одной машине, то этого средства будет вполне
достаточно.

�� Объединение показателей счетчиков производительности. Если работа ве-
дется на нескольких машинах, то вам, вероятно, нужно будет объединить по-
казатели счетчиков в централизованной базе данных. Преимуществом этого
способа является то, что можно сохранить данные о производительности, чтобы
анализировать полученные ранее.

�� Эталонное тестирование. Ваше приложение обрабатывает стандартный набор
данных, получившиеся показатели производительности сравниваются с преж-
ними результатами. Эталонные тесты полезны, но нужно проявлять осторож-
ность: при смене сценариев старые данные могут оказаться непригодными.
Чтобы сравнение было корректным, эталонные результаты тестирования при
смене производственных данных нужно обновлять.

Инфраструктура и автоматизация для оценки производительности   397

�� Автоматизированное профилирование. Произвольное профилирование цен-
трального процессора и выделения памяти в ходе работы либо с тестовыми,
либо с реальными данными.

�� Оповещения, выдаваемые на основе данных о производительности. Например,
отправка автоматического оповещения в службу поддержки, если центральный
процессор испытывает длительную перегрузку или увеличилось количество
задач в очереди.

�� Автоматизированный анализ ETW-событий. С его помощью можно заметить
некоторые нюансы, которые способны пропустить счетчики производитель-
ности.

То, что вы делаете сейчас для создания инфраструктуры производительности,
воздастся сторицей в будущем, как только поддержка высокой производительности
станет высокоавтоматизированной. Создание такой инфраструктуры зачастую
важнее устранения любых самопроизвольно возникающих проблем с производи-
тельностью, поскольку качественная инфраструктура способна найти и высветить
эти проблемы намного раньше, чем любые предпринятые людьми меры. Каче-
ственная инфраструктура убережет вас от сюрпризов падения производительности
в самые неподходящие моменты. Она также послужит в качестве великолепного
сервиса регрессионного тестирования, что гарантирует поддержание приемлемого
уровня производительности при дальнейшей разработке.

Наиболее важным при формировании инфраструктуры станет вопрос о том,
насколько много вмешательства человека ей требуется. Если вы в той же ситуации,
что и большинство разработчиков программного обеспечения, то у вас работы на-
много больше, чем времени на ее выполнение. Если полагаться на анализ произво-
дительности, выполняемый вручную, это будет означать, что его просто никто не
будет делать. Таким образом, автоматизация становится ключом к эффективной
стратегии повышения производительности. Первоначальные вложения будут изо
дня в день экономить бессчетное количество часов. Хорошее средство экономии
времени может быть не сложнее сценариев, запускающих вспомогательные про-
граммы и создающие для вас отчеты, как только они потребуются, но, скорее всего,
его масштаб придется подгонять под размер вашего приложения. Более крупному
приложению, запущенному в дата-центре, потребуются иные типы анализа про-
изводительности, чем приложению, выполняемому на настольном компьютере,
и более серьезная инфраструктура оценки производительности.

Подумайте, какой будет наиболее подходящая инфраструктура для вашего
случая, и приступайте к ее созданию. Относитесь к ней во всех смыслах как к про-
екту первостепенной важности, реализуемому поэтапно, на который выделено
достаточно ресурсов, а архитектура и код подвергаются пересмотру. Как можно
раньше доведите инфраструктуру до работоспособного состояния и постепенно
наращивайте в ней объем автоматизации.

Порой для того, чтобы убедить руководство в необходимости внедрения всех
этих идей, требуется особое упорство. Вам могут помочь следующие советы.

�� Упирайте на возврат вложений. Руководители мыслят финансовыми катего-
риями. Большие расходы (деньги) в данный момент означают меньшие расходы
(деньги) в дальнейшем.

�� Напомните об общих затратах владельца. Речь опять идет о деньгах и времени.
Если вложения способны уменьшить расходы в других областях, значит, они
становятся выгодными.

�� Не скатывайтесь к мелочам. Разговаривайте на языке, понятном руководству.
Если интересуют технические подробности, то и обсуждайте их, в иных случаях
придерживайтесь вопросов, волнующих руководство.

�� Придерживайтесь определенной политики. Выбор правильного решения не
всегда неизбежен. Зачастую на решения влияют факторы, не имеющие ничего
общего с выделением ресурсов или техническими аспектами. Будьте в курсе
политической ситуации в организации и постарайтесь соотносить с ней свои
действия. Возможно, тут придется идти на компромисс.

�� Привлекайте сторонников. Чем больше людей с различным опытом или сто
ящих на разных позициях будет увлечено вашими предложениями, тем серьез-
нее их станут воспринимать.

�� Приводите фактические обоснования. Если в качестве обоснований необходи-
мости внедрения ваших идей можно привести конкретные данные, примеры или
случившиеся в прошлом инциденты и даже аварийные ситуации, обязательно
воспользуйтесь этим.

Доверяйте только конкретным
числовым показателям
Во многих командах, откладывавших решение проблем с производительностью,
приступают к этому только тогда, когда они начинают серьезно влиять на вос-
приятие программы конечными пользователями. Это означает, что все сводится
к следующей ситуации.

Пользователь: «Ваше приложение работает очень медленно!»
Разработчик: «Из-за чего?»
Пользователь: «Я не знаю! Просто устраните недоделки!»
Разработчик: «Ушел ускорять приложение, если повезет».
Никто бы не хотел участвовать в таком разговоре. Всегда нужно иметь числа,

полученные при измерении всего, что вы оцениваете. Необходимы данные, под-
водящие базу под все, что вы делаете. Людское доверие безгранично повышается
при виде числовых показателей и графиков. Конечно, прежде чем выносить эти
показатели на публику, необходимо убедиться в их достоверности!

Другим аспектом числовых показателей является гарантированное наличие
у вашей команды официальных, реалистичных, ощутимых целей. В приведенном
примере единственным «показателем» было слово «ускорить». Это неформальная,
неконкретная и, по сути, бесполезная цель. Нужны же реальные, официальные

398   Глава 10  •  Формирование команды

Эффективная система просмотра кода   399

цели повышения производительности, к постановке которых следует привлечь
всю цепочку руководства. Нужны результаты работы в виде конкретных показа-
телей. Всех необходимо поставить в известность о том, что, как только они будут
определены, неприемлемо неофициально требовать добиться более высокой про-
изводительности.

Подробнее о постановке разумных целей повышения производительности го-
ворилось в главе 1.

Эффективная система просмотра кода
Идеальных разработчиков не бывает, но, когда за чьим-то кодом следит несколько
пар глаз, его качество может существенно возрасти. Наверное, весь код должен
пройти через процесс просмотра — это будет либо просмотр разницы между дву-
мя версиями, с рассылкой по электронной почте, либо просмотр на совещании, на
котором присутствует вся команда.

Нужно понимать, что не весь код одинаково важен для достижения бизнес-
целей. Конечно, соблазнительно заявить, что самым высоким стандартам должен
отвечать весь код, но эта планка может быть слишком высока в начале. Можно
продумать особые категории оценок, применяемых к программным средствам, наи-
более сильно влияющим на бизнес, где ошибка в функциональных свойствах или
уровне производительности может привести к реальным денежным потерям (или
к потере кем-то работы!). Например, можно перед отправкой кода потребовать под-
писи двух разработчиков, один из которых — старший разработчик или специалист
в предметной области. Для широкомасштабного и сложного просмотра кода можно
посадить всех в комнату с собственными ноутбуками, чтобы кто-то стал первым
демонстрировать свой код через проектор. Как все это будет происходить, зависит
от ресурсов и организации производства в вашей компании, но процесс должен
развиваться и внедряться в практику, меняясь по мере необходимости.

Полезным может оказаться просмотр кода с концентрацией на его конкретных
аспектах, например на функциональной корректности, безопасности или произво-
дительности. Можно попросить специалистов прокомментировать код исключи-
тельно в рамках их компетентности.

Эффективный просмотр кода не имеет ничего общего с придирками. Стилисти-
ческие различия зачастую следует игнорировать. Иногда нужно обходить молчанием
даже довольно крупные вопросы, если они не играют важной роли и существуют бо-
лее серьезные проблемы, на которых следует сосредоточиться. То, что код отличается
от того, какой написали бы вы, еще не означает, что он обязательно хуже. Нет ничего
более деструктивного, чем, затеяв просмотр кода и ожидая критического разбора
какого-нибудь сложного многопоточного программного решения, вместо этого
убить кучу времени на споры о правильном синтаксисе комментариев или о других
мелочах. Не тратьте время попусту. Задайте направление критического просмотра
кода и заставьте его придерживаться. Если есть несомненные нарушения стандартов,
не игнорируйте их, но сначала сосредоточьтесь на более важных вопросах.

В то же время не принимайте сомнительных отговорок вроде: «Да, я понимаю,
что данная строка неэффективна, но разве, по большому счету, это имеет какое-
то значение?» Правильным будет такой ответ: «Вы что, спрашиваете, насколько
плохо можно писать код?» Нужно выдерживать баланс между игнорированием
мелких недочетов и необходимостью формирования культуры повышения про-
изводительности, чтобы в следующий раз разработчик все делал правильно на
автомате. Следует также иметь доказательство низкой производительности —
либо на основе предшествующего опыта действий в подобных ситуациях, либо
фактическим проведением эталонного тестирования. Приберегайте критику для
очевидных проблем.

И наконец, нужно правильно понимать смысл общего «владения» кодом.
Каждый должен чувствовать свою ответственность за весь проект. Нет независимых
конкурирующих вотчин, и никто не должен рьяно отстаивать «свой» код. Наличие
владельцев, отвечающих за раннее предотвращение проблем и просмотр кода, —
фактор положительный, но каждый должен чувствовать себя уполномоченным на
внесение улучшений в любую область кода. Оставьте самомнение за дверью.

Обучение
Выработка мышления, нацеленного на производительность, требует обучения. Учеба
может носить неформальный характер, когда информацию получают от опытного
специалиста команды или из книг, подобных данной, или облекаться в формальные
рамки с платными занятиями и привлечением признанных специалистов в этой
области.

Следует иметь в виду, что даже тем, кто уже знаком с .NET-программированием,
придется сменить свои программистские привычки, как только они начнут серьезно
вникать в проблемы повышения производительности.

А тем, кто хорошо разбирается в C или C++, нужно будет осознать, что здесь
правила достижения высокой производительности зачастую совершенно другие
или противоречащие их прежним представлениям, связанным с миром неуправ-
ляемого кода.

Изменяться нелегко, и большинство людей будут сопротивляться этому про-
цессу, поэтому стоит проявить чуткость при внедрении новых приемов работы.
И, как всегда, важно заручиться поддержкой руководства в том, чего вы пытаетесь
добиться.

Если вам нужно подтолкнуть коллег к обсуждению проблем повышения произ-
водительности программных продуктов, могу подсказать, как это сделать.

�� Начните за обедом непринужденную беседу, чтобы поделиться мыслями о том,
что вы изучаете.

�� Заведите внутренний или публичный блог, чтобы поделиться знаниями или
обсудить проблемы повышения производительности, обнаруженные в про-
граммных продуктах.

400   Глава 10  •  Формирование команды

Резюме   401

�� Подберите кого-нибудь из команды в качестве своего постоянного рецензента
по вопросам повышения производительности.

�� Продемонстрируйте преимущества, получаемые от повышения производитель-
ности, с помощью простых эталонных тестов или программ, подтверждающих
работоспособность концепции.

�� Назначьте кого-нибудь специалистом по повышению производительности. Он
будет постоянно следить за производительностью, просматривать код, научит
других действенным приемам и будет в курсе всех актуальных изменений в этой
области и общего уровня ее развития. Если вы читаете эти строки, значит, вы
уже вызвались добровольцем на эту роль.

�� Проявите инициативу там, где возможны улучшения. Совет: лучше всего начать
с собственного кода!

�� Уговорите руководителей своей организации купить эту книгу для всех специа
листов. (Беззастенчивая реклама!)

Резюме
Нацеливая команду на достижение высокой производительности программного
продукта, начните с малого. Прежде всего возьмите собственный код и потратьте
время на то, чтобы разобраться, какие области в нем действительно влияют на про-
изводительность. Добейтесь одинаковой нетерпимости к падению производитель-
ности и функциональным сбоям. Чтобы уменьшить нагрузку на команду, автомати-
зируйте как можно больше действий. Оценивайте показатели производительности
точными цифрами, а не на уровне интуиции или субъективного восприятия.

Создайте эффективную систему просмотра кода, поощряющую качественный
стиль программирования, сконцентрированность на реально значимых аспектах
и коллективную ответственность за код.

Осознайте, что изменить уже сложившуюся ситуацию нелегко и здесь нужен
чуткий подход. Скорее всего, сменить взгляды понадобится даже тем, кто хоро-
шо разбирается в среде .NET. А ветеранам C++ и Java, чтобы освоиться в .NET-
программировании, может понадобиться некоторое время.

Найдите способы внедрения в обычную практику команды регулярные обсу
ждения вопросов повышения производительности программ и подыщите или под-
готовьте специалистов для распространения информации на эту тему.

Приложение А. Начало
работы над повышением
производительности приложения

В этой книге упомянуты сотни подробностей, касающихся проблем, которые могут
возникнуть в вашем приложении, но если вы в самом начале пути, ознакомьтесь
с изложенными далее общими направлениями движения к анализу и последу
ющему повышению производительности ваших программ.

Определение метрик
�� Определите интересующие вас метрики.

�� Решите, какой тип статистических данных вам необходим: по средним показа-
телям, по минимуму, по максимуму, в процентном выражении или еще более
сложный вариант.

�� Каковы ограничения на ресурсы, с которыми вам приходится иметь дело?
Возможные их примеры: центральный процессор, использование памяти,
интенсивность выделения памяти, сетевой ввод-вывод, задействование диска,
интенсивность записи на диск и т. д.

�� Какова цель применения метрики или ресурса?

Анализ использования
центрального процессора
�� Используйте PerfView или Visual Studio Standalone Profiler для получения ре-

зультатов профилирования работы центрального процессора при выполнении
вашего приложения.

�� Проанализируйте стеки для особо выделяющихся функций.

�� Обработка данных занимает много времени?

Анализ использования памяти   403

�� Можно ли изменить структуру данных, чтобы она была представлена в формате,
требующем меньшей обработки? Например, вместо разбора XML воспользуй-
тесь простым двоичным форматом сериализации.

�� Есть ли альтернативные API?

�� Можете ли вы распараллелить работу с применением Task-делегатов или
Parallel.For?

Анализ использования памяти
�� Выберите подходящий тип сборки мусора.

yy Серверный — ваша программа является единственным значимым приложе-
нием на машине и нуждается в самой низкой задержке для сборок мусора.

yy Рабочей станции — у вас имеется пользовательский интерфейс или вы де-
лите машину с другим важным процессом.

�� Проведите профилирование памяти с помощью PerfView.

yy Найдите среди результатов самых активных «выделителей» памяти — на-
сколько они ожидаемы и приемлемы?

yy Уделите пристальное внимание на выделения памяти в куче больших объ-
ектов.

�� Если сборки мусора в поколении gen 2 происходят слишком часто.

yy Не слишком ли часто выделяется память в LOH? Удалите или объедините
в пулы выделяемые в этой куче объекты.

yy Не чрезмерен ли объем объектов, перемещаемых в старшее поколение? Со-
кращайте время существования объектов, чтобы они попадали под сборки
мусора в предыдущих поколениях. Выделяйте память под объекты только
при крайней надобности и избавляйтесь от них, когда они больше не нужны.

yy Если объекты существуют слишком долго, объединяйте их в пул.

�� Если сборка мусора в поколении gen 2 занимает слишком много времени.

yy Оцените возможность применения GC-уведомлений для получения сигна-
ла готовности сборки мусора к запуску. Используйте эту возможность для
остановки обработки.

yy Сократите частоту полных сборок мусора, понизив объем перемещения объ-
ектов в старшее поколение и снизив количество выделений памяти в LOH.

�� Если наблюдается большое количество сборок мусора в поколениях gen 0/1.

yy Найдите область с наиболее активными выделениями памяти с помощью про-
филирования. Найдите способ сокращения надобности в выделении памяти.

yy Минимизируйте время существования объектов.

404   Приложение А  •  Начало работы над повышением производительности

�� Если сборка мусора в поколениях gen 0/1 выполняется с большими паузами.

yy Сократите общее количество выделений памяти.

yy Минимизируйте время существования объектов.

yy Были ли объекты закреплены? Удалите их, если возможно, или сократите
область видимости закрепления.

yy Упростите объекты за счет удаления ссылок между ними.

�� Если LOH разрастается.

yy Проверьте степень фрагментации с помощью WinDbg или CLR Profiler.

yy Периодически уплотняйте кучи больших объектов.

yy Проверьте, нет ли пулов объектов с безудержным ростом.

Анализ JIT-компиляции
�� Если на запуск уходит слишком много времени.

yy Действительно ли причина в JIT-компиляции? Чаще всего слишком долгий
запуск вызван загрузкой данных, характерных для приложения. Следует
убедиться, что причина действительно в JIT-компиляции.

yy Используйте PerfView для анализа, позволяющего выявить методы, на JIT-
компиляцию которых уходит слишком много времени.

yy Применяйте Profile Optimization для ускорения JIT-компиляции при за-
грузке приложения.

yy Проанализируйте возможность использования NGEN.

yy Проанализируйте возможность применения настраиваемой предваритель-
ной подготовки путем выполнения вашего кода.

�� Появляются ли в профиле те методы, код которых вы ожидали увидеть встро-
енным?

yy Найдите код, препятствующий встраиванию кода методов, например циклы,
обработка исключений, рекурсии и т. д.

Анализ производительности
в асинхронном режиме
�� Используйте PerfView для выявления высокого уровня конфликтности.

yy Устраните конфликты путем реструктуризации кода таким образом, чтобы
требовалось меньше блокировок.

yy Используйте в нужных местах методы Interlocked или гибридные блоки-
ровки.

Анализ производительности в асинхронном режиме   405

�� Захватывайте события категории Thread Time с помощью PerfView для выясне-
ния того, на что затрачивается время. Анализируйте соответствующие области
кода, чтобы убедиться, что потоки не блокируются на операциях ввода-вывода.

yy Возможно, чтобы избежать ожидания на Task-объектах или операциях ввода-
вывода, придется внести в программу существенные изменения, придавая ей
бо' льшую асинхронность на всех уровнях.

yy Удостоверьтесь в применении асинхронных потоковых API.

�� Возникают ли паузы перед тем, как ваша программа приступает к эффектив-
ному использованию пула потоков? Это может проявляться в виде начального
замедления, исчезающего через несколько минут.

yy Удостоверьтесь, что минимальный размер пула потоков соответствует ра-
бочей нагрузке.

Приложение Б. Увеличение
производительности на более
высоком уровне

Эта книга призвана главным образом помочь вам разобраться в основах обеспече-
ния производительности с точки зрения основных элементов .NET. Прежде чем
складывать из своих строительных блоков более крупные приложения, очень важно
понять, какие затраты будут приходиться на эти самые блоки. Все, что до сих пор
рассматривалось в книге, применимо к большинству типов .NET-приложений,
включая и те, речь о которых пойдет в этом приложении.

Данное приложение станет шагом наверх и даст вам несколько кратких советов
по поводу популярных типов приложений. Я не стану рассматривать эти темы
так же подробно, как делал на других страницах книги, поэтому считайте это об-
щим обзором, вдохновляющим вас на дальнейшие исследования. Советы большей
частью не связаны со средой .NET и ориентированы на архитектуры, предметные
области или библиотеки.

ASP.NET
�� Отключите ненужные HTTP-модули.

�� Удалите неиспользуемые View Engines.

�� Не проводите компиляцию производственной версии как для отладки (про-
верьте наличие <compilation debug="true"/>).

�� Сократите количество обращений браузера к серверу.

�� Убедитесь в том, что буферизация страниц включена (по умолчанию включена).

�� Освойте интенсивное использование кэшей:

yy OutputCache — кэширует вывод страницы;

yy Cache — кэширует произвольные объекты по вашему желанию.

�� Оцените объем своих страниц с точки зрения клиента.

�� Уберите на страницах ненужные и пробельные символы.

ADO.NET   407

�� Применяйте HTTP-сжатие.

�� Производите валидацию данных на стороне клиента, чтобы уменьшить обмен
данными с сервером. Но также проводите валидацию на стороне сервера для
надежности.

�� Отключите или ограничьте использование ViewState для малых объектов. Если
без него не обойтись, воспользуйтесь сжатием.

�� Выключите состояние сессии, если в нем нет необходимости.

�� Не пользуйтесь методом Page.DataBind.

�� Объединяйте в пул подключения к внутренним серверам, например, к базам
данных.

�� Выполняйте предварительную компиляцию веб-сайта.

�� Воспользуйтесь свойством Page.IsPostBack, чтобы запустить код, который
должен выполняться только один раз на каждой странице, например для ини-
циализации.

�� Применяйте Server.Transfer вместо Response.Redirect.

�� Не используйте задач с большим временем выполнения.

�� Избегайте конфликтов при блокировках или блокировок потоков по какой-
либо причине.

ADO.NET
�� Сохраняйте объекты подключений, команд, параметров и другие объекты,

связанные с базами данных, в повторно используемых полях, а не в экзем-
плярах, создаваемых заново при каждом вызове часто применяемого метода.

�� Объединяйте сетевые подключения в пулы.

�� Убедитесь в том, что структура и индексация базы данных верны.

�� Сократите количество гуляющих туда и обратно запросов к базе данных.

�� Кэшируйте как можно больше данных локально, в памяти.

�� Используйте где только возможно сохраненные процедуры.

�� Для больших наборов данных задействуйте постраничную выборку, то есть
не возвращайте целиком весь набор данных.

�� По возможности объединяйте запросы в пакеты.

�� Применяйте объекты DataView в качестве надстройки над объектами DataSet
вместо повторных запросов одной и той же информации.

�� Если можно обойтись представлением данных с кратковременным однонаправ-
ленным их перебором, воспользуйтесь DataReader.

�� Профилируйте производительность запросов с помощью SQL Query Analzyer.

WPF
�� Работайте с самой свежей версией среды .NET, поскольку за последние годы

произошло значительное повышение ее производительности.

�� Никогда не выполняйте большой объем обработки данных в потоке пользова-
тельского интерфейса.

�� Убедитесь в отсутствии ошибок привязки.

�� Обходитесь только абсолютно необходимыми визуальными представлениями.
Избыточные преобразования и уровни замедлят отображение данных.

�� Сократите размер и глубину видимого дерева.

�� Используйте минимально приемлемую частоту кадров анимации.

�� Для отображения только видимых объектов применяйте виртуальные пред-
ставления и списки.

�� Предусмотрите при необходимости возможность отложенной прокрутки длин-
ных списков.

�� StreamGeometry работает быстрее PathGeometry, но поддерживает меньше функций.

�� Drawing-объекты обрабатываются быстрее Shape-объектов, но поддерживают
меньше функций.

�� По возможности не заменяйте, а обновляйте преобразования визуализации.

�� Заставьте WPF явным образом загружать изображения нужного вам размера,
если размер их отображения будет меньше полного.

�� Удалите обработчики событий из объектов, чтобы обеспечить их удаление при
сборке мусора.

�� Переопределите метаданные DependencyProperty, чтобы перенастроить их при
изменении значений, вызывающих повторное отображение.

�� Заморозьте объекты, если нужно избежать издержек на уведомления об из-
менениях.

�� Отдавайте предпочтение не динамическим, а статическим ресурсам.

�� Чтобы показывать минимальный набор свойств, выполняйте привязку к CLR-
объектам с несколькими свойствами или создайте объекты-оболочки.

�� Отключите хит-тестирование для больших 3D-объектов, если в нем нет не-
обходимости.

�� Перекомпилируйте код для универсальной платформы Windows с прицелом на
Windows 10, чтобы без каких-либо затрат получить существенное повышение
производительности.

408   Приложение Б  •  Увеличение производительности на более высоком уровне

Приложение В. Нотация
«“O” большое»

На уровень выше непосредственного профилирования производительности
лежит алгоритмический анализ. Обычно он проводится на предмет абстрактных
операций относительно величины задачи. В компьютерной науке есть стан-
дартный способ обозначения затратности алгоритмов, который называется
«O» большим.

«O» большое
Нотация «“O” большое», также известная как асимптотическая нотация, представ-
ляет собой способ обобщения производительности алгоритмов на основе величины
задачи. Обычно величина задачи обозначается n. То, какое у алгоритма «O» большое,
является показателем его сложности. Определение «асимптотическое» использу-
ется для того, чтобы описать поведение функции, когда размер ее входных данных
приближается к бесконечности.

Рассмотрим в качестве примера неотсортированный массив, содержащий значе-
ние, которое нам надо найти. Поскольку он не отсортирован, нам придется вести
поиск в каждом элементе до тех пор, пока это значение не будет найдено. Если мас-
сив имеет размер n, в худшем случае придется искать среди n элементов. Поэтому
говорится, что этот алгоритм линейного поиска имеет сложность O(n).

Это самый худший случай. Но в среднем алгоритм предполагает, что искать при-
дется в n / 2 элементах. Можно уточнить оценку и сказать, что алгоритм в среднем
имеет сложность O(n / 2), но фактически это не такое уж большое изменение, если
рассматривать фактор роста (n). Константы отбрасываются, оставляя нас с той же
степенью сложности O(n).

Нотация «“O” большое» выражается через функции от n, где n — размер вход-
ных данных, определяемый алгоритмом и структурой данных, с которыми он
работает. Для коллекции он может быть количеством элементов в коллекции, для
алгоритма поиска в строке — длиной строки.

Нотация «“O” большое» указывает рост времени, необходимого для выполнения
алгоритма, растет с увеличением размера входных данных. В примере с массивом

ожидается, что при удвоении размера массива время, необходимое для поиска,
также удвоится. Это означает, что алгоритм имеет линейные характеристики про-
изводительности.

Алгоритм со сложностью O(n2) будет показывать производительность ниже
линейной. При удвоении входных данных время учетверяется. Если размер задачи
вырастает в восемь раз, время увеличивается в 64 раза, всегда являясь квадратом
размера. Этот тип алгоритма демонстрирует квадратичную сложность. Хорошим
примером может послужить алгоритм пузырьковой сортировки (фактически слож-
ность O(n2) имеют большинство простых алгоритмов сортировки):

private static void BubbleSort(int[] array)
{
 bool swapped;
 do
 {
 swapped = false;
 for (int i = 1; i < array.Length; i++)
 {
 if (array[i - 1] > array[i])
 {
 int temp = array[i - 1];
 array[i - 1] = array[i];
 array[i] = temp;
 swapped = true;
 }
 }
 } while (swapped);
}

Когда встречаются вложенные циклы, то, скорее всего, алгоритм будет ква-
дратичным или полиномиальным, если не хуже. В случае с пузырьковой сорти-
ровкой внешний цикл может запускаться до n раз, а внутренний будет проверять
до n элементов на каждой итерации, поэтому сложность можно обозначить
как O(n2).

При анализе ваших собственных алгоритмов можно придумать формулу,
содержащую несколько факторов, как в случае с O(8n2 + n + C) (квадратичная
часть, умноженная на 8, линейная часть и часть с постоянным временем). Для
целей нотации «“O” большое» оставляют только наиболее значимый фактор,
а мультипликативные константы игнорируют. Этот алгоритм будет трактоваться
как O(n2). Следует также помнить, что нотация «“O” большое» определяет рост
времени по мере приближения величины задачи к бесконечности. Даже притом,
что 8n2 в восемь раз больше n2, это совсем не актуально по сравнению с ростом
фактора n2, который для больших значений n сильно превосходит любой другой
фактор. И наоборот, если n небольшое, разница между O(n log n), O(n2) или O(2n)
незначительна и неинтересна. Обратите внимание на то, что у вас могут приме-
няться сложные значимые факторы, например O(n2 · 2n), и ни один компонент,

410   Приложение В  •  Нотация «“O” большое»

«O» большое   411

включающий n, не будет удален, пока он действительно не станет незначитель-
ным.

У многих алгоритмов имеется несколько входных данных, и их сложность мо-
жет быть обозначена несколькими переменными, например O(mn) или O(m + n).
К примеру, многие алгоритмы с графами зависят от количества ребер и количества
вершин.

Наиболее часто встречаются следующие типы сложностей:

�� O(1) (постоянная) — требуемое время не зависит от размера входных данных.
Сложностью O(1) обладают многие хеш-таблицы;

�� O(log n) (логарифмическая) — время увеличивается как доля размера входных
данных. Любой алгоритм, делящий пространство задачи пополам при каждой
итерации, имеет логарифмическую сложность. Обратите внимание на то, что
основание этого логарифма не указано;

�� O(n) (линейная) — время увеличивается пропорционально размеру входных
данных;

�� O(n log n) (логарифмически линейная) — время увеличивается квазилинейно,
то есть во времени доминирует линейный фактор, но при этом происходит
умножение на долю размера входных данных;

�� O(n2) (квадратическая) — время увеличивается с квадратом размера входных
данных;

�� O(nC) (полиномиальная) — C больше или равно 2;

�� O(Cn) (экспоненциальная) — C больше 1;

�� O(n!) (факториальная) — попробуйте каждую перестановку.

Алгоритмическая сложность обычно описывается в понятиях ее средней
и наихудшей производительности. Наилучшая производительность не слишком
интересна, поскольку на многие алгоритмы может повлиять удача (например,
для нашего анализа фактически все равно, что наилучшая производительность
линейного поиска обозначается O(1), поскольку это означает, что нам просто
повезло).

На графике на рис. В.1 показано, как быстро может расти время на основе
величины задачи. Обратите внимание на то, что разница между O(1) и O(log n)
практически неразличима даже для относительно больших задач. Алгоритм
со сложностью O(n!) практически непригоден для всего, кроме самых мелких
задач.

Хотя время — самая распространенная размерность сложности, по такой же
методологии может быть проанализировано и пространство (использование памя-
ти). Например, большинство алгоритмов сортировки по времени имеют сложность
O(log n), а по пространству — O(n). С точки зрения сложности, совсем немногие
структуры данных занимают больше места, чем то количество элементов, которое
в них содержится.

Рис. В.1. Влияние величины задачи на скорость возрастания сложности
разных типов алгоритмов

Самые распространенные алгоритмы
и их сложность
Сортировка
�� Быстрая сортировка (Quicksort) — O(n log n), O(n2) — худший случай.

�� Сортировка методом слияния (Merge sort) — O(n log n).

�� Древовидная сортировка (Heap sort) — O(n log n).

�� Пузырьковая сортировка (Bubble sort) — O(n2).

�� Сортировка методом вставок (Insertion sort) — O(n2).

�� Сортировка методом выбора (Selection sort) — O(n2).

Графы
�� Поиск преимущественно в глубину (Depth-first search) — O(E + V), где E —

ребра, V — вершины.

�� Поиск преимущественно в ширину (Breadth-first search) — O(E + V).

�� Кратчайший путь (Shortest-path с использованием Min-heap) — O((E + V)log V).

412   Приложение В  •  Обозначение «O» большого

Самые распространенные алгоритмы и их сложность   413

Поиск
�� Неотсортированный массив — O(n).

�� Отсортированный массив с двоичным поиском — O(log n).

�� Дерево двоичного поиска — O(log n).

�� Хеш-таблица — O(1).

Особый случай
�� Вычисление каждой перестановки строки — O(n!).

�� Коммивояжер — O(n!). Надо признать, это наихудший случай. Существует
способ решения со сложностью O(n2 · 2n), предусматривающий использование
технологии динамического программирования.

Зачастую O(n!) фактически является сокращением для понятия «решение в лоб,
опробование каждой возможности».

Приложение Г. Библиография

Ценные источники информации
�� Hewardt M., Dussud P. Advanced .NET Debugging. Addison-Wesley Professional,

2009.

�� Richter J. CLR via C#. 4th ed. Microsoft Press, 2012.

�� Russinovich M., Solomon D., Ionescu A. Windows Internals. 6th ed. Microsoft Press,
2012.

�� Rasmussen B. High-Performance Windows Store Apps. Microsoft Press, 2014.

�� Стандарты ECMA C# и CLI. https://www.visualstudio.com/license-terms/ecma-c-common-
language-infrastructure-standards/, Microsoft.

�� Закон Амдала. http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf.

Люди и блоги
Кроме вышеупомянутых источников информации, стоит прислушаться к мнениям
людей, излагаемым либо в блогах, либо в статьях в различных изданиях.

�� Блог .NET Framework — сообщения, новости, обсуждения и серьезные статьи.
http://blogs.msdn.com/b/dotnet/.
�� Маони Стивенс (Maoni Stephens) — разработчик CLR и специалист по сборке

мусора. Ее блог находится по адресу http://blogs.msdn.com/b/maoni/, обновляется
довольно редко, но там много полезной информации и временами появляются
важные сообщения.

�� Вэнс Моррисон (Vance Morrison) — архитектор производительности .NET.
Автор инструментальных средств PerfView, MeasureIt и многочисленных статей
и презентаций по вопросу производительности .NET. Блоги по адресу http://
blogs.msdn.com/b/vancem/.
�� Мэтт Уоррен (Matt Warren) — энтузиаст повышения производительности в сре-

де .NET, особо ценный специалист компании Microsoft, блогер и соучастник

Люди и блоги   415

многих .NET-проектов с открытым кодом, включая BenchmarkDotNet. http://
mattwarren.org/.

�� Брендан Грегг (Brendan Gregg): http://www.brendangregg.com/. Не имеет отношения
к .NET, но в этом источнике масса ценной информации, относящейся к произ-
водительности.

�� Журнал MSDN Magazine: http://msdn.microsoft.com/magazine. Содержит множество
великолепных статей, освещающих самые сокровенные подробности внутрен-
него устройства среды CLR.

 Бен Уотсон

Высокопроизводительный код на платформе .NET
2-е издание

Перевел с английского Н. Вильчинский

	 Заведующая редакцией	 Ю. Сергиенко
	 Руководитель проекта	 С. Давид
	 Ведущий редактор	 Н. Гринчик
	 Научный редактор	 М. Сагалович
	 Литературный редактор	 Н. Рощина
	 Художественный редактор	 В. Мостипан
	 Корректоры	 О. Андриевич, Е. Павлович
	 Верстка	 Г. Блинов

Изготовлено в России. Изготовитель: ООО «Прогресс книга».
Место нахождения и фактический адрес: 194044, Россия, г. Санкт-Петербург,

Б. Сампсониевский пр., д. 29А, пом. 52. Тел.: +78127037373.

Дата изготовления: 06.2019. Наименование: книжная продукция. Срок годности: не ограничен.

Налоговая льгота — общероссийский классификатор продукции ОК 034-2014, 58.11.12 — Книги печатные
профессиональные, технические и научные.

Импортер в Беларусь: ООО «ПИТЕР М», 220020, РБ, г. Минск, ул. Тимирязева, д. 121/3, к. 214, тел./факс: 208 80 01.

Подписано в печать 28.05.19. Формат 70×100/16. Бумага офсетная. Усл. п. л. 33,540. Тираж 1000. Заказ 0000.

Отпечатано в ОАО «Первая Образцовая типография». Филиал «Чеховский Печатный Двор».
142300, Московская область, г. Чехов, ул. Полиграфистов, 1.

Сайт: www.chpk.ru. E-mail: marketing@chpk.ru
Факс: 8(496) 726-54-10, телефон: (495) 988-63-87

mailto:marketing@chpk.ru

	Предисловие
	Об авторе
	Благодарности
	От издательства
	Введение во второе издание
	Введение
	Цель этой книги
	В чем смысл выбора управляемого кода?
	Работает ли управляемый код медленнее нативного?
	Стоит ли овчинка выделки?
	Я что, теряю контроль?
	Работа с CLR, а не против нее
	Уровни оптимизации
	Коварная соблазнительность простоты
	Хронология совершенствования производительности среды .NET
	.NET Core
	Учебный исходный код

	Глава 1. Измерение производительности и инструменты
	Выбор предмета измерения
	Преждевременная оптимизация
	Сравнение усредненных и процентных показателей
	Эталонное тестирование
	Полезные инструменты
	Visual Studio
	Профилирование центрального процессора
	Профилирование с помощью командной строки
	Счетчики производительности
	ETW-события
	PerfView
	Интерфейс и представления данных в PerfView
	Профилировщик CLR Profiler
	Анализатор производительности
Windows Performance Analyzer
	WinDbg
	CLR MD
	Анализаторы IL
	MeasureIt
	BenchmarkDotNet
	Оснащение кода инструментами
	Утилиты SysInternals
	База данных
	Другие инструменты

	Издержки измерений
	Резюме

	Глава 2. Управление
памятью
	Выделение памяти
	Операция сборки мусора
	Параметры конфигурации
	Сравнение сборки мусора в режиме рабочей станции и в режиме сервера
	Сборка мусора в фоновом режиме
	Режимы задержки
	Большие объекты
	Дополнительные параметры

	Советы по повышению производительности
	Сокращайте размеры выделяемой памяти
	Самое важное правило
	Сокращайте время существования объекта
	Сбалансируйте выделение
	Сократите количество ссылок между объектами
	Избегайте закреплений
	Избегайте финализаторов
	Избегайте выделения больших объектов
	Избегайте копирования буферов
	Объединяйте долгоживущие и большие объекты в пулы
	Сокращайте степень фрагментации кучи больших объектов
	При определенных обстоятельствах выполняйте принудительную полную сборку мусора
	Уплотняйте кучу больших объектов по требованию
	Получайте уведомление о намечающейся сборке мусора
	Применяйте для кэширования слабые ссылки
	Динамически выделяйте память в стеке

	Исследование памяти и сборки мусора
	Счетчики производительности
	События ETW
	Как выглядит куча памяти моего приложения?
	Сколько времени занимает сборка мусора?
	Где именно происходит выделение памяти
	Что за объекты находятся в куче?
	Где именно допущена утечка памяти?
	Каков размер моих объектов?
	Каким объектам выделена память в LOH?
	Какие объекты были закреплены?
	Где происходит фрагментация?
	Фрагментация виртуальной памяти
	В каком поколении находится объект?
	Какие объекты выжили в поколении gen 0?
	Откуда был сделан явный вызов метода GC.Collect?
	Какие слабые ссылки имеются в моем процессе?
	Какие финализируемые объекты имеются в куче?

	Резюме

	Глава 3. JIT-компиляция
	Преимущества JIT-компиляции
	JIT в действии
	JIT-оптимизации
	Сокращение времени JIT-компиляции
и запуска
	Оптимизация JIT-компиляции с помощью профилирования (Multicore JIT)
	Когда следует применять NGEN
	.NET Native
	Настраиваемая предварительная подготовка
	Когда JIT-компиляция не может составить конкуренцию
	Исследование поведения JIT-компилятора
	Счетчики производительности
	ETW-события
	Какой код подвергся JIT-компиляции?
	На какие методы и модули затрачивается больше всего времени при JIT-компиляции?
	Исследование кода, полученного после JIT-компиляции

	Резюме

	Глава 4. Асинхронное программирование
	Пул потоков
	Библиотека распараллеливания задач
	Отмена задачи
	Обработка исключений
	Дочерние задачи

	Среда TPL Dataflow
	Параллельно выполняемые циклы
	Советы по повышению производительности
	Избегайте использования блокировок
	Избегайте конвоев при блокировке
и диспетчеризации
	Использование объектов Tasks для неблокирующего ввода-вывода
	async и await
	О структуре программы
	Правильно используйте таймеры
	Подберите подходящий размер пула потоков
	Не прерывайте потоки
	Не меняйте приоритет потоков

	Синхронизация потоков и блокировки
	Нужно ли вообще заботиться о производительности?
	А нужна ли вообще блокировка?
	Порядок предпочтения синхронизации
	Модели памяти
	Использование volatile при необходимости
	Использование Monitor (lock)
	Использование методов Interlocked
	Асинхронные блокировки
	Другие механизмы блокировки
	Конкурентность и коллекции
	Копирование ресурса для каждого потока

	Исследование потоков и конфликтов
	Счетчики производительности
	ETW-события
	Получение информации о потоках
	Визуализация задач и потоков с помощью Visual Studio
	Использование PerfView для обнаружения конфликта блокировок
	Где потоки блокируются на ввода-выводе?

	Резюме

	Глава 5. Общие подходы к написанию кода и классов
	Классы и структуры
	Исключение из правил: изменяемая структура для хранения иерархии полей
	Виртуальные методы и запечатанные классы
	Свойства
	Переопределение Equals и GetHashCode
для структур
	Потоковая безопасность

	Кортежи
	Диспетчеризация интерфейсов
	Избегайте упаковки
	Возвращения по ссылке (ref) и локальные значения
	for или foreach
	Приведение типов
	P/Invoke
	Делегаты
	Исключения
	dynamic
	Отражение
	Генерация кода
	Создание шаблонов
	Создание делегата
	Аргументы метода
	Оптимизация
	Подведение итогов

	Предварительная обработка
	Исследование проблем производительности
	Счетчики производительности
	ETW-события
	Поиск инструкций упаковки
	Обнаружение исключений первого шанса

	Резюме

	Глава 6. Использование среды .NET Framework
	Разберитесь с каждым вызываемым API
	Множество API для решения одних и тех же задач
	Коллекции
	Какие коллекции лучше не использовать
	Массивы
	Сравнение ступенчатых и многомерных массивов
	Обобщенные коллекции
	Коллекции для многопоточной среды
	Коллекции для работы с битами
	Исходный объем
	Сравнение ключей
	Сортировка
	Создание собственных типов коллекций

	Строки
	Сравнение строк
	ToUpper и ToLower
	Объединение
	Форматирование
	ToString
	Избегайте разбора строк
	Подстроки

	Избегайте использования API, выдающих исключения при обычных обстоятельствах
	Избегайте использования API, выделяющих память из кучи
больших объектов
	Использование ленивой инициализации
	Удивительно высокие издержки от использования перечислений
	Учет времени
	Регулярные выражения
	LINQ
	Чтение и запись файлов
	Оптимизация настроек HTTP и сетевых соединений
	SIMD
	Исследование причин возникновения проблем с производительностью
	Резюме

	Глава 7. Счетчики производительности
	Использование существующих счетчиков
	Создание пользовательского счетчика
	Счетчики усредненных показателей
	Счетчики мгновенных показателей
	Счетчики показателей разницы
	Счетчики процентных показателей

	Резюме

	Глава 8. ETW-события
	Определение событий
	Использование пользовательских событий в PerfView
	Создание пользовательского отслеживателя ETW-событий
	Получение подробных данных EventSource
	Использование событий CLR и системы
	Пользовательские аналитические расширения PerfView
	Резюме

	Глава 9. Безопасность
и анализ кода
	Представление об операционной системе, API и оборудовании
	Ограничение использования API в определенных областях кода
	Пользовательские правила FxCop
	Анализаторы кода компилятора .NET

	Выполняйте централизацию и абстрагирование сложного и важного для повышения производительности кода
	Изолируйте неуправляемый и небезопасный код
	Отдавайте приоритет ясности кода над получением высокой производительности, пока нет веских причин для обратного
	Резюме

	Глава 10. Формирование команды, нацеленной на достижение высокой производительности
	Выявление областей, определяющих уровень производительности
	Эффективное тестирование
	Инфраструктура и автоматизация для оценки производительности
	Доверяйте только конкретным числовым показателям
	Эффективная система критической оценки кода
	Обучение
	Резюме

	Приложение А. Начало работы над повышением производительности приложения
	Определение показателей
	Анализ использования
центрального процессора
	Анализ использования памяти
	Анализ JIT-компиляции
	Анализ производительности в асинхронном режиме

	Приложение Б. Увеличение производительности на более высоком уровне
	ASP.NET
	ADO.NET
	WPF

	Приложение В. Обозначение «O» большого
	«O» большое
	Самые распространенные алгоритмы и их сложность
	Сортировка
	Графы
	Поиск
	Особый случай

	Приложение Г. Библиография
	Ценные источники информации
	Люди и блоги

